
INVESTIGAÇÃO DE PRÁTICAS DE

DESENVOLVIMENTO E EVOLUÇÃO DE

SOFTWARE

MARKOS VIGGIATO DE ALMEIDA

INVESTIGAÇÃO DE PRÁTICAS DE

DESENVOLVIMENTO E EVOLUÇÃO DE

SOFTWARE

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Eduardo Figueiredo
Coorientador: Pooyan Jamshidi

Belo Horizonte

Dezembro de 2018

MARKOS VIGGIATO DE ALMEIDA

ON THE INVESTIGATION OF SOFTWARE

DEVELOPMENT AND EVOLUTION PRACTICES

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Eduardo Figueiredo
Co-Advisor: Pooyan Jamshidi

Belo Horizonte

December 2018

© 2018, Markos Viggiato de Almeida.
Todos os direitos reservados.

Almeida, Markos Viggiato de

A447o On the Investigation of Software Development and
Evolution Practices / Markos Viggiato de Almeida. —
Belo Horizonte, 2018

xx, 60 f. : il. ; 29cm

Dissertação (mestrado) — Universidade Federal de
Minas Gerais — Departamento de Ciência da
Computação.

Orientador: Eduardo Magno Lages Figueiredo
Coorientador: Pooyan Jamshidi

1. Computação — Teses. 2. Engenharia de Software.
3. Algoritmo de mineração. 4. Domínio de software.
5. Plataforma de software I. Orientador.
II. Coorientador. III. Título.

CDU 519.6*32(043)

Acknowledgements

Many people have been extremely supportive to me and they are part of this achieve-
ment. I am very grateful to everyone who, directly or indirectly, helped me through
this journey.

First of all, I thank God for giving me the strength necessary to persist and
conclude this stage of my life. I am so grateful for everything and to everyone that was
part of my life during this period.

I immensely thank my family for supporting me and understanding all the times
I could not be with them. I specially thank my mother Margarete, my father João,
and my sister Caroline.

I am so grateful to my advisor Eduardo Figueiredo for giving me the opportunity
to be his student. I thank him very much for his patience and dedication during my
studies. He is a person who I surely admire and respect.

I also thank my co-advisor Pooyan Jamshidi for all important contributions to
my research. He surely played an important role during my Master studies.

I thank my lab mate Johnatan Oliveira for his contributions to my work.
Johnatan has helped for a long time and surely is part of my achievement.

I thank professor Christian Kästner (Carnegie Mellon University) for his valuable
contributions and ideas. With no doubt, Christian helped me with my research.

I am also very thankful to all members of the Software Engineering Laboratory
(LabSoft). Everyone received me very kindly in the lab and has helped me through
the difficult moments in my Master studies.

I thank all my friends who have supported me during this period of intense
dedication to my Master studies and have completely understood my situation.

I would like to thank the panel members of my Master defense - Alessandro Garcia
(PUC-Rio), Marco Tulio Valente (UFMG), and Pooyan Jamshidi (University of South
Carolina).

Finally, I also thank CAPES and PPGCC-UFMG for the financial support.

ix

Resumo

A engenharia de software é um campo diverso composto por diferentes plataformas
e domínios, com uma grande variedade de pessoas envolvidas em todas as etapas do
desenvolvimento. Plataforma de software refere-se à estrutura subjacente em que o soft-
ware é construído (por exemplo, mobile) e domínios de software referem-se a sistemas
desenvolvidos para segmentos específicos (por exemplo, para a área saúde). Sabe-se
que diferentes plataformas podem ter diferentes práticas de evolução para atender suas
necessidades específicas de mercado e devido a suas características intrínsecas. Por
exemplo, os usuários do Android estão acostumados a rápidas correções de bugs, difer-
entemente de usuários de software desktop ou até mesmo de aplicações Web. Também
é amplamente sabido que diferentes domínios podem ter diferentes políticas e valores,
o que afeta a maneira como os desenvolvedores adotam as práticas de desenvolvimento.
Apesar da relevância de compreender as práticas de desenvolvimento e evolução, pouco
se sabe sobre como software mobile e não-mobile evoluem. Por exemplo, diferentes
tipos de mudanças podem co-evoluir em uma plataforma e não em outras. Além disso,
pouca pesquisa investigou quais e como as práticas de desenvolvimento são adotadas
em diferentes domínios de software e se essas práticas são características intrínsecas
dos domínios. Nesta Dissertação de Mestrado, propomos uma pesquisa de método
misto visando compreender as diferenças e semelhanças de diferentes plataformas e
domínios a partir de perspectivas quantitativas e qualitativas em diferentes granulari-
dades. Primeiro, projetamos e conduzimos um estudo quantitativo no qual analisamos
o histórico de commit de centenas de repositórios Java hospedados no GitHub para
identificar como as alterações do código ocorrem. Mais especificamente, investigamos
a frequência de commits e a co-evolução de três tipos de mudanças: alterações no
código-fonte, alterações em arquivos de build e alterações em arquivos de testes. Para
o último item, contamos a algoritmo de mineração Apriori para obter regras de asso-
ciação relativas a tipos de alterações de código. Nossos resultados sugerem algumas
diferenças relacionadas às plataformas (mobile e não-mobile). Por exemplo, em relação
às freqüências de commits, a plataforma móvel possui diferentes padrões de mudanças

xi

ao longo do ano em comparação com sistemas desktop e Web. Também realizamos um
estudo qualitativo no qual realizamos entrevistas semiestruturadas com desenvolve-
dores cross-domain, ou seja, desenvolvedores com experiência em mais de um domínio.
Em seguida, desenvolvemos uma Web survey para confirmar ou não os resultados de
domínios nos quais atingimos a saturação teórica de acordo com a Grounded Theory.
Nosso objetivo é entender como as práticas de desenvolvimento são aplicadas a partir
da perspectiva dos profissionais. Nossos resultados revelam que, na verdade, desen-
volvedores de diferentes domínios aplicam práticas de desenvolvimento de diferentes
maneiras. Por exemplo, domínios relacionados a finanças podem interromper práticas
de integração contínua em períodos em que as transações financeiras aumentam, como
no Natal e no Ano Novo.

Palavras-chave: Algoritmo de mineração Frequent Itemset, Alteração de Código,
Plataforma de Software, Domínio de Software, Estudo de Entrevista..

xii

Abstract

Software engineering is a diverse field composed of different platforms and domains
with a large variety of people involved in all stages of the development. Software plat-
form refers to the underlying structure where the software is built on (e.g., mobile)
and software domains refer to systems developed for specific segments (e.g., health-
care). It is known that different platforms may have different evolution practices to
meet their specific market requirements and due to their intrinsic characteristic. For
instance, Android users are used to fast bug fixes, differently from desktop or even Web
applications. It is also widely known that different domains may have different policies
and values, which impacts the manner how developers adopt development practices.
Despite the relevance of comprehending development and evolution practices, little is
known regarding how mobile and non-mobile software evolve. For example, different
sorts of changes may co-evolve in one platform and not in others. Furthermore, little
research has investigated which and how development practices developers follow in
different software domains and whether these practices are intrinsic characteristics of
the domains. In this Master dissertation, we propose a mixed-methods research aim-
ing at understanding the differences and similarities of different platforms and domains
from the quantitative and qualitative perspectives at different granularities. First, we
designed and conducted a quantitative study in which we analyze the commit history
of 363 Java repositories hosted in GitHub to identify how code changes occur. More
specifically, we investigate the frequency of commits and the co-evolution of three types
of changes: source code changes, build changes and test changes. For the last item,
we rely on a Frequent Itemset mining algorithm (Apriori) to obtain association rules
regarding sorts of code changes. Our results suggest some differences related to the
platforms (mobile and non-mobile). For instance, regarding the frequency of commits,
the mobile platform has different patterns of changes along the year in comparison to
non-mobile systems. We also performed a qualitative study in which we conducted
19 semi-structured interviews with cross-domain developers from the industry, i.e., de-
velopers who have experience in more than one domain. Afterwards, we run a Web

xiii

survey to confirm or not the results from domains in which we reached the theoretical
saturation according to the Grounded Theory. Our goal is to understand how devel-
opment practices are applied from the perspective of practitioners. Our results reveal
that in fact developers from different domains apply development practices in different
fashions. For instance, financial-related domains may interrupt continuous integration
practices in periods when financial transactions increase, such as in Christmas and New
Year.

Keywords: Frequent Itemset Mining Algorithm, Code Change, Software Platform,
Software Domain, Interview Study..

xiv

List of Figures

1.1 Proposed studies. 4

3.1 (a) Example of a transaction database with code change types; (b) Frequent
types of code change (along with their support) and minimum support of 3. 19

3.2 Frequency of commits in a 2-year time period. 24
3.3 Distributions of response variable for mobile and non-mobile. 26
3.4 Correlations between predictor variables. 27

4.1 Our research methodology process. 35
4.2 Main adopted practices in domains. Banking domain is moderately regu-

lated and interrupt continuous integration process in important commerce
periods (e.g., Black Friday); e-commerce follows an user-centered develop-
ment, focusing on non-functional requirements that provide a good user
experience and also interrupt continuous integration process; and health-
care is highly regulated, focuses on patient data privacy and security and
requirements elicitation may be easier than in other domains. 39

xv

List of Tables

2.1 Software domains and descriptions. 11

3.1 Aggregate statistics of the 363 repositories 20
3.2 Heuristics for identifying build and test files 23
3.3 Multiple linear regression coefficients for our two models. 26
3.4 Frequent types code changes in all commits. 28

4.1 Interviewees information. 36
4.2 Survey results with presented statements and Likert-scale agreement distri-

bution. 40

xvii

Contents

Acknowledgements ix

Resumo xi

Abstract xiii

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Motivation . 2
1.2 Goal and Methodological Procedures 4
1.3 Results . 6
1.4 Dissertation Outline . 6

2 Background and Related Work 9
2.1 Software Domains . 9
2.2 Development Practices in Software Domains 10
2.3 Software Evolution Practices . 13
2.4 Final Remarks . 14

3 Quantitative study 15
3.1 Goal and Research Questions . 15
3.2 Mining Frequent Itemsets . 16
3.3 Research Method . 19
3.4 Results . 23

3.4.1 Frequency of Commits . 24
3.4.2 Frequent Code Change Types and Association Rules 28

3.5 Discussion . 29

xix

3.6 Threats to Validity . 31
3.7 Final Remarks . 31

4 Qualitative Study 33
4.1 Goal and Research Questions . 33
4.2 Research Method . 34

4.2.1 Interview Process . 34
4.2.2 Validation . 38

4.3 Results . 39
4.3.1 Banking Domain . 40
4.3.2 E-commerce Domain . 42
4.3.3 Healthcare Domain . 43

4.4 Discussion . 45
4.4.1 Implications for Practice . 46
4.4.2 Contrast with Current Beliefs 47
4.4.3 Results for Other Domains . 47

4.5 Limitations and Threats to Validity . 49
4.6 Final Remarks . 50

5 Final Considerations 51
5.1 Conclusion . 51
5.2 Contributions . 53
5.3 Future Work . 54

Bibliography 55

xx

Chapter 1

Introduction

Software engineering is a complex and diverse field, with a big variety of people ap-
plying different practices from the design and implementation phases all the way to
the maintenance and evolution phases. Software developed in different platforms and
domains have different practices due to their specific needs, as previously investigated
by Murphy-Hill et al. [2014]:

In a larger sense, this work represents a step towards understanding soft-
ware development not as a homogeneous whole, but instead as a rich tapestry
of varying practices involving diverse people across diverse domains.

Software platform (e.g., mobile and desktop) refers to the underlying "structure"
upon which software is built and it has specific characteristics [Zhang et al., 2018].
For instance, the mobile platform, differently from desktop and Web applications, is
usually used to develop sensor-, gesture-, and event-driven applications and it has
memory and power consumption constraints [Zhang et al., 2018]. Different software
platforms present different characteristics and make use of practices in different ways.
In this dissertation, we use practice as a general term to refer to the way software is
developed and its characteristics as well, which includes not only software development
phase, but also design, maintenance and evolution. For example, bug causes and bug
fixing processes, for example, are different in desktop and Android. While in desktop
most frequent high-severity bugs occur due to build issues, in Android, the cause of
most problematic bugs is concurrency [Zhou et al., 2015].

Software domain refers to a category of systems developed to meet specific busi-
ness segment requirements. Different software domains (e.g., aviation, e-commerce and
healthcare) have different characteristics and, although some domains may be similar

1

2 Chapter 1. Introduction

with regard to the way they adopt practices, most domains apply practices in a spe-
cific way that is convenient to them [Murphy-Hill et al., 2014; Segura et al., 2014;
Russo et al., 2017; Richardson et al., 2016]. For instance, software development within
the game domain has substantial differences in comparison to software development in
other domains, such as game developers rarely make use of automated testing prac-
tices [Murphy-Hill et al., 2014].

The diversity in software engineering has motivated several works from the re-
search community and also industry-track works that investigated practices and other
aspects in specific software platforms and domanis [Zhou et al., 2015; Murphy-Hill
et al., 2014; Richardson et al., 2016; Russo et al., 2017; Segura et al., 2014; Wright
and Perry, 2012]. However, to the best of our knowledge, we still lack a more compre-
hensive understanding of how practices are adopted across different software platforms
and domains, which allows us to identify similarities and differences among platforms
and domains.

1.1 Motivation

Considering software engineering as a homogeneous whole may be problematic as the
needs of systems from specific platforms or domains are ignored. Developers should
have access to information regarding which and how practices are adopted, mainly
those professionals who are looking for a new job. Shedding light on practices usage
may strongly benefit developers as they can be aware of how that platform/domain
works and behaves before getting into it. For instance, whether a professional is looking
for a mobile developer position, a previous understanding of commonly used evolution
(e.g., types of code changes usually made together) and development (e.g., how systems
are tested) practices may prepare the developer for that job.

Revealing which and how practices are adopted may also support newcomers who
intend to contribute to Open Source Software (OSS) projects, given their important
role in the survival and long-term success of community-based OSS [Steinmacher et al.,
2016]. Due to the quite independent and self-organized characteristics of working
in open source projects [Steinmacher et al., 2016], newcomers should be provided
with insights and technical support of how current contributors in fact work so that
they can be prepared. Previous works have addressed this issue [Steinmacher et al.,
2016], but the authors could not identify any significant improvement in supporting
newcomers to overcome technical barriers.

1.1. Motivation 3

For instance, understanding how changes are performed in a repository before
sending pull requests or joining an OSS project may provide the newcomer with valu-
able information to support this initial phase of contribution and avoid rework or
contribution rejection, which could demotivate the developer to keep contributing. As
a concrete example, we can imagine that if developers from a specific open source repos-
itory usually change source code files together with configuration files, a developer who
intends to submit a source code change via pull request should also provide a change
in configuration files.

