
CONTRIBUTIONS FOR SOLVING THE AUTHORNAME AMBIGUITY PROBLEM INBIBLIOGRAPHIC CITATIONS

ANDERSON ALMEIDA FERREIRA

CONTRIBUTIONS FOR SOLVING THE AUTHORNAME AMBIGUITY PROBLEM INBIBLIOGRAPHIC CITATIONSTese apresentada ao Programa de Pós--Graduação em Computer Science do In-stituto de Ciências Exatas da UniversidadeFederal de Minas Gerais � Departamentode Ciência da Computação como requisitoparcial para a obtenção do grau de Doutorem Computer Science.Orientador: Marcos André GonçalvesCo-orientador: Alberto Henrique Frade LaenderBelo HorizonteJunho de 2012

ANDERSON ALMEIDA FERREIRA

CONTRIBUTIONS FOR SOLVING THE AUTHORNAME AMBIGUITY PROBLEM INBIBLIOGRAPHIC CITATIONSThesis presented to the Graduate Programin Computer Science of the UniversidadeFederal de Minas Gerais � Departamentode Ciência da Computação in partial ful�ll-ment of the requirements for the degree ofDoctor in Computer Science.Advisor: Marcos André GonçalvesCo-advisor: Alberto Henrique Frade LaenderBelo HorizonteJune 2012

c© 2012, Anderson Almeida Ferreira.Todos os direitos reservados.

Ferreira, Anderson AlmeidaF383c Contributions for Solving the Author NameAmbiguity Problem in Bibliographic Citations /Anderson Almeida Ferreira. � Belo Horizonte, 2012xx, 114 f. : il. ; 29cmTese (doutorado) � Universidade Federal de MinasGerais � Departamento de Ciência da ComputaçãoOrientador: Marcos André GonçalvesCo-orientador: Alberto Henrique Frade Laender1. Computação � Teses. 2. Sistemas de recuperaçãoda informação � Teses. Bibliotecas digitais � Teses.3. Registros de autoridade de nomes (Recuperação dainformação). I. Orientador. II. Coorientador. III. Titulo.CDU 519.6*73(043)

To Lília, Lucas, André, Geralda and Guimarães.

ix

Acknowledgments
I thank my advisor, professor Marcos André Gonçalves, and my coadvisor, professorAlberto H. F. Laender, for supporting to developed this thesis.I thank my coauthors that contributed signi�cantly to the development of thearticles used as base to this thesis, specially, Marcos, Alberto, Adriano, Jussara, AnaPaula and Rodrigo.I thank my friends at LBD, the UFMG database group, for the nice environmentto work in this laboratory.I also thank the administrative sta�s of PPGCC that always solve all questionswith respect my PhD, such as travels, documentation and so on.Finally, I am grateful to my parents, Guimarães and Geralda, who always encour-aged me, to my wife, Lília, for your understanding and sacri�ces during my studies,and to my sons, Lucas and André.This research is partially funded by the InWeb - The National Institute of Scienceand Technology for the Web (MCT/CNPq/FAPEMIG grant number 573871/2008-6),InfoWeb (MCT/CNPq grant 55.0874/2007-0) and by CNPq and FAPEMIG scholar-ships. This �nancial support is gratefully acknowledged.

xi

Abstract
Author name ambiguity is a problem that occurs when a set of bibliographic citationrecords contains ambiguous author names, i.e., the same author may appear underdistinct names, or distinct authors may have similar names. This is one of the hardestproblems faced by current scholarly digital libraries (DLs), such as DBLP, CiteSeer,MEDLINE and BDBComp. In this thesis, we present a set of contributions to helpsolving the author name ambiguity problem. First of all, we present a taxonomyto classify the author name disambiguation methods that helps to better understandhow the methods work and consequently understand their limitations. Second, wepresent SAND a new hybrid disambiguation method that exploits the strengths of bothsupervised author assignment and unsupervised author grouping methods. SAND isa three-step disambiguation method. In its �rst step (i.e., the author grouping step),a set of citation records is clustered so that records that are likely to be associatedwith the same author are grouped together in clusters. In its second step (i.e., thecluster selection step), some of these clusters are selected to be used as training data.Finally, in its third step (i.e., the author assignment step), these selected clusters areused as training data and are given as input to a associative name disambiguatorwith the ability to detect the appearance of new authors that were not included inthe training data. As our �nal contribution, we present SyGAR, a new generator ofsynthetic citation records that helps to evaluate author name disambiguation methodsunder several scenarios. SyGAR generates synthetic citation records following thepublication pro�les of existing authors, extracted from an input collection. Moreover,SyGAR allows the simulation of several real-world scenarios such as the introductionof new authors (not present in the input collection), dynamic changes in an author'spublication pro�le as well as the introduction of typographical errors in the syntheticcitations.

xiii

List of Figures
1.1 Synonyms: a unique author with several name variations. 21.2 Homonyms: several authors with a same name variation. 32.1 An illustrative example. Each geometric �gure represents a reference to anauthor. The same �gures refer to the same author. 142.2 Authorship distribution within each ambiguous group. Authors (x-axis) aresorted in decreasing order of proli�cness (i.e., more proli�c authors appearin the �rst positions). 173.1 A taxonomy for author name disambiguation methods. 204.1 Illustrative example. The author grouping and cluster selection steps. . . . 454.2 Comparison between the cosine similarity function, (a) and (c), and eu-clidean distance, (b) and (d), for selecting the training data in DBLP andBDBComp. 584.3 Comparison between the author coverage and the fragmentation rate inDBLP using some strategies for selecting the training data. The selectionof the training data uses (a) single-link, (b) complete-link and (c) average-link cluster similarities with cosine similarity function on the vectors. . . . 594.4 Comparison between the author coverage and the fragmentation rate inBDBComp using some strategies for selecting the training data. The se-lection of the training data uses (a) single-link, (b) complete-link and (c)average-link cluster similarities with cosine similarity function on the vectors. 604.5 Strategy 3 performed in the (a) DBLP and (b) BDBComp collections. . . 614.6 Sensitivity analysis for φmin. 634.7 Sensitivity analysis for φmin. The comparison of SAND's performance usingthe name of the authors as provided in the collections with the author namesin short format (i.e., the author names are represented by only the initialof �rst name and the full last name). 70xv

4.8 Scenario 1: Evolving DL with static author population and publicationpro�les. 724.9 Scenario 2: Evolving DL and addition of new authors (%InheritedTopics=80%). 724.10 Scenario 3: Dynamic author pro�les (δ = 5 and %ProfileChanges=10%, 50%and 100%). 735.1 SyGAR main components � SyGAR receives as input a disambiguated col-lection of citation records and builds publication pro�les for all authors inthe input collection. Then, the publication pro�les are used to generatesynthetic records. As a �nal step, SyGAR may introduce typographicalerrors in the output collection and change the citation attributes. 795.2 A plate representation of the LDA [Blei et al., 2003] � The LDA modelassumes that each citation record r follows the generative process. r drawsthe number of terms Nd in the work title according to a given distribution,draws a topic distribution θ according to a Dirichlet distribution modelwith parameter αTopic and, for each term, chooses a topic z following themultinomial distribution θ and a term w from a multinomial probabilityconditioned on the selected topic z, given by distribution φ, which in turnis drawn according to a Dirichlet distribution with parameter αTerm. 825.3 Changing author a's pro�le by altering her topic distribution. (a) the orig-inal topic distribution of author a. (b) The topics associated with a sortedaccording to their probabilities (P a
Topic) so as to have a histogram as close toa bell shape as possible. (c) The topic distribution shifted along the x-axisby a factor δ = 5; 2 shifts are shown in the �gure. 885.4 Sensitivity of SyGAR to αTopic, αTerm, βTopic and NTopics � Relative errorbetween performance of each method on synthetic and real collections. (a)and (c) show the results of SVM and HHC, respectively, when applied tosynthetically generated collections using various values of αTopic, αTerm and

NTopics, keeping βTopic = 0.07. (b) and (d) show the results of SVM andHHC, respectively, when applied to synthetically generated collections usingvarious of βTopic and NTopic, keeping αTopic=αTerm=10−5. 925.5 SyGAR validation. We use αTopic=αTerm=10−5 and βTopic=0.7. 945.6 Scenario 1 � Evolving DL with static author population and publicationpro�les. 985.7 Scenario 2 � Evolving DL and addition of new authors (%InheritedTopics=80%). 995.8 Scenario 3 � Dynamic author pro�les (δ = 5 and %ProfileChanges=10%, 50%and 100%). 100xvi

List of Tables
2.1 Illustrative example (ambiguous group of A. Gupta). 92.2 Performance of the evaluation metrics. 142.3 The DBLP and BDBComp collections . 163.1 Summary of characteristics - Author grouping methods 393.2 Summary of characteristics - Author assignment methods 404.1 Results (with their standard deviations) obtained by the author groupingstep for each ambiguous group in the (a) DBLP and (b) BDBComp collec-tions, without using the popular last names. 564.2 Results (with their standard deviations) obtained by the author groupingstep for each ambiguous group in the (a) DBLP and (b) BDBComp collec-tions, using the popular last names. 574.3 Results obtained by SAND-1. 644.4 Results obtained by SAND-2. 654.5 Results obtained by SAND, HHC, KWAY and LASVM-DBSCAN methods.Best results are highlighted in bold. 664.6 Results (with their standard deviations) of SAND, SLAND, SVM and NBin the DBLP and BDBComp collections. Best results, including statisticalties, are highlighted in bold. 674.7 Results obtained by the author grouping and cluster selection steps coupledwith SVMs (S-SVM) and Naïve Bayes (S-NB) techniques in the second step(i.e., the author assignment step). Best results are highlighted in bold. . . 695.1 SyGAR input parameters. 795.2 SyGAR validation � Average K results and 95% con�dence intervals for realand synthetically generated collections (NTopics = 300). Statistical ties arein bold. 90xvii

5.3 SyGAR Validation: Average K results and 95% con�dence intervals for realand 5 synthetically generated collections (NTopics = 600). 915.4 Distribution of average number of publications per year per author (DBLP:1984 - 2008). 97

xviii

Contents
Acknowledgments xiAbstract xiiiList of Figures xvList of Tables xvii1 Introduction 11.1 Motivation . 31.2 Contributions . 61.3 Thesis Outline . 72 The Author Name Disambiguation Task - Foundations 92.1 De�nitions . 102.2 Task Characterization . 102.3 Evaluation Metrics . 112.4 Collections . 143 Automatic Author Name Disambiguation Methods 193.1 A Taxonomy for Author Name Disambiguation Methods 193.1.1 Type of Approach . 213.1.2 Explored Evidence . 263.2 Overview of Representative Methods 273.2.1 Author Grouping Methods . 283.2.2 Author Assignment Methods . 333.2.3 Using Additional Evidence . 353.3 Summary of Characteristics . 384 SAND: Self-training Author Name Disambiguator 43xix

4.1 SAND Design . 434.1.1 The Author Grouping Step . 444.1.2 The Cluster Selection Step . 474.1.3 The Author Assignment Step 514.2 Experimental Evaluation . 554.2.1 Experimental Setup . 554.2.2 Evaluating the Author Grouping Step 564.2.3 Evaluating the Clustering Selection Step 574.2.4 Evaluating SAND . 624.2.5 Comparison with the Author Grouping Baselines 644.2.6 Comparison with the Supervised Author Assignment Methods . 664.2.7 Comparison with Other Supervised Methods for the Author As-signment Step . 684.2.8 Discussion . 695 SyGAR: Synthetic Generator of Authorship Records 755.1 SyGAR Design . 785.1.1 Inferring Publication Pro�les from the Input Collection 805.1.2 Generating Records for Existing Authors 855.1.3 Adding New Authors . 865.1.4 Changing an Author's Pro�le 875.1.5 Modifying Citation Attributes 875.2 Validation . 885.3 Evaluation of Disambiguation Methods with SyGAR 955.3.1 Analysis Scenarios . 955.3.2 Experimental Setup . 965.3.3 Evaluation of Results . 986 Conclusion 1036.1 Summary . 1036.2 Future Research . 104Bibliography 107
xx

Chapter 1Introduction
Several scholarly digital libraries (DLs), such as DBLP1, CiteSeer2, MEDLINE3 andBDBComp4, provide features and services that facilitate literature research and dis-covery as well as other types of functionality. Such systems may list millions of bibli-ographic citation records (here understood as a set of bibliographic attributes such asauthor and coauthor names, work and publication venue titles of a particular publica-tion) and have become an important source of information for academic communitiessince they allow the search and discovery of relevant publications in a centralized man-ner. Also, studies based on DL content can lead to interesting results such as coverageof topics, research tendencies, quality and impact of publications of a speci�c sub-community or individuals, patterns of collaboration in social networks, etc. Thesetypes of analysis and information, which are used, for instance, by funding agencieson decisions for grants and for individual's promotions, presuppose high quality con-tent [Laender et al., 2008; Lee et al., 2007].According to Lee et al. [2007], the challenges to have high quality content comesfrom data-entry errors, citation formats, lack of (enforcement of) standards, imper-fect citation-gathering software, ambiguous author names, abbreviations of publicationvenue titles and large-scale citation data.Among these challenges, the problem of ambiguous author names has required alot of attention from the DL research community due to its inherent di�culty. Specif-ically, ambiguity of author names is a problem that occurs when a set of citationrecords contains ambiguous author names, i.e., the same author may appear underdistinct names (synonyms), or distinct authors may have similar names (homonyms).1http://dblp.uni-trier.de2http://citeseer.ist.psu.edu3http://medline.cos.com4http://www.lbd.dcc.ufmg.br/bdbcomp 1

2 Chapter 1. IntroductionThis problem may be caused by a number of reasons [McKay et al., 2010], includingname changes due to personal circumstances, variation in transliteration of non-romannames, typographical errors, lack of standards and common practices, and decentralizedgeneration of content (i.e., by means of automatic harvesting [Lagoze and de Sompel,2001]).An interesting example that illustrates the author name ambiguity problem canbe taken from DBLP. Until recently, if one searched for the author name �MohammedZaki�, the result would include three name variations - �Mohammed Zaki�, �MohammedJ. Zaki� and �Mohammed Javeed Zaki� (see Figure 1.1). Although all these three namesseemed to refer to the same person, they in fact illustrate a case that involves bothsynonyms and homonyms. While the �rst name referred to Mohammed Zaki fromAl-Azhar University, Nasr City, Cairo, Egypt, the second and third names referred toMohammed Zaki from the Rensselaer Polytechnic Institute Department of ComputerScience,USA, thus characterizing a synonym situation.

Figure 1.1. Synonyms: a unique author with several name variations.On the other hand, by clicking on the �Mohammed Zaki� link the resulting page(see Figure 1.2) would show an example of homonym, since the second citation actuallycorresponds to a paper coauthored by Mohammed Javeed Zaki from the Departmentof Computer Science, Rensselaer Polytechnic Institute, USA. Although in this case theproblem was caused by di�erent variations of an author's names, there are many other

1.1. Motivation 3cases in which two di�erent authors simply have the same name, a common situation,for example, for authors with Asian names.

Figure 1.2. Homonyms: several authors with a same name variation.
1.1 MotivationThere are several open challenges that need to be addressed in order to produce morereliable solutions that can be employed in a production mode in real digital libraries.Below we discuss some of them.E�ectiveness. Methods for disambiguating author names must be e�ective,i.e., they must correctly disambiguate the author names in bibliographic citations.Although many methods have been reported in the literature (see Chapter 3 for acomprehensive coverage of those), there is still a lot of room for improvements.Very Little Data in the Citations. In most cases we have only basic infor-mation about the citations available: author (coauthor) names, work and publicationvenue titles, and publication year. Furthermore, in some cases author names containonly the initial and the last surname and the publication venue title is abbreviated.New strategies that try to derive implicit information (e.g., topics) or gather additionalinformation from the Web are promising in this scenario.

4 Chapter 1. IntroductionVery Ambiguous Cases. Several methods exploit coauthor-based heuristics,by explicitly assuming the hypotheses that: (i) very rarely ambiguous references willhave coauthors in common who have also ambiguous names; or (ii) it is rare that twoauthors with very similar names work in the same research area. These hypotheseswork in most cases but, when they fail, the errors they generate are very hard to �x.For example, in the case of authors with Asian names, the �rst hypothesis fails muchmore frequently than for authors with English or Latin names.Citations with Errors. Errors occur in citation data which are sometimesimpossible to detect. The methods need to be tolerant to such errors.E�ciency. With the high amount of articles being published nowadays in thedi�erent knowledge areas, the solutions need to deal with the problem e�ciently. Fewproposed methods have this explicit concern.Practicality and Cost. As we shall see, most of the best current methodsfor solving the author name disambiguation problem are supervised, i.e., they requirelarge amounts of manually labeled data explicitly indicating whether two ambiguousnames correspond to the same author or no, to serve as training for some machinelearning procedure [Ferreira et al., 2012b]. Creating such training data is very costlyand laborious. This also may hurt the practical application of these methods, mainlyas the digital library evolves and more training is required to learn new patterns.Adaptability to Di�erent Knowledge Areas. As we shall see, most of thecollections used to evaluate the methods are related to Computer Science. However,other knowledge areas (e.g., Humanities, Biology, Medicine) may have di�erent publi-cation patterns (e.g., many publications with a sole author or with a lot of coauthors)which may cause some additional di�culties for the current generation of methods,requiring adaptations.Incremental Disambiguation. Ideally, disambiguation should be performedincrementally as new citations are incorporated into the DL, since it is not reasonableto assume that the whole DL should be disambiguated at each new load. However,most, if not all, methods ignore this fact.Evaluation. The methods for disambiguating author names in bibliographiccitations are usually evaluated in static scenarios without considering a time evolvingdigital library, containing dynamic patterns such as the introduction of citations of newauthors and the change of researchers' interests/expertises over time.Author Pro�le Changes. It is very common that the research interests ofan author change over time. This can happen for many reasons, for example, newcollaborations, change in research group or institution, natural evolution of a research�eld, etc. These changes may cause modi�cations in the model representing the author

1.1. Motivation 5pro�le causing di�culties for the methods. A possible solution probably involves re-training, but determining when to retrain is a challenge. However, this issue has beenlargely ignored by all methods.New Authors. The methods should be capable of identifying references to newambiguous authors who do not have citations in the DL yet.These challenges have led to a myriad of author disambiguation meth-ods [Bhattacharya and Getoor, 2006, 2007; Culotta et al., 2007; Fan et al., 2011;Han et al., 2004, 2005a,b; Huang et al., 2006; Kanani et al., 2007; Kang et al., 2009;Levin and Heuser, 2010; Levin et al., 2012; Malin, 2005; On et al., 2006; Pereira et al.,2009; Shu et al., 2009; Soler, 2007; Song et al., 2007; Tang et al., 2012; Torvik et al.,2005; Treeratpituk and Giles, 2009; Yang et al., 2008]. However, despite the fact thatmost of these methods were demonstrated to be relatively e�ective (in terms of errorrate or similar metrics), none of them provides a perfect and �nal solution for theproblem, i.e., they produce errors meaning that there is space for improvements.In this thesis, we are particularly interested in the E�ectiveness, Practicabiltyand Cost, and Evaluation challenges. To help with the �rst two challenges, we proposeSAND (standing for Self-training Author Name Disambiguator). As mentioned before,the most e�ective methods usually follow a supervised approach. These methods ex-ploit a set of training examples, from which a disambiguation function is derived andthen used to assign the citation records to their corresponding authors. However, theacquisition of training examples requires skilled human annotators to manually labelcitation records. DLs are very dynamic systems, thus manual labeling of large volumesof examples is unfeasible. On the other hand, unsupervised methods require no manuallabeling e�ort, since they simply group citation records into clusters by maximizingintra-cluster similarity while minimizing inter-cluster similarity. SAND exploits thestrengths of both supervised and unsupervised methods. Speci�cally, it works in threesteps. In the �rst step, (author grouping), in an unsupervised way, recurring patternsin the coauthorship graph are exploited in order to produce very pure clusters of refer-ences. In the second step, (cluster selection), a subset of the clusters produced in theprevious step is selected as training data for the next step. Then, in the third step,(author assignment), a learned function is derived to disambiguate the references inthe clusters that were not selected in the previous step.To help addressing the Evaluation challenge, we propose SyGAR (standing forSynthetic Generator of Authorship Records). It is capable of generating synthetic cita-tion records given as input a list of disambiguated records of citations extracted froma real digital library (input collection). The synthetically generated records follow thepublication pro�les (i.e., distributions of title terms, coauthor names and publication

6 Chapter 1. Introductionvenue title) of existing authors extracted from the input collection. Moreover, SyGARcan be parameterized to generate records for new authors (not present in the input col-lection), for authors with dynamic pro�les, as well as records containing typographicalerrors.1.2 ContributionsThe two main hypotheses of this thesis are that we may: (1) automatically select andlabel the examples used by a supervised technique, aiming to e�ciently produce a dis-ambiguation function that will be used to disambiguate the author names in the citationrecords, and (2) produce realistic collections to evaluate the disambiguation methodsin various scenarios. In order to con�rm these hypotheses, the main contributions ofthis thesis are:1. A taxonomy for classifying author name disambiguation methods [Ferreira et al.,2012b] that allowed us to better understand the current methods proposed in theliterature and present a survey of the most representative ones;2. SAND (standing for Self-training Author Name Disambiguator) [Ferreira et al.,2010], a new hybrid disambiguation method, that exploits the strengths of bothunsupervised and supervised techniques for author name disambiguation; and3. SyGAR (standing for Synthetic Generator of AuthorshipRecords) [Ferreira et al., 2009, 2012a], a new tested and validated syn-thetic generator of citation records, that helps evaluating, in several realisticscenarios and under controlled conditions, solutions to the name ambiguityproblem as well as to other problems related to name ambiguity.In addition to the above contributions, the work presented in this the-sis also in�uenced the development and evaluation of other methods, namelyHHC (Heuristic-based Hierarchical Clustering) [Cota et al., 2010], WAD (Web Au-thor Disambiguation) [Pereira et al., 2009], INDi (Incremental Name Disambigua-tion) [Carvalho et al., 2011], SSAND (Selective Sampling for Author Name Disam-biguation) [Ferreira et al., 2012c] and SLAND (Self-training Lazy Associative NameDisambiguation) [Veloso et al., 2012].

1.3. Thesis Outline 71.3 Thesis OutlineThe rest of this thesis is structured in as follows.Chapter 2 [The Author Name Disambiguation Task - Foundations] formallyde�nes the name disambiguation task and some metrics and collections used toevaluate disambiguation methods are presented.Chapter 3 [Automatic Author Name Disambiguation Methods] de�nes ataxonomy for classifying name disambiguation methods and provide a description ofseveral representative methods.Chapter 4 [SAND: Self-training Author Name Disambiguator] describes ourproposed author name disambiguation method along with its evaluation.Chapter 5 [SyGAR: Synthetic Generator of Authorship Records] presentsour generator of synthetic citation records to evaluated disambiguation methods.Chapter 6 [Conclusion] concludes the thesis, by summarizing our results anddiscussing future work.

Chapter 2The Author Name DisambiguationTask - Foundations
In this chapter, we formally characterize the name disambiguation task and describesome metrics and collections used to evaluate disambiguation methods.To illustrate the de�nitions, we will use the examples showed in Table 2.1. Inthis table there are four citations ({c1, c2, c3, c4}), where each one has its author namesidenti�ed in this table by rj, 1 ≤ j ≤ 20. The author names r3 and r15 are examples ofhomonyms where r3 refers to �Ajay Gupta� from IBM Research, India and r15 refersto �Aarti Gupta� from NEC Laboratories America, USA. The names r3 and r7 areexamples of synonyms. Both names refer to Ajay Gupta from IBM Research - India.Table 2.1. Illustrative example (ambiguous group of A. Gupta).Citation Id Citation

c1 (r1) S. Godbole, (r2) I. Bhattacharya, (r3) A. Gupta, (r4) A. Verma.Building re-usable dictionary repositories for real-world text mining.CIKM, 2010.
c2 (r5) Indrajit Bhattacharya, (r6) Shantanu Godbole, (r7) Ajay Gupta,(r8) Ashish Verma, (r9) Je� Achtermann, (r10) Kevin English. En-abling analysts in managed services for CRM analytics. KDD, 2009.
c3 (r11) T. Nghiem, (r12) S. Sankaranarayanan, (r13) G. E. Fainekos, (r14)F. Ivancic, (r15) A. Gupta, (r16) G. J. Pappas. Monte-carlo techniquesfor falsi�cation of temporal properties of non-linear hybrid systems.HSCC, 2010.
c4 (r17) William R. Harris, (r18) Sriram Sankaranarayanan, (r19) FranjoIvancic, (r20) Aarti Gupta. Program analysis via satis�ability modulopath programs. POPL, 2010.9

10 Chapter 2. The Author Name Disambiguation Task - Foundations2.1 De�nitionsWe start with some basic de�nitions.De�nition 2.1.1 (Citation Record) A citation record c is a set of bibliographicdata, such as author names, work title, publication venue title, publication year, etc.,that is pertinent to a particular article. More formally, each citation record c has a listof attributes that includes at least author names, work title and publication venue title.A speci�c value is associated to each attribute in a citation, which may be composedof several elements. In case of the attribute �author names�, an element correspondsto the name of a single unique author. In case of the other attributes, an elementcorresponds to a word/term.De�nition 2.1.2 (Reference) Each author name element is a reference r to an au-thor. We associate a list of attributes to each reference r. In the context of bibliographiccitations, r.author corresponds to the author name attribute, r.coauthors correspondsto the other author names in a citation record (coauthors), r.title corresponds to thework title attribute, r.venue corresponds to the publication venue title attribute, andother attributes such as publication year, a�liation, e-mail and so on.For instance, the reference r3 in the citation c1 in the Table 2.1 has the follow-ing attributes values: r3.author=�A. Gupta�, r3.coauthors={�S. Godbole�, �I. Bhat-tacharya�, �A. Verma�}, r3.title=�Building re-usable dictionary repositories for real-world text mining�, r3.venue=�CIKM� and r3.year=�2010�.De�nition 2.1.3 (Ambiguous Group) An Ambiguous group is a group of refer-ences whose value of the author name attribute are ambiguous, i.e., groups of referenceshaving author name attributes with similar names.2.2 Task CharacterizationThe name disambiguation task may be formulated as follows: Let C = {c1, c2, ..., ck} bea set of citation records. Each element of the attribute �author names� is a reference rjto an author. The objective of a disambiguation method is to produce a disambiguationfunction that is used to partition the set of references to authors {r1, r2, . . . , rm} into
n sets {a1, a2, . . . , an}, so that each partition ai contains (all and ideally only all) thereferences to a same author.To disambiguate the bibliographic citations of a DL, we should �rst split the set ofreferences to authors into ambiguous groups. The ambiguous groups may be obtained,

2.3. Evaluation Metrics 11for instance, by using a blocking method [On et al., 2005]. Blocking methods addressscalability issues avoiding the need for comparisons among all references.2.3 Evaluation MetricsIn this section, we describe K, pairwise F1, cluster F1, RCS and B-cubed metrics thatare usually used for evaluating disambiguation methods. The key idea is to comparethe clusters extracted by disambiguation methods against ideal, perfect clusters, whichwere manually extracted. Hereafter, a cluster extracted by a disambiguation methodwill be referred to as empirical cluster, while a perfect cluster will be referred to astheoretical cluster.K MetricThe K metric [Lapidot, 2002] determines the trade-o� between the average clusterpurity (ACP) and the average author purity (AAP) or cohesion. Given an ambiguousgroup, ACP evaluates the purity of the empirical clusters with respect to the theoreticalclusters for this ambiguous group. Thus, if the empirical clusters are pure (i.e., theycontain only references to the same author), the corresponding ACP value will be 1.ACP is de�ned in Equation 2.1:ACP =
1

N

e
∑

i=1

t
∑

j=1

n2
ij

ni

(2.1)where N is the total number of references in the ambiguous group, t is the number oftheoretical clusters in the ambiguous group, e is the number of empirical clusters forthis ambiguous group, ni is the total number of references in the empirical cluster i,and nij is the total number of references in the empirical cluster i which are also inthe theoretical cluster j.For a given ambiguous group, the cohesion metric AAP evaluates the fragmenta-tion of the empirical clusters with respect to the theoretical clusters. If the empiricalclusters are not fragmented, the corresponding AAP value will be 1. In other words, thecohesion metric AAP can be thought as the inverse of the fragmentation. The higherthe AAP value, the less fragmented are the clusters. AAP is de�ned in Equation 2.2:AAP =
1

N

t
∑

j=1

e
∑

i=1

n2
ij

nj

(2.2)

12 Chapter 2. The Author Name Disambiguation Task - Foundationswhere nj is the total number of references in the theoretical cluster j.The K metric consists of the geometric mean between ACP and AAP values.It evaluates the purity and fragmentation of the empirical clusters extracted by eachmethod. The K metric is given in Equation 2.3:
K =

√ACP× AAP (2.3)Pairwise F1Pairwise F1 (pF1) is the F1 metric [Rijsbergen, 1979] calculated using pairwise precisionand pairwise recall. Pairwise precision (pP) is calculated as pP= a
a+c

, where a is thenumber of pairs of references in an empirical cluster that are (correctly) associatedwith the same author, and c is the number of pairs of references in an empirical clusternot corresponding to the same author. Pairwise recall (pR) is calculated as pR= a
a+b

,where b is the number of pairs of references associated with the same author that arenot in the same empirical cluster. The F1-metric is de�ned in Equation 2.4:
pF1 = 2× pP × pR

pP + pR
(2.4)Cluster F1Cluster F1 (cF1) is the F1 metric calculated using cluster precision and cluster recallthat measures the performance at the cluster level. Cluster precision (cP) is calculatedas cP = a/(a + c), where a is the number of completely correct clusters (a correctcluster should have all the references of an author and only them, i.e., none of anotherauthor; otherwise it is incorrect) and c is the number of incorrect clusters. Clusterrecall (cR) is calculated as cR = a/(a + b), where b is the number of clusters thatshould be created but were not. This is a metric to summarize information aboutthe completely correct clusters generated by the method. Likewise, cF1 is analogouslyde�ned by the above formula.Ratio of Cluster SizeThe ratio of cluster size (RCS) is the number of empirical clusters versus the numberof theoretical clusters. This serves to evaluate how close is the measure to the idealnumber of clusters to be generated.

