CONTRIBUTIONS FOR SOLVING THE AUTHOR
NAME AMBIGUITY PROBLEM IN

BIBLIOGRAPHIC CITATIONS

ANDERSON ALMEIDA FERREIRA

CONTRIBUTIONS FOR SOLVING THE AUTHOR
NAME AMBIGUITY PROBLEM IN

BIBLIOGRAPHIC CITATIONS

Tese apresentada ao Programa de Pos-
-Graduacao em Computer Science do In-
stituto de Ciéncias Exatas da Universidade
Federal de Minas Gerais — Departamento
de Ciéncia da Computagao como requisito
parcial para a obtencao do grau de Doutor
em Computer Science.

ORIENTADOR: MARCOS ANDRE GONCALVES
CO-ORIENTADOR: ALBERTO HENRIQUE FRADE LAENDER

Belo Horizonte

Junho de 2012

ANDERSON ALMEIDA FERREIRA

CONTRIBUTIONS FOR SOLVING THE AUTHOR
NAME AMBIGUITY PROBLEM IN

BIBLIOGRAPHIC CITATIONS

Thesis presented to the Graduate Program
in Computer Science of the Universidade
Federal de Minas Gerais — Departamento
de Ciéncia da Computacao in partial fulfill-
ment of the requirements for the degree of
Doctor in Computer Science.

ADVISOR: MARCOS ANDRE GONCALVES
CO-ADVISOR: ALBERTO HENRIQUE FRADE LAENDER

Belo Horizonte

June 2012

©

2012, Anderson Almeida Ferreira.
Todos os direitos reservados.

F'383c

Ferreira, Anderson Almeida
Contributions for Solving the Author Name
Ambiguity Problem in Bibliographic Citations /
Anderson Almeida Ferreira. — Belo Horizonte, 2012
xx, 114 f. : il. ; 29c¢m

Tese (doutorado) — Universidade Federal de Minas
Gerais — Departamento de Ciéncia da Computacao

Orientador: Marcos André Gongalves

Co-orientador: Alberto Henrique Frade Laender

1. Computagao — Teses. 2. Sistemas de recuperagao
da informacao — Teses. Bibliotecas digitais — Teses.
3. Registros de autoridade de nomes (Recuperagao da
informagao). I. Orientador. II. Coorientador. III. Titulo.

CDU 519.6%73(043)

UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIENCIAS EXATAS
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

FOLHA DE APROVACAO

Contribuig¢des para solucionar o problema de ambiguidade de nomes de autores
em cita¢des bibliograficas

ANDERSON ALMEIDA FERREIRA

Tese defendida e aprovada pela banca examinadora constituida pelos Senhores:

PROF. MARCOS ANDRE GONCALVES - Orientador
Departamento de Ciéncia da Computagéo - UFMG

Lelee '
PROF. ALBERYO HENRIQUE FRADE LAENDER - Co-orientador
Departamento de Ciéneia da Computacio - UFMG
A)F. CARLOS ALBERTO HEUSER

Departamento de Informatica - UFRGS

PROF. CLODOVEU AUGUSTI DAVIS JUNIOR
Departamento de Ciéncia da Computagéo - UFMG

PROFA%EE@% PAPPA

Departamento de Ciéncia da Computagdo - UFMG
/PACCX)\(’LO “Toate,

PROF. RICARDO DA SILVA TORRES
Instituto de Computagio - UNICAMP

Belo Horizonte, 21 de junho de 2012.

To Lilia, Lucas, André, Geralda and Guimaraes.

X

Acknowledgments

I thank my advisor, professor Marcos André Gongalves, and my coadvisor, professor
Alberto H. F. Laender, for supporting to developed this thesis.

I thank my coauthors that contributed significantly to the development of the
articles used as base to this thesis, specially, Marcos, Alberto, Adriano, Jussara, Ana
Paula and Rodrigo.

[thank my friends at LBD, the UFMG database group, for the nice environment
to work in this laboratory.

I also thank the administrative staffs of PPGCC that always solve all questions
with respect my PhD, such as travels, documentation and so on.

Finally, I am grateful to my parents, Guimaraes and Geralda, who always encour-
aged me, to my wife, Lilia, for your understanding and sacrifices during my studies,
and to my sons, Lucas and André.

This research is partially funded by the InWeb - The National Institute of Science
and Technology for the Web (MCT/CNPq/FAPEMIG grant number 573871 /2008-6),
InfoWeb (MCT/CNPq grant 55.0874/2007-0) and by CNPq and FAPEMIG scholar-
ships. This financial support is gratefully acknowledged.

xi

Abstract

Author name ambiguity is a problem that occurs when a set of bibliographic citation
records contains ambiguous author names, i.e., the same author may appear under
distinct names, or distinct authors may have similar names. This is one of the hardest
problems faced by current scholarly digital libraries (DLs), such as DBLP, CiteSeer,
MEDLINE and BDBComp. In this thesis, we present a set of contributions to help
solving the author name ambiguity problem. First of all, we present a taxonomy
to classify the author name disambiguation methods that helps to better understand
how the methods work and consequently understand their limitations. Second, we
present SAND a new hybrid disambiguation method that exploits the strengths of both
supervised author assignment and unsupervised author grouping methods. SAND is
a three-step disambiguation method. In its first step (i.e., the author grouping step),
a set of citation records is clustered so that records that are likely to be associated
with the same author are grouped together in clusters. In its second step (i.e., the
cluster selection step), some of these clusters are selected to be used as training data.
Finally, in its third step (i.e., the author assignment step), these selected clusters are
used as training data and are given as input to a associative name disambiguator
with the ability to detect the appearance of new authors that were not included in
the training data. As our final contribution, we present SyGAR, a new generator of
synthetic citation records that helps to evaluate author name disambiguation methods
under several scenarios. SyGAR generates synthetic citation records following the
publication profiles of existing authors, extracted from an input collection. Moreover,
SyGAR allows the simulation of several real-world scenarios such as the introduction
of new authors (not present in the input collection), dynamic changes in an author’s
publication profile as well as the introduction of typographical errors in the synthetic

citations.

xiil

List of Figures

1.1
1.2

2.1

2.2

3.1

4.1
4.2

4.3

4.4

4.5
4.6
4.7

Synonyms: a unique author with several name variations.

Homonyms: several authors with a same name variation.

An illustrative example. Each geometric figure represents a reference to an
author. The same figures refer to the same author.
Authorship distribution within each ambiguous group. Authors (x-axis) are
sorted in decreasing order of prolificness (i.e., more prolific authors appear

in the first positions).o
A taxonomy for author name disambiguation methods.

[lustrative example. The author grouping and cluster selection steps. . . .
Comparison between the cosine similarity function, (a) and (c), and eu-
clidean distance, (b) and (d), for selecting the training data in DBLP and
BDBComp.
Comparison between the author coverage and the fragmentation rate in
DBLP using some strategies for selecting the training data. The selection
of the training data uses (a) single-link, (b) complete-link and (c) average-
link cluster similarities with cosine similarity function on the vectors.

Comparison between the author coverage and the fragmentation rate in
BDBComp using some strategies for selecting the training data. The se-

lection of the training data uses (a) single-link, (b) complete-link and (c)

average-link cluster similarities with cosine similarity function on the vectors.

Strategy 3 performed in the (a) DBLP and (b) BDBComp collections.

Sensitivity analysis for ¢pim. -«o
Sensitivity analysis for ¢,,;,. The comparison of SAND’s performance using
the name of the authors as provided in the collections with the author names
in short format (i.e., the author names are represented by only the initial

of first name and the full last name).

XV

14

17

20

45

58

59

60
61
63

4.8

4.9
4.10

5.1

5.2

5.3

5.4

5.5
5.6

5.7
5.8

Scenario 1: Evolving DL with static author population and publication

profiles.

72

Scenario 2: Evolving DL and addition of new authors (% rneritedropics=80%). 72

Scenario 3: Dynamic author profiles (6 = 5 and % profitechanges=10%, 50%
and 100%).

SyGAR main components — SyGAR receives as input a disambiguated col-
lection of citation records and builds publication profiles for all authors in
the input collection. Then, the publication profiles are used to generate
synthetic records. As a final step, SyGAR may introduce typographical
errors in the output collection and change the citation attributes.
A plate representation of the LDA [Blei et al., 2003] — The LDA model
assumes that each citation record r follows the generative process. r draws
the number of terms N, in the work title according to a given distribution,
draws a topic distribution € according to a Dirichlet distribution model
with parameter argy,. and, for each term, chooses a topic z following the
multinomial distribution # and a term w from a multinomial probability
conditioned on the selected topic z, given by distribution ¢, which in turn
is drawn according to a Dirichlet distribution with parameter azepm.
Changing author a’s profile by altering her topic distribution. (a) the orig-
inal topic distribution of author a. (b) The topics associated with a sorted

according to their probabilities (Pg, ..) so as to have a histogram as close to

Topic
a bell shape as possible. (c) The togic distribution shifted along the x-axis
by a factor 6 = 5; 2 shifts are shown in the figure.
Sensitivity of SYGAR to aropic, Qrerm, Bropic and Nrpgpies — Relative error
between performance of each method on synthetic and real collections. (a)
and (c) show the results of SVM and HHC, respectively, when applied to
synthetically generated collections using various values of aropic, Qrerm and
Nropics, keeping Bropic = 0.07. (b) and (d) show the results of SVM and
HHC, respectively, when applied to synthetically generated collections using
various of SBropic and Nygpic, keeping aropic=rerm=10""
SyGAR validation. We use aropic=071erm=10"" and Brypie=0.7.
Scenario 1 — Evolving DL with static author population and publication

profiles.

82

88

92
94

98

Scenario 2 — Evolving DL and addition of new authors (% rmneritearopics—80%). 99

Scenario 3 — Dynamic author profiles (6 = 5 and % pyofitechanges=10%, 50%
and 100%).

XVvi

List of Tables

2.1
2.2
2.3

3.1
3.2

4.1

4.2

4.3
4.4
4.5

4.6

4.7

5.1
5.2

[lustrative example (ambiguous group of A. Gupta).
Performance of the evaluation metrics.

The DBLP and BDBComp collections

Summary of characteristics - Author grouping methods

Summary of characteristics - Author assignment methods

Results (with their standard deviations) obtained by the author grouping
step for each ambiguous group in the (a) DBLP and (b) BDBComp collec-
tions, without using the popular last names.
Results (with their standard deviations) obtained by the author grouping
step for each ambiguous group in the (a) DBLP and (b) BDBComp collec-
tions, using the popular last names.
Results obtained by SAND-1.
Results obtained by SAND-2.
Results obtained by SAND, HHC, KWAY and LASVM-DBSCAN methods.
Best results are highlighted in bold.
Results (with their standard deviations) of SAND, SLAND, SVM and NB
in the DBLP and BDBComp collections. Best results, including statistical
ties, are highlighted in bold. oL
Results obtained by the author grouping and cluster selection steps coupled
with SVMs (S-SVM) and Naive Bayes (S-NB) techniques in the second step
(i.e., the author assignment step). Best results are highlighted in bold.

SyGAR input parameters.
SyGAR validation — Average K results and 95% confidence intervals for real

and synthetically generated collections (Nropics = 300). Statistical ties are
in bold.

56

69

79

5.3

5.4

SyGAR Validation: Average K results and 95% confidence intervals for real
and 5 synthetically generated collections (Npgpics = 600).
Distribution of average number of publications per year per author (DBLP:
1984 -2008).

XViil

91

Contents

Acknowledgments xi
Abstract xiii
List of Figures XV
List of Tables xvii
1 Introduction 1
1.1 Motivation 3
1.2 Contributions 6
1.3 Thesis Outline 7

2 The Author Name Disambiguation Task - Foundations 9
2.1 Definitions 10
2.2 Task Characterization 10
2.3 Evaluation Metrics o 11
24 Collections 14

3 Automatic Author Name Disambiguation Methods 19
3.1 A Taxonomy for Author Name Disambiguation Methods 19
3.1.1 Typeof Approach 21

3.1.2 Explored Evidence L. 26

3.2 Overview of Representative Methods 27
3.2.1 Author Grouping Methods 28

3.2.2 Author Assignment Methods 33

3.2.3 Using Additional Evidence 35

3.3 Summary of Characteristics 38

4 SAND: Self-training Author Name Disambiguator 43

XixX

41 SAND Design 43

4.1.1 The Author Grouping Step 44
4.1.2 The Cluster Selection Step 47
4.1.3 The Author Assignment Step 51
4.2 Experimental Evaluation 000000 25
4.2.1 Experimental Setup L. 25
4.2.2 Evaluating the Author Grouping Step 56
4.2.3 Evaluating the Clustering Selection Step o7
4.2.4 Evaluating SAND Lo 62
4.2.5 Comparison with the Author Grouping Baselines 64

4.2.6 Comparison with the Supervised Author Assignment Methods . 66
4.2.7 Comparison with Other Supervised Methods for the Author As-

signment Step 68

4.2.8 Discussion 69

5 SyGAR: Synthetic Generator of Authorship Records 75
5.1 SyGAR Design 78
5.1.1 Inferring Publication Profiles from the Input Collection 80

5.1.2 Generating Records for Existing Authors 85

5.1.3 Adding New Authors 86

5.1.4 Changing an Author’s Profile 87

5.1.5 Modifying Citation Attributes 87

5.2 Validation 88
5.3 Evaluation of Disambiguation Methods with SyGAR 95
5.3.1 Analysis Scenarioso 95

5.3.2 Experimental Setup L 96

5.3.3 Evaluation of Results 98

6 Conclusion 103
6.1 Summary 103
6.2 Future Research 104
Bibliography 107

XX

Chapter 1

Introduction

Several scholarly digital libraries (DLs), such as DBLP!, CiteSeer?, MEDLINE? and
BDBComp*, provide features and services that facilitate literature research and dis-
covery as well as other types of functionality. Such systems may list millions of bibli-
ographic citation records (here understood as a set of bibliographic attributes such as
author and coauthor names, work and publication venue titles of a particular publica-
tion) and have become an important source of information for academic communities
since they allow the search and discovery of relevant publications in a centralized man-
ner. Also, studies based on DL content can lead to interesting results such as coverage
of topics, research tendencies, quality and impact of publications of a specific sub-
community or individuals, patterns of collaboration in social networks, etc. These
types of analysis and information, which are used, for instance, by funding agencies
on decisions for grants and for individual’s promotions, presuppose high quality con-
tent |Laender et al., 2008; Lee et al., 2007].

According to Lee et al. [2007], the challenges to have high quality content comes
from data-entry errors, citation formats, lack of (enforcement of) standards, imper-
fect citation-gathering software, ambiguous author names, abbreviations of publication
venue titles and large-scale citation data.

Among these challenges, the problem of ambiguous author names has required a
lot of attention from the DL research community due to its inherent difficulty. Specif-
ically, ambiguity of author names is a problem that occurs when a set of citation
records contains ambiguous author names, i.e., the same author may appear under

distinct names (synonyms), or distinct authors may have similar names (homonyms).

"http://dblp.uni-trier.de
http://citeseer.ist.psu.edu
3http://medline.cos.com
“http://www.lbd.dcc.ufmg.br /bdbcomp

2 CHAPTER 1. INTRODUCTION

This problem may be caused by a number of reasons [McKay et al., 2010|, including
name changes due to personal circumstances, variation in transliteration of non-roman
names, typographical errors, lack of standards and common practices, and decentralized
generation of content (i.e., by means of automatic harvesting [Lagoze and de Sompel,
2001]).

An interesting example that illustrates the author name ambiguity problem can
be taken from DBLP. Until recently, if one searched for the author name “Mohammed
Zaki”, the result would include three name variations - “Mohammed Zaki”, “Mohammed
J. Zaki” and “Mohammed Javeed Zaki” (see Figure 1.1). Although all these three names
seemed to refer to the same person, they in fact illustrate a case that involves both
synonyms and homonyms. While the first name referred to Mohammed Zaki from
Al-Azhar University, Nasr City, Cairo, Egypt, the second and third names referred to
Mohammed Zaki from the Rensselaer Polytechnic Institute Department of Computer

Science,USA, thus characterizing a synonym situation.

& Author Search - Mozilla Firefox: = [El]
File Edit View History Bookmarks Toels Help i
@ @ ad 'ﬁ ||_| http://dblp.uni-trier.de/search/authorfauthor=Mchammed+ Zaki |Yi D] i'idbip |\'_]

o, .uni-trier.de
~

0 || Computer Science
T | Bibliography

Search Results for ' mohammed zaki'

+ Mohammed Zald
+ Mohammed J. Zald
+ Mohammed Javeed Zald

Home | Conferences | Journals | Series | FAQ — Search: Faceted | Complete | Author
Copyrizht € Wed Feb 4 18:21:43 2009 by Michael Lev (ley@uni-trier. de)

Done

Figure 1.1. Synonyms: a unique author with several name variations.

On the other hand, by clicking on the “Mohammed Zaki” link the resulting page
(see Figure 1.2) would show an example of homonym, since the second citation actually
corresponds to a paper coauthored by Mohammed Javeed Zaki from the Department
of Computer Science, Rensselaer Polytechnic Institute, USA. Although in this case the

problem was caused by different variations of an author’s names, there are many other

1.1. MOTIVATION 3

cases in which two different authors simply have the same name, a common situation,

for example, for authors with Asian names.

@ DBLP: Mohammed Zaki - Mozilla Firefox =]
File Edit View History Bookmarks Tools Help £
<E & :._; - @ g 'ﬁ ‘ L http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zaki:sMohammed.html | 'i D] :El-'i "A Movel Technique Towards Eli i'uV ‘

o, . uni-trier.de 11! i e
Lo . g s 3
3 [[computer science P W universitat Trier ‘
T | eibliography L
A : e
Mohammed Zaki ‘_
M. Zaki
Systems and Computer Engineering Department. Al-Azhar University. Nasr City. Egypt
List of publications from the DBELP Bibliographv Server - FAQ Facets and more with CompleteSearch
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo lautharmohammedzaki:
2006 Refine by AUTHOR
E'EEZE-IAS!HafEIgohEy; Tarek S. Sabthﬂhammed ZaﬁlDesing of an enhancement for SSL/TLS protocols. Tarek S Sobh (5)
| |Computers & Security 25(4): 297-306 (2006) Abdallah El-Ramsisi (3)
2005 Rostom Omran (3)
25 [BE [Karlton S ira | Mohammed Zali| SCHISM: h to interesting sub: ming ITBIDM 1(2): &0 L @
il A M 3] : -
I arlton Eqne: of a new approach to mteresting subspace mming ftop 4] [all 27]
|137-160 (2005)
24 @:i}iohzmmed Zaki, Tarek §. Sobh: NCDS: data mining for discovering interesting network characteristics. Refine by VENUE
\Information & Software Technology 47(3): 189-198 (2005) Journal of Systems and Software (JSS) (9)
[23[EEM_ Zali. Tarek S. Sobh: Attack abstraction using a multiagent system for mtrusion detection. Journal of Comput. Lang. (CL) (3)
Inteflizent and Fuzzy Systems 16(2): 141-150 (2005) Journal of Intelligent and Fuzzy Systems
ania (JIES) (3) i
Done

Figure 1.2. Homonyms: several authors with a same name variation.

1.1 Motivation

There are several open challenges that need to be addressed in order to produce more
reliable solutions that can be employed in a production mode in real digital libraries.
Below we discuss some of them.

Effectiveness. Methods for disambiguating author names must be effective,
i.e., they must correctly disambiguate the author names in bibliographic citations.
Although many methods have been reported in the literature (see Chapter 3 for a
comprehensive coverage of those), there is still a lot of room for improvements.

Very Little Data in the Citations. In most cases we have only basic infor-
mation about the citations available: author (coauthor) names, work and publication
venue titles, and publication year. Furthermore, in some cases author names contain
only the initial and the last surname and the publication venue title is abbreviated.
New strategies that try to derive implicit information (e.g., topics) or gather additional

information from the Web are promising in this scenario.

4 CHAPTER 1. INTRODUCTION

Very Ambiguous Cases. Several methods exploit coauthor-based heuristics,
by explicitly assuming the hypotheses that: (i) very rarely ambiguous references will
have coauthors in common who have also ambiguous names; or (ii) it is rare that two
authors with very similar names work in the same research area. These hypotheses
work in most cases but, when they fail, the errors they generate are very hard to fix.
For example, in the case of authors with Asian names, the first hypothesis fails much
more frequently than for authors with English or Latin names.

Citations with Errors. Errors occur in citation data which are sometimes
impossible to detect. The methods need to be tolerant to such errors.

Efficiency. With the high amount of articles being published nowadays in the
different knowledge areas, the solutions need to deal with the problem efficiently. Few
proposed methods have this explicit concern.

Practicality and Cost. As we shall see, most of the best current methods
for solving the author name disambiguation problem are supervised, i.e., they require
large amounts of manually labeled data explicitly indicating whether two ambiguous
names correspond to the same author or no, to serve as training for some machine
learning procedure |Ferreira et al., 2012b|. Creating such training data is very costly
and laborious. This also may hurt the practical application of these methods, mainly
as the digital library evolves and more training is required to learn new patterns.

Adaptability to Different Knowledge Areas. As we shall see, most of the
collections used to evaluate the methods are related to Computer Science. However,
other knowledge areas (e.g., Humanities, Biology, Medicine) may have different publi-
cation patterns (e.g., many publications with a sole author or with a lot of coauthors)
which may cause some additional difficulties for the current generation of methods,
requiring adaptations.

Incremental Disambiguation. Ideally, disambiguation should be performed
incrementally as new citations are incorporated into the DL, since it is not reasonable
to assume that the whole DL should be disambiguated at each new load. However,
most, if not all, methods ignore this fact.

Evaluation. The methods for disambiguating author names in bibliographic
citations are usually evaluated in static scenarios without considering a time evolving
digital library, containing dynamic patterns such as the introduction of citations of new
authors and the change of researchers’ interests/expertises over time.

Author Profile Changes. It is very common that the research interests of
an author change over time. This can happen for many reasons, for example, new
collaborations, change in research group or institution, natural evolution of a research

field, etc. These changes may cause modifications in the model representing the author

1.1. MOTIVATION 5)

profile causing difficulties for the methods. A possible solution probably involves re-
training, but determining when to retrain is a challenge. However, this issue has been
largely ignored by all methods.

New Authors. The methods should be capable of identifying references to new
ambiguous authors who do not have citations in the DL yet.

These challenges have led to a myriad of author disambiguation meth-
ods [Bhattacharya and Getoor, 2006, 2007; Culotta et al., 2007; Fan et al., 2011,
Han et al., 2004, 2005a,b; Huang et al., 2006; Kanani et al., 2007; Kang et al., 2009;
Levin and Heuser, 2010; Levin et al., 2012; Malin, 2005; On et al., 2006; Pereira et al.,
2009; Shu et al., 2009; Soler, 2007; Song et al., 2007; Tang et al., 2012; Torvik et al.,
2005; Treeratpituk and Giles, 2009; Yang et al., 2008|. However, despite the fact that
most of these methods were demonstrated to be relatively effective (in terms of error
rate or similar metrics), none of them provides a perfect and final solution for the
problem, i.e., they produce errors meaning that there is space for improvements.

In this thesis, we are particularly interested in the FEffectiveness, Practicabilty
and Cost, and Fvaluation challenges. To help with the first two challenges, we propose
SAND (standing for Self-training Author Name Disambiguator). As mentioned before,
the most effective methods usually follow a supervised approach. These methods ex-
ploit a set of training examples, from which a disambiguation function is derived and
then used to assign the citation records to their corresponding authors. However, the
acquisition of training examples requires skilled human annotators to manually label
citation records. DLs are very dynamic systems, thus manual labeling of large volumes
of examples is unfeasible. On the other hand, unsupervised methods require no manual
labeling effort, since they simply group citation records into clusters by maximizing
intra-cluster similarity while minimizing inter-cluster similarity. SAND exploits the
strengths of both supervised and unsupervised methods. Specifically, it works in three
steps. In the first step, (author grouping), in an unsupervised way, recurring patterns
in the coauthorship graph are exploited in order to produce very pure clusters of refer-
ences. In the second step, (cluster selection), a subset of the clusters produced in the
previous step is selected as training data for the next step. Then, in the third step,
(author assignment), a learned function is derived to disambiguate the references in
the clusters that were not selected in the previous step.

To help addressing the Evaluation challenge, we propose SyGAR (standing for
Synthetic Generator of Authorship Records). It is capable of generating synthetic cita-
tion records given as input a list of disambiguated records of citations extracted from
a real digital library (input collection). The synthetically generated records follow the

publication profiles (i.e., distributions of title terms, coauthor names and publication

6 CHAPTER 1. INTRODUCTION

venue title) of existing authors extracted from the input collection. Moreover, SyGAR
can be parameterized to generate records for new authors (not present in the input col-
lection), for authors with dynamic profiles, as well as records containing typographical

errors.

1.2 Contributions

The two main hypotheses of this thesis are that we may: (1) automatically select and
label the examples used by a supervised technique, aiming to efficiently produce a dis-
ambiguation function that will be used to disambiguate the author names in the citation
records, and (2) produce realistic collections to evaluate the disambiguation methods
in various scenarios. In order to confirm these hypotheses, the main contributions of

this thesis are:

1. A taxonomy for classifying author name disambiguation methods |Ferreira et al.,
2012b| that allowed us to better understand the current methods proposed in the

literature and present a survey of the most representative ones;

2. SAND (standing for Self-training Author Name Disambiguator) |Ferreira et al.,
2010], a new hybrid disambiguation method, that exploits the strengths of both

unsupervised and supervised techniques for author name disambiguation; and

3. SyGAR (standing for Synthetic Generator of Authorship
Records) |Ferreira et al., 2009, 2012a|, a new tested and validated syn-
thetic generator of citation records, that helps evaluating, in several realistic
scenarios and under controlled conditions, solutions to the name ambiguity

problem as well as to other problems related to name ambiguity.

In addition to the above contributions, the work presented in this the-
sis also influenced the development and evaluation of other methods, namely
HHC (Heuristic-based Hierarchical Clustering) |Cota et al., 2010], WAD (Web Au-
thor Disambiguation) [Pereira et al., 2009], INDi (Incremental Name Disambigua-
tion) |Carvalho et al., 2011], SSAND (Selective Sampling for Author Name Disam-
biguation) |Ferreira et al., 2012c| and SLAND (Self-training Lazy Associative Name
Disambiguation) [Veloso et al., 2012].

1.3. THESIS OUTLINE 7

1.3 Thesis Outline

The rest of this thesis is structured in as follows.

Chapter 2 [The Author Name Disambiguation Task - Foundations| formally
defines the name disambiguation task and some metrics and collections used to

evaluate disambiguation methods are presented.

Chapter 3 [Automatic Author Name Disambiguation Methods| defines a
taxonomy for classifying name disambiguation methods and provide a description of

several representative methods.

Chapter 4 [SAND: Self-training Author Name Disambiguator| describes our

proposed author name disambiguation method along with its evaluation.

Chapter 5 [SyGAR: Synthetic Generator of Authorship Records| presents

our generator of synthetic citation records to evaluated disambiguation methods.

Chapter 6 [Conclusion| concludes the thesis, by summarizing our results and

discussing future work.

Chapter 2

The Author Name Disambiguation

Task - Foundations

In this chapter, we formally characterize the name disambiguation task and describe

some metrics and collections used to evaluate disambiguation methods.

To illustrate the definitions, we will use the examples showed in Table 2.1. In
this table there are four citations ({c1, c2, 3, c4}), where each one has its author names
identified in this table by r;,1 < j < 20. The author names 73 and r5 are examples of
homonyms where 73 refers to “Ajay Gupta” from IBM Research, India and 75 refers
to “Aarti Gupta” from NEC Laboratories America, USA. The names r3 and r; are

examples of synonyms. Both names refer to Ajay Gupta from IBM Research - India.

Table 2.1. Illustrative example (ambiguous group of A. Gupta).

‘ Citation Id ‘ Citation ‘

¢ (r1) S. Godbole, (r9) I. Bhattacharya, (r3) A. Gupta, (r4) A. Verma.
Building re-usable dictionary repositories for real-world text mining.
CIKM, 2010.

Co (r5) Indrajit Bhattacharya, (r¢) Shantanu Godbole, (r7) Ajay Gupta,

(rs) Ashish Verma, (rq) Jeff Achtermann, (ryo) Kevin English. En-
abling analysts in managed services for CRM analytics. KDD, 2009.
C3 (r11) T. Nghiem, (r12) S. Sankaranarayanan, (ry3) G. E. Fainekos, (r14)
F. Ivancic, (r15) A. Gupta, (r16) G. J. Pappas. Monte-carlo techniques
for falsification of temporal properties of non-linear hybrid systems.
HSCC, 2010.

4 (r17) William R. Harris, (r15) Sriram Sankaranarayanan, (r9) Franjo
Ivancic, (ry) Aarti Gupta. Program analysis via satisfiability modulo
path programs. POPL, 2010.

10 CHAPTER 2. THE AUTHOR NAME DISAMBIGUATION TASK - FOUNDATIONS

2.1 Definitions

We start with some basic definitions.

