
PROBLEMA DA DEPOSIÇÃO GAMMA EM

GRADES: COMPLEXIDADE E NOVA

FORMULAÇÃO DE PROGRAMAÇÃO LINEAR

INTEIRA





MARCELO FONSECA FARAJ

PROBLEMA DA DEPOSIÇÃO GAMMA EM

GRADES: COMPLEXIDADE E NOVA

FORMULAÇÃO DE PROGRAMAÇÃO LINEAR

INTEIRA

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Sebastián Alberto Urrutia

Coorientador: João Fernando Machry Sarubbi

Belo Horizonte

Fevereiro de 2019





MARCELO FONSECA FARAJ

GAMMA DEPLOYMENT PROBLEM IN GRIDS:

COMPLEXITY AND A NEW INTEGER LINEAR

PROGRAMMING FORMULATION

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Master in Computer Science.

Advisor : Sebastián Alberto Urrutia

Co-Advisor : João Fernando Machry Sarubbi

Belo Horizonte

February 2019



!"2019, Marcelo Fonseca Faraj 

                Todos os direitos reservados 
 

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
Ficha catalográfica elaborada pela Biblioteca do ICEx - 
UFMG 
!

   Faraj, Marcelo Fonseca  
 

F219 g      Gamma deployment problem in grids: complexity  
             and a new integer linear programming formulation /  
             Marcelo Fonseca Faraj — Belo Horizonte, 2019. 
                 xxiv, 44 p.: il.; 29 cm. 
 
                  Dissertação (mestrado) - Universidade Federal  

     de Minas Gerais – Departamento de Ciência da 
     Computação. 

 
          Orientador: Sebastián Alberto Urrutia  
          Coorientador: João Fernando Machry Sarubbi 

 
          1. Computação – Teses. 2. Problema da  
     deposição  gamma. 3. Redes veiculares. 4.  
     Complexidade computacional. 5. Programação  
     linear inteira. 6. Heurística. I. Orientador. II.  
     Coorientador. III. Título. 

 
CDU 519.6*61(043) 



Scanned by CamScanner





I dedicate this work to the myth-poetic voice, whose death means the emptying of

science

ix





Acknowledgments

I should start by thanking Dr. Sebastián Urrutia and Dr. João Sarubbi for their

important role in my Master’s. This work would not have been possible without their

valuable advices.

I thank my mother and father for being the greatest parents in the world and for

always lighting me with their wisdom and support. I thank Yara, an amazing woman

I was lucky to know, date, and marry during the period of my Master’s. I thank my

five siblings, their spouses, and children for playing an essential role in my beautiful

and united family. I thank my grandparents, uncles, aunts, cousins, friends, colleagues,

and professors. Even my haters deserve my thanks — they challenge my comfort zone.

Last in order but first in importance, I thank God for my life, conscience, and

virtues.

xi





“Assim como a leitura, a mera experiência não pode substituir

o pensamento. A pura empiria está para o pensamento

como o ato de comer está para a digestão e a assimilação.”

(Arthur Schopenhauer)

xiii





Abstract

Vehicular networks are one of the most significant components of intelligent transporta-

tion systems. They have the potential to ease traffic management, lower accident rates

and provide other solutions to smart cities. One of the main challenges on vehicular

networks is to choose the best places to deploy roadside units. This thesis deals with

the Gamma Deployment Problem, which consists in deploying the minimum number

of roadside units on a road network meeting the Gamma Deployment metric. Within

this metric, at least a given fraction of vehicles passing in the road network must be

covered, i.e they should meet at least one roadside unit each predetermined time inter-

val. In this thesis, we propose a formal treatment based on graph theoretical concepts

and provide a proof that the decision version of the Gamma Deployment Problem in

Grids is NP-complete. In addition, we expose an issue in the multi-flow integer linear

programming formulation present in literature and propose a slight correction for it.

We also introduce a new integer linear programming formulation based on set covering

and provide a proof that the polytope associated with its linear programming relax-

ation is contained in the polytope associated with the linear programming relaxation

of the multi-flow formulation. Finally, computational experiments with a commercial

optimizer show that the set covering formulation widely outperforms the multi-flow

formulation regarding linear programming relaxation gap and execution time.

Keywords: Gamma Deployment Problem, Vehicular Networks, Complexity, Integer

Linear Programming, Heuristic.

xv





Resumo

Redes veiculares constituem um dos componentes mais importantes dos sistemas in-

teligentes de transporte. Elas possuem potencial para facilitar a gestão de tráfego,

reduzir taxas de acidente de trânsito e proporcionar outras soluções para a construção

de cidades inteligentes. Um dos principais desafios associados a redes veiculares é a

escolha das melhores localizações para instalação das infraestruturas de comunicação,

as quais são conhecidas como roadside units. Esta dissertação lida com o Problema da

Deposição Gamma, o qual consiste em instalar o menor número possível de unidades

de infraestrutura em uma rede rodoviária de modo a cumprir a métrica Deposição

Gamma. De acordo com esta métrica, uma porcentagem mínima dos veículos transi-

tando pela rede rodoviária devem estar cobertos, sendo que um veículo é considerado

coberto caso encontre ao menos uma unidades de infraestrutura em cada intervalo de

tempo de duração pré-determinada durante a sua viagem. Nesta dissertação, introduz-

se um tratamento baseado em teoria dos grafos para o Problema da Deposição Gamma

e apresenta-se uma prova de que a versão de decisão do Problema da Deposição Gamma

em Grades pertence à classe de complexidade NP-completo. Em seguida, expõe-se uma

imperfeição no modelo multifluxo de programação linear inteira presente na literatura

e propõe-se uma pequena correção. Também se introduz um novo modelo de progra-

mação linear inteira baseado em cobertura de conjuntos e demonstra-se que o politopo

associado a sua relaxação linear está contido no politopo associado à relaxação lin-

ear do modelo multifluxo. Por fim, experimentos computacionais com um otimizador

comercial mostram que a formulação de cobertura de conjuntos se comporta de modo

significativamente superior à formulação multifluxo em termos de gap de relaxação

linear e tempo de execução.

Palavras-chave: Problema da Deposição Gamma, Redes Veiculares, Complexidade,

Programação Linear Inteira, Heurística.

xvii





List of Figures

1.1 The three different types of communication present in vehicular networks [6]. 2

2.1 Characteristic ΓD curve of a given deployment of RSUs. [8] . . . . . . . . . 10

2.2 (a) An instance of GDP with three walks (represented in different colors),

with F (Ti, j) = 1 for each step j of each walk Ti, and with the parameters

τ = 4 and ρ = 100%. (b) An optimal solution for this instance: RSUs in

the vertices C, I, and K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 (a) Layout of the road network of the city Ouro Branco, Brazil. (b) 20× 20

discritized version of the road network of the city Ouro Branco, Brazil. [25] 13

3.1 Embedding of a planar graph with no degree higher than 3 in a 2-page book. 16

3.2 Vertices of G′ and the collection of paths obtained from the two-page book

embedding of G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Directed graph Hi obtained by applying the preprocessing procedure of the

multi-flow ILP formulation on the blue walk in Figure 2.2a. For the chosen

solution, the flow goes from vertex s to vertex K, from vertex K to vertex

C, and from vertex C to vertex t. . . . . . . . . . . . . . . . . . . . . . . 22

4.2 A cyclic walk Ti and the corresponding graphs Hi in the original multi-flow

formulation and in the corrected multi-flow formulation for τ = 15. In the

original formulation, a path from s to t in Hi is (s, B, t), which implies a

wrong result. In the corrected formulation, (s, B, t) is not a feasible path

from s to t and all the actually feasible paths from s to t imply correct

coverages of Ti. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Sets Sij obtained by applying the preprocessing procedure of the set covering

ILP formulation on the blue walk in Figure 2.2a. For the chosen solution,

all these sets are covered. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xix



4.4 Example based on the blue walk in Figure 2.2a: noninteger solution in

the polytope of the set covering formulation (input for Algorithm 1) and

corresponding solution in the polytope of the multi-flow formulation (output

from Algorithm 1). We use colors to represent the fractional values assigned

to variables: (i) black represents 0; (ii) brown represents 0.1; (iii) purple

represents 0.2; (iv) orange represents 0.3; and (v) green represents 0.4. The

color of a vertex represents the value of the variable ca associated to it. The

color of an arc represents the value of the variable f i
Ti[j],j,Ti[k],k

associated to

it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Layout of the deployments of RSUs obtained within a running time of 1

hour for |T | = 500 and τ = 80s. Blue dots and red dots represent the RSUs

deployed with the set covering and the multi-flow formulation, respectively. 36

5.2 Characteristic ΓD curves for the deployments in Figure 5.1. The blue curves

and the red curves represent the solutions obtained with the set covering

formulation and the multi-flow formulation, respectively. All deployments

have the parameters |T | = 500 and τ = 80s. . . . . . . . . . . . . . . . . . 37

xx



List of Tables

5.1 Results for the multi-flow and the set covering ILP formulations. . . . . . . 33

xxi





Contents

Acknowledgments xi

Abstract xv

Resumo xvii

List of Figures xix

List of Tables xxi

1 Introduction 1

1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Motivation and Contributions . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Gamma Deployment 9

2.1 Gamma Deployment Metric . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Gamma Deployment Problem . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Discretization of Road Networks . . . . . . . . . . . . . . . . . . . . . . 11

3 Proof of NP-Completeness 15

3.1 Proving Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 The Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Mixed Integer Linear Programming Formulations 21

4.1 Multi-Flow Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Issue with the Multi-Flow Formulation . . . . . . . . . . . . . . . . . . 24

4.3 Set Covering Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Computational Experiments 31

xxiii



5.1 Dataset and Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Conclusion 39

Bibliography 41

xxiv



Chapter 1

Introduction

The number of cars and other vehicles used on a daily basis is growing and one of

the most significant issues related to it is the increasing rate of fatalities due to acci-

dents on roads [14, 22]. Vehicular networks are considered a mobile ad hoc network

(MANETs) aiming to address this situation and provide other benefits to drivers and

society. Specifically designed for the domain of vehicles, roads, and pedestrians, ve-

hicular networks are considered one of the essential technologies to enable intelligent

transportation systems, which are aligned with the concept of smart city.