2.3. Evaluation Metrics 13B-CubedB-Cubed metric was proposed by Bagga and Baldwin [1998] and has been used toevaluate Web person name search task [Artiles et al., 2010]. B-Cubed calculates the�nal precision and recall based on the precision (Pr) and recall (Rr) of each reference
r that are de�ned as:

Pr =
nr
i

ni

(2.5)
Rr =

nr
i

nj

(2.6)where nr
i is the total number of references that refer to same author of r and belongto the same empirical cluster i that contains r, ni is the total number of references inthe empirical cluster i that contains r and nj is the total number of references in thetheoretical cluster j that contains r.The �nal precision (bP) and recall (bR) are calculated by the following formulas:

bP =

N
∑

r=1

wr × Pr (2.7)
bR =

N
∑

r=1

wr × Rr (2.8)where N is the number of references in the collection and wr is the weight of thereference r in the collection. The value of each wr is commonly de�ned as 1/N .The harmonic mean (bFα) of B-Cubed precision and recall is calculated by:
bFα =

1

α 1
bP

+ (1− α) 1
bR

(2.9)Application of the metrics - an illustrative exampleConsider the following example (see Figure 2.1): We have three theoretical clustersand four empirical clusters. Only one empirical cluster is not pure and there are tworeferences fragmented into two clusters.Table 2.2 shows the results of each metric applied to the illustrative exampleshowed in Figure 2.1. We can notice that ACP and AAP of K metric and bP and bRof B-Cubed metrics produce similar results and that pF1 does not consider references

14 Chapter 2. The Author Name Disambiguation Task - Foundations

(a) Theoretical clusters (b) Empirical clustersFigure 2.1. An illustrative example. Each geometric �gure represents a referenceto an author. The same �gures refer to the same author.Table 2.2. Performance of the evaluation metrics.Metric ResultK ACP = 1

9
× (3

2

3
+ 32

3
+ 12

2
+ 12

2
+ 12

1
) = 0.89 K = 0.81AAP = 1

9
× (3

2

4
+ 32

3
+ 12

3
+ 12

2
+ 12

1
) = 0.73pF1 pP = 3+3+0+0+0

3+3+1+0
= 0.84 pF1= 0.70pR = 3+3+0+0+0

6+3+1
= 0.60cF1 cP = 1

4
= 0.25 cF1= 0.28cR = 1

3
= 0.33RCS RCS = 4

3
= 1.33B-Cubed bP = 1

9
(3
3
+ 3

3
+ 3

3
+ 3

3
+ 3

3
+ 3

3
+ 1

2
+ 1

2
+ 1

1
) = 0.89 bFα=0.5 = 0.68bR = 1

9
(3
4
+ 3

4
+ 3

4
+ 3

3
+ 3

3
+ 3

3
+ 1

4
+ 1

2
+ 1

2
) = 0.72which cannot be paired with other ones of the same author in the same empiricalcluster.2.4 CollectionsAmong the collections more commonly used to evaluate the author name disambigua-tion methods we can mention CiteSeer, DBLP, Penn, BDBComp and Rexa1 that con-tain publications of computer science researchers, arXiv2 that contains citations fromhigh physics publications, BioBase3 that contains citations from biological publications,1http://rexa.info/2http://www.cs.cornell.edu/projects/kddcup3http://www.elsevier.com/wps/�nd/bibliographicdatabasedescription.cws_home/600715/description#description

2.4. Collections 15IMDb4 that contains data from movies, MEDLINE and BioMed that contain data frombiomedical publications and Cora5 that contains data on duplicate citations. In thissection, we describe in more details DBLP, perhaps the most used of all previouslymentioned collections [Han et al., 2004, 2005b,a; Pereira et al., 2009; Yang et al., 2008],and BDBComp, a collection built by us, that has the distinctive property that manyauthors possess only one publication, making the disambiguation task even harder. Weexploit both collections in this thesis for evaluation purposes.The collection of references extracted from DBLP sums up 4,287 references as-sociated with 220 distinct authors, which means an average of approximately 20 ref-erences per author. This collection includes 2,270 references whose author names arein short format. Small variations of this collection have been used in several otherworks [Han et al., 2004, 2005b,a; Pereira et al., 2009; Yang et al., 2008]. Its originalversion was created by Han et al. [2004], and they manually labeled the references.For this, they used the author's publication home page, a�liation name, e-mail, andcoauthor names in a complete name format, and also sent emails to some authors tocon�rm their authorship. The references for which they had insu�cient information tobe judged were eliminated. Han et al. [2004] also replaced the abbreviated publicationvenue titles by their complete version obtained from DBLP. We used 11 ambiguousgroups extracted by Han et al. [2004] with some corrections.The collection of references extracted from BDBComp sums up 361 referencesassociated with 184 distinct authors, approximately two references per author, in whichonly eigth author names are in short format. Notice that, although much smaller thanthe DBLP collection, this collection is very di�cult to disambiguate, because it hasmany authors with only one citation. This collection was created by us and containsthe 10 largest ambiguous groups found in BDBComp at the time of its creation.Table 2.3 shows more detailed information about the collections and its ambiguousgroups. Disambiguation is particularly di�cult in ambiguous groups such as the �C.Chen� group, in which the correct author must be selected from 60 possible authors,and the �F. Silva� group, in which the majority of authors has appeared in only onecitation.As mentioned before, each reference has the author name, a list of coauthornames, the title of the work and the title of the publication venue (conference orjournal) attributes.Figure 2.2 shows the authorship distribution within each of two representativegroups of each collection. Notice that, for a given group, few authors are very proli�c4http://www.imdb.com5http://www.cs.umass.edu/ mccallum/code-data.html

16 Chapter 2. The Author Name Disambiguation Task - FoundationsTable 2.3. The DBLP and BDBComp collectionsDBLP BDBCompAmbiguous #References/ Ambiguous #References/Group #Authors Group #AuthorsA. Gupta 576/26 A. Oliveira 52/16A. Kumar 243/14 A. Silva 64/32C. Chen 798/60 F. Silva 26/20D. Johnson 368/15 J. Oliveira 48/18J. Martin 112/16 J. Silva 36/17J. Robinson 171/12 J. Souza 35/11J. Smith 921/29 L. Silva 33/18K. Tanaka 280/10 M. Silva 21/16M. Brown 153/13 R. Santos 20/16M. Jones 260/13 R. Silva 28/20M. Miller 405/12 − −and appear in several citations, while most of the authors appear in only few citations(the same trend is observed in all groups of DBLP and BDBComp). This is an intrinsiccharacteristic of scienti�c publications, as pointed in [Liming and Lihua, 2005].

2.4. Collections 17

 0.001

 0.01

 0.1

 1 10 100

F
ra

c
ti
o

n
 o

f
C

it
a

ti
o

n
s

Author

Ambiguous Group of C. Chen

 0.001

 0.01

 0.1

 1

 1 10 100

F
ra

c
ti
o

n
 o

f
C

it
a

ti
o

n
s

Author

Ambiguous Group of A. Gupta

 0.01

 0.1

 1

 1 10 100

F
ra

c
ti
o

n
 o

f
C

it
a

ti
o

n
s

Author

Ambiguous Group of A. Oliveira

 0.01

 0.1

 1

 1 10 100

F
ra

c
ti
o

n
 o

f
C

it
a

ti
o

n
s

Author

Ambiguous Group of J. Silva

Figure 2.2. Authorship distribution within each ambiguous group. Authors(x-axis) are sorted in decreasing order of proli�cness (i.e., more proli�c authorsappear in the �rst positions).

Chapter 3Automatic Author NameDisambiguation Methods
In this chapter, we propose a taxonomy [Ferreira et al., 2012b] for characterizing the au-thor name disambiguationmethods in scholarly digital libraries and present an overviewof representative author name disambiguation methods.3.1 A Taxonomy for Author Name DisambiguationMethodsThis section presents a hierarchical taxonomy for grouping the most repre-sentative automatic author name disambiguation methods found in the litera-ture. The proposed taxonomy is shown in Figure 3.1. The methods maybe classi�ed according to the main type of exploited approach: author group-ing [Bhattacharya and Getoor, 2007; Cota et al., 2010; Culotta et al., 2007; Fan et al.,2011; Ferreira et al., 2010; Han et al., 2005b; Huang et al., 2006; Kanani et al., 2007;Kang et al., 2009; On and Lee, 2007; Pereira et al., 2009; Soler, 2007; Song et al.,2007; Torvik et al., 2005; Torvik and Smalheiser, 2009; Treeratpituk and Giles, 2009;On et al., 2006; Yang et al., 2008], which tries to group the references to the sameauthor using some type of similarity among reference attributes, or author assign-ment [Bhattacharya and Getoor, 2006; Ferreira et al., 2010; Han et al., 2004, 2005a;Tang et al., 2012], which aims at directly assigning the references to their respectiveauthors. Alternatively, the methods may be grouped according to the evidence ex-plored in the disambiguation task: the citation attributes (only), Web information, orimplicit data that can be extracted from the available information.19

20 Chapter 3. Automatic Author Name Disambiguation Methods

Figure 3.1. A taxonomy for author name disambiguation methods.Notice that in this chapter we cover only automatic methods. Other types ofmethod, such as manual assignment by librarians [Scoville et al., 2003] or collaborativee�orts1, rely heavily on human e�orts, which prevent them from being used in massivename disambiguation tasks. For this reason, they are not addressed in this chapter.There are also e�orts to establish a unique identi�cation to each author, such as theuse of an Open Researcher Contributor Identi�cation2 (ORCID), but these are also notcovered here.Since the name disambiguation problem is not restricted to a single con-text, it is also worth noticing that several other name disambiguation meth-ods, which exploit distinct pieces of evidence or are targeted at other ap-plications (i.e., name disambiguation in Web search results), have been de-scribed in the literature [Bekkerman and McCallum, 2005; Diehl et al., 2006;Galvez and de Moya Anegón, 2007; Vu et al., 2007; Yoshida et al., 2010]. However,a discussion of these methods is outside the scope of this chapter.Finally, we should stress that the categories in our taxonomy are not completelydisjoint. For instance, there are methods that use two or more types of evidence ormix approaches. In the next subsections, we detail our proposed taxonomy.1http://meta.wikimedia.org/wiki/WikiAuthors2http://www.orcid.org

3.1. A Taxonomy for Author Name Disambiguation Methods 213.1.1 Type of ApproachAs said before, one way to organize the several existing author name disambiguationmethods is according to the type of approach they exploit. We elaborate this distinctionfurther in the discussion below.3.1.1.1 Author Grouping MethodsAuthor grouping methods apply a similarity function to the attributes of the references(or group of references) in order to decide whether to group the corresponding refer-ences using a clustering technique. The similarity function may be prede�ned (based onexisting ones and depending on the type of the attribute) [Bhattacharya and Getoor,2007; Cota et al., 2010; Han et al., 2005b; On and Lee, 2007; Soler, 2007], learned us-ing a supervised machine learning technique [Culotta et al., 2007; Huang et al., 2006;Torvik et al., 2005; Torvik and Smalheiser, 2009; Treeratpituk and Giles, 2009], or ex-tracted from the relationships among authors and coauthors, usually represented as agraph [Fan et al., 2011; Levin and Heuser, 2010; On et al., 2006]. The de�ned simi-larity function is then used along with some clustering technique to group referencesof a same author, trying to maximize intra and minimize inter-cluster similarities,respectively.De�ning a Similarity FunctionHere, a similarity function is responsible for determining how similar two references(or groups of references) to authors are. The goal is to obtain a function that returnshigh similarity values for references to the same author and returns low similarityvalues for references to di�erent authors. Moreover, it is desirable that the similarityfunction be transitive. More speci�cally, let c1, c2 and c3 be three citation records,if c1 and c2 are very similar (according to the function) and c2 and c3 are also verysimilar, then c1 and c3 should have high similarity according to our function. Next,we discuss the ways to determine this similarity function.Using Prede�ned FunctionsThis class of methods has a speci�c prede�ned similarity function S embedded in theiralgorithms to check whether two references or groups of references refer to the sameauthor. Examples of such function S include [Cohen et al., 2003]: the Levenshteindistance, Jaccard coe�cient, cosine similarity, soft-TFIDF and others [Cohen et al.,2003], applied to elements of the reference attributes. Ad-hoc combinations of suchfunctions have also been used (e.g., in [Bhattacharya and Getoor, 2007; Soler, 2007])

22 Chapter 3. Automatic Author Name Disambiguation MethodsThese methods do not need any type of supervision in terms of training databut their similarity functions are usually tuned to disambiguate a speci�c collectionof citation records. For di�erent collections, a new tuning procedure may be required.Finally, not all the functions used in these methods are transitive by nature.Learning a Similarity FunctionLearning a speci�c similarity function usually produces better results, since theselearned functions are directly optimized for the disambiguation problem at hand. Tolearn the similarity function, the disambiguation methods receive a set {sij} of pairsof references (the training data) along a special variable that informs whether thesetwo corresponding references refer to the same author. The pair of references, ri and
rj ∈ R (the set of references) are usually represented by a similarity vector ~sij . Eachsimilarity vector ~sij is composed of a set F of q features {f1, f2, . . . , fq}. Each feature
fp of these vectors represents a comparison between attributes ri.Al and rj .Al of tworeferences, ri and rj.The value of each feature is usually de�ned using other functions, such as Lev-enshtein distance, Jaccard coe�cient, Jaro-Winkler, cosine similarity, soft-TFIDF, eu-clidean distance, etc., or some speci�c heuristic, such as the number of terms or coau-thor names in common, or special values such as the initial of the �rst name along withthe last names, etc.The training data is then used to produce a similarity function S from R x Rto {0, 1}, where 1 means that the two references do refer to the same author and 0means that they do not. As mentioned before, methods relying in learning techniquesto de�ne the similarity function are quite e�ective in di�erent collections of citations,but they usually need many examples and su�cient features to work well, which canbe very costly to obtain.Exploiting Graph-based Similarity FunctionsThe methods that exploit graph-based similarity functions for author name disam-biguation usually create a coauthorship graph G = (V,E) for each ambiguous group.Each element of the author name and coauthor name attributes is represented by avertex v ∈ V . The same coauthor names are usually represented by only a uniquevertex. For each coauthorship (i.e., a pair of authors who publishes an article) an edge
〈vi, vj〉 ∈ E is created. The weight of each edge 〈vi, vj〉 is related to the amount ofarticles coauthored by the corresponding author names represented by vertices vi and
vj. A graph-based metric (e.g., shortest path as in [Levin and Heuser, 2010]) may be

3.1. A Taxonomy for Author Name Disambiguation Methods 23combined with other similarity functions on the attributes of the references to authorsor used as a new feature in the similarity vectors.Clustering TechniquesAuthor grouping methods usually exploit a clustering technique in their disambigua-tion task. The most used techniques are partitioning, hierarchical agglomerativeclustering, density-based and spectral clustering [Han and Kamber, 2005]. In general,these clustering techniques rely on a �good similarity function� to group the references.Next, we provide a brief description of these techniques applied to the author nameambiguity problem.Partitioning Clustering TechniqueA partitioning clustering technique, applied to the author name ambiguity problem,creates k partitions of the set of references to authors. These methods usually receivethe number k of author groups to be created as input as well as the set of references tobe disambiguated. They create an initial partitioning of k clusters (usually randomly)and, to improve the disambiguation process, move references to authors from one clusterto another based on some similarity criteria. The aim is that, in the end of the process,the references to a same author will be put together in the same cluster while referencesto di�erent authors will remain in di�erent clusters.One advantage of these partitioning techniques is that a reference may beassigned to di�erent authors during the disambiguation process, which can poten-tially help reducing erroneous assignments. This does not occur in hierarchicalagglomerative clustering techniques (see below). However, these methods usuallyneed to know the correct number of authors to perform well, which in most ofcases is an unrealistic assumption. Moreover, similarities are usually calculatedwith respect to a representative reference within the clusters (e.g., a centroid).Thus, references that are not similar enough to this representative one but are similarto other references in the cluster may not be inserted into this (perhaps correct) cluster.Hierarchical Agglomerative ClusteringA hierarchical agglomerative clustering technique [Han and Kamber, 2005] groups thereferences to authors in a hierarchical manner. Initially, each reference corresponds toa single cluster. Next, in each iteration of the process, the two most similar clustersare grouped together and the similarity among all clusters is recalculated. The process�nishes when there is only a single cluster fusing all others or the similarity betweenthe clusters reaches a given threshold.

24 Chapter 3. Automatic Author Name Disambiguation MethodsOne disadvantage of this technique is that if two references to di�erent authorsare put together in a same cluster during the process, they can no longer be movedto di�erent clusters for the remainder of the process, i.e., this type of error cannotbe corrected. In the case of the name disambiguation task, this particular homonymproblem is one of the hardest to correct. An other disadvantage is the cost: we usuallyneed to compare all clusters with each other to �nd the most suitable to be fused.Density-based ClusteringWith density-based clustering, a cluster corresponds to a dense region of references toauthors surrounded by a region of low density (according to some density criteria).References in regions with low density are considered as noise.An example of a density-based clustering algorithm that has been used in theauthor name disambiguation task is DBSCAN [Han and Kamber, 2005]. DBSCANestimates the density of references by counting the number of references within a spec-i�ed radius. DBSCAN classi�es each reference as core references (i.e., references whosenumber of neighborhood references within a speci�c radius exceeds a given threshold),border references (i.e., a reference that is not a core reference but is within the neigh-borhood of a core reference) and noise references (i.e., a reference that is neither corenor border).DBSCAN initially labels all references as core, border or noise based on theprocedure described above. Next, it disconsiders all noise references and introducesedges between the core references whithin a given radius of each other. Each groupof connected references is a cluster and each border reference is associated with onecluster of its core references.One advantage of density-based clustering techniques is that the clusters areconstructed using several representative references to authors. A disadvantage is thatthey are very sensible to their thresholds.Spectral ClusteringSpectral clustering techniques [Zha et al., 2001] are graph-based techniques that com-pute the eigenvalues and eigenvectors, the spectral information, of a Laplacian Matrixthat, in the the author name disambiguation task, represents a similarity matrix ofa weighted graph G = (V,E). In the name disambiguation task, each vertex v ∈ Vrepresents a reference to an author and each weighted edge 〈vi, vj〉 represents the sim-ilarity between the attributes of the vertices vi and vj. A graph-based technique splitsthe vertices into clusters by maximizing the weights of intra-cluster vertices and min-imizing the weights of the inter-clusters vertices. A spectral clustering technique uses

3.1. A Taxonomy for Author Name Disambiguation Methods 25the spectral information (i.e., eigenvalues and eigenvectors) instead of the similaritymatrix in the clustering process.Spectral clustering usually produces better performance than traditional cluster-ing techniques. However, the spectral clustering method used in [Han et al., 2005b] forauthor name disambiguation needs to know the correct number of the authors (clusters)which, as discussed before, can be unrealistic in real scenarios.3.1.1.2 Author Assignment MethodsAuthor assignment methods directly assign each reference to a given author by con-structing a model that represents the author (for instance, the probabilities of anauthor publishing an article with other (co-)authors, in a given publication venueand using a list of speci�c terms in the work title) using either a supervised classi-�cation technique [Ferreira et al., 2010; Han et al., 2004] or a model-based clusteringtechnique [Bhattacharya and Getoor, 2006; Han et al., 2005a].Classi�cationMethods in this class assign the references to their authors using a supervised machinelearning technique. More speci�cally, they receive as input a set of references to authorswith their attributes called the training data (denoted as D) that consists of examplesor, in this case, references for which the correct authorship is known. Each example iscomposed of a set F of m features {f1, f2, . . . , fm} along with a special variable calledthe author. This author variable draws its value from a discrete set of labels {a1, a2, . . . ,
an}, in which each label uniquely identi�es an author. The training examples areused to produce a disambiguation function (i.e., the disambiguator) that relates thefeatures in the training examples to the correct author. The test set (denoted as T)for the disambiguation task consists of a set of references for which the features areknown while the correct author is unknown. The disambiguator, which is a functionfrom {f1, f2, . . . , fm} to {a1, a2, . . . , an}, is used to predict the correct author for thereferences in the test set. In this context, the disambiguator essentially divides therecords in T into n sets {a1, a2, . . . , an}, where ai contains (ideally all and no other)references in which the ith author is included.These methods are usually very e�ective when faced with a large number ofexamples of citations for each author. Another advantage is that, if the collection hasbeen disambiguated (manually or automatically), the methods may be applied onlyto references of the new citations inserted into the collection by simply running thelearned model on them. Although successful cases of the application of these methods

26 Chapter 3. Automatic Author Name Disambiguation Methodshave been reported, the acquisition of training examples usually requires skilled humanannotators to manually label references. DLs are very dynamic systems, thus manuallabeling of large volumes of examples is unfeasible. Further, the disambiguation taskpresents nuances that impose the need for methods with speci�c abilities. For instance,since it is not reasonable to assume that examples for all possible authors are includedin the training data and the authors change their interest area over time, new examplesneed be insert into training data continuously and the methods need to be retrainedperiodically in order to maintain their e�ectiveness.ClusteringClustering techniques [Han and Kamber, 2005] that attempt to directly assign refer-ences to authors work by optimizing the �t between a set of references to an authorand some mathematical model used to represent that author. They use probabilistictechniques to determine the author in a iterative way to �t the model (or estimatethe parameters in probabilist techniques) of the authors. For instance, in the �rstrun of such a method each reference may be randomly distributed to an author aiand a function, from a set of features {f1, f2, . . . , fm} to {a1, a2, . . . , an}, is derivedusing this distribution. In the second iteration, this function is used to predict theauthor of each reference and a new function is derived to be used in the next iter-ation. This process continues until a stop condition is reached, for instance, aftera number of iterations. Two algorithms commonly used to �t the models in disam-biguation tasks are Expectation-Maximization (EM) [Dempster et al., 1977] and GibbsSampling [Gri�ths and Steyvers, 2004].These methods do not need training examples, but they usually require privilegedinformation about the correct number of authors or the number of author groups (i.e.,group of authors that publish together) and may take some time to estimate theirparameters (e.g., due to the several iterations). Additionally, these methods may beable to directly assign authors to their references in a new citations using the �nalderived function.
3.1.2 Explored EvidenceIn this section, we describe the kinds of evidence most commonly explored by thedisambiguation methods.

3.2. Overview of Representative Methods 27Citation InformationCitation information are the attributes directly extracted from the citations, such asauthor and coauthor names, work title, publication venue title, publication year, andso on. These attributes are the ones commonly found in all citations, but usually theyare not su�cient to perfectly disambiguate all references to authors. Some methodsalso assume the availability of additional information, such as e-mail addresses, postaladdresses, page headers etc., which are not always available or easy to obtain, althoughif existent, they usually help the process.Web InformationWeb information represents data retrieved from the Web that is used as additionalinformation about an author publication pro�le. This information is usually obtainedby submitting queries to search engines based on the values of citation attributes andthe returned Web pages are used as new evidence (attributes) to calculate the similarityamong references to authors. The new evidence usually improves the disambiguationtask. One problem is the additional cost of extracting all the needed information fromthe Web documents.Implicit EvidenceImplicit evidence is inferred from visible elements of attributes. Several techniques havebeen implemented to �nd implicit evidence, such as the latent topics of a citation. Oneexample is the Latent Direchlet Location (LDA) [Blei et al., 2003] that estimates thetopic distribution of a citation (i.e., LDA estimates the probability of each topic givena citation). This estimated distribution is used as new evidence (attribute) to calculatethe similarity among references to authors.3.2 Overview of Representative MethodsIn this section, we present a brief overview of representative author name disambigua-tion methods which fall under one or more categories of the proposed taxonomy. Ourmain focus here is on those methods that have been speci�cally designed to address thename ambiguity problem in the context of bibliographic citations, since they are morerelated to the scope of this work. In the next subsections, we describe each methodunder the category we consider that best �ts it. We notice that most of the described

28 Chapter 3. Automatic Author Name Disambiguation Methodsmethods explore citation information in the disambiguation task. Thus, we leave toSubsection 3.3 the discussion of those methods that use additional evidence.Although not part of our taxonomy, one important point to understand the dis-cussion that follows is the evaluation metrics that are used by each proposed methodin their experimental evaluations. In addition to the metrics discussed in Section 2.3,some disambiguation methods also use accuracy, which is basically the proportion ofcorrect results among all predictions, the traditional metrics of precision, recall, andF1 [Rijsbergen, 1979], commonly used for information retrieval and classi�cation prob-lems3 and MUC [Bagga and Baldwin, 1998]. In this last metric, recall is calculated bysumming up the number of elements in the theoretical clusters minus the number ofempirical clusters (obtained with the method) that contain these elements and divid-ing this by the total of elements minus the number of theoretical clusters. Precision iscalculated similarly.3.2.1 Author Grouping MethodsUsing Prede�ned FunctionsHan et al. [2005b] represent each reference as a feature vector where each feature corre-sponds to an element of a given instance of one of its attributes. The authors considertwo options for de�ning the feature weights: TFIDF [Baeza-Yates and Ribeiro-Neto,1999] and NTF (Normalized Term Frequency), being NTF given by ntf(i, d) =

freq(i, d)/maxfreq(i, d) where freq(i, d) refers to the feature frequency i within therecord d, and maxfreq(i, d) refers to the maximum term frequency of feature i in therecord d. The authors propose the use of K-way spectral clustering with QR decompo-sition [Zha et al., 2001] to construct clusters of references to the same author. To usethis clustering technique, the correct number of clusters to be generated needs to beinformed. The K-way spectral clustering method represents each reference as a vertexof an undirected graph and the weight of the edge between two vertices representsthe similarity between the attributes associated with the respective references. K-wayspectral clustering splits the graph so that records that are more similar to each otherwill belong to the same cluster. This method was evaluated using data obtained fromthe Web and DBLP. Experimental results achieved 63% of accuracy in DBLP and upto 84.3% in the Web collection.An algorithm for collective entity resolution (i.e., an algorithm that uses only dis-ambiguated coauthor names when disambiguating an author name of a citation) that3In this last case, the authors are considered as classes and the correct assignments need to beknown a priori.