Definition 2.1.1 (Citation Record) A citation record c is a set of bibliographic
data, such as author names, work title, publication venue title, publication year, etc.,
that 1s pertinent to a particular article. More formally, each citation record ¢ has a list
of attributes that includes at least author names, work title and publication venue title.
A specific value is associated to each attribute in a citation, which may be composed
of several elements. In case of the attribute “author names”, an element corresponds
to the name of a single unique author. In case of the other attributes, an element

corresponds to a word/term.

Definition 2.1.2 (Reference) Each author name element is a reference r to an au-
thor. We assoctate a list of attributes to each reference r. In the context of bibliographic
citations, r.author corresponds to the author name attribute, r.coauthors corresponds
to the other author names in a citation record (coauthors), r.title corresponds to the
work title attribute, r.venue corresponds to the publication venue title attribute, and

other attributes such as publication year, affiliation, e-mail and so on.

For instance, the reference r3 in the citation ¢; in the Table 2.1 has the follow-
ing attributes values: rs.author="A. Gupta”, rs.coauthors={“S. Godbole”, “I. Bhat-
tacharya”, “A. Verma”}, rs.title="Building re-usable dictionary repositories for real-

world text mining”, r3.venue="CIKM” and r3.year=+2010".

Definition 2.1.3 (Ambiguous Group) An Ambiguous group is a group of refer-
ences whose value of the author name attribute are ambiguous, i.e., groups of references

having author name attributes with similar names.

2.2 Task Characterization

The name disambiguation task may be formulated as follows: Let C' = {¢y, ¢a, ..., ¢ } be
a set of citation records. Each element of the attribute “author names” is a reference r;
to an author. The objective of a disambiguation method is to produce a disambiguation
function that is used to partition the set of references to authors {ry,rs,...,7,} into
n sets {ai, as,...,a,}, so that each partition a; contains (all and ideally only all) the
references to a same author.

To disambiguate the bibliographic citations of a DL, we should first split the set of

references to authors into ambiguous groups. The ambiguous groups may be obtained,

2.3. EVALUATION METRICS 11

for instance, by using a blocking method [On et al., 2005]. Blocking methods address

scalability issues avoiding the need for comparisons among all references.

2.3 Evaluation Metrics

In this section, we describe K, pairwise F1, cluster F1, RCS and B-cubed metrics that
are usually used for evaluating disambiguation methods. The key idea is to compare
the clusters extracted by disambiguation methods against ideal, perfect clusters, which
were manually extracted. Hereafter, a cluster extracted by a disambiguation method
will be referred to as empirical cluster, while a perfect cluster will be referred to as

theoretical cluster.

K Metric

The K metric [Lapidot, 2002| determines the trade-off between the average cluster
purity (ACP) and the average author purity (AAP) or cohesion. Given an ambiguous
group, ACP evaluates the purity of the empirical clusters with respect to the theoretical
clusters for this ambiguous group. Thus, if the empirical clusters are pure (i.e., they
contain only references to the same author), the corresponding ACP value will be 1.
ACP is defined in Equation 2.1:

e t 2
1 ‘

ACP:NZZH—ZZ (2.1)

i=1 j=1

where N is the total number of references in the ambiguous group, ¢ is the number of
theoretical clusters in the ambiguous group, e is the number of empirical clusters for
this ambiguous group, n; is the total number of references in the empirical cluster ¢,
and n;; is the total number of references in the empirical cluster ¢ which are also in

the theoretical cluster j.

For a given ambiguous group, the cohesion metric AAP evaluates the fragmenta-
tion of the empirical clusters with respect to the theoretical clusters. If the empirical
clusters are not fragmented, the corresponding AAP value will be 1. In other words, the
cohesion metric AAP can be thought as the inverse of the fragmentation. The higher
the AAP value, the less fragmented are the clusters. AAP is defined in Equation 2.2:

t e 2
1

AAP = szn—; (2.2)

12 CHAPTER 2. THE AUTHOR NAME DISAMBIGUATION TASK - FOUNDATIONS

where n; is the total number of references in the theoretical cluster j.

The K metric consists of the geometric mean between ACP and AAP values.
It evaluates the purity and fragmentation of the empirical clusters extracted by each

method. The K metric is given in Equation 2.3:

K = vACP x AAD (2.3)

Pairwise F1

Pairwise F1 (pF1) is the F1 metric [Rijsbergen, 1979] calculated using pairwise precision

a
a+c’

number of pairs of references in an empirical cluster that are (correctly) associated

and pairwise recall. Pairwise precision (pP) is calculated as pP—= where a is the

with the same author, and c is the number of pairs of references in an empirical cluster

a
a+b’

where b is the number of pairs of references associated with the same author that are

not corresponding to the same author. Pairwise recall (pR) is calculated as pR=

not in the same empirical cluster. The Fl-metric is defined in Equation 2.4:

pP X pR

Fl=2x ——
p pP + pR

(2.4)

Cluster F1

Cluster F1 (¢F'1) is the F1 metric calculated using cluster precision and cluster recall
that measures the performance at the cluster level. Cluster precision (¢P) is calculated
as ¢cP = a/(a + ¢), where a is the number of completely correct clusters (a correct
cluster should have all the references of an author and only them, i.e., none of another
author; otherwise it is incorrect) and ¢ is the number of incorrect clusters. Cluster
recall (cR) is calculated as ¢cR = a/(a + b), where b is the number of clusters that
should be created but were not. This is a metric to summarize information about
the completely correct clusters generated by the method. Likewise, cF'1 is analogously

defined by the above formula.

Ratio of Cluster Size

The ratio of cluster size (RCYS) is the number of empirical clusters versus the number
of theoretical clusters. This serves to evaluate how close is the measure to the ideal

number of clusters to be generated.

2.3. EVALUATION METRICS 13

B-Cubed

B-Cubed metric was proposed by Bagga and Baldwin [1998] and has been used to
evaluate Web person name search task [Artiles et al., 2010]. B-Cubed calculates the
final precision and recall based on the precision (P,) and recall (R,) of each reference
r that are defined as:

n

p=" (2.5)

n;

Y

o

n
R, =— (2.6)
n;
where n] is the total number of references that refer to same author of r and belong
to the same empirical cluster ¢ that contains r, n; is the total number of references in
the empirical cluster ¢ that contains r and n; is the total number of references in the

theoretical cluster j that contains r.

The final precision (bP) and recall (bR) are calculated by the following formulas:

N

P =) w, x P, (2.7)
r=1
N

bR=> w xR, (2.8)
r=1

where N is the number of references in the collection and w, is the weight of the
reference r in the collection. The value of each w, is commonly defined as 1/N.
The harmonic mean (bF,) of B-Cubed precision and recall is calculated by:
1

bF, = 2.9
a#+(1—a)ﬁ% (29)

Application of the metrics - an illustrative example

Consider the following example (see Figure 2.1): We have three theoretical clusters
and four empirical clusters. Only one empirical cluster is not pure and there are two
references fragmented into two clusters.

Table 2.2 shows the results of each metric applied to the illustrative example
showed in Figure 2.1. We can notice that ACP and AAP of K metric and bP and bR

of B-Cubed metrics produce similar results and that pF1 does not consider references

14 CHAPTER 2. THE AUTHOR NAME DISAMBIGUATION TASK - FOUNDATIONS

(DCOC
DIRIONIES

(a) Theoretical clusters (b) Empirical clusters

Figure 2.1. An illustrative example. Each geometric figure represents a reference
to an author. The same figures refer to the same author.

Table 2.2. Performance of the evaluation metrics.

Metric ‘ Result

32 32 2 2 2
K ACP:%X(§+€+%+%+%):O.89 K — 0.81
AAP = o x (S 4+ 2+ 5 +5+5)=073
pP — 3+3+0+0+0 0.84
F1 3434140 F1=0.70
P PR = 0T — 0.60 ’
cP = i =0.25 _
cF'1 R = % — 033 cF1=0.28
RCS RCS = =1.33
bR=g(f+3+3+5+5+5+5+5+35) =072

which cannot be paired with other ones of the same author in the same empirical
cluster.

2.4 Collections

Among the collections more commonly used to evaluate the author name disambigua-
tion methods we can mention CiteSeer, DBLP, Penn, BDBComp and Rexa! that con-
tain publications of computer science researchers, arXiv? that contains citations from

high physics publications, BioBase? that contains citations from biological publications,

'http:/ /rexa.info/
http://www.cs.cornell.edu/projects/kddcup

Shttp:/ /www.elsevier.com/wps/find /bibliographicdatabasedescription.cws_home/600715/
description##description

2.4. COLLECTIONS 15

IMDb? that contains data from movies, MEDLINE and BioMed that contain data from
biomedical publications and Cora® that contains data on duplicate citations. In this
section, we describe in more details DBLP, perhaps the most used of all previously
mentioned collections [Han et al., 2004, 2005b,a; Pereira et al., 2009; Yang et al., 2008|,
and BDBComp, a collection built by us, that has the distinctive property that many
authors possess only one publication, making the disambiguation task even harder. We
exploit both collections in this thesis for evaluation purposes.

The collection of references extracted from DBLP sums up 4,287 references as-
sociated with 220 distinct authors, which means an average of approximately 20 ref-
erences per author. This collection includes 2,270 references whose author names are
in short format. Small variations of this collection have been used in several other
works [Han et al., 2004, 2005b,a; Pereira et al., 2009; Yang et al., 2008]. Its original
version was created by Han et al. [2004], and they manually labeled the references.
For this, they used the author’s publication home page, affiliation name, e-mail, and
coauthor names in a complete name format, and also sent emails to some authors to
confirm their authorship. The references for which they had insufficient information to
be judged were eliminated. Han et al. [2004] also replaced the abbreviated publication
venue titles by their complete version obtained from DBLP. We used 11 ambiguous
groups extracted by Han et al. [2004] with some corrections.

The collection of references extracted from BDBComp sums up 361 references
associated with 184 distinct authors, approximately two references per author, in which
only eigth author names are in short format. Notice that, although much smaller than
the DBLP collection, this collection is very difficult to disambiguate, because it has
many authors with only one citation. This collection was created by us and contains
the 10 largest ambiguous groups found in BDBComp at the time of its creation.

Table 2.3 shows more detailed information about the collections and its ambiguous
groups. Disambiguation is particularly difficult in ambiguous groups such as the “C.
Chen” group, in which the correct author must be selected from 60 possible authors,
and the “F. Silva” group, in which the majority of authors has appeared in only one
citation.

As mentioned before, each reference has the author name, a list of coauthor
names, the title of the work and the title of the publication venue (conference or
journal) attributes.

Figure 2.2 shows the authorship distribution within each of two representative

groups of each collection. Notice that, for a given group, few authors are very prolific

“http://www.imdb.com
http://www.cs.umass.edu/ mccallum/code-data.html

16 CHAPTER 2. THE AUTHOR NAME DISAMBIGUATION TASK - FOUNDATIONS

Table 2.3. The DBLP and BDBComp collections

DBLP BDBComp
Ambiguous #References/ | Ambiguous #References/
Group # Authors Group #Authors
A. Gupta 576/26 A. Oliveira 52/16
A. Kumar 243/14 A. Silva 64/32
C. Chen 798/60 F. Silva 26/20
D. Johnson 368/15 J. Oliveira 48/18
J. Martin 112/16 J. Silva 36/17
J. Robinson 171/12 J. Souza 35/11
J. Smith 921/29 L. Silva 33/18
K. Tanaka 280/10 M. Silva 21/16
M. Brown 153/13 R. Santos 20/16
M. Jones 260/13 R. Silva 28/20
M. Miller 105/12 | — -

and appear in several citations, while most of the authors appear in only few citations
(the same trend is observed in all groups of DBLP and BDBComp). This is an intrinsic

characteristic of scientific publications, as pointed in |Liming and Lihua, 2005].

2.4. COLLECTIONS

Ambiguous Group of C. Chen Ambiguous Group of A. Gupta
0.1 1

0 [}

c c

el o

g g 01t

0 0

5 001 5

5 5

7 7 001}

g g

L L

0.001 ‘ 0.001 ‘
1 10 100 1 10 100
Author Author
Ambiguous Group of A. Oliveira Ambiguous Group of J. Silva
1 1

0 [}

c c

el o

g g

0 0

5 01t 5 01t

c c

2 8

3 0

g g

L L

0.01 ‘ 0.01 ‘
1 10 100 1 10 100
Author Author

Figure 2.2. Authorship distribution within each ambiguous group. Authors
(x-axis) are sorted in decreasing order of prolificness (i.e., more prolific authors
appear in the first positions).

Chapter 3

Automatic Author Name

Disambiguation Methods

In this chapter, we propose a taxonomy |Ferreira et al., 2012b| for characterizing the au-
thor name disambiguation methods in scholarly digital libraries and present an overview

of representative author name disambiguation methods.

3.1 A Taxonomy for Author Name Disambiguation
Methods

This section presents a hierarchical taxonomy for grouping the most repre-
sentative automatic author name disambiguation methods found in the litera-
ture. The proposed taxonomy is shown in Figure 3.1. The methods may
be classified according to the main type of exploited approach: author group-
ing |[Bhattacharya and Getoor, 2007; Cota et al., 2010; Culotta et al., 2007; Fan et al.,
2011; Ferreira et al., 2010; Han et al., 2005b; Huang et al., 2006; Kanani et al., 2007;
Kang et al., 2009; On and Lee, 2007; Pereira et al., 2009; Soler, 2007; Song et al.,
2007; Torvik et al., 2005; Torvik and Smalheiser, 2009; Treeratpituk and Giles, 2009;
On et al., 2006; Yang et al., 2008|, which tries to group the references to the same
author using some type of similarity among reference attributes, or author assign-
ment |Bhattacharya and Getoor, 2006; Ferreira et al., 2010; Han et al., 2004, 2005a;
Tang et al., 2012|, which aims at directly assigning the references to their respective
authors. Alternatively, the methods may be grouped according to the evidence ex-
plored in the disambiguation task: the citation attributes (only), Web information, or

implicit data that can be extracted from the available information.

19

20 CHAPTER 3. AUTOMATIC AUTHOR NAME DISAMBIGUATION METHODS

Author name
disambiguation

methods
]
I]
Type of Explored
approach evidence
| |
[1 [I]
Author Author Citation Web Implicit
grouping assignment information information evidence
|
[]
Classification Clustering

Figure 3.1. A taxonomy for author name disambiguation methods.

Notice that in this chapter we cover only automatic methods. Other types of
method, such as manual assignment by librarians [Scoville et al., 2003] or collaborative
efforts!, rely heavily on human efforts, which prevent them from being used in massive
name disambiguation tasks. For this reason, they are not addressed in this chapter.
There are also efforts to establish a unique identification to each author, such as the
use of an Open Researcher Contributor Identification? (ORCID), but these are also not

covered here.

Since the name disambiguation problem is not restricted to a single con-
text, it is also worth noticing that several other name disambiguation meth-
ods, which exploit distinct pieces of evidence or are targeted at other ap-
plications (i.e., name disambiguation in Web search results), have been de-
scribed in the literature [Bekkerman and McCallum, 2005; Diehl et al., 2006;
Galvez and de Moya Anegon, 2007; Vu et al., 2007; Yoshida et al., 2010|. However,

a discussion of these methods is outside the scope of this chapter.

Finally, we should stress that the categories in our taxonomy are not completely
disjoint. For instance, there are methods that use two or more types of evidence or

mix approaches. In the next subsections, we detail our proposed taxonomy.

thttp://meta.wikimedia.org/wiki/WikiAuthors
2http://www.orcid.org

3.1. A TAXONOMY FOR AUTHOR NAME DISAMBIGUATION METHODS 21

3.1.1 Type of Approach

As said before, one way to organize the several existing author name disambiguation
methods is according to the type of approach they exploit. We elaborate this distinction

further in the discussion below.

3.1.1.1 Author Grouping Methods

Author grouping methods apply a similarity function to the attributes of the references
(or group of references) in order to decide whether to group the corresponding refer-
ences using a clustering technique. The similarity function may be predefined (based on
existing ones and depending on the type of the attribute) [Bhattacharya and Getoor,
2007; Cota et al., 2010; Han et al., 2005b; On and Lee, 2007; Soler, 2007|, learned us-
ing a supervised machine learning technique |Culotta et al., 2007; Huang et al., 2006;
Torvik et al., 2005; Torvik and Smalheiser, 2009; Treeratpituk and Giles, 2009, or ex-
tracted from the relationships among authors and coauthors, usually represented as a
graph [Fan et al., 2011; Levin and Heuser, 2010; On et al., 2006]. The defined simi-
larity function is then used along with some clustering technique to group references
of a same author, trying to maximize intra and minimize inter-cluster similarities,

respectively.

Defining a Similarity Function

Here, a similarity function is responsible for determining how similar two references
(or groups of references) to authors are. The goal is to obtain a function that returns
high similarity values for references to the same author and returns low similarity
values for references to different authors. Moreover, it is desirable that the similarity
function be transitive. More specifically, let ¢;, co and c3 be three citation records,
if ¢; and ¢y are very similar (according to the function) and ¢y and ¢z are also very
similar, then ¢; and c3 should have high similarity according to our function. Next,

we discuss the ways to determine this similarity function.

Using Predefined Functions

This class of methods has a specific predefined similarity function S embedded in their
algorithms to check whether two references or groups of references refer to the same
author. Examples of such function § include [Cohen et al., 2003]: the Levenshtein
distance, Jaccard coefficient, cosine similarity, soft-TFIDF and others [Cohen et al.,
2003|, applied to elements of the reference attributes. Ad-hoc combinations of such
functions have also been used (e.g., in [Bhattacharya and Getoor, 2007; Soler, 2007])

22 CHAPTER 3. AUTOMATIC AUTHOR NAME DISAMBIGUATION METHODS

These methods do not need any type of supervision in terms of training data
but their similarity functions are usually tuned to disambiguate a specific collection
of citation records. For different collections, a new tuning procedure may be required.

Finally, not all the functions used in these methods are transitive by nature.

Learning a Sitmilarity Function

Learning a specific similarity function usually produces better results, since these
learned functions are directly optimized for the disambiguation problem at hand. To
learn the similarity function, the disambiguation methods receive a set {s;;} of pairs
of references (the training data) along a special variable that informs whether these
two corresponding references refer to the same author. The pair of references, r; and
r; € R (the set of references) are usually represented by a similarity vector s;;. Each
similarity vector s;; is composed of a set F of ¢ features { f1, fo, ..., f,}. Each feature
fp of these vectors represents a comparison between attributes r;.4; and r;.4; of two
references, r; and 7;.

The value of each feature is usually defined using other functions, such as Lev-
enshtein distance, Jaccard coefficient, Jaro-Winkler, cosine similarity, soft-TFIDF, eu-
clidean distance, etc., or some specific heuristic, such as the number of terms or coau-
thor names in common, or special values such as the initial of the first name along with
the last names, etc.

The training data is then used to produce a similarity function S from R x R
to {0,1}, where 1 means that the two references do refer to the same author and 0
means that they do not. As mentioned before, methods relying in learning techniques
to define the similarity function are quite effective in different collections of citations,
but they usually need many examples and sufficient features to work well, which can

be very costly to obtain.

Ezploiting Graph-based Similarity Functions

The methods that exploit graph-based similarity functions for author name disam-
biguation usually create a coauthorship graph G = (V, E) for each ambiguous group.
Each element of the author name and coauthor name attributes is represented by a
vertex v € V. The same coauthor names are usually represented by only a unique
vertex. For each coauthorship (i.e., a pair of authors who publishes an article) an edge
(vi,vj) € E is created. The weight of each edge (v;,v;) is related to the amount of
articles coauthored by the corresponding author names represented by vertices v; and
v;.

A graph-based metric (e.g., shortest path as in [Levin and Heuser, 2010]) may be

3.1. A TAXONOMY FOR AUTHOR NAME DISAMBIGUATION METHODS 23

combined with other similarity functions on the attributes of the references to authors

or used as a new feature in the similarity vectors.

Clustering Techniques

Author grouping methods usually exploit a clustering technique in their disambigua-
tion task. The most used techniques are partitioning, hierarchical agglomerative
clustering, density-based and spectral clustering [Han and Kamber, 2005]. In general,
these clustering techniques rely on a “good similarity function” to group the references.
Next, we provide a brief description of these techniques applied to the author name

ambiguity problem.

Partitioning Clustering Technique

A partitioning clustering technique, applied to the author name ambiguity problem,
creates k partitions of the set of references to authors. These methods usually receive
the number %k of author groups to be created as input as well as the set of references to
be disambiguated. They create an initial partitioning of k clusters (usually randomly)
and, to improve the disambiguation process, move references to authors from one cluster
to another based on some similarity criteria. The aim is that, in the end of the process,
the references to a same author will be put together in the same cluster while references
to different authors will remain in different clusters.

One advantage of these partitioning techniques is that a reference may be
assigned to different authors during the disambiguation process, which can poten-
tially help reducing erroneous assignments. This does not occur in hierarchical
agglomerative clustering techniques (see below). However, these methods usually
need to know the correct number of authors to perform well, which in most of
cases is an unrealistic assumption. Moreover, similarities are usually calculated
with respect to a representative reference within the clusters (e.g., a centroid).
Thus, references that are not similar enough to this representative one but are similar

to other references in the cluster may not be inserted into this (perhaps correct) cluster.

Hierarchical Agglomerative Clustering

A hierarchical agglomerative clustering technique [Han and Kamber, 2005| groups the
references to authors in a hierarchical manner. Initially, each reference corresponds to
a single cluster. Next, in each iteration of the process, the two most similar clusters
are grouped together and the similarity among all clusters is recalculated. The process
finishes when there is only a single cluster fusing all others or the similarity between

the clusters reaches a given threshold.

24 CHAPTER 3. AUTOMATIC AUTHOR NAME DISAMBIGUATION METHODS

One disadvantage of this technique is that if two references to different authors
are put together in a same cluster during the process, they can no longer be moved
to different clusters for the remainder of the process, i.e., this type of error cannot
be corrected. In the case of the name disambiguation task, this particular homonym
problem is one of the hardest to correct. An other disadvantage is the cost: we usually

need to compare all clusters with each other to find the most suitable to be fused.

Density-based Clustering

With density-based clustering, a cluster corresponds to a dense region of references to
authors surrounded by a region of low density (according to some density criteria).
References in regions with low density are considered as noise.

An example of a density-based clustering algorithm that has been used in the
author name disambiguation task is DBSCAN [Han and Kamber, 2005|. DBSCAN
estimates the density of references by counting the number of references within a spec-
ified radius. DBSCAN classifies each reference as core references (i.e., references whose
number of neighborhood references within a specific radius exceeds a given threshold),
border references (i.e., a reference that is not a core reference but is within the neigh-
borhood of a core reference) and noise references (i.e., a reference that is neither core
nor border).

DBSCAN initially labels all references as core, border or noise based on the
procedure described above. Next, it disconsiders all noise references and introduces
edges between the core references whithin a given radius of each other. Each group
of connected references is a cluster and each border reference is associated with one
cluster of its core references.

One advantage of density-based clustering techniques is that the clusters are
constructed using several representative references to authors. A disadvantage is that

they are very sensible to their thresholds.

Spectral Clustering
Spectral clustering techniques [Zha et al., 2001| are graph-based techniques that com-

pute the eigenvalues and eigenvectors, the spectral information, of a Laplacian Matrix
that, in the the author name disambiguation task, represents a similarity matrix of
a weighted graph G = (V, E). In the name disambiguation task, each vertex v € V'
represents a reference to an author and each weighted edge (v;, v;) represents the sim-
ilarity between the attributes of the vertices v; and v;. A graph-based technique splits
the vertices into clusters by maximizing the weights of intra-cluster vertices and min-

imizing the weights of the inter-clusters vertices. A spectral clustering technique uses

3.1. A TAXONOMY FOR AUTHOR NAME DISAMBIGUATION METHODS 25

the spectral information (i.e., eigenvalues and eigenvectors) instead of the similarity
matrix in the clustering process.

Spectral clustering usually produces better performance than traditional cluster-
ing techniques. However, the spectral clustering method used in [Han et al., 2005b] for
author name disambiguation needs to know the correct number of the authors (clusters)

which, as discussed before, can be unrealistic in real scenarios.

3.1.1.2 Author Assignment Methods

Author assignment methods directly assign each reference to a given author by con-
structing a model that represents the author (for instance, the probabilities of an
author publishing an article with other (co-)authors, in a given publication venue
and using a list of specific terms in the work title) using either a supervised classi-
fication technique [Ferreira et al., 2010; Han et al., 2004| or a model-based clustering
technique |[Bhattacharya and Getoor, 2006; Han et al., 2005a].

Classification

Methods in this class assign the references to their authors using a supervised machine
learning technique. More specifically, they receive as input a set of references to authors
with their attributes called the training data (denoted as D) that consists of examples
or, in this case, references for which the correct authorship is known. Each example is
composed of a set F of m features {f1, fo, ..., fm} along with a special variable called
the author. This author variable draws its value from a discrete set of labels {ay, as, . . .,
a,}, in which each label uniquely identifies an author. The training examples are
used to produce a disambiguation function (i.e., the disambiguator) that relates the
features in the training examples to the correct author. The test set (denoted as T)
for the disambiguation task consists of a set of references for which the features are
known while the correct author is unknown. The disambiguator, which is a function
from {f1, fo,..., fm} to {a1,aq,..., a,}, is used to predict the correct author for the
references in the test set. In this context, the disambiguator essentially divides the
records in 7 into n sets {ai,as,...,a,}, where a; contains (ideally all and no other)
references in which the 7th author is included.

These methods are usually very effective when faced with a large number of
examples of citations for each author. Another advantage is that, if the collection has
been disambiguated (manually or automatically), the methods may be applied only
to references of the new citations inserted into the collection by simply running the

learned model on them. Although successful cases of the application of these methods

26 CHAPTER 3. AUTOMATIC AUTHOR NAME DISAMBIGUATION METHODS

have been reported, the acquisition of training examples usually requires skilled human
annotators to manually label references. DLs are very dynamic systems, thus manual
labeling of large volumes of examples is unfeasible. Further, the disambiguation task
presents nuances that impose the need for methods with specific abilities. For instance,
since it is not reasonable to assume that examples for all possible authors are included
in the training data and the authors change their interest area over time, new examples
need be insert into training data continuously and the methods need to be retrained

periodically in order to maintain their effectiveness.

Clustering

Clustering techniques [Han and Kamber, 2005] that attempt to directly assign refer-
ences to authors work by optimizing the fit between a set of references to an author
and some mathematical model used to represent that author. They use probabilistic
techniques to determine the author in a iterative way to fit the model (or estimate
the parameters in probabilist techniques) of the authors. For instance, in the first
run of such a method each reference may be randomly distributed to an author a;
and a function, from a set of features {fi, fa,..., fm} to {a1,as,..., a,}, is derived
using this distribution. In the second iteration, this function is used to predict the
author of each reference and a new function is derived to be used in the next iter-
ation. This process continues until a stop condition is reached, for instance, after
a number of iterations. Two algorithms commonly used to fit the models in disam-
biguation tasks are Expectation-Maximization (EM) [Dempster et al., 1977] and Gibbs
Sampling |Griffiths and Steyvers, 2004].

These methods do not need training examples, but they usually require privileged
information about the correct number of authors or the number of author groups (i.e.,
group of authors that publish together) and may take some time to estimate their
parameters (e.g., due to the several iterations). Additionally, these methods may be
able to directly assign authors to their references in a new citations using the final

derived function.

3.1.2 Explored Evidence

In this section, we describe the kinds of evidence most commonly explored by the

disambiguation methods.

3.2. OVERVIEW OF REPRESENTATIVE METHODS 27

Citation Information

Citation information are the attributes directly extracted from the citations, such as
author and coauthor names, work title, publication venue title, publication year, and
so on. These attributes are the ones commonly found in all citations, but usually they
are not sufficient to perfectly disambiguate all references to authors. Some methods
also assume the availability of additional information, such as e-mail addresses, postal
addresses, page headers etc., which are not always available or easy to obtain, although

if existent, they usually help the process.

Web Information

Web information represents data retrieved from the Web that is used as additional
information about an author publication profile. This information is usually obtained
by submitting queries to search engines based on the values of citation attributes and
the returned Web pages are used as new evidence (attributes) to calculate the similarity
among references to authors. The new evidence usually improves the disambiguation
task. One problem is the additional cost of extracting all the needed information from
the Web documents.

Implicit Evidence

Implicit evidence is inferred from visible elements of attributes. Several techniques have
been implemented to find implicit evidence, such as the latent topics of a citation. One
example is the Latent Direchlet Location (LDA) [Blei et al., 2003 that estimates the
topic distribution of a citation (i.e., LDA estimates the probability of each topic given
a citation). This estimated distribution is used as new evidence (attribute) to calculate

the similarity among references to authors.

