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Resumo

Enquanto sistemas de busca gradualmente se transformam em assistentes pessoais,
usuários cada vez mais se voltam a máquinas de busca para completar tarefas com-
plexas, como planejar uma viagem, alugar um apartamento ou investir em ações. Um
desafio-chave para uma máquina de busca é o de entender a tarefa de um usuário por
trás de uma consulta de exemplo, como “passagens para o panamá”, “estúdios em los
angeles” ou “ações do spotify”, e recomendar outras consultas que ajudariam o usuário a
completar sua tarefa. Nesta dissertação, propomos três estratégias para entendimento
de tarefas, navegando um histórico de consultas semanticamente anotadas e usando
uma mistura de representações explícitas e latentes de consultas inteiras e partes de
consultas. Avaliamos minuciosamente as estratégias propostas no contexto da TREC
2016 Tasks track e via crowdsourcing. Nossos resultados demonstram a efetividade das
estratégias propostas em termos de diversidade e novidade, além de sua complemen-
taridade, com melhoras significativas em relação a várias abordagens de recomendação
de consultas do estado-da-arte adaptadas para essa tarefa. Além disso, mostramos que
nossa proposta é particularmente efetiva para consultas na cauda-longa e consultas
difíceis, que englobam um grande número de sub-tarefas.

xiii





Abstract

As search systems gradually turn into intelligent personal assistants, users increasingly
resort to a search engine to accomplish a complex task, such as planning a trip, renting
an apartment, or investing in stocks. A key challenge for the search engine is to
understand the user’s underlying task given a sample query like “tickets to panama”,
“studios in los angeles”, or “spotify stocks”, and to recommend other queries to help
the user complete the task. In this dissertation, we propose three strategies for task
understanding by navigating a semantically annotated query log using a mixture of
explicit and latent representations of entire queries and of query parts. We thoroughly
evaluate our proposed strategies in the context of the TREC 2016 Tasks track and via
crowdsourcing. Our results demonstrate the effectiveness of the proposed strategies
in terms of diversity and novelty, as well as their complementarity, with significant
improvements compared to multiple state-of-the-art query suggestion baselines adapted
for this task. Moreover, we show that our proposal is particularly effective for long-tail
queries as well as for hard queries, which encompass a large number of subtasks.

xv





List of Figures

1.1 User in a complex task environment. . . . . . . . . . . . . . . . . . . . . . 3

2.1 Word2Vec architectures. Note that CBOW predicts the current word given
the context, and Skip-Gram, the opposite. . . . . . . . . . . . . . . . . . . 8

3.1 Extracting entities from the query log and building a bipartite graph of
entities and contexts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Different navigation strategies (a-c) over G. . . . . . . . . . . . . . . . . . . 18
3.3 t-SNE projection using (a) Google News and (b) Wiki2Vec. . . . . . . . . . 19
3.4 Analogical expansion strategy. . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Analogical movements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Frequency distribution of entities (a), contexts (b) and queries (c) in the
query log. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 TREC 2016 Tasks track query #7 (a) and target task description (b). . . . 30
4.3 ERR-IA@20 for various dissimilarity thresholds. . . . . . . . . . . . . . . . 32
4.4 ↵-nDCG@20 for various dissimilarity thresholds. . . . . . . . . . . . . . . . 33
4.5 Venn diagram of suggestions returned by our three proposed strategies. . . 35
4.6 ERR-IA@20 curves for Data Fusion. . . . . . . . . . . . . . . . . . . . . . 36
4.7 ↵-nDCG@20 for Data Fusion. . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.8 Relaxed Semantic ERR-IA@20 for various query groups. . . . . . . . . . . 38
4.9 Relaxed Syntactic ERR-IA@20 for various query groups. . . . . . . . . . . 39
4.10 Relaxed Semantic ↵-nDCG@20 for various query groups. . . . . . . . . . . 39
4.11 Relaxed Syntactic ↵-nDCG@20 for various query groups. . . . . . . . . . . 39
4.12 Relaxed Semantic ERR-IA@20 for various query groups. . . . . . . . . . . 40
4.13 Relaxed Syntactic ERR-IA@20 for various query groups. . . . . . . . . . . 40
4.14 Relaxed Semantic ↵-nDCG@20 for various query groups. . . . . . . . . . . 41
4.15 Relaxed Syntactic ↵-nDCG@20 for various query groups. . . . . . . . . . . 41
4.16 ERR-IA@20 with exhaustive (crowdsourced) judgments. . . . . . . . . . . 44

xvii



4.17 Cohen Kappa histogram for each task. . . . . . . . . . . . . . . . . . . . . 45

xviii



List of Tables

4.1 AOL query log numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Size limits for our methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Results by query frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Results by number of entities. . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Results by number of subtasks. . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Ablation analysis by query frequency. . . . . . . . . . . . . . . . . . . . . . 42
4.7 Ablation analysis by number of entities. . . . . . . . . . . . . . . . . . . . 43
4.8 Ablation analysis by number of subtasks. . . . . . . . . . . . . . . . . . . . 43
4.9 Human judges results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xix





Contents

Acknowledgments xi

Resumo xiii

Abstract xv

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Dissertation Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Related Work 7

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Entities in Queries . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Search Result Diversification . . . . . . . . . . . . . . . . . . . . 9

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Query Suggestion . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Query Suggestion Diversification . . . . . . . . . . . . . . . . . 12
2.2.3 TREC Task Understanding Track . . . . . . . . . . . . . . . . . 13

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Navigating Semantically Annotated Queries 15

3.1 Entity-Context Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Direct Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

xxi



3.3 Syntagmatic Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Analogical Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Paradigmatic Expansion . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2 Next Entity Mining . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.3 Analogies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.4 Context Generation . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.5 Entity-Context Matching . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Experimental Evaluation 27

4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.1 Test Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . 30
4.1.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.1 Strategies Effectiveness . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Strategies Complementarity . . . . . . . . . . . . . . . . . . . . 34
4.2.3 Effectiveness Breakdown . . . . . . . . . . . . . . . . . . . . . . 37
4.2.4 Crowdsourcing Results . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Conclusions and Future Work 47

5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Summary of Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Directions for Future Research . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Bibliography 51

xxii



Chapter 1

Introduction

Nowadays, people rely more and more on Information Retrieval systems, on its various
forms and shapes, for daily tasks. From traditional search engines to recommender
systems and smart assistants embedded on watches and smart speakers, these systems
play a key role on how we interact with and consume data and information. A classic
interaction with a search engine, for instance, consists on a user submitting a series
of queries, usually in short, textual form, to such system, expressing their information
needs. Generally speaking, a user may be expecting in return a document, image,
video, or any other artifact that may satisfy their information need [9].

However, a query usually represents a complex task that the user might be trying
to complete. For instance, a user looking to invest in stocks will need to search for
multiple companies, valuation history, profitability, etc. In these cases, a task may
contain a number of subtasks that will require multiple interactions with the system,
until the task is fulfilled. For instance, a user trying to accomplish a task like “learn
how to program” may need to accomplish multiple subtasks related to the problem, like
“Find what are good websites to learn about programming”, “What are good program-
ming languages for beginners” and so on. Understanding this task and uncovering its
underlying subtasks is key to supporting the user toward the task completion.

From this scenario, task understanding appears as a natural next step for Infor-
mation Retrieval. The goal of such a system is to, given some piece information of the
user’s task (say, a query related to a part of the task), try and generate outputs that
will help the user on completing such task, including all relevant subtasks that could
be related to the original task. Of particular interest of this dissertation is the scenario
where a user submits a query to a search engine and the system tries to generate a set
of new queries that would help the user on their task completion.

1



2 Chapter 1. Introduction

Since the main output of task understanding is a set of key phrases1 for a given
input query, it can be modeled as a query suggestion problem. Some of the most suc-
cessful approaches to query suggestion leverage different neural network architectures
to generate suggestions. For example, Sordoni et al. [44] tackled the query suggestion
problem by using a hierarchical recurrent encoder-decoder neural network that learns
representations for both queries and sessions. Chen et al. [16] proposed attention-based
networks for capturing session structure and generating new suggestions. Nonetheless,
these methods may fail to address the complex nature of task understanding, which
often involves producing a diverse set of suggestions given a previously unseen query
as input.

To address this gap, the Text REtrieval Conference (TREC) included a Tasks
track in their 2016 edition, where one of the goals was to evaluate task understanding
systems [45]. The most successful solutions presented during the 2016 and 2017 edi-
tions [25] sought to achieve task understanding by aggregating and re-ranking results
from multiple external sources, notably, query suggestion systems from commercial
search engines [23]. However, these approaches rely heavily on external sources, deal-
ing with most of them as black boxes, with little to no control of how their outputs
are generated, which limits not only reproducibility, but also potential applications to
other domains and extensions.

In this dissertation, we seek to study a more principled approach to task un-
derstanding. To promote the understanding of tasks underlying rare or even unseen
queries, we model semantically annotated query segments into a bipartite graph con-
necting named entities and the contexts where these entities appear in a query log.
To produce suggestions that cover a wide variety of subtasks, we propose three strate-
gies for navigating the entity-context graph given an input query (i.e., an edge on the
graph): direct expansion, in which we look for other contexts associated with the same
entity present in the original query; syntagmatic expansion, where we explore contexts
associated with other, similar entities to the original query entity; and analogical ex-
pansion, where we leverage topically similar entities for expanding our set of entities
with other, non-trivial entities.

Through a comprehensive analysis using the experimentation paradigm provided
by the TREC Tasks track [25, 45] enriched via crowdsourcing, we contrast these strate-
gies in terms of the utility of their produced suggestions, as well as their diversity
and novelty. Moreover, we show that these strategies are complementary and that
their combination consistently outperforms state-of-the-art query suggestion baselines

1
In this dissertation, we use the terms queries and key phrases indistinctly.
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Figure 1.1. User in a complex task environment.

from the literature. Further breakdown analyses reveal that our combined approach
is particularly effective for long-tail queries as well as hard queries, which demand the
identification of a large number of subtasks.

