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Abstract

In May of 2016, IBM Research has made a quantum processor available in the cloud
to the general public. The possibility of programming an actual quantum device has
elicited much enthusiasm. Yet, quantum programming still lacks the compiler support
that modern programming languages enjoy today. To use universal quantum computers
like IBM’s, programmers must design low-level circuits. In particular, they must map
logical qubits into physical qubits that need to obey connectivity constraints. This
task resembles the early days of programming, in which software was built in machine
languages. In this work, we shall formally introduce the qubit allocation problem
and provide an exact solution to it. This optimal algorithm deals with the simple
quantum machinery available today; however, it cannot scale up to the more complex
architectures scheduled to appear. Thus, we will also provide heuristics to solve qubit
allocation, one of which is faster, and another one that performs better than the current
solutions already implemented to deal with this problem.

Keywords: Qubit Allocation, Quantum Computing, Compilers, Register Allocation.

xiii





List of Figures

1.1 Circuit representation of (a1a0 + b1b0)%4. Each wire represents the state
of a qubit as time passes by. The circuit is divided into three parts: (a)
a1 ⊕ b1; (b) (a0 ∧ b0) ⊕ b1; (c) a0 ⊕ b0. Output is stored in b1b0. (d) shows
the application of gates one in front of the other, and combination of them
(parallel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 (a) The coupling graph of the IBM Yorktown computer. (b) Interactions
between qubits of the circuit seen in Figure 1.1. (c) Dependences that have
created these interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 (a) Reversal. (b) Bridge. (c) Swap. . . . . . . . . . . . . . . . . . . . . . . 8

1.4 (a) CNOT reversals, marked as grey boxes, invert the direction of CNOTb0b1 .
(b) The two black Hadamard gates can be simplified away, given the identity
HH = I. (c) Solution to qubit allocation showing embedding of the control
graph onto the coupling graph. . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Solution of qubit allocation for the circuit in Figure 1.1, using a CNOT swap.
Grey lines represent physical qubits. We show the different mappings that
we have at two points of the circuit. . . . . . . . . . . . . . . . . . . . . . . 9

1.6 (a) two undirected graphs G and H (left to right); (b) all possible subgraphs
of G that are isomorphic to H. . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 (a) undirected graph of Figure 1.6 (a) with the initial state of the tokens
(fsrc) inside the circle, the final state of the tokens (ftgt) outside the circle.
Grey boxes indicate vertices whose tokens are already in its target place;
(b) a sequence of swaps that solves the problem (highlighted edges). . . . . 11

1.8 Quantum circuit divided into a sequence of layers. Each column represents
one layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.9 Gate dependency graph of the quantum circuit in Figure 1.1. The vertices
with no incoming edges (highlighted) may be executed. The vertices inside
the dashed box do not have a correct order to be executed in. . . . . . . . 13

xv



2.1 Notation used in this work. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Eight states reachable from the initial mapping in the top-left side. In total,

we have sixteen states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Finding an initial mapping to qubit allocation. . . . . . . . . . . . . . . . . 21
2.4 (a) List of control dependences from the quantum circuit seen in Figure 1.1.

(b) Weighted dependence graph. Grey boxes represent wp. (c-f) Step-by-
step construction of the initial mapping. . . . . . . . . . . . . . . . . . . . 22

2.5 Extending the initial mapping to satisfy Ψ. . . . . . . . . . . . . . . . . . . 23
2.6 Steps of the BMT algorithm. (a) output of phase (i): partitioned program,

and a set of mappings for each each of them; (b) output of phase (ii): one
mapping for each program partition. . . . . . . . . . . . . . . . . . . . . . 24

2.7 From left to right, we have the coupling graphGd
q , the list of control relations

Ψ, split into Maximal Isomorphic Sublists (solid boxes), and the graphs GΨ

derived from sublists of Ψ (dashed boxes). Next to each derived graph, we
show if an isomorphism is possible (3) or not (7). . . . . . . . . . . . . . . 25

2.8 Exhaustive mapping tree produced from the first instruction (r1, r0) in our
running example. The notation p·q indicates that pseudo qubit p is mapped
onto physical qubit q. Mappings marked with 7 are dead-ends, i.e., we
cannot continue the exhaustive construction of new mappings from them.
We show the cost of each mapping next to it. . . . . . . . . . . . . . . . . 27

2.9 Tree of mappings for one partition. The ith level represents the possible
mappings once we add the ith instruction (on the left) to the mappings
already in place. Since the number of leaves grows exponentially, we prune
by (a) limiting the number of children of each mapping; and (b) bounding
the number of mappings for a partition. . . . . . . . . . . . . . . . . . . . 28

2.10 Output from first phase F with some possible combinations represented by
different paths. Each path in this figure represents one different solution.
Highlighted, there is a path that represents the optimal solution. . . . . . . 29

2.11 Steps for transforming fprev into f , assuming the coupling graph seen in
Figure 2.7. The pseudo qubit assigned to a physical qubit is shown in
brackets. Gray edges indicate qubits that shall be swapped. . . . . . . . . 30

2.12 Subproblem dependency for calculating OPT of the highlighted mapping.
It shall be the minimum value of the sum of each dependency by its cost δ
of transforming the previous one into the highlighted one. . . . . . . . . . 33

2.13 Mappings f and swapping sequences ∆ (highlighted) gives us all the in-
formation that is necessary to transform a virtual quantum circuit into a
physical quantum circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

xvi



2.14 (a) from left to right, we have the whole input program segmented into parti-
tions (dashed box), and their respective mappings; (b) the translated input
program segmented into partitions (dashed box), and the swap operations
(highlighted) necessary to transform one mapping into another. . . . . . . 35

3.1 Coupling graph of the IBM Tokyo, a 20-qubit architecture [IBM, 2018a]. . 40
3.2 Baseline is Mp = 32 and Mc = 2560 〈32, 2560〉. It shows the amount of

partitions created by BMT in the first phase (Section 2.3.1) . . . . . . . . 44
3.3 Baseline is the canonical version of the algorithm: can. In the Y-axis,

we show how many partitions each allocator created in comparison to the
baseline. In the X-axis, for clarity, we show the benchmarks that resulted
in a difference of at least 5% among the allocators. . . . . . . . . . . . . . 46

3.4 Baseline is the canonical version of the algorithm: can. In the Y-axis, we
show the weighted cost of each allocator in comparison to the baseline. In
the X-axis, for clarity, we show the benchmarks that resulted in a difference
of at least 5% among the allocators. . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Baseline is the canonical version of the algorithm: can. Ratios of the number
of partitions created by each of these algorithms, in relation to the baseline. 47

3.6 Ratio of the weighted cost found by different allocators, in relation to the
cost found by bmtS. The Y-axis shows the weighted cost in logarithmic scale.
The X-axis shows benchmarks ordered in increasing order of the cost found
by bmtS (shaded area). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Time spent by different allocators. The Y-axis shows time (seconds) in
logarithmic scale. The X-axis shows benchmarks ordered in increasing order
of the time spent by bmtS (shaded area). . . . . . . . . . . . . . . . . . . . 50

3.8 Memory used by different allocators. The Y-axis shows the memory (bytes)
in logarithmic scale. The X-axis shows benchmarks ordered in increasing
order of the memory used by bmtS (shaded area). . . . . . . . . . . . . . . 51

3.9 Coupling graph of the IBM Yorktown, a 5-qubit architecture [IBM, 2018a]. 51
3.10 Template for the tables in this chapter. The major line for allocator foo

indicates that Rcomp is Rfoo. In the caption we shall describe who is Rbase.
Every column is the performance of Rfoo in comparison to Rbase. The high-
lighted lines indicate where Rfoo was better than Rbase. . . . . . . . . . . . 53

3.11 Baseline is Mp = 8 and Mc = 1280 〈8, 1280〉. It shows the geometric mean
(µg) of the metrics between all the combinations of parameters Mc (lines)
and Mp (columns). The geometric standard deviation σg (in parenthesis)
shows the spread of the data. . . . . . . . . . . . . . . . . . . . . . . . . . 54

xvii



3.12 Baseline is the canonical version of the algorithm: can. It shows the effects
of the proposed optimizations relative to the canonical algorithm. Each al-
locator represents a new combination of improvements applied to the canon-
ical version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.13 Baseline is the BMT (bmtS) allocator. Except for Better Count, the
smaller the reported value, the better for the corresponding competing al-
locator. The rows (dimensions) where our bmtS loses are highlighted. . . . 56

3.14 Baseline is the optimal algorithm dyn allocator. Except for Better Count,
the smaller the reported value, the better for the corresponding competing
allocator. The rows (dimensions) where our dyn loses are highlighted. . . . 57

4.1 Quantum circuit indicating (in red) where the swaps would be ideally placed
if allocated one layer at a time. . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 (a) creation of one layer of swaps {(a, c), (b, d)} whose intersection is
empty; (b) generation of one mapping for each edge, which represents
the swap between its endpoints; (c) same as (b), but for all edges in
E(Gu

q ) \ {(q0, ∗), (q2, ∗)}; (d) creation of another layer of swaps, starting
from the last mapping in the last layer of swaps; . . . . . . . . . . . . . . . 63

4.3 Illustration of two possible layer configurations, and the edges considered for
creating the swap combinations. (a) shows gate CNOT af , where each a and
f touch two edges each; yielding 24 = 16 different swap combinations. (b)
shows gates CNOT ae and CNOT bf , that touch every edge in the coupling
graph; yielding 27 = 128 different swap combinations. . . . . . . . . . . . . 64

4.4 Scheme of the whole algorithm proposed by Li et al. [2018]. The authors
execute the allocation iteration five times, and get the best out of them. . 66

4.5 (i)∼(v) iterations of the execution of Miltzow et al. [2016] algorithm. On the
left, there are the inputs to the algorithm: (T ) the token set a, . . . , e; (fsrc)
the current configuration of tokens – inside the circles; (ftgt) the target
configuration of tokens – outside the circles. On the right, there is the
respective Swap Chain Graph to each iteration. Bold edges represent the
swaps taken. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 (a) initial token configuration on the left, and the bipartite graph B on the
right. Unused physical qubits and tokens t that |ftgt(t)| > 1 are represented
as ⊥. (b) the modified initial token configuration on the left, where we
replaced the two ⊥ tokens for ⊥1,⊥2, so that they have only one target
vertex. On the right, there is the resulting swap graph S. . . . . . . . . . . 71

xviii



A.1 On the left, we have the same initial configuration as Figure 4.6. (T ) is the
token set {a, c, e,⊥,⊥}; (fsrc) is the current configuration of tokens – inside
the circles; (ftgt) is the target configuration of tokens – outside the circles.
On the right, we have the corresponding swap graph S ignoring the ⊥ tokens. 82

xix





Contents

Acknowledgments ix

Abstract xiii

List of Figures xv

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Qubits and Quantum Gates. . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Architectural Constraints. . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Qubit Allocation – An Informal Overview. . . . . . . . . . . . . 6
1.1.4 Subgraph Isomorphism . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.5 Token Swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Quantum Programs Representation . . . . . . . . . . . . . . . . . . . . 12

2 The Qubit Allocation Problem 15
2.1 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Weighted Partial Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Finding the Initial Mapping . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Extending the Initial Mapping to handle Ψ . . . . . . . . . . . . 22

2.3 Bounded Mapping Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Program Partitioning via Subgraph Isomorphisms . . . . . . . . 24
2.3.2 Combining Mappings via Token Swapping . . . . . . . . . . . . 28
2.3.3 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Improving BMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Evaluation 39
3.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Statistics Collected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xxi



3.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 RQ1: Paramenters Effect . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 RQ2: BMT Optimizations Effect . . . . . . . . . . . . . . . . . 44
3.3.3 RQ3: Quality of Allocation . . . . . . . . . . . . . . . . . . . . 46
3.3.4 RQ4: Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.5 RQ5: Distance from Optimal . . . . . . . . . . . . . . . . . . . 50

4 Literature Review 59
4.1 IBM Qiskit Mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 A-star Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 SABRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 4-Approximative Token Swapping . . . . . . . . . . . . . . . . . . . . . 66

4.4.1 Colored Token Swapping . . . . . . . . . . . . . . . . . . . . . . 68

5 Conclusion 73

Bibliography 75

Appendix A Adapting the TWP Algorithm for BMT. 81
A.1 Optimizing for Partial Mappings . . . . . . . . . . . . . . . . . . . . . . 81

xxii



Chapter 1

Introduction

The recent introduction of cloud access to quantum computers has made experimental
quantum computing (QC) available to a wide community [Devitt, 2016]. For instance,
the IBM Quantum Experience program1 lets users build experiments based on either a
visual circuit representation or a gate-level language based on the Quantum Assembler
(QASM) syntax [Cross et al., 2017; Svore et al., 2006]. However, developing quantum
programs is challenging: the level of abstraction offered by current programming lan-
guages is low; circuits need to obey machine-specific restrictions [Häner et al., 2016];
and today’s quantum computers have tight resource constraints. As of today, IBM
users have access to architectures with 5, 16, and 20 qubits, although a 50-qubit ma-
chine has been announced [Gil, 2017]. Nevertheless, the connectivity between qubits of
these computers remains very restrictive. Consequently, manual mapping and tuning
of quantum algorithms is difficult.

In addition, decoherence and noise effects severely constrain the execution time.
Unlike classical digital gates that are inherently self-stabilizing, quantum gates accu-
mulate noise. Although quantum error-correcting codes (QEC) hold the promise to
address decoherence issues [Lidar and Brun, 2013], current hardware do not provide
nearly enough resources to implement realistic QEC [Cross et al., 2017; Mohseni et al.,
2017]. The longer a quantum program runs and the more operations it performs, the
more it is susceptible to noise. Therefore, minimizing runtime and complexity is cru-
cial, as it does not just affect the time-to-solution, but also the accuracy of the solution
itself. For these reasons, compilation of quantum circuits demands extremely accurate
compiler optimization.

Quantum circuits manipulate qubits – the quantum analogue of the classical bit.
These qubits, which exist as abstractions within a quantum circuit, shall be called

1http://research.ibm.com/ibm-q/

1
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pseudo or logical. In this work, we are interested in mapping pseudo qubits into physical
qubits, which denote the actual hardware units that store quantum bits. This problem
henceforth shall be called qubit allocation. Just like registers in a classical computer
architecture, quantum computers have a limited number of qubits. Furthermore, these
units are not always fully connected, meaning that not every subset of physical qubits
can participate as inputs and outputs to the same quantum gates. As we explain in
Chapter 2, solving qubit allocation involves dealing with hard combinatorial problems.

This problem: the mapping of quantum circuits into arbitrary quantum machines
has been referred as quantum circuit placement [Maslov et al., 2008]; mapping prob-
lem [Zulehner et al., 2018]; and qubit allocation [Siraichi et al., 2018]. Henceforth,
we shall adopt the latter terminology. There exist different solutions to qubit alloca-
tion [Lin et al., 2015; Maslov et al., 2008; Pedram and Shafaei, 2016; Shafaei et al.,
2014; Siraichi et al., 2018; Zulehner et al., 2018]; however, contrary to classic register
allocation, a problem elegantly modelled via graph coloring [Chaitin et al., 1981], qubit
allocation still lacks principled solutions. Subgraph isomorphism emerges as a candi-
date to provide a fundamental metaphor to it. Nevertheless, subgraph isomorphism can
only model small instances of qubit allocation, which do not require transformations
in the quantum circuit [Siraichi et al., 2018].

Summarizing, we formally describe the qubit allocation problem and introduce
an exact solution to solve it in Chapter 2. The exact algorithm is an exponential-time
solution. Although it works well for the small quantum systems available today, it
cannot scale up to the more complex architectures that are likely to emerge in the
future. Nevertheless, it sets a mark against which we can test different heuristics.
To support this statement, we show how state-of-the-art implementations of qubit
allocators fare against this exact baseline. This comparison has motivated us to go
beyond these implementations; a task that we accomplish with two novel allocators of
our own craft, which we also introduce in Chapter 2.

Chapter 3 provides a thorough evaluation of the different algorithms that exist
today to perform qubit allocation. Not many classes of quantum algorithms are known;
and even fewer accommodate the constraints of early quantum computers [Nielsen and
Chuang, 2000]. Thus, we have assembled the collection of benchmarks most used by
researchers in past work in the literature [Shafaei et al., 2014; Lin et al., 2015; Pedram
and Shafaei, 2016; Lao et al., 2018; Lin et al., 2018; Zulehner et al., 2018; Li et al.,
2018], and have implemented a generator of random programs used in Siraichi et al.
[2018].
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Contributions. An earlier version of this work was published in the International
Symposium on Code Generation and Optimization (CGO’18) in 2018 [Siraichi et al.,
2018], regarding the problem statement, as well as the simpler solution present in
this paper: the exact dynamic programming solution (Section 2.1); and the weighted
partial matching (Section 2.2). An extended version of this work was also submitted to
a journal in the end of 2018, with the new heuristic, described in Section 2.3. Finally,
as a by-product of this dissertation, the Enfield compiler2 was built.

1.1 Background

This section introduces the base knowledge in order for one to understand the qubit
allocation problem, as well as our described solutions. Qubit allocation involves mod-
ifying quantum circuits with specific combinations of quantum gates, which we call
transforms. Although familiarity with qubits and quantum gates might be helpful to
understand the problem, we shall try to keep our discussion on a level that suits the
reader unversed with quantum computing. For a more thorough discussion, we refer
the interested reader to Nielsen and Chuang [2000].

1.1.1 Qubits and Quantum Gates.

Quantum programs are made of qubits and reversible quantum gates, which receive
qubits as inputs, and produce qubits as outputs. Figure 1.1 shows an example of a
quantum circuit. This circuit has four qubits: a0, a1, b0 and b1, which are represented
as horizontal lines. It uses four different types of gates to operate on these qubits: H,
T , T † and CNOT, where CNOTab is depicted with a dot on qubit a and ⊕ on qubit
b. Gates change the state of qubits. The state of a single qubit is represented as a two
dimensional complex vector:

α |0〉+ β |1〉 = α

[
1

0

]
+ β

[
0

1

]
=

[
α

β

]

In this case, |0〉 and |1〉 are the basis states of a 2D complex vector space, and α and
β are complex numbers. Under this terminology, quantum gates can be understood as
unitary matrix operations applied on vectors that describe quantum states. Example 1
illustrates this view.