3.2. Overview of Representative Methods 29exploits attribute elements (i.e., value of attributes present in the citation records) andrelational information (i.e., authorship information between entities referred in the ci-tations records) is proposed by Bhattacharya and Getoor [2007]. The authors proposea combined similarity function de�ned on attributes and relational information. As theinitial step, the authors create clusters of disambiguated references verifying if two ref-erences have at least k coauthor names in common (they used only the author names intheir experiments, but mention that other attributes may be used). The experimentswere performed using soft-TFIDF, Jaro-Winkler, Jaro and Scaled Levenshtein mea-sures for name attributes, and for relational attribute they used Common Neighbors,Jaccard coe�cient, Adamic/Adar similarity and Higher-order neighborhood measures.The authors exploit a greedy agglomerative strategy that merges the most similar clus-ters in each step. The collections used in the experiments were a subset of CiteSeercontaining machine learning documents, a collection of high energy physics publicationsfrom arXiv that was originally used in the KDD Cup 20034 and BioBase5, containingbiological publications of Elsevier and was used in an IBM KDD-Challenge competi-tion. The method obtained around 0.99 of F1 in the CiteSeer and arXiv collectionsand around 0.81 in the BioBase collection.Soler [2007] proposes a new distance metric between two citations, ci and cj,(or clusters of citations) based on the probability of these publications having termsand author names in common. In that work, the author proposes a semi-automaticalgorithm that creates clusters of articles using the proposed metric and summarizesthe clusters by means of a representative citation of the cluster including the distancefrom it to the others. Soler groups the citations for which the inter-citation distanceis minimum using as evidences the author names, email, address, title, keywords, re-search �eld, journal and publication year attributes. The �nal decision on whethertwo candidate clusters belong to the same author or not is given by a specialist. Hepresents some illustrative cases of clusters obtained using his metric with records ex-tracted from ISI-Thomson Web of Science database6 but a more formal evaluation wasnot performed.Cota et al. [2010] propose a heuristic-based hierarchical clustering method forauthor name disambiguation that involves two steps. In the �rst step, the methodcreates clusters of references with similar author names that share at least a similarcoauthor name. Author name similarity is given by a specialized name comparison4http://www.cs.cornell.edu/projects/kddcup5http://www.elsevier.com/wps/�nd/bibliographicdatabasedescription.cws_home/600715/description#description6http://isiknowledge.com

30 Chapter 3. Automatic Author Name Disambiguation Methodsfunction called Fragments. This step produces very pure but fragmented clusters.Then, in the second step, the method successively fuses clusters of references withsimilar author names according to the similarity between the citation attributes (i..e.,work title and publication venue) calculated using the cosine measure. In each roundof fusion, the information of fused clusters is aggregated (i.e., all words in the titlesare grouped together) providing more information for the next round. This process issuccessively repeated until no more fusions are possible according to a similarity thresh-old. The authors used pairwise F1 and K metrics on collections extracted from DBLPand BDBComp to evaluate the method and obtained around 0.77 and 0.93 for K inDBLP and BDBComp, respectively. An extension of this method that allows the namedisambiguation task to be incrementally performed is presented in [Carvalho et al.,2011].Learning a Similarity FunctionTorvik et al. [2005] propose to learn a probabilistic metric for determining the similar-ity among MEDLINE records. The learning model is created using similarity vectorsbetween two references. In that work, the similarity vector contains features resultingof the comparison between the normal citation attributes along with medical subjectheadings, language, and a�liation of two references. The authors also propose someheuristics for generating training sets (positive and negative) automatically. When theprobabilistic metric receives the attributes associated with two references, their sim-ilarity vector is created and the relative frequency of this pro�le in the positive andnegative training sets is checked for determining whether these two references refer tothe same author or not. In a subsequent work, Torvik and Smalheiser [2009] extendthis method by including additional features, new ways of automatically generatingtraining sets, an improved algorithm for dealing with the transitivity problem and anew agglomerative clustering algorithm for grouping records. The authors estimaterecall around 98.8%. They also estimate that only 0.5% of the clusters have mixedreferences of di�erent authors (purity), and that only in 2% of the cases the referencesof the same author are split into two or more clusters (fragmentation).Huang et al. [2006] present a framework for solving the name ambiguity problemin which a blocking method is �rst applied to create blocks of references to authors withsimilar names. Next DBSCAN, a density-based clustering method [Ester et al., 1996],is used for clustering references by author. For each block, the distance metric betweenpairs of citations used by DBSCAN is calculated by a trained online active supportvector machine algorithm (LASVM), which yields, according to the authors, a simpler

3.2. Overview of Representative Methods 31and faster model than the standard support vector machines (SVMs). The authorsuse di�erent functions for each di�erent attribute, such as the edit distance for emailsand URLs, Jaccard similarity for addresses and a�liations and soft-TFIDF for names.To demonstrate the e�ectiveness of this framework, the authors have applied it to amanually annotated dataset with 3,335 citation records and 490 distinct authors. Ex-periments were performed with pairs of references in which the disambiguator informswhether two references correspond to the same author or not. The authors obtained0.906 in terms of pairwise F1. It should be noticed that these results were obtained byexploiting additional sources of evidence, such as the page headers of papers obtainedfrom CiteSeer.Culotta et al. [2007] aim to learn a score function to be applied to the disambigua-tion result, such that higher scores correspond to the more correct disambiguations.Instead of calculating the score using pairs of references, the authors propose a scorefunction that considers all references in a cluster together, with the goal of maximizingthe result of the score function in the resulting disambiguation. To learn this function,they propose a training algorithm that is error-driven, i.e., training examples are gen-erated from incorrect predictions in the training data, and ranked, i.e., the classi�eruses a ranking of candidate predictions to tune its parameters. The authors evaluatedtwo loss functions to tune the parameters, Ranking Perceptron Freund and Schapire[1999] and Ranking MIRA Crammer and Singer [2003]. The experimental evaluationused two collections extracted from DBLP (one which is called Penn, because disam-biguation was performed manually by students from Penn State University) and otherfrom the Rexa7 Digital Library. As evaluation metrics, they used pairwise F1, MUCand B-Cubed [Bagga and Baldwin, 1998]. As evidence, they exploited features such as�rst and middle names of the authors, number of coauthors in common, rarity of thelast name, similarity between work titles, e-mails, a�liations and publication venuetitles, as well as the minimum, maximum and average values for real-valued features,among several others. They also used a greedy agglomerative clustering technique togroup the references. Ranking Perceptron generated the best results in DBLP andPenn, with 0.52 and 0.86 of pairwise F1, respectively. Ranking MIRA generates thebest result on the other DBLP collection with 0.931 of pairwise F1.Treeratpituk and Giles [2009] propose a learned similarity function for authorname disambiguation in the MEDLINE digital library. The authors exploit a large fea-ture set obtained from MEDLINE metadata, similar to that proposed in [Torvik et al.,2005]. The authors also use similarity vectors to learn the similarity function using a7http://rexa.info

32 Chapter 3. Automatic Author Name Disambiguation MethodsRandom Forest classi�er. They compare the use of Random Forests with decision trees,support vector machines, naïve Bayes and logistic regression to learn the function tobe used along with some clustering technique (left unspeci�ed). They also investigatethe performance of subsets of the features capable of reaching good e�ectiveness. Theauthors obtain almost 96% of accuracy in their experiments by exploiting this large setof features.Exploiting Graph-based Similarity FunctionsOn et al. [2006] address synonyms in the group entity resolution problem (i.e., a refer-ence to a person associated with a group of items, e.g., an author with a list of publi-cations) by proposing an approach that uses the quasi-clique graph-mining techniquefor exploiting, besides simple textual similarities, �contextual information� extractedfrom the group items' attributes (e.g., the citation attributes) as additional evidence.This contextual information is obtained constructing a graph for each group to repre-sent relationships between the author names (i.e., references) and the attribute values(e.g., co-authors). This graph is then superimposed on the pre-built graph constructedusing the entire set of author names. Using this contextual information, the authorsalso propose a graph-based distance function based on common quasi-clique betweenthe graphs of two entities (i.e., references). They compared their graph-based func-tion (distQC) with Jaccard, TF-IDF and IntelliClean functions [Lee et al., 2000] bymeasuring the precision and recall at the top k most similar references using three col-lections extracted from ACM8, BioMed (a dataset of medical publications) and IMDb.On average, the experiments show an improvement of 63%, 83% and 46% over Jaccard,TFIDF and IntelliClean functions in terms of precision at top-k records returned bytheir algorithm in ACM. Similar results were obtained for the other collections.Levin and Heuser [2010] propose a set of social network metrics that, togetherwith string metrics, generate match functions (i.e., functions used to verify whethertwo references represent the same author). These functions were used in (very small)collections extracted from Cora9, BDBComp and DBLP. The authors construct a graphwith two kinds of vertices: one represents a reference to an author occurring in acitation and the other represents the citation itself; and two kinds of edges: one linksthe reference to the citation and the other links the vertices that share the same authorname value. The authors obtained in their experiments around 95%, 82% and 95% ofF1 in versions of Cora, BDBComp and DBLP, respectively.8http://portal.acm.org9http://www.cs.umass.edu/ mccallum/code-data.html

3.2. Overview of Representative Methods 33Fan et al. [2011] propose the GHOST (GrapHical framewOrk for name diSam-biguaTion) framework. GHOST solves the homonym problem using only the coauthorname attribute in �ve steps. In the �rst one, GHOST represents a collection as agraph G=(V,E), where each vertex v ∈ V represents a reference to be disambiguatedand each undirected edge (vi, vj) ∈ E represents a coauthorship whose label Sij is aset of citations coauthored by vi and vj. In the second step, GHOST identi�es thevalid paths eliminating the invalid ones between two nodes, i.e., a path that containsa subpath viSikvkSkjvj where Sik is equal to Skj and both have only one citation. Inthe third step, GHOST creates a matrix representing similarities between the vertices.For this, the authors propose a new similarity function based on the formula that cal-culates the resistance of a parallel circuit. In the fourth step, the A�nity Propagationclustering algorithm [Frey and Dueck, 2007] is used to group the references to the sameauthor. Finally, in the last step, GHOST makes use of user feedback to improve theresults. Experimental evaluation was performed in collections extracted from DBLPand MEDLINE. GHOST obtained on average 0.86 and 0.98 of pairwise F1 in DBLPand MEDLINE, respectively.3.2.2 Author Assignment MethodsClassi�cationHan et al. [2004] propose two methods based on supervised learning techniques thatuse coauthor names, work titles and publication venues as evidence for assigning areference to its author. The �rst method uses a naïve Bayes model (NB), a generativestatistical model frequently used in word sense disambiguation tasks, to capture allwriting patterns in the authors' citations. The second method is based on SupportVector Machines (SVMs), which are discriminative models basically used as a classi-�er [Mitchell, 1997]. An important di�erence between the two techniques is that a NBmodel requires only positive examples to learn about the writing patterns, whereasSVMs require both positive and negative examples to learn how to identify the author.Both methods have been evaluated with data taken from the Web and DBLP. Experi-mental results show that, on average, using all attributes, the SVM-based method wasmore accurate (accuracy=95.6%) than the NB method (accuracy=91.3%) for the Webcollected dataset, while for the DBLP dataset the NB method performed better (SVMaccuracy was 65.4% while NB's was 69.1%).Veloso et al. [2012] propose SLAND, a disambiguation method that infers theauthor of a reference by using a supervised rule-based associative classi�er. The pro-posed method uses author names, work title and publication venue title attributes as

34 Chapter 3. Automatic Author Name Disambiguation Methodsfeatures and infers the most probable author of a given reference ri using the con�denceof the association rules X → ai where X only contains features of ri. The method alsoworks on demand, i.e., the association rules to infer the correct author of a referenceare generated in the moment of a disambiguation. The method is capable of insertingnew examples into the training data during the disambiguation process, using reliablepredictions, and detecting authors not present in the training data. Experiments wereconducted in two collections extracted from DBLP and BDBComp and the proposedmethod outperformed representative supervised methods (e.g., SVM and NB) consid-ering the Micro and Macro F1 metrics. In the DBLP and BDBComp collections, the(Micro) F1 values were 0.911 and 0.457, respectively. In order to deal with the cost ofobtaining training data, this method was extended in [Ferreira et al., 2010] to becomeself-trained, i.e., it is now capable of producing its own training examples using (test)references to be disambiguated. Initially, the method extracts pure clusters of refer-ences by exploiting highly discriminative features, such as coauthor names. The mostdissimilar clusters according to a given threshold are then selected to represent trainingexamples for their authors. Next, the references in the rest of clusters are classi�edaccording to these training examples. In the experiments with the same collections, theself-trained method outperformed by far the unsupervised methods KWAY and SVM-DBSCAN and the associative method was the best choice for classifying the remainingtest references not incorporated into the training data when compared to SVM andNB.ClusteringHan et al. [2005a] present an unsupervised hierarchical version of the naïve Bayes-basedmethod for modeling each author. In that work, the authors assume that each citationis generated by a mixture of K authors. They then calculate the probability of a citationrecord cm given an author ai, i.e., P(cm|ai) using the probability of each attribute ofthis record given such author, in a hierarchical way. To estimate the parameters, theauthors use the Expectation Maximization algorithm [Dempster et al., 1977] aiming tomaximize the likelihood of the citation records. The method obtained on average 54%and 58% of accuracy on data extracted from DBLP and the Web, respectively.Bhattacharya and Getoor [2006] extend the generative model Latent DirichletAllocation (LDA) and propose a probabilistic model for collective entity resolution thatuses the co-occurrence of the references to authors in each work to determine the entitiesjointly, i.e., they use the disambiguated references to disambiguate other references inthe same citation. In their model, the authors associate an attribute va, that contains

3.2. Overview of Representative Methods 35the author name in the citation, with each author a. They assume that each citationis constructed by choosing their authors from an author group (i.e., a group of authorsthat publish some article together) distribution. That is, initially a distribution thatdetermines the probability of each author group having a speci�c author chosen towrite the article is selected. Next using this distribution, the authors and a variationof their names are chosen for this citation. The proposed method receives as inputonly an approximation of the number of author groups in the collection. Experimentswere performed using citations extracted from CiteSeer and arXiv reaching up to 0.99and 0.98 respectively of pairwise F1.Tang et al. [2012] propose a probabilistic framework based on Hidden MarkovRandom Fields (HMRF) for the homonym subproblem. In this work, the authors useauthor names, work title, publication venue title, publication year, abstract and bib-liographic references as content-based evidence and relationships between citations asstructure-based evidence for disambiguating author names. Each relationship repre-sents the fact that two citations were published in the same publication venue, havea coauthor name in common, cite the other, have distinct coauthor names that werecoauthors in another citation, or have some speci�c user-provided constraint in com-mon. Content and structure-based evidence are modeled as feature functions (usedto represent the similarity between two citations by their content or relationships)which are then incorporated into a HMRF used to estimate the weights of the featurefunctions and to assign the citations to their authors. The authors also use BayesianInformation Criterion [Kass and Raftery, 1995] to estimate the number of authors ofthe collection. Experimental evaluation was performed on citations extracted from Ar-netMiner10. Pairwise F1 values were 0.888 and 0.805 when the method uses the correctnumber of authors and when it estimates this number, respectively.3.2.3 Using Additional EvidenceWeb InformationKanani et al. [2007] present two approaches for author name disambiguation thatgather additional evidence from the Web. They construct a graph in which each vertexcorresponds to a reference to an author and the edges are weighted with values thatrepresent the probability of the two vertices (i.e., references) being the same author.This weight is initially calculated using the citation attributes. The authors proposetwo approaches to represent the information gathered from the Web. In the �rst, they10http://arnetminer.org

36 Chapter 3. Automatic Author Name Disambiguation Methodsuse the result of searches submitted to a Web search engine for the work titles of ci-tation records of the corresponding references to authors to change the weight of theedge between two references. In the second, they use one of the returned pages of thesearch as a new type of vertex in the graph (web vertex), adding new edges from thisnew vertex to each previously existing reference vertex, indicating the probability ofthe reference and the web page beloging to the same author. The proposed methodlearns a maximum entropy or logistic regression model for a pair of references ai and
aj, and the weight of the edge 〈ai,aj〉 is given by the probability that the correspondingreferences refer to the same author minus the probability that these references referto the di�erent authors. In the end, a stochastic graph partitioning technique is usedto cluster the references. DBLP, Penn and the Rexa collections were used in theirexperiments. Using the results of searches to Google to change the weight of the edges,their method obtains around 0.905, 0.877 and 0.918 of accuracy and around 0.886,0.814 and 0.747 of pairwise F1 in the DBLP, Rexa and Penn collections, respectively.Experiments with the method that use the returned Web pages as vertices in the graphwere run only with DBLP, producing 0.882 of accuracy and 0.903 of pairwise F1 inthat collection.Yang et al. [2008] address the author name ambiguity problem using topics andcorrelations found on the Web. They determine the topics of the citation from venueinformation using an extraction algorithm based on association rules in order to createa topic association network. They also use the Web for retrieving publication pagesof authors or coauthors to be disambiguated. Then, they create a similarity functionmaking use of an SVM classi�er on top of all these features. The authors representreferences to authors as vertices in a graph and the similarity function is used to createthe edges between vertices. Their clustering technique removes a bridge edge wheneach resulting connected component has at least a given number of vertices. Theytested their approach on the collection constructed by Han et al. [2004] and improvedthe accuracy by 66% (0.75 of accuracy) when compared to the use of citations withouttopics and Web correlations.[Kang et al., 2009] exploit coauthorship information using a Web-based techniquethat obtains other (implicit) coauthors of the reference to be disambiguated. Theysubmit a pair of author names of a same citation as a query to Web search engines toretrieve documents containing both author names and then extract new names foundin these documents as new implicit coauthors of this pair. The authors measure thesimilarity between two references by counting the number of coauthors in commonand use the single-link agglomerative clustering technique [Jain et al., 1999] to groupthe references to the same author. They used a collection of citations published in

3.2. Overview of Representative Methods 37Korean during 1999-2006 that has only the homonym problem, obtaining around 0.85of pairwise F1.Pereira et al. [2009] also exploit Web information to disambiguate author names.The proposed method attempts to �nd Web documents corresponding to curriculavitae or Web pages containing publications of a single author. It works in three steps.The �rst step receives a list of citations whose references must be disambiguated and,for each citation, submits a query containing data from its attributes to a Web searchengine. It then inserts the top-m documents in the answer set into a setD of documents.The second step selects the documents in D that contain publication from a givenauthor. The third step groups the reference to authors whose citations occur in a samedocument in a hierarchical manner, i.e., if citations of two ambiguous references occurin the same Web document, these citations are considered as belonging to the sameauthor and are fused in a same cluster. The experimental evaluation was performedusing data from DBLP, obtaining on average 0.80, 0.76 and 0.14 of K, pairwise F1 andcluster F1 metrics, respectively.Implicit EvidenceSong et al. [2007] propose a two-step unsupervised method for author name disam-biguation. The �rst step uses Probabilistic Latent Semantic Analysis (PLSA) andLatent Dirichlet Allocation (LDA) to assign a vector of probabilities of topics to eachcitation. The PLSA and LDA proposed by Song et al. introduce a variable for persons(authors) in the generative model, that does not exist in general generative models.The second step considers the distributions of the probability of topics with respectto citations as a new attribute for name disambiguation. The authors use the Leven-shtein distance to measure the similarity between two names. When two names areconsidered similar, they use the probability vectors of two corresponding citations andthe Euclidean distance to merge the citations of the same authors. The authors com-pared their method with a greedy agglomerative clustering, K-way spectral clusteringand LASVM+DBSCAN on citations extracted from CiteSeer and personal names onthe Web. Their experiments demonstrate that their method, when faced with a lot ofcitation information, is more e�ective than the baselines, obtaining on average around0.911 and 0.936 of pairwise F1 on the Web and CiteSeer collections, respectively.Shu et al. [2009] extend the Latent Dirichlet Allocation model (LDA) for obtain-ing the topic distribution of each citation by adding the assumption that every topicis a Dirichlet distribution over all author names, that each document is a mixture oftopics, and that each topic is a Dirichlet distribution over all the words. They train

38 Chapter 3. Automatic Author Name Disambiguation Methodsa classi�er (C4.5 and SVMs) based on the similarity on topics, coauthor names, titleand venue, as well as on the minimum distance between coauthor names, to predictwhether two references correspond to the same author or not. The authors attemptto solve the problem of name ambiguity by trying to solve �rst the polysemy problemand then the synonymy. They use K-way spectral clustering to split the references into
k sets, one for each author, in order to deal with the polysemy problem. Next, theycompare two sets of references of authors whose names have a distance below a giventhreshold and count the number of citations from these two sets which are assigned tothe same author by the classi�er. This value is divided by the total number of pairs ofthose two sets and if the result is greater than a given threshold they are merged. Theauthors show the e�ectiveness of their method by applying it to data extracted fromDBLP. For the polysemy problem the precision and recall were over 0.9 for the mostambiguous groups while for the synonym problem the precision was around 0.99 andrecall was 0.917.3.3 Summary of CharacteristicsIn this section, we present an overview of the characteristics found in the describedauthor name disambiguation methods, which are summarized in Tables 3.1 and 3.2.The collections used to evaluate the methods have been taken from: (1) Cite-Seer, DBLP, BDBComp, ArnetMiner, and Rexa that contain publications of computerscience researchers; (2) arXiv that contains citations from high energy physics publi-cations; (3) BioBase, containing citations from biological publications; (4) MEDLINEand BioMed with data from biomedical publications; (5) ISI-Thomson with publica-tions from several knowledge areas; (6) Cora, which consists of duplicated citations inComputer Science and person names extracted from the Web; and (7) IMDb with dataabout movie actors.The majority of the described methods [Bhattacharya and Getoor, 2007;Cota et al., 2010; Culotta et al., 2007; Fan et al., 2011; Han et al., 2005b; Huang et al.,2006; Kanani et al., 2007; Kang et al., 2009; Levin and Heuser, 2010; On et al.,2006; Pereira et al., 2009; Shu et al., 2009; Soler, 2007; Song et al., 2007;Torvik and Smalheiser, 2009; Treeratpituk and Giles, 2009; Yang et al., 2008] try todisambiguate references to authors by using a similarity function to indicate whethertwo references refer to the same author instead of directly assigning the correspondingauthor to each reference, as proposed by some authors [Bhattacharya and Getoor, 2006;Ferreira et al., 2010; Han et al., 2004, 2005a; Tang et al., 2012; Veloso et al., 2012].

3.3.SummaryofCharacteristics
39

Table3.1.Summaryofcharacteristics-Authorgroupingmethods

Method Similarity function Clustering technique Evidence Collections Evaluation metric Subproblem # of authorsBhattacharya and Getoor [2007] Common neighbours, Agglomerative Author name CiteSeer, F1 Both UnknownJaccard, arXiv andAdamic/Adar and BioBaseHigher-orderneighbourhoodsCota et al. [2010] Fragment Agglomerative Citation attributes DBLP and BDBComp Pairwise F1 Both Unknowncomparison and F1 and KcosineCulotta et al. Culotta et al. [2007] Error-drive Agglomerative All of each collection DBDL and Rexa Pairwise F1, Both Unknownand hank-based MUC andlearning B-CubedFan et al. [2011] graph-based A�nity Propagation Author names DBLP and MEDLINE Pairwise F1 Homonym UnknownHan et al. [2005b] Cosine Spectral clustering Citation attributes DBLP and Web Accuracy Both KnownHuang et al. [2006] Learned using DBScan First page of the articles CiteSeer Pairwise F1 Both UnknownLASVMKanani et al. [2007] Learned using Partitioning Citation attributes DBLP, Penn and Rexa Accuracy and Both Unknownmaximum entropy and Web pages pairwise F1or logistic regressionKang et al. [2009] Heuristic Agglomerative Author names Korean citations F1 and under/ Homonym Unknownand Web pages over-clusteringerrorLevin and Heuser [2010] Social network - Citation attributes DBLP, Cora and BDBComp F1 Both UnknownmetricsOn et al. [2006] Quasi-clique - Citation/Movie attributes ACM, BioMed and IMDb Ranked recall Synonym Unknownand precisionPereira et al. [2009] Heuristic Agglomerative Citation attributes DBLP Pairwise and Both Unknowncluster F1and KShu et al. [2009] Learned using Spectral and Citation attributes DBLP Pairwise F1 Both KnownC4.5/SVMs agglomerativeand edit distance clusteringSoler [2007] Probabilistic Agglomerative Citation attributes, ISI-Thomson - Both Unknownmetric email, address, keywordsand research �eldSong et al. [2007] Levenshtein Agglomerative Citation attributes CiteSeer and Web Pairwise and Both Unknownand Euclidean and latent topics cluster F1distance (LDA/PLSA)Torvik and Smalheiser [2009] Learn a proba- Agglomerative MEDLINE metadata MEDLINE Recall Both Unknownbilist metricTreeratpituk and Giles [2009] Learned using - MEDLINE metadata MEDLINE Accuracy Both Unknownrandom forestclassi�erYang et al. [2008] Learned using Partitioning Citation attributes, DBLP Accuracy, Both UnknownSVM topics and precisionWeb pages and recall

40Chapter3.AutomaticAuthorNameDisambiguationMethods
Table3.2.Summaryofcharacteristics-Authorassignmentmethods

Method Technique Attributes Collections Evaluation metric Subproblem # of authorsClassi�cation Ferreira et al. [2010] Associative classi�er Citation attributes DBLP and BDBComp Pairwise F1 and K Both EstimatedHan et al. [2004] SVM and naïve Bayes classi�ers Citation attributes DBLP and Web Accuracy Both KnownVeloso et al. [2012] Associative classi�er Citation attributes DBLP and BDBComp F1 Both EstimatedClustering Bhattacharya and Getoor [2006] LDA with Gibbs sampling Author names CiteSeer and arXiv F1 Both EstimatedHan et al. [2005a] Hierarchical naïve Bayes with EM Citation attributes DBLP and Web Accuracy Both KnownTang et al. [2012] Hidden Markov Random Fields Citation attributes ArnetMiner Pairwise F1 Homonym Estimated

3.3. Summary of Characteristics 41Some of these methods receive the correct number of authors in the collection asinput [Fan et al., 2011; Han et al., 2005a,b] or this number corresponds to the num-ber of authors in the training data [Han et al., 2004]. Other methods, such as thoseproposed in [Bhattacharya and Getoor, 2006], [Tang et al., 2012] and [Ferreira et al.,2010], try to estimate this number.Almost half of the proposed methods [Bhattacharya and Getoor, 2006, 2007;Cota et al., 2010; Fan et al., 2011; Ferreira et al., 2010; Han et al., 2004, 2005a,b;Levin and Heuser, 2010; On et al., 2006; Shu et al., 2009] use at most the three maincitation attributes, namely, author names, work title and publication venue title, asdisambiguation evidence. These attributes are the most commonly found in citationrecords, constituting in most cases the hardest situation for disambiguation. Fewmethods [Kanani et al., 2007; Kang et al., 2009; Pereira et al., 2009; Yang et al., 2008]exploit additional evidence such as emails, addresses, paper headers etc., which are notalways available or easy to obtain.Finally, Tables 3.1 and 3.2 also show the evaluation metrics used by each of theproposed methods as well as the type of subproblem (i.e., synonymy, homonym, orboth) they tackled.

