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Resumo

Esta tese tem como objetivo o uso de diversas fontes de dados para promover a
melhora da mobilidade atual nas cidades. No entanto, um desafio substancial surge
quando combinamos várias fontes de dados, aumentando os problemas de cober-
tura espaço-temporal que afetam o desenvolvimento de soluções para Sistemas
de Transporte Inteligentes – Intelligent Transportation System (ITS), especifica-
mente Mobilidade Inteligente – Smart Mobility (SM). Nesse sentido, investigamos
soluções para melhorar a qualidade dos dados do sistema de transporte, fornecendo
aplicações e serviços, permitindo que a fusão entre Dados Intra-Veiculares – Intra-
Vehicular Data (IVD) e Dados Extra-Veiculares – Extra-Vehicular Data (EVD)
melhore a qualidade do transporte e mobilidade. Projetamos uma plataforma de
fusão de dados heterogêneos para SM, com o objetivo de analisar os dados do
sistema de transporte, introduzido como Espaço de Dados Veiculares – Vehicu-
lar Data Space (VDS), considerando seus aspectos espaço-temporais e identificar
metodos e técnicas para a fusão desses dados. Foi criado o conceito VDS, que
mapeia os dados disponíveis e usados pela comunidade para desenvolver soluções
para ITS. Depois disso, desenvolvemos um conjunto de abordagens para fundir
vários conjuntos de dados em benefício do ITS e SM. Inicialmente, realizamos
estudos com o objetivo de fundir IVD economizando combustível, reduzindo as
emissões de gases e garantindo a segurança no compartilhamento de carros em
Redes Veiculares – Ad-hoc Networks (VANETs). Além disso, fundindo EVD de-
senvolvemos um modelo baseado em dados de mídia social, para enriquecer as
informações atuais de trânsito, oferecendo mais opções para as pessoas se lo-
comoverem na cidade. Finalmente, desenvolvemos uma abordagem para fundir
Dados Intra-Extra-Veículares – Intra-Extra-Vehicular Data (IEVD), permitindo
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melhorar a qualidade dos dados de tráfego e enriquecer a atual cobertura do da-
dos.
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Abstract

Urban mobility aspects have become a challenge with the constant growth of the
global population. As a consequence of such increase, more data has become avail-
able, which allows new information technologies to improve the mobility systems,
especially the transportation system. Thus, a possible strategy to handle these
issues is to employ an Intelligent Transportation System (ITS). However, the de-
velopment of new applications and services for the ITS environment, improving
the mobility, depending on the availability of vast amounts of data, despite its
currently slow availability. This thesis aims to explore data from a vast number of
sources from the ITS context to provide directions to improve mobility in cities.
However, a substantial challenge emerges when we combine multiple data sources,
increasing the data aspects as spatiotemporal coverage, which affects the devel-
opment of Smart Mobility (SM) solutions. In this sense, we investigate solutions
to improve the data quality of transportation systems, providing applications and
services, enabling Intra-Vehicle Data (IVD) and Extra-Vehicle Data (EVD) fusion
to enrich the raw data. We design a heterogeneous data fusion platform to SM,
aiming to fuse those data considering their aspects, highlighting the most rele-
vant methods and techniques to achieve the application goals. We introduce the
concept of Vehicular Data Space (VDS), which maps the data available and used
by the research community to design solutions for ITS. After that, we develop
a set of approaches to fuse various datasets in benefit of SM. Initially, we con-
ducted studies to fuse IVD to save fuel, reduce emissions and ensure the security
of car-sharing in Vehicular Ad-hoc Network (VANET). Moreover, using the fusion
of EVD, we developed a model, based on social media data to enrich the current
traffic information, offering more options to people to move in a city. Finally, we
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developed an approach to fuse Intra and Extra-Vehicle Data (IEVD), allowing to
enhance the road traffic data quality and enriches the current spatiotemporal data
coverage.
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Chapter 1

Introduction

Over the years, cities have required new improvements in their transportation
systems. In that way, initiatives to enhance road traffic efficiency, safety and
people’s mobility become important challenges to advance transportation systems,
paving the way to Smart Cities. Considering the need of transportation systems
data to develop smart solutions, we face the problem of poor data quality currently
available and its aspects such as imperfection, inconsistencies, spatiotemporal gaps
(incompleteness), outliers, unstructured data, non-standardized data acquisition
and others. Applications and services for transportation systems need to use a
vast range of data sources to deal with those aspects. In this thesis, we aim to
provide a set of applications and services to improve the current transportation
systems, through the use of methods and technique to apply heterogeneous data
fusion.

This chapter is organized as follows. Section 1.1 motivates the current re-
search. Section 1.2 presents the objectives of this thesis. Section 1.3 presents the
main contributions conducted in this investigation. Finally, Section 1.4 outlines
the following chapters.

1.1 Motivation

In general, medium and large cities have significant issues related to transporta-
tion and traffic because people are in constant need of quicker and safer mobility

1
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modes. The number of fatalities and injuries on the road have achieved an alarm-
ing number. Globally, 1.3 million people die every year and up to 50 million suffer
severe injuries. These facts have a direct impact on the economy of nations, lead-
ing to costs in the order of about 2% to 5% of the Gross Domestic Product (GDP)
in many countries [Bank, 2017]. It is also reported that traffic congestion results
in critical economic and environmental costs. In 2011, 498 U.S. urban areas were
evaluated regarding the impact of congestion. It was found that about USD 121
billion was wasted on fuel consumption and more than 25 billion kg of CO2 was
emitted. Those values were USD 24 billion and 4,53 billion in 1982, respectively.
In 2014, 471 U.S. urban areas were observed, and the costs related to wasted fuel
consumption due to congestion reached USD 160 billion [Schrank et al., 2012,
2015].

Over the years, governments and car manufacturers launched initiatives to
improve road traffic efficiency, safety and people’s mobility. They have been work-
ing on various aspects of Intelligent Transportation Systems (ITSs), which aim to
improve decision-making by leveraging the availability of information and com-
munication technologies to provide applications and services to boost the trans-
portation systems. Some initiatives are described in [Agency, 2017; Commission,
2017; of Transportation, 2017b; Council, 2017; of Transportation, 2017a; Board,
2017; Thyssenkrupp, 2017; ClickutilityTeam, 2017]. Mike [2013] discussed the con-
siderable growth of on-board informatics inside vehicles. Currently, each vehicle
has an average of 60-100 embedded sensors, and these numbers can go up to as
much as 200 sensors per vehicle in 2020. Moreover, according to Machina Re-
search [Machina Research and Telefonica, 2013], in 2020, about 90% of new cars
will feature an Internet-integrated, while it was about 10% in 2013.

We also have sensors on road infrastructure such as inductive loop traffic
detectors, monitoring cameras, radars, traffic lights, and weather sensors have
increased in number and quality (accuracy) in the transportation systems. Besides,
the use of media in the transportation scenario has also increased, once these
sources may report incidents, traffic conditions, number of fatalities, and road
conditions.

Based on these various data related to the transportation systems, a relevant
research challenge emerges aiming to answer how those data can be used to improve
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people’s life quality in large cities, especially regarding mobility and traffic?
In this direction, Smart Mobility (SM) plays a crucial role regarding tech-

nological solutions to answer that research question. SM aims to integrate ITS
considering people’s mobility with a focus on green initiatives (e.g., electric vehi-
cles and bikes) and reduced emissions, leading to better access to public transport
and integration of different transportation modes. However, the development of
new applications and services to ITS depends on the availability of vast amounts
of data, despite its current slow availability. In fact, many data sources become a
gold coin in the development of new solutions, tools and businesses. Nevertheless,
to study and develop solutions to SM, we first need to deeply comprehended the
data cycle from the transportation systems. In other words, solutions to improve
the current transportation systems depend on advances at each stage of the data
cycle. Figure 1.1 shows the data cycle of the transportation system and a short
description.

Figure 1.1: The data cycle on the transportation system.

The data cycle begins with Data Creation. Data can come from real sensors
responsible for measuring the environment or virtual sensors. In this stage, a
problem that arises when using real sensor data to monitor and control entities
is the data reliability, which includes availability and data quality. A solution to
monitor and improve physical sensors, or temporarily replace them, is the use of
virtual sensor. This type of sensor may combine data from other sensors, correct or
filter failures, apply adequate methods and algorithms considering a given problem
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domain, and take the resulting data to applications or input it to a new cycle. Data
Acquisition represents its availability to the community and its spatiotemporal
coverage which constitutes limitations to develop general and broad solutions.
Also, there are issues related to the data storage and the data structure, which
become relevant in an ITSs, due to the need of big data analysis. The Data
Preparation, in general, represents the most critical stage of any study in ITS,
since it is responsible for establishing the data to develop solutions in a given
scenario. The Data Processing transforms the treated data into valuable and more
informative data to be used in the next stage. Data Use is the last stage, which
provides the application to users, or outputs the data to start a new data cycle.

We identified challenges and open issues of each data stage. But also, we
noticed a lack on both the availability of data and on the data quality. Then,
we aims to answer the following question: "How to deal with the lack of both the
availability of data and data quality from the transportation scenario and propose
solutions to improve people’s life quality in large cities, especially regarding mobility
and traffic?"

Our hypothesis is that "Through the use of heterogeneous data fusion we can
improve the data quality, providing methods and applications to achieve SM". In
this sense, we focused on two main stages, which are Data Preparation and Data
Processing. These two stages may deal with solutions to improve the data quality
of transportation systems. The integration of multiple data sources becomes an
essential process to provide consistent, accurate and useful information to appli-
cations in ITS. Such a process is called Data Fusion and constitutes a challenging
task especially when considering heterogeneous data and their spatiotemporal as-
pects [Khaleghi et al., 2013b].

1.2 Objectives

The overall goal of this thesis is to provide a set of methods and applications to
achieve SM through the use of heterogeneous data fusion. Figure 1.2 depicts the
refinement of this goal by showing the design of our fusion process considering an
ITS. We consider the concept of a Vehicular Data Space (VDS) as the input data
to the whole process. The VDS covers all data related to the ITS environment.
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Based on that, all data created or acquired is used as input to feed the fusion stage
according to three types of combination. The Intra-Vehicle Data (IVD) only uses
the data provided by vehicles. The Extra-Vehicle Data (EVD) focuses on fusing
data surrounding vehicles, while the Intra and Extra-Vehicle Data (IEVD) aims
to combine both types of data. The output of these three types of data fusion
approaches are applications and services to improve current mobility, or they can
be used as input data for a new data fusion cycle.

Figure 1.2: Design of fusion on VDS.

The fusion process depends on the data availability and data preparation,
which aims to deal with data issues. Nevertheless, the most critical data issue
that may affect the development of efficient solutions for ITS is related to data
incompleteness. In other words, when combining multiple types of data, there is
an increase in the spatiotemporal coverage issues that negatively affect the devel-
opment of ITS approaches. When all data sources from the VDS, such as vehicles
and their surrounding environment, are observed at the same time and space, we
can notice that not all of them present the same spatiotemporal coverage. Thus, we
argue that new methods to fuse the VDS are required to allow the analysis of the
same event from different data perspectives. This allows us to enrich information
related to VDS.
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1.3 Contributions

This thesis investigates solutions to improve the data quality for transportation
systems, thus enabling IVD and EVD fusion to provide the conception of new
applications and services in all fields, particularly, to improve overall mobility.
Hence, we propose a heterogeneous data fusion platform for SM, aiming to analyze
each data type from the VDS, considering the data aspects and its spatiotemporal
coverage, in order to improve the current transportation system scenario.

The contributions of this thesis are the results of a literature review and a
temporal and spatial data fusion using the same or other data sources available for
VDS. In that direction, we use mathematical methods, geostatistics, and machine
learning techniques in the following contributions:

• A vast literature review to provide the concept of VDS.

• A methodology to develop applications and services for ITS, specifically SM,
based on the transportation system data cycle.

• Intra-Vehicle Data (IVD) Fusion: Techniques to perform Intra-Vehicle Data
(IVD) fusion applied to eco-driving methods to reduce fuel consumption,
emissions and vehicle maintenance. An extra-authentication factor based on
driver identification, and also a virtual gear sensor.

• Extra-Vehicle Data (EVD) Fusion: Techniques to combine the user’s view-
point and road data to enrich the current transportation system data. We
propose Road Data Enrichment (RoDE), a framework that fuses hetero-
geneous data sources to enhance ITS’ services, such as routing and event
detection.

• Intra and Extra-Vehicle Data (IEVD) Fusion: Techniques to fill the road
spatiotemporal data gaps, using vehicular trace and road data, improving
road data quality and route suggestion. We propose Traffic Data Enrichment
Sensor (TraDES), a low-cost traffic sensor for ITS based on heterogeneous
data fusion.
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1.4 Outline

In the following, we present the thesis organization and provide a brief summary
of each chapter.

Chapter 2 examines the most remarkable studies of the last five years, which
describe services and applications for Intelligent Transportation System (ITS)s,
however with a focus on the data employed by them. We introduce the concept of
Vehicular Data Space (VDS), which is then used to describe the vehicular scenario
considering the data perspective. Moreover, we outline a taxonomy, according to
the data source; and categorize the applications according to the data used.

Chapter 3 discusses the data fusion aspects of VDS. We highlight several
issues in the transportation data that must be treated before the fusion process.
Moreover, we conduct an exploratory analysis over real vehicle data to identify
data issues (e.g., imperfection, correlation, inconsistencies, among others) found
in our data set. We also point out some fundamental aspects concerning ITS,
heterogeneous data fusion, challenges and opportunities in this area.

Chapter 4 focuses on Intra-Vehicular Data Fusion and the issues related to
data heterogeneity, correlation and characterization. We also present the design of
a vehicular virtual sensor that allows the development and evaluation of eco-driving
based on a gear virtual sensor. Our methodology gives the driver recommendations
of the best gear by considering speed and torque, thus saving fuel and reducing CO2

emissions. Besides, we design the virtual sensor to identify the driver, treating it as
an extra authentication factor to local services and vehicular networks. This virtual
sensor is also used to determine a suspicious driver, promoting the discussion on
the impacts of these drivers during the data dissemination process in a vehicular
network.

Chapter 5 discusses the Extra-Vehicular Data Fusion. We propose RoDE, a
framework that fuses heterogeneous data sources to enhance ITS’ services, such as
routing and event detection. We present RoDE through two services: (i) Route
service, and (ii) Incident service. For the first one, we present the Twitter MAPS
(T-MAPS), a low-cost spatiotemporal model to improve the description of traffic
conditions through Location-Based Social Media (LBSM) data. As a case study,
we explain how T-MAPS is able to enhance routing and trajectory description
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using tweets. We compare T-MAPS routes with Google maps routes. Moreover,
we present three route description services over T-MAPS: Route Sentiment (RS),
Route Information (RI), and Area’ Tags (AT) aiming to enhance the route in-
formation. For the second service, we present the Twitter Incident (T-Incident),
a low-cost learning-based road incident detection and enrichment approach built
using heterogeneous data fusion. We use a learning-based model to identify pat-
terns on social media data which may describe a class of events, aiming to detect
its types. The methodology results to detect events achieved scores above 90%
in F1 sore, Recall and Precision metrics, thus allowing incident detection and its
description as RoDE’ services. Besides, the event description service allows us to
better understand the LBSM user’s viewpoint, regarding the transit events and
points of interest.

Chapter 6 presents the proposal of Intra-Vehicular and Extra-Vehicular data
fusion to provide novel applications and services to improve smart mobility. We
propose TraDES, a low-cost traffic sensor for ITS based on heterogeneous data
fusion. TraDES aims at fusing data from vehicular traces with road traffic data to
enrich current spatiotemporal traffic data. In that direction, we propose a robust
methodology to spatially and temporally group these different data sources, pro-
ducing a vehicular trace with its respective traffic conditions, which is then given
as input to a learning-based model based on Artificial Neural Networks (ANN).
Hence, TraDES is an enriched traffic sensor that is able to sense (detect) traffic
conditions using a scalable and low-cost approach and increase the spatiotemporal
traffic data coverage.

Chapter 7 presents the conclusions and future work of this thesis, and also
the publications obtained during the doctorate.



Chapter 2

Vehicular Data Space

Given the importance of sensors to a vehicle’s operation, new vehicular models
embed many high-quality sensors [Faezipour et al., 2012] to get more reliable and
diverse information about themselves. In that way, Advanced Driver Assistant
Systems (ADAS) offer a means to enhance, among other things, the driver’s safety
and comfort [Bengler et al., 2014]. In the last years, the development of vehicular
sensors had a significant increase. As a consequence, the number of connecting
cables inside the vehicle has also increased, resulting in an additional 50 kg to the
vehicle mass, besides the increase of the final vehicle cost, and the difficulty of
installing and maintaining all systems working properly [Qu et al., 2010]. For that
reason, an Intra-Vehicle Sensor Network (IVSN)1 may need to rely on wireless
communication for its operation. Thus, the Intra-Vehicle Wireless Sensor Network
(IVWSN) is a research topic in the field of vehicular sensor communication.

An important issue here is how to have a wireless connection among sensors
and the Engine Control Unit (ECU). This sensor network usually has some partic-
ular characteristics, such sensors are stationary and are only one hop away to the
ECU, and have no energy constraint. In spite of these characteristics, there are
some challenges related to the efficient use of wireless channels, such as latency,
reliability, security and interference issues in a dense urban scenario. In particular,
we are interested in challenges and opportunities related to the whole data space

1Also mentioned as Intra-Vehicular Communication (IVC) and Intra-Vehicular Network
(IVN)

9
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that influences or is influenced by vehicles. How those sensors communicate, wired
or wireless, to provide useful data is not the focus of our study. For more details,
see [Tonguz et al., 2006, 2007; Ahmed et al., 2007; Tsai et al., 2007; de Francisco
et al., 2009; Lu et al., 2014a; Reis et al., 2017], and [Tuohy et al., 2015] for a broad
comprehension of Intra-Vehicle Networks.

The development of new applications and services for ITS depends on the
availability of different data sources, what it is not the current case. In fact, many
data sources may play a central role in the development of new solutions, tools and
businesses. In the literature, there are some studies describing the main features
and properties of Intelligent Transportation System (ITS) applications [Qu et al.,
2010; Engelbrecht et al., 2015; Abdelhamid et al., 2015]. In this chapter, we survey
recent proposals describing services and applications for ITS, but with a focus on
the data employed by them. We introduce the concept of Vehicular Data Space
(VDS), which is then used to describe the vehicular scenario from the perspective
of data. Moreover, we outline a taxonomy and applications based on that concept,
and we end with the challenges and open issues based on the data cycle on the
VDS.

The rest of the chapter is organized as follows. In Section 2.1, we introduce
the VDS concept and discuss the methodology used to identify relevant studies
in the literature. In Section 2.2, we present an example of the VDS environment
and its respective entities and data. In Section 2.3, we present a taxonomy of the
vehicular data space from the perspective of data sources, and analyze existing
solutions. In Section 2.4, we discuss some potential applications in VDS, focusing
on the data point of view. Finally, in Section 2.5, we conclude the survey with
some possible future directions.

2.1 Vehicular Data Space

Given the importance of data to ITS, this work looks at the ITS field using the
perspective of data. For that, we categorize existing literature research according
to the data sources employed by them. The aim here is to consider different data
aspects, such as availability, spatiotemporal correlations, acquisition challenges,
frequent used data types and their applicability, and heterogeneous data fusion
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issues. Therefore, our goal is to present the vast ITS field according to the vehicular
data context.

For that, we introduce the concept of a VDS, which covers the various as-
pects regarding data to provide a descriptive view of the transportation scenario,
however, differently from the approach presented in [Qu et al., 2010]. Here, we
assume that a VDS encompasses both the data sources and the data produced by
them. Hence, we conduct a literature review focusing on the concepts of Vehicular
Data Source (VDSource), Section 2.3, and Vehicular Data (VD), Section 2.4. Be-
sides, we created the data cycle for VDS, aiming to show stages which may serve
as a guideline to propose new solutions to the ITS scenario and allow a whole
comprehension of the VDS. Figure 2.1 summarizes the subsets of VDS and the
five stages of the proposed data cycle, which span from the data creation to their
use. Each subset in the VDS can be briefly described as follows:

• Vehicular Data Source (VDSource)

– Data Creation: The process of sensing environment variables through
real or virtual sensors.

• Vehicular Data (VD)

– Data Acquisition: The process of making these data available through
device logs, storage, cloud or even APIs.

– Data Preparation: The filters or corrections applied to the data so it
can be processed.

– Data Processing : The methods and algorithms applied to the data ac-
cording to its properties and desired use.

– Data Use: The proposed use (e.g., applications) which may power other
data cycles or applications.

Based on that, the VDSource deals with the Data Creation, whereas the VD
covers the rest of the data cycle, i.e., Data Acquisition, Data Preparation, Data
Processing and Data Use, allowing the developing of services and applications for
ITSs. As mentioned, it is out of our scope to provide a deep discussion about each
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Figure 2.1: The big picture of Vehicular Data Space and its respective state of
data cycle in the VDS.

of these steps in Section 2.4 (application section), except the Data Use, which
discusses how the data may be used, disregarding its acquisition and processing.

2.2 Entities of the Vehicular Data Space

Vehicular Ad-hoc Networks (VANETs) are a derivation of Mobile Ad-hoc Networks
(MANETs), in which vehicles are equipped with computing, sensing and commu-
nication capabilities [Laberteaux and P., 2008; Hartenstein and Laberteaux, 2009;
Karagiannis et al., 2011]. Moreover, VANET possess characteristics that are spe-
cific to the vehicular environment, such as vehicles are expected to move in well-
defined patterns and concentrate in high-density urban regions, and vehicles have
a more predictable mobility model. Built on top of VANET, the Vehicular Sensor
Network (VSN) [Lee and Gerla, 2010; Jeong and Oh, 2016] is a powerful sensing
platform that provides the capability for collecting, computing and sharing sen-
sor data. A vehicle contains various types of highly reliable sensors and almost
eliminates the energy constraints of traditional MANETs, due to its rechargeable
battery. Moreover, vehicles can leverage the communication capabilities already
deployed in urban areas, such as cellular and wireless networks.

The perception of the surrounding environment is paramount for provision-
ing many services in VANET. Physical sensors play an important role in control
systems, as they provide data on operational states and malfunctions of monitored
entities. Vehicular control systems are among those that depend on sensor data to
actuate on their components to provide a safe and enjoyable driving experience.
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Traffic control systems also depend on sensor data to measure the vehicle flow,
traffic lights coordination, and delays. Weather monitoring systems rely on sen-
sors for predicting storms. Moreover, Participatory Sensor Networks (PSN) also
play a relevant role in monitoring and control systems in a wide scope. News and
Social Media can act as a virtual sensor wherever there is a lack of physical sensors.
For instance, an accident report can be filled out by Social Media users in areas
with no road sensors infrastructure. Moreover, people’s feelings who pass near an
incident cannot be perceived by physical sensors.

Many studies in VANET focus on the communication issues for ITS and
their associated challenges. For instance, assume an accident between two vehicles.
Most studies are interested in knowing how this event can be disseminated through
a road to alert other drivers and the road administrators, i.e., how to efficiently
broadcast the emergency event. On the other hand, here we focus on the data.
In other words, both vehicles are constantly producing data. Therefore, how can
such data be used to improve an accident avoidance system? Furthermore, how
can the road historical data be analyzed to reduce the risks of an accident?

We consider as a VDS all data used to provide a descriptive view of a vehic-
ular scenario, such as intra-vehicle data, traffic flow data, traffic incidents data,
infotainment and others. Notice that the data may be produced by intra-vehicle
sensors, smart devices or even social media, for instance. The first step before
proposing solutions for ITS is to understand the data and its sources, such as the
entities responsible for acquiring and, in some cases, providing data access to the
community.

We show an example of the VDS and its respective entities, which produce
data in an urban area, in Figure 2.2. Figure 2.2 shows an example of the VDS and
its respective entities, which produce data in an urban area. In the following, we
describe some of data sources shown in this figure, grouping them in Infrastructure,
Transit Authority, Vehicle, Publicity and Media. We highlight that the concept of
data in our context may be related to the raw data or also data in a given context,
i.e., a piece of information.
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Figure 2.2: Vehicular data space provided in the urban area.

2.2.1 Infrastructure

Infrastructure data address a range of sensors, such as vehicle detection loops,
called inductive loop traffic detectors, monitoring cameras, radars, traffic lights,
and weather sensors. Inductive loops are based on a wired electromagnetic com-
munication (see the black lines on the roads in Figure 2.2). They are installed on
the pavement and can detect a vehicle passing at a certain point and its speed.
Inductive loops have also been used to classify types of vehicles, based on their
signatures [Jeng and Chu, 2015].

Similarly, however, with a higher deployment cost, monitoring cameras or
radars can also be used to detect the speed of a vehicle or its type. Moreover,
cameras have also been used to detect and prevent accidents, and to broadcast
notifications to authorities. A preventive situation can be illustrated by an animal
that crosses a road, and, then, the authorities are promptly notified about it,
so they can take actions to avoid future accidents. Cameras can also record the
vehicle’s license plate when traffic rules are broken (e.g., the red car crossing a
red traffic light in Figure 2.2). The combination of inductive loops, traffic lights,
cameras and radars produces a virtual sensor that allows traffic agencies to apply
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the governing legislation and eventually issuing traffic tickets. Figure 2.3a shows
each data source just mentioned.

(a) Data provided by the inductive loop,
monitoring cameras and radar.

(b) Data provided by a weather station
in New York City [Weather, 2017].

Figure 2.3: Data provided by infrastructure.

The road infrastructure needs to work together to prevent traffic jams and
high traffic flow. For instance, a traffic light can be based on static time intervals,
or adapt its behavior according to the perceived traffic conditions. The data traffic
may be collected as a result of wired or wireless communication with other traffic
lights, inductive loops and radars. Other data provided by the infrastructure are
weather stations, which provide, in real time and for a certain area, data about
temperature, pressure, wind speed, dew point, humidity, and also prediction data
on the chances of precipitation. Figure 2.3b shows an example of a New York
weather station2.

2.2.2 Transit Authority

Government entities play an essential role in the transportation system since they
help decision makers and overall people to better understand the mobility behavior
in a city. Most countries possess agencies that provide traffic-related data, such
as statistics about traffic jams, accidents, road state, police occurrences, medi-
cal occurrences, fatalities, and injuries on the road, and mobility patterns. Such
data may be used by different stakeholders to make informed decisions. For in-
stance, in possession of data about fatalities and injuries on a specific road, drivers

2https://weather.com
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can change their actions and drive more carefully. As an example of government
data, Figure 2.4a shows the traffic alerts provided by the U.S. Department of
Transportation (DoT) in the state of California, aiming to show blocked roads,
incidents, traffic intensity and alerts to road users.

(a) Road conditions, incidents and traf-
fic level provided by the U.S. Depart-
ment of Transportation

(b) Data provided by the government
and available through a Crime Reports
platform [Merritt, 2017].

Figure 2.4: Data provided by government entities.

Figure 2.4b shows another type of data provided by Police Departments.
Using an online platform, Socrata [Merritt, 2017] makes government data available
to citizens. Crime Reports show a variety of crimes, such as disorder, vehicle thefts,
property crime, robbery, sexual offense and drugs. Such data allow users to better
understand a particular area. Notice that the data provided by these entities may
not be the raw data. Some treatment may be introduced to offer a more detailed
scenario. Despite this, we still consider them as data.

2.2.3 Vehicle

An important data source in a VANET scenario is the vehicle itself. Vehicles
have sensors to collect data about speed, acceleration, movement, luminosity, lo-
cation, the presence of people or obstacles, external and internal temperatures, and
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Table 2.1: Data from a vehicle and additional devices embedded in it.

Vehicular Sensor Data
From Additional Devices From Engine Control Unit

Time Obstacles
Detection

Video
Record

Road
Condition

Throttle
Position

Tire
Pressure

Fuel
Level Torque Engine

RPM Acceleration

Location 3-axis
Acceleration

Audio
Record

Atmospheric
Pressure

Steering
Wheel
Angle

Battery
Voltage

Intake
Air
Temp

Fuel
Flow Speed Light

GPS
Speed Altitude Ambient

Air Temp
Fuel
Consumption Gear Trip

Distance

Engine
Coolant
Temp

CO2

Air
Conditioner
Temp

current structural state, which can provide information to alert the driver about
events about the vehicle. Moreover, sensors may be used to control the operation
of vehicles. For instance, data provided by the luminosity sensors can control the
automatic functioning of the lights, turning them on during the night. Further-
more, proximity sensors can help drivers to keep a safe distance from neighboring
vehicles, avoiding collisions. These sensors play an important role in autonomous
vehicles. Table 2.1 presents some data that can be acquired directly from the ECU
of vehicles or additional devices embedded in vehicles.

Sensors embedded in a vehicle can also be used to detect many events in the
surrounding environment during the vehicle’s trajectories. Using the On-Board
Diagnostic (OBD), data collected from sensors can be used to monitor the traffic
and events around the city. For instance, the vehicle’s GPS data can support a
traffic monitoring service, alerting about traffic jams. In another scenario, combin-
ing data from both accelerometer and GPS, it is possible to monitor the presence
of holes on the roads.

2.2.4 Publicity

The VDS also contains data provided by market and entertainment companies.
These data aim to offer personalized products, services or comfort applications to
the drivers. Figure 2.2 shows a simple example of a market on the road, where a
Car Wash company tries to sell its services to vehicles that will pass in front of
its location, using a Vehicle-to-Infrastructure (V2I) infrastructure. Based on that
same idea, a car maintenance company can offer services to the driver since the
vehicle sends data about its state and eventual malfunction to the car manufac-
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turer.
A variety of applications can be developed to provide entertainment to the

passengers of a vehicle, based on information about them and their vehicles. For
instance, their smartphones carry a personal user data and applications which be-
come useful through the dashboard display and multimedia kit inside the cars.
This allows a better involvement between passengers and the environment around
them. There are private companies with initiatives, focusing on connecting cos-
tumers with their cars, growing the comfort and the client satisfaction. For in-
stance, the General Motors developed OnSart3, Audi offers Audi Connect4, Apple
developed CarPlay5, Google developed Android Auto6, and Toyota and BMW have
also an infrastructure for their users, Toyota Touch 27 and BMWConnectedDrive8,
respectively.

2.2.5 Media

The growth and popularity of the Internet implied the increase of media in re-
porting the conditions of transportation. The incidents, traffic conditions, the
number of fatalities, road conditions, the events in a given location and so on be-
come the goal of many types of media, i.e., social media, news blogs, newspapers,
map navigation and transit insights, radios, and TVs. Constituting, a relevant
way to disseminate and provide information to the better comprehension of the
transportation system. Even though the data provided by media can be subjective
and biased, those data can provide information difficult to obtain with other data
sources.

The use of social media is a novel possibility to obtain information about the
traffic and road conditions, or report events to other drives. These are particular
Location-Based Social Media (LBSM) apps, which enable mobile users to act as
mobile sensors, monitoring the environment, weather, urban mobility and traffic

3https://www.onstar.com/us/en/home.html
4https://www.audiusa.com/help/audi-connect
5https://www.apple.com/ios/carplay/
6https://www.android.com/auto/
7https://www.toyota-europe.com/world-of-toyota/articles-news-events/2016/toyota-touch-2
8http://www.bmwusa.com/standard/content/innovations/

bmwconnecteddrive/connecteddrive.aspx



2. Vehicular Data Space 19

conditions. The main feature of this data type is the real-time information of the
sensed events. Typically, users retrieve the accurate data about the traffic condi-
tions. Another important feature is its large coverage, since all users connected
to the network can access these data with no restrictions. Figure 2.5 shows ex-
amples of types of media used in the VDS in benefit of applications to the ITSs.
Figure2.5a shows textual data provided by reports of the user from the Twitter
Platform9, whereas Figure 2.5b displays visual data provided by a combination of
users’ reports of the Waze10 app, allowing other users to have a better overview of
the traffic conditions.

(a) Data provided by the LBSM Twit-
ter [Twitter, 2006], reporting the traffic
occurrence in NY City.

(b) Data provided by Waze map [Waze,
2006] in NY City.

Figure 2.5: Data provided by media.

A different way to obtain data of VDS comes from radio stations created
to disseminate information about the road state. For instance, there are radio
stations focused on broadcasting information about the road conditions like a
road blockade, accident and animals on the road. These pieces of information are
obtained from drivers’ notifications and road employee observations.

9https://twitter.com
10https://www.waze.com/
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2.3 Taxonomy of Vehicular Data Source

As suggested by previous section, we categorize the Vehicular Data Source (VD-
Source) into two main groups named Intra-Vehicular Sensors (Section 2.3.1) and
Extra-Vehicular Sensors (Section 2.3.2), as shown in Figure 2.6. Afterwards, we
discuss each leaf of the taxonomy tree and present an overview.

Figure 2.6: Taxonomy of vehicular data space based on the point of view of the
source.

2.3.1 Intra-Vehicular Sensor

Intra-Vehicular Sensor (IVS) corresponds to the subset of sensors that describe
the main interactions between a vehicle and its driver, passengers or its surround-
ing environment, from the perspective of the vehicle itself. In other words, IVS
represents all sensors embedded in a vehicle or on-board that measure the vehicle
state, the drivers’ behavior or the environment conditions in its surrounding.

IVS may collect data from the ECU, such as engine load, engine coolant tem-
perature, engine Revolutions Per Minute (RPM), vehicle speed, throttle position,
and others. Moreover, IVS may also collect data provided by devices on-board of
a vehicle. These devices are classified as Device as Vehicular Sensor (DVS). We
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further categorize these devices into Probe-Vehicle, where a set of precise sensors
are used to monitor a particular event, and Smart Device, where devices, such
as smartphones, tablets and other pieces of hardware act as data sources. In the
following, we group the proposals according to the type of IVS they employ to
collect data.

2.3.1.1 Engine Control Unit

Given the importance of sensors to a vehicle’s operation, new models embed many
high-quality sensors to get more reliable and diverse information about themselves.
All data produced by sensors in a vehicle are delivered to its ECU through an inter-
nal network, named Controlled Area Network (CAN), which is accessible through
the vehicle’s OBD port. A useful analogy is to suppose that the OBD is the lan-
guage that we use to speak about a vehicle’s state, as informed by the ECU, using
a communication device (CAN).

The OBD system was first introduced to regulate emissions. However, it is
now used for a variety of applications. There are different signaling protocols to
transmit internal sensor data to external devices through a universal port. Such a
universal port is present in all cars produced since 1996 in the U.S. and Europe.
There are Parameter IDs (PIDs) to access sensor information using the OBD,
which identify individual sensors. Some PIDs are defined by regulatory entities
and are publicly accessible. However, manufacturers may include other sensors’
data under specific and undisclosed PIDs.

The 52 North Initiative for Geospatial Open Source Software [Bröring et al.,
2015] proposed a platform named EnviroCar for collecting geographic data and
vehicles’ sensors. The EnviroCar is an open platform for Citizen Science projects,
which aims to provide sustainable mobility, traffic planning and share the findings
from the industry when collecting and analyzing car data. Using an OBD adapter
into a car, they collected a variety of sensor data and uploaded it to the Web.
The system consists of the EnviroCar app and the EnviroCar server. Bröring
et al. [2015] described the spatiotemporal RESTful Web Service interface and
the designed data model. Since 2015, there are over 500,000 measurement data
points collected and these numbers are continuously growing. Reininger et al.
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[2015] described a prototype to provide vehicular data access through a website.
Using an OBD port and a smartphone, they provided data, such as speed, RPM,
fuel consumption, coordinates, and altitude, for later post-processing and analysis.
They also described a sandboxing mechanism that prevents malicious attacks from
other programs on the smartphone.

Ly et al. [2013] showed the potential of using inertial sensors to distinguish
drivers. They concluded that the acceleration feature does not play a significant
role in such process, contrarily to the braking and turning features. As an ex-
perimental test-bed, they employed a LISA-X (probe-vehicle) to acquire all their
data. This experimental vehicle was outfitted with a variety of sensors and vision
system. They used signals from a CAN, such as an engine speed, brake pressure,
acceleration, pedal pressure, vehicle speed and angular rotation to recognize the
vehicle maneuvers represented by three types of events: braking, acceleration, and
turning. D’Agostino et al. [2015] proposed a classification method for identifying
driving events using short-scale driving patterns. For that, they relied on data
provided by CAN and GPS.

Carmona et al. [2015] proposed a novel tool to analyze the driver’s behavior
and identify aggressive behavior in real time. For that, they relied on a variety
of data, such as brake usage frequency, throttle usage, engine RPM, speed, and
steering angle. Such data were retrieved using a Raspberry Pi device connected
to the CAN through an OBD port. Kumtepe et al. [2016] developed a solution
to detect the driver’s aggressiveness in a vehicle using visual information and in-
vehicle sensor data acquired from the CAN, such as vehicle speed and engine
rotation (RPM). They could detect aggressive driving behavior with a success
rate of over 93%.

Johnson and Trivedi [2011] showed that sensors available on smartphones
can detect movement with a similar quality to a vehicle CAN bus, allowing the
recognition and recording of driver’s actions. However, Paefgen et al. [2012]
showed that such quality depends on the smartphone positions and the type of
event being identified. AbuAli [2015] collected data from vehicular sensors using
an OBD port to detect the driver’s behavior, road artifacts and accidents. To
address these issues, it was used the vehicle speed, throttle position, RPM and
coordinates to track the vehicle’s location. That work showed that the proposed
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system can detect road artifacts with a success rate of about 84%.
Zhang et al. [2016] developed a driver’s identification model using sensors

available both on mobile phones and vehicles, in which data was collected through
an OBD port. They evaluated three vehicles in two different environments, a
controlled and a naturalistic. Considering only the vehicular sensors, such as
acceleration pedal position D, throttle position manifold, absolute throttle position
B, relative throttle position, acceleration pedal position E, engine RPM and torque,
the classification model obtained a 30.36% accuracy in the controlled environment
with 14 drivers whereas in the naturalistic environment with two drivers per vehicle
it obtained an 85.83% accuracy. Satzoda and Trivedi [2015] proposed techniques
to extract semantic information from raw data provided by vehicles in order to
minimize the effort needed for data reduction in Naturalistic Data Studies (NDS).
They applied fusion techniques to data from a forward-looking camera, vehicle’s
speed from a CAN bus, and Inertial Measurement Unit (IMU) and GPS as well.
As result, they extracted a set of 23 pieces of semantic information about the
location and position of the vehicle on the lane, its speed, the traffic density and
the road curvature.