1.1 Motivation

The omnipresence of the World Wide Web in our daily lives is not up for discussion,
and major increases are expected in the next few years, as we expand to more and
more areas previously unreachable with standard connection. No longer restricted to a
desktop, we can easily search for anything using desktop computers, laptops, tablets,
smart phones, watches and smart speakers. Finding exactly what a user is looking
for is always a challenge, and trying to understand the underlying tasks they aim to
complete is crucial to increase the efficiency of these systems.

Given the ease of access to to IR systems, almost every daily task we want to
accomplish eventually encompass at least a couple of interactions with such system. Be
it planning a trip to a foreign country, learning something new, looking for information
on a book or even adopting a new cat, it is very likely that we will interact with an IR
system in some point in time. More specifically, with a search engine.

Given the rise of smart assistants, like Microsoft Cortana, Apple Siri, Google
Assistant, Samsung Bixby and Amazon Alexa, coupled with the aforementioned ubiq-
uitous presence of IR, it is even more critical to understand how users interact on search
engines, in order to better understand what tasks they may be looking to complete,
making this search process faster and more accurate.

In Figure 1.1, we can see an example of a user exploring such system. Say that
user, looking to complete the task “Plan a trip to London” submits a query such as
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“Cheap tickets to London” to a search engine. A useful interaction with such system
would yield him a list of next queries like “Hotels in London”, “Tickets for Wimble-
don”, “Buckingham palace tour” and so on. This system could also, without explicit
command, perform one of the suggested queries and suggest actions within a smart as-
sistant interface, like “Do you want to book this hotel for $100.00 a night?”, essentially
completing a subtask for the user.

1.2 Dissertation Statement

In this dissertation, we state that current query suggestion systems and other ap-
proaches for task understanding are not efficient enough for tasks where a user may
need to cover multiple subtasks. We claim that, by modeling a query log as a bipartite
graph and by using multiple strategies when navigating on that graph, we can ac-
complish a better understanding of the task at hand to the user, and further produce
better query suggestions on these tasks. As such, the three main research questions to
be answered by this dissertation, given our three proposed approaches to the problem,
are the following:

Q1. How effective are our proposed strategies?

Q2. How complementary are our proposed strategies?

Q3. How do our strategies perform for different types of query?

1.3 Contributions

We believe that the main contributions of this work are the following:

1. Three new strategies for task understanding.

2. A new method for combining the proposed strategies, which outperforms current
state-of-the-art approaches.

3. A thorough examination on how these strategies behave under different scenarios.

1.4 Dissertation Outline

This dissertation is structured as follows:
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• Chapter 2: Related Work discusses some of the related work to this disser-
tation, like query suggestions, word embeddings and query diversification.

• Chapter 3: Navigating Semantically Annotated Queries shows in de-
tails each of our three strategies for task understand, how they work and their
intuitions.

• Chapter 4: Experimental Setup presents details on how we ran our experi-
ments in order to answer our research questions, our assumptions and evaluation
methodologies.

• Chapter 5: Experimental Evaluation shows the results of each of our meth-
ods, how they are complementary and how they behave under multiple situations.

• Chapter 6: Conclusions concludes the dissertation, pointing to possible future
research to be made on the area.





Chapter 2

Background and Related Work

In this chapter, we discuss some background themes that are of great importance to
our approaches on task understanding, in Section 2.1. We also discuss some of the
works related to this dissertation in Section 2.2.

2.1 Background

In this section, we discuss some themes that are of great importance on our approaches
for task understanding. Specifically, we discuss works on word embeddings in Section
2.1.1, entities in queries in Section 2.1.2 and general diversification techniques in Section
2.1.3.

2.1.1 Word Embeddings

Another area that has seen a significant growth in the last few years is the area of
word embeddings or distributed representations. The goal of such approaches is to
generate dense and compact representations of words or topics. Instead of classic,
one-hot approaches [38], these techniques try to capture more meaningful semantic
representations of words.

In what can be considered the seminal paper on using neural networks for gener-
ating dense representations of words, Bengio et al. [4] proposed a simple neural network
architecture for learning distributed representations of words, based on their neighbor-
hood.

Extending this work and, arguably, bringing the topic to the spotlight for Nat-
ural Language Processing, Mikolov et al. [33] proposed two different shallow network
architectures for training word embeddings, SkipGram and Continuous Bag of Words

7



8 Chapter 2. Background and Related Work

Figure 2.1. Word2Vec architectures. Note that CBOW predicts the current
word given the context, and Skip-Gram, the opposite.

(CBOW). Both of these architectures are shown in Figure 2.1. As seen in the fig-
ure, CBOW tries to predict the target word given a window of context around it.
Skip-Gram, on the other hand, tries to predict the context window around the tar-
get word. In that same work, they also show that these representations are ca-
pable of performing analogies over the embedding space. As a classical example,
~e(king)� ~e(man) + ~e(woman) ⇡ ~e(queen), where ~e(·) is the embedding operation.

Finally, other approaches, like the one demonstrated by Pennington et al. [36],
use matrix decomposition techniques over a matrix of term co-occurrence to generate
such representations. In fact, according to Levy and Goldberg [29], the approaches
proposed by Pennington et al. [36] and Mikolov et al. [33] are equivalent. Another
interesting word embeddings strategy is Facebook’s FastText [21], that employees a
faster architecture, based on bags of n-grams.

One of the key advantages of word embeddings is their ability to hold semantic
relationships between words. Naturally, one would like to measure the semantic dis-
tance between two words, in a similar fashion to regular string distance techniques,
like edit distance. One common approach when dealing with this is to calculate the
distance between two word embeddings in the same space using the cosine distance.
If two words are similar, it is expected that they are close to each other in the em-
bedding space. However, calculating the distance between two documents (i.e., two
bags of word embeddings), a problem that will be central to this dissertation, is not
straightforward. A classical approach to solving this problem is to calculate the dis-
tance between centroids of the embeddings of every word on both documents. Kusner
et al. [27] however, introduced the Word Movers Distance technique, an adaptation
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of the transport problem of Earth’s Movers Distance. Essentially, the WMD metric
can be seen as the minimum amount of distance the words of one document need to
“travel” in the embedding space to reach the other document words. Their approach
shows great performance in tasks like nearest neighbor document classification, demon-
strating their effectiveness in mapping distances between documents. Since our work
relies heavily on embedding distances, a more robust approach for calculating the se-
mantic distance between queries (represented as a bag of words) is needed, and WMD
provides this metric throughout this work.

2.1.2 Entities in Queries

Finally, the study of entities in queries is not new. However, only a handful of these
explicitly use them for query suggestions.

Guo et al. [22] demonstrated a method for extracting named entities from queries
using a weakly-supervised version of LDA. While the scope of their work is limited
to a few categories (like books, games and movies), their WS-LDA approach is highly
effective on also classifying these entities.

Blanco et al. [6] introduced a probabilistic model coupled with dynamic program-
ming for fast entity extraction on queries. Their framework, named FEL (Fast Entity
Linker), is shown to perform fast enough to be used on large scale implementations of
search engines, retrieving entities in under 1ms on most modern laptops.

Meij et al. [32] proposed a machine learning framework, coupled with a language
model for entity retrieval, with over 30 hand-crafted features in order to rank these
entities for further suggestions.

Another work in the topic comes from Glater et al. [20]. In their work, they pro-
posed a learning framework for annotating queries with entities and entities attributes,
focused on the user intent of the query.

2.1.3 Search Result Diversification

Diversification is a key topic on information retrieval, and of particular interest for
our work. As stated before, the goal of the task understanding problem is to be
able to retrieve suggestions that are relevant for multiple subtasks of a main task.
Therefore, strategies that prioritize diversity are of paramount importance for task
understanding. The natural tendency to ambiguity of queries, coupled with a focus on
standard, relevance-based retrieval may lead to poor results, or even a user completely
abandoning her search session [15].
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As discussed in Santos et al. [41], the search result diversification problem is
an instantiation of the maximum coverage problem, therefore, a NP-Hard problem.
Thus, a number of different approaches can be used for retrieving diverse documents,
most of these using greedy heuristics for re-ranking an initial ranking, varying on their
definition of a scoring function for an item d in the original ranking, f(q, d,Dq), where
q is the input query and Dq the set of re-ranked documents [41].

According to Radlinski et al. [37], these approaches can be classified as either
extrinsic, where the system tries to explicitly address the ambiguity of the user’s infor-
mation need, or intrinsic, where the system tries to avoid ambiguity within the search
result. Of specific interest of this work, the latter approach presents more opportu-
nities for strategies using latent or explicit representations of the queries on a query
log. For instance, the Maximum Marginal Relevance approach, proposed by Carbonell
and Goldstein [12] in the context of IR systems, uses the following formulation for the
function f(q, d,Dq), as described by Santos et al. [41]:

fMMR(q, d,Dq) = �f1(q, d)� (1� �) max
dj2Dq

f2(d, dj), (2.1)

where f1(q, d) is a relevance function between the query q and a document d and f2

estimates the similarity of q to the documents already re-ranked in Dq.

2.2 Related Work

In this section, we present some works that are relevant to this dissertation. Namely,
we discuss results from Query Suggestion in Section 2.2.1, Query Suggestion Diversifi-
cation in Section 2.2.2 and the TREC Task Understanding track from 2015 to 2017 in
Section 2.2.3.

2.2.1 Query Suggestion

Given a query conveying a user’s complex task, which may encompass multiple sub-
tasks, the goal of a task understanding system is to generate a set of key phrases that
are useful toward completing as many of these subtasks as possible. This problem can
be seen as a specialization of the query suggestion problem, which has been extensively
investigated over the past decade. In particular, query suggestion approaches leverage
a plethora of ranking signals from a query log in order to infer the relevance of a sug-
gestion given an input query [42]. Given this proximity, the most natural approach to
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solving the task understanding problem is to model it as a classical query suggestion
problem.