Chapter 4SAND: Self-training Author NameDisambiguator
In this chapter, we describe our proposed hybrid disambiguation method, SAND(standing for Self-training Author Name Disambiguator) [Ferreira et al., 2010], whichis one of the major contributions of this thesis. SAND exploits the strengths of bothauthor grouping and author assignment methods. Speci�cally, it works in three steps.In the �rst step, author grouping, recurring patterns in the coauthorship graph are ex-ploited in order to produce very pure clusters of references. In the second step, clusterselection, a subset of the clusters produced in the previous step is selected as trainingdata for the next step. Then, in the third step, author assignment, a learned functionis derived to disambiguate the references in the clusters that were not selected in theprevious step. The �nal result, as we shall see, is a highly e�ective and extremely prac-tical disambiguator. Experimental results, using references extracted from DBLP andBDBComp, as well as synthetic data produced with SyGAR, show that SAND outper-forms all author grouping methods including state-of-the art ones and has competitive,sometimes superior, performance when compared with author assignment methods,without the need for any manually labeled data as required by those methods.4.1 SAND DesignIn the following sections, we will present a detailed description of the SAND steps.These steps are applied after a well-known pre-processing procedure, which includesblocking, stop-word removal, and stemming. Stop-word removal and stemming areperformed on the words that compose work and publication venue titles. Moreover,authors with similar ambiguous names are grouped together (i.e., blocked), creating43

44 Chapter 4. SAND: Self-training Author Name Disambiguatorambiguous groups. Disambiguation operations are performed within each ambiguousgroup, so that useless comparisons involving non-ambiguous authors are avoided.4.1.1 The Author Grouping StepThe goal of this step is to automatically create pure clusters of references. Some ofthese clusters will be selected by the cluster selection step to compose the trainingdata to be used in the �nal step. The approach we adopt is to organize referenceswithin each ambiguous group into individual clusters, so that references placed in asame cluster tend to be very similar to each other and dissimilar to references placed inother clusters. The key intuition is that some of these clusters can be associated witha unique author label, therefore references within such cluster can serve as trainingexamples.In order to properly produce training examples, the extracted clusters should beas pure as possible, in the sense that each cluster should contain only references to oneauthor. Otherwise, if a cluster with a low degree of purity (i.e., a cluster with referencesto distinct authors) is selected as training, then references to di�erent authors couldbe assigned to the author label associated with this cluster in the author assignmentstep, increasing the homonym problem.A straightforward way of extracting pure clusters is to ensure that each one ofthem contains only a single reference. In this case, clusters are totally pure, however,fragmentation is maximum, i.e., the references of a same author are placed into di�er-ent clusters. Fragmented clusters are potentially detrimental for learning the authorassignment function, since references to the same author would receive di�erent authorlabels.Accordingly, in SAND, pure clusters are extracted by exploiting highly discrim-inative attributes, so that references associated with di�erent authors are unlikely tobe grouped together into the same cluster. In the context of bibliographic citation,we have based this strategy on a general heuristic that assumes that very rarely twoauthors with similar names that have coauthors in common would be two di�erentpeople in the real world [Cota et al., 2010].Figure 4.1(a) and (b) illustrate the author grouping step. Each geometric �gurerepresents a reference and the �gures with the same shape are references to the sameauthor. Algorithm 1 describes the author grouping step in details. This algorithmreceives as input an ambiguous group of references G (see Figure 4.1(a)) and returnsa list C of clusters of references (see Figure 4.1(b)). It processes G by splitting itinto two separate lists: S with references whose author names occur in a short format

4.1. SAND Design 45
(a) Ambiguous group of references (b) Applying the author grouping step

(c) Sorting the clusters (d) Selecting the training clusters
(e) Training and test setsFigure 4.1. Illustrative example. The author grouping and cluster selectionsteps.(i.e., names with only the initial of the �rst name and the last name) and L with theremaining ones (i.e., those references whose ambiguous author names are not in shortformat). Then, it proceeds by �rst processing L (line 6) and then S (line 7). Whenprocessing the lists L and S, the initial clusters of references are built using the authorname and the list of coauthor names as evidence. The idea of �rst processing the listof long names is that these names provide more reliable evidence for our similarityfunctions.Algorithm 2 describes the function ProcessList used to process the list of refer-ences in Algorithm 1 (lines 6 and 7). This algorithm receives a list L of references anda list Ci of clusters of references and returns a new list Co with each reference r from

L in some cluster c of Co. It compares the author name of each reference r with theauthor name of each cluster c1 using some similarity function. If the author name of ris similar to the author name of c and there are coauthor names in r that are similar1We use as the author name of a cluster that of the �rst reference inserted into the cluster. Remindthat we process the long names �rst.

46 Chapter 4. SAND: Self-training Author Name DisambiguatorAlgorithm 1 The Author Grouping StepInput: Ambiguous group G of references;Output: List C of clusters of references;1: Let L and S be lists of references;2: Let C1 and C2 be lists of clusters;3: S ← GetShortNameRecords(G);4: L← GetLongNameRecords(G);5: C1 ← ∅;6: C2 ← ProcessList(L,C1);7: C ← ProcessList(S,C2);Algorithm 2 Function ProcessListInput: List L of references;Input: List Ci of clusters of references;Output: List Co of clusters of references;1: Co ← Ci;2: for each r in L do3: inserted← false;4: c← �rst(Co);5: while not inserted and c 6= null do6: if similar(r.authorName, c.authorName) and exists similar(r.coauthorNames,
c.coauthorNames) then7: InsertReference(r, c);8: inserted←true;9: end if10: c← next(Co);11: end while12: if inserted = false then13: c← CreateNewCluster(r);14: Append(Co, c);15: end if16: end forto some coauthor names in c2, r is inserted into this cluster c (line 7); otherwise a newcluster is created with this reference r (line 13).To measure the similarity between two names we use a function derived fromthe Fragment Comparison algorithm, an edit-distance matching algorithm speciallydesigned for persons' names [Oliveira, 2005]. To verify whether a reference r and acluster c share coauthors we exploit two strategies, a weaker and a stronger one. Theweaker strategy considers that r and c share coauthors when they have at least one2We consider the set of all coauthor names of all references in a cluster as the value of the coauthornames attribute of such cluster.

4.1. SAND Design 47similar coauthor name in common. The second, stronger strategy tries to increase thepurity of the generated clusters, by building upon the �rst strategy. For this, we use aexternal source of evidence containing the most popular last names of a given language.In this second strategy, we consider that r and c share coauthors if both have at leastone similar coauthor whose last name is not popular or if they have at least two similarcoauthor names (popular or not). We use a list of popular last names extracted fromWikipedia3 and from the BDBComp digital library (for the Brazilian Portuguese case)to compose our list of popular last names.Though simple, this additional constraint tends to extract even purer clusterswhen compared to the �rst strategy, as it will be shown in our experiments. Unfor-tunately, both strategies also tend to fragment references to an author into multipleclusters. This is expected, since some authors are likely to have many di�erent coau-thors due to multiple interests and some of these coauthors may have never publishedtogether.4.1.2 The Cluster Selection StepAs mentioned before, if the �nal set of clusters to be used as training data is too frag-mented, then possibly many references will be associated with incorrect author labels4,decreasing the bene�t of the training examples. One strategy to reduce fragmentationin the training data is to select only the clusters belonging to di�erent real authors.Algorithm 3 describes the cluster selection step in details while Figure 4.1(c), (d)and (e) illustrate this step. The process of selecting the clusters whose references willcompose the initial training data, starts by sorting the input clusters produced in theprevious step (line 3) in descending order of size (i.e., the number of references withinthe cluster). The result is a sorted list C of clusters (see Figure 4.1(c)). Next, thelargest cluster in C is inserted into the set of selected clusters, S (lines 4 and 5). Thisselected cluster is also removed from C. As the clusters in S should belong to di�erentauthors, the next cluster in C to be inserted into S should be one not similar to anyof the clusters already in S. The key intuition is that candidate clusters in C thatare dissimilar to clusters in S are those most likely to contain references associatedwith authors not already in S. So, we insert a cluster ci ∈ C in S if ∀cj ∈ S, ci isnot similar to cj (lines from 6 to 11). The iteration continues with the next candidatecluster in C. The process �nally stops when the last cluster in C is evaluated (see3http : //en.wikipedia.org/wiki/Lists_of_most_common_surnames4Remind that each cluster in the training data is associated with a di�erent label. If two clustersof the same author are included in the training data, these clusters will be considered as belonging todi�erent authors.

48 Chapter 4. SAND: Self-training Author Name DisambiguatorAlgorithm 3 The Cluster Selecting StepInput: List C of clusters of references;Output: List D of training data;Output: List T of test set;1: Let S be the list of selected clusters;2: S ← ∅;3: C ← Sort(C, desc);4: ci ← GetFirstCluster(C);5: Append(S, ci);6: Remove(ci, C);7: for each ci in C do8: if ∀cj ∈ S, Dissimilar(ci, cj) then9: Append(S, ci);10: Remove(ci, C);11: end if12: end for13: D ← S;14: T ← C;Figure 4.1(d)). At the end of the process, references in each cluster cj ∈ S are insertedinto the training data D. Each reference receives the author label of the correspondingcluster. The remaining clusters whose references were not selected as training data,will compose the test set T , which will be disambiguated by the last step of SAND(see Figure 4.1(e)).We evaluate three strategies to measure the similarity/dissimilarity among clus-ters:- Strategy 1. We compare two clusters ci and cj using the attributes of the refer-ences in these clusters. Each reference is represented as a feature vector and asimilarity function φ (e.g., cosine, euclidean distance, etc.) between references inclusters ci and cj (or between their respective centroids), is used to measure thesimilarity between ci and cj . The clusters are considered dissimilar according tothe following rule:
Dissimilar(ci, cj) =

{

1, IF φ(ci, cj) < φmin

0, OTHERWISEIn other words, clusters ci and cj ∈ S are considered not similar if the value
φ(ci, cj) between ci and cj is not greater than a minimum value (φmin) necessaryfor the clusters to be considered similar.

4.1. SAND Design 49- Strategy 2. We compare two clusters ci and cj using only the author name as-signed to them, using some author name similarity function τ (e.g., fragmentcomparison) that checks whether two author names are similar (i.e., if they mayrefer to the same person). If the cluster's author names are considered to benot similar according to function τ , the respective clusters are also considered asdissimilar.
Dissimilar(ci, cj) =

{

1, IF NOT τ(ci.authorName, cj .authorName)

0, OTHERWISE- Strategy 3. This strategy combines both previous strategies.
Dissimilar(ci, cj) =

1, IF NOT τ(ci.authorName, cj .authorName)or φ(ci, cj) < φmin

0, OTHERWISEAs options for the function φ, we currently exploit the cosine similarity functionand the euclidean distance that are metrics frequently used to measure the similarityor dissimilarity between vectors. For cluster similarity we used four options: similaritybetween the respective cluster centroids as well as single, complete and average linkage(described next). This encompasses eight possible combinations of similarity functionand cluster similarity strategies. Next, we describe the similarity metrics in more detail,in which each reference r is represented as a feature vector ~r.CosineThe cosine similarity function [Salton et al., 1975] is obtained from the following for-mula:
cosine(~ri, ~rj) =

∑

k rik · rjk
|~ri| · |~rj|where,

• ~ri and ~rj correspond to the feature vectors of references ri and rj , respectively;
• |~r| corresponds to the norm of the vector ~r; and

50 Chapter 4. SAND: Self-training Author Name Disambiguator
• rik and rjk correspond to the value of k-th feature in the vectors ~ri and ~rj ,respectively.Euclidean DistanceThe euclidian distance [Jain et al., 1999] between two vectors is calculated by thefollowing formula:

euclidean_distance(~ri, ~rj) =

√

√

√

√

n
∑

k=1

(rik − rjk)2We change the euclidean distance to use it as a similarity metric by applying thefollowing formula:
euclidean(~ri, ~rj) = 1− euclidean_distance(~ri, ~rj)

euclian_distancemaxwhere euclidean_distancemax corresponds to the largest distance between all vectors.Cluster Similarity StrategiesIn our experiments, we evaluate similarity strategies specially designed for clus-ters [Jain et al., 1999] based on (1) the centroids of the clusters, (2) single-link,(3) complete-link and (4) average-link. The similarities between two clusters ci and cjare calculated by using the following formulas:
• Centroid.

centroid(ci, cj) = φ(~ri, ~rj)where, ~ri and ~rj are the centroids from ci and cj , respectively, and ~ri =
1
|ci|

∑

r∈ci
(~r).

• Single-link.
single(ci, cj) = φ(~ri, ~rj)where, ~ri and ~rj are the vectors from ci and cj, respectively, that have the highestsimilarity.

• Complete-link.
complete(ci, cj) = φ(~ri, ~rj)where, ~ri and ~rj are the vectors from ci and cj , respectively, that have the lowestsimilarity.

4.1. SAND Design 51
• Average-link.

average(ci, cj) =

∑

~ri∈ci

∑

~rj∈cj
φ(~ri, ~rj)

|ci| ∗ |cj |

φ(~ri, ~rj) can be calculated by using any similarity metric between two vectors.4.1.3 The Author Assignment StepIn the third and �nal step of SAND, the set of examples, D, is used to produce adisambiguation function from {f1, f2, . . . , fm} to {a1, a2, . . . , an} that is used to predictthe correct author of the references in the test set T . In case of SAND, this test set iscomposed of all references not belonging to clusters selected in the previous step. Theidea is that, with the training set selected in the previous step, we would be able tolearn an assignment function that will correctly predict the authors of these remainingreferences. For those authors in the collection without a representative cluster in thetraining data D, our method will (hopefully) detect them as new authors and includethem in the training for later use, i.e., the method is also self-trained. Next, we describethe author assignment step, which is based on a lazy associative classi�er [Veloso et al.,2006b] to produce disambiguation functions from D.Associative Name DisambiguationThe proposed technique for deriving a disambiguation function exploits the fact that,frequently, there are strong associations between features {f1, f2, . . . , fm} and speci�cauthors {a1, a2, . . . , an}. The proposed technique uncovers such associations from D,and then produces a disambiguation function {f1, f2, . . . , fm}→{a1, a2, . . . , an} usingsuch associations [Veloso et al., 2006b]. Typically, these associations are expressedusing rules5 of the form X→a1, X→a2, . . ., X→an, where X ⊆ {f1, f2, . . . , fm}. In thefollowing discussion we denote as R an arbitrary rule set. Similarly, we denote as Raia subset of R that is composed of rules of the form X→ai (i.e., rules predicting author
ai). A rule X→ai is said to match a reference x if X ⊆ x (i.e., x contains all featuresin X) and this rule is included in Rx

ai
. That is, Rx

ai
is composed of rules predictingauthor ai and matching reference x. Obviously, Rx

ai
⊆ Rai ⊆ R.5These rules can be e�ciently extracted from D using the strategy proposed in [Veloso et al.,2006b].

52 Chapter 4. SAND: Self-training Author Name DisambiguatorDemand-Driven Rule ExtractionRule extraction is a major issue for associative name disambiguation, since the numberof extracted rules may increase exponentially with the number of features in the trainingdata. The proposed method, on the other hand, extracts rules from the training dataon a demand-driven fashion [Veloso et al., 2006a], at disambiguation time. The methodprojects the search space for rules according to information in references in T , allowingfor e�cient rule extraction. In other words, the proposed method projects/�lters thetraining data according to the features in reference x ∈ T , and extracts rules fromthis projected training data, which is denoted as Dx. This ensures that only rules thatcarry information about reference x are extracted from the training data, drasticallylimiting the number of possible rules. The lines 1 to 5 of Algorithm 4 describes theprojection.Algorithm 4 Associative Name Disambiguation.Input: Examples in D and reference x ∈ TOutput: The predicted author of the reference x1: Let L(fi) be the set of examples in D in which feature fi has occurred2: Dx ⇐ ∅3: for each feature fi ∈ x do4: Dx ⇐ Dx ∪ L(fi)5: end for6: for each author ai do7: Rx
ai
⇐rules X−→ai extracted from Dx8: Estimate p̂(ai|x), according to Equation 4.29: end for10: Predict author ai such that p̂(ai|c) > p̂(aj|c)∀j 6= i

Predicting the Author of each ReferenceNaturally, there is a total ordering among rules, in the sense that some rulesshow stronger associations than others. A widely used statistic, called con�-dence [Agrawal et al., 1993] (denoted as θ(X→ai)), measures the strength of the asso-ciation between X and ai. Put simple, the con�dence of the rule X→ai is given by theconditional probability of ai being the author of the reference x, given that X ⊆ x.Using a single rule to predict the correct author may be prone to error. Instead,the probability (or likelihood) of ai being the author of the reference x is estimated bycombining rules in Rx
ai
. More speci�cally, Rx

ai
is interpreted as a poll, in which eachrule X→ai ∈ Rx

ai
is a vote given by features in X for author ai. The weight of a vote

4.1. SAND Design 53
X→ai depends on the strength of the association between X and ai, which is given by
θ(X→ai). The process of estimating the probability of ai being the author of reference
x starts by summing weighted votes for ai and then averaging the obtained value bythe total number of votes for ai, as expressed by the score function s(ai, x) shown inEquation 4.1 (where rj ⊆ Rx

ai
and |Rx

ai
| is the number of rules in Rx

ai
). Thus, s(ai, x)gives the average con�dence of the rules in Rx

ai
(obviously, the higher the con�dence,the stronger the evidence of authorship).

s(ai, x) =

|Rx
ai
|

∑

j=1

θ(rj)

|Rx
ai
| (4.1)The estimated probability of ai being the author of reference x, denoted as p̂(ai|x),is simply obtained by normalizing s(ai, x), as shown in Equation 4.2. A higher value of

p̂(ai|x) indicates a higher likelihood of ai being the author of x. The author associatedwith the highest likelihood is �nally predicted as the author of reference x. The lines6 to 10 of Algorithm 4 describes the prediction of the author of each reference.
p̂(ai|x) =

s(ai, x)
n

∑

j=1

s(aj, x)

(4.2)
Exploiting Reliable PredictionsAdditional examples may be obtained from the predictions performed using the dis-ambiguation function. In this case, reliable predictions are regarded as correct onesand, thus, they can be safely included in the training examples. Next we de�ne thereliability of a prediction.Given an arbitrary reference x ∈ T , and the two most likely authors for x, ai and
aj , we denote as ∆(x) the reliability of predicting ai, as shown in Equation 4.3.

∆(x) =
p̂(ai|x)
p̂(aj|x)

(4.3)The idea is to only predict ai if ∆(x) ≥ ∆min, where ∆min is a threshold thatindicates the minimum reliability necessary to regard the corresponding prediction ascorrect, and, therefore, to include it into the training data D. An appropriate value for
∆min can be obtained by performing cross-validation [Geisser, 1993], which is a way topredict the �t of a disambiguation function to a hypothetical validation set.

54 Chapter 4. SAND: Self-training Author Name DisambiguatorTemporary AbstentionNaturally, some predictions are not enough reliable for certain values of∆min. An alter-native is to abstain from such doubtful predictions. As new examples are included into
D (i.e., the reliable predictions), new evidence may be exploited, hopefully increasingthe reliability of the predictions that were previously abstained. To optimize the usageof reliable predictions, we place references in a queue, so that references associatedwith reliable predictions are considered �rst. The process works as follows. Initially,references in the test set are randomly placed in the queue. If the author of the refer-ence that is located in the beginning of the queue can be reliably predicted, then theprediction is performed, the reference is removed from the queue and included into Das a new example. Otherwise, if the prediction is not reliable, the corresponding refer-ence is simply placed in the end of the queue and will be only processed after all otherreferences. The process continues performing more reliable predictions �rst, until nomore reliable predictions are possible. The remaining references in T (for which onlydoubtful predictions are possible) are then processed normally, but the correspondingpredictions are not included into D. The process stops after all references in T areprocessed.Detecting New AuthorsWe propose to use the lack of rules supporting any already seen author (i.e., authorsthat are present in some reference in D) as evidence indicating the appearance of anunseen author. The number of rules that is necessary to consider an author as analready seen one is controlled by a parameter, γmin. Speci�cally, for a reference x ∈ T ,if the number of rules extracted from Dx (which is denoted as γ(x)) is smaller than
γmin (i.e., γ(x) < γmin), then the author of x is considered as a new/unseen author anda new label ak is created to identify such author. Further, this prediction is consideredas a new example and included into D. An appropriate value for γmin can be obtainedby performing cross-validation in D.Predicting the Author of each ClusterAlternatively, instead of predicting the author of each reference, we could explore someof the work already done in the author grouping step in order to directly predict theauthor of the cluster, i.e., all references in a cluster c ∈ T would be assigned to thesame author label avoiding to assign some of the references within the cluster to other

4.2. Experimental Evaluation 55authors. This can only be done in an e�ective way if most of the clusters are pure,because mixed references in a cluster could not be �xed later.To predict the author of a cluster c, we �rst predict the authors of each reference
r ∈ c. After that, we use the parameter ∆min and the number of references of thetwo most oftenly predicted authors, ai and aj , in c. Let these numbers be ni and nj ,respectively. If ni

nj
> ∆min, we consider the cluster c as belonging to author ai and eachreference r ∈ c is assigned to author ai. Otherwise, we assign the references in c to anew author. After the prediction of the cluster c, its references are inserted into thetraining data D4.2 Experimental EvaluationIn this section we present experimental results that demonstrate the e�ectiveness ofSAND. In order to evaluate the e�ectiveness of our disambiguation method, we usedcollections of references extracted from DBLP and BDBComp (see Section 2.4) as wellas synthetic data produced with SyGAR, our generator of synthetic citation recordsthat is described in Chapter 5. We also use the K and pairwise F1 metrics (see Sec-tion 2.3) in this evaluation.We compare the e�ectiveness of SAND against six baselines: three unsupervisedauthor grouping and three supervised author assignment methods. The three authorassignment methods are the ones proposed by Han et al. [2004] and the state-of-the-art method proposed by Veloso et al. [2012]. The �rst method, referred to as NB,uses the naïve Bayes probability model [Mitchell, 1997], the second one, referred to asSVM, uses Support Vector Machines (SVMs) [Cortes and Vapnik, 1995] and the thirdone, referred to as SLAND, uses lazy association rules [Agrawal et al., 1993]. Thethree author grouping methods are those proposed by Han et al. [2005b], referred toas KWAY, by Huang et al. [2006], referred to as LASVM-DBSCAN and the state-of-the-art author grouping method known as HHC [Cota et al., 2010].4.2.1 Experimental SetupExperiments were conducted within each ambiguous group. Unless otherwise stated,the values for∆min and γmin, used in the author assignment step, were set automaticallyby performing 5-fold cross-validation using the training data obtained during the secondstep. Thus, the only user-de�ned parameter is φmin (the threshold used in the clusterselection step). The results are compared using statistical signi�cance tests (t-test)with a 99% con�dence interval.

56 Chapter 4. SAND: Self-training Author Name DisambiguatorEach competing method was executed ten times and in each execution a di�er-ent shu�ing con�guration was used6. The �nal disambiguation performance in eachambiguous group is given by the average performance over the ten executions. Resultsregarding the comparison between methods are presented using the average of the �nalresults for each ambiguous group.Table 4.1. Results (with their standard deviations) obtained by the authorgrouping step for each ambiguous group in the (a) DBLP and (b) BDBCompcollections, without using the popular last names.AmbiguousGroup ACP AAP K pP pR pF1A Gupta 0.990 ± 0.002 0.416 ± 0.033 0.641 ± 0.025 0.994 ± 0.001 0.398 ± 0.056 0.567 ± 0.058A Kumar 0.995 ± 0.003 0.242 ± 0.011 0.490 ± 0.011 0.995 ± 0.003 0.098 ± 0.006 0.178 ± 0.010C Chen 0.953 ± 0.003 0.202 ± 0.003 0.439 ± 0.003 0.906 ± 0.008 0.050 ± 0.001 0.095 ± 0.002D Johnson 1.000 ± 0.000 0.301 ± 0.008 0.548 ± 0.008 1.000 ± 0.000 0.295 ± 0.016 0.455 ± 0.019J Martin 0.987 ± 0.007 0.500 ± 0.007 0.702 ± 0.007 0.957 ± 0.023 0.322 ± 0.005 0.482 ± 0.008J Robinson 1.000 ± 0.000 0.355 ± 0.007 0.596 ± 0.005 1.000 ± 0.000 0.285 ± 0.010 0.443 ± 0.011J Smith 0.971 ± 0.007 0.263 ± 0.031 0.504 ± 0.032 0.982 ± 0.018 0.279 ± 0.054 0.432 ± 0.067K Tanaka 1.000 ± 0.000 0.380 ± 0.008 0.616 ± 0.006 1.000 ± 0.000 0.231 ± 0.008 0.375 ± 0.011M Brown 1.000 ± 0.000 0.395 ± 0.007 0.629 ± 0.006 1.000 ± 0.000 0.340 ± 0.013 0.507 ± 0.015M Jones 1.000 ± 0.000 0.281 ± 0.015 0.530 ± 0.014 1.000 ± 0.000 0.251 ± 0.021 0.400 ± 0.026M Miller 0.991 ± 0.005 0.603 ± 0.026 0.773 ± 0.017 0.988 ± 0.009 0.586 ± 0.034 0.735 ± 0.026(a) DBLP CollectionAmbiguousGroup ACP AAP K pP pR pF1A Oliveira 1.000± 0.000 0.600± 0.008 0.774± 0.005 1.000± 0.000 0.245± 0.019 0.394± 0.025A Silva 1.000± 0.000 0.838± 0.022 0.915± 0.012 1.000± 0.000 0.511± 0.084 0.673± 0.074F Silva 1.000± 0.000 0.914± 0.000 0.956± 0.000 1.000± 0.000 0.500± 0.000 0.667± 0.000J Oliveira 1.000± 0.000 0.810± 0.049 0.900± 0.027 1.000± 0.000 0.646± 0.104 0.781± 0.078J Silva 1.000± 0.000 0.782± 0.017 0.884± 0.009 1.000± 0.000 0.457± 0.047 0.626± 0.045J Souza 1.000± 0.000 0.560± 0.010 0.749± 0.007 1.000± 0.000 0.273± 0.017 0.428± 0.021L Silva 1.000± 0.000 0.818± 0.000 0.905± 0.000 1.000± 0.000 0.515± 0.000 0.680± 0.000M Silva 1.000± 0.000 0.857± 0.000 0.926± 0.000 1.000± 0.000 0.400± 0.000 0.571± 0.000R Santos 1.000± 0.000 0.950± 0.000 0.975± 0.000 1.000± 0.000 0.667± 0.000 0.800± 0.000R Silva 0.963± 0.000 0.926± 0.000 0.944± 0.000 0.800± 0.000 0.667± 0.000 0.727± 0.000(b) BDBComp collection4.2.2 Evaluating the Author Grouping StepWe show in Tables 4.1 and 4.2 the results obtained by each strategy for the authorgrouping step, i.e., when the list of popular last names is not used (Table 4.1) and whenit is explored to enforce additional constraints (Table 4.2) with the goal of increasingthe purity of the clusters.We notice that, by exploiting the list of popular last names, SAND producespurer clusters as hypothesized. When this list is not used, there are seven ambiguous6We did this because the performance of the evaluated methods could, in thesis, be impacted bythe order in which references are processed. As we shall see, this did not happen.