Corcoba Magaña and Muñoz Organero [2016] proposed a solution to reduce
the impact of traffic events on fuel consumption. For that, they first developed
a system to detect traffic incidents based on the rolling resistance coefficient, the
road slope angle and the vehicles speeds. Next, they found an optimal decelera-
tion by anticipating traffic incidents, improving fuel consumption by up to 13.47%.
Through an OBD port, they obtained the vehicle speed, acceleration, engine speed
and the fuel consumption. Meseguer et al. [2013] developed a smartphone app aim-
ing to characterize the road type as well as the aggressiveness of each driver. For
this purpose, they relied on data, such as speed, acceleration, and RPM acquired
from the CAN. As result, they achieved an accuracy of 98% when attempting to
characterize road types and 77% when characterizing the driving style. Similarly,
Hong et al. [2014] developed a platform to model aggressive driving styles based
on data from smart devices and ECU. From a smartphone, they used GPS loca-
tion and 3-axis acceleration. From the IMU, they employed the number of turns
and acceleration, whereas from the vehicle they used the speed, engine RPM and
throttle position. In addition, they employed the Manchester Driving Behavior
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Questionnaire (DBQ) to complement the characterization of the driving style. As
a result, using all three data sources, their prediction achieved 90.5% accuracy,
while the questionnaire data achieved 81%.

Hallac et al. [2016] developed a method for predicting the identity of drivers
based on in-vehicle sensor data collected from a CAN. In particular, they used the
steering wheel angle, steering wheel velocity, vehicle speed, brake pedal position
and gas pedal position. The results achieved an accuracy of about 76.9% for a
two-driver classification and 50.1% for a five-driver classification. Martinez et al.
[2016] proposed a non-intrusive method for identifying impostor drivers. They
relied on a dataset Abut et al. [2007] that allowed access to a variety of sensor
data. However, a reduced set of variables from the CAN was used, such as RPM,
brake pedal and throttle position. As result, they achieved an identification rate
greater than 80% for every evaluated group category.

Riener and Reder [2014] conducted a study aiming to show that traffic safety
and efficiency improve when competent drivers support the not so competent ones
by sharing the road and driving data. The data acquisition was made using the
OpenXC Platform [OpenXC, 2012] and a smartphone. They used the steering
wheel angle, torque, RPM, vehicle speed, throttle position, fuel consumption, gear
position, GPS and 3-axis acceleration. They developed a social driving app that
provides recommendations about how to drive on a given track based on experi-
ences shared by other drivers. Rettore et al. [2018a] explored the driver’s identi-
fication as an extra authentication factor to local services and vehicular networks.
In this respect, they developed a virtual sensor to determine the driver’s identity
(legitimate or suspect), with a precision above 98%, using embedded sensor data
such as vehicle speed, fuel flow, gear, engine load, throttle position, emissions and
RPM.

We also developed a virtual gear sensor for manual transmission cars, which
allows to relate each gear with the fuel consumption. They proposed a method-
ology to recommend the best gears according to current speed and torque. Using
such methodology, they were able to reduce the fuel consumption and the CO2

emissions by approximately 29% and 21%, respectively. They collected data from
vehicle sensors, such as engine load, engine RPM, fuel flow, throttle position, trip
distance and CO2 through an OBD port. Rutty et al. [2013] conducted a study
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to show the impact of eco-driving training in a municipal fleet. They used the
CarChip [CarChip, 2013] technology to acquire data from the CAN and evaluate
their proposal. The results showed an average decrease of engine idling between
4% and 10%, and an average reduction of emissions of 1.7 kg of CO2 per vehicle
per day. One year later, Rutty et al. [2014a] assessed the value of vehicle mon-
itoring technology (VMT) and eco-driver training to reduce emissions and fuel.
They showed the results of eco-driving training in a fleet of vehicles at the ski
resort operation in Ontario, Canada. The fleet reduced 14% of their average daily
speed, 55% of abrupt deceleration, 44% of hard accelerations, and 2% of idling
time. Finally, they achieved a decrease of 8% in fuel costs and CO2 emissions.

Similarly, Ayyildiz et al. [2017] developed an advanced telematics platform
to compare the driving style before and after eco-driving training. They acquired
data from an OBD port, such as vehicle speed, fuel consumption, emissions and
GPS location using a smartphone. The study presented a reduction of 5.5% in
fuel consumption for heavy vehicles, while light vehicles did not show significant
variations. Brace et al. [2013] proposed an onboard Driver Assistant Systems
(DAS), which encourages to improve the driver’s driving style. Specifically, the
system aims to decrease fuel consumption by reducing the rates of acceleration
and early gear changes. For that, they employed data from the vehicle ECU.
The used data include vehicle speed, throttle position, engine speed, engine load,
engine fueling demand and engine coolant temperature for a total of 39,300 km of
collected trip data. They showed fuel savings of up to 12% and an average fuel
savings of about 7.6%. Zhao et al. [2016] proposed and evaluated the Dynamic
Traffic Signal Timing Optimization Strategy (DTSTOS), aiming to reduce the
total fuel consumption and traffic delays in a road intersection. Using the VISSIM
traffic simulator [Group, 1992], they obtained data, such as vehicle speed and fuel
consumption.

Araújo et al. [2012] proposed a smartphone app to help drivers to change
their behavior and, consequently, reduce the fuel consumption. For that, they
used the vehicle state data acquired from the CAN bus, through an OBD and
the smartphone sensors. They relied on data, such as vehicle speed, acceleration,
altitude, GPS, throttle position, instant fuel consumption and the engine rotations.
Andrieu and Pierre [2012] developed an efficient Ecological Driving Assistance
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System (EDAS) aiming to detect eco-driving behavior and provide drivers with
recommendations to help them to reduce the fuel consumption and preserve their
safety. They used the CAN and OBD to monitor driving parameters, for instance,
vehicle speed, RPM, fuel, brake pedal and throttle position. They showed that it
is possible to reduce fuel consumption just by following simple rules of eco-driving.
After applying those rules, the average fuel consumption, the speed, and the time
spent above the legal speed limit reduced approximately 12.5%, 5.8% and 30%,
respectively.

Paefgen [2013] conducted a study aiming to determine the risk of an acci-
dent according to collected vehicular sensory data. Focusing on the automobile
insurance market and aiming to introduce adaptive insurance tariffs, known as
Pay-As-You-Drive (PAYD), the author used a dataset of location trajectories and
vehicle’s speed data from an OBD port to develop an algorithm to reconstruct
trajectories when GPS data were missing. The result was a business model for
insurance telematics offerings.

2.3.1.2 Probe-Vehicle

A Probe-Vehicle is a vehicle specifically designed for collecting traffic data, road
data, driver data and other types of data in real-time. Its main feature is the high
quality of sensors embedded in it. For that reason, many public and private initia-
tives use that kind of vehicle to measure the quality of roads, weather and driver’s
behavior. In the following, we analyze studies that employed probe-vehicles to
achieve their goal.

Mednis et al. [2012] designed an embedded device (CarMote) that focus on
monitoring road surface and weather. They used a microphone, accelerometer,
temperature and humidity sensors to create a detailed map of the road quality
and meteorology. Ly et al. [2013] collected sensor data from the front side radar,
front/rear camera, lateral (Left/Right) and longitudinal (Forward/Backward) ac-
celeration and Yaw Angular Velocity sensors to describe three types of events:
braking, acceleration and turning. Satzoda and Trivedi [2015] associated inertial
data from the IMU, GPS and camera with the vehicle speed obtained from its
CAN bus. Beyond the in-vehicle data used by D’Agostino et al. [2015], they also
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used a camera, aiming to record the trips and label the main events while en-route.
Guo and Fang [2013] conducted a study aiming to identify features associated

with dangerous driving. Using demographic, personality and driving characteristic
data, they predicted who the high-risk drivers are. The authors used the first
large-scale study conducted in the United States in 2006, the 100-Car Naturalistic
Driving Study (NDS), to develop their methodology and application. The vehicles
were instrumented with a set of sensors, such as five camera views around the
vehicle, GPS, speedometer, three-dimension accelerometer, radar, and others. The
data were collected continuously for 12 months with approximately 43,000 hours
and 2 million vehicle miles. The results associated the driver’s age, personality
and critical incident rate with the risk of crashes and near-crash events. They also
showed that approximately 6% of drivers are high-risk drivers, 12% are moderate-
risk while 84% are low-risk.

Elhenawy et al. [2015] introduced a new predictor for driver’s aggressiveness
and demonstrated that this measure enhances the modeling of driver stop/run be-
havior. They also developed a model that can be used by traffic signal controllers
to predict the driver’s stop/run decisions. The vehicles were equipped with a Dif-
ferential Global Positioning System (DGPS) unit, a longitudinal accelerometer,
acceleration and brake pedal position, and, in some cases, cameras as well. Car-
mona et al. [2015] also used in their analysis of the driver’s behavior a DGPS,
which is composed of a base station that provides improved location accuracy
in real-time. They also used an IMU, which has embedded accelerometers and
gyroscopes.

Relying on visual information, Kumtepe et al. [2016] developed a method to
detect the driver’s aggressiveness by detecting lane deviation and collision time.
Andrieu and Pierre [2012] employed a GPS, front car camera and a fuel flow meter
to develop an efficient EDAS. They also used a specific fuel flow hardware aiming
to validate the fuel consumption provided by an OBD port. In this direction,
Honda Sensing [Honda, 2015] is an example of a practical solution currently avail-
able for their customers. Since 2015, Honda embeds in its cars a suite of safety
and driver-assistive technologies such as Collision Mitigation Braking, Road De-
parture Mitigation, Adaptive Cruise Control, Lane Keeping Assist, Traffic Sign
Recognition and Auto High-Beam Headlights.
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2.3.1.3 Smart Device

Similarly to probe-vehicles, a smart device also collects and stores traffic data,
road data and driver data in real time, however using a low-cost device to sense
the environment around and inside the vehicle. In other words, we consider a
smart device as a non-intrusive kind of sensor inside the vehicle and not embedded
in it. Consider, for instance, smartphones, tablets or a hardware working as data
sources inside a vehicle. In the following, we analyze proposals that rely on smart
devices as Vehicular Sensor Data (VSD).

Aloul et al. [2015] presented a smartphone app to detect and report car
accidents automatically. They used accelerometer and GPS data to determine
the severity of an accident and, if necessary, inform its location to the rescue
personnel. Fox et al. [2015] designed a crowdsourcing pothole detection scheme
using real-world data collected from a smart device with sensors, such as GPS,
vehicle speed, the three-axis acceleration and data from the mobility simulator
CarSim [Corporation, 2010]. They simulated an environment with 500 vehicles
and were able to detect 99.6% of the potholes. In a real-world scenario, their
approach could detect 88.9% of the potholes.

Goncalves et al. [2014] designed a platform to acquire data about the traffic
condition and to drive performance using a smartphone GPS. Han et al. [2014]
developed the SenSpeed, an accurate vehicle speed estimation system, to address
an unavailable GPS signal or inaccurate data in urban environments. The au-
thors relied on smartphone sensors, such as gyroscope and accelerometer to sense
turns, stops and crossing irregular road surfaces. The results show that the real-
time speed estimation error is 2.1 km/h, while the offline speed estimation error
is 1.21 km/h, using the vehicle speed through the OBD as ground truth in their
experiments. Ning et al. [2017] conducted a study to detect traffic anomalies
based on the analysis of trajectory data in Vehicular Social Networks (VSocN).
Furthermore, they introduced a taxonomy for VSocN applications. The VSocN is
an integration of social networks and the concept of the Internet of Vehicles (IoVs).

Chu et al. [2014] designed a solution to distinguish driver and passengers
based on accelerometer and gyroscope data of a smartphone. The Driver Detec-
tion System (DDS) focus on identifying micro-activities that can be discriminated
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using a popular and low-cost device. The results show an accuracy of up to 85%
to determine who is the driver and the passenger. Aiming to identify the user’s
driving style, Vaiana et al. [2014] used acceleration data (longitudinal and lateral)
from a smartphone GPS. Kaplan et al. [2015] reviewed and categorized techniques
found in the literature for detecting driver drowsiness and distraction. They pro-
vided insights on techniques used for driver inattention monitoring and the recent
solutions that use smart devices, such as smartphones and wearables.

Johnson and Trivedi [2011] developed an inexpensive way to detect and rec-
ognize driving events and driving styles based on a smartphone. They created a
MIROAD system that uses Dynamic Time Warping (DTW) and a smartphone
equipped with a gyroscope, magnetometer, accelerometer, GPS and video record-
ing capability to detect, recognize and record actions without external processing.
The results proved that the MIROAD was able to recognize the U-turn 77% of the
time. Similarly, however broader, Engelbrecht et al. [2014] used accelerometer and
gyroscope of a smartphone to recognize driving maneuvers. They validated the
approach with an extra device equipped with a dedicated GPS and IMU. Hong
et al. [2014] created a model to identify an aggressive driving style. When using
the smartphone and ECU data, they achieved an accuracy of 81%, while using
only the smartphone the accuracy was of about 66.7%.

Fazeen et al. [2012] also used smartphone sensors (three-axis accelerometer
and GPS) to evaluate a vehicle’s condition, such as gear shifts and road conditions
(bumps, potholes, rough road, uneven road, and smooth road) and also various
driver behavior. Paefgen et al. [2012] conducted a study to evaluate driver behav-
ior based on critical driving events and capture driver variability under real-world
conditions. They compared the results of using only a smartphone and its in-
ertial sensors to a commercial sensor unit [Technology, 1999] connected directly
to the vehicle’s OBD port. Castignani et al. [2015] analyzed the capability of
smartphone sensors to identify driving maneuvers and classify them as calm and
aggressive. For such purpose, they developed the SenseFleet application. They
used GPS and motion sensors from the smart device and also the weather and
time of day to give them context information. They showed that SenseFleet can
provide accurate detection of driving risks.

Yuan et al. [2016] proposed the AC-Sense, an adaptive and comprehensive
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scheme for data acquisition in VSNs aiming to increase the quality of vehicular
sensing. They used real taxi GPS trajectories and air quality data from Beijing.
They combined these datasets to determine the capacity of taxis to sense the air
quality. The results showed that the scheme can increase the sensing efficiency and
maintain the data quality. Pan et al. [2013] also used real taxi GPS trajectories to
detect and describe traffic anomalies. Wang et al. [2017] used vehicular trajectories
with the location, heading and speed information to estimate the urban traffic
congestion and detect anomalies on the road.

Bergasa et al. [2014] developed a smartphone app to detect the safety level
while driving. The app, DriveSafe, was developed for iPhone and aimed to detect
inattentive driving behaviors, alerting the drivers about unsafe behaviors. To
achieve that goal, the authors relied on computer vision and pattern recognition
techniques and data from the rear camera of the smartphone, microphone, inertial
sensors and GPS. They also presented a general architecture of DriveSafe and
evaluated its performance in a testbed using data from 12 participants (9 males and
3 females). Each participant carried out two types of tests (aggressive and normal).
The tests involved 20 minutes of trips during different days and times. DriveSafe
was able to detect an inattentive driver behavior with an overall precision of about
92%. They also compared DriveSafe to the commercial AXA Drive app [AXA,
2013] and obtained better results.

Ma et al. [2017] proposed the DrivingSense, which uses noise and other
types of data provided by smartphone sensors to identify dangerous behaviors,
such as speeding, irregular driving direction change and abnormal speed control.
DrivingSense was able to detect events like driving direction changes and abnormal
speed with a precision of 93.95% and 90.54%, respectively. Saiprasert et al. [2017]
also proposed algorithms to detect and classify driving events based on smartphone
sensors, such as GPS and accelerometer.

Corcoba Magaña and Muñoz Organero [2016] used location and road slope
data obtained using a smart device to determine the risk of an accident based
on the location of trajectories. Paefgen [2013] focused on the automobile insur-
ance market to introduce an adaptive insurance tariff known as PAYD. Bröring
et al. [2015] developed an app (EnviroCar) for Android smartphones to collect the
location of vehicles and upload it to the Web.
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Zhang et al. [2016] developed a model to classify dangerous drivers using
only smartphone sensors like accelerometer, gyroscope and GPS. The classification
model obtained an accuracy of about 79.88% in a controlled environment and
80.00% in a naturalistic environment. Araújo et al. [2012] developed an application
to assess the driving behavior and reduce the fuel consumption. For that, besides
in-vehicle sensors, they also used an accelerometer and GPS from a smartphone
to acquire acceleration, altitude and location data.

Some studies [Reininger et al., 2015; Meseguer et al., 2013; Ayyildiz et al.,
2017] rely solely on the smartphone GPS to develop an app to help drivers im-
prove their driving behavior. AbuAli [2015] used GPS data to track the vehicle’s
location and store it on the Web. Rutty et al. [2013] and Rutty et al. [2014a] also
used a GPS provided by CarChip( CarChip [2013]. Riener and Reder [2014] de-
veloped a social driving app aiming to improve the driving efficiency by providing
recommendations about how to drive on a given track. Besides using in-vehicle
data, they also relied on smartphone GPS and 3-axis acceleration data. Zuchao
Wang et al. [2013] developed a system for visually analyzing urban traffic conges-
tion. They used GPS trajectories and speed data from taxis in Beijing to design a
model to extract and derive traffic jam information in a realistic road network. The
process consists of an efficient data filtering step based on spatiotemporal aspects,
size and network topology to create a graph structure and its visualizations.

2.3.2 Extra-Vehicular Sensor

The Extra-Vehicular Sensor (EVS) concepts of VDS corresponds to the subset of
real and virtual sensors that seek to describe the driver’s behavior and the envi-
ronment around the vehicle by a variety of sources individually or fused. In that
way, we categorize studies that use Questionnaire as Vehicular Sensor (QVS), In-
frastructure as Vehicular Sensor (InfraVS) and Media as Vehicular Sensor (MVS),
to provide data such as a descriptive driver’s style, traffic behavior, weather con-
ditions, and statistics related to drivers, gender, number of accidents, injuries,
fatalities and others. In the following, we analyze each category and the related
work.
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2.3.2.1 Questionnaire as Vehicular Sensor

QVS can be considered the first way to sense the driver’s perception of the road
condition, accidents, distractions, behavior, expertise, feelings, gender and social
aspects. Despite the high cost of applying a questionnaire, it gives a very detailed
information about the context evaluated. There are studies that use a very known
questionnaire of the Psychology to evaluate the aforementioned issues.

Driving involves a variety of skills including cognitive aspects such as atten-
tion and perception, but also emotional, motivational and social interaction. In
that direction, the way in which a person performs this activity is described as
the driving style. Moreover, it is well known that the driving style can lead to
an inattentive and distracted direction, representing a significant issue to the road
safety. There are different ways of understanding the driving style of a person or
group. A wide solution adopted by psychologists is a questionnaire. There are di-
verse measurement instruments designed for this purpose, as the Driving Behavior
Questionnaire [Parker et al., 1995], Driving Behavior Inventory [Glendon et al.,
1993], Driving Style Questionnaire [French et al., 1993] and Driving Expectancy
Questionnaire [Deery and Love, 1996].

Beanland et al. [2013] conducted a study to identify driver distraction and
inattention in serious crashes, based on the Australian National Crash In-depth
Study (ANCIS). The participation in ANCIS was voluntarily and represents a
person who was admitted to a hospital for getting involved in an accident. The
authors indicated that the most severe injury accidents involve driver’s inatten-
tion. Despite the variety of observed inattention and distraction events, most of
them are possible to prevent. The development of interventions to the driving
style depends on studies about the driving behavior and personality traits. In
that direction, Poó and Ledesma [2013] used the Zuckerman-Kuhlman Person-
ality Questionnaire [Zuckerman, 2002] to assess the relationships among driving
styles and personality traits, and their variation by gender and age. As result, they
showed a more comprehensive understanding of personality traits and driving style
relationships. Hong et al. [2014] obtained 81% accuracy in their method to de-
termine the aggressiveness of driving style, using Manchester Driving Behavior
Questionnaire (DBQ).
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van Huysduynen et al. [2015] validated the different factors of Multidimen-
sional Driving Style Inventory (MDSI) [Taubman-Ben-Ari et al., 2004], aiming to
know if the questionnaire can measure driving styles. Also, they grouped the factor
analysis in angry driving, anxious driving, dissociative driving, distress-reduction
driving and careful driving style. Sagberg et al. [2015] conducted a vast literature
review, aiming to understand the multidimensionality and complexity of driving
styles. They found evidence that sociocultural factors, gender, age, driving ex-
perience, personality, cognitive style, group and organization values, and culture
can determinate the driving style. The authors also observed the correlation be-
tween self-report instruments and observed behavior methods. Finally, but not
limited to, they proposed a framework for predictions about how driving styles are
established and modified, creating a base to test future empirical studies.

Truxillo et al. [2016] developed a study to compare the effectiveness of the
supervisor training and the use of eco-driving educational materials to reduce the
fuel consumption. They collected data through a survey, containing the attitudes,
knowledge and behavior of a driver before using eco-driving educational materials.
After that, they disseminated the material to those participating organizations and
the second and third surveys were sent after two and four months, respectively.
As part of their results, they found that both groups increased the eco-driving
behavior, suggesting that the support for efficient driving behavior can change the
fuel consumption.

2.3.2.2 Infrastructure as Vehicular Sensor

The infrastructure can also tell about the vehicle’s state, traffic condition, weather
and driver’s behavior. The essential difference compared to the IVS way is that
the InfraVS also can provide information about the group and not only the vehicle
individually. Although, this kind of vehicular sensor shows information at different
granularity compared to the IVS. The infrastructure gives an external and global
view of the environment, in this case, the transportation view. In the following, we
describe approaches that use infrastructure data to develop or evaluate, somehow,
the proposed applications.

Aoude et al. [2011] developed algorithms for estimating the driver’s behavior
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at road intersections. They used a set of devices that provide data for the further
analyses, as GPS to record the current time of each vehicle, four radars which
identified the vehicles, their speed, range and lateral position, four cameras, and
a phase-sniffer to record the traffic light signal phase. The authors introduced
two classes of algorithms that can classify drivers as compliant or violating. Fi-
nally, their approach was validated using naturalistic intersection data, collected
through the U.S. Department of Transportation Cooperative Intersection Collision
Avoidance System for Violations (CICAS-V)

Castignani et al. [2015], in contrast to the current solutions, used contextual
information, weather condition [Map, 2017], in their application SenseFleet, aiming
to better describe the driving behavior. Yuan et al. [2016] used the air quality data
in Beijing to create the AC-Sense, an adaptive and comprehensive scheme for data
acquisition in VSNs. Wang et al. [2017] proposed a traffic congestion detection
based on GPS trajectories, social media and infrastructure data (e.g., weather),
and showed that it could affect traffic conditions, leading to complementary traffic
information.

Lu et al. [2014a] discussed the challenges and review the state-of-the-
art about wireless solutions for vehicle communication among different enti-
ties, as vehicle-to-sensor, vehicle-to-vehicle, vehicle-to-Internet and vehicle-to-
infrastructure. Using VISSIM traffic simulator [Group, 1992], Zhao et al. [2016]
proposed and evaluated the Dynamic Traffic Signal Timing Optimization Strategy
(DTSTOS), aiming to reduce the total fuel consumption and traffic delays in a
road intersection, based on the vehicle speed, fuel consumption and traffic light
timing control.

2.3.2.3 Media as Vehicular Sensor

Nowadays, with the growing and popularity of the Internet, the use of media to
report the transportation conditions has increased. Thus, issues as incidents, traf-
fic conditions, fatalities, road condition and events in a given location become the
goal of different media platforms. We consider MVS as any kind of media (e.g., so-
cial media, blogs, news, map tools with transit insights, and government reports)
that disseminate information to better contribute to transportation comprehen-
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sion. The highlight is the social media data with the potential to be used as a
real-time traffic data source. In the following, we describe approaches that use
some sort of media data to develop or evaluate the proposed applications.

Pan et al. [2013] proposed a method to detect and describe traffic anoma-
lies based on GPS from vehicles’ trajectories and social media data. The system
provides real-time alerts when anomalies are detected, including the associated
features and an event description based on social media. They used a GPS tra-
jectory dataset of taxis to detect anomalies and the Twitter to provide details of
these events. As result, the system detected 86.7% of the incidents reported to
the transportation authority, whereas the baseline reported only 46.7%. Santos
et al. [2018] argued that LBSM feeds may offer a new layer to improve traffic
and transit comprehension. They presented the Twitter MAPS (T-MAPS), a low-
cost spatiotemporal model to improve the description of traffic conditions through
tweets. The authors developed three route description services based on natural
language analyses, aiming to enhance the route information.

Gu et al. [2016] explored the posts from the Twitter platform to extract
traffic incident information, which is a low-cost solution compared to existing data
sources. In that way, the authors developed a methodology to data acquisition,
processing and filtering. They validated the Twitter-based incidents using data
from RCRS (Road Condition Report System) incident, 911 Call For Service (CFS)
incident, and HERE travel time (a part of the National Performance Management
Research Data Set). That study pointed out the significance of traffic incident
reported by Influential Users (IU) and individual users, frequency of reports on
weekends and weekdays, and also during the day, and the volume of information
from the center of a city and outside it. As conclusion, they demonstrated the
potential of social media data to enrich the incident reporting sources.

In the same way, but using different social media as a data source, Septiana
et al. [2016] used text mining system about RSS feed Facebook E100 aiming to
categorize road conditions into six types: floods, traffic jams, congested roads,
road damage, accidents and landslides. They showed an accuracy of 92% in the
road condition monitoring. Shekhar et al. [2016] focused on the vehicular traffic
monitoring using more than one social media, instead of traditional traffic sensors
and satellite information which can be quite expensive. Using a Natural Language
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Processing (NLP) technique, they examined Twitter and Facebook posts to address
traffic problems at a specific location and time interval. Besides, they looked for
the causes of recurrent traffic congestion, and noticed that the obtained results
were consistent when compared to the HERE Driver+, since more information
was added to the context analysis.

Wang et al. [2017] proposed a framework to integrate GPS trajectories data
and social media data, aiming to compute urban traffic congestion more precisely.
Using vehicular trajectories with location, heading and speed, social events from
Twitter, road features, Point of Interest (POI), and weather information, they esti-
mated the urban traffic congestion and also detected anomalies on the road. Sinha
et al. [2017] discussed the management of urban infrastructure based on insights
from public data, which was used to categorize and visualize the urban public
transportation issues. Their holistic framework considered the public transporta-
tion agency data, social media as Twitter and Facebook posts, and web portals.
Their goal was to help governments and common citizens to have a whole visual-
ization and understanding of transportation in a city. Kurkcu et al. [2017] pro-
posed to fuse data from the Transportation Operations Coordinating Committee
(TRANSCOM) and Twitter posts to allow real-time, inexpensive and geographical
coverage. Using Twitter and Sina Weibo, Lau [2017] presented an approach to
extract and analyze traffic information to enhance ITSs.

2.3.3 Considerations

As previously mentioned, in this section, we discussed the studies considering the
Vehicular Data Space. Table 2.2 summarizes recent proposals and their respective
categories based on our taxonomy.

This area provides some initial and exciting results that can lead to new
research challenges, when considering the data aspects and their applicability.It is
interesting to observe that there are studies in Vehicular Data Source (VDS) that
considered a different number of data sources in their proposals. In particular,
for one data source we have the following: Engine Control Unit; probe-vehicles;
smart devices; infrastructure; questionnaire, and some sort of media. Considering
the intersections of data sources, there are studies that used simultaneously two
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Table 2.2: Summarizing of data source in vehicular data space taxonomy.

Papers Vehicular Data Space: A Source Point of View
Intra-Vehicular

Sensor
Extra-Vehicular

Sensor

ECU Probe-
Vehicle

Smart
Device Infrastructure Questionnaire Media

[Hallac et al., 2016; Martinez et al., 2016]
[Rettore et al., 2017, 2018a]
[Brace et al., 2013]

X

[Mednis et al., 2012; Guo and Fang, 2013]
[Elhenawy et al., 2015] X

[Zuchao Wang et al., 2013; Fazeen et al., 2012]
[Goncalves et al., 2014; Engelbrecht et al., 2014]
[Chu et al., 2014; Vaiana et al., 2014]
[Han et al., 2014; Bergasa et al., 2014]
[Aloul et al., 2015; Fox et al., 2015]
[Kaplan et al., 2015; Ma et al., 2017]
[Ning et al., 2017; Saiprasert et al., 2017]

X

[Ly et al., 2013; Satzoda and Trivedi, 2015]
[Andrieu and Pierre, 2012; D’Agostino et al., 2015]
[Carmona et al., 2015; Kumtepe et al., 2016]

X X

[Johnson and Trivedi, 2011; Araújo et al., 2012]
[Paefgen et al., 2012; Meseguer et al., 2013]
[Paefgen, 2013; Riener and Reder, 2014]
[Bröring et al., 2015; Reininger et al., 2015]
[Rutty et al., 2013, 2014a]
[AbuAli, 2015; Zhang et al., 2016]
[Corcoba Magaña and Muñoz Organero, 2016; Ayyildiz et al., 2017]

X X

[Aoude et al., 2011] X
[Poó and Ledesma, 2013; Beanland et al., 2013]
[van Huysduynen et al., 2015; Sagberg et al., 2015]
[Truxillo et al., 2016]

X

[Hong et al., 2014] X X X
[Castignani et al., 2015; Yuan et al., 2016] X X
[Lu et al., 2014a] X X X
[Zhao et al., 2016] X X
[Wang et al., 2017] X X X
[Rettore et al., 2019] X X
[Gu et al., 2016; Septiana et al., 2016]
[Shekhar et al., 2016; Sinha et al., 2017]
[Kurkcu et al., 2017; Lau, 2017]
[Santos et al., 2018]

X

data sources: Engine Control Unit and probe-vehicles; Engine Control Unit and
smart devices; Engine Control Unit and infrastructure; and smart devices and
infrastructure. For three data sources, we have: Engine Control Unit, probe-
vehicles and questionnaires; Engine Control Unit, smart devices and infrastructure;
and smart devices, infrastructure and media.

Additionally, we can quantify the use of each data source in the studies above.
Figure 2.7a shows the percentage of the use of each vehicular data source. Smart
Device (typically smartphones) and ECU represent approximately two-thirds of all
data sources employed in the development of applications and methods for ITSs.
Smartphones are being designed with more and more sensors capable of sensing
different physical variables, which explain their large use as a data source. An
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ECU also allows to sense the environment with high-quality sensors and assess the
driver’s behavior.

Next comes the Probe-Vehicle data source. In this case, only active research
groups and companies use this data source due to its high cost to equip the vehicle
and design solutions based on the embedded technologies.

The three least used data sources are Media, Questionnaire and Infrastruc-
ture. The use of media as a data source to the ITS has increased in the last years,
and, probably, we can expect a stronger presence in the future. Media has the
power to overcome the limitations of the data coverage provided by all other data
sources mentioned in this study. Moreover, media can also offer the transporta-
tion view through the lens of users, companies and governments. Questionnaires
report the behavior of a group and depend on the sample, and, thus, cannot be
generalized. We noticed that the investigations about ITS do not use too much
this data source such as media and its variations. Finally, but not less impor-
tant, the infrastructure has taken its initial steps to be a data source to the VDS.
The reasons are the low incentive, security and privacy issues to make the data
available to the community.

While these issues keep untreated, we have to live with a short range of data,
conducting studies only in large cities, which know the importance of having data
available to investigate new applications and services to their citizens. Figure 2.7b
shows the relationship between Costs to develop and use of each VDSource and its
respective Granularity and Scalability11. Cost represents the value to use a data
source, Granularity how much descriptive the data source can be, and Scalability
the capacity of acquiring large amounts of data from different agents.

The questionnaire is one of the cheapest ways to acquire vehicular data.
However, their responses may not completely correlate with real-world events.
On the other hand, the use of infrastructure as vehicular data is more scalable
given its capacity to sense a variety of agents12 in the transportation system.
However, it typically involves high financial costs and a management solution for
the transportation system. An example of a low-cost and scalable solution to
acquire vehicular data is the use of social media as a vehicular data source. Its

11It means the capacity to provide amounts of data from a variety of agents.
12For instance, people, vehicles and companies.
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broad use allows a wide information dissemination about road conditions, accidents
and other events.

(a) (b)

Figure 2.7: (a) Most used data source in VDS. (b) An overview of data acquisition
based on its granularity and financial costs.

2.4 Potential Applications

Many are the applications designed for the vehicular environment, with different
functions and goals. In this section, we categorize these applications based on the
taxonomy described in Section 2.3. Figure 2.8 depicts the main applications based
on vehicular data related to safety, eco-driving, traffic monitoring and manage-
ment, infotainment, and also general purpose.

Figure 2.8: Applications based on vehicular data.

To present an overview of the applications, we summarized them in data
classes using the VDS. We grouped the investigations into two data categories:
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Intra-Vehicle Data (IVD) and Extra-Vehicle Data (EVD). Table 2.3 describes the
groups of applications mentioned before. We noticed that 64% and 16% of them
only used Intra-Vehicle Data (IVD) and Extra-Vehicle Data (EVD) to develop
their applications, respectively, whereas 20% dealt with both groups. This clearly
shows some interesting opportunities to explore the EVD and the fusion between
IVD and EVD. For the rest of this section, we discussed the data of each category
used by a given investigation. Furthermore, we highlighted the data availability
which most of those group of applications utilized, and overview the whole section
at the end.

Table 2.3: Class of data from VDS based on a given application group.

Application
Group Goals Authors Vehicular Data Space

Intra-
Vehicle Data

Extra-
Vehicle Data

Traffic
Monitoring

and
Management

Event Detection
(Incidents,
Potholes,
Traffic)

[Mednis et al., 2012; Pan et al., 2013; Zhao et al., 2016]
[Wang et al., 2017] X X

[Zuchao Wang et al., 2013; Goncalves et al., 2014; Han et al., 2014] X
[Gu et al., 2016; Septiana et al., 2016; Shekhar et al., 2016]
[Kurkcu et al., 2017; Lau, 2017; Sinha et al., 2017]
[Santos et al., 2018]

X

Safety

Driver Style/
Behavior

[Aoude et al., 2011; Hong et al., 2014; Castignani et al., 2015] X X
[Angkititrakul et al., 2009; Johnson and Trivedi, 2011; Paefgen et al., 2012]
[Paefgen et al., 2012; Fazeen et al., 2012; Meseguer et al., 2013]
[Ly et al., 2013; Guo and Fang, 2013; Engelbrecht et al., 2014]
[Vaiana et al., 2014; Chu et al., 2014; Bergasa et al., 2014]
[Elhenawy et al., 2015; Carmona et al., 2015; Martinez et al., 2016]
[Kumtepe et al., 2016; Zhang et al., 2016; Hallac et al., 2016]
[Ma et al., 2017; Saiprasert et al., 2017; Rettore et al., 2018a]

X

[Beanland et al., 2013; Poó and Ledesma, 2013; van Huysduynen et al., 2015]
[Sagberg et al., 2015] X

Event Detection
(Incidents,
Potholes,
Traffic)

[Aloul et al., 2015; Fox et al., 2015; D’Agostino et al., 2015]
[Meseguer et al., 2013; Riener and Reder, 2014; AbuAli, 2015]
[Ning et al., 2017]

X

Insurance,
Fleet Monitoring,
Aftermarket

[CarChip, 2013; Technology, 1999; Paefgen et al., 2013] X

Eco-Driving

Driver Style
[Araújo et al., 2012; CGI, 2014] X X
[Andrieu and Pierre, 2012; Brace et al., 2013; Meseguer et al., 2013]
[Rutty et al., 2013, 2014a; Ayyildiz et al., 2017]
[Rettore et al., 2017]

X

[Truxillo et al., 2016] X
Event Detection
(Incidents,
Potholes,
Traffic)

[Corcoba Magaña and Muñoz Organero, 2016; Zhao et al., 2016] X X

[Riener and Reder, 2014] X

Data
Acquisition [Bröring et al., 2015] X

General
Purpose

Data Acquisition,
Data Available,
Developers

[Reininger et al., 2015; Yuan et al., 2016] X X
[Angkititrakul et al., 2009; Bergasa et al., 2014; Bröring et al., 2015]
[OpenXC, 2012; MirrorLink, 2017; Ford, 2010]
[Magister54, 2015]

X

Intra-Vehicle Data = Location, Speed, RPM, Acceleration, Brake Pedal, Engine Load,
Throttle Position, Gear, Fuel, Emissions, Engine Temp, Turning, Radar, Video/Audio,Light;
Extra-Vehicle Data = Altitude/Atmospheric Pressure, wind speed/humidity/temperature,
and traffic light/inductive loop; sociocultural factors, gender/age,driving experience,
personality, and cognitive style; Social Media, News, and Government data;
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2.4.1 Safety

There are many ways to increase the safety on the roads. The advance of tech-
nology has allowed investments on vehicles and roads to achieve this goal. Some
studies support the necessity of improvements to decrease the number of road ac-
cidents. Most accidents could be avoided if the driver received a warning half a
second before the moment of collision. In that way, studies to improve the recog-
nition of driver’s style have emerged, aiming to better understand the driver’s
behavior. In the safety category, we considered applications that propose to iden-
tify driver’s patterns (e.g., style, behavior), offer customized insurance services,
and improve the car security.

Driving analysis is a topic of interest due to the increase of the safety issue
in vehicles. In 2015, the U.S. Department of Transportation showed the number
of deaths in motor vehicle crashes, which is above 35 thousand people [Adminis-
tration, 2016]. They also argued that alcohol, speeding, lack of safety belt use and
other problematic driver’s behaviors contribute to the death in vehicle crashes. The
driver’s behaviors vary considerably depending on age, gender, drugs consumption,
types of used roads, distracted driving attitudes [Schroeder et al., 2013], and other
factors. For these reasons, the study of driver’s style has emerged, aiming to in-
crease driving safety and, as consequently, reduce deaths in traffic. Engelbrecht
et al. [2015] analyzed the use of smartphones to support a variety of ITS appli-
cations in a safety field as the driver’s behavior, and road condition monitoring.
Kaplan et al. [2015] also conducted a review to detect driver’s drowsiness and
distraction.

