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Resumo

Este trabalho aborda o mapeamento tridimensional de ambientes estáticos utilizando
um sensor RGB-D, que captura imagem e profundidade, e um sensor MARG, composto
de sensores inerciais e magnetômetros.

O problema do mapeamento é relevante ao campo da robótica, uma vez que sua
solução permitirá a robôs navegarem e mapearem de forma autônoma ambientes de-
sconhecidos. Além disso, traz impactos em diversas aplicações que realizam modelagem
3D a partir de varreduras obtidas de sensores de profundidade. Dentre elas, estão a
replicação digital de esculturas e obras de arte, a modelagem de personagens para jogos
e filmes, e a obtenção de modelos CAD de edificações antigas.

Decidimos abordar o problema realizando o registro rígido de nuvens de pontos
adquiridas sequencialmente pelo sensor de profundidade, usando as informações provi-
das pelo sensor inercial como guia tanto no estágio de alinhamento grosseiro quanto
na fase de otimização global do mapa gerado. Durante o alinhamento de nuvens de
pontos por casamento de features, a rotação estimada pelo sensor MARG é utilizada
como uma estimativa inicial da orientação entre nuvens de pontos. Assim, procuramos
casar pontos de interesse considerando apenas três graus de liberdade translacionais.
A orientação provida pelo MARG também é utilizada para reduzir o espaço de busca
por fechamento de loops.

A fusão de dados RGB-D com informações inerciais ainda é pouco explorada na
literatura. Um trabalho similar já publicado apenas utiliza dados inerciais para mel-
horar a estimativa da rotação durante o alinhamento par a par de maneira ad-hoc,
potencialmente descartando-os em condições específicas, e negligenciando o estágio de
otimização global. Por utilizar um sensor MARG, assumimos que o drift do sensor é
negligível em nossa aplicação, o que nos permite sempre utilizar seus dados, especial-
mente durante a fase de otimização global.

Em nossos experimentos, realizamos o mapeamento das paretes de um ambi-
ente retangular de dimensões 9,84m × 7,13m e comparamos os resultados com um
mapeamento da mesma cena feito a partir de um sensor Zebedee, estado da arte em

xiii



mapeamento 3D a laser. Também comparamos o algoritmo proposto com a metodolo-
gia RGB-D SLAM, que, ao contrário da nossa metodologia, não foi capaz de detectar
a região de fechamento de loop.

Palavras-chave: SLAM, Registro de Nuvens de Pontos, Sensoriamento Inercial.
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Abstract

This work addresses the problem of mapping 3D static environments by using an RGB-
D sensor, that captures image and depth, and a MARG sensor, composed by inertial
sensors and magnetometers.

The approached problem is relevant to the robotics field, since its solution will
allow mobile robots to autonomously navigate and map unknown environments. Be-
sides, it has impacts on several applications that perform 3D modeling by using scans
obtained from depth sensors. Amongst them, one can mention the digital replication
of sculptures and art objects, the modeling of characters for games and movies, and
the reconstruction of CAD models from old buildings.

We have decided to address the problem by performing a rigid registration of
point clouds sequentially captured by the depth sensor, posteriorly using the data
provided by the inertial sensor as a guide both during the coarse alignment stage and
during the global optimization of the estimated map. During the point cloud alignment
based on feature matching, the rotation estimated from the MARG sensor is used as
an initial estimation of the attitude between point clouds. Thereby, we seek to match
keypoints considering only three translational degrees of freedom. The attitude given
by the MARG is also used to reduce the search space for loop closures.

The fusion of RGB-D and inertial data is still very little explored in the related
literature. A similar work already published only uses inertial data to improve the
attitude estimation during the pairwise alignment in an ad-hoc fashion, potentially
discarding it under specific conditions, and neglecting the global optimization stage.
Since we use a MARG sensor, we assume the sensor drift to be negligible for the
purposes of our application, which allows us to always use its data, specially during
the global optimization stage.

In our experiments, we mapped the walls of a rectangular room with dimensions
9.84m × 7.13m and compared the results with a map from the same scene captured
by a Zebedee sensor, state of the art in terms of laser-based 3D mapping. We also
compared the proposed algorithm against the RGB-D SLAM methodology, which,
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unlike our methodology, was not capable of detecting the loop closure region.

Keywords: SLAM; Point Cloud Registration; Inertial Sensing.
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Chapter 1

Introduction

The general public has recently witnessed the popularization of low cost 3D scanning
devices, with prices reaching as low as only a couple hundred of dollars for an Xbox
Kinect1. Despite having low prices when compared to industrial scanners, these devices
produce data with reasonable accuracy, with error dispersions smaller than 3cm under
typical usage [Khoshelham and Elberink, 2012]. Therefore a wide range of applications,
such as gesture recognition and 3D map acquisition (the former being the focus of this
thesis) are now available to a broad public.

Another class of sensors going through a similar process of decreasing cost are
the inertial measurement units. These devices can be used to measure orientation in
space (which is also referred to as attitude). With the release of the Wii console in late
2006, inertial sensors have also been integrated in smart phones, MP3 players and other
console peripherals, which has fostered researches devoted to improving their accuracy
and lowering their prices.

One can expect these sensors to serve complimentary purposes in a mapping
framework, as the problem of environment mapping can be broken down into grabbing
several local depth images and assembling them into a global representation, which
requires an estimation of the pose of the depth sensor at the time the depth images
were acquired.

The present work aims to develop and evaluate a methodology to produce a
globally consistent environment map, by fusing data from a sensor that captures both
color and geometry (or RGB-D sensor) and a variant of inertial sensors that also
contains a digital compass (known as MARG sensor).

1Market prices as of February, 2013.
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2 Chapter 1. Introduction

Figure 1.1: Speckle pattern projected by a Kinect sensor and captured by an infra red
camera. Courtesy of Audrey Penven1.

1.1 Motivation

Commercial depth sensors have become increasingly cheaper and accurate, since the
development of the first laser range sensors in the eighties [Blais, 2004]. This phe-
nomenon was accompanied by the introduction of this kind of device in many different
applications. For instance, range devices are used on sports that require accurate range
measurements, such as golf and archery. Yet another important application for this
kind of sensors is digital 3D modeling. The entertainment industry has a growing re-
quirement for digitally modeled objects and characters, which, in some circumstances,
is achieved by acquiring 3D scans of sculptures and actors. There are companies spe-
cialized in digitalizing sculptures and reproducing faithful replicas of the original piece
of art.

In the mobile robotics field, several researchers have studied the Simultaneous
Localization and Mapping (SLAM) problem. This problem consists of building a map
in a scenario where a mobile robot doesn’t have a priori the map representing the
environment being explored. Depending on the environment being mapped, its rep-
resentation can be either two or three dimensional. Simple structured environments,
such as a room or a single floor of a building can be easily represented by a 2D map,
while more complex environments, like mines and multistory buildings, may require a
3D representation. Analogously, localization typically has only three degrees of free-
dom on simple environments, commonly referred to as (x, y, θ), which characterizes a
two dimensional translation and an orientation. More complex combinations of en-
vironments and robots can allow motions with up to six degrees of freedom – three
translational and three rotational.

Another application that benefits from 3D scanning is the monitoring and atten-

1www.audreypenven.net



1.2. Problem Definition 3

dance of construction sites with the purpose of verifying the compliance with computer-
aided design (CAD) models. Point clouds obtained from these environments can be
submitted to a cross validation procedure capable of detecting irregularities in project
progress [Frédéric and Bosché, 2010]. Additionally, 3D scanning techniques can be used
to recover a CAD model from old buildings that had none.

1.2 Problem Definition

For the purpose of this work, the output of an RGB-D sensor can be defined as a set
P of tuples (c,p), where c denotes the average of the RGB channels (which represents
the gray scale intensity of an image pixel), and p represents the three-dimensional
coordinates of the point captured by this pixel with respect to a frame centered at the
sensor. We refer to the set P by the term Point Cloud.

The MARG sensor outputs the three vectors a, g and m, all specified in a local
frame rigidly attached to the sensor. a represents the sum of the MARG sensor ac-
celeration and the gravity vector; g, its angular velocity and m the earth’s magnetic
field.

Let C be a set of point clouds acquired with the depth sensor being at different
poses, such that the union of all point clouds completely covers a static region to be
mapped. Also, for any point cloud Pi ∈ C, there is at least one Pj ∈ C, i 6= j such
that there is an intersection between Pi and Pj.

Our problem can be divided into the three following subproblems:

1. Find a pairwise transformation between sequential point clouds. For all
(ip, i+1p) ∈ Pi ∩ Pi+1, this subproblem consists of finding a i

i+1T that best
approximates the relation ip = i

i+1T
i+1p.

2. Find a global set of transformations such that

∀Pi, Pj ∈ C, i 6= j, Pi ∩Pj 6= ∅⇒ ∃ i
jT|ip ≈ i

jT
jp.

Our goal is to solve this problem by fusing RGB-D data (coming from a single
handheld sensor) with information captured from the MARG. In order to do this, we
also need to find a rigid transformation from the MARG sensor local frame to the
RGB-D sensor local frame. This process, also known as extrinsic calibration, is also a
subject of this work.
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1.3 Contributions

This work proposes two keypoint matching algorithms that take advantage of attitude
data from the MARG sensor, one for the purpose of pairwise alignment and one for
loop closure detection. Although we present these matchers in our own registration
pipeline, they can be embedded in any other registration algorithm if a MARG sensor
is present, potentially improving its capacity.