It is also worth noting the difference between the task understanding problem, as
stated in Yilmaz et al. [46], and a regular query suggestion problem. Given the nature
of task understanding, the definition of relevance changes when comparing with regular
query suggestion. For task understanding, the coverage of multiple subtasks is more
important than regular relevance traditionally measured. It can be seen, for instance,
when the TREC Tasks Track chose ↵-nDCG and ERR-IA as the most important
metrics on their evaluation [25, 45, 46], enforcing the focus on diversification and novelty
metrics. However, given the similarity in the approaches, in this work, we use both
task understanding and query suggestions interchangeably.

One of the seminal papers in the area, Beeferman and Berger [3] discuss how to
cluster queries submitted to a search engine based on clickthrough data. Effectively,
they pioneered the idea of generating a bipartite graph over the query log, connecting
queries that produced a click on a document. This first set of strategies, over the same
bipartite graph, has been used, for years, as a successful approach for query suggestions.

Further exploring this path, Baeza-Yates et al. [1] state that these connections
between URLs and queries can be treated as semantic connections that can be useful
for query suggestions. On Baeza-Yates and Tiberi [2] they show that such graphs is
sparse, and follows a number of power-law distributions, like that there are a few URLs
with a lot of clicks and a lot of URLs with a few clicks, few queries with high frequency
and many queries with a low frequency and so on. In the same vein, Cao et al. [11]
extended that same concept by clustering similar queries. Their work shows that these
clusters can be defined as concepts, and a path within these clusters can be used to
generate query suggestions.

Also following the same bipartite graph strategy, Mei et al. [31] introduced the
concept of hitting time, the time it took for the query to be visited on a random walk on
the bipartite graph, starting on the input query. Similarly, Boldi et al. [7] used a variety
of syntax and time signals to build a machine learning model that connects queries by
similar intents, building a graph that can be used to generate query suggestions via
biased random walks.

Another common approach is to cluster queries based on user sessions. Jones
et al. [24] proposed to generate query suggestions based on other sessions with sim-
ilar substrings to the original entity. Their work leverages a number of signals from
these sessions, like edit distance, for generating these suggestions. Also leveraging user
sessions, Fonseca et al. [17] proposed a query suggestion system based on association
rules for retrieving query pairs that are highly related across sessions.
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A problem with such approaches is the lack of diversity that comes from the focus
on queries that actually generated a click on a document. To solve this problem, as
well as to tackle long-tail queries, Broccolo et al. [8] proposed to represent queries at
the term level, by indexing each query as a “virtual document” comprising the terms
of other queries that preceded it in a successful search session (i.e., a session that led
to a click). Therefore, a user session could be abbreviated by suggesting the last query
of previous similar sessions, casting the problem as a standard search over the index of
virtual documents.

Given the advance of machine learning in natural language processing, in partic-
ular deep learning techniques, it was natural to apply these techniques for the query
suggestion problem. In the last few years, approaches using deep neural networks for
query suggestion have also been proposed, with major improvements over the previous
state-of-the-art. For instance, Sordoni et al. [44] used a recurrent encoder-decoder net-
work which captures the notion of queries and user sessions (meaning, a set of queries
submitted by the same user in a short time period). They show that their approach is
capable of generate query suggestions that are highly adherent to the search intent in
the original query. More recently, Chen et al. [16] employed an attention-based network
for capturing semantic structures on user preferences, on top of query and sessions.

2.2.2 Query Suggestion Diversification

When dealing with task understanding, one of the most important aspects is the cover-
age of subtasks. Given a query, there could be multiple related subtasks, all unknown
to the user. Therefore, diversifying the results of such a system is extremely important.

A complex task may comprise multiple subtasks, each of these may need a dif-
ferent query to be completed. Therefore, a task understanding system, in order to be
successful, need to be able to generate a set of query suggestions that is diverse, in
order to encompass a potentially large number of subtasks. Thus, query suggestion
diversification is also of great importance for this work.

Some works focused on diversifying document rankings [41] have also been
adapted for diversifying query suggestions. Song et al. [43] proposed a learning ap-
proach to produce diverse suggestions in response to a query, by measuring the devi-
ation of the document rankings produced for each suggestion and the original query.
By retrieving a set of candidates using multiple techniques, these are re-ranked us-
ing a function explicitly designed for diversification, including multiple features, like
category of the queries, URLs similarity and so on.

Extending the work of Broccolo et al. [8], Santos et al. [40] built a new learning
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to rank framework for promoting suggestions that are useful for a document ranking
diversification approach, such as xQuAD [39].

2.2.3 TREC Task Understanding Track

The Text REtrieval Conference (TREC), in their 2015, 2016 and 2017 editions [25, 45,
46] proposed a new track entitled Task Understanding. In this conference, participants
are asked to submit, given a query related to a task, a set of key phrases that could
be used as queries to complete a number of unknown subtasks. These submissions are
then submitted for human judgment, where their efficacy is evaluated on each subtask,
on a scale from 0 (non relevant) to 2 (highly relevant). Participants are ranked by the
diversity and novelty of their suggestions when covering the subtopics.

The most successful and published approaches to the track are usually centered
around two strategies: (1) retrieving a set of suggestions from a number of commer-
cial search engines and re-ranking those [23] or (2) retrieving key phrases from web
documents [5].

As an example of strategy (1), Hagen et al. [23] submitted the original query
and entity to nine different systems, from commercial engines query suggestions to
Wikipedia, and re-rank the results using manually defined weights.

As for (2), Bennett and White [5] extracted anchor texts from the ClueWeb12
dataset, and retrieving these extracted anchor texts when a candidate is a superset of
the original query.

Finally, Garigliotti and Balog [19] tried to mix both strategies (1) and (2), by
submitting the original query to a commercial search engine, retrieving their query
suggestions and extracting a set of keywords from the retrieved documents.

2.3 Summary

In this chapter, we discussed some works that are related to this dissertation. In Sec-
tion 2.2.1, we outlined some of the key works that deals with suggesting queries to a
user in a search engine. In Section 2.2.2 we discussed about strategies that specifi-
cally try to maximize diversity of suggestions in query suggestion environments, a key
component for effective task understanding. Finally, in Section 2.2.3, we described the
TREC Task Understanding track that initially inspired this work. We also presented
the strategies participants on the competition adopted in the last few years.

Section 2.1 outlined some works that are of paramount importance to this work,
providing background for the strategies described further Chapter 3. In Section 2.1.1 we
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showed how word embedding techniques can be used for representing terms as compact
and dense vectors. In Section 2.1.2 we described some strategies that focus on entities
on search engines. Finally, Section 2.1.3 discussed some techniques for diversification
of results in information retrieval systems.

In this dissertation, we propose three different strategies for query suggestions
for task understanding. In contrast to the approaches described in this chapter, our
proposed strategies represent a more principled approach to query understanding. In
particular, we show that one can leverage a bipartite graph, diverse from Beeferman
and Berger [3] to generate effective queries suggestions focused on task understanding.
By focusing on named entities, our methods prioritize queries that are related to the
original target of the task. We also discuss how word embedding techniques, such as
the one presented by [33] can be used to increase suggestion diversity and coverage
of subtopics. Our proposed strategies are also highly complementary, each covering a
different aspect of task understanding, as we describe in the next chapter.



Chapter 3

Navigating Semantically Annotated
Queries

As discussed before, a user task can cover a variety of subjects, from planning a trip
to another country (“tickets to panama”), to building an investment portfolio (“spotify
stocks”), to learning something new (“python tutorial”), with each task encompassing
multiple subtasks.

Formally, one can define the task understanding problem as follows: Given a
query q as a sample of the user’s underlying task T , which comprises n unknown
subtasks {t1, t2, · · · , tn}, our goal is to produce an ordered set of k key phrases S =

{s1, s2, · · · , sk}, that can be used as queries to a search engine, with maximum coverage
of the subtasks in T and with minimum redundancy.

Given this definition, the diversification factor appears as a key component of any
task understanding approach. Since the goal is to cover the largest number of subtasks,
and these are unknown beforehand, this factor is a key distinction between regular
query suggestion and a system that aims to solve the task understanding problem.

Given this formulation, in particular the fact that the subtasks {s1, s2, · · · , sk} are
not known beforehand, employing a “one-size-fits-all” method may not be ideal. This is
due to the fact that any strategy would need to cover varying task complexity, number
of entities and query rarity. Therefore, we state that, by using multiple, complementary
techniques and further combining these is a more promising direction for solving these
issues.

In this chapter, we begin by describing our method for semantically annotating
the query log, in Section 3.1. We then move to discuss our three proposed strategies
for query understanding: Direct Expansion in Section 3.2, Syntagmatic Expansion in

15
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Section 3.3 and Analogical Expansion in Section 3.4.1

3.1 Entity-Context Graph

Figure 3.1. Extracting entities from the query log and building a bipartite graph
of entities and contexts.

Most previous works on query suggestion deal with entire queries, as discussed
in Section 2.2.1. However, this can be problematic, specially when dealing with rare
or even unseen queries. In these situations, such approaches may not have enough
background information on the input query to make good recommendations of key
phrases related to the subtasks from T .

Instead of working with entire queries, we propose to represent queries at the
segment level, by focusing on tasks centered around queries with a named entity, which
amount to over 70% of the web search traffic [22]. In particular, inspired by Guo et al.
[22], we segment each query into two parts: a named entity e and its associated context
c. Hence, we can represent a query such as “tickets to london” as a tuple of entity and
context (london, tickets to #), where # is a placeholder for the entity 2. We assume
that a named entity is any concept that can be matched to an unique URL in Wikipedia.

The problem of extracting entities from queries can be tackled using multiple ap-
proaches, as shown in Section 2.1.2. In this work, we focus on the framework proposed
by Blanco et al. [6]. Given its high accuracy and speed, we are able to extract every
entity in the query log, with over 2M queries, in a couple of hours.