Considering as input data acceleration, braking and turning collected from
the accelerometer sensor of a smartphone, once inside the vehicle, it is possible
to sense the vehicle longitudinal and lateral acceleration. Then, thresholds on
these measurements can detect different maneuvers. In that way, if we apply
thresholds on the z-axis (representing acceleration and brakes), we can obtain
rules to define the driver’s style, aiming to identify sharp peaks that indicate
aggressive increases of speed or hard braking. Additionally, analyzing thresholds
on the x-axis acceleration, it is possible to detect excessive speed in left or right
turns.
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Several studies have focused on driving style and driving maneuvers recog-
nition [Ly et al., 2013; Carmona et al., 2015; Kumtepe et al., 2016; Johnson and
Trivedi, 2011; Zhang et al., 2016; Meseguer et al., 2013; Hallac et al., 2016; Mar-
tinez et al., 2016; Riener and Reder, 2014; Rettore et al., 2018a; Vaiana et al.,
2014; Engelbrecht et al., 2014; Fazeen et al., 2012; Castignani et al., 2015; Bergasa
et al., 2014; Saiprasert et al., 2017]. Some of these studies identify who the driver
is whereas others classify the driver’s behavior as aggressive or normal, and driv-
ing maneuvers. Ma et al. [2017] discussed the influence of noise provided by
smartphone sensors, to identify dangerous behaviors. Satzoda and Trivedi [2015]
extracted semantic information from raw data provided by the vehicle. D’Agostino
et al. [2015] and AbuAli [2015] proposed a classification method for driving events
recognition, using short-scale driving patterns. Fox et al. [2015] designed a pothole
detection scheme using a real-world data and simulator.

In the same way, Aoude et al. [2011] developed algorithms for estimating
the driver’s behavior at road intersections. Wang et al. [2014] presented a survey
of a wide range of mathematical identification and modeling methods of driver’s
behavior. Guo and Fang [2013] conducted a study aiming to identify factors
associated with individual driver’s risk and also predict the high-risk drivers, based
on demographic data, driver’s personality, and driving characteristics. Elhenawy
et al. [2015] presented a model that can be integrated with in-vehicle safety systems
to predict driver’s stop/run behavior and then taking actions to avoid collisions.
Chu et al. [2014] developed a smartphone app that focuses on determining if its
user is a passenger or a driver. Using different approach, Beanland et al. [2013];
Poó and Ledesma [2013]; van Huysduynen et al. [2015], and Sagberg et al. [2015]
used questionnaires from the literature to understand the multidimensionality and
complexity of the driving styles concept. Hong et al. [2014] developed a platform,
aiming to model the aggressiveness of the driving style, based on different data
sources as smart devices, ECU and questionnaire.

Another agent interested in issues related to the vehicle safety is the man-
ufacturers. They pay attention to their vehicles’ behavior to foresee problems,
allowing them to offer their services in advance. Thus, in that class of application,
the manufacturers use the vehicular sensor data to improve their technology to
make their automobiles safety and comfortable. As safety applications, we have
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other two classes as prevention and correction. A diagnostics application is in-
cluded in the prevention class and provides information about the components
malfunction, aiming to avoid further breakdowns or damages. The applications
in the correction class is designed to protect the vehicle and its passengers. The
airbag application is activated based on a sudden stop (in most cases), the wheel
speed can be changed depending on the lack of traction, for instance.

Many approaches considered the high costs involved in evaluating and im-
proving vehicular safety solutions. They allowed a low-cost way for companies
and researchers to develop and test their solutions. As an example, CarSim [Cor-
poration, 2010] or generally VehicleSim (VS) is a product conceived to provide
a realistic view of the vehicle components (e.g., tires, suspension, and steering)
in different environments. Many companies and researchers use it as a tool for
kinematic and control simulation testing to improve their development process.

Other market solutions focused on fleet companies. For instance, the
CarChip Connect [CarChip, 2013] is an easy-to-use fleet monitoring tool. CarChip
is a small telematics device with GPS and accelerometer, which connects to the
vehicle by the OBD-II port. This tool provides the vehicle location and real-time
alerts to improve the safety and the productivity. This tool tracks and sends re-
ports data to the cloud, allowing clients to manage their fleets. In the same way,
Scope Technology [Technology, 1999] aims to provide end-to-end telematics prod-
ucts and services. Their solutions empower insurance providers, fleet operators
and aftermarket service providers to implement their personalized services.

The possibility to sense the vehicle and detect the driver’s behavior opened
the opportunity to customize applications and services developed according to
the client’s needs. As an example of these approaches, there are applications for
insurance companies aiming to offer personalized services to their customers. The
concepts of PAYD or Pay-How-You-Drive (PHYD) promote a new vision of how
to charge rates, based not on the range of risk as age, address and gender, but
also considering the driver’s behavior, i.e., aggressive or standard. The aim of
these applications is to classify the drivers’ behavior to describe a distinguished
attitude and its respective degree of safety for themselves and all around them.
Besides that, the ability to offer flexible insurance services promises a significant
improvement in traffic safety, taking into account the incentive to customers to
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drive safely.
Paefgen [2013] focused on evaluating an accident risk based on continuous

measurement of vehicular sensor data in the context of adaptive insurance tariffs.
That work of Telematics strategy for automobile insurers also pointed out the busi-
ness implications of risk-adaptive insurance taxes. Showing the less applicability
to the current market, but a promising perspective on the new market entrants.
As an example of a market, AXA is an insurance company that focuses on protect-
ing personal property (e.g., cars, homes) and liability (personal or professional).
AXA Drive [AXA, 2013] gives the driver real insights and personalized tips to
help them to improve their driving behavior. State Farm insurance company de-
veloped a smartphone app, Drive Safe & Save [StateFarm, 2017], aiming to offer
to their clients the reduction of auto insurance based on safer driving. Besides
the car insurance, another promising field is related to the Health insurance. It
aims to provide fast medical assistance based on a smart device application that
automatically detects serious vehicle crashes, also known as Real-Time Medical
Response [Detech, 2017]. Aloul et al. [2015] also conducted a study in that way,
with the development of a smartphone app to detect and report car accidents.

Section 2.3 reviewed the literature through the lens of VDS and its data
sources. However, we can have new insights when we look at the data used to
achieve specific goals. Thus, Table 2.4 classifies applications into three groups: (i)
safety; (ii) application goals as driver style/behavior, event detection, and insur-
ance, fleet monitoring, and aftermarket; and (iii) data used for these applications.

That table categorizes 38 applications as safety, of which 28 focused on the
driver’s style/behavior, 7 on event detection, and 7 on insurance, fleet monitoring
and aftermarket.
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2.4.2 Eco-Driving

Fuel consumption is a factor that varies according to the drivers’ habits. Two
different vehicles are expected to consume more or less fuel according to their
engines’ size. However, the same vehicle may behave differently depending on the
person who is driving it. As an example, someone who drives a car aggressively and
accelerates it more than another person who uses it more consciously is expected
to consume more fuel. From both environmental and economic points of view, it
is desirable that drivers interact with their vehicles in a way that is as fuel efficient
as possible, which reduces costs with refueling and greenhouse gases emissions.
Collecting vehicular fuel consumption and emission data can lead to applications
that help drivers to optimize these aspects in their driving styles.

Different initiatives and studies [Corcoba Magaña and Muñoz Organero,
2016; Meseguer et al., 2013; Riener and Reder, 2014; Rettore et al., 2017; Rutty
et al., 2013; Ayyildiz et al., 2017; Araújo et al., 2012; Andrieu and Pierre, 2012;
Truxillo et al., 2016] are investing specialized services for Eco-driving to encour-
age driving style improvements, in order to reduce fuel consumption. Eco-driving
refers to behavior and techniques designed to reduce fuel consumption, which in-
cludes recommendations for a person’s driving style, the way, and frequency they
use a vehicle, its configuration, accessories and maintenance. Eco-driving is part
of a comprehensive approach to reduce the transport sector’s contribution to the
greenhouse effect. Bröring et al. [2015] developed a solution to acquire vehicular
data and made it available to the community.

Brace et al. [2013] proposed a DAS to reduce fuel consumption decreasing
the rates of acceleration, and the early gear changes, demonstrating a fuel sav-
ings of up to 12%, and average fuel savings of 7.6%. The CGI Group Inc [CGI,
2014] conducted a study based on more than 3 million Scania Truck trips, across
seven European countries. They compared the impact of eco-driving coaching
for different fleets and countries. Moreover, they proposed an estimated effect of
coaching (EEOC), which provides a realistic estimate of the fuel savings gained
from eco-driving coaching. Zhao et al. [2016] proposed the dynamic traffic signal
timing optimization strategy (DTSTOS), also aiming to reduce the vehicle fuel
consumption in a road intersection.
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Table 2.5 summarizes all applications reviewed in this section, grouping them
in the following groups: (i) eco-driving application; (ii) application goals as driver
style/behavior, event detection, and data acquisition; and (iii) data used for these
applications. Thus, we categorized 14 applications as eco-driving, of which 10
focused on the driver’s style/behavior, 3 on event detection, and 1 on data acqui-
sition.
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2.4.3 Traffic Monitoring and Management

It is well known the issues related to transportation and traffic in large cities, such
as time spent on traffic jams, and number of fatalities and injuries on the roads,
which achieved an alarming scenario. These numbers prompted new initiatives
from governments and private sectors to improve the road traffic efficiency and
safety. Thus, an ITS becomes a way to find smart and low-cost solutions to improve
decision-making and obtain rich traffic information. In this field, to acquire rich
information about the traffic, we need to comprehend the environment such as
weather condition, vehicle characteristics and the road condition as influencers
to the driving style. Thus, we show some applications that are interested in the
characterization of traffic and road conditions.

Goncalves et al. [2014] used a smartphone GPS to study and characterize
traffic and road conditions. They built the Iris Geographic Information System
(GIS)- based platform using the smartphone Android on a client side and a server
side for collect data by store, pre/post processing, analyze and manage the traffic
condition. Zuchao Wang et al. [2013] developed a system for visual analysis of
urban traffic congestion, using only GPS trajectories. Han et al. [2014] developed
the SenSpeed an accurate vehicle speed estimation system to urban environments.
Ning et al. [2017] studied the traffic anomaly detection based on trajectory data
analysis in VSocN. Using a public data, Gu et al. [2016] explored the Twitter
platform, aiming to extract traffic incident through users posts, providing a low-
cost solution to increase the road information.

Santos et al. [2018] argued that LBSM feeds may offer a new layer to improve
traffic and transit comprehension. They presented the Twitter MAPS (T-MAPS)
a low-cost spatiotemporal model to improve the description of traffic conditions
through tweets.

Septiana et al. [2016] proposed the categorization of the road conditions,
based on text mining of Facebook feeds. In the same way, Shekhar et al. [2016]
focused on the vehicular traffic monitoring using Facebook and Twitter posts. Pan
et al. [2013] also used social media data to enrich the anomalies detection based
on GPS from vehicles trajectories. Sinha et al. [2017] and Lau [2017] presented
some insights based on public data to enrich urban public transportation and the
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ITS. Kurkcu et al. [2017] provided detailed information about incidents, based on
agencies and social media data.

On the other hand, Mednis et al. [2012] proposed the CarMote, a dedicated
hardware designed to monitor and create a detailed road map of the quality of the
surface and weather. Zhao et al. [2016] proposed the DTSTOS, also aiming to
reduce the traffic delays in a road intersection. Aquino et al. [2015] and Silva
et al. [2019] proposed a characterization of vehicles velocities to identify traffic
behaviors using information theory.

Table 2.6 summarizes these initiatives and studies into three groups: (i)
traffic monitoring and management application; (ii) event detection as application
goals; and (iii) data used for these applications. We categorized 14 applications
focused on event detection (e.g., incidents, potholes and traffic condition).
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2.4.4 General Purpose

The general purpose category shows studies to develop solutions to data acquisition
and its availability to the community. Table 2.7 summarizes the proposals in
this category. For instance, Bröring et al. [2015] proposed a solution to acquire
vehicular data and made it available to the community, showing applications to
fuel consumption and emissions. However, with these data in a large covered
area, the possibilities exceed that initial purpose. An adaptive and comprehensive
scheme for data acquisition in VSNs was proposed by Yuan et al. [2016], opening
a variety of applications based on these data.

A smartphone app DriveSafe is available on the Internet [Bergasa et al., 2014]
to detect the level of safety while driving. Furthermore, these data can be used to
understand the safety of the driver and the safety of the road or area as well. There
are initiatives [OpenXC, 2012; MirrorLink, 2017; Ford, 2010; Magister54, 2015]
that made available vehicular sensor data, which allows the industry and research
groups to develop their solutions. A prototype to provide vehicular data access
through a website was developed by Reininger et al. [2015], which allows access
to the vehicle speed, RPM, fuel consumption, GPS and altitude, making possible
to design a variety of applications based on these data. Another data source that
can be used as a general purpose is an international collaboration between Japan,
Italy, Singapore, Turkey, and the USA, UTDrive [Angkititrakul et al., 2009]. The
aim was to develop a framework for building models of driver safety behavior.
Moreover, they made the data collected available to the community, allowing the
wide developing of applications.
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Table 2.8: Availability of Vehicular data space.

Availability Vehicular Data Space

Lo
ca
ti
on

Sp
ee
d

R
P
M

A
cc
el
er
at
io
n*

B
ra
ke

P
ed
al

E
ng

in
e
Lo

ad

T
hr
ot
tl
e
P
os
it
io
n

G
ea
r

Fu
el

E
m
is
si
on

s

E
ng

in
e
Te

m
p*

Tu
rn
in
g*

A
T
M
*

R
ad

ar

V
id
eo
/A

ud
io

Li
gh

t

In
fr
as
tr
uc
tu
re

Q
ue
st
io
nn

ai
re
*

M
ed
ia
*

C
ar

Fe
at
ur
es

Partially
Public X X X X X

Public X X X X X X X X X
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Acceleration = longitudinal/3-axis, Engine Temp = Engine Coolant Temp, Turning = Rotation Angle;
ATM = Altitude/Atmospheric Pressure, Infrastructure = wind speed/humidity/temperature, and traffic light/inductive loop;
Questionnaire = sociocultural factors, gender/age,driving experience, personality, and cognitive style;
Media = Social Media, News, and Government;

2.4.5 Infotainment

Infotainment is a term used in the vehicular context to provide services to the
driver and passengers, based on a combination of information and entertainment.
A variety of applications can be developed to achieve this goal. For instance, it is
common that drivers bringing their data in smartphones through apps, either local
or on the cloud. However, when they are driving, the use of smart devices become
a risk to themselves and other drivers. Furthermore, a traditional hands-free ap-
proach has limitations in several applications. In this way, it is convenient to think
that the apps in a driver’s smartphones can become useful through the dashboard
display and multimedia kit inside the cars. Many companies and research groups
are investing in solutions to better involve drivers and the environment around
them. In the following, we describe some initiatives and studies in that way.

GM developed OnSart [GM, 2011] a solution to maintain its costumers con-
nected with their own cars. OnStar uses an integrated cellular service to connect
the car to the Internet, allowing drivers and passengers to use the car audio inter-
face to contact OnStar representatives for emergency services, vehicle diagnostics,
and directions or personalized trip information. Moreover, GM costumers can use
a smartphone app to take control of their vehicles, for instance, lock doors, send
an alarm to locate it, find it on a map, send a trip to navigate through the GPS
embedded in a car, and also monitor it along the time. Similarly, Audi offers the
Audi Connect [Audi, 2014] to give drivers more control over their vehicles, main-



2. Vehicular Data Space 55

taining them connected all the time to the Internet through the 4G-lite cellular
network.

Some automakers have invested to provide customers with highly inte-
grated connected experiences through connected in-vehicle infotainment systems
to smartphone applications. To achieve this goal, automakers in partnership with
other companies like Apple, Google, Pioneer, and Sony, for instance, have devel-
oped a way to create that connectivity environment. A recent initiative created by
Ford, named Smart Device Link (SDL) [SmartDeviceLink Consortium, 2017], aims
to enable existing smartphone applications to interface with vehicles. Through
an open source community, using a standard set of protocols and messages that
connect applications of a smartphone to a vehicle head unit. There are initia-
tives [OpenXC, 2012; MirrorLink, 2017; Ford, 2010; Magister54, 2015] that allow
industries and research groups to develop their solutions using an in-vehicle data
and connectivity. Cheng et al. [2011] analyzed communication protocols and their
suitability for infotainment and safety services in VANET.

Generally, these approaches aim to safely permit the user to interact with
apps installed in their smartphones while driving, exhibit the results on the dash-
board display and hear the audio via the car’s speakers. Another important issue
is related to the variety of car models, not being restricted to one brand or model.
The applicability can be diverse, for instance, get directions, make calls, send and
receive messages, navigate on the Internet using voice recognition, and listen to
music. In that direction, Apple developed the CarPlay [Apple, 2014] solution for
their customers. The Car Connectivity Consortium (CCC) developed the Mirror-
Link [MirrorLink, 2017], which enables to establish a connection with a list of com-
patible cars, smartphones and apps. Toyota and BMW have also an infrastructure
for the users of Toyota Touch 2 [Toyota, 2015] and BMW ConnectedDrive [BMW,
2014], respectively.

2.4.6 Data Availability

An important issue in the initiatives and studies discussed above is the data avail-
ability. This can allow new investigations based on to use of such data. Table 2.8
summarizes the availability of a given data as follows: (i) Partially Public: not all
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data is available to the general public. It can be delivered with a reduced sampling
rate or a low-frequency rate, with specific features blocked, and also with some sort
of noise; (ii) Public: data is available to the general public, with no restrictions;
(iii) Private: data is only available for closed groups or people ready to pay to have
full access. Most available VDS data are free for the public or partially accessible
by them. On the other hand, there are datasets provided by private companies,
governments or even research groups with restrict access to the general public.

It is possible to see the partial availability of fuel and emissions data due to
restrictions of vehicle sensors’ data access applied by some automakers. The access
to the infrastructure data is also restricted to a set of sensors such as camera and
road speed of reduced areas. The availability of Social Media data can be classified
into three groups: full access; short sample of the dataset; and only paid access.
Thus, initiatives and research groups that plan to use social media should be aware
of these possibilities.

Based on the relationship between Cost and Granularity depicted in Fig-
ure 2.7b, and the Data Availability analysis, we evaluated each application group
in terms of these three metrics. Figure 2.9 presents the cost and granularity, con-
sidering the data sources of a given data used by an application of VDS (IVD
and EVD). Moreover, the evaluation of the data availability used by applications
provides an access scale between Public and Private for a given application group.

Figure 2.9: Overview of application groups based on their granularity, financial
costs and data availability.
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We noticed that safety applications used fine-grained data to obtain high-
quality results, but introduced a high cost due to the quality of the used sensors
and the fact that datasets are non-public. Traffic monitoring applications typically
have a reduced cost, given the use of low-cost sources and public data. However,
these applications have to deal with coarse-grained data which may reduce their
accuracy. Another important group of applications is the infotainment. The data
availability related to that class becomes essential to provide personalized infotain-
ment solutions to drivers and passengers. This will probably demand a thorough
study to understand the drivers’ behavior, traffic, consumption trends of informa-
tion and products, among other issues. The associated costs will depend on the
data granularity, quality and availability.

2.4.7 Overview

The safety application group described in Table 2.4 reports 38 studies that list
the most used data to detect the driver’s behavior and events on the roads, but
disregard the location and acceleration (longitudinal/3-axis). Driver’s behavior
applications also use the turning angle, which differs from the 3-axis acceleration
due to its reduced noise. However this type of data comes from the ECU, and its
access is not promptly available. On the other hand, IMU devices or smartphones
can provide 3-axis acceleration, which provides a low-cost solution to detect the
driver’s behavior.

In event detection applications, locations play an essential role to identify
the event on the map, and the speed and acceleration (longitudinal/3-axis) can
provide semantic data from those locations. In insurance and fleet monitoring
applications, there is a need for different sensor data, and possibly from smart
devices as well, which will somehow identify the kind of behavior or status expected
for the respective application.

It is important to notice that different data sources will have different roles
in these applications (event detection, and insurance and fleet monitoring), and
others as well. Sensor data such as fuel, emissions and light will possibly have no
or little contribution to these previous applications. Social media data might be
used to help identify the user’s behavior and feelings, and, thus has the potential
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to be very useful in this case.
The eco-driving application group described in Table 2.5 reports 14 studies

that list the the most used data to detect the driver’s style, events on the roads
and evaluate an efficient fuel use, but disregard the location, speed and fuel con-
sumption. This fact shows the intuitive relationship between vehicle speed and fuel
consumption. Besides these data, RPM also contributes to these applications. The
combined use of fuel consumption and brake pedal can offer a different solution for
eco-driving applications. Social media and infrastructure can provide support for
applications such as the shortest route, and near and cheapest gas station, which
reduce emissions and fuel consumption.

We also observed that media data becomes an important data source in the
traffic monitoring application group, where 9 of 14 studies use it to achieve their
goals (see Table 2.6). This fact shows its capacity to describe events on the road
from a user’s perspective, which was not possible before. This is an opportunity
to better manage the whole traffic and people’s mobility.

Some studies showed the capacity of smartphones to measure movements
and detect the driver’s behavior. The comparison with the vehicle sensors from
ECU is natural, making these smart devices an inexpensive way of instrumenting
a vehicle. Moreover, smartphones have advanced sensors, allowing them to recog-
nize the driving style, road and traffic conditions, and vehicle condition. On the
other hand, there are substantial challenges involved in detecting movements us-
ing smartphones. The first one is the noise that comes from the vehicle movement
and the uneven road. Besides, the position of the device can affect the results.
Failures can occur considering that these devices are for general purpose. For
instance, notifications of some applications can have a higher priority to the oper-
ating systems, and, then, the real-time measurement can be interrupted. Last but
not least, real-time data is an essential feature for a driving analysis. However,
continuous sensing and processing can drain the battery, making it impracticable
for the users.
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2.5 Chapter Remarks

The development of new applications and services for the ITS environment depends
on the availability and study of large amounts of data, which leads to the Vehicular
Data Space (VDS).

In this chapter, we survey recent studies describing services and applications
for ITSs, but focused on the data used by them. We introduced the concept of
VDS, which is used to describe the vehicular scenario from the data perspective.
We proposed a taxonomy, according to the Vehicular Data Source (VDSource),
discussed the different data sources currently used in ITSs. Furthermore, we dis-
cussed the relationship between Costs to develop and use each VDSource and its
respective Granularity and Scalability. We also categorized the applications (Se-
curity, Eco-driving, Traffic Monitoring and Management, General Purpose, and
Infotainment), noticing that 64% and 16% of them only used Intra-Vehicle Data
(IVD) and Extra-Vehicle Data (EVD) to develop their applications, respectively,
whereas 20% dealt with both groups. This clearly shows some interesting oppor-
tunities to explore the EVD and the fusion between IVD and EVD.

We also discussed the use of heterogeneous datasets to provide accurate
methods for ITS applications. Thus, data fusion techniques have the potential
to improve the accuracy of those applications, when there are several related de-
scriptors. Some typical sensors used to model and identify the driver’s behavior are
acceleration longitudinal/3-axis, GPS, turning, and vehicle speed. Also constitute
an opportunity, the generation of CO2 emissions and fuel consumption reports,
based on the investigations that use Intra-Vehicular Sensor (IVS). These reports
can be sent to authorities who will be better informed when taking their decisions.

Our comprehensive literature review also showed that most of the data avail-
able in the VDS are freely available for the public or partially accessible by them.
It is also clear that novel ITS applications will benefit from multiple heterogeneous
datasets. Of course, this does not mean that a single variable represents a less de-
scriptive scenario. On the contrary, in some cases the longitudinal acceleration,
for instance, can identify dangerous driving maneuvers in real time, being a good
solution for insurance companies.

Considering the Vehicular Data Space (VDS), the main contributions of this
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work are: (i) the need of more investigations to recognize driving styles, relating
them to individual and sociocultural factors; (ii) real driving observations need
more spatiotemporal coverage; (iii) the need to expand and test applications in
real-time environments; (iv) acceleration longitudinal/3-axis, GPS, turning, and
vehicle speed are the most used sensor data to model driving behavior; (v) there
is a complexity inherent in the processing of heterogeneous data since there is
no standardization; (vi) heterogeneous data fusion is a fundamental challenge to
leverage the ITS field.



Chapter 3

Heterogeneous Data Fusion

This chapter discusses the data fusion aspects of the Vehicular Data Space (VDS).
We identified several issues in the data, which means that they must be treated be-
fore the data fusion process. Hereafter, we highlight some fundamental knowledge
concerning Intelligent Transportation System (ITS), heterogeneous data fusion,
challenges and opportunities in the field.

3.1 Contextualization

ITS integrates information and communication technologies to develop newer ap-
plications and services to boost the efficiency of transportation systems and mit-
igate their issues. Any ITS instance conducts one or more of the following in-
tuitive steps: collection, processing, integration and providing information. ITS
include at least four subsystems [Bazzan and Klügl, 2013; Faouzi and Klein, 2016]:
i) Advanced Transportation/Traffic Management Systems (ATMS) to control and
manage traffic devices (signals, monitoring, and safety devices), manage emergency
situations, and other apparatus that support the system. ii) Advanced Traveler In-
formation Systems (ATIS) to collect data and process it to improve understanding
of traffic conditions and derive indicators which guide the traveler. iii) Automatic
Incident Detection (AID) to apply algorithms for automatic incident detection as
soon as possible to increase safety and reduce users perception of traffic disrup-
tion. iv) Advanced Driver Assistance Systems (ADAS) to apply technologies in

61
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transportation system components (e.g., vehicles and roads) to reduce accidents
and improve safety of the users. For instance, ADAS cover collision avoidance and
driver assistance. Also, ITS involves others systems, such as Network Control,
Traffic Demand Estimation and Forecast.

In this context, the demand of precise traffic information is an increasing
challenge for public administrators and private businesses. ITSs subsystems are
powered by data as much as possible. Traditional traffic sensors, usually, are
installed to measure traffic flows at a given point, however they are ineffective when
used alone. Nevertheless, there are other data sources on road infrastructures, such
as cameras, GPS, smartphones and probe vehicles. All these multiple sources may
provide complementary data and can be used to extract more comprehensive and
detailed information about the traffic conditions. Thus, timely and precise traffic
information allows ITS to provide traffic status and manage processes and services
built to optimize the efficiency and safety of the transportation system.

Data information is at the heart of ITS. Indeed, there is no way to build
ITS subsystems without data analysis. Usually, the data is heterogeneous (such as
cameras, GPS, smartphones tracking, and probe vehicles). Thus, heterogeneous
data fusion techniques are suitable in such situation [Nakamura et al., 2007]. There
are many frameworks and models available in the literature to perform data fu-
sion [Nakamura et al., 2007; Ayed et al., 2015; Khaleghi et al., 2013b]. There
are three main approaches to perform data fusion: statistical, probabilistic and
artificial intelligence [Faouzi and Klein, 2016].

Several issues make data fusion a challenging task, especially those regarding
heterogeneous data. Most of the issues arise in the Data Preparation and Data
Processing stages. In particular, data fusion aspects are extensively discussed by
Khaleghi et al. [2013b]. For the authors, the data are naturally imperfect due to
conversions (analogical/digital) or associations with some degree of uncertainty.
They conducted a comprehensive study of methodologies that aim to solve prob-
lems related to heterogeneous data fusion. They elaborated a taxonomy of data
fusion aspects describing problems such as outliers, conflict, incompleteness, am-
biguity, correlation and disparateness. In this context, in this thesis, we focused
on two main stages of the data life-cycle. The Data Preparation stage, which rep-
resents the most critical stage in studies related to ITS. Also, the Data Processing,
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which deal with transforming the treated data into valuable or more informative
data that can be used by applications and services.

The rest of this section is organized as follows. Section 3.2 represents the
most critical stage of any study in ITS, dealing with data treatments. Section 3.3
highlights the process to transform the treated data into valuable or more infor-
mative data. In Section 3.4, we conducted a case study over vehicular data to
show data issues and treatments that may be conducted before the fusion process.
Finally, in Section 3.5, we conduct a discussion about heterogeneous data fusion
in ITS, specially using vehicular sensor data.

3.2 Data Preparation

The data preparation is a critical stage of any study in ITS, since it is in this step
that datasets are prepared to be used in different applications. It is at this stage
that designers could consider to have “reliable datasets” that will have a strong
impact on the final results.

Despite the relevance of this stage, just over half of the analyzed studies
in this thesis explicitly mention the data preparation, whereas the others do not
clarify the steps to prepare the data for the processing stage. One typical data
preparation procedure is the reduction of variables, which aims to keep the most
relevant features of the dataset [Hallac et al., 2016; Martinez et al., 2016; Cas-
tignani et al., 2015]. After that, most of the data from the VDS include spatial
or temporal aspects, and the necessity to filter them depends on the application
goals, making the resulting dataset adequate to its use.

The second non-trivial procedure of data preparation is to perform its correc-
tions based on the data aspects, which almost all studies mention. These problems
are more related to the data itself than to the methodologies used to combine them,
mostly because the data collected from sensors are inherently imperfect. Based on
these facts, the efforts to develop applications to an ITS usually depend on the role
of each heterogeneous data to the application goal. Moreover, there is an inherent
complexity in processing these data, which typically does not have any standard.
This may become a barrier to do research in ITS.
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In the following, we describe some of the data problems commonly found in
the VDS, and propose some solutions. A fine data granularity usually allows a
more valuable information about the entities of interest. The data granularity is
a concerning aspect of data fusion, especially when dealing with applications that
use rough sets and neither fine-grained nor coarse-grained information is beneficial
for the final process.

Vagueness occurs in datasets where attributes are not well defined. The
loose definition of attributes allows subjective measures, i.e., “fast” or “slow”. This
issue commonly occurs in data sources like Questionnaire and Media from Vehic-
ular Data Source (VDSource). The subjectivity of data present in social media,
for instance, calls for strategies that allow its understanding. Using a Natural
Language Processing (NLP) approach [Gu et al., 2016] and its algorithms, such
as Term Frequency-Inverse Document Frequency (TF-IDF) [Kurkcu et al., 2017],
Spell correction and Stop-word filter [Sinha et al., 2017], Latent Dirichlet Alloca-
tion (LDA) [Lau, 2017], and regular [Shekhar et al., 2016] expression, it is possible
to reduce the noise and subjectivity of texts written by users. Fuzzy logic may
also be used to remove the subjective aspect of these datasets.

Another issue in data preparation is the identification of outliers, i.e., extreme
values that may do not belong to the solution. This process is completely data
dependent and different techniques can be used to perform this filtering process.
If outliers are left in the dataset, they may undermine the final solution, leading
to imprecise results. Some of the filtering techniques to address this problem are
Kalman [Bergasa et al., 2014; Ma et al., 2017] and Particle Filtering.

Incomplete data is, intuitively, data with missing parts. These missing parts
may lead to incorrect conclusions and, thus, must be addressed. A possible strategy
is to use probabilistic solutions whenever a data is missing. Ambiguity in datasets
is a manifestation of its imprecision, and happens when two occurrences in the
dataset are assumed to be precise and exact. However, they differ from each
other.

There are other common methods to filter and correct the raw data. A Simple
Moving Average (SMA) can be used to smooth out the effect of unwanted noise
from the sensor data [Rettore et al., 2018a; Engelbrecht et al., 2014; Saiprasert
et al., 2017], for instance. Besides, a band-pass and low-pass filter may remove
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sensor noise [Chu et al., 2014; Engelbrecht et al., 2014]. The GPS incomplete data
may be treated using a simple linear interpolation [Hallac et al., 2016; Saiprasert
et al., 2017]. As a general way to prepare the raw data, we noticed the use
of equations and thresholds (e.g., Max, Min, Mean, Median, Standard Deviation,
Derivative, and Variance) to obtain particular results [Corcoba Magaña and Muñoz
Organero, 2016; Ma et al., 2017; Gu et al., 2016].

All data sources, especially sensors, have a confidence degree. Whenever this
confidence is lower than 100%, data is considered uncertain. Solutions to this
problem include statistical inference and belief functions. The VDS is inherently
disparate since there are sensors that assess different aspects in different units and
scales. Using large quantities of diverse data allow the extraction of contextual
information unable to be captured by physical sensors.

In summary, an important challenge in this stage is to find the best algo-
rithm/method to apply to the raw data, aiming to treat and prepare the dataset
for the next step. The key points we highlight at this stage are: (i) find the best
way to fit and fix the data to be used in the proposed solutions; (ii) perform a vari-
able reduction to keep the most relevant and descriptive features of the dataset;
(iii) correct the dataset, by identifying outliers, conflict, incompleteness, ambigu-
ity, correlation, and disparateness; (iv) apply heterogeneous data fusion techniques
to also fit and fix the raw data; (v) use whenever possible standards to overcome
the complexity of this problem domain and facilitate the research in ITS.

3.3 Data Processing

The data processing of VDS leads to various new descriptive data, giving vast
possibilities of ITS applications, as mentioned in Section 2.4. In the data processing
stage, the operation forms new aspects from raw or treated data. Depending on the
investigation aims, a set of methods (e.g., mathematical operations, algorithms,
models) can be applied to the data to produce a high-level data, allowing the
development of new applications and services. Even considering the relevance of
this stage to the whole data process, not all studies mentioned in this thesis made
clear the description of the data processing stage.
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The research in the ITS field involves interdisciplinary expertise once the
dataset come from a variety of sources and each one is frequently used and main-
tained by specific groups. For instance, the weather data are supervised by me-
teorology institutes, although it can be used to alert risks on the road. Another
data source that influences the traffic flow is provided by the department of trans-
portation as a semaphore and speed limit. These data can be used to measure
or identify the traffic flow. Furthermore, we can consider the weather data as a
data layer to the whole transportation system. This means that each data point of
other datasets present in the VDS might be associated with a weather data point
(weather condition at that point). This can help to understand the traffic behavior
from the point of view of weather conditions. Thus, a challenge here is to extract
useful information from Intra-Vehicular Sensor (IVS) to perform some correlation
with Extra-Vehicular Sensor (EVS), leading to personalized services for drivers in
ITS.

In this scenario, data fusion becomes a tremendous challenge given the het-
erogeneity among the Vehicular Data Source (VDSource), asynchronous sensor
operation, sensor errors and sensor noise. Furthermore, the computational infras-
tructure and the spatiotemporal aspects contribute to the efforts to fuse hetero-
geneous data. Rettore et al. [2017] developed a methodology to recommend the
best gears by fusing the speed data, engine Revolutions Per Minute (RPM) data
and throttle position data, based on a mathematical function to achieve low fuel
consumption and CO2 emissions. Almost all reviewed studies, which developed
applications such as driving behavior and road event detection, deal with, some-
how, a heterogeneous data fusion technique [Hallac et al., 2016; Martinez et al.,
2016; Fox et al., 2015] that integrates multiple data sources to produce a more
useful information than the individual data. Some of them applied Intra-Vehicle
Data (IVD) fusion and others Extra-Vehicle Data (EVD) fusion to achieve their
goals. However, the joint treatment of both fusion strategies is scarcely explored,
being an important research topic for future of ITSs.

Another common aspect related to this stage is the use of Machine Learning
(ML) techniques in data processing. Almost half of the studies aim to detect the
driving behavior or road event using a machine learning technique. Leveraging the
ideas discussed by [Ferdowsi et al., 2017; Chen et al., 2017], Table 3.1 shows the
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Table 3.1: Most used classes of machine learning algorithms by the ITS applica-
tions.

Authors Machine Learning Algorithms
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[Aoude et al., 2011; Chu et al., 2014; Elhenawy et al., 2015; Fox et al., 2015]
[Hallac et al., 2016; Kumtepe et al., 2016; Zhang et al., 2016; Sinha et al., 2017]
[Johnson and Trivedi, 2011; Lau, 2017; Hong et al., 2014; Aloul et al., 2015]
[Martinez et al., 2016; Kurkcu et al., 2017; Corcoba Magaña and Muñoz Organero, 2016; Rettore et al., 2018a]
[D’Agostino et al., 2015]

X

[Andrieu and Pierre, 2012; Castignani et al., 2015; Hallac et al., 2016; Rettore et al., 2018a] X
[Andrieu and Pierre, 2012; Guo and Fang, 2013; D’Agostino et al., 2015; Hallac et al., 2016] X
[Johnson and Trivedi, 2011; Engelbrecht et al., 2014; Aloul et al., 2015; Saiprasert et al., 2017] X
[Guo and Fang, 2013; Ly et al., 2013; Aloul et al., 2015] X
[Meseguer et al., 2013; Elhenawy et al., 2015] X

classes of ML algorithms used by the literature review we conducted in this thesis.
Next, we highlight the methods/algorithms applied by them: Extreme

Learning Machine (ELM) [Martinez et al., 2016], Random Forest/Decision
Trees [D’Agostino et al., 2015; Hallac et al., 2016; Rettore et al., 2018a], Sup-
port Vector Machines (SVMs) [Kumtepe et al., 2016; Zhang et al., 2016; Hallac
et al., 2016; Elhenawy et al., 2015; Fox et al., 2015; Chu et al., 2014; Aoude et al.,
2011; Sinha et al., 2017; Lau, 2017] to classify pothole, turn, driver, and driving be-
haviour. Logistic Regression [D’Agostino et al., 2015; Hallac et al., 2016; Andrieu
and Pierre, 2012; Guo and Fang, 2013] to predict the driver, drivers’ risk, recog-
nition of driving events. K-mean clustering [Ly et al., 2013; Guo and Fang, 2013;
Aloul et al., 2015], Dimensionality Reduction Algorithms like Principal Component
Analysis (PCA) [Hallac et al., 2016; Rettore et al., 2018a; Andrieu and Pierre, 2012;
Castignani et al., 2015], Viterbi and Baum–Welch algorithms [Aloul et al., 2015],
Artificial Neural Network (ANN) [Meseguer et al., 2013; Elhenawy et al., 2015],
Adaboost [Elhenawy et al., 2015], K-Nearest Neighbors (KNN) classifier [Johnson
and Trivedi, 2011; Lau, 2017], Naïve Bayes (NB) method [Corcoba Magaña and
Muñoz Organero, 2016; Hong et al., 2014; Kurkcu et al., 2017; Lau, 2017], and,
finally, Hidden Markov Models (HMM) to define different driver’s behavior based
on observations [Aoude et al., 2011]. We also observed the use of algorithms to
treat the temporal data aspects of VDS. The Dynamic Time Warping (DTW)
algorithm aims to find an optimal alignment among signal vectors, allowing to de-
tect and distinguish driving events, driver styles [Johnson and Trivedi, 2011; Aloul



3. Heterogeneous Data Fusion 68

et al., 2015; Engelbrecht et al., 2014; Saiprasert et al., 2017].
The key points we highlight at this stage are: (i) find the best algo-

rithms/methodologies for data processing is an important and hard-task to the
proposed solutions. (ii) extract useful information from Intra-Vehicle Data (IVD)
to correlate them with Extra-Vehicle Data (EVD) to allow personalized services.
This will become one of the top trends for future ITSs; (iii) data fusion plays an
essential task in data processing given the data heterogeneity among the Vehicular
Data Source (VDSource), and other aspects that need to be considered such as
asynchronous sensor operation, sensor errors and sensor noise; (iv) machine learn-
ing (ML) techniques have a special role in data processing, mainly in classification
and prediction tasks.

