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Resumo

Sensoriamento remoto é uma importante técnica para a obtenção de observações con-
sistentes de fenômenos e processos em larga escala. Entretanto, o aumento exponencial
da quantidade de dados causado pela melhoria contínua da frequência e taxa de cober-
tura torna a interpretação manual de dados brutos impraticável em muitos casos. A
obtenção de procedimentos automatizados para a extração de informações semânticas
úteis é crucial para possibilitar as mais recentes aplicações baseadas em sensoriamento
remoto.

Métodos automáticos oferecem uma ampla gama de benefícios e são o foco de
muitas áreas de pesquisa. Aplicações potenciais incluem desde a análise de mudanças
na vegetação e clima, derretimento das calotas polares, etc. ao mapeamento de de-
sastres naturais como terremotos, tsunamis, deslizamentos de terra ou avalanches, ou
ainda o rastreamento de objetos móveis, por exemplo, para monitoramento de tráfego
ou vigilância e planejamento urbano. Dada a complexidade desses fenômenos, um pro-
cessamento completamente automático geralmente ainda não é possível. Entretanto, o
processamento objetivo, rápido e confiável dos dados obtidos em todos esses casos é de
grande importância e requer métodos avançados.

O crescimento da resolução espacial dos satélites aumentou o escopo para a ex-
tração de features, levando a um aumento no número de classes de utilização do solo,
entretanto a semântica inerente a essas classes geralmente não é explorada. Métodos
de classificação a nível de pixel perderam então sua eficácia, dado que a relação en-
tre o tamanho dos pixels e a dimensão dos objetos observados na superfície da Terra
foi alterada significativamente. Portanto, a classificação baseada em objetos tornou-se
cada vez mais popular ao longo desta década. Ela combina segmentação e classificação
baseada em contexto. Segmentação divide a imagem em grupos de pixels homogêneos
(segmentos), que são agrupados em classes com base em suas características espectrais,
geométricas e de textura. Entretanto essa tarefa é bastante desafiadora e descritores
de baixo nível usualmente utilizados ignoram a informação semântica que pode ser
extraída a partir da configuração espacial das classes presentes numa imagem. Deep
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learning, um avanço recente no campo do Aprendizado de Máquina, vem possibilitando
novas abordagens para esse problema.

O objetivo deste trabalho é de avaliar a aplicabilidade de um método de descrição
contextual baseado em superpixels usado para classificação de imagens ao cenário de
detecção de objetos em imagens de sensoriamento remoto. Este método explora redes
convolucionais para extrair características de diferentes níveis contextuais em torno
dos superpixels obtidos. O método foi modificado com o intuito de avaliar diferentes
métodos de pooling e foi testado em bases de dados disponíveis publicamente assim
como em bases customizadas criadas para testar a aptidão do método nos cenários de
localização e detecção de objetos. Níveis de acurácia acima de 99% foram obtidos na
tarefa de localização de árvores e carros.

Palavras-chave: detecção de objetos, sensoriamento remoto, contexto.
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Abstract

Remote sensing is an important technique for acquiring consistent, repeated high reso-
lution observations of large-scale phenomena and processes. However, the ever increas-
ing amount of data provided by the continuing improvement in coverage and repetition
rates in recent years makes the manual interpretation of the raw data impracticable in
many cases. Devising automatic procedures to extract useful semantic information is
then crucial for enabling the latest remote sensing based applications.

Automatic methods offer a wide gamut of benefits and are the focus of many re-
search fields. Potential applications range from detecting changes in vegetation and cli-
mate, ice melt, etc. to the mapping of natural disasters such as earthquakes, tsunamis,
landslides or avalanches, to tracking of moving objects, e.g. for traffic monitoring or
surveillance and urban planning. Due to the complexity of these phenomena, fully
automatic processing is often not yet possible. However, reliable, fast and objective
processing of the recorded data in all these cases is of great importance and requires
advanced methods.

The evolution in spatial resolution of satellites has increased the scope for feature
extraction leading to a rising number of land cover classes, while the underlying seman-
tics of these classes were not explored. Pixel-based classification methods became then
less effective, since the relationship between the pixel size and the dimension of the
observed objects on the Earth’s surface has changed significantly. Therefore object-
oriented classification has become increasingly popular over the past decade. This
combines segmentation and contextual classification. Segmentation divides the image
into homogeneous pixel groups (segments), which are arranged into classes based on
their spectral, geometric, textural and other features. However, this task is notoriously
challenging and low-level descriptors usually employed ignore semantic information that
may be provided by the spatial configuration of the classes present in an image. Deep
learning, a recent breakthrough in machine learning, has shed light on this problem.

The aim of this work is to evaluate the applicability of a superpixel based contex-
tual description method used for image classification to the scenario of object detection
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in remote sensing imagery. Such method exploits convolutional networks to compute
deep contextual features from different context levels surrounding the superpixels ob-
tained. The method is modified in order to assess the use of different pooling methods
and is tested on publicly available datasets and custom datasets created to evaluate the
method’s suitability to different scenarios. Accuracy levels above 99% were obtained
in the tasks of car and tree localisation.

Palavras-chave: Object detection, Remote Sensing, Context.
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Chapter 1

Introduction

The ability to identify the objects present in an image or scene is one of the most
basic requirements when it comes to interacting with one’s environment. While it
seems completely effortless for humans, and in fact for most animals, trying to teach
computers to see and also to “understand” what they are seeing has been proved to be
extremely difficult [Mohammed, 2014].

The key to understanding visual scenes are three closely related sub-problems.
The easiest one consists in classification, in which the one dominant object in a given
image should be determined and labelled. The next more demanding task is object
localization: in addition to labelling the dominant object, it also needs to be localized
in the image, usually by determining a bounding box around the image region that
is occupied by the object. The difficulty of this task increases if not only one but all
objects in an image need to be labelled and multiple objects of the same category can
appear in an image. This task is called object detection [Kloss, 2015].

1.1 Motivation

Detecting and identifying the different objects in an image quickly and reliably is an
important skill for interacting with one’s environment and there is a vast number of
applications where object detection is an essential component. All systems that rely
on visual input for reasoning about the environment use object detection in some
form. The main problem is that in theory, all parts of an image have to be searched
for objects on many different scales to make sure that no object instance is missed.
However, it takes considerable time and effort to actually classify the content of a given
image region and both time and computational capacities that an agent can spend on
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2 Chapter 1. Introduction

classification are limited. Since the current state-of-the-art for most objects is well
below human capabilities, the research in the field is active and important.

One of the tasks for which object detection also plays an important role is the
analysis of Remote Sensing imagery. The usual pipeline for such analysis involves the
extraction of low-level descriptors from few image samples that are annotated by the
user, and used to train a classifier. The generated classifier should be able to annotate
the remaining samples in the image and its accuracy depends on the quality of the
descriptors and the training samples selected [Santana et al., 2017].

Remote Sensing Imagery (RSI) classification has been usually based on pixel
statistics analysis, but as the spatial resolution of images increased, the information
from neighboring pixels (either texture or context) was used to improve results. Tra-
ditional low-level appearance features, such as color or shape, are limited for captur-
ing the appearance variability of real-world objects represented in images. Noise and
changes in lighting conditions are factors that cause an increase in intra-class variance,
leading to classification errors. The coherent arrangement of the elements expected to
be found in real world scenes has been shown to improve classification results through
a contextual description of the image [Santana et al., 2017].

1.2 Objectives

The objective of this work is the evaluation of the applicability of a superpixel-based
contextual description method used for image classification to the scenario of object
detection in remote sensing images. Such method exploits convolutional networks to
compute deep contextual features from different context levels surrounding the obtained
superpixels. A deep feature is the consistent response of a node or layer within a hi-
erarchical model to an input that gives a response that is relevant to the model’s final
output. One feature is considered “deeper” than another depending on how early in the
decision tree or other framework the response is activated. Convolutional Neural Net-
works (ConvNets or CNNs) are a category of Neural Networks that uses perceptrons,
a machine learning unit algorithm to analyze data, that have proven very effective
in areas such as image recognition and classification. It is comprised of one or more
convolutional layers (often with a subsampling step) and then followed by one or more
fully connected layers as in a standard multilayer neural network. The architecture of
a CNN is designed to take advantage of the 2D structure of an input image.