Another aspect of the importance of understanding practices’ adoption is con-
cerning the specific knowledge and behavior of the development team depending on
the platform or domain of the company. For instance, developers behave differently
when fixing bugs depending on the platform in which they are working. Few works
have studied the differences in desktop and mobile platforms [Bhattacharya et al.,
2013; Zhang et al., 2018]. Developers of desktop systems usually are not involved in
reporting bugs. In addition, bug-fixing process takes a longer period of time compared
to Android and iOS [Zhang et al., 2018; Bhattacharya et al., 2013; Breu et al., 2010].
On the other hand, bug fixers of mobile applications are more involved in reporting
bugs to be discussed and the main causes of bugs are concurrency (in Android) and
application logic (in iOS) [Zhang et al., 2018]. We believe companies should provide
targeted training for their employees, not only software developers, but also training
for people from other positions (e.g., software architect and technology leader). This
training should focus on specific platforms’ and domains’ characteristics and needs, and
how developers from those platforms usually work (behavior and practices adopted).

Software engineering education professionals also need a more comprehensive un-
derstanding of practices adopted mainly in different software domains. We believe
new teaching approaches that consider the software domain should be developed. For
instance, new specific undergraduate or graduate courses may be interesting. Inter-
disciplinary courses may also be a good idea, as Richardson et al. [2016] recently
suggested an interdisciplinary course of software engineering for healthcare systems.
Finally, software engineering education may take specific development practices into
account as different domains have different development practices. For instance, a new
branch of the software engineering course focused on game development may be suit-
able since this domain differs in many aspects from non-game software development,
such as regarding different testing practices [Murphy-Hill et al., 2014].

4 Chapter 1. Introduction

1.2 Goal and Methodological Procedures

Given the limitations and restrictions of previous studies on evolution and development
practices, in this dissertation we aim at providing a more thorough understanding of
which and how practice are adopted in different software contexts. We focus on two
sorts of practices: evolution practices and development practices. Regarding evolution
practices, we adopt a more general mining-based approach and investigate how code
changes are performed in two different platforms, namely mobile and non-mobile. Note
that, for the mobile platform, we consider only Android applications given the large
availability of Android repositories in GitHub. In addition, for non-mobile platforms,
we consider both desktop and Web applications. In relation to development practices,
we investigate how practices (e.g., testing practices and continuous integration/delivery
practices) are applied across different software domains by means of an interview study.

In this dissertation, we propose a mixed-methods research to achieve our main
goal. First, a quantitative study through which we address evolution practices usage
in mobile and non-mobile software platforms by analyzing 363 repositories mined from
GitHub. Second, a qualitative study to understand and reveal development practices
usage in 13 software domains. Figure 1.1 presents an overview of the proposed studies
and their main phases.

Ad hoc
Review

2.1. Participants
Selection

2.2 Interview
Design

2.3. Conduction
Of Interviews

2.4. Transcription
Analysis

Design Improvements

Continuous Selection of Participants

1.2. Software
Repositories

Mining

1.3. Information
Collect via
GitHub API

1.4. Code
Changes
Analysis

Conclusion
Quantitative Study

Qualitative Study

1.1. Methodology
Definition

2.5. Validation
Through Web

Survey

Saturation

Figure 1.1. Proposed studies.

In the quantitative study (steps 1.1 to 1.4 in Figure 1.1), our goal is to investi-
gate evolution practices within the context of software platforms with regard to code
changes made to the systems using a Version Control System (VCS). In this study, we
complement and expand previous works, identified in an ad hoc review, that investi-
gated code changes [Levin and Yehudai, 2017; Macho et al., 2017]. Note that we focus

1.2. Goal and Methodological Procedures 5

on Java projects due to some constraints, such as the need for build files, which are
extensively used in Java projects.

As we can see in Figure1.1, we started with the definition of the study scope, based
on previous works identified in an ad hoc review. We then mine software repositories
from GitHub, collect all necessary information via GitHub REST API and perform data
analysis on code changes. More specifically, we investigate two groups of platforms:
mobile (Android applications) and non-mobile (desktop and Web applications). We
study two aspects of evolution by analyzing the commit history of the last 2 years of
repositories’ activity: (i) frequency of commits and (ii) co-evolution of different types
of changes. For the frequency analysis, we compare both platforms and discuss how
being mobile impacts the frequency. We make use of statistical modelling (multiple
linear regression models) to provide explanation about frequency. Regarding the co-
evolution of changes, we investigate three types of code changes: source code changes,
build changes, and test changes. A frequent itemset mining algorithm (Apriori [Agrawal
et al., 1996, 1993]) is used to find frequent types of code changes that occur together.

In the qualitative study (steps 2.1 to 2.5 in Figure 1.1), our goal is to deepen our
analysis of practices in software development. In this study, we investigate development
practices. We noticed a need for further investigation within this topic from previous
works that suggested different domains follow different practices (or apply them in
a different fashion) [Murphy-Hill et al., 2014; Richardson et al., 2016; Segura et al.,
2014; Russo et al., 2017]. Given that software platforms are quite broad and coarse-
grained, we concluded that development practices could not be categorized by the
platform. That is, we believe development practices are not directly related to the
software platform. Therefore, we decided to perform this study in a finer-grained level:
software domains.

We investigate whether different software domains apply development practices
in a different or similar way. As we can observe in Figure 1.1, we started with the
selection of participants and the interview design. Then, we simultaneously conducted
the interviews while transcribing the audio files. We conducted a total of 19 semi-
structured interviews with cross-domain developers. That is, developers who have
experience in at least two domains. For the transcription phase, we used Grounded
Theory techniques, such as open coding [Stol et al., 2016; Strauss and Corbin, 1990;
Glaser and Strauss, 2017]. Finally, we validated our results through a Web survey. We
collected information about the use of development practices per domain, as obtained
with the interviews. By analyzing the survey responses from 40 developers, we are
able to check whether those practices are in fact adopted by developers from the target
domains.

6 Chapter 1. Introduction

1.3 Results

Through the quantitative study, we can understand how evolution practices (with
regard to code changes) are adopted in mobile and non-mobile platforms. For the
frequency analysis, our findings show that non-mobile repositories have a higher number
of commits per month compared to mobile. The trend graphs for both platforms are not
similar, but both have a peculiar behavior in the holiday season (including Christmas
and new year periods): the number of commits sharply decreases. Our regression
models suggest that being mobile significantly impacts the number of commits in a
negative direction when controlling for confound factors. The Cohen’s f2 measure is
0.19, indicating a medium effect size of the mobile variable in our models. We also
diagnose our models, checking for multicollinearity. The variance inflation factors for
all variables are below 3, which is a safe value. Regarding the co-evolution of different
types of changes, the Apriori algorithm does not suggest that developers usually change
source code files together with build or test files as the support values for frequent code
changes are low . However, the association rules have high confidence, which indicates
our rules are strong.

In the qualitative study, our interview findings suggest that some development
practices are commonly adopted in different domains, while other practices are specific
to a domain. For this study, we discuss the findings that were confirmed by the Web
survey. Our results show that continuous integration practices are similarly adopted
in the banking and e-commerce domains. Furthermore, regulatory-driven changes are
common in the banking and healthcare domains, which must adapt their workflow
to comply to regulatory demands. Our findings also indicate that requirements en-
gineering practices are adopted in an unique way by the banking domain, involving
the comprehension of complex financial operations. In addition, practices related to
interoperability are more difficult in the healthcare domain in comparison to others,
due to different standards used by health companies.

1.4 Dissertation Outline

This Master dissertation is organized in 5 chapters, as follows.

Chapter 2 provides background information and previous works related to this
research. We briefly present important concepts regarding software domains and dis-
cuss past works related to development practices in software domains and also related
to evolution practices.

1.4. Dissertation Outline 7

Chapter 3 presents a study to investigate evolution practices in mobile and non-
mobile platforms from a quantitative perspective through software repository mining
in GitHub. We rely on statistical modelling to explain the frequency of commits and
we use a frequent itemset mining algorithm to find co-occurrences of three types of
code changes, namely source code changes, build changes, and test changes.

Chapter 4 presents a study to investigate and reveal how development prac-
tices are adopted across different software domains from a qualitative perspective. We
perform an interview study using techniques from the Grounded Theory (e.g. open
coding) and we run a Web survey to validate our results.

Chapter 5 concludes this Master dissertation, presenting the lessons learned
from the quantitative and qualitative studies we performed, contributions of this work,
and suggestions for future research.

Chapter 2

Background and Related Work

A thorough understanding of software evolution practices based on code changes in
mobile and non-mobile platforms is relevant as insights can be given to companies
and practitioners of each platform. In addition, the research community may define
new research directions based on the comprehension of how mobile and non-mobile
platforms are different. A more complete understanding may be achieved by performing
a study on a finer-grained level to investigate how development practices are adopted
in different software domains. In this chapter, we present information regarding the
software domains we investigate in the qualitative study and discuss previous related
works. Section 2.1 presents the target domains and a brief description of each one,
Section 2.2 presents past studies related to development practices in software domains,
Section 2.3 discusses previous works related to evolution practices with regard to code
changes, and Section 2.4 concludes this chapter.

2.1 Software Domains

Software domain consists of systems that share specific characteristics, which allows us
to identify and group those systems and differ them from other applications. Systems
that belong to the same domain are designed for specific business segments (e.g. e-
commerce, healthcare, aviation) and users. The domain may affect several aspects of
software development [Mori et al., 2018; Linares-Vásquez et al., 2014; Russo et al., 2017;
Richardson et al., 2016], such as the adopted development practices. Not considering
software engineering as a uniform whole [Murphy-Hill et al., 2014] and understanding
how the domain influences software development is important and may shed light on
important issues and provide insights for solutions, such as creating interdisciplinary
courses of software engineering and other areas [Richardson et al., 2016] and support

9

10 Chapter 2. Background and Related Work

developers in a way they can keep themselves updated with the practices adopted in
domains, specially those developers looking for a new job.

We selected a specific set of software domains for our study based on previ-
ous works [Russo et al., 2017; Linares-Vásquez et al., 2014; Richardson et al., 2016;
Murphy-Hill et al., 2014; Mori et al., 2018]. That is, we selected domains which were
already subject of research and, therefore, we believe they are well-known in the soft-
ware engineering community and easily understandable by industry professionals. Our
target domains encompass several types of systems, such as frameworks and tools. Fur-
thermore, we believe it is feasible to find software developers who have worked in such
domains through our participant search procedure. Initially, we selected the following
13 domains: accounting, aviation, banking, business, e-commerce, educational, games,
healthcare, mining and metals, oil and gas, search engine, social network, and stock
market. Table 2.1 presents the domains we investigate in this master thesis along with
their descriptions.

2.2 Development Practices in Software Domains

In this section, we present previous work that investigated development practices in
software domains. We also discuss how our research differs and complements past
works.

Several studies have been proposed within the context of software development
practices [Yost et al., 2016; Wright and Perry, 2012; Thongtanunam et al., 2015] and
software domains [Segura et al., 2014; Russo et al., 2017; Fairbanks et al., 2006; Richard-
son et al., 2016]. For instance, Yost et al. [2016] used an online survey to collect data
about software development practices and barriers in the field and the relationship
to software quality. The authors received a total of fifty complete responses. The
study concluded that there is evidence of certain problematic issues for developers
and specific quality characteristics that seems to be affected by such issues. Stavnycha
et al. [2015] analyzed the effects of nine development practices on the quality aspect
correctness of software systems. The authors collected data from software developers
around the world through an online survey. The study results indicated that four of
the nine development practices show statistically significant effects on the correctness
of released software, such as test coverage and code reviews. In addition, their results
suggest that using development practices specifically focusing on improving software
quality shows a positive effect on the level of correctness of released software. Wright
and Perry [2012] reported the initial results of a study in which the authors interviewed

2.2. Development Practices in Software Domains 11

Table 2.1. Software domains and descriptions.

Domain Description

Aviation
Embedded systems with legal regulations regarding safety
and reliability to control several aspects of different types
of aircrafts.

Banking Systems that compose the core banking software and provide
financial services to the company itself and to clients.

Business
Systems that implement validation, calculation, and law
regulations of business requirements, such as pricing, and
inventory management.

E-commerce Systems in charge of supporting the transactions of products
buying and selling, as well as providing services to consumers.

Educational Systems used by students to manage their study life and by
managers to administrate their schools.

Games Entertainment games that can be played alone or in
collaboration.

Healthcare Systems that offer health-related services to people in general.

Mining and Metals Systems to support the operation and management of
industrial processes in mining companies.

Oil and Gas Systems that support the planning, operation an
optimization of oil and gas extraction processes.

Search Engine Systems developed mainly to perform optimized searches on
the internet.

Social Network Systems that allow users to interact with each other and
communicate about shared interests and hobbies.

Stock Market
Systems that provide stock-related services, such as
stock-picking decisions, tracking of stock investments and
stock market predictions.

4 practicing release engineers to understand the faults and failures of release practices,
how companies recover from them and how to predict and avoid the failures in future.
Their preliminary results indicate that a more thorough process analysis and efforts at
process standardization are necessary. Unlike the works presented above, we do not
focus only on finding the relationship of development practices and software quality
aspects (such as [Yost et al., 2016; Stavnycha et al., 2015]) neither on one specific prac-
tice (such as [Wright and Perry, 2012]). Instead, in our qualitative study presented
in Chapter 4, we adopt an exploratory approach to investigate several practices in
different domains aiming at understanding the similarities and differences of practices
adoption across domains.

Regarding studies within the context of specific software domains, Murphy-Hill
et al. [2014] presented a study comparing game development to traditional software de-

12 Chapter 2. Background and Related Work

velopment (other domains). The work indicated substantial differences between video
game development and other software development segments, such as the rare use of
automated tests in game development. Richardson et al. [2016] noticed that regulations
and directives regarding medical device software were not being taken into account,
and unregulated software was developed and used in healthcare organisations. This
observation was a result of not trained software engineers, who lacked of knowledge
in regulations of software solutions for healthcare. The authors recommended that
healthcare software systems should be developed by professional software engineers
in interdisciplinary teams with healthcare professionals. Another study [Nytro et al.,
2009] developed methods for gathering detailed observational data about care and
communication practice. The authors explain how this data can be used for iterative,
demand-driven, requirements elicitation and to answer design questions. The proposed
approach was a supplement to other Requirements Engineering methods. The study
concluded that observation has a higher initial cost than other elicitation methods,
but the information is reusable and may lead to more valid requirements and system
functionality. As we can see above, several previous studies have focused on a single
domain in their investigations, while in our qualitative study (Chapter 4) we initially
have 12 target domains.

Segura et al. [2014] explored the applicability of some of the practices for variabil-
ity management in software product lines to an e-commerce system. The authors used
a feature model to represent the store input space and techniques for the automated
analysis of feature models for the detection and repair of inconsistent and missing con-
figuration settings. They also used test selection and prioritization techniques for the
generation of a manageable and effective set of test cases. Their findings suggested that
variability techniques could successfully address many of the challenges found when de-
veloping e-commerce systems. Russo et al. [2017] aimed at identifying some relevant
concerns in the Italian banking IT sector, through an investigation of the opinions of
several stakeholders. The authors identified 15 concerns, which were discussed in a
framework inspired by the ISO 25010 standard. Furthermore, the study identified the
emergence of a new meta quality dimension which impacts both on software quality and
architectural description. Again, unlike the past works above, our exploratory study
focus on 12 software domains instead of only one. Furthermore, although some previous
studies performed interviews, in our qualitative study we conducted 19 semi-structured
interviews with cross-domains developers, that is, developers who have experience in
at least two domains. To the best of our knowledge, this Master thesis is the first
research to conduct a study with cross-domain professionals.