According to Eze et al. [7], vehicular network applications are typically classi-

fied either as safety–related or as non-safety–related. As safety applications, they list

three categories: (i) driver assistance, comprising cooperative collision avoidance, road

navigation, and lane changing; (ii) alert information, including work zone and speed

limit; and (iii) warning alert, comprising warnings about road obstacles, post-crash,

and other life-threatening traffic conditions. As non-safety or commercial applications,

they include those aiming to: (i) improve traffic efficiency; (ii) guarantee passengers

comfort; and (iii) provide commercial advertisements.

Kumar et al. [14] propose a different classification in which vehicular network

applications are categorized into four classes: (i) safety oriented, which includes real-

time traffic, post-crash notification, cooperative collision warning, and traffic vigilance

against driving offenses; (ii) commerce oriented, which includes Internet access, digital

map downloading, and value-added advertisement; (iii) convenience oriented, which in-

cludes parking availability, active prediction of upcoming topography to optimize fuel,

electronic toll collection, and route diversions to avoid traffic jam; and (iv) produc-

tivity oriented, which covers environmental benefits, fuel saving, and productive time

utilization during road congestions.

Vehicular networks have three principal physical components [22]: (i) fixed in-

1



2 Chapter 1. Introduction

frastructure units called roadside units (RSUs); (ii) vehicles with communicative capa-

bilities; and (iii) a communication channel with dynamic capacity. From a structural

perspective, RSUs and vehicles are usually called nodes of the vehicular network.

Direct communication between nodes of a vehicular network can be classified

into three classes: (i) inter-vehicle, also called vehicle-to-vehicle (V2V); (ii) inter-

roadside, also called infrastructure-to-infrastructure (I2I); and (iii) vehicle-to-roadside,

also called vehicle-to-infrastructure (V2I). Figure 1.1 presents these three communica-

tion classes, which can co-occur in practice. I2I communication depends typically on a

wired network interconnecting RSUs. V2V communication relies on wireless messages

exchanged between vehicles, and V2I communication relies on wireless messages ex-

changed between RSUs and vehicles. Additionally, vehicular networks allow multi-hop

communication, which means that one or more nodes can work as intermediary in the

transmission of messages between two other nodes in the network.

Figure 1.1: The three different types of communication present in vehicular networks
[6].

Saini et al. [22] compare vehicular networks and general MANETs regarding many

aspects. They share some characteristics, such as the capability of improving cover-

age through multi-hop communication. On the other hand, there are many differences

between them, which causes typical routing protocols and metrics of MANETs to be

inconsistent for the domain of vehicular networks [5, 7]. Some examples of these dif-

ferences follow:



3

• MANETs have only mobile nodes, while vehicular networks have mobile and

static nodes;

• MANETs use no infrastructure, while vehicular networks can use RSUs as gate-

ways to the Internet;

• MANETs have energy constraints related to mobile nodes battery, which vehic-

ular networks do not;

• MANETs have unconstrained mobility patterns, while vehicular networks have

quick movements constrained by the available roads;

• MANETs usually provide longer connection life to its nodes, while vehicular

networks usually provide short connection life depending on traffic jams, road

conditions, and other factors.

Since vehicular networks are a relatively recent technology, many of their as-

pects still demand research, standardization, and development, which explains current

attention from car manufacturing industries, academia, and government agencies [7].

Some of the most common research areas are routing, protocols, broadcasting, metrics,

security, and — our focus in this work — the deployment of RSUs on a road network.

Many works have shown that V2I communication provides a significant improve-

ment in the performance of a vehicular network [17, 21, 34]. Nevertheless, a central

constraint associated with this kind of communication is the high cost of installing and

maintaining RSUs [3, 13]. Hence, a big challenge related to the project of a vehicular

network consists in minimizing the number of installed RSUs while still guaranteeing

some quality of service (QoS) metric. By QoS metric, we mean a formal guarantee

related to the availability of RSUs in the road network.

In this work, we specifically deal with a problem we name Gamma Deployment

Problem (GDP): deploying the minimum number of RSUs in a road network while

ensuring a QoS metric called Gamma Deployment [25, 26]. This metric provides two

parameters to be set by the designer of a vehicular network: (i) a minimum V2I inter-

contact time for covered vehicles; and (ii) a minimum fraction of vehicles to be covered.

Throughout this work, we focus on road networks discretized into grid graphs (for a

formal definition of grid graphs, refer to [12]). For this reason, most of our contributions

are directed at the Gamma Deployment Problem in Grids (GDPG).



4 Chapter 1. Introduction

1.1 Related Works

The problem of deploying RSUs to compose a vehicular network has been studied

by many authors and with a wide variety of QoS metrics, constraints, and objective

functions. In this section, we briefly list some of those works to give an idea about the

context in which our work is inserted.

Lochert et al. [16] implemented a genetic algorithm which tries to find the optimal

deployment of a limited number of RSUs for a vehicular network traffic information

system while maximizing the travel savings for some fixed landmarks.

Sun and Yang [29] proposed a significance ranking model and three strategies

for computing significance degrees, which led to a heuristic for deploying RSUs. They

evaluated the performance of the deployment using a simulation tool.

Trullols-Cruces et al. [31] developed an integer quadratic programming model to

deploy a limited number of RSUs aiming to provide Internet access services for the

maximum road traffic volumes.

Xiong et al. [33] tackled the minimal deployment of RSUs based on the vehicular

mobility pattern. They proposed a graph model to characterize the observed pattern

and a greedy heuristic for deploying the RSUs.

Liu et al. [15] proposed a file downloading oriented strategy for deploying RSUs.

Their strategy involved modeling encounters between RSUs and vehicles as time con-

tinuous Markov chains to find the optimal inter-meeting time.

Aslam et al. [2] presented a binary linear programming formulation and a balloon

expansion heuristic for deploying a limited number of RSUs in an urban region to

maximize the information flow from vehicles to RSUs. Besides the differences between

their work and ours related to the constraints and objective function, they assume that

roads likely to have low traffic can be removed from the algorithm execution, which we

do not.

Trullols et al. [30] formulated the deployment of a limited number of RSUs as a

maximum coverage problem in which the deployment aimed at maximizing the number

of vehicles contacting RSUs and the V2I connection time. They also dealt with another

version of the problem in which each covered vehicle should contact RSUs for at least

a given time interval. They formulated this version as a maximum coverage problem

with time threshold. They proposed heuristics for both problems.

Silva and Meira [28] proposed a QoS metric called Delta Deployment, which

ensures that at least a fraction of the vehicles in the road network are covered during

a given percentage of their trips. They also proposed a greedy heuristic to minimize

the number of RSUs deployed to ensure this metric. Other works have also proposed



1.1. Related Works 5

heuristics to deploy RSUs based on the Delta Deployment metric. For instance, Sarubbi

and Silva [24] proposed another greedy heuristic, and Sarubbi et al. [23] proposed a

genetic algorithm. The difference between Delta Deployment and Gamma Deployment

makes the problem tackled by these works incompatible with a metric based on the

percentage of time a vehicle trip is covered. Gamma Deployment, instead, is a metric

based on the inter-contact time of vehicles.

Rashidi et al. [20] analyzed the trade-offs between the length of gaps between

RSUs and other parameters related to the quality of communication, such as data

delivery ratio. They also introduced some theoretical upper bounds and a heuristic

to determine the distance between neighboring RSUs. Their approach and Gamma

Deployment aim at the same vehicular network applications: delay-tolerant applica-

tions. Nevertheless, they tackle the deployment from a perspective of spatial distance

— which allows them to abstractly express their results in terms of distance between

RSUs — while Gamma Deployment is concerned about the inter-contact time between

vehicles and RSUs.

Zheng et al. [35] introduced the idea of intermittent coverage for mobile nodes.

They proposed a QoS metric called α-Coverage, whose concept is based on providing

worst-case guarantees on V2I inter-contact distance for every possible path in a road

network. A deployment of RSUs in a road network complies with this metric if at least

one RSU is deployed at each possible path whose length is larger than or equal to α.

They also proved that verifying if a deployment provides α-Coverage is NP-complete

and deploying a limited number of RSUs to provide α-Coverage is NP-hard.

The work of Zheng et al. [35] is important to contextualize our work since the

Gamma Deployment metric fits in the notion of intermittent coverage. Nevertheless,

Gamma Deployment differs from α-Coverage in at least two essential aspects, which

causes the computational complexity bounds proved in [35] not to be extensible for

the problem of deploying a limited number of RSUs to meet a Gamma Deployment.

These two aspects are: (i) α-Coverage provides inter-contact distance guarantees, while

Gamma Deployment provides inter-contact time guarantees; (ii) α-Coverage guarantees

hold for any possible path in the road network, while Gamma Deployment guarantees

only hold for a given set of vehicle trips in the road network — Gamma Deployment

could not behave differently since two vehicles can travel a path with different speeds.

Silva et al. [25] proposed Gamma Deployment, the QoS metric in which our work

is based. They also introduced a greedy heuristic called Gamma-g to solve what we

call GDPG and showed that it deployed considerably fewer RSUs than the intuitive

method of placing RSUs at the densest locations. Next, Silva et al. [26] proposed an

integer linear programming (ILP) formulation based on multi-flow to solve GDPG and



6 Chapter 1. Introduction

compared its results with those from Gamma-g for small instances. We detail this

formulation at Section 4.1. Then, Faraj et al. [8, 9] proposed a memetic algorithm

called Gamma-LSGA to solve GDPG, which highly outperforms Gamma-g.

Last, we mention that this work also enters the theoretical context of a rich class

of problems known as Facility Location Problems. This class include wide subclasses

of problems such as Median Problems, Covering Problems, Center Problems, and so

forth. For some reviews on Facility Location Problems, refer to [18], [19].

1.2 Motivation and Contributions

In this section, we list the main motivations and contributions of this work.

Our first motivation is the fact that here is no approach in the literature dealing

with GDP under the tools of graph theory. This manuscript introduces this attitude

by formalizing a definition of GDP with graph theoretical concepts (Section 2.2) and

by tackling the problem from this perspective throughout the text.