2OpenQASM source-to-source compiler, available at https://github.com/ysiraichi/enfield
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(d)

|a0〉

|a1〉

|b0〉

|b1〉 H T † T

T

T † T

T

T †

H

(a) (b) (c)

Figure 1.1. Circuit representation of (a1a0 + b1b0)%4. Each wire represents the
state of a qubit as time passes by. The circuit is divided into three parts: (a)
a1 ⊕ b1; (b) (a0 ∧ b0) ⊕ b1; (c) a0 ⊕ b0. Output is stored in b1b0. (d) shows the
application of gates one in front of the other, and combination of them (parallel).

Example 1. The Hadamard-Walsh gate H maps the basis state |0〉 to (|0〉+ |1〉)/
√

2,
and |1〉 to (|0〉 − |1〉)/

√
2. Thus, it is equivalent to multiplying the quantum state by

the matrix:

H =
1√
2

[
1 1

1 −1

]

Like the H and other single-qubit gates, the T gate is represented as a 2 × 2

matrix that multiplies a quantum state. Gate T † is its inverse, meaning that TT †

is the identity matrix. The CNOT (short for Controlled Not) gate is applied on two
qubits. CNOTab indicates that a controls b. Informally, it negates b, the second qubit,
when a, the first qubit, is |1〉. When a is |0〉, the gate leaves b unchanged. Below, we
show the matrix for the CNOT operation:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



A CNOT gate is applied on pairs of qubits. Pairs of qubits are represented by
4-line vectors. These vectors come from the application of the tensor product ⊗ to the
2D matrices that represents each individual qubit. Example 2 illustrates how pairs of
qubits are combined.
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Example 2. If |a〉 and |b〉 are the states of qubits a and b, then their combined state
is given by the tensor product:

|a〉 ⊗ |b〉 = |ab〉 =

[
αa

βa

]
⊗

[
αb

βb

]
=


αaαb

αaβb

βaαb

βaβb


The dimension of the combination is dim(|a〉)× dim(|b〉).

An informal summary of the semantics of a program such as the one seen on
Figure 1.1 is the following: each individual gate, e.g., H, T † or T , represents a 2D-
matrix; the application of such a gate into a qubit corresponds to matrix multiplication;
and the combination of multiple gates applied to different qubits is given by the tensor
product of those ⊗. Example 3 illustrates this view.

Example 3. Assuming that the initial state is given by |a0a1b0b1〉 = |a0〉⊗|a1〉⊗|b0〉⊗
|b1〉, and the final state is |ψ〉, the columns in Figure 1.1 (d) corresponds to the matrix
product below:

|ψ〉 = (I ⊗ I ⊗ T ⊗ T †) (I ⊗ I ⊗ CNOT b0b1) (I ⊗ I ⊗ I ⊗ T ) |a0a1b0b1〉

Time

Initial State

The empty wires over qubits a0, a1 and b0 (in the first column) represents the
identity matrix I, i.e. the absence of any gate.

1.1.2 Architectural Constraints.

The single-qubit gates plus the CNOT gate form a universal set of gates that can
implement arbitrary circuits Barenco et al. [1995]. Nevertheless, their exact semantics
is immaterial to our exposition. Important to us is whether they are single-qubit
or two-qubit gates. Even though sequences of single-qubit gates may sometimes be
simplified away, thus reducing the total cost of the output program, we shall focus only
on CNOT gates in this work.

The placement of CNOT gates matters due to architectural constraints. Actual
quantum computers might not allow CNOTs to be performed between arbitrary pairs
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of qubits. In particular, quantum computers based on superconducting qubit technol-
ogy are made of solid-state circuits that only allow local interactions between qubits
that are physically connected [Devoret et al., 2004; Koch et al., 2007]. Technological
reasons restrict the number of possible couplings and their organization [Gambetta
et al., 2017]. As an example, Figure 1.2 (a) shows the coupling graph of the IBM
Yorktown computer [Devitt, 2016]. The coupling graph determines which qubits can
communicate, typically through CNOT gates. The coupling graph is defined in terms
of CNOT gates as follows:

Definition 1 (Coupling Graph). Given a quantum architecture A with a set Q of
qubits, its coupling graph is a directed graph Gq = (Q,Eq), Eq ⊆ Q × Q. The edge
(q1, q2) ∈ Eq if, and only if, CNOTq1q2 is valid in A.

1.1.3 Qubit Allocation – An Informal Overview.

The connectivity relations in a quantum circuit need to be mapped to the coupling
graph. For instance, in Figure 1.1, we have that the pseudo qubit a0 controls pseudos
b0 and b1. When allocating pseudo qubits onto the coupling graph, we would like
to enable such control relations. Example 4 illustrates one valid allocation for the
previously mentioned circuit. However, perfect mappings that enable all the control
relations in a quantum circuit are not always possible.

Example 4. It is possible to map the control circuit of Figure 1.1 directly onto the
coupling graph of Figure 1.2 (a), with mapping f = {a0 7→ q3, a1 7→ q0, b0 7→ q4, b1 7→
q2}. The graph in Figure 1.2 (b) represents the control relations (dependencies) in that
circuit, represented by Figure 1.2 (c). This graph (Figure 1.2 (b)) contains two nodes
of in-degree two, which have no equivalent in Figure 1.2 (a).

In its simplest version, the qubit allocation problem receives an ordered list of
pairs, describing control relations in the quantum circuit, plus a coupling graph. This
problem, which Definition 2 states, asks for a mapping between pseudos and physical
qubits that respects the control relations. Because Definition 2 does not ask for ways to
adapt a circuit to fit into a coupling graph, we call this version of qubit allocation the
Assignment Problem. Perfect mappings might not exist. In this case, we must resort
to circuit transformations to solve qubit allocation. This is a notion that we discuss in
the rest of this section.

Definition 2 (The Qubit Assignment Problem). Input: a coupling graph Gq =

(Q,Eq), plus a list Ψ = (P × P )n, n ≥ 1 of n control relations between pseudo qubits.
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q0

q1

q2

q3

q4

a1 a0

b1

b0

(a1, b1)

(b0, b1)

(a0, b1)

(b0, b1)

(a0, b1)

(a1, b0)

(a1, b0)

(a1, b0)

Ψ =

(a) (b) (c)

Figure 1.2. (a) The coupling graph of the IBM Yorktown computer. (b) Inter-
actions between qubits of the circuit seen in Figure 1.1. (c) Dependences that
have created these interactions.

Output: yes, if there is a mapping between pseudo and physical qubits that respects
the control relations in Ψ.

Circuit Transformations. A transformation is a combination of gates that we can
insert into a quantum circuit to emulate the semantics of non-existing CNOT relations
or switch the state of physical qubits. We call the first category of transformations
virtual CNOTs, and the latter state changes. Example 5 describes some of these trans-
formations.

Example 5. Below we list three kinds of transformations:

Reversal: Emulation of a virtual CNOT between pa and pb controlled by pa using a
CNOT from pb to pa (controlled by pb) and 2 extra levels of Hadamard gates, as
shown in Figure 1.3 (a).

Bridge: Emulation of a virtual CNOT between pa and pc controlled by pa using two
CNOTs from pa to pb (controlled by pa), plus two CNOTs from pb to pc (controlled
by pb), as shown in Figure 1.3 (b).

Swap: exchanges two pseudo qubits pa and pb, as shown in Figure 1.3 (c), at the
expense of three CNOT and two levels of Hadamard gates.

As Figure 1.3 shows, a CNOT reversal allows the mapping of “backward" edges
on the coupling graph, at the cost of extra gates. A bridge uses four CNOTs to
implement a virtual gate at distance 2 in the coupling graph. Finally, a CNOT swap
allows the migration of pseudo qubits across physical qubits. Whereas reversals and
bridges are gate transformations, swaps transform states. That is to say: a reversal
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H

H H

H

pa

pb
=

H

H

H

H pa���pb

pa

pb
= =

pb

pa

a)

c)

=

b)

pa

pb

pc pa���pc

Figure 1.3. (a) Reversal. (b) Bridge. (c) Swap.

inverts the meaning of a CNOT gate, and a swap exchanges the position of two pseudo
qubits. These transformations can be combined to map a quantum circuit onto a given
architecture. Example 6 shows that.

Example 6. Figure 1.4 outlines a solution to qubit allocation for the program in Fig-
ure 1.1 using two CNOT reversals. Reversals add further complexity to the target
circuit; however, some gates can be simplified away, given well-known quantum identi-
ties [Lomont, 2003].

A particular instance of qubit allocation might have several different solutions.
As an example, Figure 1.5 shows an allocation for our running example, this time using
one CNOT swap, instead of two reversals. The quality of a solution is given by its cost,
which we measure as the number of gates necessary to implement it. Thus, ideally we
wish to minimize such cost.

1.1.4 Subgraph Isomorphism

Subgraph isomorphism is one of the key components of our solution to qubit alloca-
tion. For the sake of completeness, we define this problem below, and illustrate it in
Example 7.

Definition 3 (Subgraph Isomorphism – SIP). Input: undirected graphs G and H.
Output: yes, if we can find a subgraph H ′ of H, plus a bijection f : V (G) → V (H ′),
where for every edge (u, v) ∈ E(G), (f(u), f(v)) ∈ E(H ′).
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|a0〉

|a1〉

|b0〉

|b1〉 H T † T

T

T † T

T

T †

H

|a0〉

|a1〉

|b0〉

|b1〉 H T †

H

H

H

H T

T

T †

H

H

H

H T

T

T †

H

q0

q1

q2

q3

q4 +

a1 a0

b1

b0 =

q0(a1)

q1

q2(b1)

q3(a0)

q4(b0)

(a)

(b)

(c)

Figure 1.4. (a) CNOT reversals, marked as grey boxes, invert the direction
of CNOTb0b1 . (b) The two black Hadamard gates can be simplified away, given
the identity HH = I. (c) Solution to qubit allocation showing embedding of the
control graph onto the coupling graph.

|a0〉

|a1〉

|b0〉

|b1〉

(q1)

(q0)

(q4)

(q2) H T † T

T

T † T

T

T †

H

q0(a1)

q1(a0)

q2(b1)

q3

q4(b0)

q0(a1)

q1(a0)

q2(b0)

q3

q4(b1)

Figure 1.5. Solution of qubit allocation for the circuit in Figure 1.1, using
a CNOT swap. Grey lines represent physical qubits. We show the different
mappings that we have at two points of the circuit.
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Figure 1.6. (a) two undirected graphs G and H (left to right); (b) all possible
subgraphs of G that are isomorphic to H.

Example 7. Figure 1.6 shows different solutions to an instance of subgraph isomor-
phism. Given the two undirected graphs in Figure 1.6 (a), G and H (left to right),
Figure 1.6 (b) shows all possible isomorphic subgraphs. The bijections are:

• {a0 7→ q0, a1 7→ q3, b0 7→ q2, b1 7→ q1};

• {a0 7→ q0, a1 7→ q4, b0 7→ q2, b1 7→ q1};

• {a0 7→ q3, a1 7→ q0, b0 7→ q2, b1 7→ q4};

• {a0 7→ q3, a1 7→ q1, b0 7→ q2, b1 7→ q4}.

Notice that a0 and b1 are equivalent w.r.t. the rest of the graph; hence by switching a0

and b1 we double the number of bijections.

Problem 3 is NP-complete [Cook, 1971]. Different heuristics have been proposed
to solve it [Cordella et al., 2004; He and Singh, 2008; Zhao and Han, 2010; Han et al.,
2013]. As Section 2.3.1 will discuss, applying these heuristics would compromise the
scalability of our algorithm. Therefore, we shall propose a parameterized algorithm to
bound the number of instances of subgraph isomorphism to be solved, and shall rely on
a greedy search to find solutions to individual instances of this problem. By bounding
the search space we might not find an optimal solution to Problem 3. In other words,
parameterization will let us exchange accuracy for time.

1.1.5 Token Swapping

Token Swapping is another central element to our solution to qubit allocation. This
problem was introduced by Yamanaka et al. [2014], and proven to be NP-hard by
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Figure 1.7. (a) undirected graph of Figure 1.6 (a) with the initial state of the
tokens (fsrc) inside the circle, the final state of the tokens (ftgt) outside the circle.
Grey boxes indicate vertices whose tokens are already in its target place; (b) a
sequence of swaps that solves the problem (highlighted edges).

Miltzow et al. [2016]. For completeness, we restate the definition of this problem
below:

Definition 4 (Token Swapping - TWP). Input: a set of tokens T , an integer k, an
undirected graph G = (V,E), two bijective functions fsrc, ftgt : T → V representing the
initial state and the desired final state of the tokens, respectively. Output: yes, if we
can transform fsrc into ftgt with up to k swap operations, where a swap is an operation
that exchanges tokens in two adjacent vertices.

Research around Problem 4 is recent; hence, it has not been as deeply studied as
Problem 3. Among current approaches to solve token swapping, we count two approx-
imative algorithms [Miltzow et al., 2016; Yamanaka et al., 2017], and an exponential
method [Surynek, 2018]. Example 8 illustrates Problem 4.

Example 8. Figure 1.7 (a) shows both fsrc = {a 7→ q2, b 7→ q4, c 7→ q0, d 7→ q1, e 7→ q3}
(bigger letters outside the circle), and ftgt = {a 7→ q0, b 7→ q1, c 7→ q2, d 7→ q4, e 7→ q3}
(smaller letters inside the circle). Thick edges in Figure 1.7 (b) represent swaps. The
sequence of swaps (q2, q4), (q1, q2), (q2, q4), (q0, q2), takes us from fsrc to ftgt in 4 steps.

As we shall see in Section 2.3.2, token swapping let us partition qubit allocation
into smaller problems. We solve these smaller problems via subgraph isomorphism, and
then use token swapping to stitch solutions together. The beauty of this approach is
that the partitioning meets Bellman’s Principle of Optimality [Bellman, 1958]. Hence,
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|a0〉

|a1〉

|b0〉

|b1〉 H T † T

T

T † T

T

T †

H

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 1.8. Quantum circuit divided into a sequence of layers. Each column
represents one layer.

we can find an optimal solution to qubit allocation by uniting solutions of the smaller
problems via dynamic programming.

1.2 Quantum Programs Representation

In the previous section, we showed three representations for quantum programs: the
quantum circuit; the graph of interactions between the qubits; and a sequence of de-
pendencies (Figure 1.1, and Figure 1.2 (b) and (c), respectively). While the first one
consists in a graphical representation, the second and the third one were used in pre-
vious work [Maslov et al., 2008; Shafaei et al., 2014; Shrivastwa et al., 2015; Lin et al.,
2015; Pedram and Shafaei, 2016; Lin et al., 2018; Lao et al., 2018; Siraichi et al., 2018]
for solving such problem. In this section, we shall present two more representations
which can be derived from the sequence of dependencies (Figure 1.2 (c)): the layer
sequence and the gate dependency graph.

Layer Sequence. A layer can be defined as a set of gates, such that there is no
intersection on the input qubits of each of those gates. As such, it is possible to
represent a quantum program as a sequence of layers. One way to easily visualize it, in
the circuit, is by shifting all gates to the left as much as possible. Then, each column
would correspond to one layer. Example 9 illustrates a sequence of layers.

Example 9. Figure 1.8 shows the circuit of Figure 1.1 segmented into layers. Each
gate occupies up to one column. Each column corresponds to one layer. In this case,
the circuit has a total of 13 layers.

Gate Dependency Graph. From a sequence of dependencies, we can build a graph
G = (V,E), such that V represents every gate in the program, and E shows the
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CNOT a1b1Hb1CNOT b0b1T †b1

CNOT a0b1

Tb1 CNOT b0b1

Tb0

T †b1

CNOT a0b1

CNOT a0b0

Tb1

Hb1

Ta0

T †b0

CNOT a0b0 CNOT a0b0

Figure 1.9. Gate dependency graph of the quantum circuit in Figure 1.1. The
vertices with no incoming edges (highlighted) may be executed. The vertices
inside the dashed box do not have a correct order to be executed in.

chronological order between pairs of gates. i.e. (gi, gj) ∈ E iff gi appears in the
program before gj, and the intersection between the qubits in gi and gj is not empty.

Example 10. Figure 1.9 shows the “Gate Dependency Graph” for the quantum program
illustrated in Figure 1.1. There is one vertex for each gate, and there is only one edge
from gi to gj in the graph iff gate gi is to be executed strictly before gj. The second
vertex Hb1, for example, can only be executed after the first vertex (highlighted), since
they operate on the same qubit. Vertices such as Tb0 and T †b1 (inside the dashed box) do
not have any dependency among each other. Thus, they may be executed in any order.





Chapter 2

The Qubit Allocation Problem

Definition 2 states the Qubit Allocation Problem in its most basic form: given a quan-
tum circuit and an architecture, we want to know if it is possible to map the pseudo
qubits in the former to the physical qubits in the latter. Making an analogy with classic
register allocation, the problem in Definition 2 is equivalent to knowing if we can map
program variables (pseudo registers) onto the physical registers available in the target
architecture. Like classic register allocation1, Qubit Assignment is NP-complete, as
Theorem 1 states.

Theorem 1. Qubit Assignment (Def. 2) is NP-complete.

Proof (Sketch): We make a reduction from subgraph isomorphism, which is
known to be NP-hard [Cook, 1971]. First, note that finding isomorphisms be-
tween directed graphs is also NP-hard, since replacing every edge by two directed
edges doesn’t change the answer of any input. Given an instance of subgraph
isomorphism, where we wish to find a subgraph of G that is isomorphich to H,
we can map the graph G to the coupling graph and the edges of the graph H to
individual CNOT instructions in Ψ. Clearly, any solution of Qubit Assignment
would find an embedding of H in G iff such embedding exists. Therefore, we can
conclude that Qubit Assignment is NP-hard. To complete the proof it is enough
to notice that checking in any solution if all pairs of Ψ are properly mapped can
be done in polynomial time.

Theorem 1 sets our expectations about having an exact solution to solve Qubit
Allocation. However, from a practical standpoint, Qubit Assignment is not very use-
ful: most of the instances of Qubit Allocation will require quantum transformations

1See the proof of Chaitin et al. [1981].

15
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to be effectively solved. Going back to our analogy with register allocation, most in-
stances of register allocation lead to spilling; hence, forcing the insertion of load and
store instructions in the program: program changes equivalent to our transformations.
Thus, in the rest of this section we extend Definition 2 to encompass more pragmatic
descriptions of the Qubit Allocation problem. We start with the subproblem that asks
for the minimization of swaps.