3.4 Vehicular Sensor Data Fusion

In this section, we conducted an exploratory analysis over the real vehicle data
to show for each listed data issues (i.e. imperfection, correlation, inconsistencies,
among others) which of them have been found in our experiment. Indeed, we found
out several issues in the data implying that they must be treated before fusion
process. We point out some fundamental knowledge concerning ITS, heterogeneous
data fusion, challenges and opportunities in the field.

We examined the vehicular sensor data aspects in ITS context. We show
challenges, useful data, as well as some methods to handle issues related to the
data. In particular, our focus is on heterogeneous data fusion using intra-vehicle
sensor data by collecting it from the Engine Control Unit (ECU) of a car. Although
several papers presents reviews of heterogeneous data fusion [Nakamura et al.,
2007; Ayed et al., 2015; Khaleghi et al., 2013b] or data fusion in ITS [Faouzi and
Klein, 2016], our work provides the reader an illustration of the listed data fusion
aspects with examples based on the conducted case study.

3.4.1 Vehicular Data

Modern vehicles rely heavily on data acquired through embedded sensors to im-
prove the quality of their control systems. In order to better control the vehicle’s
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behavior, manufacturers invest both in quantity and quality of the sensors they
use [Fleming, 2001]. Some of the sensors embedded in a modern vehicle include
throttle pedal position, fuel pressure, and oil pressure. The sensors on a car com-
municate with the ECU through an internal wired network [Qu et al., 2010], and
the data they output is accessible using the On-Board Diagnostic (OBD) interface.

Table 3.2: OBD Signaling Protocols

Protocol Transfer Rates
SAE J1850 PWM 41.6 kbit/s
SAE J1850 VPW 10.4 kbits/s
ISO 9141-2 10.4 kbits/s
ISO 14230 KWP 2000 10.4 kbits/s
ISO 15765 CAN 250 or 500 kbits/s

There are five signaling protocols allowed on OBD interface, as shown in
Table 3.2. All these protocols use the same OBD port. However, the pins are
different except for those that provide power supply. The data collected from the
sensors in the car are available through OBD Parameter IDs (PIDs). In Table 3.3,
we show some of the sensors whose readings are available using the combination
of OBD and smartphone. There are also other hundreds of sensors that can be
accessed using OBD’s parameter ID’s - some of which are defined by the OBD
standard, and the manufacturers define others.

3.4.2 Heterogeneous Data

Even though data collected from sensors embedded in a vehicle come from the
same entity - the vehicle itself - it should not be considered homogeneous. The
information is collected from different sensors spread across different parts of the
vehicle’s body in different measuring units. The heterogeneity of vehicular sensor
data does not mean that there aren’t relationships between the readings of different
sensors since all of them monitor the same entity.

It is also possible to extract contextual information from data acquired by
vehicular sensors. For instance, observing a car’s speed over time, the traffic
condition on its location can be inferred based on aspects like average speed and
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Table 3.3: Sensors Collected from OBD and Smartphone

Sensors
Engine load Vehicle speed Torque sensor Fuel pressure Oxygen sensors Fuel Tank Level
Kilometers
per liter

Intake air
temperature

Ambient air
temperature

Catalyst
temperature

Relative
throttle position

Accelerator
pedal position

Fuel flow
rate CO2 Ethanol fuel % Engine oil

temperature
Fuel injection
timing

O2 sensor
monitor

Voltage Distance
traveled Fuel remaining Fuel rail

pressure
Hybrid battery
pack remaining life

Evap. system
vapor pressure

Engine RPM Engine coolant
temperature Fuel type Malfunction

indicator lamp
Exhaust gas
recirculation error

Mass Air
Flow Sensor

Altitude GPS location Collision sensor Automatic
brake actuator

Steering angle
sensor Rear camera

GPS speed Gravity XYZ luminosity sensor
for headlights

Active park
assist

Water in fuel
sensor Airbag sensor

Barometric
Pressure Time Cost per

mile/km
Front object
laser radar

Night pedestrian
warning IR sensor

Tire pressure
sensor

Microphone
sensor

Pressure
sensor

Drowsiness
sensor

Shock
sensor

Rain-Sensing
Windshield Wipers Motion sensor

time stopped. These aspects represent peculiarities of traffic jams, where the
average speed is low, and most vehicles are stopped for long periods.

3.4.3 Problems of Heterogeneous Data Fusion: Case Study

We considered as a case study the sensors data collected from vehicles and its
relationship. We used an OBD Bluetooth adapter to collect data from a car. The
logs of this vehicle consist of 55 trips of 40 km with an average time of 50 minutes
each. Hereafter, we return to discuss the categories of data fusion problems but
highlighting a practical view. Thereunto, we choose examples observed during the
data collected from the vehicles, as our initial work.

3.4.3.1 Granularity

Granularity is related to the ability to derive valuable information about entities
of interest on a dataset. It is a concerning aspect on data fusion, especially when
dealing with rough sets, when neither fine and coarse-grained information is bene-
ficial for the final process. Fine-grained information will not take advantage of the
rough set techniques, on the other hand, a coarse-grained data may not be enough
to derive useful information.
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To characterize the granularity problem in vehicular sensor data, we investi-
gate traces of taxis, buses, cars, and their respective time interval of data collection.
In the literature, it is usual to find traces with measure between every 10 and 60
seconds. Thus, we measure the speed of a vehicle from its ECU each second and
GPS speed each minute. Figure 3.1 shows an example of a car trace along almost
40 minutes, Figure 3.1(A) and (B) present the speed vehicle and GPS speed, re-
spectively. Figure 3.1(C) shows GPS speed measured every minute. It is noted
that in Figure 3.1(A) the vehicle speed is represented as fine-grained. Hence more
detailed vehicle behavior is perceived. For instance, looking at the begin and end
of the trace, it is clear to observe the stops-and-goes. This information reveals
a particular behavior in a specific environment, urban area. On the other hand,
Figure 3.1(C) represent the GPS speed in coarse-grained. Hence it can not address
the same behavior mentioned before.

Figure 3.1: Comparison Between Vehicle Speed and GPS Speed Collected Every
Second and Every Minute.

3.4.3.2 Vagueness

Vagueness occurs in datasets where attributes are not well defined. The loose
definition of attributes allows subjective measures and the Fuzzy Logic may be a
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way to remove the subjective aspect.
The vagueness in a vehicular data context may be intended as the speed of

vehicle. In other words, it is not well defined by the speed, "fast” and "slow”, of
the vehicle. For instance, in Figure 3.1(A), the highway environment is charac-
terized by the vehicle’s speed behavior, which does rise above 80 km/h and below
120 km/h. Thereby, 80 km/h speed can be slow in a highway environment, but
fast in the urban environment, where the vehicle’s speed behavior does not rise
above 60 km/h, due to legislation and traffic density.

3.4.3.3 Outlier

Outliers are extreme values that do not belong to the solution. These situations
are often caused by errors in the sensors that generate it, or even unexpected
values measured. When those data are considered false, it makes dangerous to
data fusion systems, mainly because it leads statistical inferences to imprecise
results. However, outliers may also describe particular events, becoming relevant
data aspects and needs due attention.

The environment perception from sensors may come with incorrect data.
These data represent points that distorter among the major data collected. Fig-
ure 3.1(B) shows the GPS speed along the trace. However, it is noted some dis-
torter points with 0 (zero) values between high values collected. For instance, ap-
proximately in 10 minutes, the values are around 100 km/h and instantly changes
to 0 km/h, returning to 100 km/h after that. Similar occurrences are shown along
the trace and are called outliers.

3.4.3.4 Conflict

The same phenomenon, when observed by two or more sensors or specialists should
be perceived in the same way by all of them. However, divergent specialists’ opin-
ions or punctual errors in sensor readings happen and cause conflicts in data obser-
vations. A simple, yet questionable, conflict solution is the Dempster combination
rule [Yager, 1987].

In Figure 3.1, the conflicts appear when two sensors are related to describ-
ing the speed of the vehicle. Figure 3.1(A) shows, approximately, in 10 minutes
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the values are around 100 km/h speed. However, in that same time interval, Fig-
ure 3.1(B) shows 0 km/h speed. The challenge of this topic is: which one may be
considered for the data fusion?

3.4.3.5 Incompleteness

Incomplete data is, intuitively, data with missing parts. These missing parts may
lead to incorrect conclusions based on the data and, thus, must be addressed. A
solution to deal with this type of data is to treat the data in a probabilistic way.

The log used in our case study was obtained using an OBD Bluetooth adapter
and a smartphone. However, interferences among electronic devices inside the
vehicle, or barriers in the environment as tunnels, sometimes, cause the loss of
communication. Consequently, gaps are introduced in a trace and made the dataset
incompleteness as showed in Figure 3.2. Figure 3.2(A) shows the vehicle speed
collected from ECU, and Figure 3.2(B) shows in three different moments, gaps
caused by interruption of communication, ignoring important information and
making the results inconsistent.

Figure 3.2: Comparison of GPS Speed and Incomplete GPS Speed Data.

3.4.3.6 Ambiguity

Different sensors can be considered as vehicle speed by ECU and GPS. In this
case, the ambiguity manifests when both sensors present the same data to the
same observation of environment. In Figure 3.3a, we show a histogram of the
absolute difference between vehicle speed and GPS speed. The major frequency
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of this difference is concentrated in 0 (zero), implying that both sensors collected
the same speed. Furthermore, the values different to 0 implies that vehicle speed
shows the current speed and GPS speed a different or conflicting value.

3.4.3.7 Uncertainty

Data collected from sensors or external sources are associated with a confidence
degree. Whenever this confidence is lower than 100%, the data is considered un-
certain. Solutions to this problem include statistical inference and belief functions.

In the case of sensors, the uncertainty is always present, in other words,
it is an inherent property of any sensor. Even though sensor data are collected
directly from the vehicle by OBD, these data are not considered an absolute truth
to provide a low uncertainty degree.

3.4.3.8 Correlation

Data correlation is problematic in data fusion since it can either enhance or atten-
uate some aspects due to data incest. Data incest is a situation when correlated
data is fed multiple times to the data fusion system, multiplying its importance
on the final result.

We perform the Pearson Product Moment Correlation (PPMC), between
all sensors readings in the data collected during a trip of one vehicle, as shown
in Figure 3.3b. Since the correlation matrix is symmetric, on one side, it shows
the explicit values of the correlation, and on the other side, the same value is
visually shown as the ellipse that is expected from a bivariate distribution with
the same correlation value. Thus, visually, ellipses close to straight lines represent
two tightly linked sensors, which can be directly or inversely correlated, depending
on the line direction. On the other hand, sensors with a small relationship will be
represented by an almost invisible circle, due to the color scale. We considered a
high correlation value between 0.5 to 1.0 or −0.5 to −1.0, the medium correlation
between 0.3 to 0.5 or −0.3 to −0.5, low correlation between 0.1 to 0.3 or −0.1 to
−0.3 and no correlation when 0.

In the high correlations, it is possible to see that revolutions per minute
(RPM), Speed and GPS Speed represent the vehicle motion. So that, these data



3. Heterogeneous Data Fusion 75

(a)

(b)

Figure 3.3: Difference Between Vehicle Speed and GPS Speed (a) and Correlation
Between Sensors Data in a Vehicle (b).
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can be reduced to only one variable as Speed, for instance. However, there is a
less explicit yet important relationship, like RPM and speed, which is governed by
the transmission system of the car. Other possible reduction can be made in the
relation between altitude and the atmospheric pressure, labeled as "Barometer".
It is physically proven that the atmospheric pressure is inversely proportional to
the altitude. Thus, this two variable can be explained using only one.

3.4.3.9 Disorder

When processing continuous data sources, sometimes measurements arrive out of
their order and raise a natural question: what to do with this piece? A simplistic
way of treating disordered data is to discard it simply. However, this tactic would
ignore the contributions of the discarded piece. A more costly solution is to store
all received data and reorder the entire set once an out of order observation arises.

This problem is not common in our scenarios, because the process of data
collect is synchronous and the smartphone starts it. The other point is that the
communication protocol deals with this problem.

3.4.3.10 Disparateness

Vehicular sensor data is inherently disparate since there are sensors that assess
different aspects in different units and scales. Using large quantities of diverse
data allows the extraction of contextual information unable to be captured by
physical sensors.

As mention before, the vehicular sensor data is inherently disparate. In the
vehicle, there are since sensors to measure the engine temperature until sensor to
measure the fuel level. For instance, in Figure 3.4, it shows a dissimilarity between
two sensors as revolution per minute (RPM) and carbon dioxide emission (CO2).
It may be possible to study the behavior of these two variables, but they remain
disparate.
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Figure 3.4: Disparateness Between Revolution per Minute and Carbon Dioxide.

3.5 Chapter Remarks

With the constant growth of the global population, urban mobility aspects and
problems have become more challenging. Given the need of people to make their
commutes quicker and safer in big cities, their current traffic infrastructures, and
the elevated costs of restructuring it, a new approach to handle these issues is
needed. Current information technologies and systems are capable of acquiring
and processing massive volumes of data and outputting results with minimal de-
lays, which makes them suitable for managing and planning new intelligent trans-
portation systems for major cities.

Smart Mobility (SM) in ITS can be boosted by taking in account heteroge-
neous data collected from several sources as much as possible. However, in general,
the data comes with some issues (i.e., imperfection, correlation, inconsistencies,
among others) making difficult heterogeneous data fusion process. In this thesis,
we conducted an exploratory analysis of real vehicle data to show, for each listed
data issues, which of them were found in our dataset. Indeed, we found out several
issues in the data implying that they must be treated before the fusion process.
Besides, understanding the vehicular sensors correlations allows providing solu-
tions to optimize the vehicle use, reducing fuel consumption, emissions and vehicle
maintenance. Which in terms directly influence the efforts to provide a Smart
Mobility (SM) in a city.



Chapter 4

Intra-Vehicular Data Fusion

As defined in Section 2.3.1 the intra-vehicular data corresponds to the subset of
sensors data that describe the main interactions between a vehicle and its driver,
passengers or its surrounding environment, from the perspective of the vehicle
itself. This section shows the Intra-Vehicular Sensor (IVS) allowing the exploration
of heterogeneous data collected from several sensors to development of services and
applications which may boost the Smart Mobility (SM) based on fuel efficiency,
emissions, and safe driving.

4.1 Vehicular Sensor Data: Characterization and

Relationships

Many technologies have been developed to provide effective opportunities to en-
hance the safety of roads and improve the transportation system. In the face of
that, the concept of Vehicular Ad-hoc Network (VANET) was introduced to pro-
vide Intelligent Transportation System (ITS). In this chapter, we propose the use
of an On-Board Diagnostic (OBD) Bluetooth adapter and a smartphone to gather
data from two cars. Then we analyze the relationships between RPM and speed
data to identify if this reflects the vehicle’s current gear. As a result, we found a
coefficient that indicates the behavior of each gear along the time in a trace. We
conclude that this analysis, although in the beginning, suggests a way to determine

78
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the gear state. Therefore, many services can be developed using this information
as, the recommendation of gear shift time, eco-driving support, security patterns
and entertainment applications.

We noticed that the data from a single sensor is not able to provide highly
detailed contextual information about the vehicle’s surroundings. However, some
sensors are highly correlated with each other. As an example, fuel flow and rev-
olutions per minute (RPM) are two highly related sensors and this relation is
explained naively by the nature of combustion engine: each revolution involves
a series of combustion on the cylinders. Thus, more revolutions mean more fuel
consumption. In this section, we show that there are other relationships between
individual sensors that can lead to a better understanding of a vehicle’s state on a
specific moment of a trip. The sensors relationships is an important aspect since it
can provide useful information and insights for the vehicle’s driver and occupants,
and nearby vehicles as well.

We proposed the use of the OBD to identify the vehicle’s current gear. The
main contributions of this proposition are threefold: (I) characterize the dataset
collected from vehicles’ sensors, (II) show possible relationships between pairs of
sensors, and (III) present specific relationships between linear speed and RPM,
which is translated into the vehicle’s current gear.

The remainder of this work is organized as follows. Section 4.1.1 presents the
related works. Section 4.1.2 describes the characteristics of vehicular data. Section
4.1.3 we present our case study and illustrate the issues regarding the fusion of the
data collected. We present the results in Section 4.1.4, and finally, in Section 4.1.5
we conduct a discussion about heterogeneous data fusion using vehicular sensor
data and present our conclusions.

4.1.1 Related Work

There are several aspects involving a vehicle’s operation that are not explicitly
sensed, yet acquiring knowledge about these aspects would improve the reliability
of vehicles’ control systems. Faezipour et al. [2012] say a vehicle’s Controller Area
Network efficiency benefits from the number of sensors available to it. However,
the solution is not as simple as adding as many sensors as possible to the vehicles:
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the first obstacle is connecting all sensors to the controlling units. Wireless sensors
would solve this connection problem, and Lu et al. [2014b] describe solutions to
make it possible. Another feasible solution to replace physical sensors and expand
sensing ability on an environment is virtual sensing [Kuo and Zhou, 2009]).

Virtual sensors calculate their output by taking readings from physical sen-
sors and feeding them into mathematical models. Since the basis of virtual sensing
is physical sensing, it is worth investigating the available sensors on a regular vehi-
cle, as did Fleming [2001]. The author divided the vehicle into three main sensing
areas: powertrain, chassis, and body and described the characteristics of the sen-
sors used in specific components of these areas. Rodelgo-Lacruz et al. [2007] did
not present sensor technology specifically. However the authors expanded the divi-
sion of the vehicle’s areas by adding the human-machine interface and multimedia,
and telematics. This new division stresses the importance given to the drivers and
their interaction with the cars’ systems.

Since there are variables for which there are no physical sensors, some virtual
sensors were developed to monitor the vehicular environment better. Ahmed et al.
[2011] proposed a virtual sensing schema to monitor the health of physical sensors
using virtual sensing of engine fault codes. Stephant et al. [2004] compared four
virtual sensors that measure the sideslip angle of vehicles on a curve. The authors
state that on normal conditions, where lateral acceleration is low, the sensors
estimate the angle satisfactorily, on the other hand, for unusual conditions, where
lateral acceleration is high, better models are needed.

The models used to develop virtual sensors may vary from neural networks
to statistical methods. Atkinson et al. [1998] proposed a neural network model
to predict aspects of a vehicle’s behavior that cannot be directly assessed using
values of other sensors with high accuracy. Another technique to implement virtual
sensors, as shown by Wenzel et al. [2007], is Kalman filter. In work, the authors
described the use of extended Kalman filters to determine variables such as yaw
rate and lateral acceleration of a vehicle. With a similar approach, Brundell-Freij
and Ericsson [2005] examined the effect on driving behavior of different driver
categories and local environmental characteristics using a dataset of over 14,000
driving patterns.

Considering the cost of the sensors to measure the sideslip angle directly, the
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authors Boada et al. [2016a] proposed a novel observer based on ANFIS, combined
with Kalman Filters to estimate the sideslip angle, which in turn is used to control
the vehicle dynamics and improve its behavior. The authors [Jin and Yin, 2015])
developed an estimation method to accurately estimate the vehicle sideslip angle
and the lateral tire–road forces using in-vehicle sensors. Another interesting issue
is utilizing smartphone sensors to estimate the vehicle speed, especially when GPS
is unavailable or inaccurate in urban environments. This topic is discussed by
the author [Yu et al., 2016]) that proposed an accurate vehicle speed estimation
system, SenSpeed, which senses natural driving conditions in urban environments
including making turns, stopping, and passing through uneven road surfaces.

In the same direction of most work-related, but considering a different ap-
proach, we analyze the relationships between RPM and speed data to identify if
this reflects the vehicle’s current gear. Thereunto, we characterize the data col-
lected from vehicles’ sensors, and we show that the specific relationship between
linear speed and RPM is translated into the vehicle as a current gear.

4.1.2 Characteristics of Vehicular Data

Contextual information from vehicles is fundamental to better understand traffic
patterns, drivers behavior and mobility patterns in a city. An example of con-
textual information generated by data collected from cars’ sensors [Ganti et al.,
2010]), where the fuel consumption in the entire city scale was inferred from the
readings of a few cars. To determine which sensors – individually or combined
– better represent the vehicle’s context, we first need to characterize their read-
ings in previously known contexts. In order to do this, annotated datasets are
fundamental.

To the best of our knowledge, there are no publicly available datasets con-
taining a significant number of car sensors’ readings, so we installed an OBD
Bluetooth adapter in two vehicles to collect sensor readings. To characterize the
sensor data, we selected a sample commute in our dataset that comprises a trip
between two cities – namely Belo Horizonte, Brazil and Pedro Leopoldo, Brazil
40 km away from each other – with no abnormal traffic conditions.

In the collection process, an important step is to identify the data that pro-
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vides valuable information about the vehicle. In our case, 25 variables were mon-
itored, but only 16 out of these were analyzed. Some are direct readings from the
vehicle’s sensors; others are calculations based on data collected from the car and
others are measured using the smartphone’s sensors. These variables represent
both lines and columns of the matrix in Figure 3.3b.

The variables that are directly read from the vehicle’s sensors (through OBD)
are:

1. Intake Air Temp: temperature of the air used in the air and fuel mixture.

2. Engine Temp: current temperature of the engine coolant liquid.

3. Adapter Voltage: voltage in the control module.

4. CO2 Inst : instant CO2 emission of the engine.

5. Fuel Flow : fuel used by the engine on an instant.

6. Speed : speed shown by the odometer.

7. RPM : number of engine revolutions per minute.

The variables obtained by calculations are:

1. Trip Dist : distance traveled on the current log.

2. KPL Av Trip: average fuel consumption per kilometer on the current log.

3. KPL Av : average fuel consumption per kilometer of every logs.

4. Acceleration: speed variation between two observations.

5. KPL Inst : instantaneous fuel consumption per kilometer.

6. CO2 Av : average CO2 emission of the engine.

Finally, variables obtained by sensors embedded in the smartphone are:

1. Altitude: instantaneous altitude of the vehicle.

2. Barometer : instantaneous atmospheric pressure.
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3. GPS Speed : current speed measured by GPS sensors.

In a more detailed observation of the correlation matrix, we pointed in Fig-
ure 4.1 the four different types of correlation in its specific degrees. For instance,
Figure 4.1a represents a high correlation between GPS speed and Vehicle speed, ev-
idencing that relation is linear. Some points are not aligned with the relationship,
this happened because of errors and differences in the readings of sensors. Another
high correlation example is in Figure 4.1b, which shows the relation between at-
mospheric pressure (labeled as "Barometer") and altitude. It is physically proven
that the atmospheric pressure is inversely proportional to the altitude. Thus the
relationship is almost linear −0,99.

Figure 4.1c shows the correlation between -0.1 to -0.3, that is a low correla-
tion. However, the curiosity is that the scatter plot presents something similar to
an exponential distribution. This Figure shows that the fewer liters are consumed
per kilometer, the more gases are emitted. The other point is that the lowest car-
bon dioxide emissions happen with the lowest fuel consumption (more kilometers
per liter) and it may characterize moments where the driver stops accelerating.

Finally, in the extreme of the correlation matrix, we show in Figure 4.1d a
pair with no correlation, represented by -0.08 Pearson correlation coefficient. The
relation between the battery voltage and intake air temperature does not represent
relevant information. Since the battery voltage behaves considering the vehicle
acceleration. In other words, the alternator works with the vehicle movement, and
it is used to charge the battery and to power the vehicle electrical system. At
the same time, the intake air temperature sensor it is not affected by the battery
voltage.

During the time of collection, we were able to capture a variety of traffic
situations: urban environments with various traffic levels, highways, strikes and
roadblocks. An example of a Vehicle 1 observation, some of the sensor readings
of its trip is illustrated in Figure 4.2 and represent its current Vehicle state. We
consider the vehicle state the perception of the context, in which it is located,
through its sensors readings. In the graphic, the colors of the columns divide the
timeline in the three scenarios: urban traffic in the origin city, highway traffic,
access routes to the destination city – called "Transition" and urban traffic in the
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Figure 4.1: Correlation between sensors.

destination city.

Figure 4.2: Vehicle sensor data behavior along the trace.

The urban environment is characterized by the vehicle’s speed behavior,
which does not rise above 60 km/h, due to legislation and traffic density. Traf-
fic density is also noticeable at the end of the timeline when the destination city’s
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traffic is heavier, and, thus, the cars move in a stop-and-go fashion, stopped by
traffic lights or road crossings and moving at every opportunity, until they are
stopped again. This kind of behavior reflects into the horizontal lines at 0 km/h
in the urban environments, followed by small peaks in speed. Acceleration, which
is the variation of speed over time is also different in these situations. Due to
constant acceleration and breaking of the car, the speed variation is higher in such
situations.

On the other hand, the highway part of the trip shows a different behavior.
The speed is constantly high, and there are no big acceleration or deceleration
intervals, and the speed rarely drops below 60 km/h. To keep the vehicle moving
at such high speeds, the engine must also work harder, translated into higher
RPMs, which also present different values from the urban scenarios. Even though,
there are some points in urban traffic where the engine revolves at more than 3000
times per minute, these occurrences are rare and do not last as long as the highway,
where for approximately 15 minutes the revolutions did not go much lower than
this value. A unique aspect of the highway part in this data is the fuel flow, which
is significantly higher, but not as constant as the RPM or the speed. This behavior
may reflect the road condition, altitude variations and atmospheric pressure, but
it requires further investigation.

So, a more detailed characterization can be done with a more detailed study
of these data. For instance, identification of traffic jam, strikes, roadblocks and
accidents in an urban area and highway is an important issue to solve and require
more investigation. Therefore, in this work, we first focus on the characterization
of both urban and highway environment’s providing high-level vision as shown in
Figure 4.2.

4.1.3 Case Study

The characterization of the data acquired from the two vehicles revealed pairs of
sensors that have a strong relationship. More specifically, the relationship between
the readings of the RPM and speed sensors is close to linear, and to investigate
it, we collected data from two cars to analyze their RPM and speed throughout
the time. The two vehicles are in the same category, yet their manufacturers
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and engine power are different. Their main characteristics of data acquisition are
presented in Table 4.1. The logs of Vehicle 1 consist of 40 trips, each one of 40 km
with an average time of 50 minutes. The logs of Vehicle 2 consist of 15 trips, each
one of 10 km and with an average time of 30 minutes.

Vehicle 1 Vehicle 2
Engine 1.0 16v 1.6 16v
Max RPM 7000 7000
Transmission 5 5
Power 76 122
Weight 1025 kgf 1000 kgf
Manufacturer Renault Hyundai
Model Sandero HB20
Trips 40 15
TripTime 50min 30min

Table 4.1: Data acquisition characteristics

The collected variables are presented on the scatter plots present in Fig-
ure 4.3. A visual inspection of the points reveals a relationship between the two
sensors that is, indeed, close to linear as stated previously. However, there are
clear groupings of points that share a stronger relationship that is equivalent to
the gear ratios of the vehicle. Figure 4.3a presents the plot for the vehicle 1 that
travels 40 km on urban environments and highways, where the fifth gear is used
more often and the five different lines show the gears. Vehicle 2 travels on urban
environments only and, because of this, rarely uses its fifth gear, which justifies
the absence of the fifth line on the vehicle’s readings, shown in Figure 4.3b.

To isolate the groups that represent the vehicle’s gears, we reduced the two
analyzed variables to obtain a unique view of them as their coefficient. Since they
are distributed in well-defined lines, it is expected that the reduction through the
division reveals the gears’ speed to RPM relation.

4.1.4 Results

As result of this case study, we calculated a coefficient that indicates the behavior
of each gear and plotted it along the time as we show in Figure 4.4. We emphasize
the constant occurrences of the coefficient with horizontal colored lines. These



4. Intra-Vehicular Data Fusion 87

(a) Vehicle 1. (b) Vehicle 2.

Figure 4.3: Correlation between vehicle speed and RPM.

lines represent the groups of points in the scatter plot, indicating the active gears.
The lines represent the gears’ RPM regarding speed in a crescent order, thus the
1st gear is in red, 2nd gear in purple, 3rd gear in yellow, 4th gear in gray and 5th
gear in green. As Vehicle 2 does not use the 5th gear very often, because it moves
only in the urban environment, there is a difference in the number of gear lines
between Figures 4.4a and 4.4b.

(a) Vehicle 1. (b) Vehicle 2.

Figure 4.4: Vehicle’s speed and RPM relation in a time series.

Another point that must be noted in Figure 4.4 is the difference in the hori-
zontal values of the gear relations. Since we are comparing two different vehicles,
from different manufacturers and different engines, their gearbox is also assumed
to be different. Thus the gear ratios are also different. We have not had the
opportunity to compare these results with readings from other vehicles from the
same model, manufacturer or engine power. However, we believe that the same
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relationship will hold for cars in the same model and, probably, from the same
manufacturer due to the same parts being used in different models to reduce costs
and supply chain complexity. Also, it is difficult to determine the first gear (in
red), for a simple reason that its use is for a short time, to leave of inertia.

We evaluated all collecting trips, and we show that the same coefficient rep-
resents exactly the gear state. In other words, the coefficient evidence which gear
is used and along the time it is possible to understand the vehicle context such as
driver behavior better.

4.1.5 Section Remarks

In this work, we analyzed data collected from two cars using the OBD port. In the
first analysis, we characterize the collected data by showing the correlation between
the reading of the sensors and later we showed how the sensor readings behave in
different scenarios. We present that the sensed values in urban environments are
different from those captured when the same vehicle is on a highway. We trust
that with the deeper investigation, it is possible to determine on which kind of
environment - highway or urban traffic - a vehicle is based its sensor readings.
Moreover, we also trust that the current traffic condition of a given vehicle reflects
on its sensed data and is possible to determine the intensity of the traffic based on
sensors from the vehicles.

The second analysis focuses on finding the effect of the vehicle’s current gear
in their speed and RPM. To do this, we collected data from these vehicles and
found multiple close to linear relationships in the RPM and speed scatter plot.
These relationships are effects of the gears which have specific ratios, that varied
between our two test vehicles. The coefficient of each gear is directly linked to
the slope of the lines that represent each gear. We believe that it is possible
to determine the specific values that represent the lines’ equations for any given
dataset containing RPM and speed values. By discovering the current gears of a
vehicle over time, we add a new variable for which there are no sensors available
in the OBD data.

In summary, Figure 4.5 shows how our design of fusion on Vehicular Data
Space (VDS) worked in this study. Where, the OBD vehicular sensors feed the
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fusion process, the data preparation deal with data aspects showed in Chapter 3,
data processing covers the related methods, and finally resulting in a gear virtual
sensor as the data use. Moreover, this new virtual sensor, as well as many others,
may boost the SM due to its contribution to understanding better the vehicles’
state and the development of new systems and services, such as recommenda-
tions of gears based on fuel efficiency, emissions, safety driving and entertainment
applications.

Figure 4.5: Design of fusion on VDS for gear virtual sensor.

4.2 Vehicular Virtual Sensor

Physical sensors are important parts of control systems, especially vehicular con-
trol systems. Sensor readings help drivers control their vehicles as well as their
internal systems while keeping a vehicle stable and running. Currently, a modern
luxury car carries hundreds of diverse and precise sensors and not all of them are
visible to the conductor. However, there are phenomena and aspects for which
there are no physical sensors available. Virtual sensors combine readings from
multiple sensors in order to develop their output values based on conditions and
models, and, eventually, substitute and monitor failing physical sensors, as well as
sense complex variables. Designing a virtual sensor is usually a difficult process
due to the complexity of the different processing stages it comprises. This sec-
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tion presents a study on the process of creating and prototyping vehicular virtual
sensors, describing development stages and presenting examples of virtual sensors
created with a framework developed to facilitate the design process.

A problem that rises when using sensor data to monitor and control entities,
especially vehicles, is its reliability regarding both availability and quality of in-
formation. A sensor must output correct readings constantly, and control systems
depend on these characteristics to operate properly, however, every sensor has an
inherent probability of presenting a malfunction on each one of these aspects. A
solution to monitor physical sensors or temporarily replace them is a virtual sen-
sor, which collects data from other sensors and outputs data according to models
or formulas.

Virtual sensors are useful alternatives to monitor aspects, variables, and phe-
nomena for which there are no physical sensors. There are cases where physical
sensors are unavailable, and a virtual sensor can replace them, given that the
variable they monitor is mathematically described or highly correlated to other
monitored variables. In fact, a virtual sensor may substitute several physical sen-
sors, used to monitor a single complex aspect for which there is no physical sensor,
by combining their information using models and outputting the desired infor-
mation. Additionally, a virtual sensor can produce new and higher level sensor
information.

The process of designing a virtual sensor may be summarized to three steps,
as illustrated in Figure 4.6: (1) collect and treat input sensor data, (2) define and
apply methods and models to combine multiple input data sources to (3) output
new calculated data. Collecting and treating input data is a particularly challeng-
ing step since there are several sources of problems related to sensor data, such as
incompleteness and inconsistency. The second step, which consists of defining the
way the virtual sensor will treat input data to generate new information is espe-
cially important and requires technical knowledge from the designer to determine
and implement models and formulas. Finally, outputting calculated data requires
the designer to format it to fit standards.

We discuss the design process of vehicular virtual sensors. First, we present
related works that leverage vehicular sensor data to produce new data on Section
4.2.1. Section 4.2.2 presents the collection process performed by the authors using
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Figure 4.6: Virtual sensor design scheme.

two cars and problems related to sensor data. In Section 4.2.3, we will use a
virtual sensor prototyping framework developed to facilitate the virtual sensor
design process and the possible operations on sensor data. In Section 4.2.4.3, we
will present virtual sensor examples as a way to demonstrate their design process
and the new information that they provide. Finally, we present our conclusions
and future works in the Section 4.2.5.

4.2.1 Related Work

The basis for diagnostic systems are physical sensors – even though virtual sensors
are an alternative [Li et al., 2011; Stephant et al., 2004]), they still depend on
physical sensors – thus, it is worth investigating the available vehicular sensors.
AbuAli [2015] collected data from vehicular sensors using the OBD interface and
used it to detect hazardous driving situations, like hard braking, speeding and
traffic weaving. Jeong et al. [2013] proposed a methodology that identifies this
kind of driving, as well as lane changes using a gyroscope embedded in a test
vehicle. Imkamon et al. [2008] used video image processing to identify the density
of vehicles nearby and turning directions to detect potentially hazardous situations.

Collecting vehicular fuel consumption and emission data can lead to applica-
tions that help drivers optimize these aspects in their driving styles. Ganti et al.
[2010] used participatory sensing to induce fuel consumption from roads of a city
using data collected from few vehicles and trace the most fuel-efficient route be-
tween two points. Ahn and Rakha [2008] stated that highways and high-speed
routes not always are as fuel-efficient as less crowded arterial streets and to en-
dorse this, Ericsson et al. [2006] developed a driver support tool that recommends
the route that consumes the least fuel and points towards the importance of taking
real-time traffic information in these recommendations.



4. Intra-Vehicular Data Fusion 92

Chen et al. [2014] and Eriksson et al. [2008] used taxis to collect data from the
road conditions using accelerometers and GPS receivers. Using the data acquired,
they were able to determine the condition of road surfaces as well as the location
of potholes with high accuracy. Zan et al. [2010] assumed that the road condition
could be delayed to reduce communications overhead and proposed a system that
benefits from geocaching to forward sensed data when convenient.

Driving analysis is a topic of interest due to the increase of a safety issue in
vehicles. To address it, several works focused on driving style recognition [Johnson
and Trivedi, 2011; Bergasa et al., 2014; Carmona et al., 2015; Martinez et al., 2016;
Hallac et al., 2016]. Some of these works identify who is the driver and others
classify the driver behavior, as aggressive and normal, for instance. In both cases,
we can apply the concept of virtual sensor design, proposed in this work. In other
words, the input data considered are vehicular sensors, virtual vehicular sensors,
and sensors embedded on smartphones. The model focuses on identifying drivers
and their behavior based on a set of procedures encapsulated as a virtual sensor.
Finally, the new sensors will output a driver’s identity or behavior.

4.2.2 Data Acquisition

Mobile Ad-hoc Networks (MANETs) are powerful environment sensing tools, due
to their capacity of deploying nodes on wide areas. Such benefits come at a cost,
though: energy is a limited resource and should be used carefully, and the connec-
tion is not always available and costly activity, thus transmitting sensed data is a
delicate process.

More recently, a new derivation of MANETs had emerged when vehicles
were given communication capabilities in a Vehicular Ad-hoc Network (VANET).
VANETs differ from MANETs as their characteristics are more specific to the ve-
hicular environment. Thus the nodes are expected to move in well-defined patterns
and concentrate in higher density urban regions. In fact, the vehicle is the most
powerful sensing platform in any MANET, since it contains various types of highly
reliable sensors while almost eliminating energy constraints, due to its rechargeable
battery while driving, and having communication capabilities through cellular and
wireless networks on urban areas.
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The OBD system was first introduced to regulate emissions, but nowadays
its applications have grown from helping aftermarket maintenance services to Eco-
driving applications. To access sensor information using the OBD system, there
are Parameter IDs (PIDs) that identify individual sensors. Some PIDs are defined
by regulatory entities and are publicly accessible. However manufacturers may
include other sensors’ data under specific and undisclosed PIDs. In our case study,
all vehicular sensors were collected using public PIDs.

Table 4.2: Data acquisition characteristics

Vehicle 1 Vehicle 2
Engine 1.0 16v 1.6 16v
Max RPM 7000 7000
Gears 5 5
Power(hp) 76 122
Weight 1025 kg 1000 kg
Manufacturer Renault Hyundai
Trips 26 8
Drivers 5 4

To illustrate the general process of collection and preprocessing of raw sensor
data, we will describe a case study conducted by the authors which involved sensor
data from two different cars. Both vehicles were used in daily commutes conducted
by multiple drivers in urban environments, and the trips were logged using a
Bluetooth OBD adapter and a smartphone. Table 4.2 introduces characteristics
of the collection process, such as the vehicles’ and trips’ characteristics.