So far, GDPG has only been approached from a practical perspective, with heuris-

tics and an integer linear programming formulation to solve it. Hence, our second mo-

tivation is the lack of a theoretical research on its computational complexity. In this

work, we provide a proof that the decision version of GDPG is NP-complete.

Despite working properly for many instances, the multi-flow ILP formulation

proposed by Silva et al. [26] is incorrect when there is at least one cycle in one or more

of the trips in an instance. This is our third motivation and, to overcome this situation,

we propose a slight correction that does not affect the main idea of the formulation

but entirely fixes the problem.

Our last motivation is an intent of achieving better running times and being

able to run more instances than the multi-flow ILP model. In this work, we propose

a new ILP formulation based on set covering with considerably fewer variables and

constraints and whose linear programming relaxation polytope is contained in the cor-

responding polytope of the multi-flow formulation. We experimentally show that the

set covering model outperforms the multi-flow model regarding running time and linear

programming relaxation bound.

1.3 Outline

The remainder of this dissertation is organized as follows: in Chapter 2, we explain

the Gamma Deployment metric, formally define GDP with graph theory, and explain



1.3. Outline 7

the discretization method used to abstractly express any road network as a grid (to

convert any GDP instance into a GDPG instance); in Chapter 3, we present a detailed

proof that the decision version of GDPG is NP-complete; in Chapter 4, we present the

multi-flow formulation to solve GDPG, show and correct an issue with it, and propose

a new set covering formulation with the proof that its polytope is contained in the

polytope of the multi-flow formulation; in Chapter 5, we describe and analyze some

computational experiments to compare the corrected multi-flow formulation and the

set covering formulation; in Chapter 6, we conclude this work with final remarks and

suggestions for future research.





Chapter 2

Gamma Deployment

In this chapter, we incrementally build a description of the study object of this disser-

tation. First, Section 2.1 presents the QoS metric named Gamma Deployment. Next,

Section 2.2 applies this metric in the formal definition of Gamma Deployment Problem.

Then, Section 2.3 explains a discretization approach to convert any instance of Gamma

Deployment Problem into an instance of Gamma Deployment Problem in Grids.

2.1 Gamma Deployment Metric

Developed by Silva et al. [25], Gamma Deployment, or ΓD

(

τ

ρ

)

, is a QoS metric to

establish project goals and evaluate performance of vehicular networks. According to

Silva et al. [25], it can be applied to address problems such as the traffic flow monitoring

and smoothness guarantee in Internet media consumption.

Gamma Deployment parameterizes a desired minimum share of vehicles within

the road network that must be offered a minimum V2I inter-contact regularity. Defi-

nition 1 specifies Gamma Deployment in mathematical terms.

Definition 1 (Gamma Deployment Metric) Assume a deployment R of RSUs in

a road network M and a set T with all vehicles trips through M during a specific period

of time. Let T ′ ⊆ T be a set with all vehicle trips meeting at least one RSU during

each τ -second time interval in their trips. Let ρ be the required percentage of covered

vehicles. R is ΓD

(

τ

ρ

)

if |T ′|
|T |

≥ ρ.

A direct use of Definition 1 consists in setting up a pair (τ , ρ) to compose a ΓD

(

τ

ρ

)

requirement for the project of a vehicular network. Based on this design constraint, any

optimization method can minimize the number of RSUs deployed on a road network.

9



10 Chapter 2. Gamma Deployment

Figure 2.1: Characteristic ΓD curve of a given deployment of RSUs. [8]

Notice that τ and ρ are independent parameters from this perspective, meaning that

a designer of a vehicular network can choose an arbitrary combination of τ and ρ

according to his or her design goals, such as ΓD

(

40
0.5

)

, ΓD

(

40
1.0

)

, ΓD

(

10
1.0

)

, or any other.

Another application of Definition 1 consists in obtaining a ΓD curve character-

izing a specific deployment of RSUs on a road network. From this perspective, ρ is a

dependent variable and τ keeps being an independent variable. Figure 2.1 exemplifies

a ΓD curve. The horizontal axis represents different inter-contact times τ . For a value

of τ , the vertical axis ρ indicates the total percentage of vehicles meeting at least one

RSU each τ -second time interval of their trips. To build this graph, consider a range

{τ |τ = 20y, y ∈ {1, 2, ..., µ}} of values for τ . For each of them, calculate the percentage

of covered vehicles, which is the corresponding value of ρ in the vertical axis. In Figure

2.1, the deployment is, at the same time, ΓD

(

20
0.1

)

, ΓD

(

40
0.6

)

, ΓD

(

80
0.7

)

, and many other

combinations.

2.2 Gamma Deployment Problem

Even though Gamma Deployment was originally proposed as a quality of service met-

ric, its application to allocate RSUs in a vehicular network leads to the definition of

combinatorial optimization problems. One of these combinatorial problems aims at



2.3. Discretization of Road Networks 11

minimizing the number of deployed RSUs meeting the Gamma Deployment metric.

We call this problem the Gamma Deployment Problem or GDP. In this section, we

provide a formal definition for GDP using concepts of graph theory.

Let a walk W be a sequence of vertices of a graph such that there is an edge

between each pair of consecutive vertices. Furthermore, let L(W ) be the number of

vertices (distinct or not) in the walk W and let W [j] be the vertex in the position j

of W , with j ∈ {1, . . . , L(W )}. For a walk W and a set of vertices R, let W \ R be a

collection containing all the maximal nonempty subwalks of W with no vertex in R.

For example, (1, 7, 2, 3, 1, 5, 4, 5, 6, 7) \ {1, 5} = {(7, 2, 3), (4), (6, 7)}.

Definition 2 (Decision Version of GDP) Let G = (V,E) be a graph and let T =

{T1, . . . , Tp} be a collection of walks in G. Let F : T × Z
∗

+ → R
∗

+ be a function

associating a duration to each step j of each walk Ti ∈ T . Let τ ∈ R
∗

+, ρ ∈ [0, 1],

and k ∈ Z
∗

+ respectively be the inter-contact time, the minimum required coverage, and

the maximum allowed number of RSUs. Determine whether or not there exists a set

R ⊆ V such that |R| ≤ k and, for at least a fraction ρ of the walks Ti ∈ T , the following

inequalities hold:

L(C)
∑

c=1

F (C, c) < τ ∀C ∈ Ti \R (2.1)

Figures 2.2a and 2.2b show an instance of GDP to exemplify Definition 2.

Definition 2 implies a way to check whether or not a subset R of V certifies that

the given instance of the problem is a YES instance. This consists in verifying whether

each C ∈ Ti \ R satisfies
∑L(C)

c=1 F (C, c) < τ . It can run in polynomial time since the

number of elements in Ti \R is upper bounded by L(Ti). Therefore, it is clear that the

decision version of GDP belongs to NP.

2.3 Discretization of Road Networks

Although Definition 2 does not assume a specific topology for graph G, GDP has always

been tackled for instances in which G is a grid [8, 9, 25–27]. For that reason, this work

especially focuses on the Gamma Deployment Problem in Grids, or GDPG. In this

section, we explain the discretization approach usually applied on road networks as

a preprocessing step to overcome the complexity of deploying RSUs with continuous

coordinates.



12 Chapter 2. Gamma Deployment

A B C D

E F G H

I J K L

M N O P

(a)

A B C D

E F G H

I J K L

M N O P

I K

C

(b)

Figure 2.2: (a) An instance of GDP with three walks (represented in different colors),
with F (Ti, j) = 1 for each step j of each walk Ti, and with the parameters τ = 4 and
ρ = 100%. (b) An optimal solution for this instance: RSUs in the vertices C, I, and K.

First, the road network is partitioned into a matrix M of dimension ψ×ψ. We say

that each cell of M is an urban cell. The physical dimensions of the urban cells can be

arbitrarily chosen based on the specific needs of the designer of the vehicular network.

Usually, we choose the value of ψ so that each urban cell approximately represents

the covered area in case an RSU is deployed on its center. Figure 2.3 illustrates this

discretization approach.

It is important to mention that, even though we assume each urban cell is covered

by deploying an RSU on it, an urban cell is not an exact reference for deployment

position and covered area. There is a vast range of practical situations to address

when determining the actual deployment coordinates, such as energy supply, topology,

interference, and so forth. Moreover, the rectangular shape of an urban cell does

not accurately represent the area covered by an RSU, which tends to be similar to a

circle. Some works, more concerned about properly representing the coverage area of

sensors and their communication patterns, modeled urban cells with hexagonal shape

[1]. Nevertheless, previous works on GDPG considered a rectangular shape for the

urban cells, which is also a good enough model for the purposes of our work.



2.3. Discretization of Road Networks 13

(a)

(b)

Figure 2.3: (a) Layout of the road network of the city Ouro Branco, Brazil. (b) 20×20
discritized version of the road network of the city Ouro Branco, Brazil. [25]





Chapter 3

Proof of NP-Completeness

In this chapter, we demonstrate that the decision version of Gamma Deployment Prob-

lem in Grids is NP-complete. This proof implies that the decision version of Gamma

Deployment Problem for general graphs is also NP-complete.

The remainder of this chapter is organized as follows: in Section 3.1, we briefly

present the proving strategy used and provide precise definitions for the intermediary

problems handled; in Section 3.2, we explicit the proofs.

3.1 Proving Strategy

Our strategy starts by proving an intermediary NP-completeness result, which the

readers might find relevant on its own. That intermediary proof starts from the vertex

cover problem in planar graphs with no degree higher than 3 (VCPPG3), which is

NP-complete [10].

Definition 3 (Decision Version of VCPPG3) Let G = (V,E) be a planar graph

in which there is no vertex with degree higher than 3 and let k be a positive integer

number. Determine whether or not there exists a set R ⊆ V such that all edges in E

have at least one end-point in R and |R| ≤ k.

Starting from a general instance of VCPPG3, we perform a polynomial transfor-

mation to an instance of the cover of paths by vertices problem in grids (CPVPG). The

CPVPG consists in a special case of the set covering problem in which the candidate

elements are vertices of a grid and all the sets are simple paths in that grid. To the

best of our knowledge, this problem has not yet been proposed in the literature.

