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Resumo

Sistemas de recomendação tem se tornado cada vez mais populares em aplicações
como e-commerce, mídias sociais e provedores de conteúdo. Esses sistemas agem como
mecanismos para lidar com o problema da sobrecarga de informação. Uma tarefa co-
mum em sistemas de recomendação é a de ordenar um conjunto de itens, de forma que
os itens no topo da lista sejam de interesse para os usuários. O conceito de interesse
pode ser medido observando a acurácia, novidade e diversidade dos itens sugeridos.
Geralmente, o objetivo de um sistema de recomendação é gerar listas ordenadas de
forma a otimizar uma dessas métricas. Um problema mais difícil é tentar otimizar as
três métricas (ou objetivos) simultaneamente, o que pode levar ao caso onde a tentativa
de melhorar em uma das métricas pode piorar o resultado nas outras métricas. Neste
trabalho, propomos novas abordagens para sistemas de recomendaççao multi-objetivo,
baseadas no conceito de Eficiência de Pareto − um estado obtido quando o sistema é de
tal forma que não há como melhorar em algum objetivo sem piorar em outro objetivo.
Dado que os algoritmos de recomendação existentes diferem em termos de acurácia,
diversidade e novidade, exploramos o conceito de Eficiência de Pareto de duas formas
distintas: (i) agregando listas ordenadas produzidas por algoritmos existentes de forma
a obter uma lista única - abordagem que chamamos de ranking Pareto-eficiente, e (ii),
a combinação linear ponderada de algoritmos existentes, resultado em um híbrido,
abordagem que chamamos de hibridização Pareto-eficiente. Nossa avaliação envolve
duas aplicações reais: recomendação de música com feedback implícito (i.e., Last.fm)
e recomendação de filmes com feedback explícito (i.e., Movielens). Nós mostramos que
as abordagens Pareto-eficientes são efetivas em recomendar items com bons niveis de
acurácia, novidade e diversidade (simultaneamente), ou uma das métricas sem piorar
as outras. Além disso, para a hibridização Pareto-eficiente, provemos uma forma de
ajustar o compromisso entre acurácia, novidade e diversidade, de forma que a ênfase
da recomendação possa ser ajustada dinamicamente para usuários diferentes.
Palavras-chave: Sistemas de recomendação híbridos, Eficiência de Pareto, Diversi-

dade, Novidade.
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Abstract

Recommender systems are quickly becoming ubiquitous in applications such as e-
commerce, social media channels and content providers, acting as enabling mechanisms
designed to overcome the information overload problem by improving browsing and
consumption experience. A typical task in recommender systems is to output a ranked
list of items, so that items placed higher in the rank are more likely to be interesting
to the users. Interestingness measures include how accurate, novel and diverse the
suggested items are, and the objective is usually to produce ranked lists optimizing
one of these measures. Suggesting items that are simultaneously accurate, novel and
diverse is much more challenging, since this may lead to a conflicting-objective problem,
in which the attempt to improve a measure further may result in worsening other
measures. In this thesis we propose new approaches for multi-objective recommender
systems based on the concept of Pareto-efficiency − a state achieved when the system
is devised in the most efficient manner in the sense that there is no way to improve one
of the objectives without making any other objective worse off. Given that existing
recommendation algorithms differ in their level of accuracy, diversity and novelty, we
exploit the Pareto-efficiency concept in two distinct manners: (i) the aggregation of
ranked lists produced by existing algorithms into a single one, which we call Pareto-
efficient ranking, and (ii) the weighted combination of existing algorithms resulting in
a hybrid one, which we call Pareto-efficient hybridization. Our evaluation involves two
real application scenarios: music recommendation with implicit feedback (i.e., Last.fm)
and movie recommendation with explicit feedback (i.e., MovieLens). We show that the
proposed approaches are effective in optimizing each of the metrics without hurting
the others, or optimizing all three simultaneously. Further, for the Pareto-efficient
hybridization, we allow for adjusting the compromise between the metrics, so that the
recommendation emphasis can be set dinamically according to the needs of different
users.

Keywords: Hybrid Recommender Systems, Pareto-Efficiency, Diversity, Novelty.
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Chapter 1

Introduction

1.1 Motivation

Recommender systems are increasingly emerging as enabling mechanisms devoted
to overcoming problems that are inherent to information overload. The rise of the Web,
amongst other factors, made it the case that there is a variety of content domains where
users have the time (and patience) to browse through all the possible options. Netflix1,
for example, provides thousands of movies and TV shows available for streaming. An-
other astounding example is Last.fm2: in 2009, Last.fm radio worked with over 80,000
labels and artists, which resulted in a catalogue of over 7 million tracks3. Finally,
running a simple query like “book”, on Amazon’s4 catalogue search, yields 42,705,980
results5, an amount that no sane user would dare to browse in search of something new.
Recommender systems help users navigate through this avalanche of items, (ideally)
presenting to them only items that will be of interest, in a personalized manner.

Personalization is what separates the recommender system from information re-
trieval systems and traditional search engines (modern search engines are blurring this
distinction, though). In traditional search engines, the user expresses an information
need (usually through a textual query), and the system retrieves the most relevant
items according to that query. In recommender systems, user behaviour and other
sources or data are used in order to present to the user items that will be of interest
to that particular user (or going even further, to that particular user in a particular
context).

1www.netflix.com
2www.last.fm
3http://blog.last.fm/2009/03/24/lastfm-radio-announcement
4www.amazon.com
5This query was performed on the 15th of January, 2013
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2 Chapter 1. Introduction

Historically, much of recommender systems research focused on the task of rating
prediction - that is, trying to predict the rating that an user will give to a given
item. Certainly, the Netflix challenge (as presented by Bennett et al. [2007]) had its
contribution to this, as they provided a very large dataset to the community, with
this task in mind. However, as argued by Cremonesi et al. [2010] and Herlocker et al.
[2004], the top-N recommendation task (where a list of the “best bet” recommendations
are shown, without the predicted rating values) better represents the reality of many
commercial systems. Cremonesi et al. [2010] showed that algorithms optimized for
minimizing rating prediction metrics do not necessarily perform well in terms of top-N
recommendation. In this work, we focus our efforts on the top-N recommendation
task.

1.2 Objectives

Even considering the top-N task, the typical goal of a recommender system still
is to maximize accuracy. More recently, however, there is increasing consensus that the
success of a recommender system depends on other dimensions of information utility.
More specifically, even being accurate, obvious and monotonous recommendations are
generally of little use, since they don’t expose users to unprecedent experiences (see
Celma and Herrera [2008]; Herlocker et al. [2004]; McNee et al. [2006]; Vargas and
Castells [2011]).

In particular, as noted by Vargas and Castells [2011], “novelty and diversity are
being identified as key dimensions of recommendation utility in real scenarios”. A novel
recommendation would be of an item that is not amongst the most popular items, and
therefore is less likely to be already known by the user. A diverse recommendation list
would be a list where the items recommended are not alike one another.

In this work, we call the three dimensions (accuracy, novelty and diversity) ob-
jectives. The main goal of this work is to propose a multi-objective algorithm for
recommender systems.

1.3 Hybrid Multi-Objective Recommender Systems

Increasing novelty and diversity by completely giving up on accuracy is straight-
forward - and meaningless, since the system will not meet the users needs anymore.
In fact, there is an apparent trade-off between these dimensions, which becomes evi-
dent by inspecting the performance of existing top-N recommendation algorithms (as
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we show in Chapter 4). An easy conclusion is that different algorithms may perform
distinctly depending on the dimension of interest (i.e., the best performer in terms of
accuracy is not the best one in terms of novelty and diversity), and thus it is hard
to point to a best performer if all the dimensions are considered simultaneously. In
traditional (accuracy-focused) recommender systems research, the need to combine
recommendation techniques to achieve peak performance is apparent (one notorious
example is the work by Bell et al. [2007]). Such combinations are called hybrids. The
potential synergy between different recommendation algorithms is of great importance
to multi-objective recommender systems, since they must achieve a proper level of each
dimension (i.e., objective).