We also present a methodology for finding the extrinsic calibration between a
MARG and an RGB-D sensor. The proposed method can also be used with similar
sensors that lack color information, such as time of flight cameras.

1.4 Roadmap

This first chapter introduces the reader to the problem approached by this thesis, and
also explains its relevance to the scientific community.

Chapter 2 presents an overview of researches that attempted to achieve similar
goals as ours. We discuss the evolution of monocular SLAM, in which only a camera
is used to map an environment; the progress of point cloud registration techniques,
from general purpose algorithms to methodologies that also rely on color information;
and different environmental mapping methodologies that concern with environments
of many different scales.

In chapter 3, we explain the several stages that compose our work, from extrinsic
sensors calibration, going through the pairwise point cloud registration to how loop
closures are detected and used in a global optimization stage.

Chapter 4 discusses our experimental procedures and the results obtained from
them, both qualitative and quantitative. For this, the walls of a 9.84m×7.13m room
were mapped and the results were compared to a map acquired by an industrial scanner.
We also used our dataset with an RGB-D SLAM approach, and compare the obtained
map to ours.

Finally, chapter 5 presents our conclusions facing experimental results, with re-
marks to the limitations of our work, and raises possibilities for future works that can
address these problems.



Chapter 2

Related Work

We introduce this chapter analyzing the evolution of monocular SLAM. In terms of
sensors, this field represents the simplest instantiation of the SLAM problem, as typi-
cally only a camera is needed. We then move on to point cloud registration approaches.
In the context of this thesis, any point cloud registration can be used in the pairwise
alignment, but some approaches have also been proposed having in mind a globally
consistent registration. Finally, we discuss some environmental mapping techniques
meant to handle regions of different sizes, some of which also use RGB-D sensors.

2.1 Monocular SLAM

One of the most intuitive ways to address the localization problem is to use visual clues
and associate them to known locations. This is something we humans do routinely, and
has inspired researchers from several fields for many years now. In particular, computer
vision researchers have taken one step further and have also used vision for mapping
purposes [Matthies et al., 1989; Beardsley et al., 1997], instead of just localizing the
sensor in space.

Vision-based approaches for the problems of obstacle detection and simultaneous
localization and mapping are of practical importance to robotics. As will be discussed
further, there are many vision based methodologies that can be used to aid mobile robot
navigation in unknown environments, and only require consumer level computational
power. Furthermore, cameras have large fields of view, and their cost is significantly
lower when compared to range sensors.

Such advantages were taken into account when the first general purpose mobile
robot was built. Although it was designed several decades ago, Shakey [Nilsson, 1984]
featured a camera for both localizing itself and detecting obstacles. Given the complex-

5



6 Chapter 2. Related Work

ity of the localization and obstacle detection problems, the environment to be explored
by Shakey was designed to facilitate these tasks.

The basic idea behind Shakey’s vision system was that, with a camera capturing
the ground, the robot should be capable of telling which pixels of the incoming images
belonged to the ground and which were part of obstacles. These ideas have been
employed by several other methodologies on mobile robotics ever since [Ulrich and
Nourbakhsh, 2000; Kim et al., 2006; Neto et al., 2011].

With the gradual advances both in computational power and computer vision
techniques, it was not until recently that real time mapping approaches were proposed.
Einhorn et al. [2007] achieved this by estimating the 3D coordinates of image features
by using epipolar properties between features contained in consecutive image frames.
By using the robot’s odometry, it is possible to estimate the epipolar line in which
corresponding features should lie between the frames being matched. The estimated
feature coordinates are then filtered by an extended Kalman Filter (EKF), which re-
duces the noise introduced by uncertainties related to the odometry and the feature
matching process, while still being able to run in about 40 to 50 frames per second
with hardware available at the time of the original publication. Their methodology
was later improved by taking into account the changes of features descriptors due to
camera motion, and by estimating the camera pose with a particle filter [Einhorn et al.,
2009].

Davison et al. [2007] also showed that it is possible to perform real-time, drift free
localization and mapping with high quality visual features in small environments. In
that work, a full covariance EKF is used to keep track of a set of high quality features.
Since their Kalman Filter state contains information from all features, it represents the
spatial correlation between distinct features, and contributes to drift-free environment
navigation. However, it has an associated O(n2) computational complexity (where n
is the number of features being tracked), which makes it only feasible to small scale
environments.

Another important work regarding 3D feature tracking is the PTAM (short term
for Parallel Tracking and Mapping), published by Klein and Murray [2007]. It separates
mapping from localization, enabling the use of thousands of image features for mapping
purposes. This way, the mapping task runs at a lower frame rate than the localization
task, which only relies on a small set of rich features and is expected to perform on real
time. Newcombe and Andrew [2010] relied on this approach to generate a dense surface
reconstruction of small environments. Their methodology divides the scene into several
key frames, and for each one of them, calculates a dense depth map by using neighboring
frames. The depth maps are then registered and polygonized, with the final output
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being a globally consistent mesh model. One problem with that approach is that there
can be gaps between neighboring key frames, which would result in holes in the final
model. This issue could be mitigated by increasing the overlapping region between key
frames, but this would ultimately lead to higher computational requirements.

As computation time became a lesser issue, researchers’ attentions were driven
towards the representation of the final map. In a more recent publication, the method-
ology by Einhorn et al. [2009] was used to build a voxel representation of the world
explored by the robot [Einhorn et al., 2010]. Since one of its goals was to aid robot
navigation, the later work introduced an attention-driven feature selection scheme in
which features are only extracted from regions of interest on the input images. Those
ROIs are chosen in such a way to favor voxels whose occupancy status are unknown.
The feature selection process is also guided by the path planner module, since regions
where the robot is headed towards have a higher priority over peripheral regions.

Despite the popularity of voxel-based map representation in the robotics field,
other fields such as computer graphics may benefit from finer representations of objects.
One such representation is the Point Cloud, which may be extracted from a set of images
by estimating the 3D coordinates of all pixels of an arbitrary image. The estimation of
depth from camera motion is already a well established field of research, with significant
results being reported as far back as a few decades ago [Matthies et al., 1989; Harris
and Pike, 1988; Beardsley et al., 1997; Fitzgibbon and Zisserman, 1998]. However, it
was not until recently that similar methodologies were designed to run in real time –
not only because of the increase in computational power of modern computers, but also
due to the recent advances on feature detectors and descriptors, which enabled faster
and more robust methodologies [Rosten and Drummond, 2005; Agrawal and Konolige,
2008; Bay et al., 2008].

To the best of our knowledge, the current state of the art in monocular SLAM
for producing dense maps is the work published by Newcombe et al. [2011]. Their
methodology estimates a dense 3D map of a scene, and immediately uses it for camera
pose tracking – which is achieved in real time with a GPGPU implementation. Among
the advantages behind dense matching is the fact that it makes camera localization
robust to motion blurring and image defocus. Although it has been shown to perform
better than previous works, which were based on the PTAM feature tracker, their
methodology requires several comparison frames for each key frame in order to generate
high quality depth maps. This means that, in order for high quality depth maps to be
produced, the camera has to be swung around each keyframe, constraining the camera
motion.

In general, one can observe that visual SLAM provides good localization esti-
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mates with a relatively low computational cost when sparse features are used. Despite
not being sophisticated enough to provide detailed environment maps under any cir-
cumstance, visual information can already be used for real time accurate localization in
environments from rooms to the corridors of a grocery store. The advances made in this
field throughout the years also present great value to multi sensor SLAM approaches
such as the one proposed in this thesis.

2.2 Point Cloud Registration

The point cloud registration problem can be defined as: Given two point clouds with
an overlapping region, find a transformation that will combine them into a unique and
more complete point cloud by matching their common points. This formulation can be
extended to a set with an arbitrary number of point clouds, provided that the overlap
constraint is met. According to Brown [1992], the registration problem can be classified
according to the following taxonomies:

• Multimodal Registration. When a scene is scanned by different types of
sensors. Integrating data from different sensors can be very useful in medical
applications, since different scanners are generally meant for specific purposes. It
is also used in interactive platforms, such as the one described by Takeuchi et al.
[2011].

• Template Registration. Some applications require the registration of a prior
reference image with a scanned image or point cloud. This is common on face
tracking and reconstruction algorithms [Blanz and Vetter, 1999].

• Viewpoint Registration. Consists of registering several scans obtained by
the same sensor from different poses. This is mostly common on mobile robotics,
when an exploring robot has the task to both build a map of the environment and
localize itself. Notice that some robots might have several scanning devices (for
instance, laser range finders and stereo cameras), and multi modal registration is
also performed in these cases.

• Temporal Registration. Occurs when one tries to register scans from a par-
ticular scene that were obtained at very large time intervals. This is particularly
useful for keeping track of structural evolution in the scene.

Our work can be classified in the viewpoint registration category, since a single
RGB-D sensor will be used to reconstruct the environment after its exploration. In the
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context of our work, which divides the pairwise alignment into coarse and fine stages,
the methodologies discussed below can be used for fine alignment between point clouds.

