FOMENTANDO TESTES DE MUTACAO VIA

EXECUCAO CIENTE DE VARIABILIDADE

JOAO PAULO DE FREITAS DINIZ

FOMENTANDO TESTES DE MUTACAO VIA

EXECUCAO CIENTE DE VARIABILIDADE

Dissertagao apresentada ao Programa de
Pos-Graduagao em Ciéncia da Computacao
do Instituto de Ciéncias Exatas da Univer-
sidade Federal de Minas Gerais como re-
quisito parcial para a obtencao do grau de
Mestre em Ciéncia da Computacao.

ORIENTADOR: EDUARDO FIGUEIREDO
COORIENTADOR: CHRISTIAN KASTNER

Belo Horizonte

Outubro de 2018

JOAO PAULO DE FREITAS DINIZ

FOSTERING MUTATION TESTING WITH

VARIABILITY-AWARE EXECUTION

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Master in Computer Science.

ADVISOR: EDUARDO FIGUEIREDO
CO-ADVISOR: CHRISTIAN KASTNER

Belo Horizonte

October 2018

(© 2018, Joao Paulo de Freitas Diniz.
Todos os direitos reservados.

Ficha catalografica elaborada pela Biblioteca do ICEx - UFMG

Diniz, Joao Paulo de Freitas

D585f Fostering Mutation Testing with Variability-Aware
Execution / Jodo Paulo de Freitas Diniz — Belo
Horizonte, 2018.

xxiv, 62 f. : il. ; 29cm

Dissertacao (mestrado) — Universidade Federal de
Minas Gerais — Departamento de Ciéncia da
Computacao.

Orientador: Eduardo Magno Lages Figueiredo
Coorientador: Christian Késtner

1. Computagao — Teses. 2. Engenharia de software.
3. Software — testes. 1. Orientador. II. Coorientador.
III. Titulo.

CDU 519.6*32(043)

UNIVERSE)ADE FEDERAL DE MINAS GERAIS
O DE CIENCIAS EXATAS
PROGRAMADE POS- GRADUAC,AO EM CIENCIADA COMPUTACAO

FOLHA DE APROVACAO
Fostering Mutation Testing with Variability-Aware Execution

JOAO PAULO DE FREITAS DINIZ

Dissertagio defendida e aprovada pela banca examinadora constituida pelos Senhores:

€ Juordn L
Pror. EDuARDO MAGNO LAGES FIGUEIREDO - Orientador
Departamento de Ciéncia da Computagdo - UFMG
/ //
Pror. Cx-msmn KasTNER - Coonenmdor
Institute for Software Research - Carnegie Mellon University

Departamenm de Informatlca -UFPR

Belo Horizonte, 1 de outubro de 2018.

Dedico esta dissertagao a minha esposa, ao meu pai, a minha mae e a minha
1rma pelo constante incentivo e por sempre acreditarem em mim, e ao meu lindo filho

por tornar minha vida tao especial, por me motivar e me inspirar com seu carinho.

1X

Agradecimentos

Agradego primeiramente a Deus e & minha amada familia. Aos meus pais, pela base
familiar, bons exemplos, ensinamentos, suporte, forca, incentivo e presenca em minha
vida, e por sempre terem feito de tudo para eu ter chegado até aqui. A minha irma,
pelo apoio incondicional, pelo eterno companheirismo e por acreditar mais em mim do
que eu mesmo! Esta conquista eu divido com minha amada esposa, pois so foi possivel
cuidar de sua gravidez, do nascimento e da criacao do nosso filho, do seu trabalho,
do meu mestrado, do nosso lar e do nosso relacionamento com muita dedicagao nossa,
principalmente por parte dela. Ao meu lindo filho, que é minha inspiragdo, minha
motivacao e faz crescer cada vez mais minha vontade de fazer tudo dar certo! A minha
sogra, que foi presenca marcante nos momentos criticos desta caminhada, em que eu

nao pude ser tao presente como gostaria.

Agradeco também aos meus amigos mais proximos, aos distantes, aos antigos
e aos que fiz recentemente, por sempre terem me apoiado e me encorajado desde o
momento que tomaram conhecimento desta mudanca radical em minha vida, ao entrar
para o mestrado com dedicacao exclusiva. Especialmente ao Fabricio, que me convidou
para participar de um relevante projeto no Departamento de Ciéncia da Computagao da
UFMG juntamente com seus orientandos, o que fez aumentar muito minhas autoestima
e confianca, até que criei coragem para retomar a carreira académica. Também &
Kattiana, pelas varias conversas sobre pesquisa em Engenharia de Software e por ter

passado boas referéncias sobre mim ao nosso orientador.

Ao professor e orientador Eduardo Figueiredo, primeiramente o agradeco por ter
aberto as portas do LabSoft para mim antes mesmo do periodo para a inscricao ao
mestrado se iniciar. Desta forma, pude conhecer os trabalhos, participar de seminarios
e até mesmo de um projeto em andamento do laboratoério, além de conhecer os futuros
companheiros de caminhada na poés-graduacao. Com toda minha admiracao e todo
meu respeito, o agradeco pela orientacao que considero excelente, pela dedicacao, pelos
ensinamentos, e por me fazer sentir de fato “gerenciado” pela primeira vez em minha

vida.

x1

I am very grateful to Christian, Jens, Chu-Pan, and Serena from Carnegie Mellon
University. Especially to Christian Kdstner, my co-advisor. With him and his students,
I learned much more than I could expect regarding research in Software Engineering, in
many of its related and sub-areas. Besides that, I could practice English, which I have
not done for more than a decade.

Aos amigos do LabSoft, nao pode faltar meu agradecimento por todo compan-
heirismo, além dos ensinamentos, conversas e parceria. Principalmente aos que juntos
cursamos disciplinas, fizemos trabalhos, projetos, pesquisas, viagens e confraterniza-
¢oes. Foi um constante aprendizado, sempre me deixando motivado para nao “ficar
para tras” em relacao aos seus progressos.

Agradeco também aos professores que cursei suas disciplinas tanto na graduagao
quanto recentemente no mestrado. Da mesma forma, nao ha como deixar de agradecer
aos colegas que cursei disciplinas e que fizemos trabalhos juntos, também na pos-
graduacao e anteriormente na graduacao, na excepcional grad001! Sempre ha algo a
se levar para o resto da vida!

Para finalizar, agradego a secretaria da pos-graduacao e a representacao discente
do departamento por toda importancia durante o periodo do mestrado, além do CNPq,

pela bolsa de estudos que me proporcionou a dedicacao exclusiva.

xii

“Done is better than perfect.”
(Sheryl Sandberg)

xiii

Resumo

Teste de mutagao é uma técnica baseada em defeitos, comumente utilizada para se
verificar a eficicia de testes de software (casos de testes, conjunto de testes). Consiste
basicamente na introducao de mudancas sintiticas no cdédigo fonte de um sistema e
verificagao se os casos de testes deste sistema conseguem localizé-las (ou seja, acusar os
defeitos). Tais mudangas sintaticas sdo chamadas mutagoes e os programas resultantes
destas, mutantes. Uma vez que héa dezenas de tipos possiveis de mutacoes definidas na
literatura e, além disto, em varios pontos de codigo fonte podem ser introduzidos tais
defeitos, os problemas mais desafiadores enfrentados comunidade ¢é o alto esfor¢o com-
putacional necessario para se executar todos os conjuntos de testes para cada mutante
gerado. Nas tultimas quatro décadas, pesquisadores propuseram técnicas que visam a
reducao do custo computacional em fases do processo de teste de mutagao, ex., reducao
do numero de mutantes e da quantidade de casos de testes executados, em geracao e
compilagao de mutantes, bem como em termos de otimizagao. Nesta dissertagao, nos
propusemos uma técnica para o processo de teste de mutacao para reduzir o esforco
computacional em sua fase de execuc¢ao, inspirada na “execucao ciente de variabilidade”,
uma ténica inovadora que visa a reducao de custo computacional no amplo espaco de
configuragoes presente em sistemas configuraveis. Nos avaliamos a técnica proposta,
que se mostrou viavel para mutantes de maior ordem e concluimos que esta merece

continuar a ser investigada em trabalhos futuros.

Palavras-chave: Testes de Mutagao, Execucao Ciente de Variabilidade, Testes de

Software, Engenharia de Software.

XV

Abstract

Mutation testing is a fault-based technique commonly used to evaluate the effectiveness
of software tests (test cases, test suite). It basically consists in introducing syntacti-
cal changes, called mutations, into source code and checking whether the test cases
distinguish them (i.e., locate those faults). Such changes are named mutations and
the resulting modified programs, mutants. Since there are dozens of distinct mutation
types, one of the most challenging problems faced by the community is the high com-
putational effort required for testing the whole test suites for each generated mutant.
Over the last four decades, researchers proposed techniques aiming effort reduction in
mutation testing phases, e.g., either by reducing the number of mutants or by optimiza-
tion. In this dissertation, we proposed a technique for mutation testing cost reduction
in running time, inspired by variability-aware execution, a novel approach that achieves
cost reduction in the large configuration space of configurable software systems. We
assessed the viability of the proposed technique and concluded that it can be recom-

mended for higher order mutation analysis and does deserve further investigation.

Keywords: Mutation Testing, Variability-Aware Execution, Software Testing, Soft-

ware Engineering.

xXvil

List of Figures

2.1

3.1
3.2

5.1

Generic mutation testing process. 7

The proposed technique process overview. 16
Normal execution (left and center) and mutation-aware execution (right)

trace examples.o 19

Study setup overview. 32

Xix

List of Tables

4.1
4.2

5.1
5.2
5.3

Mutation systems known for mutant schemata generation. 24
Mutation operators implemented. L. 27
Subject systems. 33
Mutants generated, covered, and test cases executed. 34
Test cases running time for each implemented technique. 37

xXx1

Contents

Agradecimentos
Resumo
Abstract

List of Figures
List of Tables

1 Introduction

1.1 Motivation
1.2 Proposal
1.3 Results.
1.4 Contributions
1.5 Dissertation Outline,

2 Background

2.1 Software Testing Definitions
2.2 Mutation Testing Lo
2.3 Variability-Aware Execution oL
2.4 VarexJ
2.5 Conclusion

3 The Proposed Technique

3.1 Definition and General Overview
3.2 Mutation-Aware Execution in VarexJ
3.3 VarexJ Running, Output Processing and Analysis
3.4 Conclusion

xi

XV

xXVvii

xix

xxi

=W W NN

ot

10
11
12

4 MutVariants: A Mutant Generator Tool
4.1 Motivation

4.2 OVEIVIEW o

4.3 Design and Implementation Decisions

4.4 DISCUSSION

4.5 Examples of Generated Metamutants

4.6 Conclusion

5 Mutation-Aware Execution Viability Assessment
5.1 Study Setup
5.1.1 Subject Systems

5.1.2 Mutants Generation, Code Customization and Test cases Re-

moval for VarexJ

5.1.3 Mutation Testing Techniques for Comparison
52 Results
5.2.1 Answering RQs
5.2.2 Discussion
5.3 Limitations and Threats to Validity

5.4 Conclusion

6 Related Work

7 Conclusion and Future Work

7.1 Final Remarks
7.2 Future Work

Bibliography

Attachment A Triangle System

XX1v

23
23
25
26
27
28
28

31
31
32

33
35
37
38
39
40
41

43

45
45
46

49

55

Chapter 1

Introduction

Software testing aims at improving the quality of a software program. Software tests
look for faults, errors, bugs in a program and can be classified in many types, consid-
ering the scope of what is being covered. Some types of tests can be automated, i.e.,
they are implemented to run the system with predefined inputs, retrieve the outputs
and compare them with expected outputs.

Even if the complete set of the system tests does not get any failure, does not
produce any error or retrieves all the expected outputs, it can still have poor quality.
This happens due to many reasons, such as: the test set was not well implemented,
has low coverage, focuses on limited parts of the system, does not test boundary in-
puts. Software testing aims at assessing the quality of a software system but, since
this process can only show the presence of errors, not their absence [Dijkstra, 1972;
Sommerville, 2015, the need of assessing the quality of the test set is quite important.
Mutation testing [DeMillo et al., 1978|, researched over last four decades and yet in
an increasing trend [Jia and Harman, 2011; Ferrari et al., 2018|, is currently one rec-
ommended technique for evaluating the quality of a system test set |Gopinath et al.,
2016].

The Mutation testing technique consists of inserting syntactical faults into source
code, generating different versions named mutants, and running tests over the modified
programs, the, in order to distinguish them from the original code [Offutt, 1992]. A
mutant is distinguished if at least one system test fails for it. In this case, the mutant
is considered “killed”. Given that, the system tests quality can be assessed according
to their ability to kill mutants.

Mutation testing is known for demanding high cost to be performed and for a
lack of satisfactory tools in the last decades, which are the reasons that this technique

did not cause considerable impact in the industry. However, this scenario is appearing

1

2 CHAPTER 1. INTRODUCTION

to change in the last years. More tools are keeping up-to-date by its developers, for
instance, Schuler and Zeller [2009], and even Google applies mutation testing in its

quality development processes |[Petrovic and Ivankovic, 2018].

1.1 Motivation

The underlying mutation testing process is a set of steps defined for performing muta-
tion analysis over a system [Usaola and Mateo, 2010]. The process is interactive, since
it evaluates the current test set of a system and, at each interaction, indicates whether
more tests may be developed based on the information of killed mutants. It ends after
the final test set reaches a predefined acceptable threshold for quality.

Some steps in mutation testing process require high effort to be concluded, given
the higher number of possible mutant generations. As examples, the ones for gener-
ating mutants and running tests on each one are the most computationally expensive
[Jia and Harman, 2011]. Besides that, the analysis step requires human effort, since
the identification of equivalent mutants, those that are syntactically distinct, but se-
mantically identical to the original program, can not be fully automated [Budd and
Angluin, 1982].

Many techniques, tools and analysis were proposed, launched and performed over
the last decades, aiming at reducing the cost of the most expensive steps of mutation
testing process. They are classified into three groups: do fewer, do faster and do
smarter |Offutt and Untch, 2001]. The first aims at reducing the number of mutants,
the second aims at executing mutants as quickly as possible and the third aims at
performing enhancements on execution and clever usage of computational resources.

Indeed, there is room for improvement in all of them.

1.2 Proposal

In this dissertation, we propose a technique that aims at reducing the computational
effort to execute the test cases over the mutants, i.e., reducing the running time. As
in mutation testing, configurable systems face high computational cost problems. To
test all program variants (possible configurations) in isolation is inefficient. As it is to
analyze all program mutants in isolation. There are in literature many works aiming at
reducing computational cost in both areas, such as sampling strategies, which attempt
to detect as many faults as possible by analyzing only a small subset of configurations

only (the most representative ones).

1.3. RESULTS 3

The technique we are proposing was inspired in variability-aware execution, a
novel technique for configurable systems, which efficiently eliminates redundant pro-
gram executions, running all configurations simultaneously at once [Thiim et al., 2012].
In other words, we brought the concept of variability-aware execution to the context
of mutation testing, where the mutants are handled as variability. We needed tools
for both generating mutants and, most importantly, for variability-aware execution.
The last was achieved by VarexJ, a Java bytecode interpreter that implements such
technique [Meinicke et al., 2016].

Although some existing mutation tools are available in the literature, they did not
fit our purposes, since VarexJ defines a particular mechanism to represent variability.

Therefore, we implemented a mutant generator tool to achieve this preliminary goal.

1.3 Results

In order to assess the viability of our proposing technique, we set up a study that
consisted on choosing four subject systems on which mutants were generated and we
implemented two baseline mutation testing techniques to compare the execution time.
In addition, we expected that the study could lead us to answer the following research

questions:

e RQ1: In which conditions is mutation-aware execution more efficient than other

techniques?

e RQ2: Does mutation-aware execution scale, in terms of (a) the size of a system,

(b) the number of test cases, and (c¢) the number of generated mutants?