2.3. Software Evolution Practices 13

2.3 Software Evolution Practices

In this section, we present previous work that investigated evolution practices with
regard to code changes made to the systems. We also discuss how our research differs
and complements past works.

Several works have investigated different types of code changes and performed
commit history analysis with many different goals. For instance, Levin and Yehu-
dai [2017] conducted a study using 61 popular open source projects to investigate
the co-evolution of test maintenance and code maintenance based on code changes.
The authors reported the relationships they have established between test mainte-
nance, production code maintenance, and semantic changes (e.g, statement added,
method removed, etc.) through commit analysis. Their findings reveal that devel-
opers perform code fixes without performing complementary test maintenance in the
same commit (e.g., update an existing test or add a new one). Macho et al. [2017]
investigated changes in the build configurations. The authors presented an approach
to extract detailed build changes from Maven build files (pom.xml) and classify them
into 95 change types. The authors presented two studies using the build changes ex-
tracted from 30 open source Java projects to study the frequency and time of build
changes. Their results showed that the top 10 most frequent change types account
73% of the build changes and build changes usually occur around releases. Unlike the
previous researches discussed above, in this Master thesis we expand the analysis of
code changes. While Levin and Yehudai [2017] analyzed the co-evolution of only test
changes and source code changes, we included build changes in our co-evolution anal-
ysis, as presented in chapter 3. In addition, Macho et al. [2017] performed a study
on build changes relying only in the Apache Maven build automation tool (pom.xml
files). As detailed also in chapter 3, we included two other build automation tools: Ant
(build.xml) and Graddle (build.graddle). Furthermore, we compare the co-evolution
of changes in mobile applications against non-mobile applications, as we believe the
mobile platform has a different behavior during software evolution. For instance, we
expect source code changes to occur together with build changes more frequently in
mobile when compared to non-mobile systems.

Kirinuki et al. [2014] investigated commits that presented tangled changes, which
hinders analyzing code repositories as most mining software repository approaches are
designed with the assumption that every commit includes only changes for a single task.
The authors proposed a technique to warn developers that they may be committing
tangled changes. Based on the proposed technique, the developer is notified about
how the tangled changes can be split into a set of untangled changes. Faragó et al.

14 Chapter 2. Background and Related Work

[2015] investigated whether modifications performed on frequently changing code have
worse effect on software maintainability than those affecting less frequently modified
code. The authors calculated cumulative code churn values and maintainability changes
for every version control commit operation of three open-source and one proprietary
software system. Their findings indicated that modifying high-churn code is more
likely to decrease the overall maintainability of a software system, which can increase
the number of defects. As we can note, the past works discussed above focused on
different aspects related to code changes, as they investigated tangled changes and
changes made to high-churn code. As explained in the quantitative study in chapter 3,
we perform a broader analysis of code changes, investigating the frequency of changes
and the factors that explain it, the scattering (similar to tangled changes) and deepness,
and also the co-evolution of different types of changes.

2.4 Final Remarks

In this chapter, we presented important information that is necessary to better un-
derstand this work. We first discussed the software domains we investigate in our
qualitative study along with a short description of each one and how they are impor-
tant for the software engineering research community and industry. In addition, we
presented previous works related development practices in software domains and to
code changes. Unlike all previous works discussed in this chapter, in this Master thesis
we aim at providing a better and more complete understanding of practices related
to software development and evolution from quantitative and qualitative perspectives.
In chapter 3, we analyze the commit history of popular open source software to un-
derstand the differences and similarities in the evolution of mobile and non-mobile
software. Furthermore, in chapter 4, we expand our research by interviewing cross-
domain developers with the aim of identifying development practices that are similar
across domains and practices that are particular to specific software domains. To the
best of our knowledge, this is the first exploratory research to investigate software
development and evolution practices using a mixed-method of research.

In the next chapter, we present the quantitative study we designed and performed
to understand software evolution practices with regard to code changes made to mobile
and non-mobile system. We investigate the frequency of commits and we rely on linear
regressions to provide explanation about what may impact the number of commits. We
also study the scattering and deepness of code changes and the co-evolution of three
different types of changes: source code changes, test changes and build changes.

Chapter 3

Quantitative study

In this chapter, we present a quantitative study aiming at understanding evolution
practices in mobile and non-mobile platforms to provide a more thorough compre-
hension of which evolution practices are adopted in different platforms (mobile and
desktop/Web). In our study, we investigate the evolution with regard to code changes
made to the systems. We believe the mobile platform has different evolution patterns
compared to non-mobile platforms, such as desktop and Web applications. We argue
our results can have practical implications, such as supporting newcomers who desire
to join or submit pull requests to open source repositories. We believe a previous un-
derstanding of how changes are performed in the target repository may significantly
increase the chance of the newcomer being successful in contributing to the repository.
In our study, the analyses are performed on a dataset composed of 363 popular open
source systems from GitHub, being 181 Android applications (referred as mobile plat-
form) and 182 desktop and Web applications (referred as non-mobile platform). We
investigate the frequency of commits and whether being mobile significantly impacts
the frequency and co-evolution of three different sorts of changes: source code changes,
build changes, and test changes. Section 3.1 presents our main goal and the research
questions we designed. Section 3.2 details the mining algorithm we used to identify the
co-evolution of code changes. Section 3.3 presents the research method. Section 3.4 re-
ports the results, which are discussed in Section 3.5. We discuss the threats to validity
in Section 3.6 and conclude this chapter in Section 3.7.

3.1 Goal and Research Questions

Our goal in this study is to understand the evolution practices adopted in mobile and
non-mobile platforms since mobile platform has different requirements and character-

15

16 Chapter 3. Quantitative study

istics and evolves differently from other platforms [Basole and Karla, 2011; Zhou et al.,
2015]. We investigate evolution practices with regard to code changes made to systems
by commits, which means that whenever we mention code changes we are referring
to the evolution of the systems. In this study, we narrowed the mobile platform to
Android applications since they are largely present in GitHub and we are able to find
several repositories. In addition, we consider desktop and Web applications as non-
mobile applications as we intend to compare mobile platform against other platforms.
That is, we do not aim at comparing all platforms in the lowest granularity, but only
mobile with other platforms which are not mobile.

More specifically, through the quantitative study, we investigate two different as-
pects regarding code evolution. First, we check whether the frequency of commits is
similar or different in mobile and non-mobile applications. We also make use of statisti-
cal modelling (multiple linear regression models) to provide explanation about possible
factors that may influence the number of commits per month (i.e., the frequency) in
each platform and whether the fact that the repository is mobile impacts the frequency
when controlling for confounds. Second, we use a frequent itemset mining algorithm,
called Apriori [Borgelt, 2012; Han et al., 2000], to analyze the co-evolution of three
types of changes: source code file changes, build file changes and test file changes.
Furthermore, we generate association rules based on the frequent code change types.
To achieve our goal and guide us on investigating the two evolution aspects we elicited
above, we defined the following research questions:

• RQ1: How frequent are code changes in mobile and non mobile platforms?

• RQ2: How is the co-evolution of source code changes, build changes and test
changes in mobile and non mobile platforms?

3.2 Mining Frequent Itemsets

To answer the second research question, we apply a frequent itemset mining algorithm
to find co-occurrence of different types of code changes. In this section, we present
some background information and concepts regarding this topic as we believe they are
necessary for a complete understanding of our work. We also detail how we mapped
this problem to our context.

Huge efforts of research have been dedicated to the subject of finding frequent
itemsets and deriving associaton rules [Borgelt, 2012; Molderez et al., 2017]. These
tasks have been investigated for a long period of time by the data mining and knowl-
edge discovery in databases research areas [Agrawal et al., 1996, 1993]. Frequent itemset

3.2. Mining Frequent Itemsets 17

mining is a data analysis method and has been initially developed for the market basked
analysis, aiming at finding common products that are usually bought together. That
method has been useful for companies (e.g., supermarkets and online shops) to rec-
ommend products for clients based on their pattern of purchase [Borgelt, 2012], which
allows to obtain association rules. However, finding frequent itemsets can be applied in
many more contexts, such as finding patterns and regularities of categorical variables in
a large dataset [Borgelt, 2012; Molderez et al., 2017]. Several sophisticated and efficient
algorithms have been proposed to mine frequent itemsets and find association rules,
such as Apriori [Agrawal et al., 1996, 1993], Eclat [Zaki et al., 1997; Zaki and Gouda,
2003; Schmidt-Thieme, 2004], and FP-Growth (Frequent Pattern Growth) [Han et al.,
2000; Grahne and Zhu, 2003; Rácz, 2004].

Before mapping the frequent itemset mining to the context of our study, we briefly
present the basic terminology and definitions used within the frequent itemset mining
and association rules areas [Borgelt, 2012]. The goal of mining frequent itemsets is
to find sets of items that frequently occur together across different transactions. A
set of items I = {i1, i2,..., in} is called item base. Any subset T of I is called itemset
and a transaction t is represented by t = <tid,T>, defined by a transaction unique
identifier tid, and an itemset. Let us say the item represents a product in a supermarket.
Therefore, an itemset corresponds to a set of products and a transaction corresponds
to a specific purchase done by a costumer. Different costumers may buy the same set
of products (i.e., different transactions may have the same itemset). The goal is to
find the number of times each set of products was bought (i.e., the number of times
each itemset occurred in all transactions). The cover KT (B) = {k ∈ 1, . . ., m} |
B ⊆ tk of an itemset B ⊆ I represents all transactions the itemset B is contained in.
The support sT (B) is defined as the number of these transactions and, therefore, we
have that sT (B) = |KT (B)|. When applying frequent itemset mining algorithms, one
must specify a desired minimum support smin ∈ N . Given this minimum support, an
itemset B is called frequent (in all transactions T) iff sT (B) ≥ smin. Finally, frequent
itemset mining aims at finding all itemsets B ⊆ I that are frequent in all transactions
(or database) T.

After obtaining the frequent itemsets, we are able to generate association rules.
Basically, a frequent itemset is split into two disjoint subsets, in which one is the
antecedent of a rule (on the left side) and the other one is the consequent (on the right
side of a rule) [Borgelt, 2012]. To assess how strong a rule is, we rely on a metric called
confidence, defined as: cT (X → Y) = sT (X∪Y)/sT (X), in which sT (X) is the support
of the itemset X. Intuitively, the confidence represents the conditional probability. That
is, the probability of X ∩ Y , given X. Lift is another metric commonly used within

18 Chapter 3. Quantitative study

the context of association rules. It is popularly used to rank rules[Borgelt, 2012] and
measures how much the relative frequency of Y is increased when we consider only
transactions that contain X.
Mapping Frequent Itemsets To Frequent Code Change Types. To find co-
occurrences of code changes across commits in GitHub repositories, we map the problem
of mining frequent itemset to finding frequent co-occurrences of code changes. Finding
which types of code changes occur together allows us to understand the co-evolution
of changes in a system. In the context of our study, we represent an item by a type of
code change we investigate here. Therefore, we have three items: source code, build
and test. We have a total of 8 (23) possible itemsets (that is, subsets of items), which
are: <>, <sourcecode>, <build>, <test>, <sourcecode, build>, <sourcecode, test>,
<build, test>, and <sourcecode, build, test>. Finally, a transaction is represented
by a commit. For instance, when committing, a developer may commit only to a
source code file, or to a source code and a build file. Therefore, we are able to find
co-occurrences of different types of files reached by all commits. Note that, although
commits may reach several sorts of files, we focus on three types of files in this study:
source code files, build files and test files.

Figure 3.1 presents an example of commits (transactions) and frequent code
change types (frequent itemsets). For instance, in Figure 3.1(a), commit 0 has only
a build change, while commits 1 and 2 have simultaneously two types of changes:
source code and build, and source and test, respectively. In Figure 3.1(b), we can see
the types of code changes that occur together with a minimum support of 3, that is,
types of changes that appear at least in 3 commits. For instance, we can observe that,
when we consider 1 item, all three types of changes occur individually more than 3
times: source code, build and test. In addition, when considering 2 items, only the set
composed of source code and test appears together at least 3 times across all commits.

When performing the data analysis, we follow the next two steps in order to find
the types of frequent code changes and association rules:

1. Find all frequent code changes types in the commit dataset, i.e. types of code
changes with support greater or equal to the minimum support.

2. For each frequent code change C2 found, generate all association rules C2 ⇒
{C1,C3}, where C1, C2, and C3 represent different types of code changes, and
report those rules with confidence greater or equal to the predefined minimum
confidence.

3.3. Research Method 19

a)
Commits
0: {build}
1: {sourcecode,build}
2: {sourcecode,test}
3: {sourcecode}
4: {sourcecode}
5: {sourcecode,build,test}
6: {sourcecode,test}
7: {test}
8: {sourcecode}
9: {sourcecode}

b)
Frequent types of changes (with support)
(Minimum support: smin = 3)

0 items 1 item 2 items 3
items

Ø = 10 {sourcecode} : 8
{build} : 3
{test} : 4

{sourcecode,test}: 3 --

Figure 3.1. (a) Example of a transaction database with code change types; (b)
Frequent types of code change (along with their support) and minimum support
of 3.

3.3 Research Method

We designed a quantitative study to answer the proposed research questions aiming at
achieving our main goal. In this study, we rely on statistical modelling to understand
the frequency of commit activity in repositories from mobile and non-mobile platforms.
We build linear regression models to explain the frequency of commits in both plat-
forms. We also make use of a frequent itemset algorithm to analyze the co-evolution
of code changes made to three types of files: source code, build, and test files. The
quantitative study is composed of three main phases: (1) software repository mining,
(2) data collection via GitHub REST API, and (3) data analysis. Next, we detail each
phase of the study.

Phase 1 - Software Repository Mining. We initially selected the 1000 most
popular Java repositories in GitHub based on their number of stars. In this study,
we consider number of stars a reliable proxy to the repository popularity, as previous
studies already investigated this topic [Borges et al., 2016a,b]. We focus on Java systems
due to constraints in our data analysis phase. For instance, we analyze the evolution
of changes in build files, including files from the Apache Maven, which is a build
automation used primarily for Java projects. The set of 1000 repositories includes
different types of systems, such as tools, libraries and software systems designed for
the Android platform. Repositories were retrieved from GitHub between July and
August 2018.