3.2 Overview of Representative Methods

In this section, we present a brief overview of representative author name disambigua-
tion methods which fall under one or more categories of the proposed taxonomy. Our
main focus here is on those methods that have been specifically designed to address the
name ambiguity problem in the context of bibliographic citations, since they are more
related to the scope of this work. In the next subsections, we describe each method

under the category we consider that best fits it. We notice that most of the described

28 CHAPTER 3. AUTOMATIC AUTHOR NAME DISAMBIGUATION METHODS

methods explore citation information in the disambiguation task. Thus, we leave to
Subsection 3.3 the discussion of those methods that use additional evidence.
Although not part of our taxonomy, one important point to understand the dis-
cussion that follows is the evaluation metrics that are used by each proposed method
in their experimental evaluations. In addition to the metrics discussed in Section 2.3,
some disambiguation methods also use accuracy, which is basically the proportion of
correct results among all predictions, the traditional metrics of precision, recall, and
F1 |Rijsbergen, 1979|, commonly used for information retrieval and classification prob-
lems® and MUC |Bagga and Baldwin, 1998|. In this last metric, recall is calculated by
summing up the number of elements in the theoretical clusters minus the number of
empirical clusters (obtained with the method) that contain these elements and divid-
ing this by the total of elements minus the number of theoretical clusters. Precision is

calculated similarly.

3.2.1 Author Grouping Methods
Using Predefined Functions

Han et al. [2005b] represent each reference as a feature vector where each feature corre-
sponds to an element of a given instance of one of its attributes. The authors consider
two options for defining the feature weights: TFIDF |Baeza-Yates and Ribeiro-Neto,
1999] and NTF (Normalized Term Frequency), being NTF given by ntf(i,d) =
freq(i,d)/mazx freq(i,d) where freq(i,d) refers to the feature frequency i within the
record d, and max freq(i,d) refers to the maximum term frequency of feature 7 in the
record d. The authors propose the use of K-way spectral clustering with QR decompo-
sition [Zha et al., 2001] to construct clusters of references to the same author. To use
this clustering technique, the correct number of clusters to be generated needs to be
informed. The K-way spectral clustering method represents each reference as a vertex
of an undirected graph and the weight of the edge between two vertices represents
the similarity between the attributes associated with the respective references. K-way
spectral clustering splits the graph so that records that are more similar to each other
will belong to the same cluster. This method was evaluated using data obtained from
the Web and DBLP. Experimental results achieved 63% of accuracy in DBLP and up
to 84.3% in the Web collection.

An algorithm for collective entity resolution (i.e., an algorithm that uses only dis-

ambiguated coauthor names when disambiguating an author name of a citation) that

3In this last case, the authors are considered as classes and the correct assignments need to be
known a priori.

3.2. OVERVIEW OF REPRESENTATIVE METHODS 29

exploits attribute elements (i.e., value of attributes present in the citation records) and
relational information (i.e., authorship information between entities referred in the ci-
tations records) is proposed by Bhattacharya and Getoor [2007]. The authors propose
a combined similarity function defined on attributes and relational information. As the
initial step, the authors create clusters of disambiguated references verifying if two ref-
erences have at least k& coauthor names in common (they used only the author names in
their experiments, but mention that other attributes may be used). The experiments
were performed using soft-TFIDF, Jaro-Winkler, Jaro and Scaled Levenshtein mea-
sures for name attributes, and for relational attribute they used Common Neighbors,
Jaccard coefficient, Adamic/Adar similarity and Higher-order neighborhood measures.
The authors exploit a greedy agglomerative strategy that merges the most similar clus-
ters in each step. The collections used in the experiments were a subset of CiteSeer
containing machine learning documents, a collection of high energy physics publications
from arXiv that was originally used in the KDD Cup 2003* and BioBase®, containing
biological publications of Elsevier and was used in an IBM KDD-Challenge competi-
tion. The method obtained around 0.99 of F1 in the CiteSeer and arXiv collections

and around 0.81 in the BioBase collection.

Soler [2007| proposes a new distance metric between two citations, ¢; and c¢;,
(or clusters of citations) based on the probability of these publications having terms
and author names in common. In that work, the author proposes a semi-automatic
algorithm that creates clusters of articles using the proposed metric and summarizes
the clusters by means of a representative citation of the cluster including the distance
from it to the others. Soler groups the citations for which the inter-citation distance
is minimum using as evidences the author names, email, address, title, keywords, re-
search field, journal and publication year attributes. The final decision on whether
two candidate clusters belong to the same author or not is given by a specialist. He
presents some illustrative cases of clusters obtained using his metric with records ex-
tracted from ISI-Thomson Web of Science database® but a more formal evaluation was

not performed.

Cota et al. [2010] propose a heuristic-based hierarchical clustering method for
author name disambiguation that involves two steps. In the first step, the method
creates clusters of references with similar author names that share at least a similar

coauthor name. Author name similarity is given by a specialized name comparison

*http://www.cs.cornell.edu/projects /kddcup

Shttp:/ /www.elsevier.com/wps/find /bibliographicdatabasedescription.cws _home/600715/
description##description

Shttp://isiknowledge.com

30 CHAPTER 3. AUTOMATIC AUTHOR NAME DISAMBIGUATION METHODS

function called Fragments. This step produces very pure but fragmented clusters.
Then, in the second step, the method successively fuses clusters of references with
similar author names according to the similarity between the citation attributes (i..e.,
work title and publication venue) calculated using the cosine measure. In each round
of fusion, the information of fused clusters is aggregated (i.e., all words in the titles
are grouped together) providing more information for the next round. This process is
successively repeated until no more fusions are possible according to a similarity thresh-
old. The authors used pairwise F1 and K metrics on collections extracted from DBLP
and BDBComp to evaluate the method and obtained around 0.77 and 0.93 for K in
DBLP and BDBComp, respectively. An extension of this method that allows the name
disambiguation task to be incrementally performed is presented in |Carvalho et al.,
2011].

Learning a Similarity Function

Torvik et al. [2005] propose to learn a probabilistic metric for determining the similar-
ity among MEDLINE records. The learning model is created using similarity vectors
between two references. In that work, the similarity vector contains features resulting
of the comparison between the normal citation attributes along with medical subject
headings, language, and affiliation of two references. The authors also propose some
heuristics for generating training sets (positive and negative) automatically. When the
probabilistic metric receives the attributes associated with two references, their sim-
ilarity vector is created and the relative frequency of this profile in the positive and
negative training sets is checked for determining whether these two references refer to
the same author or not. In a subsequent work, Torvik and Smalheiser [2009] extend
this method by including additional features, new ways of automatically generating
training sets, an improved algorithm for dealing with the transitivity problem and a
new agglomerative clustering algorithm for grouping records. The authors estimate
recall around 98.8%. They also estimate that only 0.5% of the clusters have mixed
references of different authors (purity), and that only in 2% of the cases the references
of the same author are split into two or more clusters (fragmentation).

Huang et al. [2006] present a framework for solving the name ambiguity problem
in which a blocking method is first applied to create blocks of references to authors with
similar names. Next DBSCAN, a density-based clustering method [Ester et al., 1996],
is used for clustering references by author. For each block, the distance metric between
pairs of citations used by DBSCAN is calculated by a trained online active support
vector machine algorithm (LASVM), which yields, according to the authors, a simpler

3.2. OVERVIEW OF REPRESENTATIVE METHODS 31

and faster model than the standard support vector machines (SVMs). The authors
use different functions for each different attribute, such as the edit distance for emails
and URLs, Jaccard similarity for addresses and affiliations and soft-TFIDF for names.
To demonstrate the effectiveness of this framework, the authors have applied it to a
manually annotated dataset with 3,335 citation records and 490 distinct authors. Ex-
periments were performed with pairs of references in which the disambiguator informs
whether two references correspond to the same author or not. The authors obtained
0.906 in terms of pairwise F'1. It should be noticed that these results were obtained by
exploiting additional sources of evidence, such as the page headers of papers obtained

from CiteSeer.

Culotta et al. [2007] aim to learn a score function to be applied to the disambigua-
tion result, such that higher scores correspond to the more correct disambiguations.
Instead of calculating the score using pairs of references, the authors propose a score
function that considers all references in a cluster together, with the goal of maximizing
the result of the score function in the resulting disambiguation. To learn this function,
they propose a training algorithm that is error-driven, i.e., training examples are gen-
erated from incorrect predictions in the training data, and ranked, i.e., the classifier
uses a ranking of candidate predictions to tune its parameters. The authors evaluated
two loss functions to tune the parameters, Ranking Perceptron Freund and Schapire
[1999] and Ranking MIRA Crammer and Singer [2003]. The experimental evaluation
used two collections extracted from DBLP (one which is called Penn, because disam-
biguation was performed manually by students from Penn State University) and other
from the Rexa” Digital Library. As evaluation metrics, they used pairwise F1, MUC
and B-Cubed [Bagga and Baldwin, 1998|. As evidence, they exploited features such as
first and middle names of the authors, number of coauthors in common, rarity of the
last name, similarity between work titles, e-mails, affiliations and publication venue
titles, as well as the minimum, maximum and average values for real-valued features,
among several others. They also used a greedy agglomerative clustering technique to
group the references. Ranking Perceptron generated the best results in DBLP and
Penn, with 0.52 and 0.86 of pairwise F1, respectively. Ranking MIRA generates the
best result on the other DBLP collection with 0.931 of pairwise F1.

Treeratpituk and Giles |[2009| propose a learned similarity function for author
name disambiguation in the MEDLINE digital library. The authors exploit a large fea-
ture set obtained from MEDLINE metadata, similar to that proposed in |Torvik et al.,

2005]. The authors also use similarity vectors to learn the similarity function using a

"http://rexa.info

32 CHAPTER 3. AUTOMATIC AUTHOR NAME DISAMBIGUATION METHODS

Random Forest classifier. They compare the use of Random Forests with decision trees,
support vector machines, naive Bayes and logistic regression to learn the function to
be used along with some clustering technique (left unspecified). They also investigate
the performance of subsets of the features capable of reaching good effectiveness. The
authors obtain almost 96% of accuracy in their experiments by exploiting this large set

of features.

Exploiting Graph-based Similarity Functions

On et al. [2006] address synonyms in the group entity resolution problem (i.e., a refer-
ence to a person associated with a group of items, e.g., an author with a list of publi-
cations) by proposing an approach that uses the quasi-clique graph-mining technique
for exploiting, besides simple textual similarities, “contextual information” extracted
from the group items’ attributes (e.g., the citation attributes) as additional evidence.
This contextual information is obtained constructing a graph for each group to repre-
sent relationships between the author names (i.e., references) and the attribute values
(e.g., co-authors). This graph is then superimposed on the pre-built graph constructed
using the entire set of author names. Using this contextual information, the authors
also propose a graph-based distance function based on common quasi-clique between
the graphs of two entities (i.e., references). They compared their graph-based func-
tion (distQC) with Jaccard, TF-IDF and IntelliClean functions |Lee et al., 2000| by
measuring the precision and recall at the top k most similar references using three col-
lections extracted from ACM®, BioMed (a dataset of medical publications) and IMDb.
On average, the experiments show an improvement of 63%, 83% and 46% over Jaccard,
TFIDF and IntelliClean functions in terms of precision at top-k records returned by
their algorithm in ACM. Similar results were obtained for the other collections.

Levin and Heuser [2010] propose a set of social network metrics that, together
with string metrics, generate match functions (i.e., functions used to verify whether
two references represent the same author). These functions were used in (very small)
collections extracted from Cora’, BDBComp and DBLP. The authors construct a graph
with two kinds of vertices: one represents a reference to an author occurring in a
citation and the other represents the citation itself; and two kinds of edges: one links
the reference to the citation and the other links the vertices that share the same author
name value. The authors obtained in their experiments around 95%, 82% and 95% of

F1 in versions of Cora, BDBComp and DBLP, respectively.

8http://portal.acm.org
%http://www.cs.umass.edu/ mccallum/code-data.html

3.2. OVERVIEW OF REPRESENTATIVE METHODS 33

Fan et al. [2011] propose the GHOST (GrapHical framewOrk for name diSam-
biguaTion) framework. GHOST solves the homonym problem using only the coauthor
name attribute in five steps. In the first one, GHOST represents a collection as a
graph G=(V, E), where each vertex v € V represents a reference to be disambiguated
and each undirected edge (v;,v;) € E represents a coauthorship whose label S;; is a
set of citations coauthored by v; and v;. In the second step, GHOST identifies the
valid paths eliminating the invalid ones between two nodes, i.e., a path that contains
a subpath v;S;,v,Sk;v; where S is equal to Si; and both have only one citation. In
the third step, GHOST creates a matrix representing similarities between the vertices.
For this, the authors propose a new similarity function based on the formula that cal-
culates the resistance of a parallel circuit. In the fourth step, the Affinity Propagation
clustering algorithm |Frey and Dueck, 2007] is used to group the references to the same
author. Finally, in the last step, GHOST makes use of user feedback to improve the
results. Experimental evaluation was performed in collections extracted from DBLP
and MEDLINE. GHOST obtained on average 0.86 and 0.98 of pairwise F1 in DBLP
and MEDLINE, respectively.

3.2.2 Author Assignment Methods
Classification

Han et al. [2004] propose two methods based on supervised learning techniques that
use coauthor names, work titles and publication venues as evidence for assigning a
reference to its author. The first method uses a naive Bayes model (NB), a generative
statistical model frequently used in word sense disambiguation tasks, to capture all
writing patterns in the authors’ citations. The second method is based on Support
Vector Machines (SVMs), which are discriminative models basically used as a classi-
fier [Mitchell, 1997]. An important difference between the two techniques is that a NB
model requires only positive examples to learn about the writing patterns, whereas
SVMs require both positive and negative examples to learn how to identify the author.
Both methods have been evaluated with data taken from the Web and DBLP. Experi-
mental results show that, on average, using all attributes, the SVM-based method was
more accurate (accuracy=95.6%) than the NB method (accuracy=91.3%) for the Web
collected dataset, while for the DBLP dataset the NB method performed better (SVM
accuracy was 65.4% while NB’s was 69.1%).

Veloso et al. [2012] propose SLAND, a disambiguation method that infers the
author of a reference by using a supervised rule-based associative classifier. The pro-

posed method uses author names, work title and publication venue title attributes as

34 CHAPTER 3. AUTOMATIC AUTHOR NAME DISAMBIGUATION METHODS

features and infers the most probable author of a given reference r; using the confidence
of the association rules X — a; where X’ only contains features of ;. The method also
works on demand, i.e., the association rules to infer the correct author of a reference
are generated in the moment of a disambiguation. The method is capable of inserting
new examples into the training data during the disambiguation process, using reliable
predictions, and detecting authors not present in the training data. Experiments were
conducted in two collections extracted from DBLP and BDBComp and the proposed
method outperformed representative supervised methods (e.g., SVM and NB) consid-
ering the Micro and Macro F1 metrics. In the DBLP and BDBComp collections, the
(Micro) F1 values were 0.911 and 0.457, respectively. In order to deal with the cost of
obtaining training data, this method was extended in [Ferreira et al., 2010 to become
self-trained, i.e., it is now capable of producing its own training examples using (test)
references to be disambiguated. Initially, the method extracts pure clusters of refer-
ences by exploiting highly discriminative features, such as coauthor names. The most
dissimilar clusters according to a given threshold are then selected to represent training
examples for their authors. Next, the references in the rest of clusters are classified
according to these training examples. In the experiments with the same collections, the
self-trained method outperformed by far the unsupervised methods KWAY and SVM-
DBSCAN and the associative method was the best choice for classifying the remaining

test references not incorporated into the training data when compared to SVM and
NB.

Clustering

Han et al. [2005a] present an unsupervised hierarchical version of the naive Bayes-based
method for modeling each author. In that work, the authors assume that each citation
is generated by a mixture of K authors. They then calculate the probability of a citation
record ¢, given an author a;, i.e., P(c,,|a;) using the probability of each attribute of
this record given such author, in a hierarchical way. To estimate the parameters, the
authors use the Expectation Maximization algorithm [Dempster et al., 1977| aiming to
maximize the likelihood of the citation records. The method obtained on average 54%
and 58% of accuracy on data extracted from DBLP and the Web, respectively.
Bhattacharya and Getoor [2006] extend the generative model Latent Dirichlet
Allocation (LDA) and propose a probabilistic model for collective entity resolution that
uses the co-occurrence of the references to authors in each work to determine the entities
jointly, i.e., they use the disambiguated references to disambiguate other references in

the same citation. In their model, the authors associate an attribute v,, that contains

3.2. OVERVIEW OF REPRESENTATIVE METHODS 35

the author name in the citation, with each author a. They assume that each citation
is constructed by choosing their authors from an author group (i.e., a group of authors
that publish some article together) distribution. That is, initially a distribution that
determines the probability of each author group having a specific author chosen to
write the article is selected. Next using this distribution, the authors and a variation
of their names are chosen for this citation. The proposed method receives as input
only an approximation of the number of author groups in the collection. Experiments
were performed using citations extracted from CiteSeer and arXiv reaching up to 0.99
and 0.98 respectively of pairwise F1.

Tang et al. [2012| propose a probabilistic framework based on Hidden Markov
Random Fields (HMRF) for the homonym subproblem. In this work, the authors use
author names, work title, publication venue title, publication year, abstract and bib-
liographic references as content-based evidence and relationships between citations as
structure-based evidence for disambiguating author names. Each relationship repre-
sents the fact that two citations were published in the same publication venue, have
a coauthor name in common, cite the other, have distinct coauthor names that were
coauthors in another citation, or have some specific user-provided constraint in com-
mon. Content and structure-based evidence are modeled as feature functions (used
to represent the similarity between two citations by their content or relationships)
which are then incorporated into a HMRF used to estimate the weights of the feature
functions and to assign the citations to their authors. The authors also use Bayesian
Information Criterion [Kass and Raftery, 1995] to estimate the number of authors of
the collection. Experimental evaluation was performed on citations extracted from Ar-
netMiner!?. Pairwise F1 values were 0.888 and 0.805 when the method uses the correct

number of authors and when it estimates this number, respectively.

3.2.3 Using Additional Evidence
Web Information

Kanani et al. [2007] present two approaches for author name disambiguation that
gather additional evidence from the Web. They construct a graph in which each vertex
corresponds to a reference to an author and the edges are weighted with values that
represent the probability of the two vertices (i.e., references) being the same author.
This weight is initially calculated using the citation attributes. The authors propose

two approaches to represent the information gathered from the Web. In the first, they

Ohttp://arnetminer.org

36 CHAPTER 3. AUTOMATIC AUTHOR NAME DISAMBIGUATION METHODS

use the result of searches submitted to a Web search engine for the work titles of ci-
tation records of the corresponding references to authors to change the weight of the
edge between two references. In the second, they use one of the returned pages of the
search as a new type of vertex in the graph (web vertex), adding new edges from this
new vertex to each previously existing reference vertex, indicating the probability of
the reference and the web page beloging to the same author. The proposed method
learns a maximum entropy or logistic regression model for a pair of references a; and
a;j, and the weight of the edge (a;,a;) is given by the probability that the corresponding
references refer to the same author minus the probability that these references refer
to the different authors. In the end, a stochastic graph partitioning technique is used
to cluster the references. DBLP, Penn and the Rexa collections were used in their
experiments. Using the results of searches to Google to change the weight of the edges,
their method obtains around 0.905, 0.877 and 0.918 of accuracy and around 0.886,
0.814 and 0.747 of pairwise F1 in the DBLP, Rexa and Penn collections, respectively.
Experiments with the method that use the returned Web pages as vertices in the graph
were run only with DBLP, producing 0.882 of accuracy and 0.903 of pairwise F1 in
that collection.

Yang et al. [2008] address the author name ambiguity problem using topics and
correlations found on the Web. They determine the topics of the citation from venue
information using an extraction algorithm based on association rules in order to create
a topic association network. They also use the Web for retrieving publication pages
of authors or coauthors to be disambiguated. Then, they create a similarity function
making use of an SVM classifier on top of all these features. The authors represent
references to authors as vertices in a graph and the similarity function is used to create
the edges between vertices. Their clustering technique removes a bridge edge when
each resulting connected component has at least a given number of vertices. They
tested their approach on the collection constructed by Han et al. [2004] and improved
the accuracy by 66% (0.75 of accuracy) when compared to the use of citations without
topics and Web correlations.

[Kang et al., 2009] exploit coauthorship information using a Web-based technique
that obtains other (implicit) coauthors of the reference to be disambiguated. They
submit a pair of author names of a same citation as a query to Web search engines to
retrieve documents containing both author names and then extract new names found
in these documents as new implicit coauthors of this pair. The authors measure the
similarity between two references by counting the number of coauthors in common
and use the single-link agglomerative clustering technique [Jain et al., 1999| to group

the references to the same author. They used a collection of citations published in

3.2. OVERVIEW OF REPRESENTATIVE METHODS 37

Korean during 1999-2006 that has only the homonym problem, obtaining around 0.85
of pairwise F1.

Pereira et al. [2009] also exploit Web information to disambiguate author names.
The proposed method attempts to find Web documents corresponding to curricula
vitae or Web pages containing publications of a single author. It works in three steps.
The first step receives a list of citations whose references must be disambiguated and,
for each citation, submits a query containing data from its attributes to a Web search
engine. It then inserts the top-m documents in the answer set into a set D of documents.
The second step selects the documents in D that contain publication from a given
author. The third step groups the reference to authors whose citations occur in a same
document in a hierarchical manner, i.e., if citations of two ambiguous references occur
in the same Web document, these citations are considered as belonging to the same
author and are fused in a same cluster. The experimental evaluation was performed
using data from DBLP, obtaining on average 0.80, 0.76 and 0.14 of K, pairwise F1 and

cluster F'1 metrics, respectively.

Implicit Evidence

Song et al. [2007| propose a two-step unsupervised method for author name disam-
biguation. The first step uses Probabilistic Latent Semantic Analysis (PLSA) and
Latent Dirichlet Allocation (LDA) to assign a vector of probabilities of topics to each
citation. The PLSA and LDA proposed by Song et al. introduce a variable for persons
(authors) in the generative model, that does not exist in general generative models.
The second step considers the distributions of the probability of topics with respect
to citations as a new attribute for name disambiguation. The authors use the Leven-
shtein distance to measure the similarity between two names. When two names are
considered similar, they use the probability vectors of two corresponding citations and
the Euclidean distance to merge the citations of the same authors. The authors com-
pared their method with a greedy agglomerative clustering, K-way spectral clustering
and LASVM+DBSCAN on citations extracted from CiteSeer and personal names on
the Web. Their experiments demonstrate that their method, when faced with a lot of
citation information, is more effective than the baselines, obtaining on average around
0.911 and 0.936 of pairwise F'1 on the Web and CiteSeer collections, respectively.

Shu et al. [2009] extend the Latent Dirichlet Allocation model (LDA) for obtain-
ing the topic distribution of each citation by adding the assumption that every topic
is a Dirichlet distribution over all author names, that each document is a mixture of

topics, and that each topic is a Dirichlet distribution over all the words. They train

38 CHAPTER 3. AUTOMATIC AUTHOR NAME DISAMBIGUATION METHODS

a classifier (C4.5 and SVMs) based on the similarity on topics, coauthor names, title
and venue, as well as on the minimum distance between coauthor names, to predict
whether two references correspond to the same author or not. The authors attempt
to solve the problem of name ambiguity by trying to solve first the polysemy problem
and then the synonymy. They use K-way spectral clustering to split the references into
k sets, one for each author, in order to deal with the polysemy problem. Next, they
compare two sets of references of authors whose names have a distance below a given
threshold and count the number of citations from these two sets which are assigned to
the same author by the classifier. This value is divided by the total number of pairs of
those two sets and if the result is greater than a given threshold they are merged. The
authors show the effectiveness of their method by applying it to data extracted from
DBLP. For the polysemy problem the precision and recall were over 0.9 for the most
ambiguous groups while for the synonym problem the precision was around 0.99 and
recall was 0.917.

3.3 Summary of Characteristics

In this section, we present an overview of the characteristics found in the described

author name disambiguation methods, which are summarized in Tables 3.1 and 3.2.

The collections used to evaluate the methods have been taken from: (1) Cite-
Seer, DBLP, BDBComp, ArnetMiner, and Rexa that contain publications of computer
science researchers; (2) arXiv that contains citations from high energy physics publi-
cations; (3) BioBase, containing citations from biological publications; (4) MEDLINE
and BioMed with data from biomedical publications; (5) ISI-Thomson with publica-
tions from several knowledge areas; (6) Cora, which consists of duplicated citations in
Computer Science and person names extracted from the Web; and (7) IMDb with data

about movie actors.

The majority of the described methods |Bhattacharya and Getoor, 2007;
Cota et al., 2010; Culotta et al., 2007; Fan et al., 2011; Han et al., 2005b; Huang et al.,
2006; Kanani et al., 2007; Kang et al., 2009; Levin and Heuser, 2010; On et al.,
2006; Pereira et al., 2009; Shu et al., 2009; Soler, 2007; Song et al., 2007;
Torvik and Smalheiser, 2009; Treeratpituk and Giles, 2009; Yang et al., 2008| try to
disambiguate references to authors by using a similarity function to indicate whether
two references refer to the same author instead of directly assigning the corresponding
author to each reference, as proposed by some authors [Bhattacharya and Getoor, 2006;
Ferreira et al., 2010; Han et al., 2004, 2005a; Tang et al., 2012; Veloso et al., 2012].

Method | Similarity function Clustering technique Evidence Collections Evaluation metric Subproblem # of authors
Bhattacharya and Getoor [2007] | Common neighbours, Agglomerative Author name CiteSeer, F1 Both Unknown
Jaccard, arXiv and
Adamic/Adar and BioBase
Higher-order
neighbourhoods
Cota et al. [2010] | Fragment Agglomerative Citation attributes DBLP and BDBComp Pairwise F1 Both Unknown
comparison and F1 and K
cosine
Culotta et al. Culotta et al. [2007] | Error-drive Agglomerative All of each collection DBDL and Rexa Pairwise F1, Both Unknown
and hank-based MUC and
learning B-Cubed
Fan et al. [2011] | graph-based Affinity Propagation Author names DBLP and MEDLINE Pairwise F1 Homonym Unknown
Han et al. [2005b] | Cosine Spectral clustering Citation attributes DBLP and Web Accuracy Both Known
Huang et al. [2006] | Learned using DBScan First page of the articles CiteSeer Pairwise F1 Both Unknown
LASVM
Kanani et al. [2007| | Learned using Partitioning Citation attributes DBLP, Penn and Rexa Accuracy and Both Unknown
maximum entropy and Web pages pairwise F1
or logistic regression
Kang et al. [2009] | Heuristic Agglomerative Author names Korean citations F1 and under/ Homonym Unknown
and Web pages over-clustering
error
Levin and Heuser [2010] | Social network - Citation attributes DBLP, Cora and BDBComp F1 Both Unknown
metrics
On et al. [2006] | Quasi-clique - Citation/Movie attributes ACM, BioMed and IMDb Ranked recall Synonym Unknown
and precision
Pereira et al. [2009] | Heuristic Agglomerative Citation attributes DBLP Pairwise and Both Unknown
cluster F1
and K
Shu et al. [2009] | Learned using Spectral and Citation attributes DBLP Pairwise F1 Both Known
C4.5/SVMs agglomerative
and edit distance clustering
Soler [2007] | Probabilistic Agglomerative Citation attributes, ISI-Thomson - Both Unknown
metric email, address, keywords
and research field
Song et al. [2007] | Levenshtein Agglomerative Citation attributes CiteSeer and Web Pairwise and Both Unknown
and Euclidean and latent topics cluster F1
distance (LDA/PLSA)
Torvik and Smalheiser [2009] | Learn a proba- Agglomerative MEDLINE metadata MEDLINE Recall Both Unknown
bilist metric
Treeratpituk and Giles [2009] | Learned using - MEDLINE metadata MEDLINE Accuracy Both Unknown
random forest
classifier
Yang et al. [2008] | Learned using Partitioning Citation attributes, DBLP Accuracy, Both Unknown
SVM topics and precision

Web pages

and recall

spojowt Surdnoid IoYHNy - SOIISIIoIDRIRYD Jo ATewruing *1°¢ 9[qeL

SOILSTHHLOVYUVH) A0 AMVINNNS "¢°¢

6¢

Method | Technique Attributes Collections Evaluation metric ~ Subproblem # of authors
Classification Ferreira et al. [2010] | Associative classifier Citation attributes DBLP and BDBComp Pairwise F1 and K Both Estimated
Han et al. [2004] | SVM and naive Bayes classifiers Citation attributes DBLP and Web Accuracy Both Known
Veloso et al. [2012] | Associative classifier Citation attributes DBLP and BDBComp F1 Both Estimated
Clustering Bhattacharya and Getoor [2006] | LDA with Gibbs sampling Author names CiteSeer and arXiv F1 Both Estimated
; Han et al. [2005a] | Hierarchical naive Bayes with EM Citation attributes DBLP and Web Accuracy Both Known
Tang et al. [2012] | Hidden Markov Random Fields Citation attributes ArnetMiner Pairwise F1 Homonym Estimated

spoyjow JuawuSISSe I0YINY - SIIPSLI9JORIRTD JOo Arewrwing *g ¢ 9[qel,

0¥

SAOHLIAIN NOILVADIIINVSI(] HANVN YOHLNY DILVINOLNY ¢ YHLAVH))

3.3. SUMMARY OF CHARACTERISTICS 41

Some of these methods receive the correct number of authors in the collection as
input |Fan et al., 2011; Han et al., 2005a,b| or this number corresponds to the num-
ber of authors in the training data [Han et al., 2004]. Other methods, such as those
proposed in [Bhattacharya and Getoor, 2006|, [Tang et al., 2012| and |Ferreira et al.,
2010|, try to estimate this number.