The research questions this work aims to answer are:

• Does the use of contextual features improve the accuracy of object detection in
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remote sensing imagery?

• How does the tested methodology compare with the baselines in the literature?

• What is the impact of changing the pooling strategy employed in CNNs used as
feature extractors for the task of object detection in remote sensing imagery?

The method is modified in order to assess the use of different pooling strate-
gies and an improved segmentation approach is proposed in this work. The proposed
modifications are validated on car and tree localization and car detection scenarios.

1.3 Outline

The remainder of this work is organized as follows: Chapter 2 provides general back-
ground on object detection, superpixel-based segmentation and how convolutional neu-
ral networks can help in object detection by encoding semantic context.

Chapter 3 details the proposed method, while the settings used in the validation
of the method and the results obtained are described in Chapter 4.

Finally Chapter 5 brings conclusions, recommendations for future research, and
final remarks.





Chapter 2

Background and Related Work

This chapter presents background concepts on the task of object detection in remote
sensing images as well as related works to such task.

2.1 Object Detection in Remote Sensing

Remote sensing is defined by Lillesand et al. [2014] as the science of obtaining informa-
tion about an object, area, or phenomenon through the analysis of data acquired by a
device that is not in contact with the object, area, or phenomenon under investigation.
Object detection in remote sensing images is a fundamental yet challenging problem in
the field of aerial and satellite image analysis, as it plays an important role for a wide
range of applications such as geological hazard detection, geographic information sys-
tem (GIS) update, environmental monitoring, LULC mapping, precision agriculture,
urban planning, etc [Cheng and Han, 2016]. It consists in determining whether a given
aerial or satellite image contains one or more objects belonging to a class of interest
and to locate the position of each predicted object in the image [Cheng and Han, 2016].

The process of automatic object detection in optical remote sensing imagery
(RSI) is comprised of the following steps: data acquisition, data preparation, image
segmentation (it is optional depending on whether a pixel-based or a region-based
approach is used), feature extraction, model training, and object detection. The data
acquisition step consists in the detection and storage of the electromagnetic radiation
reflected or emitted by objects or phenomena on the Earth surface. The sensors used
may be either passive sensors, which only register the reflected radiation, or active
sensors, which emit radiation and register it after its interaction with one or more
targets [Lillesand et al., 2014].
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6 Chapter 2. Background and Related Work

The second step is needed due to the fact that RSIs usually contain noise and
errors due to the atmospheric interference and imaging geometry, so pre-processing
techniques are applied in order to soften noise and correct radiometric and geometric
distortions [Meneses et al., 2012].

In the next step, objects are delineated in the image by grouping their pixels so
that the entire image is composed of many disjoint regions. Segmentation is required
when the image analysis approach chosen is based on regions or objects. In order to
avoid ambiguity, object is defined as follows:

Definition 1. An object is any meaningful and distinguishable entity depicted in
an image.

The resolution of the images considered is of fundamental importance to the
applications that will be based on them. It is then defined by Gonzalez et al. [2004] as:

Definition 2. The spatial resolution is the linear measurement of the distance
imaged on the ground per pictorial element (pixel) of the image.

The next step produces a representation of image samples that describes them in
terms of some kind of visual cue, such as color, texture and shape, or even a combina-
tion of them. These representations are regarded as low-level, once they are based on
computations over the pixels themselves. More complex representations also encode
the context of the objects depicted in the images or apply some transformations over
the low-level representations in order to generate a higher-order one, named middle
level representation [Perronnin and Dance, 2007]. Therefore, all the mentioned repre-
sentations depend somehow on the low-level ones, which in turn are computed through
image descriptors [Dalal and Triggs, 2005].

Model training and label prediction are two closely related steps. Problems are
solved through the use of a statistical model defined in terms of some parameters.
Learning is the process of running an algorithm to optimize the parameters of the
model according to the example data available (also known as training data or training
samples). Once the model is trained, it may be used to make predictions or inferences.

Object detection in optical RSIs faces several challenges like the large variations in
the visual appearance of objects caused by viewpoint variation, occlusion, background
clutter, illumination, shadow, etc., the growth of RSIs in quantity and quality, and the
various requirements of new application areas. To address these challenges, the topic
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Figure 2.1. Taxonomy of methods for object detection in optical RSIs [Cheng
and Han, 2016].

of geospatial object detection has been extensively studied since the 1980s [Cheng and
Han, 2016].

Considerable efforts have been made to develop methods for the detection of dif-
ferent types of objects in satellite and aerial images, such as roads, buildings, trees, ve-
hicles, etc. We can generally divide them into four main categories: template matching,
knowledge-based, OBIA (Object-based image analysis)-based, and machine learning-
based methods [Cheng and Han, 2016]. Fig. 2.1 shows a taxonomy of geospatial object
detection methods.

Template matching-based methods are one of the simplest and earliest approaches
for object detection. There are two main steps in template matching-based object
detection framework. 1) Template generation: a template T for each to-be-detected
object class should be firstly generated by hand-crafting or learning from the training
set. 2) Similarity measure: given a source image, the stored template T is used to match
the image at each possible position to find the best matches, according to the minimum
distortion or maximum correlation measures, while taking into account all allowable
translation, rotation, and scale changes. The most popular similarity measures are the
sum of absolute differences (SAD), the sum of squared differences (SSD), the normalized
cross correlation (NCC), and the Euclidean distance (ED) [Cheng and Han, 2016].

Knowledge-based object detection methods are another type of popular ap-
proaches for object detection in optical RSIs. An extensive collection of papers on
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knowledge-based object detection have been published for buildings, roads and other
more general object extraction applications like landslide, bridges, vehicles, urban land
changes, crops, drainage channels, and forests. This type of approaches generally trans-
lates object detection problem into hypotheses testing problem by establishing various
knowledge and rules. The establishment of knowledge and rules is the most important
step. Two kinds of widely used knowledge on target objects are geometric knowledge.

The object geometric information is the most important and widely used knowl-
edge for object detection, which encodes prior knowledge by taking parametric specific
or generic shape models. The context knowledge is another crucial cue for knowledge-
based object detection and the most widely used context knowledge is the spatial con-
straints or relationships between objects and background, or the information regarding
how the object interacts with its neighboring regions. The core of knowledge-based
object detection methods is how to effectively transform the implicit knowledge under-
standing on target objects into the explicit detection rules. If the defined rules are too
strict, some target objects will be missed; conversely, too loose rules will cause false
positives [Cheng and Han, 2016].

According to [Galleguillos and Belongie, 2010], contextual knowledge is any in-
formation which was not produced by the appearance of the own object, but by nearby
image data or metadata related to the image, such as tags or image annotations. The
authors divide existing approaches for contextual description into three categories: se-
mantic, scale and spatial, each of them being regarded as either local or global context.
The semantic context of an object O is the likelihood of O is in a given image I with a
set of objects S, while the spatial context of an object O is the orientation and local-
ization of O relative to each other object in image I; and finally, the scale context of
an object O is the size of O relative to all other objects in an given image I.

A toy example that illustrates the usefulness of context information is depicted
in Fig. 2.2. When asked what is the object shown in the image, a person might have
difficulty to identify it. Once spatial and semantic context is provided (as depicted in
Fig. 2.3 and Fig. 2.4), such task becomes much easier to be performed.

With the increasing availability and wide utilization of sub-meter imagery, object-
based image analysis (OBIA or GEOBIA for geospatial object based image analysis)
has become a new methodology or paradigm to classify or map VHR imagery into
meaningful objects (or rather, grouping of relatively local homogeneous pixels). OBIA
involves two steps: image segmentation and object classification. Since OBIA offers
the potential to exploit geographical information system (GIS) functionality, such as
the incorporation of the spatial context or object shape in the classification, it provides
a framework for overcoming the limitations of conventional pixel-based image classifi-
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Figure 2.2. Object shown with no context information.