15



16 Chapter 3. Proof of NP-Completeness

6 4

5

1 2

3

6

4

5

1

2

3

Figure 3.1: Embedding of a planar graph with no degree higher than 3 in a 2-page
book.

Definition 4 (Decision Version of CPVPG) Let G = (V,E) be a grid, let S be

a collection of simple paths in G, and let k be a positive integer number. Determine

whether or not there exists a set R ⊆ V with a non-empty intersection with each path

in S, and such that |R| ≤ k.

In the final step of the proof, we perform a polynomial transformation from a

generic instance of CPVPG to an instance of GDPG.

3.2 The Proofs

In this section, we prove that GDPG is NP-complete.

Lemma 1 The decision version of CPVPG is NP-complete.

Proof Given a planar graph G = (V,E) with no degree higher than 3 and a positive

integer number k, we build an instance of CPVPG composed of a grid G′, a collection

S of paths, and a positive integer number k′. The construction will ensure the existence

of a vertex cover in G with cardinality not larger than k if, and only if, there exists

a cover of the paths in S by vertices in the graph G′ = (V ′, E ′) with cardinality not

larger than k′. Let V = {1, ..., n} be the set of vertices of G and let |E| = m be the

number of edges in G.

In a book embedding of a graph G = (V,E), we linearly dispose all its vertices

in the spine of a book and sort them in a specific order, which is given by a function

FV : V → Z
∗

+. Furthermore, we assign each edge of the graph to a specific page

of the book according to a function FE : E → Z
∗

+. A page consists of a half-plane



3.2. The Proofs 17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

3(FV (3))-1

3(FV (2))-1

3(FV (1))-1

3(FV (5))-1

3(FV (4))-1

3(FV (6))-1

n-5 n-4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4 n+5

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

6

4

5

1

2

3

Figure 3.2: Vertices of G′ and the collection of paths obtained from the two-page book
embedding of G.

starting at the spine. All the edges assigned to a page are contained in its half-plane

and do not intersect with each other. Heath [11] showed that all planar graphs with

no degree higher than 3 can be embedded in a 2-page book. Then, the first step of our

transformation consists in embedding G in a 2-page book, as Figure 3.1 exemplifies.

This embedding can be done in polynomial time [4, 11].

Let G′ = (V ′, E ′) be a grid graph with V ′ = {1, ..., 3n} × {1, ..., 2n − 1}, and

E ′ = {((a, b), (c, d)), ∀(a, b), (c, d) ∈ V ′ : (|a− c| = 1 ∧ b = d) ∨ (a = c ∧ |b− d| = 1)}.

Let H ⊂ V ′ be associated with the vertices of G following the order given by FV , such

that H = {(3(FV (v))− 1, n), ∀v ∈ V (G)}.

Then, we construct a collection S = {S1, . . . , Sm} with m paths, each of them

being a subgraph of G′ and corresponding to one of the edges in E. Each path starts

and ends in vertices belonging to the set H which represent the vertices of G joined

by the edge corresponding to the path. We need, as we will later show, to assure that

different paths do not intersect in vertices not in H. To ensure this, we construct each

path from (a, b) ∈ H to (c, d) ∈ H according to the following rules:



18 Chapter 3. Proof of NP-Completeness

1. Each path has a vertical component. If the corresponding edge e ∈ E belongs

to the left page, that component passes by vertices of the column n − |b−d|
3

.

Otherwise, by vertices of the column n + |b−d|
3

. (For example, the red edge in

Figure 3.1 belongs to the left page. The vertical component of the corresponding

red path in Figure 3.2 passes by vertices of the column n− |17−2|
3

= n− 5);

2. For each vertex v ∈ V , at least one of the pages in the book embedding contains

either zero or one of its incident edges since the degree of v is at most 3. If there

is an edge incident to v in that page, the corresponding path in S has a horizontal

component in the row 3(fV (v))− 1 from the column n to the column determined

by rule 1. (For example, vertex 3 in Figure 3.1 has only one edge in its the left

page: the red one. In Figure 3.2, the corresponding red path has a horizontal

component in row 3(fV (3))− 1 = 2 from the column n to the column n− 5);

3. For some vertices v ∈ V , there is a page in which v has either 2 or 3 incident edges.

In this case, each of the corresponding paths must leave vertex (3(fV (v))−1, n) in

a different direction (up, down, or horizontal). To decide which path should leave

in which direction we take into account the order of the destination vertices in

the spine of the book. This decision is taken in order to avoid crossings between

the paths. (For example, vertex 6 in Figure 3.1 has 2 edges in its left page and

both destination vertices are above it in the spine of the book. In Figure 3.2,

the path to the farthest vertex (the red path) leaves vertex 6 in the horizontal

direction and the path to the closest vertex (the green path) leaves v in the up

direction. After one vertex in the up or horizontal direction, the path continues

horizontally until it meets its vertical component built-in rule 1, i.e the red path

goes until column n− 5 and green path goes until column n− 4).

Finally, we set k′ = k.

Following rules 1, 2, and 3, we prove by contradiction that, for each pair of

paths S1, S2 ∈ S, their intersection can only occur in the end vertices, which means

S1∩S2 ⊆ H. Assume that there are two paths, S1 = (u1, . . . , u2) and S2 = (w1, . . . , w2),

which intersect in a vertex not present in H. Note that FE((u1, u2)) = FE((w1, w2)).

Assume, without loss of generality, that FV (u1) < FV (u2), FV (w1) < FV (w2), and

FV (u1) ≤ FV (w1). We know that each end vertex of any path corresponds to a vertex

in V . For simplification reasons, we will use the same symbols (u1, u2, w1, and w2)

to refer to each respective vertex in V ′ and in V . Consider the case in which an end

vertex of S1 coincides with an end vertex of S2. Rules 2 and 3 assure that the horizontal

fragments of S1 and S2 always occur in different rows around the row containing its



3.2. The Proofs 19

corresponding end vertex, which is in H. Note that the path with a farthest destination

among S1 and S2 has its vertical component on column farther from the nth column.

Thus, by rule 3, S1 and S2 cannot cross at any point not in H. Therefore, u1, u2,

w1, and w2 must be distinct vertices. It is not possible that FV (u2) < FV (w1) since

the rows used by path S1 would be strictly above those use by S2. In case FV (u1) <

FV (w1) < FV (w2) < FV (u2), intersection cannot occur due to rule 1. Finally the case

in which FV (u1) < FV (w1) < FV (u2) < FV (w2) is not possible since the corresponding

edges of E must cross each other and then they cannot be on the same page in the

book embedding. Hence, we conclude that S1 and S2 cannot cross in vertices not in

H.

Figure 3.2 illustrates V ′ and all the paths in S obtained by performing the rules

1, 2, and 3 on the graph obtained with the transformation shown in Figure 3.1.

Next, we prove that the answer for VCPPG3 on instance (G, k) is YES if, and

only if, the answer for the CPVPG on instance (G′, S, k′) constructed by the above

procedure is also YES.

Let R be a subset of V with |R| ≤ k which is a vertex cover for G. Take R′ as

the elements of H associated with the elements in R and note that since R is a cover

of all edges in E, R′ is a cover of all paths in S. Moreover, |R′| = |R| ≤ k = k′. Hence,

(G′, S, k′) is a YES instance.

Now, let R′ ⊆ V ′ with |R′| ≤ k′ be a cover of the paths in S. With the con-

struction of (G′, S, k′), we made sure that all vertices in V ′ \H belong to at most one

path in S. Thus, if there is a path Si ∈ S with Si ∩ (R′ \H) -= ∅, we know that each

element u ∈ Si ∩ (R′ \ H) covers no path other than Si. Therefore, we can exchange

them for a vertex in H∩Si maintaining the cover. After repeating the above procedure

exhaustively, we get a cover of paths by vertices R′′ ⊆ H with cardinality at most k′.

Now, we can construct a vertex cover R ⊆ V for G with |R| ≤ k by selecting each

vertex in V associated with each element in R′′. Then, (G, k) is a YES instance.

Finally, it is straightforward to prove that the CPVPG is in NP by inspection. !

We have just shown that CPVPG is NP-complete. This result is a premise in the

proof of Theorem 1.

Theorem 1 The decision version of GDPG is NP-complete.

Proof Let G = (V,E) be a grid with V = {vab, ∀(a, b) ∈ {1, ...,m} × {1, ..., n}} and

E = {(vab, vcd), ∀{vab, vcd} ⊆ V : (|a − c| = 1 ∧ b = d) ∨ (a = c ∧ |b − d| = 1)}. Let

S = {S1, ..., Sp} be a collection of paths in G. Let k ∈ Z
∗

+.



20 Chapter 3. Proof of NP-Completeness

Given the instance (G,S, k) of CPVPG, we obtain an instance (G′, T, F, τ, ρ, k′)

of GDPG in the following way: G′ = G, T = S, k′ = k, τ = 1, ρ = 100%, and F such

that F (Ti, x) =
1

L(Ti)
, ∀x ∈ {1, . . . , L(Ti)} and ∀i ∈ {1, . . . , |T |)}.

Note that after this transformation, the following equality holds for each Ti ∈ T :

L(Ti)
∑

c=1

F (Ti, c) = 1 = τ (3.1)

Next, we prove that the answer for CPVPG on instance (G,S, k) is YES if, and

only if, the answer for GDPG on instance (G′, T, F, τ, ρ, k′) constructed by the above

procedure is also YES.

Let R ⊆ V be a solution to the instance (G,S, k) of CPVPG. Note that R is

a feasible deployment of RSUs complying with ΓD

(

τ

ρ

)

. Indeed, to satisfy inequalities

(2.1) for each walk, at least one vertex on each walk should have an RSU and this holds

since R covers all elements in S = T . A symmetric argument shows that if R satisfies

ΓD

(

τ

ρ

)

it is a cover of the paths in S.

Since GDPG belongs to NP, by the above argument it also belongs to NP-

complete. !

As consequence of the proof that GDPG is NP-complete, we state Corollary 1.

Corollary 1 The decision version of GDPG with τ = 1 and ρ = 100% is NP-complete.