Almost half of the proposed methods [Bhattacharya and Getoor, 2006, 2007;
Cota et al., 2010; Fan et al., 2011; Ferreira et al., 2010; Han et al., 2004, 2005a,b;
Levin and Heuser, 2010; On et al., 2006; Shu et al., 2009| use at most the three main
citation attributes, namely, author names, work title and publication venue title, as
disambiguation evidence. These attributes are the most commonly found in citation
records, constituting in most cases the hardest situation for disambiguation. Few
methods |Kanani et al., 2007; Kang et al., 2009; Pereira et al., 2009; Yang et al., 2008
exploit additional evidence such as emails, addresses, paper headers etc., which are not
always available or easy to obtain.

Finally, Tables 3.1 and 3.2 also show the evaluation metrics used by each of the
proposed methods as well as the type of subproblem (i.e., synonymy, homonym, or
both) they tackled.

Chapter 4

SAND: Self-training Author Name

Disambiguator

In this chapter, we describe our proposed hybrid disambiguation method, SAND
(standing for Self-training Author Name Disambiguator) |Ferreira et al., 2010], which
is one of the major contributions of this thesis. SAND exploits the strengths of both
author grouping and author assignment methods. Specifically, it works in three steps.
In the first step, author grouping, recurring patterns in the coauthorship graph are ex-
ploited in order to produce very pure clusters of references. In the second step, cluster
selection, a subset of the clusters produced in the previous step is selected as training
data for the next step. Then, in the third step, author assignment, a learned function
is derived to disambiguate the references in the clusters that were not selected in the
previous step. The final result, as we shall see, is a highly effective and extremely prac-
tical disambiguator. Experimental results, using references extracted from DBLP and
BDBComp, as well as synthetic data produced with SyGAR, show that SAND outper-
forms all author grouping methods including state-of-the art ones and has competitive,
sometimes superior, performance when compared with author assignment methods,

without the need for any manually labeled data as required by those methods.

4.1 SAND Design

In the following sections, we will present a detailed description of the SAND steps.
These steps are applied after a well-known pre-processing procedure, which includes
blocking, stop-word removal, and stemming. Stop-word removal and stemming are
performed on the words that compose work and publication venue titles. Moreover,

authors with similar ambiguous names are grouped together (i.e., blocked), creating

43

44 CHAPTER 4. SAND: SELF-TRAINING AUTHOR NAME DISAMBIGUATOR

ambiguous groups. Disambiguation operations are performed within each ambiguous

group, so that useless comparisons involving non-ambiguous authors are avoided.

4.1.1 The Author Grouping Step

The goal of this step is to automatically create pure clusters of references. Some of
these clusters will be selected by the cluster selection step to compose the training
data to be used in the final step. The approach we adopt is to organize references
within each ambiguous group into individual clusters, so that references placed in a
same cluster tend to be very similar to each other and dissimilar to references placed in
other clusters. The key intuition is that some of these clusters can be associated with
a unique author label, therefore references within such cluster can serve as training
examples.

In order to properly produce training examples, the extracted clusters should be
as pure as possible, in the sense that each cluster should contain only references to one
author. Otherwise, if a cluster with a low degree of purity (i.e., a cluster with references
to distinct authors) is selected as training, then references to different authors could
be assigned to the author label associated with this cluster in the author assignment
step, increasing the homonym problem.

A straightforward way of extracting pure clusters is to ensure that each one of
them contains only a single reference. In this case, clusters are totally pure, however,
fragmentation is maximum, i.e., the references of a same author are placed into differ-
ent clusters. Fragmented clusters are potentially detrimental for learning the author
assignment function, since references to the same author would receive different author
labels.

Accordingly, in SAND, pure clusters are extracted by exploiting highly discrim-
inative attributes, so that references associated with different authors are unlikely to
be grouped together into the same cluster. In the context of bibliographic citation,
we have based this strategy on a general heuristic that assumes that very rarely two
authors with similar names that have coauthors in common would be two different
people in the real world [Cota et al., 2010).

Figure 4.1(a) and (b) illustrate the author grouping step. Each geometric figure
represents a reference and the figures with the same shape are references to the same
author. Algorithm 1 describes the author grouping step in details. This algorithm
receives as input an ambiguous group of references G (see Figure 4.1(a)) and returns
a list C of clusters of references (see Figure 4.1(b)). It processes G' by splitting it

into two separate lists: S with references whose author names occur in a short format

4.1. SAND DESIGN 45
P o o

@
Ao i A @ @
.DDA .QD‘ O DAD O @ ® O

I @ o |

(a) Ambiguous group of references (b) Applylng the author grouping step
A AT
HENETBes
D O]
@@@@@@@w $ED #

¢) Sorting the clusters (d) Selecting the training clusters

@®@@@@

(e) Training and test sets

Figure 4.1. Illustrative example. The author grouping and cluster selection
steps.

(i.e., names with only the initial of the first name and the last name) and L with the
remaining ones (i.e., those references whose ambiguous author names are not in short
format). Then, it proceeds by first processing L (line 6) and then S (line 7). When
processing the lists L and S, the initial clusters of references are built using the author
name and the list of coauthor names as evidence. The idea of first processing the list
of long names is that these names provide more reliable evidence for our similarity

functions.

Algorithm 2 describes the function ProcessList used to process the list of refer-
ences in Algorithm 1 (lines 6 and 7). This algorithm receives a list L of references and
a list C; of clusters of references and returns a new list C, with each reference r from
L in some cluster ¢ of C,. It compares the author name of each reference r with the
author name of each cluster ¢! using some similarity function. If the author name of r

is similar to the author name of ¢ and there are coauthor names in r that are similar

L'We use as the author name of a cluster that of the first reference inserted into the cluster. Remind
that we process the long names first.

46 CHAPTER 4. SAND: SELF-TRAINING AUTHOR NAME DISAMBIGUATOR

Algorithm 1 The Author Grouping Step
Input: Ambiguous group G of references;
Output: List C of clusters of references;

Let L and S be lists of references;
Let C7 and C5 be lists of clusters;
S < GetShortNameRecords(G);
L < GetLongNameRecords(G);
Ch @,

Cy < ProcessList(L,C1);

C < ProcessList(S,C5);

Algorithm 2 Function ProcessList
Input: List L of references;

Input: List C; of clusters of references;
Output: List C, of clusters of references;

1: CO — Cz;
2: for each r in L do

3: inserted < false;
4: ¢ < first(C,);
5
6

while not inserted and ¢ # null do
if similar(r.authorName, c.authorName) and exists similar(r.coauthorNames,
c.coauthorNames) then

7 InsertReference(r, c);
8: inserted <—true;

9: end if

10: ¢ < next(C,);

11: end while
12: if inserted — false then

13: ¢ + CreateNewCluster(r);
14: Append(C,, ¢);

15: end if

16: end for

to some coauthor names in ¢, 7 is inserted into this cluster ¢ (line 7); otherwise a new
cluster is created with this reference r (line 13).

To measure the similarity between two names we use a function derived from
the Fragment Comparison algorithm, an edit-distance matching algorithm specially
designed for persons’ names [Oliveira, 2005]. To verify whether a reference r and a
cluster ¢ share coauthors we exploit two strategies, a weaker and a stronger one. The

weaker strategy considers that r and ¢ share coauthors when they have at least one

2We consider the set of all coauthor names of all references in a cluster as the value of the coauthor
names attribute of such cluster.

4.1. SAND DESIGN 47

similar coauthor name in common. The second, stronger strategy tries to increase the
purity of the generated clusters, by building upon the first strategy. For this, we use a
external source of evidence containing the most popular last names of a given language.
In this second strategy, we consider that r and c share coauthors if both have at least
one similar coauthor whose last name is not popular or if they have at least two similar
coauthor names (popular or not). We use a list of popular last names extracted from
Wikipedia® and from the BDBComp digital library (for the Brazilian Portuguese case)
to compose our list of popular last names.

Though simple, this additional constraint tends to extract even purer clusters
when compared to the first strategy, as it will be shown in our experiments. Unfor-
tunately, both strategies also tend to fragment references to an author into multiple
clusters. This is expected, since some authors are likely to have many different coau-
thors due to multiple interests and some of these coauthors may have never published

together.

4.1.2 The Cluster Selection Step

As mentioned before, if the final set of clusters to be used as training data is too frag-
mented, then possibly many references will be associated with incorrect author labels?,
decreasing the benefit of the training examples. One strategy to reduce fragmentation
in the training data is to select only the clusters belonging to different real authors.
Algorithm 3 describes the cluster selection step in details while Figure 4.1(c), (d)
and (e) illustrate this step. The process of selecting the clusters whose references will
compose the initial training data, starts by sorting the input clusters produced in the
previous step (line 3) in descending order of size (i.e., the number of references within
the cluster). The result is a sorted list C of clusters (see Figure 4.1(c)). Next, the
largest cluster in C is inserted into the set of selected clusters, S (lines 4 and 5). This
selected cluster is also removed from C. As the clusters in & should belong to different
authors, the next cluster in C to be inserted into S should be one not similar to any
of the clusters already in §. The key intuition is that candidate clusters in C that
are dissimilar to clusters in S are those most likely to contain references associated
with authors not already in §. So, we insert a cluster ¢; € C in S if V¢; € S, ¢; is
not similar to ¢; (lines from 6 to 11). The iteration continues with the next candidate

cluster in C. The process finally stops when the last cluster in C is evaluated (see

Shitp : / Jen.wikipedia.org/wiki/Lists _of most_common __surnames

“Remind that each cluster in the training data is associated with a different label. If two clusters
of the same author are included in the training data, these clusters will be considered as belonging to
different authors.

48

CHAPTER 4. SAND: SELF-TRAINING AUTHOR NAME DISAMBIGUATOR

Algorithm 3 The Cluster Selecting Step

Input: List C of clusters of references;
Output: List D of training data;
Output: List 7 of test set;

e T T

Let S be the list of selected clusters;
S« 0;
C < Sort(C, desc);
¢; < GetFirstCluster(C);
Append(S, ¢);
Remove(¢;, C);
for each ¢; in C do
if Ve; € S, Dissimilar(c;, ¢;) then
Append(S, ¢);
Remove(¢;, C);
end if
: end for
: D+ 8;
: T« C;

Figure 4.1(d)). At the end of the process, references in each cluster ¢; € S are inserted

into the training data D. Each reference receives the author label of the corresponding

cluster. The remaining clusters whose references were not selected as training data,
will compose the test set 7, which will be disambiguated by the last step of SAND
(see Figure 4.1(e)).

ters:

We evaluate three strategies to measure the similarity /dissimilarity among clus-

- Strategy 1. We compare two clusters ¢; and c; using the attributes of the refer-

ences in these clusters. Each reference is represented as a feature vector and a
similarity function ¢ (e.g., cosine, euclidean distance, etc.) between references in
clusters ¢; and ¢; (or between their respective centroids), is used to measure the
similarity between ¢; and c¢;. The clusters are considered dissimilar according to

the following rule:

17 IF ¢(Ciacj) < ¢min

Dissimilar(c;, ¢;) =
0, OTHERWISE

In other words, clusters ¢; and ¢; € S are considered not similar if the value
®(ci, ¢;) between ¢; and ¢; is not greater than a minimum value (¢y,:,) necessary

for the clusters to be considered similar.

4.1. SAND DESIGN 49

- Strategy 2. We compare two clusters ¢; and ¢; using only the author name as-
signed to them, using some author name similarity function 7 (e.g., fragment
comparison) that checks whether two author names are similar (i.e., if they may
refer to the same person). If the cluster’s author names are considered to be
not similar according to function 7, the respective clusters are also considered as

dissimilar.

o 1, IF NOT 7(c¢;.author Name, c;.author Name)
Dissimilar(c;, c;) = 0 OTHERWISE

- Strategy 3. This strategy combines both previous strategies.

1, IF NOT 7(c¢;.author Name, c;.author Name)
Dissimilar(c;, c;) = or ¢(¢i, ¢j) < Pmin
0, OTHERWISE

As options for the function ¢, we currently exploit the cosine similarity function
and the euclidean distance that are metrics frequently used to measure the similarity
or dissimilarity between vectors. For cluster similarity we used four options: similarity
between the respective cluster centroids as well as single, complete and average linkage
(described next). This encompasses eight possible combinations of similarity function
and cluster similarity strategies. Next, we describe the similarity metrics in more detail,

in which each reference r is represented as a feature vector 7.

Cosine

The cosine similarity function [Salton et al., 1975] is obtained from the following for-

mula:

cosine(r;, r;) = %
il 175
where,

e 7; and 7; correspond to the feature vectors of references r; and r;, respectively;

e |7] corresponds to the norm of the vector 7 and

50 CHAPTER 4. SAND: SELF-TRAINING AUTHOR NAME DISAMBIGUATOR

e 7y, and 7, correspond to the value of k-th feature in the vectors r; and 77,
respectively.
Euclidean Distance

The euclidian distance [Jain et al., 1999] between two vectors is calculated by the

following formula:

n
euclidean_distance(r;, r;) = Z(mk — 7ji)?
k=1

We change the euclidean distance to use it as a similarity metric by applying the

following formula:

euclidean _distance(r;,775)

euclidean(r;,7;) = 1 — , ,
euclian _distance g,

where euclidean _distance,,., corresponds to the largest distance between all vectors.

Cluster Similarity Strategies

In our experiments, we evaluate similarity strategies specially designed for clus-
ters |Jain et al., 1999 based on (1) the centroids of the clusters, (2) single-link,
(3) complete-link and (4) average-link. The similarities between two clusters ¢; and ¢;

are calculated by using the following formulas:
e Centroid.
centroid(c;, c;) = ¢(73,77)
where, 77 and 7; are the centroids from ¢; and c¢;, respectively, and 7; =
1
H ZTGQ‘ (f&)
e Single-link.
single(c;, ¢j) = ¢(77,77)
where, 7; and 77 are the vectors from ¢; and c;, respectively, that have the highest
similarity.
e Complete-link.
complete(c;, c;) = ¢(75,77)

where, 7; and 7 are the vectors from ¢; and c;, respectively, that have the lowest

similarity.

4.1. SAND DESIGN 51

e Average-link.
ZT‘;GCi ZT‘?‘GCJ' <b(,r“ T])

il * ey

average(c;, ¢;) =

¢(r;, ;) can be calculated by using any similarity metric between two vectors.

4.1.3 The Author Assignment Step

In the third and final step of SAND, the set of examples, D, is used to produce a
disambiguation function from { fi, fo, ..., fin} to {a1, a9, ..., a,} that is used to predict
the correct author of the references in the test set 7. In case of SAND, this test set is
composed of all references not belonging to clusters selected in the previous step. The
idea is that, with the training set selected in the previous step, we would be able to
learn an assignment function that will correctly predict the authors of these remaining
references. For those authors in the collection without a representative cluster in the
training data D, our method will (hopefully) detect them as new authors and include
them in the training for later use, i.e., the method is also self-trained. Next, we describe
the author assignment step, which is based on a lazy associative classifier [Veloso et al.,

2006b] to produce disambiguation functions from D.

Associative Name Disambiguation

The proposed technique for deriving a disambiguation function exploits the fact that,
frequently, there are strong associations between features {f1, fa,..., fin} and specific
authors {aj,as,...,a,}. The proposed technique uncovers such associations from D,
and then produces a disambiguation function {f1, f2, ..., fm}—{a1,a9,...,a,} using
such associations |Veloso et al., 2006b|. Typically, these associations are expressed
using rules® of the form X —ay, X —ay, ..., X—a,, where X C {f1, fo, ..., fm}. In the
following discussion we denote as R an arbitrary rule set. Similarly, we denote as R,,
a subset of R that is composed of rules of the form X' —aq; (i.e., rules predicting author
a;). A rule X—a; is said to match a reference x if X C z (i.e., x contains all features
in X) and this rule is included in R} . That is, R is composed of rules predicting

author a; and matching reference x. Obviously, R} C R, € R.

®These rules can be efficiently extracted from D using the strategy proposed in |[Veloso et al.,
2006b)].

52 CHAPTER 4. SAND: SELF-TRAINING AUTHOR NAME DISAMBIGUATOR

Demand-Driven Rule Extraction

Rule extraction is a major issue for associative name disambiguation, since the number
of extracted rules may increase exponentially with the number of features in the training
data. The proposed method, on the other hand, extracts rules from the training data
on a demand-driven fashion [Veloso et al., 2006a], at disambiguation time. The method
projects the search space for rules according to information in references in 7, allowing
for efficient rule extraction. In other words, the proposed method projects/filters the
training data according to the features in reference x € 7T, and extracts rules from
this projected training data, which is denoted as D*. This ensures that only rules that
carry information about reference x are extracted from the training data, drastically
limiting the number of possible rules. The lines 1 to 5 of Algorithm 4 describes the

projection.

Algorithm 4 Associative Name Disambiguation.
Input: Examples in D and reference x € T
Output: The predicted author of the reference x

Let £(f;) be the set of examples in D in which feature f; has occurred
D* <=
for each feature f; € x do
end for
for each author a; do
R; <rules X —a; extracted from D”
Estimate p(a;|z), according to Equation 4.2
end for
Predict author a; such that p(a;|c) > p(a;|c)Vj # i

._.
e

Predicting the Author of each Reference

Naturally, there is a total ordering among rules, in the sense that some rules
show stronger associations than others. A widely used statistic, called confi-
dence [Agrawal et al., 1993| (denoted as 0(X—a;)), measures the strength of the asso-
ciation between X and a;. Put simple, the confidence of the rule X —a; is given by the
conditional probability of a; being the author of the reference x, given that X C .
Using a single rule to predict the correct author may be prone to error. Instead,
the probability (or likelihood) of a; being the author of the reference z is estimated by
combining rules in R . More specifically, R is interpreted as a poll, in which each

rule X—a; € Ry, is a vote given by features in X for author a;. The weight of a vote

4.1. SAND DESIGN 53

X —a; depends on the strength of the association between X and a;, which is given by
0(X —a;). The process of estimating the probability of a; being the author of reference
x starts by summing weighted votes for a; and then averaging the obtained value by
the total number of votes for a;, as expressed by the score function s(a;, x) shown in
Equation 4.1 (where r; € R and |Rj | is the number of rules in R). Thus, s(a;, =)
gives the average confidence of the rules in RY (obviously, the higher the confidence,

the stronger the evidence of authorship).

(4.1)

The estimated probability of a; being the author of reference x, denoted as p(a;|z),
is simply obtained by normalizing s(a;, x), as shown in Equation 4.2. A higher value of
p(a;|x) indicates a higher likelihood of a; being the author of z. The author associated
with the highest likelihood is finally predicted as the author of reference x. The lines
6 to 10 of Algorithm 4 describes the prediction of the author of each reference.

Hlaga) = 2t (12)

> slaj,)

J=1

Exploiting Reliable Predictions

Additional examples may be obtained from the predictions performed using the dis-
ambiguation function. In this case, reliable predictions are regarded as correct ones
and, thus, they can be safely included in the training examples. Next we define the
reliability of a prediction.

Given an arbitrary reference x € 7, and the two most likely authors for z, a; and

aj, we denote as A(x) the reliability of predicting a;, as shown in Equation 4.3.

Alz) = 2aal?) (4.3)

The idea is to only predict a; if A(x) > A, where A,,;, is a threshold that
indicates the minimum reliability necessary to regard the corresponding prediction as
correct, and, therefore, to include it into the training data D. An appropriate value for
A can be obtained by performing cross-validation |Geisser, 1993|, which is a way to

predict the fit of a disambiguation function to a hypothetical validation set.

54 CHAPTER 4. SAND: SELF-TRAINING AUTHOR NAME DISAMBIGUATOR

Temporary Abstention

Naturally, some predictions are not enough reliable for certain values of A,,;,. An alter-
native is to abstain from such doubtful predictions. As new examples are included into
D (i.e., the reliable predictions), new evidence may be exploited, hopefully increasing
the reliability of the predictions that were previously abstained. To optimize the usage
of reliable predictions, we place references in a queue, so that references associated
with reliable predictions are considered first. The process works as follows. Initially,
references in the test set are randomly placed in the queue. If the author of the refer-
ence that is located in the beginning of the queue can be reliably predicted, then the
prediction is performed, the reference is removed from the queue and included into D
as a new example. Otherwise, if the prediction is not reliable, the corresponding refer-
ence is simply placed in the end of the queue and will be only processed after all other
references. The process continues performing more reliable predictions first, until no
more reliable predictions are possible. The remaining references in 7 (for which only
doubtful predictions are possible) are then processed normally, but the corresponding
predictions are not included into D. The process stops after all references in T are

processed.

Detecting New Authors

We propose to use the lack of rules supporting any already seen author (i.e., authors
that are present in some reference in D) as evidence indicating the appearance of an
unseen author. The number of rules that is necessary to consider an author as an
already seen one is controlled by a parameter, 7,,:,. Specifically, for a reference x € T,
if the number of rules extracted from D* (which is denoted as y(z)) is smaller than
Ymin (1-€., () < Ymin), then the author of z is considered as a new /unseen author and
a new label ay is created to identify such author. Further, this prediction is considered
as a new example and included into D. An appropriate value for ,,,, can be obtained

by performing cross-validation in D.

Predicting the Author of each Cluster

Alternatively, instead of predicting the author of each reference, we could explore some
of the work already done in the author grouping step in order to directly predict the
author of the cluster, i.e., all references in a cluster ¢ € T would be assigned to the

same author label avoiding to assign some of the references within the cluster to other

4.2. EXPERIMENTAL EVALUATION 99

authors. This can only be done in an effective way if most of the clusters are pure,
because mixed references in a cluster could not be fixed later.

To predict the author of a cluster ¢, we first predict the authors of each reference
r € c. After that, we use the parameter A,,;, and the number of references of the
two most oftenly predicted authors, a; and a;, in c¢. Let these numbers be n; and n;,
respectively. If Z—J > A,in, We consider the cluster ¢ as belonging to author a; and each
reference r € c is assigned to author a;. Otherwise, we assign the references in c to a
new author. After the prediction of the cluster c, its references are inserted into the

training data D

4.2 Experimental Evaluation

In this section we present experimental results that demonstrate the effectiveness of
SAND. In order to evaluate the effectiveness of our disambiguation method, we used
collections of references extracted from DBLP and BDBComp (see Section 2.4) as well
as synthetic data produced with SyGAR, our generator of synthetic citation records
that is described in Chapter 5. We also use the K and pairwise F1 metrics (see Sec-
tion 2.3) in this evaluation.

We compare the effectiveness of SAND against six baselines: three unsupervised
author grouping and three supervised author assignment methods. The three author
assignment methods are the ones proposed by Han et al. [2004] and the state-of-the-
art method proposed by Veloso et al. [2012|. The first method, referred to as NB,
uses the naive Bayes probability model [Mitchell, 1997|, the second one, referred to as
SVM, uses Support Vector Machines (SVMs) [Cortes and Vapnik, 1995] and the third
one, referred to as SLAND, uses lazy association rules |[Agrawal et al., 1993]. The
three author grouping methods are those proposed by Han et al. [2005b|, referred to
as KWAY, by Huang et al. [2006], referred to as LASVM-DBSCAN and the state-of-
the-art author grouping method known as HHC |Cota et al., 2010|.

4.2.1 Experimental Setup

Experiments were conducted within each ambiguous group. Unless otherwise stated,
the values for A,,;, and Y,,in, used in the author assignment step, were set automatically
by performing 5-fold cross-validation using the training data obtained during the second
step. Thus, the only user-defined parameter is ¢,,;, (the threshold used in the cluster
selection step). The results are compared using statistical significance tests (t-test)

with a 99% confidence interval.

56

CHAPTER 4. SAND: SELF-TRAINING AUTHOR NAME DISAMBIGUATOR

Each competing method was executed ten times and in each execution a differ-

ent shuffling configuration was used®. The final disambiguation performance in each

ambiguous group is given by the average performance over the ten executions. Results

regarding the comparison between methods are presented using the average of the final

results for each ambiguous group.

Table 4.1.

Results (with their standard deviations) obtained by the author

grouping step for each ambiguous group in the (a) DBLP and (b) BDBComp
collections, without using the popular last names.

Ambiguous

Group ACP AAP K pP pR pF1

A Gupta 0.990 £ 0.002 0.416 £+ 0.033 0.641 &+ 0.025 | 0.994 £ 0.001 0.398 £ 0.056 0.567 £+ 0.058
A Kumar | 0.995 £ 0.003 0.242 £ 0.011 0.490 £ 0.011 | 0.995 £ 0.003 0.098 £ 0.006 0.178 £ 0.010
C Chen 0.953 £ 0.003 0.202 £+ 0.003 0.439 &+ 0.003 | 0.906 £ 0.008 0.050 £ 0.001 0.095 £+ 0.002
D Johnson | 1.000 £ 0.000 0.301 £ 0.008 0.548 £ 0.008 | 1.000 £ 0.000 0.295 + 0.016 0.455 £ 0.019
J Martin 0.987 + 0.007 0.500 £ 0.007 0.702 £ 0.007 | 0.957 £ 0.023 0.322 £ 0.005 0.482 £ 0.008
J Robinson | 1.000 £ 0.000 0.355 4+ 0.007 0.596 =+ 0.005 | 1.000 £ 0.000 0.285 + 0.010 0.443 £ 0.011
J Smith 0.971 + 0.007 0.263 £ 0.031 0.504 £ 0.032 | 0.982 £+ 0.018 0.279 4+ 0.054 0.432 £ 0.067
K Tanaka | 1.000 £ 0.000 0.380 # 0.008 0.616 £ 0.006 | 1.000 £+ 0.000 0.231 + 0.008 0.375 &+ 0.011
M Brown 1.000 £+ 0.000 0.395 £ 0.007 0.629 % 0.006 | 1.000 & 0.000 0.340 £ 0.013 0.507 + 0.015
M Jones 1.000 £ 0.000 0.281 £ 0.015 0.530 £ 0.014 | 1.000 £ 0.000 0.251 £ 0.021 0.400 £ 0.026
M Miller 0.991 £ 0.005 0.603 £ 0.026 0.773 & 0.017 | 0.988 £ 0.009 0.586 £+ 0.034 0.735 £+ 0.026

(a) DBLP Collection

Ambiguous

Group ACP AAP K pP pR pF1

A Oliveira | 1.000£ 0.000 0.600+ 0.008 0.774% 0.005 | 1.000£ 0.000 0.245+ 0.019 0.3944 0.025
A Silva 1.0004+ 0.000 0.838+ 0.022 0.915+ 0.012 | 1.0004 0.000 0.511+ 0.084 0.673+ 0.074
F Silva 1.000+ 0.000 0.9144 0.000 0.956=+ 0.000 | 1.000=+ 0.000 0.500+ 0.000 0.6674 0.000
J Oliveira | 1.000+ 0.000 0.810+ 0.049 0.900+ 0.027 | 1.000+ 0.000 0.646+ 0.104 0.781+ 0.078
J Silva 1.000+ 0.000 0.782+ 0.017 0.884+ 0.009 | 1.000+ 0.000 0.457+ 0.047 0.626+ 0.045
J Souza 1.000+ 0.000 0.560+ 0.010 0.749+ 0.007 | 1.000+ 0.000 0.273+ 0.017 0.428+ 0.021
L Silva 1.000+ 0.000 0.8184 0.000 0.905+ 0.000 | 1.000=+ 0.000 0.515+ 0.000 0.680+ 0.000
M Silva 1.000+ 0.000 0.8574 0.000 0.926=+ 0.000 | 1.000=+ 0.000 0.400+ 0.000 0.5714 0.000
R Santos 1.000+ 0.000 0.950+ 0.000 0.975+ 0.000 | 1.000=+ 0.000 0.667+ 0.000 0.800+ 0.000
R Silva 0.963+ 0.000 0.926+ 0.000 0.944+ 0.000 | 0.800+ 0.000 0.6674 0.000 0.727=+ 0.000

4.2.2 Evaluating the Author Grouping Step

(b) BDBComp collection

We show in Tables 4.1 and 4.2 the results obtained by each strategy for the author

grouping step, i.e., when the list of popular last names is not used (Table 4.1) and when

it is explored to enforce additional constraints (Table 4.2) with the goal of increasing

the purity of the clusters.

We notice that, by exploiting the list of popular last names, SAND produces

purer clusters as hypothesized. When this list is not used, there are seven ambiguous

6We did this because the performance of the evaluated methods could, in thesis, be impacted by
the order in which references are processed. As we shall see, this did not happen.

4.2. EXPERIMENTAL EVALUATION 57
Table 4.2. Results (with their standard deviations) obtained by the author
grouping step for each ambiguous group in the (a) DBLP and (b) BDBComp
collections, using the popular last names.