Figure 2.3. Object shown with spatial context information being provided.



10 Chapter 2. Background and Related Work

Figure 2.4. Identification of the object when shown with its semantic, spatial
and scale context becomes a much easier task.

cation methods and has been successfully applied to landslide mapping, land cover and
land use mapping and change detection.

2.2 Superpixel representation

2.2.1 Segmentation

Recently, superpixel has been researched and applied in computer vision tasks, e.g.
object location and tracking, and class segmentation [Achanta et al., 2012; Sun and Chi,
2015]. The segmentation approach is now preferred over the sliding-window technique
for object categorization and recognition as it decreases the amount of analysis of
candidate locations for object categorization and recognition, by reducing candidate
locations from tens of thousands of windows to thousands or even hundreds of windows.
Segmentation has attracted increased attention in the computer vision community, and
a wide range of segmentation algorithms have been developed [Ammour et al., 2017].

Superpixels provide clusters of perceptually similar pixels throughout an image,
thus capturing the redundancy inherent in most natural images [Pappas et al., 2017],
being an effective manner to obtain spatial structure information [Jia et al., 2017]. Each
superpixel is a meaningful region, which can represent the spatial structure of an image
with adaptive shapes and sizes. Moving to superpixels allows us to measure feature
statistics on a naturally adaptive domain rather than on a fixed window [Fulkerson
et al., 2009].

The results of superpixel algorithms may vary in quality, uniformity, size and
number, partly due to the lack of a consistent, rigorous definition of what constitutes
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a superpixel [Pappas et al., 2017]. One of the most widely used algorithms, proposed
by Achanta et al. [2012] is Simple Linear Iterative Clustering (SLIC). SLIC segments
an image according to a 5-dimensional distance metric comprised of spatial (x,y co-
ordinates) and colour information (L,a,b, of the CIELAB colorspace) as shown in the
following equations:

dlab =
√
(lk − li)2 + (ak − ai)2 + (bk − bi)2 (2.1)

dxy =
√
(xk − xi)2 + (yk − yi)2 (2.2)

Ds = dlab +
m
S
dxy (2.3)

The number of generated superpixels k (and indirectly, their size) is specified by
the user; mS is a scaling factor where S is the initial cluster seed grid interval (dependent
on image size and desired k) and m allows the user to control superpixel compactness
and shape regularity [Achanta et al., 2012].

2.2.2 Context representation

With the advance of machine learning techniques, especially the powerful feature rep-
resentations and classifiers, many recent approaches regarded object detection as a
classification problem and have achieved significant improvements. Fig. 2.5 gives the
flowchart of machine learning-based object detection, in which object detection can
be performed by learning a classifier that captures the variation in object appearances
and views from a set of training data in a supervised, semi-supervised or weakly su-
pervised framework. The input of the classifier is a set of regions (sliding windows or
object proposals) with their corresponding feature representations and the output is
their respective predicted labels, i.e., object or not.

Compared with object detection in natural scene images, detection of targets
in RSIs is a more challenging task [Deng et al., 2017]. Handcrafted features have
recently been significantly outperformed by deep learning based methods, which are
now perceived as the most effective methods for image classification. Recently, many
CNN-based object detection pipelines have been proposed with impressive performance
[Krizhevsky et al., 2012a; He et al., 2016a].

Long et al. [2015] employed visual saliency to generate a small number of bounding
boxes, and then extracted features using deep belief networks, a method suitable for
simple environments. Hariharan et al. [2015] proposed a rotation-invariant CNN model
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Figure 2.5. Flowchart of machine learning-based object detection [Cheng and
Han, 2016].

for object detection in RSIs, while Diao et al. [2016] proposed an aircraft detection
method based on coupled CNNs. In the case of vehicle detection, Chen et al. [2014]
proposed a method based on sliding windows and deep CNN called the hybrid deep
neural network (HDNN).

The effectiveness and sampling simplicity of sliding-windows made it the most
popular approach used in the past few years for object detection, recognition, and
localization [Lampert et al., 2008; Vedaldi et al., 2009]. But it is a time-consuming
process and tends to obtain a possible location for entire non-rigid or non-canonical
posed objects. Furthermore, window bounding the object may also cover much of the
background area, which may corrupt the evaluation [Ammour et al., 2017]. Recent
advances in computer vision indicate that state-of-the art methods for object detection
are moving away from the use of sliding-window to search for possible object locations
[Girshick et al., 2014a; Wang et al., 2013; Uijlings et al., 2013; Ren et al., 2015], instead,
they rely on segmentation in a pre-processing step for region proposal.

A number of works utilize one or more segmentations as a starting point for their
task. Li et al. [2016] proposed a pixel-level and superpixel-level probabilistic fusion
method for HSI (Hyperspectral Images) classification. Superpixel-level discriminative
sparse model and multitask sparse representation methods are proposed by Fang et al.
[2015b] and Li et al. [2015]. Fang et al. [2015a] proposed a novel HSI classification
framework to exploit the spectral-spatial information of superpixel via multiple ker-
nels (SC-MK). He et al. [2016b] studied a superpixel-based group sparse and low-rank
model for HSI classification. These superpixel-based methods present smoother classi-
fication maps and obtain more precise results [Shi and Pun, 2018]. The two winning
algorithms for object detection in the ImageNet 2013 detection challenge also relied on
segmentation [Ammour et al., 2017].
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Figure 2.6. Detecting horizontal edges from an image using convolution filtering
[Stenroos et al., 2017].

For these reasons, we use the contextual feature extraction from superpixels ap-
proach proposed in Mostajabi et al. [2015] for object detection. We adapted it in
order to explore different pooling methods employed after convolutional layers of deep
networks. Such method is evaluated on the scenarios of vehicle and trees detection.

2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are multi-layer feed-forward networks designed
to recognize features in 2-dimensional image data and whose architecture is inspired by
a study of neurobiological signal processing in cats’ visual cortex performed by Hubel
and Wiesel [1968]. The basic idea of the CNN was inspired by the biological concept
of receptive fields that act as detectors that are sensitive to certain types of stimuli,
for example, edges. They are found across the visual field and overlap each other.

This biological function can be approximated in computers using the convolution
operation [Marr and Hildreth, 1980]. In image processing images can be filtered using
convolution to produce different visible effects. Fig. 2.6 shows a convolutional filter
detecting horizontal edges, functioning in a similar fashion to a receptive field.

The discrete convolution operation between an image f and a filter matrix g is
defined as:

h[x,y] = f [x,y] ∗ g[x,y] =
∑
n

∑
m

f [n,m]g[x-n,y-m] (2.4)

The dot product of the filter g and a sub-image of f (with same dimensions
as g) centered on coordinates x, y produces the pixel value of h at coordinates x, y
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Figure 2.7. An example of a convolutional network [Stenroos et al., 2017].

[Goodfellow et al., 2016]. The size of the receptive field is adjusted by the size of the
filter matrix. Aligning the filter successively with every sub-image of f produces the
output pixel matrix h. In the case of neural networks, the output matrix is also called
a feature map (or an activation map after computing the activation function). Edges
need to be treated as a special case. If image f is not padded, the output size decreases
slightly with every convolution [Goodfellow et al., 2016].

Convolutional filters are combined to form a convolutional layer of a neural net-
work [Fukushima, 1988]. The matrix values of the filters are treated as neuron pa-
rameters and trained using machine learning. The convolution operation replaces the
multiplication operation of a regular neural network layer. Output of the layer is usu-
ally described as a volume and the height and width of the volume depend on the
dimensions of the activation map. The depth of the volume depends on the number of
filters [Fukushima, 1988].

Since the same filters are used for all parts of the image, the number of free
parameters is reduced drastically compared to a fully-connected neural layer [LeCun
et al., 1989]. The neurons of the convolutional layer mostly share the same parameters
and are only connected to a local region of the input. Parameter sharing resulting from
convolution ensures translation invariance [Fukushima, 1988].