4.2. Experimental Evaluation 57Table 4.2. Results (with their standard deviations) obtained by the authorgrouping step for each ambiguous group in the (a) DBLP and (b) BDBCompcollections, using the popular last names.AmbiguousGroup ACP AAP K pP pR pF1A Gupta 0.990 ± 0.002 0.429 ± 0.030 0.651 ± 0.023 0.994 ± 0.001 0.427 ± 0.051 0.596 ± 0.053A Kumar 1.000 ± 0.000 0.241 ± 0.013 0.491 ± 0.013 1.000 ± 0.000 0.097 ± 0.007 0.176 ± 0.011C Chen 0.950 ± 0.004 0.260 ± 0.004 0.497 ± 0.005 0.843 ± 0.031 0.087 ± 0.003 0.158 ± 0.005D Johnson 1.000 ± 0.000 0.274 ± 0.033 0.523 ± 0.032 1.000 ± 0.000 0.253 ± 0.059 0.401 ± 0.078J Martin 1.000 ± 0.000 0.508 ± 0.004 0.713 ± 0.003 1.000 ± 0.000 0.320 ± 0.002 0.485 ± 0.002J Robinson 1.000 ± 0.000 0.347 ± 0.016 0.589 ± 0.014 1.000 ± 0.000 0.279 ± 0.020 0.435 ± 0.025J Smith 0.987 ± 0.004 0.200 ± 0.030 0.443 ± 0.033 0.993 ± 0.005 0.186 ± 0.042 0.312 ± 0.059K Tanaka 1.000 ± 0.000 0.378 ± 0.017 0.615 ± 0.014 1.000 ± 0.000 0.231 ± 0.013 0.374 ± 0.017M Brown 1.000 ± 0.000 0.368 ± 0.000 0.607 ± 0.000 1.000 ± 0.000 0.301 ± 0.000 0.463 ± 0.000M Jones 1.000 ± 0.000 0.266 ± 0.017 0.516 ± 0.017 1.000 ± 0.000 0.238 ± 0.023 0.383 ± 0.031M Miller 0.993 ± 0.004 0.589 ± 0.015 0.765 ± 0.010 0.989 ± 0.008 0.575 ± 0.022 0.727 ± 0.019(a) DBLP collectionAmbiguousGroup ACP AAP K pP pR pF1A Oliveira 1.000 ± 0.000 0.598 ± 0.006 0.773 ± 0.004 1.000 ± 0.000 0.241 ± 0.015 0.388 ± 0.019A Silva 1.000 ± 0.000 0.835 ± 0.019 0.914 ± 0.011 1.000 ± 0.000 0.534 ± 0.083 0.692 ± 0.073F Silva 1.000 ± 0.000 0.914 ± 0.000 0.956 ± 0.000 1.000 ± 0.000 0.500 ± 0.000 0.667 ± 0.000J Oliveira 1.000 ± 0.000 0.838 ± 0.061 0.915 ± 0.034 1.000 ± 0.000 0.705 ± 0.130 0.821 ± 0.091J Silva 1.000 ± 0.000 0.753 ± 0.017 0.868 ± 0.010 1.000 ± 0.000 0.439 ± 0.047 0.609 ± 0.046J Souza 1.000 ± 0.000 0.509 ± 0.008 0.713 ± 0.005 1.000 ± 0.000 0.258 ± 0.013 0.409 ± 0.016L Silva 1.000 ± 0.000 0.818 ± 0.000 0.905 ± 0.000 1.000 ± 0.000 0.515 ± 0.000 0.680 ± 0.000M Silva 1.000 ± 0.000 0.857 ± 0.000 0.926 ± 0.000 1.000 ± 0.000 0.400 ± 0.000 0.571 ± 0.000R Santos 1.000 ± 0.000 0.950 ± 0.000 0.975 ± 0.000 1.000 ± 0.000 0.667 ± 0.000 0.800 ± 0.000R Silva 1.000 ± 0.000 0.916 ± 0.021 0.957 ± 0.011 1.000 ± 0.000 0.600 ± 0.141 0.740 ± 0.126(b) BDBComp collectiongroups in both collections with unpure clusters (i.e., ACP smaller than 1), while thereare only four of these unpure ambiguous groups when SAND uses the list of popularlast names.From now on, all reported results will use the stronger strategy that exploits thelist of popular last names in the author grouping step.4.2.3 Evaluating the Clustering Selection StepWe evaluate several options for selecting the clusters whose references will compose thetraining data, including the use of two reference-based similarity metrics (i.e., cosineand euclidian distance) along with several clustering similarity strategies, detailed inSection 4.1.2, based on cluster centroids and single, complete and average linkages.To evaluate the clustering selection step we use two metrics: author coverageand fragmentation rate. Author coverage measures the coverage of all real authors inthe collection by the training data. This metric varies between [0,1] and achieves itspeak when all authors in the collection have at least one representative cluster in the

58 Chapter 4. SAND: Self-training Author Name Disambiguatortraining set. Fragmentation rate indicates the level of fragmentation of the referencesto a same author in the training set which grows from 0 (no clusters in the trainingdata) to the total number of references in the collection (one reference per cluster)divided by the number of real authors. Ideally these two metrics should converge to1, i.e., we should have only one cluster per author in the training set and all authorsshould be represented there.
Author coverage =

of different authors represented in the training data

of real authors

Fragmentation rate =
of selected clusters

of real authorsDBLP Collection
 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

va
lu

e

φmin

Author Coverage
Fragmentation Rate

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

va
lu

e

φmin

Author Coverage
Fragmentation Rate

(a) Centroid � cosine (b) Centroid � euclidian distanceBDBComp Collection
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

va
lu

e

φmin

Author Coverage
Fragmentation Rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

va
lu

e

φmin

Author Coverage
Fragmentation Rate(c) Centroid � cosine (d) Centroid � euclidean distanceFigure 4.2. Comparison between the cosine similarity function, (a) and (c),and euclidean distance, (b) and (d), for selecting the training data in DBLP andBDBComp.Figures 4.2 (a�d) show the evolution of these two metrics in DBLP and BDBCompas the value of φmin increases, using the cosine similarity function and the euclidean

4.2. Experimental Evaluation 59DBLP Collection
 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

va
lu

e

φmin

Author Coverage
Fragmentation Rate

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

va
lu

e

φmin

Author Coverage
Fragmentation Rate

(a) Single-link � cosine (b) Complete-link � cosine
 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

va
lu

e

φmin

Author Coverage
Fragmentation Rate

(c) Average-link � cosineFigure 4.3. Comparison between the author coverage and the fragmentationrate in DBLP using some strategies for selecting the training data. The selectionof the training data uses (a) single-link, (b) complete-link and (c) average-linkcluster similarities with cosine similarity function on the vectors.distance as similarity functions applied to the centroids of the clusters. Looking at the�gures, we can notice that, as expected, when we increase the value of the similaritythreshold, φmin (i.e., the minimum similarity value required for two clusters to be con-sidered similar), we increase the fragmentation in the training data in both collectionsbecause more clusters are considered as being dissimilar. The increase in fragmentationin the training data a�ects the performance of our disambiguator since it will considerinformation of one real author as belonging to di�erent authors labels in the trainingset. As mentioned before, the ideal situation is when the number of authors in thetraining data rapidly approaches the number of real authors in the collections and thisnumber is not much di�erent from the number of selected clusters. For instance, whenfragmentation is large we may have to select many clusters in order to have a goodauthor coverage in the training data. Accordingly, we want to �nd out which combi-nation of reference, author, and cluster similarities converges faster without selectingtoo many clusters.

60 Chapter 4. SAND: Self-training Author Name DisambiguatorBDBComp Collection
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

va
lu

e

φmin

Author Coverage
Fragmentation Rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

va
lu

e

φmin

Author Coverage
Fragmentation Rate(a) Single-link � cosine (b) Complete-link � cosine

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

va
lu

e

φmin

Author Coverage
Fragmentation Rate(c) Average-link � cosineFigure 4.4. Comparison between the author coverage and the fragmentation ratein BDBComp using some strategies for selecting the training data. The selectionof the training data uses (a) single-link, (b) complete-link and (c) average-linkcluster similarities with cosine similarity function on the vectors.Looking again at Figure 4.2, we can notice that by using the cosine similarityfunction the author coverage converges to 1 much faster than when we use the euclidiandistance in both collections. Notice also that, at the �rst point when the authorcoverage achieves its maximum in DBLP, the fragmentation rate is considerably smallerwhen using cosine (around 3) than when we use the euclidian distance (around 7). Asimilar behavior is found with other combinations of clustering similarity techniques.Thus, given its evident superiority, in the remainder of the discussion we will alwaysuse cosine as similarity function.We now turn our attention to the clustering based similarity techniques, usingDBLP (see Figure 4.3). We recall that those techniques are single (see Figure 4.3 (a)),complete (see Figure 4.3 (b)) and average linkage (see Figure 4.3 (c)). We can see in theFigure 4.3 that the performance of these three cluster similarity techniques does notoutperform the strategy that selects the training data using cosine similarity functionapplied to the centroids of the clusters (see Figure 4.2 (a)). For instance, single-linkand complete-link converges to full coverage very slowly and, although average-link has

4.2. Experimental Evaluation 61a faster convergence, its fragmentation grows much faster. Similar results are obtainedfor BDBComp, although the di�erence between average-link and the use of centroid isnot so prominent. Given these results, from now on we will use only cluster centroidsto measure cluster similarity.Finally, in Figure 4.5 we show the performance of Strategy 3, i.e., when wecombine a comparison on author names using fragment comparison with the cosinesimilarity function on the cluster centroids. Remind that, in this case, a cluster isselected to compose the training data when its author name is not similar to anyauthor name of the selected clusters already in the training data or when its centroidis dissimilar to all previously selected clusters.
 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

va
lu

e

φmin

Author Coverage
Fragmentation Rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

va
lu

e

φmin

Author Coverage
Fragmentation Rate(a) DBLP (b) BDBCompFigure 4.5. Strategy 3 performed in the (a) DBLP and (b) BDBComp collec-tions.We can notice in Figure 4.5 (a) that the author coverage and the fragmentationrate are already very close to 1 when φmin = 0, which is equivalent to use only thefragment comparison algorithm on the author names to select the clusters to composethe training data (or Strategy 2)7. Thus, selecting the clusters using only the com-parison between the author names is a very good option, which, besides producinggood results, does not incur in the costs of comparing all attributes of the referenceswith a similarity metric. A similar situation occurs in BDBComp (see Figure 4.5 (b))although its convergence to 1 is a bit slower8. Finally, notice in Figure 4.5 (b) thatfragmentation does not increase as fast as in DBLP due to the fact that number ofreferences per author in BDBComp is smaller than in DBLP.In sum, although simple, a good option for selecting the clusters to composethe training data, at least in the collections we analyzed, is using only the fragment7Strictly speaking, the best result is obtained with φmin = 0.02, but this is very close to using

φmin = 08Notice also that results are already high in the beginning.

62 Chapter 4. SAND: Self-training Author Name Disambiguatorcomparison algorithm for comparing author names, which produces fragmentation rateand author coverage close to 1.4.2.4 Evaluating SANDIn this section, we discuss the �nal performance of SAND considering two situations.In the �rst one, referred to as SAND-1, we use the following con�guration: (1) theauthor grouping step does not use popular last names, (2) the cluster selection stepuses Strategy 1 with the cosine similarity function applied to the cluster centroids, and(3) the author assignment step predicts the author of each single reference. We use thiscon�guration for comparative purposes as it corresponds to an early version of SAND[Ferreira et al., 2010].In the second situation, refereed to as SAND-2, we exploit our best found con�g-uration, i.e., (1) the author grouping step uses popular last names to increase purity,(2) the cluster selection step uses Strategy 3 with the fragment comparison algorithmapplied to the author names and the cosine similarity function applied to the clustercentroids to select the clusters that will compose the training set, and (3) the authorassignment step predicts the author of each cluster in the test set instead of each singlereference (i.e., all references in a cluster are assigned to the same author).Figure 4.6 shows the disambiguation performance of SAND considering both con-�gurations for various values of φmin. When using SAND-1, lower values of φmin resultin the selection of only few clusters in the training set, that is, important clustersmay be not included in the training data. On the other hand, higher values of φminmay result in the selection of several fragmented clusters. This happens because withhigher vales of φmin many clusters are consider as dissimilar. This can be easily seenby the sharp decrease in cohesion (or increase in fragmentation) values in Figure 4.6for SAND-1 in both collections as we increase φmin. Therefore this tradeo� needs tobe carefully addressed in order to choose a suitable value for φmin that maximizesperformance in this con�guration. This tradeo� is also seem in the values of the Kmetric. Particularly, in DBLP it increases as φmin gets higher but after it peaks it startsdroping by due to the sharp decrease in cohesion (i.e., increase in fragmentation). InBDBComp, there is a initial drop in K but then it starts to keep growing, and it tendsto remain stable after φmin=0.15.With SAND-2, lower values (usually between 0 and 0.05) of φmin already producea good author coverage, i.e., the number of authors in the training set is close to thenumber of real authors in the collection as discussed in the previous Section, with lowfragmentation. The decrease of performance of SAND-2 as we increase the value of

4.2. Experimental Evaluation 63SAND-1 SAND-2
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2

va
lu

e

φmin

K
Purity (ACP)

Cohesion (AAP)
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2

va
lu

e

φmin

K
Purity (ACP)

Cohesion (AAP)

DBLP DBLP
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2

va
lu

e

φmin

K
Purity (ACP)

Coehsion (AAP)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2

va
lu

e

φmin

K
Purity (ACP)

Cohesion (AAP)BDBComp BDBCompFigure 4.6. Sensitivity analysis for φmin.
φmin, in both collections, as observed before, is due to the increase of fragmentation inthe training data. We also notice that the performance obtained by SAND-2 withoutusing the φmin (i.e., φmin = 0) is better that the best performance of SAND-1 in bothcollections. Thus, we set the φmin=0 for SAND-2 in the next analyses, i.e., we executeSAND without any parameter setup.Finally, Tables 4.3 and 4.4 show, respectively, the disambiguation performance forSAND-1 when it achieves its peak considering the K metric (i.e., φmin = 0.07 in DBLPand φmin = 0.20 in BDBComp) and for SAND-2 without using φmin (i.e., φmax = 0) ineach ambiguous group, averaged over the 10 executions (i.e., the shu�es). As we cansee, the low standard deviations of these results mean that the shu�ing con�guration,that is, the order in which references are processed, does not a�ect much the results. Wecan also see that groups such as �C. Chen� and �R. Silva� are harder to disambiguate,mostly because the high ambiguity and large number of candidate authors in thesegroups. More importantly, we can see that SAND-2 outperforms SAND-1 in everysingle ambiguous group in both metrics in both collections. In average in the DBLP

64 Chapter 4. SAND: Self-training Author Name DisambiguatorTable 4.3. Results obtained by SAND-1.Ambiguous Group K pF1A. Gupta 0.768 ±0.029 0.721 ±0.049A. Kumar 0.678 ±0.018 0.546 ±0.040C. Chen 0.551 ±0.018 0.353 ±0.022D. Johnson 0.679 ±0.014 0.667 ±0.014J. Martin 0.835 ±0.015 0.747 ±0.022J. Robinson 0.735 ±0.012 0.676 ±0.025J. Smith 0.756 ±0.018 0.755 ±0.017K. Tanaka 0.782 ±0.010 0.701 ±0.021M. Brown 0.823 ±0.015 0.760 ±0.050M. Jones 0.778 ±0.015 0.765 ±0.021M. Miller 0.898 ±0.013 0.919 ±0.013Average 0.753±0.005 0.692±0.009(a) DBLPAmbiguous Group K pF1A. Oliveira 0.847± 0.030 0.710± 0.105A. Silva 0.947± 0.015 0.835± 0.084F. Silva 0.954± 0.000 0.714± 0.000J. Oliveira 0.917± 0.026 0.869± 0.052J. Silva 0.911± 0.030 0.721± 0.068J. Souza 0.751± 0.006 0.435± 0.019L. Silva 0.844± 0.034 0.597± 0.093M. Silva 0.926± 0.000 0.571± 0.000R. Santos 0.975± 0.000 0.800± 0.000R. Silva 0.895± 0.018 0.551± 0.056Average 0.897±0.003 0.680±0.013(b) BDBCompcollection, SAND-2 outperforms SAND-1 in more than 8% under the K metric and15% under the pF1 metric. In BDBComp collection, SAND-2 outperforms SAND-1 inmore than 3% under K metric and 10% under the pF1 metric.Therefore, given the much improved performance of SAND-2 and the fact that itdoes not need any parameter setup, from now on we will consider this con�guration inall further analyses.4.2.5 Comparison with the Author Grouping BaselinesTable 4.5 shows the comparison of SAND with its best con�guration against three repre-sentative author grouping methods: KWAY, LASVM-DBSCAN and HHC. For KWAY,we used the implementation of the K-way spectral clustering provided by the Univer-sity of Washington Spectral Clustering Working Group9. For LASVM-DBSCAN, we9http://www.stat.washington.edu/spectral

http://www.stat.washington.edu/spectral

4.2. Experimental Evaluation 65Table 4.4. Results obtained by SAND-2.Ambiguous Group K pF1A. Gupta 0.865±0.025 0.883±0.036A. Kumar 0.784±0.071 0.719±0.120C. Chen 0.649±0.022 0.514±0.040D. Johnson 0.741±0.062 0.733±0.138J. Martin 0.863±0.037 0.820±0.067J. Robinson 0.822±0.018 0.820±0.020J. Smith 0.762±0.033 0.739±0.072K. Tanaka 0.889±0.016 0.912±0.026M. Brown 0.900±0.008 0.920±0.004M. Jones 0.780±0.033 0.769±0.047M. Miller 0.912±0.016 0.931±0.020Average 0.815±0.010 0.796±0.020(a) DBLPAmbiguous Group K pF1A Oliveira 0.930±0.041 0.903±0.098A Silva 0.982±0.012 0.971±0.032F Silva 0.954±0.000 0.714±0.000J Oliveira 0.825±0.036 0.676±0.087J Silva 0.951±0.017 0.929±0.015J Souza 0.938±0.015 0.904±0.032L Silva 0.901±0.024 0.737±0.080M Silva 0.948±0.010 0.735±0.047R Santos 0.911±0.011 0.480±0.042R Silva 0.896±0.015 0.471±0.058Average 0.924±0.004 0.752±0.015(b) BDBCompused the LaSVM package [Bordes et al., 2005] and the DBSCAN version available fromWeka10. For HHC, we used our own implementation of the method.Results show that, in the DBLP collection, SAND outperforms all author group-ing baselines. Gains range from 45% (against LASVM-DBSCAN) to 5.4% in terms ofthe K metric, and 96% (against KWAY) to 6% in terms of pairwise F1. In the BD-BComp collection, SAND outperforms KWAY and LASVM-DBSCAN by more than14% and 72% under the K and pF1 metrics, respectively, and is statistically tied withHHC.Particularly, the poor performance of LASVM-DBSCAN is mainly due to thesmall number of attributes used when compared with the original proposed methoddescribed in [Huang et al., 2006]. In that work, several other attributes such as a�li-ation and e-mail were used. In the scenario of author name disambiguation in whichonly the few most common attributes are available (the scenario we focus here as it is10http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/

66 Chapter 4. SAND: Self-training Author Name DisambiguatorTable 4.5. Results obtained by SAND, HHC, KWAY and LASVM-DBSCANmethods. Best results are highlighted in bold.Method K pF1SAND 0.815 0.796HHC 0.773 0.751KWAY 0.560 0.402LASVM-DBSCAN 0.551 0.406(a) DBLPMethod K pF1SAND 0.924 0.752HHC 0.913 0.756KWAY 0.805 0.436LASVM-DBSCAN 0.757 0.211(b) BDBCompthe most common one), the similarity functions learned by the LASVM-DBSCAN arenot suitably generalizable.The KWAY method, on the other hand, exploits only the similarity betweenrecords to group them, thus it might be able to create better clusters than LASVM-DBSCAN, though possibly incurring in more false positive and negative errors (i.e.,wrong assignments). HHC, the strongest author grouping baseline, uses some heuristicsalso used by us (e.g., clustering by coauthor), but those were improved, for example,to guarantee even purer clusters for training. HHC also does not include a supervisedsecond step.SAND, on the other hand, was able to produce better results, being able topredict the correct author of a given record using disambiguation functions learnedfrom examples automatically selected.Next we compare SAND with some supervised author assignment methods thatcan also take advantage of learning from training examples, although in their case, theexamples were manually labeled.4.2.6 Comparison with the Supervised Author AssignmentMethodsIn this Section we compare SAND with three representative author assignment meth-ods, namely SVM, NB, and SLAND. RBF kernels were used for SVM and we employedthe LibSVM tool [Chang and Lin, 2001] for �nding their optimum parameters for each

4.2. Experimental Evaluation 67training data on each ambiguous group. We estimate the parameter of the NB methodas in [Han et al., 2004]. For SLAND, the state-of-the-art supervised author assignmentmethod, the best parameters were discovered using cross-validation in the training set.For the tests in this section, each ambiguous group was randomly split into train-ing (50%) and test (50%) sets. This split ensures a fair comparison among thesemethods. It should be noticed that SAND is executed only with the test sets. Allresults shown next correspond to the performance in the test sets and are the averageof 10 runs. The results are compared using statistical signi�cance tests (paired t-test)with 99% con�dence interval.It is very important to stress that while the baselines used the whole manuallylabeled training sets to learn the disambiguation functions and apply them to the testsets, we did not use this information and automatically generated the training databy applying SAND directly to the test data in each round, making no use of manuallyassigned labels.Table 4.6. Results (with their standard deviations) of SAND, SLAND, SVM andNB in the DBLP and BDBComp collections. Best results, including statisticalties, are highlighted in bold.Method K pF1SAND 0.775±0.010 0.720±0.018SLAND 0.877±0.007 0.867±0.008SVM 0.799±0.008 0.721±0.010NB 0.736±0.009 0.647±0.012(a) DBLPMethod K pF1SAND 0.940±0.014 0.462±0.040SLAND 0.900±0.016 0.456±0.028SVM 0.481±0.024 0.160±0.032NB 0.420±0.009 0.160±0.019(b) BDBCompAs it can be seen, in DBLP (see Table 4.6(a)), SLAND achieves statisticallysuperior results, but SAND results are only 11.6% and 17% lower than the ones obtainedby SLAND, under K and pF1, respectively, without any manually labeled training data.Furthermore, SAND largely outperforms NB and has basically the same performance asSVM (slightly inferior according to the K metrics (approximately 3%) and statisticallytied under the pF1 metric).

68 Chapter 4. SAND: Self-training Author Name DisambiguatorIn BDBComp, results are quite surprising. SAND outperforms SVM and NBunder both metrics by more than 95% and is even superior to SLAND under the Kmetric. The BDBComp collection has several authors with only one or two publication.Selecting 50% of the data to compose the training data does not ensure that all authorshave at least one example in the training data. On the other hand, the coverage ofthe training data automatically constructed by SAND applied directly to the test setmay be more representative than the ones used by baselines. Furthermore, in thiscollection, the heuristics used in the author grouping step based on co-author namesare very e�ective and enough to solve a large number of cases, leaving for the otherSAND steps only a re�ned adjustment. Notice that these adjustments can furtherexplore interesting properties, such as the detection of new authors and self-training.This shows another interesting capabilities of our solution that may be explored incollections with similar characteristics.We also run SLAND with reduced training data to check its performance whena smaller number of references are labeled in the DBLP collection. We randomly pickup 10%, 20%, 30%, 40% and 50% of the training data and run SLAND with thesenew training examples. For each original training data, we picked up the examples10 times, performed SLAND and averaged the results. With 10%, 20%, 30%, 40%and 50% of the training data, the K values were 0.615, 0.700, 0.758, 0.786 and 0.824,respectively. Notice that, labeling until 30% of the training data, the performance ofSLAND is worse than SAND without labeling any example.4.2.7 Comparison with Other Supervised Methods for theAuthor Assignment StepTo check whether our choice of classi�er was the best for the supervised step, we runexperiments in which the associative classi�er was replaced by the corresponding onesused in baselines, i.e., we used other learning algorithms in the author assignmentstep. Speci�cally, we evaluated the application of SVM and Naïve Bayes in the authorassignment step. Here, we called S-SVM and S-NB the application of SVM and NaïveBayes, respectively, in the author assignment step. Table 4.7 shows the results. Wenotice that the original SAND outperforms all competitors in DBLP by more than 27%in terms of the K metrics and more than 70% under pF1, and is statistically tied withS-SVM in BDBComp under K metric and far superior under pF1 (gains of 82%), beingalso much better than S-NB is this collection under both metrics. The superiorityof original SAND con�guration, mainly in DBLP, is probably due to its capability ofadding new examples based on reliable predictions, and also of identifying new authors

4.2. Experimental Evaluation 69not present in the provided training data.Table 4.7. Results obtained by the author grouping and cluster selection stepscoupled with SVMs (S-SVM) and Naïve Bayes (S-NB) techniques in the secondstep (i.e., the author assignment step). Best results are highlighted in bold.Method K pF1SAND 0.815±0.010 0.796±0.020S-SVM 0.666±0.009 0.489±0.018S-NB 0.640±0.014 0.466±0.026(a) DBLPMethod K pF1SAND 0.924±0.004 0.752±0.015S-SVM 0.917±0.006 0.412±0.020S-NB 0.883±0.013 0.286±0.037(b) BDBCompRegarding e�ciency issues of proposed method, we measured the time spent toinfer the author of each reference in the test set. On average, the time to assigneach reference to its author was around 0.2 second. We perform our evaluation in aIntel Xeon E5620 with 2.40GHz and 8 gigabytes of RAM. This means that we coulddisambiguate approximately half million records in one day.4.2.8 DiscussionIn this Section, we further discuss two additional but important issues: the impactin our method of the absence of long format author names in the collections and therelative performance of SAND (and its competitors) over time.4.2.8.1 How e�ective is SAND when all author names are in short format?We evaluate the performance of SAND in its best con�guration when all author namesare short (i.e., all author names have only the initial of the �rst name and the full lastname). We do this by substituting all the author names in long format by their shortversion in our collections. This corresponds to an extreme ambiguous situation whichmay push our method to its limits.Results are shown in the Figure 4.7. Remember that around 53% and only 3% ofthe author names in the original DBLP and BDBComp collections, respectively, are inshort format. We can see in the Figure that, when φmin is equal to 0, as in the previous

70 Chapter 4. SAND: Self-training Author Name DisambiguatorOriginal author names Author names in short format
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2

va
lu

e

φmin

K
Purity (ACP)

Cohesion (AAP)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2

va
lu

e

φmin

K
Purity (ACP)

Cohesion (AAP)

DBLP DBLP
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2

va
lu

e

φmin

K
Purity (ACP)

Cohesion (AAP)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2

va
lu

e

φmin

K
Purity (ACP)

Cohesion (AAP)

BDBComp BDBCompFigure 4.7. Sensitivity analysis for φmin. The comparison of SAND's perfor-mance using the name of the authors as provided in the collections with the authornames in short format (i.e., the author names are represented by only the initialof �rst name and the full last name).con�guration, we obtain worse results than in the original collections, as expected. InDBLP the performance loss is around 31% under the K metric, while for BDBCompthe losses are around 41% . However, as it can been seen in the �gure, if we use thebest suitable con�guration for this situation in DBLP (φmin=0.09 and K=0.715) andBDBComp (φmin=0.16 and K=0.842), we can reduce the losses to 12% and 8% in bothcollections, respectively. In summary, the format of the author names, as expected,a�ects the results of SAND. The larger the number of author names in short format,the higher the ambiguity, and therefore the more di�cult the disambiguation processis. However, we can deal with these di�culties, at least in part, by properly choosingthe φmin parameter.