Ambiguous

Group ACP AAP K pP pR pF1

A Gupta 0.990 £ 0.002 0.429 £ 0.030 0.651 £ 0.023 | 0.994 £ 0.001 0.427 £ 0.051 0.596 £ 0.053
A Kumar 1.000 4 0.000 0.241 4+ 0.013 0.491 4 0.013 | 1.000 & 0.000 0.097 & 0.007 0.176 4+ 0.011
C Chen 0.950 £ 0.004 0.260 £ 0.004 0.497 £ 0.005 | 0.843 £ 0.031 0.087 £ 0.003 0.158 £ 0.005
D Johnson | 1.000 £ 0.000 0.274 + 0.033 0.523 + 0.032 | 1.000 £ 0.000 0.253 £ 0.059 0.401 + 0.078
J Martin 1.000 £ 0.000 0.508 4 0.004 0.713 £ 0.003 | 1.000 4+ 0.000 0.320 4 0.002 0.485 4+ 0.002
J Robinson | 1.000 & 0.000 0.347 4 0.016 0.589 4 0.014 | 1.000 £ 0.000 0.279 + 0.020 0.435 =+ 0.025
J Smith 0.987 £ 0.004 0.200 £ 0.030 0.443 £ 0.033 | 0.993 £ 0.005 0.186 £ 0.042 0.312 £ 0.059
K Tanaka 1.000 4+ 0.000 0.378 4 0.017 0.615 £ 0.014 | 1.000 4+ 0.000 0.231 4+ 0.013 0.374 4+ 0.017
M Brown 1.000 £ 0.000 0.368 £ 0.000 0.607 £ 0.000 | 1.000 & 0.000 0.301 4 0.000 0.463 4 0.000
M Jones 1.000 £ 0.000 0.266 £ 0.017 0.516 £ 0.017 | 1.000 & 0.000 0.238 4 0.023 0.383 £ 0.031
M Miller 0.993 £+ 0.004 0.589 £ 0.015 0.765 £ 0.010 | 0.989 £ 0.008 0.575 £ 0.022 0.727 £ 0.019

(a) DBLP collection

Ambiguous

Group ACP AAP K pP PR pF1

A Oliveira | 1.000 & 0.000 0.598 & 0.006 0.773 4+ 0.004 | 1.000 £ 0.000 0.241 £ 0.015 0.388 £ 0.019
A Silva 1.000 4+ 0.000 0.835 4+ 0.019 0.914 4+ 0.011 | 1.000 £ 0.000 0.534 + 0.083 0.692 + 0.073
F Silva 1.000 4+ 0.000 0.914 4+ 0.000 0.956 4 0.000 | 1.000 £ 0.000 0.500 #+ 0.000 0.667 = 0.000
J Oliveira 1.000 4+ 0.000 0.838 4+ 0.061 0.915 4 0.034 | 1.000 & 0.000 0.705 + 0.130 0.821 4+ 0.091
J Silva 1.000 4 0.000 0.753 4+ 0.017 0.868 4 0.010 | 1.000 & 0.000 0.439 + 0.047 0.609 + 0.046
J Souza 1.000 4 0.000 0.509 4 0.008 0.713 4 0.005 | 1.000 & 0.000 0.258 + 0.013 0.409 + 0.016
L Silva 1.000 £ 0.000 0.818 4 0.000 0.905 =4 0.000 | 1.000 4+ 0.000 0.515 4 0.000 0.680 4 0.000
M Silva 1.000 £ 0.000 0.857 4 0.000 0.926 £ 0.000 | 1.000 4+ 0.000 0.400 4 0.000 0.571 4 0.000
R Santos 1.000 £ 0.000 0.950 4 0.000 0.975 £ 0.000 | 1.000 4+ 0.000 0.667 4 0.000 0.800 4 0.000
R Silva 1.000 4 0.000 0.916 4+ 0.021 0.957 4 0.011 | 1.000 £ 0.000 0.600 #+ 0.141 0.740 + 0.126

(b) BDBComp collection

groups in both collections with unpure clusters (i.e., ACP smaller than 1), while there
are only four of these unpure ambiguous groups when SAND uses the list of popular
last names.

From now on, all reported results will use the stronger strategy that exploits the

list of popular last names in the author grouping step.

4.2.3 Evaluating the Clustering Selection Step

We evaluate several options for selecting the clusters whose references will compose the
training data, including the use of two reference-based similarity metrics (i.e., cosine
and euclidian distance) along with several clustering similarity strategies, detailed in
Section 4.1.2, based on cluster centroids and single, complete and average linkages.
To evaluate the clustering selection step we use two metrics: author coverage
and fragmentation rate. Author coverage measures the coverage of all real authors in
the collection by the training data. This metric varies between [0,1] and achieves its

peak when all authors in the collection have at least one representative cluster in the

58 CHAPTER 4. SAND: SELF-TRAINING AUTHOR NAME DISAMBIGUATOR

training set. Fragmentation rate indicates the level of fragmentation of the references
to a same author in the training set which grows from 0 (no clusters in the training
data) to the total number of references in the collection (one reference per cluster)
divided by the number of real authors. Ideally these two metrics should converge to
1, i.e., we should have only one cluster per author in the training set and all authors

should be represented there.

of dif ferent authors represented in the training data
of real authors

Author coverage =

of selected clusters
of real authors

Fragmentation rate =

DBLP Collection

8 8
T 7 Author Coverage
6l 6 Fragmentation Rate -
° 5T Author Coverage ° 5
2 41 Fragmentation Rate 2 4
g g
3t 3
2 F 2
1 [1
0 : : ; : 0 s : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Pmin ®Pmin
(a) Centroid — cosine (b) Centroid — euclidian distance
BDBComp Collection
1.4 1.4

12} e 12
’ 1

o o 08
= =
g £ os
0.4
Author Coverage 0.2 Author Coverage
Fragmentation Rate - o Fragmentation Rate -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Pmin Prmin
(c) Centroid — cosine (d) Centroid — euclidean distance

Figure 4.2. Comparison between the cosine similarity function, (a) and (c),
and euclidean distance, (b) and (d), for selecting the training data in DBLP and
BDBComp.

Figures 4.2 (a—d) show the evolution of these two metrics in DBLP and BDBComp

as the value of ¢,,;, increases, using the cosine similarity function and the euclidean

4.2. EXPERIMENTAL EVALUATION 59

DBLP Collection

8 8
7F 7
6 6
® 5T Author Coverage © 5 Author Coverage
S 41 Fragmentation Rate - 3 4 Fragmentation Rate -
g g
3t 3
2F 2
1F 1
0 L L L L 0 L L L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Pmin ®min
(a) Single-link — cosine (b) Complete-link — cosine
8
7 -
6 +
° 51 Author Coverage
3 41 Fragmentation Rate
[
>
3 +
2 +
1 '
0
0 0.2 0.4 0.6 0.8 1

Pmin
(c) Average-link — cosine
Figure 4.3. Comparison between the author coverage and the fragmentation
rate in DBLP using some strategies for selecting the training data. The selection

of the training data uses (a) single-link, (b) complete-link and (c) average-link
cluster similarities with cosine similarity function on the vectors.

distance as similarity functions applied to the centroids of the clusters. Looking at the
figures, we can notice that, as expected, when we increase the value of the similarity
threshold, ¢, (i.e., the minimum similarity value required for two clusters to be con-
sidered similar), we increase the fragmentation in the training data in both collections
because more clusters are considered as being dissimilar. The increase in fragmentation
in the training data affects the performance of our disambiguator since it will consider
information of one real author as belonging to different authors labels in the training
set.

As mentioned before, the ideal situation is when the number of authors in the
training data rapidly approaches the number of real authors in the collections and this
number is not much different from the number of selected clusters. For instance, when
fragmentation is large we may have to select many clusters in order to have a good
author coverage in the training data. Accordingly, we want to find out which combi-
nation of reference, author, and cluster similarities converges faster without selecting

too many clusters.

60 CHAPTER 4. SAND: SELF-TRAINING AUTHOR NAME DISAMBIGUATOR

BDBComp Collection

14 T T T T 1.4

12} 12 o

1

o 08 o 08
2 E
[<] [
> 06 > 06
0.4 0.4
0.2 Author Coverage 0.2 Author Coverage
0 Fragmentation Rate - 0 Fragmentation Rate -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Prin Prmin
(a) Single-link — cosine (b) Complete-link — cosine
1.4

12 e
. A

[0.8
=3
T
> 06

0.4

02 Author Coverage

0 Fragmentation Rate -«
0 0.2 0.4 0.6 0.8 1
Prmin

(c) Average-link — cosine

Figure 4.4. Comparison between the author coverage and the fragmentation rate
in BDBComp using some strategies for selecting the training data. The selection
of the training data uses (a) single-link, (b) complete-link and (c) average-link
cluster similarities with cosine similarity function on the vectors.

Looking again at Figure 4.2, we can notice that by using the cosine similarity
function the author coverage converges to 1 much faster than when we use the euclidian
distance in both collections. Notice also that, at the first point when the author
coverage achieves its maximum in DBLP, the fragmentation rate is considerably smaller
when using cosine (around 3) than when we use the euclidian distance (around 7). A
similar behavior is found with other combinations of clustering similarity techniques.
Thus, given its evident superiority, in the remainder of the discussion we will always
use cosine as similarity function.

We now turn our attention to the clustering based similarity techniques, using
DBLP (see Figure 4.3). We recall that those techniques are single (see Figure 4.3 (a)),
complete (see Figure 4.3 (b)) and average linkage (see Figure 4.3 (¢)). We can see in the
Figure 4.3 that the performance of these three cluster similarity techniques does not
outperform the strategy that selects the training data using cosine similarity function
applied to the centroids of the clusters (see Figure 4.2 (a)). For instance, single-link

and complete-link converges to full coverage very slowly and, although average-link has

4.2. EXPERIMENTAL EVALUATION 61

a faster convergence, its fragmentation grows much faster. Similar results are obtained
for BDBComp, although the difference between average-link and the use of centroid is
not so prominent. Given these results, from now on we will use only cluster centroids
to measure cluster similarity.

Finally, in Figure 4.5 we show the performance of Strategy 3, i.e., when we
combine a comparison on author names using fragment comparison with the cosine
similarity function on the cluster centroids. Remind that, in this case, a cluster is
selected to compose the training data when its author name is not similar to any
author name of the selected clusters already in the training data or when its centroid

is dissimilar to all previously selected clusters.

8 1.4
7r 1.2 e
[1
5t
Author C {/’—'
E 4t Frag%e%ati?);egﬁg --------------- E 08
[[
> > 06
3 +
51 0.4
1 g 0.2 Author Coverage
o o Fragmentation Rate -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Prmin Prmin
(a) DBLP (b) BDBComp
Figure 4.5. Strategy 3 performed in the (a) DBLP and (b) BDBComp collec-
tions.

We can notice in Figure 4.5 (a) that the author coverage and the fragmentation
rate are already very close to 1 when ¢,,;, = 0, which is equivalent to use only the
fragment comparison algorithm on the author names to select the clusters to compose
the training data (or Strategy 2)". Thus, selecting the clusters using only the com-
parison between the author names is a very good option, which, besides producing
good results, does not incur in the costs of comparing all attributes of the references
with a similarity metric. A similar situation occurs in BDBComp (see Figure 4.5 (b))
although its convergence to 1 is a bit slower®. Finally, notice in Figure 4.5 (b) that
fragmentation does not increase as fast as in DBLP due to the fact that number of
references per author in BDBComp is smaller than in DBLP.

In sum, although simple, a good option for selecting the clusters to compose

the training data, at least in the collections we analyzed, is using only the fragment

"Strictly speaking, the best result is obtained with ¢, = 0.02, but this is very close to using
(bmin =0
8Notice also that results are already high in the beginning.

62 CHAPTER 4. SAND: SELF-TRAINING AUTHOR NAME DISAMBIGUATOR

comparison algorithm for comparing author names, which produces fragmentation rate

and author coverage close to 1.

4.2.4 Evaluating SAND

In this section, we discuss the final performance of SAND considering two situations.
In the first one, referred to as SAND-1, we use the following configuration: (1) the
author grouping step does not use popular last names, (2) the cluster selection step
uses Strategy 1 with the cosine similarity function applied to the cluster centroids, and
(3) the author assignment step predicts the author of each single reference. We use this
configuration for comparative purposes as it corresponds to an early version of SAND
|[Ferreira et al., 2010].

In the second situation, refereed to as SAND-2, we exploit our best found config-
uration, i.e., (1) the author grouping step uses popular last names to increase purity,
(2) the cluster selection step uses Strategy 3 with the fragment comparison algorithm
applied to the author names and the cosine similarity function applied to the cluster
centroids to select the clusters that will compose the training set, and (3) the author
assignment step predicts the author of each cluster in the test set instead of each single
reference (i.e., all references in a cluster are assigned to the same author).

Figure 4.6 shows the disambiguation performance of SAND considering both con-
figurations for various values of ¢,,;,. When using SAND-1, lower values of ¢,,;, result
in the selection of only few clusters in the training set, that is, important clusters
may be not included in the training data. On the other hand, higher values of ¢,
may result in the selection of several fragmented clusters. This happens because with
higher vales of ¢,,;, many clusters are consider as dissimilar. This can be easily seen
by the sharp decrease in cohesion (or increase in fragmentation) values in Figure 4.6
for SAND-1 in both collections as we increase ¢,,;,. Therefore this tradeoff needs to
be carefully addressed in order to choose a suitable value for ¢,,;, that maximizes
performance in this configuration. This tradeoff is also seem in the values of the K
metric. Particularly, in DBLP it increases as ¢,,;, gets higher but after it peaks it starts
droping by due to the sharp decrease in cohesion (i.e., increase in fragmentation). In
BDBComp, there is a initial drop in K but then it starts to keep growing, and it tends
to remain stable after ¢,,;,,=0.15.

With SAND-2, lower values (usually between 0 and 0.05) of ¢,,;, already produce
a good author coverage, i.e., the number of authors in the training set is close to the
number of real authors in the collection as discussed in the previous Section, with low

fragmentation. The decrease of performance of SAND-2 as we increase the value of

4.2. EXPERIMENTAL EVALUATION 63

! 1 506000
o-O--0-O-0-0"O-04 P
0.9 ¥. = 0.9 §.0-0-0"® K]
Purity (ACP) ---©--
08§~ Cohesion (AAP) - 1
0.7
]] X
5 3 06 e,
> > Kowg. X
/ 0.5 xxXxx.
04|/ K 04
Purity (ACP) -
03¢ Cohesion (AAP) 5 03
0.2 0.2
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
®Prmin Pmin
1 1
-O--O-O--O-O- OO0
o3 X DKo & XK @O CO o
09 f OO S SV S ,_e-@‘@ = .
X
08
0.7
2 0.7 f 2
2 s 06
> 06 >
g 0.5 K 1
05 | o Purity (ACP) ~0-—
’ K 0.4 ity 1
) g/g Purity (ACP) e Cohesion (AAP) -
04F o Coehsion (AAP) - 03
03 L& 02
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
®Prmin Prmin
BDBComp BDBComp

Figure 4.6. Sensitivity analysis for ¢mn.

®min, in both collections, as observed before, is due to the increase of fragmentation in
the training data. We also notice that the performance obtained by SAND-2 without
using the ¢pin (i-€., Gmin = 0) is better that the best performance of SAND-1 in both
collections. Thus, we set the ¢,,;,—0 for SAND-2 in the next analyses, i.e., we execute

SAND without any parameter setup.

Finally, Tables 4.3 and 4.4 show, respectively, the disambiguation performance for
SAND-1 when it achieves its peak considering the K metric (i.e., ¢y, = 0.07 in DBLP
and @i, = 0.20 in BDBComp) and for SAND-2 without using ¢, (i.€., @mez = 0) in
each ambiguous group, averaged over the 10 executions (i.e., the shuffles). As we can
see, the low standard deviations of these results mean that the shuffling configuration,
that is, the order in which references are processed, does not affect much the results. We
can also see that groups such as “C. Chen” and “R. Silva” are harder to disambiguate,
mostly because the high ambiguity and large number of candidate authors in these
groups. More importantly, we can see that SAND-2 outperforms SAND-1 in every

single ambiguous group in both metrics in both collections. In average in the DBLP

64

CHAPTER 4. SAND: SELF-TRAINING AUTHOR NAME DISAMBIGUATOR

Table 4.3. Results obtained by SAND-1.

| Anﬂﬁguous(hbup‘ K pF1
A. Gupta 0.768 4+0.029 | 0.721 4+0.049
A. Kumar 0.678 +0.018 | 0.546 4+0.040
C. Chen 0.551 +0.018 | 0.353 £0.022
D. Johnson 0.679 £0.014 | 0.667 4+0.014
J. Martin 0.835 £0.015 | 0.747 +0.022
J. Robinson 0.735 +0.012 | 0.676 +0.025
J. Smith 0.756 +0.018 | 0.755 +0.017
K. Tanaka 0.782 £0.010 | 0.701 4+0.021
M. Brown 0.823 +0.015 | 0.760 40.050
M. Jones 0.778 +0.015 | 0.765 +0.021
M. Miller 0.898 4+0.013 | 0.919 4+0.013
Average 0.753+0.005 | 0.692+0.009
(a) DBLP
| Anﬂﬁguous(houp‘ K pF1
A. Oliveira 0.847+ 0.030 | 0.710+ 0.105
A. Silva 0.947+ 0.015 | 0.835+ 0.084
F. Silva 0.954+ 0.000 | 0.714+ 0.000
J. Oliveira 0.917+ 0.026 | 0.869+ 0.052
J. Silva 0.911+ 0.030 | 0.721+ 0.068
J. Souza 0.751+ 0.006 | 0.435+ 0.019
L. Silva 0.844+ 0.034 | 0.597+ 0.093
M. Silva 0.926+ 0.000 | 0.571+£ 0.000
R. Santos 0.975+ 0.000 | 0.800+ 0.000
R. Silva 0.895+ 0.018 | 0.551+ 0.056
Average 0.897+0.003 | 0.680+0.013

(b) BDBComp

collection, SAND-2 outperforms SAND-1 in more than 8% under the K metric and
15% under the pF1 metric. In BDBComp collection, SAND-2 outperforms SAND-1 in
more than 3% under K metric and 10% under the pF1 metric.

Therefore, given the much improved performance of SAND-2 and the fact that it
does not need any parameter setup, from now on we will consider this configuration in

all further analyses.

4.2.5 Comparison with the Author Grouping Baselines

Table 4.5 shows the comparison of SAND with its best configuration against three repre-
sentative author grouping methods: KWAY, LASVM-DBSCAN and HHC. For KWAY,
we used the implementation of the K-way spectral clustering provided by the Univer-
sity of Washington Spectral Clustering Working Group®. For LASVM-DBSCAN, we

http://www.stat.washington.edu/spectral

http://www.stat.washington.edu/spectral

4.2.

EXPERIMENTAL EVALUATION

Table 4.4. Results obtained by SAND-2.

| Ambiguous Group | K | pF1
A. Gupta 0.86540.025 | 0.883+0.036
A. Kumar 0.784+0.071 | 0.719+0.120
C. Chen 0.649+0.022 | 0.514+0.040
D. Johnson 0.741+£0.062 | 0.733+0.138
J. Martin 0.863+0.037 | 0.820+0.067
J. Robinson 0.822+0.018 | 0.820+0.020
J. Smith 0.762+0.033 | 0.739+0.072
K. Tanaka 0.8894+0.016 | 0.91240.026
M. Brown 0.90040.008 | 0.92040.004
M. Jones 0.780+£0.033 | 0.769+0.047
M. Miller 0.912+0.016 | 0.931+£0.020
Average 0.815+0.010 | 0.796+0.020
a) DBLP
| Ambiguous Group | K | pF1
A Oliveira 0.93040.041 | 0.903+0.098
A Silva 0.982+0.012 | 0.971+0.032
F Silva 0.95440.000 | 0.71440.000
J Oliveira 0.8254+0.036 | 0.67640.087
J Silva 0.951+0.017 | 0.929+0.015
J Souza 0.938+0.015 | 0.904+0.032
L Silva 0.901+£0.024 | 0.737+0.080
M Silva, 0.948+0.010 | 0.735+0.047
R Santos 0.911+0.011 | 0.480+0.042
R Silva 0.896+£0.015 | 0.471+0.058
Average 0.92440.004 | 0.752+0.015

(b) BDBComp

65

used the LaSVM package [Bordes et al., 2005] and the DBSCAN version available from
Weka!?. For HHC, we used our own implementation of the method.

Results show that, in the DBLP collection, SAND outperforms all author group-
ing baselines. Gains range from 45% (against LASVM-DBSCAN) to 5.4% in terms of
the K metric, and 96% (against KWAY) to 6% in terms of pairwise F1. In the BD-
BComp collection, SAND outperforms KWAY and LASVM-DBSCAN by more than
14% and 72% under the K and pF1 metrics, respectively, and is statistically tied with
HHC.

Particularly, the poor performance of LASVM-DBSCAN is mainly due to the
small number of attributes used when compared with the original proposed method
described in [Huang et al., 2006]. In that work, several other attributes such as affili-
ation and e-mail were used. In the scenario of author name disambiguation in which

only the few most common attributes are available (the scenario we focus here as it is

Ohttp://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/

66 CHAPTER 4. SAND: SELF-TRAINING AUTHOR NAME DISAMBIGUATOR

Table 4.5. Results obtained by SAND, HHC, KWAY and LASVM-DBSCAN
methods. Best results are highlighted in bold.

‘Method ‘ K ‘ pF1 ‘
SAND 0.815 | 0.796
HHC 0.773 | 0.751
KWAY 0.560 | 0.402
LASVM-DBSCAN | 0.551 | 0.406

(a) DBLP

‘Method ‘ K ‘ pF1 ‘
SAND 0.924 | 0.752
HHC 0.913 | 0.756
KWAY 0.805 | 0.436
LASVM-DBSCAN | 0.757 | 0.211

(b) BDBComp

the most common one), the similarity functions learned by the LASVM-DBSCAN are
not suitably generalizable.

The KWAY method, on the other hand, exploits only the similarity between
records to group them, thus it might be able to create better clusters than LASVM-
DBSCAN, though possibly incurring in more false positive and negative errors (i.e.,
wrong assignments). HHC, the strongest author grouping baseline, uses some heuristics
also used by us (e.g., clustering by coauthor), but those were improved, for example,
to guarantee even purer clusters for training. HHC also does not include a supervised
second step.

SAND, on the other hand, was able to produce better results, being able to
predict the correct author of a given record using disambiguation functions learned
from examples automatically selected.

Next we compare SAND with some supervised author assignment methods that
can also take advantage of learning from training examples, although in their case, the

examples were manually labeled.

4.2.6 Comparison with the Supervised Author Assignment
Methods

In this Section we compare SAND with three representative author assignment meth-

ods, namely SVM, NB, and SLAND. RBF kernels were used for SVM and we employed
the LibSVM tool [Chang and Lin, 2001| for finding their optimum parameters for each

4.2. EXPERIMENTAL EVALUATION 67

training data on each ambiguous group. We estimate the parameter of the NB method
as in [Han et al., 2004|. For SLAND, the state-of-the-art supervised author assignment
method, the best parameters were discovered using cross-validation in the training set.

For the tests in this section, each ambiguous group was randomly split into train-
ing (50%) and test (50%) sets.
methods. It should be noticed that SAND is executed only with the test sets. All

results shown next correspond to the performance in the test sets and are the average

This split ensures a fair comparison among these

of 10 runs. The results are compared using statistical significance tests (paired t-test)

with 99% confidence interval.

It is very important to stress that while the baselines used the whole manually
labeled training sets to learn the disambiguation functions and apply them to the test
sets, we did not use this information and automatically generated the training data
by applying SAND directly to the test data in each round, making no use of manually

assigned labels.

Table 4.6. Results (with their standard deviations) of SAND, SLAND, SVM and
NB in the DBLP and BDBComp collections. Best results, including statistical
ties, are highlighted in bold.

‘ Method ‘ K ‘ pF1
SAND 0.775£0.010 | 0.720£0.018
SLAND | 0.877+0.007 | 0.867+0.008
SVM 0.799+0.008 | 0.72140.010
NB 0.736+0.009 | 0.647+0.012

(a) DBLP

‘ Method ‘ K ‘ pF1
SAND | 0.94040.014 | 0.46240.040
SLAND | 0.900+0.016 | 0.45640.028
SVM 0.481£0.024 | 0.160+0.032
NB 0.420£0.009 | 0.160£0.019

(b) BDBComp

As it can be seen, in DBLP (see Table 4.6(a)), SLAND achieves statistically
superior results, but SAND results are only 11.6% and 17% lower than the ones obtained
by SLAND, under K and pF1, respectively, without any manually labeled training data.
Furthermore, SAND largely outperforms NB and has basically the same performance as
SVM (slightly inferior according to the K metrics (approximately 3%) and statistically
tied under the pF1 metric).

68 CHAPTER 4. SAND: SELF-TRAINING AUTHOR NAME DISAMBIGUATOR

In BDBComp, results are quite surprising. SAND outperforms SVM and NB
under both metrics by more than 95% and is even superior to SLAND under the K
metric. The BDBComp collection has several authors with only one or two publication.
Selecting 50% of the data to compose the training data does not ensure that all authors
have at least one example in the training data. On the other hand, the coverage of
the training data automatically constructed by SAND applied directly to the test set
may be more representative than the ones used by baselines. Furthermore, in this
collection, the heuristics used in the author grouping step based on co-author names
are very effective and enough to solve a large number of cases, leaving for the other
SAND steps only a refined adjustment. Notice that these adjustments can further
explore interesting properties, such as the detection of new authors and self-training.
This shows another interesting capabilities of our solution that may be explored in
collections with similar characteristics.

We also run SLAND with reduced training data to check its performance when
a smaller number of references are labeled in the DBLP collection. We randomly pick
up 10%, 20%, 30%, 40% and 50% of the training data and run SLAND with these
new training examples. For each original training data, we picked up the examples
10 times, performed SLAND and averaged the results. With 10%, 20%, 30%, 40%
and 50% of the training data, the K values were 0.615, 0.700, 0.758, 0.786 and 0.824,
respectively. Notice that, labeling until 30% of the training data, the performance of
SLAND is worse than SAND without labeling any example.

4.2.7 Comparison with Other Supervised Methods for the
Author Assignment Step

To check whether our choice of classifier was the best for the supervised step, we run
experiments in which the associative classifier was replaced by the corresponding ones
used in baselines, i.e., we used other learning algorithms in the author assignment
step. Specifically, we evaluated the application of SVM and Naive Bayes in the author
assignment step. Here, we called S-SVM and S-NB the application of SVM and Naive
Bayes, respectively, in the author assignment step. Table 4.7 shows the results. We
notice that the original SAND outperforms all competitors in DBLP by more than 27%
in terms of the K metrics and more than 70% under pF1, and is statistically tied with
S-SVM in BDBComp under K metric and far superior under pF1 (gains of 82%), being
also much better than S-NB is this collection under both metrics. The superiority
of original SAND configuration, mainly in DBLP, is probably due to its capability of

adding new examples based on reliable predictions, and also of identifying new authors

4.2. EXPERIMENTAL EVALUATION 69

not present in the provided training data.

Table 4.7. Results obtained by the author grouping and cluster selection steps
coupled with SVMs (S-SVM) and Naive Bayes (S-NB) techniques in the second
step (i.e., the author assignment step). Best results are highlighted in bold.

‘ Method ‘ K ‘ pF1 ‘

SAND | 0.815+0.010 | 0.796+0.020

S-SVM | 0.666+0.009 | 0.489+0.018

S-NB 0.6404+0.014 | 0.466+0.026
(a) DBLP

| Method | K | pF1 |

SAND [0.92440.004 | 0.752+0.015

S-SVM | 0.917+0.006 | 0.4124+0.020

S-NB 0.883-+0.013 | 0.286+0.037
(b) BDBComp

Regarding efficiency issues of proposed method, we measured the time spent to
infer the author of each reference in the test set. On average, the time to assign
each reference to its author was around 0.2 second. We perform our evaluation in a
Intel Xeon E5620 with 2.40GHz and 8 gigabytes of RAM. This means that we could

disambiguate approximately half million records in one day.

4.2.8 Discussion

In this Section, we further discuss two additional but important issues: the impact
in our method of the absence of long format author names in the collections and the

relative performance of SAND (and its competitors) over time.

4.2.8.1 How effective is SAND when all author names are in short format?

We evaluate the performance of SAND in its best configuration when all author names
are short (i.e., all author names have only the initial of the first name and the full last
name). We do this by substituting all the author names in long format by their short
version in our collections. This corresponds to an extreme ambiguous situation which
may push our method to its limits.