This corollary is highly relevant since that special case (τ = 1 and ρ = 100%)

was specifically tackled in [9, 25, 26] with heuristic and exponential exact approaches.

We also deal with this special case of the problem later in this dissertation.



Chapter 4

Mixed Integer Linear Programming

Formulations

In this chapter, we present and discuss integer linear programming formulations for

Gamma Deployment Problem in Grids. In Section 4.1, we explain the multi-flow for-

mulation proposed by [26]. In Section 4.2, we show a small issue in this formulation

and provide a correction for it. In Section 4.3, we propose a set covering formulation

and provide a proof that the dual bounds associated with its linear programming relax-

ation cannot be worse than the dual bounds associated with the linear programming

relaxation of the multi-flow formulation.

4.1 Multi-Flow Formulation

The multi-flow ILP formulation proposed by Silva et al. [26] starts with a preprocessing

procedure to build a directed graph Hi = (Vi, Ai) associated to each walk Ti ∈ T . The

vertices in Vi are those vertices of V visited by Ti plus two artificial vertices: a source s

and a sink t. Vertex s is a predecessor of all vertices Ti[j] such that
∑j−1

r=1 F (Ti, r) < τ .

Vertex t is a successor of all vertices Ti[j] such that
∑L(Ti)

r=j+1 F (Ti, r) < τ . Finally,

there is an arc in Ai from vertex Ti[j] to vertex Ti[k] if, and only if, j < k and
∑k−1

r=j+1 F (Ti, r) < τ . Figure 4.1 illustrates this preprocessing method.

Let δ+i (a) be the set with all the indexes w such that (a, Ti[w]) is an arc of the

graph Hi. Let δ−i (b) be the set with all the indexes w such that (Ti[w], b) is an arc of

the graph Hi. Furthermore, consider the following decision variables:

21



22 Chapter 4. Mixed Integer Linear Programming Formulations

s P L K J F B C D t

Figure 4.1: Directed graph Hi obtained by applying the preprocessing procedure of the
multi-flow ILP formulation on the blue walk in Figure 2.2a. For the chosen solution,
the flow goes from vertex s to vertex K, from vertex K to vertex C, and from vertex
C to vertex t.

ca =

{

1 if an RSU is deployed in a ∈ V ;

0 otherwise.

zi =

{

1 if the walk Ti is covered;

0 otherwise.

f i
ab =

{

1 if the arc (a, b) from Ai is used in the path from s to t;

0 otherwise.

The path induced by variables f i
ab implies how the walk Ti is covered: the arcs

go from s to t visiting only intermediary vertices that contain an RSU. The multi-flow

ILP formulation follows:

min
∑

a∈V

ca (4.1)

Subject to



4.1. Multi-Flow Formulation 23

∑

k∈δ+i (s)

f i
s,Ti[k]

= zi ∀i|Ti ∈ T (4.2)

∑

k∈δ−i (t)

f i
Ti[k],t

= zi ∀i|Ti ∈ T (4.3)

∑

k∈δ−i (l)

f i
Ti[k],l

−
∑

k∈δ+i (l)

f i
l,Ti[k]

= 0 ∀i|Ti ∈ T, ∀l ∈ Vi \ {s, t} (4.4)

f i
al ≤ ca ∀i|Ti ∈ T, ∀(a, l) ∈ Ai|a /∈ {s, t} (4.5)

f i
la ≤ ca ∀i|Ti ∈ T, ∀(l, a) ∈ Ai|a /∈ {s, t} (4.6)

∑

i|Ti∈T

zi ≥ ρ|T | (4.7)

ca ∈ {0, 1} ∀a ∈ V (4.8)

zi ∈ {0, 1} ∀i|Ti ∈ T (4.9)

f i
ab ∈ {0, 1} ∀(a, b) ∈ Ai, ∀i|Ti ∈ T (4.10)

The objective function (4.1) minimizes the number of vertices chosen from V

to deploy RSUs. Constraints (4.2) state that a path starts in vertex s ∈ Vi for each

covered walk i. Equivalently, constrains (4.3) state that a path ends in the vertex t ∈ Vi

for each covered walk i. Constraints (4.4) guarantee flow conservation for all vertices of

Hi except s and t. Constraints (4.5) and (4.6) ensure that flow is only possible to exist

in an arc if both its ends are associated to vertices chosen to have an RSU. Finally,

Constraint (4.7) guarantees a minimum percentage coverage ρ of walks.

Observe that only the decision variables ca and zi have meaning regarding GDPG,

while variables f i
ab do not. Moreover, the flow from s to t in a graph Hi does not neces-

sarily reach all vertices whose corresponding variable ca equals 1. In other words, for a

given feasible solution for GDPG, there can be a huge number of different paths from

s to t in each graph Hi. It implies an excessively large number of feasible integer solu-

tions, which leads to poor performance in commercial optimizers. Another perspective

leading to the same conclusion consists in noticing the Objective Function (4.1): flow

and multi-flow formulations tend to be weak and slow when the objective function only

depends on the chosen vertices.



24 Chapter 4. Mixed Integer Linear Programming Formulations

4.2 Issue with the Multi-Flow Formulation

In this section, we show an issue and suggest a small correction for the ILP formulation

of Gamma Deployment Problem in Grids (GDPG) proposed by Silva et al. [26], which

is based on multi-flow. The vertex definition for Hi works well when all the walks in

T are paths, but it may introduce errors otherwise.

An objection could be made to the word "correction". Apparently, the term "ex-

tension" could be more appropriate since Silva et al. [26] never explicitly mentioned the

possibility of cycles in some of the vehicle trips. Nevertheless, they used the discretiza-

tion approach explained in Section 2.3, which implies that even paths in the original

road network can become cyclic walks after the discretization.

If a vertex w ∈ Vi is visited at least twice in a walk Ti, an arc (v, w) ∈ Ai may

represent that the inter-contact time is respected from the first visit of vertex v to the

first visit of vertex w. But, wrongly, it can also represent that the inter-contact time

is respected from the first visit of vertex v to the last visit of vertex w.

Figure 4.2 exemplifies why the multi-flow formulation does not behave correctly

with cyclic walks. In this example, the graph Hi generated by the preprocessing step

is not an acyclic direct graph as stated in [26]. A feasible path from s to t in Hi is

(s, B, t). This path implies that the corresponding walk Ti would be covered if only

the urban cell B had an RSU, which is clearly false.

We propose a slight modification to fix this issue. It simply consists of defining

each vertex of Hi as an ordered pair containing the identifier of the corresponding

vertex in G and the order in which it appears in the walk Ti, that is, Vi = {(Ti[j], j),

j ∈ {1, . . . , L(Ti)}} ∪ {s, t}. Now, arcs can be defined accordingly and all graphs Hi

will be directed acyclic graphs. In the formulation, variables ca and zi do not change

and variables f i
ab become:

f i
(Ti[j],j),(Ti[k],k)

=

{

1 if arc ((Ti[j], j), (Ti[k], k)) ∈ Ai is used in the path from s to t;

0 otherwise.

The Objective Function (4.1) is kept the same. Constraints (4.2), (4.3), and (4.4)

are just adapted to reflect flow conservation in the new graphs Hi. Constraint (4.7)

does not change. Constraints (4.5), and (4.6) are respectively replaced by:

f i
(Ti[j],j),(Ti[k],k)

≤ cTi[j] ∀i|Ti ∈ T, ∀((Ti[j], j), (Ti[k], k)) ∈ Ai|a /∈ {s, t} (4.11)

f j

(Ti[k],k),(Ti[j],j)
≤ cTi[j] ∀i|Ti ∈ T, ∀((Ti[k], k), (Ti[j], j)) ∈ Ai|a /∈ {s, t} (4.12)



4.2. Issue with the Multi-Flow Formulation 25

(a) Walk

s

A

B C D

E F Gt

(b) Original Formulation

s

A,1

B,2 C,3 D,4

E,5 F,6 G,7

B,8

t

(c) Corrected Formulation

Figure 4.2: A cyclic walk Ti and the corresponding graphs Hi in the original multi-flow
formulation and in the corrected multi-flow formulation for τ = 15. In the original
formulation, a path from s to t in Hi is (s, B, t), which implies a wrong result. In the
corrected formulation, (s, B, t) is not a feasible path from s to t and all the actually
feasible paths from s to t imply correct coverages of Ti.



26 Chapter 4. Mixed Integer Linear Programming Formulations

P L K J F B C D

P L K J

L K J F

K J F B

J F B C

F B C D

Ti

Si1

Si2

Si3

Si4

Si5

Figure 4.3: Sets Sij obtained by applying the preprocessing procedure of the set cover-
ing ILP formulation on the blue walk in Figure 2.2a. For the chosen solution, all these
sets are covered.

4.3 Set Covering Formulation

In this section, we propose a new ILP formulation for GDPG based on set covering.

A preprocessing procedure is used to build a collection S whose elements are sets

Sij ⊆ V . For a walk Ti ∈ T in which
∑L(Ti)

k=1 F (Ti, k) ≥ τ , build all minimal sets

Sij = {Ti[k]|k ∈ {j, . . . , y}, y ≤ L(Ti)} satisfying the inequalities
∑y

k=j F (Ti, k) ≥ τ .

Figure 4.3 illustrates this preprocessing procedure.

In case walk Ti is covered, each set Sij must contain at least one vertex in which

an RSU is deployed by definition of GDPG.

Consider the following decision variables:

ca =

{

1 if an RSU is deployed in a ∈ V ;

0 otherwise.

zi =

{

1 if the walk Ti is covered;

0 otherwise.

Then, a new ILP formulation for GDPG follows:

min
∑

a∈V

ca (4.13)

Subject to



4.3. Set Covering Formulation 27

∑

a∈Sij

ca ≥ zi ∀Sij ∈ S (4.14)

∑

i|Ti∈T

zi ≥ ρ|T | (4.15)

ca ∈ {0, 1} ∀a ∈ V (4.16)

zi ∈ {0, 1} ∀i|Ti ∈ T (4.17)

Objective function (4.13) minimizes the number of vertices chosen from V to

deploy RSUs. Constraints (4.14) ensure that each set Sij associated with a covered

walk Ti is covered by at least one of the selected vertices. Constraint (4.15) ensures

that at least a percentage ρ of the walks is covered.