Definition 5 (The Swap Minimization Problem). Input: a coupling graph Gq =

(Q,Eq), a list Ψ = (P × P )n, n ≥ 1 of n control relations between pseudo qubits, and
an integer Ks ≥ 0. Output: yes, if we can use up to Ks swaps to produce a version
of Ψ that complies with Gq.

Swap Minimization is also NP-complete, because it involves solving a classic
optimization problem know as the Token Swapping Problem [Yamanaka et al., 2014].
Quoting Kawahara et al. [2017], “For a given graph where each vertex has a unique
token on it, token swapping requires to find a shortest way to modify a token placement
into another by swapping tokens on adjacent vertices." Token Swapping has been shown
to be NP-Hard [Bonnet et al., 2016; Kawahara et al., 2017]. Swap Minimization is a
special case of Qubit Allocation. In the most general problem, we can use quantum
transformations other than swaps, and each one of them might have a different cost.
We define this problem as follows:

Definition 6 (The Qubit Allocation Problem). Input: a coupling graph Gq = (Q,Eq),
a list Ψ = (P × P )n, n ≥ 1 of n control relations between pseudo qubits, an integer
Kc ≥ 0, a list of allowed quantum transformations Θ, and a function C : Θ 7→ N
that gives the cost to implement each transformation. Output: yes, if we can produce
a version of Ψ that complies with Gq with transformations whose total cost does not
exceed Kc.

Definition 6 subsumes the two simpler problems, stated in Definitions 2 and 5;
therefore, it is unlikely that it can be solved exactly via a polynomial time algorithm.
Definition 6 states the version of qubit allocation that we solve along the rest of this
dissertation. In Section 2.1, we provide an optimal – exponential time – solution to
that problem; in Section 2.2, we provide a heuristic solution to it. For the reader’s
convenience, Figure 2.1 summarizes terms and notation adopted henceforth.
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P Pseudo-qubits the set of qubits in Ψ.

Q Physical Qubits
the set of qubits present in the ar-
chitecture. i.e. the vertices of the
coupling graph.

f Mapping

a function f : P → Q ∪
{⊥} from pseudo-qubits to physical-
qubits. The symbol ⊥ denotes
pseudo qubits that are not mapped
to any physical qubit.

F Set of All Mappings a set F = P(P → Q ∪ {⊥}) of all
possible mappings.

F Set of Mappings a set [F : F ] from all possible map-
pings.

Gdq Directed Coupling Graph

a graph, whose vertices (Q) corre-
spond to the physical qubits. An
edge from qi to qj means that qi can
control qj via a CNOT gate.

Guq Undirected Coupling Graph undirected version of the Directed
Coupling Graph.

Θ Quantum Transformations

in our implementation, we consider
Θ = {θs, θc, θr, θb}, representing
swap, CNOTs, reversals and bridges,
respectively.

C Cost Function the cost of transformations C : Θ→
N.

Ψ Input Control Relations

the sequence Ψ : (P × P )n of
n control relations between pseudo
qubits. These are the dependences
that qubit allocation must satisfy.

GΨ Derived Program Graph

the unique graph determined by Ψ.
The graph has a vertex vp for each
pseudo-qubit p used in Ψ, and an
edge (vi, vj) if (i, j) ∈ Ψ.

H . G Subgraph Isomorphism Relation indicating that H is isomorphic to
some subgraph of G.

Figure 2.1. Notation used in this work.

2.1 Dynamic Programming

We solve the Qubit Allocation problem, as given in Definition 6, using a dynamic
programming algorithm. Our approach finds solutions gradually per index in the
list of dependences Ψ. That is, given a collection of control dependences Ψ =

(p1, p2), (p3, p4), . . . , (p2n−1, p2n) between pseudo qubits that must be obeyed, we find
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the optimal cost of allocating qubits up to dependence i. This algorithm is based on a
function S(f, i), which we define below.

Definition 7 (Exact Solution). Function S(f, i) : F×N 7→ N is a solution to the qubit
allocation problem if it gives the minimum cost of satisfying all the dependences in Ψ,
up to index i, terminating with mapping f ∈ F .

We implement S(f, i) in terms of three auxiliary functions, φ : F × N 7→ N and
δ : F × F 7→ N. Function φ yields the minimum cost to satisfy a given dependence.
Finally, function δ gives the minimum cost of swaps necessary to transform a mapping
f1 into another mapping f2. We define δ at the end of this section.

φ(f, i) = min
θ∈Θ

C(θ) if mapping f satisfies i with θ

∞ else

δ(f1, f2) = Transforms to convert f1 into f2

From φ and δ, we solve S(f, i) as follows:

S(f, i) =


0 if i = 0

∞ if φ(f, i) =∞

min
f ′∈F

S(f ′, i− 1) + δ(f ′, f) + φ(f, i) otherwise

Theorem 2. The problem of computing S(f, i) has optimal substructure.

Proof : We shall prove by induction:

• Base Case 1: i = 0 (no dependencies are being considered). Since there
are no dependencies, the cost is 0.

• Base Case 2: φ(f, i) =∞ (can not satisfy this dependency). It is impos-
sible to satisfy this dependency with the current mapping f .

• Inductive Case: i > 0 and φ(f, i) 6=∞ (the i-th dependency is satisfiable
with mapping f). Assume to have computed S(f ′, i− 1) independently, for
each possible labeling f ′ ∈ F . Let us prove by contradicting that S(f, i) <

Smin = minS(f ′, i− 1) + δ(f ′, f) + φ(f, i). We do know that we satisfied
Ψ(i− 1) with some mapping f ′′. i.e. by definition, S(f, i) value comes from
S(f ′′, i− 1). However, we still have to transform f ′′ into f , and account for
the cost for satisfying Ψ(i). i.e. S(f, i) = S(f ′′, i − 1) + δ(f ′′, f) + φ(f, i).
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That said, Smin is already the minimum value over all f ′′ ∈ F . Thus, it is
a contradiction.

The implication of this fact is that the recurrence relation that produces S is
a Bellman Equation [Bellman, 1958], a necessary enabler of a dynamic program-
ming algorithm.

Memoizing the State Space Memoization is an optimization technique that stores
the results of function calls and returns the cached result when the same inputs occur
again. In our case, memoization is useful to avoid searching repeatedly for optimal
sequences of transformations that change a given labeling f onto another labeling f ′.
We memoize all these paths in a table δ, already mentioned in the definition of S(f, i).
We compute δ by brute-force, performing a breadth-first search on the space of possible
mappings between pseudo and physical qubits. Example 11 illustrates this search.

Example 11. Figure 2.2 shows a tree of different mappings reachable from the initial
mapping f(p1) = q1, f(p2) = q2, f(p3) = q3 and f(p) = q4.

(p1, q1)

(p2, q2)

(p4, q4)

(p3, q3)

(p2, q1)

(p1, q2)

(p4, q4)

(p3, q3)

(p2, q1)

(p3, q2)

(p4, q4)

(p1, q3)

(p3, q1)

(p2, q2)

(p4, q4)

(p1, q3)

(p1, q1)

(p2, q2)

(p3, q4)

(p4, q3)

(p1, q1)

(p4, q2)

(p3, q4)

(p2, q3)

(p1, q1)

(p3, q2)

(p4, q4)

(p2, q3)

(p2, q1)

(p1, q2)

(p3, q4)

(p4, q3)

θs(q3, q4)

θs(q2, q3)θs(q2, q1)

θs(q1, q3)

θs(q2, q3)

θs(q1, q2)

θs(q2, q4)

Figure 2.2. Eight states reachable from the initial mapping in the top-left side.
In total, we have sixteen states.

The exhaustive search of all the possible labeling gives us a graph GF = (F , EF),
whose vertices are elements f ∈ F . We have an edge from f1 to f2 if it is possible
to convert f1 into f2 with one swap transformation. The minimum sequence of swaps
necessary to map a given labeling f onto another labeling f ′ is given by the shortest
path between f and f ′ in this graph. The function δ that produces the minimum
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sequence of swaps transforming one state into another emerges naturally from this
graph. δ(f, f ′) is the shortest path between vertices f and f ′ in GF . As an artifact of
implementation, whenever we compute δ(f, f ′), for any pair of labelings, we save this
result, to avoid further computations, in case the same pair of labelings need to be
connected posteriorly.

On the Complexity of the Exact Solution. The preprocessing described in the last
section enables us to calculate δff ′ and ∆(f, f ′) for every f, f ′ ∈ F by preprocessing
the coupling graph only one time. The time complexity of this part of the algorithm is
O(|Q|!+ |Q|! · |Eq|), since we will apply a BFS in |Q|! different permutations (labelings),
each one with up to |Eq| edges. Given the set of edges Eq, the space complexity is
O(|Q|! · |Eq|), since we will visit |Q|! vertices and for each vertex there are up to |Eq|
edges.

After preprocessing, there is the dynamic programming algorithm. As we can
see, it iterates all possible mappings for all dependences. Since we know that: O(|Q|!)
is the number of possible mappings; |Ψ| is the number of dependences; and δ takes
linear time to execute, the time complexity of this algorithm is O(|Q|!2 · |Q| · |Ψ|) and
its space complexity is O(|Q|! · |Q| · |Ψ|). Finally, merging the preprocessing with the
main algorithm, the time complexity becomes O(|Q|!2 · |Q| · |Ψ| + |Q|! + |Q|! · |Eq|).
Thus, O(|Q|!2 · |Q| · |Ψ|).

2.2 Weighted Partial Mapping

The algorithm of Section 2.1 provides an exact solution to qubit allocation; however,
its exponential runtime renders its application impossible in large coupling graphs.
To circumvent this problem, in this section we discuss a heuristic solution to qubit
allocation. Later, in Chapter 3 we will show that this faster algorithm leads to results
that are close to those found by the exponential time implementation. Our heuristic
consists of two stages. The goal of the first stage is to find an initial mapping f0 ∈ F
that attempts to maximize the number of satisfied control dependences. In the ensuing
stage, we build a solution that satisfies all the dependence relations in the list of
constraints Ψ, starting from f0.

2.2.1 Finding the Initial Mapping

Classic register allocation algorithms tend to keep in registers variables that are likely
to be more used, such as those that appear in loops, or that appear in a larger number
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Given a dependence graph Gp = (P,Ep, wp, we):
1. we sort the list of pseudos P in descending order given by wp, thus producing

a list P s of sorted pseudo qubits;
2. for each element p ∈ Ps in order, if p has not been allocated already:

a) we allocate p to a physical qubit q that has the nearest out-degree;
b) for every (p, p′) ∈ Ψ, if possible, we allocate p′ to q′, such that (q, q′) ∈ Eq

and p′ and q′ have the closest out-degree. Then, we repeat for the
children of p in the dependence graph.

3. if there are any unallocated pseudo qubits, we assign a free physical qubit to
it.

Figure 2.3. Finding an initial mapping to qubit allocation.

of instructions. Following this insight, in order to find an initial mapping f0 to some
instance of the qubit allocation problem, we try to satisfy the dependences involving
pseudo qubits that appear more times in the list of constraints Ψ.

Weighted Dependence Graph. From Ψ, we construct a weighted directed graph
Gp = (P,Ep, wp, we), whose vertices are the pseudos that appear in Ψ. We have an
edge (p1, p2) ∈ Ep whenever (p1, p2) ∈ Ψ. The weight function we : P × P 7→ N counts
the occurrences of dependences in Ψ. If we(p1, p2) = n, then the dependence (p1, p2)

appears n times in Ψ. From we we define a function wp : P 7→ N as follows:

wp(a) =
∑

we(a, b),∀(a, b) ∈ Ed

From Weighted Graphs to f0. To find the initial allocation f0, we process Gp =

(P,Ep, wp, we) according to the algorithm in Figure 2.3. We use the out-degree criterion
as a tie-breaker as a stimulus to allocate pseudos to physicals that will be able to satisfy
dependences. If pseudo p has out-degree k, then there exist k other qubits that must,
ideally, be allocated to physicals adjacent to the qubit that receives p. We settle
for the closest out-degree to maximize the change that other pseudo qubits can still
benefit from the physical qubits of large degree still available in the coupling graph.
Example 12 illustrates these issues.

Example 12. Figure 2.4 shows how we find the initial mapping for the circuit earlier
seen in Figure 1.1. We shall allocate pseudos in the sequence a0, b0, a1, b1. The first
pseudo, a0, is mapped to q0, as they have the same out-degree. In this case, the choice
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Figure 2.4. (a) List of control dependences from the quantum circuit seen
in Figure 1.1. (b) Weighted dependence graph. Grey boxes represent wp. (c-f)
Step-by-step construction of the initial mapping.

between q0 and q3 is arbitrary. From a0, we allocate, recursively, b0 and b1, in a DFS-
fashion.

2.2.2 Extending the Initial Mapping to handle Ψ

On the second stage of our heuristic, we extend f0, found in the previous step, so that it
satisfies all the dependences in Ψ. The sequence of steps that we perform to achieve this
end is enumerated in Figure 2.5. That algorithm traverses the list Ψ of dependences
that must be satisfied. For each one of them, it might insert transformations in the
quantum circuits, if the dependence is not already fulfilled by the current mapping
from pseudos to physical qubits.

To implement the dependence (p0, p1) with swaps, we try to move p1 to some
qubit q that is the successor of f(p0). When performing this movement, we choose
always the shortest path from f(p1) to q. Sometimes, it is possible to avoid inserting
a swap by changing f0, the initial mapping built in Section 2.2.1. This happens when
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Given a coupling graph Gd
q = (Q,Eq), an initial mapping f0, and the dependences

Ψ, for each i in the domain of Ψ, let (p0, p1) = Ψ(i). If (f0(p0), f0(p1)) /∈ Eq, then:
1. if the edge (f0(p1), f0(p0)) ∈ Eq, then we use a reversal between f0(p1) and
f0(p0);

2. else we find a path from p0 to p1, and execute this chain of swaps. Thus,
approaching both pseudo qubits, and enabling it to be translated directly.

Figure 2.5. Extending the initial mapping to satisfy Ψ.

this swap refers only to physical qubits that have not yet been visited by the loop in
Figure 2.5. Example 13 clarifies this possibility.

Example 13. The first dependence in Fig. 2.4 that must be satisfied is (a1, b1). There
is no edge (f0(a1), f0(b0)) ∈ Gd

q. To handle this dependence, the algorithm in Fig. 2.5
would swap q2 and q3. However, q2 and q3 have not been used as target or destination
of any transformation thus far. Hence, we update f0, so that f(b1) becomes q2, and
f(a0) becomes q3.

To support the optimization discussed in Example 13, we introduce the notion
of freezing. A qubit is frozen the first time it is used in the loop of Figure 2.5. Frozen
qubits cannot be modified in the original mapping. In contrast, qubits yet untouched
are swapped “virtually" by changing their original allocation in f0. When allocating
for the circuit in Figure 1.1, our heuristic finds a solution to qubit allocation involving
no swaps.

Time Complexity. We find an initial mapping (Section 2.2.1) in O(|Q| · lg|Q|+ |Eq|+
|Ψ|), since we have to order the vertices, and update precedences. The second phase of
the heuristic (Section 2.2.2) is O(|Ψ| · (|Q| + |Eq|)). The worst case scenario happens
when we have to run a BFS for each dependence due to the need to implement swaps.

2.3 Bounded Mapping Tree

This section introduces Bounded Mapping Tree, or BMT for short. This algorithm
solves qubit allocation by dividing it into two subproblems: Subgraph Isomorphism
and Token Swapping. These problems are NP-complete; hence, BMT is parameter-
ized. It searches a solution space bounded by two parameters: the Maximum Number
of Children and the Maximum Number of Partial Solutions. We shall clarify in Sec-
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Figure 2.6. Steps of the BMT algorithm. (a) output of phase (i): partitioned
program, and a set of mappings for each each of them; (b) output of phase (ii):
one mapping for each program partition.

tion 2.3.1 the meaning of these parameters. They let us control the size of the space
of solutions that we search in order to solve qubit allocation.

BMT consists of three different phases, which Figure 2.6 highlights: (i) qubit
allocation is partitioned into multiple instances of subgraph isomorphism, and each in-
stance is independently solved; (ii) all combinations of isomorphisms are evaluated via
a dynamic programming model; (iii) a final program is produced out of the best com-
bination of isomorphisms, via token swapping. The following sections discuss details
of the three steps enumerated in Figure 2.6.

2.3.1 Program Partitioning via Subgraph Isomorphisms

The first phase of BMT splits the list of control relations into multiple partitions, and
maps the pseudo qubits in each of these subsequences into physical qubits. This phase
relies on the notion of Maximal Isomorphic Sublists, which Definition 8 introduces, and
Example 14 illustrates.

Definition 8. [Maximal Isomorphic Sublist - MIS] Given a list of control relations Ψ,
plus an (undirected) coupling graph Gu

q , we say that Ψ(i, j) is a Maximal Isomorphic
Sublist if, and only if, GΨ(i,j) . Gu

q , and GΨ(i,j+1) 6. Gu
q or Ψ(j) is the last control

relation. For simplicity, we shall refer to the sequence of Maximal Isomorphic Sublists
of Ψ as S(Ψ) = {Ψ1, . . . ,Ψn}.

Example 14. Figure 2.7 shows a coupling graph Gd
q and a list of control relations

Ψ. The derived graphs GΨ(1,1) and GΨ(1,2) for Ψ(1, 1) and Ψ(1, 2) can be embedded into
the undirected version of the coupling graph, i.e., Gu

q . However, GΨ(1,3) 6. Gu
q . Thus,

Ψ(1, 2) is a maximal isomorphic sublist.

The concept of maximal isomorphic sublist gives origin to the decision problem
that we must solve in this phase of our algorithm. We state this problem below.
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Figure 2.7. From left to right, we have the coupling graph Gdq , the list of control
relations Ψ, split into Maximal Isomorphic Sublists (solid boxes), and the graphs
GΨ derived from sublists of Ψ (dashed boxes). Next to each derived graph, we
show if an isomorphism is possible (3) or not (7).

Definition 9 (Partitioning of Control Relations – PCR). Input: an (undirected) cou-
pling graph Gu

q , a list Ψ of n control relations and an integer k, k ≤ n. Output: a
sequence S of k partitions Ψ(1, i1),Ψ(i1 + 1, i2), . . . ,Ψ(ik−1 + 1, ik), such that for any
Ψ(x, y) ∈ S, we have that GΨ(x,y) . Gu

q .