1
The names syntagmatic and paradigmatic are derived from linguistics. Syntagmatic similarity

can also be described as “topical” similarity (meaning, from the same topic) and paradigmatic as

“typical” similarity (meaning, from the same type).
2
Also note that we allow for empty contexts.
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Therefore, we can represent a query log as a weighted bipartite graph G =

(E , C,L) where E denotes the set of entities present in the query log, C the set of
contexts in the log, and L = {(e, c) | e 2 E , c 2 C} denotes the set of edges correspond-
ing to queries in the log, weighted by their lift `(e, c), according to:

`(e, c) =
Pr(e, c)

Pr(e) Pr(c)
, (3.1)

where Pr(e, c) is the probability that both e and c appear in the same query in the
query log, Pr(e) the prior of the entity e in the log, and Pr(c) the prior of the context
c. This formulation is used so entities or contexts that are too popular in the log, but
not locally relevant, will receive a lower weight. For instance, entities like “Google”,
“AOL” and the empty context “#” are extremely popular on the query log. However,
it is highly unlikely that they would be helpful to a user accomplishing any specific
task centered on an entity. Figure 3.1 illustrates the graph G (right) produced for a
query log sample (left), with the input query highlighted in bold.

With this representation, the task understanding problem then becomes a prob-
lem of recommending edges on G, even if the recommended edge (or any part of it,
namely e or c) is not present in the original query log. In the remainder of this sec-
tion, we describe three complementary strategies for navigating the graph G in order
to recommend useful and diverse suggestions for task understanding. These strategies
are illustrated in Figures 3.2. In these examples, for the Direct expansion strategy, the
recommended edges (or queries) would be (“london”, “hotels in #”), (“london”, “mayor
of #”) and (“london”, “# weather”). For Syntagmatic expansion, the two generated
suggestions are (“big ben”, “# opening hours”) and (“big ben”, “tickets to #”). Finally,
for the Analogical expansion, we use the entity “rome” as an intermediate similar entity.
As “vatican” is a frequent next entity, following “rome”, we map this movement back
to the original entity (“london”), resulting in a suggested entity “downing street”. This
suggested entity is then matched with relevant contexts, resulting in the suggestion
(“downing street”, “hotels near #”) and (“downing street”, “how to get to #”).

3.2 Direct Expansion

Given an input query q = (e0, c0), a simple strategy to identify related subtasks is to
look for additional contexts related to e0. The intuition behind such strategy is to
search for new actions (contexts) than can be applied to the same object (entity) e0

that the user initially searched for. Following the idea of task understanding as an
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Figure 3.2. Different navigation strategies (a-c) over G.

edge recommendation problem, this step can be seen as a ranking the set of edges
{(e0, c) | c 2 (C), (e0, c) 2 L} by their weight `(e0, c)

This basic strategy, called direct expansion, is illustrated in Figure 3.2(a). In
the example, for the input query “tickets to london”, this strategy could return useful
queries such as “london weather” and “hotels in london”. However, not so useful queries
such as “mayor of london” could also be retrieved.

This problem is alleviated by the weighting applied to the edges in G, proportional
to the frequencies of e, c and (e, c) in the query log (see Equation (3.1)). We hypothesize
that, given this lift formulation, informational queries such as “mayor of london” will
be demoted in favor of navigational and transactional queries [10], which are not only
more frequent, but also more likely to convey subtasks [25, 45].

3.3 Syntagmatic Expansion

While the direct expansion strategy is targeted at retrieving alternative contexts related
to the input entity e0, it can lead to a lack of diversity on situations where other
entities are relevant for some subtask. For instance, a user can be interested in some
other points of interest when planning her trip, or other companies when building her
investment portfolio.

Due to the focus on the original entity, the direct expansion strategy is not able
to retrieve such suggestions. One simple strategy that could solve this problem is to
look for an entity ei that co-occurs frequently with e0 across sessions in the query log,
and to recommend queries that combine ei with its best matching contexts according
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Figure 3.3. t-SNE projection using (a) Google News and (b) Wiki2Vec.

to Equation (3.1). While this strategy could work on scenarios with popular entities,
it could lead to poor suggestions when dealing with rare input entities. Indeed, if e0 is
rare, the set of its co-session entities will be small, if not empty.

To overcome this limitation, we propose another strategy for uncovering sug-
gestions associated with entities other than e0. As illustrated in Figure 3.2(b), this
strategy, denoted syntagmatic expansion, promotes entities ei (e.g., “big ben”) that are
topically related to the input entity e0 (e.g., “london”). To attenuate the aforemen-
tioned sparsity problem, instead of exploiting topical relationships explicitly stated in
the query log (e.g., entities that share many contexts), we resort to matching entities
in a semantic space.

In particular, we leverage entity embeddings trained on Wikipedia using
Word2Vec [33] 3. The choice of using Wiki2Vec embeddings, instead of general-purpose
embeddings is justified by the specialization of an embedding space for entities. In such
space, we can discard words that cannot be matched to entities.

We show, in Figure 3.3 two low-dimension projection of the embeddings, using
t-SNE, near the entity “london” using a general purpose pre-trained embeddings (a)
and the Wikipedia trained embeddings (b). While both spaces display useful enti-
ties, like “Battersea” and “Westminster”, there are several low-quality suggestions, like
“Pylas_contributed” and “EURASIAN_NATURAL_RESOURCES_CORP”. In our
initial experiments, we noted that these noisy terms could contribute negatively to the
results of our method. As a future work, we also plan on training entities embeddings

3
Pre-trained embeddings available at https://github.com/idio/wiki2vec.

https://github.com/idio/wiki2vec
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using the query log itself. We believe that this could further improve our results.
Given this embedding space, we them identify the 50 nearest neighbor entities to

e0, given by the cosine distance between their embeddings. Candidate suggestions (or
edges) are then produced by pairing each neighbor entity ei with its 50 most salient
contexts ci 2 C as given by Equation (3.1).

In our example in Figure 3.2(b), we could pair “big ben” with salient contexts such
as “tickets to #” and “# opening hours.” Finally, to rank the set of up to 50⇥50 = 2,500
suggestions, we score each pair entity-context (ei, ci) according to:

s(ei, ci) = (~e0 • ~ei) + `(ei, ci), (3.2)

where (~e0 • ~ei) denotes the dot product between dense vector representations of e0

and ei in the Wiki2Vec embedding space and `(ei, ci) is given by Equation (3.1). This
formulation demotes entities that are too far away, as well “bad” matches between
entity and contexts. In our experiments, we normalized both the embeddings and the
graph weights.

3.4 Analogical Expansion

Figure 3.4. Analogical expansion strategy.

While direct expansion covers the original entity and syntagmatic expansion cov-
ers a set of typically similar entities, we state that some related entities, especially
non-trivial ones, are not reached through any of these strategies.

As a further strategy for finding related entities, particularly non-trivial ones, we
propose an analogical expansion strategy. The intuition behind this strategy is that
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topical relationships to e0 can be derived indirectly, by looking at analogous relation-
ships to entities of the same type as e0. For instance, as illustrated in Figure 3.2(c),
“downing street” is to “london“ as “vatican” is to “rome”, which in turn is of the same
type as “london.” We hypothesize that this indirect relationship will likely uncover un-
usual (yet related) alternatives to the original entity (like some neighborhood or point
of interest mostly known by locals, as in this example), and hence increase the diversity
of the suggested queries.

As an added bonus, this strategy is able to retrieve entities that are not present on
the original query log, greatly increasing the set of retrievable candidates and diversity.

3.4.1 Paradigmatic Expansion

The first step of our proposed analogical expansion is to find a set of similar entities
to e0. While in principle this step could be performed using the same pre-trained
embeddings used for finding related entities to e0 in Section 3.3, those embeddings
modeled syntagmatic (topical) relationships, as seen on Figure 3.3, as opposed to the
paradigmatic (or typical) relationships that are needed here [28, 34]. As a simple
alternative, we select the top 50 entities es that share the same context c0 with the
input entity e0 in G, ranked by `(es, c0).

In Figure 3.4(b) we see an example of such expansion. In this example, “rome” is
an entity that frequently co-occurs with the “tickets to #” context.

3.4.2 Next Entity Mining

After retrieving a set of paradigmatically similar entities es (e.g., “rome” in Fig-
ure 3.4(b)) to e0, we search G for entities en that frequently follow es across sessions.4

The intuition behind this step is that we can further project the movement es ! en

back to e0. In our example, in Figure 3.4(c), en is “vatican.”
For instance, if someone searches for a museum after searching for a city similar

to the one the user is looking for, we want to move in the same general direction in
the embedding space of entities, so we can find another museum (or, more generally,
any other entity) related to e0. In order to decide which movements es ! en are worth
projecting back to e0 we score each movement according to:

s(es, en) = `(es, c0) + `(es, en), (3.3)

4
Note that we do not require that en immediately follow es in a session.
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where both `(es, c0) and `(es, en) are given by Equation (3.1), except that the latter
is overloaded to weight the co-occurrence of two entities within sessions rather than
co-occurrences of an entity and a context within queries. In total, we keep the top 5
entities en that follow each entity es. In our example, some retrieved movements are
the following:

“new york” ! “brooklyn”

“rome” ! “vatican”

“paris” ! “louvre”

3.4.3 Analogies

Finally, to project the identified movements back to the original entity e0, we perform
the same embedding analogy operation proposed by Mikolov et al. [33], illustrated on
Figure3.4(d). Inspired by their analogy example, where ~eking �~eman +~ewoman ⇡ ~equeen,
we want to map the movements discovered in the previous steps back to the original
entity e0. Essentially, following our example on Figure 3.4, we want to ask What is the
“vatican” of “london”? By performing these movements, we believe that rare entities
can be discovered. The analogical expansion can be seen as a high-risk, high-reward
step, promoting serendipity and discovery of rare entities.

Given embeddings of the same shape for the original entity (e0), typically similar
entity (es), and next entity (en), discovered using the strategies described above, we
resort to Equation (3.4) below to identify a set of recommended analogy entities ei:

ei = �(e0, es, en) = ~e0 � ~es + ~en, (3.4)

where ~e• denotes the dense vector representation of entity e• in the embedded space.
Following our example, we end up with these suggested entities, illustrated on Figure
3.5:

�(“london”, “new york”, “brooklyn”) = “battersea”

�(“london”, “rome”, “vatican”) = “downing street”

�(“london”, “paris”, “louvre”) = “sloane square”
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Figure 3.5. Analogical movements.