Given the incipient nature of our study both the proposed technique and the
variability-aware execution system presented some limitations. Therefore, in the cur-
rent study, our technique was not more efficient than the baseline (it was three times
slower for the largest system studied) tanking into account only first-order mutants
(single faults). However, this technique can be more efficient for handling higher-order
mutants ([Jia and Harman, 2009, in comparison with the implemented baseline. In
addition, we are encouraged to proceed with this study in order to improve the current

status of our proposed technique.

1.4 Contributions

This dissertation brings the following contributions to mutation testing community:

4 CHAPTER 1. INTRODUCTION

e A novel technique for cost reduction on one of the most critical steps of the

mutation testing process: to execute test cases over the mutants;

e A mutant generator tool that implements three mutation operators and gener-
ates mutants in the classical way and in the specific purpose that the proposed

technique requires;

e Identification of key improvements to our technique, to be implemented in future

work.

1.5 Dissertation Outline

This dissertation is structured as follows. We present in Chapter 2 the core concepts of
Software Testing, Mutation Testing, Variability-Aware Execution technique and a Java
bytecode interpreter that implements that, as the basis for introducing our proposed
technique for mutation testing cost reduction in Chapter 3. Chapter 4 is dedicated
to the implemented mutant generator tool. In Chapter 5, we present the study setup
for assessing the viability of our technique, discuss the results and answer the research
questions. At last, we list the limitations of the current study and the threats to its
validity. In chapter 6, we present related work concerning previous tools and techniques
that resemble steps of our research. Finally, Chapter 7 concludes this dissertation and

suggests improvements and studies as future work.

Chapter 2

Background

Software testing is a relevant activity of the software development process, which at-
tempts to detect errors before each release. The more able to accomplish this, the more
effective the software tests are. However, not revealing errors does not ensure them
high quality. Mutation testing was proposed to assess the quality of software tests but,
unfortunately, it demands computationally expensive steps. This chapter encompasses
the background for a novel technique for cost reduction in mutation testing that we are
proposing in this dissertation. Section 2.1 presents some definitions upon software test-
ing. Section 2.2 discusses mutation testing, its process and challenges. In Section 2.3,
we explain variability-aware execution and, in Section 2.4, a Java bytecode interpreter

that implements it. At last, Section 2.5 concludes this chapter.

2.1 Software Testing Definitions

First of all, it is necessary some definitions related to software testing, which are refer-
enced along this dissertation text in order to explain the core concept, mutation testing,
and to foster the technique we are proposing.

Software Testing is the process of exercising a program with the specific intent
of finding errors prior to delivery to the end user [Pressman, 2009]. Testing shows
errors, requirements conformance and software performance. It can also be used to
indicate software quality.

Unit Testing is a step inside a testing strategy, where individual program units
or object classes are tested. Unit testing should focus on testing the functionality of ob-
jects or methods [Sommerville, 2015]. In Object-Oriented Programming (OOP), class
testing for object-oriented software is the equivalent of unit testing for conventional

software [Pressman, 2009].

6 CHAPTER 2. BACKGROUND

Test Cases are specifications of the inputs to the test and the expected output
from the system (the test results), plus a statement of what is being tested [Som-
merville, 2015].

Test Suite is a collection of test cases implemented to assess the quality of a
target system. In literature, it is also defined as test set.

Test Coverage measures the effectiveness of a test suite on testing the code
of an entire system. It is calculated by the ratio of elements executed (for example,
statements and functions) against the overall elements required. Some companies have
standards for test coverage. For instance, the system tests shall ensure that all program
statements are executed at least once [Sommerville, 2015].

JUnit! is the most popular Java automation framework for Unit Testing. JUnit
is integrated with the most popular Java development IDEs and can also be launched
from the command line (standalone/batch mode). In JUnit, test cases are implemented
as methods identified by org. junit.Test annotation and, so, they can be recognized
by the framework. Test cases are encapsulated in meaningful test classes and there is

also a mechanism to group such classes in test suites.

2.2 Mutation Testing

Mutation testing, also known as mutation analysis, is a fault-based testing technique
that consists in introducing artificial faults into source code [DeMillo et al., 1978§].
Such faults are syntactic changes that intend to represent real common programming
mistakes [Just et al., 2014]. Each faulty version is called mutant. The main goal of
this technique is, by running the test set of a software, to distinguish as many mutants
as possible [Offutt, 1992] from the original program. When a mutant is distinguished
(i.e., at least one test case fails on or gets a different result from the expected for it),
it is deemed to be dead. Otherwise, alive. Since an alive mutant represents a fault
undistinguished, it indicates that the test suite must be enhanced in order to kill more
mutants and, therefore, having its quality increased. Mutation testing can be used
for testing software at unit, integration, specification and even design levels |Jia and
Harman, 2011; Ferreira et al., 2017].

Inspired by Usaola and Mateo [2010], we illustrate in Figure 2.1 a generic Muta-
tion Testing Process composed of six steps, which are explained as follows. (1) Software
testing phases are executed, which consists in, repeatedly, running the test set 7" and

(2) fixing the original source code of the program P until no failure is found. (3) Mu-

Hunit.org

2.2. MUTATION TESTING 7

original e mutated
program programs
N M,
© M,

P(T)

generate

test correct mutants M
cases ? "
T

add new
teststo T

o tests o v
ﬁm ----- / \
T on
data from < F.F. < run

T with
acceptable
gualit

Figure 2.1. Generic mutation testing process.

tants are generated from P. (4) T is executed on each mutant. (5) All the information
produced in the previous step is analyzed, in order to identify killed, live and equivalent
mutants. The latter are mutants that can not be killed, since they are syntactically
different but semantically identical to the original code. They will be better explained
in the last paragraph of this section. If T" achieves acceptable quality, the process ends.
Otherwise, (6) new test cases are developed aiming at improving the quality of T" and

the mutation testing process starts again.

The mutation score is one of the existing kinds of quantitative measurement of
the quality of a test suite [Zhu et al., 1997]. It is obtained by dividing the number of
killed mutants by the number of all killable ones. Offutt [1992] formulates the mutation
score as follows: %

MS(P,T) = m,
where P is the target program, T is its test set, K is the number of killed mutants, M
is the number of generated mutants. FE is the number of equivalent mutants. A quality
threshold for the score may be defined in order to stop the mutation testing process
(Figure 2.1). For instance, a software engineer may define 80% as a good threshold for

a specific system.

The formalism that copes with the introduction of syntactic changes into source

code is called mutation operators. Existing works define dozens of them in the literature

8 CHAPTER 2. BACKGROUND

Listing 2.1. Mutation example over a Java source code

//(a) original code
public double simpleTax(double income) {

int tax = 95.0;
if (income > 500.0) {

tax = income x 0.2;
ki

return tax;

}

//(b) mutated code: AOR of * by +
public double simpleTax(double income) {
int tax = 95.0;
if (income > 500.0) {
tax = income + 0.2;
}

return tax;

[King and Offutt, 1991; Ma et al., 2002; Ammann and Offutt, 2016]. Mutation operators
are not the operators in a programming language. The most common are the ones
that can be generally applied in most programming languages, such as, programming
language operators replacement (e.g., arithmetic, logical and relational).

Listing 2.1 shows an example of the mutation operator Arithmetic Operator Re-
placement (AOR), where the Java multiplication operator * is replaced with Java addi-
tion operator +. There are also mutation operators for specific programming paradigms,
such as object-oriented programming. For instance, the Super Keyword Deletion (ISK)
operator removes the super keyword [Ma et al., 2002, 2005]. Mutation operators used
in this dissertation are detailed in Chapter 4.

Regarding the way to analyze if a mutant is killed during the execution process,
mutation testing techniques are classified into three types: Strong, Weak, and Firm
mutation [Jia and Harman, 2011]. Strong mutation is the traditional mutation testing
proposed by DeMillo et al. [1978] on which a mutant is considered killed if it produces
different output from the original program. This technique was named this way after
the proposal of weak mutation.

In weak mutation, the analysis is performed focusing on a component (vari-
able reference, variable assignment, arithmetic expression, relational expression, and
boolean expression) [Howden, 1982]. A mutant is created by changing a component

and is considered killed if any execution of such component is different from the mu-

2.2. MUTATION TESTING 9

tant. “Firm mutation is thus the situation where a simple error is introduced into a
program and which persists for one or more executions, but not for the entire program
execution” [Woodward and Halewood, 1988|. In other words, by providing a sequence
of intermediate possibilities. For example, a mutant is killed if the value of a variable
is different from the original after the execution of a loop.

There are two considerable problems that prevent mutation testing from becom-
ing a practical testing technique. One is the high computational cost of executing the
enormous number of mutants against a test set during the mutation testing process.
There are many computational cost reduction techniques proposed in literature over
last decades, as the surveys Usaola and Mateo [2010], Jia and Harman [2011] and
Ferrari et al. [2018| present. Techniques vary from reducing the number of test cases,
the number of mutation operators, until runtime, compile-time, and parallel execution
optimizations. The technique proposed in this dissertation also aims at cost reduction.

The other one is the equivalent mutant problem. A mutated program is said
to be equivalent to the original program if they always produce the same output on
every input. In other words, when they are submitted to the same input (or test case),
both produce the same output (or results), whatever the input is. Thus, equivalent
mutants are never killed and must be disregarded of the mutation testing process.
Unfortunately, automatically finding all equivalent mutants is an undecidable problem,
as was proven by Budd and Angluin [1982], and is only partially achieved [Offutt and
Pan, 1997|. Therefore, identifying equivalent mutants requires a considerable amount
of human effort in mutation testing process.

Mutants generated by single faults are called First Order Mutants (FOMs).
Higher Order Mutants (HOMs) are generated by more than one fault [Jia and Harman,
2009]. Given their underlying nature, HOMs are more likely to be killed than FOMs.
However, a small fraction of HOMs represents subtler faults, making them harder to be
killed (distinguished by tests), which means that such HOMs are more representative
than their constituent FOMs. Therefore, the ability to generate these mutants will
lead to a decrease in the number of sufficient mutants in the mutation testing process,
reducing its cost. Unfortunately, the search space of such valuable mutants increases
exponentially in comparison to that of FOMs. As a consequence, the interest in discov-
ering them has increased last years [Lima and Vergilio, 2018] and much is concerning
at proposing optimized approaches for finding as many representative HOMs as possi-
ble. The results of such studies are expected to help the construction of algorithms to
generate representative HOMs, in order to incorporate them in mutation testing tools
[Harman et al., 2014|. In addition, it may be worth a tool that is able to inform the
HOMs that have not been killed during a mutation testing process.

10 CHAPTER 2. BACKGROUND

Besides assessing the quality of test suites, mutation testing has other applica-
tions, such as fault localization and bug fixing, test suite generation, test suite mini-
mization, test prioritization (or selection), program verification, and security analysis
[Just et al., 2014; Wang et al., 2017|.

2.3 Variability-Aware Execution

Before defining variability-aware execution, it is necessary to explain the context from
which this technique emerged. Highly Configurable Systems are software systems
highly customized to provide many configurable options. They are expected to improve
reuse and increase flexibility, quality, and security [Pohl et al., 2005]. Configuration
options can be of many distinct types, e.g. boolean (enable/disabled), numerical, etc.
We are inspired by a work focused only on binary (boolean) options, named features.
Each distinct combination of features is called configuration. This subject is largely
studied by researchers which are interested in investigating the wvariabilities of config-
urable systems. There are two main concerns regarding configurable systems. Testing
all configurations of a system is impracticable because the number of configurations
grows exponentially in relation to the number of features. In addition, a configuration
can face unexpected behavior (e.g., crash, error, failure, bug or distinct output) caused
by feature interaction |Nhlabatsi et al., 2008], which does not occur when the enabled
features are tested in isolation. Many techniques in the literature were proposed to
mitigate this problem [Meinicke et al., 2016]. In this dissertation, we are focusing on
Variability-Aware Execution, applying it on a distinct, yet related context: Mutation
Testing.

Variability-aware execution consists of a single run of software having all config-
urations executed “simultaneously”. In other words, all program variants are analyzed
at once, thereby reducing the analysis effort by sharing calculations and returning ag-
gregated results. Variability-aware analysis is achieved by means of runtime variability,
a variability encoding rather distinct from compile-time variability, one of the most
widely used product generation techniques for configurable systems.

Compile-time variability is achieved by conditional compilation (e.g., #ifdef
compilation directives in C/C++), where each distinct product is compiled separately
and each “executable” version is not aware of any variability. In runtime variability,
variabilities are identified in the source code by means of programming language con-
ditional structures (e.g., if/else statements in Java) generating, after compilation, a
so-called metaproduct [Thiim et al., 2012|, in which all features can be enabled /disabled

0 3 O Ul i W N

DO DO DO DD = = b e e e e e e
W OO0 TixWwNhEFE OO

2.4. VAREXJ 11

Listing 2.2. Variability representation for VarexJ

import gov.nasa.jpf.annotation.Conditional;
public class FeatureExample {
@Conditional public static boolean SECONDS;
String methodl (long time) {
if (!valid(time)) return null;

if (SECONDS) {

return format (time, "hh:mm:ss");
}
else {

return format (time, "hh:mm");

}
}
void example() {
System.out. println (format (40953000L));
}

VarexJ console output after invoking "example()" method:
<11:22:33> : SECONDS
<11:22> : ISECONDS

at runtime. Finally, sharing execution consists in eliminating redundant executions, in-
structions being executed on different values at the same time and handling aggregated
results. As expected, accomplishing variability-aware execution comes with additional

overhead for each computation [Meinicke et al., 2016].

2.4 VarexJ

VarexJ is a variability-aware Interpreter for Java bytecode [Meinicke et al., 2016|, im-
plemented on top of Java PathFinder (JPF) [Havelund and Pressburger, 2000]. JPF is
a model checker that uses Java bytecode instructions as transitions between states and
it works as an interpreter when configurations of model checking are disabled [Meinicke,
2014].

VarexJ has a particular variability representation to distinguish features from
system variables: the Conditional annotation was implemented for this purpose. In

Listing 2.2, we show one example of source code adapted for VarexJ execution. Lines 2

0 3 O Ol i W N

e el e e e e el e
© 00 O UL W — OO

12 CHAPTER 2. BACKGROUND

Listing 2.3. Error caught by VarexJ

public class ErrorExample {
@Conditional public static boolean F1;
@Conditional public static boolean F2;
int method2(int x) {
int i = x + 2;
if (F1) i — 4;
if (F2) i — 6;

return x/1i;

VarexJ console output (shortened) after invoking method2(8):

if (F1&F2):

java.lang. ArithmeticException: division by zero
at ErrorExample.method2(ErrorExample.java:19)
at

and 4 show how to adapt source code to make VarexJ able to identify variabilities, for
instance, the feature SECONDS. The executions of lines 6, 8 and 16 are shared among
both possible configurations (SECONDS enabled or disabled). The returned value of
methodl carries an aggregated result, as lines 21-23 demonstrate. On a single run, lines
9 and 12 are executed, but not shared. Line 9 is executed only for the context SECONDS
whilst line 12, only for the context !'SECONDS.

When a VarexJ execution for a program gets exceptions or errors, as VarexJ is
aware of variability, it logs the context (combination of features) that leads to them as
well as the Java stack trace. Listing 2.3 shows a source code (lines 2-12) and an excerpt
of the VarexJ output error (lines 16-18) for a particular execution of the program: when
the features F1 and F2 are simultaneously enabled and, for the input argument 8, a

division by zero error occurs.

2.5 Conclusion

This chapter reviewed the main concepts of software testing and describes mutation
testing. We presented the mutation testing process and discussed that some of its steps

require considerable effort (computational or human) to be executed. This chapter also

2.5. CONCLUSION 13

presents variability-aware execution, a technique that achieves computational effort
reduction on testing configurable systems and introduces VarexJ, a Java bytecode in-
terpreter that implements variability-aware execution. The presented background was
necessary to formulate the technique we are proposing in this dissertation, which aims
at reducing computational effort in the step of test cases execution, in the mutation
testing process. The next chapter presents the technique itself, for which we brought
variability-aware execution to the context of Mutation Testing, treating mutations as

variabilities (or features).