One of the most popular registration algorithms is the Iterative Closest Points
(ICP), originally proposed by Besl and McKay [1992]. During each iteration, this al-
gorithm finds the correspondences between the point clouds and computes the affine
transformation that minimizes the RMS error given by the distances between corre-
sponding points. The algorithm stops either when the RMS error is below an arbitrary
threshold or when it reaches a maximum number of iterations. Although the ICP is
proven to converge, it is susceptible to convergence on local minima. This means that,
in cases where the displacement between the point clouds is not small, the algorithm
requires an initial transform estimation in order to converge to the global minimum.
Since its original publication, the ICP algorithm has received significant improvements
from the community, the most important being summarized by Rusinkiewicz and Levoy
[2001]. These improvements concern at least with one of the following stages of the
ICP method:

• Sub-sampling of the point clouds (improves computational performance);

• Matching the corresponding points (affects convergence rate);

• Weighting the correspondences between points (for robustness with respect to
noise in the point clouds, which helps to avoid convergence on local minima);

• Rejecting spurious matches (for outliers removal, and helps avoid convergence on
invalid minima);

• Specification of the error metric (related to both convergence speed and alignment
quality);

• Optimization method for minimizing the error metric (usually dependent on the
error metric).

For the cases where the point clouds have a large intersecting region, the method-
ology proposed by Hyun et al. [1998] is able to find a coarse alignment between them
with a low computational cost. Their proposal performs the Principal Component
Analysis on both point clouds, and finds the rotation that aligns their orthonormal
vectors. The translation between the point clouds is then found as the difference of
their centers of mass. After this process, a fine alignment process, such as the ICP,
can be applied. Their approach has two major drawbacks: It requires the point clouds
to have large overlapping regions, and the resulting vectors from the PCA might be
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flipped on symmetric point clouds, which would lead the methodology to an invalid
rotation during the coarse alignment process.

The search for faster and more robust registration algorithms led to the formula-
tion of the Normal Distributions Transform (NDT) representation [Biber and Strasser,
2003]. Their representation consists of a discretized space similar to the Occupancy
Grid [Elfes, 1989], with the difference that instead of representing the probability of a
region being occupied, each bin represents the probability that the sensor would sam-
ple an arbitrary point from it. The original proposal by Biber and Strasser [2003] also
shows that this representation can be used to align multiple range scans for SLAM
purposes, as long as there are non-redundant 2D features within the reach of the sen-
sor. Because it was initially proposed for two dimensional point clouds, a 3D-NDT
extension was proposed by Magnusson et al. [2007]. Huhle et al. [2008] also uses the
3D-NDT approach and an RGB sensor along with a registration algorithm that also
considers the color of each point on its score function. Their report shows that the
additional data contribute to better alignment results.

Unlike the previously discussed registration methodologies, the approach pre-
sented by Chen et al. [1998, 1999] focused on registering point clouds by only using
three control points. It starts by randomly selecting three linearly independent control
points in one of the point clouds. Then, by taking into account rigidity constraints,
the algorithm finds all possible corresponding control points on the second point cloud,
and assigns a fitness function to each set of correspondences. The set of matches with
the best fitness is then used to calculate the transformation between the point clouds,
which may be further refined with an algorithm such as the ICP. One advantage of
their method is that it doesn’t require an initial transform estimate. However, in or-
der to deal with noisy point clouds, the distance between the control points has to be
increased, which increases the search space for correspondences, affecting the compu-
tational performance of the algorithm.

A more general approach to the point cloud registration needs to take into account
the deformability of certain entities, which is known in the related literature as non-
rigid registration [Feldmar and Ayache, 1994]. Some of the oldest works on this field
were more concerned with the low frequency deformations created by sensor issues,
such as miscalibration [Ikemoto, 2003; Brown and Rusinkiewicz, 2004]. Such methods
usually work by decomposing the scanned volume into several patches that are locally
registered in a rigid fashion, although different patches are independently registered.
Besides pairwise registration methods, globally consistent alignment algorithms have
also been proposed based on existing methodologies [Brown and Rusinkiewicz, 2007;
Li et al., 2008].



2.3. RGB-Based Point Cloud Registration 11

In the present work, we assume that the scene being mapped doesn’t contain
deformable objects, and that geometry warping due to sensor calibration errors is
negligible. Therefore, deformations in the point clouds are assumed to be caused by
sensor noise.

2.3 RGB-Based Point Cloud Registration

Since its release in late 2010, the Kinect sensor has been widely used for numerous
research purposes worldwide. In particular, several SLAM methodologies have been
studied due to the direct impact of this problem on the robotics field.

The first published SLAM methodologies for RGB-D sensors focused on the use of
visual features for both registering pairwise point clouds as well as for post-processing
the aligned clouds with a loop closure algorithm. Henry et al. [2010] also used a
modified version of the ICP algorithm that takes into account the color of each point
when calculating the fitness of each iteration. Their algorithm is also referred to as
RGB-D ICP.

The strategy of using both depth and colour information for registration purposes
was explored in a different fashion by Steinbruecker et al. [2011]. Given two point
clouds with their corresponding RGB values, and an estimate of the transformation
matrix between them, their methodology renders the second point cloud into a frame
aligned with the pose of the first frame, and compares the resulting image with the
corresponding image of the first point cloud. If the frames are closely aligned, these
images should overlap each other with a small pixel-wise difference. Therefore, their
work seeks the alignment transformation that minimizes that difference. It is worth
noting, however, that their algorithm is highly prone to convergence on local minima
when the point clouds were not captured at very close poses.

Stückler and Behnke [2012] developed an RGB-D registration technique similar
to the 3D-NDT, in which a subset of the point cloud was inserted in an octree. In
their approach, each node at every level contains a mean and covariance matrix of
points. These information are then used to estimate the normal to the corresponding
surfel at each octree node. The registration consists, therefore, in finding the corre-
sponding surfels between pairs of octrees that maximizes their matching likelihood,
from which the transformation matrix between the aligned point clouds is obtained.
Their methodology has been shown to perform with a similar error as that proposed
by Steinbruecker et al. [2011], but is more stable when the displacement between the
point clouds is relatively large.
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Regarding feature-based registration, the work published by Huang et al. [2011]
presented a valuable insight on outlier rejection. Given two images Ia and Ib (containing
n andm features, respectively), they modeled the feature matching problem by a graph,
in which each vertex represents a match between one feature from Ia and one feature
from Ib (i.e. there are n×m vertices). In this graph, edges only connect vertices that
do not violate euclidean constraints. For instance, the graph vertex representing a
match between points ax and bx (from Ia and Ib, respectively) would only be connected
to a graph vertex representing a match between ay and by if ||ax− ay|| ≈ ||bx− by||, or
||ax−ay||−||bx−by|| ≤ ε. With such model, the problem of inliers detection is equivalent
to finding the maximum clique in this graph. Since the maximum clique problem
is NP-hard [Garey and Johnson, 1990], the authors proposed a greedy approximate
algorithm to solve this problem with quadratic complexity. Their algorithm was capable
of producing better results than RANSAC [Fischler and Bolles, 1981].

Although the use of visual information together with depth data helps to im-
prove the quality of 3D alignment, mapping systems based on these data may have
their kinematics significantly constrained. Typically, the camera has to move along the
environment with limited linear and angular velocities, or image blurring will compro-
mise the quality of the detected features; in addition, the number of correspondences
between consecutive frames tends to decrease with higher velocities. Furthermore, vi-
sual features may be lacking under some lighting conditions, which is a key issue for
applications such as prospection of uninhabited environments.

The work presented by des Bouvrie [2011] was the first published attempt to
integrate RGB-D and inertial data to solve the SLAM problem with kinect-style depth
sensors. Heavily inspired by the work by Henry et al. [2010], it performs the fusion
of inertial and visual data after a coarse alignment is computed using visual features
only. However, their work depends on the difference between the estimated attitudes
from both the IMU and the keypoint matching process, discarding IMU data if the
difference is too large. This meas that only closely redundant information are fused,
leaving the IMU unused in cases where it could have been helpful, such as during high
angular velocities. Also, the loop closure problem was not addressed by their work.

The thesis is inspired by previous methodologies that seek to preserve euclidean
constraints when matching point cloud keypoints, but we make use of color, geometric
and inertial information to achieve our goal. Unlike the work by des Bouvrie [2011],
which uses an IMU, we use a MARG sensor. Assuming that the direction of the
magnetic field in the environment being mapped remains unchanged during the point
cloud acquisition, the MARG gives us the advantage of a negligible attitude drift. This
allows us to use inertial data during the loop closure detection. Also, we use inertial
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data to reduce the alignment process itself to the problem of finding only a translation
between point clouds.

2.4 3D Environmental Mapping

One of the most common purposes for all the previously mentioned techniques is envi-
ronmental mapping. Commonly, high level methodologies combine several alignment
algorithms in a coarse-to-fine fashion in order to obtain high quality and robust align-
ments between point clouds, to ultimately produce a digital map that is faithful to the
scanned environment.

A real-time 3D reconstruction approach has been recently demonstrated by Izadi
et al. [2011], with the KinectFusion approach. It consists of a pipeline with three main
stages. In the first one, a GPU based implementation of a fast variant of the ICP
algorithm detects the changes in sensor pose between two consecutive grabbed frames.
Then, the global map represented by a three dimensional signed distance function
(SDF) is updated. Finally, the latest frame is globally aligned to the existing map,
which has been shown to reduce the effects of pose drift.