In this work we tackle this problem by proposing algorithms based on the concept
of Pareto Efficiency. This is a central concept in Economics, which informally states
that “when some action could be done to make at least one person better off without
hurting anyone else, then it should be done.” This action is called Pareto improvement,
and a system is said to be Pareto-Efficient if no such improvement is possible. The
same concept may be exploited for the sake of devising multi-objective recommender
systems that are built by combining existing recommendation algorithms, as it fits
perfectly with trying to optimize multiple objectives at the same time. In this case,
the most efficient recommender system is the one which cannot improve an objective
further (i.e., accuracy, diversity or novelty) without hurting the other objectives.

Given that existing recommendation algorithms are complementary in the sense
that they greatly differ in their level of accuracy, novelty and diversity, we exploit the
Pareto-Efficiency concept in two distinct manners:

1. Pareto-Efficient Ranking: Each possible item is associated with a point in an
n-dimensional scattergram, which we call the user-interest space. In this case, a
point is represented as [c1, c2, . . . , cn], where each coordinate ci corresponds to the
relevance score estimated by a different recommendation algorithm. Points that
are not dominated by any other point in the scattergram compose the Pareto
frontier (Goldberg [1989]; Zitzler and Thiele [1999]). Points lying in the frontier
correspond to cases for which no Pareto improvement is possible, being therefore
items more likely to be simultaneously accurate, novel and diversified. This part
of the work, was published in Ribeiro et al. [2012].

2. Pareto-Efficient Hybridization: The final relevance score of an arbitrary item is
estimated using a linear combination (α × c1 + β × c2 + . . . + θ × cn) of the
relevance scores estimated by n different existing recommendation algorithms.
In this case, we have a 3-dimensional scattergram, which we call the objective
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space. Each point in this scattergram corresponds to the level of accuracy, novelty
and diversity achieved by a possible hybrid recommendation algorithm. We may
search for weights (i.e., α, β, . . . , θ) for which the corresponding points lie in the
Pareto frontier, and then choose the hybrid that best fits the system priority.
This part of the work was publiched in Ribeiro et al. [2013].

Both algorithms use machine learning components: Pareto Efficient Ranking uses
a machine learning based ranking technique in order to try to estimate the likelihood
that an item is in a Pareto Frontier, while Pareto Efficient Hybridization uses a genetic
algorithm in order to find the appropriate weights. These procedures are run in an
off-line setting, that is, the ranked lists are produced before the user interacts with
the system. We conducted a systematic evaluation involving different recommendation
scenarios, with explicit user feedback (i.e., movies from the MovieLens dataset, pre-
sented by Miller et al. [2003]), as well as implicit user feedback (i.e., artists from the
last.fm dataset, made available by Celma and Herrera [2008]).

The experiments showed that it is possible to (i) combine different algorithms in
order to produce better recommendations and (ii) control the desired balance between
accuracy, novelty and diversity. In most cases the proposed algorithms produce systems
that improve diversity and novelty without compromising accuracy, when compared
against the results obtained with the best algorithms in isolation, or improve accuracy
without compromising the other two objectives. Further, the comparison against multi-
objective baselines indicates the superiority of our proposed algorithms, which provide
significant gains in terms of all three criteria considered in our analysis.

To the best of our knowledge, the algorithms we introduce in this work differ
from all existing multi-objective recommendation algorithms. We exploit the notion of
Pareto-Efficiency in order to sort items that balance accuracy, novelty and diversity.
The Pareto-Efficiency concept was already employed in recommender systems that
must cope with additional dimensions such as user privacy (Dokoohaki et al. [2010]) and
friendship (Naruchitparames et al. [2011]), but our scenario is much more challenging,
involving competing objectives. Our first algorithm employs the Pareto frontier to find
a partial ordering between items, and by avoiding items located at the extreme positions
of the frontier it finds items that are likely to be simultaneously interesting in terms
of accuracy, diversity and novelty. Our second algorithm employs the Pareto frontier
to find hybrids that are more likely to perform suggestions that are simultaneously
interesting in terms of accuracy, diversity and novelty. Our proposed algorithms are
highly practical and effective for multi-objective recommender systems, as shown in
our experiments.
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1.4 Outline of the Thesis

The remainder of this work is organized as follows:

• Chapter 2 [Background]: Summarizes existing work related to evolutionary al-
gorithms, multi-objective optimization and their applications to recommender
systems, as well as existing work on hybrid recommender systems.

• Chapter 3 [Pareto-Efficient Algorithms]: Describes our algorithms for combining
multiple recommendation algorithms.

• Chapter 4 [Experimental Evaluation]: Presents an experimental evaluation of the
proposed algorithms in two different application scenarios.

• Chapter 5 [Conclusions]: Discusses the main conclusions, contributions and lim-
itations of the proposed work.





Chapter 2

Background and Related Work

In this section we review the main concepts about evolutionary algorithms and
multi-objective optimization. Finally, we discuss related work on hybrid and multi-
objective recommender systems.

2.1 Evolutionary Algorithms

Evolutionary algorithms are meta-heuristic optimization techniques that follow
processes such as inheritance and evolution as key components in the design and im-
plementation of computer-based problem solving systems (Eiben and Smith [2003];
Holland [1975]). In evolutionary algorithms, a solution to a problem is represented as
an individual in a population pool. The individuals may be represented as different
data structures, such as vectors, trees, or stacks, according to Michalewicz [1996]. If
the individual is represented as a vector, for example, each position in the vector is
called a gene.

Typically, evolutionary algorithms employ a training and a validation set, as
described in Algorithm 1. Initially, the population starts with individuals created
randomly (line 6). The evolutionary process is composed of a sequence of candidate
solution generations. The process evolves generation by generation through genetic
operations (lines 7-12). The goal of this process is to obtain better solutions after some
generations. A fitness function is used to assign a fitness value to each individual (line
9), which represents how well it performed on the training set or in a cross validation
set. To produce a new generation, genetic operators are applied to individuals with
the aim of creating more diverse and better individuals (line 12). Typical operators
include reproduction, mutation, and crossover. The reproduction operator is used to
breed new individuals identical to their parents, favoring those parents with highest

7
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Algorithm 1: Evolutionary Algorithm.
1 LetM be a training set
2 Let V be a validation set
3 Let Ng be the number of generations
4 Let NI be the number of individuals
5 S ←− ∅
6 P ←− initial random population of individuals
7 For each generation g of Ng do
8 For each individual i ∈ P do
9 fitness←− fitness(i,M,V)
10 Sg ←− NI top-ranked individuals of generation g

according to their fitness
11 S ←− S ∪ Sg
12 P ←− New population created by applying genetic

operators to individuals in Sg
13 BestIndividual←− SelectionMethod(S)

values of the fitness function. The crossover operator takes two individuals (parents) to
breed a new one by exchanging subparts of the parent chromosomes (roughly mimicking
a mating process). The mutation operator simulates the deviations that may occur in
the reproduction process by a random perturbation of the chromosomes (e.g. replacing
a gene by another).

2.2 Multi-Objective Optimization

Since we are interested in maximizing three different objectives for the sake of
recommender systems (i.e. accuracy, novelty, and diversity), we model our algorithm
using a multi-objective evolutionary algorithm. In multi-objective optimization prob-
lems there is a set of solutions that are superior to the remainder when all the objectives
are considered together. In general, traditional algorithms for multi-objective optimiza-
tion problems are very limited because they become too expensive as the size of the
problem grows (see the work by Cecchini et al. [2010]). Multi-objective evolutionary
algorithms are a suitable option to overcome such an issue.

Typically, multi-objective evolutionary algorithms are classified as Pareto or non-
Pareto, according to Zitzler and Thiele [1999]. In the non-Pareto optimization case,
the objectives are combined into a single evaluation value that is used as fitness value
(i.e., average of the objectives). In Pareto algorithms, on the other hand, a vector
of objective values is used (i.e., the individual is given as an objective vector). The
evaluation of Pareto algorithms follows the Pareto dominance concept. An individual
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dominates another if it performs better in all of the objectives considered. Given two
arbitrary individuals, the result of the dominance operation has two possibilities: (i)
one individual dominates another, or (ii) the two individuals do not dominate each
other. An individual is denoted as non-dominated if it is not dominated by any other
individual in the population, and the set of all non-dominated individuals compose the
Pareto frontier.