Chapter 3

The Proposed Technique

In this chapter, we propose a technique aiming at reducing computational effort in one
of the most expensive steps of the mutation testing process: running the test set for
each generated mutant. It consists in performing mutation testing over a given system
by means of variability-aware execution. In Section 3.1, we define a new concept and
provide a general overview of our proposed technique. Section 3.2 presents the steps
for generating mutants in such a way they can be recognized as variability by the
proposed technique. Next, Section 3.3 presents an algorithm for identifying killed and

alive mutants. Finally, Section 3.4 concludes this chapter.

3.1 Definition and General Overview

Definition. The proposed technique consists in generating mutants and making them
identified as variability runtime (or enabled /disabled features). Therefore, all mutants,
as well as the original source code can be executed in a single run, via variability-aware
execution, reducing the underlying computational effort of the classical approach. For
this context, we define the concept of Mutation-Aware Execution, that is simply
variability-aware execution for which the variability is represented by the mutants.
Mutation-aware execution will be referenced as our proposed technique in the remainder
of this dissertation.

It is worth to mention that VarexJ (see Section 2.4) is the most complete im-
plementation of variability-aware execution available in the literature [Meinicke, 2014].
Therefore, we choose VarexJ as the tool to accomplish and evaluate our proposed tech-
nique. In other words, it is the tool for which the mutants will be generated and on
which they will be executed. In addition, it will provide information for killed mutants

identification.

15

16 CHAPTER 3. THE PROPOSED TECHNIQUE

Figure 3.1 shows an overview of the steps for achieving mutation-aware execution.
Ellipses represent the steps and the other forms represent the artifacts already available
or produced, which are inputs for the steps. The four main steps are described as
follows. The first step is the generation of mutants as runtime variabilities, from the
original source code of a system. The second step is the creation of a specific purpose
class that will execute the test cases of a system in VarexJ. With the previous two
artifacts, the third step consists in running the JUnit tests on VarexJ and retrieving
its output log, as well as the running time it lasted. Finally, the fourth step consists in
processing the VarexJ output log to retrieve information about killed and alive mutants.
Section 3.2 details the first two steps and their respective artifacts while Section 3.3 is

about the last two steps and artifacts.

original

mutated
) Varex)
Java files

/9 system log 9

generate _| \

BN gl CEER
7 rn N

i Vv) killed
original &W\ runtime e

runner and alive
test cases
class mutants

fo.
t1 || create tests 01 X sec k...
2 runner 10 a.

Figure 3.1. The proposed technique process overview.

In

3.2 Mutation-Aware Execution in VarexJ

VarexJ provides a quite basic integration with JUnit Framework, accomplished by a
workaround implementation: the gov.nasa.jpf.util.test.TestJPF class, that calls
the main engine for Java bytecode processing. Such integration is not transparent to the
end user, the one who is adapting any configurable system tests for VarexJ. Therefore,
some implementation is required so that the test cases could be the starting point
of the variability-aware execution. The lack of annotations (e.g. @Before, @After,
@BeforeClass and @AfterClass from package org. junit) is a considerable limitation
and it leads to implementations of workaround solutions. Listing A.4 contains an

example of the generated class for a particular system evaluated in this dissertation.

3.3. VAREXJ RUNNING, OUTPUT PROCESSING AND ANALYSIS 17

A mutant, as mentioned in Section 2.2, is related to a syntactical change applied
to the original source file, creating a new (mutated) file that differs from the original
by a delta (the syntactical change applied). There are in the literature many tools that
generate mutants, for distinct programming languages, including Java. However, in
order to execute mutants as variability of a system in VarexJ, their classical mutants
generation techniques do not fit our purpose. As is done to represent all features of
a highly configurable system in VarexJ, we also need to represent the original version
and its mutants in a single file.

For instance, let’s consider a file containing the statement a = b * 3; on which
two mutants are to be applied: replacing * with + and with -. While a classical
mutant generator tool creates a new file to represent each mutant, one containing a =
b + 3; and another a = b - 3;, we need a single file encompassing all three variants:
a=mut2 ? (b-3): (mutl? : (b+3) : (b x*3));. Since we did not
found any tool available that performs this kind of mutation for Java systems, we
decide to develop our own mutant generator tool that provides the required mutation-
aware systems, composed by mutation-aware classes. This mutation generator tool is
presented in Chapter 4.

Listing 3.1 depicts an example containing two code excerpts. Lines 1-15 comprise
the first one. In line 3, the mutant mut is defined as a variability for VarexJ. Lines
4-15 show a method containing one mutated code. Line 11 represents an arithmetic
expression of the original source code, while lines 7-9 represent the code for mutation.
Line 8 is the mutation itself, where the operator * was replaced with +. Finally, lines
17-20 comprise the second code excerpt. The statement in line 19 tests the method

defined above.

3.3 VarexJ Running, Output Processing and
Analysis

Once we have a mutation-aware system and the environment for running its JUnit tests,
by running it as JUnit application, VarexJ starts automatically the variability-aware
execution, running test cases (the methods annotated with @Test). During VarexJ
execution, it is aware of all shared and configuration dependent instructions, as well as
the configuration of variabilities that leads aggregated results of variables and return
statements. Once an error, failure or exception is reached, VarexJ logs it. For example,
Figure 3.2 shows the execution traces when line 19 of the Listing 3.1 is executed, for

three distinct situations. (i) The trace in left: Normal execution, with mut = false.

0 3 O Ol i W N

[N e e e e e e
O O© 00 JO UL W -~ O O

18 CHAPTER 3. THE PROPOSED TECHNIQUE

Listing 3.1. Method with a mutant and a test for it.

//Main code

@Conditional public static boolean mut;

public static double simpleTax(double income) {
double tax = 95.0;
if (income > 500.0) {

if (mut) {

tax = income + 0.2;
}
else {

tax = income x 0.2;

}
}
return tax;

}

//Test case

assertEquals (120.0, simpleTax (600.0));

(ii) The trace in center: Normal execution, with mut = true. (iii) The trace in right:
Variability-aware execution. The number inside the rectangles represents the executed

lines of the subject listing.

We can observe that, apart of variability-aware execution, if we want to know the
results of the test case with and without mutation, it is necessary to execute it two
times (traces in the left side and in the center of Figure 3.2). Using variability-aware
execution, it is necessary only one execution (right side). In this case, the execution
of lines 19, 5, 6, 7, 14 and 19 again is shared and the variable tax carries aggregate
results. Lines 8 and 11 are executed sequentially, but their execution is not shared,
since they are executed for distinct contexts (mut and “mut, respectively). Finally, the

AssertionError occurs only for the mut context.

While VarexJ runs, it logs all information necessary for a variability-aware anal-
ysis or, in our case, a mutation-aware analysis. The output log contains, basically,
three pieces of information: starting time in the beginning, finish time at the end,
and information about test success or failure in the middle. If the test case succeeds,
VarexJ logs the message “no errors detected”. Otherwise, it logs the failure information

composed by a boolean expression and the underlying stack trace. When one variabil-

3.3. VAREXJ RUNNING, OUTPUT PROCESSING AND ANALYSIS 19

mut = false mut = true mut = f#1 ? true : false
tax =95.0 tax =95.0 tax =95.0

mut

A4
tax = 600.2 ‘ tax = f#1 ? 600.2 : 95.0 ‘

:

Figure 3.2. Normal execution (left and center) and mutation-aware execution
(right) trace examples.

tax =120.0

‘ tax = f#l ? 600.2 : 120.0 ‘

ity of the system or a combination of enabled/disable variabilities leads to a failure,
the respective configuration is represented by the boolean expression. In the respective
stack trace part, it is possible to identify the method test case (method) that has failed.

Listing 3.2 shows a VarexJ log example. Lines 8-10 identify the mutants
(variabilities). The boolean expression in line 13 and the information in line 18
indicate that the test case testEquilateral fails for all combinations of mutants
that evaluate such expression to true. Therefore, the expression leads to true for
the following 5 out of 7 possible combinations with at least one mutant enabled:
{mut2}, {mut2,mut3}, {mutl1}, {mutl,mut2} and {mutl,mut2,mut3} . For instance,
{mut2,mut3} means mutl disabled, mut2 enabled and mut3 enabled.

In this dissertation, we are focusing only on First Order Mutants (FOMs), i.e.,
the ones generated by only one single change in source code. Thus, in the example,
two FOMs leads testEquilateral to an assertion error: mutl and mut2. Therefore,

the mutants mut1 and mut2 were killed and mut3 remained alive. To accomplish this,

19
20
21
22
23

25
26

27

20 CHAPTER 3. THE PROPOSED TECHNIQUE

Listing 3.2. Mutation example over a Java source code

running jpf with args: +4search.class=.search.RandomSearch +classpath=...
VarexJ v1.0 (BDD, TreeChoiceFactory, HybridStackHandlerFactory (OneStack —>
Buffered))

system under test
triangle.tests.varexj. TriangleTestSuiteForVarexJReflect.runTestMethod ()

search started: 6/24/18 5:28 PM

Random Search
[WARNING] non—public peer class: gov.nasa.jpf.vm.JPF java lang System$l
Found feature #1 — mutl @triangle. Triangle

Found feature #2 — mut2 @triangle. Triangle

Found feature #3 — mut3 Qtriangle. Triangle

error 1

gov.nasa.jpf.vm. NoUncaughtExceptionsProperty
if (mut2|(mutl&!mut3):
java.lang. AssertionError:
at gov.nasa.jpf.util.test.TestJPF. fail (TestJPF.java:167)
at gov.nasa.]jpf.util.test.TestJPF.assertEquals(TestJPF.java:1051)
at gov.nasa.jpf.util.test.TestJPF.assertEquals(TestJPF.java:1055)
at triangle.tests.varexj.TrianglelTestForVarexJFull.testEquiliteral (
TrianglelTestForVarexJFull.java:41)
at java.lang.reflect .Method.invoke (gov.nasa.jpf.vm.
JPF java lang reflect Method)
at gov.nasa.jpf.util.test.TestJPF.runTestMethod (TestJPF.java:650)

snapshot #1

thread java.lang.Thread:{id:0,name: main, status :RUNNING, priority :5,lockCount:0,
suspendCount:0}
call stack:
at gov.nasa.jpf.util.test.TestJPF.runTestMethod (TestJPF.java:652)

results

error #1: gov.nasa.jpf.vm. NoUncaughtExceptionsProperty "if (mutO|mut2): java.lang.
AssertionError: at gov..."

search finished: 6/24/18 5:28 PM

Algorithm 1 shows the simplest form to identify killed and alive mutants by VarexJ
output processing. In lines 6 to 9, each boolean expression is evaluated for each of its
constituent mutants. In line 7, the current mutant is enabled (assigned to true) and

the remaining are disabled (assigned to false) to get the expression evaluated.

Algorithm 1 for finding killed and alive mutants

1: function KILLEDANDALIVEMUTANTS(varexjLog, allMutants)

2 killedMutants < ()

3 aliveMutants < ()

4 for each expression expr € varexjLog do

5: mutants < retrieve all mutants from expr

6 for i <— 1 to |mutants| do

7 killed < evaluate(expr|mutants; < true, mutantsz; < false)
8 if killed then

9 killedMutants < killed Mutants U {mutants;}

10: aliveMutants < allMutants \ killed Mutants
11: return killedMutants, aliveMutants

3.4. CONCLUSION 21

3.4 Conclusion

In this chapter, we defined Mutation-Aware Execution and proposed a novel technique
that consists of performing mutation testing over a given system by means of variability-
aware execution. This technique relies on VarexJ to execute the generated mutants.
We also presented an overview of the process, describing each of its constituent steps
(test adaptation, mutant generation, VarexJ execution, and log processing) as well
as the artifacts it produces and consumes. Our proposed technique relies on strong
mutation testing since we take into account the result of the entire test suite to find
the killed mutants. In the next chapter, we will describe in detail our developed mutant

generator tool, introduced in Section 3.2.

Chapter 4

MutVariants: A Mutant Generator
Tool

A classical mutant generator tool introduces syntactical faults into original source code,
creating faulty variations of the target system, the mutants. Since the technique we
proposed needs mutants being represented with the particular variability mechanisms
and we did not find any available tool that provides a similar solution, we opted for
the implementation of a prototype tool. Therefore, this chapter depicts the tool we
developed to support the technique we proposed in Chapter 3. In Section 4.1, we
contextualize mutation tools, a particular mutant generation strategy, and justify why
we decided to develop our tool. Section 4.2 presents the architecture and overview of
our tool. In Section 4.3, we present some details of design and implementation and,
in Section 4.4, we discuss how our tool can be extended. Section 4.5 provides some

examples of generated mutants. Finally, Section 4.6 concludes this chapter.

4.1 Motivation

As described in Chapter 3, our proposed technique requires mutants generated in such
a way they can be recognized as program variants by VarexJ (see Section 2.4). This
Java bytecode interpreter runs a metaproduct, a compiled program containing all of
its features codified in conditional statements. In mutation testing, a mutant gener-
ation approach that provides a single system having all mutants codified similarly to
the features in variability-aware execution has already been proposed [Untch et al.,
1993|. Such approach is called Mutant Schemata and the mutated system, metamu-
tant. Mutant schemata was proposed for improving speedup in mutation testing, since

compilation and loading are performed just once [Madeyski and Radyk, 2010].

23

24 CHAPTER 4. MUTVARIANTS: A MUTANT GENERATOR TOOL

Since mutation-aware execution is also based on mutant schemata, at this stage
of our research we needed a mutant generator tool for Java systems in such specific
format. Unfortunately, little research concerning mutant schemata is available in the
literature, the main work by Untch et al. [1993] is not recent, and tools specifically
developed to evaluate such approach are no longer available for download. In fact, the
most recent tools that implement mutant schemata either do not fit our purposes or
are out of date.

Table 4.1 summarizes mutation testing systems that, among many functionalities,
generate mutants using mutant schemata approach. MuClipse is an Eclipse Plugin
which provides a bridge between the existing MuJava [Ma et al., 2005] mutation engine
and the Eclipse IDE. Judy [Madeyski and Radyk, 2010] generates each mutant in a
separate method and controls the invocations by means of AspectJ! [Kiczales et al.,
2001]. It follows a quite distinct process if compared with variabilities in Listings 2.2
and 2.3. Bacterio [Mateo and Usaola, 2012a] became a commercial tool. Although
Javalanche [Schuler and Zeller, 2009|, was released in the last decade, it has been
constantly updated. PIT [Coles et al., 2016] is the most recent tool. Mateo and Usaola
[2012b] published a work for which they applied mutant schemata generation in such a
way that most resembled our needs. Nevertheless, we did not find the implementation

of their proposed technique, named MUSIC, available for download.

Table 4.1. Mutation systems known for mutant schemata generation.

Tool Description

Bacterio? No longer available. Latest available version was commercial.
Javalanche® Available, but generates mutant schemata at the bytecode level.
Judy? Available, but mutant schemata generation and activation are
distinct from what we need.
MulJava® /MuClipse® Available, but out of date.

PIT" Available, but generates mutant schemata at the bytecode level.

Since we could not use any of the available systems, there were two options left
for the metamutants achievement: (1) taking an existing classic mutant generator tool

for providing all isolated mutated systems and developing a utility for merging them

Thttps: //www.eclipse.org/aspect;
Zhttps://alarcos.esi.uclm.es/per /preales/bacterio/bacterio.htm
3https://github.com/david-schuler /javalanche
4http://mutationtesting.org

Shttps://cs.gmu.edu/ offutt /mujava
Shttp://muclipse.sourceforge.net

Thttp://pitest.org

4.2. OVERVIEW 25

into a single metamutant one; or (2) implementing, from scratch, a specific purpose
prototype tool for mutants generation. We decided on the latter option for three
reasons. First, we believed it would take less effort. Second, we would not be subject
to any tool limitations. The third reason for implementing our own tool is to provide
thorough control of how, where and which mutants could be generated at a time, besides
tracing them during analysis. In addition, the specific code for VarexJ @Conditional
annotation could be fully automated. We refer to the prototype in the remainder of

this dissertation as MutVariants.