Notice that the set covering formulation only uses a specific subset of variables

from the multi-flow formulation: those with meaning for GDPG. Furthermore, it re-

places constraints (4.2), (4.3), (4.4), (4.5), and (4.6) by constraints (4.14). From these

observations, the set covering formulation is highly expected to be a more efficient and

stronger formulation. With Theorem 2, we provide a formal proof that the dual bound

associated with the linear programming relaxation of the set covering formulation is

not weaker than the dual bound associated with the linear programming relaxation of

the corrected multi-flow formulation.

Theorem 2 The polytope associated with the linear programming relaxation of the set

covering formulation is contained in the polytope associated with the linear programming

relaxation of the corrected multi-flow formulation.

Proof We prove that, given a solution in the polytope associated with the linear

programming relaxation of the set covering formulation, there exists a corresponding

solution in the polytope associated with the linear programming relaxation of the

corrected multi-flow formulation with the same objective function value. Note that

the variables ca and zi exist in both formulations with the same meaning, by which

we can keep their values in both polytopes. It satisfies Constraint (4.7) (which is

equal to Constraint (4.15)) and guarantees the same objective function value in both

formulations. Assuming that constraints (4.14) and (4.15) hold, it suffices to show how

to assign value to the variables f i
ab in such way that the constraints (4.2), (4.3), (4.4),

(4.11), and (4.12) hold.

Algorithm 1 presents a procedure to compute all the flows f i
ab in a graph Hi given

values of ca and zi that meet constraints (4.14) and (4.15). Its basic idea consists in



28 Chapter 4. Mixed Integer Linear Programming Formulations

moving the flow zi from s to t orderly passing between the vertices of Hi respectively

associated with the sets Si1, Si2, . . ., Siσ (in which Siσ ∈ S is the set Sij with the

greatest value of j). Figure 4.4 shows an input for Algorithm 1 and its corresponding

output.

Input: i, zi, ca ∀a ∈ Vi

Output: f i
ab ∀(a, b) ∈ Ai

1 tmpj ← 0 ∀j ∈ Vi

2 f i
ab ← 0 ∀(a, b) ∈ Ai

3 idealjk ←
cTi[k]∑

r∈δ
+
i

((Ti[j],j))

cTi[r]
zi ∀j|∃Si(j+1) ∈ S, ∀k ∈ δ+i ((Ti[j], j))

4 f i
s,(Ti[j],j)

← ideal0j ∀j ∈ δ+i (s)

5 tmpj ← ideal0j ∀j ∈ δ+i (s)
6 foreach j|∃Si(j+1) ∈ S do
7 D ← δ+i ((Ti[j], j)) \ δ

+
i ((Ti[j − 1], j − 1))

8 idealDj ←
∑

k∈D

idealjk

9 tmpD ← min(idealDj, tmpj)
10 tmpj ← max(tmpj − idealDj, 0)

11 f i
(Ti[j],j),(Ti[k],k)

←
idealjk
idealDj

tmpD ∀k ∈ D

12 foreach r ∈ δ+i ((Ti[j], j)) \D do
13 ∆ ← idealjr − tmpr
14 tmpr ← tmpr +∆

15 f i
(Ti[j],j),(Ti[r],r)

← f i
(Ti[j],j),(Ti[r],r)

+max(∆, 0)

16 tmpj ← tmpj −max(∆, 0)

17 f i
(Ti[r],r),(Ti[k],k)

←
idealjk
idealDj

max(−∆, 0) ∀k ∈ D

18 tmpD ← tmpD +max(−∆, 0)

19 tmpk ←
idealjk
idealDj

tmpD ∀k ∈ D

20 f i
(Ti[j],j),t

← tmpj ∀j ∈ δ−i (t)

Algorithm 1: Assignment of feasible values for the variables f i
ab for a

walk Ti given a solution in the polytope of the set covering ILP formu-
lation.

In row 3 of Algorithm 1, we define variables idealjk, whose values for a given

j form a weighted distribution of the total network flow zi exclusively among the

successors (Ti[k], k) of vertex (Ti[j], j). In rows 4 and 5, we start by moving the flow zi

from s into all its successors according to variables ideal0k, certifying Constraint (4.2)

for the given i. To guarantee flow conservation, variables tmpj represent the amount

of flow present in vertex (Ti[j], j) at each moment of the algorithm. (In Figure 4.4,

see the flow through each arc with origin in vertex s. After the execution of row 4,

tmp1 = 0.1, tmp2 = 0.2, tmp3 = 0.3, and tmp4 = 0.4)



4.3. Set Covering Formulation 29

P L K J F B C D

P L K J

L K J F

K J F B

J F B C

F B C D

Ti

Si1

Si2

Si3

Si4

Si5

(a) Noninteger Solution for Set Covering Formulation

s P,1 L,2 K,3 J,4 F,5 B,6 C,7 D,8 t

(b) Equivalent Solution for Corrected Multi-flow Formulation

Figure 4.4: Example based on the blue walk in Figure 2.2a: noninteger solution in the
polytope of the set covering formulation (input for Algorithm 1) and corresponding
solution in the polytope of the multi-flow formulation (output from Algorithm 1). We
use colors to represent the fractional values assigned to variables: (i) black represents
0; (ii) brown represents 0.1; (iii) purple represents 0.2; (iv) orange represents 0.3; and
(v) green represents 0.4. The color of a vertex represents the value of the variable ca
associated to it. The color of an arc represents the value of the variable f i

Ti[j],j,Ti[k],k

associated to it.



30 Chapter 4. Mixed Integer Linear Programming Formulations

From row 6 to row 19, we establish a loop whose first iteration has j = 1 and last

iteration has j = σ−1. Variable D is a collection containing the indexes k of the vertices

that are successors of (Ti[j], j) but are not successors of (Ti[j − 1], j − 1). We simulate

an artificial vertex substituting all vertices contained in D. We define variables idealDj

and tmpD with analogous meaning with variables idealjk and tmpk respectively. The

ideal flow of this artificial vertex among the other successors of (Ti[j], j) is stored in

idealDj and consists of the sum of the ideal flow of the real vertices it comprises. The

temporary flow contained in this artificial vertex is stored in tmpD and, in row 11, it is

assigned to the corresponding actual flows. Variable ∆ stores the difference between the

ideal flow and the current flow in each successor (Ti[r], r), r /∈ D, of (Ti[j], j). If ∆ = 0,

the corresponding iteration of the loop in rows 12-18 changes nothing. If ∆ > 0, rows

15 and 16 attribute to it the missing flow coming from (Ti[j], j). If ∆ < 0, rows 17 and

18 eliminate from it the exceeding flow, which goes to the vertices in D in a weighted

fashion. In row 19, the total flow in the artificial vertex representing D also goes to

the vertices in D in a weighted fashion. By the end of an iteration j of the outer loop,

we ensure that the whole flow zi of the network will be exclusively split between the

successors (Ti[k], k) of (Ti[j], j) reproducing the respective values of idealjk. This loop

ensures flow conservation as it is defined in constraints (4.4). (In Figure 4.4, |D| = 1

and ∆ = 0 for each iteration of the loop, resulting in a flow transferring the current

tmpj from (Ti[j], j) to the vertex contained in D)

Finally, in row 20, we move the flow zi from the vertices in δ+i ((Ti[σ−1], σ−1)) =

δ−i (t) into t, satisfying Constraint (4.3) for i. (In Figure 4.4, each arc with destination

in t fully transfers the flow the corresponding t predecessor to t)

For an acyclic walk Ti, note that (i) there is a one-to-one correspondence between

Si1 and δ+i (s), (ii) there is a one-to-one correspondence between Si(j+i) and δ+i ((Ti[j], j))

for 1 ≤ j ≤ σ − 1, and (iii) there is a one-to-one correspondence between the Siσ and

δ−i (t). For cyclic walks, the above observations only differ in the fact that a single

element in Sij can be associated with multiple successors or predecessors of a single

vertex in Hi. In either case, Constraint (4.14) for a given Si(j+1) ∈ S ensures that

idealjk ≤ cTi[k], which ensures that constraints (4.11) and (4.12) are satisfied during

the whole algorithm. !



Chapter 5

Computational Experiments

In this chapter, we show and analyze some experiments with the corrected multi-flow

formulation and the set covering formulation.

The scope of this chapter is not to provide a complete comparison of both formu-

lations from a practical perspective. This would require exhaustive experimentation

with different datasets and tests with a variety of configurations in the optimizer. In-

stead, our computational experiments are aimed at illustrating the theoretical remarks

expressed in Section 4.3 and showing some practical effects of running, within a limited

time, the set covering formulation instead of the multi-flow formulation.

The rest of the chapter is organized as follows: in Section 5.1, we give some

general characteristics about the dataset used and provide the parameters adopted to

create our instances; in Section 5.2, we explicit the computational results and analyze

them.

5.1 Dataset and Parameters

In our experiments, we used the pruned version of an urban mobility trace dataset

based on the city of Cologne, Germany [32]1. It consists of a realistic simulation of car

traffic in a 400-km2 area, comprising 75,515 individual vehicle trips over a period of

2 hours. We prepared the data with the preprocessing approach explained in Section

2.3, in which the road network was discretized into a 100× 100 grid of urban cells and

each vehicle trip was converted into a walk in this grid.

From the total of walks, we selected subsets with the first 100, 500, 1000, and

1500 walks to compose our instances. For each subset of walks, we generated a total of

1Mobility trace available at http://kolntrace.project.citi-lab.fr/

31



32 Chapter 5. Computational Experiments

36 explicit instances for each formulation based on the criteria ΓD

(

τ

ρ

)

with all possible

value selections of the parameters τ ∈ {40s, 80s, 120s} and ρ ∈ {0.6; 0.8; 1.0}. The

preprocessing time necessary to explicit both formulations was negligible for all the

instances.

5.2 Results and Discussion

The experiments ran in a machine powered by an Intel Xeon E5405 2.00GHz, 15Gb

of RAM, and Ubuntu operating system. We used the commercial optimizer CPLEX

version 12.6 with standard configurations and a time limit of 1 hour for each execution.