Due to the nature of the SDF, mapping a scene typically required large amounts
of GPU memory (a cubic volume of size 5123 voxels would require at least 1GiB).
Therefore, their methodology may only be used to map small environments, such as a
small room with a few cubic meters.

Considering this limitation, Whelan et al. [2012] further improved the KinectFu-
sion approach, allowing it to map scenes with arbitrary sizes. This was accomplished
by allowing the center of the SDF to move according to the sensor position, while data
that would fall outside this volume is transformed into a polygonal mesh. Since this
mesh requires significantly less storage than the SDF maps, larger environments may
be generated in real time without storage being considered a bottleneck.

Bosse and Zlot [2009] presented a strategy for large environment mapping based
on an ICP variation to register range measurements obtained by a spinning laser
mounted on a vehicle. In their work, the registration of point clouds obtained by a
sensor revolution, referred to as sweep, are locally aligned in several iterative processes
that take into account the sensor trajectory during the data acquisition. Finally, the
scans are processed by an optimization framework that generates a globally consistent
map [Bosse and Zlot, 2010]. That work represents a significant advance on the field
of outdoor mapping; however, its global optimization framework restricted the vehicle
kinematics to movements in a 2D plane, with no pitch and roll angles being supported.
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These shortcomings were addressed on the development of the Zebedee handheld
scanner [Bosse et al., 2012]. Their platform consists of a 2D time-of-flight laser scanner
rigidly attached to an IMU, with both suspended by a loose string whose motion
allowed the sensor to sweep across the environment. The use of a long range scanner
(that could reach up to 30m) has allowed their platform to map environments with
scales of tens of meters with an RMS error in the order of a few centimeters. However,
the used sensors may be too expensive for this platform to be used by the general
public. Also, it lacks color information, which limits the range of applications that
could benefit from it.

Similarly to the work by [Bosse et al., 2012], our methodology is not concerned
with the representation of the final map. Both works produce a globally consistent
point cloud and the sensor trajectory. These data can be further processed in order
to extract a polygonal mesh, proper for visualization purposes, or an occupancy grid,
adequate for mobile robot localization.



Chapter 3

Methodology

We approach the mapping problem by defining the global, fixed frame as the same
reference frame of the first available point cloud. If pairwise registration is successfully
achieved for all point clouds, it is possible to represent any point with respect to the
reference frame. Since pairwise registration is prone to accumulated error, a global
optimization step is required to increase global consistency of the final map.

3.1 Extrinsic Calibration of the Sensors

In order to fuse data coming from the RGB-D and MARG sensors, it is necessary to
know the rigid rotation that transforms the local frame of the MARG sensor to the
local frame of the depth sensor, which we will denote as k

mR.

Since our sensors are firmly attached to each other, the rotation k
mR will remain

constant as long as the local frames of the sensors do not change locally.

It is important to note that resultant forces applied to the MARG sensor may
induce disturbances in its attitude estimation, effectively causing an effect similar to
changing the relative attitude between the sensors. Such disturbances can also be
caused by the presence of ferromagnetic materials close to the MARG sensor. This
issue is mitigated by a filter that combines all data captured by this sensor, which is
explained in Section 3.2.1.

The extrinsic calibration process aims to estimate the transformation k
mR in an

environment free from magnetic interference, provided the resultant force applied to
the sensors is null. The relation between the attitudes of the sensors is such that

15
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Figure 3.1: We deal with points and vectors specified in three different frame coordinate
systems: World fixed ŵ, MARG local m̂ and depth sensor local k̂.

wv = w
mMt

mvt = w
kKt

kvt,

k
mR

mvt = kvt = w
kK

−1
t

w
mMt

mvt,

where wv, mvt and kvt represent a hypothetical point expressed in the three different
frame coordinates (world, MARG and depth sensor, respectively) at time t. Also, wmM
is the attitude of the MARG sensor with respect to the world, and w

kK the attitude of
the RGB-D sensor with respect to the world. The three reference frames are illustrated
by Figure 3.1. The lack of a subscript t in the world vertex wv reflects our assumption
that the world remains static during the calibration process. We can see from this
relation that, in order to obtain an estimation of kmR, it suffices to know the attitudes
of the sensors with respect to a fixed world frame at any given time – that is, wmMt and
w
kKt.

We define the world frame such that its ŵz axis is parallel to the gravity field and
its ŵx axis is parallel to the orthogonalized magnetic field wm̂, whose orthogonalization
is made with respect to the vector ŵz, as shown by Figure 3.2.

An object attitude is expressed by a rotation matrix whose columns denote this
object’s local orthonormal axes. Equation 3.1 shows how the frames illustrated by
Figure 3.1 can be arranged to express wmM and w

kK. This property can be explored for
estimating k

mR, provided all sensors can obtain an estimate of, at least, two of these
axes.

w
mM = [wm̂x

wm̂y
wm̂z]

w
kK = [wk̂x

wk̂y
wk̂z] (3.1)
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Figure 3.2: The axis ŵx is obtained by orthogonalizing the magnetic field vector wm̂
with respect to ŵz.

Figure 3.3: Surfaces used during the calibration process.

This can be easily achieved with the MARG, since it is able to output both mĝ

and mm̂. Thereon, the attitude of the world with respect to the MARG sensor is
given by

w
mM

−1 = [mŵx
mŵy

mŵz],

where mm̂x is the ortho normalized magnetic field in the MARG frame, mŵz is the
normalized gravity (also specified in the MARG frame) and mŵy =m ŵz ×w ŵx.

The depth sensor, however, has no direct way of measuring either the gravity nor
the magnetic field of the environment. It is still possible to estimate these vectors in
the local frame of this sensor if they are in some manner associated with the geometric
features of the world. That can be accomplished by scanning a planar surface orthogo-
nal to the gravity field (whose normal, kn̂g, will be parallel to kĝ), and another planar
surface non parallel to the previous one, which we will refer to as the support surface.
Both surfaces are illustrated by Figure 3.3.

After orthogonalizing the normal of the support surface, kn̂m, with respect to n̂g,
we obtain the vector kn̂′m. As is illustrated by Figure 3.4, this vector can be thought
of as kŵx after a rotation of a constant angle θ around the axis kn̂g (which is the
orthonormalized magnetic field, with respect to the RGB-D sensor’s frame):
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Figure 3.4: World coordinate frame with respect to the depth sensor during the cal-
ibration process. The axis kn̂g is estimated from a planar surface orthogonal to the
gravity, and the axis kn̂′m is obtained from orthogonalizing the normal of the support
surface with respect to kn̂g.

kn̂′m = Rθ,kn̂g

kŵx,

where the notation Rα,v specifies a rotation of an angle α about an arbitrary axis v.
Thus, the attitude of the world with respect to the depth sensor can be expressed by

w
kK

−1 = [km̂′ kĝ ×k m̂′ kĝ],

km̂′ = R−1
θ,kn̂g

kn̂′m. (3.2)

Notice that it is still necessary to know the angle θ in order to calculate the
rotation w

kK. In order to find this angle, we must consider the nature of the calibration
matrix k

mR = w
kK

−1 w
mM. Since it represents a constant rigid transformation, we can

say that kmR = w
kK

−1
t

w
mMt, regardless of the time instant t. Therefore, θ can be found

as the solution to the non-linear system given by

w
kK

−1
ti

w
mMti

= w
kK

−1
tj

w
mMtj

∀ ti 6= tj. (3.3)

In order to find a solution for this system, the measurements must be made with
the sensor fixed at several distinct attitudes, to prevent the system from becoming
ill-conditioned (in which case any value of θ would be a solution). Furthermore, since
the sensors are subject to measurement noise, it is unlikely that this system will have
an exact solution. Therefore, we approach it as a minimization problem of the form
given by
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θ = argmin
α

√∑
ti

∑
tj 6=ti

‖wkKti
(α)−1 w

mMti
−wk Ktj(α)−1 w

mMtj
‖2, (3.4)

where Kt(α) gives the attitude of the depth sensor with respect to the world at instant
t, assuming that the angle θ from Equation 3.2 is α.

After we have an estimate for θ by solving Equation 3.4 (which we computed
by using the Nelder-Mead simplex, as it is a derivative-free method), it is possible to
calculate the calibration matrix. Since we can compute an estimation of kmR from each
measurement made by the depth sensor, we have to combine all these estimates into a
single, reliable estimate of kmR.

For each one of the captured attitudes, we have k
mR1 = w

kK
−1
1

w
mM1,

k
mR2 =

w
kK

−1
2

w
mM2, . . . ,

k
mRtn = w

kK
−1
tn

w
mMtn

. The final rigid rotation between the sensors is
estimated as the average of all these rotations. Our approach to the rotation averaging
problem consists of firstly converting all rotation matrices to quaternions. Due to
the fact that two unit quaternions q and −q represent the same rotation, a naïve
averaging by adding and normalizing quaternions would be subject to spurious results.
Nevertheless, this can be avoided if the average is made between quaternions that have
an angular distance shorter than or equal to 90◦, which is given by their dot product.
Finally, we perform a spherical linear interpolation (SLERP) [Shoemake, 1985] in an
incremental fashion similar to the running average algorithm, which will produce the
final averaged rotation, which we convert back to the matrix form (quat2dcm). This
process is illustrated by Algorithm 1.