4.2 QOverview

MutVariants is a mutant generator tool available at GitHub® as a Maven® project. It
requires two pieces of information for performing mutation in the project’s source code,
which are, (i) the (input) paths for original classes and for its dependent jar files, and
(ii) the (output) path where the mutated classes must be generated. As dependency,
MutVariants requires only the JavaParser!'® library, with its JavaSymbolSolver module
enabled.

Mutants generation in MutVariants consists of six steps, that are described as
follows, for each original Java source code file. (1) It calls JavaParser core to realize
a parse and to provide a CompilationUnit object, which is an Abstract Syntax Tree
(AST) representation of the source code. (2) It clones the CompilationUnit and (3)
uses the JavaParser’s provided Visitor Design Pattern [Gamma et al., 1994] implemen-
tation to traverse and manipulate the clone’s AST. When a mutable node is found,
(4) MutVariants generates a new mutated node and replaces the current node by the
mutated one in the AST.

MutVariants realizes mutations from leaves to root, ensuring precedence.
For instance, in expressions like a + b / ¢, the division operator, which has
precedence over the addition, is mutated at first, generating a mutated ex-
pression like a + (mutl ? b*c : b/c) and, at last, the addition, resulting in
mut2 7 a - (mutl ? bxc : b/c) : a + (mutl ? bxc : b/c). After the AST be
traversed and mutants be generated, (5) MutVariants generates code for the
@Conditional and the mutant variable declarations. (6) Finally, the mutated
CompilationUnit is saved as a Java file with the same name as the original, in the

desired output folder, respecting its underlying package folder structure.

8https://github.com /jpaulodiniz/Mut Variants
9https://maven.apache.org
Ohttps:/ /javaparser.org

26 CHAPTER 4. MUTVARIANTS: A MUTANT GENERATOR TOOL

4.3 Design and Implementation Decisions

MutVariants does not have a graphical user interface (GUI), does not provide exe-
cution via command-line, and is not integrated with any IDE yet. However, it has

implemented some features such as:

e mutation rate: a probability for generating a mutant on a given mutation candi-

date spot in the source code, ranging from 0.0 to 1.0 (the default rate);

e all mutations per spot: when a mutation operator has more than one mutation
available for a given spot (for instance, AOR in Table 4.2 can generate four
mutants for the expression a * b), MutVariants can generate either only one

(randomly chosen) or all mutants.

e two mutation strategies for binary expressions: mutate only one binary expression

per statement and mutate all binary expressions in source code;

e option for mutating loop conditions: it is useful when reducing infinite loops due

to mutants is necessary;
e facility for reading project input and output paths from a Java .properties file.

As introduced in Section 2.2, dozens of mutation operators were defined in the
literature. In addition, there are many distinct naming for the same operators as well
as one operator being divided into less complex ones, which makes the search for them
quite confusing. However, studies demonstrated that just a few mutation operators can
be considered representative enough for Mutation Testing, without significant loss of
effectiveness |Offutt et al., 1996; Barbosa et al., 2001; Siami Namin et al., 2008; Banzi
et al., 2012]. For instance, the study of Offutt et al. [1996] is the most referenced in
literature and its conclusion provides a clear set of five operators.

We decided to implement three out of those five operators in MutVariants in order
to begin the assessment of our proposed technique. Table 4.2 describes and exemplifies
them. We decided not to implement specific object-oriented mutation operators in
our tool due to two reasons. First, we aim to provide and validate mutation-aware
execution technique as general as possible. Second, we acknowledge limitations of the
mutant schemata technique that make it impossible to represent field/method access
modifier keyword replacement (e.g. public with private), for instance [Mateo et al.,
2013].

Therefore, MutVariants current version mutates only binary expressions. Since

JavaParser core provides extra information besides the AST, MutVariants had to ensure

4.4. DISCUSSION 27

Table 4.2. Mutation operators implemented.

Ezxample in Java
Mutation Operator Original ~ Mutation

AOR Arithmetic Operator Replacement a - b a*xb
ROR Relational Operator Replacement a <=b a > b
LCR Logical Connector Replacement allb a&k&hb

not to mutate expressions such as String concatenations and (in)equalities between
objects or between an object and null. To overcome this issue, MutVariants requests
expression types for the previously mentioned JavaParser module, JavaTypeSolver.
Based on all those definitions, we had to define a template for mutants in the
source code, in mutant schemata representation. For a single mutant, the simplified

template is defined as
(mut# 7 (mutatedExpr) : (original Expr)),

where original Expr has the format operandl original JavaOperator operand2 and
mutated Expr has the format operandl mutatedJavaOperator operand2. When n
mutants can be generated for a single spot, the template can be redefined, iteratively,

as

[(mut#i 7 (mutatedExpr i) :|{i =n: 1} (original Expr)])|{n}

4.4 Discussion

In object-oriented software testing, Ma et al. [2002] classified faults in classes as oc-
curring at the intra-method level, the inter-method level, the intra-class level, and the
inter-class level. Therefore, mutation operators have been proposed to address those
levels of faults. Simplifying, for Java, mutation operators are classified into method-
level (inter-method) and class-level operators (the last three) [Kim et al., 2013].

Traditional mutation operators for procedural programs will suffice for represent-
ing method-level faults. For class-level, it is required mutation operators generating
faults due to the object-oriented specific features (encapsulation, inheritance, poly-
morphism, and dynamic binding) [Ma et al., 2002|. Class-level mutation operators can
change access modifiers, inheritance tree, constructors, annotations, etc.

MutVariants implements three method-level mutation operators. Variability-

aware execution implemented in VarexJ together with MutVariants (the tooling for

28 CHAPTER 4. MUTVARIANTS: A MUTANT GENERATOR TOOL

our proposed technique) can support basically the range of all other method-level mu-
tation operators already defined in the literature since all mutation operators that
change statements and expressions in Java can be implemented in MutVariants. For
example, Unary Operator Insertion (UOI), Statement Block Removal (SBR), Assign-
ment Shortcut Operator Replacement (ASR), Absolute Value Insertion (ABS), and
many others.

The implementation of class-level mutation operators into MutVariants, and to
employ them in mutation-aware execution is out of the scope of this dissertation due
to two reasons. First, it would require combining metamutant and source code ma-
nipulation techniques already implemented with other mechanisms such as bytecode
modification technique, a quite similar problem faced by the developers of Judy mu-
tation system [Madeyski and Radyk, 2010]. Second, our proposed technique aims to
improve running time due to a large number of mutants that can be generated for a
system, but class-level mutation operators usually do not produce enough mutants to

be considered a problem [Kim et al., 2013].

4.5 Examples of Generated Metamutants

This section contains some examples of mutated classes by MutVariants, using distinct
configurations. Listing 4.1 shows a complete class, containing all configurations for
VarexJ, mutants declarations as static boolean variables and two mutants in distinct
statements, at lines 6 and 7. The original class was already depicted in Listing 2.1(a).
Listing 4.2 shows the same method simpleTax mutated by two mutation opera-
tors with all possible mutants, five in each case, at lines 5 in (a) and 13 in (b).
Finally, Listing A.2 shows an original Java class file used in our evaluations and

Listing A.3 shows all 128 mutants generated by MutVariants.

4.6 Conclusion

This chapter presented MutVariants, the prototype tool for generating mutants that
we developed. It also provided some arguments and information concerning mutants
generation activity. Our tool generates mutants in mutant schemata representation,
using three of the most representative mutation operators, known from the literature.
In addition, we explained some technical information about MutVariants and provided
some examples of the generated mutants. In the next chapter, we evaluate the proposed

technique and present the results.

—_ O © 00 ~J O Uik W N -

—_ =

QU > W N~

0 3 O

11
12
13

14
15
16
17

4.6. CONCLUSION 29

Listing 4.1. Mutation customizations for VarexJ

import gov.nasa.jpf.annotation.Conditional;
public class Taxes {
@Conditional public static boolean mutl=false , mut2=false;
public double simpleTax (double income) {
double tax = 95.0;
if ((mutl ? (income < 500.0) : (income > 500.0)))
tax = (mut2 ? (income + 0.2) : (income * 0.2));
}

return tax;

Listing 4.2. Examples of more than one mutant

//(a) all 5 possible AOR mutants at the same spot
public double simpleTax(double income) {
double tax = 95.0;
if (income > 500.0) {
tax = (mut4 ? (income % 0.2) : (mut3 ? (income / 0.2)
(mut2 7 (income — 0.2) : (mutl ? (income + 0.2)
(income x 0.2))));

}

return tax;

}

//(b) all 5 possible ROR mutants at the same spot
public double simpleTax(double income) {
double tax = 95.0;
if ((mutb5 ? (income != 500.0) : (mut4d ? (income = 500.0)
(mut3 7 (income <= 500.0) : (mut2 ? (income < 500.0)
(mutl 7 (income >= 500.0) : (income > 500.0)))))) {
tax = income x 0.2;

}

return tax;

Chapter 5

Mutation-Aware Execution Viability

Assessment

In Chapter 3, we proposed mutation-aware execution, a technique for mutation testing
cost reduction based on variability-aware execution, on which mutants handled as
variability. In this chapter, we evaluate the proposed technique in terms of running
time, comparing it against the mutation tests in its classical approach and the mutant
schemata approach [Untch et al., 1993]. We choose four systems, which are either open-
source or well established in previous studies in the literature, for such assessment.
Section 5.1 presents study design, subject systems and research questions we expect to
answer. Section 5.2 presents the results, attempts to answer the RQs and discusses the
findings. In Section 5.3, we present the limitations we faced and threats to the validity

of our results. Finally, Section 5.4 concludes this chapter.

5.1 Study Setup

Mutation testing process contains six steps presented in Figure 2.1 and, for some of
them, there can be found in the literature studies and tools aiming at achieving compu-
tational effort reduction. We propose mutation-aware execution, a do smarter approach
aiming computational effort reduction for the test cases execution step of mutation

testing process, which leads us to formulate the following research questions:

e RQ1: In which conditions is mutation-aware execution more efficient than other

techniques?

e RQ2: Does mutation-aware execution scale, in terms of (a) the size of a system,

(b) the number of test cases, and (c) the number of generated mutants?

31

32 CHAPTER 5. MUTATION-AWARE EXECUTION VIABILITY ASSESSMENT

In order to answer the research questions, mutation-aware execution running time
must be compared against other mutation testing techniques. In addition, to be fair,
it is essential that the comparison occurs running the same systems with exactly the
same mutants. In addition, we could not perform our study with all of the available test
cases of the subject systems and an additional step of the study setup was necessary:
test cases removal. Figure 5.1 gives a general overview of the study setup, which is
replicated for each of the four evaluated systems, and the next subsections describe

each of such items.

manual process remaining
A
— — test cases
tl | run VarexJ 2
2 “_ Varex! issue? -
original m1l ||
test cases/ generate m remove the Y
mutants)
1 mutated test case
system
ab | (schemata)
cd
original
Java files
ml |} \
- run run run
': .
N Classical Varex) Schemata
mutated| m2 |
systems L
I':
mn |} runtiiimcij M runtime info
J B

Figure 5.1. Study setup overview.

5.1.1 Subject Systems

We choose four systems to evaluate the viability of mutation-aware execution, namely
Triangle, Monopoli, Commons CLI and Commons Validator, which are described here-
after. Triangle is a simple program that determines the type of a triangle from the
length of its sides. Although it is small, it is a widely studied benchmark in the lit-
erature [Jia and Harman, 2009]. We find two complementary versions of Triangle,

implemented in Java, at GitHub!. We then merged them to construct our own stable

Thttps://github.com /david-schuler /javalanche/tree /master /examples/triangle /src/triangle ~ and
https://github.com/hcoles/triangle-example

5.1. STUDY SETUP 33

version of it. Monopoli? is the domain logic of a system to play the famous Monopoly
game. It has also been present in important mutation testing studies [Mateo and
Usaola, 2012b; Mateo et al., 2013; Harman et al., 2014]. Differently from those first
systems, the next two are “real world” projects, maintained by Apache Software Foun-
dation (¢) and they have also been present in the related literature [Harman et al., 2014;
Madeyski and Radyk, 2010]. Commons CLI? is a command-line arguments parser
and Commons Validator? is a framework to define validators and validation rules in
XML files.

Table 5.1 depicts some collected attributes from the four subject systems. In
the second column, we informed “n/a” for the systems which Version information was
not available. In the third column, the word Main means the Java source code of the
system, excluding tests and other kinds of files. The column # Test cases means the
number of original test cases recognized by JUnit. JUnit version is the version of JUnit
that the test classes were implemented. For instance, Commons Validator has one class
implemented for JUnit 4 and the remaining classes for JUnit 3. The last column shows
the time spent by JUnit for running the system’s original test suite. It is worth to
mention that a single Monopoli test case fails, whilst the other three systems have no

failures caught by their test suite.

Table 5.1. Subject systems.

LOC LOC # Test JUnit JUnit

System Version main tests cases wversion time (ms)
Triangle n/a 39 7 12 4 0.013
Monopoli n/a 1,181 3,094 124 3 0.1
Commons CLI 1.4 2,699 3,932 318 4 0.1
Commons Validator 1.6 7,409 8,352 536 3 and 4 73,000

5.1.2 Mutants Generation, Code Customization and Test
cases Removal for VarexJ
We configured MutVariants for generating all possible mutants that AOR, ROR and

LCR mutation operators can create, except in loop conditional expressions (places

with high probability to get an infinite loop). MutVariants, its functionalities, and

2http:/ /mutationandcombinatorialtesting.blogspot.com/2012/01 /systems-under-test.html
3http://commons.apache.org/proper /commons-cli/download _cli.cgi
4https://commons.apache.org/proper /commons-validator /download _validator.cgi

34 CHAPTER 5. MUTATION-AWARE EXECUTION VIABILITY ASSESSMENT

mutation operators were described in Chapter 4. For each subject system, we first
generated mutants with MutVariants and then executed their test cases with VarexJ.

The number of mutants generated for each subject system is shown in the second
column of Table 5.2. Comparing such information with systems LOC (Table 5.1), it
can be seen that, proportionally, Triangle is the system with the highest density of
mutants generated per line of code. As expected, the number of mutants increases
with the systems LOC, but not linearly, due to the particularities of each system which

belongs to four distinct domains.

Table 5.2. Mutants generated, covered, and test cases executed.

System Mutants Mutants Remaining

generated covered test cases
Triangle 128 128 (100%) 12(100%)
Monopoli 408 408 (100%) 37 (30%)
Commons CLI 485 480 (99%) 48 (15%)
Commons Validator 1,989 1016 (51%) 161 (30%)

When we started to work with the largest subject systems, we faced some issues
that did not happen with the smallest one. Therefore, some customizations had to be
performed, which are explained along this and next paragraphs. For instance, while
running Monopoli test cases, VarexJ have the execution aborted always when the GUI
class java.awt.Color is used. More specifically, when Color variables attribution
statements were executed. As a workaround, we manually replaced all occurrences of
such class with an ad-hoc enum of the same name and with the same values for the
colors. Since Monopoli source code is just the domain logic of a game, without GUIs,
such change did not cause any impact.

In this phase of our study, we decided to not handle infinite loops in mutation-
aware execution, since simply configuring a timeout in VarexJ would not make it pro-
vide any log information concerning which mutants lead to a long execution. We also
attempt to configure JUnit timeouts, but without success. Therefore, in order to pro-
ceed with our viability assessment, we manually removed all test cases of the three
largest subject systems that seemed to reach an infinite loop with mutants generated.