Solving PCR. We solve PCR via an exhaustive recursive function Spcr, which gen-
erates every possible sublists of Ψ. Given a list Ψ(1, n) of n control relations, let us
assume that the sublist Ψ(1, i) has already been split into k′ partitions, k′ < k. Thus,
we need to split Ψ(i + 1, n) into k − k′ partitions. We shall find the largest prefix of
Ψ(i+ 1, n) that gives us a maximal isomorphic sublist.

To this end, we start with an empty mapping f∅ = {}, i.e., the function that maps
every pseudo qubit to an undefined physical qubit ⊥. We then update f successively
for each instruction in Ψ(i + 1, n), until it is no longer possible. To implement Spcr,
we notice that, given a mapping f , which accounts for the x − 1 instructions in the
sequence Ψ(i, i + x − 1), plus the next instruction Ψ(i + x), only three actions are
possible. To describe these three actions, we consider that Ψ(i + x) = (p1, p2). A
physical qubit that does not belong into the image of f is a free qubit. An edge in the
coupling graph formed by two free qubits is a free edge:

• if f(p1) = ⊥ and f(p2) = ⊥, then, for every free edge (q1, q2) ∈ E(Gu
q ), we create

a new mapping f ′ = f ∪ {p1 7→ q1, p2 7→ q2}, and call Spcr recursively for every
f ′ and Ψ(i+ x+ 1, n).

• if f(p1) = ⊥ and f(p2) 6= ⊥ (or f(p1) 6= ⊥ and f(p2) = ⊥), then only one of
the pseudo qubits needs to be mapped. Without loss of generality, let us assume
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that f(p1) 6= ⊥ and f(p2) = ⊥. For every (f(p1), q2) ∈ E(Gu
q ), such that q2 is

free, we create a new mapping f ′ = f ∪ {p2 7→ q2}, and continue recursively for
every f ′ and the remaining list.

• if f(p1) 6= ⊥, f(p2) 6= ⊥ and (f(p1), f(p2)) ∈ E(Gu
q ), then no update is necessary.

We continue recursively on f,Ψ(i+ x+ 1, n).

If none of these three actions is possible, then Ψ(i, i + x − 1) defines another
partition, being a maximal isomorphic sublist. In this case, we create a set of mappings
Fk′+1 containing all mappings that satisfy GΨ(i,i+x−1) . Gu

q , and invoke Spcr over the
remaining list, this time with an empty mapping.

The cost of a maximal isomorphic sublist. Function Spcr creates a sequence of sets
of mappings F1, F2, . . . , Fm,m ≤ k. These sets range over the undirected version of the
coupling graph; however, the final product of our qubit allocation must be assigned
to the actual, i.e., directed, version. Any mapping onto Gu

q can be adjusted onto Gd
q ,

because we can use reversals, a quantum transformation introduced by Example 5, to
invert the semantics of an edge in the coupling graph. Yet, each reversal has a constant
cost. Given a mapping f ∈ Fk ranging over the sublist Ψ(i, j), we define its cost as
the sum of the costs over each individual instruction Ψ(x) ∈ Ψ(i, j). If Ψ(i) = (p1, p2),
then this individual cost is given by the necessity to apply an inversion to implement
the edge (f(p1), f(p2)). Definition 10 formalizes this cost function:

Definition 10 (Cost of Mapping). The cost function for each mapping CΨ : F → R
is defined below:

C(f) =
∑

(p1,p2)∈Ψ

0 if (f(p1), f(p2)) ∈ E(Gd
q)

Crev else

Example 15. Given the coupling graph Gu
q and the list Ψ shown in Figure 2.7, we

computed the set of mappings for the first two instructions. Figure 2.8 illustrate these
generated mappings for each one of the instructions that compose the first partition,
as well as the cost for each one of them. Considering Crev = 4, below, we describe the
steps we used for each instruction:

1. Process (r1, r0): both, r1 and r0, are mapped to ⊥, and all the edges in the coupling
graph are free. Thus, we can map (r1, r0) onto any edge of that graph. There exists
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(r1, r0)

(r2, r0)

r1 · q0 r0 · q1⇒ 0
7

r1 · q0 r0 · q2⇒ 0
7

r1 · q0 r0 · q3⇒ 0
7

r1 · q1 r0 · q0⇒ 4 r1 · q2 r0 · q0⇒ 4 r1 · q3 r0 · q0⇒ 4

r1 · q1 r0 · q0 r2 · q2⇒ 8
7

r1 · q1 r0 · q0 r2 · q3⇒ 8
7

r1 · q2 r0 · q0 r2 · q1⇒ 8
7

r1 · q2 r0 · q0 r2 · q3⇒ 8
7

r1 · q3 r0 · q0 r2 · q1⇒ 8
7

r1 · q3 r0 · q0 r2 · q2⇒ 8
7

Figure 2.8. Exhaustive mapping tree produced from the first instruction (r1, r0)
in our running example. The notation p·q indicates that pseudo qubit p is mapped
onto physical qubit q. Mappings marked with 7 are dead-ends, i.e., we cannot
continue the exhaustive construction of new mappings from them. We show the
cost of each mapping next to it.

six possible mappings. Cost: since q0 has only outgoing edges, whenever r1 is
not mapped to q0, we have a cost of 4;

2. Process (r2, r0): r0 was mapped in the previous step; hence, we need to allocate r2.
Each one of the six mappings of the previous step yields different possibilities for
r2. For example, the mapping {r1 7→ q1, r0 7→ q0} gives us two possible locations
for r2 in the coupling graph: q2 or q3. On the other hand, some mappings found
in the previous step are dead-ends. For instance, {r1 7→ q0, r0 7→ q1} leaves no
vertex for r2, because the only neighbour of q1 in the coupling graph is exactly q0,
which was already taken by r0. Cost: we sum the cost of the parent mapping
with the cost of using the edge (f(r2), f(r0));

3. Process (r2, r1): adding this instruction to the sequence [(r1, r0), (r2, r0)] makes it
impossible to find a valid subgraph in Gu

q . Hence, Ψ(1, 2) is a maximal isomorphic
subgraph, and to map (r2, r1) we must start afresh.

Dealing with Combinatorial Explosion. Function Spcr is exponential, and becomes
quickly unpractical as its input grows. To mitigate this problem, we bound the number
of mappings via two parameters: (i) the maximum number of children mappings and
(ii) the maximum size of the set of current mappings. The first parameter controls
how many searches we are allowed to perform from each mapping. The other limits
the number of mappings that we can consider. Figure 2.9 illustrates these two forms
of pruning: 2.9(a) refers to (i); and 2.9(b) refers to (ii).

In the end of this first phase, we have the input program sliced into up to k

Maximal Isomorphic Sublists S = Ψ(1, i1),Ψ(i1 + 1, i2), . . . ,Ψ(ik−1 + 1, ik), plus the
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Figure 2.9. Tree of mappings for one partition. The ith level represents the
possible mappings once we add the ith instruction (on the left) to the mappings
already in place. Since the number of leaves grows exponentially, we prune by (a)
limiting the number of children of each mapping; and (b) bounding the number
of mappings for a partition.

corresponding sets of mappings F = F1, F2, . . . , Fn. Each Fj contains multiple ways
to map Ψ(ij−1 + 1, ij) onto Gu

q . Each partition Ψ(x, y) gives origin to a derived graph
GΨ(x,y) isomorphic to some subgraph of Gu

q . A byproduct of this phase is the cost of
each mapping, which is given by the function CΨ from Definition 10.

Complexity Analysis of the First Phase. We are generating exhaustively all the
mappings that solve the subgraph isomorphism problem. To avoid the exponential
complexity, we limit the generation process with two parameters: maximum number
of children (Mc) and maximum number of partial solutions (Mp). Thus, for every
instruction, we have to generate Mc mappings for each of the Mp partial solutions.
Children mappings are created in O(|Q|). Therefore, the time complexity of the first
phase is O(McMp|Ψ||Q|). Since we keep up to Mp mappings for each partition (which
cannot be greater than |Ψ|), and each mapping takesO(|Q|) space, the space complexity
is O(Mp|Ψ||Q|)

2.3.2 Combining Mappings via Token Swapping

In Section 2.3.1 we have split the list of control relations into multiple partitions,
and created a set of mappings for each one of them. Now, we need to connect these
partitions, adapting, via swaps, one mapping into another. Figure 2.10 illustrates this
idea: for each partition we have a collection of candidate mappings F . We must find
a path from some mapping fi ∈ F1 to some mapping fn ∈ Fn which minimizes the
cost of implementing the quantum program. Each path consists of n − 1 hops, where
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Figure 2.10. Output from first phase F with some possible combinations rep-
resented by different paths. Each path in this figure represents one different
solution. Highlighted, there is a path that represents the optimal solution.

a hop is a way to transform fi ∈ Fi into fi+1 ∈ Fi+1. This transformation is equivalent
to Token Swapping, an NP-complete problem [Bonnet et al., 2016; Kawahara et al.,
2017].

Between two successive sets of candidates, e.g., Fi and Fi+1, there exist |Fi|×|Fi+1|
possible paths. Thus, there exists a potentially exponential number of paths between F1

and Fn. In other words, to find the optimal path illustrated in Figure 2.10, we must deal
with an NP-complete problem, which would have to be solved an exponential number
of times! Fortunately, there are ways to approximate Token-Swapping [Miltzow et al.,
2016], as we discuss in Section 2.3.2.1; and we can handle the combinatorial explosion
of paths via dynamic programming, as we explain in Section 2.3.2.2.

2.3.2.1 Solving the Token Swapping Problem

Recently, Miltzow et al. [2016] presented a 4-approximative solution to the Token-
Swapping Problem (see Section 4.4). This algorithm is at least cubic on the size of
the coupling graph, e.g., O(|Q|3); however, we must still run it for at least min |Fi|2 ×
#Partitions – a task that becomes impractical even for small settings. Fortunately,
Miltzow et al. [2016] also gave us the necessary equipment to avoid this effort. Thus,
instead of finding approximations for every instance of the Token-Swapping Problem,
we only estimate the cost of each one of these problems (without providing an actual
solution to it). We use the function δ from Definition 11 to find such estimates. As
noted in Miltzow et. al., the number of swaps – henceforth denoted by |∆(fprev, f)| –
is less or equal 2× δ(ffreq, f). Thus, we use this upper bound as the estimation of the
number of swap operations. Example 16 illustrates this estimate.

Definition 11 (Cost of joining two successive mappings). Let d : Q × Q → N be a
function that yields the minimum number of edges between two vertices in the coupling
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Figure 2.11. Steps for transforming fprev into f , assuming the coupling graph
seen in Figure 2.7. The pseudo qubit assigned to a physical qubit is shown in
brackets. Gray edges indicate qubits that shall be swapped.

graph: f(a) and fprev(a). We define δ as follows:

δ(fprev, f) =
∑

p∈P,fprev(p) 6=⊥

d(fprev(p), f(p))

Example 16. Figure 2.11 shows the sequence of swap operations that transform fprev =

{a 7→ q2, b 7→ q0, c 7→ q3, d 7→ q1} into f = {a 7→ q3, b 7→ q0, c 7→ q1, d 7→ q2}, using the
architecture from Figure 2.7. The δ function gives us an estimate, not the best solution
for the Token-Swapping Problem. In this example, δ(fprev, f) = d(q2, q3) + d(q0, q0) +

d(q3, q1)+d(q1, q2) = 6, yet the optimal swap sequence between fprev and f has 4 swaps.

Ensuring that live qubits remain mapped. If a pseudo qubit p appears for the
first time in a control relation Ψ(i), and for the last time in a control relation Ψ(j),
we say that p is alive at Ψ(i, j). If a pseudo qubit is alive at Ψ(i, j), then it must be
allocated onto some physical qubit in every mapping f that refers to some partition
that contains instructions from Ψ(i, j). If that were not the case, we would produce an
incorrect quantum circuit, which might “overwrite" qubits still in use. However, this
hazard would naturally happen if some partition Ψ(i′, j′) ⊂ Ψ(i, j) does not contain
any reference to p.

Example 17 (Liveness). Pseudo qubit r0 is alive at the second partition seen in Fig-
ure 2.7; however, this partition only contains instruction Ψ(3) = (r2, r1). A solution
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to Problem 9 will set f(r0) = ⊥ at partition 2. Yet, r0 shall be necessary in the third
partition; hence, it must be propagated from the first mapping to the third.

To prevent this kind of situation, we ensure that qubits are allocated at every
partition where they are alive. To explain how we perform it, lets us assume that p is
alive at Ψ(i′, j′), but is not used within that partition. Let f ′ be a mapping for Ψ(i′, j′),
where f ′(p) = ⊥. We assume that fprev is the mapping for the previous partition, and
that fprev(p) = q. We can safely assume that p is mapped by fprev by an inductive
argument: p is mapped at the first partition where it is used, and we shall propagate
it along other mappings, until the last partition that uses it. To ensure that p’s image
is defined at f ′, we let f ′(p) = q′, where q′ is the unmapped qubit that is the closest
to fprev(p). To see that q′ exists, notice that there is more pseudo qubits than physical
qubits, and a pseudo qubit is never mapped onto two different physical qubits in the
same partition.

2.3.2.2 Dynamic Programming

The approximations discussed in Section 2.3.2.1 gives us the means to calculate the
cost of transforming one mapping into another, thus bridging two successive partitions
of Ψ. Yet, we must find one such path between every pair of successive partitions,
as Figure 2.10 illustrates. As we have already discussed, the number of paths is ex-
ponentially in terms of the number of partitions. However, the problem of finding an
optimal path admits an exact solution in polynomial time, via a dynamic programming
algorithm. To explain how this algorithm works, we first introduce the problem that
is solves:

Definition 12 (Construction of a Complete Sequence of Transformations). Input: a
sequence of n sets of mappings of pseudo to physical qubits F1, F2, . . . , Fn, the function
CΨi

from Definition 10 and the function δ from Definition 11. output: a sequence
f1, f2, . . . , fn, fi ∈ Fi, which minimizes

∑
δ(fi−1, fi) +

∑
CΨ(fi).

Problem 12 has optimal substructure. In other words, it can be solved optimally
by breaking it into sub-problems and then recursively finding the optimal solutions
to each sub-problem. Problems with such property admit exact solution via dynamic
programming [Bellman, 2003]. Definition 13 describes the dynamic programming sub-
problem, and Equation 2.1 shows its recurrence relation. In Theorem 3 we state and
prove the correctness of our solution. Finally, Example 18 illustrates how we solve
Problem 12.
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Definition 13. (Subproblem) Our subproblem OPT (i, j) represents the optimal cost
for allocating all control relations until the i-th partition, while using f ij (the j-th map-
ping that satisfies the subgraph isomorphism relation between GΨi

and Gu
q ) as the last

mapping. i.e. it is the minimum cost using the j-th mapping generated for the i-th
partition.

OPT (i, j) =


CΨi(f

i
j) i = 1

min
0≤k<|Fi−1

(
δ(f i−1

k , f ij) + OPT (i− 1, k)
)

+CΨi(f
i
j) i > 1

(2.1)

Theorem 3. The recurrence relation given by Equation 2.1 yields an optimal solution
to Problem 12.

Proof. We shall prove by induction on the partitions:

1. Base Case: i = 1 (there is only one partition). Since we have only one
partition, and we are allocating it with f ij by definition, that is the optimal
cost;

2. Inductive Case: i > 1. Suppose OPT (i, j) is not optimal. Since it is not
optimal, there must exist another mapping f i−1

k′ from the previous partition
i − 1 such that we profit more when transforming f i−1

k′ into f ij . Thus,
δ(f i−1

k′ , f ij) +OPT (i− 1, k′) < OPT (i, j) = min
k
δ(f i−1

k , f ij) + OPT (i− 1, k)

must be true, a contradiction.

Example 18. Figure 2.12 shows how we test all combinations of mappings for the first
two program partitions. Calculating OPT (1, j) for any 1 ≤ j ≤ |F1| is trivial (base
case). For the other case, given the recurrence relation, we have to get the minimum
value given by the sum of the previous subproblems’ optimal solution, plus the estimated
number of swap operations for transforming one mapping into another. In this case,
every subproblem has an optimal cost of 8; hence, we pick the solution with the smallest
estimated transformation cost δ = 2. We repeat the process for every f ∈ F2.

Complexity Analysis of the Second Phase. In the worst case, we have |Ψ| parti-
tions, each formed by one instruction. Each partitions gives us up to Mp mappings.
For each mapping, we have to find the minimum cost between all the Mp previous
mappings, according to Equation 2.1. The estimation of the swap cost takes O(|Q|),
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(r1, r0)

(r2, r0)

(r2, r1)

(r3, r0)

(r3, r1)

(r3, r2)

r1 · q1 r0 · q0 r2 · q2

Cost = 8 OPT = 8

r1 · q1 r0 · q0 r2 · q3

Cost = 8 OPT = 8

r1 · q2 r0 · q0 r2 · q1

Cost = 8 OPT = 8

r1 · q2 r0 · q0 r2 · q3

Cost = 8 OPT = 8

r1 · q3 r0 · q0 r2 · q1

Cost = 8 OPT = 8

r1 · q3 r0 · q0 r2 · q2

Cost = 8 OPT = 8

r1 · q0 r2 · q1

r1 · q0 r2 · q2

r1 · q0 r2 · q3

r1 · q1 r2 · q0

Cost = 0 OPT = 10

r1 · q1 r2 · q0

r1 · q2 r2 · q0

r1 · q3 r2 · q0

δ = 2

δ = 2

δ = 4

δ = 4

δ = 4

δ = 4

Ψ1
Ψ2

Figure 2.12. Subproblem dependency for calculating OPT of the highlighted
mapping. It shall be the minimum value of the sum of each dependency by its
cost δ of transforming the previous one into the highlighted one.

while the cost for ensuring live qubits remain mapped is O(|Q|(|Q|+E(Gu
q ))), since we

execute, in the worst case, one BFS for each qubit. Hence, the time complexity of this
phase is O((Mp)

2|Ψ||Q|(|Q| + E(Gu
q ))). The space complexity is O(Mp|Ψ||Q|): each

subproblem is O(|Q|), and we have O(Mp|Ψ|) of them.