The reason we use approaches based on the Pareto dominance concept instead of
combining the objectives into a single evaluation measure is twofold: (1) the concept
lends itself nicely to the multi-objective scenario, where one wants to keep the balance
between the different objectives, and (2) by using the Pareto dominance concept we are
able to tweak the compromise between the objectives according to different needs, which
we do by using the Pareto Frontier in the Pareto-Efficient Hybridization algorithm (see
Section 3.2).

In this work we use a second version of the strength Pareto evolutionary algorithm
(SPEA-2), proposed by Zitzler et al. [2001]; Zitzler and Thiele [1999]. The The aim is
to find or approximate the Pareto-optimal set for multi-objective problems. The main
features of this algorithm are: (i) the fitness assignment scheme takes into account how
many individuals each individual dominates or is dominated by, (ii) it uses a nearest
neighbour density estimation technique to break ties in solutions with the same fitness,
(iii) the size of the population of non-dominated solutions is a fixed value η. Thus,
we have two situations. First, when the actual number of non-dominated solutions
is lower than η, the population is filled with dominated solutions; second, when the
actual number of non-dominated solutions exceeds η, some of them are discarded by
a truncation operator which preserves boundary conditions, even though we always
keep the current Pareto Frontier in a list separate from the population, so we can later
retrieve the individuals in it.

2.3 Related Work

Traditionally, hybrid recommender strategies are the combination of two different
families of algorithms - namely, content-based and collaborative filtering (see Adomavi-
cius and Tuzhilin [2005]). In this work, we combine many (up to eight) recommenda-
tion algorithms - different content-based and collaborative filtering algorithms that deal
with explicit and implicit feedback, etc. We treat each recommendation algorithm as
a black-box, so adding or removing recommendation algorithms is easy.
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Burke [2002] identified seven types of hybrids:

• Weighted: The scores from each of the different recommendation components are
combined numerically.

• Switching: The system chooses among recommendation components and applies
the selected one.

• Mixed: Recommendations from different recommendation components are pre-
sented together.

• Feature Combination: Features from different knowledge sources are combined
together and given to a single recommendation algorithm.

• Feature Augmentation: One recommendation technique is used to compute a
feature or set of features, which is then part of the input to the next technique.

• Cascade: Recommenders are applied in a certain order, such that each recom-
mender breaks ties from the previous ones.

• Meta-level: One recommendation technique is applied and produces some sort of
model, which is then the input used by the next technique.

Out of these seven types, three are not appropriate for combining many recom-
mendation algorithms. The feature combination type is a hybrid that does not even
combine recommendation algorithms. The cascade type is appropriate for few recom-
menders, as there are only so many ties the next algorithm can break. Finally, the
meta-level type requires very specific algorithm sequences, which are hard enough for
two algorithms, let alone many.

Different hybridization strategies have been proposed in the literature. Examples
of weighted hybrids can be found in the works by Claypool et al. [1999] and Pazzani
[1999] (which is a voting mechanism). Switching examples are found in the works by
Billsus and Pazzani [2000]; Lekakos and Caravelas [2008]. An example of the cascade
type was proposed by Burke [2002] himself. A notable example of feature augmentation
is the work by Bao et al. [2009], where the predictions scores of a group of algorithms
become features to another learning algorithm, together with additional meta-features.
The authors show that using two additional meta-features - namely the number of users
that rated each movie and the number of movies that each user rated - gave them
excellent results. Their hybrid, called STREAM, is used as a baseline in this work.

A prominent use of hybridization in recommender systems is the Belkor system
that won the Netflix competition, presented by Bell et al. [2007]; Bennett et al. [2007].
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Their method is a weighted linear combination of 107 collaborative filtering engines.
There are important differences between their work and ours: (i) their solution is
single-objective (accuracy), (ii) they combine only collaborative filtering information,
and (iii) the recommendation task is rating prediction, focused on RMSE (Root Mean
Squared Error) - which makes the aggregation simpler, since all of the ratings are on
the same scale and consist of the same items.

There have been several research efforts to apply machine learning / artificial in-
telligence methods to the problem of combining different recommendation algorithms.
STREAM (Bao et al. [2009]), which has been discussed before, is a notable example - it
is an application of the traditional ensemble strategy stacking (see Polikar [2006]) ap-
plied to recommender algorithms. The authors combine the recommenders with either
Linear Regression (Mitchell [1997]), model tree (Wang and Witten [1997]) or bagged
model trees (see Hastie et al. [2001]). In their case, the task was rating prediction,
and the best machine learning algorithm was bagged model trees. In our top-N case,
the algorithm that did the best was linear regression, so we reported the results for
STREAM using linear regression as a baseline.

The Belkor system is also a case of using machine learning (linear regression)
in order to combine a variety of different recommendation algorithms. In a similar
fashion, Basu et al. [1998] applied the inductive rule learner Ripper in order to combine
user ratings and content features. Basilico and Hofmann [2004] designed an SVM-like
model for a feature combination algorithm, with a kernel function that is based on joint
features of user ratings as well as user or item attributes. We use machine learning in
both of the proposed algorithms - a genetic algorithm for Pareto-Efficient Hybridization
and SVM-rank for Pareto-Efficient Ranking. However, we use these learning algorithms
(and the Pareto concept) in order to achieve better results on the whole objective space
(more specifically, on accuracy, novelty and diversity), instead of using them to improve
accuracy, as is the case with the aforementioned works.

There has been an increasing consensus in the recommender systems community
about the importance of proposing algorithms and methods to enhance novelty and
diversity, as seen by Ge et al. [2010]; Vargas and Castells [2011]. As showed by Ziegler
et al. [2005], user satisfaction does not always correlate with high recommender accu-
racy. Thus, different multi-objective algorithms have been proposed to improve user
experience considering either diversity or novelty. For instance, Ziegler et al. [2005] de-
fine a greedy re-ranking algorithm that diversifies baseline recommendations. Another
strategy to improve diversity is presented by Zhang and Hurley [2008], where they sug-
gest an optimization method to improve two objective functions reflecting preference
similarity and item diversity.



12 Chapter 2. Background and Related Work

On the other hand, novelty has been understood as recommending long-tail items,
i.e., those items which few users have accessed. Vargas and Castells [2011] present
hybrid strategies that combine collaborative filtering with graph spreading techniques
to improve novelty. Celma and Herrera [2008] take an alternative approach: instead of
assessing novelty in terms of the long-tail items that are recommended, they follow the
paths leading from recommendations to the long tail using similarity links. As far as
we know, this is the first work that proposes a hybrid method that is multi-objective
in terms of the three metrics, i.e., accuracy, diversity and novelty.

As for previous research involving multi-objective algorithms in the context of
recommendation, Agarwal et al. [2011] present a multi-objective approach to optimize
jointly for clicks and post-click downstream utilities (such as revenue, time spent, etc),
in the context of content recommendation. However, they handle the trade-off by
showing a portion of their users results optimized for relevance, while showing results
optimized for another downstream measure for another group of users - which is some-
thing that makes sense for such a business, but not so much for movie and music
recommendation. Jambor and Wang [2010], on the other hand, formulate the problem
as a simple linear optimization problem, where each objective is considered as a con-
straint. Rodriguez et al. [2012] expand the previous formulation, allowing for nonlinear
objective and constraint functions, for a user recommendation scenario on LinkedIn1.

Extensive research has also been performed exploiting the robust characteris-
tics of genetic algorithms in recommender systems. For instance, Pagonis and Clark
[2010] build a content-based recommender system and use genetic algorithms to assign
proper weights to the words. Such weights are combined using the traditional IR vector
space model (see Baeza-Yates and Ribeiro-Neto [tion]) to produce recommendations.
Minchul Jung et al. [2008] use a genetic algorithm to build a recommender method
that considers the browsing history of users in real-time. In contrast to our method
(which uses a Genetic Algorithm (GA) to combine multiple recommender methods),
they use a GA to build a single-method.