3.4.4 Context Generation

The analogical movement is agnostic when dealing with contexts. Meaning, any tech-
nique for generating contexts can be coupled with the suggested entities to produce a
tuple (e, c).

While a naive strategy like simply choosing the context ci that most frequently
co-occur with the suggested entity ei = �(e0, es, en) could work, we argue that, differ-
ent from our syntagmatic expansion strategy in Section 3.3, our analogical expansion
strategy tends to select entities that are much farther away from the input entity e0.
As a result, this naive approach may cause an undesired topic drift. For instance, our
suggested entity “battersea” has a highly salient edge with the context “# power sta-
tion”. While they are, indeed, very related, a suggestion like this could cause a severe
deviation from the original task.

An alternative could be to look for contexts ci that co-occur with the input entity
e0, which in turn could lead to poor diversity, as well as some edges that are not related
at all. For instance, this could yield results like “mayor of sloane square”, which, besides
showing a major deviation from T , is also a nonsensical suggestion.

As a compromise, we train a state-of-the-art neural query suggestion approach [44]
on the underlying query log to produce session-sensitive contexts ci given the input
query q, to be matched with the identified entities ei.

We feed the network with the input query q0, sampling, one character at a time,
a set of complete query suggestions. We then send those suggestions to the same entity
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extractor described in 3.1, collecting a set of contexts.
We hypothesize that this approach yields contexts that are highly related to the

original task T , and that, coupled with the suggested entities, we are able to generate
complete queries that cover rare subtasks.

3.4.5 Entity-Context Matching

Because entities and contexts are generated independently in the analogical expansion
strategy, we risk recommending semantically mistaken tuples like (“big ben”, “mayor
of #”). To make sure only meaningful tuples are recommended, we further score each
tuple (ei, ci) according to:

s(ei, ci) = `(es, en) +
1

|Cei |
X

cj2Cei

(1� d(~ci,~cj)), (3.5)

where `(es, en) denotes the cross-session compatibility (see Equation (3.3)) of the move-
ment es ! en that led to the analogous e0 ! ei, d(~ci,~cj) is the word mover’s dis-
tance [27] between the word embeddings contained in ci and cj, and Cei is the set of all
contexts linked to ei in G.

The word movers distance, proposed by Kusner et al. [27] is a distance metric
between phrases. Distinct from the traditional approach of taking the average of the
embeddings on each phrase and calculating the cosine distance, the WMD is shown to
be more sensitive to semantical similarities, as well as indifferent to the length of each
phrase.

The intuition behind this step is that we only match entities with contexts that
are somewhat similar to contexts that are already present with that entity. In the
case of entities that are not present in the query log, we take the risk of suggesting
some nonsensical queries, over the possibility of retrieving previously unknown and
rare candidates, that could be highly relevant.

3.5 Summary

This chapter introduced our three proposed strategies for task understanding. In Sec-
tion 3.1 we showed how to build our basic data structure, the graph G, that is used as
a base for every one of our approaches, by modelling a query log as a bipartite graph
of contexts and entities, where a query is represented as an edge on this graph. In
Section 3.2 we showed our first approach to the task understanding problem, the direct
expansion strategy. By focusing on the original entity, this strategy looks for other
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actions that could be performed over the same entity, by mining contexts on the graph
G. Section 3.3 described our second strategy, the syntagmatic expansion. We leverage
an embedding space built over entities to search for topically similar entities, increasing
our coverage of subtasks. Finally, in Section 3.4 we describe the analogical expansion,
an arguably riskier approach, but one that can bring highly valuable entities, by using
analogies over entity embeddings that might not be retrieved by more conservative
strategies.

In the next chapter, we discuss our experimental setup, describing our dataset,
evaluation methodology and baselines. We also show the results of these strategies,
discussing how to fuse their rankings to produce state-of-the-art query suggestions
for task understanding, as well as a breakdown analysis on how our methods fare on
multiple scenarios.





Chapter 4

Experimental Evaluation

In this chapter, we describe the general setup for evaluation of our proposed strategies
for task understanding discussed on Chapter 3. In Section 4.1 we describe our test col-
lection, evaluation methodology and discuss our choice of baselines. Section 4.2 covers
the evaluation results of our methods. In particular, we outline strategies for taking
advantage of the complementarity of our methods, show that our combined strategies
outperform current state-of-the-art approaches and show how they fare in multiple
scenarios of task complexity and query rarity, demonstrating that our approaches can
outperform current state-of-the art approaches, when properly combined.

4.1 Experimental Setup

In this section, we outline the experimental setup that supports our experiments in
order to assess the effectiveness of our three proposed strategies for task understanding.
In particular, we aim to answer the following research questions:

Q1. How effective are our proposed strategies?

Q2. How complementary are our proposed strategies?

Q3. How do our strategies perform for different types of query?

In the remainder of this section, we describe the setup that supports these investiga-
tions. In Section 4.1.1 we describe our query log dataset and the queries used as a test
set for our methods. Section 4.1.2 describes how we evaluate our results. In particu-
lar, we discuss how the reuse of “golden” results can be problematic in a scenario like
ours, and how to overcome these limitations. Finally, in Section 4.1.3 we discuss the
baselines chosen for our evaluation.

27
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# of queries # of unique queries # of unique entities # of unique contexts
36389567 10154742 512926 3447330

Table 4.1. AOL query log numbers.

4.1.1 Test Collections

As discussed before, our methods rely heavily on a bipartite graph G built on top of a
query log. In this work, we mine candidate suggestions on the graph G built over the
AOL 2006 query log. This log, as shown in Table 4.1.1 is a large dataset, with over 35
million queries, 10 million of these unique, collected over a period of a month.

After extracting the entities form this log, using the method described in Sec-
tion 3.1, we end up with about 512 thousand unique entities and 3 million contexts,
constituting a rather large graph G.

Following [1], we plot the query, entity and context frequency distributions in
Figure 4.1. As expected, these follow a clear power law distribution, with a few highly
popular queries, entities and contexts, and a long tail of low-frequency elements.

Instead of extracting a set of user sessions from the same query log, we consider
the 50 queries provided by the TREC 2016 Tasks track [45].1 This set of queries
are representative of multiple types of tasks that users can be trying to achieve, with
varying degrees of complexity.

Most queries include an explicit reference to the at least one entity e0 that is the
target of the underlying task. For the few cases of queries without explicitly mentioned
entities, we extract entities using the same process described above. For a few other
cases, multiple entities may occur. In these scenarios, we also process these with FEL [6]
and only consider the entity with higher probability. Figure 4.2(a) exemplifies one input
query from this dataset. There we can see that the input query “cure indigestion” is
paired with the entity “indigestion”. It also illustrates the fact that the system does not
have access to any subtask (or the main task) beforehand. Figure 4.2(b) also exemplifies
the underlying task and subtasks that should be addressed, defined by human judges
after the suggested queries were submitted. In this example, we see that the original
query represents the task “You wish to find remedies for curing indigestion”, and that
it contains 5 distinct subtasks.

For each query, the TREC 2016 Tasks track provides relevance assessments for
suggested key phrases on a scale from 0 (non-relevant) to 2 (highly relevant) for each
subtask and an extra “others” subtask. The number of defined subtasks ranges from

1
The ground truth produced by TREC 2017 Tasks track are of lower quality when compared with

2016 [25].
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Figure 4.1. Frequency distribution of entities (a), contexts (b) and queries (c)
in the query log.

Strategy Limit Value
Direct Expansion Retrieved contexts 100

Syntagmatic Expansion Retrieved entities 50
Retrieved contexts per entity 50

Analogical Expansion
Similar entities retrieved 50
Next entity per similar entity 5
Maximum candidate contexts 100

Table 4.2. Size limits for our methods.

4 to 14 across the 50 queries. On average, there are 80 unique key phrases that are
relevant to at least one subtask per task, as well as 17 highly relevant key phrases.

Given time and computational constraints, we limited our methods in the number
of possible candidates retrieved in each step. Our choices are described in Table 4.1.1.
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Figure 4.2. TREC 2016 Tasks track query #7 (a) and target task description
(b).

4.1.2 Evaluation Methodology

The ground truth provided by the TREC 2016 Tasks track comprises a relatively
small, non-exhaustive set of judged key phrases, which limits the reusability of this
test collection for evaluating new task understanding systems [14]. Meaning that, if
any of our methods (or any baseline) generate a suggestion that was not also generated
by any of the original competitors, a naive approach would always consider these as
not relevant, regardless of their actual usefulness for the task.

To overcome this limitation, we propose a parametrized relaxation scheme to
match suggested key phrases to those in the ground-truth. Our evaluation methodology
consists in relaxing these matches, by varying threshold limits between 0 (the suggestion
is identical to the ground-truth) and 1 (the suggestion is completely different from the
ground-truth), increasing in steps of 0.1. By doing so, we create a curve of similarity,
like the ones shown in Figure 4.3, where the x axis is the maximum distance allowed
before considering a suggestion the same as one in the ground truth and the y axis the
measured metric on that threshold.

This evaluation procedure, while not perfect, can capture how our methods per-
form under multiple scenarios of relaxation. At the same time, this relaxation can cause
some issues. Since it is not supervised, some queries that are deemed similar could have
completely different meaning, rendering the results problematic. To mitigate this, we
also submit the results to a crowdsourcing system.

In order to summarize these curves in one, comparable number, we define a
summarization function with exponential decay over the threshold:

�µ =
1.0X

✓=0.0

µ✓ ⇥ exp(1� ✓), (4.1)
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where �µ is the summarized score for a given metric µ, ✓ is the dissimilarity threshold,
and µ✓ is the measured value of the metric µ given the threshold ✓. Following the
standard practice at the TREC 2016 Tasks track [45], we use ERR-IA@20 as our
primary evaluation metric, while also reporting the ↵-nDCG@20. As for the underlying
similarity metric, we consider two distinct definitions of distance:

• Syntactic Distance Given by the normalized Levenshtein Distance [35], we
measure the edit distance between a suggestion and a ground-truth key phrase.