2.3.3 Code Generation

The dynamic programming algorithm discussed in Section 2.3.2.2 gives us a sequence of
mappings f1, f2, . . . , fn, which shall guide us through the process of building a concrete
program out of a virtual quantum circuit. Each mapping corresponds to a partition of
Ψ. Let f1 be the mapping for Ψ(i, j). Mapping f gives us the information necessary
to allocate all the virtuals used between the first control instruction, e.g., Ψ(i) and the
last, e.g., Ψ(j). After Ψ(j), a new partition, Ψ(j+ i, k), starts. Let us assume that the
mapping that corresponds to this partition is f2. We need to create sequences of swaps
linking f1 and f2. We shall use the term ∆(f1, f2) to denote this sequence. Figure 2.13
shows the product of this phase.

From estimates (δ) to concrete sequences (∆). In Section 2.3.2 we used a heuris-
tic, the δ function, to over-estimate the quantity of swapping operations necessary
to link consecutive mappings. To generate code, we replace this function with the
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f1 ∆(f1, f2) f2 ∆(f2, f3) · · · ∆(fn−1, fn) fn

Figure 2.13. Mappings f and swapping sequences ∆ (highlighted) gives us all
the information that is necessary to transform a virtual quantum circuit into a
physical quantum circuit.

4-approximative algorithm used by Miltzow et al. [2016] to solve the Colored Token
Swapping Problem (Section 4.4.1). The δ function is an over-approximation of Miltzow
et al. [2016]’s algorithm. Thus, the actual cost of the sequence of swaps ∆ that links
two successive mappings might be lower than the cost found through δ.

Dealing with partially defined mapping functions. Miltzow et al. [2016]’s approxi-
mation receives two mappings, fprev and f , and finds a sequence of swaps that transform
fprev into f . In the original formulation of their algorithm, Miltzow et al. [2016] assume
that fprev and f are permutations, i.e., functions with the same domain and image.
However, in our case, these mappings do not necessarily enjoy this property, as the live
ranges of virtual qubits are not always the same. In other words, we must account for
any virtual qubit p such that fprev(p) = ⊥ and f(p) 6= ⊥. We recall that we do not
need to consider the possibility of fprev(p) 6= ⊥ and f(p) = ⊥. This case will never hap-
pen, because, as discussed in Section 2.3.2.1, we ensure that live qubits remain always
mapped. To make provision to partially defined mappings, we introduce a projection
operator O:

(fprevOf)(p) =

q f(p) = q and fprev(p) 6= ⊥

⊥ f(p) = q and fprev(p) = ⊥

Instead of solving token swapping between fprev and f , we solve it between fprev
and fprevOf . In other words, we solve the problem only for virtual qubits which are
defined in both mappings. Lemma 1 shows that this approach is sound. We discuss
later the approximation factor of this optimization in Chapter A. Example 19 illustrates
this phase with the input program used in the previous sections.

Lemma 1. Let undef (f) = {p | f(p) = ⊥, p ∈ P}. Given the mapping f ′ = fprevOf ,
if the set undef (fprev) ⊇ undef (f), then ∆(fprev, f

′) is the minimum swap sequence we
can get for ∆(fprev, f).

Proof. Since undef (fprev) ⊇ undef (f), all pseudo-qubits mapped to a
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(r1, r0)

(r2, r0)

(r2, r1)

(r3, r0)

(r3, r1)

(r3, r2)

r1 · q1 r0 · q0 r2 · q2

r1 · q1 r2 · q0 r0 · q2

r3 · q0

r0 · q2

r1 · q1r2 · q3

(q1, q0)

(q2, q0)

swap(q0,q2)

(q0, q1)

swap(q0,q3)

(q0, q2)

(q0, q1)

(q0, q3)

(a)
(b)

Figure 2.14. (a) from left to right, we have the whole input program segmented
into partitions (dashed box), and their respective mappings; (b) the translated
input program segmented into partitions (dashed box), and the swap operations
(highlighted) necessary to transform one mapping into another.

physical-qubit q, given that q 6= ⊥, in fprev are also defined in f . Thus, we have
to allocate correctly, at least, these pseudo-qubits that are not in undef (fprev).
That is exactly what f ′ is: a mapping of the pseudo-qubits mapped in fprev

to their respective physical-qubits mapped in f . Summarizing, after finding the
swaps to transform fprev into f ′, the only thing that is left to be done is to
map the qubits in undef (fprev) \ undef (f) to their corresponding locations. It is
straight-forward to observe that those locations are free, since otherwise, there
would be two pseudo qubits mapped to the same physical qubit.

Example 19. Figure 2.14 (a) shows the mappings selected for each partition of the
program. Notice that the second mapping r1 7→ q1, r2 7→ q0, r0 7→ q2 is well-defined for
r0, although this pseudo qubit is not used in the second partition, for the reasons that
we have discussed in Example 17. From these mappings, we are able to calculate the
∆ function for each pair of consecutive partition. Figure 2.14 (b) shows the output
generated in the end. All the instructions (Input Control Relations) are translated
into physical-qubits, and swapping operations are used to bridge differences between
consecutive mappings.

Complexity Analysis of the Third Phase. The algorithm given by Miltzow et al.
[2016] is time-wise expensive. That is because one of its steps is composed by the
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Hungarian Algorithm for minimum matching [Kuhn, 1955] (O(|Q|3)). Besides that, the
algorithm’s main loop will execute O(|Q|) breadth first searches (BFS) for each swap.
Thus, the time complexity of the approximative algorithm is O(|Q|3 + |∆||Q|(|Q| +
E(Gu

q ))). |∆| is bounded by the sum of the distance of the misplaced qubits. Miltzow’s
algorithm run once per partition (|Ψ| − 1 times). Thus, the time complexity of this
phase is O(|Ψ|(|Q|3 + |∆||Q|(|Q| + E(Gu

q )))). The space complexity is the product of
the number of mappings for each partition, O(|Ψ||Q|), and the space-complexity of the
approximative algorithm O(|Q|2).

2.4 Improving BMT

In its canonical form, BMT is full of simple heuristics that results in suboptimal so-
lutions. There is a lot of room for improvement in it. Below we list some dimensions
that we analyzed for improving our solution, indicating also the phase where it applies:

(PhaseI - Section 2.3.1) Iterating the Quantum Program. Instructions in a quan-
tum circuit do not have to be processed in the order defined by the program (list of
dependencies). Instead, quantum gates over non-overlapping qubits may be executed in
parallel. It can be easily observed in the gate dependency graph (Section 1.2). A topo-
logical ordering of this graph determines the valid ways to iterate over the program.
Whenever multiple orderings are possible, we rank those gates and select the next gate
to be processed. To explain the predicates for ranking the gates, suppose that gates
g1, . . . , gn can be processed, and that the pseudo-qubits used in a candidate gate gi
are (a, b). We rank these gates in these four different categories (from higher to lower
priority):

1. a and b are mapped to adjacent physical-qubits;

2. one of a or b is already mapped;

3. none of a and b are mapped;

4. both a and b are mapped.

(PhaseI - Section 2.3.1) Pruning and Selecting Mappings. There are many meth-
ods for selecting a few solutions among a population of them. In the canonical form
of the algorithm, we used a simple selection that kept the first K out of the N pos-
sible solutions. As an improvement, we may use, for example, the weighted roulette
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selection, the tournament selection, etc. As mentioned in the last section (Section 2.3),
the pruning and selection happens in two dimensions (the two parameters of the algo-
rithm): the maximum number of children (Mc); and the maximum number of partial
solutions (Mp).

(PhaseII - Section 2.3.2) Estimating the Cost. Our current cost estimation con-
sists in the sum of the distances between the mapped qubits. i.e. given two mappings
f, f ′, and a coupling graph G:

∑
a

dist(f(a), f ′(a)) for all a ∈ P and f(a) 6= ⊥

Increasing the accuracy of this estimation, could yield in better solutions. How-
ever, the optimal solution is shown to be NP-hard, and the time-complexity of the
4-approximative solution slows down the whole BMT algorithm significantly.





Chapter 3

Evaluation

In this chapter, we shall answer a number of reseach questions (more details in Sec-
tion 3.3). To this end, we first describe the overall setup and runtime environment
where our experiments were executed. Since there are a number of research questions,
we devised different experiments to validate them. Therefore, assume the default (pre-
sented here), unless specified otherwise.

The State-of-the-Art Algorithms: We compare BMT against four other algorithms:
IBM [2018b] Python SDK Terra (ibm); Zulehner et al. [2018] A* (jku); Zulehner and
Wille [2018] Winner of the IBMDeveloper Challenge (chw); Li et al. [2018] SWAP-based
BidiREctional heuristic (sbr); and Siraichi et al. [2018] algorithms. Among them, there
are: the exact dynamic programming algorithm (dyn); the weighted partial mapper
(wpm); and two different configurations of the bounded mapping tree. One with smaller
parameters, and fast (bmtF); and another one slow, but with a better performance
(bmtS).

Towards a fairer comparison on the “efficiency” of the allocators, we implemented
all of the competitors in our C++ OpenQASM open source compiler Enfield. Since
all of them have their code publicly available, we based ourselves on those to complete
our implementation. That said, we compared our results with the original sources, and
we obtained equal results. Our implementations were faster and used less memory,
enabling us to allocate all of our benchmarks with them.

Runtime Environment. All tests were executed on an Intel(R) Xeon(TM) E5-2660
CPU @ 2.20GHz, with up to 32G RAM, running Linux Debian Jessie 8.11.

39
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q0 q1 q2 q3 q4

q5 q6 q7 q8 q9

q10 q11 q12 q13 q14

q15 q16 q17 q18 q19

Figure 3.1. Coupling graph of the IBM Tokyo, a 20-qubit architecture [IBM,
2018a].

Benchmarks. We used the same benchmarks evaluated by Zulehner et al. [2018].
These 158 programs were taken from the RevLib collection [Wille et al., 2008], Quip-
per [Green et al., 2013], and ScaffCC compiler [Javadi-Abhari et al., 2014]. These suites
are staple in papers on Qubit Allocation [Shafaei et al., 2014; Lin et al., 2015; Pedram
and Shafaei, 2016; Lao et al., 2018; Lin et al., 2018; Zulehner et al., 2018; Li et al.,
2018].

Quantum Architectures. In this set of experiments, we used the biggest quantum
architecture made available by IBM : Tokyo (not public, though). Figure 3.1 illustrates
the coupling graph.

3.1 Evaluation Metrics

We shall evaluate the allocation algorithms in terms of efficiency and quality of the
output program allocated. Most of them are metrics already used in the literature,
but others we judge necessary for a fairer comparison. The next two paragraphs shall
discuss them.

Allocation Quality. The quality of each solution will be evaluated along three di-
mensions:
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• Weighted Cost: the combined cost of each gate used in the program. Following
common methodology, we let the cost of each CNOT be 10, and of each single-
qubit gate be 1. The rationale behind this cost assignment is the fact that
CNOT gates have an error rate one order of magnitude larger than single-qubit
gates [IBM, 2018a]. Defining only these two costs is enough for all practical
purposes, because composite gates may be rewritten as a sequence of single-qubit
gates and CNOTs.

• Gates: the total number of gates in the allocated program, without distinguish-
ing CNOTs from single-qubit gates. This metric has been adopted in previous
work [Shafaei et al., 2014; Shrivastwa et al., 2015; Pedram and Shafaei, 2016;
Zulehner et al., 2018; Li et al., 2018].

• Depth: the depth is closely related to the time a program needs to terminate.
This metric has also being used in previous work [Maslov et al., 2008; Amy et al.,
2013; Zulehner et al., 2018].

Allocation Efficiency. The efficiency of each solution will be evaluated along two
dimensions:

• Memory Consumption: although not a main concern, the memory required
for search space exploration may grow exponentially, depending on the algo-
rithm [Zulehner et al., 2018]; hence, rendering qubit allocation not scalable.

• Allocation Time: similar to memory consumptions, previous work still do not
consider allocation time a main concern, because current architectures are small.
However, increasing the number of qubits may yield some algorithms impractical.

3.2 Statistics Collected

We are always comparing the set of algorithms with some baseline. Assuming that Rbase

and Rcomp correspond to the result of the baseline allocator base and the allocator to
be compared comp, respectively, results are given by the ratio Rcomp/Rbase. Unless
stated otherwise, our tables have a standard template illustrated by Figure 3.10. Each
algorithm to be compared is represented by one major row. Sub-rows (cost, depth,
gates, mem and time) represent dimensions of quality and efficiency. The meaning of
each column is given below:

1. Allocator: comp, i.e. algorithm that we compare against base.
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2. Dim: minor rows that represent the results on different dimensions of efficiency
and quality.

3. G. Mean: geometric mean of ratios, taking base as baseline. The larger this
number, the more base outperforms its competitor.

4. G. Std. D.: the geometric standard deviation of the ratios. The closer to 1, the
smaller the spread of the data.

5. Better (Worse) Count: the number of benchmarks where comp was better
(worse) than base. The higher (smaller), the better for base.

6. Better (Worse) G. Mean: the geometric mean of the ratios of the benchmarks
where comp was better (worse) than base. This column answers the following
question: “what would be the G. Mean for comp allocator, considering only the
benchmarks where it performed better (worse) than base?”.

3.3 Research Questions

In this section, we shall provide answers to the following research questions:

• [RQ1]: how do the paramenters affect the efficiency and quality of BMT?

• [RQ2]: how do the optimizations affect the efficiency and quality of BMT?

• [RQ3]: how does the quality of the programs allocated with our algorithm com-
pare against the state-of-the-art approaches?

• [RQ4]: how efficient is our algorithm comparing against the state-of-the-art
approaches?

• [RQ5]: how far from the exact algorithm are all the allocators?

The following sections shall discuss each of our research questions. All of the
experiments shown here were executed five times each. For summarizing the results of
these different executions, we used the arithmetic mean, which we shall represent by
µ. In order to obtain an overall comparison against another algorithm, we used the
geometric mean and its corresponding (geometric) standard deviation, which we shall
represent by µg. The equations below illustrate the two means described above:
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µ(X) =
∑
x∈X

x

|X|

µg(X) = |X|

√∏
x∈X

x

3.3.1 RQ1: Paramenters Effect

In this experiment, we varied the values of our two parameters (Section 2.3.1): Mc and
Mp. Then, we compiled the whole benchmark set with each combination possible. We
used the following value set:

Mc 1, 2, 4, 8, 16, 32

Mp 10, 20, 40, 80, 160, 320, 640, 1280, 2560

In total, there were six values for Mc, and nine values for Mp. Which means that
we executed |Mc| ∗ |Mp| different rounds. i.e. five times each of the 158 benchmarks,
times the number of different combinations between Mc and Mp. In the end, we ran
42660 experiments.

Figure 3.11 summarizes the results obtained in these experiments. We choose to
compare every combination with Mc = 8 and Mp = 1280, because these parameters
showed good trade-off between solution quality and efficiency. We shall refer to each
of the combinations as a pair 〈Mc,Mp〉 (e.g. 〈8, 1280〉). Below we state the results we
got:

• Quality: 〈8, 1280〉 was off by, approximately, 1% of its neighbors, such as 〈4, 640〉,
〈4, 1280〉, 〈8, 640〉, and values higher than those. For smaller values of Mc and
Mp, the weighted cost was at least at a distance of 2% of 〈8, 1280〉 value. The
depth and number of gates followed approximately the same behaviour;

• Efficiency: In terms of memory usage, every combination spent around the same
amount. It varied from 94% to 114% of 〈8, 1280〉. 〈8, 1280〉 was, on average,
two times faster than the highest parameter values. However, the quality-wise
competitive 〈4, 1280〉 was, on average, 20% faster.

Analysis of results. As expected, the smaller Mc and Mp, the worse the results are.
That is because we let the algorithm explore a smaller search space, ignoring partial
solutions that may have been benefitial later. However, as we increase these same
parameters, the quality stops improving, while the efficiency starts dropping. This
fact is easily explainable by considering that there is most good quality mappings were
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10 20 40 80 160 320 640 1280 2560
1 1.82 1.53 1.34 1.22 1.21 1.21 1.21 1.21 1.21
2 1.38 1.19 1.1 1.05 1.02 1.01 1.01 1.01 1.01
4 1.32 1.16 1.08 1.03 1.01 1 1 1 1
8 1.3 1.15 1.08 1.03 1.01 1.01 1 1 1
16 1.3 1.15 1.08 1.03 1.01 1.04 1.01 1 1
32 1.31 1.16 1.09 1.04 1.02 1.04 1.04 1.03 1

Figure 3.2. Baseline isMp = 32 andMc = 2560 〈32, 2560〉. It shows the amount
of partitions created by BMT in the first phase (Section 2.3.1)

probably already found. Since we are using the full-optimized BMT, we discard most
high cost mappings that would possibly result in high cost solutions.

The number of partitions of the first phase in BMT also plays a great role in
the final quality of the solution. That is because the greatest villain that worsens the
quality of solutions is the swaps that joins two partitions together. As we decrease the
search space with the parameters, we expected that the number of partitions would
increase, since we end up not exploring mappings that would enable, for example, a real
isomorphism between the program and the coupling graph. Figure 3.2 shows exactly
this effect. Obviously, there we can not keep decreasing the number of partitions, since
we have the subgraph isomorphism that limits us. That is the reason why we have
many combinations (bottom right) that yield the same number of partitions.

There is, however, an interesting result. That is, if we increase Mc, while keeping
Mp the same, we start generating more partitions. Figure 3.2 corroborates with Fig-
ure 3.11 in this observation for the weighted cost. It shows that having a bigger ratio
of Mc/Mp is not so much beneffitial, since Mp may not be able to sample correctly the
solutions from Mc.

3.3.2 RQ2: BMT Optimizations Effect

In this experiment, we combined the optimizations described in Section 2.4 in order to
check the effectiveness of each of them, related to the canonical algorithm described
in the whole of Section 2.3. Then, we compiled the whole benchmark set with each
combination possible. We implemented two of the three optimizations described (Sec-
tion 2.4):

(i) Program Iteration: instead of iterating the program sequentially (leaving the
task of serializing to someone else), iterate via some kind of topological sort of the
Gate Dependency Graph (Section 1.2). Theoretically, generating less partitions;
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(ii) Prunning of Mappings: instead of prunning all of the mappings generated,
besides the first ones allowed, weight every mapping by its cost up till this mo-
ment. Then, apply an weighted roulette selection. It would generate variety,
while biasing the ones with smaller cost.