Hwang [2010], presents a implementation of GA for optimal feature weighting in
the multi-criteria scenario. Their application of GA consists in selecting features that
represent users’ interest in a collaborative filtering context, in contrast to our method,
which focuses on assigning weights to different recommendation algorithms in order to
improve he overall performance in terms of accuracy, novelty and diversity.

1www.linkedin.com



Chapter 3

Pareto-Efficient Algorithms

In this chapter, we present the Pareto-efficient concept in two distinct manners:
first, we introduce Pareto-efficient ranking, where each item is associated with a point
in a n-dimensional scattergram called the user-interest space. Next, we present Pareto-
efficient hybridization, where the final score of an item is estimated using a linear
combination of recommenders.

3.1 Pareto-Efficient Ranking

In this section we introduce our algorithm for Pareto-efficient ranking. We start
by discussing how possible items are disposed in a user-interest space by exploiting
different recommendation biases within existing recommendation algorithms. Then,
we discuss how the user-interest space is used in order to aggregate multiple ranked
lists into a final, Pareto-efficient, ranked list.

3.1.1 Recommendation Bias and User-Interest Space

Typically, a recommender system arranges items into a ranked list, so that the
top-k items are those most interesting to the user. Although being naturally subjective,
the potential interest a user will have in the top-k items may be approximated by the
following interestingness measures:

• Accuracy: returns how well the top-k items meet the user’s information need.

• Novelty: is inherently linked to the notion of discovery and returns how novel to
the user are the top-k items. Further, top-k items are assumed to be accurate
(i.e., relevant).

13
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• Diversity: returns how different with respect to each other are the top-k items.
Further, top-k items are assumed to be accurate.

Existing recommendation algorithms differ by large in their level of accuracy,
novelty and diversity. The difference is due to a distinct recommendation bias which
is followed by each algorithm, that is, existing algorithms may favor different inter-
estingness measures. However, it is already a consensus that all three interestingness
measures are essential to effective recommendation, since together these measures have
a complementary effect which is highly desirable for recommender systems. That is,
accurate suggestions are of little value if they are obvious to the user. Besides, sug-
gesting items that are too similar to each other leads to monotonous and ineffective
recommendations. Therefore, in order to ensure effective results, the top-k items within
a ranked list must be as accurate, novel and diverse as possible.

Figure 3.1: Left − User-Interest space according to two different recommendation
biases (i.e., different recommendation algorithms). Points are possible items and are
represented by the relevance level estimated by different algorithms. Right − Non-
dominated items form successive Pareto frontiers.

Consider the set of constituent recommendation algorithms A = {a1, a2, . . . , an}
and assume that these algorithms assign to each possible item a score p̂aj(ui|t) cor-
responding to the potential interest user t has on item ui, we may represent each
item ui as a point in a n-dimensional user-interest space: St = [p̂a1(ui|t), p̂a2(ui|t), . . .,
p̂an(ui|t)]mi=1, where m is the number of possible items and each p̂aj(ui|t) is calculated
using one out of n different constituent recommendation algorithms (i.e., following dif-
ferent recommendation biases). Figure 3.1 (Left) depicts a 2-dimensional user-interest
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space. The dominance operator relates two items in such space, so that the result of
the dominance operation has two possibilities: (i) one item dominates another or (ii)
the two items do not dominate each other. We need now the following definition.

Definition 1: A Pareto-Efficient ranked list for user t is an ordered list of m items
Lt = {u1, u2, . . . , um} such that there is no pair (ui, uj) ∈ Lt for which ui dominates
uj, given that i > j.

3.1.2 Building Pareto-Efficient Ranked Lists

Algorithm 2 builds a Pareto-Efficient ranked list for user t. Items that are not
dominated by any other item in St lie on the Pareto frontier, as shown in Figure 3.1
(Right). Stripping off an item from the Pareto frontier, and building another frontier1

from the remaining items in St reveals a partial ordering between the items, which we
call a Pareto-Efficient ranking.

Algorithm 2: Pareto-Efficient Ranking.
Input: St (the n-dimensional interest space for user t), and k (the number of

suggested items).
Output: Lt (a Pareto-Efficient ranked list for user t).
Build all the Pareto frontiers in St;
repeat

include an item x into Lt;
remove x from St;

until |Lt| = k;

Next, we discuss different strategies for building Pareto-Efficient ranked lists for
each user t. These strategies are based on Algorithm 2, and the only difference between
them resides on the item that is selected at each iteration (i.e., item x on Algorithm 2).
Still, our strategies try to avoid selecting items located at extreme positions of the
frontier, since such items may privilege a specific measure. Instead, highly dominant
items, or items that are representative of other items in the frontier, are more likely to
balance multiple objectives.

1 There are efficient algorithms for building and maintaining the Pareto frontier, such as the ones
based on skyline queries Lin et al. [2007]; Papadias et al. [2003]. In particular, we employed the skyline
operator algorithm proposed in Börzsönyi et al. [2001], ensuring O(n×m× k) complexity.
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Most Dominant Items First

This strategy aims at selecting the item lying in the current Pareto frontier which
dominates more items in the user-interest space St, as given by:

ui such that arg max(dom(ui)),∀ ui ∈ St

where dom(ui) is the number of items dominated by ui.
The number of items that are dominated by an arbitrary item ui is easily obtained

while building the Pareto frontier, and it remains unchanged as most dominant items
are removed from St, ensuring the efficiency of the process. It is worth noting that the
first frontier is exhausted before items in the second frontier are selected, and so on.

Learning to Rank

This strategy aims at selecting the item which is more likely to be located in
the first Pareto frontier. To this end, when training, we label items according to the
frontier they are located (i.e., first, second, . . ., frontiers), so that items lying in the
first frontiers are labeled as more relevant than items lying in subsequent frontiers.
Then, when testing, we apply a well-known learning to rank algorithm, SVM-Rank
(Joachims [2002]), in order to sort items accordingly to their potential relevance level.
Specifically, we model the training data as item-user pairs, and each pair is labeled with
the Pareto frontier in which the corresponding item is located. SVM-Rank formalizes
the ranking problem as a binary classification problem on instance pairs, and then solve
the problem using SVMs (Joachims [2006]).

3.2 Pareto-Efficient Hybridization

In this section we introduce a weighted Pareto-efficient hybridization algorithm.
We start by discussing how different recommendation algorithms are combined in a
standard weighted manner. Then we describe the evolutionary search for Pareto-
Optimal hybrids. Finally, we discuss a strategy to deal with the compromise between
accuracy, novelty and diversity, so that the system is able to adjust itself for different
user perspectives.
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3.2.1 Weighted Hybridization

Our hybridization algorithm is based on assigning weights to each constituent al-
gorithm. We denote the set of constituent algorithms as A = {a1, a2, . . . , an}, and we
suppose that these algorithms assign to each possible item a score p̂aj(ui|t) correspond-
ing to the potential interest user t has on item ui. Since the constituent algorithms
may output scores in drastically different scales, a simple normalization procedure is
necessary to ensure that all algorithms in A operate in the same scale. The aggregated
score for each item i is calculated as follows:

p̂(ui|t) =
n∑

j=1

p̂aj(ui|t)× waj (3.1)

where waj is the weight assigned to algorithm aj ∈ A. The assignment of weights to
each algorithm is formulated as a search problem which we discuss next.

3.2.2 Searching for Pareto-Efficient Hybrids

Finding a suitable hybrid, represented as a vector of weights W = {wa1 , wa2 , . . . ,

wan}, can be viewed as a search problem in which each wai is selected in a way that op-
timizes a established criterion. We consider the application of evolutionary algorithms
for searching optimal solutions. These algorithms iteratively evolve a population of
individuals towards optimal solutions by performing genetic-inspired operations, such
as reproduction, mutation, recombination, and selection (Goldberg [1989]). Next we
precisely define an individual.

Definition 2: An individual is a candidate solution, which is encoded as a sequence of n
values [wa1 , wa2 , . . . , wan ], where each wai indicates the weight associated with algorithm
ai ∈ A.