Vehicular sensor data is subject to errors from two sources: the sensors them-
selves which are naturally uncertain and the collection process that suffers from
communication and storage problems. In the face of this, it is important to pre-
process data before submitting it to operations and models. When dealing with
vehicular sensor data, the main problems [Rettore et al., 2016a]) that one should
look for are missing data caused by communication absence or interruption when
logging readings and outlying values from erroneous sensor readings because of
communication problems or even sensor malfunction.

Incomplete data is a challenge when fusing sensor data since it may lead
to incorrect assumptions and, consequently, conclusions. Virtual sensors may not
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output correct values or even not work at all because their input data or part of
it is missing or incomplete, hence the importance of identifying and treating this
problem. Treating the data probabilistically may resolve incompleteness issues
with the data. However it is not guaranteed that all vehicular sensor data will
follow a known probability distribution. For our testing purposes incomplete sensor
data is invalidated, so if a virtual sensor requires multiple sensors as input and one
of these has experienced any problem that caused a missing value in a time interval,
the virtual sensor will not be able to output values in this interval.

Identifying outlying values is a difficult problem and consists of a separate
field of study, which advocates for its complexity and importance. A virtual sensor
that takes outlying values might produce equally incorrect values, stressing the
importance of detecting and treating these values before they are fed to virtual
sensors. In our test data, outlying values were identified and treated manually,
given the difficulty of these processes.

4.2.3 Operating Vehicular Data

In this section, we discuss the basic operations used to combine data from multiple
sensors and create new information. Part of these operations was implemented
in a framework we developed to allow rapid prototyping of the virtual sensors,
we will further present, while other operations were used to treat and combine
information in other related works. The operations are divided in three categories:
(1) mathematical, (2) logical and (3) models, they are further discussed in the
sequence.

4.2.4 Mathematical Operators

Arithmetic operators may seem simple and not used in a virtual sensing context,
but they allow the creation of virtual sensors based on simple operations like
sum, division, and derivation. These sensors measure aspects like a variation of
a variable’s values individually and related to other variables’ and also produce
transformed values, allowing them to be normalized and fitted to specific scales.

Figure 4.7 illustrates the results of calculations performed on raw sensor
data to obtain information about the vehicle’s gear and acceleration. Figure 4.7a
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(a) Speed to RPM coefficients. (b) Acceleration observations.

Figure 4.7: Example of calculated virtual sensors.

presents the result of the division Speed/RPM , used to investigate the relationship
between these sensors’ readings, controlled by the vehicle’s transmission system.
These results give us the signs of gear use when we observe different horizontal
groupings. To further investigate driving behavior, an important measure is an
acceleration, which is the variation of speed(S) on time(t), mathematically defined
by ∆S/∆t. The results of this division are shown in Figure 4.7b and will be further
investigated in the upcoming sections.

4.2.4.1 Logical Operators

Logical operations are key to monitor values and combine conditions, that is, one
might be interested in monitoring different variables for abnormal values to gener-
ate an alert, which is achieved by monitoring individual conditions and combining
them to generate the higher level alert. In fact, in the vehicular context, moni-
toring as many aspects about a car’s operation as possible is the way to identify
and diagnose mechanical issues that may appear. The problem with monitoring
values resides in determining limits and values to distinguish common situations
from abnormal conditions.

Determining a limit for acceptable values from a given variable may be as sim-
ple as using arbitrary values, which is a valid approach for certain use cases. How-
ever, more refined applications of logical operators require also a deeper knowledge
about the monitored variables and their expected values, which can be achieved
using probability distributions and statistical tools that determine how likely is a
value and how distant from common readings is it. Figure 4.8a presents the distri-
bution of acceleration values calculated from speed sensor data, which roughly fits
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a normal distribution represented by the red curve. According to the density func-
tion of this distribution, in a sufficiently large collection, only 8% of the values will
be greater than 7 km/h/s and smaller than -7 km/h/s, thus, a reasonable value to
distinguish abnormal accelerations and decelerations would be these limits, given
their low probabilities.

(a) (b)

Figure 4.8: Distribution of acceleration values (a) and Route between areas delim-
ited using the geofencing technique (b).

An example of a logical operator the application of conditions to location
data is a technique called geofencing. The geofencing technique establishes a geo-
graphical region – real or imaginary – and determines which points or observations
occur inside or outside this region. Among the applications of geofencing is moni-
toring an entity – in our case, a car – through time and determining when it was
driving through a determined region. Figure 4.8b illustrates this example, deter-
mining a red region, which could account for the operation area of a transportation
service where its vehicles are only supposed to traffic.

4.2.4.2 Models

The model category of operation comprises elaborate statistical and machine learn-
ing methods that transform raw sensor data to produce refined information about
the vehicle, its driver, environment and context. These methods normally benefit
from large collections of data, whether to distinguish different groups and cate-
gories or to train models that predict values from new inputs. Given this charac-
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teristic, virtual sensors based on these operations will produce as better results as
higher quality training data is provided.

Since collections of vehicular sensor data play an even more important role for
these operations, it is necessary to discuss desirable attributes of data collections
to produce better quality results. Naturally, larger datasets will improve virtual
sensors’ results since they are more likely to contain a larger diversity of situations,
and it is expected to contribute to predictions and clustering accuracy. However,
large collections of data may contain many observations of few events, instead of
few – yet sufficient – observations of many different events, which will result in
biased predictions. It may seem that comprehensive dataset are always desirable
for predictive and clustering models. In fact, they are fundamental to detect as
many variations of a given feature as possible. However highly focused collections
are beneficial when looking for very specific and subtle variations, thus the decision
between diversity and specificity is up to the designer, who should understand how
their virtual sensor would benefit from each attribute.

Figure 4.9: Speed and RPM relationship defined by gears.

Clustering algorithms gather individual elements according to one or mul-
tiple characteristics. Grouping sensor readings may highlight similar situations,
tendencies, and profiles, which may count as simple insights on raw data or new
and valuable information about vehicles and their operating context. An applica-
tion of clustering techniques is illustrated in Figure 4.9, which shows sensor data
from speed and engine’s revolutions per minute sensors. The variables these sen-
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sors monitor are related mechanically by the transmission system and its gears,
that transmit engine revolutions to speed in different ratios. In Figure, there are
four groupings of points, each of these represent an active gear, which is identifiable
clustering these points by their revolutions to speed ratio.

Other types of algorithms and models also produce valuable results from raw
sensor data. For instance, supervised learning algorithms are capable of identifying
drivers based on a labeled set, a mixture of Gaussian probabilities is capable
of identifying events based on collaborative sensor data [Chen et al., 2016]) and
Kalman filters measure important variables to stability control systems [Wenzel
et al., 2007; Boada et al., 2016b]).

4.2.4.3 Using Processed Data

In this section, we explore the uses of vehicular sensor data by virtual sensors. The
examples we present will explore a vehicle’s operation state, drivers and context
as these aspects influence sensor readings and, thus, are indirectly sensed. To
develop the virtual sensors, we used vehicular sensor data captured using the OBD
port as well as other sensors from smartphones that are absent in a vehicle (e.g.,
accelerometer).

4.2.4.4 Road Artifacts

(a) (b)

Figure 4.10: Accelerometer readings on trips (a) and Cumulative precision of driver
identification (b).

Given modern vehicles’ ubiquity and their sensors’ variety and quality, they
represent an important sensing tool for environments where they traffic. Direct use
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of such pervasiveness is the ability to sense road artifacts in a larger scale to create
a road state vision that will allow routes to be traced using better quality roads
and city administrators to plan maintenance services where and when they are
needed. Our sensor data collection system had access to accelerometers embedded
in the smartphone, which lead to the basic identification of potholes.

Figure 4.10a shows accelerometer readings during a trip on which some pot-
holes and rough roads were experienced. Higher acceleration values represent more
intense vibrations sensed by the accelerometer and, thus, are more likely to repre-
sent an actual pothole or other disturbance on the road. It is important to notice
that even though the readings captured are precise, a single trip is not enough to
ensure the presence of an artifact. Numerous factors can produce similar vibrations
to those of road artifacts and can produce false positive results. An alternative to
reduce false positive results and ensure more accurate locations of road artifacts
is described in [Chen et al., 2016]), which uses collaborative sensing to determine
pothole locations on roads using multiple sensing vehicles.

4.2.4.5 Driver Identification

The set of steps developed to identify who is the driver follows three steps. The
first one is to eliminate features, on the dataset, that contain missing values or
that are not influenced by driver behavior (e.g., engine temperature, altitude).
Secondly, we reduce the number of features, based on its variability, to eliminate
correlated sensors data. Finally, we identify the drivers using supervised classifi-
cation algorithms.

The processing steps were applied to vehicular sensor data to develop a new
virtual sensor that identifies the current vehicle driver among a set of known
drivers. We performed the Principal Component Analysis (PCA) to reduce the
features to the most variable features. In the next step, we applied the moving
average on the dataset and classified the drivers using the Extremely Randomized
Tree algorithm. Finally, we output the current driver identity with an accuracy
above 98%.

Figure 4.10b shows the output of driver ID sensor. As we can see, in the
begin, the methods achieve 100% of precision and drops to over 98% while the
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driver behavior resembles to the others along the observations, resulting in false
positives.

4.2.4.6 Driver Behavior

The U.S. Department of Transportation’s recently showed the number of deaths
in motor vehicle crashes in 2015, which is above 35 thousand people [Administra-
tion, 2016]). They also argue that alcohol, speeding, lack of safety belt use and
other problematic driver behaviors are contributions to the death in motor vehicle
crashes. The driver behaviors vary considerably depending on age and gender,
drugs consumption, the type of road used, distracted driving attitudes [Schroeder
et al., 2013]), and other factors. For these reasons, the study of driver style has
emerged to increase driving safety and, as a consequence, reduce deaths in traffic.

Considering as input data accelerations, breakings and turnings collected
from accelerometer sensor of smartphone, it is possible to list its angular and
lateral acceleration with the vehicle angular and lateral acceleration, once the
smartphone is inside the vehicle. Then, different maneuvers can be detected by
thresholds on these measurements. In that way, the rules to define a driver style
can be defined by applying thresholds on the z-axis (representing acceleration and
breaks), aiming to identify abrupt peaks that indicate aggressive increases of speed
or harsh braking. Additionally, excessive speed in left or right turns is detected
by thresholds on the x-axis acceleration, which outputs higher values in these
occasions.

Figure 4.11 presents an application of these rules, as an example to identify
aggressive and non-aggressive driver behavior. The virtual sensor outputs which
kind of behavior the driver is having on each observation. As an example, we iso-
lated the abnormal observations considering 90% under normal bi-variate density.
The observations outside the ellipse can be classified as aggressive driver behavior,
once the z-axis shows the acceleration and breaks with peaks between more than
3.5 and less than -0.5. Besides that, the x-axis shows different accelerations in the
right and left turns, that can be associated with the vehicle acceleration to find
evidence of vehicle losing traction, for instance.

On the other hand, the understanding of drivers’ emotional state can pro-
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Figure 4.11: Smartphone accelerometer sensor with thresholds to determine driver
behavior.

vide extra information about their driving style. Also, their feelings can be used
to supply a vast set of recommendations. As an example, we can consider the en-
vironment temperature, the noise inside the vehicle and the driver sweating, and
develop a simple rule that list these aspects to provide a virtual sensor that output,
if the driver is getting dehydrated and needs to drink some water or turn on the
air conditioner. In that case, the input data can be collected from the sensor as a
microphone to detect the level of noise inside the car and indicate if the windows
are open, wearable sensors on wristbands or headbands that measure and detect
skin temperature, can be used to show if the driver is sweating, and finally the
temperature sensor.

4.2.4.7 Good and Bad Driver

Telling apart good and bad drivers is a subjective task and quantifying this differ-
ence requires elaborate methods. In this example, we define a set of rules that may
indicate the driving quality of a driver. The rules describe what is expected from
a good driver in an urban environment. Thus, a driver will be judged as badly as
many rules are broken at any given moment of a trip. The rules that will be used
to define good driver are:

1. Speed values are below 100km/h

2. Acceleration between 7km/h/s and -7km/h/s

3. No driving after 23:00
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4. No aggressive driving style

5. Engine revolutions below 60% of vehicle’s capacity

Rules (1), (2) and (4) measure the driver’s tendency to exceed speed limits,
accelerate abruptly and generally behave aggressively in traffic, rule (3) is related
to general safety, since crimes and accidents are more expected to be more frequent
late in the night and rule (5) indicates conscious use of the vehicle’s engine, which
accounts for fewer maintenance costs and engine related problems.

To verify a driver’s compliance to these rules, data from both physical and
virtual sensor must be analysed. Rules (1), (3) and (5) are direct verifications of
speed, time and RPM sensors using rules as described in section 4.2.4.1, rule (2) is
verified by defining the limits also discussed in section 4.2.4.1 to the acceleration
data calculated in section 4.2.4 and rule (4) is the interpretation of the virtual
sensor presented in section 4.2.4.6.

Figure 4.12 presents an application of these rules to realistic data generated
from our real sensor dataset. In this example, we enhanced sensor readings to
force rule breaks and produce a scoring system that measures how many rules
were broken. Since rules define the behavior of what was defined as a good driver,
according to this scoring system, drivers will be as bad as many rules they break.

With this example, we showed that applying an elaborate set of rules to
a dataset formed by both physical and virtual sensors can produce high quality
and complex information. The definition of good and bad drivers, even though is
based on threshold values for sensors, shows that is possible to measure abstract
aspects of drivers, which may contribute to services like insurance models that
charge customers based on how much and how good they drive.

4.2.5 Section Remarks

We presented the design process of vehicular virtual sensors, which are sensors that
output new data based on input from other sensors and models or operations de-
fined by designers. Modern vehicles have hundreds of accurate sensors distributed
on their bodies for internal controlling purposes and the data these sensors output
is available through a diagnostic port – OBD – that permits this data to be logged
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Figure 4.12: Instant precision of driver identification.

and processed. The variety and level of detail of vehicular sensor data allow virtual
sensors to produce new, accurate, and complex information about the vehicle, its
driver and context.

The design process of vehicular sensors was summarized into three stages:
collection, operation, and presentation of new data. The collection process involves
gaining access to sensor data using the OBD port and the problems related to
sensor reading one might face when conducting a collection of vehicular data. To
depict a collection process and the data related problems, we presented a collection
we conducted using two cars and multiple drivers, the issues encountered and the
solutions we used to minimize them.

Operating vehicular sensor data leads to various new information: from ac-
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celeration rates to gear states. In this stage, we presented some operation forms
that leveraged new aspects from our collection of sensor readings. For mathemat-
ical operators, we presented derivations from multiple data sources that produce
insightful data about a vehicle’s operation, for logical operators we showed the
usefulness of determining a range of values – for sensor and location data – and
also the importance of choosing adequate limits to isolate abnormal values. Fi-
nally, to exemplify the usage of models and algorithms on vehicular sensor data we
developed a method to identify the current gear of a vehicle’s transmission system
by clustering sensor data.

The final step in the design process is outputting calculated data to users
and other systems. In this stage, we presented examples of virtual sensors created
using operations we defined. The sensors presented take advantage of the volume
of data available using the OBD interface to extract information about a car’s
context and drivers.

In summary, Figure 4.13 shows how our design of fusion on VDS worked in
this study. Where, the OBD vehicular sensors feed the fusion process, the data
preparation deal with data aspects showed in Chapter 3, data processing covers
the related methods, and finally resulting in a set of vehicular virtual sensors
as the data use. As a result, the SM is benefited with the development of an
approach to providing virtual sensors, which allows reducing the costs to embedded
new physical sensors on the vehicle, decreasing its weight, hence reducing fuel
consumption and emissions in a city.

4.3 A Method of Eco-driving

The development of actions to reduce fuel consumption and emissions and in-
crease transportation systems’ efficiency has become a huge challenge. Thus, a
low-cost solution to improve fuel efficiency and reduce environmental damages is
eco-driving, a group of behaviors focused on improving these aspects. Fuel con-
sumption varies according to different factors: two different vehicles are expected
to consume more or less fuel according to their engines’ sizes or depending on the
person who is driving them. In this section we present a gear virtual sensor for
manual transmission cars, which adds information to understand drivers’ habits,
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Figure 4.13: Design of fusion on VDS for vehicular virtual sensors.

allowing to analyze each gear individually about consumption. Our methodology
developed gives the driver recommendations of the best gear considering speed
and torque, reaching up to 29% averaged of efficiency in the fuel consumption and
21% averaged in CO2 emissions reduction.

Fuel consumption is a factor that varies according to drivers’ habits. Two
different vehicles are expected to consume more or less fuel according to their
engines’ size. However, the same vehicle may behave differently depending on the
person who is driving it. As an example, someone who drives a car aggressively and
accelerates it more than another person who uses it more consciously is expected
to consume more fuel. From an environmental - and even economic - point of
view, it is desirable that drivers interact with their vehicles in a way that is as
fuel efficient as possible, which reduces costs with refueling and greenhouse gases
emissions.

Eco-driving is a set of types of behavior and techniques designed to reduce
fuel consumption, which include recommendations on a person’s driving style, the
way and frequency a vehicle is used, its configuration, accessories, and mainte-
nance. Eco-driving is part of a comprehensive approach to reduce the transport
sector’s contribution to a greenhouse effect. In order to increase a driver’s fuel
efficiency on a car, and thus, reduce gas emissions, we developed a method that
analyses historical vehicular sensor data to suggest a gear shift that will result in
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less fuel consumption.
Modern vehicles’ control systems rely heavily on sensor data to control their

stability and contribute to a safer driving experience. These sensor data are avail-
able through the OBD port. For the experimental setup of this work, we used
Bluetooth adapters to record OBD data using smartphones.

Vehicular sensor data by itself does not present valuable information to the
drivers since most of this data is used by the Engine Control Unit (ECU) to tune
it and does not have a clear meaning to an inexperienced driver (e.g., oxygen and
fuel pressure sensors). Moreover, the portion of sensors that indicate meaningful
information to the regular driver is naturally presented by the vehicles’ gauges
(e.g., engine revolutions per minute and current speed). A challenge that arises is
to present useful and valuable information as well as to provide services to drivers
based on the readings of their vehicles’ sensors.

This section presents a virtual sensor to provide a new service to drivers
who share a common vehicle. The sensor identifies the current gear in a manual
transmission vehicle. This information is useful to identify situations in a trip that
increase fuel consumption. Having the gear information in a dataset of multiple
drivers, we propose a method to give recommendations as to the best gear to drive
at a given speed to improve the vehicle’s fuel efficiency.

The remainder of this work is organized as follows. Section 4.3.1 presents
the related work. Section 4.3.2 describes the collection process and characteristics
of the data we acquired from our test vehicles. Section 4.3.3 discusses the steps
and processes applied to our sensor data before using it. Section 4.3.4 explains the
gear virtual sensor. Using the new sensor and other vehicle’s sensors, we propose
a method to recommend gear shift in Section 4.3.5, aiming for fuel economy. Sec-
tion 4.3.6 shows the results of gear shift service simulation. Section 4.3.7 explore
the applicability of recommendations system in a distributed scenarios. Finally,
Section 4.3.8 presents our conclusions and future work.

4.3.1 Related Work

There are several studies in the literature related to driver behavior and efficient
fuel consumption. Driving analysis is a topic of interest due to the increase of the
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safety and efficiency issues in vehicles. Many companies are investing in specialized
services of eco-driving to teach their employers, to reduce fuel consumption. For
instance, Pañeda et al. [2016] characterized an efficient driving process for com-
panies of the road transport sector. Their method allows ranking accurately each
driver, allowing an individualized learning process, to reduce fuel consumption
with a low investment.

The CGI Group Inc [CGI, 2014]), conducted a study based on more than 3
million Scania Truck trips, across seven European Union countries. They compare
the impact of eco-driving coaching for different fleets and countries. Moreover,
they proposed an estimated effect of coaching (EEOC), which provides a realistic
estimate of the fuel savings to be gained from eco-driving coaching.

Corcoba Magaña and Muñoz Organero [2016] proposed a solution to reduce
the impact of such events on fuel consumption. They developed a system to
detect traffic incidents and provided an optimal deceleration that improved the fuel
consumption up to 13.47%. Jeffreys et al. [2016] compared drivers in Australia who
learned to apply fuel efficiency techniques to drivers who did not. They monitored
1056 private drivers over seven months, among them 853 drivers received education
in eco-driving techniques, and 203 were monitored as a control group. The results
showed that drivers who received eco-driving instructions presented a reduction
of 4.6% in fuel consumption. Rutty et al. [2014b] conducted a similar study in
Canada, resulting in a decrease of fuel consumption and CO2 emissions by up to
8%.

Differently, of the previous studies, we combined the efficient fuel consump-
tion approach and the driver identification to achieve a personalized eco-driving
recommendation service better. This allows introducing game strategies as ranking
users of the same car based on their efficiency, for instance.

4.3.2 Data Acquisition

Nowadays, modern vehicles have high technology embedded systems to improve
their driving safety, performance and fuel consumption, the latter is measured in
Kilometer per Litre (KPL). To achieve these improvements, manufacturers have
invested both in quantity, and quality of sensors vehicles possess. Currently, a
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vehicle collects information from hundreds of sensors that are connected to the
ECU through an internally wired sensor network [Qu et al., 2010]) and the data
they output are accessible using the OBD interface.

The data collected from the sensors in the car are available through OBD
Parameter ID (PID). Table 4.3 shows some of the data collected from sensors
whose readings are available using the combination of smartphone, vehicle, and
virtual sensors. There are also other hundreds of sensors that can be accessed
using PIDs – some of which are defined by the OBD standards and others defined
by the manufacturers. In this work, we are interested in data collected from the
vehicle and also data provided by virtual sensors.

Table 4.3: ECU data, smartphone and virtual
sensors

Collected Data
Smartphone Vehicle Virtual Sensor

Device
Time

Trip
Distance Torque * Engine

RPM * Acceleration *

GPS
Location

Fuel
Remaining Fuel Flow * Speed * Reaction

Time
Speed
(GPS)

Ambient
Air Temp

Engine
Coolant Temp *

CO2

Average *
Air Drag
Force

GPS HDOP Cost
km Inst

Adapter
Voltage *

CO2

Instant *
Speed/RPM
Relation *

GPS Bearing Cost
km trip

KPL
Instant * Pedal * Gear *

Gyroscope Barometer Intake Air
Temp *

KPL
Average

Altitude
(GPS)

Trip KPL
Average Fuel Level

(*) selection to the data processing stage

Table 4.4: Characteristics of data
collected

Vehicle 1 Vehicle 2
Engine 1.0 16v 1.6 16v
Max RPM 7000 7000
Transmission 5 5
Power 76 cv 122 cv
Weight 1025 kg 1000 kg
Manufacturer Renault Hyundai
Model Sandero HB20
Trips 36 8
Trip Time 28 hours 3 hours
Type of Trip Naturalistic Controlled
Drivers 10 4
Gender 6 M, 4 F 2 M, 2 F
Age 25–61 20–53

For the experimental setup of this work, we collected sensor data from two ve-
hicles shared between multiple drivers using Bluetooth OBD adapters and smart-
phone. Table 4.4 summarizes information about the vehicles and the collection
process. An important aspect of the process regards the type of trips logged for
both vehicles: all four drivers sharing Vehicle 2 were asked to drive through two
different routes, whereas Vehicle 1’s drivers used it for various purposes in their
daily routines.
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4.3.3 Data Preparation

We conducted our analysis considering the premise of only using vehicular sensor
data or variables calculated from them. The goal is to answer the following ques-
tion: "Are vehicular sensor data capable of providing information about drivers,
their behavior, and even further, ways they could improve the vehicle’s fuel con-
sumption?"

After that, to address our premise, we avoided data collected from a smart-
phone as shown in Table 4.3, which lists 14 features collected from vehicle sensor
data. In this step, we also created extra data based on vehicle to provide more
explanation about the vehicle and the driver’s behavior. The work [Rettore et al.,
2016a]) guided us to better understand vehicular data after processing it. This
work leads us to eliminate and treat data problems such as outliers, conflict, in-
completeness, ambiguity, correlation, and disparateness.

4.3.4 Gear Sensor

In combustion engine vehicles, torque is transmitted to wheels by a transmission
system composed of multiple gears with different ratios. Figure 4.14 illustrates
the different relationships between the engine’s number of revolutions per minute
(RPM) and the vehicle’s speed, as measured in our test vehicles using the OBD
system. In both graphs, points concentrate in multiple lines, which represent
different gear ratios.

Even though the current gear engaged is valuable information to describe the
driver’s habits, it is not available in any signaling protocol of the OBD interface in
cars with manual transmission. In order to identify the current gear of a vehicle
through OBD data, we evolved our previous work [Rettore et al., 2016b]) to develop
a solution based on clustering algorithms that explore the different gears linear
relationship between speed and RPM, using a previous virtual sensor created from
an instantaneous relation Speed/RPM. This method allows us to separate each
group of points and label them to extract gear information.

Since the points belonging to the same gear are grouped in a strongly cor-
related group, their speed to RPM quotient is also close in value. Our method
to label a vehicle trip requires a driver to supply a single dataset that comprises



4. Intra-Vehicular Data Fusion 110

(a) Vehicle 1. (b) Vehicle 2.

Figure 4.14: Correlation between vehicle’s speed and RPM after clustering.

all gears of the same vehicle as training data. Having this dataset, a k-means
algorithm clusters it in n + 1 groups, where n is the number of gears previously
informed, and the extra gear state represents a situation where no gear is engaged.
The outcome of this process is a new column in the dataset that indicates the
current active gear of each observation, shown by different colors in Figure 4.14.
Figure 4.14b presents another peculiarity, which is the absence of the fifth gear.
Even though the vehicle has five gears, the last of them was not used in the trip
that generated the plot.

4.3.5 Efficient Gear Change Service

Once there is data labeled by drivers about fuel consumption, it is possible to
provide motorists with valuable insights regarding ideal gears aiming a better fuel
consumption. The recommendation is based and targeted solely on fuel consump-
tion data. Thus other aspects of vehicle operation are not taken into consideration.
In fact, by accepting a gear change recommendation, the car is expected to have
only a better consumption performance, which may have the opposite impact on
torque availability and overall performance.

The process of recommending a gear shift is based on historical vehicular
data, particularly the fuel consumption on specific gears and speeds. Given a
current speed, gear, and consumption, the recommendation assesses whether there
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is a gear for which average consumption is better than the current gear state. As
illustrated in Figure 4.15, the recommendation map establishes a xy plane on z-
axis based on the current vehicle speed and checks if there is a gear in y-axis
for which the average x values of fuel consumption are better than the current
setup. Besides that, the information of torque is also applied in a recommendation
function. Another important point of that recommendation map, it concerns to
isolate observations less than 1000 RPM. In general, these values are related to
the synchronizations time between gears and add noise to the service.

Figure 4.15: Speed and fuel consumption relationship for different gears of Vehicle
1.

It is important to notice that, since the recommendation process is based on
historical data, for instant speeds higher than previous higher historical speeds,
there is no recommendation available. However, as the process immediately in-
cludes the analyzed data in the historical dataset, new observations on the same
speed will be eligible for recommendations. Figure 4.16 shows the historical sce-
narios of each vehicle regarding gear frequency at every speed. As mentioned in
Section 4.3.4, the context of data collection is different in both vehicles, resulting
in a different number of gears used between them. Another observation is the
initial speed of the first gear, which has different values of 0 km/h. This situation
is highlighted in the Vehicle 2 data, starting the first gear in 5 km/h, which reflects
the recommendation restriction of 1000 RPM, or an inconsistent clustering per-
formed in the previous step, which it can be explained by an insufficient dataset
to label the data properly.

Relating the use frequency of each gear at a given speed, it is possible to
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(a) Vehicle 1. (b) Vehicle 2.

Figure 4.16: Gear frequency at a given speed.

observe the overlaps between them. This situation represents the use of different
gears in the same minimum and maximum speed range. This information provides
opportunities for recommendations, is based on economical driving or even driving
to maximize the vehicle power. This work focuses on offering the driver the efficient
fuel consumption. Thus, to obtain the speed limits of each gear, the equation
(4.1) is applied, where the minimum speed of each gear ratio X is calculated, such
that the torque is the smaller of each relation and the provided by the method.
Moreover, also that minimum speed needs to respect the condition express in (4.1).
The representation of these minimum thresholds between each gear is highlighted
at the colored points on the x axis of Figure 4.16, where the torque is not less than
50%.

minSpeed(xgear, torque) = min(speedx|min(torque,max(torquex)))

minSpeed(xgear, torque) ≥ −2 ∗ sd(speedx) +mean(speedx)
(4.1)

This equation ensures that the minimum speed of each gear considers a spe-
cific torque, allowing that the recommendations relate to a medium power thresh-
old of the vehicle. This threshold is dependent on the vehicle engine and, therefore,
its generalization may not absorb the maximum efficiency of the recommendation
method. For instance, vehicles with different engines react differently with the ap-
plication of 50% of torque, i.e., the time to reach given speed and the final speed
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in both vehicles are different.
After applying the recommendation method to the entire historical vehicular

data, where the minimum torque is 50%, it is possible to note in Figure 4.17, a
new frequency distribution of gears at a given speed. The average of instantaneous
consumption of each gear indicates which gear best represents the fuel consumption
ratio. It is expected that the higher gears represent this relationship. In other
words, the recommendation seeks to advance the gear whenever the lower threshold
of subsequent gears are reached.

(a) Vehicle 1. (b) Vehicle 2.

Figure 4.17: Gear frequency at a given speed.

It is important to note that torque was added to the recommendation system,
to increase the effectiveness of the suggestion. However, the correct application
of this torque depends on the individual characteristics of each vehicle, i.e., the
torque required for the vehicle to move on rough terrain may vary due to these
characteristics. In this way, this generalist approach may not recommend an effec-
tive gear, considering the characteristics of the terrain (strong descent and rise),
for example.

In addition, to recommend gear shifts to improve fuel consumption perfor-
mance, another strategy can take advantage of drivers identification, ranking users
of the same car based on different parameters such as fuel consumption, aggres-
siveness, and vehicle care. This rank is usually present in games and strategies
that use gaming elements to encourage multiple users to improve some desired
aspect of their behavior.
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4.3.6 Results

Table 4.5: Evaluation of gear recommendation system

Vehicle 1
Drivers

1 2 3 4 5 6 7 8 9 10 Total
KPL Average 14.81 14.63 14.15 15.40 15.38 10.84 11.24 11.66 11.86 12.68 13.27
KPL Average
After Recommendation 15.34 15.95 14.70 19.57 16.32 13.82 13.50 14.88 13.86 13.80 15.17

Fuel Economy (%) 3.56 8.98 3.92 27.04 6.10 27.55 20.05 27.55 16.89 8.87 15.05
CO2 Reduction (%) 3.83 7.65 5.04 18.65 7.43 19.62 14.34 16.47 12.79 6.22 11.20

Vehicle 2
Drivers

1 2 3 4 Total
KPL Average 6.67 6.81 6.38 6.60 6.61
KPL Average
After Recommendation 9.49 7.59 8.31 8.73 8.53

Fuel Economy (%) 42.27 11.54 30.32 32.23 29.09
CO2 Reduction (%) 26.36 12.20 23.89 24.52 21.74

The evaluation of the recommendation system was made on each vehicle and
drivers separately. The first step was to aggregate all trips performed by the dif-
ferent drivers, forming a unique set of data that characterizes the historical vehicle
behavior. Then, the process of identifying the lower speed (based on a specific
torque) threshold of each gear was performed, and also the average fuel consump-
tion per gear. The next step was to apply the recommendation using the average
fuel consumption per gear. Given the difference in final consumption between
the original approach and the recommended approach, the final fuel consumption
is estimated based on the overall fuel consumption average per trip. Table 4.5
presents the results for the gear shift recommendations.

The average fuel consumption and CO2 reduction after the recommendation
reached more than 15% and 11%, and 29% and 21% in the Vehicle 1 and 2, respec-
tively, considering historical data. It is noted the situations where the recommen-
dation resulted in significant improvements and situations where the improvements
were not very significant. The lowest contribution of the recommendation (Fuel:
3.56% and CO2: 3.83%) occurred with the Driver 1 of the Vehicle 1, and it is
explained by the trips recorded, that is, the stored trips of this driver present
mostly highways and, thus, the gear with higher frequency of use is the one that
best presents the relation between fuel consumption and emissions, consequently.



4. Intra-Vehicular Data Fusion 115

On the other hand, the highest contribution of the recommendation system (Fuel:
42.27% and CO2: 26.36%), with the Driver 1 of the Vehicle 2 is explained by the
excessive use of a given gear exceeding the lower threshold of subsequent gear.
The result of this behavior exploits as much as possible the recommendation of
the greatest relation between gear and fuel consumption. The recommendation
for Driver 4 of Vehicle 2 also achieved a high economy (Fuel: 32.23% and CO2:
24.52%), explained by the trips in the urban environment, reducing the gear shifts
and keeping high gear until the lower speed thresholds are reached for the gear
reduction occur.

4.3.7 Collaborative Recommendation Service

Vehicular Ad-hoc Network (VANET) are an application of mobile networks con-
cepts to urban environments, more specifically, vehicles. An important aspect
regarding nodes in a VANET is their moving speed and communication radius,
which results in short contact periods. However, despite short communication
times, VANET can disseminate large volumes of data leveraging communication
between vehicles and between vehicles and roadside infrastructure.

In a network through which vehicles can exchange information between them-
selves, and with infrastructure, vehicles will be able to share data to analyze fuel
consumption and apply gear recommendation. Having access to information of dif-
ferent vehicles and drivers, it is expected that new driving profiles improve overall
recommendation impact in the network. With driving habits information of other
drivers, new gear utilization limits are expected to be discovered and, consequently,
suggested to drivers that do not utilize them.

When recommending gear shifts to reduce fuel consumption, data from
drivers of similar vehicles are desired given its positive impact and mechanical
similarity. Our simulations used data from drivers in common vehicles as a base
to calculate limits from which gear should be selected. By adding new data, these
limits were different from those determined with local vehicular sensor data because
other drivers utilize different gears in lower speeds. As a consequence, simulated
fuel consumption from collaborative recommendation was lower than that from
local data only.
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Our service evaluation in a distributed context (e.g., VANET) was conducted
considering drivers of the same vehicle as different drivers in separate vehicles, thus,
in our first case, there will be ten drivers in ten separate identical vehicles and our
second case four drivers in four individual vehicles (see Table 4.4). Furthermore, we
assume that in some moment all vehicles will have exchanged sensor information
with each other and from this moment on, the recommendation system recalculates
gear limits to suggest more fuel efficient gears to drivers.

(a) Fuel economy after driver pairs share
data.

(b) CO2 emissions after driver pairs share
data.

Figure 4.18: Pairs of drivers sharing data.

Figure 4.18a and 4.18b present a fuel economy and CO2 emissions as seen
by each driver, meaning that it shows the effect of recommendations as contacts
between individual drivers happen. The contacts measure the fuel economy and
CO2 reduction from the source driver perspective, in other words, the contact
between Driver i and Driver j enable the exchange sensor information, and a new
gear recommendation is performed. Later, the recommendation is applied in both
vehicles and evaluated in the point of view of the Driver i. An aspect related to
local recommendation worth noting is that it applies to a single driver’s historical
sensor data and can also benefit from new collections of sensor readings. This
occurs because the service looks for the lowest speed and torque to recommend a
gear change and new lowest speed situations may appear due to behavioral changes
or even new roads. We can see these situations in the diagonal, where i = j, and
we have Driver i contacting themselves.
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Our evaluation considers fuel economy and CO2 emissions from network con-
tacts which allow historical sensor data to be exchanged. However, in a wider
perspective, individual fuel consumption improvements may lead to an overall
greenhouse gases emissions and fuel consumption reduction. Moreover, in a Smart
Cities, especially, ITS, such improvements may scale to cost reductions for drivers,
suppliers, environment, and administrators of these systems.

4.3.8 Section Remarks

We propose a gear shift recommendation service aiming to improve the fuel con-
sumption. To do so, we developed a virtual gear sensor for a manual transmission.
Our method analyses the vehicle’s historical sensor data to suggest a gear shift
that results in more efficient fuel consumption. Our gear shift recommendation
service reached up to 29% averaged of efficiency in the fuel consumption and 21%
averaged in CO2 emissions reduction.

In summary, Figure 4.19 shows how our design of fusion on VDS worked in
this study. Where, the OBD vehicular sensors feed the fusion process, the data
preparation deal with data aspects showed in Chapter 3, data processing covers
the related methods, and finally resulting in a eco-driving suggestion as the data
use. The recommendation system benefits from a distributed scenario, such as in
SM in ITS layer, for instance. As the vehicle historical data is aggregated with the
driver’s behavior, our suggestion can identify the non-existent speed limits and,
modify the previous recommendation. The benefit of these distributed scenarios
is in the variation of this historic by vehicle. Being able to achieve the definition
of eco-driving profiles for each vehicle in a network (VANET).

4.4 Driver Authentication in VANET

Given the number of vehicles traveling on the streets and highways around the
world, new challenges and opportunities arise in the face of the progress of cities
and society. Understanding vehicles’ mobility can lead to better information about
their efficiency, maintenance, and, in a broader context, traffic situations, events,
and pollution. Moreover, modern control systems embedded on vehicles rely on
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Figure 4.19: Design of fusion on VDS for eco-driving.

sensors to make the driving experience safer and more comfortable to the driver.
Data from these sensors are available through the OBD port. Among the chal-
lenges associated with accessing such data is to present useful information as well
as providing drivers with services and a vehicular network based on the sensors
readings.

In this case, VANETs use vehicles’ communication and sensing capabilities
to provide applications and services with data from the surrounding environment.
Moreover, a VANET contributes to the improvement of Advanced Driver Assistant
Systems (ADAS) and ITSs, which offer a variety of services, including traffic safety,
and comfort to drivers and passengers, such as access to social networks, video
streams, and route suggestion. Many of these systems need to authenticate their
users before providing them with content. However they do so in a way that an
illegitimate driver can use the vehicle.