4.2. Experimental Evaluation 714.2.8.2 How e�ective is SAND and the baselines over time?To evaluate the behavior of SAND and the baselines over time, we use collectionsgenerated by SyGAR. We used the same scenarios and performed similar experimentsas in Section 5.3 to compare the performance of our method against the best authorgrouping and author assignment baselines.Our evaluation was carried out by computing the value of the K metric at eachstate of the DL. The results reported in the following sections are averages of 5 runs.Figure 4.8 shows, for each disambiguation method, the average K value computed overall 11 ambiguous groups in each state of the digital library over the ten-year load periodin Scenario 1 described in the previous chapter, i.e., an evolving DL with static authorpopulation and static author pro�les. The corresponding 95% con�dence intervals arealso shown.Notice that state 0 corresponds to the �rst new load into the DL. The supervisedauthor assignment methods (SLAND and SVM) are trained with a whole syntheticDL that was generated before the �rst load. SLAND and the unsupervised authorgrouping methods (HHC and KWAY) act only over the new states of the DL withoutany training. Notice also that we do not retrain SLAND and SVM after the new loads.Looking at Figure 4.8 we can see that SLAND, which used the whole disam-biguated DL for learning previously to the �rst load, is the best performer, as expected,followed by SAND and HHC which are basically tied throughout the whole loading pe-riod in this scenario. Notice that these three methods keep their e�ectiveness quitestable over time. SVM, on the other hand, is statistically tied with SAND and HHC inthe �rst two loads, but starts losing performance after the second load and keeps de-grading after each new one. After 10 loads, the performance of SVM degrades by 15%.KWAY, on its turn, starts with a poor performance in the �rst load but experiencesan increasing improvement as new citations are added, �nishing, after 10 loads, withan e�ectiveness basically identical to SVM's but still far from the best three methods.This improvement occurs because there is incrementally more information about eachauthor, helping KWAY to better characterize them.We now analyze the impact on each method of introducing new authors to thecurrent author population. Figure 4.9 shows average K values and corresponding 95%con�dence intervals for each method for %NewAuthors equals to 5% and 10%.As we can see, all methods, except KWAY, follow a similar trend, i.e., all suf-fer some considerable performance degradation, while in this scenario KWAY actuallyimproves in performance as new loads of citations are added to the DL, after havingstarted with a very low performance. However, the improvement in performance pre-

72 Chapter 4. SAND: Self-training Author Name Disambiguator
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10

A
ve

ra
ge

 K

Load (year)

SLAND
SAND

HHC
SVM

KWAYFigure 4.8. Scenario 1: Evolving DL with static author population and publi-cation pro�les.
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10

A
ve

ra
ge

 K

Load (year)

SLAND
SAND

HHC
KWAY

SVM 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10

A
ve

ra
ge

 K

Load (year)

SLAND
SAND

HHC
KWAY

SVM

(a) %NewAuthors=5% (b) %NewAuthors=10%Figure 4.9. Scenario 2: Evolving DL and addition of new authors(%InheritedTopics=80%).viously experienced by KWAY in the absence of new authors becomes less signi�cantwhen %NewAuthors increases. New ambiguous authors imply in higher ambiguity and,thus, a higher inherent di�culty in distinguishing them. We can also note that theperformance of all other methods degrades much faster for %NewAuthors=10% than for
%NewAuthors=5%, SVM being the most a�ected method with the introduction of newauthors (much faster decay in both scenarios).Comparing the methods, SLAND continues being the best performer in bothscenarios when new authors are inserted, while SAND and HHC are basically tied, as inthe previous scenario, throughout the whole period. After the last load, the di�erencesin average performance between SLAND over SAND and HHC are of 7% and 8% for
%NewAuthors=5% and %NewAuthors=10%, respectively. SLAND with %NewAuthors=5%and%NewAuthors=10% loses about 13% and 22%, respectively, in performance comparedwith the scenario with static author population. Comparing SAND and HHC withKWAY, the di�erences in performance are 12% for%NewAuthors=5% and a statistical tiefor%NewAuthors=10%, while the di�erence is around 11% with static author population.SVM, on the other hand, gets statistically tied with KWAY after 10 loads in the

4.2. Experimental Evaluation 73scenario with %NewAuthors=5% and is the worst performer of all for %NewAuthors=10%,signi�cantly worse than all other methods.
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10

A
ve

ra
ge

 K

Load (year)

%ProfileChanges= 10%
%ProfileChanges= 50%
%ProfileChanges=100% 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10

A
ve

ra
ge

 K

Load (year)

%ProfileChanges= 10%
%ProfileChanges= 50%
%ProfileChanges=100%(a) SAND (b) HHC

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10

A
ve

ra
ge

 K

Load (year)

%ProfileChanges= 10%
%ProfileChanges= 50%
%ProfileChanges=100% 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10

A
ve

ra
ge

 K

Load (year)

%ProfileChanges= 10%
%ProfileChanges= 50%
%ProfileChanges=100%

(c) SLAND (d) SVM
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10

A
ve

ra
ge

 K

Load (year)

%ProfileChanges= 10%
%ProfileChanges= 50%
%ProfileChanges=100%

(e) KWAYFigure 4.10. Scenario 3: Dynamic author pro�les (δ = 5 and
%ProfileChanges=10%, 50% and 100%).Finally, Figures 4.10(a-c) show average K values and corresponding 95% con�-dence intervals when a fraction %ProfileChanges equal to 10%, 50% and 100% of theauthors experience changes in their pro�les at each new load. In this scenario, we cansee a clear advantage of SAND over all methods, even over HHC, with which SANDwas tied in the two previous scenarios. SAND is the most resilient method, indepen-dently of the level of pro�le change. After 10 loads, for instance, SAND's performance,

74 Chapter 4. SAND: Self-training Author Name Disambiguatorconsidering the averaged K values is 8% superior to HHC for %ProfileChanges =100%. Infact, SAND is even superior to SLAND around 20% and 32% for %ProfileChanges = 50%and 100%, respectively. We can also see that SVM performs poorly in this scenarioand that KWAY, di�erently from previous scenarios, basically loses its capability ofgaining in performance in face of pro�le changes.Overall, among the three methods, considering all scenarios and all situations,SAND �gured among the best performers in all analysed situations, being more a�ectedby the introduction of new authors into the DL, an issue that can possibly be improvedin future work.

Chapter 5SyGAR: Synthetic Generator ofAuthorship Records
A solid analysis of existing methods should consider various scenarios that occur inreal digital libraries. In addition to dynamic patterns, the analysis should also addressthe robustness of existing methods under data errors, such as typographical,opticalcharacter recognition (OCR) and speech recognition errors. However, the constructionof a real, previously disambiguated, temporal collection capturing di�erent relevantdynamic scenarios and including various data errors is quite costly. An alternative isto build realistic synthetic collections that capture all scenarios of interest, under con-trolled conditions, while still inheriting the properties of real collections that are morerelevant from the standpoint of existing name disambiguation methods. In particular,a generator of realistic synthetic collections, designed for the speci�c problem of nameambiguity, should be able to:
• Generate data whose disambiguation is non-trivial, following patterns similar tothose found in real collections;
• Generate successive loads of data, at a certain frequency (e.g., one per year ormonth), containing new publications of the same set of authors, to assess theimpact of the introduction of new publications into previously disambiguateddigital libraries on the disambiguation methods;
• Generate data for new authors that were not originally included in the collection,simulating the situation in which the disambiguation method must identify theappearance of publications of authors not yet present in the digital library;
• Generate data re�ecting changes in the authors' publication pro�les (e.g., changes75

76 Chapter 5. SyGAR: Synthetic Generator of Authorship Recordsin the topics in which the authors publish), simulating changes of research inter-ests over time;
• Introduce controlled errors on generated data, simulating errors caused by typos,misspelling, or OCR.In order to address these requirements, in this chapter, we introduce and evaluateSyGAR, a new Synthetic Generator of Authorship Records, which addresses all theelicited requirements. SyGAR is capable of generating synthetic citation records givenas input a list of disambiguated records of citations extracted from a real digital library(input collection). The synthetically generated records follow the publication pro�les ofexisting authors, extracted from the input collection. An author's pro�le is generatedbased on a set of distributions, namely, distribution of the number of coauthors perrecord, distribution of coauthor popularity, distribution of number of terms in a worktitle as well as distribution of topic (subject or interest) popularity of the given author.Each topic is associated with term and venue popularity distributions. SyGAR can beparameterized to generate records for new authors (not present in the input collection),for authors with dynamic pro�les, as well as records containing typographical errors.For the best of our knowledge, SyGAR is the �rst generator of its kind, enablingand facilitating the investigation of several aspects of existing name disambiguationmethods.A variety of synthetic data generators is available in the literature, most of themdesigned for a speci�c purpose. DSGen [Christen, 2005], for instance, is a tool togenerate synthetic data representing personal information, such as �rst name, surname,address, dates, telephone and identi�er numbers, which was developed as part of theFebrl deduplication system [Christen, 2008]. With that speci�c goal, DSGen generatessynthetic data and duplicates them, inserting errors representing typographical errors.A more recent version of DSGen, introducing attribute dependencies as well as familyand household data, is presented in [Christen and Pudjijono, 2009].In contrast, there are also a few general-purpose tools, such asDGL [Bruno and Chaudhuri, 2005] and PSDG [Hoag and Thompson, 2007], whichgenerate data based on speci�c languages used to describe several aspects of the datato be synthesized (e.g., distributions). These tools allow users to specify dependenciesbetween attributes. However, neither of them can be parameterized with data from agiven knowledge base, such as an existing real collection or a coauthorship graph. Sucha feature is attractive as it can be exploited by the tool to infer attribute distributionsfrom real-world data.

77We are aware of only two synthetic data generators in the realm of digital libraries.The �rst one, SearchGen [Li et al., 2007] generates synthetic workloads of scienti�cliterature digital libraries and search engines. SearchGen was designed based on acharacterization of the workload of CiteSeer1, extracted from usage logs. Li et al.validated the proposed tool by comparing the workload generated by SearchGen againstlogged workloads. SearchGen is fundamentally di�erent from SyGAR, as our tool doesnot target the generation of workloads but rather of ambiguous citation records.A tool that is more closely related to ours is the two-stage data generator pro-posed in [Bhattacharya and Getoor, 2007]. The tool was designed to generate syntheticcitations, speci�ed by a list of authors. It works as follows. In the �rst stage, it buildsa collaboration graph containing entities (i.e., authors) and relationships among them(i.e., coauthorships). In the second stage, it generates a collection of citations, each ofwhich synthesized by �rst randomly selecting one entity and then randomly selectingits neighbors in the collaboration graph. SyGAR signi�cantly di�ers from this tool.First, it generates values to other attributes, such as work and publication venue ti-tles, in addition to author and coauthor names. Second, it is capable of generating adynamically evolving collection, in which new authors, changes in author's publicationpro�les and typographical errors may be introduced, at various rates. As such, ourgenerator can be used to generate and simulate several controlled, yet realistic, longterm scenarios, enabling an assessment of how distinct methods would behave undervarious conditions.A preliminary version of SyGAR was discussed in [Ferreira et al., 2009]. In thatprior version, SyGAR modeled an author's publication pro�le based on the distribu-tions of the number of coauthors, coauthor popularity, number of terms in a work title,term popularity and venue popularity. By associating term and venue popularity dis-tributions directly with the authors, our preliminary approach restricts the generationof citations containing only terms and venues that have been previously used by theauthors. In its current version, SyGAR does not include term and venue popularitydistributions as part of an author's pro�le. Instead, the pro�le of an author contains adistribution of topics (or research interests), and each topic has term and venue pop-ularity distributions associated with it. This allows the generation of citations withwork titles containing terms that have never been used by the authors or with a venuein which the authors have never published before. Moreover, the present tool allowsone to generate data re�ecting changes in the authors' publication pro�les, simulatingchanges of research interests over time, and to introduce controlled errors on generated1http://citeseer.ist.psu.edu

78 Chapter 5. SyGAR: Synthetic Generator of Authorship Recordsdata, simulating errors caused by typos, misspelling, or OCR. Thus, the present tool ismuch more sophisticated and provides much more �exibility and richness to the processof generating synthetic citation records than its prior version.We validate SyGAR by comparing the results produced by three representativedisambiguation methods on a standard real collection of (previously disambiguated)records and on synthetic collections produced using SyGAR parameterized with au-thor pro�les extracted from the real collection. The methods considered are: the su-pervised support vector machine-based method (SVM) proposed by Han et al. [2004],the hierarchical heuristic-based method (HHC) proposed by Cota et al. [2010] and theunsupervised k-way spectral clustering-based method (KWAY) proposed by Han et al.[2005b]. Our experiments show, for all three methods, a very good agreement in theperformance obtained for real and synthetically generated collections, with relativeperformance di�erences under 10% in most cases.To demonstrate the applicability of our generator, we evaluate the three afore-mentioned methods in three selected relevant real-world scenarios. In particular, wesimulate a digital library evolving over a period of several years, during which (1) newpublications of the same set of authors are introduced, (2) new authors with ambigu-ous names are introduced, at various rates, and (3) a fraction of the authors changetheir publication pro�les. Our results indicate that the performance of SVM tends todegrade with time, particularly as new authors are introduced in the collection. Incontrast, the performance of the unsupervised KWAY method, which uses privilegedinformation regarding the number of authors in the digital library, tends to increasewith time, except when there are changes in the authors' pro�les. Overall, among thethree methods, HHC has the best performance, due to its heuristic that was speciallydesigned to address the name disambiguation task. In terms of their drawbacks, HHCsu�ers more with the addition of records of new authors, whereas SVM and KWAYare very sensitive to changes in the authors' pro�les.5.1 SyGAR DesignSyGAR is a tool for generating synthetic collections of citation records. Its design wasdriven by our goal of evaluating name disambiguation methods in more realistic, yetcontrolled, scenarios, with evolving digital libraries. It was thus designed to capturethe aspects of real collections that are key to disambiguation methods and, therefore,to generate synthetic collections to evaluate them. These synthetic collections may belarger and span longer periods of time besides being representative of the real data

5.1. SyGAR Design 79with respect to author publication pro�les (de�ned below).SyGAR takes as input a real collection of previously disambiguated citationrecords, referred to as the input collection. Each such record is composed of thethree attributes commonly exploited by disambiguation methods [Cota et al., 2010;Ferreira et al., 2010; Han et al., 2004, 2005a,b; Lee et al., 2005; Pereira et al., 2009],namely, a list of author names and a list of unique terms present in the work title andthe publication venue title. Authors with the same ambiguous name, and their cor-responding records, are organized into ambiguous groups (e.g., all authors with name�C. Chen"). SyGAR also takes as input several other parameters, de�ned in Table 5.1and described in the following sections, which are used in the data generation process.Table 5.1. SyGAR input parameters.Parameter Description
Nloads number of loads to be synthesized

NR total number of records to be generated per load
NTopics number of topics
αTopic threshold used to estimate distribution of topic popularity per citation (LDA model)
αTerm threshold used to estimate distribution of term popularity per topic (LDA model)
βTopic minimum weight of topics that are associated with an author

αNewCoauthor probability of selecting a new coauthor
αNewV enue probability of selecting a new venue

%NewAuthors percentage of new authors to be generated in each load
%InheritedTopics percentage of topics to be inherited from a new author's main coauthor
%ProfileChanges percentage of authors that will have changes in their pro�les in each load

δ shift parameter used to simulate changes in an author's pro�le
P FName probability distribution of altering (removing, keeping or retaining) only the initial of the author's �rst name
PMName probability distribution of altering (removing, keeping or retaining) only the initial of the author's middle name
PLName
#Mods probability distribution of the number of modi�cations in the author's last name

PLName
Mod probabilities of inserting, deleting or changing one character or swapping two characters of the author's last name
P T itle
#Mod probability distribution of the number of modi�cations in the work title
P T itle
Mod probabilities of inserting, deleting or changing one character or swapping two characters of the title

P V enue
#Mods probability distribution of the number of modi�cations in the venue
P V enue
Mod probabilities of inserting, deleting or changing one character or swapping two characters of the venue

Figure 5.1. SyGAR main components � SyGAR receives as input a disam-biguated collection of citation records and builds publication pro�les for all au-thors in the input collection. Then, the publication pro�les are used to generatesynthetic records. As a �nal step, SyGAR may introduce typographical errors inthe output collection and change the citation attributes.As output, SyGAR produces a representative list of synthetically generated cita-

80 Chapter 5. SyGAR: Synthetic Generator of Authorship Recordstion records, referred to as the corresponding output collection. Each generated recordconsists of the three aforementioned attributes. In particular, the (synthetic) work titleis represented by a set of unique terms as opposed to a complete semantically-soundsentence, as most disambiguation methods typically exploit the former.The overall generation process consists of three main steps, as shown in Figure5.1. SyGAR �rst summarizes the input collection into a set of attribute distributionsthat characterize the publication pro�les of individual authors in the input collection.SyGAR builds publication pro�les for all authors in the input collection, includingthose with ambiguous and non-ambiguous names. Next, the attribute distributions areused to generate synthetic records. Unless otherwise noted, only pro�les of authorswith ambiguous names are used to generate synthetic data2. As a �nal step, SyGARchanges the citation attributes, particularly the coauthor names, so as to adhere to apre-de�ned format (e.g., keep only the initial of the �rst name). In this step, it mayalso introduce typographical errors in the output collection. A detailed description ofeach step is presented in the following subsections.5.1.1 Inferring Publication Pro�les from the Input CollectionEach author's publication pro�le is characterized by her citation records. That is, thepro�le of author a is extracted from the input collection by summarizing her list ofcitation records into four probability distributions, namely:1. a's distribution of number of coauthors per record - P a
nCoauthors;2. a's coauthor popularity distribution - P a

Coauthor;3. a's distribution of number of terms in a work title - P a
nTerms;4. a's topic popularity distribution - P a

Topic.Each topic t is further characterized by two probability distributions:1. t's term popularity distribution - P t
T erm;2. t's venue popularity distribution - P t
V enue.Finally, we also build a collection pro�le with:1. probability distribution of the number of records per author with ambiguousnames - P c

nRecordsAuthors;2Pro�les of authors with non-ambiguous names are used in the generation of pro�les of new authors(Section 5.1.3), which relies on the pro�les of all authors in the input collection.

5.1. SyGAR Design 812. probability distribution of the number of records per author - P c
nRecordsAllAuthors;3. probability distribution of the number of records per ambiguous group -

P c
nRecordsGroup.

P a
nCoauthors, P a

Coauthor, P a
nTerms, P c

nRecordsAuthors and P c
nRecordsAllAuthors can be di-rectly extracted from the input collection by aggregating the citation records of eachauthor a. We assume a's attribute distributions are statistically independent. In par-ticular, we assume that, for any given citation, a's coauthors are independently chosen.Despite somewhat simplistic, these independence assumptions have also been madeby most previous work in the context of name disambiguation [Ferreira et al., 2010;Han et al., 2004, 2005a,b; Lee et al., 2005]. More importantly, we show, in Section 5.2,that these assumptions have little (if any) impact on the performance of di�erent dis-ambiguation methods, as there is little di�erence in their results when applied to a real(input) collection and to synthetically generated (output) collections.The main challenge here is to infer, from the input collection, the distributionsof topic popularity for each author (P a

Topic), as well as the distributions of term andvenue popularity associated with each topic (P t
T erm and P t

V enue). Recall that the inputcollection does not contain any information on the topic(s) associated with each citationrecord. Thus, to address this challenge, SyGARmodels each citation record in the inputcollection as a �nite mixture of a set of topics. In other words, each citation record rhas an associated topic distribution, P r
Topic

3. Terms in the work title and publicationvenue title are drawn from corresponding distributions associated with the topics ofthe citation record, and not with the authors. This model is thus able to generate acitation record with a work title containing terms (or with a venue) not used yet byany of the authors, provided that such terms (or venue) are associated with a topic oftheir interests.A �rst step to infer P a
Topic, P t

T erm and P t
V enue consists in deriving the distributionof topics for each citation record r in the input collection, P r

Topic. This is performedusing the Latent Dirichlet Allocation (LDA) generative model, previously proposedfor modeling document contents [Blei et al., 2003]. LDA is a three-level hierarchicalBayesian model, as illustrated in Figure 5.2. In this model, φ denotes a matrix oftopic distributions, with a multinomial distribution of NTerms terms for each of the
NTopics topics, which is drawn independently from a symmetric Dirichlet(αTerm) prior.
NTerms represents the total number of distinct terms in all work titles of the input3P r

Topic(t) measures the strength at which a given topic t is related to the citation record r,normalized so as to keep the summation over all topics equal to 1. Thus, P r
Topic(t) can be seen as aweight associated with topic t for citation record r.

82 Chapter 5. SyGAR: Synthetic Generator of Authorship Recordscollection whereas NTopics is the total number of topics used to model the citations.Moreover, θ is the matrix of citation-speci�c weights for these NTopics topics, eachbeing drawn independently from a symmetric Dirichlet(αTopic) prior. For each term, zdenotes the topic responsible for generating that term, drawn from the θ distributionfor that citation record, and w is the term itself, drawn from the topic distribution φcorresponding to z. In other words, the LDA model assumes that each citation record
r follows the generative process described below:1. Draw the number of terms sizeT itle in the work title according to a given dis-tribution, such as a Poisson distribution [Blei et al., 2003] or, in our case, thedistribution of number of terms in a work title for a given author a, P a

nTerms;2. Draw a topic distribution θr for citation record r according to a Dirichlet distri-bution model with parameter αTopic; and3. For each term i, i = 1 · · · sizeT itle, choose a topic zi following the multinomialdistribution θr and a term wi from a multinomial probability conditioned on theselected topic zi, given by distribution φzi, which in turn is drawn according to aDirichlet distribution with parameter αTerm.

Figure 5.2. A plate representation of the LDA [Blei et al., 2003] � The LDAmodel assumes that each citation record r follows the generative process. r drawsthe number of terms Nd in the work title according to a given distribution, drawsa topic distribution θ according to a Dirichlet distribution model with parameter
αTopic and, for each term, chooses a topic z following the multinomial distribu-tion θ and a term w from a multinomial probability conditioned on the selectedtopic z, given by distribution φ, which in turn is drawn according to a Dirichletdistribution with parameter αTerm.Thus, the LDA model has two sets of unknown parameters, namely, the topicdistribution associated with each citation record r, θr, and the term popularity dis-tribution of each topic j, φj, as well as the latent variables z corresponding to the

5.1. SyGAR Design 83assignments of individual terms to topics. Several strategies can be adopted to esti-mate θr and φj. As in [Rosen-Zvi et al., 2004] and [Song et al., 2007], we use the Gibbssampling algorithm [Gri�ths and Steyvers, 2004]. This algorithm aims at generatinga sequence of samples from the joint probability distribution of two or more randomvariables with the purpose of, for instance, estimating the marginal distributions ofone of the variables. The Gibbs sampling algorithm constructs a Markov chain thatconverges to the posterior distribution of z by generating random samples from theobserved data, and then uses the results to infer the marginal distributions θr and φj.The transitions between states of the Markov chain result from repeatedly drawing thetopic of the ith term, zi, from its distribution conditioned on all other variables, that is
P (zi = j|wi = m, z−i, w−i) ∝

CWT
m−ij

+ αTerm
∑

m′ CWT
m′

−i
j
+NTermsαTerm

CRT
r−ij

+ αTopic
∑

j′ C
RT
r−ij′

+NTopicsαTopic(5.1)In other words, it computes the probability that the topic assigned to the ithterm (variable zi) is j, given that the ith term (variable wi) is m and given all topicassignments not including the one related to the ith term (z−i). CWT
m−ij

is the numberof times that term m is assigned to topic j excluding the current instance of term
m, CWT

m′

−i
j
is the number of times that all terms in the collection are assigned to topic

j excluding the current instance of m, CRT
r−ij

is the number of times that topic j isassigned to terms in citation record r excluding the current instance of m, CRT
r−ij′

is thenumber of times that all topics are assigned to terms in citation record r excluding thecurrent instance of m.From any sample from this Markov chain, we can estimate the probability ofdrawing a topic j for a citation r as
θr(j) =

CRT
rj + αTopic

∑

j′ C
RT
rj′ +NTopicsαTopic

. (5.2)and the probability of drawing a term m for a given topic j as
φj(m) =

CWT
mj + αTerm

∑

m′ CWT
m′j +NTermsαTerm

(5.3)These distributions correspond to the predictive distributions over new terms andnew topics. According to Blei et al. [2003], it is recommended to assign positive valuesto input parameters αTopic and αTerm so as to allow the selection of new topics andnew terms that have not been previously observed. In other words, positive values for

84 Chapter 5. SyGAR: Synthetic Generator of Authorship Recordsthese parameters ultimately imply in non-zero probabilities to all items (i.e., topics orterms) regardless of whether they have CRT
rj (or CWT

mj) equal to 0.SyGAR follows the aforementioned procedure by processing all citation records inthe input collection, one at a time. It uses the terms in the work titles to estimate theconditional probability given by Equation 1. After a number of iterations, it estimatesthe topic distribution of each citation record r, P r
Topic (given by θr in Equation 5.2)and the term popularity distribution per topic t, P t
T erm (given by φj in Equation 5.3)Afterwards, the tool infers the topic distribution P a

Topic of each author a by com-bining the weights of the topics of all citation records in which a is an author. Onlytopics with weights greater than or equal to βTopic (input parameter) are selected fromeach citation record of a, so as to avoid introducing topics of very little interest to ain P a
Topic. SyGAR also infers the venue popularity distribution of each topic t, P t

V enue,by combining the weights of t associated with citation records containing the samepublication venue, provided that t has the largest weight among all topics of the givencitation record, i.e., provided that t is the most related topic of the given citationrecord4.Given the author pro�les, SyGAR is ready to generate the synthetic citationrecords. It generates a number Nloads of batches of data representing a number ofsuccessive loads. For each load, it generates a number of records given by NR or,alternatively, speci�ed based on the distributions of the number of publications perauthor per load (as in Section 5.3.2).Since SyGAR extracts publication pro�les of all authors in the input collection,the term �author� was used up to this point in this section to refer to any author in theinput collection, regardless of whether she has an ambiguous name or not. Since ourpresent goal is to evaluate disambiguation methods, we here use SyGAR to generatesynthetic records only for authors with ambiguous names. Thus, for the sake of clarity,through the rest of this chapter and unless otherwise noted, we refer to authors withambiguous names, the main target of our study, as simply authors, treating all otherauthors in the input collection as their coauthors.The following three sections describe how SyGAR generates synthetic recordsfor authors (with ambiguous names) already present in the input collection (Section5.1.2) and for new authors (Section 5.1.3), as well as how it models dynamic pub-lication pro�les (Section 5.1.4) and how it modi�es citation records in its �nal step(Section 5.1.5).4These probabilities are combined by �rst summing up all values of CRT
rj + αTopic (numerator inEquation 2) for citations r and topics j of interest, and then normalizing them so as to keep the totalprobability equal to 1.