Results are shown in the Figure 4.7. Remember that around 53% and only 3% of
the author names in the original DBLP and BDBComp collections, respectively, are in

short format. We can see in the Figure that, when ¢,,;, is equal to 0, as in the previous

70

value

value

CHAPTER 4. SAND: SELF-TRAINING AUTHOR NAME DISAMBIGUATOR

Original author names

! ' @_@..@-e-é--a-e--&ero-@—o-----
0.9 -)_e.@—-a—e--@' K]
Purity (ACP) o
08¢ Cohesion (AAP) - 1
07} -
0.6 sty
%.
05} Xt]
04
03}
0.2 : . .
0 0.05 0.1 0.15 0.2
@Prmin
DBLP
0.7
06
05} .
04t Purity (ACP) -
' Cohesion (AAP) X
03}
0.2 : . .
0 0.05 0.1 0.15 0.2
Pmin
BDBComp

value

value

Author names in short format

1 :
000000

0.9 609

08 % Purity (ACP) ~o&--

pe Cohesion (AAP) -

0.3
0.2 . . .
0 0.05 0.1 0.15 0.2
Pmin
DBLP

0.5 pea

2 . K

0.4 ol Purlty (ACP) """ -

. e,_e——@' Cohesion (AAP) -
03F
0.2 . : .

0 0.05 0.1 0.15 0.2

Prmin
BDBComp

Figure 4.7. Sensitivity analysis for ¢,;,. The comparison of SAND’s perfor-
mance using the name of the authors as provided in the collections with the author
names in short format (i.e., the author names are represented by only the initial

of first name and the full last name).

configuration, we obtain worse results than in the original collections, as expected. In
DBLP the performance loss is around 31% under the K metric, while for BDBComp

the losses are around 41% .

However, as it can been seen in the figure, if we use the

best suitable configuration for this situation in DBLP (¢,,;,—0.09 and K=0.715) and
BDBComp (¢nin=0.16 and K=0.842), we can reduce the losses to 12% and 8% in both

collections, respectively. In summary, the format of the author names, as expected,

affects the results of SAND. The larger the number of author names in short format,

the higher the ambiguity, and therefore the more difficult the disambiguation process

is. However, we can deal with these difficulties, at least in part, by properly choosing

the ¢,,;, parameter.

4.2. EXPERIMENTAL EVALUATION 71

4.2.8.2 How effective is SAND and the baselines over time?

To evaluate the behavior of SAND and the baselines over time, we use collections
generated by SyGAR. We used the same scenarios and performed similar experiments
as in Section 5.3 to compare the performance of our method against the best author
grouping and author assignment baselines.

Our evaluation was carried out by computing the value of the K metric at each
state of the DL. The results reported in the following sections are averages of 5 runs.
Figure 4.8 shows, for each disambiguation method, the average K value computed over
all 11 ambiguous groups in each state of the digital library over the ten-year load period
in Scenario 1 described in the previous chapter, i.e., an evolving DL with static author
population and static author profiles. The corresponding 95% confidence intervals are
also shown.

Notice that state 0 corresponds to the first new load into the DL. The supervised
author assignment methods (SLAND and SVM) are trained with a whole synthetic
DL that was generated before the first load. SLAND and the unsupervised author
grouping methods (HHC and KWAY) act only over the new states of the DL without
any training. Notice also that we do not retrain SLAND and SVM after the new loads.

Looking at Figure 4.8 we can see that SLAND, which used the whole disam-
biguated DL for learning previously to the first load, is the best performer, as expected,
followed by SAND and HHC which are basically tied throughout the whole loading pe-
riod in this scenario. Notice that these three methods keep their effectiveness quite
stable over time. SVM, on the other hand, is statistically tied with SAND and HHC in
the first two loads, but starts losing performance after the second load and keeps de-
grading after each new one. After 10 loads, the performance of SVM degrades by 15%.
KWAY, on its turn, starts with a poor performance in the first load but experiences
an increasing improvement as new citations are added, finishing, after 10 loads, with
an effectiveness basically identical to SVM’s but still far from the best three methods.
This improvement occurs because there is incrementally more information about each
author, helping KWAY to better characterize them.

We now analyze the impact on each method of introducing new authors to the
current author population. Figure 4.9 shows average K values and corresponding 95%
confidence intervals for each method for %newauthors €quals to 5% and 10%.

As we can see, all methods, except KWAY, follow a similar trend, i.e., all suf-
fer some considerable performance degradation, while in this scenario KWAY actually
improves in performance as new loads of citations are added to the DL, after having

started with a very low performance. However, the improvement in performance pre-

72 CHAPTER 4. SAND: SELF-TRAINING AUTHOR NAME DISAMBIGUATOR

Average K

Load (year)

Figure 4.8. Scenario 1: Evolving DL with static author population and publi-
cation profiles.

SLAND ——
0.9 SAND &
HHC o
0.8 KWAY 0
~ ™ / A
g g 0.7 i
I]

g a 2 06 %
Z o Z [
O 05

S
KWAY O
0.4 eV 0.4
0 2 4 6 8 10 0 2 4 6 8 10
Load (year) Load (year)
(&) %NewAuthors:5% (b) %NewAuthors:]-O%
Figure 4.9. Scenario 2: Evolving DL and addition of new authors

(%InheritedTopicszgo%) .

viously experienced by KWAY in the absence of new authors becomes less significant
when %newAuthors increases. New ambiguous authors imply in higher ambiguity and,
thus, a higher inherent difficulty in distinguishing them. We can also note that the
performance of all other methods degrades much faster for % necwAuthors—10% than for
% NewAuthors—D%, SVM being the most affected method with the introduction of new

authors (much faster decay in both scenarios).

Comparing the methods, SLAND continues being the best performer in both
scenarios when new authors are inserted, while SAND and HHC are basically tied, as in
the previous scenario, throughout the whole period. After the last load, the differences
in average performance between SLAND over SAND and HHC are of 7% and 8% for
JoNewAuthors=0%0 and Yo New Authors—10%, respectively. SLAND with % newauthors=5%
and % new Authors—10% loses about 13% and 22%, respectively, in performance compared
with the scenario with static author population. Comparing SAND and HHC with
KWAY, the differences in performance are 12% for % yewauthors —=5% and a statistical tie
for % newAuthors—10%, while the difference is around 11% with static author population.
SVM, on the other hand, gets statistically tied with KWAY after 10 loads in the

4.2. EXPERIMENTAL EVALUATION 73

scenario with % newAuthors—5% and is the worst performer of all for % newAuthors—10%,
significantly worse than all other methods.

0.9 0.9
X N4
o [N
=4 o
s g
¢ 06 9]
< z
0.5 0.5
UA’ProflleChanges_ 10/0 ‘ "A’ProflleChanges_ 182? : 2
°Prof|IeChanges OprofileChanges™ 0
04 OProfileChanges™ 0% 04 Yprofilechanges=100% @
0 2 4 6 8 10 0 2 4 6 8 10
Load (year) Load (year)
(a) SAND (b) HHC
0.9 A’Profllechanges_ 10?’ """ A
OProfileChanges™ OA" A
08 ®profileChanges=100% -4
X N4
S @ 07
] o
9] o 0.6
g M g
0.5 Y 0.5
/°Pr0f||echanges_ lg;" T
(] 0 v
et
0 2 4 6 8 10 0 2 4 6 8 10
Load (year) Load (year)
(c) SLAND (d) SVM
%, = 10% B
0.9 Dogrofllechanges 0/:: 77777 -
rofileChanges™ o
0.8 OprofieChanges=100% M-
x
I
[=2]
o
g
<<
Load (year)
(e) KWAY
Figure 4.10. Scenario 3: Dynamic author profiles (0 = 5 and

%ProfileC’hangeszlo%, 50% and 100%)

Finally, Figures 4.10(a-c) show average K values and corresponding 95% confi-
dence intervals when a fraction % pofiechanges €qual to 10%, 50% and 100% of the
authors experience changes in their profiles at each new load. In this scenario, we can
see a clear advantage of SAND over all methods, even over HHC, with which SAND
was tied in the two previous scenarios. SAND is the most resilient method, indepen-

dently of the level of profile change. After 10 loads, for instance, SAND’s performance,

74 CHAPTER 4. SAND: SELF-TRAINING AUTHOR NAME DISAMBIGUATOR

considering the averaged K values is 8% superior to HHC for % p,ofiechanges =100%. In
fact, SAND is even superior to SLAND around 20% and 32% for % profitechanges = 50%
and 100%, respectively. We can also see that SVM performs poorly in this scenario
and that KWAY, differently from previous scenarios, basically loses its capability of
gaining in performance in face of profile changes.

Overall, among the three methods, considering all scenarios and all situations,
SAND figured among the best performers in all analysed situations, being more affected
by the introduction of new authors into the DL, an issue that can possibly be improved

in future work.

Chapter 5

SyGAR: Synthetic Generator of
Authorship Records

A solid analysis of existing methods should consider various scenarios that occur in
real digital libraries. In addition to dynamic patterns, the analysis should also address
the robustness of existing methods under data errors, such as typographical,optical
character recognition (OCR) and speech recognition errors. However, the construction
of a real, previously disambiguated, temporal collection capturing different relevant
dynamic scenarios and including various data errors is quite costly. An alternative is
to build realistic synthetic collections that capture all scenarios of interest, under con-
trolled conditions, while still inheriting the properties of real collections that are more
relevant from the standpoint of existing name disambiguation methods. In particular,
a generator of realistic synthetic collections, designed for the specific problem of name

ambiguity, should be able to:

e Generate data whose disambiguation is non-trivial, following patterns similar to

those found in real collections;

e Generate successive loads of data, at a certain frequency (e.g., one per year or
month), containing new publications of the same set of authors, to assess the
impact of the introduction of new publications into previously disambiguated

digital libraries on the disambiguation methods;

e Generate data for new authors that were not originally included in the collection,
simulating the situation in which the disambiguation method must identify the

appearance of publications of authors not yet present in the digital library;
e Generate data reflecting changes in the authors’ publication profiles (e.g., changes

75

76 CHAPTER 5. SYGAR: SYNTHETIC GENERATOR OF AUTHORSHIP RECORDS

in the topics in which the authors publish), simulating changes of research inter-

ests over time;

e Introduce controlled errors on generated data, simulating errors caused by typos,

misspelling, or OCR.

In order to address these requirements, in this chapter, we introduce and evaluate
SyGAR, a new Synthetic Generator of Authorship Records, which addresses all the
elicited requirements. SyGAR is capable of generating synthetic citation records given
as input a list of disambiguated records of citations extracted from a real digital library
(input collection). The synthetically generated records follow the publication profiles of
existing authors, extracted from the input collection. An author’s profile is generated
based on a set of distributions, namely, distribution of the number of coauthors per
record, distribution of coauthor popularity, distribution of number of terms in a work
title as well as distribution of topic (subject or interest) popularity of the given author.
Each topic is associated with term and venue popularity distributions. SyGAR can be
parameterized to generate records for new authors (not present in the input collection),
for authors with dynamic profiles, as well as records containing typographical errors.
For the best of our knowledge, SyGAR is the first generator of its kind, enabling
and facilitating the investigation of several aspects of existing name disambiguation
methods.

A variety of synthetic data generators is available in the literature, most of them
designed for a specific purpose. DSGen |Christen, 2005|, for instance, is a tool to
generate synthetic data representing personal information, such as first name, surname,
address, dates, telephone and identifier numbers, which was developed as part of the
Febrl deduplication system |Christen, 2008|. With that specific goal, DSGen generates
synthetic data and duplicates them, inserting errors representing typographical errors.
A more recent version of DSGen, introducing attribute dependencies as well as family
and household data, is presented in [Christen and Pudjijono, 2009].

In contrast, there are also a few general-purpose tools, such as
DGL [Bruno and Chaudhuri, 2005] and PSDG [Hoag and Thompson, 2007|, which
generate data based on specific languages used to describe several aspects of the data
to be synthesized (e.g., distributions). These tools allow users to specify dependencies
between attributes. However, neither of them can be parameterized with data from a
given knowledge base, such as an existing real collection or a coauthorship graph. Such
a feature is attractive as it can be exploited by the tool to infer attribute distributions

from real-world data.

77

We are aware of only two synthetic data generators in the realm of digital libraries.
The first one, SearchGen |[Li et al., 2007| generates synthetic workloads of scientific
literature digital libraries and search engines. SearchGen was designed based on a
characterization of the workload of CiteSeer!, extracted from usage logs. Li et al.
validated the proposed tool by comparing the workload generated by SearchGen against
logged workloads. SearchGen is fundamentally different from SyGAR, as our tool does

not target the generation of workloads but rather of ambiguous citation records.

A tool that is more closely related to ours is the two-stage data generator pro-
posed in [Bhattacharya and Getoor, 2007|. The tool was designed to generate synthetic
citations, specified by a list of authors. It works as follows. In the first stage, it builds
a collaboration graph containing entities (i.e., authors) and relationships among them
(i.e., coauthorships). In the second stage, it generates a collection of citations, each of
which synthesized by first randomly selecting one entity and then randomly selecting
its neighbors in the collaboration graph. SyGAR significantly differs from this tool.
First, it generates values to other attributes, such as work and publication venue ti-
tles, in addition to author and coauthor names. Second, it is capable of generating a
dynamically evolving collection, in which new authors, changes in author’s publication
profiles and typographical errors may be introduced, at various rates. As such, our
generator can be used to generate and simulate several controlled, yet realistic, long
term scenarios, enabling an assessment of how distinct methods would behave under

various conditions.

A preliminary version of SyGAR was discussed in |Ferreira et al., 2009|. In that
prior version, SyGAR modeled an author’s publication profile based on the distribu-
tions of the number of coauthors, coauthor popularity, number of terms in a work title,
term popularity and venue popularity. By associating term and venue popularity dis-
tributions directly with the authors, our preliminary approach restricts the generation
of citations containing only terms and venues that have been previously used by the
authors. In its current version, SyGAR does not include term and venue popularity
distributions as part of an author’s profile. Instead, the profile of an author contains a
distribution of topics (or research interests), and each topic has term and venue pop-
ularity distributions associated with it. This allows the generation of citations with
work titles containing terms that have never been used by the authors or with a venue
in which the authors have never published before. Moreover, the present tool allows
one to generate data reflecting changes in the authors’ publication profiles, simulating

changes of research interests over time, and to introduce controlled errors on generated

Lnttp://citeseer.ist.psu.edu

78 CHAPTER 5. SYGAR: SYNTHETIC GENERATOR OF AUTHORSHIP RECORDS

data, simulating errors caused by typos, misspelling, or OCR. Thus, the present tool is
much more sophisticated and provides much more flexibility and richness to the process

of generating synthetic citation records than its prior version.

We validate SyGAR by comparing the results produced by three representative
disambiguation methods on a standard real collection of (previously disambiguated)
records and on synthetic collections produced using SyGAR parameterized with au-
thor profiles extracted from the real collection. The methods considered are: the su-
pervised support vector machine-based method (SVM) proposed by Han et al. [2004],
the hierarchical heuristic-based method (HHC) proposed by Cota et al. [2010] and the
unsupervised k-way spectral clustering-based method (KWAY) proposed by Han et al.
[2005b]. Our experiments show, for all three methods, a very good agreement in the
performance obtained for real and synthetically generated collections, with relative

performance differences under 10% in most cases.

To demonstrate the applicability of our generator, we evaluate the three afore-
mentioned methods in three selected relevant real-world scenarios. In particular, we
simulate a digital library evolving over a period of several years, during which (1) new
publications of the same set of authors are introduced, (2) new authors with ambigu-
ous names are introduced, at various rates, and (3) a fraction of the authors change
their publication profiles. Our results indicate that the performance of SVM tends to
degrade with time, particularly as new authors are introduced in the collection. In
contrast, the performance of the unsupervised KWAY method, which uses privileged
information regarding the number of authors in the digital library, tends to increase
with time, except when there are changes in the authors’ profiles. Overall, among the
three methods, HHC has the best performance, due to its heuristic that was specially
designed to address the name disambiguation task. In terms of their drawbacks, HHC
suffers more with the addition of records of new authors, whereas SVM and KWAY

are very sensitive to changes in the authors’ profiles.

5.1 SyGAR Design

SyGAR is a tool for generating synthetic collections of citation records. Its design was
driven by our goal of evaluating name disambiguation methods in more realistic, yet
controlled, scenarios, with evolving digital libraries. It was thus designed to capture
the aspects of real collections that are key to disambiguation methods and, therefore,
to generate synthetic collections to evaluate them. These synthetic collections may be

larger and span longer periods of time besides being representative of the real data

5.1. SYGAR DESIGN 79

with respect to author publication profiles (defined below).

SyGAR takes as input a real collection of previously disambiguated citation
records, referred to as the input collection. Each such record is composed of the
three attributes commonly exploited by disambiguation methods [Cota et al., 2010;
Ferreira et al., 2010; Han et al., 2004, 2005a,b; Lee et al., 2005; Pereira et al., 2009],
namely, a list of author names and a list of unique terms present in the work title and
the publication venue title. Authors with the same ambiguous name, and their cor-
responding records, are organized into ambiguous groups (e.g., all authors with name
“C. Chen"). SyGAR also takes as input several other parameters, defined in Table 5.1

and described in the following sections, which are used in the data generation process.

Table 5.1. SyGAR input parameters.

Parameter | Description
Nipads | number of loads to be synthesized
Np | total number of records to be generated per load
Nropics | number of topics
Qropic | threshold used to estimate distribution of topic popularity per citation (LDA model)
Qerm | threshold used to estimate distribution of term popularity per topic (LDA model)
Bropic | minimum weight of topics that are associated with an author
QNewCoauthor | Probability of selecting a new coauthor
QNewvenue | Probability of selecting a new venue
YoNewAuthors | Percentage of new authors to be generated in each load
Yo tnheritedropics | Percentage of topics to be inherited from a new author’s main coauthor
JopProfiteChanges | Percentage of authors that will have changes in their profiles in each load
0 | shift parameter used to simulate changes in an author’s profile
PprName | probability distribution of altering (removing, keeping or retaining) only the initial of the author’s first name
probability distribution of altering (removing, keeping or retaining) only the initial of the author’s middle name
Piafere | probability distribution of the number of modifications in the author’s last name
PEName | probabilities of inserting, deleting or changing one character or swapping two characters of the author’s last name
Pitte, | probability distribution of the number of modifications in the work title

Plite | probabilities of inserting, deleting or changing one character or swapping two characters of the title

PX@}’;Q"; probability distribution of the number of modifications in the venue

PYenee | probabilities of inserting, deleting or changing one character or swapping two characters of the venue

PAJ Name

SyGAR
Input Collection: f:lif;ol‘ S;r?te;::ii Modify Output Collection:
i > = — Citati > i i
ﬁeal jzuthorshlp Publication Citation gﬁ?&?ﬂes lSlynth«;nc Authorship
ecords Profiles Records ecords

‘ Input Parameters ‘

Figure 5.1. SyGAR main components — SyGAR receives as input a disam-
biguated collection of citation records and builds publication profiles for all au-
thors in the input collection. Then, the publication profiles are used to generate
synthetic records. As a final step, SyGAR may introduce typographical errors in
the output collection and change the citation attributes.

As output, SyGAR produces a representative list of synthetically generated cita-

80 CHAPTER 5. SYGAR: SYNTHETIC GENERATOR OF AUTHORSHIP RECORDS

tion records, referred to as the corresponding output collection. Fach generated record
consists of the three aforementioned attributes. In particular, the (synthetic) work title
is represented by a set of unique terms as opposed to a complete semantically-sound
sentence, as most disambiguation methods typically exploit the former.

The overall generation process consists of three main steps, as shown in Figure
5.1. SyGAR first summarizes the input collection into a set of attribute distributions
that characterize the publication profiles of individual authors in the input collection.
SyGAR builds publication profiles for all authors in the input collection, including
those with ambiguous and non-ambiguous names. Next, the attribute distributions are
used to generate synthetic records. Unless otherwise noted, only profiles of authors
with ambiguous names are used to generate synthetic data®. As a final step, SyGAR
changes the citation attributes, particularly the coauthor names, so as to adhere to a
pre-defined format (e.g., keep only the initial of the first name). In this step, it may
also introduce typographical errors in the output collection. A detailed description of

each step is presented in the following subsections.

5.1.1 Inferring Publication Profiles from the Input Collection

Each author’s publication profile is characterized by her citation records. That is, the
profile of author a is extracted from the input collection by summarizing her list of

citation records into four probability distributions, namely:

1. a’s distribution of number of coauthors per record - P2, ..ihors:

2. a’s coauthor popularity distribution - Pg_,.ihor

3. a’s distribution of number of terms in a work title - P,

4. a’s topic popularity distribution - Pf,

opic®
Each topic ¢ is further characterized by two probability distributions:

1. t’s term popularity distribution - Pk

erm)’

2. t’s venue popularity distribution - P},

enue’

Finally, we also build a collection profile with:

1. probability distribution of the number of records per author with ambiguous

¢ .
names - F)nRecordsAuthors7

2Profiles of authors with non-ambiguous names are used in the generation of profiles of new authors
(Section 5.1.3), which relies on the profiles of all authors in the input collection.

5.1. SYGAR DESIGN 81

2. probability distribution of the number of records per author - PSp. .. ds Al Authors:

3. probability distribution of the number of records per ambiguous group -

c
nRecordsGroup*

a a a C C 3
nCoauthors> PCoauthm"? PnTerms? PnRecordsAuthors and PnRecordsAllAuthors can be di-
rectly extracted from the input collection by aggregating the citation records of each

author a. We assume a’s attribute distributions are statistically independent. In par-
ticular, we assume that, for any given citation, a’s coauthors are independently chosen.
Despite somewhat simplistic, these independence assumptions have also been made
by most previous work in the context of name disambiguation [Ferreira et al., 2010;
Han et al., 2004, 2005a,b; Lee et al., 2005]. More importantly, we show, in Section 5.2,
that these assumptions have little (if any) impact on the performance of different dis-
ambiguation methods, as there is little difference in their results when applied to a real
(input) collection and to synthetically generated (output) collections.

The main challenge here is to infer, from the input collection, the distributions
), as well as the distributions of term and
and P{_ . .). Recall that the input

Venue
collection does not contain any information on the topic(s) associated with each citation

of topic popularity for each author (Pf,,;,

venue popularity associated with each topic (Pk,,,,
record. Thus, to address this challenge, SyGAR models each citation record in the input
collection as a finite mixture of a set of topics. In other words, each citation record r

has an associated topic distribution, Py, ..>. Terms in the work title and publication

opic
venue title are drawn from Correspondinpg distributions associated with the topics of
the citation record, and not with the authors. This model is thus able to generate a
citation record with a work title containing terms (or with a venue) not used yet by
any of the authors, provided that such terms (or venue) are associated with a topic of
their interests.

A first step to infer Pf, ., and P},

of topics for each citation record r in the input collection, Pr,

Pt

Ferm consists in deriving the distribution

opic- Lhis is performed
using the Latent Dirichlet Allocation (LDA) generative model, previously proposed
for modeling document contents |Blei et al., 2003|. LDA is a three-level hierarchical
Bayesian model, as illustrated in Figure 5.2. In this model, ¢ denotes a matrix of
topic distributions, with a multinomial distribution of Np....s terms for each of the
Nropics topics, which is drawn independently from a symmetric Dirichlet(coge,,) prior.

Nrerms represents the total number of distinct terms in all work titles of the input

3 Pl opic(t) measures the strength at which a given topic ¢ is related to the citation record r,
normalized so as to keep the summation over all topics equal to 1. Thus, Pr,,;.(t) can be seen as a

weight associated with topic ¢ for citation record r.

82 CHAPTER 5. SYGAR: SYNTHETIC GENERATOR OF AUTHORSHIP RECORDS

collection whereas Npgpics is the total number of topics used to model the citations.
Moreover, 6 is the matrix of citation-specific weights for these Np,pics topics, each
being drawn independently from a symmetric Dirichlet(cgpic) prior. For each term, z
denotes the topic responsible for generating that term, drawn from the # distribution
for that citation record, and w is the term itself, drawn from the topic distribution ¢
corresponding to z. In other words, the LDA model assumes that each citation record

r follows the generative process described below:

1. Draw the number of terms sizer;. in the work title according to a given dis-
tribution, such as a Poisson distribution |Blei et al., 2003| or, in our case, the

distribution of number of terms in a work title for a given author a, P,

2. Draw a topic distribution 6, for citation record r according to a Dirichlet distri-

bution model with parameter argp;c; and

3. For each term 7, ¢ = 1---sizepyye, choose a topic z; following the multinomial
distribution 6, and a term w; from a multinomial probability conditioned on the
selected topic z;, given by distribution ¢,,, which in turn is drawn according to a

Dirichlet distribution with parameter crep,.

IS

1020

o

T

D

Figure 5.2. A plate representation of the LDA |Blei et al., 2003] — The LDA
model assumes that each citation record r follows the generative process. r draws
the number of terms Ny in the work title according to a given distribution, draws
a topic distribution 6 according to a Dirichlet distribution model with parameter
QTopic and, for each term, chooses a topic z following the multinomial distribu-
tion 0 and a term w from a multinomial probability conditioned on the selected
topic z, given by distribution ¢, which in turn is drawn according to a Dirichlet
distribution with parameter azerm.

Thus, the LDA model has two sets of unknown parameters, namely, the topic
distribution associated with each citation record r, 6,, and the term popularity dis-

tribution of each topic j, ¢;, as well as the latent variables z corresponding to the

5.1. SYGAR DESIGN 83

assignments of individual terms to topics. Several strategies can be adopted to esti-
mate 6, and ¢;. Asin [Rosen-Zvi et al., 2004] and [Song et al., 2007|, we use the Gibbs
sampling algorithm [Griffiths and Steyvers, 2004]. This algorithm aims at generating
a sequence of samples from the joint probability distribution of two or more random
variables with the purpose of, for instance, estimating the marginal distributions of
one of the variables. The Gibbs sampling algorithm constructs a Markov chain that
converges to the posterior distribution of z by generating random samples from the
observed data, and then uses the results to infer the marginal distributions 0, and ¢;.
The transitions between states of the Markov chain result from repeatedly drawing the

topic of the i*" term, z;, from its distribution conditioned on all other variables, that is

wT RT
P(|) Cm_ij + Oerm Cr_ij + aTopic
2 = JW; =My 24, W—;) X WT RT
Zm, Cm/ y + NTermsaTerm Zj’ Cr,ij’ + NTopicsaTopic
—1

(5.1)
In other words, it computes the probability that the topic assigned to the ‘"

term (variable z;) is j, given that the " term (variable w;) is m and given all topic

wT
) Cmfij

of times that term m is assigned to topic j excluding the current instance of term

assignments not including the one related to the i** term (z_;) is the number

m, C’T‘:lV,Tj is the number of times that all terms in the collection are assigned to topic

j exclu_clling the current instance of m, Cf*, is the number of times that topic j is
assigned to terms in citation record r excluding the current instance of m, szjj, is the
number of times that all topics are assigned to terms in citation record r excluding the
current instance of m.

From any sample from this Markov chain, we can estimate the probability of

drawing a topic j for a citation r as

RT
Orj + QTopic

0.(7) = : 5.2
(j) Z 7’ CET + N Topics XTopic ()
and the probability of drawing a term m for a given topic j as
CnVKT + Qrerm
¢;(m) ; (5.3)

- WT
Zm’ Cm’j + NTermsaTerm

These distributions correspond to the predictive distributions over new terms and
new topics. According to Blei et al. [2003], it is recommended to assign positive values
to input parameters qrepic and arperm S0 as to allow the selection of new topics and

new terms that have not been previously observed. In other words, positive values for

84 CHAPTER 5. SYGAR: SYNTHETIC GENERATOR OF AUTHORSHIP RECORDS

these parameters ultimately imply in non-zero probabilities to all items (i.e., topics or
terms) regardless of whether they have C" (or C)VT) equal to 0.

SyGAR follows the aforementioned procedure by processing all citation records in
the input collection, one at a time. It uses the terms in the work titles to estimate the
conditional probability given by Equation 1. After a number of iterations, it estimates

the topic distribution of each citation record r, Pj .. (given by 6, in Equation 5.2)

opic

and the term popularity distribution per topic ¢, Pk (given by ¢, in Equation 5.3)

erm

Afterwards, the tool infers the topic distribution Pf .. of each author a by com-

opic
bining the weights of the topics of all citation records in which a is an author. Only
topics with weights greater than or equal to Sz (input parameter) are selected from
each citation record of a, so as to avoid introducing topics of very little interest to a
in Pf

Topic- OYGAR also infers the venue popularity distribution of each topic ¢, P

enue’
by combining the weights of ¢ associated with citation records containing the same
publication venue, provided that ¢ has the largest weight among all topics of the given
citation record, i.e., provided that ¢ is the most related topic of the given citation
record?.

Given the author profiles, SyGAR is ready to generate the synthetic citation
records. It generates a number Ny.4s of batches of data representing a number of
successive loads. For each load, it generates a number of records given by Ng or,
alternatively, specified based on the distributions of the number of publications per
author per load (as in Section 5.3.2).

Since SyGAR extracts publication profiles of all authors in the input collection,
the term “author” was used up to this point in this section to refer to any author in the
input collection, regardless of whether she has an ambiguous name or not. Since our
present goal is to evaluate disambiguation methods, we here use SyGAR to generate
synthetic records only for authors with ambiguous names. Thus, for the sake of clarity,
through the rest of this chapter and unless otherwise noted, we refer to authors with
ambiguous names, the main target of our study, as simply authors, treating all other
authors in the input collection as their coauthors.