Aiming at retrieving the most relevant repositories, we designed a filtering process

20 Chapter 3. Quantitative study

with two criteria. First, we keep only repositories with more than 1000 source lines
of code (SLOC) as we believe systems with a lower number of lines may represent
only toy samples. The second criterion is the number of commits in the last two years
(time period of analysis). Since commits are our main source of information, we need
repositories with a reasonable number of commits. Thus, we defined a threshold of 24
as the minimum number of commits repositories must have had within the last two
years. This criterion also helps us to ensure repositories are being actively developed.
From the 1000 repositories initially mined, 363 remained after the filtering process. We
automatically classified these systems as mobile or non-mobile by locally cloning the
repository and checking whether the AndroidManifest.xml file exists or not. In case the
file exists, the repository was classified as mobile. Our final dataset contains 181 mobile
systems and 182 non-mobile systems (desktop and Web applications). Next, Table 3.3
presents aggregate statistics regarding the 363 repositories that compose our dataset.
We see the number of stars, source lines of code (SLOC), number of contributors,
number of pull requests, and number of issues. In general, non-mobile systems have
higher values for all items compared to mobile systems. As we can observe, the systems
in our dataset are relevant as indicated the mean number of starts, which is above 6,000
for both platforms. In fact, the minimum number of starts confirms all systems are
relevant according to this criteria (stars). Furthermore, regarding source lines of code
(SLOC), we can see that systems in non-mobile platforms are larger than systems in
mobile, with 152319.4 SLOC and 40706.21 SLOC, respectively.

Table 3.1. Aggregate statistics of the 363 repositories

Mean St. Dev. Min Median Max

Mobile

Stars 6308.32 4573.52 2451 4710 24975
SLOC 40706.21 191940.8 1003 7807 2367689
Contribut. 43.73 64.65 1 21 351
Pull Req. 9.54 16.69 0 3 84
Issues 125.98 193.72 0 65 1640

Non- Mobile

Stars 6490.28 6426.73 2443 4548 41653
SLOC 152319.4 295851.9 1418 48158.5 2729887
Contribut. 96.69 94.05 1 64 400
Pull Req. 30.06 62.73 0 9 521
Issues 231.83 304.37 0 120 1730

Phase 2 - Data Collection. In this phase, we developed a script in R language to
access and make requests to the GitHub REST API1. In general, we collected data to
be used in our regression models and in the code change co-evolution analysis. We

1https://developer.github.com/v3/

3.3. Research Method 21

collected the following data at repository-level to be used in our regression models and
also useful for dataset characterization: number of contributors, number of pull re-
quests, and number of issues. We added the number of source lines of code information
obtained by a shell script, which analyzed the local cloned repository. Furthermore, we
collected data at commit-level to be used by the mining algorithm to perform the code
change co-evolution analysis. For each commit, we collected its date and whether it
changed source code files, build files and/or test files. We identify changed files directly
from the files list obtained through a request to the API. In addition, we retrieved ad-
ditional information which may be useful for future studies within the context of our
quantitative work. Next, we can see the additional data collected: number of changed
files, added lines of code, deleted lines of code, and total changed lines of code (added
lines + deleted lines).
Phase 3 - Data Analysis. The last phase of our study corresponds to the analysis
of collected data in the previous step. We have two main parts of the data analysis.
First, we use statistical modelling to address the first research question regarding the
frequency of commits. Second, we apply a frequent itemset mining algorithm to check
whether different types of code changes co-occur in commits made to the systems.
Next, we detail how we proceed when building linear regression models and applying
the mining algorithm.
Statistical Modelling. To provide evidence on whether being mobile influences the
frequency of commits, we developed two multiple linear regression models, one with
only the control variables and a full model with the indicator variable in addition to the
control ones. The models were developed using the function lm in R. By controlling for
confound factors in the multiple regression, we evaluate whether the difference in the
frequency of commits (in mobile platform when compared to non-mobile platforms)
can be attributed to the fact of a repository being mobile or not. Our hypothesis is
that mobile systems have a higher frequency of commits since users from that plat-
form (in our case, Android users) expect fast bug fixes and rapid availability of new
features [Oliveira et al., 2018; Banerjee and Roychoudhury, 2016].

In our models, the response (dependent) variable is the number of commits per
month, nCommMonth, which corresponds to the frequency of commit in a monthly-
basis. We consider the following repository-level independent variables: size of the
system in terms of number of source lines of code - sloc (we expect that larger systems
have more commits), number of contributors - nCont (we believe a higher number of
contributors mean the repository has more commits), number of pull requests - nPR
(we expect that many pull requests can increase the number of commits, which will
merge pull requests to the system), and number of issues - nIssues (a higher number

22 Chapter 3. Quantitative study

of issues will likely increase the number of commits , for instance, to fix bugs indicated
by issues). Finally, we have an indicator (experimental) variable, isMobile, which is
a binary variable that indicates whether a repository is mobile (1) or not (0), that is,
if it has the AndroidManifest.xml file. Before building our models, we log-transformed
variables aiming at stabilizing their variance and reduce heteroscedasticity [Zhang et al.,
2018; Cohen et al., 2014]. We proceed in the following steps to build robust multiple
linear regression models.

Step 1: Distribution comparison. We hypothesize that the number of commits
per month (i.e., the frequency) is higher in the mobile platform than in non-mobile. To
compare the distribution of our raw data regarding number of commits per month for
both groups (mobile and non-mobile), we adopt the non-parametric Wilcoxon Signed-
Rank Test. This test is suitable for our case since our data cannot be assumed to be
normally distributed [Lowry, 2014]. We also report the Cliff’s delta to indicate the size
of the difference of distributions.

Step 2: Additional explanatory power. Mobile systems may (apparently) impact
the number of commits per month, but underlying confound factors might actually be
leading the response of our models. Here we explore whether the fact of the repository
being mobile add information to explain the frequency of commits. We build two
successive regression models. We start with a model that contains only the control
variables. After controlling for the confound variables, we include the experimental
(indicator) variable in our model. We then use Cohen’s f2 measure to gauge the effect
size of the indicator variable. We consider model coefficients important if they are
statistically significant at a 0.05 level.

Step 3: Multicollinearity diagnosis. To tackle possible problems related to mul-
ticollinearity [Farrar and Glauber, 1967] in our regression analysis, we diagnose our
models, checking for multicollinearity. More specifically, we verify whether the vari-
ance inflation factor (VIF) [Allison, 1999] is below 3, which is a safe, conservative value
that allows us to statistically confirm that our models do not suffer from multicollinear-
ity [Zhang et al., 2018; Trockman et al., 2018].
Mining frequent itemsets and association rules. To find co-occurrences of differ-
ent code changes file types along the last 2 years period, we apply Apriori, a frequent
itemset mining algorithm [Borgelt, 2012; Pasquier et al., 1999; Agrawal et al., 1996,
1993]. As this mining algorithm is order-insensitive [Molderez et al., 2017], we believe
it is suitable for our study since we do not need ordered data. In this step, we rely on
the arules package in R. In our study, we analyze whether there are co-occurrences of
source code changes, build changes, and test changes. To use the algorithm, we must
convert our raw data (json) to the format the algorithm requires (transaction class).

3.4. Results 23

Table 3.2. Heuristics for identifying build and test files

Heuristics
Begins with Ends with

Test Test OR
test

Test OR test OR
Tests OR tests OR

TestCase OR testCase

Build
pom.xml OR
build.xml OR
build.graddle

After obtaining the co-occurrences of code changes, we are able to find association
rules using the Apriori algorithm [Agrawal et al., 1996, 1993]. Therefore, based on
a change the developer performs, we can suggest other types of changes according to
the learned association rules. Using Apriori algorithm requires the specification of a
support value, as explained in Section 3.2.

Table 3.2 presents an overview of the heuristics used to identify build and test
changes. To identify build changes, we look for files with names as recommended
by the build automation tools we use. For Apache Maven2 build files, we search for
pom.xml ; for Apache Ant3 files, we look for build.xml ; finally, for Graddle4 files, we
search for build.graddle. Regarding changes on test files, we adapt an heuristic adopted
by previous works [Zaidman et al., 2011; Levin and Yehudai, 2017]. We classify a
change as a test change if the name of the class (in which the change was performed)
begins with the word "Test" or ends with the word "Test", or "Tests", or "TestCase".
We also consider a test change if the modified class is contained in a directory with
the word "Test", "Tests", or "TestCase". Note that all situations in which the word is
lower case are considered in the same way.

3.4 Results

In this section, we report the results obtained from the analysis of code change fre-
quency, including the statistical analysis and the mining algorithm. We analyzed a
total of 465,500 commits from 363 repositories hosted in GitHub.

2https://maven.apache.org/
3https://ant.apache.org/
4https://gradle.org/

24 Chapter 3. Quantitative study

3.4.1 Frequency of Commits

Figure 3.2 presents the frequency of commits (average number of commits per month
per repository) in mobile and non-mobile platforms along a 2-year period. By inspect-
ing this figure, we can see how the number of commits vary along the months for both
platforms from a temporal perspective. We double checked the data to confirm the
sharp drop in the end of the plot, which may be caused due to often discontinuation of
mobile applications. Note that we divided the absolute number of commits per number
of systems in each platform. Although we have one more system in the non-mobile
group, the different numbers of systems do not mislead our interpretation of the average
number of commits per system.

20

30

40

50

60

70

oc
t−

16

no
v−

16

de
c−

16

jan
−1

7

feb
−1

7

m
ar

−1
7

ap
r−

17

m
ay

−1
7

jun
−1

7

jul
−1

7

au
g−

17

se
p−

17

oc
t−

17

no
v−

17

de
c−

17

jan
−1

8

feb
−1

8

m
ar

−1
8

ap
r−

18

m
ay

−1
8

jun
−1

8

jul
−1

8

au
g−

18

se
p−

18

Timeline [months]

N
um

be
r

of
 c

om
m

its
 p

er
 r

ep
os

ito
ry

Platforms
Non−mobile
Mobile

Figure 3.2. Frequency of commits in a 2-year time period.

We can observe in Figure 3.2 that the number of commits is always (in every
month) higher in non-mobile platform compared to mobile. For the mobile platform,
we can note a regular pattern in some periods of the year, specially in the holiday
season, including Christmas and new year periods. For instance, in the period from

3.4. Results 25

nov-16 to apr-17, the number of commits increased about 54%. The curve behaves
similarly in the period from nov-17 to mar-18, with an increase of approximately 67%.
This may suggest there are some factors influencing this behavior and contributions
to OSS projects in that period of the year. Regarding those periods in non-mobile
platforms, the increase in the number of commits was much smaller, with 4.8% for
nov-16 to apr-17 and 2.7% for nov-17 to mar-18. However, we can observe that non-
mobile platforms had a very low average number of commits in December 2017 (56
commits), which suggests that holiday season may influence the work activity in non-
mobile projects.

This kind of temporal figure helps us to see the general picture of the situation,
and how both platforms behave along the last 2 years. However, we still lack an ex-
planation regarding what factors are really impacting the frequency. We developed
multiple linear regression models to understand the impact of the platforms in the fre-
quency when controlling for confound variables. Next, we analyze the results obtained
by our models according to the methods and steps we proposed (Section 3.3).
Distribution comparison. Figure 3.3 presents the boxplots corresponding to the
distribution of commits per month (response variable) for both platforms: mobile and
non-mobile. By observing this figure, we can state that the two distributions are
different. In fact, the median number of commits per month for mobile is approximately
63, while for non-mobile is 84.5. In addition, we obtained a Cliff’s Delta of -0.2181
(small), with a 95% confidence interval, indicating a small but statistically significant
difference.
Additional explanatory power. Table 3.3 presents our model coefficients along
with their p-values. From the model with only control variables, we can observe that
most coefficients are in the positive direction (positive T value), as expected.
For instance, we expect that more contributors result in more commits per month. The
same is valid for number of pull requests and number of issues. The unexpected results
occurs for sloc coefficient, as its signal is negative. By inspecting the significance,
apart from the intercept coefficient, all coefficients are not significant. We checked the
correlation of the control variables with the response variable and in fact they are not
highly correlated. The highest correlation value occurs for number of contributors and
number of commits per month (pearson coefficient of 0.1992).

To gauge the effect of the indicator variable (isMobile), we build a successive
regression model including the binary variable we defined to indicate whether a reposi-
tory is mobile or not. In Table 3.3, we can see the coefficients of the full model. In fact,
the indicator variable has a statistically significant impact on the frequency of commits
in repositories (p-value <2e-16). The indicator variable also increased the explanatory

26 Chapter 3. Quantitative study

0
50

10
0

15
0

Mobile

N
um

be
r

of
 c

om
m

its
 p

er
 m

on
th

0
50

10
0

15
0

Non−mobile

N
um

be
r

of
 c

om
m

its
 p

er
 m

on
th

Figure 3.3. Distributions of response variable for mobile and non-mobile.

Table 3.3. Multiple linear regression coefficients for our two models.

Variable T value P value (significance)
(Intercept) 61.02 <2e-16 ***
nCont 1.283 0.2
sloc -0.224 0.823
nPR 0.235 0.814

Control variables
only

nIssues 1.233 0.218
(Intercept) 66.194 <2e-16 ***
isMobile -15.246 <2e-16 ***
nCont -1.19 0.235
sloc -1.525 0.128
nPR -0.117 0.907

Full model,
including indicator

variable

nIssues 0.751 0.453
***p <0.001, **p <0.01, *p <0.05

power of the model, as suggested by a proportional change in R2 of 1,900% (from 0.02
to 0.4). We adopted the Cohen’s f2 measure to estimate the effect size of the indicator
variable. Cohen’s f2 measure can be obtained by the following equation:

R2
contr+ind −R2

contr

1−R2
contr+ind

,

where the R2 subscripts indicate the variables used in the model. We computed the
R2 for both models (controls and indicator, and only controls) and obtained a Cohen’s

3.4. Results 27

f2 of 0.19. The following thresholds are suggested5 to indicate the effect size: 0.02
(small), 0.15 (medium), and 0.35 (large) [Champely et al., 2018]. We can therefore
conclude that the effect of being a mobile repository on the frequency of commits when
controlling for confound variables is medium.

Multicollinearity diagnosis. We diagnose our models, checking for multicollinear-
ity. Having highly correlated regressors in our models may inflate the variance. We
first check the correlation between the predictors and then we get the variance infla-
tion factor (VIF) for each predictor. Figure 3.4 presents a matrix-style image with the
correlation between all pairs of predictors in our models. As we can see, predictors are
not highly correlated (the highest correlation is 0.618 between number of pull requests
and number of issues). Regarding the variance inflation factor, all variables have VIF
values below 3, which is a safe value and indicate that our models do not suffer from
multicollinearity. Next we can see the values for each regressor: nCont (1.6882), sloc
(1.2904), nPR (1.5726), and nIssues (1.3440).

Corr:

0.584

Corr:

0.565

Corr:

0.375

Corr:

0.429

Corr:

0.372

Corr:

0.618

nCont sloc nPR nIssues

nC
ont

sloc
nP

R
nIssues

0 2 4 6 7 9 11 13 15−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 7.5

0.0

0.1

0.2

0.3

7

9

11

13

15

−5.0

−2.5

0.0

2.5

5.0

−5.0

−2.5

0.0

2.5

5.0

7.5

Figure 3.4. Correlations between predictor variables.

5https://en.wikipedia.org/wiki/Effect_size

28 Chapter 3. Quantitative study

Table 3.4. Frequent types code changes in all commits.