Each constituent algorithm ai assigns scores to items using a cross-validation set.
Finally, weights are assigned to each recommendation algorithm and their scores are
aggregated according to Equation 3.1, producing an individual (i.e., an hybrid). A
fitness function is computed for each individual in order to make them directly com-
parable, so that the population can evolve towards optimal solutions (i.e., individuals
located closer to the Pareto frontier).

Definition 3: An optimal solution is a sequence of weights W = {wa1 , wa2 , . . . , wan},
satisfying Equation 3.2:

maximize φ(oi) ∀oi ∈ {accuracy, novelty, diversity} (3.2)
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where φ(oi) is the value of an objective oi, which can be either accuracy, novelty
or diversity. Thus, the performance of each individual is given by a 3-dimensional
objective vector, containing the average accuracy, novelty and diversity over all users in
the cross validation set. Searching for optimal hybrids is a multi-objective optimization
problem, in which the value of φ(oi) must be maximized for each of the three objectives
that compose an optimal solution. Therefore, multiple optimal individuals are possible.
It is worth noticing that different datasets and combinations of constituent algorithms
will generate different optimal individuals.

Again, we exploit the concept of Pareto dominance for solving the multi-objective
optimization problem. As a result, given the 3-dimensional objective space, the evo-
lutionary algorithm evolves the population towards producing individuals that are lo-
cated closer to the Pareto frontier, as illustrated in Figure 3.2.

Figure 3.2: A 3-dimensional objective space. Points are possible hybrids and are
represented by the corresponding level of accuracy, novelty and diversity. Hybrids
lying in the Pareto frontier are not dominated by any other hybrid.

The result is a set of Pareto-efficient hybrids. Under this strategy, we follow
the well-known Strength Pareto Evolutionary Algorithm approach (Zitzler and Thiele
[1999]; Zitzler et al. [2001]), which has shown to be highly effective and also because
it provides more diverse individuals when compared to existing algorithms (such as
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those proposed by Corne et al. [2000]; Deb [1999]; Srinivas and Deb [1994]) for many
problems of interest. The Strength Pareto approach isolates individuals that achieve a
compromise between maximizing the competing objectives by evolving individuals that
are likely to be non-dominated by other individuals in the population. Algorithm 3
shows the basic steps of our Pareto-efficient hybridization algorithm.

Algorithm 3: Pareto-Efficient Hybridization.
Input: P (the current population of individuals), p (the next population of

individuals), and g (the maximum number of generations).
Output: Hybrids lying in the Pareto frontier.
repeat

include the best individuals from P into p (those closer to the frontier);
apply genetic operators to individuals in p;
update P with individuals in p;

until g generations are produced ;

3.2.3 Adjusting the System Priority

It is well recognized that the role that a recommender system plays may vary
depending on the target user. For instance, according to Herlocker et al. [2004], the
suggestions performed by a recommender system may fail to appear trustworthy to a
new user because it does not recommend items the user is sure to enjoy but probably
already knows about. Based on this, a recommender system might prioritize accuracy
instead of novelty or diversity for new users, while prioritizing novelty for users that
have already used the system for a while. This is made possible by our hybridization
algorithm, by searching which individual in the Pareto frontier better solves the user’s
current needs.

The choice of which individual in the Pareto frontier is accomplished by perform-
ing a linear search on all of the individuals, in order to find which one maximizes a
simple weighted mean on each of the three objectives in the objective vector, where
the weights in the weighted mean represent the priority given to each objective. It is
worth noting that fitness values are always calculated using the cross-validation set.
Therefore, considering a 3-dimensional priority vector Q = {q1, q2, q3}, that represents
the importance of each objective j, the individual in the Pareto frontier P is chosen as
follows:

arg max
i∈P

3∑
j=1

qj × φ(oj) (3.3)
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Figure 3.3 illustrates this process, in two dimensions (for simplicity). The grey
individuals represent the Pareto Frontier. If the system places a higher priority on
novelty, the individual in grey on the top left will be chosen as the vector of weights.
However, if accuracy receives a higher priority, the individual on the bottom right will
be chosen.

Figure 3.3: An illustration of adjusting the system priority.



Chapter 4

Experimental Evaluation

In this chapter we empirically analyze the effectiveness of our proposed Pareto-
efficient algorithms for the sake of multi-objective recommender systems. We assume
an evaluation setting where recommendation algorithms are compared without user
interaction (i.e., offline setting). The experiments were performed on a Linux-based
PC with a Intel I5 4.0 GHz processor and 4.0 GBytes RAM.

4.1 Evaluation Methodology

The evaluation methodology we adopted in this work is the same as the one pro-
posed by Cremonesi et al. [2010], which is appropriate for the top-N recommendation
task. For each dataset, ratings are split into two subsets: the training set (denoted
asM), and the test set (denoted as T ). The training setM may be further split (if
necessary) into two subsets: the cross-validation training set (denoted as C), and the
cross-validation test set (denoted as V), which are used in order to tune parameters
or adjust models (when applicable). The test set T and the cross-validation test set
V only contain items that are considered relevant to the users in the dataset. For ex-
plicit feedback (i.e., MovieLens), this means that the sets T and V only contain 5-star
ratings. An illustration of this procedure can be seen in Figure 4.1.

In the case of implicit feedback (i.e., Last.fm), we normalized the observed item
access frequencies of each user to a common rating scale [0,5], as used by Vargas and
Castells [2011]. Namely, r(u, i) = n ∗ F (frecu,i), where frecu,i is the number of times
user u has accessed item i, and F (frecu,i) = |j ∈ u|fu,j < fu,i|/|u| is the cumulative
distribution function of frecu,i over the set of items accessed by user u, denoted as
u. In this case, the test set and the cross validation test set only contain ratings
such that r(u, i) >= 4, since the number of 5-star ratings is very small using this

21
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Figure 4.1: Dataset split illustration.

mapping of implicit feedback into ratings. It is worth noting that all the sets have a
corresponding implicit feedback set, used by the recommendation algorithms that can
deal with implicit feedback.

The detailed procedure to createM and T is the same used by Cremonesi et al.
[2010], in order to maintain compatibility with their results. Namely, for each dataset
we randomly sub-sampled 1.4% of the ratings from the dataset in order to create a probe
set. The training setM contains the remaining ratings, while the test set T contains
all the 5-star ratings in the probe set (in the case of explicit feedback) or 4+ star ratings
(in the case of implicit feedback mapped into explicit feedback). We further divided
the training set in the same fashion, in order to create the cross-validation training and
test sets C and V . The ratings in the probe sets were not used for training.

In order to evaluate the algorithms, we first train the models usingM. Then, for
each test item i in T that is relevant to user u:

• We randomly select 1,000 additional items unrated by user u. The assumption
is that most of them will not be interesting to u.

• The algorithm in question forms a ranked list by ordering all of the 1,001 items
(relevant test item i + 1000 unrated items). The most accurate result corresponds
to the case where the test item i is in the first position.

Since the task is top-N recommendation, we form a top-N list by picking the
N items out of the 1,001 that have the highest rank. If the test item i is among
the top-N items, we have a hit. Otherwise, we have a miss. An illustration of the
evaluation procedure can be seen in Figure 4.2, where the test item i is ranked 4th by
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the algorithm in question. Recall and precision are calculated as follows:

recall@N =
#hits

|T |
(4.1)

precision@N =
#hits

N ∗ |T |
=

recall@N

N
(4.2)

Figure 4.2: Evaluation procedure.