With this issue in mind, this work presents a Virtual Sensor (VS) to authen-
ticate drivers based on their behaviors. This sensor is then used to differentiate a
legitimate driver from a suspected one. The identification is treated as an extra
factor to authenticate a driver and has two goals: to provide local services and net-
work services. The VS uses data collected from embedded sensors to identify the
person who is driving the vehicle, given a previously labeled dataset. Based on the
driver’s legitimacy, the VS can enable local and network services. To achieve these
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goals, we employed a methodology to identify drivers, with over 98% accuracy.
We also demonstrated that the presence of illegitimate vehicles might compromise
the quality of essential services provided by VANETs, once they are capable of
modifying the data which is being disseminated to the entire network.

The remaining of this section is organized as follows. Section 4.4.1 presents
the related work. Section 4.4.2 discusses driver authentication and concerns about
data privacy and security. Section 4.4.3 describes the collection process and the
characteristics of acquired data. Section 4.4.4 describes the process of data correc-
tions and the steps to reduce the number of features used to identify the driver.
Section 4.4.5 presents the Virtual Sensor (VS) to identify legitimate and suspected
drivers, as well as its evaluation. Section 4.4.6 analyzes the results when a sus-
pected driver disseminates data in a vehicular network. Finally, Section 4.4.7
presents the conclusions and future work.

4.4.1 Related Work

There are studies in the literature related to both the driver behavior and the
driver identification. Driving analysis is a topic of interest due to its importance
in providing safety in vehicles. In order to address it, several studies have fo-
cused on driving style recognition [Johnson and Trivedi, 2011; Fazeen et al., 2012;
Meseguer et al., 2013; Bergasa et al., 2014; Engelbrecht et al., 2014; Vaiana et al.,
2014; Riener and Reder, 2014; Castignani et al., 2015; Martinez et al., 2016; Hallac
et al., 2016; Kumtepe et al., 2016; Saiprasert et al., 2017]). Some of them iden-
tify who the driver is, whereas others classify the driver behavior as aggressive
and normal, for instance. Zhang et al. [2016] developed a driver identification
model using sensors available on a smartphone and the vehicle, through the OBD.
They evaluated three vehicles in two different environments, controlled and ordi-
nary. Considering only the vehicular sensors, the classification model obtained an
accuracy of 30.36% in the controlled environment with 14 drivers and 85.83% in
the ordinary environment with two drivers per vehicle. In contrast, we evaluated
two vehicles in both environments with five and four drivers, respectively, and we
obtained an accuracy above 98%.
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Carmona et al. [2015] proposed a novel tool to analyze the driver behavior,
providing detection of aggressive maneuver in real time. Aoude et al. [2011] de-
veloped algorithms for estimating the driver behavior at road intersections. They
introduced two classes of algorithms that classify drivers as compliant or violat-
ing. They also validated their approach using ordinary intersection data, collected
through the US Department of Transportation Cooperative Intersection Collision
Avoidance System for Violations (CICAS-V). Ly et al. [2013] showed that there
is a potential in using inertial sensors to distinguish drivers. The feature accelera-
tion did not play a significant role in this, but the features associated with braking
and turning events showed the opposite, the use of these sensors can potentially
identify a driver.

Other studies aim to strengthen the authentication between drivers and ve-
hicle. Most notably, some studies propose mechanisms to authenticate drivers
based on biometric features. For instance, Yuan and Tang [2011] proposed an
authentication mechanism based on the driver palm prints and palm vein distri-
bution. Similarly, Silva et al. [2012] proposed an authentication mechanism based
on electrocardiogram (ECG) readings, using sensors placed on the vehicle steering
wheel.

Similar to our work, Burton et al. [2016] used a simulator to monitor driving
patterns. They monitor features like pedal pressure, average trip distance and the
steering wheel pattern. They used Support Vector Machines (SVM) to identify
and authenticate drivers based on the extracted data. Similarly, Salemi [2015]
proposed an authentication mechanism based on data obtained through the OBD
port. That work extracted seven features from the data and applied SVM to
identify and authenticate drivers, obtaining an accuracy of up to 94%.

Our work differs from the previous identification and authentication propos-
als in the following aspects: it only considers data extracted from the vehicle itself
(e.g., unlike Burton et al. [2016]) and considers the driver behavior instead of sta-
tionary biometric data (e.g., unlike Yuan and Tang [2011] and Silva et al. [2012]).
Besides, our work differs from the Salemi [2015] in the adopted methodology to
identify drivers, which obtained higher accuracy (over 98%). We also combine the
authentication of drivers to provide customized assistance systems to legitimate
drivers and the network itself.
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4.4.2 Extra Factor for Driver Authentication

In this section, we discuss and propose an approach to authenticating drivers based
on their driving habits. It is necessary to identify the drivers from a set of data
of a particular shared vehicle. Once the dataset of individual drivers is labeled,
identifying drivers is a classification problem. A driver authentication methodol-
ogy enables new vehicular services, both internally and externally. Intra-vehicle
services regard the customization of ADAS, such as entertainment, ergonomics,
and fuel efficiency services. In the extra-vehicle services, a vehicular network may
allow message exchange, entertainment and personalized route suggestions based
on the vehicle’s driver authentication.

The process of identifying drivers is divided into six stages. Given the col-
lected data, the first stage prepares the data by correcting and eliminating variables
that contain missing values or that are not influenced by the driver behavior. In the
second stage, we use the Principal Component Analysis (PCA) to reduce the anal-
ysis space, keeping data with greater variability. In the third stage, we partition
the data into a training base and a test base, considering both a random parti-
tioning and a trip partitioning, which considers the start and end characteristics
of each trip. The fourth stage classifies drivers using the Extremely Randomized
Tree (Extra-Trees) algorithm. At the end of this step, it is possible to identify the
driver and provide data for the next stage that verifies if the driver a legitimate
one.

The fifth stage disregards the real driver identity and classifies the driver
as authentic or suspect. Finally, in the sixth stage, we perform an exploratory
analysis to try to improve the classifier accuracy. To do so, we treat the input
data in different ways to analyze the classification response. We use the raw data
(without data treatment), data normalized and data with windows between 30
and 180 seconds with a moving average. In addition, the importance of each
variable is checked using the random forest algorithm package, which maintains
the variables that most contribute to the prediction accuracy. Figure 4.20 shows
the identification flow to identify a legitimate/suspected driver.

It is worth mentioning that these steps describe the methodology that sup-
ports this proposal. This work uses the vehicular sensors themselves to determine
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Figure 4.20: Identification of a legitimate/illegitimate driver.

the driver identification, and, consequently, allows to enable (or not) local and net-
work services, with the authentication and identification of suspects, differently of
Salemi’s work [Salemi, 2015]) which does not focus on ADAS or VANETs services,
for instance.

4.4.2.1 Privacy and Security of Vehicular Data

Currently, the main authentication mechanism between a driver and the vehicle is
its key. In this mechanism, the key acts as an authentication token: any user with
the token is considered legitimate. This mechanism is highly insecure since the
token can be stolen together with the vehicle, granting illegitimate full control over
the vehicle. For instance, an intruder with the ignition key can access sensitive
private data from the drivers like their route preferences and exchanged messages.
The illegitimate can also use the stolen vehicle to attack the network, impairing
routing systems (by spreading fake messages) or driver safety systems (dropping
or ignoring safety messages).

One of the goals of this work is to strengthen the security of the authenti-
cation system, using the driver behavior as a second authentication factor. The
advantage of this approach is that authentication becomes based on features in-
herent to the driver, something an illegitimate cannot steal or replicate. However,
because it relies on the driver behavior, the solution becomes reactive, identifying
an illegitimate only after he/she bypasses the primary authentication mechanism.
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At this point, blocking the illegitimate driver access to the vehicle becomes unfea-
sible as it may cause an accident or harm the transport system as a whole. Still,
the identification of an illegitimate driver through the mechanism proposed in this
work enables a set of security measures. These features may be both intra-vehicular
(e.g., limiting the maximum driving speed) or inter-vehicular (e.g., notifying an
insurance company, the vehicle owner or the police of the theft and the current
location).

At any rate, the best course of action is to allow the vehicle to block the
illegitimate access to ADAS partially. In this approach, all applications that are
not vital for the vehicle or the network are blocked. That is, all entertainment and
comfort applications, as well as applications that contain sensitive information,
are affected. Again, messages related to the driver safety and the vehicle location
cannot be blocked due to the risks to other drivers. To complement this approach,
we also proposed that the vehicle periodically warn others whenever the current
driver is illegitimate. Upon receiving this warning, neighboring vehicles forward
the alert to others until it reaches a proper authority, who can take the appropriate
measures.

4.4.3 Data Acquisition

The collection process uses the OBD-II interface as the means of accessing the
vehicle data, transferring them via Bluetooth connection to a smartphone with
the Android, where the data is processed and stored through an app. Table 4.3
shows some of the data collected from sensors whose readings are available using
the combination of mobile phone, vehicle, and VSs. We are interested in data from
the vehicle and also data provided by VSs.

Moreover, we aim to answer the following question: Is the vehicular sensor
data capable of identifying the driver, based on its behavior? Thus, we focus on
the data collected from both vehicle and VSs, which are designed using existing
physical sensor data. A VS receives as input data from different physical sensors
and eventually other data sources, to generate more sophisticated data using an
algorithm. For example, the OBD interface may not provide a current gear of the
vehicle to its driver. Thus, we can design a VS that receives data from physical
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sensors, such as speed and motor revolution per minute, to infer the gear at a
given instant.

In this work, we also performed a case study to answer the question above,
using sensor data collected from two vehicles shared by fourteen drivers. Table 4.4
presents the setup of the data collection process1. An important aspect of this
process concerns the types of trips recorded by both vehicles: all four drivers
sharing Vehicle 2 were asked to drive through two different routes (controlled
experiment), while the ten drivers of Vehicle 1 used it for several ends in their
daily routines (natural experiment). The whole dataset size contains above to 90
thousand observations.

4.4.4 Data Preparation

We conducted our analysis considering the premise of only using vehicular sensor
data or variables calculated from them (VSs) in order to provide valuable informa-
tion about the driver identity and behavior. Based on this premise, we discard the
collected data that presents invalid values or does not reflect the driver behavior
such as the air friction force and fuel level. Thus, fourteen variables out of 40 were
preserved. Table 4.3 highlights the selected variables (*) for the next stage of data
preparation. In that step, we developed the gear sensor [Rettore et al., 2017]) and
performed the data treatment process [Rettore et al., 2016a]), which eliminated
and treated data problems such as outliers, conflict, incompleteness, ambiguity,
correlation, and disparateness.

The preparation stage treats and reduces the number of features. The latter
is an important task, given that processing time tends to increase significantly
with the number of dimensions of data. Thus, we first eliminated the features
that contain missing values, which interfere in the next steps. Afterward, we used
the Principal Component Analysis (PCA) to extract a set of relevant features.
This process identifies the most variable information from a multivariate dataset
and expresses it as a set of new features – Principal Components (PCs). These
PCs represent the directions along which the variation in the data is maximal.

1We encourage the community to explore the data acquired in this work, which is available
at http://www.rettore.com.br/prof/vehicular-trace/, such as its description and further
information.

http://www.rettore.com.br/prof/vehicular-trace/
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The choice of PCA instead of Factor Analysis (FA) is due to the components are
actual orthogonal linear combinations that maximize the total variance.

Figure 4.21a shows the percentage of variance in 14 PCs (number of evaluated
features). The first principal component has the largest possible variance. In other
words, the first PC contains as much of the variability in the data as possible.
Each following component contains the largest possible variance smaller than its
predecessor. The resulting vectors are an uncorrelated sorted set.

(a) PCs sorted by percentage of explained
variance.

(b) Data relevance considering the first two
PCs.

Figure 4.21: The most representative variables of the dataset.

Considering the first two PCs, we can explain over 90% of the dataset vari-
ance as depicted in Figure 4.21b, which illustrates the features variance explained
between this first two principal components (also called dimensions). The red
dashed line would indicate the expected average value if the contributions were
uniform. As we can see, each feature variance is explained by its contribution,
and nine of fourteen features represent the most data variability. Therefore, these
features can help to determine the driver behavior and his/her identity once these
features vary between among the drivers.

4.4.5 Identification of Drivers and Suspects

A challenge in solving a machine learning problem is to find the right algorithm for
it. That is because the best suitable algorithm depends on the set of data and the
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problem. Therefore, the choice of an algorithm depends on the expected results,
time constraints, data size, its quality, and nature. Based on these issues, we
should solve them using tools that guide us to select a machine learning algorithm
and its hyperparameters automatically. Thus, among the most known AutoML –
Auto Machine Learning – tools, there is the TPOT [Olson et al., 2016]), a tool
to explore thousands of possible machine learning algorithms and hyperparameter
settings.

Before using the TPOT, we analyzed the data to split it. Two partitioning
approaches were created: (i) Trips: all available trips were considered, dividing
them into training (70%) and test subsets (30%). This partitioning considers the
start of all trips as the training data, and the end of trips as the test data. It also
allows capturing a more comprehensive set of behaviors for each driver between
their trips. Due to its temporal observation. This dataset can identify the driver
in different environments; (ii) Random: partitioning conducted randomly aims
to eliminate the bias that may be introduced to the partitioning by the trips.
Subsequently, the driver training and test data were grouped, resulting in one
training base and one test base, respectively.

After performing TPOT, considering the type of partition, the best-chosen
algorithm was the Extremely Randomized Tree or Extra-Tree (ET) [Geurts et al.,
2006]). This algorithm is used to perform classification or regression and requires
that all predictors to be numeric, and does not allow missing values. The Extra-
Tree algorithm builds a set of unpruned decision trees, using a top-down strategy.
Moreover, ET chooses randomly the cut-points and uses the whole learning sample
to grow the trees.

We evaluated the Extra-Tree algorithm regarding accuracy and number of
features to determine a trade-off between them. Thus, we first performed the
classification using raw data, but the results were not satisfactory to achieve our
goal towards a personalized ADAS and network services. Consequently, we evalu-
ated nine features to reduce them, based on their importance to the classifier. To
do that, we used the feature importance metric included in the standard random
forest packages. One way to calculate it is by counting the number of times a
data pass through a node whose decision is based on a given feature. Using its
frequency, we calculated the feature contribution to the prediction function.
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We also applied a temporal window observation, similar to [Zhang et al., 2016;
Carmona et al., 2015; Aoude et al., 2011]), to process the dataset and create a new
subset, which is averaged by moving the average window. In that way, we explored
the sizes of the moving average and its importance to the classifier. We evaluated
raw data, normalized data and the moving average considering 30, 60, 90, 120, 150
and 180 seconds of observation, as well as two to nine features. Besides, the two
data partitioning metrics were used (trip and random) to assess the validity of the
approaches. These settings were chosen considering the importance of each feature,
above 85%, to the prediction function. For that reason, the type of features are
highlighted differently among vehicles, drivers, type of data treatment, and data
split, absorbing the maximum description of drivers in a specific vehicle, making
that process a customized approach to identify drivers and suspects.

4.4.5.1 Evaluation of Driver Identification

Considering the trip data partition, we evaluated the classification method using
the raw data (untreated) and observed that the accuracy reached 54% with nine
variables, dropping to 43% when only two of them were considered, for Vehicle
1, as depicted in Figure 4.22a. Otherwise, Vehicle 2 showed 42% accuracy with
nine variables dropping to 39% with two variables, as depicted in Figure 4.22b.
After that, we analyzed the results for the normalized data, which aims to evaluate
the classifier behavior and determine the ideal cut point for each vehicle. In that
evaluation, Vehicle 1, with nine features, showed 96% of accuracy dropping to 77%
with two features, whereas Vehicle 2 showed an accuracy of 93% dropping to 85%
with nine and two features, respectively.

We also evaluated the dataset using the moving average between 30 and
180 seconds. This process allowed to increase the classifier accuracy and reduced
the number of evaluated features. We noticed that the instantaneous sensor data
makes the decision a difficult and confusing task. Thus, by applying a 30-second
moving average to Vehicle 1, the accuracy was higher than 83% with nine features,
79% with six, 73% with four, 62% with three and 43% with two features, showing
the same result of the raw data with two variables. By increasing the window
size to 60 seconds of observation, there was an improvement in the accuracy that
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(a) Vehicle 1.

(b) Vehicle 2.

Figure 4.22: Accuracy vs. number of features using different data treatment tech-
niques.
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reached 95% with nine features and 50% with two. This improvement continued
as the window size increased, making it possible to identify the scenario where
the classification accuracy reached over 98%. We considered the window size of
120 seconds for the moving average, resulting in 99% accuracy with nine features,
above 98% with six and reaching 60% with two variables. This scenario repeats
for Vehicle 2. However, it is possible to maintain a precision above 99% with only
four variables.

That investigation showed the trade-off between accuracy and number of
features. Because of that exploratory analysis, we chose the best relation for each
vehicle, as being six features and moving average of 120 seconds of observation, for
Vehicle 1, and four features and moving average of 120 seconds of observation, for
Vehicle 2. This configuration led to an accuracy of 98% and 99% for Vehicles 1 and
2, respectively. When we considered both vehicles, the classifier accuracy achieved
over 98%. We assigned this difference, and also the performance aspects (resources
used – not discussed in this work), between these two vehicles to the use of different
routes and the amounts of collected data. Vehicle 2 was used in a controlled route
with eight trips and four drivers, and Vehicle 1 was conducted in ordinary routes
with twenty-six trips and ten drivers. Besides, Vehicle 2 allowed a more significant
variation of its driving, based on its superior motorization compared to Vehicle 1,
resulting in a better distinction between the drivers.

The results allowed to define the best configuration of a classification method
for each vehicle, leading to the development of personalized driver assistance ser-
vices such as entertainment, ergonomics, route services and fuel efficiency ser-
vices. Also, this result serves as an input to the suspect identification (illegitimate
drivers) module, which aims to support the services in VANET, such as exchange
messages between vehicles, entertainment, and personalized route suggestion. The
data partitioning according to trips was considered part of the configuration step,
contributing to improving the results, where we had a moving average of 120 sec,
six and four variables for Vehicle 1 and Vehicle 2, respectively. These analyses and
results depend on the setup step to record an initial driver data from the shared
car.
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4.4.5.2 Evaluation of Suspect Identification

We included suspects among known drivers considering that there is no knowledge
about their driving habits. This condition results in suspects driving similarly to
various legitimate drivers from a driver identification point of view. To simulate
an illegitimate driver, each known motorist was treated as unknown at a time, and
their data were removed from the training phase.

Using data produced by the classifier described and evaluated in Sec-
tion 4.4.5.1 with ten drivers, trained with the full dataset, as well as with datasets
missing individual drivers, it was possible to simulate and identify suspects driving
vehicles. Inspecting the individual’s behavior, it is possible to notice differences in
its precision and results in distribution when mixed with legitimate and suspect
data. Figure 4.23 shows the probability distributions in two cases: when driver
10 is identified in a trip and when the same driver is treated as an intruder in the
dataset.

(a) Legitimate. (b) Suspect.

Figure 4.23: Classifier results when treating driver 10 as a legitimate and suspect
driver.

Although there are visible differences between the distributions, they cannot
always differentiate. Thus, we designed a new classifier to differ the probabil-
ity distributions generated by the driver identifier when fed with an authentic or
suspect data. This classifier takes as input probability distributions of all val-
ues obtained from the previous identification step. Training the second classifier
with distributions generated by known drivers, as well as suspects, allowed us to
identify suspects with over 99% precision correctly. An important aspect in this
identification step is that telling apart known drivers and suspects is a task that
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does not depend on data shared on a network, thus, allowing it to be performed
offline.

4.4.6 Suspicious Vehicles in VANETs

Aiming to assess the impact that suspicious vehicles might have on inter-vehicle
communication services, we present a study considering two different scenarios. In
the first one, a source vehicle, which is not a suspicious vehicle, disseminates 100
data packets to all vehicles in a Manhattan Grid with ten evenly-spaced vertical
and horizontal double-lane streets in an area of 1 km2. Traditional flooding is used
as the dissemination protocol. We varied the density of vehicles (200, 250, 300,
350 and 400 vehicles/km2) and the percentage of initially suspicious vehicles in
the network (5, 10 and 15%).

In the second scenario, we considered a one-hour mobility dataset (6:00 am
to 7:00 am) that covers an area of about 400 km2 in the city of Cologne, Ger-
many [Uppoor and Fiore, 2011]). Such dataset is realistic considering both macro-
scopic and microscopic viewpoints. We varied the percentage of initially suspicious
in the network (5 and 10%). In this scenario, no data packets are being dissemi-
nated. Instead, vehicles exchange beacon messages with their neighbors at a rate
of one beacon per second. It is worth noticing that in both scenarios, once a non-
suspicious vehicle receives a non-duplicated data packet or beacon message from
a suspicious vehicle, it also becomes a suspicious/infected vehicle. Our goal is to
assess the spread of suspicious data on a VANET through multi-hop communica-
tion.

We implemented both scenarios using the simulation framework OMNeT++
4.2.2, the IVC simulator Veins 2.1 and the mobility simulator SUMO 0.17.0. As
main parameters, we set the bit rate at the MAC layer to 18Mbit/s and the
transmission power to 0.98mW, resulting in a transmission range of about 200m.
We performed replications to reach a confidence interval of 95%.

Figure 4.24a shows the spread of infected vehicles during the data dissemina-
tion in the Manhattan Grid scenario. A vehicle becomes infected if it receives non-
duplicated data directly from a suspicious vehicle or if it receives non-duplicated
data that has been relayed by a suspicious vehicle during the dissemination pro-
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(b) Beacon exchanges in the Cologne sce-
nario.

Figure 4.24: The spread of infected vehicles in VANET scenarios.

cess. As we can see, under lower densities of vehicles, the presence of a small
mumber of suspicious vehicles (5%) results in more than 50% of vehicles becoming
infected. As the density increases, the amount of infected vehicles decreases. This
is because the under higher densities the probability of having non-suspicious ve-
hicles participating in the dissemination process increases. However, depending on
the number of suspicious vehicles in the network, the number of infected vehicles
can be over 40%.

Figure 4.24b shows the spread of infected vehicles during beacon exchanges
in the Cologne scenario. Here, a vehicle becomes infected once it receives a beacon
message from a suspicious vehicle or from a vehicle that has been infected. As we
can see, even small amounts of initially suspicious vehicles in the network leads
to almost 100% of vehicles becoming infected. This is due to the fact that as
suspicious vehicles move around the city, they start to infect other vehicles, which
will then infect other vehicles, thus reaching almost the entire network.

These results show that the presence of suspicious vehicles may compromise
the quality of essential services provided by VANET. For instance, suspicious ve-
hicles can modify sensitive data that is being disseminated to the entire network.
Therefore, we can argue that being able to identify suspicious vehicles is paramount
to the properly operation of VANET.
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4.4.7 Section Remarks

Modern vehicles can communicate and sense their environment, which allows us
to design a variety of applications and services to manage and provide greater
security to people in transit, as well as comfort services for drivers and passengers.
Many of these systems should authenticate their users to offer a directed content,
but currently, they do not do so allowing a suspect driver to access and use those
services.

This work proposed a VS to determine, locally, the driver of a vehicle at
a given moment. We explored the driver identification as an extra factor of au-
thentication to benefit driver assistance systems and vehicular networks services.
The proposed methodology proved to be efficient and straightforward, maintaining
its accuracy above 98% for a case study considering six features of Vehicle 1 and
four features of Vehicle 2 with a 120-second moving average. The classifier was
used to recognize legitimate and illegitimate drivers. We observed the different
behaviors of the driver classifier when we submitted the legitimate driver data and
the illegitimate one. This behavior reflects different probability distributions. The
result of the trained classifier to distinguish between the two types of distributions
reached precision above 99%. In addition, we discussed the importance of this
approach in the VANETs context, simulating a scenario where the suspect driver
is identified in the network and its potential impact on the data dissemination,
since this suspect can modify the information, compromising the network.

Identifying who is the driver allows offering a personalized content and car
adjustments to this driver. Considering the projections of SM, car-sharing will
become a new mode for people move. Besides that, based on the driver preferences
a more natural, fast, relax or low-cost route may be suggested. On the other hand,
identifying a driver suspect may add a new and smart security layer to the ITS.
Moreover, protecting services and applications which uses the VANET to broadcast
its self.

In summary, Figure 4.25 shows how our design of fusion on VDS worked in
this study. Where, the OBD vehicular sensors feed the fusion process, the data
preparation deal with data aspects showed in Chapter 3, data processing covers
the related methods, and finally resulting in a driver authentication as the data
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use.

Figure 4.25: Design of fusion on VDS for driver authentication.

4.5 Chapter Remarks

In this chapter we proposed Intra-Vehicle Data (IVD) fusion approaches which con-
solidate the idea that there is a vast range of possibilities to develop applications
and services, aiming comfort to drivers and passengers, infotainment, and safe
driving. We noticed that, those applications need a correct and specific methodol-
ogy to achieve their goals. However, we identify that the data preparation requires
a combination of methods to first characterize the data such as statistical meth-
ods (data distribution, features reduction, mathematical methods, correlations),
visualization methods, and filter to delimits the space of observation. After that,
depending on the application goal a set of methods and techniques may be used.
Although, we also noticed a trend to use machine learning techniques to deal with
problems related to the ADAS, security, eco-driving and infotainment.

A topic that needs more attention is related to IVD privacy. Once the data
comes from private vehicles the lack of data privacy reduce its availability and as a
consequence more applications are developed to achieve a specific target, reducing
its generalization capability and reach.



Chapter 5

Extra-Vehicular Data Fusion

As defined in Section 2.3.2 the extra-vehicular data corresponds to the subset of
real and virtual sensors data that seek to describe the driver behavior or the envi-
ronment around the vehicle by a variety of sources individually or fused. This sec-
tion shows the Media as Vehicular Sensor (MVS), specifically the use of Location-
Based Social Media (LBSM) to enrich the road data, allowing to explore the Smart
Mobility (SM) opening new ways to build routes based on people preferences such
as sentiment, event detection, and event description.

5.1 Enriching Road Data Based on Social Media

Nowadays, to plan and manage transportation systems are crucial tasks to pro-
mote the growth of a given city. Governments, researchers, and industries make
efforts to understand mobility patterns in a city in order to develop solutions to
reduce traffic issues and incident events [Bazzan and Klügl, 2013]. In this sense,
an Intelligent Transportation System (ITS) emerges as a feasible way to improve
real-time decision-making by leveraging the availability of information and com-
munication technologies, thus providing applications and services to boost trans-
portation systems. ITS depends on the availability of huge amounts of data and
communication technologies. However, timely access to such data may present a
limitation on the real-time traffic analysis performed by those systems, since only
a set of companies have access to such data (e.g., data from inductive loops, traf-

135
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fic cameras, semaphores, and origin-destination matrix) or it is often out of date.
This happens due to the commercial value that such data have for companies, and
to the deprecated infrastructure employed to deliver such data to end users. These
facts become a barrier to better understand urban mobility and the transportation
scenario, thus requiring other solutions.

The information delivered to users, especially traffic and road events, arrives
with a poor description or even out of date, thus decreasing the efficiency of route
management, flow control and the spread of detailed and useful descriptions of
a given event. Overcoming these issues and leveraging the use of transportation
system data to improve traffic efficiency demands multidisciplinary expertise. For
instance, in order to provide consistent, accurate and useful information, integrat-
ing multiple data sources becomes an essential process. Such process is called
Data Fusion and constitute a challenging task specially when fusing heteroge-
neous data, the asynchronous nature of data, and the presence of noise and errors
on data. Furthermore, spatiotemporal aspects increase the complexity of fusing
these heterogeneous data.

Based on that, the Location-Based Social Media (LBSM) (e.g., Twitter, In-
stagram, and Foursquare) combined with navigation systems (e.g., Google Maps,
Here WeGo, and Bing Maps) has become an alternative data source to study urban
mobility. Social media platforms allow users to share their thoughts, viewpoints,
and activities related to their feelings about almost everything, which include
traffic conditions. Different research issues can take advantage of an LBSM as a
low-cost data source [Bazzan and Klügl, 2013; Yin and Du, 2016; Ribeiro Jr et al.,
2012; Kim et al., 2014].

In this work, we investigate the traffic scenario in the lens of LBSM and
navigation platforms. In this sense, we propose a robust framework named Road
Data Enrichment (RoDE) based on heterogeneous data fusion. Our framework,
depicted in Figure 5.1, aims to deliver high-level information to navigation systems,
road planners and general public, once a set of data sources pass through data
fusion models, thus providing services as route and incident.

The RoDE framework provides two main services: (i) Route Services : We
propose the Twitter MAPS (T-MAPS), a low-cost spatiotemporal grouping to im-
prove the description of traffic conditions based on tweets. We compare Twitter
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Figure 5.1: The design of RoDE.

MAPS (T-MAPS) routes with Google maps routes, and experiments show a high
route similarity even though T-MAPS uses few and coarse-grained data. Moreover,
we present three route description services over T-MAPS: Route Sentiment (RS),
Route Information (RI), and Area Tags (AT) aiming to enhance the route in-
formation; (ii) Incident Services : We design the Twitter Incident (T-Incident),
a low-cost learning-based road incident detection, and enrichment approach built
using heterogeneous data fusion techniques. T-Incident enables incident detection
and its description as RoDE services.

This chapter is organized as follows. Section 5.2 presents the related work.
Section 5.3 details the first service of RoDE, Route Service, as well as the data
collection process and its issues; the correlation between LBSM and traffic sensors
data; the T-MAPS modeling process; a case study and the route description ser-
vices. At the end of the route service, we present a short discussion. After that,
Section 5.4 describes the RoDE: Incident Service and the data acquisition for such
process; the incident data fusion approach that aims to enrich the incident data
coverage; we explain the T-Incident design architecture, and the T-Incident eval-
uation. At the end of the incident service, we present a short discussion. Finally,
Section 5.5 presents some concluding remarks and future work.

5.2 Related Work

The growth of the Internet and the proliferation of LBSM have enabled investiga-
tions on the huge amounts of data generated every single day. When considering
the traffic and transit perspective, several studies have analyzed traffic conditions
using LBSMs [Xu et al., 2018]. Many other studies focused on event detection



5. Extra-Vehicular Data Fusion 138

and diagnostics using Natural Language Processing (NLP) techniques [Ribeiro Jr
et al., 2012; Crooks et al., 2013; Hasan et al., 2017].

Other studies performed sentiment analysis using LBSM data [Bertrand
et al., 2013; Giachanou and Crestani, 2016]. Kim et al. [2014] proposed SocRoutes,
a safe route recommending system, based on Twitter data. Unusual traffic events,
based on social media, was investigated in [Giridhar et al., 2017]. Septiana et al.
[2016] categorized road conditions with an accuracy up to 92%. Gu et al. [2016]
explored tweets text aiming to extract traffic incident information providing a low-
cost solution to existing data sources. They validated the Twitter-based incidents
using data from RCRS (Road Condition Report System) incident, 911 Call For
Service (CFS) incident, and Here WeGo travel time.

Yazici et al. [2017] showed that tweets collected from regular accounts are
more likely to be irrelevant, though they can capture events that have just hap-
pened. On the other hand, tweets from specialist accounts are more valuable and
structured, which are better when they are used to identify incident events. Also,
they showed that the combination of both sources leads to better results when
dealing with event detection. In the same way, Zhang et al. [2018] complemented
the incident detection scenario by using social media data. They showed that so-
cial media data can be useful as an alternative way to improve traditional methods
to detect traffic events in real-time.

Nguyen et al. [2016] developed the TrafficWatch, a real-time Twitter-based
system aimed to leverage traffic-related information for incident analysis and visu-
alization in Australia. They also developed a case study to detect road incidents
before the Transport Management Centre (TMC) Log Time and those that are
not reported by it. Pereira et al. [2013] made use of a reliable media available
by traffic management centers, NLP techniques, featuring topic modeling, text
analysis to improve the accuracy in measuring the duration times of an incident.
They showed that the use of this source improves the prediction of an incident by
28% rather than its non-use.

This work extends and advances our previous study [Santos et al., 2018],
which showed that LBSM feeds may offer a new traffic and transit layer to improve
its current comprehension. Differently from most of the related work discussed
above, we take a step forward by providing a model to clarify the traffic condition,
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based on heterogeneous data fusion, aiming to add extra information to current
navigation systems. Besides, RoDE provides a set of route and incident services
such as Route Sentiment (RS), Route Information (RI), and Area Tags (AT). We
also detail the spatiotemporal grouping, the features extraction process, as well as
the ground truth of the incident and non-incident data to conduct our learning-
based model with the LBSM data.

5.3 RoDE: Route Service

In order to provide a useful route service, we conducted a study to understand the
relationship between the real traffic scenario and the data provided by Twitter,
a very well-known and largely used LBSM platform. Initially, we focused on the
data collection and its characterization. Then, we proposed the Twitter MAPS (T-
MAPS), which intends to enhance the current navigation context by connecting
LBSM data in different ways, for example, by evaluating tweets frequency or users’
perspective of a region of interest

5.3.1 Data Acquisition

We collected tweets from New York City (NYC) demonstrating its coverage and
the traffic factor correspondence. Then, we proposed and evaluated the T-MAPS
applicability by showing its route similarity against Google Maps route recommen-
dations. We also provided three route description services upon T-MAPS: Route
Sentiment (RS), Route Information (RI) and Area Tags (AT). The motivation of
RoDE: Route Services comes from the desire to expand the knowledge about the
traffic conditions, in order to provide a more detailed scenario. Such issue has been
little explored in the literature. Some applications may be proposed using social
media to describe the traffic scenarios, such as the indication of the route’s con-
dition, the intensity of accidents and more detailed information about road event.
This information may enrich the user’s transportation experience, providing better
assistance for decision makers when dealing with urban mobility.

An important question emerges from the inherent subjectivity of enriching
the traffic description. To the best of our expertise, there is no ground truth for



5. Extra-Vehicular Data Fusion 140

the best route. For that reason, many tools aim to offer their traffic viewpoint
like Google Maps, Here Wego, and TomTom maps. The main reason which moti-
vated us to develop the T-MAPS was the desire to demonstrate the potential of
using LBSM data, as a traffic data. Also, we aim to encourage the design of new
applications, models, and analysis of urban mobility using LBSM.

Our dataset consists of 353,807 tweets from twenty-one manually selected
users’ accounts. Those accounts are maintained by departments of transport, spe-
cialists on traffic and transit reports such as news channels or dedicated companies.
The number of tweets with geotagging is 307,020, most of them in NYC. Here, we
explored Manhattan where has 38,112 tweets. The dataset was collected during
the last three months of 2016. The dataset does not contain regular users due to
the high user bias in their tweets regarding traffic feelings. Besides, some aspects
which involve the use of LBSM data are highlighted in Section 5.3.2.

Figure 5.2a shows the spatial coverage of tweets in our dataset. Most tweets
are over the road network, i.e., if we do zoom in, it is possible to see the I-95 high-
way with tweets along its extension. On the temporal point of view, Figure 5.2b
shows the tweets’ density along the hours for @NYC_DOT, @TotalTrafficNYC,
and @511NYC users. Note that some peaks of tweets appear during rush times.
For more details about the data acquisition process, please refer to [Santos et al.,
2018].

(a) Tweets on NYC. (b) Hourly tweeting density.

Figure 5.2: Route sentiment based on the tweets text analysis
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5.3.2 What We Have Learned From The Data Aspects

Often, data from Twitter has aspects that lead to issues when using it on the traffic
context. Here, we classify the data aspects into four classes: Data imprecision, User
bias, Spatiotemporal assignment, and Inconsistencies. More extensive taxonomies
can be found in [Rettore et al., 2016c; Khaleghi et al., 2013a].

Data Imprecision LBSM data comes with a certain degree of imprecision. Often,
the data imprecision presents at least one of the characteristics: incomplete data,
vagueness, granularity effects. The inherent heterogeneity of the data sources and
“freedom” of data input on online platforms promote imprecision.

For instance, suppose the following tweet: “Now 8:00AM an accident at 100
W 33rd St #NYC #BadTraffic #creepedOut”. One can obtain relevant knowledge
about the event, e.g., the user’s sentiment, traffic condition, and the hour. How-
ever, the tweet lacks some information such as geotagging or event severity, being
therefore incomplete. There are some techniques to mitigate data incompleteness.
For instance, Pinto et al. [2017] proposed a record linkage approach to enrich
incomplete data. Dubois and Prade [1994]; Yager [1982] used possibility theory
and the probability of fuzzy events to handle imperfect data.

The Vagueness corresponds to an unclear description or data context. The
above tweet shows vagueness due to the inability to precisely define the extension,
position, cause or even those involved in the accident. Usually, a way to deal with
vagueness is matching and fusing data from different sources.

The Granularity ranges from fine-grained to coarse-grained. In fine-grained
data, it contains enough information to accurately describe the following items:
event location, direction, the severity of accidents, and other information. Other-
wise, coarse-grained provides a macro view of events with a broad description.

User Bias in the traffic and transit context, LBSM users can interpret the traf-
fic congestion in different ways and use their freedom to post any information.
For instance, suppose that Bob, a person from a small city, is in the traffic of a
metropolis. Bob can interpret the regular traffic situation as a chaotic one, and
then he posts on the online platforms his viewpoint. While Alice, a metropolis res-
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ident, may understand as a typical situation. Consequently, the user’s perception
may lead to bias introduction on data traffic from LBSMs.

The dedicated users (accounts which professionally report traffic condition)
upon reporting traffic information can also introduce bias. Such users can, for
instance, feed information for a specific audience or place. In this work, we picked
manually dedicated users’ accounts to overcome regular users’ bias, but despite the
diverse nature of users in the dataset (department of transport, news specialists,
dedicated companies, so on), data may follow inherent bias of users interests and
intentions.

Spatiotemporal Assignment the spatiotemporal assignment is a critical data
aspect, particularly regarding traffic and transit context. The geolocation and
temporal tagging allow traffic specialists to study and characterize a region at
any instant or time interval. Below, we discuss some issues to extract the LBSM
spatiotemporal information.

Spatial: it is fundamental to assign a location to the data, aiming to under-
stand the context surrounding the information. However, deriving this informa-
tion, even when present, is not always a trivial task. Suppose a tweet containing
the spatial location in written form instead of a geotag, requiring a way to extract
textual address location. Although such techniques already exist, the inherent
unstructured form and freedom of writing (e.g., abbreviations, only 280 charac-
ters) on LBSMs turn a challenge the spatial textual extraction. Moreover, such
particularities often result in information subjectivity or misinterpretation. There
are research efforts to overcome these issues. Liu et al. [2011]; Finkel et al. [2005]
used Natural Language Processing (NLP) techniques to obtain parts of speech and
entity recognition to label sequences of words that are the name of the things. Li
and Sun [2014] optimized NLP techniques to tweets text.