Frequent change types Support Absolute count

Mobile

{build} 0.07081202 12166
{test} 0.07848341 13484
{source_code} 0.67038014 115176
{source_code,test} 0.05435169 9338

Non-mobile

{test} 0.09728867 28573
{build} 0.11002986 32315
{source_code} 0.70661541 207528
{source_code,test} 0.05106353 14997
{source_code,build} 0.05217012 15322

3.4.2 Frequent Code Change Types and Association Rules

Regarding the types of frequent code changes, we analyzed the commit history using
the Apriori mining algorithm to find types of code changes that frequently occur
together and their association rules. We set a minimum support value of 0.05. Our
minimum support must be a low value given the characteristics of our dataset, in
which commits are much more likely to change a single type of file. More specifically,
commits usually change only source code files (67% of mobile changes are source
code changes and 70% of non-mobile changes are source code changes). Given these
characteristics, we may expect that support metric values are low. Furthermore, when
analyzing the association rules, we focus on the confidence and lift metrics to check
the strength of the rules instead of support. Table 3.4 presents the code changes that
occur together along with their support and absolute count values.

We can note that all types of changes, when considered individually, appear in
the results returned by the algorithm. However, we focus only on types of changes
that occur together with other types, that is, we analyze results where at least two
types of changes appear. As we can observe, in mobile systems, the types of code
changes that occur together (i.e., in the same commit) with a support greater than the
minimum support is source code and test changes. This co-occurrence happened with
a support of 0.054 (in 5.4% of all commits). The low support indicates that developers
do not usually perform changes in source code and test files simultaneously, as we
already discussed. Surprisingly, mobile developers do not usually change source code
files together with build files as expected [Macho et al., 2017]. We performed some
tests and found that source code changes occur together with build changes only with
a support of 0.03. Regarding non-mobile platforms, we can see two co-occurrences of

3.5. Discussion 29

types of changes. First, source code changes occur together with test changes with a
support of 0.051, also a low support as for mobile. Second, source code changes also
co-occur with build changes with a similar support, which is 0.052.

We also obtained association rules by applying the Apriori algorithm. For the
association rules, we rely on default values of minimum support (0.001) and minimum
confidence (0.8) defined by the arules package in R. We found the following rule for
the mobile platform:

{build, test} => {sourcecode}

The association rule above has a support value of 0.00623, confidence of 0.9177,
lift of 1.3689, and absolute count of 1070. This rule indicates that developers commonly
perform changes in source code files given they changed build and test files. The low
value of support shows that both sides of the rule (build and test changes, and source
code changes) do not occur very frequently in commits. The high confidence value
indicates that, given a scenario in which build and test changes are made (previous
condition), a source code change is much likely to be necessary. The rule presented
below was obtained for non-mobile platforms:

{build, test} => {sourcecode}

The association rule above has a support value of 0.01337, confidence of 0.8597,
lift of 1.2166, and absolute count of 3927. Although the association rule for non-mobile
is the same of mobile, we obtained slightly different values of support, confidence and
lift. For instance, the support is 2.15 times higher in non-mobile than in mobile, which
indicates that both sides of the rules (build and test changes, and source code changes)
occur more frequently in commits of non-mobile applications. However, the confidence
is lower than in mobile. This indicates that, although a source code change is likely
to be necessary given that build and test changes were made, the strength of this
statement (i.e., of the rule) is smaller compared to mobile platform.

3.5 Discussion

In this section, we discuss the obtained results to answer the research questions of our
study.

30 Chapter 3. Quantitative study

RQ1: How frequent are code changes in mobile and non-mobile platforms?

We observed code changes (through commits made to the systems) are more
frequent in non-mobile platforms when compared to mobile. By analyzing the trend
graph over the past two years, we note that non-mobile repositories have more commits
per month in all 24 months compared to mobile repositories. Furthermore, we can
observe a regular pattern of change in the mobile platform, with a possible seasonal
behavior. Our multiple linear regression models indicate that being mobile significantly
impacts the frequency of commits when controlling for the following confound variables:
number of contributors, size of system (in SLOC), number of pull requests, and number
of issues.

Answering RQ1: Code changes are more frequent in non-mobile platforms com-
pared to the mobile platform. Furthermore, being mobile significantly impacts (in
the negative direction) the frequency of commits when controlling for confound
variables.

RQ2: How is the co-evolution of source code changes, build changes and test changes
in mobile and non-mobile platforms?

We obtained the most frequent co-occurrences of the target types of changes in-
vestigated in this study: source code changes, build changes, and test changes. By
analyzing the results of the mining algorithm, we observed that source code changes
evolve together with test changes in the mobile platform despite the low frequency of
co-occurence. When analyzing the co-evolution for non-mobile platforms, we observed
that source code changes and test changes also evolve together, but source code changes
evolve together with build changes as well, what, surprisingly, is not the case of mobile
systems. Both co-occurrences also presented low values for the support metric, as in
the mobile platform. Changing build files together with other changes in the system is
essential for keeping build configurations synchronized with the rest of the system [Ma-
cho et al., 2017] and, therefore, developers should put efforts and be aware of the need
of evolving build files together with the source code. Regarding the association rules,
we found no surprising rule. We obtained the same rule for mobile and non-mobile
platforms despite some slightly different values for support, confidence, and lift met-
rics. Both rules suggest that developers are likely to change source code files given
they changed build and test files.

3.6. Threats to Validity 31

Answering RQ2: In the mobile platform, source code changes occur together with
test changes, while in non-mobile platforms, source code changes occur together
with both build and test changes. Both co-occurrences presented low frequency
across all commits, which indicates that build and test changes do not co-evolve
with source code changes. The association rules show that developers should likely
change a source code file given they changed build and test files.

3.6 Threats to Validity

The quantitative study presented in this chapter has some limitations that could po-
tentially threaten our results, as we explain next. First, the number of repositories in
each group (mobile and non-mobile) may not be representative of the entire platform.
However, to mitigate this threat, we selected very relevant projects among the top-1000
Java repositories. The dataset aggregate statistics presented in Table 3.3 shows the
relevance of our projects.

Second, our study is restricted to Java repositories hosted on GitHub as we ana-
lyze changes made to build files, which are very common in Java projects. Therefore,
our results may not generalize to other languages. Third, we analyze build changes
related to build files from the following build automation tools: Apache Maven, Ant,
and Graddle. Other tools may be included in the analysis and change the results.
However, the selected build tools are largely used in Java projects and, therefore, we
believe our analysis is reliable to some extent. Finally, despite trying to capture as
many confounds as possible, we may not have considered all possible confounds in our
regression models, which may affect our results and conclusions.

3.7 Final Remarks

This chapter presented a quantitative study aiming at understanding evolution prac-
tices in mobile and non-mobile platforms, that is, we seek to reveal how repositories
from different platforms evolve. In Section 3.1, we presented our main goal and the
proposed research questions. In Section 3.2, we detailed how frequent itemset mining
algorithms work and how we mapped the problem of mining frequent itemset to our
context of finding types of code change that frequently occur together. We presented
our research method and steps in Section 3.3. The results were presented in Section 3.4

32 Chapter 3. Quantitative study

and discussed in Section 3.5. Finally, we discussed the limitations and threats to va-
lidity of our study in Section 3.6.

By analyzing the frequency of commits from a temporal perspective, we observed
that non-mobile repositories have higher frequency of commits. Our statistical analy-
sis through multiple linear regression models revealed that being mobile significantly
impacts the frequency of commits (in a negative direction). By applying the Apriori
mining algorithm to find types of code changes that frequently occur together, we ob-
served that in mobile platform source code changes occur together with test changes
with a low frequency. In non-mobile platforms, we found two groups of changes that
occur together: (i) source code changes and test changes and (ii) source code changes
and build changes. Both groups also have a low frequency of occurrence.

In the next chapter, we deepen our investigation on practices adopted in different
contexts of software development by studying the adoption of development practices,
such as testing practices. We found more suitable to investigate development practices
in a finer-grained level rather than software platform, which led us to perform our
analysis on software domains (e.g., e-commerce and healthcare). Therefore, we propose
a qualitative study to reveal how development practices are adopted across different
software domains.

Chapter 4

Qualitative Study

In this chapter, we present a qualitative study aiming to better understand which and
how development practices are adopted across different software domains as we believe
they have specific ways of applying development practices . In this study, we conducted
19 semi-structured interviews with cross-domain developers, i.e., developers who have
worked in at least two different software domains. Afterwards, we run a Web survey to
confirm or not the results obtained from the interviews. Section 4.1 presents the main
goal and the research questions. In Section 4.2, we detail the methodology of the study.
We present the results in Section 4.3 and discuss them in Section 4.4. In Section 4.5,
we present the limitations and threats to validity. Finally, Section 4.6 concludes this
chapter.

4.1 Goal and Research Questions

Our goal in this study is to understand how development practices vary in different
software domains and whether there are specificities in their use, i.e., we aim to verify
whether developers from different domains can adapt development practices to their
specific context. We hypothesize that some domains may have similarities in the use of
development practices and we also believe some domains may adopt practices in such
a specific way that makes them very different from the others. However, works so far
have not focused on the differences of domains regarding development practices. In
addition, previous studies have not investigated the adoption of development practices
based on the perception of cross-domain developers, as we do here. In this study, we
adopt an exploratory and inductive research [Stol et al., 2016; Strauss and Corbin, 1990;
Glaser and Strauss, 2017; Wohlin et al., 2012] to seek for differences and similarities
of several practices across 13 domains. To guide our study, we defined the following

33

34 Chapter 4. Qualitative Study

research questions:

• RQ1: Which development practices are similar across domains?

• RQ2: Which development practices are specific to a domain?

• RQ3: Which factors may impact the adoption of development practices in differ-
ent software domains?

4.2 Research Method

We conduct a qualitative study to help us better understand how software develop-
ment practices are used in different software domains. We follow an inductive research
strategy, using a grounded, iterative approach to let development practice patterns of
usage emerge from the interviews [Kitchenham et al., 2002; Wohlin et al., 2012]. This
means we do not have previous categories to classify the use of development practices in
different domains. To achieve our goal, we conducted semi-structured interviews with
software professionals from industry with experience in multiple domains. As outline
in Figure 4.1 and detailed later, the research methodology is composed of five stages:
(i) participants selection in LinkedIn; (ii) interview design; (iii) conduct of interviews;
(iv) transcription analysis; and (v) validation through a Web survey. The last stage
was executed to confirm (or not) the main findings for domains in which we reached
saturation. We noticed that 19 interviews were sufficient to gather interesting informa-
tion regarding the adoption of development practices in different domains and to reach
the saturation in three domains. In fact, previous interview studies performed a similar
number of interviews, such as Murphy-Hill et al. [2014] (14 interviews), Stacey and
Nandhakumar [2009] (20 interviews), Burger-Helmchen and Cohendet [2011] (8 inter-
views), and Dagenais and Robillard [2010] (22 interviews). We stopped conducting
interviews in the following domains as new interviews were not bringing new infor-
mation: banking (with 6 interviews), e-commerce (with 8 interviews), and healthcare
(with 5 interviews). Therefore, in this study, we focus on presenting results from the
aforementioned domains and we briefly indicate interesting findings from domains in
which we have not yet reached the saturation, namely: oil and gas and social networks.

4.2.1 Interview Process

Our interview process is iterative and we use the open coding technique from grounded
theory [Stol et al., 2016; Strauss and Corbin, 1990; Charmaz and Belgrave, 2007; Glaser

4.2. Research Method 35

Participants
Selection

Interview
Design

Conduct of
Interviews

Transcription
Analysis

Validation
Through

Web Survey
1.__
2.__
3.__

Design Improvements

Continuous Selection of Participants Saturation

Figure 4.1. Our research methodology process.

and Strauss, 2017]. The interview phases are simultaneous, i.e., the stages overlap. For
instance, while conducting interviews with some participants, we may also continuously
select additional participants and iteratively build the interview script according to the
previous interviews. Next, we describe each stage in detail.

Participants selection. We propose an innovative method to select the interview
participants, which is an important contribution of our work. We selected only cross-
domain developers, i.e., developers who have worked in more than one software domain.
This selection criterion makes sure the developer has experienced more than one do-
main and, therefore, can confidently state the differences in the development practices’
adoption. Table 4.1 presents information regarding the domains to which participants
belong and years of experience with software development. We anonymously identify
each participant by using the letter P followed by an identifier number (e.g., P1, P2,
and so on until P19). On average, the interviewees have 11.7 years of professional ex-
perience and most participants hold at least one postgraduate degree, including master
and doctorate. Most of the interviewees currently work or have worked as developers
for large multinational companies, with thousands of employees and whose services
and products reach millions of users, such as Facebook, Google, Macy’s, General Elec-
tric, and Petrobras. In addition, the participants workplaces are distributed around the
world, such as participants who are currently working in the United States, Canada and
Brazil. Some participants have experience in three or even four domains and for such
cases we decided to do the interview with respect to the domains in which developers
have the most experience.

To check that participants were in fact cross-domain, we carefully and manually
inspected their LinkedIn accounts and we selected only developers who have worked

36 Chapter 4. Qualitative Study

Table 4.1. Interviewees information.