In total, there were 144 executions: for each of 36 different combinations of parameters,

we ran an integer linear program and its corresponding linear programming relaxation

for each formulation.

Table 5.1 shows the obtained results. The first three columns show the number

of walks and the parameters τ and ρ. The next four columns show, respectively, the

following pieces of information concerning the corrected multi-flow formulation: (i)

the percentual linear programming relaxation gap; (ii) the objective function value of

the best integer solution; (iii) the percentual final gap; and (iv) the running time, in

seconds. The last four columns show the same information concerning the set covering

formulation. We put a dash (’-’) in some of the table cells to represent two situations: (i)

there was no linear programming relaxation gap, which means the linear programming

relaxation was not completely solved within the available time; or (ii) there was no final

gap, which means an optimum solution was found and proved during the available time.

For instances with the same number of walks, the problem seems to become harder

when τ increases or ρ decreases. In both cases, the problem becomes less constrained,

admitting more feasible solutions of good quality. Hence, the optimal solutions for

these instances tends to be harder to find.

The results show that the set covering formulation overwhelmingly outperformed

the multi-flow formulation: (i) 3 instances were fully solved by both formulations;

(ii) 28 instances were fully solved only by the set covering formulation; and (iii) 5

instances were not fully solved by any formulation. In the 3 instances solved by both

formulations, the running time for the set covering one was at least 400 times shorter

than for the multi-flow formulation. In most of the 28 instances solved only by the set

covering formulation and in all the 5 instances not solved by any formulation, the best

primal bound obtained with the multi-flow formulation is considerably higher than the

best primal bound found with the set covering formulation. Furthermore, the final gaps



5.2. Results and Discussion 33

Table 5.1: Results for the multi-flow and the set covering ILP formulations.

Parameters Multi-flow formulation Set covering formulation

|T | τ ρ LG(%) Z* FG(%) t(s) LG(%) Z* FG(%) t(s)

100

40
0.6 19.35 217 - 1136 1.84 217 - <1
0.8 17.68 311 - 414 0.96 311 - <1
1 18.51 470 - 633 0.64 470 - <1

80
0.6 30.23 134 8.71 3600 3.88 129 - <1
0.8 29.03 196 7.54 3600 2.69 186 - <1
1 29.89 285 4.20 3600 2.49 281 - <1

120
0.6 27.71 88 13.07 3600 3.61 83 - <1
0.8 27.87 126 8.25 3600 2.46 122 - <1
1 30.69 200 11.87 3600 2.12 189 - <1

500

40
0.6 19.50 987 57.10 3600 2.04 441 - 5
0.8 18.04 678 8.37 3600 1.71 643 - 3
1 16.21 944 0.71 3600 1.27 944 - <1

80
0.6 29.15 693 69.31 3600 6.07 247 - 63
0.8 26.18 807 60.95 3600 3.90 359 - 20
1 24.44 2354 78.22 3600 2.96 540 - <1

120
0.6 28.10 532 76.96 3600 8.50 153 - 647
0.8 28.76 636 70.61 3600 6.44 233 - 61
1 25.83 2356 86.32 3600 3.33 360 - <1

1000

40
0.6 18.75 1264 61.43 3600 2.21 544 - 32
0.8 16.98 1544 51.98 3600 1.90 789 - 23
1 14.27 1178 1.54 3600 1.27 1177 - <1

80
0.6 - 871 72.29 3600 - 294 0.67 3600
0.8 26.38 1033 64.70 3600 4.59 436 - 136
1 22.58 2708 76.27 3600 3.08 682 - <1

120
0.6 - 697 100 3600 - 180 2.04 3600
0.8 25.93 809 100.00 3600 5.19 270 - 470
1 24.05 2710 85.37 3600 4.01 449 - <1

1500

40
0.6 19.29 2907 81.93 3600 3.38 591 - 3038
0.8 16.78 2909 73.02 3600 1.95 870 - 49
1 12.91 1324 2.23 3600 1.15 1309 - <1

80
0.6 - 2910 100.00 3600 - 322 2.28 3600
0.8 25.84 2913 100.00 3600 4.41 476 - 669
1 21.75 2929 75.33 3600 3.86 777 - <1

120
0.6 - 806 100.00 3600 - 195 3.63 3600
0.8 - 930 100.00 3600 - 295 1.13 3600
1 23.47 2930 97.34 3600 4.73 507 - <1



34 Chapter 5. Computational Experiments

for these instances at the time limit are much smaller for the set covering formulation

than for the multi-flow formulation.

The theoretical result expressed by Theorem 2 opens two mutually exclusive pos-

sibilities: (i) both formulations share the same linear programming relaxation polytope;

or (ii) the polytope associated with the set covering formulation is strictly contained

in the polytope associated with the multi-flow formulation. The first hypothesis could

only be proved theoretically or exhaustively by showing that the multi-flow formulation

is contained in the set covering formulation. On the other hand, the second hypoth-

esis is trivially true for instances whose linear programming relaxation bound differs

from formulation to formulation. As the results show that the linear programming

relaxation gap is considerably lower for the set covering formulation in all instances,

therefore their polytopes are strictly contained in the corresponding polytopes of the

multi-flow formulation.

The results concerning performance of the formulations and linear programming

relaxation gaps were theoretically expected, as we saw in Chapter 4. Nevertheless,

the multi-flow formulation was not designed with the objective of achieving a high

performance. Instead, it was built to evaluate the deployments obtained with the

Gamma-g heuristic for small instances, which it properly does. On the other hand, we

designed the set covering formulation with the declared aim of improving performance

as much as possible, and the results suggest successful completion of our purpose.

Concerning the deployment of RSUs obtained within one hour of running time, we

analyze some instances with |T | = 500 and τ = 80s. Figure 5.1 displays the physical

distribution of RSUs in the deployments from both formulations for instances with

ρ = 0.6 and ρ = 0.8. It compares deployments obtained with the multi-flow formulation

and deployments obtained with the set covering formulation. The deployments from

the set covering formulation are optimal and require fewer than half the number of

RSUs. These reduced numbers of RSUs represent considerable financial savings for the

designer of the vehicular network, since each RSU has installation and maintenance

costs.

Figure 5.2 shows the characteristic ΓD curves of the deployments represented in

Figure 5.1. The required QoS metrics associated with Figure 5.2a and Figure 5.2b are,

respectively, ΓD

(

80
0.6

)

and ΓD

(

80
0.8

)

. In each of these figures, the blue curve (related to

the set covering formulation) meets its respective QoS constraint in a tight way. On

the other hand, the red curves (related to the multi-flow formulation) reach QoS marks

beyond the requirements. In Figure 5.2a, besides being the ΓD

(

80
0.6

)

, the red curve can

be ΓD

(

80
0.77

)

and ΓD

(

70
0.6

)

. It means that, keeping τ = 80s, the corresponding deploy-

ment covers 77% of vehicles instead of 60% and, keeping ρ = 0.6, the corresponding



5.2. Results and Discussion 35

deployment allows a 10s-lower inter-contact time. In Figure 5.2b, besides meeting the

ΓD

(

80
0.8

)

requirement, the red curve can also be ΓD

(

80
0.9

)

and ΓD

(

75
0.8

)

. It means that,

keeping τ = 80s, the corresponding deployment covers 90% of vehicles instead of 80%

and, keeping ρ = 0.8, the corresponding deployment allows a 5s-lower inter-contact

time. Nevertheless, it does not mean that the deployments from the multi-flow for-

mulation were better. With the same number of RSUs used in the solutions from

the multi-flow formulation, the designer of the vehicular network could significantly

increase ρ keeping τ = 80s or decrease τ keeping ρ ∈ {0.6, 0.8} if he or she used the set

covering formulation with other parameters, as shown in Table 5.1. In this table, the

solutions from the set covering formulation with QoS requirements ΓD

(

80
1

)

and ΓD

(

40
0.8

)

use much fewer RSUs than the multi-flow ILP solution with QoS requirement ΓD

(

80
0.8

)

.

Furthermore, the solutions from the set covering formulation with QoS requirements

ΓD

(

80
1

)

and ΓD

(

40
0.6

)

use much fewer RSUs than the multi-flow ILP solution with QoS

requirement ΓD

(

80
0.6

)

.



36 Chapter 5. Computational Experiments

(a) Set covering ILP, ρ = 0.6, 247 RSUs (b) Multi-flow ILP, ρ = 0.6, 693 RSUs

(c) Set covering ILP, ρ = 0.8, 359 RSUs (d) Multi-flow ILP, ρ = 0.8, 807 RSUs

Figure 5.1: Layout of the deployments of RSUs obtained within a running time of 1
hour for |T | = 500 and τ = 80s. Blue dots and red dots represent the RSUs deployed
with the set covering and the multi-flow formulation, respectively.



5.2. Results and Discussion 37

(a) ρ = 0.6, red curve relates to deployment
represented in Figure 5.1a and blue curve
relates to deployment represented in Figure
5.1b

(b) ρ = 0.8, red curve relates to deployment
represented in Figure 5.1c and blue curve
relates to deployment represented in Figure
5.1d

Figure 5.2: Characteristic ΓD curves for the deployments in Figure 5.1. The blue curves
and the red curves represent the solutions obtained with the set covering formulation
and the multi-flow formulation, respectively. All deployments have the parameters
|T | = 500 and τ = 80s.





Chapter 6

Conclusion

Vehicular networks are computer networks specifically designed to deal with cars and

roadside units, providing many benefits to drivers, pedestrians and society. Gamma

Deployment is a metric to evaluate the regularity of service delivered by a vehicu-

lar network. The Gamma Deployment Problem deals with the minimization of the

number of roadside units ensuring the quality of service of the network under Gamma

Deployment metric.

In this dissertation, we proved that the decision version of the Gamma Deploy-

ment Problem in Grids belongs to the complexity class NP-complete. This result is

relevant since previous works proposed heuristics and integer linear programming for-

mulation for the problem applied in grid graphs, even though there was no formal proof

of NP-completeness.