Successive convolutional layers (often combined with other types of layers, such
as pooling described below) form a convolutional neural network (CNN). An example
of CNN is shown in Fig. 2.7. Layers closer to the input are reported to learn to
recognize low-level features of the image, such as edges and corners, and the layers
closer to the output learn to combine these features to recognize more meaningful
shapes [Fukushima, 1988].

2.3.1 Pooling

In order to make the network less complex for classification, the activation map size
is decreased in the deep end of the network. The deep layers of the network require
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less information about exact spatial locations of features, but require more filters to
recognize multiple high-level patterns [Goodfellow et al., 2016]. With the reduction of
the height and width of the data volume, the depth of the data volume can be increased
while the computation time is kept at a reasonable level.

Reducing the data volume size can be achieved in two manners. One way is to
include a pooling layer after a convolutional layer [Nasrabadi, 2007]. The layer effec-
tively downsamples the activation maps. Pooling has the added effect of making the
resulting network more translation invariant by forcing the detectors to be less precise,
however, it can destroy information about spatial relationships between subparts of
patterns. A common example of pooling method is max-pooling. Max-pooling simply
outputs the maximum value within a rectangular neighbourhood of the activation map
[Goodfellow et al., 2016].

2.3.2 Additional layers

Convolutional layers typically include a non-linear activation function, such as a recti-
fied linear activation function. Activations are sometimes described as a separate layer
between the convolutional layer and the pooling layer.

Some systems, such as the one presented by Simonyan and Zisserman [2014], also
implement a layer called local response normalization, which is used as a regularization
technique. Local response normalization mimics a function of biological neurons called
lateral inhibition, which causes excited neurons to decrease the activity of neighbouring
neurons. However, other regularization techniques are currently more popular and are
discussed below.

The final hidden layers of a CNN are typically fully-connected layers [Nasrabadi,
2007]. A fully-connected layer can capture relationships that parameter-sharing con-
volutional layers cannot. However, a fully connected layer requires a sufficiently small
data volume size in order to be practical. Pooling and stride settings can be used to
reduce the size of the data volume that reaches the fully-connected layers. A con-
volutional network that does not include any fully-connected layers, is called a fully
convolutional network (FCN) [Ren et al., 2015].

If the network is used for classification, it usually includes a softmax output
layer [Nasrabadi, 2007]. The activations of the top most layers can be used as a feature
representation of an image with the convolutional network being used as a large feature
detector [LeCun et al., 1989].
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2.3.3 Regularization

Regularization refers to methods that are used to reduce overfitting by introducing ad-
ditional constraints or information to the machine learning system [Goodfellow et al.,
2016]. A classical way of using regularization in neural networks is adding a penalty
term to the objective/loss function that penalizes certain types of weights. The param-
eter sharing feature of convolutional networks is another example of regularization.

Among the several regularization techniques for deep neural networks, one of the
most popular ones is the dropout method [Srivastava et al., 2014], which attempts to
reduce the co-adaptation of neurons by randomly dropping out neurons during training,
meaning that a slightly different neural network is used for each training sample or mini-
batch. The basic idea is that each neuron in the network has certain probability to be
deactivated during one iteration. This potential for deactivation is evaluated in every
iteration, to ensure that network has different architecture every time. Deactivated
means that it will not propagate any signal through. This forces individual neurons
to learn features that are less dependent on its surrounding and causes the system
not to depend too much on any single neuron or connection and provides an effective
yet computationally inexpensive way of implementing regularization [Goodfellow et al.,
2016]. In convolutional networks, dropout is typically used in the final fully-connected
layers [Simonyan and Zisserman, 2014].

Overfitting may also be reduced with an increase in the amount of training data.
When it is not possible to acquire more actual samples, data augmentation is used to
generate more samples from the existing data. For classification using convolutional
networks, this can be achieved by computing transformations on the input images that
do not alter the perceived object classes, yet provide additional challenge to the system.
The images can be, for example, flipped, rotated or subsampled with different crops
and scales or noise can be added [Goodfellow et al., 2016].

2.3.4 Development

Convolutional neural networks were one of the first successful deep neural networks.
The Neocognitron, developed by Fukushima in 1980s, provided a neural network
model for translation-invariant object recognition, inspired by biology [Fukushima,
1988]. LeCun et al. [1989] combined this method with a learning algorithm, i.e. back-
propagation. These early solutions were mostly used for handwritten character recog-
nition.

After providing some promising results, the neural network methods faded in
prominence and were mostly replaced by support vector machines [Girshick et al.,
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2014b]. Then, in 2012, Krizhevsky et al. [2012b] achieved excellent results on the Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset by combining Le
Cun’s method with recent fine-tuning methods for deep learning. These results pop-
ularized CNNs and led to the development of new powerful object detection methods
[Girshick et al., 2014b].





Chapter 3

Methodology

This chapter details how the proposed method aggregates contextual information into
the representation generated through image superpixels. It exploits several layers in
convolutional networks to compute deep contextual features from superpixels by keep-
ing the mapping between the pixels within each of them and the feature maps across
the network.

3.1 Overview

Most methods in the literature exploit either only a single level of context or a com-
bination of local and global cues. In order to exploit a range of contextual levels,
from the superpixel itself to the entire image patch containing it, the method proposed
in Santana et al. [2017] is used. The first step consists in segmenting an image into
superpixels in order to obtain homogeneous units. Given a superpixel, in the second
step features concerning three contextual areas defined by different groups of pixels
are separately extracted: (1) inside the superpixel; (2) a small contextual area around
it; and (3) a larger contextual area. Small and larger contextual areas are limited by
boxes centered in the superpixel and consider both internal and external pixels from it.
As a third step we decided to add to the method, different pooling strategies are tested
to assess the impact that such change may cause. The final representation consists in
the concatenation of the extracted features.

Despite the simplicity of the proposed composition of contextual features, its
strength lies on the exploitation of intermediate contextual levels, which are left out
by most methods. A general overview of this representation is shown in Fig. 3.1.

19
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Final Representation
for Superpixel Si

Image Segmented 
into Superpixels

Image Patch
Containing the

Superpixel

Si

Contextual 1
Superpixel Level Features

Contextual 2
Bounding-box Level Features

Contextual 3
Image Patch Level Features

Figure 3.1. The proposed representation to exploit all contextual levels ranging
from the superpixel itself to an entire image patch containing it. Given a target
superpixel si, its final representation is the concatenation of the `2-normalized
features extracted from si, a small rectangular contextual area surrounding si
and a large contextual area [Santana et al., 2017].

3.2 Segmentation

In the proposed method instead of using the sliding-window technique for region pro-
posal for object detection, images are segmented into superpixels using SLICO, an
adaptive version of the Simple Linear Iterative Clustering (SLIC) algorithm. It can
be considered an adaptation of k -means for superpixel generation and provides several
distinct advantages over previous methods. SLIC generates superpixels with high per-
ceptual homogeneity, uniformity in size and shape, good accuracy and boundary recall
properties [Achanta et al., 2012], has a high time and memory efficiency, can cope with
both colour and grayscale imagery and easily generalizes to multiple spectral bands
[Jia et al., 2017] and works as described in Section 2.2.

After the segmentation of the whole image is obtained, each superpixel is taken
as a candidate region for object detection. A 227× 227 patch is extracted around the
center of such superpixel and the next steps of the detection process are carried on in
this patch, as it is also segmented with SLICO and the feature extraction described in
the next section is performed, as depicted in Fig. 3.2. It is worth noticing that these
two segmentations are performed in images with extremely different scales, as the first
segmentation occurs over the whole image and the second occurs on small patches,
and naturally the ideal number of superpixels for each of these cases will radically
differ. The use of two segmentations differs from the original single segmentation
approach, and such change was proposed based on the hypothesis that segmenting a
patch comprising a local region would yield better results.
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Figure 3.2. Examples of patches containing cars after the performance of the
second segmentation of the proposed method.