Participant Experience (Years) Domain 1 Domain 2
P1 20 Banking Healthcare
P2 9 Accounting E-commerce
P3 8 E-commerce Social Network
P4 10 E-commerce Education
P5 12 Healthcare Oil and Gas
P6 10 E-commerce Search Engine
P7 16 Banking E-commerce
P8 9 Education Healthcare
P9 11 Accounting E-commerce
P10 25 Banking Mining and Metals
P11 7,5 Games Mining and Metals
P12 16 Banking Games
P13 5 Aviation Healthcare
P14 17 Banking Stock Market
P15 7 Healthcare Stock Market
P16 15 Business Stock Market
P17 8 Accounting Education
P18 8 Banking E-commerce
P19 10 Accounting E-commerce

in companies or projects within the targeted domains. In addition, developers should
have at least 5 years of professional experience in total and 1 year of work within each
domain. By following these criteria, we believe participants’ statements are more confi-
dent regarding similarities and differences in adopted practices, which also brings more
confidence to our results. We started with an opportunistic selection through a search
in our LinkedIn contact lists. After that, we implemented an algorithm to automat-
ically look for software developers from each domain by performing text analysis on
LinkedIn profiles. The algorithm returns the developers’ name and LinkedIn account,
which were manually validated by the author and two collaborators: a Ph.D. student
and a software engineering researcher. This double-check procedure helps to ensure
that all participants meet the defined selection criteria. We contacted developers by
email (when available anywhere online, such as on GitHub) or by the LinkedIn InMail
functionality. The process of selecting cross-domain developers with experience in at
least two domains for the interviews was very difficult. Finding cross-domain develop-
ers is even harder in some specific domains (e.g., aviation), as developers from these
domains are highly specialized and usually do not have experience in other domain of
our interest. We sent 62 emails to cross-domain developers we identified and validated
in LinkedIn, and we received confirmations from 24 developers. However, 5 developers

4.2. Research Method 37

declined later due to concerns regarding their companies’ private information, even
though we made it clear all the process would be anonymized and we were trying to
understand general practices adopted. Thus, we interviewed 19 developers (response
rate of 31%).
Interview design. To guide us during the interviews, we iteratively developed an
interview script, which is composed of three main sections: background of the par-
ticipant, general questions regarding differences in use of the software development
practices, and specific questions regarding a set of practices, such as software testing
and DevOps practices. Through the first section, we are interested in participants
academic and professional background, such as the bachelor’s degree, the highest aca-
demic degree, and years of experience. In the second section of the interview, we asked
general questions regarding differences in the two software domains. In this part, we
are interested in getting the participant’s perception about the development practices
in different domains without biasing our specific questions. Finally, in the last sec-
tion, we asked specific questions about some development practices. In this section of
the interview, we focus on the topics not mentioned by the interviewee in the second
section in order to cover a broader set of all development practices. Our questions
cover the following practices: releasing practices (e.g., regarding the deadlines of prod-
uct releasing), quality assurance (which included test practices), code review practices,
continuous integration and delivery, version control practices, and practices related to
the software architecture, such as whether the team is aware and discusses architectural
impacts caused by changes in the system [Paixao et al., 2017].
Conduct of the interviews. After the usual consent process with each participant,
we start the interview, planned to last no more than 40 minutes. We observed that
time frame was sufficient to do a concise interview, since we could collect all informa-
tion we needed. We also recorded all interviews with the consent of the participants.
Most interviews were conducted through a conversation on Skype. However, when
the participant was not available due to agenda incompatibility, we sent out the inter-
view by email, doing a follow-up whenever necessary (e.g., to better understand some
responses).
Interview transcription analysis. The last stage of the interview process is the
transcription and analysis of the interview to extract all relevant information. Here we
used the open coding technique. We carefully analyzed the transcriptions and came up
with the most relevant and groundbreaking topics stated by the interviewees, which
were discussed afterwards by the author and two collaborators: a Ph.D. student and a
software engineering researcher.

38 Chapter 4. Qualitative Study

4.2.2 Validation

To check whether practices mentioned by interviewees are in fact broadly adopted by
developers from each domain, we designed an online survey. It is important to note
that we validated adopted practices only for software domains in which we reached
the saturation, which occurred for the following domains: banking (6 interviewees),
e-commerce (8 interviewees), and healthcare (5 interviewees). The survey is composed
of two main sections: background (common to all surveys) and questions regarding a
software domain (specific to the survey of each domain). Through the first section, we
intended to collect information related to the participants background such as educa-
tion, software development experience and development experience within the specific
domain. The second section contains concise and objective statements that present
characteristics and adopted practices within the domains, as indicated by the intervie-
wees. In this section, the survey participant is asked to indicate the agreement with
the statement through a Likert-type scale.

To find participants for the survey, we first mined repositories related to the target
domains from GitHub in order to collect the names and emails from top-committers.
We used specific search strings to make sure the repositories belong to the domains
of our interest. To retrieve repositories from the banking domain, we used bank, and
banking strings; for the e-commerce domain, we used e-commerce, e-commerce and
electronic commerce strings; finally, for the healthcare domain, the following strings
were used: healthcare, and health. Then, the repositories were manually validated to
certify they are in fact software systems and they really belong to the domain. Finally,
we automatically collected the name and email of top-committers (number of commits
greater than 100) from repositories so that we could send the survey by email. We
believe developers with more than 100 commits have sufficient knowledge within the
domain and therefore are capable to answer our survey. With this procedure, we do
not aim to find an extensive list of systems and committers. Instead, our goal is to
find a representative number of developers with a good knowledge in the domain (top-
committers) to answer our survey. We had to discard a large number of committers
since they did not meet our criteria of 100 commits and possibly were not capable of
confidently answering the survey.

In addition to this strategy, we searched for additional participants in LinkedIn
since GitHub does not contain many popular repositories that meet our criteria (be-
longing to specific domains and developers with more than 100 commits). We looked
for developers from the three domains within LinkedIn and sent the survey by email.
After sending 329 emails, we received 40 complete responses from participants world-

4.3. Results 39

wide (response rate slightly above 12%), being 14 for banking, 14 for e-commerce and
12 for healthcare.

4.3 Results

In this section, we report results observed in the interviews and validated in the survey.
Note that we present interview quotes that are supported by at least three interviewees
from different companies. In parallel, we report the percentages of agreement (or
disagreement) of survey participants regarding each practice reported by interviewees.
Figure 4.2 shows a summary of our main results obtained from the interviews, which are
discussed in Sections 4.3.1, 4.3.2, and 4.3.3. Rectangles indicate domains and ellipses
indicate practices or characteristics. Arrows indicate which domains are related to each
practice or characteristic.

Healthcare E-commerce

Banking

Regulatory
demands

Continuous
Integration

High frequency

Moderated frequency Interruption

Interruption

Requirements
Security and

privacy concerns

User experience

Data

Performance concernUnderstanding of complex
financial operations

Interoperability

Difficult

Figure 4.2. Main adopted practices in domains. Banking domain is moderately
regulated and interrupt continuous integration process in important commerce
periods (e.g., Black Friday); e-commerce follows an user-centered development,
focusing on non-functional requirements that provide a good user experience and
also interrupt continuous integration process; and healthcare is highly regulated,
focuses on patient data privacy and security and requirements elicitation may be
easier than in other domains.

Table 4.2 presents an overview of the survey results for the statements regarding
characteristics and adopted practices in each domain. The first column shows the state-
ments presented to participants. Each statement is identified by a unique label. For
instance, we use S1.B to identify the first statement of the banking survey. The second
column presents the Likert distribution of the participants agreement regarding each
statement. The Likert-type scale varies from completely disagree (score 1, graphically
in the left) to completely agree (score 5, graphically in the right).

40 Chapter 4. Qualitative Study

Table 4.2. Survey results with presented statements and Likert-scale agreement
distribution.

Banking

S1.B - Code changes are less frequently released in periods of the year
when large financial transactions are performed.

S2.B - The banking segment is moderately regulated, many times requir-
ing changes in the system to fulfill regulatory demands.

S3.B - Requirements elicitation is hard because it envolves the under-
standing of complex financial operations.

E-commerce

S1.E - Code changes are often not released in periods of high amount of
sales, such as in Black Friday and Christmas.

S2.E - This segment focuses on user-centered non-functional require-
ments, such as usability, security and performance.

S3.E - Code is pushed into production with less frequency compared to
other software segments.

Healthcare

S1.H - The healthcare segment is highly regulated, with frequent legal
demands.

S2.H - Requirements elicitation is relatively easier compared to other
segments

S3.H - Interoperability of systems from different workplaces is usually
difficult.

S4.H - Privacy, reliability and security of patient data are major concerns
in healthcare software.

4.3.1 Banking Domain

Continuous integration interruption. Interviewees from the banking domain often
mentioned they are more careful with dates when financial transactions increase, mainly
in the end of the year and beginning of each month. As a contrast to other domains,
banking developers pointed out that in such periods they do not release large code
changes to the servers, interrupting the continuous integration process in order to
avoid inserting bugs in the systems during critical periods. They also stated that the
priority is to fix bugs. Participant P10 said the following quote (supported by P1, P7,
and P12):

Most of the banks have a freeze period about 30 days before the new year,
when just emergency software updates are allowed.

4.3. Results 41

Besides Black Friday and new years period, participants also mentioned that
development is modified prior to salary payments, when the traffic is usually high.
Below, a quote from P18 with support of P1 and P7 (note that salaries are paid in
the beginning of the month in the participant’s country, which may not be the case for
other locations):

We usually do not release large code changes to the server in the first days
of the month, just before salary payments.

According to the banking survey, 58.3% of participants agree with this practice
(scores 4 and 5), while only 16.6% disagree (scores 1 and 2). In addition, 25% of
participants were neutral (score 3). The survey responses indicate that developers
usually adopt this practice in banking development.
Moderated regulatory demands. Developers also highlighted that banking systems
are regulated by legal demands that come from the government, which is not common
in other software domains. Hence, one common practice is to change the code to
comply to a regulatory demand, such as stated by P10 and supported by P1 and P4:

Most of the time was used to enhance an existing feature, add a new one
or comply to a regulatory change.

According to the banking survey, 83.3% of participants agree with this practice
(scores 4 and 5), while only 16.7% are neutral (score 3). No respondents disagrees. The
responses indicate that in fact the banking domain requires specific changes (besides
usual ones) to comply to regulatory demands.
Overly complex requirements. Another characteristic of the banking domain is
regarding requirements engineering practices. Developers from banking often said that
understanding what stakeholders really want may be difficult due to the context where
the system will operate, many times requiring the understanding of financial terms.
Participant P10 mentioned (supported by P14 and P18):

...it is hard to understand and put everything together because it involves
abstract, complex, and structured financial operations.

According to the banking survey, 83.4% of participants agree with this practice
(scores 4 and 5), while only 8.3% are neutral (score 3) and 8.3% partially disagree (score
2). The responses strongly indicate the high complexity of requirements elicitation in
the banking domain.

42 Chapter 4. Qualitative Study

4.3.2 E-commerce Domain

Continuous integration interruption. Similarly to the banking domain, e-
commerce developers also adopt practices of interrupting continuous integration, ac-
cording to our interviewees. However, in this case, software development is oriented
to commerce important dates, when the amount of sales increase. In such periods,
participants mentioned that the priority is to fix bugs and give the best experience for
users. Therefore, developers may change their usual continuous integration practices
(i.e., they stop sending large changes to the servers) aiming at focusing on the most
important tasks, such as bug fixing. A quote from P6 supported by P2, P4, P7 and
P9:

We have code freezes a few weeks prior to Christmas holidays seasons, when
only critical or major bug fixes could be introduced. A week prior to the
holidays absolutely no code was checked in unless critical to the business.

According to the e-commerce survey, 83.4% of participants agree with this prac-
tice (scores 4 and 5), while only 16.6% disagree (scores 1 and 2). The high agreement
percentage suggests this practice is in fact widely adopted by e-commerce developers.
Focus on user experience. According to e-commerce interviewees, developers give
a special attention to specific user-centered non-functional requirements, mainly per-
formance, usability and security. According to them, the user-focused development
aims at providing the best user experience as possible, since a low performance system
may prevent the user from concluding a purchase. E-commerce development practices
include stress tests to guarantee the system will provide a good experience for users.
P3 mentioned (supported by P6, P18 and P19):

Performance is critical for user experience. We have stress-test environ-
ments where the numbers are pushed to limits (visits, users, transactions,
and many other metrics that could be extrapolated).

According to the e-commerce survey, 50% of participants partially agree with this
practice (score 4), while 50% are neutral (score 3). This may indicate that focusing
on the user-experience is a generic characteristic, being important in other domains as
well.
Less frequent continuous delivery. Finally, interviewees also mentioned that con-
tinuous delivery is less frequent in e-commerce development in comparison to other
software domains, since code changes are extensively tested before being put into pro-
duction. This happens to make sure no bug would be inserted into the system, which

4.3. Results 43

could cause a bad experience for the user and reduce the number of visitors of the
online store. P6 stated (supported by P2 and P4):

We had less frequent pushes to production in e-commerce domain due to
extensive code change tests.

According to the e-commerce survey, 41.6% of participants disagree with this
practice (scores 1 and 2), while 25% are neutral (score 3) and 33.3% partially agree
(score 4). The high percentage of disagreement and neutrality may indicate that this
practice is not commonly adopted in the e-commerce domain and it may only reflect
interviewees experience within their companies. Looking at this results, we believe that
less frequent continuous delivery is strictly related to companies policies and culture,
as it may reflect the personal experience of interviewees who mentioned that.

4.3.3 Healthcare Domain

Frequent regulatory demands. The healthcare domain is a well-established and
largely known software domain within both academia and industry. This domain has
peculiarities that differ it from the others, such as the regulations that health systems
usually must follow [Richardson et al., 2016; Roed and Ellingsen, 2011]. In fact, in-
terviewees from the healthcare domain corroborate with this belief. For instance, they
mentioned that when a legal demand arrives, the developer team needs to focus on
implementing this new demand, giving it the highest priority. P5 stated (supported by
P1, P8 and P13):

Health domain is more regulated and oriented by legal demands, which come
with a preestablished date.

According to the healthcare survey, 70% of respondents agree (scores 4 and 5)
with this characteristic. More specifically, 60% completely agree with it, indicating
that in fact healthcare software is higly regulated. Scores 1, 2, and 3 received 10% of
responses each.
Clearer requirements. Regarding the requirements engineering practices, it is com-
mon believed that this phase of the software development is really difficult and complex
[Yost et al., 2016]. However, participants from the healthcare domain contradicted this
belief, claiming that requirements elicitation in healthcare domain is not as difficult
as in other domains, such as Oil and Gas (pointed out by P5) and banking (stated
by P10). As they said, despite the common lack of time of health professionals, the
requirements in this domain are clearer due to the (usually) higher qualification of

44 Chapter 4. Qualitative Study

health professionals (e.g., medical doctors). Therefore, such professionals can easily
understand and keep a conversation with IT professionals, making the requirements
elicitation relatively easier and clearer, as P5 mentioned (supported by P1 and P13):

Requirements are clearer in healthcare due to the higher qualification of
health professionals (medical doctors).

According to the healthcare survey, 50% of respondents disagree (scores 1 and 2)
with this characteristic. In addition, 10% are neutral (score 3) and 40% agree (scores 4
and 5). This agreement distribution indicates that requirements elicitation in health-
care domain may be strictly dependent on the personal experience of developers and
the health companies for which they have worked. Therefore, it may reflect a charac-
teristic of the companies’ policies and culture, instead of an intrinsic characteristic of
the healthcare domain itself. Furthermore, we believe that age and maturity of com-
panies strongly influence requirement engineering practices, as older companies may
have acquired experience with requirements elicitation, making it easier as indicated
by interviewees.
Difficult interoperability. Interviewees from healthcare also mentioned the diffi-
cult they usually face regarding interoperability practices of systems from different
companies. For instance, even though there are some standards, hospitals may have
surprisingly different information patterns, which difficult the communication among
them, as P5 mentioned (supported by P1 and P8):

Although there are standards, hospitals, for example, rarely switch informa-
tion because they have different information formats.

According to the healthcare survey, 70% of respondents agree (scores 4 and 5)
with this practice. In addition, 30% are neutral (score 3). The responses indicate that
in fact interoperability is a challenge in the healthcare domain.
Data security and privacy concerns. Healthcare participants often mentioned
the importance of reliability, privacy and security regarding patient data. The whole
development process is concerned with the patient data, always trying to keep them
reliable in order to avoid possible serious consequences. For instance, participant P5
stated (supported by P1, P13 and P15):

If I switch patient data, I can give wrong diagnoses and prescript wrong
medications.

4.4. Discussion 45

According to the healthcare survey, 70% of respondents agree (scores 4 and 5) with
this practice, while 30% are neutral (score 3). The responses suggest that developers in
fact consider data security and data privacy major concerns in the healthcare software
development process.