In order to measure the novelty of the suggested items, we used a popularity-based
item novelty model proposed by Vargas and Castells [2011], so that the probability of
an item i being seen is estimated as:

P (seen|i) = |u ∈ U |r(u, i) 6= ∅|
|U |

(4.3)

where U denotes the set of users. Since the evaluation methodology supposes that most
of the 1,000 additional unrated items are not relevant to user u, we used the metrics
in the framework proposed by Vargas and Castells [2011] without relevance awareness.
Finally, the measure of novelty within a top-N recommendation list R presented to
user u is therefore given by:

EPC@N = C

iN∑
ik∈R

disc(k)(1− p(seen|ik)) (4.4)

where disc(k) is a rank discount given by disc(k) = .85k−1 (following Vargas and
Castells [2011]) and C is a normalizing constant given by 1/

∑iN
ik∈R disc(k). Therefore,

this metric is rank-sensitive (i.e. the novelty of the top-rated items counts more than
the novelty of other items). As is the case with precision and recall, we average the
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EPC@N value of the top-N recommendation lists over the test set.
We used a distance based model Vargas and Castells [2011] in order to measure

the diversity of the recommendation lists without relevance-awareness. The recommen-
dation diversity, therefore, is given by:

EILD@N =

iN ,lN∑
ik∈R,il∈R,l 6=k

Ckdisc(k)disc(l|k)d(ik, il) (4.5)

where disc(l|k) = disc(max (1, l− k)) reflects a relative rank discount between l and k,
and d(ik, il) is the cosine distance between two items, given by:

d(i, j) = 1− |Ui ∩Uj|√
|Ui|

√
|Uj|

(4.6)

such that Ui denotes the users that liked item i, and Uj denotes the users that liked
item j.

4.2 Experimental Setup

4.2.1 Datasets

We apply the methodology presented in the previous section to two different
scenarios in order to evaluate the Pareto-efficient algorithms: movie and music rec-
ommendation. For movie recommendation, we used the MovieLens 1M dataset (see
Miller et al. [2003]). This dataset consists of 1,000,209 ratings from 6,040 users on
3,883 movies. For music recommendation, we used an implicit preference dataset pro-
vided by Celma and Herrera [2008], which consists of 19,150,868 user accesses to music
tracks on the website Last.fm1. This dataset involves 176,948 artists and 992 users,
and we considered the task of recommending artists to users. Mapping the implicit
feedback into user-artist ratings yielded a total of 889,558 ratings, which were used by
the algorithms that cannot deal with implicit feedback, and to separate the dataset
into the training and test setsM and T .

4.2.2 Recommendation Algorithms

We selected seven well-known recommendation algorithms to provide the base for
our Pareto-efficient algorithms. To represent latent factor models, we selected PureSVD

1www.Last.fm
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with 50 and 150 factors (PureSVD50 and PureSVD150), described by Cremonesi et al.
[2010]. These were the only algorithms we used that are based on explicit feedback.
To compute the scores for the items in the Last.fm dataset, we used the mappings of
implicit feedback into ratings explained in Section 5.1.

As for recommendation algorithms that use implicit feedback, we used algorithms
available in the MyMediaLite package (made available by Gantner et al. [2011]). We
used WeightedItemKNN (WIKNN) and WeightedUserKNN (WUKNN) as represen-
tative of neighborhood models based on collaborative data (Desrosiers and Karypis
[2011]) (we only used WeightedItemKNN on the MovieLens dataset, as MyMediaLite’s
implementation cannot yet handle datasets where the number of items is very large,
which is the case in the Last.fm dataset). Further, we also used MyMediaLite’s Most-
Popular implementation, which is the same as TopPop in Cremonesi et al. [2010]. We
also used WRMF − a weighted matrix factorization method based on the work by Hu
et al. [2008]; Pan et al. [2008], which is very effective for data with implicit feedback.
Finally, we used UserAttributeKNN (UAKNN), a K-nearest neighbor user-based col-
laborative filtering using cosine-similarity over the user attributes, such as sex, age etc.
(which both datasets provide).

4.2.3 Baselines

We employed three baselines for the sake of comparison. The first baseline is a
voting-based approach based on Borda-Count (BC) which is similar to the method by
Pazzani [1999], where each constituent algorithm gives n points to each item i such that
n = |R| − pi, where |R| is the size of the recommendation list and pi is the position of
i in R. The second baseline is STREAM, a stacking-based algorithm with additional
meta-features, proposed by Bao et al. [2009]. We used the same additional meta-
features as Bao et al. [2009], namely, the number of items that a certain user has rated
and the number of users that has rated a certain item (denoted as RM1 and RM2).
We tried the learning algorithms proposed by Bao et al. [2009], and Linear Regression
yielded the best results, so the results presented for STREAM are generated using
Linear Regression as the meta-learning algorithm. Our last baseline is the weighted
hybrid we proposed in Section 4.1, using equal weights for each constituent algorithm.
We called this baseline Equal Weights (EW).
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4.2.4 Pareto Efficient Hybridization Details

We apply the algorithm described in section 3.2 to both datasets, combining all of
the recommendation algorithms described in subsection 4.2.2. We used an open-source
implementation of SPEA2 (Zitzler and Thiele [1999]; Zitzler et al. [2001]) from DEAP2.
We used a two points crossover operator (see Holland [1975]), and a uniform random
mutation operator with probability .05. Table 4.1 presents SPEA-2’s parameters, which
were sufficient for convergence.

Parameters MovieLens Last.fm

Population Size 100 100

Gene dimension 7 algorithms 6 algorithms

# of Objectives 3 3

# of Generations 300 300

Mutation Rate .2 .2

Crossover Rate .5 .5

Table 4.1: Parameters of the SPEA2 Algorithm

In order to speed up the fitness calculations, we ran all of the constituent algo-
rithms on the cross validation test set and stored their predictions. Then, in order to
evaluate the fitness of each individual, we combine the constituent algorithms with the
appropriate weights and evaluate the results on the cross validation test set V . It is
worth remembering that V is a list of triples (u, i, s), where u is an user, i is an item
that is relevant to u and s is a set of 1,000 items that are unrated by u.

Each objective in the fitness function of a certain ranking R of the items {i}+ s

provided by a certain individual is given by:

O(R) =
∑

(u,i,s)∈V

f(u, i, s, R) (4.7)

For the accuracy objective, f(u, i, s, R) is defined as follows:

f(u, i, s, R) = 21−max(21, Ri) (4.8)

where Ri is the position of item i in the ranking. This equation provides a way to value
hits up to the 20th position, with more value being given to positions closer to the top.

2Freely available at http://deap.googlecode.com
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Accuracy Novelty Diversity
Algorithm R@1 R@5 R@10 R@20 P@1 P@5 P@10 P@20 EPC@20 EILD@20

C
on

st
.

A
lg

or
it

hm
s PSVD50 † .1900 .4155 .5402 .6643 .1900 .0831 .0540 .0332 .8070 .8650

PSVD150 •� .1237 .3203 .4450 .5658 .1237 .0641 .0445 .0283 .8519 .8881
TopPop .0722 .2061 .2895 .3994 .0722 .0412 .0289 .0200 .7079 .7905
WRMF .1513 .3453 .4545 .5674 .1513 .0691 .0455 .0284 .7847 .8394
WIKNN .1529 .3564 .4624 .5806 .1529 .0713 .0462 .0290 .7744 .8257
WUKNN .1510 .3364 .4437 .5707 .1510 .0673 .0444 .0285 .7560 .8216
UAKNN .0614 .1762 .2504 .3387 .0614 .0352 .0250 .0169 .7386 .8173

B
as

el
in

es STREAM .1792 .3961 .5169 .6426 .1792 .0792 .0517 .0321 .8078 .8454
BC .0473 .1657 .2639 .4352 .0473 .0331 .0264 .0218 .8210 .8698
EW .1562 .3574 .4752 .5980 .1562 .0715 .0475 .0299 .7441 .8160

O
ur

A
lg

or
it

hm
s PEH-mean † • � .1776 .4175 .5379 .6656 .1776 .0835 .0538 .0333 .8361 .8696

PEH-acc † .1959 .4161 .5399 .6689 .1959 .0832 .0540 .0334 .8188 .8565
PEH-nov • .1415 .3656 .4857 .5917 .1415 .0731 .0486 .0296 .8649 .8964
PEH-div � .1309 .3223 .4263 .5297 .1309 .0645 .0426 .0265 .8828 .9047
PER-dom † • � .1979 .3722 .4368 .4910 .1979 .0744 .0437 .0245 .8549 .9060
PER-SVM † • � .1953 .4296 .5540 .6554 .1953 .0852 .0554 .0328 .8341 .8699

Table 4.2: Results for Recommendation Algorithms on the MovieLens dataset, with
the three objectives (i.e., accuracy, novelty, and diversity). The recommender methods
variants are grouped into: (i) constituent algorithms, (ii) multi-objective baselines,
and (iii) our proposed Pareto-efficient algorithms. We used the symbols: †, •, � to
point out our method and the respective baseline. For each group, the best results for
each metric are in bold. Underlined values means that the selected algorithm and the
respective baseline are statistically different (95%).