Information availability is another issue that affects the spatial data assign-
ment. Some regions will have more spatial coverage than others due to several
factors. For example, large cities tend to have higher spatial coverage than smaller
towns. The cause of this may simply be due to the more substantial number of
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users, companies and information traffic, or a complex social matter.

Temporal: associating a timestamp to the shared data is key to understand
the past, present, and, possibly, the future scenario of the transport networks.
LBSM platforms usually assign a timestamp when users input data to the system.
However, this markup may not represent the same moment as when the event
occurred. Thus, some open questions about temporal assignment are What is the
validity of data published by a user of LBSM? How can we characterize the delay
between the event and the data input on LBSM platforms?

Inconsistencies Here, we discuss two data inconsistencies: conflicts and out of
order.

Conflict: the conflicting data from LBSMs appears when two or more data
sources diverge about a specific event. For instance, suppose that Alice and Bob
share their feelings about the same traffic event. Alice reports that nothing seri-
ous happened and the traffic flows well, while Bob reports that a severe accident
happened which promotes a negative impact on the traffic. Based only on these
two points of view, it is difficult to determine what happened. In the literature,
the Dempster-Shafer evidence theory has gained notoriety in reducing data source
divergences [Zadeh, 1984; Florea et al., 2009]. Also, it is possible to give a rep-
utation weighting to users’ accounts, and then apply rules to decide on the most
credible information.

Out of order: the freedom offered by LBSM platforms allows users to enter
traffic and transit information out of sequence into the system. These data appear
as inconsistent to the systems that use them. Out of sequence data often is related
to the temporal data dimension. For instance, a user may share information about
a past traffic event. Therefore, we have to consider how to use such data properly.
Usually, the trivial solution is to discard the out of sequence data. However, if the
data was identified correctly and then sorted, it may be used as a feedback data
at the cost of more processing and storage resources.
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5.3.3 Twitter as a traffic sensor

To reveal the potential of LBSM data to enhance and complement the conventional
ways to see traffic and transit, it is fundamental the understanding of how related
the tweets are to the traditional traffic sensor. For example, if a conventional
traffic sensor detects an anomalous event, can tweets explain such atypical event?
In that way, to answer this question, we use the Jam Factor (JF) from HERE
WeGo API 1 as an aggregated traditional traffic sensor data. According to the
Here documentation, the JF is a fused representation of traditional heterogeneous
data. JF ranges from 0 to 1 (from free to congested). We chose Here JF since no
other company provides such kind of data. We choose HERE WeGo JF due to the
fact that other companies do not provide access to this kind of data.

Figure 5.3: Tweets frequency and Here Jam Factor time series.

Figure 5.3 shows the correlation between Here JF and tweets in the dataset
along a week in Oct. 2016. The time series in blue is the aggregated Here JF, and
the orange one corresponds to the number of tweets. We re-scale the tweet time
series to lie between 0 and 1, and aggregated each series hourly. Then, we observe
that the curves are similar. We compute the Spearman’s rank (ρ), a nonparametric
correlation coefficient, to identify relationships between two variables. The ρ has
a value between −1 and +1, where −1 means that the observations are entirely
dissimilar and +1 the opposite. We apply Spearman’s rank in the time series
resulting in ρ = +0.81. It is possible to interpret that the #tweets tend to increase
when the JF increases.

1https://wego.here.com
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5.3.4 T-MAPS Modeling Process

The T-MAPS is a low-cost spatiotemporal model which aims to clarify traffic
events through tweets. This model allows the representation of the traffic scenario
in different aspects by considering instantaneous or historical data, and its text
mining. Below, we present the three steps of the modeling process as discussed
in [Santos et al., 2018].

Data acquisition: this step consists of segmenting the area of interest and re-
trieving data from the LBSM platforms. We use a neighborhood segmentation to
develop the T-MAPS approach.

Filtering and Data Fusion Process: this step aims to filter and bind LBSM
data to the segmented region. We propose the use of a weighted time-varying
digraph as a model to map these areas and data. The time-varying digraph is
represented as a series of static networks, one for each time step. Formally, let
R be the set of segments of the region, then a snapshot digraph is defined as
Dt = (V,E,m), where V = {r|r ∈ R} denotes the segmented region, and E =

{(u, v) ∈ V |u is adjacent to v in R segmentation} denotes the directed edges
between physically connected regions, and m is the weights (discussed below).
The T-MAPS time-varying digraph is a sequence of snapshot digraphs, thus T-
MAPS(D) = {Dt=tmin , Dt+∆, . . . , Dtmax}, where tmin and tmax are the start and end
time of the available dataset, and ∆ can be adjusted conveniently.

Metrics: it consists of assigning cost weights to the directed edges. Formally,
m(u,w) : E → value, where m(u,w) is a function mapping the directed edges
to a metric cost. The metric function represents the analyzed traffic scenario
using the LBSM data. Figure 5.4 illustrates a simple example of the T-MAPS
modeling process. First, we segmented the NYC map into five regions of interest,
then we collected LBSM available data. Next, we obtained the digraph G =

(V,E,m), where V is the set of regions, and E the directed edges between adjacent
regions. Then, we bound Twitter’s traffic data to the resulting regions graph.
Finally, the weights are assigned to the edges using different metric functions. The
resulting time-varying digraph allows us to analyze the traffic scenario condition
and description. We present some metric functions below.
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Figure 5.4: T-MAPS modeling process.

Instant: this metric function considers all tweets in each time t on a day by fusing
and filtering them properly. This strategy corresponds to a snapshot view of the
traffic at that moment. The smallest t must agree with the configured ∆ of T-
MAPS model. Usually, instantaneous data are sparse and cover poorly the region
of interest. However, this data may highlight an event at a given time.

Accumulated: this metric considers all previously available data for a given
time. It requires two parameters, tstart and treference, where tstart < treference and
must respect the temporal dataset availability. It accumulates all data between
tstart and treference. One can interpret this metric as a historical metric looking to
the past until the reference time point. In our experiments tstart = tmin.

Average: it uses the same approach of Accumulated. However, the values assigned
to the edges are the average of tweets’ occurrences over time, such as day, week
and year. This information must be passed as a parameter to the metric function.
One can interpret it as a typical traffic condition metric, putting into the account
the historical information.

5.3.5 A Case Study

We conducted a case study to demonstrate the potential of T-MAPS. In that di-
rection, we first compare the recommendation similarity of T-MAPS and Google
Direction (GD) routes. Afterward, we present three route description services
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demonstrating the T-MAPS potential as well as other opportunities to enhance
and clarify the traffic scenario description. The Manhattan region was segmented
into 29 official neighborhoods. Consequently, the T-MAPS digraph snapshot con-
tains 29 vertices. Besides, the minimum time interval between two consecutive
T-MAPS graphs corresponds to a ∆ = 1 hour. Although T-MAPS was designed
to accommodate both data resolution (micro and macro), the case study used a
macro viewpoint due to data coverage limitation.

5.3.5.1 T-MAPS Applicability

We evaluated the T-MAPS applicability by comparing its similarity, in recom-
mended routes, with GD. Note that the T-MAPS route suggestion considers a
macro resolution of the regions on the map, but our model is flexible enough to
encompass fine-grained resolution if there is enough data for this. From a macro
resolution, T-MAPS aims to recommend regions which have the best conditions
regarding the applied metrics.

We query the T-MAPS and GD, 812 recommend routes in Manhattan neigh-
borhoods. The routes were derived from the combination 2 × Cn

k , where n = 29

(Manhattan neighborhoods) and k = 2 (origin and destination). Note that we
considered routes like A→ B and B → A. The routes start and end at the center
of the region. Also, we rule out routes that start and end at the same region. We
query the routes in three different moments (7:00 am, 3:00 pm and 7:00 pm of a
day along one week, based on its rush hour representation.

The similarity technique measured the matched areas where the recom-
mended routes by T-MAPS (using Dijkstra’s algorithm) and GD passed through.
Figure 5.5 displays the similarity between routes along eight days in the dataset,
considering three metric functions. The box-plots summarize 58,464 routes ana-
lyzed. T-MAPS with Instant metric showed a high variation of similarity rate, its
median ranges from 50% up to 66.7%, while Accumulated metric shows 60% to
70% and Average metric 60% to 66.7%. It means that more than half of the eval-
uated routes overlapped the GD. We expected that Instant metric would pose the
lowest similarity due to its intrinsic disparity with other metrics since it does not
consider the historical data. As a global evaluation, the median of route similarity
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reached 62% with Google Directions. Note that T-MAPS uses a macro view, while
GD does not, which implies in fewer regions per route by T-MAPS than GD. The
upper quartile (1/4 of the routes) until the maximum value exhibited a similarity
between 75% and 100% between the T-MAPS and GD suggested routes.

Figure 5.5: Route recommendation similarity between T-MAPS and Google Di-
rections (dots represent the mean).

5.3.6 Route Description Services

Based on the applicability results, which demonstrated a possibility to aggregate
extra information to a current route recommendation services, we move on to
explore the tweet’s texts. Initially, we performed the cleaning phase in the tweet
(lowercase transformation, accents removal, tokens extraction, and filtering stops
words, links, and special characters). Then, we applied three types of text mining
to build the descriptions services over the T-MAPS model: Route Sentiment (RS),
Route Information (RI), and Area Tags (AT). Figure 5.6 depicts a prototype to
offer the T-MAPS services.

In Figure 5.6a, the RS service allows the user to observe the users’ feelings
(positive to negative) at a given area which they will pass through. The RI ser-
vice explores each area providing a word cloud, Figure 5.6b, where the word size
indicates its high-frequency over the route. The spread information enables the
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users to see the big picture of highlight events in each area. Finally, we developed
the AT service, Figure 5.7. For that service, we used the Term Frequency (TF)
and Inverse Document Frequency (IDF) – (TF-IDF) – method to measure how
important a word is to a set of tweets in given area of Manhattan. This technique
allowed us to find words which are single for one explored area.

(a) The Route Sentiment (RS). (b) The Route Information (RI).

Figure 5.6: Route sentiment based on the tweets text analysis

The developed T-MAPS services used the Accumulated metric, aiming to
characterize the Manhattan region, based on our observation window. Any other
metric can be applied to provide a different description, achieving a different goal.
With these services (sentiment, route information and area tags), the T-MAPS
can enrich the current route recommendation systems, indicating to the users an
extra path description or even providing routing based on these descriptions. For
instance, the user may choose a route which expresses good feelings and beautiful
environment. Alternatively, even routes with cultural activities.
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Figure 5.7: The Area’ Tags (AT) of each region of the path.

5.3.7 Discussion

In summary, the results of our RoDE are: Route Services showed the median of
route similarity reached 62%, where T-MAPS uses region granularity while GD
uses street granularity. For a quarter of the evaluated trajectories, the similarity
achieved up to 100%. Also, we presented three route description services, based
on natural language analyzes, Route Sentiment (RS), Route Information (RI), and
Area Tags (AT), aiming to enhance the route information of current navigation
tools.

5.4 RoDE: Incident Service

Once we have dealt with route services, we focus our efforts to improve current
road incident event detection and description. We develop the T-Incident, a low-
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cost learning-based road incident detection and enrichment approach built using
heterogeneous data fusion techniques. For this purpose, we design a spatiotem-
poral grouping that fuses incident data from two different data sources (i.e., Here
WeGo and Bing Maps), resulting in a new incident layer with more data coverage.
Then, by using the same approach, we fuse (i) non-incident data (acquired from
TripAdvisor), (ii) LBSM data (acquired from Twitter), and (iii) the new incident
data layer obtained in the previous step. Moreover, we apply refined methods of
NLP to extract patterns from social media data that may describe the incident
event and its surrounding. Finally, we use a learning-based model to identify these
patterns and detect the event types automatically. Thus, allowing the incident de-
tection and its description as RoDE services. Notice that in our scenarios incident
represents events which describes traffic issues such as accident, delays, weather,
vehicle disable, and so on.

5.4.1 Data Acquisition

The lack of information in urban transport environments is one of the greatest
challenges for those working in the transportation system area. Researchers are
often restricted to theoretical studies or a short range of public data. Luckily, the
current increase of online platforms, such as LBSM, make it possible for people to
share their data, routines and opinions regarding a variety of aspects. T-Incident
is an approach to accurately identify traffic events (incident and non-incident) and
enrich their descriptions. The data acquisition process aims to combine different
data sources, such as Here WeGo, Bing Maps2, Tripadvisor3 and Twitter4 in both
temporal and spatial dimensions to achieve those goals.

The dataset consists of 158,413 tweets acquired from 2018-09-14 to 2018-
11-06. In that process, we crawled data from Twitter filtering tweets by set
of words related to incident events, such as congestion, accident, construction,
planned event, road hazard, disabled vehicle, traffic, jam, car, weather. All col-
lected tweets are geolocated and most of them are in Manhattan-NYC. Moreover,
we were interested in tweets from both regular (common accounts) and specialist

2https://bing.com/maps
3https://tripadvisor.com/
4https://developer.twitter.com/en/docs

https://developer.twitter.com/en/docs
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(accounts controlled by corporations) users. We also discarded tweets posted as
retweet. In other words, we collected the user’s impressions and not the spread of
information.

LBSM data has several issues, as mentioned in Section 5.3.2, which we also
deal with here. To collect as much incident events as possible, we acquired data
from two different data sources: Here WeGo and Bing Maps. The incidents gath-
ered from both platforms have temporal granularity of one hour. We have collected
9,784 distinct incidents acquired from Here WeGo and 1,924 distinct incidents ac-
quired from Bing Maps. To use those incidents data, we fuse both data sources,
filling the gaps that a data source has with the other one and vice-versa. Also,
we combine common incidents from both data sources enriching them if possible,
since each one can have different incident description (Section 5.4.2 details this
process). All datasets overlap spatially and temporally.

Table 5.1: Data acquired from different data sources.

Source Goal Sample Time
Interval

Spatial
Location

Twitter Event Detection 158,413
Here WeGo Incident 9,784
Bing Maps Incident 1,924
Trip Advisor Non-Incident 50

2018-09-14
to

2018-11-06

Manhattan
New York

In order to detect incidents, we also need to comprehend what is not an
incident. First, we choose places with no incident evidence, collecting data from
sources which deal with touristic places. For example, Tripadvisor, a travel website
that shows places, hotels, restaurant reviews, and other travel-related content.
Then, a set of the most popular places ranked by the tourists was chosen, such as
museums, observatories, parks, pubs, theaters and so on. Table 5.1 summarizes
the data collected and Figure 5.8 shows the spatial data coverage of each data
source used to develop the T-Incident approach.

5.4.2 Incident Data Fusion

In this section, we present a method to increase the coverage of incident data and
enrich its description by fusing data from different sources. We argue that the
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Figure 5.8: The spatial coverage by data sources used.

greater the number of incidents used, the more tweets can be grouped, benefiting
our learning-based approach. After acquiring data from the Here WeGo and Bing
Maps platforms, we pre-processed them to standardize their features.

Thereafter, we conducted a spatiotemporal grouping (see Section 5.4.3.1 and
Algorithm 1 for more details). However, the goal here was to identify an incident
event reported by both data sources, thus representing the same event. In this
case, the temporal interval and the spatial location of them must be very close.
We assume that two events are close, and, therefore, the same, if they start on
the same day and hour but are also located at most 10meters apart from one to
another. We named these same events as Intersection. In other words Intersection
is the data resulted of (Here ∩ Bing). Figure 5.9 shows the frequency of each
incident type by a given data source. Moreover, we can see the same events
reported by both sources in the Intersection graphic.

We also evaluated the similarity of incident types from the Intersection. We
found that the incident type similarity between Here and Bing reached 99.83%.
In other words, both data sources labeled the incidents almost similarly. As a
final step, we created a New Incident Layer, which combines the data coverage
from both data sources and increases the information description about incidents,
using the intersection of them. Since each data source has its individual way of
reporting incident events, detailing the road name or a short description text, the
fusion enriches the whole context.
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Figure 5.9: Hour of an incident by data source and the intersection of them.

Figure 5.10 shows the spatial data coverage of each data source and the
intersection between them, during the process of data acquisition (2018-09-14 to
208-11-06). It also shows the data representativeness for each source. For instance,
Here WeGo corresponds to 80.53% of the whole data, while Bing Maps covers
8.31% and the Intersection corresponds to 11.16%. The New Incident Layer covers
100% of the entire data collected, thus enriching more than 11% of similar events
with richer detailed information.

5.4.3 T-Incident Design Architecture

This section presents a learning-based incident detection approach based on hetero-
geneous data fusion. We conducted our analysis considering the premise that the
LBSM can provide valuable information about the traffic and incident condition,
as discussed in [Santos et al., 2018].

Based on the ITS data as an input to our design, we created a spatiotem-
poral grouping which aims to combine different data sources (see Section 5.4.1 in
temporal and spatial dimensions. After that, we conducted a feature extraction
process aiming to acquire the user’s viewpoint around the event which it was pre-
viously grouped. Then, we developed a learning-based model to identify potential
incidents considering the user’s reports. Finally, we evaluated our approach us-
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Figure 5.10: Spatial incident coverage per data layer.

ing different spatial grouping modes. In the following, we describe each stage of
T-Incident as depicted in Figure 5.11.

Figure 5.11: Design of T-Incident.
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5.4.3.1 Spatiotemporal Grouping

The grouping mode considers the heterogeneity of the data sources used and its
spatiotemporal coverage variation. Therefore, we proposed an approach which
merges the incident/non-incident data layers with the tweets layer based on both
dimensions. To do that, we considered the incident as an event and not each type
of it, i.e., we grouped the incident types in only one event – Incident. Each incident
has a start location, end location, and duration time. Our grouping considers only
the incident start location as same to the events named – Non-Incident. Another
characteristic of our data preparation consists in setting the non-incident time
interval with the same interval of the Twitter data.

Based on the dataset of incident and non-incident, we are able to conduct a
temporal filter which looks for the intersection between events and tweets. Once
those data have merged, we perform a spatial filter based on the radius of each
event location. We created a set of radii, aiming to identify the better grouping
mode once we are dealing with user bias and the vast amounts of unrelated data.
That methodology enabled to group a different number of tweets around the event
(see Table 5.2, and, thus, the information surrounding the event can be more
valuable to the context or more generalist to it.

Table 5.2: Number of tweets for each spatiotemporal grouping model.

Radius (km)Event 0.01 0.05 0.1 0.2 0.3 0.4 0.5
Incident 121 959 3,098 9,467 30,085 63,853 68,877

Non-Incident 260 3,161 6,522 13,060 20,699 30,492 35,786

Even though the spatiotemporal grouping could be conducted in different
ways (e.g., based on streets segment, neighborhoods and a grid dividing the ge-
ographical area), we chose the use of different radii around the incident, as our
initial approach. Tweets, which were not grouped, were labeled as Unknown and
removed. We noticed a trade-off to choose the radius size and the relevance of in-
formation floating around the event. In other words, a small radius implies in fewer
data grouped, but relevant information about the event. A larger radius results in
more data grouped, but less descriptive information of the event. That situation
becomes a challenging task when there are reduced amounts of data acquired.
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We describe the spatiotemporal grouping in Algorithm 1. The inputs to
the grouping are the tweets, incidents and the radius. The expected result is an
updated Tweet dataset containing the event, incident id, and incident type. We
also developed an optimization process splinting the geographic area, latitudinally,
in x sections, aiming to reduce the number of operations conducted in large areas
with large amounts of data. After that, for each tweet and incident, we tested if
they are in the same section or near with one hop up or down (Line 7). Satisfied
that condition, the tweet must be between the incident start and end time (Lline 8).
For then, we measure the distance between the tweet and the incident, aiming to
find the minimum distance to assign its new attributes (Lines 9-14).

5.4.3.2 Feature Extraction

We assume that the interest information floats around the observation location.
Stressing the grouping based on a radius around the event, making it an intuitive
and very powerful approach, as shown in Section 5.4.4. However, data from LBSM
brings issues that can lead to other challenges such as data imprecision and users’
bias. In that way, the feature extraction role aims to clean the tweet and provide
a set of words which describe better the event’s surrounding.

We first applied for each grouping and event class a set of NLP methods
such as lowercase transformation, accents removal, tokens extraction, and filtering
stop words, links, and special characters. After that, we reduced inflectional and
derivational forms of a word to a common base form. Then, we analyzed the Term
Frequency (TF) from the event, extracting a matrix of the most frequent words
mentioned in that area. Moreover, we filtered that matrix based on the sparsity,
i.e., we removed terms that were sparse than 0.98%.

We also introduced a context highlighting step for a specialist to reduce
non-related words of a given event. This is because, even though we conducted
the previous steps, the LBSM keeps noises which must be removed. We noticed,
by experiments, that the Term Frequency-Inverse Document Frequency (TF-IDF)
approach does not stress the words which describe each event’ class accurately.
Then, that analysis was not valuable in this work.

At the end of that process, we gathered the set of most important words
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Algoritmo 1: Spatiotemporal LBSM Data Grouping
Input: tweets,incidents,radius
Result: tweets grouped by event, incident Id, and incident Type

1 /* The previous step split each dataset into x slices,
reducing the computation */

2 initialization;
3 for each tweets do
4 currentIncidentId ← 0;
5 currentIncidentTmp ← None;
6 currentDistance ← ∞; /* larger than radius */
7 for each incidents do
8 if equal(tweets.sec,incidents.sec) or diff(tweets.sec,incidents.sec)

is (+ 1 or - 1) then
9 /* Tweets between the incid. time */

10 if TemporalFilter(incidents.starttime, incidents.endtime,
tweets.timestamp) then

11 /* Distance from the radius */
12 distance ← SpatialFilter(tweets.coord, incidents.coord,

currentDistance, radius);
13 /* Record the less distance */
14 if distance < currentDistance then
15 currentIncidentId ← incidents.Id;
16 currentIncidentTmp ← incidents.Type;
17 currentDistance ← distance;
18 end
19 end
20 end
21 end
22 /* Assigning the event type(Incident, Non-Incident,

Unknown) for each tweet */
23 end

posted by common Twitter users. Figure 5.12 shows an example of a set of words
grouped by radius between 0.01 km and 0.5 km. This indicated how specific or gen-
eral could be the information around the event regarding its radius. Figs. 5.12a
and 5.12b show more words, weighting them differently and reducing the inter-
section between incident and non-incident. However, upon increasing the radius
we can see fewer words with high weights stressing common words between both
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classes (see Figs. 5.12c and 5.12d. Our goal is to understand that behavior and
train an algorithm to automatically identify those classes. Next, the set of words
will feed a learning-based model, described below.

(a) Tweets on incident area. (b) Tweets out of incident area.

(c) Tweets on incident area. (d) Tweets out of incident area.

Figure 5.12: Spatiotemporal grouping based on a radius of 0.01 km ((a) and (b))
and 0.5 km ((c) and (d)).

a) Feature Reduction: The number of features obtained from the last stage
may be large enough to introduce computational barriers as the processing time,
memory and storage capacities. We conducted a method to reduce the number
of features based on their importance and frequency. In other words, we initially
developed two approaches to achieve that goal. The first one was the Principal
Component Analysis (PCA) to extract a set of relevant features. This process
identifies the most variable information from a multivariate dataset and expresses
it as a set of new features – Principal Components (PCs). These PCs represent
the directions along which the variation in the data is maximal. The second one
was based on the ranking of the most frequent words.

Both methods output the results to the specialist who makes the decision.
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Table 5.3: Relevant features based on radius of 0.01 km.

Event Most Frequent Features

Incident
traffic side exit contruct incid accid
avenu street updat georgewashingtonbridg clear
jersey event major franklindrooseveltdr level

Non-
Incident

town night year apollotheat show
detail hall music halloween stage
week play live rockwood talk

We noticed that the PCA did not catch a good set of words such as the use of
most frequent words did. When the tweet dataset was acquired without a track
of words (any tweet, without specific words), the PCA performs better than the
use of the most frequent words. On the other hand, PCA is not suitable for
tweets with a set of specific track words as mentioned in Section 5.4.1. As result,
we performed the feature reduction for each grouping and event class, extracting
only the most representative set of words from the previous stage. Table 5.3
shows an example of features obtained after ranking the most frequent words on
spatiotemporal grouping based on a radius of 0.01 km.
b) Sentiment Analysis: The sentiment analysis was conducted for each tweet for
each grouping and event class, allowing us to extract the feelings that Twitter users
have about the event, in which they passed through. To derive the sentiment from
the tweet’s text, we used a dictionary of words and its associated feelings [Jockers,
2017]. The sentiment depends on the number of words/feelings occurrences to
calculate the score, and we can associate a sentiment (positive or negative) to the
tweet. As result, for each tweet we extracted the set of feelings words and its
frequencies, binding them with the set of words processed on the previous stage,
for that same tweet.

5.4.3.3 Learning-Based Model

The last stage was responsible for extracting useful information which better de-
scribes a given class of event and feeds our learning-based model with a set of
features labeled by the event. In this way, we started to deal with a classification
problem. First, we chose the most common classification algorithms (kernels, used
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in the same context of this work, based on the literature review [Xu et al., 2018].
To conduct this step, we used the following kernels : Support Vector Machine
(SVM), k-Nearest Neighbors (KNN) and Random Forest Classifier (RF).

Next, we split the data into two sets, following the convention of the most
machine learning approaches: Training Set, corresponding to 70% of the entire
dataset; and Test Set, corresponding to 30% of the entire dataset. To validate
the training process, we applied the cross-validation considering 10 folds split in
70% and 30% of the training and test, respectively. Our goal was to evaluate
the training curve and the testing curve, avoiding possible over-fitting and under-
fitting. That partition was conducted for each group.

Notice that the dataset exhibited an explained unbalancing, once the number
of tweets around the non-incident areas is bigger than around the incident ones.
In this case, we explored the re-sampling techniques which aim to balance classes
either increasing the frequency of the minority class or decreasing the frequency
of the majority class. Our goal was to obtain approximately the same number of
observations for both classes.

We used a random under-sampling, aiming to balance the class distribution
by randomly picking and eliminating the majority of class examples. That strategy
helps to improve run-time and storage by reducing the number of training data
samples once the training is huge enough, considering LBSM data. However, the
classifier may suffer hard consequences since the potential useful information can
be discarded. For that reason, this step is not limited to that approach, as it
always depends on the quality and quantity of LBSM data acquired.

After that, tuning the hyper-parameter becomes a challenging task and an
exploratory approach was adopted to deal with. We used a GridSearchCV class
from Scikit-Learn API [Pedregosa et al., 2011], which takes a set of parameters
and values to exhaustively combine them, aiming to find the best configuration.
Knowing that the complexity of such search grows exponentially with the num-
ber of parameters, we defined a set of parameters for each kernel following some
guidelines. For the SVM, we based on [Hsu et al., 2003], and for the other ones,
we followed the user’s guide for Auto-WEKA [Kotthoff et al., 2017].
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5.4.3.4 T-Incident Services

The results of the learning-based model allowed us to understand the best spa-
tiotemporal grouping and the set of NLP methods to filter the LBSM texts, and,
then, accurately outline the events. Based on that, we were able to output the in-
cident and non-incident events detection service and the event description service.

Once we identified an event, we started to analyze its context. To do that,
we conducted a text summarization process, aiming to create a short and coherent
version of a longer document. We considered a document a set of tweets grouped
by incident type, i.e., we applied the text summarization to a group of tweets
labeled by incident type and hour, and by incident id. This process provides a
short description for each group, allowing to give the users and traffic planners the
viewpoint of the LBSM users regarding the transit events and points of interest.

In that area, there are two methods of text summarization: Extractive and
Abstractive. The first one selects the tweets, ranking their relevant phrases and
choosing only those which are meaningful to the event. The abstractive method
aims to generate entirely new sentences to capture the meaning of the event. For
this version of T-Incident, we developed the event description service, using the
extractive text summarization method.

5.4.4 Evaluation

In this section, we describe T-Incident performance evaluation against the set
of classifier algorithms and spatiotemporal grouping modes as outlined in Sec-
tion 5.4.3. Then, we present T-Incident services to detect and enrich the event
description.

5.4.4.1 Event Detection

Our incident detection approach was based on an exploratory analysis of classifiers
algorithms, hyper-parameters and radius. Figure 5.14 shows the results regarding
a Training and Test process. We validate our training process performing a Cross-
validation approach which aims to split the training set in training and validation
sets among 10 folds. Figure 5.13 shows the learning curve of each kernel performing
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on a spatiotemporal grouping with radius of 0.01 km and 0.5 km, as an example.
The main goal here is to study the generalization of a given model, avoiding
over-fitting and under-fitting, and find out the best spatiotemporal grouping. We
noticed that the radius of 0.01 km (Figs. 5.13a, 5.13c, and 5.13e delivers the best
score, around 90%, in most kernels after 140 training samples where we see the
curves converging and the model stabilization. However, the reduced data limit
the exploration of event description service.

Once we increase the radius, we were able to see the curves decreasing as
depicted in Figs. 5.13b, 5.13d, and 5.13f. Using a 0.5 km radius, we observed a
score between 58% and 65%. Decreasing the radius to 0.4 km, we noticed averaged
scores above 61% and below 65%. A radius between 0.3 km and 0.2 km showed
very close results as scores above 65% and below 70%, in average. Using 0.1 km,
we obtained scores around 70%, and between 75% and 80% considering the radius
of 0.05 km.

We deal with a trade-off between higher radius (more grouped data and
smaller scores) and lower radius (fewer data and and higher scores). The important
lesson here is the application of a consistent methodology that was able to provide
a generalization model to detect incidents.

Next, we evaluated three metrics from the Cross-validation and Test: i) F1
Score: is the weighted average of Precision and Recall. This score takes both false
positives and false negatives into account (2×Recall×Precision/(Recall+Precision;
ii) Recall: measures how good a test is at detecting the positives (TP/TP +FN);
iii) Precision: is the ratio of correct predicted positive observations to the total
predicted positive observations (TP/TP + FP ).

Figure 5.14 shows the best set of parameters that can feed the T-Incident.
As noticed in the learning curves, the better spatiotemporal grouping could be the
radius of 0.01 km which shows a Test score above 90% in all metrics evaluated.
However, we considered a very good result scores above 70% due to the quality of
LBSM data. Once assumed that, we can even use the radius of 0.1 km keeping the
F1 sore, Recall and Precision around 75% on average. After that spatiotemporal
grouping, we observed a divergence among those metrics scores, and the decrease of
scores, which can be explained by the increase of intersection between the incident
and the non-incident set of features.
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(a) KNN – radius 0.01 km. (b) KNN – radius 0.5 km.

(c) RF – radius 0.01 km. (d) RF – radius 0.5 km.

(e) SVM – radius 0.01 km. (f) SVM – radius 0.5 km.

Figure 5.13: The learning curve of a given kernel and spatiotemporal grouping.
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Figure 5.14: Classification results based on different kernels and evaluation metrics.

5.4.4.2 Event Description

The results observed in the detection stage, allowed us to identify the best spa-
tiotemporal grouping which accurately outlines the event. In this sense, we con-
ducted a text summarization process, based on the Extractive method, creating
a short and coherent version of the event. Notice that we used for this analysis
the spatiotemporal grouping with radii 0.01 km and 0.1 km, based on the trade-off
between accuracy and size of the data sample.

As an example of the T-Incident description service with a radius of 0.01 km,
the text below summarizes a specific incident event on Franklin D Roosevelt Drive.
We highlighted the words to make this text clear for the reader to understand
what happened there. With that analysis on hand, we aim to enable users and
road managers to understand and decide what can be done about it.

Cleared: Construction on #FranklinDRooseveltDrive SB from Exit 9 - East 42nd Street to 34 street;
Updated: Incident on #FranklinDRooseveltDrive SB at Exit 9 - East 42nd Street; Cleared: Incident
on #FranklinDRooseveltDrive SB at Exit 9 - East 42nd Street; Incident on #FranklinDRooseveltDrive
SB at Exit 9 - East 42nd Street; Closure on #FranklinDRooseveltDrive NB at Exit 9 - East 42nd Street;
Cleared: Closure on #FranklinDRooseveltDrive NB at Exit 9 - East 42nd Street; Construction on
#FranklinDRooseveltDrive Both directions at Exit 9 - East 42nd Street

At the same time, using the spatiotemporal grouping with a radius of 0.1 km,
for instance, we analyzed a specific non-incident event, the Town Hall and its
surroundings. The text below summarizes that area, highlighting the top trends
of places which were extracted by users’ impressions. In that way, this is possible
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to find out cultural places to go, where to book a hotel’ room and where to eat
there.

Open House New York Sunday Stop 1! Town Hall. It was never taken over by the Broadway
theatre giants because ther..; #30DaysForMyArt DAY 16: "Go see a broadway show." It’s sim-
ple: There is NOTHING like a broadway show. I’ve lived in; Beastie Boys Book: Live; Direct
with Adam Horovitz; Michael Diamond: The Town Hall; Good morning Times Square. Bad I have
to leave today! (@Millennium Broadway Hotel - @millenniumpr in New York, NY); Good night!
(@Millennium Broadway Hotel - @millenniumpr in New York, NY); YEP! I Like Wrestling Podcast
#45: WWE Super Show-Down Predictions, Raw; Smack; Show Time! (@Beautiful: The Carole King Musi-
cal in New York, NY); Mooch’s book party. Really. (@Hunt; Fish Club in New York, NY); Head over
heels wPeppermint!!! (@Hudson Theatre - @hudsonbway for Head Over Heels in New York, NY); I had the
heirloom tomato lobster salad. Kristine had the burger (@Burger; Lobster in New York, NY);

Moreover, the T-Incident description service provides an overview of incident
events in each area and day hour. The text below was summarized considering
the spatiotemporal grouping with a radius of 0.05 km in Manhattan at 5 am, for
instance. It delivers to the users and road manager a feasible and low-cost way
to understand areas which may be avoided or even take better attention at that
hour. Notice that, our analysis aims to focus on the top trends of incident events
at a given day and hour, enriching the current context and delivering to the public
a very short and summarized information.

Cleared: Construction on #GeorgeWashingtonBridge WB from New York SideLower Level to
New Jersey SideLower Level; Cleared: Construction on #WLine Both directions from White-
hall Street-South Ferry Station to Ditmars Boulevard-Astoria Station; Updated: Construction on
#WLine Both directions from Whitehall Street-South Ferry Station to Ditmars; Cleared: Con-
struction on #NY9A SB from West 42nd Street to West 38th Street; Cleared: Closure on
#RiversideDrive Both directions from West 145th Street to West 155th Street; Cleared: Construc-
tion on #FranklinDRooseveltDrive SB from Exit 9 - East 42nd Street to 34 street; Cleared: Con-
struction on #M42Bus Both directions at 42 St at 12 Av and the 42 St Pier; Closed in #NewYork
on 42nd St WB between Lexington Ave and Madison Ave, stop and go traffic back to 3rd Ave
#traffic; Accident, center lane blocked in #HudsonRiverCrossingsGwb on The G.W.B. Upper Level Out-
bound after The Harlem Riv; Accident, left lane blocked in #HudsonRiverCrossingsGwb on The
G.W.B. Upper Level Outbound after The Harlem River

5.4.5 Discussion

The results of our RoDE can be summarized as follows: the Incident Services
showed the best set of parameters that can feed our T-Incident approach, leading
to the incident detection and event description services. The better spatiotemporal
grouping mode considered the radius of 0.01 km, showing the incident detection
scores above 90% in all evaluated metrics. However, we considered that a very
good result presents scores above 70% due to the quality of LBSM data. Once
assumed that, we can even use the radius of 0.1 km keeping the F1 score, Recall
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and Precision around 75% in average. Based on that, the event description service
allowed us to provide a summarized description for each group, providing users and
traffic planners the viewpoint of the LBSM users regarding the transit events and
points of interest.

5.5 Chapter Remarks

In this chapter, we presented the Road Data Enrichment (RoDE) framework, a
low-cost approach to ITSs based on Heterogeneous Data Fusion. RoDE delivers
a high-level information, allowing a navigation system, road planners and general
public a more consistent, accurate and useful information, providing two main
contributions: Route Services and Incident Services. RoDE is able to enhance
the route information of current navigation tools, detect incidents on the road,
and enrich the event description. It provides to users and traffic planners the
viewpoint of the LBSM users and different traffic/transit data sources, regarding
the transportation system.

In summary, Figure 5.15 shows how our design of fusion on Vehicular Data
Space (VDS) worked in this study. Where, the LBSM, road map data, and point of
interest feed the fusion process, the data preparation deal with data aspects showed
in Chapter 3 and others which help to treat the data for the data processing which
covers methods related to the application goals and finally resulting in the RoDE
as the data use.
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Figure 5.15: Design of fusion on VDS for RoDE.



Chapter 6

Intra-Extra-Vehicular Data Fusion

In this chapter, we describe the fusion process on the Vehicular Data Space (VDS),
considering the Intra-Vehicle Data (IVD) and Extra-Vehicle Data (EVD) aiming
to provide an application to promoting the Smart Mobility (SM).

6.1 Introduction

Planning and managing transportation systems are crucial tasks to promote the
growth of cities. For instance, the number of fatalities and injuries on the road
has achieved an alarming scenario. Such fact is pushing new initiatives from gov-
ernments and private sectors to improve the road traffic efficiency and safety.
However, the lack of traffic information provided by the transportation systems
decreases the efficiency of route management, flow control and the spread of traffic
descriptions. To provide accurate traffic information, the integration of data from
multiple data sources are needed. Then, once again the heterogeneous data fusion
becomes a feasible solution way to achieve the Intelligent Transportation System
(ITS) goals.

Due to the lack of traffic data and considering vehicles as potential entities
of participatory sensing, where communities can contribute with sensing traffic
information, we propose Traffic Data Enrichment Sensor (TraDES), a low-cost
traffic sensor for ITS based on heterogeneous data fusion. TraDES aims at fusing
data from vehicular traces and its respectively embedded sensors with road traffic

169
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data to enrich the current spatiotemporal traffic data. To do that, we propose a
methodology to spatiotemporally group these different data sources and perform
a learning-based approach to detect the traffic condition based on a set of vehicle
sensors. As a result, the methodology outputs an enriched traffic sensor, with an
accuracy of up to 90%, allowing the delivery of information about traffic conditions
to navigation systems, road planners and the general public. Hence, the main
contributions of TraDES are: i) A scalable and low-cost approach: we focus on
free access data and a spatiotemporal grouping method, which enable to add more
data layers to enrich available traffic data or even to produce another application.
ii) Increase the spatiotemporal traffic data coverage: using vehicular participatory
traces and road traffic data as input to a robust methodology allows us to infer
the traffic condition for regions where there is no available information; iii) Enrich
the traffic data: by taking advantage of vehicular sensors, we develop analyses
that provide an overview of fuel consumption, emissions and so on for each traffic
condition.