Algorithm 1 Rotation Averaging
Require:
1: A set of quaternions q1,q2, . . . ,qn representing several noisy estimates of the rigid

rotation k
mR between the MARG and the depth sensor.

Ensure:
1: The average rotation matrix k

mR.

1: qf ← q1

2: for i← 2, n do
3: if qf · qi < qf · −qi then
4: qi ← −qi
5: end if
6: qf ← slerp(qf , qi, 1

i
)

7: end for
8: k

mR← quat2dcm(qf )
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Figure 3.5: A high-level overview of the proposed registration approach. The front-end
is divided into three pairwise registration levels. Their alignment result is refined to
a key frame level by a backend, which saves all locally consistent poses. These poses
are later processed by a SLAM optimizer, which generate the globally consistent final
map.

3.2 Point Cloud Registration

We propose a registration technique that consists of a coarse-to-fine alignment pipeline.
This decision allows us to compute high quality transformation between adjacent point
clouds with a small computational impact, since different pipeline stages can be par-
allelized with a producer-consumer design. Also, the transformations found by coarser
levels reduce the number of iterations required by finer levels to find their optimal
solutions. The diagram on Figure 3.5 depicts a high level view of our approach.

The proposed algorithm starts by performing the keypoints detection and de-
scriptor extraction for the first point cloud received. Then, for each new point cloud
captured by the depth sensor, the whole pipeline is executed, whilst the alignment pro-
cesses are performed between the latest two point clouds in a pairwise fashion. Each
alignment level will be described in detail in the following subsections.

3.2.1 Front-end

In the first alignment stage, our methodology uses inertial, color and geometric infor-
mation to find an initial estimation for the rigid transformation between the two latest
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point clouds. We use the orientation filter proposed by Madgwick et al. [2011] to fuse
data coming from sensors in a MARG device. Their methodology uses the gyroscope,
accelerometer and magnetometer to estimate the MARG attitude with respect to a
fixed world frame specified by the gravity and earth’s magnetic field. We have chosen
this approach due both to its stability and low computational requirements.

In an independent step, we find a set of SURF keypoints [Bay et al., 2008] from
the most recent image. We have chosen the SURF detector based on the fact that it
was capable of extracting several hundreds of good quality features from images of our
experiment, even during the presence of some blurring due to camera motion. We also
label these keypoints with BASE descriptors [Nascimento et al., 2012]. This descriptor
is computed by using both intensity and geometry information, which makes them
more robust to variations in lighting conditions and textureless scenes.

3.2.2 Keypoint Matching

In order to quickly match keypoints between a pair of frames, we developed a keypoint
matching strategy that takes into account a prior knowledge of the displacement be-
tween them. The rotation between these frames can be approximated by a quaternion
calculated with data from the MARG sensor, and the translation can be roughly es-
timated by finding any pair of corresponding keypoints between the two frames being
aligned.

Let k
mR be the extrinsic MARG/Depth sensor calibration matrix computed as

described in the previous section, and w
mMt be the MARG attitude at the t-th frame

as reported by the orientation filter. If the sensors were perfectly synchronized and the
MARG sensor were not susceptible to noise and interference, the attitude of the t-th
frame with respect to the (t− 1)-th frame, kt−1

kt
K, would be given by

kt−1

kt
K = (wmMt−1

k
mR

−1
)−1 w

mMt
k
mR

−1
.

In practice, this equation doesn’t yield an exact attitude due to problems such
as noise from the MARG sensor, small extrinsic calibration errors and the lack of
synchrony between MARG and RGB-D sensor. Furthermore, it only accounts for
rotation, leaving the translation unknown. We tackle these issues by combining the
estimated attitude with a maximum sensor motion speed assumption. Given a keypoint
kt−1k on the (t− 1)-th frame, its corresponding match on frame t is likely to lie within
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a spherical shell defined by the parametric equation

(
kt−1

kt
K)−1 kt−1k + r̂vmaxdt,

where the parameter r̂ is a unit vector, vmax is the maximum motion speed assumed,
and dt is the elapsed time separating the acquisition of those frames.

Considering the maximum speed assumption, our matching approach starts by
selecting a subset of keypoints from the (t − 1)-th frame in order to keep the compu-
tational requirements low. This procedure, which we call subsample on Algorithm 2,
is done by selecting the N most prominent keypoints, where keypoints are compared
according to their response to the SURF detector. Then, for each keypoint, we search
for correspondences on the t-th image. To compute the set of matching candidates
from the t-th frame, we perform a radius search for keypoints around a center given
by (

kt−1

kt
K)−1 kt−1k and radius length of vmaxdt. On Algorithm 2, the radius search op-

eration is presented as radiusSearch(kdTree, center, radius). Each candidate
from the returned set has an associated vector t, which represents a possible translation
between the two point clouds. These keypoints are referred to as support keypoints,
and are connected by a red line in Figure 3.6.

We proceed by comparing all combinations between an arbitrary kt−1ki and its
corresponding results from the radial search. For each pairing, we have a different t

that, together with the attitude guess from the MARG sensor, provide an estimation
of the pose of point cloud t with respect to point cloud t− 1. Then, in order to refine
this estimate, for all remaining keypoints kt−1kl (with l 6= i), we perform a nearest
neighbor search in the t-th frame around the point given by (

kt−1

kt
K)−1 kt−1kl + t – we

have found that three neighbors is typically a good compromise between computational
performance and alignment quality. The neighbor that best matches the current key-
point is then defined as its pair. Once we have a correspondence for every keypoint
subsampled from the (t − 1)-th frame, we calculate the Hamming distance between
the binary descriptors of the matched keypoints. The distances are used to calculate a
score of the current pairing configuration. We repeat this process from the beginning
for all possible kt−1ki, and chose the set of pairing configurations with the smallest total
score, which is computed by the summation of all pair scores.

Finally, we estimate the coarse transformation from the configuration with the
best score with the Principal Component Analysis (PCA) [Pearson, 1901] of all pairings.
The rotation is given by performing an eigenvalue decomposition of the covariance
matrix of the keypoints coordinates. The translation is computed from the difference
between the centers of mass of each cloud of keypoints. Algorithm 2 illustrates the



3.2. Point Cloud Registration 23

coarse alignment procedure.

Algorithm 2 Keypoint Matching
Require:
1: Two sets of keypoints kt−1k = {kt−1k1, . . . ,

kt−1 kn} and ktk = {ktk1, . . . ,
kt km} from

the (t− 1)-th and t-th frames, respectively, with their corresponding descriptors.
2: The attitude of the depth sensor at the instant i with respect to its orientation at

the moment t− 1, kt−1

kt
K.

Ensure:
1: The pose of the depth sensor at the instant t with respect to the instant t − 1,

kt−1

kt
P

2: The score of the best matching configuration.

1: kt−1k̃← subsample(kt−1k)
2: bestScore ←∞
3: for all kt−1k̃l ∈ kt−1k̃ do
4: ktk̃← radiusSearch(ktk, (

kt−1

kt
K)−1 kt−1k̃l, vmax · dt)

5: for all ktk̃l ∈ ktk̃ do
6: score ← hammingDistance(descriptor(kt−1k̃l), descriptor(ktk̃l))
7: matches ← {(kt−1k̃l,

ktk̃l)}
8: t← ktk̃l − (

kt−1

kt
K)−1 kt−1k̃l

9: for all kt−1k̃m ∈ kt−1k̃ | kt−1k̃m 6= kt−1k̃l do
10: c← (

kt−1

kt
K)−1 kt−1k̃m + t

11: neighbors ←KNNSearch(ktk, c, AMOUNT_NEIGHBORS)
12: ktk̃m ← bestNeighbor(neighbors)
13: hamming← hammingDistance(descriptor(kt−1k̃m),

descriptor(ktk̃m))
14: if ‖c− ktk̃m‖ ≤ DISTANCE_THRESHOLD then
15: score ← score + hamming
16: matches ← matches ∪ {(kt−1k̃m,

kt k̃m)}
17: end if
18: end for
19: score ← score/size(matches)2
20: if bestScore > score then
21: bestScore ← score
22: kt−1

kt
P← poseFromPCA(matches)

23: end if
24: end for
25: end for
26: return (

kt−1

kt
P, score)
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Algorithm 2 has a time complexity of O(p(
√
q +M) log q + p2(M

√
q)), where:

• p is the number of keypoints in kt−1k̃ (can be set to a maximum limit depending
on the subsampling strategy);

• q is the number of keypoints in ktk;

• √q + M is the time complexity of a radius search over a KD-Tree, where M is
the expected number of returned nodes (this term is directly proportional to the
translational uncertainty, given by vmax · dt);

• M√q is the time complexity of the KNN search on ktk.

In order to keep the computational cost of search operations low, we store the set
of keypoints ktk in a KD-tree. The construction cost, O(q log q), does not represent a
significant impact to the algorithm, since we typically deal with a number of keypoints
q < 2000, when the SURF detector is employed.

Our keypoint subsampling approach takes into account two major factors. Firstly,
we determine a maximum number of keypoints that the set kt−1k̃ might contain based
on their detection score. Secondly, we only sample keypoints whose distance to the
camera is below a threshold. The reason for this second factor is the fact that farther
points tend to be too noisy, which would cause a negative impact towards the pose
estimation algorithm. Typically, this threshold is 3.5m for RGB-D sensors.