Next, we proposed a correction for the multi-flow formulation present in the

literature. This correction tackles the fact that the original formulation may obtain in-

feasible solutions for walks with cycles, whose existence in the dataset is implied by the

discretization approach adopted. We also proposed a new integer linear programming

formulation for the problem based on set covering and we proved that the polytope as-

sociated with its linear programming relaxation is contained in the polytope associated

with the linear programming relaxation of the multi-flow formulation.

In computational experiments with a commercial solver, the set covering formula-

tion widely outperforms the multi-flow formulation concerning the number of instances

solved and linear programming relaxation gap. The experiments show an impact on the

application of using the set covering formulation instead of the multi-flow formulation

when the running time is limited: the costs decrease substantially since much fewer

RSUs are necessary. Even though the deployments obtained with the set covering for-

mulation use considerably fewer roadside units, both formulations provide the required

39



40 Chapter 6. Conclusion

quality of service according to some Gamma Deployment curves. These curves also

give an intuition of how a multi-objective optimization could be beneficial when there

is a predetermined budget to invest in RSUs.

Interesting topics for future work include investigating the existence of

parameterized-complexity and approximate algorithms for Gamma Deployment Prob-

lem and Gamma Deployment Problem in Grids. Besides, further complexity results

for specific classes of graphs may reveal polynomial-time complexity in the domain of

some of them. It would also be relevant to test the integer linear programming for-

mulations with other datasets and compare their results with those provided by the

heuristics proposed in the literature. Finally, a multi-objective optimization will be an

appropriate approach to maximize the percentage of vehicles covered and minimize the

inter-contact time when the budget to invest in RSUs is predetermined.



Bibliography

[1] AbdelSalam, H. S. and Olariu, S. (2009). Hexnet: Hexagon-based localization

technique for wireless sensor networks. In 2009 IEEE International Conference on

Pervasive Computing and Communications, pages 1–6. ISSN .

[2] Aslam, B., Amjad, F., and Zou, C. C. (2012). Optimal roadside units placement

in urban areas for vehicular networks. In Computers and Communications (ISCC),

2012 IEEE Symposium on, pages 423--429. IEEE.

[3] Barrachina, J., Garrido, P., Fogue, M., Martinez, F. J., Cano, J.-C., Calafate, C. T.,

and Manzoni, P. (2012). D-RSU: A Density-Based Approach for Road Side Unit

Deployment in Urban Scenarios. In International Workshop on IPv6-based Vehicular

Networks (Vehi6), collocated with the 2012 IEEE Intelligent Vehicles Symposium,

pages 1–6. ISSN .

[4] Bekos, M. A., Gronemann, M., and Raftopoulou, C. N. (2016). Two-page book

embeddings of 4-planar graphs. Algorithmica, 75(1):158--185.

[5] Capone, A., Cesana, M., Napoli, S., and Pollastro, A. (2007). Mobimesh: a com-

plete solution for wireless mesh networking. In 2007 IEEE International Conference

on Mobile Adhoc and Sensor Systems, pages 1--3. IEEE.

[6] Eiza, M. H., Ni, Q., Owens, T., and Min, G. (2013). Investigation of routing relia-

bility of vehicular ad hoc networks. EURASIP Journal on Wireless Communications

and Networking, 2013(1):179. ISSN 1687-1499.

[7] Eze, E. C., Zhang, S., and Liu, E. (2014). Vehicular ad hoc networks (VANETs):

Current state, challenges, potentials and way forward. In Automation and Computing

(ICAC), 2014 20th International Conference on, pages 176--181. IEEE.

[8] Faraj, M. F., Sarubbi, J. F., Silva, C. M., and Martins, F. V. (2018). A memetic

algorithm approach to deploy RSUs based on the gamma deployment metric. In

2018 IEEE Congress on Evolutionary Computation (CEC), pages 1--8. IEEE.

41



42 Bibliography

[9] Faraj, M. F., Sarubbi, J. F. M., Silva, C. M., and Martins, F. V. C. (2017). A hybrid

genetic algorithm for deploying RSUs in VANETs based on inter-contact time. In

Proceedings of the Genetic and Evolutionary Computation Conference Companion,

GECCO ’17, pages 193--194, New York, NY, USA. ACM.

[10] Garey, M. R. and Johnson, D. S. (1977). The rectilinear steiner tree problem is

np-complete. SIAM Journal on Applied Mathematics, 32(4):826--834.

[11] Heath, L. S. (1985). Algorithms for embedding graphs in books. PhD thesis,

University of North Carolina at Chapel Hill.

[12] Itai, A., Papadimitriou, C. H., and Szwarcfiter, J. L. (1982). Hamilton paths in

grid graphs. SIAM Journal on Computing, 11(4):676--686.

[13] Kchiche, A. and Kamoun, F. (2010). Centrality-based access-points deployment

for vehicular networks. In Telecommunications (ICT), 2010 IEEE 17th International

Conference on, pages 700--706. IEEE.

[14] Kumar, V., Mishra, S., and Chand, N. (2013). Applications of VANETs: Present

& future. Communications and Network, 5:12--15.

[15] Liu, Y., Niu, J., Ma, J., and Wang, W. (2013). File downloading oriented road-

side units deployment for vehicular networks. Journal of Systems Architecture,

59(10):938--946.

[16] Lochert, C., Scheuermann, B., Wewetzer, C., Luebke, A., and Mauve, M. (2008).

Data aggregation and roadside unit placement for a vanet traffic information sys-

tem. In Proceedings of the fifth ACM international workshop on VehiculAr Inter-

NETworking, pages 58--65. ACM.

[17] Mershad, K., Artail, H., and Gerla, M. (2012). Roamer: Roadside units as message

routers in VANETs. Ad Hoc Networks, 10(3):479--496.

[18] Owen, S. H. and Daskin, M. S. (1998). Strategic facility location: A review.

European journal of operational research, 111(3):423--447.

[19] Owen, S. H. and Daskin, M. S. (2009). Facility location and supply chain man-

agement ? a review. European Journal of Operational Research, 196(2):401--412.

[20] Rashidi, M., Batros, I., Madsen, T. K., Riaz, M. T., and Paulin, T. (2012). Place-

ment of road side units for floating car data collection in highway scenario. In Ultra

Modern Telecommunications and Control Systems and Workshops (ICUMT), 2012

4th International Congress on, pages 114--118. IEEE.



Bibliography 43

[21] Reis, A. B., Sargento, S., and Tonguz, O. K. (2011). On the performance of sparse

vehicular networks with road side units. In Vehicular Technology Conference (VTC

Spring), 2011 IEEE 73rd, pages 1--5. IEEE.

[22] Saini, M., Alelaiwi, A., and Saddik, A. E. (2015). How close are we to realizing

a pragmatic VANET solution? a meta-survey. ACM Computing Surveys (CSUR),

48(2):29.

[23] Sarubbi, J., Martins, F., and Silva, C. (2016). A genetic algorithm for deploy-

ing roadside units in VANETs. In IEEE Congress on Evolutionary Computation

(CEC’2016).

[24] Sarubbi, J. F. M. and Silva, C. M. (2016). Delta-r: A novel and more economic

strategy for allocating the roadside infrastructure in vehicular networks with guar-

anteed levels of performance. In Network Operations and Management Symposium

(NOMS), 2016 IEEE/IFIP, pages 665--671. IEEE.

[25] Silva, C. M., Guidoni, D. L., Souza, F. S., Pitangui, C. G., Sarubbi, J. F., Aquino,

A. L., Meira, W., Nogueira, J. M. S., and Pitsillides, A. (2016a). Using the inter-

contact time for planning the communication infrastructure in vehicular networks.

In Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Con-

ference on, pages 2089--2094. IEEE.

[26] Silva, C. M., Guidoni, D. L., Souza, F. S., Pitangui, C. G., Sarubbi, J. F., and

Pitsillides, A. (2016b). Gamma deployment: Designing the communication infras-

tructure in vehicular networks assuring guarantees on the v2i inter-contact time. In

Mobile Ad Hoc and Sensor Systems (MASS), 2016 IEEE 13th International Confer-

ence on, pages 263--271. IEEE.

[27] Silva, C. M., Pitangui, C. G., Guidoni, D. L., Souza, F. S., and Sarubbi, J. F.

(2016c). Deposição gamma: Alocando infraestrutura de comunicação para redes

veiculares garantindo o intervalo entre contatos de veículos com a infraestrutura de

comunicação. In Simpósio Brasileiro de Pesquisa Operacional (SBPO), 2016. SBPO.

[28] Silva, C. M. d. and Meira, W. (2015). Evaluating the performance of heterogeneous

vehicular networks. In Vehicular Technology Conference (VTC Fall), 2015 IEEE

82nd, pages 1--5. IEEE.

[29] Sun, J. and Yang, Y. (2011). RSU localization model and simulation optimization

for vii network. Transport, 26(4):394--402.



44 Bibliography

[30] Trullols, O., Fiore, M., Casetti, C., Chiasserini, C.-F., and Ordinas, J. B. (2010).

Planning roadside infrastructure for information dissemination in intelligent trans-

portation systems. Computer Communications, 33(4):432--442.

[31] Trullols-Cruces, O., Fiore, M., and Barcelo-Ordinas, J. (2012). Cooperative down-

load in vehicular environments. IEEE Transactions on Mobile Computing, 11(4):663-

-678.

[32] Uppoor, S. and Fiore, M. (2011). Large-scale urban vehicular mobility for net-

working research. In Vehicular Networking Conference (VNC), 2011 IEEE, pages

62--69. IEEE.

[33] Xiong, Y., Ma, J., Wang, W., and Niu, J. (2012). Optimal roadside gateway

deployment for VANETs. Prz. ELEKTROTECHNICZNY, (7):273--276.

[34] Zeadally, S., Hunt, R., Chen, Y.-S., Irwin, A., and Hassan, A. (2012). Vehicular

ad hoc networks (VANETs): status, results, and challenges. Telecommunication

Systems, 50(4):217--241.

[35] Zheng, Z., Sinha, P., and Kumar, S. (2009). Alpha coverage: Bounding the in-

terconnection gap for vehicular internet access. In INFOCOM 2009, IEEE, pages

2831–2835. ISSN 0743-166X.