The rest of the chapter is organized as follows. In Section 6.2, we describe
the related works to the traffic problems. Section 6.3 presents the data acquisition
and characterization process. In Section 6.4, we present TraDES design. The
evaluation is detailed in Section 6.5. Finally, in Section 6.6 we highlight the final
remarks and conclusions.

6.2 Related Work

The issues related to transportation and traffic in huge cities are well known by
governments and private sectors. These issues pushes new initiatives and investiga-
tions on ITSs to improve the road traffic efficiency and safety. Those investigations
may be conducted by considering many different entities and its data from the ITS
scenario. Using only GPS from smartphones, Goncalves et al. [2014] conducted
a study and characterization of traffic and road conditions. They built the Iris
Geographic Information System (GIS) platform using a Android smartphone on
the client side and a server for collecting and storing data, pre/post processing,
analyzing and managing the traffic condition.

Zuchao Wang et al. [2013] developed a system for visually analyzing urban
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traffic congestion. They used GPS trajectories and speed data from taxis in Bei-
jing to design a model to extract and derive traffic jam information in a realistic
road network. The process consists of an efficient data filtering step based on
spatiotemporal aspects, size and network topology to create a graph structure and
its visualizations. Han et al. [2014] developed the SenSpeed, an accurate vehicle
speed estimation system, to address an unavailable GPS signal or inaccurate data
in urban environments. The authors relied on smartphone sensors, such as gyro-
scope and accelerometer to sense turns, stops and crossing irregular road surfaces.
The results show that the real-time speed estimation error is 2.1 km/h, while the
offline speed estimation error is 1.21 km/h, using the vehicle speed through the
On-Board Diagnostic (OBD) as ground truth in their experiments. Ning et al.
[2017] conducted a study to detect traffic anomalies based on the analysis of tra-
jectory data in Vehicular Social Networks (VSN). The VSN is an integration of
social networks and the concept of the Internet of Vehicle (IoV).

Using public data, Gu et al. [2016] explored the Twitter platform, aiming
to extract traffic incident from users posts, thus providing a low-cost solution to
increase the road information. Santos et al. [2018] also improved traffic and transit
comprehension through the Twitter MAPS (T-MAPS), a low-cost spatiotemporal
model to improve the description of traffic conditions using tweets. Differently from
most of the related work discussed above, we take a step forward by providing a
methodology to increase the spatiotemporal traffic data coverage. For that, we
fuse free public access heterogeneous data, such as participatory vehicular traces
and road traffic data, aiming to enrich the transportation scenario, thus feeding
with data the current navigation systems, road planners and the general public.

6.3 Data Acquisition

Nowadays, there is a variety of entities on the urban transport environment that
provides data to transportation systems. However, the spatiotemporal data cover-
age depends on huge infrastructures and policies for data access, such as security
and privacy. In this sense, governments and academy initiatives to improve the
transportation data coverage are essential for achieving the ITS view. TraDES
is an approach to accurately identify traffic conditions (Traffic and Non-Traffic)
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based on a set of features from vehicular traces with the aim of enriching the qual-
ity of road traffic data. The data acquisition process consists on fusing data from
different data sources, such as Here WeGo 1 (traffic map) and enviroCar 2 (ve-
hicular traces) in both temporal and spatial dimensions to provide a novel traffic
sensor.

Bröring et al. [2015] presented the enviroCar platform, which aims to acquire
vehicle sensors’ data and provide free access to such data, thus enabling traffic
monitoring and environment analysis through the Internet. Given the importance
of sensors to a vehicle’s operation, new vehicle models embed many high-quality
sensors to get more reliable and diverse information about themselves. All data
produced by sensors in a vehicle are delivered to its Engine Control Unit (ECU)
through an internal network, named Controlled Area Network (CAN), which is
accessible through the vehicle’s OBD port. The OBD system was first introduced
to regulate emissions. However, it is now used for a variety of applications. There
are different signaling protocols to transmit internal sensor data to external devices
through a universal port. Such a universal port is present in all cars produced since
1996 in the U.S. and Europe. There are Parameter IDs (PIDs) to access sensor
information using the OBD, which identify individual sensors. Some PIDs are
defined by regulatory entities and are publicly accessible. However, manufacturers
may include other sensors’ data under specific and undisclosed PIDs.

Using Android smartphones and OBD adapters, the enviroCar collects a set
of sensors data produced by vehicles and upload it to the web for free public access.
The enviroCar dataset consists of 585,050 observations in almost 200 Germany
cities acquired from 2017-01-01 to 2018-08-07. However, we were not able to
acquire spatiotemporal traffic data with the same coverage. Hence, we reduced
the vehicular traces to 255,743 observations and 1872 distinct trips, containing a
set of cities for which there also is traffic data. All collected trips are geolocated and
most of them are in Germany (subject of our study). In addition, the frequency of
the sensor data acquisition is every 5 seconds. Table 6.1 shows some of the sensors
data collected by enviroCar.

To collect as much traffic condition data as possible from a traffic map, we col-
1https://wego.here.com
2https://envirocar.org/
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Table 6.1: Features from vehicles and roads.

Data Features
Speed* MAF* RPM*

Throttle*
Position

Engine*
Load

Intake*
Air Temp

CO2* Fuel* O2 Lambda
VoltageVehicle

Intake
Pressure
Device
Time Altitude GPS

Location
Smartphone GPS

Speed
GPS

Features
JF* FC FFRoad

Traffic SP SU
MAF = Mass Airflow; RPM = Revolution per Minute;
GPS Features = HDOP, Bearing, VDOP, Accuracy,
and PDOP; JF = Jam Factor; FC = Current Flow;
FF = Free Flow speed; SP = Speed capped by
speed limit; SU = Speed not capped by speed limit;

lected data from 13 different cities in Germany with a temporal granularity of one
hour. Since there is no historical traffic data available, we opened a data acquisi-
tion streaming from 2017-01-01 to 2018-08-07 to collect vehicular traces and traffic
data from the same spatiotemporal interval. As a result, we collected 1,555,582
road traffic observations from Here WeGo from 5 cities in Germany, which also
have reported vehicular traces. Table 6.2 summarizes the collected data, which
will then be spatially and temporally fused. We also started a data acquisition
process among different map sources, such as Bing Maps3 and MapQuest 4, but
there was not enough data reported in Germany.

3https://bing.com/maps
4https://www.mapquest.com/
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Table 6.2: Data acquired from different data sources.

Source Goal Sample Temporal
Interval

Spatial
Location

Enviro
Car

Vehicular
OBD Traces 255,743

Monchengladbach,Viersen,
Willich,Dusseldorf,

Korschenbroich,Wegberg,
Munster,Neuss,Juchen

Here
WeGo

Road
Traffic 1,555,582

2017-01-01 to
2018-08-07 Monchengladbach,Viersen,

Dusseldorf,Munster,Neuss

6.3.1 Data Characterization

6.3.1.1 Trace

Contextual information from vehicles is fundamental to better understand traffic
patterns, drivers behavior and mobility patterns in a city. In this sense, we explore
the spatial and temporal aspects of the collected vehicular traces. As observed in
our previous work [Santos et al., 2018], which take into account road traffic data
and Location-Based Social Media (LBSM), the traffic and users have a similar
behavior when considering the day of the week and hour of the day, as you can
also see in Figure 6.1a. The number of trips increases in the beginning of the
day, decreasing until the middle of the afternoon, when the curve returns to rise.
That behavior reflects people in their workday during the week. Furthermore, in
the weekend, people tend not to use their own vehicles and stay at home or use
another vehicle to move.

Figure 6.1b shows the spatial coverage of the vehicular traces on the regions
of Monchengladbach during the week. We can notice the areas during specific
weekdays where there are more traces than others. Moreover, different areas of
the city are explored during the weekend. Considering the sensors’ data acquired
from the vehicle and smartphone, as shown in Table 6.1, we can also analyze
features, such as fuel consumption, emissions and level of noise in a given area of
the map. Those observations may allow navigation systems, road planners and
the general public a more descriptive overview of the transportation system.
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(a) Frequency of trips per week and hour.

(b) Traces per week in Monchengladbach.

Figure 6.1: Spatiotemporal analysis of vehicular traces.
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6.3.1.2 Traffic

After showing the potential of vehicular traces to provide better traffic compre-
hension in a given area, we conducted the same data characterization using road
traffic data acquired from Here WeGo. Firstly, we can notice the limited data
coverage on all cities observed. Figure 6.2a shows an example of a road map with
reported Jam Factors (JF). That factor is a real number between 0 and 10 indi-
cating the expected quality of travel. As the number approaches 10.0, the quality
of travel tends to get worse, and when the JF reaches 10 it means that there is
a road closure. That limited road data coverage implies that navigation systems
may suggest routes based on insufficient traffic information, once only the main
roads report traffic conditions, while adjacent ones do not.

After observing the road traffic data coverage, we extract each street segment
to analyze its average speed and JF. Figure 6.2b shows, considering each street
segment, an overview of traffic condition in Monchengladbach. We can notice
that there is a group of street segments with low speeds and high jam factors.
That behavior may indicate areas close to downtown, and the opposite behavior
indicates they are highways. In other words, these analyses may be used to classify
the types of roads in a city according to their use. We also notice that there are
two segments (15 and 18) that stay closed during our data acquisition process.
However, we observe vehicular traces that use these segments, reinforcing the need
to employ alternative approaches that consider different data sources, as the one
proposed here, to better explain the current traffic condition.

6.4 TraDES’ Design

This section presents an approach to enrich traffic data based on heterogeneous
data fusion. First, we feed our proposed TraDES with ITS data. Next, we conduct
a data preparation stage which consider a spatiotemporal grouping process, aiming
to fuse data from different data sources (see Section 6.3 considering both temporal
and spatial dimensions. Then, we filter data, fill missing values using imputation
techniques, reduce the number of features and balance the data to feed the next
stage. Thereafter, we develop a learning-based model based on Artificial Neural
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(a) Road map data.

(b) Traffic level and speed per street Id.

Figure 6.2: Traffic data analysis in Monchengladbach.
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Figure 6.3: Design of TraDES.

Networks (ANN) to identify potential traffic conditions by considering the fusion
of different data sources and a set of vehicular sensors data. Finally, we evaluate
our approach by feeding the model with raw vehicular data and obtain as output
enriched traffic data. Hereafter, we describe each stage of TraDES, as depicted in
Fig. 6.3.

6.4.1 Input and Output Data

The TraDES methodology was developed to allow the entry of raw transportation
system data and get as output enriched road traffic data. In a general way, our
methodology do not pose any restriction on using different types of ITS data
sources as input to the model. However, we conduct our case study with vehicular
OBD traces and data from road traffic networks. The results of our data fusion
process provide to end users and traffic planners a novel and enriched traffic sensor
for the uncovered road traffic networks.

6.4.2 Data Preparation

6.4.2.1 Spatiotemporal Grouping

The proposed spatiotemporal grouping takes into account heterogeneous data
sources and their spatiotemporal coverage. Therefore, we develop an approach
that merges the vehicular traces layer with the road traffic layer based according
to both dimensions (i.e., spatially and temporally). We describe the spatiotem-
poral grouping in Algorithm 2, where the inputs are the vehicular trace, traffic
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data, and the traffic street coordinates. The result of such process is an updated
vehicular trace dataset containing the traffic condition.

Algoritmo 2: Spatiotemporal Traffic Data Grouping
Input: trace data, traffic data, traffic street coordinates
Result: traces grouped by road traffic condition

1 initialization;
2 /* creating a time-stamp for each st. seg. id */
3 trafficStreetCoord.timesTamp ← trafficTime(trafficStreetCoord);
4 /* get the OSM street id by GPX data format */
5 traceData.streetId ← mapMatching(getGPX(traceData));
6 trafficStCd.streetId ← mapMatching(getGPX(trafficStCd));
7 /* merge the OSM street id to each traffic observation */
8 trafficData.streetId ← mergeTrafficStreetId(trafficStCd);
9 for each element in traceData do

10 /* subset of traffic data with same streetId of traceData
*/

11 traffic = subset(trafficData, streetId == traceData.streetId)
12 for each element in traffic do
13 /* temporal filter by day or hour */
14 if TemporalFilter(traffic.timesTamp, traceData.deviceTime) then
15 traceData.FF ← traffic.FF;
16 traceData.JF ← traffic.JF;
17 traceData.SP ← traffic.SP;
18 traceData.SU ← traffic.SU;
19 end
20 end
21 end

a) Spatial : The spatial grouping is performed by following the approach devel-
oped by Marchal et al. [2004], which aims to conduct a map-matching process
to identify the route on transportation network that the GPS coordinate actually
took. In Algorithm 2 (Line 2), we add a time-stamp to each street segment in
the traffic street coordinates, modifying the data to a trace based format. Af-
ter that, we convert the traffic street coordinates and trace data to a GPX format
(Lines 3-4), where we have the following data structure [’id’, ’longitude’, ’latitude’,
’timestamp’ ]. This allows it to be fed to the next step, the map-matching approach
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(Lines 3-4) by using the TrackMatcing API developed by Marchal et al. 5.
In the following, we briefly describe the map-matching approach (see [Mar-

chal et al., 2004] for more details). We begin with a road network acquired from the
OSM 6 and modelled as a directed graph G(V,E), where V is the set of vertexes
(coordinates of a given street segment) and E is the set of edges (link between
those coordinates). Consider Pi as the set of coordinate points (xi, yi) and time-
stamp ti (i = 1...n), Tc as a stream of Trace, and Tf as a stream of Traffic Map,
where Pi ∈ Tc and Pi ∈ Tf . The distance is calculated using the euclidean distance
between P and the oriented edge AB. Bellow, we define the distance:

d(P,AB) =

de(P, P ′) if P ′ ∈ [AB]

min
{
de(P,A), de(P,B)

}
elsewhere

Where P ′ is the projection of P on the link AB and de denotes the euclidean
distance. Based on that definition, the distance dp,AB is equally distant from the
opposite segment direction dp,BA. Then, we introduce a perpendicular shift λ to
the road segment reflecting the distance between the middle of the road and the
middle of the driving lanes. After calculating the distance between P and the
street segments, the score of a path is measured in order to estimate the algorithm
error.

Based on that approach, we conduct a map-matching of Tc and Tf , resulting
in the accurate identification of each street segment ID for a given P with a
precision of about 10m/pt. Then, with both sets of data converged to the same
street identification, we are able to spatially fuse the vehicular trace and the road
traffic data.
b) Temporal : After the spacial grouping using a map-matching method, we con-
duct the temporal grouping to comprehend the vehicles’ behavior and the traffic
surrounding. In our Algorithm 2 (Lines 6-16), we select each element of the ve-
hicular trace and submit it to the temporal validation together with the traffic
data. The temporal data granularity can be coarse-grained (traffic summary per
day) or fine-grained (traffic summary per hour) (Line 9). For this TraDES ver-

5https://mapmatching.3scale.net/
6https://www.openstreetmap.org



6. Intra-Extra-Vehicular Data Fusion 181

sion, due to the computational costs, we perform the temporal grouping based on
coarse-grained traffic data. Therefore, the traffic information, such as FF (Free
flow speed), JF (Jam Factor), SP (Speed capped by speed limit), and SU (Speed
not capped by speed), is fused to the current road traffic data (Lines 10-13).

6.4.2.2 Filters

We conduct our analysis by considering the premise that even when using only
vehicular sensor data it is possible to provide valuable information about the traffic
behavior. Based on this premise, we eliminate from the collected data all variables
that present issues such as outliers, conflict, incompleteness, ambiguity, correlation,
and disparateness or does not reflect the traffic behavior [Rettore et al., 2016a].
Thus, nine variables out of 30 were preserved, where eight features corresponds
to the vehicular data and one to the road traffic data. Table 6.1 highlights the
selected variables (*) for the next stage of data preparation.

6.4.2.3 Imputation

When analyzing the vehicular sensors data we noticed that they had randomly
spread gaps on the dataset. A problem that arises when using sensor data to
monitor and control entities, especially vehicles, is its reliability regarding both
availability and quality of information. A sensor must output correct readings
constantly, and our approach depend on these characteristics to operate properly.
However, every sensor has an inherent probability of presenting a malfunction on
each one of these aspects.

In this sense, there are two possible solutions. First, it is to temporarily
replace the real sensors by a virtual sensor, which collects data from other sensors
and outputs data according to models or formulas. Second, it is to apply imputa-
tion techniques to fill the gaps on the data. In this work, we focus on imputation
techniques, specifically interpolation methods. Once we have to deal with time-
series and there is no seasonality on the vehicular traces, despite some trends, we
use a simple linear interpolation. Then, for each car C = (T, F ), where T is the
set of trips, F the set of features; f is a single feature, where f ∈ F and i is its
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index, next we present the interpolation equation:

fi+1 = fi + (fi+2 − fi)/2

As a result of the imputation stage, we are able to fill sensor data gaps, such
as fuel, co2, and RPM, that presented reading errors, storage or sensor fails in the
data acquisition process. This stage increases the amount of data that can be used
in the data analytics process.

6.4.2.4 Features Selection

This step aims at identifying the best set of features to feed the TraDES and
still obtain a high accuracy while maintaining lower computational costs, such as
processing time, memory and storage capacities. Once the data has irrelevant
features, they can decrease the accuracy of the models evaluated. In this way,
performing the features selection process before modeling our data may reduce the
over-fitting, improves the accuracy and reduce the training time.

We perform four techniques to reduce the number of vehicle’s features. Ta-
ble 6.3 show those techniques and the features selected by each one. The first one
asks the User to choose the features the he/she guesses best describe the traffic
condition. The second technique is the Principal Component Analysis (PCA) to
extract a set of relevant features. This process identifies the most variable infor-
mation from a multivariate dataset and expresses it as a set of new features –
Principal Components (PCs). These PCs represent the directions along which the
variation in the data is maximal.

We also apply the Recursive Feature Elimination (RFE) technique, which
aims at selecting those features that fit a model resulting in high accuracy. The
RFE rank those features by the model’s coefficient or feature importances at-
tributes, recursively eliminating the dependencies and collinearity that may exist
in the model. Finally, the Feature Importance (FI) is calculated using the Extra
Trees Classifier, which computes the relative importance of each feature. In other
words, that technique calculates the probability of reaching a node as the number
of samples that reach the node divided by the total number of samples. The higher
the value the more important the feature.
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Table 6.3: Set of features resulted by each selection technique.

Technique Features

MAF Speed RPM Engine
Load

User (ALL) Fuel CO2
Throttle
Position

Intake
Air Temp

MAF Intake
Air Temp RPM CO2

PCA Fuel

RFE MAF Speed CO2
Intake

Air Temp

FI MAF Speed RPM Intake
Air Temp

6.4.2.5 Balancing Data

We noticed an imbalance on the dataset once we grouped the Jam Factors in two
groups and the number of observations with Traffic is bigger than the Non-Traffic
ones. In this case, we explored the re-sampling techniques, which aim at balancing
classes either by increasing the frequency of the minority class (Over-sampling) or
by decreasing the frequency of the majority class (Under-sampling). Our goal was
to approximately obtain the same number of observations for both classes.

We combine two techniques to deal with imbalanced data. The Synthetic
Minority Over-sampling Technique (SMOTE) uses the k-Nearest Neighbors (KNN)
algorithm to find similar observations for minority class, and randomly choose one
of the KNN to create the synthetic samples in the space. Next, we apply the
Tomek links algorithm, which looks for pairs of opposite instances classes that are
nearest neighbors and removes the majority instance of the pair. Tomek link aims
at making clear the border between the minority and majority classes, making the
minority regions more distinct.

These strategies help to improve the accuracy of our proposal, since a reduced
amount of data may introduce bias to the learning-based model. For that reason,
this step is not limited to these approaches, as it always depends on the quality
and quantity of the acquired transportation system data.
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6.4.3 Learning-based Model

The learning-based model is fed with the vehicular trace labeled with Traffic and
Non-Traffic information. Even though the road traffic data provides levels between
0 to 10 (Jam Factors), we group these levels in two groups, where the Non-Traffic
label corresponds to the traffic level 0 and the Traffic label corresponds to traffic
levels between 2 to 10. Notice that, traffic level 1 is considered a intermediate
traffic level (Low-Traffic, which introduces bias to our model since the vehicle
behaves in the same way as in a traffic level 0 and in a traffic level between 2 to
10. In other words, that intersection makes it difficult to decide which traffic level
better suits to the vehicular traces with level 1 of traffic. Then, the Low-Traffic
was discarded in this approach due to the demand of more vehicular traces and
traffic data spatiotemporally grouped. Table 6.4 summarizes the data that feed
the learning-based traffic model.

Table 6.4: Data to feed the learning-based model.

Jam Factors Traffic State Sample Goal
0 Non-Traffic 3,216

2 to 10 Traffic 9,291 Training/Test

Not Covered 234,315 Traffic Detect

In this way, we start to deal with a data enrichment problem, which aims
at training a model to identify the current traffic state (Traffic and Non-Traffic
through vehicular features. First, we choose the most common classification al-
gorithms (kernels to separate these two classes, such as Multi-Layer Perceptron
(MLP), Support Vector Machine (SVM), KNN and Random Forest Classifier (RF).

Based on the previous stages, we conduct an exploratory approach to identify
the hyper-parameters of each kernels, which results in better accuracy. We use a
GridSearchCV class from Scikit-Learn API [Pedregosa et al., 2011], which takes a
set of parameters and values to exhaustively combine them, aiming at finding the
best configuration. Knowing that the complexity of such search grows exponen-
tially with the number of parameters, we define a set of parameters for each kernel
following some guidelines. For the SVM, we rely on [Hsu et al., 2003], and for the
other ones, we follow the user’s guide for Auto-WEKA [Kotthoff et al., 2017].
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After evaluating the hyper-parameters of each kernels, we notice that the
MLP was able to separate the classes Traffic and Non-Traffic using the vehicular
features while the other kernels showed limited results. The MLP is built on
Neural Network (NN), which aims at performing information processing based on
the brain neurons structures. Because the human brain is able to learn and make
decisions based on learning, NN must do the same. Thus, a neural network can be
interpreted as a processing scheme capable of storing knowledge based on learning
(experience) and making this knowledge available to the application.

Therefore, we choose the MLP classifier that trains using Backpropaga-
tion [Ng et al., 2011] as TraDES’s learning algorithm. MLP learns a function
f(·) : Rv → Rt, where v is the vehicle features and t is the traffic state. One ben-
efit of MLP is that it can learn a non-linear function for classifying more complex
traffic contexts. Concerning the applicability on the ITS context, our experiments
show that a MLP can be applied to accurately predict the traffic state using vehicu-
lar sensors data, thus increasing the traffic data quality, such as its spatiotemporal
data coverage.

Thereafter, we split the data into two sets, following the convention of most
machine learning approaches: Training Set, corresponding to 70% of the entire
dataset; and Test Set, corresponding to 30% of the entire dataset. To validate the
training process, we applied the cross-validation considering 10 folds split in 70%
and 30% of the training and test, respectively. Our goal is to evaluate the training
curve and the testing curve, avoiding possible over-fitting and under-fitting. That
partition is conducted for each feature selection technique.

After training the NN, we can feed TraDES with vehicular trace data pre-
pared according to Section 6.4.2 and input it to the learning model. At the end of
the process, TraDES outputs the vehicular trace data with the current traffic state,
thus enriching the road network data with traffic state, averaged fuel consumption,
emissions, speed and so on.

6.5 Evaluation

In this section, we evaluate TraDES by considering the vehicle’s features selection
and spatiotemporal data coverage. After conducting an exploratory analysis of the
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classification algorithms, hyper-parameters and the feature selection approach, we
present the results regarding the Training and Test process in Figure 6.4. We
validate our training process by performing a Cross-validation approach, which
aims at splitting the training set in both training and validation sets among 10
folds. Figure 6.5 shows the learning curve of the MLP kernel, which is an essential
procedure to prove the generalization of our model, avoiding over-fitting and under-
fitting.

Figure 6.4: Metrics per set of features.

In our analysis, the RFE and FI algorithms selected the best set of vehicle
features, with both achieving the same score, around 90%. An important lesson
learned here is that the application of a consistent methodology is able to provide
a generalization model to detect traffic condition.

Figure 6.4 shows the best set of features that can be used as input to TraDES.
We evaluate our model using three metrics on the Cross-validation and Test, con-
sidering the confusion matrix created by each set of features. For instance, the F1
sore, Recall and Precision report an accuracy around 90% on average for FI and
RFE. All features report an accuracy around 89%, however by introducing higher
computational costs when compared to the other ones. The accuracy decreases
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Figure 6.5: Learning curve of RFE algorithm.

to 87% when using PCA to remove non-representative features, which can be ex-
plained by the increase of conflicts among those features, i.e., the lack of the speed
feature may turn the learning process difficult.

After validating the TraDES’ methodology and proving the generalization
of the learning-based model, we give it as input raw vehicular traces that do not
show traffic conditions, as showed in Table 6.4. Thereafter, the traffic sensor
outputs enriched traffic data, thus allowing the evaluation of the benefits of our
heterogeneous data fusion approach for ITS. Figure 6.6 shows the coverage of
street segments and vehicular trips, based on raw data and fusion data. The raw
data consists of vehicular traces and traffic condition at the same time and space,
while the fusion data consists of the whole traffic condition provided by the use of
vehicular traces as input to a learning-model. These analyses enable us to see the
macro and micro benefits of TraDES, that enabled to increase the number of trips
from less than 300 to abounding 1,500, and the number of streets covered from
almost 400 to around 2,400.

Figure 6.7 shows the spatial data coverage, highlighting the traffic condition
when considering raw and fusion data. As you can see, there are specific streets
that constantly have traffic jam (Traffic while others have free traffic (Non-Traffic.
The benefits of TraDES’ approach is clear when we look at the Traffic condition
in raw and fusion data. For instance, consider that a navigation system makes use
of one of those traffic sources (Raw and Fusion) to its routes suggestion services.
Certainly, it performs differently when using each one of them. In other words,
navigation systems with access to enriched traffic data is better equipped to suggest
better routes by avoiding as much as possible bad traffic conditions, differently
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(a) Number of trips and streets.

(b) Number of trips and streets per city.

Figure 6.6: Evaluation of trips and street segments between the raw data and the
fused data.

from systems with access to only raw traffic data.
Notice that, TraDES increases the number of streets covered, but also the

number of traces which pass through those streets. TraDES also allows exploring
the whole sensors embedded on those vehicular traces. Then, we can find the
amounts of kilometers, emissions, fuel consumption, hours spent on a given traffic
condition, and so on. Figure 6.8a shows the frequency of street use by vehicles
between the raw data and fusion one. Besides TraDES’ evaluation, Figure 6.8b
shows the sum of the total kilometers traveled, emissions (co2, fuel consumption
and hours spent on the roads, when considering raw and fusion data. With such
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Figure 6.7: Traffic map coverage between the raw data and fused data in
Monchengladbach.

analysis, we aim at enabling users and road managers to better understand the
traffic behavior and help plan investments in a given area.

6.6 Chapter Remarks

In this chapter, we presented Traffic Data Enrichment Sensor (TraDES), a low-
cost traffic sensor for ITSs based on Heterogeneous Data Fusion. TraDES is able
to infer the traffic condition on regions that do not have any reported traffic data,
thus providing navigation systems, road planners and the general public more con-
sistent, accurate and useful information about the traffic in a given area. TraDES
is also able to enhance the route information of current navigation tools, improving
the road traffic data quality and enriching the current spatiotemporal data cover-
age. It provides to users and traffic planners an overview of the traffic condition,
fuel consumption, emissions, streets’ use frequency by fusing data from different



6. Intra-Extra-Vehicular Data Fusion 190

(a) Frequency of street segments use between the raw data and the fused data.

(b) Data coverage between the raw and the fused data.

Figure 6.8: Evaluation of trips and street segments between the raw data and the
fused data.
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data sources.
In summary, Figure 6.9 shows how our design of fusion on VDS worked in

this study. Where, the OBD vehicular sensors and road map data feed the fusion
process, the data preparation deal with data aspects showed in Chapter 3 and
others which help to treat the data for the data processing which covers methods
related to the application goals and finally resulting in the TraDES as the data
use.

Figure 6.9: Design of fusion on VDS for TraDES.



Chapter 7

Final Remarks

7.1 Conclusions

In this thesis, we have proposed a general approach which organizes methods
and techniques to enable heterogeneous data fusion on the Vehicular Data Space
(VDS), aiming to achieve a set of Smart Mobility (SM) goals. We categorize
the data from the VDS into Intra-Vehicle Data (IVD) and Extra-Vehicle Data
(EVD) perspectives, allowing to identify challenges and open issues to perform
data fusion. By showing a set of applications and services to improve the data
quality of Intelligent Transportation System (ITS), we highlighted methods and
techniques to address those goals such as mathematical methods (equations, oper-
ations), threshold filters, statistics (distributions), geofencing, fuzzy logic, feature
reduction, machine learning (supervised and unsupervised classification), correla-
tions, algorithms to deal with spatiotemporal data grouping, data balancing, graph
modeling, natural language processing, and imputations methods. This thesis dif-
ferentiates the data fusion into three main categories – Intra-Vehicle Data (IVD),
Extra-Vehicle Data (EVD), and Intra and Extra-Vehicle Data (IEVD), which cover
the whole applications and services in Intelligent Transportation System (ITS). We
have also shown a lack of studies dealing with data fusion of EVD and Intra and
Extra-Vehicle Data (IEVD), which we also advanced the state-of-the-art.

Our comprehensive study showed that the use of heterogeneous data fusion
techniques have the potential to improve the accuracy of applications and services

192
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of ITS when there are several related descriptors. It is also clear that novel ITS
applications will benefit from multiple heterogeneous datasets. Through the use
of different techniques, this thesis made the following contributions:

• A vast literature review to provide the concept of VDS and the state-of-the-
art applications and services developed to ITS.

• We presented a methodology to develop applications and services to SM
based on the ITS data cycle stages;

• We designed IVD fusion and proposed a methodology to detect a legiti-
mate/illegitimate driver, resulting in an accuracy above 98%. We also de-
veloped a virtual gear sensor for manual transmission, and used it in an
eco-driving methodology that analyzes the vehicle’s historical sensor data to
suggest a gear shift. The results showed more efficient fuel consumption,
emissions, and reduced vehicle maintenance;

• Based on the vehicle’s surrounding data, we designed Extra-Vehicle Data
(EVD) fusion that combines the user’s viewpoint and road data. We pro-
posed the Road Data Enrichment (RoDE) with two main services: route
service and incident service. The former service provides three route de-
scription services (Route Sentiment (RS), Route Information (RI) and Area’
Tags (AT)) that aim to enhance the route information. The latter service
proposes a methodology to detect road events achieving scores above 90%,
allowing us to understand Location-Based Social Media (LBSM) user’s view-
point, regarding the transit events and points of interest; and (iv) Intra and
Extra-Vehicle Data (IEVD) fusion, where we propose the Traffic Data En-
richment Sensor (TraDES) to fill the road spatiotemporal data gaps, using
vehicular trace and road data, improving the data quality allowing a reliable
route suggestion.

7.2 Future Work

There are different extensions that we can follow, based on Figure 1.2, given the
richness of VDS and the combinations of data preparation and heterogeneous data
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fusion techniques. For example, add contextual information to the datasets such
as traffic conditions and driver’s behavior to vehicular mobility traces. The de-
ployment of virtual sensors may be used to validate the utility and operations of
real sensors. In order to deploy these virtual sensors, a physical platform with
access to an On-Board Diagnostic (OBD) port and a processing unit is needed.

We can further improve the gear virtual sensor to show the transitions be-
tween gears and add this feature to the analysis of the driver’s behavior. This will
eventually lead to an effective gear change service based on fuel consumption and
torque. We can also evaluate the recommendation service simulation as a real-time
service, through a smartphone application that provides the gear suggestion to the
driver. We can then compare the results with the Gear Shift Indicator (GSI), a so-
lution developed by companies as Ford, BMW, Renault and Fiat to guide the best
gear to use in order to reduce the fuel consumption. It is also possible to design
gamification strategies to encourage multiple drivers to improve a desired aspect
of their behavior and also evaluate how much the driver recognizes the suggested
gear as a good option.

The driver behavior authentication may also be expanded by embedding the
system to the vehicle and apply different machine learning algorithms as well as
report evaluation metrics. In addition, we plan to investigate the authentica-
tion computational cost, taking into account the vehicle’s features and evaluate
solutions to circumvent the presence of suspects in Vehicular Ad-hoc Networks
(VANETs).

The RoDE approach showed a great potential to explore new research ideas,
such as the extension of Twitter MAPS (T-MAPS) route description by applying
strategies to further increase the information quality. Besides that, we can employ
regular users’ accounts from LBSM and use reputation models to handle conflicting
information. The incident service (Twitter Incident (T-Incident)) may be extended
to web version. Moreover, adding more specialist accounts, and improving the
current identification and description results. Another possibility is to develop
strategies to eliminate the specialist intervention in the feature’s extraction stage.
Moreover, based on the T-Incident results, it is possible to design an incident
prediction service and incident duration time. It is also possible to provide and
evaluate different vehicular routes based on incident descriptions. Upgrade the
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T-Incident to an online version can be a step forward to improve the current
transportation systems.

Finally, the fusion of IVD and EVD allows to create the TraDES’ route
suggestion services based on the increased traffic data coverage. Also, we can
expand the data analyses by considering other types of data and data sources,
such as weather and social media, which may be beneficial to develop solutions to
SM.

7.3 Comments on Publications

In the following, we list all publications obtained during the doctorate. Papers in
Section 7.3.1 are direct results of this thesis. Results from collaborations in other
research projects related to Internet of Things (IoT), which also considered data
fusion concepts, are shown in Section 7.3.2

7.3.1 Contributions from the Thesis

Conference Publications:

• Rettore, P. H., André, B. P. S., Campolina, Villas, L. A., and A.F. Loureiro,
A. (2016a). Towards intra-vehicular sensor data fusion. In Advanced percep-
tion, Machine learning and Data sets (AMD’16) as part of the 2016 IEEE
19th International Conference on Intelligent Transportation Systems (ITSC
2016), , Rio de Janeiro

• Rettore, P. H., Campolina, A. B., Villas, L. A., and Loureiro, A. A. (2016b).
Identifying relationships in vehicular sensor data: A case study and charac-
terization. In Proceedings of the 6th ACM Symposium on Development and
Analysis of Intelligent Vehicular Networks and Applications, DIVANet ’16,
pages 33--40, New York, NY, USA. ACM

• Campolina, A. B., Rettore, P. H. L., Machado, M. D. V., and Loureiro, A.
A. F. (2017). On the design of vehicular virtual sensors. In 2017 13th Inter-
national Conference on Distributed Computing in Sensor Systems (DCOSS),
pages 134–141, Ottawa, Canada. ISSN
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• Rettore, P. H. L., Campolina, A. B., Villas, L. A., and Loureiro, A. A. F.
(2017). A method of eco-driving based on intra-vehicular sensor data. In
2017 IEEE Symposium on Computers and Communications (ISCC), pages
1122–1127, Heraklion, Greece. IEEE. ISSN

• Santos, B. P., Rettore, P. H. L., Ramos, H., Vieira, L. F., and Loureiro, A.
A. F. (2017). T-maps: Modelo de descrição do cenário de trânsito baseado
no twitter. In (SBRC 2017)

• Rettore, P. H. L., Campolina, A., Luis, A., de Menezes, J. G. M., Villas, L.,
and Loureiro, A. A. F. (2018b). Benefícios da autenticação de motoristas em
redes veiculares. In (SBRC 2018), Campos do Jordão, Brazil

• Rettore, P. H., Campolina, A., de Souza, A. L., Maia, G., Villas, L. A.,
and A.F. Loureiro, A. (2018a). Driver authentication in VANETs based on
Intra-Vehicular sensor data. In 2018 IEEE Symposium on Computers and
Communications (ISCC) (ISCC 2018), Natal, Brazil

• Santos, B. P., Rettore, P. H., Ramos, H. S., Vieira, L. F. M., and A.F.
Loureiro, A. (2018). Enriching traffic information with a spatiotemporal
model based on social media. In 2018 IEEE Symposium on Computers and
Communications (ISCC) (ISCC 2018), Natal, Brazil

• Rettore, P. H. L., Araujo, I., de Menezes, J. G. M., Villas, L., and Loureiro,
A. A. F. (2019). Serviço de detecção e enriquecimento de eventos rodoviários
baseado em fusão de dados heterogêneos para vanets. In SBRC 2019, Gra-
mado, Brazil

Journal Publications:

• Vehicular Data Space. IEEE Communications Surveys and Tutorials

Book chapters:

• Arya, K. V., Bhadoria, R. S., and Chaudhari, N. S. E. (2018). Emerg-
ing Wireless Communication and Network Technologies. Springer Nature.
Chapter: Vehicular Networks to Intelligent Transportation Systems
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Tutorials:

• Cunha, F. D., Maia, G., Celes, C., Guidoni, D., de Souza, F., Ramos, H., and
Villas, L. (2017). Sistemas de Transporte Inteligentes: Conceitos, Aplicações
e Desafios. In (SBRC 2017 - Minicursos)

Conference Publications Under Review:

• International Conference on Distributed Computing in Sensor Systems
(DCOSS)- TraDES: Traffic Data Enrichment Sensor based on Heterogeneous
Data Fusion for ITS

Journal Publications Under Review:

• IEEE Transactions on Intelligent Transportation Systems - RoDE: Road
Data Enrichment Framework based on Heterogeneous Data Fusion for ITS

7.3.2 Other Publications

Conference Publications:

• Santos, B. P., Rettore, P. H., Vieira, L. F. M., and A.F. Loureiro, A. (2019).
Dribble: a learn-based timer scheme selector for mobility management in
IoT. In 2019 IEEE Wireless Communications and Networking Conference
(WCNC) (IEEE WCNC 2019), Marrakech, Morocco
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