Lastly, while running the test cases of the three largest projects, VarexJ presented
some complex issues that also caused execution abortion. To address these issues,
we also had to remove all test cases for which such issues occurred. In Section 5.3,
we discuss limitations in more detail. The number of test cases left (due to infinite
loops and VarexJ issues) is depicted in the fourth column of Table 5.2. For the three

largest systems, there can be seen a considerable reduction. Since fewer test cases were

5.1. STUDY SETUP 35

executed, their execution covered fewer mutants than the originally generated ones,
which number is depicted in the third column. Besides the absolute numbers, the
third and fourth columns of Table 5.2 show, in parenthesis, the percentage of mutants
covered in relation to the originally generated, and the number of test cases executed

in relation to the number of test cases originally available, respectively.

5.1.3 Mutation Testing Techniques for Comparison

In order to perform the viability assessment of mutation-aware execution, it is impor-
tant to compare it against other technique. For a fair evaluation, it is required to ensure
exactly the same mutants generated for all techniques. We could look for something
available in the literature or reproduce a feasible and easy to implement the technique.
That is, we did not find a tool or how to configure any in such a way we could guar-
antee the same mutants. Five tools were presented in Chapter 4. For instance, PIT
and JavaLanche mutation systems generate all possible mutants, but with more and
distinct mutation operators; MuClipse does not work in source code written in recent
Java versions.

Therefore, as a worthy assessment starting point, we decided to implement two
baselines, consisting on simple (brute-force) approaches for mutation testing, without
providing any enhancements proposed in the literature for them, which would demand
considerable development effort. One is the classical mutation testing process. Since
mutation-aware execution brings a technique and a related tool from a distinct software
testing context, we wondered that running time behavior comparison of it and the
classical approach might give us important findings for verifying whether our proposed
technique could be more efficient than the most costly mutation testing approach. If
s0, how much more efficient it is or could be. If not, helping us to find out what would
be necessary to fix and improve it to go further and be able to compare it against
more efficient approaches. The implementation of the classical mutation testing for
this research is described later, in this same subsection.

The other technique we implemented is mutant schemata |Untch et al., 1993],
already explained in Chapter 4. This technique was proposed for mutation testing
speedup in both compiling generated mutants and execution of test suite phases. In
other words, it is a well-known technique for enhancement of mutation testing efficiency.
Besides that, we can verify, once more, that mutant schemata is more efficient than the
classical mutation testing. Our implementation of the mutant schemata technique is
described later in this subsection and does not encompass the improvements proposed

by Mateo and Usaola [2012b|. As explained in the previous paragraph, the comparison

36 CHAPTER 5. MUTATION-AWARE EXECUTION VIABILITY ASSESSMENT

with the mutant schemata original technique can lead us to important findings on how
our proposed technique can be explored or evolved until it can be compared with some

of the state-of-the-art techniques.

Classical Mutation Testing Process Implementation

For the classical mutation technique, we implemented (i) mutants generation, (ii) com-
pilation and (iii) test cases execution, with related running time measuring. For (i),
each mutant is generated as a new clone of the original project, containing a single
syntactical change. As mentioned before, we need the same mutants generated for
our proposed technique. To achieve this, we implemented an ad-hoc change in our
MutVariants tool (presented in Chapter 4).

During the AST traversal, at each mutable place in the original source code, this
version of MutVariants introduces the subject syntactical change, clones the current
mutated compilation unit and saves it as a . java file in a specific directory. After that,
the tool realizes an “undo” in the syntactical change and resumes the AST traversal
looking for next mutation place, where the process repeats. Then, (i) and (iii) are

performed via shell scripts.

Mutant Schemata Implementation

The main concept of mutant schemata was presented in Chapter 4. Therefore, we
could reuse the metamutant system generated for VarexJ in our proposed technique,
as the mutants artifact. We implemented the mutant schemata technique as follows,

for each subject system.

1. all mutants are initially disabled (i.e., their correspondent boolean variables are
set to false);

2. for each mutant,

2.1. enable the current mutant via Java Reflection (true value), while all others
have to be disabled (false);

2.2. run all test cases via JUnit;

3. retrieve the overall running time to compare with the other techniques.

5.2. RESULTS 37

5.2 Results

The last three columns of Table 5.3 depict the measured running time results for
the three compared mutation testing techniques. As described in Section 5.1, it was
necessary to remove test cases from subject systems in order to perform our proposed
assessment and, due to that, less mutants than the overall generated ones were covered
(see Table 5.2) by the remaining test cases. As expected, the classical implementation
of the mutation process presented actually the highest running time values, leading to
the worst results, in comparison with the other two techniques. Loading and execution
time for each mutated system contributes to these results. In addition, it can be seen
that running time increases with the number of LOC, mutants generated and test cases

of the systems.

Table 5.3. Test cases running time for each implemented technique.

System Running time (ms) with mutants

Classical ~ Schemata VarexJ
Triangle 20,103 271 11,874
Monopoli 82,278 1,501 2,681
Commons CLI 107,454 1,483 2,355
Commons Validator | 803,054 15,647 47973

For the mutant schemata technique, the execution time is considerably inferior
to classical mutation testing. On the one hand, it presents basically the same value
for the two middle-sized systems, but raised in comparison with Triangle. Although
the number of test cases and mutants in Commons CLI is higher than in Monopoli, its
remaining test cases can be considered simpler and with generated mutants. On the
other hand, there can be seen a considerable raise from middle systems to Commons
Validator. This result can be explained by the difference of running time in Table 5.1,
when they were executed without mutants. It may also require more memory for test
suite completion.

Finally, and most important, the last column of Table 5.3 shows the running
time related to our proposed technique. We could observe four main findings. (1) It is
more efficient than the classical mutation testing for all four systems. (2) The running
time of Monopoli and Commons CLI is quite similar, but it was already expected,
given the results found and explanations we made for the schemata technique. (3)
We can see unexpected running time comparing the middle systems with Triangle, the
smallest one. Although the number of mutants in Triangle is rather inferior, all 128

mutants were generated in the unique method, having a high density of mutants per

38 CHAPTER 5. MUTATION-AWARE EXECUTION VIABILITY ASSESSMENT

LOC. Besides, this higher density of mutants in Triangle leads to almost no mutant free
instruction and the main variable (trian) carrying a high number of mutant-dependent
values. (4) For all of the subject systems, the running time of our proposed technique
was superior to that of the mutant schemata. However, we can observe that the impact
of the overhead carried by VarexJ can decrease, since the running time of VarexJ was
43 times higher than that of mutant schemata for Triangle and decreases to only three
times for Commons Validator. The running time for middle-sized systems, once more,
apparently was affected by the drastic reduction of the number of test cases, since the

ratio obtained was about 1.6 times.

5.2.1 Answering RQs

This section aims to answer the two research questions (RQ1 and RQ2) posted in
Section 5.1.

RQ1: In which conditions is mutation-aware execution more efficient than other tech-
niques in terms of running-time?

Taking into account just first order mutants (FOMs) in our study, we did
not find a situation in which mutation-aware execution was more efficient than mu-
tant schemata. Considering the inherent overhead of VarexJ, we can conclude that
mutation-aware execution is not recommended for small and medium-sized systems,
inferior to SKLOC. A novel study with larger systems is necessary to investigate fur-
ther this subject. We discuss higher order mutants in Subsection 5.2.2.

RQ2: Does mutation-aware execution scale, in terms of (a) the size of a system, (b)
the number of test cases, and (c) the number of generated mutants?

We could verify in this study that the proposed technique execution seems to
scale, ranging from an apparent exponential to a smoother growth. While the number
of LOC, test cases, and generated mutants increase, the impact of the VarexJ over-
head decreases. Nevertheless, a direct correlation can not be seen. The proportion of
generated mutants caused the higher impact in VarexJ execution, as could be verified
by comparing the results of the first three systems in Table 5.3. Although this fact
happened on small systems, while analyzing source code with generated mutants, it
is understood that VarexJ took more time processing statements and variable assign-
ments in Triangle, due to the quantity of mutants influencing them than in Monopoli
and Commons CLI. Therefore, it is worth to design another study to investigate the
impact of varying the distribution of the same quantity of mutants on a given source
code.

It is worth to mention a situation we faced while we were removing test cases

5.2. RESULTS 39

of Commons Validator (the largest subject system). There actually are more than
those 161 test cases depicted in Table 5.2. We found this by running each test class
apart from the other. However, when running all of them together, VarexJ execution
was aborted due to an out of memory issue. Before concluding that mutation-aware

execution does not scale, further investigation on VarexJ needs to be performed.

5.2.2 Discussion

Mutation-aware execution does much more than only First Order Mutant (FOM) anal-
ysis. Variability-aware execution, performed via VarexJ, provides information enough
to investigate feature interactions that, bringing to our context, are interactions of
mutants, i.e. more than one mutant directly influencing statement executions and
variable values. Such interaction of mutants led us to reason about higher order mu-
tants (HOMs) [Jia and Harman, 2009], already introduced in Section 2.2.

In HOM context, mutation-aware execution can be useful twofold. (i) Finding
more representative HOMs from VarexJ log, which provides information about all
combinations of mutants that cause tests failures. Indeed, there is a preliminary study
that we are collaborators [Chen, 2018]. (ii) Reporting alive HOMs during a mutation
testing process, functionality not implemented by any available tool as well as was not
in this dissertation.

For instance, to analyze second order mutants with mutant schemata technique,
it is necessary to run the test suite for each combination of two enabled mutants,
which leads to a rise in running time from O(n) to O(n?). Therefore, if one desires to
investigate HOMs, mutation-aware execution might be recommended.

Mutation-aware execution may have great potential to be more efficient than
other techniques for handling infinite loops in mutation testing, since it performs a
single execution. When a mutant causes an infinite loop, the mutant is considered
killed. One technique for supporting that is configuring in test cases a timeout to be
handled by JUnit. Suppose that 100 mutants cause an infinite loop when tested and a
timeout of two seconds was configured to each test case. In theory, test suite running
time will raise in, at least, 200 seconds.

However, JUnit also takes a huge overhead on dealing with preconfigured time-
outs, since that functionality “is implemented by running the test method in a separate
thread”®. We could also confirm that while running the classical mutation testing
implementation for the subject system Commons CLI. Such implementation works in

software testing, where the number of infinite loops caused by programmers failures is

Shttps://github.com /junit-team /junit4 /wiki /timeout-for-tests

40 CHAPTER 5. MUTATION-AWARE EXECUTION VIABILITY ASSESSMENT

expected to be quite small than that caused by a high amount of mutants. Therefore,
this fact may encourage researchers to go further on discovering a technique to iden-
tify infinite loops in variability-aware execution and, more remarkably, identify which

configuration causes them.

5.3 Limitations and Threats to Validity

We faced some limitations while we evolved this research. For instance, the VarexJ
version used for generating the results of this study (from August 2, 2018) presented
some issues. The most relevant one was that, as mentioned in Section 5.1, some test
cases had to be removed in order to proceed with our viability assessment. Before that,
due to some bug reporting we made to VarexJ main developers, previous versions of
VarexJ was fixed in July 2018.

Unfortunately, due to the amount of new failures found, we decided to remove
test cases besides reporting those issues, in order to proceed with our viability as-
sessment of mutation-aware execution. Except for Triangle system, running the test
cases combined with generated mutants, led to execution abortion due to many native
method invocations, among other failures. It is worth to mention that the abortion of
VarexJ does not always happen on all invocations of those natives. It depends on the
variability context caused by many mutants influencing the execution. Some examples
of failures include String.hashCode, String.index0f, toCharArray, stack overflow,

out of memory, unexpected calling of getValue on Choice objects [Meinicke, 2014].

The implementation of mutation-aware execution done for this dissertation may
lead to threats to the validity of the achieved results. Test cases removal, due both to
VarexJ issues and infinite loops situations, caused many mutants not being executed,
i.e., code where they were generated was not covered by remaining test cases. In
addition, the remaining test cases might not be enough to represent a real system test
suite, since parts of the source code are no longer tested and generated mutants not
reached. The remaining test cases could be considered less representative, leading us
to inconsistent conclusions. However, we yet could analyze many situations we faced
and were able to justify all of the measured data presented in Table 5.3 and also to
identify scenarios for future work.

MutVariants implements three mutation operators (Section 4.2). One may point
they are not sufficient to generalize a mutation testing study. However, such operators
are three out of five more representative ones, according to the literature |Offutt et al.,

1996] and we configured MutVariants to generate all possible mutants in each subject

5.4. CONCLUSION 41

system. The fourth operator, Absolute Value Insertion (ABS), which inserts absolute
values into variable expressions, was reported predominantly not useful in some con-
texts [Petrovic and Ivankovic, 2018|. Concerning the last operator, Unary Operator
Insertion (UOI), its original definition is quite broad (could lead to an impracticable
number of generated mutants, given the nature of our study), has many restrictions,
and there is a lack of examples of it in the literature. Therefore, we could not ensure the
correctness of any implementation for UOI, before performing a more refined review in
the literature.

As mentioned in Subsection 5.2.1, studies with more systems and more flexibility
in varying the number of generated mutants. More systems could be included in the
study, as well as other evaluations varying the quantity, places and types of mutants.
Nevertheless, doing that would require redoing the test cases removal, which would

become unfeasible.

5.4 Conclusion

In this chapter, we evaluated the viability of mutation-aware execution, a technique
we proposed in Chapter 3. To accomplish this, we performed an empirical study
setup, for which we choose four subject systems, implemented two other mutation
techniques and ensure the same setup. Some limitations made us unable to affirm
that our proposed technique scales and is more efficient than our implementation of
the mutant schemata technique. However, the results and findings we discussed can
indeed encourage researchers to investigate further mutation-aware execution, mainly
for the context of higher order mutation testing. The next chapter will present the

related work we found in the literature.

Chapter 6

Related Work

To the best of our knowledge, sharing execution and aggregated results (concepts im-
plemented in variability-aware execution - see Section 2.3) are brought to mutation
testing context for the first time in this dissertation and in a preliminary work that
we collaborated [Chen, 2018]. Chen proposes a novel approach for finding strongly
subsuming higher order mutants (SSHOMSs) [Jia and Harman, 2009|, from VarexJ log
expressions, and validated it with the Triangle system. In addition, she compares
such approach performance with that of evolutionary algorithms for finding SSHOMs.
Therefore, that work is not concerned with the efficiency and the scalability of the
running time phase of the mutation testing process, as this work is. In the remainder
of this section, we presented some works that performed and achieved something in
common with parts of our proposed technique and assessment study.

Cost reduction techniques for mutation testing were classified into three categories
by Offutt and Untch [2001]: do faster, do smarter and do faster. A technique may not
necessarily be classified into one single category (may combine multiple techniques)
and, furthermore, recent techniques are hard to categorize [Ferrari et al., 2018|. Both
happen with mutation-aware execution, the technique proposed in this dissertation.

Do fewer is related to reducing the number of generated (and executed) mu-
tants in mutation testing process, without significant impact in mutation score. Our
proposed technique is not related to this category, since we just used the findings of
a previous study |[Offutt et al., 1996] for generating mutants with three out of five
more representative mutation operators. Mutation testing at Google basically uses the
operators defined by the same study.

Do faster is related to generating and running mutants as quickly as possible. Mu-
tant schemata, a compiling and running time speedup technique, in which all mutants

are generated into a single program (metamutant) [Untch et al., 1993; Madeyski and

43

44 CHAPTER 6. RELATED WORK

Radyk, 2010], is classified into this category. Mateo and Usaola propose metamutant
generation in the source code in a quite similar way that is required by mutation-aware
execution, our proposed technique. We also implemented mutant schemata execution
in the phase of our study (see Section 5.1), but without any improvements proposed
by such work and distinct way for mutants activation (enabling/disabling).

According to Offutt and Untch [2001], “the do smarter approaches seek to dis-
tribute the computational expense over several machines or factor the expense over
several executions by retaining state information between runs or seek to avoid com-
plete execution”. Wang et al. [2017] presented “AccMut”, a framework that aims to
reduce redundant execution, improving split-stream via equivalence modulo state de-
tection. Split-stream execution consists of creating a parallel process when each mu-
tant is reached. Equivalence modulo state ensures that a new parallel process will be
created only if, given the current stated of the program, the execution of different state-
ments lead to different states. AccMut performs mutation testing in C programs. This
framework does not implement merging processes, which could decrease redundant
executions. If it is feasible, it might require considerable implementation effort.