The main difference between the designed matcher and existing brute force tech-
niques is that we apply a transformation to the keypoint around which a neighbor
search will be performed. Therefore, after the transformation, the keypoint will lie
closer to its correspondent. Also, the distance threshold used after the KNN search
can be set to very tight values in order to preserve euclidean constraints, reducing the
need for an explicit outlier removal. It is important to notice that the transformation
that precedes the radius search doesn’t necessarily need to be a rotation. As we will
discuss later on, this transformation will also contain a translation when the match-
ing is made between frames with relatively large displacements (which happens every
time on the back-end of our methodology, when it tries to align regular frames to key
frames).

3.2.3 Photo Consistent Alignment

In many cases, the coarse alignment estimated by the feature matcher is very close
to the optimal transformation between point clouds, with displacements that could be
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Figure 3.6: Keypoint correspondences found by our keypoint matching approach. The
red line connects support keypoints, while the blue lines connects the remaining key-
points. Although there were hundreds of matched keypoints on this pair, we selected
a small set of pairs for the sake of clarity. The figures depict a region captured during
our experiments.

quickly corrected by a geometry-based registration. However, such approaches have
high computational requirements and may be compromised by the lack of geometric
features from some environments. On the other hand, the acquired frames often con-
tain a substantial amount of color information, which can be densely used to further
improve the alignment, which will help to correct for small displacements on pair-wise
registration.

For this alignment stage, we have employed the methodology published by Stein-
bruecker et al. [2011]. Given two point clouds Ca, Cb for which each point contains its
color estimate, and an initial guess b

aP̃ for the pose of frame a with respect to frame
b, their algorithm searches for a pose b

aP that leads to the smallest difference between
the image from Cb and the image obtained from applying the perspective projection
to the points b

aPCa. In other words, at each iteration, it compares the projections
from both point clouds as if they were obtained from the sensor at the same spot. If
the transformation b

aP is close to the actual displacement between these clouds, the
intersecting pixels of the compared images will be more similar to each other, as it can
be seen on Figure 3.7.

Other pairwise alignment methodologies, such as Henry et al. [2010], commonly
use the ICP algorithm during their fine alignment stage. We have chosen the photo
consistent approach due to its high computational performance, even though it uses
all available points, and the fact that it uses intensity as an evaluation metric.

In the pipeline of our methodology, this alignment step starts after the keypoint-
based coarse registration, and receives a pose guess from it. It outputs a refined pose
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(a) Point cloud t (b) Point cloud t+ 1

(c) Point cloud t+ 1 after alignment (d) Aligned point cloud t+1 superposed with
point cloud t

Figure 3.7: Given a coarse estimate for the pose of frame a w.r.t frame b, kt−1

kt
P′, the

photo consistency step finds a kt−1

kt
P that minimizes the difference between figs. (a)

and (c).

matrix, kt−1

kt
P′, which is combined into the global sensor pose k1ktP by the matrix product

k1
kt
P = k1

kt−1
P

kt−1

kt
P′.

This combined sensor pose is the input to the back-end, which will then refine it to a
globally consistent pose.

3.2.4 Sampling Key frames and Graph Optimization

The major purpose of our back-end is to select a subset of the captured point clouds,
which we refer to as key frames, and to build a globally consistent representation of the
environment with them. This is necessary because pairwise registration of point clouds
tend to accumulate errors that become very noticeable as the mapped region increases.
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There are several entities that can lead to accumulated errors between frames, for
instance:

• The sensor discretization of the world makes it impossible for any alignment to
be perfect;

• Depth and image warping due to lens distortion, leading to curvy representations
of planes;

• Blurring both on depth and color images introduces geometric distortions that
do not correspond to the real environment.

Consequently, the back-end must be capable of detecting overlapping regions
between key frames, especially if they have a large temporal displacement. Such in-
tersections happen when the sensor returns to a previously mapped region, which may
be very difficult to detect, since uncertainty due to accumulated error can make the
search space too large when matching temporally farther key frames.

Another reason to use the proposed back end is to prevent normal frames (that is,
point clouds that are not distinct enough to be considered key frames) from diverging
indiscriminately. This is achieved by aligning them to the closest key frame available.
As it will be discussed in more details later on, this realignment operation is typically
very fast, since drifting between key frames typically occurs at small scales. Also,
the detection of the closest key frame doesn’t require the world representation to be
globally consistent, because our key frame detection policy ensures that a key frame t is
always a good candidate for matching subsequent point clouds that are not considered
key frames.

3.2.4.1 Key frame Detection

The criteria for determining whether a point cloud can be considered a key frame or not
is of crucial importance to the registration system, as it is related to the quality of the
alignments as well as the overall algorithm run time. A large amount of key frames may
induce higher run times by cluttering the graph to be optimized, as well as increase
the accumulated error after mapping the whole environment. On the other hand,
a small number of key frames implies in a smaller intersection region between them
(assuming they all cover the same volume), which makes alignment a more difficult
task, increasing the chances for registration divergence.

With that in mind, our key frame detection policy takes into account the area
of the intersecting region between the depth images from the candidate point cloud
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and all other key frames. This allows us to address the divergence issue, since a good
registration depends on the size of the overlapping region, but also gives control over
the amount of key frames detected, which can be reduced by decreasing the intersection
threshold.

To determine whether or not a given point cloud Ct is a key frame, let C̃k be the
set of all point clouds categorized as key frames. At the beginning of the alignment
procedure, this set will be initialized with the first point cloud available – i.e. the
first point cloud acquired by the depth sensor is automatically categorized as a key
frame. If C̃k is not empty, we perform a comparison between Ct and each Cl ∈ Ĉk.
This is done by transforming all the points from Ct to the reference frame of Cl, and
projecting these points to the projection plane that contains all points from Cl (by
multiplying them by the projection matrix of the depth sensor, and normalizing their
resulting homogeneous coordinates). Since the depth sensor might have moved after
Cl was captured, some of the points from Ct will be likely to be projected outside of
the projection plane of point cloud Cl. If the number of points that fall inside this
projection plane is below a threshold, we define Ct as a key frame. This procedure is
detailed in Algorithm 3.

3.2.4.2 Alignment to Closest Key Frame

During the registration process, it is desirable that regular point clouds be consistent
with their closest key frames. This reduces the drift effect, restricting the error accu-
mulation to the process of incorporating new key frames – an error that will be further
reduced by graph optimization, should a loop be closed. Since our goal is to perform
this alignment quickly as well as to obtain a high quality registration, we solve it with
a specialized version of the feature matcher previously described.

The alignment error between a regular point cloud and the most recently detected
key frame is typically small enough that their estimated poses can be used as an initial
guess for the alignment between them. This alignment is computed by a slightly
modified version of the keypoint matcher algorithm previously described. Also, since
we expect to have small displacement errors, it is possible to prune the search space for
feature correspondences, thus speeding up the feature matcher algorithm. Hence, given
a pose estimate ki

kt
P′ of the t-th point cloud with respect to the key frame (which was

captured at instant i), the radius search of the keypoint matcher receives all support
keypoints kik̃l transformed by ki

kt
P̃
′−1

which can be quickly and precisely determined by
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Algorithm 3 Key frame Detection
Require:
1: A candidate point cloud Ct and its pose k1

kt
P.

2: A set of key frames C̃k, and their corresponding poses P̃k.
3: A camera projection matrix K.

Ensure:
1: A boolean variable indicating if Ct is a key frame; in which case, C̃k is updated to

contain it as well.

1: isKeyFrame ← true
2: for all Cl ∈ C̃k do
3: intersection ← ∅
4:
5: for all pl ∈ Cl do
6: p′l ← K k1

kt
P
−1 k1

kl
P pl

7: p′′l ← homogeneousNormalize(p′l)
8: if (0, 0) ≤ p′′l ≤ (FRAME_WIDTH, FRAME_HEIGHT) then
9: intersection ← intersection ∪ p′′l

10: end if
11: end for
12: if size(intersection) ≥ INTERSECTION_SIZE_THRESHOLD then
13: isKeyFrame ← false
14: break for
15: end if
16: end for
17:
18: if isKeyFrame then
19: C̃k ← C̃k ∪Ct

20: end if
21: return (isKeyFrame, C̃k)

ki
kt
P̃
′−1

=

(
ki
kt
RT −kiktR

T
t

01×3 1

)
,

where ki
kt
R and t are, respectively, the rotation matrix and translation vector of P̂k

t .

The pose ki
kt
P̃
′
can be computed by using the global pose of point cloud t, k1ktP

and the global pose of the key frame i, k1kiP, both calculated as the combined pairwise
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transformations between all frames that preceded them:

k1
kt
P =

t∏
j=2

kj−1

kj
P,

k1
ki
P =

i∏
j=2

kj−1

kj
P.

In this sense, kiktP
′ = k1

ki
P
−1 k1

kt
P.

Given the transformation ki
kt
P resulting from the alignment between current point

cloud and the last detected key frame, the current stage outputs k1kiP
ki
kt
P, which stands

for the corrected, locally consistent, global pose of the t-th point cloud.

3.2.4.3 Optimizing Environment Graph and Closing Loops

In order to estimate a reliable representation of the environment, mapping trajectories
that return to a previously visited region must be subject to loop closure techniques,
which reduce significantly the accumulated error, an inevitable outcome of pairwise
frame alignment.