The following three sections describe how SyGAR generates synthetic records
for authors (with ambiguous names) already present in the input collection (Section
5.1.2) and for new authors (Section 5.1.3), as well as how it models dynamic pub-
lication profiles (Section 5.1.4) and how it modifies citation records in its final step
(Section 5.1.5).

“These probabilities are combined by first summing up all values of Cf}T + QT opic (numerator in
Equation 2) for citations r and topics j of interest, and then normalizing them so as to keep the total
probability equal to 1.

5.1. SYGAR DESIGN 85

5.1.2 Generating Records for Existing Authors

Each synthetic record for existing authors is created as follows:

1. Select one of the authors of the collection according to the desired distribution

of number of records per author. Let it be a.

2. Select the number of coauthors according to Pfr ,uthors- L€S it be a..

3. Repeat a. times:

e with probability 1 - anewcoauthor, Select one coauthor according to P&, ,.ihors

e otherwise, uniformly select a new coauthor among remaining coauthors in

the input collection.

4. Combine the topic distributions of a and each of the selected coauthors. Let it
be Pl

Topic*

5. Select the number of terms in the title according to P¢ Let it be a;.

nTerms-

6. Repeat a; times: select one topic ¢ according to P:‘pllolpic and select one term for

the work title according to Pr

erm*

7. Select the publication venue:

e with probability 1 - anewvenue, select a venue according to P, where ¢

enue’
is the topic that was selected most often in Step 6;
e otherwise, randomly select a new venue among remaining venues in the

input collection.

Step 1 uses either the collection profile, i.e., PSp . isauthors) OF @ distribution
specified as part of the input. The latter may be specified by, for instance, providing
the fractions of records to be generated for each author. This alternative input adds
flexibility to our tool as it allows one to experiment with various scenarios by generating
synthetic collections with varying numbers of records per author profile. Steps 2 and
5 use the distributions in the profile of the selected author. The same holds for Steps
3 and 7, although, with probabilities & newcoauthor ANA A Newvenue, SYGAR selects new
coauthors and new venues (i.e., coauthors and venues that are not associated with the
selected author in the input collection), respectively. We also note that, in Steps 3 and
6, we do not allow for a coauthor (or term) to be selected more than once.

The combined topic distribution P:‘pllolpic (Step 4) is obtained by first selecting only
the topics that are shared by all selected authors (a and her coauthors). If there is

86 CHAPTER 5. SYGAR: SYNTHETIC GENERATOR OF AUTHORSHIP RECORDS

no shared topic, we take the union of all topics associated with the selected author a

and the coauthors. The combined distribution is built by, for each topic ¢, averaging
P’?opic
end so as to keep the summation over all topics equal to 1.

() across all authors (a and the coauthors) and normalizing these values at the

The seven steps are repeated a number of times equal to the target number of

records in the new load.

5.1.3 Adding New Authors

Another use for SyGAR is to generate records for large author populations, by building
citation records not only for the authors present in the input collection but also for
new (non-existing) authors. A variety of mechanisms could be designed to build such
records. For the sake of demonstrating SyGAR’s flexibility, we here adopt a strategy
that exploits the publication profiles from author and co-authors, extracted from the
input collection. Other (possibly more sophisticated) approaches will be designed in
the future.

A new author a is created by first selecting one of its coauthors among all au-
thors (with ambiguous and non-ambiguous names) in the input collection, i.e., using
P records AllAuthors- L€t say it is ¢,. The new author inherits ¢,’s profile, but the in-
herited topic and coauthor distributions are changed as follows. First, the new author
inherits only a percentage %rnheritedropics Of the topics associated with ¢,, i.e., the topics
that are more strongly related to her (i.e., with largest weights). Let 7o be the list
of inherited topics. The new author’s topic popularity distribution is built by using
the same weights c,’s distribution for the inherited topics, rescaling them afterwards
so as to keep the summation equal to 1.

Similarly, we set a’s coauthor list equal to ¢, plus all coauthors of ¢, that have at
least one of the topics in Iy, associated with them. Once again, the probabilities of
selecting each coauthor are also inherited, and rescaled afterwards. However, we force
that c, appears in all records generated to the new author. This strategy mimics the
case of a new author who, starting its publication career, follows part of the interests
(topics) of one who will be a frequent coauthor (e.g., advisor or colleague).

Finally, the name of the new author is generated with the initial of the first name
and the full last name of an existing author (i.e., an ambiguous author name), selected
from the input collection using the distribution of the number of records per ambiguous
group, i'e'v PrfRecordsGroup‘

Parameter % yewauthors Specifies the percentage of new authors generated for each

new load.

5.1. SYGAR DESIGN 87

5.1.4 Changing an Author’s Profile

SyGAR also allows one to experiment with dynamic author profiles, mimicking sce-
narios in which authors (with ambiguous names) may change their publication profiles
over time due to shifts in interests, as in the real-world bibliographic digital libraries.
Although SyGAR processes the input collection as a static snapshot of publication
profiles, the tool can generate collections in which authors dynamically change their
attribute distributions over successive loads.

In the lack of a previous characterization of dynamic properties of author publi-
cation, SyGAR currently implements a simple strategy to change the topic distribution
of an author a (illustrated in Figure 5.3-a). It first sorts the topics associated with a

according to their probabilities (i.e., Py so as to have a histogram as close to a bell

opic)
shape as possible (i.e., mode in the center and least probable topics in both extremes),
as illustrated in Figure 5.3-b. It then shifts the distribution along the x-axis by a factor
of 9, at each load. Figure 5.3-c illustrates four successive changes in an author’s profile
using 0 equals to 5.

By carefully choosing ¢, this procedure guarantees that changes occur as softly as
desired, mimicking the case of an author smoothly increasing/decreasing her interest

in some topics over time.

Parameter % profilechanges Specifies the percentage of authors that will experience

changes in their profiles in each load.

5.1.5 Modifying Citation Attributes

The final step in the citation record generation process consists of modifying the citation
attributes according to several input probability distributions (see Table 5.1). Two
mandatory changes refer to how an author’s first and middle names should be presented
in the citation record. There are three possibilities: completely remove the first/middle

name, keep the first/middle name entirely and keep only the initial of the first/middle

PFName PMName

name. Probability distributions and are used to make the selections,
which are applied to the names of all authors and coauthors in the synthetic citations.

Next, six input distributions may be used to introduce typographical errors in
the generated records. P#A]\%Zf, P;}'é}gds and Pﬁ;g;s are used to draw the number of
modifications in each author’s last name, work title and publication venue, respectively,
whereas PLName - plitle and Pyenue are used to draw the type of each such modification
in each attribute. Four modifications are possible, namely, insert, remove or change

one character and swap two randomly selected characters.

88 CHAPTER 5. SYGAR: SYNTHETIC GENERATOR OF AUTHORSHIP RECORDS

0.2 0.2

0.18 0.18 sorted
0.16 0.16
0.14 0.14
0.12 0.12
0.1 0.1
0.08 0.08
0.06 0.06
0.04 0.04
0.02 0.02
0 0
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Topic Topic
(a) (b)
0.2
0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02

0

0 5 10 15 20 25 30 35 40 45 50
Topic

(c)
Figure 5.3. Changing author a’s profile by altering her topic distribution. (a)

the original topic distribution of author a. (b) The topics associated with a sorted

according to their probabilities (P:%Opic) so as to have a histogram as close to a

bell shape as possible. (c) The topic distribution shifted along the x-axis by a
factor d = 5; 2 shifts are shown in the figure.

In its current version, SyGAR allows for the easy experimentation with a mul-
titude of relevant scenarios (see examples in Section 5.3) that occur in real digital
libraries. We intend, in the future, to design even more sophisticated mechanisms to
add new authors to the output collection as well as new strategies to introduce changes
in the profiles of existing authors and in the synthetic records.

As a final note, we emphasize that, although SyGAR was designed to help ad-
dressing the name disambiguation task, it can be used to generate any collection of
citation records, as long as a real collection is provided as source of author profiles.
Thus, we believe it can be used to study other problems related to bibliographic digital
libraries as well (e.g., scalability issues). SyGAR is implemented in Java and will be

available for public use in due time.

5.2 Validation

As the methods available in the literature adopt a variety of solutions, including un-
supervised and supervised techniques (see Section 3), we here select three methods,

each one representative of a different technique: the SVM-based name disambiguation

5.2. VALIDATION 89

method (SVM) that is proposed in |[Han et al., 2004], unsupervised Heuristic-based
Hierarchical Clustering method (HHC) that is proposed in [Cota et al., 2010] and the
K-way Spectral Clustering-based method (KWAY) that is proposed in [Han et al.,
2005b).

We validate SyGAR by comparing the performance of the selected name dis-
ambiguation methods on real and synthetically generated collections as well as by
comparing attribute distributions (author/coauthor and topic distributions) of both
collections. The real collection of citation records used in our study was that extracted
from DBLP (see Section 2.4).

The ultimate goal of a disambiguation method is to separate all records within
each ambiguous group into a number of subgroups (i.e., clusters), one for each different
(disambiguated) author. In order to evaluate the performance of the disambiguation
methods, we here use the K metric that for us better evaluate the disambiguation
results.

Since our main goal is to use SyGAR to evaluate representative disambiguation
methods, our main validation consists of assessing whether the synthetically generated
collection captures the aspects of the corresponding real collection (and its ambiguous
groups) that are of relevance to the disambiguation methods. Towards that goal, we
compare the K result obtained when each of the three selected disambiguation methods
is applied to the real collection and its corresponding synthetic versions.

In our validation experiments, we set Qropic—=0Qrerm—0.00001, thus allowing, with
a very small probability, the selection of any topic/term, regardless of whether they were
associated with the selected authors/topics in the input collection (see Section 5.1.1).
We believe this leads to the generation of more realistic synthetic collections. Moreover,
we set Bropic—0.07, i.e., to infer the topic distribution of each author, we combine the
topics with weights greater than or equal to 0.07 in each citation record of such author,
avoiding introducing topics with very little interest to her in the topic distribution. The
number of authors and the number of records per author in the synthetic collections
are set to be the same as in the input collection, as both parameters have impact on
the effectiveness of the methods, and thus should be kept fixed for validation purposes.
In other words, we let Np and PSp. .. dsauthors P€ the same as in the input collection
and make Nj,q4s=1. For validation purposes, we set %newAuthors = InheritedTopics =
YoProfileChanges = QNewCoauthor = ONewVenue = 0 = 0, keep first and middle names of
each author as in the input collection and avoid introducing any typographical error
in the synthetic collections. We experiment with Nz, equal to 300 and 600. We
further discuss issues related to the sensitivity of SyGAR to these parameters later in

this section.

90 CHAPTER 5. SYGAR: SYNTHETIC GENERATOR OF AUTHORSHIP RECORDS

Regarding the parameters for the methods, for SVM, we used the implementation
provided by the LibSVM package |Chang and Lin, 2001|, with RBF (Radial Basis
Function) as the kernel function, where the best v and cost values were obtained from
the training data using the Grid program, available with the LibSVM package. For
KWAY, we used the implementation of the K-way spectral clustering provided by the
University of Washington spectral clustering working group® and the number of authors
in the collections as the target number of clusters to be generated. For HHC, we used
the same values specified in [Cota et al., 2010] for the work and venue title similarity
thresholds.

For the sake of evaluation, we divided the real collection as well as each synthetic
collection generated from it into two equal-sized portions, by randomly splitting the
author records into two parts. One is the training data and the other is the test set.
We then applied each method to each ambiguous group in the test set. The supervised
method uses the training data to learn the disambiguation model. We repeated this

process 10 times for each collection, presenting results that are averages of the 10 runs.

Table 5.2. SyGAR validation — Average K results and 95% confidence intervals
for real and synthetically generated collections (Nropics = 300). Statistical ties

are in bold.
| Collection | KWAY SVM HHC |
Real 0.530+0.009 0.764:0.005 0.77040.006
Synthetic 1 | 0.478+0.005 0.698+0.008 0.753+0.013
Synthetic 2 | 0.484:+0.007 0.706+0.005 0.750+0.011
Synthetic 3 | 0.478+0.008 0.701+0.006 0.752+0.005
Synthetic 4 | 0.480+0.006 0.708+0.007 0.755+0.006
Synthetic 5 | 0.477+0.009 0.702+0.006 0.751+0.011

Table 5.2 shows average K results, along with corresponding 95% confidence
intervals, for the three disambiguation methods applied to the real collection and to
five synthetically generated collections® using Nropics—300. Note that the synthetic
collections are only slightly more difficult to disambiguate than the real one. Indeed,
K results for KWAY, SVM and HHC methods are, on average, around only 17%, 11%
and 2.3%, respectively, smaller in the synthetic collections, including a statistical tie
between the real and a synthetic collection using the HHC method (marked in bold).
We notice that, the number of distinct terms in the work titles used by each author
in the synthetic collection with Nrpgpies=300 is around 9% greater than in the real

collection. Since KWAY relies directly on the similarity among the records to group

S hitp:/ /www.stat.washington.edu/spectral
6These collections were built based on the same input parameters, differing only with respect to
the seed used in the random number generator.

5.2. VALIDATION 91

them, which uses the work title, this may explain the larger difference for this method.
HHC, on the other hand, first groups by coauthor and only uses the information in
the work and publication titles for minimizing the fragmentation problem, while SVM,
relies on the training data, being more robust to these changes. This may explain
the smaller differences between these methods when applied to the synthetic and real
collections.

We consider these results very good, given the complexity of the data generation
process, and considering that SyGAR allows for the selection of title terms and venues
not previously associated with an author. In other words, the synthetic collections,

built using SyGAR, are mimicking reasonably well the real data.

Table 5.3. SyGAR Validation: Average K results and 95% confidence intervals
for real and 5 synthetically generated collections (Nrgpics = 600).

| Collection | KWAY SVM HHC |
Real 0.530£0.009 0.764+0.005 0.770+0.006
Synthetic 1 | 0.499+0.008 0.746+0.007 0.79340.008
Synthetic 2 | 0.489+0.006 0.743+0.007 0.79040.009
Synthetic 3 | 0.493+0.006 0.74240.007 0.799+0.012
Synthetic 4 | 0.491+0.006 0.750+0.006 0.79640.006
Synthetic 5 | 0.497+0.010 0.743+0.010 0.80140.008

Table 5.3 shows similar results for synthetic collections built using Nzopics—600.
Note that these collections are easier to disambiguate and the K results are closer to
those produced for the real collection. Indeed, comparing real and synthetic collections,
results for KWAY and SVM are, on average, only 9% and 4% smaller in the synthetic
collections, whereas the HHC results are slightly better in the synthetic collections
(3.3%, on average). These results further show that SyGAR is capable of capturing
the aspects of the real collection that are relevant to the disambiguation methods.

The reason why using 600 topics instead of 300 leads to synthetic collections
on which the disambiguation methods produce results closer (or even slightly better)
to the results for the corresponding real collections may be explained as follows. As
the number of topics increases, the number of authors sharing any given topic tends
to decrease. As a consequence, when building a synthetic citation, there is a higher
chance that a term selected for a given topic (Equation 5.3) has been actually used, in
the real collection, by the author to which that topic was associated. Recall that, when
generating a citation, if the selected authors share no topic, SyGAR combines all topics
of individual authors. This happens with the majority of the citations generated when
we set Nrgpics—600. Thus, in this case, the chance of generating synthetic citations

with terms that were used by at least one of the authors in the real collection is higher,

92 CHAPTER 5. SYGAR: SYNTHETIC GENERATOR OF AUTHORSHIP RECORDS

which ultimately makes the synthetic citations look more similar to the real ones, at
least with respect to title terms. This leads to synthetic collections that better resemble

the real ones, therefore justifying the similar performance of the methods.

4

-2
=3
4
= qTopic OTerm (100)
06

0.3
0.25

0.2

Diff 0.15
0.1

N
Topics

(c) HHC (d) HHC

Figure 5.4. Sensitivity of SyGAR to aropic, QTerm, Bropic and Nrgpics — Relative
error between performance of each method on synthetic and real collections. (a)
and (c) show the results of SVM and HHC, respectively, when applied to syn-
thetically generated collections using various values of aropic, Term and Nropics,
keeping Bropic = 0.07. (b) and (d) show the results of SVM and HHC, respec-
tively, when applied to synthetically generated collections using various of Sropic
and NTopic; keeping aTopic:aTerm:10_5-

To better understand the sensitivity of SyGAR to some of its key parameters,
we evaluate the results of two of the selected methods, namely SVM and HHC, when
applied to synthetic collections generated using various values of aropic; QTerm; Bropics
and Nrgpics. We report, for each method, the relative difference of its performance on
the real and synthetic collections, here referred to as the relative error. A positive error
implies that the synthetic collection is harder to disambiguate than the real one. We

report average results of five runs, omitting confidence intervals for the sake of clarity.

5.2. VALIDATION 93

We start by showing, in Figures 5.4(a) and 5.4(c), average errors for SVM and
HHC, respectively, as we vary cropic and apepp, from 107% to 1072 (setting both to the
same value in each case), and Npgpics from 100 to 600, while keeping Sropic fixed at 0.07.
We note that, as both argpi and are,n, increase, the gap between the results on syn-
thetic and real collections tends to increase significantly for both methods, particularly
for large number of topics. The synthetic collections become harder to disambiguate

for larger values of argpic and arern,. This is because larger values of both parameters

impact the computation of Pf, ;. and Pf,,, (Equations 5.2 and 5.3, respectively) more
significantly. This is particularly true if Npgpics is large, since counters Cf;»T and CXZVJ»T,

inferred from the input collection, tend to decrease as the number of topics increases.
In other words, larger values of appic and ey, may introduce too much noise in the
and P

harder to disambiguate than the real collection. The same can be noticed, though to

estimates of Py, ultimately generating synthetic collections that are much

opic erm>
a less extent, for smaller number of topics.

Moreover, the errors also tend to decrease as the number of topics (Nropics) in-
creases, provided that the values of argpic and age,r, are not very large. As previously
discussed, the larger the number of topics, the higher the chance of generating citations
with terms that were used by at least one of its authors in the real collection. One ex-
treme case is Niopics =600 and ovgopic = arerm=107% when, as previously discussed, this
happens to most generated citations and both methods produce results that are very
close to those obtained with the real collection. Thus, we suggest to use creym—1072,
ozTom-c:IO_F’ and Nrgpics—600.

Next, Figures 5.4(b) and (d) show average errors for SVM and HHC, respec-
tively, as we vary Bropic from 0.01 to 0.12 and Npgpies from 100 to 600, keeping
aTopiC:aTerm:m_s. In general, both methods tend to produce results closer to those
obtained with the real collection for larger values of Spgp;.. This is expected as Bropic
represents the minimum weight of topics that can be associated with an author. Thus,
in general, larger values of Brqpi. tend to reduce the chance of associating to an author
a topic that is of little interest to her. So, the Srepi. value must be lower or equal to
0.10. Therefore, we suggest to set SBropic—0.10.

We further validate SyGAR by comparing some of the attribute distributions in
the real and synthetic collections. As a sanity check, Figure 5.5(a) shows the distribu-
tions of the number of records per author/coauthor (PSp..orasAnduthors) 11 the real and
in a synthetically generated collection. Clearly, both distributions are very similar, as
expected, with the average absolute difference between real and synthetic collection
around 1.29. Figure 5.5(b), in turn, shows the popularity (in terms of number of ci-

tations) of topics, in the real and in a synthetic collection built using Ntopics—600,

94 CHAPTER 5. SYGAR: SYNTHETIC GENERATOR OF AUTHORSHIP RECORDS

with the average absolute difference between real and synthetic collection around 8.63.
Recall that this metric is not directly manipulated by SyGAR. Once again, the curves
show very similar patterns. Similar agreement was also obtained for collections gener-

ated using other values of Nz,ps as well as for other attribute distributions.

250

200 |

150

100

Number of Records

50

0 500 1000 1500 2000 2500 3000 3500
Author/Coauthor
(a) Number of Records per Author/Coauthor

250

200 ¢t

150 |

100

Popularity (# Records)

50 fy

Topic
(b) Topic Popularity (Nzpics=500)

Figure 5.5. SyGAR validation. We use aTOpiC:aTerm:10_5 and Bropic=0.7.

5.3. EVALUATION OF DISAMBIGUATION METHODS WITH SYGAR 95

5.3 Evaluation of Disambiguation Methods with
SyGAR

We demonstrate the applicability of SyGAR by evaluating the SVM, KWAY and HHC
disambiguation methods in three realistic scenarios generated by our tool. We start by
describing these scenarios in Section 5.3.1. We then present our experimental setup in
Section 5.3.2 and discuss the most relevant results from our evaluation in Section 5.3.3.
We emphasize that our goal here is not to thoroughly evaluate the selected methods
but rather to show how our tool can be used to evaluate existing methods in relevant

realistic situations.

5.3.1 Analysis Scenarios

We envision three scenarios that capture some relevant dynamic patterns observed in
real digital libraries. All three scenarios encompass a live digital library (DL) evolving
over the period of several years. In its initial state, the DL is a collection of synthetic
citations. At the end of each year, a load is performed into the DL with new citations of
existing, and, possibly, of new ambiguous authors, depending on the specific scenario.
We choose to model yearly loads, using as parameters the average yearly publication
rates of authors in each ambiguous group, extracted from DBLP (see Section 5.3.2).
However, the load period could be easily changed.

Scenario 1 consists of an evolving digital library with new citations introduced
at each new load, assuming a fixed author population with static publication profiles.
In other words, Scenario 1 captures solely the impact of an evolving DL. Only authors
(with ambiguous names) in the original input collection are considered and they do
not change their profiles during successive loads, keeping their topic and coauthor
distributions as extracted from the input collection.

Scenario 2 considers the introduction of new authors to the existing author pop-
ulation. New authors are added to the collection at a given rate in each successive
load. As described in Section 5.1.3, a new author inherits a percentage of the topics of
an author that will be considered as her main coauthor (e.g., an advisor). Moreover,
all publications of a new author have her main coauthor in the author list.

Finally, Scenario 8 considers authors with dynamic profiles. A percentage of
the current authors make small changes in their profiles before each new load, i.e.,
their topic distributions are shifted by a factor J, as explained in Section 5.1.4. The
changes are very small, but are performed at a constant rate over the years. Although

this might not be very realistic, it allows us to test the limits of the disambiguation

96 CHAPTER 5. SYGAR: SYNTHETIC GENERATOR OF AUTHORSHIP RECORDS

methods under dynamic publication profiles. As we are unaware of previous studies
measuring profile change rates in real-word digital libraries, any choice of rate would
be arbitrary.

Thus, the envisioned scenarios allow us to evaluate the robustness of the selected
disambiguation methods to three key real-world aspects: (1) the evolution of the DL,
(2) the inclusion of new authors with ambiguous names into the DL and (3) changes
in author profiles. We emphasize that these are only a few of the scenarios that can be
generated using SyGAR. For instance, scenarios with different, possibly heterogeneous,
profile change rates, i.e., different values of ¢ for different authors, can also be devised,
being the loads easily produced by SyGAR. Building and experimenting with other

scenarios is subject of future work.

5.3.2 Experimental Setup

We performed experiments with the same collection used in Section 5.2, containing 11
ambiguous groups, as shown in Table 2.3. For each scenario, the number of synthetic
citation records in the initial state sy of the digital library is the same as in the real
collection. Ten successive data loads, one per year, are generated using SyGAR (i.e.,
Nioads = 10), parameterized by the real collection as source of publication profiles as
well as with additional inputs according to the specific scenario.

Starting at state s;, the new citation records generated by SyGAR are disam-
biguated using each one of the three methods and the results are incorporated into the
corresponding DL version, which evolves into state s; ;. If the supervised SVM method
is used, SyGAR is also used to generate a training set containing the same number of
citations of the DL at its initial state sg. This training set is used by SVM to “learn"
its model to disambiguate the records generated at each load. For both KWAY and
HHC methods, the generated records are first incorporated into the current state of
the DL and the disambiguation is performed with all records.

For each new load, SyGAR generates records for authors already in the DL
and, in Scenario 2, for new authors. The synthetic citations are generated using
Ntopics—600, Bropic—0.10 and aTopiC:aTerm:m—? Moreover, in all three scenarios,
we Set A NewVenue =ONewCoauthor—0, thus restricting the selection of venues and coau-
thors for an author’s new citation to those already associated with her in the input
collection.

We also format author and coauthor names according to probabilities p that
match the observed patterns in the input collection. In particular, we retain either only

the initial of the first name (p—0.53) or the complete first name (p—0.47). Moreover,

5.3. EVALUATION OF DISAMBIGUATION METHODS WITH SYGAR 97

regarding the middle name, we either keep only the initial (p=0.37), remove it (p=0.53)
or keep it completely (p=0.10). Finally, we introduce no typographical errors in any
attribute.

For experiments with Scenario 2, the number of new authors to be added at each
new load is specified as a fraction % newAuthors Of the total number of authors in the DL
at its current state. We experiment with values of % newuthors €qual to 5% and 10%.
Each new author inherits 80% of the topics associated with her most frequent coauthor
(Yo rnheritedropics=80%). We note that newly added authors remain as part of the DL
throughout the rest of the experiment, i.e., records are generated for these authors in
all successive loads.

Moreover, for experiments with Scenario 3, changes are introduced in a percent-
age YoprofileChanges Of author profiles across successive loads using a shift 6=5. We
experimented with % pro filechanges €qual to 10%, 50% and 100%. In this case, in each
yearly load a different set of authors from the previous state is chosen to have their
profiles changed.

Finally, the distribution of the number of records generated for each author is
built from the data presented in Table 5.4, which shows the distribution of the average
number of publications per year per (existing and new) author. These distributions
were extracted from DBLP, counting the number of publications of each author of
three selected ambiguous groups during the period of 1984-2008. We selected groups
“C. Chen", “A. Gupta" and “D. Johnson" which, as shown in Table 2.3, have very
different author population sizes. “C. Chen" is a very large ambiguous group with 60
different authors. “D. Johnson", on the contrary, is much smaller, and “A. Gupta" has

an intermediary number of authors.

Table 5.4. Distribution of average number of publications per year per author
(DBLP: 1984 - 2008).

Average Number of Publications per Year
One Two Three > Four
New Authors 55% 30% 10% 5%
Existing Authors 14% 42% 28% 16%

For loads s; to syg, the generation of new records use the distributions shown in
Table 5.4. We chose to use that distribution because Han et al.’s DBLP collection,
which we use here, did not have temporal information, so the number of records per
author (PSp. cordsAuthors) 18 @ cumulative measure, and using it would certainly generate

distortions depending on the length of the career of that author. For generating the

successive loads, the yearly rates of publication are more important.

98 CHAPTER 5. SYGAR: SYNTHETIC GENERATOR OF AUTHORSHIP RECORDS

5.3.3 Evaluation of Results

The following subsections present our evaluation of the three selected methods in each
considered scenario built using SyGAR. Our evaluation is carried out by computing
the K value at each state of the DL. The results reported in the following sections are
averages of five runs. Corresponding 95% confidence intervals are usually very tight,

indicating errors on the reported means that fall below 12% in all cases.

Average K

Load (year)

Figure 5.6. Scenario 1 — Evolving DL with static author population and publi-
cation profiles.

5.3.3.1 Scenario 1: Evolving DL with Static Author Population and Profiles

Figure 5.6 shows, for each disambiguation method, the average K value computed
over all 11 ambiguous groups in each state of the digital library over the ten-year
period. Corresponding 95% confidence intervals are also shown. Note that the relative
order of the methods, in terms of achieved performance, remains the same through
all states: HHC outperforms SVM, which, in turn, outperforms KWAY. However, the
three methods have very different behaviors as new loads of citations are introduced
into the DL.

SVM’s performance, for example, tends to decrease over time: while it starts in
the first load (sp) with an average K value equals to 0.78, these values fall to levels
around 0.66 in the successive loads. Indeed after 10 loads, SVM’s performance degrades
by 15%. This degradation is possibly due to errors caused by imprecise models learned
for authors with very few records in the training set. These errors are cumulative in
the successive loads, calling for a retraining of SVM. Analyzing SVM with retraining
is not an easy task as factors such as errors introduced in the collection may affect the
results of these experiments. Thus, we leave it for future work.

KWAY, on the contrary, experiences an increasing improvement in effectiveness as
new citations are added. This occurs because there is incrementally more information

about each author, helping KWAY to better characterize them. Indeed, the gain in

5.3. EVALUATION OF DISAMBIGUATION METHODS WITH SYGAR 99

performance after 10 loads reaches 32%. Unlike both SVM and KWAY, HHC remains
with approximately the same performance, varying by at most 2%, throughout all 10
successive loads. This is possibly due to the specific heuristics exploited by HHC for
the name disambiguation task (see [Cota et al., 2010] for details), in contrast to the
general purpose techniques used by SVM and KWAY.

As consequence of such distinct behaviors, we find that, while in the beginning
(i.e., state sg) HHC outperforms SVM by only 2% (on average) and SVM outperforms
KWAY by 60% (on average), corresponding performance gains switch to 18% and only

3%, respectively, after the last load of new citations.