These two optimizations yield four different combinations, i.e. different allocators, as
the following table illustrates. Each × and © indicates the absence and existence of
such optimization, respectively, in the given allocator:

Allocator (i) (ii)

can × ×
ckf © ×
sqw × ©
bmt © ©

In total, there were four different allocators for this experiment. Which means
that we executed four different rounds of experiments. i.e. five times each of the
158 benchmarks, times the number of different combinations of optimizations. In the
end, we ran 3160 experiments. Figure 3.12 summarizes the results obtained in these
experiments. Taking the last section into account, we set up BMT parameters for every
allocator as Mc = 8 and Mp = 1280 〈8, 1280〉. Below we state the results we got:

• Quality: All of the allocators with optimizations enabled were close quality-
wise. In increasing order of ratio of weighted cost between those allocators in
relation to can, we have: bmt with 95.6%; ckf with 96.8%; sqw with 97.0% of
the weighted cost found in the baseline. The ratios for the depth and gates were
similar;

• Efficiency: Memory was uniform among almost all of the different allocators,
except sqw which got 2% improvement, against 4% increase in the others. The
allocation time taken by bmt and ckf was worsened by up to 80%. On the other
hand, sqw improved in 13% of the time taken by the baseline.

Analysis of results. We expected that the allocators with the optimization (i) would
benefit from it, creating less partitions and the allocators with optimizations (ii) would
benefit from picking mappings that did not have used much reversals, since that means
that its cost is low. Unexpectedly, Figure 3.3 shows that sqw (that has only optimiza-
tion (ii)), was able to, in some cases, generate a smaller number of partitions than ckf

(that uses only (i)), and even bmt (that uses both (i) and (ii)).
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Figure 3.3. Baseline is the canonical version of the algorithm: can. In the
Y-axis, we show how many partitions each allocator created in comparison to the
baseline. In the X-axis, for clarity, we show the benchmarks that resulted in a
difference of at least 5% among the allocators.

Figure 3.5 corroborates, showing that, indeed, sqw (pure (ii) optimization) is a
bit better than ckf (pure (i) optimization) at reducing the number of partitions, as it
manages to beat can in two more benchmarks than ckf. Unifying them both yields in
a bit better partition splitter bmt. As expected, the number of partitions usually is a
decisive factor when discovering better allocations. We found that in 87.97%, 86.08%,
and 80.38% of the benchmarks tested, the allocators that had the smallest weighted
cost, number of gates, and depth, respectively, were in the set of allocators that had the
smallest number of partitions. Figure 3.4 let us have an overview of such phenomena.

3.3.3 RQ3: Quality of Allocation

In this experiment, we compared the best combination of optimizations and two dif-
ferent configurations of parameters discussed in the previous sections, i.e. 〈4, 320〉
(bmtF) and 〈8, 1280〉 (bmtS) with the two optimizations enabled, with the state-of-the-
art algorithms in the literature. In total, there were seven different allocators for this
experiment. Which means that we executed seven different rounds of experiments. i.e.
five times each of the 158 benchmarks, times the number of different combinations of
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Figure 3.4. Baseline is the canonical version of the algorithm: can. In the Y-
axis, we show the weighted cost of each allocator in comparison to the baseline.
In the X-axis, for clarity, we show the benchmarks that resulted in a difference of
at least 5% among the allocators.

Allocator µg σg Better Count Better µg Worse Count Worse µg
bmt 0.8858 1.2593 66 (41.77%) 0.7338 3 (1.9%) 1.525
ckf 0.9198 1.232 61 (38.61%) 0.7754 9 (5.7%) 1.2924
sqw 0.9078 1.2618 63 (39.87%) 0.7558 3 (1.9%) 2.191

Figure 3.5. Baseline is the canonical version of the algorithm: can. Ratios of
the number of partitions created by each of these algorithms, in relation to the
baseline.
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Figure 3.6. Ratio of the weighted cost found by different allocators, in relation
to the cost found by bmtS. The Y-axis shows the weighted cost in logarithmic
scale. The X-axis shows benchmarks ordered in increasing order of the cost found
by bmtS (shaded area).

optimizations. In the end, we ran 3950 experiments.
Figure 3.6 and Figure 3.13 present the results of our experiments. Figure 3.6

shows an overview of the ratio of the weighted cost yielded by each of the allocators, in
relation to the one yielded by bmtS. Figure 3.13 summarizes the results for all quality
dimensions. In short, the results show:

• Weighted Cost: bmtS yielded the smallest cost. It outperformed bmtF, sbr,
jku, chw, ibm, and wpm by 2%, 20%, 32%, 45%, 47%, and 55%, respectively;

• Depth: bmtS yielded the smallest depth. It outperformed bmtF, sbr, jku, ibm,
chw, and wpm by 1%, 26%, 30%, 43%, 45%, and 53%, respectively;

• Gates: bmtS yielded the smallest number of gates. It outperformed bmtF, sbr,
chw, jku, ibm, and wpm by 1%, 14%, 16%, 21%, 35%, and 43%, respectively.

Analysis of results. The ranking of the solutions is the same for all quality dimen-
sions. bmtS delivers the best allocations, followed by bmtF, sbr, jku, chw, ibm, and
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wpm, in this order. bmtS’s parameters allow users to, given enough time and space,
get better solutions as they want. Notice that none of these algorithms finds a global
optimal, because they all resort to some simplification of the problem. In our case, we
segment the program greedly (which might not be the best way to do it), and also use
an approximative algorithm to solve token swapping.

The fact that our algorithm outperforms all of its competitors over all dimensions
indicates that we generate circuit with smaller error rates (given by the weighted costs),
but also faster circuits (given by the depth). These results show that bmtS is able to
yield good programs even while generating only 8 out of all 96 possible children (less
than 10%), and allowing only 1280 mappings at each partition.

3.3.4 RQ4: Efficiency

For this research question, we used the results of the experiments executed for the last
research question. Figure 3.7 and Figure 3.8 present the time and memory efficiency of
the allocators, respectively. Figure 3.7 (3.8) shows an overview of the allocation time
(memory usage) yielded by each of the allocators. Finally, Figure 3.13 summarizes the
results for all efficiency dimensions. In short, the results show:

• Allocation Time: bmtS is the slowest algorithm. It was slower ibm, bmtF, jku,
sbr, chw, and wpm by 115%, 244%, 740%, 2150%, 3384%, and 8830%, respectively;

• Memory Consumption: On average, there is not much variation memory-wise.
Our algorithm better than sbr and jku by 5% and 2%, respectively. It was worse
than wpm, bmtF, chw, ibm by 3%, 3%, 6%, and 8%, respectively.

Analysis of results. BMT is slower than the other allocators. On average (arithmetic
mean), bmtS takes 26 seconds per benchmark, with a standard deviation of 100s. The
other algorithms stay under 10 second per sample. The most time consuming part of
bmtS is phase two’s dynamic programming search. Dynamic programming accounts
for, on average (geometric mean) 50% of the time, followed by the first phase with
37%. In spite of its higher computational complexity, jku runs faster than bmtS.
Non-surprisingly, wpm is the fastest algorithm. This implementation uses a best-effort
heuristic that is linear on the size of the program, and number of qubits; hence, it is
expected to run fast.

jku uses an A* tree to guide the search for a good solution to qubit allocation.
Thus, it needs to store intermediate results of this quest, to make backtracking pos-
sible. In other words, by storing these intermediate nodes, jku trades time for space.



50 Chapter 3. Evaluation

10−4

10−3

10−2

10−1

100

101

102

103

Benchmark Collection

bmtF

chw

ibm

jku

sbr

wpm

Figure 3.7. Time spent by different allocators. The Y-axis shows time (seconds)
in logarithmic scale. The X-axis shows benchmarks ordered in increasing order of
the time spent by bmtS (shaded area).

Figure 3.8 indicates that the memory usage of wpm, sbr, ibm, and bmtS grows in about
the same rate for every program, while the same cannot be inferred for jku, which
contains several outliers. More detail is covered in Section 4.2.

3.3.5 RQ5: Distance from Optimal

For this research questions, we asked how far were the results from the state-of-the-
art algorithms, when compared to an exact algorithm presented earlier in this work
(Section 2.1). Since the problem we solve here is proven to be NP-hard, the exact
algorithm is exponential on the number of qubits, and thus, can be executed on a
restricted number of qubits. It is also important to stress that dyn is optimal in terms
of the weighted cost. So, we expect its weighted cost to be unmatched. We do evaluate
the other metrics for completeness, though. As IBM [2018a] made available their
5-qubit quantum computer Yorktown (Figure 3.9), we decided to synthetize 5-qubit
benchmarks, since the ones we had until now were benchmarks that used up to 16

qubits.
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Figure 3.8. Memory used by different allocators. The Y-axis shows the memory
(bytes) in logarithmic scale. The X-axis shows benchmarks ordered in increasing
order of the memory used by bmtS (shaded area).
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Figure 3.9. Coupling graph of the IBM Yorktown, a 5-qubit architecture [IBM,
2018a].

Benchmarks Generation. In order to generate benchmarks with number of gates Z,
we simply used a random number generator to create Z CNOT gates, with random
qubits. So, for each gate, we got one new random number that would represent each
one of the two qubits of the CNOT gate. We generated 10 different benchmarks of
10, 20, 40, . . . , 640 CNOT gates each. Totalizing in 330 different benchmarks.

Following the pattern from the two last sections, we compiled each benchmark
five times for each different allocator. Since there are now six allocators (dyn can now
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be used), we ran in total 9900 benchmarks. Figure 3.14 summarizes the results shown
below.

• Weighted Cost: sbr yielded the smallest ratio of the weighted cost. dyn was
better than sbr, bmtS, bmtF jku, wpm, chw, and ibm by 12%, 12%, 12%, 21%,
22%, 25%, and 38%, respectively;

• Depth: bmtS yielded the smallest ratio of the depth. dyn was better than bmtS,
bmtF, sbr, jku, wpm, chw, and ibm by 15%, 15%, 18%, 17%, 24%, 29%, and 33%,
respectively;

• Gates: bmtS yielded the smallest ratio of the number of gates. dyn was better
than bmtS, bmtF, sbr, jku, wpm, chw, and ibm by 15%, 15%, 16%, 19%, 19%,
25%, and 47%, respectively;

• Allocation Time: dyn was the slowest allocator. dyn was slower than sbr, ibm,
bmtF, bmtS, jku, chw, and wpm by 104%, 137%, 207%, 211%, 356%, 624%, and
1249%, respectively;

• Memory Consumption: On average, there is not much variation memory-wise.
dyn consumed more memory than sbr, chw, bmtS, bmtF, jku, and wpm by 4%,
4%, 6%, 6%, 7%, and 7%, respectively. ibm consumed 2% more memory than
dyn;

Analysis of results. As expected, dyn allocator was better than every other allocator.
Non-surprising, it was also the slowest allocator. That aside, bmtS, bmtF and sbr got
close results for the weighted cost. However, bmtS and bmtF was able to find solutions
with significantly smaller depth and gates. As mentioned before (Section 3.1), the depth
influences on the time it would take to execute the output program, and the number
of gates influences on the overall error that the execution of the output program will
generate.

It is important to emphasize, however, that the only algorithm that is bounded by
the cost found by dyn is wpm. That is because the others change the sequence of CNOT
relations, by interpreting the benchmarks in other non-sequential representations. That
said, dyn was still the best one.
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Allocator Dim G. Mean G. Std. D. Better Count Better G. Mean Worse Count Worse G. Mean

foo

cost x.xxxx x.xxxx x (x.xx%) x.xxxx x (x.xx%) x.xxxx
depth x.xxxx x.xxxx x (x.xx%) x.xxxx x (x.xx%) x.xxxx
gates x.xxxx x.xxxx x (x.xx%) x.xxxx x (x.xx%) x.xxxx
mem x.xxxx x.xxxx x (x.xx%) x.xxxx x (x.xx%) x.xxxx
time x.xxxx x.xxxx x (x.xx%) x.xxxx x (x.xx%) x.xxxx

Figure 3.10. Template for the tables in this chapter. The major line for allocator
foo indicates that Rcomp is Rfoo. In the caption we shall describe who is Rbase.
Every column is the performance of Rfoo in comparison to Rbase. The highlighted
lines indicate where Rfoo was better than Rbase.
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Mc – Mp Dim 10 20 40 80 160 320 640 1280 2560

1

cost 1.74 (1.16) 1.53 (1.14) 1.39 (1.12) 1.27 (1.1) 1.26 (1.1) 1.27 (1.1) 1.26 (1.1) 1.26 (1.1) 1.26 (1.1)
depth 1.42 (1.1) 1.3 (1.08) 1.22 (1.07) 1.15 (1.06) 1.15 (1.06) 1.15 (1.06) 1.14 (1.06) 1.14 (1.06) 1.14 (1.06)
gates 1.48 (1.11) 1.34 (1.09) 1.26 (1.08) 1.19 (1.07) 1.18 (1.06) 1.18 (1.06) 1.17 (1.07) 1.18 (1.07) 1.18 (1.07)
mem 1.01 (1.05) 1 (1.04) 1.01 (1.04) 0.97 (1.04) 0.96 (1.03) 0.99 (1.04) 0.99 (1.04) 0.96 (1.03) 0.95 (1.03)
time 0.07 (1.09) 0.08 (1.1) 0.09 (1.11) 0.12 (1.15) 0.12 (1.15) 0.12 (1.15) 0.12 (1.15) 0.13 (1.23) 0.12 (1.15)

2

cost 1.47 (1.1) 1.29 (1.07) 1.19 (1.05) 1.11 (1.04) 1.06 (1.03) 1.05 (1.02) 1.04 (1.02) 1.04 (1.02) 1.04 (1.03)
depth 1.26 (1.06) 1.16 (1.04) 1.1 (1.03) 1.07 (1.03) 1.04 (1.02) 1.03 (1.02) 1.03 (1.02) 1.02 (1.02) 1.03 (1.02)
gates 1.31 (1.07) 1.2 (1.05) 1.13 (1.03) 1.08 (1.03) 1.05 (1.02) 1.04 (1.02) 1.04 (1.02) 1.03 (1.02) 1.03 (1.02)
mem 0.96 (1.03) 0.96 (1.03) 0.98 (1.04) 0.95 (1.03) 0.94 (1.03) 0.97 (1.04) 0.98 (1.04) 0.95 (1.03) 0.94 (1.03)
time 0.07 (1.1) 0.08 (1.1) 0.1 (1.12) 0.13 (1.15) 0.19 (1.22) 0.22 (1.19) 0.21 (1.16) 0.22 (1.19) 0.23 (1.19)

4

cost 1.42 (1.09) 1.26 (1.06) 1.16 (1.05) 1.1 (1.03) 1.05 (1.02) 1.02 (1.01) 1.01 (1.01) 1 (1.01) 0.99 (1.01)
depth 1.23 (1.05) 1.14 (1.04) 1.09 (1.03) 1.05 (1.02) 1.03 (1.02) 1.01 (1.02) 1 (1.01) 1 (1.01) 0.99 (1.02)
gates 1.28 (1.06) 1.17 (1.04) 1.11 (1.03) 1.07 (1.02) 1.04 (1.02) 1.02 (1.01) 1.01 (1.01) 1 (1.01) 0.99 (1.01)
mem 0.96 (1.03) 0.96 (1.03) 0.98 (1.04) 0.95 (1.03) 0.94 (1.03) 0.97 (1.04) 0.99 (1.03) 0.99 (1.02) 1.01 (1.02)
time 0.07 (1.1) 0.08 (1.11) 0.1 (1.12) 0.15 (1.18) 0.21 (1.17) 0.34 (1.18) 0.53 (1.13) 0.83 (1.07) 1.31 (1.35)

8

cost 1.41 (1.09) 1.25 (1.06) 1.16 (1.05) 1.09 (1.03) 1.05 (1.02) 1.02 (1.01) 1.01 (1.01) 1 (1) 0.99 (1.01)
depth 1.23 (1.05) 1.14 (1.04) 1.09 (1.03) 1.06 (1.02) 1.03 (1.02) 1.02 (1.01) 1 (1.01) 1 (1) 0.99 (1.01)
gates 1.27 (1.06) 1.17 (1.04) 1.11 (1.03) 1.07 (1.02) 1.04 (1.02) 1.02 (1.01) 1.01 (1.01) 1 (1) 0.99 (1.01)
mem 0.95 (1.03) 0.96 (1.03) 0.99 (1.04) 0.95 (1.03) 0.94 (1.03) 0.98 (1.04) 1 (1.03) 1 (1) 1.04 (1.03)
time 0.07 (1.1) 0.08 (1.11) 0.1 (1.12) 0.15 (1.19) 0.21 (1.18) 0.36 (1.2) 0.59 (1.16) 1 (1) 1.59 (1.29)

16

cost 1.41 (1.09) 1.25 (1.06) 1.16 (1.04) 1.09 (1.03) 1.05 (1.02) 1.03 (1.02) 1.01 (1.01) 1 (1.01) 0.99 (1.01)
depth 1.23 (1.05) 1.14 (1.04) 1.09 (1.03) 1.05 (1.02) 1.03 (1.02) 1.02 (1.02) 1.01 (1.02) 1 (1.01) 0.99 (1.01)
gates 1.27 (1.06) 1.17 (1.04) 1.11 (1.03) 1.07 (1.02) 1.04 (1.02) 1.02 (1.01) 1.01 (1.01) 1 (1.01) 0.99 (1.01)
mem 0.96 (1.03) 0.95 (1.03) 0.98 (1.04) 0.95 (1.03) 0.95 (1.03) 0.98 (1.04) 1.01 (1.03) 1.02 (1.02) 1.07 (1.05)
time 0.08 (1.1) 0.08 (1.1) 0.11 (1.12) 0.16 (1.22) 0.22 (1.19) 0.39 (1.27) 0.63 (1.24) 1.1 (1.19) 1.78 (1.32)