As for the novelty objective f(u, i, s, R) is simply EPC@20(R). Similarly, for the
diversity objective, f(u, i, s, R) is equal to EILD@20(R).

4.3 Results and Discussion

The results achieved by each of the constituent recommendation algorithms can
be seen in Tables 4.2 and 4.3. There is a clear compromise between accuracy, novelty
and diversity of these algorithms. For the MovieLens dataset (Table 4.2), the con-
stituent algorithm that provides the most accurate recommendations is PureSVD50.
The constituent algorithm that provides the most novel and diverse recommendations,
with an acceptable level of accuracy, is PureSVD150, but its accuracy is much worse
than the accuracy obtained by PureSVD50. TopPop provided the worst performance
numbers in all criteria used.

On the Last.fm dataset (Table 4.3), the constituent algorithm that provides the
most accurate recommendations is WRMF. This is expected, as Last.fm is originally an
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Accuracy Novelty Diversity
Algorithm R@1 R@5 R@10 R@20 P@1 P@5 P@10 P@20 EPC@20 EILD@20

C
on

st
.

A
lg

or
it

hm
s PSVD50 .3859 .5997 .6649 .7178 .3859 .1199 .0665 .0359 .8878 .9561

PSVD150 •� .3265 .5241 .6055 .6667 .3265 .1048 .0605 .0333 .8998 .9617
TopPop .1879 .4114 .5198 .6224 .1879 .0823 .0520 .0311 .8508 .9405
WRMF † .3834 .6148 .7073 .7858 .3834 .1230 .0707 .0393 .8735 .9471
WUKNN .3272 .5662 .6562 .7340 .3272 .1132 .0656 .0367 .8481 .9352
UAKNN .1922 .3790 .4712 .5328 .1922 .0758 .0471 .0266 .8605 .9424

B
as

el
in

es STREAM .3898 .6022 .6685 .7185 .3898 .1204 .0668 .0359 .8882 .9563
BC .2973 .5346 .6026 .6692 .2973 .1069 .0603 .0335 .8606 .9414
EW .3017 .5850 .6785 .7595 .3017 .1170 .0679 .0380 .8473 .9363

O
ur

A
lg

or
it

hm
s PEH-mean † • � .4230 .6505 .7250 .7829 .4230 .1301 .0725 .0391 .8908 .9514

PEH-acc † .4323 .6476 .7232 .7819 .4323 .1295 .0723 .0391 .8820 .9484
PEH-nov • .3751 .5911 .6659 .7246 .3751 .1182 .0666 .0362 .9219 .9643
PEH-div � .3139 .5184 .5943 .6573 .3139 .1037 .0594 .0329 .9388 .9713
PER-dom † • � .3866 .6310 .7127 .7829 .3866 .1262 .0713 .0388 .9016 .9561
PER-SVM † • � .3851 .6062 .6972 .7264 .3851 .1212 .0691 .0363 .8838 .9516

Table 4.3: Results for Recommendation Algorithms on the Last.fm dataset, with the
three objectives (i.e., accuracy, novelty, and diversity). The recommender methods
variants are grouped into: (i) constituent algorithms, (ii) multi-objective baselines,
and (iii) our proposed Pareto-efficient algorithms. We used the symbols: †, •, � to
point out our method and the respective baseline. For each group, the best results for
each metric are in bold. Underlined values means that the selected approach and the
respective baseline are statistically different (95%).

implicit feedback dataset, to which WRMF is more suitable. Once again, PureSVD150
proved its bias to suggest novel and diverse items, being the best constituent algorithm
both in terms of novelty and diversity. In this dataset the compromise between the
three objectives is once again illustrated by the fact that there is no algorithm that
dominates the others in every objective.

Regarding the performance of the baselines in the MovieLens dataset, STREAM
performs worse then PureSVD50 on accuracy and diversity, maintaining the same
level of novelty. Borda Count performed poorly on accuracy, reasonably well in terms
of novelty and diversity. Equal Weights performed poorly on accuracy, novelty, and
diversity. On the Last.fm dataset, STREAM performed slightly worse than WRMF
in accuracy, and slightly better in terms of diversity and novelty. Once again, Borda
Count performed poorly on accuracy. Finally, Equal Weights performed poorly on
accuracy, diversity and novelty.
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4.3.1 Pareto-Efficient Ranking

Now we turn our attention to the evaluation of our Pareto-efficient rank-
ing algorithm. First, we evaluate the simpler approach, which we call PER-dom
(Pareto-Efficient Ranking with most dominant items first). Considering the Movie-
lens dataset, we directly compared PER-dom against two different baselines: PSVD50
and PSVD150, since these algorithms were the best performers in terms of accuracy,
novelty and diversity. PER-dom is significantly superior than PSVD50 in the top
of the rank, but becomes significantly worse than PSVD50 as k increases. On the
other hand, PER-dom greatly outperformed PSVD50 in terms of diversity and novelty.
Also, PER-dom is better than PSVD150 in terms of novelty, and it greatly outper-
forms PSVD150 both in terms of accuracy and diversity. In fact, Per-dom was the best
performer in terms of diversity. The more sophisticated approach, which we call PER-
SVM (Pareto-Efficient Ranking with SVM), was evaluated using the same procedure
as to PER-dom. PER-SVM is slightly superior than PVSD50 in all three objectives
considered. Also, PER-SVM is much better than PSVD150 in terms of accuracy and
diversity, and slightly better in terms of novelty. In summary, PER-SVM is a good
choice for cases where all objectives are simultaneously important: it was not the best
performer in any of the objectives, but its performance is close to the best performers
in any of the objectives.

A similar trend is observed for the Last.fm dataset. We directly compared PER-
dom against two different baselines: WRMF and PSVD150, since these algorithms
presented the best numbers in terms of accuracy, novelty and diversity. PER-dom is
significantly superior than WRMF, in terms of all objectives considered, and particu-
larly better in terms of novelty. Further, PER-dom is much better than PSVD150 in
terms of accuracy, and slightly better in terms of novelty, but it is significantly worse
than PSVD150 in terms of diversity. PER-SVM performed similarly to PER-dom, both
in terms of accuracy and diversity. Also, PER-SVM greatly outperforms PVSD150 in
terms of accuracy, but PSVD150 is significantly better in terms of diversity and nov-
elty. Finally, PER-SVM is slightly better than WRMF in all objectives considered.
The same conclusion holds for Last.fm, that both PER-dom and PER-SVM are good
choices if all objectives must be maximized simultaneously.

4.3.2 Pareto-Efficient Hybridization

Now, with our hybridization algorithm, we could reach any of the individuals in
Figures 4.3 and 4.4, which represent the accuracy (in this case, Recall@10) and novelty
(EPC@20) of the recommendations in x and y axes, and diversity (EILD@20) with a
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color scale. It is clear that there is a compromise between accuracy and the other two
objectives: the individuals with the most accurate recommendations provide less novel
and diverse lists, and so on. This compromise can be adjusted dynamically with little
extra cost, since the cost of reaching these individuals is as low as a linear search (for
the individual that maximizes a weighted mean, as described in Section 4.3) over the
Pareto frontier individuals’ scores. The Pareto frontier consists of 510 individuals in the
MovieLens dataset, and of 318 individuals in the Last.fm dataset, so a linear search can
be done very quickly. We chose to demonstrate a few of these individuals in Tables 4.2
and 4.3. First, PEH-mean (Pareto-Efficient Hybrid with mean weights) represents the
individual that optimizes the mean of the three normalized objectives, assuming each of
them are equally important. This would be an option if personalization was not desired,
or if the designers of the recommender system do not know which combination of the
three objectives would result in higher user satisfaction. However, in a more realistic
scenario, the system designer would most likely want to select different individuals for
different users. We selected as examples the following individuals, which were found by
the process explained in Section 4.3 with the represented associated weighted vectors:

• PEH-acc:[Accuracy:0.70, Novelty:0.30, Diversity:0.00]

• PEH-nov: [Accuracy:0.15, Novelty:0.50, Diversity:0.35]

• PEH-div: [Accuracy:0.10, Novelty:0.35, Diversity:0.55]

These objective weights led to the algorithm weights presented in Table 4.4. It is worth
noticing that even though some algorithms are always highly weighted (PSVD50, for
example) and others are always weighted negatively (TopPop), there are significant dif-
ferences between the weights of different individuals, which lead to completely different
objective values. It is interesting to notice that weaker algorithms (such as WRMF,
which in this dataset is worse than PSVD50 in all three objectives) are still able to
play a significant role when the algorithms are combined.