4.4 Discussion

In this section, we discuss the results obtained from the interviews and from the survey.
It is important to note that we answer the research questions based on practices and
characteristics from domains in which there was agreement between the interviewees
and the survey participants. This discussion gives more confidence to our conclusions
as a broader and more diverse set of developers agree with that practice.

RQ1: Which development practices are similar across domains?

We noticed that both banking and e-commerce domains share a common prac-
tice of interrupting the continuous integration process in periods of the year when the
amount of sales increase, such as Black Friday and Christmas. Furthermore, regula-
tory demands are common in the banking and healthcare domains, usually requiring
efforts from the development team to implement changes into the system to comply to
regulatory requirements.

Answering RQ1: We found two similarities of practices across domains. First,
continuous integration practices are adopted in a similar way in the banking and
e-commerce domains, which suggests that other financial-related domains may also
follow this practice. Second, regulatory-driven changes are common in the banking
and healthcare domains, which must adapt their workflow to comply to regulatory
demands.

RQ2: Which development practices are specific to a domain?

Requirements elicitation in the banking domain is different from the other do-
mains we investigated, since an understanding of complex financial operations is neces-
sary to precisely capture requirements needs. The healthcare domain is different from
other domains regarding interoperability. For instance, many health companies may
have different information standards, which may hinder information switching between
companies. Other domains (e.g., mining and metals, banking, and oil and gas) have
widely used standards that ease information switching whenever necessary.

46 Chapter 4. Qualitative Study

Answering RQ2: We found two main practices specific to domain. First, require-
ments engineering practices are adopted in an unique way by the banking domain,
involving the comprehension of complex financial operations. Second, practices re-
lated to interoperability are more difficult in the healthcare domain in comparison
to others, due to different standards used by health companies.

RQ3: Which factors may impact the adoption of development practices in different
software domains?

Through the third research question, we are interested in capturing the main
factors that can influence which development practices the companies adopt. Based
on our interpretations of the interviews, we noticed that the company’s policy and
culture play an important role when deciding about the software development process.
Many times, the software engineering team is required to follow specific practices due
to the company way of work. For instance, as we already discussed, we identified that
less frequent continuous delivery practices in e-commerce and requirements engineering
practices in healthcare resulted from companies’ policies and culture. Furthermore, the
age and maturity also have a strong impact on adopted practices. We realized that
companies may change or adapt practices throughout the years, also as a result of the
emergence of new technologies and development processes.

Answering RQ3: In addition to the software domain, the companies’ policy
and culture are important factors that guide the development process, therefore
impacting the adopted practices. Moreover, age and maturity also may influence
the practices’ adoption and their way of use.

4.4.1 Implications for Practice

In this section, we elaborate on the three main practical implications our results can
have based on the joint analysis of the interview findings and the survey responses.
First, companies should provide targeted training for their employees, not only software
developers, but also training for people from other positions (e.g., software architect
and technology leader). The training should focus on specific domains’ characteristics
and how development practices are adopted within the company’s domain.

Second, professionals should update themselves regarding which and how prac-
tices are adopted in domains, specially if they are looking for a new job. Understanding

4.4. Discussion 47

how the companies of interest apply development practice may increase the chances of
success in a job position application. For instance, developers who work (or intend to
work) with banking software should understand (at least basic) financial operations as
this may strongly aid the requirements elicitation.

Third, software engineering education professionals should consider specificities
of different software domains. We believe new teaching approaches that consider the
domain should be investigated. For instance, new specific undergraduate or gradu-
ate courses may be interesting. Interdisciplinary courses may also be a good idea,
as Richardson et al. [2016] recently suggested an interdisciplinary course of software
engineering for healthcare systems.

4.4.2 Contrast with Current Beliefs

Continuous integration may not always be continuous in some domains. This prac-
tice has emerged recently aiming at automating the compilation, building and testing
of code, with weekly and even daily integration [Vasilescu et al., 2015; Ståhl and Bosch,
2014; Elbaum et al., 2014] and some studies have investigated continuous integration
flexibility, costs and benefits [Hilton et al., 2017, 2016]. Most developers keep adopting
this practice based on how everyone uses, but little research has investigated whether
there are differences in continuous integration usage. Surprisingly, we identified that
developers from banking and e-commerce (i.e., financial domains) usually interrupt
continuous integration in critical commerce periods, such as Black Friday, aiming at
avoiding inserting subtle bugs in the systems, which would be catastrophic for the
company. We did not identify this practice in the other domains we investigated at all,
suggesting it possibly is exclusive from financial domains.

4.4.3 Results for Other Domains

In this section, we present other interesting findings from the interviews in domains
in which we did not reach the saturation. Therefore, these results provide insights
regarding some domains and we emphasize the need for further investigation focusing
on these specific domains.

Releasing practices flexibility in Social Network and Search Engine domains.
Interviewees from social network and search engine domains often mentioned the flexi-
bility they usually have regarding many aspects, such as the release deadlines. We may
expect that software development has extremely strict deadlines of releasing a prod-

48 Chapter 4. Qualitative Study

uct, as indicated by interviewees from banking and e-commerce domains. However,
this seems not to be the rule for social network domain, as participant P3 said:

...developers prioritize product and technology excellences. There is less
pressure for the deadline itself.

Participant P6 reported how developers are assigned to the projects. We may
expect developers are told what they need to develop and they just do it. However,
a common practice in social network systems is that developers have the freedom to
choose the project and the feature they work on, as P6 mentioned:

I have complete freedom to choose what kind of project I’m going to work
on, what I want to do.

Although domains usually have a dedicated testing team, such as in banking
(stated by P1) and e-commerce (stated by P7), interviewee P3 pointed out, as a contrast
to other domains, that tests are performed by the developers themselves in the social
network domain. More specifically, the developer who implemented a feature, for ex-
ample, is responsible for testing it. This code-owner based approach has been adopted
only recently in systems with modern architectures, such as microservices [Jamshidi
et al., 2018; Prechelt et al., 2016]. Therefore, the adoption of this practice may be a
result of architectural decisions in this domain, as quoted from P3:

...there is no test team. The developer is responsible for creating all inte-
gration, Web-driven, and unit tests.

Finally, we concluded that social network and search engine domains are quite
peculiar, presenting unexpected management practices (decisions about the projects in
which developers work and deadline policy) and test practices.
Autonomous fault-recovery in Oil and Gas domain. One participant from
the oil and gas domain pointed out that this domain must take into account the need
for an autonomous fault-recovery module, which is present during the entire develop-
ment process, from the requirements until the delivery and operation. In addition,
the software system must be extremely robust, given the environmental conditions of
operations (e.g., an oil platform in the middle of the ocean). One of the reasons behind
these needs is that the systems remain physically inaccessible for a long period of time,
since professionals do not have continuously access to the location where the software
is deployed, which is uncommon in other domains (e.g., healthcare as pointed out by
P13). Remote connections may also be difficult given the location of the system. A
quote from P5:

4.5. Limitations and Threats to Validity 49

Oil and Gas requires more robust and autonomous solutions since the system
is hard to reach for a long period of time.

Furthermore, the interviewee from the oil and gas domain mentioned that software
systems from this domain must follow a set of well-defined standards from the industry.
In contrast to other domains, such as healthcare, in which interchangeability is hard
due to the particularity of each health company, oil and gas systems from different
companies can easily communicate with each other. As stated by the participant, the
adoption of these standards impacts code components dependencies and, therefore, the
system’s architecture.

4.5 Limitations and Threats to Validity

The qualitative study presented in this chapter has some limitations that could poten-
tially threaten our results, as we explain next. For instance, one may point a company
from a domain we investigated and may say the company does not adopt the practices
as we presented. However, our findings are based on interview participants’ perceptions
and their experience, and therefore our results may not generalize to all companies, as
each one can adopt development practices based on its own culture and policy. Note
that, in this study, we focus on large companies, such as Facebook, Google, Petro-
bras, and Macy’s. Therefore, our results may not hold for small companies possibly
with informal software engineering processes. This kind of limitation is characteristic
of qualitative studies, as previously studies [Begel and Zimmermann, 2014; Lo et al.,
2015]. However, Flyvbjerg [2006] demonstrated that even individual cases (i.e., studies
limited to one company) contributed to discoveries in several fields, such as physics and
social sciences. Therefore, even within a limited context of a few companies and par-
ticipants, we believe our results can impact how companies from the studied software
domains can adopt development practices.

Another limitation of our study is related to our methodology for finding cross-
domain developers. We rely on a semi-automated search for interview participants,
manually validating LinkedIn profiles returned by an algorithm we implemented. How-
ever, we may have misclassified developers as cross-domain (e.g., assigning a domain
in which the developer has never worked). This may have caused a reduction in the
response rate for the interview since there would be wrong information regarding the
domains in which the developers we contacted have worked. To mitigate such issue,
we have performed a double check for each participant before contacting them.

50 Chapter 4. Qualitative Study

Finally, one may point that our interview results are based only on participants
personal experience. However, we selected practitioners with a diverse background.
This scenario composed of several large companies and different work locations bring
more generalization to our results since we believe that biases (e.g., from a specific sort
of company or a specific location) are attenuated. In addition, the Web survey collected
responses from developers worldwide with different backgrounds, which supports our
interview results regarding adopted practices within domains.

4.6 Final Remarks

This chapter reported a qualitative study aiming at understanding which and how
development practices are adopted across different software domains. In Section 4.1,
we presented our main goal and the research questions. Section 4.2 presented the
adopted research method. Sections 4.3 and 4.4 presented the results we observed from
the interviews and validated by the Web survey. In Section 4.5, we discussed the
threats and limitations of our study.

By analyzing the data collected from the interview together with the survey
data, we observed that two practices are commonly adopted across different domains:
first, continuous integration practices are similarly interrupted in the banking and e-
commerce domains, suggesting this is a characteristic of financial-related domains; sec-
ond, regulatory-driven changes are common in the banking and healthcare domains.
Furthermore, we also noticed two practices specific to domains: first, requirements
engineering practices are adopted in an unique way by the banking domain; in addi-
tion, practices related to interoperability are more difficult in the healthcare domain
in comparison to others. Finally, we also observed that the company’s policy and cul-
ture strongly influence the adoption of development practices. In the next chapter,
we present the final considerations, in which we conclude this dissertation, present
the lessons learned from both quantitative and qualitative studies, highlight the main
contributions of this work and discuss insights for future works.

Chapter 5

Final Considerations

Understanding which practices are adopted (and how they are adopted) by developers
when developing software is important as insights can be provided about how profes-
sionals are in fact working. Revealing how practices are adopted may have several
benefits, such a supporting newcomers in OSS projects and supporting companies that
intend to provide training for their employees. We also must take into consideration the
context in which software is being developed. For instance, practices may differ when
we compare different software platforms (e.g., mobile and desktop). As previously in-
vestigated by Murphy-Hill et al. [2014], software engineering should not be considered
as a uniform whole given its diversity, with different practices being applied in several
domains and involving different people in the process of software development. In this
chapter, we present the final considerations regarding this dissertation. We first con-
clude our work by summarizing our motivation, goal, methodological procedures and
results achieved. Then, we discuss the main contributions of this dissertation. Finally,
we give directions for future work.

5.1 Conclusion

We identified a research gap regarding the adoption of development and evolution prac-
tices. More specifically, we noticed that we still lacked empirical evidence about how
evolution practices are adopted in different software platforms. Although some past
works have investigated the differences between platforms [Zhou et al., 2015; Basole and
Karla, 2011], such as Android, iOS, and desktop, and others have studied software evo-
lution through code changes [Macho et al., 2017; Levin and Yehudai, 2017; Molderez
et al., 2017], no study has investigated differences and similarities between software
platforms with regard to evolution practices (concerning code changes). Furthermore,

51

52 Chapter 5. Final Considerations

we still lacked a more comprehensive, exploratory study regarding development prac-
tices adoption in software domains. Past works have studied specific characteristics of
single domains, such as e-commerce [Segura et al., 2014], healthcare [Richardson et al.,
2016], and banking [Russo et al., 2017], but no study has compared the adoption of
development practices across several domains.

To fill these research gaps, we proposed a mixed-methods research. First, we
conducted a quantitative study aiming at understanding how evolution practices are
adopted in different software platforms. In this study, we focused on mobile and non-
mobile platforms. For mobile, we considered Android applications, and for non-mobile,
we considered desktop and Web applications. We mined 363 repositories from GitHub
and analyzed a total of 465,500 commits. Our analysis on the frequency of commits
indicated that non-mobile repositories have a higher number of commits per month
compared to mobile repositories. We also built multiple linear regression models to
explain whether being mobile impacts on the frequency of commits while controlling for
confounds. Our models suggested that being mobile significantly impacts the frequency
of commits in a negative direction (lower frequency than non-mobile). In addition, we
highlight that developers aiming at contributing to mobile repositories should be aware
that source code file changes usually require test file changes.

Second, we performed a qualitative, exploratory study aiming at understanding
and revealing the similarities and differences of software domains regarding develop-
ment practices. We conducted 19 semi-structured interviews with cross-domain devel-
opers; that is, developers who have experience in at least two domains. For the tran-
scription phase, we used a Grounded Theory technique called open coding. We also run
a Web survey to validate the interview findings in domains in which we reach the theo-
retical saturation. Our results suggest that two practices are commonly adopted across
different domains: interruption of continuous integration practices (in the banking and
e-commerce domains), and regulatory-driven changes (in the banking and healthcare
domains). Furthermore, we also noticed two practices specific to domains: require-
ments engineering practices are adopted in an unique way by the banking domain;
also, practices related to interoperability are more difficult in the healthcare domain in
comparison to others. Finally, we also observed that the company’s policy and culture
may influence the adoption of development practices.

We also identified that some results from the quantitative study are in accordance
with results from the qualitative work. According to our quantitative analysis, the fre-
quency of commits is always higher in non-mobile repositories compared to mobile. We
did not clearly identify a similar pattern when comparing both platforms (that is, the
curves do not necessarily follow the same pattern). However, we can observe a peculiar

5.2. Contributions 53

behavior in the holiday season (including Christmas and new year period) for both
platforms. For instance, between October 2017 and January 2018, there is a sharp
decrease in the number of commits. This finding is somewhat in accordance with the
interview results. Most interviewees from financial domains (e-commerce and banking)
mentioned they usually interrupt continuous integration/delivery in the holiday season
to avoid inserting subtle bugs. This results calls for a further investigation on reposi-
tories from the financial domain hosted on GitHub. From these results, we can learn
that this practice of interrupting continuous integration/delivery, largely adopted in
proprietary software from financial domains, may also be adopted in OSS projects as
well.

5.2 Contributions

We believe this dissertation have important contributions to the software engineering
research community and industry. Next, we present our main contributions.

• A statistical modelling specifically to investigate the frequency of commits in
GitHub repositories. We provided multiple linear regression models to explain
frequency of commits in mobile and non-mobile repositories while controlling for
confound factors. Our models can be applied to any set of repositories hosted on
GitHub.

• A mapping of the problem of mining frequent itemset across transactions in a
database to finding frequent types code changes across commits.