32

cost 1.42 (1.09) 1.26 (1.06) 1.16 (1.05) 1.1 (1.03) 1.06 (1.02) 1.03 (1.02) 1.02 (1.02) 1.01 (1.01) 0.99 (1.01)
depth 1.23 (1.06) 1.15 (1.04) 1.1 (1.03) 1.05 (1.02) 1.04 (1.02) 1.02 (1.02) 1.01 (1.02) 1 (1.01) 1 (1.01)
gates 1.27 (1.06) 1.17 (1.04) 1.11 (1.03) 1.07 (1.02) 1.04 (1.02) 1.03 (1.01) 1.01 (1.01) 1 (1.01) 0.99 (1.01)
mem 0.96 (1.03) 0.96 (1.03) 0.98 (1.04) 0.95 (1.03) 0.95 (1.03) 1 (1.04) 1.03 (1.04) 1.06 (1.05) 1.14 (1.11)
time 0.08 (1.1) 0.09 (1.11) 0.11 (1.13) 0.16 (1.18) 0.24 (1.21) 0.41 (1.24) 0.69 (1.22) 1.21 (1.2) 2.06 (1.38)

Figure 3.11. Baseline is Mp = 8 and Mc = 1280 〈8, 1280〉. It shows the
geometric mean (µg) of the metrics between all the combinations of parametersMc

(lines) and Mp (columns). The geometric standard deviation σg (in parenthesis)
shows the spread of the data.
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Allocator Dim G. Mean G. Std. D. Better Count Better G. Mean Worse Count Worse G. Mean
cost 0.9568 1.0952 87 (55.06%) 0.9134 15 (9.49%) 1.0615
depth 0.9792 1.0976 79 (50%) 0.9344 44 (27.85%) 1.0475
gates 0.9739 1.0504 83 (52.53%) 0.9451 19 (12.03%) 1.0274
mem 1.0474 1.0799 40 (25.32%) 0.9506 118 (74.68%) 1.0823

bmt

time 1.7921 2.0671 19 (12.03%) 0.6789 139 (87.97%) 2.0464
cost 0.9689 1.0937 73 (46.2%) 0.9156 23 (14.56%) 1.0648
depth 0.9804 1.1178 68 (43.04%) 0.9262 47 (29.75%) 1.0455
gates 0.9806 1.0517 72 (45.57%) 0.945 22 (13.92%) 1.0457
mem 1.0464 1.0919 48 (30.38%) 0.9411 110 (69.62%) 1.096

ckf

time 1.7765 2.1566 23 (14.56%) 0.6863 135 (85.44%) 2.089
cost 0.9707 1.1007 83 (52.53%) 0.9283 21 (13.29%) 1.0725
depth 0.9851 1.1054 79 (50%) 0.9482 31 (19.62%) 1.0609
gates 0.983 1.0477 78 (49.37%) 0.9559 26 (16.46%) 1.032
mem 0.9885 1.0569 97 (61.39%) 0.9549 61 (38.61%) 1.0443

sqw

time 0.8767 1.6374 76 (48.1%) 0.6143 82 (51.9%) 1.2191

Figure 3.12. Baseline is the canonical version of the algorithm: can. It shows
the effects of the proposed optimizations relative to the canonical algorithm. Each
allocator represents a new combination of improvements applied to the canonical
version.
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Allocator Dim G. Mean G. Std. D. Better Count Better G. Mean Worse Count Worse G. Mean
cost 1.0207 1.0279 11 (6.96%) 0.9669 107 (67.72%) 1.0343
depth 1.0179 1.0323 16 (10.13%) 0.9748 106 (67.09%) 1.0308
gates 1.0188 1.0217 8 (5.06%) 0.9796 110 (69.62%) 1.0286
time 0.2905 1.8705 154 (97.47%) 0.2809 4 (2.53%) 1.0534

bmtF

mem 0.9648 1.081 107 (67.72%) 0.9255 51 (32.28%) 1.0527
cost 1.8398 1.3012 2 (1.27%) 0.7062 155 (98.1%) 1.87
depth 1.9236 1.2447 2 (1.27%) 0.8133 155 (98.1%) 1.9533
gates 1.4793 1.1923 2 (1.27%) 0.7954 155 (98.1%) 1.495
time 0.0287 2.2563 158 (100%) 0.0287 0 (0%) -

chw

mem 0.9415 1.0755 123 (77.85%) 0.9173 35 (22.15%) 1.0316
cost 1.4729 1.254 5 (3.16%) 0.8386 149 (94.3%) 1.5167
depth 1.4424 1.2204 5 (3.16%) 0.7801 149 (94.3%) 1.487
gates 1.2789 1.1568 5 (3.16%) 0.8923 149 (94.3%) 1.303
mem 1.0201 1.762 105 (66.46%) 0.9021 52 (32.91%) 1.3081

jku

time 0.0445 3.2652 155 (98.1%) 0.04 3 (1.9%) 10.8607
cost 1.2502 1.1817 10 (6.33%) 0.8189 148 (93.67%) 1.2865
depth 1.3508 1.1652 7 (4.43%) 0.8873 151 (95.57%) 1.3773
gates 1.1663 1.1186 10 (6.33%) 0.8927 148 (93.67%) 1.1876
mem 1.0544 1.1246 65 (41.14%) 0.9483 93 (58.86%) 1.1356

sbr

time 0.1193 2.3326 158 (100%) 0.1193 0 (0%) -
cost 2.2586 1.3952 5 (3.16%) 0.8911 147 (93.04%) 2.4101
depth 2.1698 1.3511 5 (3.16%) 0.8225 148 (93.67%) 2.3015
gates 1.7553 1.2827 4 (2.53%) 0.9229 148 (93.67%) 1.8272
mem 0.971 1.0903 101 (63.92%) 0.9233 56 (35.44%) 1.0628

wpm

time 0.0112 3.106 158 (100%) 0.0112 0 (0%) -
cost 1.9116 1.1742 0 (0%) - 158 (100%) 1.9116
depth 1.7664 1.1687 2 (1.27%) 0.849 156 (98.73%) 1.7831
gates 1.5541 1.1347 0 (0%) - 158 (100%) 1.5541
mem 0.9258 1.0778 134 (84.81%) 0.9089 24 (15.19%) 1.026

ibm

time 0.4634 2.3381 125 (79.11%) 0.3293 33 (20.89%) 1.6889

Figure 3.13. Baseline is the BMT (bmtS) allocator. Except for Better Count,
the smaller the reported value, the better for the corresponding competing allo-
cator. The rows (dimensions) where our bmtS loses are highlighted.
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Allocator Dim G. Mean G. Std. D. Better Count Better G. Mean Worse Count Worse G. Mean
cost 1.145 1.0086 0 (0%) - 33 (100%) 1.145
depth 1.1846 1.0181 0 (0%) - 33 (100%) 1.1846
gates 1.1875 1.0234 0 (0%) - 33 (100%) 1.1875
mem 0.9397 1.0291 33 (100%) 0.9397 0 (0%) -

bmtF

time 0.0048 1.3031 33 (100%) 0.0048 0 (0%) -
cost 1.1433 1.0083 0 (0%) - 33 (100%) 1.1433
depth 1.1826 1.0169 0 (0%) - 33 (100%) 1.1826
gates 1.1833 1.0227 0 (0%) - 33 (100%) 1.1833
mem 0.9404 1.0355 33 (100%) 0.9404 0 (0%) -

bmtS

time 0.0047 1.2824 33 (100%) 0.0047 0 (0%) -
cost 1.2831 1.0423 0 (0%) - 33 (100%) 1.2831
depth 1.4128 1.0623 0 (0%) - 33 (100%) 1.4128
gates 1.3442 1.072 0 (0%) - 33 (100%) 1.3442
mem 0.9608 1.0216 32 (96.97%) 0.9596 1 (3.03%) 1.0006

chw

time 0.0016 1.0763 33 (100%) 0.0016 0 (0%) -
cost 1.6196 1.0257 0 (0%) - 33 (100%) 1.6196
depth 1.4998 1.0474 0 (0%) - 33 (100%) 1.4998
gates 1.9025 1.0543 0 (0%) - 33 (100%) 1.9025
mem 1.0216 1.0285 7 (21.21%) 0.9842 26 (78.79%) 1.0319

ibm

time 0.0072 1.0639 33 (100%) 0.0072 0 (0%) -
cost 1.269 1.0239 0 (0%) - 33 (100%) 1.269
depth 1.2173 1.0409 0 (0%) - 33 (100%) 1.2173
gates 1.244 1.0438 0 (0%) - 33 (100%) 1.244
mem 0.932 1.0381 32 (96.97%) 0.93 1 (3.03%) 1.0005

jku

time 0.0028 1.0777 33 (100%) 0.0028 0 (0%) -
cost 1.1391 1.0174 0 (0%) - 33 (100%) 1.1391
depth 1.2298 1.0203 0 (0%) - 33 (100%) 1.2298
gates 1.2038 1.0246 0 (0%) - 33 (100%) 1.2038
mem 0.9557 1.0332 31 (93.94%) 0.9529 2 (6.06%) 1.001

sbr

time 0.0095 1.1974 33 (100%) 0.0095 0 (0%) -
cost 1.3404 1.0179 0 (0%) - 33 (100%) 1.3404
depth 1.3283 1.0184 0 (0%) - 33 (100%) 1.3283
gates 1.238 1.0216 0 (0%) - 33 (100%) 1.238
mem 0.9269 1.041 33 (100%) 0.9269 0 (0%) -

wpm

time 8e-04 1.0972 33 (100%) 8e-04 0 (0%) -

Figure 3.14. Baseline is the optimal algorithm dyn allocator. Except for Better
Count, the smaller the reported value, the better for the corresponding competing
allocator. The rows (dimensions) where our dyn loses are highlighted.





Chapter 4

Literature Review

Quantum computing [Benioff, 1980], and the notion of universal quantum comput-
ers [Deutsch, 1985] date back to the eighties. In the late nineties we saw the first
quantum algorithms with practical purpose, such as integer factorization [Shor, 1997]
and database search [Grover, 1996]. Programming languages that let developers inter-
act with quantum machines came later [Selinger, 2004; Gay, 2006; Balensiefer et al.,
2005; Smith et al., 2017].

Because quantum computers are so recent, so is the interest on quantum com-
pilers. Except for some early work [Tucci, 1999], compiler frameworks that translate
high-level languages to quantum gates have only been proposed in recent years [Häner
et al., 2016; Green et al., 2013; Wecker and Svore, 2014; Javadi-Abhari et al., 2014;
Maslov, 2017]. Most of them involve solving the qubit allocation problem as part of the
compilation flow when targeting partially-connected qubit machines like superconduct-
ing quantum computers. Therefore, the algorithms presented here are applicable to all
these frameworks. We evaluated the qubit allocators of open-source projects in Chap-
ter 3. Among classical architectures, clustered VLIW processors also have connectivity
constraints between registers. However, the clustered VLIW register allocation prob-
lem is very different than the qubit allocation problem. The former is tightly linked
with instruction scheduling [Codina et al., 2001], whereas this degree of freedom is not
available in reversible circuits.

On Prior Solutions to Qubit Allocation. There has been previous attempts to
solve qubit allocation [Maslov et al., 2008; Shafaei et al., 2014; Shrivastwa et al., 2015;
Lin et al., 2015; Pedram and Shafaei, 2016; Zulehner et al., 2018; Lin et al., 2018; Lao
et al., 2018; Li et al., 2018; Siraichi et al., 2018]. The main difference between them and
our work is the fact that they focus on particular topologies of coupling graphs, and
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use only swaps to implement the transitions between different logical-to-physical qubit
mappings. In what follows, we shall discuss some earlier work, starting with Maslov
et al. [2008]. In 2008, they have formalized an instance of the problem similar to our
Definition 5, and have presented an exponential-time heuristic to solve it. Similar to
Q_ibm, this heuristic partitions CNOT gates into sets that can be solved without swaps.
Maslov et al. [2008] find these partial solutions via graph isomorphism (between the
coupling graph and a subset of dependences). They use a heuristic to insert swaps
connecting different partitions of the quantum circuit.

In 2014, Shafaei et al. [2014] have proposed a methodology to map logical into
physical qubits based on Mixed Integer Programming (MIP) [Wolsey, 2008]. They
focus on coupling graphs having a grid architecture, and rely on this assumption to
provide a simple and elegant algorithm. In this research, we assume a general topology
for the coupling graph. Furthermore, like Maslov et al. [2008], Shafaei et al. [2014]
restrict the set of allowed transformations to swaps. Finally, whereas we use dynamic
programming to find an exact solution to qubit allocation, they employ MIP, a different
method. Both these exact solutions are exponential in their worst case. Along similar
lines, Pedram and Shafaei [2016] use Minimum Linear Arrangement (MINLA)1 to solve
qubit allocation on 1D grid architectures, again, using only swaps to ensure the correct
semantics of the implementation of the quantum circuit.

Like Shafaei et al. [2014], Lin et al. [2015] also present a solution to qubit alloca-
tion in 2D architectures. However, contrary to them, Lin et al. [2015] rely on heuristics
to find said solution. Similar to the algorithm that we have discussed in Section 2.2,
they split allocation into two phases, which they have called placement and routing.
Placement fills a role similar to the algorithm in Figure 2.3. Routing, in turn, would
have a purpose similar to the algorithm in 2.5. Nevertheless, our heuristics use different
techniques, given that we deal with general coupling graphs, and resort to operations
other than swaps, when transforming quantum circuits.

Token Swapping and Subgraph Isomorphism. Token swapping was formalized and
proven NP-complete recently [Yamanaka et al., 2014]. Since then, this problem has
been extensively studied [Yamanaka et al., 2014; Bonnet et al., 2016; Miltzow et al.,
2016; Kawahara et al., 2017; Yamanaka et al., 2017]. We know two concrete imple-
mentations of algorithms that solves token swapping exactly [Miltzow et al., 2016;
Siraichi et al., 2018]. These algorithms have exponential runtime. In this paper, to
solve token swapping, we implement the 4-approximative algorithm from Miltzow et al.

1For further details on MINLA, we recommend the introduction written by Petit [2003]
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|a0〉

|a1〉

|b0〉

|b1〉 H T † T

T

T † T

T

T †

H

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 4.1. Quantum circuit indicating (in red) where the swaps would be
ideally placed if allocated one layer at a time.

[2016], which runs in polynomial time. In contrast to token swapping, subgraph isomor-
phism is an old problem, and there are several heuristics and exact algorithms to solve
it [Cordella et al., 2004; He and Singh, 2008; Zhao and Han, 2010; Han et al., 2013].
We do not try to solve subgraph isomorphism exactly. We implement a best-effort
approach: if Section 2.3.1’s search does not find a solution to subgraph isomorphism,
this failure does not mean that such solution does not exist.

In the following sections, we shall describe in details some of the previous work
done on qubit allocation. The next three sections shall present the state-of-the-art
algorithms found in the literature [Zulehner et al., 2018; Li et al., 2018; IBM, 2018b],
that we compared our results against in Chapter 3. Finally, we shall describe the
implementation of the 4-approximative algorithm [Miltzow et al., 2016] for the token
swapping problem in Section 4.4.

4.1 IBM Qiskit Mapper

Summarizing, for each layer l, the algorithm developed by IBM tries to find a sequence
of swaps such that one is able to execute all gates in the layer l with the final mapping
(the one after application of the swap sequence). The red areas highlighted in Figure 4.1
indicates where the sequence of swaps would be inserted (if any). Problem 14 formalizes
the slight different qubit allocation problem that it solves.

Definition 14 (Layer Allocation Problem). Input: an initial mapping f , a coupling
graph Gq = (Q,Eq), plus a list Ψ = (P × P )n, n ≥ 1 of n control relations between
pseudo qubits. Output: a swap sequence that transforms f into f ′, such that f ′ respects
the control relations in Ψ.

Finding the Swap Sequence. The authors make use of a hill climbing-based algo-
rithm. Assuming that the layer to be satisfied is l, the algorithm tries to find the first
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mapping f , such that it minimizes Equation 4.1.

Cost(f) =
∑

(a,b)∈l

dist(f(a), f(b))2 ∗ rand(0, 1/|Q|) (4.1)

Generating Adjacent Solutions. At each mapping f to be processed by the algo-
rithm, it creates one adjacent solution for each edge in the coupling graph, and chooses
the one with the minimum cost. That said, the authors also try to minimize the num-
ber of layers, i.e. depth, by swapping disjoint sets of qubits. Example 20 illustrates
the described algorithm.

Example 20. Figure 4.2 (a) illustrates one layer of exploration of the mapping space.
From each mapping, we generate |E(Gu

q ) \ Used | new mappings (one for each edge),
where Used is the set of physical qubits already used before in this tree. In the
top, left-most mapping f0 = {a 7→ q0, b 7→ q1, c 7→ q2, d 7→ q3}, we generate ex-
actly |E(Gu

q )| adjacent mappings (Figure 4.2 (b)), since no qubit was used yet. One
of them is f1 = {a 7→ q2, b 7→ q1, c 7→ q1, d 7→ q3}, which consists in swapping
(a, c) from f0. Assuming f1 has the smallest cost among the other generated map-
pings, we repeat the process for it (Figure 4.2 (c)). However, this time, we generate
|E(Gu

q ) \ {(q0, ∗), (q2, ∗)}| mappings, since we have already used those qubits. Finally,
|E(Gu

q )\{(q0, ∗), (q1, ∗), (q2, ∗), (q3, ∗)}| = 0, i.e. we have used all physical qubits in the
coupling graph. Thus, as Figure 4.2 (d) shows, we clear the Used set and start over
from the last mapping, as long as the stop condition has not been met.

Stop Condition. This algorithm explores the space of different mappings until it
reaches one of two conditions: (i) a threshold on the number of layers of swap oper-
ations; or (ii) a state where the qubits of every two-qubit gate in l is mapped to an
adjacent vertex in the coupling graph. i.e. it will stop if the set of swaps up until now
surpasses a threshold, or if we reach a mapping f such that:

∑
(a,b)∈l

dist(f(a), f(b)) = |l|

Trials. There is a chance that the algorithm will not find a swap sequence that satisfies
the stop condition as specified above. In those cases, it tries a specified number of times.
If it still does not find a solution, it gives up and splits the current layer into one-gate
layers (which are guaranteed to be solved).
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a 7→ q0, b 7→ q1,
c 7→ q2, d 7→ q3

a 7→ q2, b 7→ q1,
c 7→ q0, d 7→ q3

. . .

a 7→ q2, b 7→ q3,
c 7→ q0, d 7→ q1

. . . . . .

(a, c)

(b, d)

a 7→ q2, b 7→ q3,
c 7→ q0, d 7→ q1

a 7→ q2, b 7→ q3,
c 7→ q1, d 7→ q0

. . .. . .

a 7→ q3, b 7→ q2,
c 7→ q1, d 7→ q0

. . .