5.1. SyGAR Design 855.1.2 Generating Records for Existing AuthorsEach synthetic record for existing authors is created as follows:1. Select one of the authors of the collection according to the desired distributionof number of records per author. Let it be a.2. Select the number of coauthors according to P a
nCoauthors. Let it be ac.3. Repeat ac times:

• with probability 1 - αNewCoauthor, select one coauthor according to P a
Coauthor;

• otherwise, uniformly select a new coauthor among remaining coauthors inthe input collection.4. Combine the topic distributions of a and each of the selected coauthors. Let itbe P all
Topic.5. Select the number of terms in the title according to P a

nTerms. Let it be at.6. Repeat at times: select one topic t according to P all
Topic and select one term forthe work title according to P t

T erm.7. Select the publication venue:
• with probability 1 - αNewV enue, select a venue according to P t

V enue, where tis the topic that was selected most often in Step 6;
• otherwise, randomly select a new venue among remaining venues in theinput collection.Step 1 uses either the collection pro�le, i.e., P c

nRecordsAuthors, or a distributionspeci�ed as part of the input. The latter may be speci�ed by, for instance, providingthe fractions of records to be generated for each author. This alternative input adds�exibility to our tool as it allows one to experiment with various scenarios by generatingsynthetic collections with varying numbers of records per author pro�le. Steps 2 and5 use the distributions in the pro�le of the selected author. The same holds for Steps3 and 7, although, with probabilities αNewCoauthor and αNewV enue, SyGAR selects newcoauthors and new venues (i.e., coauthors and venues that are not associated with theselected author in the input collection), respectively. We also note that, in Steps 3 and6, we do not allow for a coauthor (or term) to be selected more than once.The combined topic distribution P all
Topic (Step 4) is obtained by �rst selecting onlythe topics that are shared by all selected authors (a and her coauthors). If there is

86 Chapter 5. SyGAR: Synthetic Generator of Authorship Recordsno shared topic, we take the union of all topics associated with the selected author aand the coauthors. The combined distribution is built by, for each topic t, averaging
P a
Topic(t) across all authors (a and the coauthors) and normalizing these values at theend so as to keep the summation over all topics equal to 1.The seven steps are repeated a number of times equal to the target number ofrecords in the new load.5.1.3 Adding New AuthorsAnother use for SyGAR is to generate records for large author populations, by buildingcitation records not only for the authors present in the input collection but also fornew (non-existing) authors. A variety of mechanisms could be designed to build suchrecords. For the sake of demonstrating SyGAR's �exibility, we here adopt a strategythat exploits the publication pro�les from author and co-authors, extracted from theinput collection. Other (possibly more sophisticated) approaches will be designed inthe future.A new author a is created by �rst selecting one of its coauthors among all au-thors (with ambiguous and non-ambiguous names) in the input collection, i.e., using

P c
nRecordsAllAuthors. Let say it is ca. The new author inherits ca's pro�le, but the in-herited topic and coauthor distributions are changed as follows. First, the new authorinherits only a percentage %InheritedTopics of the topics associated with ca, i.e., the topicsthat are more strongly related to her (i.e., with largest weights). Let lTopic be the listof inherited topics. The new author's topic popularity distribution is built by usingthe same weights ca's distribution for the inherited topics, rescaling them afterwardsso as to keep the summation equal to 1.Similarly, we set a's coauthor list equal to ca plus all coauthors of ca that have atleast one of the topics in lTopic associated with them. Once again, the probabilities ofselecting each coauthor are also inherited, and rescaled afterwards. However, we forcethat ca appears in all records generated to the new author. This strategy mimics thecase of a new author who, starting its publication career, follows part of the interests(topics) of one who will be a frequent coauthor (e.g., advisor or colleague).Finally, the name of the new author is generated with the initial of the �rst nameand the full last name of an existing author (i.e., an ambiguous author name), selectedfrom the input collection using the distribution of the number of records per ambiguousgroup, i.e., P c

nRecordsGroup.Parameter %NewAuthors speci�es the percentage of new authors generated for eachnew load.

5.1. SyGAR Design 875.1.4 Changing an Author's Pro�leSyGAR also allows one to experiment with dynamic author pro�les, mimicking sce-narios in which authors (with ambiguous names) may change their publication pro�lesover time due to shifts in interests, as in the real-world bibliographic digital libraries.Although SyGAR processes the input collection as a static snapshot of publicationpro�les, the tool can generate collections in which authors dynamically change theirattribute distributions over successive loads.In the lack of a previous characterization of dynamic properties of author publi-cation, SyGAR currently implements a simple strategy to change the topic distributionof an author a (illustrated in Figure 5.3-a). It �rst sorts the topics associated with aaccording to their probabilities (i.e., P a
Topic) so as to have a histogram as close to a bellshape as possible (i.e., mode in the center and least probable topics in both extremes),as illustrated in Figure 5.3-b. It then shifts the distribution along the x-axis by a factorof δ, at each load. Figure 5.3-c illustrates four successive changes in an author's pro�leusing δ equals to 5.By carefully choosing δ, this procedure guarantees that changes occur as softly asdesired, mimicking the case of an author smoothly increasing/decreasing her interestin some topics over time.Parameter %ProfileChanges speci�es the percentage of authors that will experiencechanges in their pro�les in each load.5.1.5 Modifying Citation AttributesThe �nal step in the citation record generation process consists of modifying the citationattributes according to several input probability distributions (see Table 5.1). Twomandatory changes refer to how an author's �rst and middle names should be presentedin the citation record. There are three possibilities: completely remove the �rst/middlename, keep the �rst/middle name entirely and keep only the initial of the �rst/middlename. Probability distributions P FName and PMName are used to make the selections,which are applied to the names of all authors and coauthors in the synthetic citations.Next, six input distributions may be used to introduce typographical errors inthe generated records. PLName

#Mods , P T itle
#Mods and P V enue

#Mods are used to draw the number ofmodi�cations in each author's last name, work title and publication venue, respectively,whereas PLName
Mod , P T itle

Mod and P V enue
Mod are used to draw the type of each such modi�cationin each attribute. Four modi�cations are possible, namely, insert, remove or changeone character and swap two randomly selected characters.

88 Chapter 5. SyGAR: Synthetic Generator of Authorship Records
 0

 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0 5 10 15 20 25 30 35 40 45 50

Topic

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0 5 10 15 20 25 30 35 40 45 50

Topic

sorted

(a) (b)
 0

 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0 5 10 15 20 25 30 35 40 45 50

Topic(c)Figure 5.3. Changing author a's pro�le by altering her topic distribution. (a)the original topic distribution of author a. (b) The topics associated with a sortedaccording to their probabilities (P a
Topic) so as to have a histogram as close to abell shape as possible. (c) The topic distribution shifted along the x-axis by afactor δ = 5; 2 shifts are shown in the �gure.In its current version, SyGAR allows for the easy experimentation with a mul-titude of relevant scenarios (see examples in Section 5.3) that occur in real digitallibraries. We intend, in the future, to design even more sophisticated mechanisms toadd new authors to the output collection as well as new strategies to introduce changesin the pro�les of existing authors and in the synthetic records.As a �nal note, we emphasize that, although SyGAR was designed to help ad-dressing the name disambiguation task, it can be used to generate any collection ofcitation records, as long as a real collection is provided as source of author pro�les.Thus, we believe it can be used to study other problems related to bibliographic digitallibraries as well (e.g., scalability issues). SyGAR is implemented in Java and will beavailable for public use in due time.5.2 ValidationAs the methods available in the literature adopt a variety of solutions, including un-supervised and supervised techniques (see Section 3), we here select three methods,each one representative of a di�erent technique: the SVM-based name disambiguation

5.2. Validation 89method (SVM) that is proposed in [Han et al., 2004], unsupervised Heuristic-basedHierarchical Clustering method (HHC) that is proposed in [Cota et al., 2010] and theK-way Spectral Clustering-based method (KWAY) that is proposed in [Han et al.,2005b].We validate SyGAR by comparing the performance of the selected name dis-ambiguation methods on real and synthetically generated collections as well as bycomparing attribute distributions (author/coauthor and topic distributions) of bothcollections. The real collection of citation records used in our study was that extractedfrom DBLP (see Section 2.4).The ultimate goal of a disambiguation method is to separate all records withineach ambiguous group into a number of subgroups (i.e., clusters), one for each di�erent(disambiguated) author. In order to evaluate the performance of the disambiguationmethods, we here use the K metric that for us better evaluate the disambiguationresults.Since our main goal is to use SyGAR to evaluate representative disambiguationmethods, our main validation consists of assessing whether the synthetically generatedcollection captures the aspects of the corresponding real collection (and its ambiguousgroups) that are of relevance to the disambiguation methods. Towards that goal, wecompare the K result obtained when each of the three selected disambiguation methodsis applied to the real collection and its corresponding synthetic versions.In our validation experiments, we set αTopic=αTerm=0.00001, thus allowing, witha very small probability, the selection of any topic/term, regardless of whether they wereassociated with the selected authors/topics in the input collection (see Section 5.1.1).We believe this leads to the generation of more realistic synthetic collections. Moreover,we set βTopic=0.07, i.e., to infer the topic distribution of each author, we combine thetopics with weights greater than or equal to 0.07 in each citation record of such author,avoiding introducing topics with very little interest to her in the topic distribution. Thenumber of authors and the number of records per author in the synthetic collectionsare set to be the same as in the input collection, as both parameters have impact onthe e�ectiveness of the methods, and thus should be kept �xed for validation purposes.In other words, we let NR and P c
nRecordsAuthors be the same as in the input collectionand make Nloads=1. For validation purposes, we set %NewAuthors = %InheritedTopics =

%ProfileChanges = αNewCoauthor = αNewV enue = δ = 0, keep �rst and middle names ofeach author as in the input collection and avoid introducing any typographical errorin the synthetic collections. We experiment with NTopics equal to 300 and 600. Wefurther discuss issues related to the sensitivity of SyGAR to these parameters later inthis section.

90 Chapter 5. SyGAR: Synthetic Generator of Authorship RecordsRegarding the parameters for the methods, for SVM, we used the implementationprovided by the LibSVM package [Chang and Lin, 2001], with RBF (Radial BasisFunction) as the kernel function, where the best γ and cost values were obtained fromthe training data using the Grid program, available with the LibSVM package. ForKWAY, we used the implementation of the K-way spectral clustering provided by theUniversity of Washington spectral clustering working group5 and the number of authorsin the collections as the target number of clusters to be generated. For HHC, we usedthe same values speci�ed in [Cota et al., 2010] for the work and venue title similaritythresholds.For the sake of evaluation, we divided the real collection as well as each syntheticcollection generated from it into two equal-sized portions, by randomly splitting theauthor records into two parts. One is the training data and the other is the test set.We then applied each method to each ambiguous group in the test set. The supervisedmethod uses the training data to learn the disambiguation model. We repeated thisprocess 10 times for each collection, presenting results that are averages of the 10 runs.Table 5.2. SyGAR validation � Average K results and 95% con�dence intervalsfor real and synthetically generated collections (NTopics = 300). Statistical tiesare in bold. Collection KWAY SVM HHCReal 0.530±0.009 0.764±0.005 0.770±0.006Synthetic 1 0.478±0.005 0.698±0.008 0.753±0.013Synthetic 2 0.484±0.007 0.706±0.005 0.750±0.011Synthetic 3 0.478±0.008 0.701±0.006 0.752±0.005Synthetic 4 0.480±0.006 0.708±0.007 0.755±0.006Synthetic 5 0.477±0.009 0.702±0.006 0.751±0.011Table 5.2 shows average K results, along with corresponding 95% con�denceintervals, for the three disambiguation methods applied to the real collection and to�ve synthetically generated collections6 using NTopics=300. Note that the syntheticcollections are only slightly more di�cult to disambiguate than the real one. Indeed,K results for KWAY, SVM and HHC methods are, on average, around only 17%, 11%and 2.3%, respectively, smaller in the synthetic collections, including a statistical tiebetween the real and a synthetic collection using the HHC method (marked in bold).We notice that, the number of distinct terms in the work titles used by each authorin the synthetic collection with NTopics=300 is around 9% greater than in the realcollection. Since KWAY relies directly on the similarity among the records to group5http://www.stat.washington.edu/spectral6These collections were built based on the same input parameters, di�ering only with respect tothe seed used in the random number generator.

5.2. Validation 91them, which uses the work title, this may explain the larger di�erence for this method.HHC, on the other hand, �rst groups by coauthor and only uses the information inthe work and publication titles for minimizing the fragmentation problem, while SVM,relies on the training data, being more robust to these changes. This may explainthe smaller di�erences between these methods when applied to the synthetic and realcollections.We consider these results very good, given the complexity of the data generationprocess, and considering that SyGAR allows for the selection of title terms and venuesnot previously associated with an author. In other words, the synthetic collections,built using SyGAR, are mimicking reasonably well the real data.Table 5.3. SyGAR Validation: Average K results and 95% con�dence intervalsfor real and 5 synthetically generated collections (NTopics = 600).Collection KWAY SVM HHCReal 0.530±0.009 0.764±0.005 0.770±0.006Synthetic 1 0.499±0.008 0.746±0.007 0.793±0.008Synthetic 2 0.489±0.006 0.743±0.007 0.790±0.009Synthetic 3 0.493±0.006 0.742±0.007 0.799±0.012Synthetic 4 0.491±0.006 0.750±0.006 0.796±0.006Synthetic 5 0.497±0.010 0.743±0.010 0.801±0.008Table 5.3 shows similar results for synthetic collections built using NTopics=600.Note that these collections are easier to disambiguate and the K results are closer tothose produced for the real collection. Indeed, comparing real and synthetic collections,results for KWAY and SVM are, on average, only 9% and 4% smaller in the syntheticcollections, whereas the HHC results are slightly better in the synthetic collections(3.3%, on average). These results further show that SyGAR is capable of capturingthe aspects of the real collection that are relevant to the disambiguation methods.The reason why using 600 topics instead of 300 leads to synthetic collectionson which the disambiguation methods produce results closer (or even slightly better)to the results for the corresponding real collections may be explained as follows. Asthe number of topics increases, the number of authors sharing any given topic tendsto decrease. As a consequence, when building a synthetic citation, there is a higherchance that a term selected for a given topic (Equation 5.3) has been actually used, inthe real collection, by the author to which that topic was associated. Recall that, whengenerating a citation, if the selected authors share no topic, SyGAR combines all topicsof individual authors. This happens with the majority of the citations generated whenwe set NTopics=600. Thus, in this case, the chance of generating synthetic citationswith terms that were used by at least one of the authors in the real collection is higher,

92 Chapter 5. SyGAR: Synthetic Generator of Authorship Recordswhich ultimately makes the synthetic citations look more similar to the real ones, atleast with respect to title terms. This leads to synthetic collections that better resemblethe real ones, therefore justifying the similar performance of the methods.
 100

 200
 300

 400
 500

 600-6
-5

-4
-3

-2

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

Diff

NTopics

αTopic αTerm (10α)

Diff
-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3

 100
 200

 300
 400

 500
 600 0

 0.02
 0.04

 0.06
 0.08

 0.1
 0.12

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Diff

NTopics

βTopic

Diff
-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25

(a) SVM (b) SVM
 100

 200
 300

 400
 500

 600-6
-5

-4
-3

-2
-0.05

 0
 0.05
 0.1

 0.15
 0.2

Diff

NTopics

αTopic αTerm (10α)

Diff

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 100
 200

 300
 400

 500
 600 0

 0.02
 0.04

 0.06
 0.08

 0.1
 0.12

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Diff

NTopics

βTopic

Diff
-0.1
-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25

(c) HHC (d) HHCFigure 5.4. Sensitivity of SyGAR to αTopic, αTerm, βTopic and NTopics � Relativeerror between performance of each method on synthetic and real collections. (a)and (c) show the results of SVM and HHC, respectively, when applied to syn-thetically generated collections using various values of αTopic, αTerm and NTopics,keeping βTopic = 0.07. (b) and (d) show the results of SVM and HHC, respec-tively, when applied to synthetically generated collections using various of βTopicand NTopic, keeping αTopic=αTerm=10−5.To better understand the sensitivity of SyGAR to some of its key parameters,we evaluate the results of two of the selected methods, namely SVM and HHC, whenapplied to synthetic collections generated using various values of αTopic, αTerm, βTopic,and NTopics. We report, for each method, the relative di�erence of its performance onthe real and synthetic collections, here referred to as the relative error. A positive errorimplies that the synthetic collection is harder to disambiguate than the real one. Wereport average results of �ve runs, omitting con�dence intervals for the sake of clarity.

5.2. Validation 93We start by showing, in Figures 5.4(a) and 5.4(c), average errors for SVM andHHC, respectively, as we vary αTopic and αTerm from 10−6 to 10−2 (setting both to thesame value in each case), and NTopics from 100 to 600, while keeping βTopic �xed at 0.07.We note that, as both αTopic and αTerm increase, the gap between the results on syn-thetic and real collections tends to increase signi�cantly for both methods, particularlyfor large number of topics. The synthetic collections become harder to disambiguatefor larger values of αTopic and αTerm. This is because larger values of both parametersimpact the computation of P r
Topic and P t

T erm (Equations 5.2 and 5.3, respectively) moresigni�cantly. This is particularly true if NTopics is large, since counters CRT
rj and CWT

mj ,inferred from the input collection, tend to decrease as the number of topics increases.In other words, larger values of αTopic and αTerm may introduce too much noise in theestimates of P r
Topic and P t

T erm, ultimately generating synthetic collections that are muchharder to disambiguate than the real collection. The same can be noticed, though toa less extent, for smaller number of topics.Moreover, the errors also tend to decrease as the number of topics (NTopics) in-creases, provided that the values of αTopic and αTerm are not very large. As previouslydiscussed, the larger the number of topics, the higher the chance of generating citationswith terms that were used by at least one of its authors in the real collection. One ex-treme case is Ntopics=600 and αTopic = αTerm=10−5, when, as previously discussed, thishappens to most generated citations and both methods produce results that are veryclose to those obtained with the real collection. Thus, we suggest to use αTerm=10−5,
αTopic=10−5 and NTopics=600.Next, Figures 5.4(b) and (d) show average errors for SVM and HHC, respec-tively, as we vary βTopic from 0.01 to 0.12 and NTopics from 100 to 600, keeping
αTopic=αTerm=10−5. In general, both methods tend to produce results closer to thoseobtained with the real collection for larger values of βTopic. This is expected as βTopicrepresents the minimum weight of topics that can be associated with an author. Thus,in general, larger values of βTopic tend to reduce the chance of associating to an authora topic that is of little interest to her. So, the βTopic value must be lower or equal to0.10. Therefore, we suggest to set βTopic=0.10.We further validate SyGAR by comparing some of the attribute distributions inthe real and synthetic collections. As a sanity check, Figure 5.5(a) shows the distribu-tions of the number of records per author/coauthor (P c

nRecordsAllAuthors) in the real andin a synthetically generated collection. Clearly, both distributions are very similar, asexpected, with the average absolute di�erence between real and synthetic collectionaround 1.29. Figure 5.5(b), in turn, shows the popularity (in terms of number of ci-tations) of topics, in the real and in a synthetic collection built using NTopics=600,

94 Chapter 5. SyGAR: Synthetic Generator of Authorship Recordswith the average absolute di�erence between real and synthetic collection around 8.63.Recall that this metric is not directly manipulated by SyGAR. Once again, the curvesshow very similar patterns. Similar agreement was also obtained for collections gener-ated using other values of NTopics as well as for other attribute distributions.

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500 3000 3500

N
um

be
r

of
 R

ec
or

ds

Author/Coauthor

real
synth

(a) Number of Records per Author/Coauthor

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400 450 500

P
op

ul
ar

ity
 (

R

ec
or

ds
)

Topic

real
synth

(b) Topic Popularity (NTopics=500)Figure 5.5. SyGAR validation. We use αTopic=αTerm=10−5 and βTopic=0.7.

5.3. Evaluation of Disambiguation Methods with SyGAR 955.3 Evaluation of Disambiguation Methods withSyGARWe demonstrate the applicability of SyGAR by evaluating the SVM, KWAY and HHCdisambiguation methods in three realistic scenarios generated by our tool. We start bydescribing these scenarios in Section 5.3.1. We then present our experimental setup inSection 5.3.2 and discuss the most relevant results from our evaluation in Section 5.3.3.We emphasize that our goal here is not to thoroughly evaluate the selected methodsbut rather to show how our tool can be used to evaluate existing methods in relevantrealistic situations.5.3.1 Analysis ScenariosWe envision three scenarios that capture some relevant dynamic patterns observed inreal digital libraries. All three scenarios encompass a live digital library (DL) evolvingover the period of several years. In its initial state, the DL is a collection of syntheticcitations. At the end of each year, a load is performed into the DL with new citations ofexisting, and, possibly, of new ambiguous authors, depending on the speci�c scenario.We choose to model yearly loads, using as parameters the average yearly publicationrates of authors in each ambiguous group, extracted from DBLP (see Section 5.3.2).However, the load period could be easily changed.Scenario 1 consists of an evolving digital library with new citations introducedat each new load, assuming a �xed author population with static publication pro�les.In other words, Scenario 1 captures solely the impact of an evolving DL. Only authors(with ambiguous names) in the original input collection are considered and they donot change their pro�les during successive loads, keeping their topic and coauthordistributions as extracted from the input collection.Scenario 2 considers the introduction of new authors to the existing author pop-ulation. New authors are added to the collection at a given rate in each successiveload. As described in Section 5.1.3, a new author inherits a percentage of the topics ofan author that will be considered as her main coauthor (e.g., an advisor). Moreover,all publications of a new author have her main coauthor in the author list.Finally, Scenario 3 considers authors with dynamic pro�les. A percentage ofthe current authors make small changes in their pro�les before each new load, i.e.,their topic distributions are shifted by a factor δ, as explained in Section 5.1.4. Thechanges are very small, but are performed at a constant rate over the years. Althoughthis might not be very realistic, it allows us to test the limits of the disambiguation

96 Chapter 5. SyGAR: Synthetic Generator of Authorship Recordsmethods under dynamic publication pro�les. As we are unaware of previous studiesmeasuring pro�le change rates in real-word digital libraries, any choice of rate wouldbe arbitrary.Thus, the envisioned scenarios allow us to evaluate the robustness of the selecteddisambiguation methods to three key real-world aspects: (1) the evolution of the DL,(2) the inclusion of new authors with ambiguous names into the DL and (3) changesin author pro�les. We emphasize that these are only a few of the scenarios that can begenerated using SyGAR. For instance, scenarios with di�erent, possibly heterogeneous,pro�le change rates, i.e., di�erent values of δ for di�erent authors, can also be devised,being the loads easily produced by SyGAR. Building and experimenting with otherscenarios is subject of future work.5.3.2 Experimental SetupWe performed experiments with the same collection used in Section 5.2, containing 11ambiguous groups, as shown in Table 2.3. For each scenario, the number of syntheticcitation records in the initial state s0 of the digital library is the same as in the realcollection. Ten successive data loads, one per year, are generated using SyGAR (i.e.,
Nloads = 10), parameterized by the real collection as source of publication pro�les aswell as with additional inputs according to the speci�c scenario.Starting at state si, the new citation records generated by SyGAR are disam-biguated using each one of the three methods and the results are incorporated into thecorresponding DL version, which evolves into state si+1. If the supervised SVM methodis used, SyGAR is also used to generate a training set containing the same number ofcitations of the DL at its initial state s0. This training set is used by SVM to �learn"its model to disambiguate the records generated at each load. For both KWAY andHHC methods, the generated records are �rst incorporated into the current state ofthe DL and the disambiguation is performed with all records.For each new load, SyGAR generates records for authors already in the DLand, in Scenario 2, for new authors. The synthetic citations are generated using
NTopics=600, βTopic=0.10 and αTopic=αTerm=10−5. Moreover, in all three scenarios,we set αNewV enue=αNewCoauthor=0, thus restricting the selection of venues and coau-thors for an author's new citation to those already associated with her in the inputcollection.We also format author and coauthor names according to probabilities p thatmatch the observed patterns in the input collection. In particular, we retain either onlythe initial of the �rst name (p=0.53) or the complete �rst name (p=0.47). Moreover,

5.3. Evaluation of Disambiguation Methods with SyGAR 97regarding the middle name, we either keep only the initial (p=0.37), remove it (p=0.53)or keep it completely (p=0.10). Finally, we introduce no typographical errors in anyattribute.For experiments with Scenario 2, the number of new authors to be added at eachnew load is speci�ed as a fraction %NewAuthors of the total number of authors in the DLat its current state. We experiment with values of %NewAuthors equal to 5% and 10%.Each new author inherits 80% of the topics associated with her most frequent coauthor(%InheritedTopics=80%). We note that newly added authors remain as part of the DLthroughout the rest of the experiment, i.e., records are generated for these authors inall successive loads.Moreover, for experiments with Scenario 3, changes are introduced in a percent-age %ProfileChanges of author pro�les across successive loads using a shift δ=5. Weexperimented with %ProfileChanges equal to 10%, 50% and 100%. In this case, in eachyearly load a di�erent set of authors from the previous state is chosen to have theirpro�les changed.Finally, the distribution of the number of records generated for each author isbuilt from the data presented in Table 5.4, which shows the distribution of the averagenumber of publications per year per (existing and new) author. These distributionswere extracted from DBLP, counting the number of publications of each author ofthree selected ambiguous groups during the period of 1984-2008. We selected groups�C. Chen", �A. Gupta" and �D. Johnson" which, as shown in Table 2.3, have verydi�erent author population sizes. �C. Chen" is a very large ambiguous group with 60di�erent authors. �D. Johnson", on the contrary, is much smaller, and �A. Gupta" hasan intermediary number of authors.Table 5.4. Distribution of average number of publications per year per author(DBLP: 1984 - 2008). Average Number of Publications per YearOne Two Three > FourNew Authors 55% 30% 10% 5%Existing Authors 14% 42% 28% 16%For loads s1 to s10, the generation of new records use the distributions shown inTable 5.4. We chose to use that distribution because Han et al.'s DBLP collection,which we use here, did not have temporal information, so the number of records perauthor (P c
nRecordsAuthors) is a cumulative measure, and using it would certainly generatedistortions depending on the length of the career of that author. For generating thesuccessive loads, the yearly rates of publication are more important.

98 Chapter 5. SyGAR: Synthetic Generator of Authorship Records5.3.3 Evaluation of ResultsThe following subsections present our evaluation of the three selected methods in eachconsidered scenario built using SyGAR. Our evaluation is carried out by computingthe K value at each state of the DL. The results reported in the following sections areaverages of �ve runs. Corresponding 95% con�dence intervals are usually very tight,indicating errors on the reported means that fall below 12% in all cases.
 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10

A
ve

ra
ge

 K

Load (year)

HHC
SVM

KWAYFigure 5.6. Scenario 1 � Evolving DL with static author population and publi-cation pro�les.5.3.3.1 Scenario 1: Evolving DL with Static Author Population and Pro�lesFigure 5.6 shows, for each disambiguation method, the average K value computedover all 11 ambiguous groups in each state of the digital library over the ten-yearperiod. Corresponding 95% con�dence intervals are also shown. Note that the relativeorder of the methods, in terms of achieved performance, remains the same throughall states: HHC outperforms SVM, which, in turn, outperforms KWAY. However, thethree methods have very di�erent behaviors as new loads of citations are introducedinto the DL.SVM's performance, for example, tends to decrease over time: while it starts inthe �rst load (s0) with an average K value equals to 0.78, these values fall to levelsaround 0.66 in the successive loads. Indeed after 10 loads, SVM's performance degradesby 15%. This degradation is possibly due to errors caused by imprecise models learnedfor authors with very few records in the training set. These errors are cumulative inthe successive loads, calling for a retraining of SVM. Analyzing SVM with retrainingis not an easy task as factors such as errors introduced in the collection may a�ect theresults of these experiments. Thus, we leave it for future work.KWAY, on the contrary, experiences an increasing improvement in e�ectiveness asnew citations are added. This occurs because there is incrementally more informationabout each author, helping KWAY to better characterize them. Indeed, the gain in

5.3. Evaluation of Disambiguation Methods with SyGAR 99performance after 10 loads reaches 32%. Unlike both SVM and KWAY, HHC remainswith approximately the same performance, varying by at most 2%, throughout all 10successive loads. This is possibly due to the speci�c heuristics exploited by HHC forthe name disambiguation task (see [Cota et al., 2010] for details), in contrast to thegeneral purpose techniques used by SVM and KWAY.As consequence of such distinct behaviors, we �nd that, while in the beginning(i.e., state s0) HHC outperforms SVM by only 2% (on average) and SVM outperformsKWAY by 60% (on average), corresponding performance gains switch to 18% and only3%, respectively, after the last load of new citations.
 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10

A
ve

ra
ge

 K

Load (year)

HHC - 5% of new authors
KWAY - 5% of new authors
SVM - 5% of new authors 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10
A

ve
ra

ge
 K

Load (year)

HHC - 10% of new authors
KWAY - 10% of new authors
SVM - 10% of new authors(a) %NewAuthors=5% (b) %NewAuthors=10%Figure 5.7. Scenario 2 � Evolving DL and addition of new authors(%InheritedTopics=80%).