Individual PSVD50 PSVD150 TopPop WRMF WIKNN WUKNN UAKNN

PEH-mean 21.60 20.19 -14.91 8.83 0.36 13.92 -3.10

PEH-acc 21.55 7.80 -11.10 10.20 5.47 10.86 -3.98

PEH-nov 25.95 22.43 -5.19 0.04 -5.07 8.18 -7.48

PEH-div 25.95 23.43 -26.94 1.20 -5.86 16.90 -1.89

Table 4.4: Constituent algorithms’ weights for different individuals, Movielens
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Figure 4.3: Individuals lying in the Pareto frontiers for Movielens.

We compared PEH-acc against PureSVD50, which is the most accurate con-
stituent algorithm. It perform equally well or better than PureSVD on accuracy, but
PEH-acc performs better on novelty and worse on diversity. We compared PEH-nov
against PureSVD150, which presented the most novel recommendations to the users,
with reasonable accuracy. PEH-nov performs better on all three objectives, when
compared to PureSVD150 - particularly accuracy and novelty. Finally, we compared
PEH-div with PureSVD150, the algorithm with the most diverse recommendations.
PEH-div maintains (or slightly improves)the accuracy level, while improving a lot on
both novelty and diversity. PEH-mean was an individual that balanced the three objec-
tives, performing much better than PureSVD150, but worse than PureSVD in accuracy,
and better than PureSVD50 on novelty and diversity, but worse than PureSVD150.
We were able to find individuals in the Pareto Frontier that performed at least as well
as the best algorithms in each individual objective, but better on the other objectives.
Once again, we could have chosen to compromise more accuracy if we desired even
more novelty and diversity, as it is shown in Figure 4.3.

As for the Last.fm dataset, we selected the following individuals:

• PEH-acc: [Accuracy:0.70, Novelty:0.30, Diversity:0.00]

• PEH-nov: [Accuracy:0.15, Novelty:0.85, Diversity:0.00]

• PEH-div: [Accuracy:0.05, Novelty:0.45, Diversity:0.50]

These objective weights led to the algorithm weights presented in Table 4.5. Once
again, we notice that different priorities lead to very diverse algorithm weights, and
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Figure 4.4: Individuals lying in the Pareto frontiers for Last.fm.

that weaker algorithms (such as UAKNN) are able to play an important role when the
algorithms are combined.

Individual PSVD50 PSVD150 TopPop WRMF WUKNN UAKNN

PEH-mean 26.02 24.57 -10.53 23.21 2.77 -7.91

PEH-acc 26.02 22.43 -6.24 24.14 4.93 -7.36

PEH-nov 27.94 26.97 -9.51 13.01 -5.49 -8.60

PEH-div 26.02 21.81 -9.27 4.19 -1.90 -8.15

Table 4.5: Constituent algorithms’ weights for different individuals, Last.fm

This time, we compared PEH-acc against WRMF, which is the most accurate
constituent algorithm on this dataset. PEH-acc is much more accurate than WRMF,
while also improving on novelty and performing almost as well on the diversity level.
PEH-nov was compared against PureSVD150, and it performed much better on ac-
curacy and novelty, while losing on the diversity. PEH-div was compared against
PureSVD150, and it faired slightly worse on accuracy, while greatly improving on both
novelty and diversity. PEH-mean was once again a balanced individual, although this
time its accuracy was much better than any of the constituent algorithms. Once again,
we were able to find effective individuals in the Pareto frontier, but we could have
reached any of the individuals in Figure 4.4 by tweaking the weight value for each
objective.

In summary, our proposed algorithms are able to provided significant improve-
ments when compared against other multi-objective algorithms. Specifically, a compar-
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ison involving our best performers and the best hybrid baselines, reveals improvements
in terms of accuracy (R@1), with gains ranging from 10.4% (on Last.fm) to 10.7%
(on MovieLens), in terms of novelty, with gains ranging from 5.7% (Last.fm) to 7.5%
(MovieLens), and also in terms of diversity, with gains ranging from 1.6% (Last.fm) to
4.2% (MovieLens).

4.3.3 Reproducibility

The datasets we have used in our experiments are freely available, and can be
obtained following instructions provided by Miller et al. [2003]; Celma and Herrera
[2008]. All constituent algorithms, except PureSVD are implemented in the MyMedi-
aLite package Gantner et al. [2011]. The SVD implementation used for PureSVD50 and
PureSVD150 is freely available at https://github.com/ocelma/python-recsys. The
SVM-Rank implementation used in PER-SVM is freely available at http://svmlight.
joachims.org/svm_rank.html. The evolutionary algorithm implementation we used
to find Pareto-efficient hybrids is available at http://deap.googlecode.com.

https://github.com/ocelma/python-recsys
http://svmlight.joachims.org/svm_rank.html
http://svmlight.joachims.org/svm_rank.html
http://deap.googlecode.com
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Conclusions and Future Work

In this work we propose Pareto-efficient algorithms for recommender systems
where objectives such as accuracy, novelty and diversity must be maximized simulta-
neously. We show that existing recommendation algorithms do not perform uniformly
well when evaluated in terms of accuracy, novelty and diversity, and thus we propose
algorithms that exploit the Pareto efficiency concept in order to combine such rec-
ommendation algorithms in a way that a particular objective is maximized without
significantly hurting the other objectives.

The Pareto-efficiency concept is exploited in two distinct manners: (i) items are
placed in an n-dimensional space (i.e., n constituent algorithms) in which the coordi-
nates are the scores assigned to the item by the algorithms. In this way, combining
the constituent algorithms means maximizing all objectives simultaneously; (ii) hy-
brid algorithms (i.e., linear combination of the constituent algorithms) are placed in
a 3-dimensional space in which the coordinates are the level of accuracy, novelty and
diversity associated with each hybrid. Different hybrids may give emphasis to a par-
ticular objective, provided that this will not significantly hurt the other objectives.

Our proposed Pareto-efficient algorithms may be very useful in different scenar-
ios. An obvious scenario is to provide better suggestions to the users, recommending
items that are simultaneously accurate, novel and diverse. Another example is the per-
sonalization of recommendations according to particular users. For instance, new users
may benefit from an algorithm which generates highly ratable items, as they need to
establish trust and rapport with the recommender system before taking advantage of
the suggestions it offers. The costly part of our Pareto-efficient algorithm is performed
entirely offline, and the online cost of choosing items or hybrids in the Pareto frontier
is almost negligible, since the Pareto frontier is comprised of few items or hybrids.

We performed highly reproducible experiments on public datasets of implicit
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and explicit feedback, using open-source implementations. In our experiments, we
demonstrated that the proposed algorithms have either the ability to balance each of
the objectives according to the desired compromise, or the ability to maximize all three
objectives simultaneously. Finally, we show that the proposed algorithms have obtained
results that are competitive with the best algorithms according to each objective and
almost always better on the other objectives.

As for future work, the most interesting experiments and extensions to this work
would need an online setting. In such a setting, we could measure how a difference
in each objective correlates with user satisfaction metrics. Another interesting pursuit
would be figuring out how often the models need to be retrained, or proposing online
versions of the algorithms listed in this work.
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