(c, d)

(a, b)

(b)

(c)

(a)

(d)

Figure 4.2. (a) creation of one layer of swaps {(a, c), (b, d)} whose intersection
is empty; (b) generation of one mapping for each edge, which represents the swap
between its endpoints; (c) same as (b), but for all edges in E(Guq )\{(q0, ∗), (q2, ∗)};
(d) creation of another layer of swaps, starting from the last mapping in the last
layer of swaps;

4.2 A-star Search

Zulehner et al. [2018] used almost the same idea as IBM, and developed an A*-search
based algorithm for finding the swap sequence. The main idea remains the same to the
one described in the last section (Section 4.1): for each layer li, find the smallest swap
sequence that satisfies it, from the mapping used in the last layer li−1 (illustrated in
Figure 4.1). The authors modelled their A*-search algorithm as follows:

• State: each state of this algorithm consists in a mapping f ;

• Neighbor Function: the neighbor function developed by the authors has
exponential-time complexity. That is because for each mapping f being pro-
cessed, they generate all possible combination of swaps, which totalizes in 2|E(Gu

q )|

different sets;

• Cost Functions: their cost functions consists in a weighted sum that accounts
for the minimum distance between the qubits used in each gate in the current
layer, plus the same for the next layer. Assuming that li is the current layer, the
heuristic is given by the following equation:

h(f) =
∑

(a,b)∈li

dist(f(a), f(b)) +
∑

(a,b)∈li+1

dist(f(a), f(b))
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q0(a) q1(b) q2(c)

q3(d) q4(e) q5(f)

q0(a) q1(b) q2(c)

q3(d) q4(e) q5(f)

(a)

q0(a) q1(b) q2(c)

q3(d) q4(e) q5(f)

q0(a) q1(b) q2(c)

q3(d) q4(e) q5(f)

(b)

Figure 4.3. Illustration of two possible layer configurations, and the edges con-
sidered for creating the swap combinations. (a) shows gate CNOT af , where each
a and f touch two edges each; yielding 24 = 16 different swap combinations. (b)
shows gates CNOT ae and CNOT bf , that touch every edge in the coupling graph;
yielding 27 = 128 different swap combinations.

Reducing the Number of Neighbors. The authors also came up with an opti-
mization for generating the neighbors, since it has exponential complexity (increasing
rapidly the number of states). They observed that instead of considering all edges from
the coupling graph, they could take into account only the ones being used in a CNOT
in the current layer. That is because swapping two qubits not used in the current layer
l would not change the fact of whether the mapping satisfies or not l. Even with this
optimization, the asymptotic time complexity do not change. If there is a layer where
all qubits are used in a CNOT gate in the current layer, it will be exponential on the
number of edges. Example 21 illustrates the effects of this optimization, as well as a
case where the worst case remains the same.

Example 21. Figure 4.3 shows two possible layer configurations in a program. In
Figure 4.3 (a) there is only one CNOT gate between pseudo-qubits a and f . There-
fore, we consider only edges touching the physical qubits where the pseudo ones are
mapped: q0 and q5, respectively. There are two of such edges for each a and f :
(q0, q3), (q0, q1), (q5, q4), (q5, q2); yielding 24 = 16 different combinations. Thus, 16 dif-
ferent states for the A*-search. Figure 4.3 (b) illustrates the worst case scenario with
two gates: CNOT ae and CNOT bf . Those qubits are enough to touch every edge in the
coupling graph, yielding 27 = 128 different combinations.
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4.3 SABRE

Li et al. [2018] created a simple greedy algorithm. It is very brief and effective. For this
algorithm, the authors use the gate dependency graph D (Section 1.2) representation.
The idea of the algorithm consists in the following steps:

1. gather all the gates that have in-degree 0 in a set of gatesW that may be already
processed;

2. discard all gates fromW (and remove from D) that may be executed, i.e. respect
the coupling graph constraints when translated, with the current mapping f (if
this is the first iteration, generate one randomly). If there was any such gate, go
to (1);

3. gather the next N gates in the remaining program, not already in W , in a set F
of gates to be evaluated in the future;

4. given (a, b) ∈ W , for every edge (f(a), f(b)) ∈ E(Gu
q ), create a new mapping

f ′ = f [a 7→ f(b), b 7→ f(a)], and calculate a cost according to the following
equation:

Cost(f ′) =
∑

(a,b)∈W

dist(f ′(a), f ′(b)) + 0.5
∑

(a,b)∈F

dist(f ′(a), f ′(b))

5. reassign f to the f ′ that has the minimum cost. Go back to (1).

Finding an Initial Mapping. The algorithm described above assumes the presence of
an initial mapping, not specifying a method for finding it. The authors notable insight
is that: by reversing the order of the circuit, it is possible to finish the allocation with
a good mapping for the beginning of the circuit. Thus, by reversing and allocating the
circuit, with the final mapping of the previous iteration as its initial mapping, they are
able to achieve a better allocation result. Example 22 illustrates this method.

Example 22. Figure 4.4 illustrates the whole execution of the SABRE algorithm. It
consists in five different executions of the algorithm described in this section. Each of
these executions start from a different random mapping, and apply the three allocation
method in order to find a good initial mapping. Along with the initial mapping, they are
able to allocate the given input circuit into a circuit of smaller cost. In the end, SABRE
yields the allocation that yielded the smaller cost among the five different executions.
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Generate
Random Mapping Allocate Reverse

Circuit Allocate Reverse
Circuit Allocate

Generate
Random Mapping Allocate Reverse

Circuit Allocate Reverse
Circuit Allocate

Generate
Random Mapping Allocate Reverse

Circuit Allocate Reverse
Circuit Allocate

Generate
Random Mapping Allocate Reverse

Circuit Allocate Reverse
Circuit Allocate

Generate
Random Mapping Allocate Reverse

Circuit Allocate Reverse
Circuit Allocate

Input
Circuit

Output
Circuit

Figure 4.4. Scheme of the whole algorithm proposed by Li et al. [2018]. The
authors execute the allocation iteration five times, and get the best out of them.

4.4 4-Approximative Token Swapping

Miltzow et al. [2016] created a 4-approximative algorithm for the token swapping prob-
lem (Section 1.1.5), and also proved that it is NP-hard. The algorithm consists in
finding (un)happy swap chains (Definition 15) with a data structure, which we shall
call Swap Chain Graph S. The main assumption is that each token has only one target
vertex. i.e. the relation ftgt is a function. There are cases where this assumption is
broken, to which we will address later in Section 4.4.1.

Building the Swap Chain Graph. Given that the input to this problem are, as
specified in Section 1.1.5, the undirected graph G = (V,EG) and two mappings fsrc, ftgt,
the authors build the directed chain graph S = (V,ES) as follows. Given that token t
is inside vertex vi ∈ V , there is an edge (vi, vj) ∈ ES iff the path vj  ftgt(t) is bigger
than vi  ftgt(t). i.e. the edge (vi, vj) exists iff by swapping the tokens in each of those
vertices, the distance of the token inside vi to its target vertex is reduced. Figure 4.5
shows different examples of swap chain graphs.

Definition 15 ((Un)Happy Swap Chain). A happy swap chain consists in a cycle in
the Swap Chain Graph S. An unhappy swap is a swap in the edge (vi, vj) ∈ ES such
that vj has out-degree 0. i.e. the token in vj is in its target vertex.

Finding the Swap Sequence. Given the Swap Chain Graph S, and the definition
of (un)happy swap chains (Definition 15), we are able to build the swap sequence
following the steps below, until S has no more edges. Example 23 illustrate the steps
shown below:

1. build the swap chain graph S;
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2. if there is a happy swap chain H in S:

a) insert H to the solution, and apply it to the current mapping. Go to (1).

3. else, get one arbitrary unhappy swap, insert it to the solution, and apply it to
the current mapping. Go to (1).

Example 23. Figure 4.5 shows the sequence of iterations the algorithm takes to find
the solution. In this example, the token set is T = {a, b, c, d, e}, fsrc = {a 7→ q2, b 7→
q4, c 7→ q0, d 7→ q1, e 7→ q3}, and ftgt = {a 7→ q0, b 7→ q1, c 7→ q2, d 7→ q4, e 7→ q3}. At
each step, fsrc is updated, i.e. the swaps are applied to fsrc, while being inserted in the
solution. Since fsrc is updated, the swap graph S on the right is also iteratively updated.
In Figure 4.5 (i) it is possible to find a happy swap chain of length one: (q0, q2). In
the next step (ii), there are no happy swap chains. Therefore, we choose one of the
unhappy swap available: (q1, q2) or (q4, q2). Both steps (iii) and (iv) present happy
swap chains of length one: (q2, q4) and (q1, q2), respectively. Finally, we reach step (v),
where fsrc = ftgt, which means that ES = ∅.

Proving the Approximation Factor. Given that L is the sum of the distances be-
tween each token and its target vertex, we know that: (i) each happy swap chain of
length l always decreases l+ 1 from L; and (ii) each unhappy swap does not change L.
Consider Lemmas 2 and 3. We use these two lemmas, and shows a sketch of the proof
for the approximation factor of the algorithm created by Miltzow et al. [2016].

Lemma 2 (Lower Bound - Miltzow). The minimum number of swaps needed is:

|swaps| ≥
∑

t∈T dist(fsrc(t), ftgt(t))

2
=
L

2

Proof. In the best case, we shall use only happy swap chains, where each

swap will deacrease 2 from L.

Lemma 3 (Kinds of Swap - Miltzow). If one token t already in its target vertex has
been through an unhappy swap, its next operation will be a happy swap.

Proof. Let us show by contradiction. Since t was in its target vertex vt =

ftgt(t), we know that, after the unhappy swap, v = fsrc(t) has only one outgoing
edge (v, vt) ∈ ES (“Building the Swap Chain Graph”) to its target vertex vt.
Therefore, in order for another unhappy swap to be applied over v (vertex that
currently contains t), there are two possible cases:
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• unhappy swap between (vi, v): it would mean that v has out-degree 0, which
it is known that it is not true, since v is not t’s target vertex;

• unhappy swap between (v, vi): it would mean that vi has out-degree 0.
However, we know that v has only one edge (v, vt). So, if vi = vt, and vt has
out-degree 0, it means that vt is the target vertex for a token other than t.
Impossible by definition.

Theorem 4 (4-Approximative Algorithm - Miltzow). The solution described is a 4-
approximative algorithm.

Proof. Since each happy swap chain decreases l + 1 from L, we know that:

|happy | < L

Lemma 3 shows that:

|happy | ≥ |unhappy |

Thus, we obtain:

|happy |+ |unhappy | = |swaps|
|happy |+ |happy | ≥ |swaps|

2 ∗ |happy | ≥ |swaps|

Finally, Lemma 2 shows that the optimum solution has at least L/2 swaps.
Therefore:

2 ∗ |happy | < 2L = 4 ∗ L
2

4.4.1 Colored Token Swapping

The colored token swapping consists in a broader version of the token swapping prob-
lem [Yamanaka et al., 2015]. The difference is that in the colored version, the number
of target vertices for each token can be greater than 1. i.e. ftgt is not a function over
V anymore, but over P(V ). That said, we are always guaranteed that there will be a
solution. i.e. if we build a bipartite graph B = (T, V,EB), where EB = ftgt, we would
always have a perfect matching.
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Fortunately, Miltzow et al. [2016] propose a solution to this problem, a 4-
approximative one. The only change from the 4-approximative algorithm described
above is that there is a preprocessing phase. In this phase, they transform the problem
into the non-colored version of the problem by applying a minimum weighted match-
ing algorithm, such as Kuhn [1955] solution, over a bipartite graph B (Definition 16).
Example 24 illustrates this structure.

Definition 16 (Colored Bipartite Graph). the colored bipartite graph of a graph G =

(V,E) is a weighted graph B = (T, V,EB), such that (t, v) ∈ EB iff the token v ∈ ftgt(t).
i.e. EB = {(t, v)|v ∈ ftgt(t)}. The weight of each edge (t, v) ∈ EB is given by the
distance from the vertex t is currently in, and v. i.e. w(t, v) = dist(fsrc(t), v).

Example 24. Figure 4.6 (a) shows an illustration of the bipartite graph described
above. In this case, there are two tokens t, in vertices q3, q2 such that |ftgt(t)| > 1,
denoted by ⊥. Their set of target vertices ftgt(t) consists in {q1, q4}, also denoted by
⊥. On the right, we have the bipartite graph B, showing the final matching highlighted
after the application of the minimal matching algorithm.

After the minimum weighted matching, we will have a matching M = {t1 7→
v1, . . . , tn 7→ vn}. This yielded matching will be the new ftgt of the problem. In the
end, each token will have a unique target vertex. Thus, we will have an instance of the
narrower problem discussed earlier.

Example 25. Figure 4.6 (b) shows an the modified initial token configuration, where
each token has only one possible target vertex. We distinguish the formerly introduced
two ⊥ tokens, renaming them to ⊥1,⊥2, respectively. From this modified token config-
uration on the left, it is straightforward building the swap graph S on the right.
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Figure 4.5. (i)∼(v) iterations of the execution of Miltzow et al. [2016] algorithm.
On the left, there are the inputs to the algorithm: (T ) the token set a, . . . , e;
(fsrc) the current configuration of tokens – inside the circles; (ftgt) the target
configuration of tokens – outside the circles. On the right, there is the respective
Swap Chain Graph to each iteration. Bold edges represent the swaps taken.
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Figure 4.6. (a) initial token configuration on the left, and the bipartite graph B
on the right. Unused physical qubits and tokens t that |ftgt(t)| > 1 are represented
as ⊥. (b) the modified initial token configuration on the left, where we replaced
the two ⊥ tokens for ⊥1,⊥2, so that they have only one target vertex. On the
right, there is the resulting swap graph S.





Chapter 5

Conclusion

This dissertation has introduced a new model for Qubit Allocation, based on two well-
known problems: subgraph isomorphism and token swapping. We believe that these
two problems provide a new principled approach to solve Qubit Allocation, in a way
similar to what graph coloring has done to classic register allocation. And, just like
there exist many solutions to register allocation based on graph coloring, several solu-
tions to qubit allocation based on this combination of subgraph isomorphism and token
swapping are possible. In this paper we have explored one among such possibilities;
hence, implementing an algorithm that outperforms all previous state-of-the-art solu-
tions to this problem in all three dimensions: weighted cost (20%); depth (25%); and
number of gates (14%). The design and implementation of other solutions to Qubit
Allocation, also based on the Isomorphism-Swapping combination, is an interesting
research direction that we hope to explore in the future.
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Appendix A

Adapting the TWP Algorithm for
BMT.

In the algorithm proposed in this work, BMT, we needed to merge two different map-
pings with swaps (Section 2.3.3). Therefore we decided to use the algorithm described
in Section 4.4.1 for the colored version of the token swapping problem. That is be-
cause sometimes there will be “partially defined mapping functions”. i.e. pseudo-qubits
mapped to ⊥. In this context, every different pseudo-qubit is a token. Given two map-
pings hfrom, hto : P → Q and the coupling graph Gu

q from BMT, the following equations
describe how we transform them into the inputs for this problem (see Section 4.4 for
more information).

G = Gu
q

T = P

Ufrom = {v | v ∈ Q ∧ @t ∈ T (hfrom(t) = v)}
Uto = {v | v ∈ Q ∧ @t ∈ T (hto(t) = v)}

fsrc(t) =

v ∈ Ufrom if hfrom(t) = ⊥

hfrom(t) else

ftgt(t) =

Uto if hto(t) = ⊥

hto(t) else

A.1 Optimizing for Partial Mappings

There is, however, room for optimization in this algorithm. In this case, specifically,
the sets of every t ∈ T such that |ftgt(t)| > 1 are the same, i.e. Uto. That means
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Figure A.1. On the left, we have the same initial configuration as Figure 4.6.
(T ) is the token set {a, c, e,⊥,⊥}; (fsrc) is the current configuration of tokens –
inside the circles; (ftgt) is the target configuration of tokens – outside the circles.
On the right, we have the corresponding swap graph S ignoring the ⊥ tokens.

that we can skip the minimum weighted matching, since we do not care where the
pseudo-qubits that are mapped to ⊥ are, as long as in the end, they are in one of
the unused vertices Uto. Therefore, if every vertex that is not mapped to ⊥ is already
in its target vertex, then it means that every other vertex is also in one of its target
vertices. Summarizing, we can skip the execution of the minimum weighted matching,
and ignore those pseudo-qubits in the swap graph S (defined in Section 4.4), turning
them into edgeless vertices.

Example 26. Figure A.1 shows the swap graph S (on the right) that was built while
ignoring tokens t such that |ftgt(t)| > 1, denoted by ⊥ (on the left). As expected, on the
left, we have the initial token configuration, where whenever (in vertices {q2, q3}) there
is a ⊥ token a white box is used. On the right, we lack the edges {(q2, q1), (q3, q4)},
since their source is one of the vertices that holds the ⊥ tokens.

Theorem 5 (Optimization Correctness). Given that the sets of every t ∈ T such that
|ftgt(t)| > 1 are the same (Uto) and that the swap graph S is built ignoring the vertices
in it, the 4-approximative algorithm without the minimum weighted matching step is
also 4-approximative.

Proof. Given two vertices vi, vj ∈ V and the tokens in them ti, tj ∈ T , it is
possible to divide the unhappy swaps into two different groups: (i) unhappy swaps
(vi, vj) where |ftgt(tj)| = 1; and (ii) unhappy swaps (vi, vj) where |ftgt(tj)| > 1.
For the (i) unhappy swaps, it is easy to show that (Lemma 3):

|happy | ≥ |unhappy i|

For the (ii) unhappy swaps, they reduce 1 from L, but do not really add 1.
The fact that the edge (vi, vj) ∈ ES exists indicates that ti will be closer to its
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target after the swap (subtracting of 1 from L). After the swap, even though vj
had out-degree 0 before, the vertex that tj is now in (vi) will have out-degree 0,
since, by definition, we are ignoring tokens that |ftgt(tj)| > 1. Therefore:

|happy |+ |unhappy ii| < L

Thus, the number of swaps is:

|swaps| = |unhappy i|+ |happy |+ |unhappy ii|
|swaps| = |unhappy i|+ L

|swaps| = 2 ∗ L

Since the lower bound for the number of swaps is still L
2 , we have that our

solution is at most 4 times the optimal.

|swaps| = 2 ∗ L =
L

2
∗ α =⇒ α = 4
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