3.3 Multi-context feature extraction

CNNs are used to extract the proposed contextual features as deep CNN architectures
trained on huge datasets of numerous categories can be transferred to new domains by
employing them as feature extractors on other tasks including recognition and retrieval,
providing better performance than handcrafted features [Penatti et al., 2015].

The strength of such composition of contextual features lies on the fact that it
exploits the way in which CNNs encode contextual representation: each layer learns
filters that enhance different visual semantic levels [Mostajabi et al., 2015]. The first
convolutional layers emphasize low-level properties like borders, color, texture, patterns
and other properties from a small set of pixels, which may represent parts of roofs,
streets, cars, and small objects. The last layers are able to incorporate entire objects
and its spatial relationship.

Nevertheless, an existing challenge concerning the feature extraction from ar-
bitrarily shaped regions is that the main algorithms are designed for rectangular or
squared image patches [dos Santos et al., 2012] and convolutional networks also re-
quire square images/patches as input due to their characteristic architecture based on
convolutions.

In order to overcome the aforementioned issue, the approach proposed by Mosta-
jabi et al. [2015] for computer vision applications was applied. For creating a feature
representation for a given region si, a square box around it called image patch I is
initially defined. The next step is to use a pre-trained convolutional network to cre-
ate feature maps in different layers. Regardless of the chosen network, a convolutional
layer with k filters produces k feature maps stacked so that there exists a k-dimensional
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feature vector associated with each point of the feature maps stack along the width
and height dimensions. The major novelty introduced by the authors is that such maps
are average pooled over the superpixel or region si, generating just one k-dimensional
feature vector to represent si.

Since the pooling step outputs a single vector for the whole superpixel, it allows
the proposed method to make use of deep features which are intrinsically rich in seman-
tic context, besides the spatial context already aggregated by the method. Therefore,
the final representation generated encodes both semantic and spatial context for each
superpixel si. However, due to the pooling process and strides larger than one that
may be used for the convolutions, the first layers usually produce feature maps of lower
resolution compared to the original image patch I. Since I and the segmentation which
delineated si remain with the same initial resolution, the mapping between each pixel
of I (and consequently the pixels within si) and each point of the stack of feature
maps output by each layer is lost as I is forwarded across the network. Thus, bilinear
interpolation is necessary to rescale the feature maps and allow for feature extraction
from the original patch I, as shown in Fig. 3.3.

The proposed approach was validated using the AlexNet [Krizhevsky et al., 2012b]
convolutional network. Fig. 3.4 illustrates the proposed strategy for deep contextual
feature extraction using AlexNet. The first level φ1(si) is responsible for encoding
the features of the superpixel si itself. These features are extracted from the first
convolutional layer of the ConvNet and are mainly responsible for capturing color,
texture, patterns and other properties from a small set of pixels, which may represent
parts of roofs, streets, cars, and small objects. The second level φ5(sb) uses a larger
context that should yield more information about the region sb around the superpixel,
giving cues about its neighborhood and helping in its classification. Intuitively, the
features computed at this level (which are not available in the previous ones) tend to
be more complex and give more information since they may represent whole buildings,
streets, cars as well as interactions among them. The final level of context φfc2(I)

represents the entire input image patch I. These features encode an even larger area
that represents the whole scene of the input image patch I, including relationships
between buildings, cars, streets, etc. Features from this layer are useful for global
support of local labeling decisions, e.g., lots of green in an image supports labeling a
forest or a park. This layer then helps to determine the presence of categories in the
scene, as it imposes a constraint in the label space by eliminating classes which have no
elements within the image patch I. In the proposed method by Santana et al. [2017],
features are extracted from a final layer (the last fully connected one). The last level of
context φfc2(I) is comprised of only features values and not feature maps. At the end
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Figure 3.3. Example of the approach proposed by Mostajabi et al. [2015] to
extract deep features from the superpixel si. It consists in keeping a mapping
between each pixel inside si and the corresponding points of the feature maps as
the image I is forwarded across the network. So it is possible to generate just one
k -dimensional feature vector after each convolutional layer by average pooling the
k feature maps over si. When the resolution of the feature maps is reduced by
the stride in pooling and convolutional layers, an upsampling is employed in order
to restore their original size and consequently keep the mapping [Santana et al.,
2017].
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Figure 3.4. The proposed approach for deep contextual feature extraction with
AlexNet. Given a superpixel si, an image patch I is created centering the super-
pixel and used as input for the AlexNet. The features are computed considering
three levels of context (or three layers): φ1(si), φ5(sb) and φfc2(I). Adapted from
[Santana et al., 2017].

of the process, the extracted feature vectors φ1(si), φ5(sb) and φfc2(I) are concatenated
for the final representation of the superpixel si.

3.4 Pooling strategies

Deep CNNs are composed of several layers of processing — each containing linear as
well as non-linear operators — which are jointly learnt in an end-to-end way to solve
specific tasks [Farabet et al., 2013].

They are commonly made up of convolutional, normalization, pooling, and fully
connected layers. The convolutional layer is the main building block of the CNN, and
its parameters consist of a set of learnable filters.

The pooling layer takes small rectangular blocks from the convolutional layer and
subsamples them to produce a single output from each block. The literature conveys
several ways to perform pooling, such as taking the average, the maximum, or a learned
linear combination of the values in the block. This layer allows control of over-fitting
and reduces the number of parameters and computation in the network [Ammour et al.,
2017].

Usually average or max pooling are employed in this layer, but they both have
some drawbacks. As max pooling only considers the maximum element in the pooling
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Figure 3.5. Toy example illustrating the drawbacks of max pooling and average
pooling [Yu et al., 2014].

region, if most of the elements are of high magnitudes, the distinguishing feature van-
ishes after max pooling. Average pooling on the other hand, calculates the mean of all
the elements within the pooling region taking all low magnitudes into consideration.
This causes a reduction in the contrast of the new feature map as show in Fig. 3.5,
with a possible worst case scenario happening when many zero elements are present in
which the characteristic of the feature map will be largely reduced [Yu et al., 2014]. We
investigated the effect of using more than one of such pooling methods when extract-
ing features through CNNs, concatenating the average value, max value and standard
deviation from the values contained in the superpixel taken into account in the method
described in the previous subsection.





Chapter 4

Experimental Analysis

The first section of this chapter brings a description of the setup of the tested scenario,
starting with the datasets and the classifiers employed in the experiments performed,
along with the metrics used to analyze the results obtained. The second and third
sections display these results and discuss them.

The first results regard the use of different pooling strategies when applying the
method to its original scenario of semantic segmentation. The method is then assessed
on the task of object detection in two remote sensing images datasets. One of the
datasets used was custom built and will be publicly released as of the time when this
research will be published.

4.1 Setup

4.1.1 Datasets

4.1.1.1 grss_dfc_2014

This dataset is comprised of HSI data covering an urban area near Thetford Mines
in Québec, Canada, and it was used in the 2014 IEEE GRSS Data Fusion Contest.
It was acquired on May 21st, 2013 by an airborne long-wave infrared hyperspectral
imager with 84 channels ranging between 7.8 to 11.5 m wavelengths. It consists of
two different sets of imagery data: 1) a long-wave infrared (LWIR, thermal infrared)
hyperspectral image composed of 84 channels with nearly 1 m spatial resolution; and
2) a Very High Resolution (VHR) color image with 3769 × 4386 pixels in the visible
spectrum, composed of many RGB sub-images with spatial resolution of 20 cm and
associated with distinct flight-lines [Liao et al., 2015]. Both sets were radiometrically

27
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and geometrically corrected posteriorly. Fig. 4.1 shows samples from the described
dataset.

(a) Training subset (b) Training ground truth

(c) Test subset (d) Test ground truth

Figure 4.1. Images from grss_dfc_2014 used in the experiments.

4.1.1.2 ISPRS Potsdam

Two datasets with focus on trees and cars detection were created based on image blocks
cropped from the original large-scale aerial images of the ISPRS Potsdam dataset from
the 2D Semantic Labeling competition with the aim of assessing the feasibility of the
proposed method for object detection.