5.3.3.2 Scenario 2: Introduction of New AuthorsWe now use SyGAR to analyze the impact on each method of introducing new authorsto the current author population. Figure 5.7 shows average K values and corresponding95% con�dence intervals for each method on collections built using %NewAuthors equalto 5% and 10%, and %InheritedTopics equal to 80%.The behaviors of both KWAY and SVM follow trends very similar to those ob-served in Figure 5.6: whereas SVM su�ers performance degradation, KWAY actu-ally improves in performance as new loads of citations are added to the DL. How-ever, we note a clear detrimental impact of the introduction of new authors on bothmethods. SVM's performance degrades much faster for %NewAuthors=10% than for
%NewAuthors=5%. Indeed, in comparison with the case of static author population(Figure 5.6), the average K values after the last load are 20% and 11% worse for
%NewAuthors equal to 10% and 5%, respectively. Recall that SVM uses the same train-ing set, containing only records of the existing authors in state s0, to disambiguate theDL in all states. Therefore, SVM is unable to recognize new authors, thus introduc-

100 Chapter 5. SyGAR: Synthetic Generator of Authorship Recordsing errors into the DL when disambiguating their records. Once again, SVM requiresretraining when facing the addition of new authors to the DL, a subject of future study.Similarly, the improvement in performance experienced by KWAY becomes lesssigni�cant as the fraction of new authors introduced at each load increases. Thishappens because of the increase in the number of authors, which implies in higherambiguity and a higher inherent di�culty in distinguishing them. In comparison withthe case reported in Figure 5.6, KWAY's performance after the last load is 9% and 4%worse for %NewAuthors equal to 10% and 5%, respectively. In fact, for both values of
%NewAuthors, KWAY outperforms SVM after the last load.Figure 5.7 also shows that, like SVM and KWAY, HHC also su�ers a signif-icant performance degradation with the introduction of new authors. Indeed, for
%NewAuthors=10%, the di�erence in average performance between HHC and KWAYdrops from 64% to only 6% after the last load. In comparison with the case of staticauthor population, average K values after the last load are 21% and 12% worse for
%NewAuthors equal to 10% and 5%, respectively.

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10

A
ve

ra
ge

 K

Load (year)

HHC - 10%
HHC - 50%
HHC -100% 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10

A
ve

ra
ge

 K

Load (year)

SVM - 10%
SVM - 50%
SVM -100%(a) HHC (b) SVM

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10

A
ve

ra
ge

 K

Load (year)

KWAY - 10%
KWAY - 50%
KWAY -100%

(c)KWAYFigure 5.8. Scenario 3 � Dynamic author pro�les (δ = 5 and
%ProfileChanges=10%, 50% and 100%).5.3.3.3 Scenario 3: Dynamic Author Pro�lesFinally, Figures 5.8(a-c) show average K values and corresponding 95% con�dence in-tervals when a fraction %ProfileChanges equal to 10%, 50% and 100% of the authors

5.3. Evaluation of Disambiguation Methods with SyGAR 101experience changes in their pro�les at each new load. All three methods greatly su�erif facing dynamic changes in pro�les. KWAY, in particular, which experiences per-formance improvements in both Scenarios 1 and 2, now su�ers some degradation forvalues of %ProfileChanges greater than or equal to 50%. In particular, taking Scenario1 and the performance of each method after the last load as basis for comparison,we note that SVM's performance degrades by 16%, 31% and 34% for %ProfileChangesequal to 10%, 50% and 100%, respectively. HHC, in turn, experiences a performancedegradation of 4%, 13% and 19% in the respective cases, being therefore more robustthan SVM in this scenario. KWAY, which seems very robust to Scenarios 1 and 2,still experiences some performance improvement (by as much as 14%) if %ProfileChangesis equal to only 10%. Notice however, that this improvement is smaller than in thescenarios in which we did not have pro�le changes (in that case, improvements went upto 32%). However, for values of %ProfileChanges equal to 50% and 100%, its performancedegrades by 18% and 26%, respectively. While KWAY was able to take advantage ofthe increase in information in Scenarios 1 and 2, the change in the pro�le of existingauthors confounds this method.In sum, the performance of SVM tends to degrade over time, particularly asnew authors are introduced in the collection. In contrast, the performance of theunsupervised KWAY method, which uses privileged information regarding the numberof authors in the digital library, tends to increase with time, except when there arechanges in the author pro�les. Overall, among the three methods, the heuristic-basedmethod HHC, designed speci�cally to address the name disambiguation problem, hasthe best performance in the analyzed situations.

Chapter 6Conclusion
6.1 SummaryIn this thesis, we presented a set of contributions to help solving the author nameambiguity problem. First of all, we presented a taxonomy to classify the author namedisambiguation methods that helps better understand how the methods work and con-sequently understand their limitations. Our taxonomy classi�es the disambiguationmethods according to the type of approach, such as author grouping methods thatgroup the references to the same author using the similarity among the reference at-tributes, and author assignment methods that assign the references to their authors, oraccording to the evidence explored in the disambiguation task, for instance, methodsthat use citation attributes, Web information or implicit attributes. Further, we de-scribed several automatic representative disambiguation methods using the taxonomy.Second, we proposed SAND, a new hybrid disambiguation method that exploitsthe strengths of both supervised author assignment and unsupervised author groupingmethods. In its �rst step (i.e., the author grouping step), the references are clusteredso that references that are likely to be associated with the same author are groupedtogether in clusters. In its second step (i.e., the cluster selection step), some of theseclusters are selected to be used as training data. In its third step (i.e., the authorassignment step), these selected clusters are used as training data and are given asinput to a associative name disambiguator with the ability to detect the appearanceof new authors that were not included in the training data. We used two collectionsextracted from the DBLP and BDBComp digital libraries to evaluate SAND. In theDBLP collection, SAND outperformed two unsupervised methods by more than 27%.In the BDBComp collection, SAND outperformed two unsupervised methods by morethan 36% under the pF1 metric and by more than 4% under the K metric. SAND103

104 Chapter 6. Conclusionalso demonstrated to be very competitive, sometimes superior, to supervised authorassignment methods. In our evaluation, we also showed that without any parametersetup SAND produces the best result.And, �nally, we proposed SyGAR, a new generator of synthetic citation recordsthat helps to evaluate author name disambiguation methods under several scenarios.SyGAR generates synthetic citation records following the publication pro�les of existingauthors, extracted from the input collection. Moreover, SyGAR allows the simulationof several real-world scenarios, such as the introduction of new authors (not present inthe input collection) and dynamic changes in an author's publication pro�le, as wellas the introduction of typographical errors in the synthetic citations (not addressedhere). We validated it by comparing the results produced by three representativedisambiguation methods on a standard real collection and on synthetic collectionsproduced using our tool. The selected methods are: the supervised SVM-based method,the heuristic HHC method and the unsupervised KWAY clustering-based method. Ourvalidation experiments show a very good agreement in the performance obtained forall three methods for real and synthetically generated collections. We further analyzedSyGAR by demonstrating its applicability to evaluate the selected methods underthree real-world scenarios, namely the evolution of a DL with static author populationand publication pro�les, the introduction of new authors and the dynamic changesin the author's pro�les. Our results indicate that the performance of SVM tends todegrade with time, particularly as new authors are introduced in the collection. Incontrast, the performance of the unsupervised KWAY method, which uses privilegedinformation regarding the number of authors in the digital library, tends to increasewith time, except when there are changes in the author's pro�les. Overall, among thethree methods, the heuristic HHC method, designed speci�cally to address the namedisambiguation problem, has the best performance in all analyzed scenarios.6.2 Future ResearchRegarding SAND, several aspects may be further investigated:
• Other manners to identify when a reference belongs to an author who does nothave any citation record in the digital library instead of just using the numberof association rules projected from the training data to decide whether a newreference belong to a new author or not.
• Situations in which only the �rst step � author grouping step � is su�cient todisambiguate an ambiguous group. There are collections, such as BDBComp, in

6.2. Future Research 105which the author group step produces good results. So, if we could automaticallyevaluate wether the results of the �rst step were good enough, we would not needto perform the other steps.
• Other options to group the references in the author grouping step. We mayinvestigate unsupervised clustering techniques that produce pure clusters or howother attributes (work and publication venue title) may be used to produce pureclusters in the author group step.
• Other supervised techniques to be applied to the author assignment step. Wemay investigate how we can use/adapt other supervised clustering techniques toinfer new authors (i.e., new classes) and reliable predictions to be used in theauthor assignment step.
• Options to adapt SAND to work in a incremental manner, i.e., to disambiguateonly the references of the new citation records inserted into the digital library,avoiding the need for disambiguating all references of the digital library at once.
• How to adapt/generalize SAND to disambiguate other applications, e.g., ambigu-ous place names. If other applications have attributes highly discriminative, wemay use such attributes to produce pure clusters in the �rst step and use theother attributes in the second and third steps.
• Options to use the feedback relevance indicated by the user to improve the dis-ambiguation performance. We see two points where user feedback may be used:in the cluster selection and author assignment steps. In the cluster selectionstep, we may ask the user whether two clusters belong to the same author or not.In the author assignment step, we may ask the user for the correct authors ofunreliable predictions.Regarding SyGAR, the following items may be the subject of further research:
• Including a more sophisticated set of features to add new authors to the digitallibrary. Our tool generates references of new authors inheriting a part of theinterest area of an existing author. This strategy mimics the case of a new authorwho, starting its publication career, follows part of the interests of one who willbe a frequent coauthor (e.g., advisor or colleague). It is interesting to investigatea manner of generating new authors without using a pro�le of an existing author.
• Other options to dynamically change the authors' publication pro�les. A possibleoption to change the pro�les of an author is to change the list of her coauthors

106 Chapter 6. Conclusionand consequently her interest area. We may investigate how an author starts topublish with a new coauthor or how the authors end to publish together.
• Functions to allow specifying the percentage of coauthors with similar namesthat publish with di�erent authors with similar names and the percentage ofpublications to be generated that do not have coauthor names that are similarto the ones already inserted into the digital library.
• A manner of specifying the ambiguity of the load to be generated. If we canmeasure and de�ne the degree of ambiguity of a load, we may investigate howthe methods behave by increasing or decreasing the degree of ambiguity of a load.

Bibliography
Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining association rules betweensets of items in large databases. In Proceedings of the 1993 ACM SIGMOD Interna-tional Conference on Management of Data, pages 207--216, Washington, USA.Artiles, J., Borthwick, A., Gonzalo, J., Sekine, S., and Amigó, E. (2010). Weps-3evaluation campaign: Overview of the web people search clustering and attributeextraction tasks. In CLEF 2010 LABs and Workshops, Notebook Papers, Padua,Italy.Baeza-Yates, R. A. and Ribeiro-Neto, B. (1999). Modern Information Retrieval.Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.Bagga, A. and Baldwin, B. (1998). Algorithms for scoring coreference chains. InProceedings of the Seventh Message Understanding Conference (MUC7), pages 563--566.Bekkerman, R. and McCallum, A. (2005). Disambiguating web appearances of peoplein a social network. In Proceedings of the 14th International Conference on WorldWide Web, pages 463--470, Chiba, Japan.Bhattacharya, I. and Getoor, L. (2006). A latent dirichlet model for unsupervisedentity resolution. In Proceedings of the Sixth SIAM International Conference onData Mining, Bethesda, MD, USA.Bhattacharya, I. and Getoor, L. (2007). Collective entity resolution in relational data.ACM Transactions on Knowledge Discovery from Data, 1(1).Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journalof Machine Learning Research, 3:993--1022.Bordes, A., Ertekin, S., Weston, J., and Bottou, L. (2005). Fast kernel classi�ers withonline and active learning. Journal of Machine Learning Research, 6:1579--1619.107

108 BibliographyBruno, N. and Chaudhuri, S. (2005). Flexible database generators. In Proceedings ofthe International Conference on very large data bases, pages 1097--1107, Trondheim,Norway. VLDB Endowment.Carvalho, A. P., Ferreira, A. A., Laender, A. H. F., and Gonçalves, M. A. (2011).Incremental unsupervised name disambiguation in cleaned digital libraries. Journalof Information and Data Management, 2(3):289�304.Chang, C.-C. and Lin, C.-J. (2001). LibSVM: A Library for Support Vector Machines.Software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.Christen, P. (2005). Probabilistic data generation for deduplication and data linkage.In Proceedings of the International Conference on Intelligent Data Engineering andAutomated Learning, volume 3578 of Lecture Notes in Computer Science, pages 109�116, Brisbane, Australia. Springer.Christen, P. (2008). Febrl -: an open source data cleaning, deduplication and recordlinkage system with a graphical user interface. In Proceedings of the ACM SIGKDDInternational Conference on Knowledge Discovery and Data Mining, pages 1065�1068, Las Vegas, Nevada, USA. ACM.Christen, P. and Pudjijono, A. (2009). Accurate synthetic generation of realistic per-sonal information. In Proccedings of the 13th Paci�c-Asia Conference on Advances inKnowledge Discovery and Data Mining, volume 5476 of Lecture Notes in ComputerScience, pages 507�514, Bangkok, Thailand. Springer.Cohen, W. W., Ravikumar, P. D., and Fienberg, S. E. (2003). A comparison of stringdistance metrics for name-matching tasks. In Proceedings of the IJCAI-03 Workshopon Information Integration on the Web, pages 73�78, Acapulco, Mexico.Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,20(3):273--297.Cota, R. G., Ferreira, A. A., Gonçalves, M. A., Laender, A. H. F., and Nascimento, C.(2010). An unsupervised heuristic-based hierarchical method for name disambigua-tion in bibliographic citations. Journal of the American Society for InformationScience and Technology, 61(9):1853--1870.Crammer, K. and Singer, Y. (2003). Ultraconservative online algorithms for multiclassproblems. The Journal of Machine Learning Research, 3:951--991.

Bibliography 109Culotta, A., Kanani, P., Hall, R., Wick, M., and McCallum, A. (2007). Author dis-ambiguation using error-driven machine learning with a ranking loss function. InProceedings of the International Workshop on Information Integration on the Web,Vancouver, Canada.Dempster, A., Laird, N., Rubin, D., et al. (1977). Maximum likelihood from incom-plete data via the EM algorithm. Journal of the Royal Statistical Society. Series B(Methodological), 39(1):1--38.Diehl, C. P., Getoor, L., and Namata, G. (2006). Name reference resolution in orga-nizational email archives. In Proceedings of the SIAM International Conference onData Mining, pages 70--91, Bethesda, MD, USA.Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm fordiscovering clusters in large spatial databases with noise. In Proceedings of the 2ndInternational Conference on Knowledge Discovery and Data Mining, pages 226--231,Portland, Oregon.Fan, X., Wang, J., Pu, X., Zhou, L., and Lv, B. (2011). On graph-based name disam-biguation. ACM Journal of Data and Information Quality, 2:10:1--10:23.Ferreira, A. A., Gonçalves, M. A., Almeida, J. M., Laender, A. H. F., and Veloso, A.(2009). SyGAR - A Synthetic Data Generator for Evaluating Name DisambiguationMethods. In Proceedings of the 13th European Conference on Digital Libraries, pages437--441, Corfu, Greece.Ferreira, A. A., Gonçalves, M. A., Almeida, J. M., Laender, A. H. F., and Veloso, A.(2012a). A tool for generating synthetic authorship records for evaluating authorname disambiguation methods. Information Sciences, 206:42�62.Ferreira, A. A., Gonçalves, M. A., and Laender, A. H. F. (2012b). A brief survey ofautomatic methods for author name disambiguation. SIGMOD Record, 41(2):15--26.Ferreira, A. A., Silva, R., Gonçalves, M. A., Veloso, A., and Laender, A. H. F. (2012c).Active associative sampling for author name disambiguation. In Proceedings of the2012 ACM/IEEE Joint Conference on Digital Libraries, pages 175--184, Washington,DC.Ferreira, A. A., Veloso, A., Gonçalves, M. A., and Laender, A. H. F. (2010). E�ectiveself-training author name disambiguation in scholarly digital libraries. In Proceedingsof the 2010 ACM/IEEE Joint Conference on Digital Libraries, pages 39�48, GoldCoast, Queensland, Australia.

110 BibliographyFreund, Y. and Schapire, R. (1999). Large margin classi�cation using the perceptronalgorithm. Machine learning, 37(3):277--296.Frey, B. and Dueck, D. (2007). Clustering by passing messages between data points.science, 315(5814):972--977.Galvez, C. and de Moya Anegón, F. (2007). Approximate personal name-matchingthrough �nite-state graphs. Journal of the American Society for Information Scienceand Technology, 58(13):1960--1976.Geisser, S. (1993). Predictive inference: An introduction. Chapman & Hall, New York.Gri�ths, T. and Steyvers, M. (2004). Finding scienti�c topics. Proceedings of theNational Academy of Sciences, 101(1):5228--5235.Han, H., Giles, C. L., Zha, H., Li, C., and Tsioutsiouliklis, K. (2004). Two supervisedlearning approaches for name disambiguation in author citations. In Proceedingsof the 4th ACM/IEEE-CS Joint Conference on Digital Libraries, pages 296--305,Tuscon, USA.Han, H., Xu, W., Zha, H., and Giles, C. L. (2005a). A hierarchical naive Bayes mixturemodel for name disambiguation in author citations. In Proceedings of the 2005 ACMSymposium on Applied Computing, pages 1065--1069, Santa Fe, New Mexico, USA.Han, H., Zha, H., and Giles, C. L. (2005b). Name disambiguation in author citationsusing a k-way spectral clustering method. In Proceedings of the 5th ACM/IEEEJoint Conference on Digital Libraries, pages 334--343, Denver, CO, USA.Han, J. and Kamber, M. (2005). Data mining: concepts and techniques. MorganKaufmann, San Francisco, CA, USA.Hoag, J. E. and Thompson, C. W. (2007). A parallel general-purpose synthetic datagenerator. SIGMOD Record, 36(1):19--24.Huang, J., Ertekin, S., and Giles, C. L. (2006). E�cient name disambiguation forlarge-scale databases. In Proceedings of the European Conference on Principles andPractice of Knowledge Discovery in Databases, pages 536--544, Berlin, Germany.Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: a review. ACMComputing Surveys, 31(3):264--323.

Bibliography 111Kanani, P., McCallum, A., and Pal, C. (2007). Improving author coreference byresource-bounded information gathering from the web. In Proceedings of the 20thInternational Joint Conference on Arti�cial Intelligence, pages 429�434, Hyderabad,India.Kang, I.-S., Na, S.-H., Lee, S., Jung, H., Kim, P., Sung, W.-K., and Lee, J.-H. (2009).On co-authorship for author disambiguation. Information Processing & Manage-ment, 45(1):84--97.Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American StatisticalAssociation, 90:733--795.Laender, A. H. F., Gonçalves, M. A., Cota, R. G., Ferreira, A. A., Santos, R. L. T.,and Silva, A. J. C. (2008). Keeping a digital library clean: new solutions to oldproblems. In Proceedings of the ACM Symposium on Document Engineering, pages257�262.Lagoze, C. and de Sompel, H. V. (2001). The open archives initiative: building a low-barrier interoperability framework. In Proceedings of the 1st ACM/IEEE-CS JointInternational Conference on Digital Libraries, pages 54--62, Roanoke, Virginia, USA.ACM Press.Lapidot, I. (2002). Self-Organizing-Maps with BIC for Speaker Clustering. Technicalreport, IDIAP Research Institute, Martigny, Switzerland.Lee, D., Kang, J., Mitra, P., Giles, C. L., and On, B.-W. (2007). Are your citationsclean? Communications of the ACM, 50(12):33--38.Lee, D., On, B.-W., Kang, J., and Park, S. (2005). E�ective and scalable solutionsfor mixed and split citation problems in digital libraries. In Proceedings of the 2ndInternational Workshop on Information Quality in Information Systems, pages 69--76, Baltimore, Maryland.Lee, M.-L., Ling, T. W., and Low, W. L. (2000). IntelliClean: a knowledge-basedintelligent data cleaner. In Proceedings of the 6th ACM SIGKDD International Con-ference on Knowledge Discovery and Data Mining, pages 290--294.Levin, F. H. and Heuser, C. A. (2010). Evaluating the use of social networks inauthor name disambiguation in digital libraries. Journal of Information and DataManagement, 1(2):183--197.

112 BibliographyLevin, M., Krawzyk, S., Bethard, S., and Jurafsky, D. (2012). Citation-based boot-strapping for large-scale author disambiguation. Journal of the American Society forInformation Science and Technology, 63(5):1030--1047.Li, H., Lee, W.-C., Sivasubramaniam, A., and Giles, C. L. (2007). SearchGen: ASynthetic Workload Generator for Scienti�c Literature Digital Libraries and SearchEngines. In Proceedings of the 7th ACM/IEEE Joint Conference on Digital Libraries,pages 137--146, Vancouver, BC, Canada.Liming, L. and Lihua, L. (2005). Scienti�c publication activities of 32 countries. Sci-entometrics, 26(2):263--273.Malin, B. (2005). Unsupervised name disambiguation via social network similarity. InProceedings of the Workshop on Link Analysis, Counterterrorism, and Security, atthe SIAM International Conference on Data Mining, pages 93--102, Newport Beach,CA.McKay, D., Sanchez, S., and Parker, R. (2010). What's my name again?: sociotechnicalconsiderations for author name management in research databases. In Proceedingsof the 22nd Conference of the Computer-Human Interaction Special Interest Groupof Australia on Computer-Human Interaction, pages 240--247, Brisbane, Australia.Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New York, NY, USA.Oliveira, J. W. A. (2005). A strategy for removing ambiguity in the identi�cation ofthe authorship of digital objects. Master's thesis, UFMG, Belo Horizonte, Brazil.(in Portuguese).On, B.-W., Elmacioglu, E., Lee, D., Kang, J., and Pei, J. (2006). Improving grouped-entity resolution using quasi-cliques. In Proceedings of the 6th IEEE InternationalConference on Data Mining, pages 1008--015, Hong Kong, China. IEEE ComputerSociety.On, B.-W. and Lee, D. (2007). Scalable name disambiguation using multi-level graphpartition. In Proceedings of the 7th SIAM International Conference on Data Mining,pages 575--580, Minneapolis, Minnesota, USA.On, B.-W., Lee, D., Kang, J., and Mitra, P. (2005). Comparative study of namedisambiguation problem using a scalable blocking-based framework. In Proceedingsof the 5th ACM/IEEE Joint Conference on Digital Libraries, pages 344--353, Denver,CO, USA.

Bibliography 113Pereira, D. A., Ribeiro-Neto, B. A., Ziviani, N., Laender, A. H. F., Gonçalves, M. A.,and Ferreira, A. A. (2009). Using web information for author name disambiguation.In Proceedings of the 2009 ACM/IEEE Joint Conference on Digital Libraries, pages49�58, Austin, TX, USA.Rijsbergen, C. J. V. (1979). Information Retrieval, 2nd edition. Butterworths, London.Rosen-Zvi, M., Gri�ths, T. L., Steyvers, M., and Smyth, P. (2004). The author-topicmodel for authors and documents. In Proceedings of the Conference in Uncertaintyin Arti�cial Intelligence, pages 487�494, Ban�, Canada.Salton, G. M., Wong, A., and Yang, C. S. (1975). A vector space model for automaticindexing. Communications of the ACM, 18(11):613--620.Scoville, C. L., Johnson, E. D., and McConnell, A. L. (2003). When A. Rose is not A.Rose: the vagaries of author searching. Medical reference services quarterly, 22(4):1--11.Shu, L., Long, B., and Meng, W. (2009). A latent topic model for complete entityresolution. In Proceedings of the 2009 IEEE International Conference on Data En-gineering, pages 880--891, Shanghai, China. IEEE Computer Society.Soler, J. M. (2007). Separating the articles of authors with the same name. Sciento-metrics, 72(2):281--290.Song, Y., Huang, J., Councill, I. G., Li, J., and Giles, C. L. (2007). E�cient topic-based unsupervised name disambiguation. In Proceedings of the 7th ACM/IEEEJoint Conference on Digital Libraries, pages 342--351, Vancouver, BC, Canada.Tang, J., Fong, A. C. M., Wang, B., and Zhang, J. (2012). A uni�ed probabilistic frame-work for name disambiguation in digital library. IEEE Transactions on Knowledgeand Data Engineering, 24(6):975�987.Torvik , V. I., Weeber, M., Swanson, D. R., and Smalheiser, N. R. (2005). A probabilis-tic similarity metric for Medline records: A model for author name disambiguation.Journal of the American Society for Information Science and Technology, 56(2):140--158.Torvik, V. I. and Smalheiser, N. R. (2009). Author name disambiguation in medline.ACM Transactions on Knowledge Discovery from Data, 3(3):1--29.

114 BibliographyTreeratpituk, P. and Giles, C. L. (2009). Disambiguating authors in academic publica-tions using random forests. In Proceedings of the 2009 ACM/IEEE Joint Conferenceon Digital Libraries, pages 39--48, Austin, TX, USA.Veloso, A., Ferreira, A. A., Gonçalves, M. A., Laender, A. H., and Meira Jr., W. (2012).Cost-e�ective on-demand associative author name disambiguation. Information Pro-cessing & Management, 48(4):680 � 697.Veloso, A., Meira Jr., W., Cristo, M., Gonçalves, M., and Zaki, M. (2006a). Multi-evidence, multi-criteria, lazy associative document classi�cation. In Proceedings ofthe 2006 ACM CIKM International Conference on Information and Knowledge Man-agement, pages 218--227, Arlington, USA.Veloso, A., Meira Jr., W., and Zaki, M. J. (2006b). Lazy associative classi�cation.In Proceedings of the International Conference on Data Mining, pages 645--654,Washington, DC, USA.Vu, Q. M., Masada, T., Takasu, A., and Adachi, J. (2007). Using a knowledge base todisambiguate personal name in web search results. In Proceedings of the 2007 ACMSymposium on Applied Computing, pages 839--843, Seoul, Korea.Yang, K.-H., Peng, H.-T., Jiang, J.-Y., Lee, H.-M., and Ho, J.-M. (2008). Author namedisambiguation for citations using topic and web correlation. In Proceedings of theEuropean Conference on Research and Advanced Technology for Digital Libraries,pages 185--196, Aarhus, Denmark. Springer-Verlag.Yoshida, M., Ikeda, M., Ono, S., Sato, I., and Nakagawa, H. (2010). Person namedisambiguation by bootstrapping. In Proceeding of the 33rd International ACMSIGIR Conference on Research and Development in Information Retrieval, pages10�17, Geneva, Switzerland.Zha, H., He, X., Ding, C. H. Q., Gu, M., and Simon, H. D. (2001). Spectral relaxationfor K-means clustering. In Neural Information Processing Systems, pages 1057�1064.MIT Press.

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Outline

	2 The Author Name Disambiguation Task - Foundations
	2.1 Definitions
	2.2 Task Characterization
	2.3 Evaluation Metrics
	2.4 Collections

	3 Automatic Author Name Disambiguation Methods
	3.1 A Taxonomy for Author Name Disambiguation Methods
	3.1.1 Type of Approach
	3.1.2 Explored Evidence

	3.2 Overview of Representative Methods
	3.2.1 Author Grouping Methods
	3.2.2 Author Assignment Methods
	3.2.3 Using Additional Evidence

	3.3 Summary of Characteristics

	4 SAND: Self-training Author Name Disambiguator
	4.1 SAND Design
	4.1.1 The Author Grouping Step
	4.1.2 The Cluster Selection Step
	4.1.3 The Author Assignment Step

	4.2 Experimental Evaluation
	4.2.1 Experimental Setup
	4.2.2 Evaluating the Author Grouping Step
	4.2.3 Evaluating the Clustering Selection Step
	4.2.4 Evaluating SAND
	4.2.5 Comparison with the Author Grouping Baselines
	4.2.6 Comparison with the Supervised Author Assignment Methods
	4.2.7 Comparison with Other Supervised Methods for the Author Assignment Step
	4.2.8 Discussion

	5 SyGAR: Synthetic Generator of Authorship Records
	5.1 SyGAR Design
	5.1.1 Inferring Publication Profiles from the Input Collection
	5.1.2 Generating Records for Existing Authors
	5.1.3 Adding New Authors
	5.1.4 Changing an Author's Profile
	5.1.5 Modifying Citation Attributes

	5.2 Validation
	5.3 Evaluation of Disambiguation Methods with SyGAR
	5.3.1 Analysis Scenarios
	5.3.2 Experimental Setup
	5.3.3 Evaluation of Results

	6 Conclusion
	6.1 Summary
	6.2 Future Research

	Bibliography