Our proposed technique relies on variability-aware execution, which eliminates
redundant executions via sharing mechanisms. Aggregated results ensure keeping dif-
ferent states of a program while a single execution is performed. Specifically, VarexJ

supports joining, as can be seen in Figure 3.2.

Chapter 7

Conclusion and Future Work

Mutation testing is a technique to assess the quality of software tests. Although this
research theme has been studied in literature over last four decades, it did not reach
considerable popularity in the industry, due to the expensive nature of some steps of
the mutation testing process and a lack of up-to-date tools and techniques for au-
tomating them. In this dissertation, we propose a technique that aims at reducing the
computational effort in the test cases execution step. In Section 7.1, we presented final

remarks about our work. Finally, in Section 7.2, we discuss future work.

7.1 Final Remarks

The technique we proposed was inspired in variability-aware execution, a technique
developed for configurable systems, on which it is possible to execute all configura-
tions simultaneously by sharing executions with an internal representation of variabil-
ity [Thiim et al., 2012; Meinicke et al., 2016]. We named our technique mutation-aware
execution, since it brings the concept of variability-aware execution to the context of
mutation tests, where the mutants are handled as variability. We also used VarexJ, a
Java bytecode interpreter that can be considered a JVM with variability-aware execu-
tion [Meinicke, 2014].

For generating mutants, we first developed a mutant generator tool, named Mut-
Variants (Chapter 4), which implements three out of the most representative mutation
operators known in the literature (about 100 mutation operators were proposed at all).
We decided to implement MutVariants because it was necessary for VarexJ to recognize
the generated mutants in the same way it recognizes features as variability.

To evaluate the viability of mutation-aware execution, we choose four subject

systems to generate mutants and implemented two baseline mutation testing techniques

45

46 CHAPTER 7. CONCLUSION AND FUTURE WORK

to compare the test cases execution time. Our goal was to answer two research questions
concerning efficiency and scalability of our proposed technique. Given the incipient
nature of our study, we faced situations that limited our study. VarexJ presented
some issues on running several test cases considering variability seeded on systems
(mutants). Furthermore, we discovered the lack of handling infinite loops in mutation-
aware execution. Therefore, we were compelled to remove test cases of the three largest
subject systems until test case execution became feasible.

Despite those limitations, since mutation-aware execution was not more efficient
than the baseline mutant schemata we implemented, we could perceive that the VarexJ
overhead is smoothed when the size of the evaluated system increases. For the smallest
system, out technique last over 43 times than mutant schemata and, for the largest
system, only three times. We have little information to affirm the following, but we
wonder that mutation-aware execution can be more efficient and scale when running
larger systems, since the limitations are properly resolved. In addition, mutation-
aware execution does much more than simply analyzing first order mutants and can be

recommended for handling higher order mutants.

7.2 Future Work

We discussed a significant limitation of the current state of our proposed technique: the
lack for handling infinite loops. As future work, it is expected to make mutation-aware
execution able to identify mutants (or combination of them) that leads the execution
to an infinite loop, handle this properly and resume the execution by joining statement
executions.

After handling infinite loops and other limitations of VarexJ implementation, it
is imperative to replicate this study with complete test cases of the subject systems as
well as evaluating larger systems and state-of-art mutation techniques, in order to be
able to answer clearly the research questions we proposed.

Our mutant generator tool implemented three mutation operators so far. When
studying the behavior of many mutation operators, we could observe a lack of consensus
in the literature, in terms of naming, scope, applicability, effectiveness, usefulness, etc.
For instance, unary operator insertion (UOI) is quite complex in its definition and quite
confusing when its usage is reported. In other works, Java operators are replaced only
by the opposite one (e.g., + by - and < by >=) and the mutation operators are given
other names. Therefore, we identify the need for a literature review in order to map all

of the characteristics them, from studies reporting their definition and/or their usage.

7.2. FUTURE WORK 47

As discussed in Subsection 5.2.2; it is worth an implementation for identifying
higher order mutants not killed after a mutation-aware execution. It can be based on
the approach presented by Chen [2018] or can be another approach that seeks for HOMs
of specific small orders (second or third, for instance), which is already in progress.

Finally, the development of a complete mutation system that (i) automates all
possible steps of mutation testing and (ii) implements mutation-aware execution. (iii)
[t may implement more, but sufficient mutation operators. (iv) It also may recognize as
many equivalent mutants as possible and provide (v) an interface to support the user to
identify the remaining ones. Besides that, providing (vi) a complete report containing
mutation score, killed and live mutants, which could be even first and higher order
mutants. Finally, (vii) mechanisms to locate reported mutants and ease the creation

of new test cases to kill live ones. Items (ii) and (vi) are directly related to our study.

Bibliography

Ammann, P. and Offutt, J. (2016). Introduction to software testing. Cambridge Uni-

versity Press.

Banzi, A. S., Nobre, T., Pinheiro, G. B., ARias, J. C. G., Pozo, A., and Vergilio,
S. R. (2012). Selecting mutation operators with a multiobjective approach. Expert
Systems with Applications, 39(15):12131--12142.

Barbosa, E. F., Maldonado, J. C., and Vincenzi, A. M. R. (2001). Toward the de-

termination of sufficient mutant operators for C. Software Testing, Verification and
Reliability, 11(2):113--136.

Budd, T. A. and Angluin, D. (1982). Two notions of correctness and their relation to
testing. Acta Informatica, 18(1):31--45.

Chen, S. (2018). Finding higher order mutants using variational execution. Technical
report 1809.04563.arXiv. Accepted to SPLASH’18 student research competition.

Coles, H., Laurent, T., Henard, C., Papadakis, M., and Ventresque, A. (2016). Pit:
a practical mutation testing tool for Java. In Proceedings of the 25th International

Symposium on Software Testing and Analysis, pages 449--452. ACM.

DeMillo, R. A., Lipton, R. J., and Sayward, F. G. (1978). Hints on test data selection:
Help for the practicing programmer. Computer, 11(4):34--41.

Dijkstra, E. W. (1972). The humble programmer. Communications of the ACM,
15(10):859--866.

Ferrari, F. C., Pizzoleto, A. V., and Offutt, A. J. (2018). A systematic review of cost
reduction techniques for mutation testing: Preliminary results. In Proceedings of the
13th International Workshop on Mutation Analysis (Mutation), 2018, pages 1--10.
IEEE.

49

50 BIBLIOGRAPHY

Ferreira, J. M., Vergilio, S. R., and Quinaia, M. (2017). Software product line testing
based on feature model mutation. International Journal of Software Engineering

and Knowledge Engineering, 27(05):817--839.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design patterns, volume 1.
Addison-Wesley.

Gopinath, R., Alipour, M. A., Ahmed, 1., Jensen, C., and Groce, A. (2016). On the
limits of mutation reduction strategies. In Proceedings of the 38th international

conference on software engineering, pages 511--522. ACM.

Harman, M., Jia, Y., Reales Mateo, P., and Polo, M. (2014). Angels and monsters: An
empirical investigation of potential test effectiveness and efficiency improvement from
strongly subsuming higher order mutation. In Proceedings of the 29th ACM/IEEE

international conference on Automated software engineering, pages 397--408. ACM.

Havelund, K. and Pressburger, T. (2000). Model checking Java programs using
Java PathFinder. International Journal on Software Tools for Technology Trans-
fer, 2(4):366--381.

Howden, W. E. (1982). Weak mutation testing and completeness of test sets. [EEE
Transactions on Software Engineering, 8(4):371--379.

Jia, Y. and Harman, M. (2009). Higher order mutation testing. Information and
Software Technology, 51(10):1379--1393.

Jia, Y. and Harman, M. (2011). An analysis and survey of the development of mutation

testing. IEEFE transactions on software engineering, 37(5):649--678.

Just, R., Jalali, D., Inozemtseva, L., Ernst, M. D., Holmes, R., and Fraser, G. (2014).
Are mutants a valid substitute for real faults in software testing? In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 654--665. ACM.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G.
(2001). An overview of AspectJ. In Furopean Conference on Object-Oriented Pro-
gramming, pages 327--354. Springer.

Kim, S.-W., Ma, Y.-S., and Kwon, Y.-R. (2013). Combining weak and strong muta-
tion for a noninterpretive java mutation system. Software Testing, Verification and

Reliability, 23(8):647--668.

BIBLIOGRAPHY 51

King, K. N. and Offutt, A. J. (1991). A Fortran language system for mutation-based
software testing. Software: Practice and Ezxperience, 21(7):685--718.

Lima, J. A. P. and Vergilio, S. R. (2018). Search-based higher order mutation testing:
A mapping study. In Proceedings of the III Brazilian Symposium on Systematic and
Automated Software Testing, pages 87--96. ACM.

Ma, Y .-S., Kwon, Y.-R., and Offutt, J. (2002). Inter-class mutation operators for Java.
In Software Reliability Engineering, 2002. ISSRE 2003. Proceedings. 13th Interna-
tional Symposium on, pages 352--363. IEEE.

Ma, Y .-S., Offutt, J., and Kwon, Y. R. (2005). MuJava: an automated class mutation
system. Software Testing, Verification and Reliability, 15(2):97--133.

Madeyski, L. and Radyk, N. (2010). Judy—a mutation testing tool for Java. IET
software, 4(1):32--42.

Mateo, P. R. and Usaola, M. P. (2012a). Bacterio: Java mutation testing tool: A frame-
work to evaluate quality of tests cases. In 2012 28th IEEE International Conference
on Software Maintenance (ICSM), pages 646--649. IEEE.

Mateo, P. R. and Usaola, M. P. (2012b). Mutant execution cost reduction: Through
MUSIC (mutant schema improved with extra code). In Software Testing, Verification
and Validation (ICST), 2012 IEEE Fifth International Conference on, pages 664--
672. IEEE.

Mateo, P. R., Usaola, M. P., and Aleman, J. L. F. (2013). Validating second-order
mutation at system level. IEEE Transactions on Software Engineering, 39(4):570--
587.

Meinicke, J. (2014). VarexJ: A variability-aware interpreter for Java applications.

Master’s thesis, University of Magdeburg.

Meinicke, J., Wong, C.-P., Késtner, C., Thiim, T., and Saake, G. (2016). On essential
configuration complexity: measuring interactions in highly-configurable systems. In
Automated Software Engineering (ASE), 2016 31st IEEE/ACM International Con-
ference on, pages 483--494. IEEE.

Nhlabatsi, A., Laney, R., and Nuseibeh, B. (2008). Feature interaction: The security

threat from within software systems. Progress in Informatics, 5:75--89.

52 BIBLIOGRAPHY

Offutt, A. J. (1992). Investigations of the software testing coupling effect. ACM
Transactions on Software Engineering and Methodology (TOSEM), 1(1):5--20.

Offutt, A. J., Lee, A., Rothermel, G., Untch, R. H., and Zapf, C. (1996). An experi-
mental determination of sufficient mutant operators. ACM Transactions on Software

Engineering and Methodology (TOSEM), 5(2):99--118.

Offutt, A. J. and Pan, J. (1997). Automatically detecting equivalent mutants and
infeasible paths. Software testing, verification and reliability, 7(3):165--192.

Offutt, A. J. and Untch, R. H. (2001). Mutation 2000: Uniting the orthogonal. In
Mutation testing for the new century, pages 34--44. Springer.

Petrovic, G. and Ivankovic, M. (2018). State of mutation testing at google. In Proceed-
ings of the International Conference on Software Engineering—Software Engineering

in Practice (ICSE SEIP).

Pohl, K., Bockle, G., and van Der Linden, F. J. (2005). Software product line engineer-

ing: foundations, principles and techniques. Springer Science & Business Media.

Pressman, R. S. (2009). Software engineering: a practitioner’s approach. McGraw-Hill

Education.

Schuler, D. and Zeller, A. (2009). Javalanche: efficient mutation testing for Java. In
Proceedings of the the 7th joint meeting of the FEuropean software engineering confer-

ence and the ACM SIGSOFT symposium on The foundations of software engineering,
pages 297--298. ACM.

Siami Namin, A., Andrews, J. H., and Murdoch, D. J. (2008). Sufficient mutation
operators for measuring test effectiveness. In Proceedings of the 30th international

conference on Software engineering, pages 351--360. ACM.
Sommerville, 1. (2015). Software Engineering. Pearson.

Thiim, T., Schaefer, 1., Apel, S., and Hentschel, M. (2012). Family-based deductive
verification of software product lines. In ACM SIGPLAN Notices, volume 48, pages
11--20. ACM.

Untch, R. H., Offutt, A. J., and Harrold, M. J. (1993). Mutation analysis using mutant
schemata. In ACM SIGSOFT Software Engineering Notes, volume 18, pages 139--
148. ACM.

BIBLIOGRAPHY 53

Usaola, M. P. and Mateo, P. R. (2010). Mutation testing cost reduction techniques: a
survey. IEEE software, 27(3):80--86.

Wang, B., Xiong, Y., Shi, Y., Zhang, L., and Hao, D. (2017). Faster mutation analysis
via equivalence modulo states. In Proceedings of the 26th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, pages 295--306. ACM.

Woodward, M. and Halewood, K. (1988). From weak to strong, dead or alive? an
analysis of some mutation testing issues. In Software Testing, Verification, and
Analysis, 1988., Proceedings of the Second Workshop on, pages 152--158. IEEE.

Zhu, H., Hall, P. A.) and May, J. H. (1997). Software unit test coverage and adequacy.
ACM Computing Surveys (CSUR), 29(4):366--427.