This is done by associating a hypergraph to the key frame structure, in which
each key frame is represented by a vertex, and each keypoint correspondence between
them becomes an edge, as shown in Figure 3.8. Since our goal is to perform environ-
ment mapping with 6 degrees of freedom in terms of sensor motion, this framework can
be processed by the methodology proposed by Borrmann et al. [2008], which was an
extension of a graph optimization framework for 2D scans with 3 degrees of freedom
[Lu and Milios, 1997]. The latter takes as input a graph in which each vertex represents
the sensor’s pose Xi =

(
x y θ

)
(which may be estimated by pairwise registration

of all previous point clouds), while edges between them contains the measured dis-
placement between these poses Di,j =

(
∆x ∆y ∆θ

)
(typically obtained from the

alignment between those vertices). If all scans were perfectly matched and there were
no cumulative error, there should be no difference between Xi−Xj and Di,j for any two
connected nodes i and j. When accumulated errors are present, however, the graph
optimizer must seek to minimize this difference. Therefore, its fitness function is given
by the following Mahalanobis distance:∑

(Xi −Xj −Di,j)
TC−1i,j (Xi −Xj −Di,j),

where Ci,j is the measurement covariance matrix.
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Initial
Position

Final
Position

Common
Keypoints

Figure 3.8: Illustration of a key frame hypergraph to be processed by the SLAM step.
Each key frame is represented by a vertex, while the keypoint connections are expressed
by edges connecting their corresponding vertices. In this illustration, the keypoint cor-
respondence between initial and final positions are found by the loop closure detector.

An important aspect of a global alignment procedure is how loop closures are
detected between two candidate key frames. Our approach makes use of the attitude
reported by the MARG sensor in this process, since it does not suffer from significant
drift under the assumed conditions. Therefore, we reduce the loop detection problem
to finding a translation that connects two candidate key frames, while being able to
reject candidates with a large angular displacement. This is done with an algorithm
that follows the underlying idea behind Algorithm 2. That is, the transform between
key frames is estimated from a set of corresponding keypoints. Since the magnitude
of the accumulated error cannot be generically estimated with a reasonable precision,
the support pairing from which the translation between the key frames is estimated
is obtained from testing all possible combinations between the subset of keypoints k̂i

and a subset k̂j of kj. Although this increases the computational complexity of the
matching procedure, it also increases the odds of correctly matching two key frames
captured at time instants too far apart from each other, regardless of the accumulated
error between them. The complete procedure is summarized in Algorithm 5.

The keypoint matcher used in pairwise alignment (described in Algorithm 2) has
a search space delimited by an uncertainty region proportional to the maximum dis-
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Query Image Search Image

Figure 3.9: In order to perform a thorough search for correspondents of each subsam-
pled keypoint from the query image, we extract the best keypoints from each bin of
the search image.

placement the sensor could have had in the elapsed time between the acquisition of
two point clouds. When dealing with any two arbitrary point clouds from our set,
however, we acknowledge that this uncertainty region could be as large as to occupy
the whole volume delimited by these point clouds. This means that the previously de-
scribed keypoint matcher would essentially test all combinations of keypoints. Facing
this issue, and concerned with the computational complexity of the keypoint matching
procedure among arbitrary key frames (which is the essence of our loop closure de-
tection), we decided to adopt a more sophisticated keypoint subsampling at the loop
closure detection stage. Essentially, it divides both query and search images into sub
regions and samples the most prominent keypoints (according to their response to the
SURF detector) from both, up to a maximum threshold. As Figure 3.9 illustrates,
each keypoint subsampled from the query image is later matched with all keypoints
subsampled from the search image. The keypoint subsample procedure is described by
Algorithm 4.

Considering the time complexity of the global optimization procedure, it is ad-
visable to refrain from performing comparisons between all pairs of key frames. Since
the graph is always locally aligned, edges between neighboring vertices can be detected
by Algorithm 2 by making use of their pose estimates. Furthermore, it is possible to
use the orientation data from the MARG sensor to discard far off candidates based on
a threshold regarding the angle between their view direction vector. For instance, a
loop cannot be closed between two key frames if the first was captured with the sensor
pointing towards the floor and, the second, pointed to the ceiling. Given two rotation
matrices representing the depth sensor attitudes at distinct instants, their angular dis-
tance is calculated as the angle α between their direction vectors, Ẑi and Ẑj, which are
given by the third column of their corresponding rotation matrices. That is, the angle
α can be calculated as α = arccos(Zi · Zj).
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Algorithm 4 Relaxed Keypoint Subsampling.
Require:
1: Set of keypoints k.
2: Dimension d of sampling bins.
3: Maximum amount of points per bin n.

Ensure:
1: Subsample k̃ of keypoints from k.

1: k̃← ∅
2: binCount ← zeros(FRAME_HEIGHT/d, FRAME_WIDTH/d)
3: for all km ∈ k do
4: binIndex ← floor(km/d)
5: if binCount[binIndex.y, binIndex.x] < n then
6: k̃← k̃ ∪ km
7: binCount[binIndex.y, binIndex.x]← binCount[binIndex.y, binIndex.x] + 1
8: end if
9: end for

10: return k̃

Algorithm 5 Relaxed Keypoint Matching
Require:
1: Sets of keypoints kik and kjk from the ti-th and tj-th key frames, respectively, and

their corresponding descriptors.
2: The depth sensor’s attitude at the instant tj with respect to its orientation at

instant ti, as estimated by the MARG sensor, kikjK.
Ensure:
1: The depth sensor’s pose at instant tj with respect to its local frame at instant ti,

ki
kj
P.

2: The best match score.
3: The number of matched keypoints n.

1: kik̃← relaxedSubsample(kik, QUERY_DIM, QUERY_NUM_PTS)
2: kj k̃← subsample(kjk, MATCH_DIM, MATCH_NUM_PTS)
3: bestScore ←∞
4: bestCandidates ← ∅
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5: for all kik̃l ∈ kik̃ do
6: for all kj k̃l ∈ kj k̃ do
7: score ← hammingDistance(descriptor(kik̃l), descriptor(kj k̃l))
8: matches ← ∅
9: t← kj k̃l − (kikjK)−1 kik̃l

10: for all kik̃m ∈ subset(kik̃) | kik̃m 6= kik̃l do
11: c← (kikjK)−1 kik̃m + t

12: neighbors←KNNSearch(kjk, c, AMOUNT_NEIGHBORS)
13: kj k̃m ← bestNeighbor(neighbors)
14: hamming ← hammingDistance(descriptor(kik̃m),

descriptor(kj k̃m))
15: if ‖c− kj k̃m‖ ≤ DISTANCE_THRESHOLD then
16: score ← score + hamming
17: matches ← matches ∪ {(kik̃m, kj k̃m)}
18: end if
19: end for
20: insertCandidate(bestCandidates, score/size(matches)2,

{kik̃l, k̃
tj
l }, BEST_CANDIDATES_LIMIT)

21: end for
22: end for
23: for all {kik̃l, kj k̃l} ∈ bestCandidates do
24: score ← hammingDistance(descriptor(kik̃l), descriptor(kj k̃l))
25: matches ← ∅
26: t← kj k̃l − (kikjK)−1 kik̃l

27: for all kik̃m ∈ kik̃ | kik̃m 6= kik̃l do
28: c← (kikjK)−1 kik̃m + t

29: neighbors←KNNSearch(kjk, c)
30: kjk̃m ← bestNeighbor(neighbors)
31: hamming← hammingDistance(descriptor(kik̃m), descriptor(kj k̃m))
32: if ‖c− kj k̃m‖ ≤ DISTANCE_THRESHOLD then
33: score ← score + hamming
34: matches ← matches ∪ {(kik̃m, kj k̃m)}
35: end if
36: end for
37: score ← score/size(matches)2
38: if bestScore > score then
39: ki

kj
P← poseFromPCA(matches)

40: bestScore ← score
41: n← size(matches)
42: end if
43: end for
44: return (kikjP, score, n)
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3.3 Parameters

For the sake of practicality, we compile in Table 3.1 a list of all constant parameters of
our methodology.

DISTANCE_THRESHOLD When matching keypoints, it’s the maximum ac-
ceptable distance between a query point and its
candidate match neighbors. Increasing this pa-
rameter can help to mitigate the effect of noise
in the MARG sensor estimate, but increases the
computational cost of the matcher.

AMOUNT_NEIGHBORS Similar to DISTANCE_THRESHOLD, with the differ-
ence it specifies the number of neighbors to be
considered in a KNN key point search. Increasing
this parameter helps mitigate the noise from the
MARG sensor, but also decreases computational
performance.

MAX_SENSOR_SPEED (vmax) We assume the sensor will not move faster than
this speed. This parameter is to be set in me-
ters per second. Increasing this parameter is the
equivalent of increasing uncertainty in translation
between two pairwise key frames, and will trans-
late to higher computational requirements as well.

FRAME_WIDTH Width of the frames acquired by the depth sensor,
in pixels.

FRAME_HEIGHT Height of the frames acquired by the depth sensor,
in pixels.