The ISPRS Potsdam dataset consists of 38 VHR true orthophoto (TOP) image
patches of 6000×6000 pixels and corresponding digital surface models (DSMs) obtained
through dense image matching. Both types of data were acquired using a ground
sampling distance of 5 cm over Potsdam, Germany by BSF Swissphoto, that made the
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Figure 4.2. Samples from the dataset created for the task of cars detection. Top
row: positive samples. Bottom row: negative samples.

Figure 4.3. Samples from the dataset created for the task of trees detection.
Top row: positive samples. Bottom row: negative samples.

data available for the Semantic Labeling Contest of the ISPRS. Although DSMs may
be useful to improve classification results, only RGB images were used in this work.

Patches with size 227 × 227 of positive and negative samples were extracted from
all the images in the original ISPRS Potsdam dataset. The tree detection dataset cre-
ated contains 5818 positive and 5818 negative samples, while the cars dataset contains
5693 positive samples and 5697 negative samples. Fig. 4.2 depict samples of patches
extracted for the creation of the cars detection dataset, showing positive and negative
samples; while Fig. 4.3 shows samples for the tree detection scenario.
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4.1.1.3 Munich Vehicle Dataset

After promising preliminary results (that are described in Subsection 4.2.1) the pro-
posed method is further evaluated on a publicly available vehicle dataset collected over
the city of Munich, Germany. It is comprised of 20 aerial images captured from an
airplane by a Canon Eos 1Ds Mark III camera with a resolution of 5616 x 3744 pixels,
50 mm focal length and stored in JPEG format [Liu and Mattyus, 2015]. The images
were taken from a height of 1000 m and the ground sampling distance is of approx-
imately 13 cm [Leitloff et al., 2014]. The first ten images compose a training subset
while the test subset is composed of the remaining ten images. Fig. 4.4 shows samples
from the described dataset.

(a) Image from the training subset (b) Image from the test subset

(c) Zoom-in in showing labeled samples (d) Zoom-in in showing labeled samples

Figure 4.4. Images from the Munich Vehicle Dataset.

4.1.2 Classifiers and Training Protocol

SVMs, KNNs, decision trees and ensembles [Alpaydin, 2009] were employed to perform
the tests reported in the next chapter. Table 4.1, Table 4.2, Table 4.3 and Table 4.4
detail the set of classifiers used and their respective parameters.
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Tree type Maximum number Split criterion Surrogate decision
of splits splits

Coarse Tree 4 Gini’s diversity index Off
Medium Tree 20 Gini’s diversity index Off
Fine Tree 100 Gini’s diversity index Off

Table 4.1. Configurations of decision trees used as classifiers.

SVM Kernel Box constraint Kernel scale Multiclass Standardize
level mode method data

Linear 1 Auto One-vs-One Yes
Quadratic 1 Auto One-vs-One Yes
Cubic 1 Auto One-vs-One Yes

Fine Gaussian 1 Manual (0.5) One-vs-One Yes
Medium Gaussian 1 Manual (2) One-vs-One Yes
Coarse Gaussian 1 Manual (8) One-vs-One Yes

Table 4.2. Configurations of SVMs used as classifiers.

KNN type Number of Distance Distance Standardize
neighbors metric weight data

Fine KNN 1 Euclidean Equal Yes
Medium KNN 10 Euclidean Equal Yes
Coarse KNN 100 Euclidean Equal Yes
Cosine KNN 10 Cosine Equal Yes
Cubic KNN 10 Minkowski Equal Yes

Weighted KNN 10 Euclidean Squared inverse Yes

Table 4.3. Configurations of KNNs used as classifiers.

Type Ensemble Learner Maximum # # of Learning
method type of splits learners rate

Boosted Trees Adaboost Decision 20 30 0.1
tree

Bagged Trees Bag Decision 149 30 0.1
tree

Subspace Subspace Discriminant - 30 0.1
Discriminant
Subspace KNN Subspace Nearest - 30 0.1

neighbor
RUSBoosted RUSBoost Decision 20 30 0.1

Trees tree

Table 4.4. Configurations of Ensembles used as classifiers.
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Five-fold cross validation was employed for the datasets that do not contain a test
subset. The average accuracy is calculated and the confidence intervals are calculated
using the Student’s t-distribution with 4 d.f. and 95% of confidence.

4.1.3 Metrics

For the validation of the evaluated methods, the following metrics [Michalski et al.,
2013] shall be used:

1. Recall : number of retrieved relevant items divided by the total number of relevant
items;

2. Precision: number of retrieved and relevant items divided by the total number
of retrieved items;

3. F-Measure: a measure of the accuracy of a test. This metric takes into account
both precision and recall in order to compute a score p, that is the number of
correct positive results divided by the number of all positive results; and r, the
number of correct positive results divided by the number of positive results that
should have been returned. It may be interpreted as a weighted average of the
precision and recall, where an F-Measure reaches its best value at 1 and worst at
0.

4.2 Evaluation in semantic segmentation task

4.2.1 Results on grss_dfc_2014 Dataset

In this section, the experiments carried out and the results achieved on the
grss_dfc_2014 dataset are presented. A brief discussion follows the description of
the experiments.

The first experiment performed is an analysis of the contribution of the convo-
lutional network layers to the final result. To assess the importance of features from
each layer, Santana et al. [2017] trained classifiers using all possible concatenations of
the three layers of the network used in the proposed method (first, fifth and last fully
connected), which were also used by Mostajabi et al. [2015].

Table 4.5 shows the results of the concatenations that yielded the best results
using the XGBoost classifier while Table 4.6 shows the accuracy obtained with the
modifications proposed in this work, that is, employing different pooling strategies
besides the usual average pooling.
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Layers Method Accuracy

Conv1 [Santana et al., 2017] 93.84%
[Mostajabi et al., 2015] 93.84%

Conv 5 [Santana et al., 2017] 91.17%
[Mostajabi et al., 2015] 93.52%

fc8 [Santana et al., 2017] 88.76%
[Mostajabi et al., 2015] 88.76%

Conv1 & 5 [Santana et al., 2017] 94.77%
[Mostajabi et al., 2015] 95.51%

Conv5 and fc8 [Santana et al., 2017] 90.45%
[Mostajabi et al., 2015] 94.05%

Conv1, 5 and fc8 [Santana et al., 2017] 95.63%
[Mostajabi et al., 2015] 95.99%

Table 4.5. Layer importance analysis in grss_dfc_2014 dataset using the XG-
Boost classifier performed in [Santana et al., 2017].

Layers Original Modified
Accuracy Accuracy

Conv1 93.84% [Santana et al., 2017] Max pooling 95.68%
93.84% [Mostajabi et al., 2015] Standard deviation 95.78%

Conv 1 & 5 94.77% [Santana et al., 2017] Max pooling 95.72%
95.51% [Mostajabi et al., 2015] Standard deviation 96.42%

Conv 1,5 and fc8 95.63% [Santana et al., 2017] Max pooling 96.15%
95.99% [Mostajabi et al., 2015] Standard deviation 96.22%

Table 4.6. Layer importance analysis in grss_dfc_2014 dataset by using differ-
ent pooling strategies.

The observation made by Santana et al. [2017] that the composition of the first
and last layers presents the highest accuracy levels holds, followed by Conv1 and Conv5
and then by Conv5 and fc8. Such behavior is expected, once Conv1 and fc8 are
complementary in terms of abstraction level (low and high, respectively) and contextual
area (local and global, respectively).

Employing max pooling and standard deviation as pooling methods yielded
achievements in the accuracy of all tested scenarios, which shows that the three pool-
ing strategies combined might complement each other’s drawbacks as described in
Section 3.4.
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(a) Groundtruth (b) Map generated by the proposed method

Figure 4.5. Groundtruth of the test image along with the map generated by the
proposed method with XGBoost classifier using layers Conv1, Conv5 and fc8.