U W N =

© 00 N OOtk W N

NN NN NN DN DN = = e e e e
N OO R WO © 000N W N RO

Attachment A

Triangle System

Listing A.1. TriangleType.java enum.

package triangle;

public enum TriangleType {
INVALID, SCALENE, EQUILATERAL, ISOSCELES

Listing A.2. Triangle.java original class.

package triangle;
import static triangle.TriangleType.*;
public class Triangle {
public static TriangleType classify (int a,
int trian;

if (a<=01]] b<=0 || c<=0)
return INVALID;

trian = 0;
if (a = b)

trian = trian + 1;
if (a = ¢)

trian = trian + 2;
if (b= ¢)

trian = trian + 3;
if (trian = 0

if (a+b<c || a+c<b
return INVALID;
else
return SCALENE;
if (trian > 3)
return EQUILATERAL;

if (trian = 1 & a + b > ¢)
return ISOSCELES;
else if (trian =— 2 && a + ¢ > b)

95

int b, int c¢) {

b+ ¢ < a)

28
29
30
31
32
33
34

© 00 N O Ut W N

10
11
12
13

26

ATTACHMENT A. TRIANGLE SYSTEM

return ISOSCELES;

else if (trian =— 3 && b + ¢ > a)
return ISOSCELES;

return INVALID;

Listing A.3. Triangle.java class with 128 mutants.

package triangle;

import static triangle.TriangleType.x*;

import gov.nasa.jpf.annotation.Conditional;

public class Triangle {

@Conditional

public static boolean mut0 = false, mutl = false, mut2 = false, mut3 = false,
_mut4d = false, muts = false, mut6 = false, mut7 = false, mut8 = false,
~mut9 = false, mutl0 = false, mutll = false, mutl2 = false, mutl3 = false,
~mutl4 = false, mutl5 = false, mutl6 = false, mutl?7 = false, mutl8 =
false, mutl9 = false, mut20 = false, mut2l = false, mut22 = false, mut23
= false, mut24 = false, mut25 = false, mut26 = false, mut27 = false,
~mut28 = false, mut29 = false, mut30 = false, mut3l = false, mut32 = false

, _mut33 = false, mut34 = false, mut35 = false, mut36 = false, mut37 =
false, mut38 = false, mut39 = false, mutd0 = false, mutdl = false, mut42

= false, mut43 = false, mut44 = false, mut4d5 = false, mutd6 = false,
_mutd7 = false, mut4d8 = false, mut4d9 = false, mutb0 = false, mutsl = false
, _mutd2 = false, mutd3 = false, mutb4 = false, _mutd5 = false, _mutb6 —
false, _mutd7 = false, ~mutds8 = false, muts9 = false, mut60 = false, _mut6l
= false, mut62 = false, mut63 = false, mut64 = false, mut6b = false,
_mut66 = false, ~mut67 = false, _mut68 = false, _mut69 = false, _mut70 = false

, _mut7l = false, mut72 = false, mut73 = false, mut74 = false, mut75 =
false, mut76 = false, mut77 = false, mut78 = false, mut79 = false, mut80
= false, mut8l = false, mut82 = false, mut83 = false, mut84 = false,
~mut85 = false, mut86 = false, mut87 = false, mut88 = false, mut89 = false
, _mut90 = false, mut9l = false, mut92 = false, mut93 = false, mut94 =
false, mut95 = false, mut96 = false, mut97 = false, mut98 = false, mut99
= false, mutl00 = false, mutl0l = false, mutl02 = false, mutl03 = false,
~mutl04 = false, mutl05 = false, mutl06 = false, mutl07 = false, mutl08 =
false, mutl09 = false, mutll0 = false, mutlll = false, mutll2 = false,
~mutll3 = false, mutll4 = false, mutll5 = false, mutll6 = false, mutll? =
false, mutll8 = false, mutll9 = false, mutl20 = false, mutl2l = false,
_mutl22 = false, mutl23 = false, mutl24 = false, mutl25 = false, mutl26 =

false, mutl27 = false;

public static TriangleType classify (int a, int b, int c¢) {

int trian;

if ((_mutl6 ? ((_mutl0 ? ((_mutd ? (a >= 0) : (_mut3 ? (a > 0) : (_mut2 ? (a <
0) : (_mutl ? (a!= 0) : (_mutd0 ? (a = 0) : (a<=10)))))) && (_mut9 ? (b
>=0) : ((mu8 ? (b>0) : ((muw7 ? (b<0) : (_mu6 ? (b != 0) : (_muth
? (b=20) : (b<=20))))))) : ((_mutd ? (a >= 0) : (_mut3 ? (a > 0) : (
~mut2 7 (a < 0) : (_mutl ? (a!= 0) : (_mut0 ? (a = 0) : (a<=10)))))) ||
((mut9 ? (b>>=0) : ((mut8 ? (b > 0) : (_mut?7 ? (b < 0) : (_mut6 ? (b !=
0) : ((muth ? (b=0) : (b<=20)))))))) && (_mutl5 ? (¢ >= 0) : (_mutld ?

14

15

16

17

18

19

20

21

22

23

(¢ >0) : (_mutld ? (¢ <0
c<=10)))))))
? (a< 0) : (_mutl ? (a != 0) :
~mut9 ? (b >=0) : (_mut8 ? (b >

: (_muts ? (b = 0) :

) (L
: ((_mutlo ? ((_mutd ? (a >= 0) :
0

o7

mutl2 ? (¢ != 0) : (_mutll ? (¢ = 0) : (
(_mut3 7 (a > 0) : (_mut2
(Lmut0 ? (a = 0) : (a <= 0)))))) & (

0) : (_mut7 ? (b < 0) : (_mut6 ? (b != 0)

(b<=10))))))) : ((_mut4d ? (a>= 0) : (_mut3 ? (a >

0) : (_mut2 ? (a < 0) : (_mutl ? (a!= 0) : (_mutd0 ? (a = 0) : (a <= 0))
)))) || ((mut9 ? (b>=0) : (_mut8 ? (b > 0) : (_mut7 ? (b < 0) : (_mut6 ?
(b!'=0) : (mus ? (b=20) : (b<=0)))))))) || (_mutls ? (c >= 0) : (

~mutld ? (¢ > 0) : (_mutl3 ? (¢ < 0) : (_mutl2 ? (¢ != 0) :

= 0) : (c<=0)))))N))
return INVALID;

trian = 0;

if ((_mut2l 7 (a>=Db) : (_mut20 ? (a<=Db) : (_mutld ? (a > b) :
(a=1b)))))))

< b) : (_mutl7 ? (a != b) :
trian = (_mut25 ? (trian % 1) :
1) : (_mut22 ? (trian — 1)

if ((_mut30 ? (a>=c¢) : (_mut29 ? (a<=c¢) : (_mut28 ? (a > c) :

(a ==1¢)))))))

< c¢) : (_mut26 ? (a != ¢c) :
trian = (_mut34 ? (trian % 2) :

2) : (_mut3l ? (trian — 2) :
if ((_mut39 ? (b>=c¢) : (_mut38 ? (b<=c¢) : (_mut37 ? (b > c) :
(b =1¢)))))))

< c) : (_mutd5 ? (b != ¢c) :
trian = (_mut43 ? (trian % 3) :

3) : (_mut40 ? (trian — 3) :

if ((_mut48 ? (trian >= 0) : (_mut47
(_mutd5 ? (trian < 0) :

f ((_mut77 ? ((_mut67 ? ((_mutd

¢ (_muts0 ? (a * b) : (_mut

? ((_muts2 ? (a % b) : (_mutbl ? (a / b) :

~mutd9 7 (a — b) : (a + b)))
(_mutbl ? (a / b) :

) > c¢) : (_muthd ? ((_muts2 ? (a % b) : (_mutsl ? (a / b) :
(a * b) : (_mutd9 ? (a — b) :
(a % b) : (_mutsl ? (a / b) :

(a + b)) — ¢) : ((_mut5
? (a % b) : (_mutd9 ? (a — b
~mut6l ? (a % c¢) : (_mut60 ?
(a+ ¢))))) >= b) :

a — c¢) :

(a / ¢) : (_muts9 ? (a * c) :

(_mut44 ? (trian != 0) :

)
(
(_muts0 ? (a * b) : (_mutd9 ? (a — b) : (a + b))))
(_
(

(_mutll 7 (c

(_mutl8 ? (a

(_mut24 ? (trian / 1) :
: (trian + 1)))));

(_mut23 ? (trian =
(_mut27 7 (a

(_mut33 ? (trian / 2) :
(trian + 2)))));

(_mut32 7 (trian =x
(_mut36 ? (b
(_mut42 ? (trian / 3) :

(trian + 3)))));
? (trian <= 0) :

(_mut4l ? (trian =x

(_mut46 ? (trian > 0) :
(trian — 0)))))))

77 ((_muts2 ? (a % b) : (_mutsl ? (a / b)
49 7?7 (a —b) : (a+ b))))) >= c) : (_muts6
(_muts0 ? (a * b) :
)) <=c¢) : (_mutss ? ((_muts2 ? (a % b) :
mut50 ?
(a+ b))))) !'= ¢c) : (_mutsd ? ((_muts2 ?
(_muts0 ? (a * b) : (_mutd9 ? (a — b) :
27?7 (a%b) : (_muthl ? (a / b) : (_muth0
) (a4 b)) < €)))))) &k (_mutes 7 ((
(a / ¢c) : (_muth9 ? (a x c¢) : (_muts8 7 (
(_mut65 ? ((_mut6l ? (a % c) : (_mut60 ?
(_muts8 ? (a —c) : (a+¢))))) <=b) :

(_mut64d ? ((_mut6l ? (a % c) : (_mut60 ? (a / c¢) : (_muts9 ? (a * c)
(_mutb8 ? (a — c) (a+¢))))) >b) : (_mut63 ? ((_mut6l ? (a % c)
(_mut60 ? (a / c¢) : (_mutdh9 ? (a % c¢) : (_muth8 ? (a — c) : (a c)))
)) !'= b) : (_mut62 ? ((_mut6l ? (a % c) : (_mut60 ? (a / c) : (_mut59
? (a*xc) : (_muts8 ? (a —c) : (a+c))))) = b) : ((_mutél ? (a % c)

b))))))) : ((_muts7 ?
(_mutb0 ? (a * b) :
((_muts2 ? (a % b) :
(a —b) : (a+
? (a/ b) : (_muts0 ? (a * b
(_mutbd ? ((_muts2 ? (a % b
: (_mutd9 ? (a — b) : (a+ Db

(__mut49
(_mutb1

: (_mutsl ? (a / b) : (_muts0 ? (a % b) : (_mutd9 ? (a — b) :
)))) =— ¢) : ((_muts2 ? (a % b

) : (_mut4d9 ? (a — b) : (a +

(_mut60 ? (a / c) : (_mutd9 ? (a % c) : (_muth8 ? (a — c) :
) <

b))))) <= c¢) :

(a + c¢)
((_muts2 ? (a % b) : (_mutbl ? (a / b) :
? (a—Db) : (a+b))))) > c) : (_muts6 ?
? (a/ b) : (_mutb0 ? (a * b) : (_mutd9 ?
(_mutss ? ((_muts2 ? (a % b) : (_mutsl
) : (_mut4d9 ? (a — b) : (a + b))))) > c) :
) : (_mutsl ? (a / b) : (_muts0 ? (a x b)
(_ (

))))) = ¢) : mutb3 ? ((_muts2 ? (a % b)
(a + b)

) : (_mutsl ? (a / b) : (_muts0 ? (a * b
b))))) < ¢)))))) |l (_mut66 ? ((_mut6l ?

28

ATTACHMENT A. TRIANGLE SYSTEM

(a% c) : (_mut60 ? (a / ¢) : (_muth9 ? (a = ¢) : (_muth8 ? (a — c¢) :
(a+¢))))) >b) : (_mut65 ? ((_mut6l ? (a % c) : (_muté0 ? (a / c) :
(_muts9 ? (a * ¢) : (_muth8 7 (a — c) : (a + ¢))))) <= b) : (_mut64d ?

((_mut6l ? (a % c) :+ (_mut60 ? (a / c¢) : (_muth9 ? (a * c) : (mut58
? (a—c¢c) : (a c))))) >Db) : (_mut63 ? ((_mut6l ? (a % c) : (_mut60
? (a/ c) : (_mutht9 ? (a % ¢) : (_muts8 ? (a — c) : (a + c))))) != b)
: (_mut62 ? ((_mut6l ? (a % c) : (_mut60 ? (a / c) : (_muts9 ? (a * C)

: (_muts8 ? (a — c¢) : (a+c¢))))) = b) : ((_mut6l ? (a % c) : (
~mut60 ? (a / c¢) : (_mutsh9 ? (a % c¢) : (_muth8 ? (a — c) : (a + ¢)))))
<b)))))))) & (_mut76 ? ((_mut7l ? (b % c) : (_mut70 ? (b / ¢) : (
- mut69 ? (b x ¢) : (_mut68 ? (b —c) : (b+c¢c))))) > a) : (_mut?s ?
((_mut71 72 (b % c) : (_mut70 ? (b / ¢) : (_mut69 ? (b * c) : (_mut68 ?
(b—c) : (b+4+1¢c))))) <=a) : (_mut?d ? ((_mut7l ? (b % c) : (_mut70
?7 (b / c) : ((mut6d ? (b x c) : (_mut68 (b—=c) : (b+4+c¢))))) > a) :
(_mut73 7 ((_mut7l ? (b % ¢) : (_mut70 (b / ¢) : (_mut69 ? (b x c)
: (_muté8 ? (b —c) : (b+4+¢))))) !'=a) : (_mut72 ? ((_mut7l ? (b % ¢)
: ((mut70 ? (b / ¢) : (_mut69 ? (b * ¢) : (_mut68 ? (b — c) : (b + ¢)
)))) — a) : ((_mut7l ? (b % c) + ((mut7 ? (b / ¢) : (_mut69 ? (b * c
) + (_mut68 ? (b — c) : (b c))))) < a))))))) : ((_mut67 ? ((_muts7 ?
((_muts2 ? (a % b) : (7mut51 ? (a/ b) : (_muts0 ? (a % b) : (_mutd9
? (a—=Db) : (a+Db))))) > c) : (_muts6 ? ((_muts2 ? (a % b) : (_mutsl
? (a/ b) : (_muts0 ? (a * b) : (_mutd9 ? (a — b) : (a + b))))) <= ¢)
¢ (_mutss ? ((_mutb2 ? (a % b) : (_mutbl ? (a / b) : (_muts0 ? (a * b
) : (_mutd9 ? (a —b) : (a+ b))))) >c) : (_mutbtd ? ((_muts2 ? (a % b
) : (_mutsl ? (a / b) : (_muts0 ? (a * b) : (_mutd9 ? (a — b) : (a + b
))))) = ¢) : (_mutd3 ? ((_muts2 ? (a % b) : (_mutsl ? (a / b) : (
~mutb0 ? (a % b) : (_mutd9 ? (a — b) : (a +b))))) = c) : ((_mutd2 ?
(a % b) : (_mutsl ? (a / b) : (_muts0 ? (a * b) : (_mutdd ? (a — b) :
(a+Db))))) <c)))))) && (_mut66 ? ((_mut6l ? (a % c) : (_mut60 ? (a /
c) : (_muts9 ? (a % ¢) : (_muth8 ? (a — c) : (a + ¢))))) >=b) : (
~mut65 7 ((_mut6l ? (a % c¢) : (_mut60 ? (a / ¢) : (_muts9 ? (a % c) :
(_muts8 ? (a — c) : (a+ ¢c))))) <=b) : (_mut6d ? ((_mut6l ? (a % c) :

?
?

(_mut60 ? (a / ¢) : (_muth9 ? (a * c¢) : (_muth8 ? (a — c) : (a + c)))
)) >b) : (_mut63 ? ((_mut6l ? (a % c) : (_mut60 ? (a / c¢) : (_muth9 ?
(a * ¢) : (_muth8 ? (a — c¢) : (a c))))) !'=b) : (_mut62 ? ((_mut6l
? (a% c) : (_mut60 ? (a / c) : (7mut59 ? (a x c¢) : (_muth8 ? (a — c¢)
(a+¢))))) =Db) : ((_mut6l ? (a % c) : (_mut60 ? (a / c) : (_muth9
? (a*xc) : ((muth8 ? (a —c) : (a+c¢))))) <b))))))) : ((_muts?7 ?
((_muts2 ? (a % b) : (_mutsl ? (a / b) : (_muts0 ? (a * b) : (_mutd9 ?

(a_f b) : (a+b))))) > c) : (_mutsé ? ((_mutb2 ? (a % b) : (_mutsl
? (a/ b) : (_muts0 ? (a * b) : (_mutd9 ? (a — b) : (a + b))))) <= c)
mut52 ? (a % b) : (_mutsl ? (a / b) : (_muts0 ? (a * b)

: (_mutb5 ? ((_

: (_mutd9 ? (a —b) : (a+b))))) > c) : (_mutdd ? ((_mutd2 ? (a % b)
: (_mutsl ? (a / b) : (_muts0 ? (a * b) : (_mutd9 ? (a — b) : (a + b)
)))) !=c¢) : (_mutd3 ? ((_muts2 ? (a % b) : (_mutsl ? (a / b) : (

~mutb0 ? (a * b) : (_mutd9 ? (a — b) : (a +b))))) = c) : ((_muts2 ?
(a % b) : (_muthl ? (a / b) : (_muth0 ? (a = b) : (_mut4d9 ? (a — b) :
(a 4+ b))))) <c)))))) |l (_mut66 ? ((_mut6l ? (a % c¢) : (_mut60 ? (a /
c) : (_muth9 ? (a % ¢) : (_muth8 ? (a — c) : (a + ¢))))) >=b) : (

~mut65 ? ((_mut6l ? (a % c) : (7mut60 ? (a/ ¢) : (_muts9 ? (a % c) :
(_muth8 ? (a —c) : (a+¢))))) <=b) : (_mut64 ? ((_mut6l ? (a % c) :
(_mut60 ? (a / c¢) : (_mutb9 7 (a *x C) (_muts8 ? (a — c) : (a + c)))
)) > b) : (_mut63 ? ((_mut6l ? (a % c) : (_mut60 ? (a / c¢) : (_muth9 ?
(a % ¢) : (_muts8 ? (a — ¢) : (a c))))) !'=b) : (_mut62 ? ((_mut6l
? (a% c) : (_mut60 ? (a / c) : (mut59 ? (a *x c¢) : (_muts8 ? (a c)

24
25
26
27

28
29

30
31

29

: (a4+c¢))))) = Db) : ((_mut6l ? (a % c) : (_mut60 ? (a / ¢) : (_muts9
? (a k) s (Lmus8 ? (a-c) s (a+tc))))) <b)))))))) || (_mur6 ?