• Semantic Distance Given by the complement of the word mover’s distance [27]
between a suggestion and a ground-truth key phrase, with pre-trained word em-
beddings.2

The second approach is of specific interest for us. It allows us to abstract dif-
ferences between phrases with similar meaning, despite a different wording. We hy-
pothesize that this is metric is more closely related to what a user would be looking
for, abstracting queries that are dissimilar syntactically, but semantically similar. (i.e.:
“subway tickets” vs “metro tickets”).

To make sure our reported findings are not a mere artifact of these relaxed evalu-
ation schemes, we conducted a further evaluation round with human judges via crowd-
sourcing. To keep our costs manageable, we restrict this additional evaluation to our
best method as well as the baselines described in Section 4.1.3.

4.1.3 Baselines

As baselines in our investigations, we consider two query suggestion approaches, con-
sidered current state-of-the-art, as representatives of two different strategies, one fo-
cused on classical IR techniques and another on newer, Deep Learning based: Search
Shortcuts (SS) [8] and Hierarchical Recurrent Encoder-Decoders for Query Suggestions
(HRED) [44]. SS was shown to perform on par with state-of-the-art session-based query
suggestion approaches for head queries, with substantial improvements for tail queries.
For SS, we indexed the AOL query log into virtual documents using Terrier [30], with
BM25 used for retrieval. HRED deploys coupled recurrent neural network architec-
tures for modelling both word transitions within queries as well as query transitions
within sessions. We used the implementation provided by the authors and trained it on
the AOL query log using the same training-test partitioning described in the original
paper [44].

2https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/
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4.2 Experimental Results

In this section, we assess the complementarity of our proposed strategies for task un-
derstanding and their effectiveness in light of the state-of-the-art. We structure this
section in response to our research questions, posed in Section 4.1. We also discuss
different methods for fusing the results of our methods and show their respective effec-
tiveness. Finally, we also compare our method against Search Shortcuts (SS) [8] and
Hierarchical Recurrent Encoder-Decoders for Query Suggestions (HRED) [44].

As stated in section 4.1, our main evaluation methodology revolves around man-
aging a threshold for how different our suggestion is, related to a ground-truth on a
limited set of golden results. In the end, we also submitted our best method, together
with the two baselines, to a crowdsourcing platform, again using the same evaluation
methodology proposed by TREC.

4.2.1 Strategies Effectiveness

Figure 4.3. ERR-IA@20 for various dissimilarity thresholds.

We begin our analysis by addressing our first research question. In this section we
explore, individually, how each of our methods for task understanding, namely direct
expansion (DE), syntagmatic expansion (SE) and analogical expansion (AE) fare, in
comparison to other approaches.

We also investigate how their combination compares to our two state-of-the-art
query suggestion baselines from the literature: SS [8] and HRED [44]. To combine our
strategies, we experimented with a simple approach based on negative word mover’s
distance (WMD) [27] to rescore the union of the rankings produced by the three individ-
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Figure 4.4. ↵-nDCG@20 for various dissimilarity thresholds.

ual strategies with respect to the input query, further reranked via maximal marginal
relevance (MMR) [13] to penalize redundant suggestions in the ranking. The function
for scoring the similarity between suggestions is also given by the negative WMD. In
Section 4.2.2 we better describe two other possible approaches.

Figure 4.3 shows the result of this investigation in terms of ERR-IA@20 for se-
mantic and syntactical similarities, as we vary the maximum dissimilarity threshold on
the x-axis. Figure 4.4 shows the same results but measuring ↵-nDCG@20.

From Figures 4.3(a) and 4.4(a), we first note that, when considering the semantic
distance, among our three individual strategies, DE performs the best, followed by SE
and AE, particularly for stricter scenarios (i.e., toward lower dissimilarity). This result
is somewhat expected, given that DE is the most conservative of the three strategies,
whereas AE is the most aggressive.

However, when considering the Syntactic distance, in Figures 4.3(a) and 4.4(a),
SE performs better on stricter scenarios, followed by AE. When increasing the max-
imum allowed similarity, however, the situation is very similar to what happens on
Semantic Distance.

The explanation for this perhaps counter-intuitive result is due to the fact that,
usually, the context is the largest portion of the complete query, and, since the normal-
ized Levenshtein distance takes into consideration the complete length of the query, it
will tend to give higher similarity scores to queries with very similar contexts. There-
fore, DE, by changing the whole context, will change most of the original query, thus,
a higher divergence from the ground-truth queries when compared to SE, that, given
that it will look for entities similar to e0, the contexts are more likely to be similar to
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c0
3, and AE, that, given the use of a version of HRED-QS for contexts, will keep the

context in a not too distant scenario from c0.
It is also worth noting the magnitude of the scores. Semantic distance, as shown

in Figure 4.3(a) ranges from 0.0 up to 0.6, while syntactic distance, in Figure 4.3(b),
ranges from 0.0 to only 0.3. This also shows that our proposed semantic distance is
perhaps more permissive when considering similarities. A very similar phenomenon
can be seen in Figure 4.4.

Figures 4.3 and 4.4 also show that, individually, our strategies do not outper-
form the baselines. However, when combined via WMD+MMR, they perform on par
with the strongest baseline up until a dissimilarity threshold around ✓ = 0.3, when
considering semantic distances, and ✓ = 0.1 when considering syntactic distance, with
consistent improvements afterwards.

Recalling Q1, these results demonstrate the effectiveness of our strategies on
their own, and particularly in combination, with improvements over state-of-the-art
query suggestion baselines from the literature. These results also point towards the
complementary nature of our proposed strategies, which will be explored in the next
section.

4.2.2 Strategies Complementarity

As discussed on Chapter 3, a user task can cover multiple subtasks, spanning over mul-
tiple entities and contexts. Therefore, our proposed strategies for task understanding
aim to promote a diverse coverage of these possible subtasks underlying the user’s task,
represented by a single input query.

To address question Q2, we investigate the extent to which the suggestions pro-
duced by these strategies are actually complementary to one another.

To this end, Figure 4.5 shows Venn diagrams illustrating the number of sugges-
tions that are unique to each strategy, as well as the size of their intersections. The
reported numbers are aggregated for all 50 queries,4 with each strategy contributing
up to 20 suggestions per query. It is interesting to note that the number of relevant
suggestions generated by AE is considerably large, compared to the relatively low per-
formance reported in Figure 4.3. The reasoning behind this is that the queries that are
considered equal for the given threshold, on AE, are usually queries with lower scores
overall. Therefore, despite a large number of relevant suggestions, these are ranked
lower on the ground truth, yielding a lower score.

3
On a deeper analysis of the competitors from TREC, their results tend to focus on the original
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Figure 4.5. Venn diagram of suggestions returned by our three proposed strate-
gies.

From Figure 4.5(a), we observe a very small intersection of the output produced
by our three proposed strategies, with a substantial number of unique suggestions con-
tributed by each one of them. When only relevant suggestions are considered (using
a semantic dissimilarity threshold ✓ = 0.3 between the suggestions and the golden
results) in Figure 4.5(b), we note larger intersections, particularly among direct expan-
sions (DE) and syntagmatic expansions (SE), with analogical expansions (AE) pro-
viding the largest number of unique relevant suggestions, giving its wildly different
strategy.

Finally, on Figure 4.5(c), we show that our final mixing method also generates
disjoint suggestions when compared to the baselines. This also raises the question on
what would be the results if we also mixed the baselines (especially HRED-QS) with
our methods. While we leave this as a possible future work, it could be a somewhat
complex task to achieve, given that our methods are unsupervised, the addition of
HRED-QS may make us lose the benefit of the speed of our method, given the long
training time needed on HRED-QS.

These results answer Q2, by demonstrating that each strategy is able to produce
a sizeable amount of relevant suggestions which complement the suggestions produced
by the other two strategies.

We also explore how different data fusion techniques are able to combine our
methods. in particular, we explored how BordaCount, CombMNZ [18] and ranking the
candidates by WMD can be used. Finally, we also explored how MMR re-ranking can
be beneficial for each of the techniques.

BordaCount is a classical counting technique for voting, where each voter (in this
case, a method that generates candidates), ranks its preferences (or suggestions). Each

context or small variations of it.
4
Per query intersections are near empty.
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document is scored according to the inverse of its ranking position, and these scores
are summed. The score for a single suggestion q, over n rankings with k results for
each is described on Equation 4.2:

BordaCountq =
nX

i=0

kX

j=0

8
<

:
k � j, if q 2 I

0, otherwise
(4.2)

where I is the set of suggestions ranked in the i-th ranking.
CombMNZ is another strategy for combining multiple rankings, proposed initially

by Fox et al. [18], where the final score of each document is given by the sum of the
scores in each of the rankings, multiplied by the number of times the result appear on
each ranking, as shown in Equation 4.3:

CombMNZq = m⇥
nX

i=0

X

q2I

µi,q, , (4.3)

where m is the number of methods that generated the query q and µi,q is the score of
the query q in the i-th method.

Figure 4.6. ERR-IA@20 curves for Data Fusion.

The curves of these results can be seen in Figure 4.6 and 4.7, where our
WMD+MMR method clearly outperformed other data fusion techniques, on all break-
downs. It is also interesting to note that MMR on both CombMNZ and BordaCount
re-ranked the documents in exactly the same way. In Figures 4.12 and 4.13 we see these
methods compared by each of the breakdowns that are further evaluated, where, again,
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Figure 4.7. ↵-nDCG@20 for Data Fusion.

it is clear that our mixing method outperforms other ranking fusion methodologies by
a good margin.