4.3 Evaluation in detection task

4.3.1 Results on Potsdam dataset

Table 4.7 and Table 4.8 detail the average accuracy levels obtained in the tests per-
formed on the datasets created for cars and trees detection from the Potsdam dataset.
Different combinations of convolutional layers employed were tested, as well as three
pooling methods: average pooling, max pooling and standard deviation. Since this
dataset was specifically built with image patches that are candidate regions for object
detection with the exact size used by the proposed method, the first segmentation of
the method is not performed, therefore the aforementioned tables only show the num-
ber of superpixels evaluated for the second segmentation. Due to space constraints,
only the results for the best classifiers are displayed.

The concatenation of the activations from different pooling methods lead to accu-
racy levels of more than 99%. Concatenating more layers slowly improved this accuracy
towards the maximum levels attained. As such improvement is not so substantial after
a certain threshold, it may be the case that some layers might be ignored for speeding
up computation time if the application scenario has time restrictions.

The results concerning tree detection were slightly inferior to those of car de-
tection and that may be mainly due to the fact that the images of this dataset were
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Classifier/ # Superpixels Fine Logistic Quad Sub
Layers 2nd segmentation KNN Regression SVM Disc
fc8 - 97.85% 97.36% 97.67% 97.68%

avg conv1 6 71.73% 83.64% 82.97% 71.65%
12 75.62% 83.61% 82.98% 75.51%
18 94.44% 95.49% 95.25% 94.45%
24 81.97% 92.39% 92.10% 82.42%

avg conv5 6 97.62% 98.42% 98.49% 97.00%
12 95.69% 97.50% 97.69% 94.88%
18 96.16% 97.67% 97.57% 95.69%
24 97.83% 98.68% 98.56% 97.60%

avg max std 6 95.54% 97.40% 97.69% 95.77%
conv 1 12 93.71% 94.79% 95.26% 93.55%

18 97.42% 98.18% 98.03% 97.56%
24 96.08% 97.28% 97.32% 95.95%

avg max std 6 99.19% 99.16% 99.19% 99.03%
conv 5 12 97.47% 98.18% 98.06% 97.54%

18 97.42% 98.18% 98.03% 97.56%
24 98.68% 99.13% 99.06% 98.68%

avg max 6 99.40% 98.86% 99.20% 99.31%
conv1 fc8 12 98.44% 98.28% 98.54% 98.38%

18 98.49% 98.43% 98.61% 98.54%
24 98.93% 98.96% 99.04% 98.93%

avg max std 6 99.46% 99.29% 99.49% 99.53%
conv5 fc8 12 98.49% 98.41% 98.40% 98.44%

18 98.42% 98.59% 98.72% 98.52%
24 99.13% 99.17% 99.21% 99.14%

avg max 6 99.50% 99.22% 99.47% 99.58%
conv1,5 fc8 12 98.33% 98.47% 98.61% 98.61%

18 98.65% 98.68% 98.75% 98.73%
24 99.11% 99.27% 99.29% 99.08%

avg max std 6 99.49% 99.30% 99.54% 99.59%
conv1,5 fc8 12 98.61% 98.50% 98.65% 98.68%

18 98.64% 98.71% 98.82% 98.85%
24 99.24% 99.30% 99.25% 99.25%

Table 4.7. Average accuracy obtained for cars detection on 4 different classifiers
with the layers of AlexNet used as features and the pooling methods employed.

obtained in the fall season over a city located in Germany, so most trees had lost all
its leaves at the time. That makes their detection harder, as the contrast between the
leafless branches and the ground covered by dried leaves decreases, making it hard even
for humans to discern whether an object is a leafless tree or a bush.
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Classifier/ # Superpixels Coarse Logistic Quad
Layers 2nd segmentation Tree Regression SVM
fc8 - 95.34% 95.18% 95.17%

avg conv1 6 90.04% 92.16% 91.60%
12 87.63% 89.22% 88.82%
18 88.46% 89.30% 89.04%
24 89.46% 89.95% 90.12%

avg conv 5 6 97.98% 98.04% 98.02%
12 94.67% 94.60% 94.65%
18 94.59% 94.98% 95.05%
24 96.54% 96.18% 96.22%

avg max std 6 94.67% 95.27% 95.56%
conv 1 12 91.17% 91.49% 91.83%

18 91.87% 91.92% 91.99%
24 95.05% 94.92% 95.47%

avg max std 6 98.81% 98.71% 98.81%
conv 5 12 95.34% 95.30% 95.26%

18 95.15% 95.21% 94.87%
24 97.74% 97.46% 97.70%

avg max 6 98.26% 98.11% 98.43%
conv1 fc8 12 96.12% 95.92% 96.14%

18 96.41% 96.30% 96.33%
24 97.42% 97.01% 97.34%

avg max std 6 99.02% 98.85% 99.09%
conv5 fc8 12 96.27% 96.10% 96.33%

18 96.51% 96.19% 96.34%
24 98.30% 98.05% 98.25%

avg max 6 98.97% 98.81% 99.01%
conv1,5 fc8 12 96.38% 96.18% 96.32%

18 96.54% 96.53% 96.4%
24 98.38% 98.26% 98.44%

avg max std 6 99.07% 98.89% 99.03%
conv1,5 fc8 12 96.52% 96.36% 96.64%

18 96.59% 96.45% 96.45%
24 98.39% 98.14% 98.34%

Table 4.8. Average accuracy obtained for trees detection on 3 different classifiers
with the layers of AlexNet used as features and the pooling methods employed.

4.3.2 Results on Munich Vehicle Dataset

The proposed method was further tested on the publicly available Munich dataset
[Leitloff et al., 2014]. We chose to use the concatenation of the three pooling methods
and all three layers employed in the preliminary experiments whose results were de-
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scribed above. We also empirically varied two parameters: the number of superpixels
employed in the first and second segmentations performed in the proposed method.
The results obtained are detailed in Table 4.9 and are comparable to results reported
in the literature which are shown in Table 4.10.

#Superpixels #Superpixels TP FP Recall Precision F-measure
2nd segmentation 1st segmentation

36SP 20K 4064 5241 68.97% 43.68% 0.53
30K 4256 8620 72.23% 33.05% 0.43
40K 4445 12632 75.44% 26.03% 0.38
50K 4508 16561 76.51% 21.40% 0.33
60K 4602 20249 78.11% 18.52% 0.29
70K 4657 23942 79.04% 16.28% 0.27
80K 4722 27911 80.14% 14.47% 0.24

48SP 20K 4392 4136 74.54% 51.50% 0.60
30K 4632 7386 78.62% 38.54% 0.51
40K 4822 11132 81.84% 30.22% 0.44
50K 4949 14713 84.00% 25.17% 0.38
60K 5003 18300 84.91% 21.47% 0.34
70K 5061 21503 85.90% 19.05% 0.31
80K 5098 25254 86.52% 16.80% 0.28

60SP 20K 4419 3949 75.00% 52.81% 0.61
30K 4839 8315 82.13% 36.79% 0.50
40K 4985 10977 84.61% 31.23% 0.45
50K 5051 14522 85.73% 25.81% 0.39
60K 5152 22397 87.44% 18.70% 0.30
70K 5061 21503 85.90% 19.05% 0.31
80K 5196 24940 88.19% 17.24% 0.28

Table 4.9. Results obtained on the Munich Vehicle Dataset.

Method TP FP Recall Precision F-measure

[Liu and Mattyus, 2015] 4085 619 69.63% 86.8% 0.77
ACF detector 3078 4062 52.24% 43.31% 0.47

ACF+fast R-CNN 2583 1540 43.84% 62.65% 0.52
SS+fast R-CNN 3287 15012 55.79% 17.96% 0.27
Faster R-CNN 4050 503 68.74% 88.95% 0.78
AVPN_basic 4454 729 75.59% 85.93% 0.80

AVPN_basic+fast R-CNN 4403 384 74.73% 91.98% 0.82
AVPN_large 4538 630 77.02% 87.81% 0.82

Table 4.10. Performance comparison between different methods as reported in
[Deng et al., 2017].
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The effects of the number of samples used to train the classifiers is depicted in
Fig. 4.6, which shows the maps generated by a Cubic SVM for the test image 0110
from the Munich Vehicle dataset (the original image and its groundtruth are shown
in Fig. 4.8 and Fig. 4.7). The number of superpixels used for the two segmentations
performed in the proposed method were empirically tested. The best results were
achieved when the range of the second segmentation varied from 36 to 60 superpixels.
We believe that this parameter is directly related to the resolution and focal length of
the pictures analyzed, as the size of the car in the patch extracted depends on such
settings, for a small number of superpixels will fail to correctly delineate a car from
the background, while too many superpixels will end up dividing a car in more than
one part.