((_ mut71 2 (b % c) : (_mut70 ? (b / ¢) : (_mut69 ? (b * c) : (_mut68 ?
(b—¢c) : (b+4+1¢c))))) > a) : (_mut?75 ? ((_mut7l ? (b % c) : (_mut70

?7 (b /c): ((mut69 ? (b * ¢) : (_mut68 ? (b —c) : (b+c))))) <= a)

: (_mut74 ? ((_mut?l ? (b % c) : (_mut70 ? (b / ¢) : (_mut69 ? (b * c)
: (_mut68 ? (b —c) : (b4 c¢))))) >a) : (_mut73 ? ((_mut?l ? (b % c)
: (_mut70 ? (b / ¢) : (_mut69 ? (b * ¢) : (_mut68 ? (b — c) : (b + c)

)))) !'=a) : ((mut72 ? ((_mut?7l ? (b % c) : (_mut?0 ? (b / c¢) : (

~mut69 ? (b % ¢) : (_mut68 ? (b —c) : (b+c¢))))) = a) : ((_mut?l ?

(b % c) : ((mut70 ? (b / ¢) : (_mut69 ? (b * ¢) : (_mut68 ? (b — c) :

(b+¢))))) < a))))))))

return INVALID;

else
return SCALENE;
if ((_mut82 ? (trian >= 3) : (_mut8l ? (trian <= 3) : (_mut80 ? (trian < 3) :
(_mut79 ? (trian != 3) : (_mut78 ? (trian = 3) : (trian > 3)))))))
return EQUILATERAL;
if ((_mut97 ? ((_mut87 ? (trian >= 1) : (_mut86 ? (trian <= 1) : (_mut8 7 (

trian > 1) : (_mut84 ? (trian < 1) : (_mut83 ? (trian != 1) : (trian = 1)
))))) Il (_mut96 ? ((_mut9l ? (a % b) : (_mutd0 ? (a / b) : (_mut89 ? (a =
b) : (_mut88 ? (a —b) : (a+ b))))) > c) : (_mutd5 ? ((_mutdl ? (a % b)
: (_mut90 ? (a / b) : (_mut89 ? (a % b) : (_mut88 ? (a — b) : (a + b)))))
<=<c¢) : (_mutdd ? ((_mut9l ? (a % b) : (_mut90 ? (a / b) : (_mut89 ? (a =
b) : (_mut88 ? (a —b) : (a+Db))))) <c) : (_mut93 ? ((_mutdl ? (a % b)

: (_mut90 ? (a / b) : (_mut89 ? (a * b) : (_mut88 ? (a — b) : (a + b)))))
= ¢) : ((mut92 ? ((_mutdl ? (a % b) : (_mutd0 ? (a / b) : (_mut89 ? (a *
b) : (_mut88 ? (a —b) : (a+Db))))) = c) : ((_mut9l ? (a % b) : (_mut90
? (a/ b) : (_mutd89 ? (a * b) : (_mutd88 ? (a — b) : (a + b))))) > ¢)))))))
: ((_mut87 ? (trian >= 1) : (_mut86 7 (trian <= 1) : (_mut85 ? (trian >
1) : (_mut84 ? (trian < 1) : (_mut83 ? (trian != 1) : (trian = 1)))))) &
(_mut96 ? ((_mutdl ? (a % b) : (_mutd0 ? (a / b) : (_mut89 ? (a x b) : (
~mut88 7 (a — b) : (a + b))))) >=c) : (_mut95 ? ((_mutdl ? (a % b) : (
~mut90 ? (a / b) : (_mut89 ? (a * b) : (_mut88 ? (a — b) : (a + b))))) <=
¢) : (_mutdd ? ((_mut9l ? (a % b) : (_mut90 ? (a / b) : (_mut89 ? (a * b)
: (_mut88 ? (a — b) : (a+b))))) < c) : (_mut93 ? ((_mut9l ? (a % b) : (
~mut90 ? (a / b) : (_mut89 ? (a *x b) : (_mut88 ? (a — b) : (a + b))))) !=
c¢) : (_mut92 ? ((_mut9l ? (a % b) : (_mut90 ? (a / b) : (_mut89 ? (a * b)
: (_mut88 ? (a — b) : (a+b))))) =— ¢) : ((_mutdl ? (a % b) : (_mutd0 ? (
a / b) : (_mut89 ? (a * b) : (_ mut88 ? (a —b) : (a+Db))))) >¢)))))))))
return ISOSCELES;
else if ((_mutll2 ? ((_mutl02 ? (trian >= 2) : (_mutl0l ? (trian <= 2) : (
_mutl00 ? (trian > 2) : (_mut99 ? (trian < 2) : (_mut98 ? (trian != 2) : (
trian = 2)))))) || (_mutlll ? ((_mutl06 ? (a % c) : (_mutl0s ? (a / c) :
(_mutlod ? (a % c¢) : (_mutlo3 ? (a — c) : (a + c¢))))) > Db) : (_mutll0 ?
((_mutl06 ? (a % c¢) : (_mutl05 ? (a / ¢) : (_mutl04 ? (a % c¢) : (_mutl03 ?
(a—c) : (a+1c¢))))) <=b) : (_mutlo9 ? ((_mutlo6 ? (a % c) : (_mutlos ?
(a / ¢) : (_mutlod ? (a * ¢) : (_mutlo3 ? (a —c) : (a+c¢c))))) < b) : (
_mutl08 ? ((_mutlo6 ? (a % c) : (_mutlos ? (a / ¢) : (_mutlod ? (a % c) :
)))) != b) : (_mutl07 ? ((_mutlo6 ? (a % c) :
4 ?

(_mutl03 ? (a — c) : (a + ¢)

(_mutl05 ? (a / c¢) : (_mutlO (a % ¢) : (_mutlo3 ? (a —c) : (a+¢)))))
= b) : ((_mutlo6 ? (a % c¢) : (_mutlo5 ? (a / ¢) : (_mutlod ? (a = c) : (
~mutl03 7 (a —c) : (a+¢))))) >Db))))))) : ((_mutlo2 ? (trian >= 2) : (
_mutl0l ? (trian <= 2) : (_mutl00 ? (trian > 2) : (_mut99 ? (trian < 2) :
(_mut98 ? (trian != 2) : (trian = 2)))))) && (_mutlll ? ((_mutlo6 ? (a %

32
33

34
35
36
37

© 00 N O U W N

e e
=W N = O

60 ATTACHMENT A. TRIANGLE SYSTEM

) : (_mutlo5 ? (a / ¢) : (_mutlod ? (a * c)

c mutl03 ? (a — ¢)
))))) >=b) : (_mutll0 ? ((_mutlo6 ? (a % c)

(_
(_mutlo5 ? (a / c)

~mutl04d 7 (a % ¢) : (_mutl03 ? (a — c) : (a+ c¢))))) <=b) : (_mutlo9 7 ((
~mutl06 ? (a % c) : (_mutlo5 ? (a / c¢) : (_mutl04 ? (a * c) : (_mutlo3 ? (
a—c) : (a+c))))) <b) : (_mutlo8 ? ((_mutlo6 ? (a % c¢) : (_mutlo5 ? (a

/ ¢) : (_mutlod ? (a * ¢) : (_mutlo3 ? (a —c) : (a+c))))) != b)

~mutl07 ? ((_mutlo6 ? (a % c¢) : (_mutl05 ? (a / ¢) : (_mutlod ? (a * c)
(_mutlo3 ? (a —c) : (a+c¢))))) = b) : ((_mutlo6 ? (a % c) : (_mutlo5 ?
(a / c) : (_mutlod ? (a % c) : (_mutlo3 ? (a — c) : (a+¢c))))) >Db)))))))

))
return ISOSCELES;

else if ((_mutl2?7 ? ((_mutll7 ? (trian >= 3) : (_mutllé ? (trian <= 3)

~mutll5 ? (trian > 3) : (_mutll4d ? (trian < 3) : (_mutll3d ? (trian != 3)
(trian = 3)))))) || (_mutl26 ? ((_muti2l ? (b % c¢) : (_mutl20 ? (b / ¢)
(_mutll9 ? (b % ¢) : (_mutll8 ? (b—¢c) : (b + ¢))))) > a) : (_mutl2s ?
((_mut121 2 (b % ¢) : (_mutl20 ? (b / ¢) : (_mutll9 ? (b * ¢) : (_mutll8

? (b=-=c) : (b+4+2¢c))))) <=a) : (_mutl24 ? ((_mutl2l ? (b % ¢) : (_mutl20

;a)

? (b /c¢c): ((mutll9 ? (b * ¢) : (_mutll®8 ? (b —¢c) : (b + ¢)))))
~mutl23 7 ((_mutl2l ? (b % c¢) : (_mutl20 ? (b / ¢) : (_mutll9 ? (
(_mutll8 ? (b — ¢) b+ c¢))))) !'=a) : (_mutl22 ? ((_mutl2l ? (b % c)

(
(_mutl20 ? (b / c) (
= a) : ((

(

~mutll8 ? (b —c) : (b+¢))))) >a))))))) : ((_mutll?7 ? (trian >= 3)

_mutll6 ? (trian <= 3) : (_mutll5 ? (trian > 3) : (_mutll4d ? (trian < 3
(_mutll3 ? (trian != 3) : (trian = 3)))))) && (_mutl26 ? ((_mutl2l ?

% c) : (_mutl20 ? (b / ¢) : (_mutll9 ? (b % ¢) : (_mutll® ? (b — c)
c))))) >=a) : (_mutl25 ? ((_mutl2l ? (b % c¢) : (_mutl20 ? (b / c)

~mutll9 ? (b % ¢) : (_mutll8 ? (b —c) : (b+c¢))))) <=a) : (_mutl2d ? ((
(b * ¢) : (_mutll8 ? (
))) < a) : (_mutl23 7 ((_mutl2l ? (b % c¢) : (_mutl20 ? (b

~mutl2l ? (b % c)
b—=c¢) : (b+ ¢))
/ oc¢) + ((mutll9 ? (b * ¢) : (_mutll8 ? (b—-c) : (b +c¢c))))) != a)

(_mutl20 ? (b / ¢) : (_mutll9 ?

~mutl22 ? ((_mutl2l ? (b % c¢) : (_mutl20 ? (b / ¢) : (_mutll9 ? (b * c)
(_mutll® ? (b—c) : (b+1¢))))) =— a) : ((_mutl2l ? (b % ¢) : (_mutl20 ?
(b / c) : ((mutll9 ? (b % ¢) : (_mutll8 ? (b —c) : (b+c¢))))) > a)))))))

))
return ISOSCELES;

return INVALID;

Listing A.4. TestSuiteForVarexJReflect.java class for running tests in VarexJ.

package br.ufmg.labsoft.cmu;

import java.lang.reflect.InvocationTargetException;
import java.lang.reflect .Method;
import java.util.HashSet;

import java.util.Set;

import org.junit. After;
import org. junit.Before;
import org.junit.Ignore;

import org.junit.Test;

import gov.nasa.jpf.util.test.TestJPF;
import triangle.tests.TrianglelTest;

b x ¢)

~mutll9 ? (b % ¢) : (_mutll® ? (b —c) : (b +¢)))))
~mutl2l ? (b % ¢) : (_mutl20 ? (b / ¢) : (_mutll9 ? (b * c)

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

61

import triangle.tests.Triangle3Test;

public class TestSuiteForVarexJReflect extends TestJPF {

Var:

* modify only here

*/

@SuppressWarnings ("unchecked")

static Class <?>[|] testCaseClasses = new Class || {
TrianglelTest . class,
Triangle3Test . class

b

QTest

public void testAll() {
int countTests = 0;
Set<String> methodsSet = new HashSet<>();
long initTime = System.currentTimeMillis () ;

if (verifyNoPropertyViolation (VarexJConstants.JPF CONFIGURATION)) { // VarezJ

specific invocation (must be if)

for (Class<?> testCaseClass : testCaseClasses) {

Object testCaselnstance = null;
try {
testCaselnstance = testCaseClass.newInstance();

} catch (InstantiationException | IllegalAccessException el) {
el.printStackTrace () ;

Method beforeMethod = null;
Method afterMethod = null;
Method [| testCase = testCaseClass.getMethods();

for (Method m : testCase) {
if (m.isAnnotationPresent(Before.class)) {
beforeMethod = m;
try {
beforeMethod . setAccessible (true);
} catch (SecurityException el) {
el.printStackTrace () ;

}

else if (m.isAnnotationPresent (After.class)) {
afterMethod = m;
try {
afterMethod . setAccessible (true);
} catch (SecurityException el) {
el.printStackTrace () ;

for (Method m : testCase) {

69
70

71
72
73
74
75
76

77
78
79
80
81
82

83
84
85
86
87
88
89
90
91
92
93
94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109

62

}

ATTACHMENT A. TRIANGLE SYSTEM

if (m.isAnnotationPresent (Test.class) && !m.isAnnotationPresent(

Ignore.class)) {

try {
if (beforeMethod != null)
beforeMethod .invoke (testCaselnstance);

Class <? extends Throwable> expectedExeption = m.
getAnnotation (Test.class).expected () ;
if (!expectedExeption.isAssignableFrom (Test.None.class)) {

try {
m. invoke (testCaselnstance);
} catch (InvocationTargetException ite) {
if (!ite.getCause().getClass().isAssignableFrom (
expectedExeption)) {

throw ite;

}
}
}
else {
m. invoke (testCaselnstance);
}
if (afterMethod != null)
afterMethod . invoke (testCaselnstance);
} catch (InvocationTargetException | IllegalAccessException

IllegalArgumentException e) {
System.out.println (testCaseClass.getName() + ’. + m.
getName ()) ;
System.out. println ("INVOKE-EXCEPTION") ;
} catch (Error e) {
System.err.println ("ERROR") ;
} catch (Exception e) {
System.out. println ("EXCEPTION") ;
} catch (Throwable t) {
System.out. println ("THROWABLE") ;

} //END OF VarexzJ particular if

	Agradecimentos
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Proposal
	1.3 Results
	1.4 Contributions
	1.5 Dissertation Outline

	2 Background
	2.1 Software Testing Definitions
	2.2 Mutation Testing
	2.3 Variability-Aware Execution
	2.4 VarexJ
	2.5 Conclusion

	3 The Proposed Technique
	3.1 Definition and General Overview
	3.2 Mutation-Aware Execution in VarexJ
	3.3 VarexJ Running, Output Processing and Analysis
	3.4 Conclusion

	4 MutVariants: A Mutant Generator Tool
	4.1 Motivation
	4.2 Overview
	4.3 Design and Implementation Decisions
	4.4 Discussion
	4.5 Examples of Generated Metamutants
	4.6 Conclusion

	5 Mutation-Aware Execution Viability Assessment
	5.1 Study Setup
	5.1.1 Subject Systems
	5.1.2 Mutants Generation, Code Customization and Test cases Removal for VarexJ
	5.1.3 Mutation Testing Techniques for Comparison

	5.2 Results
	5.2.1 Answering RQs
	5.2.2 Discussion

	5.3 Limitations and Threats to Validity
	5.4 Conclusion

	6 Related Work
	7 Conclusion and Future Work
	7.1 Final Remarks
	7.2 Future Work

	Bibliography
	A Triangle System