• A novel method for selecting interview participants. We provided a procedure to
find cross-domain developer, that is, developers who have worked in more than
one software domain. We believe our method can be adapted to other contexts,
such as cross-platform developers.

• An interview script for that can be used to conduct semi-structured interviews
about development practices.

• A concise Web survey with the main development practices adopted in different
software domains. We provided a customized survey for each domain.

54 Chapter 5. Final Considerations

5.3 Future Work

With this dissertation, we could identify several research directions for future works
that can complement and expand our work. In the quantitative study, at this moment,
we consider three automation build tools. As a next step, we propose to include other
build automation tools so that more build files can be identified in the analysis. We
also highlight the need for further investigation regarding the frequency of commits,
such as performing a time-series analysis on the trend graph of frequency. This kind of
analysis may help researchers and practitioners to understand and explain the behavior
of mobile and non-mobile repositories along a period of time. Still related to the quan-
titative study, it may be interesting a more detailed comparison of different platforms
using a finer-grained level, such as comparing Android, iOS, desktop, and Web. Finally,
we intend to investigate whether changes on different types of files evolve together with
different semantic code changes, such as method added and statement removed.

Regarding future work for the qualitative study, it is important to complement the
work by conducting more interviews with a focus on domains in which we did not reach
the saturation, but interesting information was collected, such as for social networks
and oil and gas domains. In addition, highly specialized domains that potentially have
interesting practices need focused studies as well, such as aviation. Finally, it would be
interesting to investigate whether exists a close relationship between software domains
and platforms.

Bibliography

Agrawal, R., Imieliński, T., and Swami, A. (1993). Mining association rules between
sets of items in large databases. In Acm sigmod record, volume 22, pages 207--216.
ACM.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A. I., et al. (1996). Fast
discovery of association rules. Advances in knowledge discovery and data mining,
12(1):307--328.

Allison, P. D. (1999). Multiple regression: A primer. Pine Forge Press.

Banerjee, A. and Roychoudhury, A. (2016). Automated re-factoring of android apps to
enhance energy-efficiency. In Mobile Software Engineering and Systems (MOBILE-
Soft), 2016 IEEE/ACM International Conference on, pages 139--150. IEEE.

Basole, R. C. and Karla, J. (2011). On the evolution of mobile platform ecosystem
structure and strategy. Business & Information Systems Engineering, 3(5):313.

Begel, A. and Zimmermann, T. (2014). Analyze this! 145 questions for data scientists
in software engineering. In 36th Int’l Conference on Software Engineering.

Bhattacharya, P., Ulanova, L., Neamtiu, I., and Koduru, S. C. (2013). An empirical
analysis of bug reports and bug fixing in open source android apps. In Software
Maintenance and Reengineering (CSMR), 2013 17th European Conference on, pages
133--143. IEEE.

Borgelt, C. (2012). Frequent item set mining. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 2(6):437--456.

Borges, H., Hora, A., and Valente, M. T. (2016a). Predicting the popularity of github
repositories. In Proceedings of the The 12th International Conference on Predictive
Models and Data Analytics in Software Engineering, page 9. ACM.

55

56 Bibliography

Borges, H., Hora, A., and Valente, M. T. (2016b). Understanding the factors that
impact the popularity of github repositories. In Software Maintenance and Evolution
(ICSME), 2016 IEEE International Conference on, pages 334--344. IEEE.

Breu, S., Premraj, R., Sillito, J., and Zimmermann, T. (2010). Information needs in
bug reports: improving cooperation between developers and users. In Proceedings of
the 2010 ACM conference on Computer supported cooperative work, pages 301--310.
ACM.

Burger-Helmchen, T. and Cohendet, P. (2011). User communities and social software
in the video game industry. Long Range Planning, 44(5-6):317--343.

Champely, S., Ekstrom, C., Dalgaard, P., Gill, J., Weibelzahl, S., Anandkumar, A.,
Ford, C., Volcic, R., De Rosario, H., and De Rosario, M. H. (2018). Package ‘pwr’.

Charmaz, K. and Belgrave, L. L. (2007). Grounded theory. The Blackwell encyclopedia
of sociology.

Cohen, P., West, S. G., and Aiken, L. S. (2014). Applied multiple regression/correlation
analysis for the behavioral sciences. Psychology Press.

Dagenais, B. and Robillard, M. P. (2010). Creating and evolving developer docu-
mentation: understanding the decisions of open source contributors. In 18th Int’l
Symposium on Foundations of Software Engineering.

Elbaum, S., Rothermel, G., and Penix, J. (2014). Techniques for improving regression
testing in continuous integration development environments. In 22nd Int’l Sympo-
sium on Foundations of Software Engineering.

Fairbanks, G., Bierhoff, K., and D’Souza, D. (2006). Software architecture at a large fi-
nancial firm. In 21st symposium on Object-oriented programming systems, languages,
and applications.

Faragó, C., Hegedűs, P., and Ferenc, R. (2015). Cumulative code churn: Impact on
maintainability. In Source Code Analysis and Manipulation (SCAM), 2015 IEEE
15th International Working Conference on, pages 141--150. IEEE.

Farrar, D. E. and Glauber, R. R. (1967). Multicollinearity in regression analysis: the
problem revisited. The Review of Economic and Statistics, pages 92--107.

Flyvbjerg, B. (2006). Five misunderstandings about case-study research. Qualitative
inquiry, 12(2):219--245.

Bibliography 57

Glaser, B. G. and Strauss, A. L. (2017). Discovery of grounded theory: Strategies for
qualitative research. Routledge.

Grahne, G. and Zhu, J. (2003). Efficiently using prefix-trees in mining frequent item-
sets. In FIMI, volume 90.

Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns without candidate
generation. In ACM sigmod record, volume 29, pages 1--12. ACM.

Hilton, M., Nelson, N., Tunnell, T., Marinov, D., and Dig, D. (2017). Trade-offs in
continuous integration: assurance, security, and flexibility. In 11th Joint Meeting on
Foundations of Software Engineering.

Hilton, M., Tunnell, T., Huang, K., Marinov, D., and Dig, D. (2016). Usage, costs, and
benefits of continuous integration in open-source projects. In 31st Int’l Conference
on Automated Software Engineering.

Jamshidi, P., Pahl, C., Mendonça, N. C., Lewis, J., and Tilkov, S. (2018). Microser-
vices: The journey so far and challenges ahead. IEEE Software, 35(3):24–35.

Kirinuki, H., Higo, Y., Hotta, K., and Kusumoto, S. (2014). Hey! are you committing
tangled changes? In Proceedings of the 22nd International Conference on Program
Comprehension, pages 262--265. ACM.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C.,
El Emam, K., and Rosenberg, J. (2002). Preliminary guidelines for empirical research
in software engineering. IEEE Transactions on software engineering, 28(8):721--734.

Levin, S. and Yehudai, A. (2017). The co-evolution of test maintenance and code
maintenance through the lens of fine-grained semantic changes. In Software Main-
tenance and Evolution (ICSME), 2017 IEEE International Conference on, pages
35--46. IEEE.

Linares-Vásquez, M., Klock, S., McMillan, C., Sabané, A., Poshyvanyk, D., and
Guéhéneuc, Y.-G. (2014). Domain matters: bringing further evidence of the re-
lationships among anti-patterns, application domains, and quality-related metrics in
java mobile apps. In 22nd Int’l Conference on Program Comprehension.

Lo, D., Nagappan, N., and Zimmermann, T. (2015). How practitioners perceive the
relevance of software engineering research. In 10th Joint Meeting on Foundations of
Software Engineering, pages 415--425.

58 Bibliography

Lowry, R. (2014). Concepts and applications of inferential statistics.

Macho, C., McIntosh, S., and Pinzger, M. (2017). Extracting build changes with build-
diff. In Mining Software Repositories (MSR), 2017 IEEE/ACM 14th International
Conference on, pages 368--378. IEEE.

Molderez, T., Stevens, R., and De Roover, C. (2017). Mining change histories for un-
known systematic edits. In Mining Software Repositories (MSR), 2017 IEEE/ACM
14th International Conference on, pages 248--256. IEEE.

Mori, A., Vale, G., Viggiato, M., Oliveira, J., Figueiredo, E., Cirilo, E., Jamshidi, P.,
and Kastner, C. (2018). Evaluating domain-specific metric thresholds: an empirical
study. In Int’l Conference on Technical Debt.

Murphy-Hill, E., Zimmermann, T., and Nagappan, N. (2014). Cowboys, ankle sprains,
and keepers of quality: How is video game development different from software
development? In 36th Int’l Conference on Software Engineering.

Nytro, O., Sorby, I. D., and Karpati, P. (2009). Query-based requirements engineer-
ing for health care information systems: Examples and prospects. In 31st ICSE
Workshop on Software Engineering in Health Care.

Oliveira, J., Viggiato, M., Santos, M., Figueiredo, E., and Marques-Neto, H. (2018).
An empirical study on the impact of android code smells on resource usage. In In-
ternational Conference on Software Engineering & Knowledge Engineering (SEKE).

Paixao, M., Krinke, J., Han, D., Ragkhitwetsagul, C., and Harman, M. (2017). Are de-
velopers aware of the architectural impact of their changes? In 32nd Int’l Conference
on Automated Software Engineering.

Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L. (1999). Discovering frequent closed
itemsets for association rules. In International Conference on Database Theory, pages
398--416. Springer.

Prechelt, L., Schmeisky, H., and Zieris, F. (2016). Quality experience: a grounded
theory of successful agile projects without dedicated testers. In 38th Int’l Conference
on Software Engineering.

Rácz, B. (2004). nonordfp: An fp-growth variation without rebuilding the fp-tree. In
FIMI.

Bibliography 59

Richardson, I., Reid, L., and O’Leary, P. (2016). Healthcare systems quality: develop-
ment and use. In Int’l Workshop on Software Engineering in Healthcare Systems.

Roed, K. and Ellingsen, G. (2011). Users as heterogeneous engineers-the challenge
of designing sustainable information systems in health care. In 44th Hawaii Int’l
Conference on System Sciences.

Russo, D., Ciancarini, P., Falasconi, T., and Tomasi, M. (2017). Software quality
concerns in the italian bank sector: the emergence of a meta-quality dimension. In
39th Int’l Conference on Software Engineering: Software Engineering in Practice
Track.

Schmidt-Thieme, L. (2004). Algorithmic features of eclat. In FIMI.

Segura, S., Sánchez, A. B., and Ruiz-Cortés, A. (2014). Automated variability analysis
and testing of an e-commerce site.: an experience report. In 29th Int’l Conference
on Automated software engineering.

Stacey, P. and Nandhakumar, J. (2009). A temporal perspective of the computer game
development process. Information Systems Journal, 19(5):479--497.

Ståhl, D. and Bosch, J. (2014). Modeling continuous integration practice differences in
industry software development. Journal of Systems and Software, 87:48--59.

Stavnycha, M., Yin, H., and Römer, T. (2015). A large-scale survey on the effects
of selected development practices on software correctness. In 2015 International
Conference on Software and System Process, pages 117--121.

Steinmacher, I., Conte, T. U., Treude, C., and Gerosa, M. A. (2016). Overcoming open
source project entry barriers with a portal for newcomers. In Proceedings of the 38th
International Conference on Software Engineering, pages 273--284. ACM.

Stol, K. J., Ralph, P., and Fitzgerald, B. (2016). Grounded theory in software engineer-
ing research: A critical review and guidelines. In 38th Int’l Conference on Software
Engineering.

Strauss, A. and Corbin, J. M. (1990). Basics of qualitative research: Grounded theory
procedures and techniques. Sage Publications, Inc.

Thongtanunam, P., McIntosh, S., Hassan, A. E., and Iida, H. (2015). Investigating
code review practices in defective files: An empirical study of the qt system. In 12th
Working Conference on Mining Software Repositories.

60 Bibliography

Trockman, A., Zhou, S., Kästner, C., and Vasilescu, B. (2018). Adding sparkle to
social coding: an empirical study of repository badges in the npm ecosystem. In
Proceedings of the 40th International Conference on Software Engineering, pages
511--522. ACM.

Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., and Filkov, V. (2015). Quality and
productivity outcomes relating to continuous integration in github. In 10th Joint
Meeting on Foundations of Software Engineering.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. (2012).
Experimentation in software engineering. Springer Science & Business Media.

Wright, H. K. and Perry, D. E. (2012). Release engineering practices and pitfalls. In
34th Int’l Conference on Software Engineering.

Yost, B., Coblenz, M., Myers, B., Sunshine, J., Aldrich, J., Weber, S., Patron, M.,
Heeren, M., Krueger, S., and Pfaff, M. (2016). Software development practices,
barriers in the field and the relationship to software quality. In 10th Int’l Symposium
on Empirical Software Engineering and Measurement.

Zaidman, A., Van Rompaey, B., van Deursen, A., and Demeyer, S. (2011). Studying
the co-evolution of production and test code in open source and industrial developer
test processes through repository mining. Empirical Software Engineering, 16(3):325-
-364.

Zaki, M. J. and Gouda, K. (2003). Fast vertical mining using diffsets. In Proceedings of
the ninth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 326--335. ACM.

Zaki, M. J., Parthasarathy, S., Ogihara, M., Li, W., et al. (1997). New algorithms for
fast discovery of association rules. In KDD, volume 97, pages 283--286.

Zhang, Y., Yu, Y., Wang, H., Vasilescu, B., and Filkov, V. (2018). Within-ecosystem
issue linking: a large-scale study of rails. In Proceedings of the 7th International
Workshop on Software Mining, pages 12--19. ACM.

Zhou, B., Neamtiu, I., and Gupta, R. (2015). A cross-platform analysis of bugs and bug-
fixing in open source projects: Desktop vs. android vs. ios. In Proceedings of the 19th
International Conference on Evaluation and Assessment in Software Engineering,
page 7. ACM.

	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Goal and Methodological Procedures
	1.3 Results
	1.4 Dissertation Outline

	2 Background and Related Work
	2.1 Software Domains
	2.2 Development Practices in Software Domains
	2.3 Software Evolution Practices
	2.4 Final Remarks

	3 Quantitative study
	3.1 Goal and Research Questions
	3.2 Mining Frequent Itemsets
	3.3 Research Method
	3.4 Results
	3.4.1 Frequency of Commits
	3.4.2 Frequent Code Change Types and Association Rules

	3.5 Discussion
	3.6 Threats to Validity
	3.7 Final Remarks

	4 Qualitative Study
	4.1 Goal and Research Questions
	4.2 Research Method
	4.2.1 Interview Process
	4.2.2 Validation

	4.3 Results
	4.3.1 Banking Domain
	4.3.2 E-commerce Domain
	4.3.3 Healthcare Domain

	4.4 Discussion
	4.4.1 Implications for Practice
	4.4.2 Contrast with Current Beliefs
	4.4.3 Results for Other Domains

	4.5 Limitations and Threats to Validity
	4.6 Final Remarks

	5 Final Considerations
	5.1 Conclusion
	5.2 Contributions
	5.3 Future Work

	Bibliography