4.2.3 Effectiveness Breakdown

To further assess our proposed strategies, we address Q3, “How do our strategies per-
form for different types of query?”, by breaking down our evaluation for different groups
of queries, according to the following criteria:

• Occurrences in the query log: we divided the test questions into head queries
(10+ occurrences in the query log), torso queries (1-10 occurrences) and tail
queries (0 occurrences)

• Number of entities in the ground-truth results: to measure the retrieval
quality of entities, we also divided the query log by the number of relevant unique
entities in the ground-truth.

• Task complexity: we believe that the complexity of the task can be measured
by how many subtasks it encompasses. Therefore, we also divided the test queries
by number of target subtasks.

These breakdowns describe key areas where task understanding systems play the
most important roles. Rare queries (or long-tail) are always considered a challenge
for information retrieval systems. Given their lack of information on the query log,
being able to efficiently retrieve suggestions in these cases is a complex task on itself,
addressed in works like Broccolo et al. [8]. We consider head queries as queries with at
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least 10 mentions in the query log, long-tail queries that are not present in the query
log and torso queries any query with at least one mention in the query log, but no
more than 9.

Given our focus on entities, and the fact that the TREC dataset explicitly includes
the entities from the original query in their dataset (see Figure 4.2(a)), we measure
the number of entities in the reported ground truth. Our intuition is that this would
measure how diverse the expected results for a given task is.

Finally, we state that a given task T is more complex according to the number of
subtasks it encompasses. We believe that this breakdown will be able to distinguish be-
tween easy tasks (few subtasks needed to complete T ) and hard tasks (lots of subtasks
needed), making this breakdown extremely important for task understanding.

Figures 4.8 and 4.9 shows the results of this breakdown evaluation in terms of
the relaxed ERR-IA@20 (see Equation (4.1)). From the figure, we further confirm the
consistent superiority of DE compared to SE and AE for queries in all groups, when
considering semantic distance, and the opposite when considering syntactic distance.

Moreover, the combination of the three strategies into the WMD+MMR rescoring
approach yield consistently improved results compared to both SS and HRED in most
scenarios. Interestingly, our combined approach performs the best for hard queries
(tail queries, and those with a large variety of underlying entities and subtasks). Two
notable exceptions are for head queries (5/50 queries with 10+ occurrences in the log)
and for queries with 17-31 entities in the log (17/50 queries), where HRED performs
the best.

A similar behaviour can be seen when measuring their ↵-nDCG. For the sake of
completeness, we also include these analyses in Figures 4.10 and 4.11

Figure 4.8. Relaxed Semantic ERR-IA@20 for various query groups.
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Figure 4.9. Relaxed Syntactic ERR-IA@20 for various query groups.

Figure 4.10. Relaxed Semantic ↵-nDCG@20 for various query groups.

Figure 4.11. Relaxed Syntactic ↵-nDCG@20 for various query groups.
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Following on our investigation from Section 4.2.2, we also show the same break-
downs for our mixing strategies in Figures 4.12 to 4.15.

Figure 4.12. Relaxed Semantic ERR-IA@20 for various query groups.

Figure 4.13. Relaxed Syntactic ERR-IA@20 for various query groups.

In Tables 4.3, 4.4 and 4.5 we present our numerical results. Specifically, we show
the values for our summarization metric (see Equation 4.1), measuring the results by
ERR-IA@20. (↵-nDCG@20 values and significances are very similar and will not be
presented for the sake of brevity.)

These results show that our mixing method is robust across every subdivision
of the test queries. Overall, our method outperforms the baselines in almost every
scenario, especially for rare queries and in complex scenarios, with multiple relevant
entities and multiple subtasks.

Our significance analysis was done with the null-hypothesis (H0) stated as: Our
method is similar to our strongest baseline, HRED-QS. We report values with p < 0.05

marking them with 4 and O, and p < 0.01 using N and H.



4.2. Experimental Results 41

Figure 4.14. Relaxed Semantic ↵-nDCG@20 for various query groups.

Figure 4.15. Relaxed Syntactic ↵-nDCG@20 for various query groups.

All (n = 50) Head (n = 5) Torso (n = 12) Tail (n = 33)
Syn Sem Syn Sem Syn Sem Syn Sem

HRED-QS 3.84 8.26 4.39 10.10 2.90 6.50 4.07 8.62
SS 3.57 7.03H 3.15 8.65 3.04 4.77O 3.81 7.60H
DE 2.16H 7.06H 3.28 7.62 2.24 6.21 1.97H 7.32H
SE 2.80H 6.41H 0.96 7.49 2.22 4.57O 3.52 6.92H
AE 2.40H 5.02H 1.70 4.16 2.48 4.09O 2.39H 5.74H
WMD+MMR 4.53 4 8.71 4.29 7.92 5.504 7.61 4.16 9.22

Table 4.3. Results by query frequency.
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All (n = 50) 10-16 (n = 16) 17-31 (n = 17) 31-60 (n = 17)
Syn Sem Syn Sem Syn Sem Syn Sem

HRED-QS 3.84 8.26 5.12 7.78 2.40 8.84 3.99 8.13
SS 3.57 7.03 H 3.47H 6.80H 2.76 N 7.30H 4.50 N 6.97H
DE 2.16 H 7.06H 1.82H 6.19H 2.52 N 7.46 H 2.23H 7.42H
SE 2.80 H 6.41O 1.98H 6.15H 2.50 N 6.66H 3.59H 6.41H
AE 2.40 H 5.02H 2.37H 5.02H 2.00H 5.03H 2.76H 5.02H
WMD+MMR 4.53 4 8.71 4.21N 8.23N 3.47N 8.41H 5.90N 9.44N

Table 4.4. Results by number of entities.

All (n = 50) 4-6 (n = 21) 7-9 (n = 23) 10+ (n = 6)
Syn Sem Syn Sem Syn Sem Syn Sem

HRED-QS 3.84 8.26 4.52 8.98 3.13 8.03 4.27 6.64
SS 3.57 7.03H 3.34 7.72H 3.55 6.41H 4.65 6.82
DE 2.16H 7.06H 2.74 7.67 H 1.40 O 6.37H 2.00 7.32
SE 2.80 O 6.41 H 2.47 7.21H 2.09 O 5.64 H 6.01 6.57
AE 2.40 H 5.02H 2.54O 4.76H 1.84 O 4.67H 3.48 6.82
WMD+MMR 4.534 8.71 4.824 9.26 3.67 8.13 6.634 8.96

Table 4.5. Results by number of subtasks.

All(n = 50) Head(n = 5) Torso(n = 12) Tail(n = 33)
Syn Sem Syn Sem Syn Sem Syn Sem

HRED-QS 3.87 8.26 4.39 10.10 3.07 6.50 4.05 8.62
DE 2.14 H 7.06 H 2.85 7.62 2.25 6.21 2.01 H 7.32 H
DE+SE 2.56 H 7.80 1.55 9.15 1.65 6.34 3.204 8.13 8.13
DE+AE 3.33 7.50 H 2.56 8.78 2.28 6.38 3.80 7.72 H
SE 2.83 O 6.41 H 0.95 7.49 2.21 4.57 O 3.58 6.92 H
SE+AE 2.52 H 7.39 H 1.71 8.36 0.91 H 5.81 3.27 7.82 4
AE 2.40H 6.91 H 1.72 9.23 2.44 5.39 2.40 H 7.31 H
DE+SE+AE 4.50 4 8.35 4.29 9.68 5.484 6.80 4.12 8.71

Table 4.6. Ablation analysis by query frequency.

Finally, we also considered every possible combination between our methods.
These results can be seen in Tables 4.6 to 4.8. From these analyses, we see that
our intuition is correct. Direct Expansion usually performs best when dealing with
low diversity scenarios, while the Analogical Expansion is able to further improve for
complex tasks.
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All(n = 50) 10-16(n = 16) 17-31(n = 17) 31-10(n = 17)
Syn Sem Syn Sem Syn Sem Syn Sem

HRED-QS 3.87 8.26 5.20 7.78 2.39 8.84 4.02 8.13
DE 2.14 H 7.06 H 1.88 H 6.19 H 2.52 N 7.46 H 2.12 H 7.42 H
DE+SE 2.56 H 7.80 1.14 H 7.24 H 2.49 N 8.04 H 3.59 N 8.09 H
DE+AE 3.33 7.50 H 2.61 H 6.58 H 3.15 N 7.86 H 4.13 N 8.02 H
SE 2.83 O 6.41 H 1.99 H 6.15 H 2.51 N 6.66 H 3.67 N 6.41 H
SE+AE 2.52 H 7.39 H 1.15 H 6.90 H 2.76 N 7.53 H 3.20 H 7.71 H
AE 2.40H 6.91 H 2.62 H 6.49 H 1.76 H 7.17 H 2.72 H 7.07 H
DE+SE+AE 4.50 4 8.35 4.20 H 7.85 N 3.46 N 8.68 H 5.84 N 8.47 N

Table 4.7. Ablation analysis by number of entities.

All(n = 50) 4-6(n = 21) 7-9(n = 23) 10+(n = 6)
Syn Sem Syn Sem Syn Sem Syn Sem

HRED-QS 3.87 8.26 4.59 8.98 3.13 8.03 4.24 6.64
DE 2.14 H 7.06 H 2.64 O 7.67 H 6.19 H 1.49 O 6.37 H 1.95 7.32
DE+SE 2.56 H 7.80 2.31 O 8.71 7.24 H 1.79 6.96 H 5.08 7.86
DE+AE 3.33 7.50 H 3.09 O 8.41 4 6.58 H 3.25 6.61 H 4.31 7.77
SE 2.83 O 6.41 H 2.50 O 7.21 H 6.15 H 2.14 5.64 H 6.04 6.57
SE+AE 2.52 H 7.39 H 1.15 H 6.90 H 1.79 O 6.60 H 4.92 6.96
AE 2.40H 6.91 H 2.29 O 8.37 6.49 H 1.81 O 5.89 H 3.46 7.01
DE+SE+AE 4.50 4 8.35 2.58 H 7.83 H 3.66 7.67 O 6.46 4 8.37

Table 4.8. Ablation analysis by number of subtasks.