0.8 ¢
N v 07
S S
g S 06 BH— 1]
] 5
> > N
< o5 < 05
-~ HHC - 5% of new authors - 1 HHC - 10% of new authors @
KWAY - 5% of new authors & KWAY - 10% of new authors &
0.4 SVM - 5% of new authors ---4&-— 0.4 SVM - 10% of new authors -—&-—
0 2 4 6 8 10 0 4 6 8 10
Load (year) Load (year)
(a) %NewAuthor8:5% (b) %NewAuthom:lO%
Figure 5.7. Scenario 2 — Evolving DL and addition of new authors

(%InheritedTopicszgo%) .

5.3.3.2 Scenario 2: Introduction of New Authors

We now use SyGAR to analyze the impact on each method of introducing new authors
to the current author population. Figure 5.7 shows average K values and corresponding
95% confidence intervals for each method on collections built using % newAuthors €qual
to 5% and 10%, and % ruheritedropics €qual to 80%.

The behaviors of both KWAY and SVM follow trends very similar to those ob-
served in Figure 5.6: whereas SVM suffers performance degradation, KWAY actu-
ally improves in performance as new loads of citations are added to the DL. How-
ever, we note a clear detrimental impact of the introduction of new authors on both
methods. SVM'’s performance degrades much faster for %necwauthors=10% than for
Indeed, in comparison with the case of static author population
(Figure 5.6), the average K values after the last load are 20% and 11% worse for

Yo NewAuthors €qual to 10% and 5%, respectively. Recall that SVM uses the same train-

%NewAuthor8:5% .

ing set, containing only records of the existing authors in state sg, to disambiguate the

DL in all states. Therefore, SVM is unable to recognize new authors, thus introduc-

100 CHAPTER 5. SYGAR: SYNTHETIC GENERATOR OF AUTHORSHIP RECORDS

ing errors into the DL when disambiguating their records. Once again, SVM requires
retraining when facing the addition of new authors to the DL, a subject of future study.

Similarly, the improvement in performance experienced by KWAY becomes less
significant as the fraction of new authors introduced at each load increases. This
happens because of the increase in the number of authors, which implies in higher
ambiguity and a higher inherent difficulty in distinguishing them. In comparison with
the case reported in Figure 5.6, KWAY’s performance after the last load is 9% and 4%
worse for % newauthors €qual to 10% and 5%, respectively. In fact, for both values of
Yo NewAuthors, KWAY outperforms SVM after the last load.

Figure 5.7 also shows that, like SVM and KWAY, HHC also suffers a signif-
icant performance degradation with the introduction of new authors. Indeed, for
Yo NewAuthors—10%, the difference in average performance between HHC and KWAY
drops from 64% to only 6% after the last load. In comparison with the case of static
author population, average K values after the last load are 21% and 12% worse for

Yo NewAuthors €qual to 10% and 5%, respectively.

4 N4
(] ()
g &
o o
> >
< 05 <
ST HHC - 10% 0 - : SVM - 10% A .
HHC - 50% -~ SVM - 50% -4 X
04| HHC -100% @ 0.4 SVM -100% -
0 2 4 6 8 10 0 2 4 6 8 10
Load (year) Load (year)
(a) HHC (b) SVM
KWAY - 10% O
08 KWAY - 50% -
KWAY -100% -~ m-
e 07
()
g
g
<
Load (year)
(c) KWAY
Figure 5.8. Scenario 3 -~ Dynamic author profiless (6 = 5 and

% ProfileChanges—10%, 50% and 100%).

5.3.3.3 Scenario 3: Dynamic Author Profiles

Finally, Figures 5.8(a-c) show average K values and corresponding 95% confidence in-

tervals when a fraction %proficchanges €qual to 10%, 50% and 100% of the authors

5.3. EVALUATION OF DISAMBIGUATION METHODS WITH SYGAR 101

experience changes in their profiles at each new load. All three methods greatly suffer
if facing dynamic changes in profiles. KWAY, in particular, which experiences per-
formance improvements in both Scenarios 1 and 2, now suffers some degradation for
values of % profileChanges greater than or equal to 50%. In particular, taking Scenario
1 and the performance of each method after the last load as basis for comparison,
we note that SVM’s performance degrades by 16%, 31% and 34% for % profitcchanges
equal to 10%, 50% and 100%, respectively. HHC, in turn, experiences a performance
degradation of 4%, 13% and 19% in the respective cases, being therefore more robust
than SVM in this scenario. KWAY, which seems very robust to Scenarios 1 and 2,
still experiences some performance improvement (by as much as 14%) if %profitechanges
is equal to only 10%. Notice however, that this improvement is smaller than in the
scenarios in which we did not have profile changes (in that case, improvements went up
to 32%). However, for values of % pyo firechanges €qual to 50% and 100%, its performance
degrades by 18% and 26%, respectively. While KWAY was able to take advantage of
the increase in information in Scenarios 1 and 2, the change in the profile of existing
authors confounds this method.

In sum, the performance of SVM tends to degrade over time, particularly as
new authors are introduced in the collection. In contrast, the performance of the
unsupervised KWAY method, which uses privileged information regarding the number
of authors in the digital library, tends to increase with time, except when there are
changes in the author profiles. Overall, among the three methods, the heuristic-based
method HHC, designed specifically to address the name disambiguation problem, has

the best performance in the analyzed situations.

Chapter 6

Conclusion

6.1 Summary

In this thesis, we presented a set of contributions to help solving the author name
ambiguity problem. First of all, we presented a taxonomy to classify the author name
disambiguation methods that helps better understand how the methods work and con-
sequently understand their limitations. Our taxonomy classifies the disambiguation
methods according to the type of approach, such as author grouping methods that
group the references to the same author using the similarity among the reference at-
tributes, and author assignment methods that assign the references to their authors, or
according to the evidence explored in the disambiguation task, for instance, methods
that use citation attributes, Web information or implicit attributes. Further, we de-
scribed several automatic representative disambiguation methods using the taxonomy.

Second, we proposed SAND, a new hybrid disambiguation method that exploits
the strengths of both supervised author assignment and unsupervised author grouping
methods. In its first step (i.e., the author grouping step), the references are clustered
so that references that are likely to be associated with the same author are grouped
together in clusters. In its second step (i.e., the cluster selection step), some of these
clusters are selected to be used as training data. In its third step (i.e., the author
assignment step), these selected clusters are used as training data and are given as
input to a associative name disambiguator with the ability to detect the appearance
of new authors that were not included in the training data. We used two collections
extracted from the DBLP and BDBComp digital libraries to evaluate SAND. In the
DBLP collection, SAND outperformed two unsupervised methods by more than 27%.
In the BDBComp collection, SAND outperformed two unsupervised methods by more
than 36% under the pF1 metric and by more than 4% under the K metric. SAND

103

104 CHAPTER 6. CONCLUSION

also demonstrated to be very competitive, sometimes superior, to supervised author
assignment methods. In our evaluation, we also showed that without any parameter
setup SAND produces the best result.

And, finally, we proposed SyGAR, a new generator of synthetic citation records
that helps to evaluate author name disambiguation methods under several scenarios.
SyGAR generates synthetic citation records following the publication profiles of existing
authors, extracted from the input collection. Moreover, SyGAR allows the simulation
of several real-world scenarios, such as the introduction of new authors (not present in
the input collection) and dynamic changes in an author’s publication profile, as well
as the introduction of typographical errors in the synthetic citations (not addressed
here). We validated it by comparing the results produced by three representative
disambiguation methods on a standard real collection and on synthetic collections
produced using our tool. The selected methods are: the supervised SVM-based method,
the heuristic HHC method and the unsupervised KWAY clustering-based method. Our
validation experiments show a very good agreement in the performance obtained for
all three methods for real and synthetically generated collections. We further analyzed
SyGAR by demonstrating its applicability to evaluate the selected methods under
three real-world scenarios, namely the evolution of a DL with static author population
and publication profiles, the introduction of new authors and the dynamic changes
in the author’s profiles. Our results indicate that the performance of SVM tends to
degrade with time, particularly as new authors are introduced in the collection. In
contrast, the performance of the unsupervised KWAY method, which uses privileged
information regarding the number of authors in the digital library, tends to increase
with time, except when there are changes in the author’s profiles. Overall, among the
three methods, the heuristic HHC method, designed specifically to address the name

disambiguation problem, has the best performance in all analyzed scenarios.

6.2 Future Research

Regarding SAND, several aspects may be further investigated:

e Other manners to identify when a reference belongs to an author who does not
have any citation record in the digital library instead of just using the number
of association rules projected from the training data to decide whether a new

reference belong to a new author or not.

e Situations in which only the first step — author grouping step — is sufficient to

disambiguate an ambiguous group. There are collections, such as BDBComp, in

6.2.

FUTURE RESEARCH 105

which the author group step produces good results. So, if we could automatically
evaluate wether the results of the first step were good enough, we would not need

to perform the other steps.

Other options to group the references in the author grouping step. We may
investigate unsupervised clustering techniques that produce pure clusters or how
other attributes (work and publication venue title) may be used to produce pure

clusters in the author group step.

Other supervised techniques to be applied to the author assignment step. We
may investigate how we can use/adapt other supervised clustering techniques to
infer new authors (i.e., new classes) and reliable predictions to be used in the

author assignment step.

Options to adapt SAND to work in a incremental manner, i.e., to disambiguate
only the references of the new citation records inserted into the digital library,

avoiding the need for disambiguating all references of the digital library at once.

How to adapt/generalize SAND to disambiguate other applications, e.g., ambigu-
ous place names. If other applications have attributes highly discriminative, we
may use such attributes to produce pure clusters in the first step and use the

other attributes in the second and third steps.

Options to use the feedback relevance indicated by the user to improve the dis-
ambiguation performance. We see two points where user feedback may be used:
in the cluster selection and author assignment steps. In the cluster selection
step, we may ask the user whether two clusters belong to the same author or not.
In the author assignment step, we may ask the user for the correct authors of

unreliable predictions.

Regarding SyGAR, the following items may be the subject of further research:

Including a more sophisticated set of features to add new authors to the digital
library. Our tool generates references of new authors inheriting a part of the
interest area of an existing author. This strategy mimics the case of a new author
who, starting its publication career, follows part of the interests of one who will
be a frequent coauthor (e.g., advisor or colleague). It is interesting to investigate

a manner of generating new authors without using a profile of an existing author.

Other options to dynamically change the authors’ publication profiles. A possible

option to change the profiles of an author is to change the list of her coauthors

106

CHAPTER 6. CONCLUSION

and consequently her interest area. We may investigate how an author starts to

publish with a new coauthor or how the authors end to publish together.

Functions to allow specifying the percentage of coauthors with similar names
that publish with different authors with similar names and the percentage of
publications to be generated that do not have coauthor names that are similar

to the ones already inserted into the digital library.

A manner of specifying the ambiguity of the load to be generated. If we can
measure and define the degree of ambiguity of a load, we may investigate how

the methods behave by increasing or decreasing the degree of ambiguity of a load.

Bibliography

Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining association rules between
sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 207--216, Washington, USA.

Artiles, J., Borthwick, A., Gonzalo, J., Sekine, S., and Amigo6, E. (2010). Weps-3
evaluation campaign: Overview of the web people search clustering and attribute
extraction tasks. In CLEF 2010 LABs and Workshops, Notebook Papers, Padua,
Italy.

Baeza-Yates, R. A. and Ribeiro-Neto, B. (1999). Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Bagga, A. and Baldwin, B. (1998). Algorithms for scoring coreference chains. In
Proceedings of the Seventh Message Understanding Conference (MUC7), pages 563-
-566.

Bekkerman, R. and McCallum, A. (2005). Disambiguating web appearances of people
in a social network. In Proceedings of the 14th International Conference on World
Wide Web, pages 463--470, Chiba, Japan.

Bhattacharya, I. and Getoor, L. (2006). A latent dirichlet model for unsupervised
entity resolution. In Proceedings of the Sixth SIAM International Conference on
Data Mining, Bethesda, MD, USA.

Bhattacharya, I. and Getoor, L. (2007). Collective entity resolution in relational data.
ACM Transactions on Knowledge Discovery from Data, 1(1).

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal
of Machine Learning Research, 3:993--1022.

Bordes, A., Ertekin, S., Weston, J., and Bottou, L. (2005). Fast kernel classifiers with

online and active learning. Journal of Machine Learning Research, 6:1579--1619.

107

108 BIBLIOGRAPHY

Bruno, N. and Chaudhuri, S. (2005). Flexible database generators. In Proceedings of
the International Conference on very large data bases, pages 1097--1107, Trondheim,
Norway. VLDB Endowment.

Carvalho, A. P., Ferreira, A. A., Laender, A. H. F., and Gongalves, M. A. (2011).
Incremental unsupervised name disambiguation in cleaned digital libraries. Journal
of Information and Data Management, 2(3):289-304.

Chang, C.-C. and Lin, C.-J. (2001). LibSVM: A Library for Support Vector Machines.

Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Christen, P. (2005). Probabilistic data generation for deduplication and data linkage.
In Proceedings of the International Conference on Intelligent Data Engineering and
Automated Learning, volume 3578 of Lecture Notes in Computer Science, pages 109—

116, Brisbane, Australia. Springer.

Christen, P. (2008). Febrl -: an open source data cleaning, deduplication and record
linkage system with a graphical user interface. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1065—
1068, Las Vegas, Nevada, USA. ACM.

Christen, P. and Pudjijono, A. (2009). Accurate synthetic generation of realistic per-
sonal information. In Proccedings of the 15th Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining, volume 5476 of Lecture Notes in Computer
Science, pages 507-514, Bangkok, Thailand. Springer.

Cohen, W. W., Ravikumar, P. D., and Fienberg, S. E. (2003). A comparison of string
distance metrics for name-matching tasks. In Proceedings of the IJCAI-03 Workshop

on Information Integration on the Web, pages 73-78, Acapulco, Mexico.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,
20(3):273--297.

Cota, R. G., Ferreira, A. A., Gongalves, M. A., Laender, A. H. F., and Nascimento, C.
(2010). An unsupervised heuristic-based hierarchical method for name disambigua-
tion in bibliographic citations. Journal of the American Society for Information
Science and Technology, 61(9):1853--1870.

Crammer, K. and Singer, Y. (2003). Ultraconservative online algorithms for multiclass
problems. The Journal of Machine Learning Research, 3:951--991.

BIBLIOGRAPHY 109

Culotta, A., Kanani, P., Hall, R., Wick, M., and McCallum, A. (2007). Author dis-
ambiguation using error-driven machine learning with a ranking loss function. In
Proceedings of the International Workshop on Information Integration on the Web,

Vancouver, Canada.

Dempster, A., Laird, N., Rubin, D., et al. (1977). Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1--38.

Diehl, C. P., Getoor, L., and Namata, G. (2006). Name reference resolution in orga-
nizational email archives. In Proceedings of the SIAM International Conference on
Data Mining, pages 70--91, Bethesda, MD, USA.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the 2nd
International Conference on Knowledge Discovery and Data Mining, pages 226--231,
Portland, Oregon.

Fan, X., Wang, J., Pu, X., Zhou, L., and Lv, B. (2011). On graph-based name disam-
biguation. ACM Journal of Data and Information Quality, 2:10:1--10:23.

Ferreira, A. A., Gongalves, M. A., Almeida, J. M., Laender, A. H. F., and Veloso, A.
(2009). SyGAR - A Synthetic Data Generator for Evaluating Name Disambiguation

Methods. In Proceedings of the 13th European Conference on Digital Libraries, pages
437--441, Corfu, Greece.

Ferreira, A. A., Gongalves, M. A., Almeida, J. M., Laender, A. H. F., and Veloso, A.
(2012a). A tool for generating synthetic authorship records for evaluating author

name disambiguation methods. Information Sciences, 206:42-62.

Ferreira, A. A., Gongalves, M. A., and Laender, A. H. F. (2012b). A brief survey of
automatic methods for author name disambiguation. SIGMOD Record, 41(2):15--26.

Ferreira, A. A., Silva, R., Gongalves, M. A., Veloso, A., and Laender, A. H. F. (2012c¢).
Active associative sampling for author name disambiguation. In Proceedings of the
2012 ACM/IEEE Joint Conference on Digital Libraries, pages 175--184, Washington,
DC.

Ferreira, A. A., Veloso, A., Gongalves, M. A., and Laender, A. H. F. (2010). Effective
self-training author name disambiguation in scholarly digital libraries. In Proceedings
of the 2010 ACM/IEEE Joint Conference on Digital Libraries, pages 39-48, Gold

Coast, Queensland, Australia.

110 BIBLIOGRAPHY

Freund, Y. and Schapire, R. (1999). Large margin classification using the perceptron
algorithm. Machine learning, 37(3):277--296.

Frey, B. and Dueck, D. (2007). Clustering by passing messages between data points.
science, 315(5814):972--977.

Galvez, C. and de Moya Anegon, F. (2007). Approximate personal name-matching
through finite-state graphs. Journal of the American Society for Information Science
and Technology, 58(13):1960--1976.

Geisser, S. (1993). Predictive inference: An introduction. Chapman & Hall, New York.

Griffiths, T. and Steyvers, M. (2004). Finding scientific topics. Proceedings of the
National Academy of Sciences, 101(1):5228--5235.

Han, H., Giles, C. L., Zha, H., Li, C., and Tsioutsiouliklis, K. (2004). Two supervised
learning approaches for name disambiguation in author citations. In Proceedings
of the 4th ACM/IEEE-CS Joint Conference on Digital Libraries, pages 296--305,
Tuscon, USA.

Han, H., Xu, W., Zha, H., and Giles, C. L. (2005a). A hierarchical naive Bayes mixture
model for name disambiguation in author citations. In Proceedings of the 2005 ACM

Symposium on Applied Computing, pages 1065--1069, Santa Fe, New Mexico, USA.

Han, H., Zha, H., and Giles, C. L. (2005b). Name disambiguation in author citations
using a k-way spectral clustering method. In Proceedings of the 5th ACM/IEEE
Joint Conference on Digital Libraries, pages 334--343, Denver, CO, USA.

Han, J. and Kamber, M. (2005). Data mining: concepts and techniques. Morgan
Kaufmann, San Francisco, CA, USA.

Hoag, J. E. and Thompson, C. W. (2007). A parallel general-purpose synthetic data
generator. SIGMOD Record, 36(1):19--24.

Huang, J., Ertekin, S., and Giles, C. L. (2006). Efficient name disambiguation for
large-scale databases. In Proceedings of the Furopean Conference on Principles and

Practice of Knowledge Discovery in Databases, pages 536--544, Berlin, Germany.

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: a review. ACM
Computing Surveys, 31(3):264--323.

BIBLIOGRAPHY 111

Kanani, P., McCallum, A., and Pal, C. (2007). Improving author coreference by
resource-bounded information gathering from the web. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence, pages 429-434, Hyderabad,

India.

Kang, I.-S., Na, S.-H., Lee, S., Jung, H., Kim, P., Sung, W.-K., and Lee, J.-H. (2009).
On co-authorship for author disambiguation. Information Processing € Manage-
ment, 45(1):84--97.

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical
Association, 90:733--795.

Laender, A. H. F., Gongalves, M. A., Cota, R. G., Ferreira, A. A., Santos, R. L. T.,
and Silva, A. J. C. (2008). Keeping a digital library clean: new solutions to old
problems. In Proceedings of the ACM Symposium on Document Engineering, pages
257-262.

Lagoze, C. and de Sompel, H. V. (2001). The open archives initiative: building a low-
barrier interoperability framework. In Proceedings of the 1st ACM/IEEE-CS Joint
International Conference on Digital Libraries, pages 54--62, Roanoke, Virginia, USA.
ACM Press.

Lapidot, I. (2002). Self-Organizing-Maps with BIC for Speaker Clustering. Technical
report, IDIAP Research Institute, Martigny, Switzerland.

Lee, D., Kang, J., Mitra, P., Giles, C. L., and On, B.-W. (2007). Are your citations
clean? Communications of the ACM, 50(12):33--38.

Lee, D., On, B.-W., Kang, J., and Park, S. (2005). Effective and scalable solutions
for mixed and split citation problems in digital libraries. In Proceedings of the 2nd
International Workshop on Information Quality in Information Systems, pages 69--
76, Baltimore, Maryland.

Lee, M.-L., Ling, T. W., and Low, W. L. (2000). IntelliClean: a knowledge-based
intelligent data cleaner. In Proceedings of the 6th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 290--294.

Levin, F. H. and Heuser, C. A. (2010). Evaluating the use of social networks in
author name disambiguation in digital libraries. Journal of Information and Data
Management, 1(2):183--197.

112 BIBLIOGRAPHY

Levin, M., Krawzyk, S., Bethard, S., and Jurafsky, D. (2012). Citation-based boot-
strapping for large-scale author disambiguation. Journal of the American Society for
Information Science and Technology, 63(5):1030--1047.

Li, H., Lee, W.-C., Sivasubramaniam, A., and Giles, C. L. (2007). SearchGen: A
Synthetic Workload Generator for Scientific Literature Digital Libraries and Search
Engines. In Proceedings of the 7th ACM/IEEE Joint Conference on Digital Libraries,
pages 137--146, Vancouver, BC, Canada.

Liming, L. and Lihua, L. (2005). Scientific publication activities of 32 countries. Sci-
entometrics, 26(2):263--273.

Malin, B. (2005). Unsupervised name disambiguation via social network similarity. In
Proceedings of the Workshop on Link Analysis, Counterterrorism, and Security, at
the SIAM International Conference on Data Mining, pages 93--102, Newport Beach,
CA.

McKay, D., Sanchez, S., and Parker, R. (2010). What’s my name again?: sociotechnical
considerations for author name management in research databases. In Proceedings
of the 22nd Conference of the Computer-Human Interaction Special Interest Group

of Australia on Computer-Human Interaction, pages 240--247, Brisbane, Australia.
Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New York, NY, USA.

Oliveira, J. W. A. (2005). A strategy for removing ambiguity in the identification of
the authorship of digital objects. Master’s thesis, UFMG, Belo Horizonte, Brazil.

(in Portuguese).

On, B.-W., Elmacioglu, E., Lee, D., Kang, J., and Pei, J. (2006). Improving grouped-
entity resolution using quasi-cliques. In Proceedings of the 6th IEEE International
Conference on Data Mining, pages 1008--015, Hong Kong, China. IEEE Computer
Society.

On, B.-W. and Lee, D. (2007). Scalable name disambiguation using multi-level graph
partition. In Proceedings of the 7th SIAM International Conference on Data Mining,
pages 575--580, Minneapolis, Minnesota, USA.

On, B.-W., Lee, D., Kang, J., and Mitra, P. (2005). Comparative study of name
disambiguation problem using a scalable blocking-based framework. In Proceedings
of the 5th ACM/IEEFE Joint Conference on Digital Libraries, pages 344--353, Denver,
CO, USA.

BIBLIOGRAPHY 113

Pereira, D. A., Ribeiro-Neto, B. A., Ziviani, N., Laender, A. H. F., Gongalves, M. A.,
and Ferreira, A. A. (2009). Using web information for author name disambiguation.
In Proceedings of the 2009 ACM/IEEE Joint Conference on Digital Libraries, pages
49-58, Austin, TX, USA.

Rijsbergen, C. J. V. (1979). Information Retrieval, 2nd edition. Butterworths, London.

Rosen-Zvi, M., Griffiths, T. L., Steyvers, M., and Smyth, P. (2004). The author-topic
model for authors and documents. In Proceedings of the Conference in Uncertainty
in Artificial Intelligence, pages 487-494, Banff, Canada.

Salton, G. M., Wong, A., and Yang, C. S. (1975). A vector space model for automatic
indexing. Communications of the ACM, 18(11):613--620.

Scoville, C. L., Johnson, E. D., and McConnell, A. L. (2003). When A. Rose is not A.
Rose: the vagaries of author searching. Medical reference services quarterly, 22(4):1-
-11.

Shu, L., Long, B., and Meng, W. (2009). A latent topic model for complete entity
resolution. In Proceedings of the 2009 IEEE International Conference on Data En-
gineering, pages 880--891, Shanghai, China. IEEE Computer Society.

Soler, J. M. (2007). Separating the articles of authors with the same name. Sciento-
metrics, 72(2):281--290.

Song, Y., Huang, J., Councill, I. G., Li, J., and Giles, C. L. (2007). Efficient topic-
based unsupervised name disambiguation. In Proceedings of the 7th ACM/IEEE
Joint Conference on Digital Libraries, pages 342--351, Vancouver, BC, Canada.

Tang, J., Fong, A. C. M., Wang, B., and Zhang, J. (2012). A unified probabilistic frame-
work for name disambiguation in digital library. IEEE Transactions on Knowledge
and Data Engineering, 24(6):975-987.

Torvik , V. I., Weeber, M., Swanson, D. R., and Smalheiser, N. R. (2005). A probabilis-
tic similarity metric for Medline records: A model for author name disambiguation.
Journal of the American Society for Information Science and Technology, 56(2):140-
-158.

Torvik, V. I. and Smalheiser, N. R. (2009). Author name disambiguation in medline.
ACM Transactions on Knowledge Discovery from Data, 3(3):1--29.

114 BIBLIOGRAPHY

Treeratpituk, P. and Giles, C. L. (2009). Disambiguating authors in academic publica-
tions using random forests. In Proceedings of the 2009 ACM/IEEE Joint Conference
on Digital Libraries, pages 39--48, Austin, TX, USA.

Veloso, A., Ferreira, A. A., Gongalves, M. A.) Laender, A. H., and Meira Jr., W. (2012).
Cost-effective on-demand associative author name disambiguation. Information Pro-
cessing € Management, 48(4):680 — 697.

Veloso, A., Meira Jr., W., Cristo, M., Gongalves, M., and Zaki, M. (2006a). Multi-
evidence, multi-criteria, lazy associative document classification. In Proceedings of
the 2006 ACM CIKM International Conference on Information and Knowledge Man-
agement, pages 218--227, Arlington, USA.

Veloso, A., Meira Jr., W., and Zaki, M. J. (2006b). Lazy associative classification.
In Proceedings of the International Conference on Data Mining, pages 645--654,
Washington, DC, USA.

Vu, Q. M., Masada, T., Takasu, A., and Adachi, J. (2007). Using a knowledge base to
disambiguate personal name in web search results. In Proceedings of the 2007 ACM

Symposium on Applied Computing, pages 839--843, Seoul, Korea.

Yang, K.-H., Peng, H.-T., Jiang, J.-Y., Lee, H.-M., and Ho, J.-M. (2008). Author name
disambiguation for citations using topic and web correlation. In Proceedings of the
European Conference on Research and Advanced Technology for Digital Libraries,

pages 185--196, Aarhus, Denmark. Springer-Verlag.

Yoshida, M., Ikeda, M., Ono, S., Sato, I., and Nakagawa, H. (2010). Person name
disambiguation by bootstrapping. In Proceeding of the 33rd International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages
10-17, Geneva, Switzerland.

Zha, H., He, X., Ding, C. H. Q., Gu, M., and Simon, H. D. (2001). Spectral relaxation
for K-means clustering. In Neural Information Processing Systems, pages 1057-1064.
MIT Press.

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Outline

	2 The Author Name Disambiguation Task - Foundations
	2.1 Definitions
	2.2 Task Characterization
	2.3 Evaluation Metrics
	2.4 Collections

	3 Automatic Author Name Disambiguation Methods
	3.1 A Taxonomy for Author Name Disambiguation Methods
	3.1.1 Type of Approach
	3.1.2 Explored Evidence

	3.2 Overview of Representative Methods
	3.2.1 Author Grouping Methods
	3.2.2 Author Assignment Methods
	3.2.3 Using Additional Evidence

	3.3 Summary of Characteristics

	4 SAND: Self-training Author Name Disambiguator
	4.1 SAND Design
	4.1.1 The Author Grouping Step
	4.1.2 The Cluster Selection Step
	4.1.3 The Author Assignment Step

	4.2 Experimental Evaluation
	4.2.1 Experimental Setup
	4.2.2 Evaluating the Author Grouping Step
	4.2.3 Evaluating the Clustering Selection Step
	4.2.4 Evaluating SAND
	4.2.5 Comparison with the Author Grouping Baselines
	4.2.6 Comparison with the Supervised Author Assignment Methods
	4.2.7 Comparison with Other Supervised Methods for the Author Assignment Step
	4.2.8 Discussion

	5 SyGAR: Synthetic Generator of Authorship Records
	5.1 SyGAR Design
	5.1.1 Inferring Publication Profiles from the Input Collection
	5.1.2 Generating Records for Existing Authors
	5.1.3 Adding New Authors
	5.1.4 Changing an Author's Profile
	5.1.5 Modifying Citation Attributes

	5.2 Validation
	5.3 Evaluation of Disambiguation Methods with SyGAR
	5.3.1 Analysis Scenarios
	5.3.2 Experimental Setup
	5.3.3 Evaluation of Results

	6 Conclusion
	6.1 Summary
	6.2 Future Research

	Bibliography