The number of superpixels of the first segmentation varied in our experiments
from 20 K to 80 K. This parameter is also related to the image resolution as it will
determine the number of individual units of the image to be analyzed. From the
obtained results we could notice that the greater the number of superpixels used in the
first segmentation, the greater the number of true positives obtained by the proposed
method. However, the increase in true positives comes along with a great spike in the
number of false positives, which leads to a decrease in the precision levels and also the
F-measure value.

The visual effects of varying these parameters can be visualized in Fig. 4.9,
Fig. 4.10 and Fig. 4.11, which depict the resulting maps generated by the proposed
method for one of the images from the test portion of the Munich Vehicle Dataset. De-
spite the decrease in the precision and F-measure values as the number of superpixels
increases, the resulting maps look sharper as this parameter increases, with more well
delineated units and less merged blobs.

The maps generated with 20 K and 80 K superpixels for all 10 images of the test
subset are shown in the next ten Figures along with the respective groundtruths.
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(a) 5K samples

(b) 10K samples

(c) 30K samples

(d) 50K samples

Figure 4.6. Maps generated for image 0110 from the test subset from the Munich
Vechicle Detection dataset, with the number of samples used for training the
classifier ranging from 5K to 50K.
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Figure 4.7. Image 0110 from the test subset of the Munich Vehicle Detection
dataset.
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Figure 4.8. Groundtruth map of image 0110 from the test subset of the Munich
Vehicle Detection dataset.
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(a) 36 SP - 20K (b) 36 SP - 30 K

(c) 48 SP - 20K (d) 48 SP - 30 K

(e) 60 SP - 20K (f) 60 SP - 30 K

Figure 4.9. Map generated by the proposed method for image 0110 from the
test subset from the Munich Vechicle Detection dataset, with the number of su-
perpixels used for segmenting the entire image ranging from 20K to 30K and each
selected frame segmented in 36, 48 and 60 superpixels.
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(a) 36 SP - 40K (b) 36 SP - 50 K

(c) 48 SP - 40K (d) 48 SP - 50 K

(e) 60 SP - 40K (f) 60 SP - 50 K

Figure 4.10. Map generated by the proposed method for image 0110 from
the test subset from the Munich Vechicle Detection dataset, with the number of
superpixels used for segmenting the entire image ranging from 40K to 50K and
each selected frame segmented in 36, 48 and 60 superpixels.
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(a) 36 SP - 60K (b) 36 SP - 70 K

(c) 48 SP - 60K (d) 48 SP - 70 K

(e) 60 SP - 60K (f) 60 SP - 70 K

Figure 4.11. Map generated by the proposed method for image 0110 from
the test subset from the Munich Vechicle Detection dataset, with the number of
superpixels used for segmenting the entire image ranging from 60K to 70K and
each selected frame segmented in 36, 48 and 60 superpixels.
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(a)

(b)

(c)

Figure 4.12. Visual comparison of the results obtained for image 0110 from the
test subset of the Munich Vehicle Detection dataset: (a) groundtruth, (b) map
generated with the second segmentation parameter set as 20K and the first as 60,
(c) map generated with the second segmentation parameter set as 80K and the
first as 60.
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(a)

(b)

(c)

Figure 4.13. Visual comparison of the results obtained for image 0120 from the
test subset of the Munich Vehicle Detection dataset: (a) groundtruth, (b) map
generated with the second segmentation parameter set as 20K and the first as 60,
(c) map generated with the second segmentation parameter set as 80K and the
first as 60.
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(a)

(b)

(c)

Figure 4.14. Visual comparison of the results obtained for image 0120 from the
test subset of the Munich Vehicle Detection dataset: (a) groundtruth, (b) map
generated with the second segmentation parameter set as 20K and the first as 60,
(c) map generated with the second segmentation parameter set as 80K and the
first as 60.
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(a)

(b)

(c)

Figure 4.15. Visual comparison of the results obtained for image 0140 from the
test subset of the Munich Vehicle Detection dataset: (a) groundtruth, (b) map
generated with the second segmentation parameter set as 20K and the first as 60,
(c) map generated with the second segmentation parameter set as 80K and the
first as 60.
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(a)

(b)

(c)

Figure 4.16. Visual comparison of the results obtained for image 0150 from the
test subset of the Munich Vehicle Detection dataset: (a) groundtruth, (b) map
generated with the second segmentation parameter set as 20K and the first as 60,
(c) map generated with the second segmentation parameter set as 80K and the
first as 60.
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(a)

(b)

(c)

Figure 4.17. Visual comparison of the results obtained for image 0160 from the
test subset of the Munich Vehicle Detection dataset: (a) groundtruth, (b) map
generated with the second segmentation parameter set as 20K and the first as 60,
(c) map generated with the second segmentation parameter set as 80K and the
first as 60.
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(a)

(b)

(c)

Figure 4.18. Visual comparison of the results obtained for image 0250 from the
test subset of the Munich Vehicle Detection dataset: (a) groundtruth, (b) map
generated with the second segmentation parameter set as 20K and the first as 60,
(c) map generated with the second segmentation parameter set as 80K and the
first as 60.
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(a)

(b)

(c)

Figure 4.19. Visual comparison of the results obtained for image 0265 from the
test subset of the Munich Vehicle Detection dataset: (a) groundtruth, (b) map
generated with the second segmentation parameter set as 20K and the first as 60,
(c) map generated with the second segmentation parameter set as 80K and the
first as 60.
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(a)

(b)

(c)

Figure 4.20. Visual comparison of the results obtained for image 0278 from the
test subset of the Munich Vehicle Detection dataset: (a) groundtruth, (b) map
generated with the second segmentation parameter set as 20K and the first as 60,
(c) map generated with the second segmentation parameter set as 80K and the
first as 60.
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(a)

(b)

(c)

Figure 4.21. Visual comparison of the results obtained for image 0120 from the
test subset of the Munich Vehicle Detection dataset: (a) groundtruth, (b) map
generated with the second segmentation parameter set as 20K and the first as 60,
(c) map generated with the second segmentation parameter set as 80K and the
first as 60.
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Conclusion

This work explored the effects of the use of contextual information provided by convo-
lutional neural networks to the task of object detection in remote sensing images. The
activation values of different layers of the convolutional networks were used as features,
with different pooling methods and the concatenation of different layers being tested.
The use of superpixel segmentation instead of the usually employed pixel-wise approach
was employed. The proposed modifications were tested on the task of thematic map
generation (for which the original method was initially used) and has provided slight
improvements in the accuracy levels obtained, showing that the pooling method em-
ployed may lead to better results. The suitability of the method to the task of object
detection was assessed on two custom built databases created through the extraction
of patches from the Potsdam dataset, one containing positive and negative samples
of trees while the second was built for a car detection scenario. The results obtained
showed the success of the proposed method to such task, with accuracy levels above
99% being yielded. In order to obtain an assessment of a less controled environment,
the publicly available Munich Vehicle Dataset was also used. The effects of the vari-
ation of the number of superpixels used to segment the images and the individual
patches processed was analyzed. As more superpixels were used, the number of true
positives obtained increased, but at the same time the number of false positives also
grew. Despite the bigger precision levels obtained with smaller number of superpix-
els, a visual analysis of the results shows that as more superpixels are employed, the
sharper and more well delineated the cars detected are presented in the resulting maps.
In future works we intend to explore the use of different convolutional networks and
also analyze the performance of the method for the detection of multiple classes.
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