4.2.4 Crowdsourcing Results

To further validate these observations, we submitted the results produced by our com-
bined approach using WMD+MMR, as well as those produced by the SS and HRED
baselines to additional assessment by human judges via crowdsourcing, using the Fig-
ure Eight platform 5. In particular, the results produced by these methods were aggre-
gated and shown to three judges each, with similar instructions as those used by TREC
judges, and no further information about which approach produced which result.

The platform used also introduces a honey-pot mechanism, to avoid malicious
users. For this, we used ground-truth results, asking users to assess the quality of
those golden queries. The results of this investigation are shown in Figure 4.16, once
again broken down according to the aforementioned groups of queries. When judges
disagree on any topic, we take the rounded average score attributed by all three judges.

From Figure 4.16, we first note a generally consistent trend with the approximated
results reported in Figures 4.8 and 4.9. However, the results attained by our approach

5https://figure-eight.com

https://figure-eight.com
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Figure 4.16. ERR-IA@20 with exhaustive (crowdsourced) judgments.

are even stronger in this exhaustive judging scenario, with improvements compared to
both SS and HRED in all tested query groups. Recalling Q3, these observations cor-
roborate the effectiveness of our approach for task understanding, with improvements
over the state-of-the-art for queries with various popularity levels, number of expected
relevant entities, and number of underlying subtasks.

Finally, in Table 4.9, we present the numerical results for human judges. Once
again, it’s clear that our combined result consistently improves over the current state-
of-the-art, particularly hard tasks and long-tail queries.

HRED-QS SS WMD+MMR
All 1.50 0.96H 1.77
Head 1.40 0.56 1.54

Torso 0.98 1.23 1.43

Tail 1.70 0.92H 1.93

10-16 entities 1.50 1.09H 1.66N
17-31 entities 1.30 0.88H 1.70 N
32-60 entities 1.68 0.91H 1.95 N
4-6 subtasks 1.35 0.92 1.58

7-9 subtasks 1.61 0.96O 1.82

10+subtasks 1.57 1.09 2.24

Table 4.9. Human judges results.

In order to understand how reliable the human judges are, we also computed the
Cohen’s Kappa for each of the tasks. It is computed by the average kappa of each
of the subtasks. The histogram of the average kappa for each subtask can be seen in
Figure 4.17. The reported average value of 0.34 is in line with what is expected in
human judgment scenarios, as reported by [26], given that relevance judgment is not a
trivial task, specially when the judge is not an expert.
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Figure 4.17. Cohen Kappa histogram for each task.

4.3 Summary

In this chapter, we described in detail our setup for experimentation and shown the
results for these experiments. In particular, we focused our experiments in trying to
answer the following research questions:

Q1. How effective are our proposed strategies?

Q2. How complementary are our proposed strategies?

Q3. How do our strategies perform for different types of query?

We began by exploring our test collections, in Section 4.1.1, where we discussed
how we built our bipartite graph G over the AOL query log, and some statistics ex-
tracted from G. We also discussed briefly the test collection provided by the TREC
2006 Task Understanding.

In Section 4.1.2 we described the difficulty of reusing the provided ground-truth,
and how to address this issue with a scheme of relaxation using two dissimilarity thresh-
olds. Section 4.1.3 described our choices of baselines, and how they were implemented.

Section 4.2 explored the results of our experiments. Specifically, how they ad-
dress each of our previously mentioned research questions. Section 4.2.1 answered Q1
by describing how each of our methods fare against the baselines. In particular, we
demonstrated that, by mixing our methods, we achieve new state-of-the-art on query
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suggestion for task understand. For addressing Q2, Section 4.2.2 discussed how distinct
are the rankings produced by each of our methods. We also discussed how different data
fusion techniques could be used for fusing the results. Finally, Section 4.2.3 showed,
in details, how each of our methods and their combination fares in multiple scenarios.
We showed that our fusing method is especially effective for long tail queries and hard
tasks.

In order to validate that our results are not just an artefact of the evaluation
scheme, we also submitted them to a crowdsourcing platform. As shown in Sec-
tion 4.2.4, our results were validated by a number of human judges, where we found
results consistent with our proposed methodology.



Chapter 5

Conclusions and Future Work

Information retrieval systems are a key part of our daily lives. Their presence in our
desktops, mobile devices and even integrated in our home appliances make such systems
an easy to access point of entrance to the Web, helping us to learn, find facts and make
decisions. When trying to complete any task, on any domain, it is increasingly common
for users to resort to one of such systems, from the simplest factoid tasks, like searching
for who is the president of New Zealand all the way to complex tasks, like planning
a trip to another country or learning a complex new topic. Therefore, understanding
the task underlying a user query can be a great way to optimize the user experience in
these scenarios.

In this dissertation, we proposed three novel strategies for navigating a seman-
tically annotated query log for task understanding. Our proposed strategies vary in
complexity and reach, providing alternative mechanisms for producing suggestions with
a diverse coverage of the subtasks underlying the user’s task. As proposed by the TREC
Task track, in these situations, given a sample input query by a user, a task under-
standing system need to discover the underlying task the user is trying to accomplish
and suggest a set of ranked key phrases. These suggested key phrases can be used
as queries to a search engine, hopefully helping the user solve the largest number of
subtasks related to the original task as possible.

We presented three novel approaches for task understanding. Namely, we intro-
duced the Direct Expansion, Syntagmatic Expansion and Analogical Expansion strate-
gies. We have shown that they are complementary, in the sense that they produce
rankings that are almost completely disjoint, and that each of these expands the set
of candidates in a different direction. Thus, we also showed that, by combining these
strategies, we can produce a new state-of-the-art approach, useful for long tail queries
and hard tasks.

47
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In the remainder of this chapter, we summarize the conclusions drawn from our
experiments, the main contributions of this work, possible directions for future work
and our final remarks.

5.1 Summary of Contributions

We believe that this dissertation has the following main contributions:

• A new approach for representing and navigating a query log. We pre-
sented, in Section 3.1, a new approach of representing a query log, by building
a bipartite graph using an annotated query log and framing the query sugges-
tion problem as an edge suggestion problem. We also described three different
strategies to navigate this query log, with varying complexity and effectiveness
in multiple scenarios. In particular, we described the Direct Expansion approach
in Section 3.2, which works by changing the original context of the input query,
varying the actions to be taken on the same action. In Section 3.3 we introduced
the Syntagmatic Expansion, which expands over the original entity by using a
space of latent variables, generated using word embedding techniques. Finally, in
Section 3.4, we described the Analogical Expansion technique, a high-risk-high-
reward strategy, that generates candidates by performing analogies over entities
typically similar to the input entity.

• A new state-of-the-art task understanding approach. We showed, in
Chapter 4, how our strategies fare against current state-of-the-art approaches
to query suggestion. We demonstrated that, by combining our strategies, we sur-
passed current state-of-the-art approaches. We showed that our fusing strategy
is highly effective when dealing with the most difficult scenarios, long-tail queries
and complex tasks. We also presented the result of an evaluation made on a
crowdsourcing environment, where human judges validated our results.

5.2 Summary of Conclusions

In this dissertation, we presented three new approaches for task-understanding, fram-
ing the problem as an edge suggestion problem over a bipartite graph built over a
semantically annotated query log. In order to understand the impact of each of these
strategies, we built an evaluation scheme based on relaxation of similarity thresholds,
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both semantic and syntactic. In addition, we also employed human judges in order to
access the quality of our suggestion.

We found that our strategies are highly complementary, and, while not able to
perform better than our baselines individually, a combination of them can generate a
new state-of-the-art approach to the problem. This finding was further corroborated by
our human judges’ evaluation, which effectively showed that our methods are especially
useful for long tail and complex tasks.

5.3 Directions for Future Research

Based on our findings, we believe that this work could have further impact in the
following research directions:

• We believe that approaches similar to the ones presented here could be highly
useful in systems where complex tasks are explicitly being completed. For in-
stance, a flight tickets website could deploy a similar system for recommending
activities for shoppers in the area. Other area that could see improvements from
this work is in search-as-learning, where a learning task is modeled as a searching
problem. Therefore, we look forward for other instantiations of our approaches,
applied to scenarios similar to these.

• Another interesting direction of research is in the application of the strategies
presented in smart assistant scenarios. Given the task-oriented nature of such
systems, we hypothesize that approaches similar to the ones we described in this
dissertation could be highly useful on these scenarios.

• Other approaches to navigating the proposed bipartite graph could also be im-
plemented. For instance, using neural networks for extracting edge and node
embeddings could generate interesting results, leveraging intrinsic graph rela-
tionships that are perhaps not so obvious.

• In the evaluation front, we think that other evaluation schemes could be useful.
The problem of reusing small ground-truth datasets is complex, and strategies for
addressing this are needed, even after showing that our approaches were highly
correlated with human judges. We also believe that other evaluation metrics,
for different goals, diverse from task understanding could be studied, in order
to better understand if our findings are replicable in other domains, like classic
query suggestions.
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• Another interesting future direction of work would be to look into different meth-
ods for merging navigation strategies on G. While we demonstrated that using
Word Mover’s Distance for ranking, followed by MMR re-ranking works well, it
is possible that other approaches could yield better results.

• One of the shortcomings of our proposed methods is the lack of an intent-aware
approach to distinguish between task-oriented and non-task-oriented suggestions.
We hypothesize that an approach toward this could yield relevant results on task
understanding.

• Another interesting approach that can be further examined is to use different
kinds of word embeddings. We believe that, instead of using general purpose
embeddings, one could train these using the query log itself, with possible im-
provements on syntagmatic and analogical expansions.

• Due to the inherent dependency between our methods and the data it derives
from (specifically, the Wiki2Vec embeddings), it is a complex task to actually
measure which part of our method produces the largest improvements on the
results. Therefore, measuring these gains and identifying possible pathways for
further improvements based on these findings is another good direction for future
works.

5.4 Final Remarks

This dissertation contributed three new, complementary approaches to task under-
standing, beating current state-of-the-art techniques. In the research perspective, it
also helped build a deeper understanding of how queries, entities and contexts are
related in a task understanding scenario.
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