INTERSECTION_SIZE_THRESHOLD After aligning two candidate point clouds in the
loop closure detection step, we project the aligned
point clouds in a 2D frame and discard the loop
closure if the pixel intersection in this alignment
is smaller than this parameter. Increasing it re-
duces the probability of matching loop closures,
as decreasing it makes it more likely to find false
positives. This value must lie within the range
[0, FRAME_WIDTH · FRAME_HEIGHT].
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QUERY_DIM In the keypoint subsampling context, specifies the
dimension of the square patches from where key-
points will be selected on the query image. De-
creasing it makes the subsampled points to be well
distributed across the whole frame, but increases
computational requirements.

QUERY_NUM_PTS In the keypoint subsampling context, specifies the
maximum number of keypoints that will be se-
lected from each image patch on the query image.
Increasing it makes the matcher more robust to
outliers in each set, although it leads to a higher
computational cost.

MATCH_DIM Analogous to QUERY_DIM, but applies to the match
set.

MATCH_NUM_PTS Analogous to QUERY_NUM_PTS, but applies to the
match set.

BEST_CANDIDATES_LIMIT In the relaxed keypoint matching algorithm, de-
fines the maximum number of support pairs that
will be submitted to a thorough score evaluation.
Greater limits diminishes the likelihood of finding
a local minimum, at the same time it increases
computational cost.

Table 3.1: List of constant parameters used by the proposed methodology.



Chapter 4

Experiments

Our experimental analysis sought to compute the fidelity of a map generated by the
proposed methodology to a ground truth, which is generated from a Zebedee device
[Bosse et al., 2012]. We were also concerned with how each block of our pipeline
contributed to the final reconstruction.

During our experiments, we captured the walls of a cluttered rectangular room
with dimensions 9.84m x 7.13m with an XTion PRO LIVE sensor attached to a 3DM-
GX1 MARG sensor, as shown by figure 4.1. The mapping process took about 2 minutes
to complete, giving an average speed of roughly 0.3m/s. During this interval, we
captured 3404 point clouds, which consumed a total of 5GiB in disk space. We ignored
the first 150 point clouds (the equivalent of 5 seconds) because they had color artifacts,
and we wanted to wait for the MARG filter to converge to its initial attitude.

The computer used to capture the point clouds and the MARG data was a
MSI GX660r-us notebook with a 1.73GHz Core i7 CPU running the operating sys-
tem Ubuntu 12.04. The registration algorithms were executed in a desktop equipped
with a 3.5 GHz Core i7 CPU with 32GiB of memory running the same operating
system.

This room has been chosen due to the fact that it contained regions with rich
geometric and texture features as well specific regions that lack both, as illustrated by
Figure 4.2. This has enabled us to test the robustness of the proposed approach on
such different conditions.

Table 4.1 lists the values associated with our methodology’s parameters used in
our experiments.

37
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MARG

Depth Sensor

Figure 4.1: Devices used during our experiments.

DISTANCE_THRESHOLD 0.02m
AMOUNT_NEIGHBORS 6
MAX_SENSOR_SPEED 0.6m/s

FRAME_WIDTH 640px
FRAME_HEIGHT 480px

INTERSECTION_SIZE_THRESHOLD 150,000
QUERY_DIM 10

QUERY_NUM_PTS 1
MATCH_DIM 10

MATCH_NUM_PTS 5
BEST_CANDIDATES_LIMIT 100

Table 4.1: List of constant parameters used during our experiments.

4.1 Synchronization Issues

Since we were dealing with multiple asynchronous sensors, we had to create a mecha-
nism to match data from the MARG sensor to frames coming from the depth sensor.
Due to the nature of our sensors, there were several factors that made this task difficult:
The delay between data acquisition and depth availability, regarding the depth sensor,
the different operation frequencies of both sensors, possible slowdowns during depth
data transferring and the lack of a global reference clock, to name a few. In order to
solve this problem, we accounted for the following information:

• MARG time stamp. The time instant at which the inertial data was available,
provided by a clock within the MARG device.

• Depth Sensor time stamp. The time instant at which the depth data was
acquired, computed by a clock within the depth sensor.
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(a) Rich geometric features (b) Poor geometric features

(c) Rich texture features (d) Poor texture features

Figure 4.2: Different texturing and geometric conditions of the experimental setup.

• Host USB time stamp. The time instant at which data was received at the
USB port, according to the computer’s clock.

Despite the number of available clocks, there were no synchronization mecha-
nisms among them. Not only there were initial offsets between these clocks, but these
offsets were not static and there was nothing to prevent them from drifting over time.
Therefore, the most suitable decision was to use only one of these clocks to estimate
the data acquisition instants for these sensors.

Since we configured the MARG sensor to operate at 80Hz, transferring 144 bits
(two bytes per axis, three bytes per sensor type, three sensor types – magnetometer,
accelerometer and gyroscope) for each measurement (or 11.25Kibs per second), we
assumed the delay between data acquisition and data availability on the host machine
was negligible. That means that the data transfer delay could be neglected for the
purposes of our experiments. Also, since the MARG device employed by this work
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was designed for real time applications [MicroStrain, 2006], we assumed its time stamp
could be approximated by the host USB time stamp.

Such an approximation, however, was not possible for the depth sensor. This is
because it had a considerable delay between the instant at which the cameras captured
the world and the instant when the range data was available. According to Shpunt et al.
[2008], the depth sensor works by projecting on the scene a pattern whose orientation
changes as a function to distance. Besides calculating the orientation of the captured
patterns, the sensor also performs a stereo matching refinement of the estimated range.
The whole procedure can take about 40ms to finish [Kvalbein, 2012]. Nevertheless, the
standard deviation around this value is negligible for our purposes, which means that
was possible to assume such a delay between the depth sensor and the host USB time
stamp without a major negative impact. Also, by limiting the maximum speed the
sensors could move during our experiments, we helped to mitigate undesirable effects
from the lack of a synchronization hardware.

4.2 Performance of the globally optimized

registration

In order to evaluate the accuracy of our methodology, we handpicked sixteen salient
points from both the reconstructed map and the ground truth, and calculated the
distances between all combinations of pairs. The points were chosen so as to create a
thorough distribution of points in the whole map, allowing us to evaluate the errors
for several distinct distances. Figure 4.3 illustrates the distribution of points and the
evaluated pairs across the experimental setup.

Of the 3253 point clouds processed by the pairwise alignment stage, 75 were
classified as key frames by our backend. As can be seen on Figure 4.4-b, the pairwise
alignment stage resulted in significant accumulated pose error after all point clouds
were aligned. However, the global optimization stage managed to detect the correct
loop closure for this scene, resulting in a visually consistent final map, as shows Figure
4.4-c.

Since we had the distances between these points in both the map generated by the
Zebedee sensor and the one provided by our methodology, we computed the difference
between equivalent distances on these maps. That is, given a pair of points pa and pb,
we first calculated the distances between these points in both maps, od = opa − opb

for the map provided by our methodology and zd = zpa − zpb for the map provided
by the Zebedee, and then calculated the error of our map as the difference between
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Figure 4.3: Geometric features selected for comparison purposes. We calculate the dis-
tances between all pairs of geometric features, and compare the results to the distances
estimated from the ground truth reconstruction.

these distances, e = od − zd. To study the behavior of our error as a function of
distance between the points, we generated Figure 4.5-a, in which each point is given by
(x, y) = (zd, e). Figure 4.5-b was plotted with the errors shown as a percentage of the
distance between the points from which they were computed, i.e., (x, y) = (zd, 100 e

zd
).

We can see, from Figure 4.5-a, that the error behaves as a random variable
whose mean tends to increase for larger distances. This insight can be useful for us to
determine the accuracy of our map as a random function of the distance between points.
As can be seen on Figure 4.5-b, we have a random variable that seems to be bound by a
maximum error throughout all distances. To show that this is is a statistical property
of the error of our map, we should be able to fit a unimodal probability distribution
function to this data with a quantile-quantile plot.

In a quantile-quantile plot, it is possible to infer the probability distribution
of a sample if the plot has a linear behavior [Jain, 1991] – that is, if the plot is well
approximated by a linear function, then the sample can be approximated by the known
distribution used in the plot. Due to the shape of the histogram given by the normalized
errors (depicted by Figure 4.10-a), we decided to perform a quantile-quantile plot
with the standard normal distribution followed by a linear regression, which gave us a
coefficient of determination of 0.809. This plot is shown by Figure 4.6. Due to the light
tails on both of its ends, the normal distribution is likely to be just an approximation
for the actual distribution that models this result.

Due to the convenient properties of the normal distribution, it is desirable to
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(a)

(b)

(c)

Figure 4.4: (a) Panoramic view of a corner of the experimental setup; (b) reconstruction
of this region before global optimization; (c) reconstruction of this region after global
optimization. The desk at the center marks the region where reconstruction started,
and also corresponds to where the loop should be closed.
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Figure 4.5: Accuracy of the global reconstruction method with respect to the ground
truth provided by a Zebedee sensor. The graphic on the right represents the error as
a percentage to the distance between the compared points.

model the error of the map generated by our methodology with this distribution, as the
coefficient of determination of the quantile-quantile is high enough. In order to validate
the normal distribution as an acceptable approximation to such error, we performed
a Shapiro-Wilk test with significance level α = 0.01. This test didn’t discard our
approximation of the error as a normally distributed random variable. Therefore, we
can say that the normalized error of the reconstruction provided by our methodology,
in percents, can be modeled by ê = N (µ : 1.4310, σ : 1.1513).

4.3 Back-end Robustness

We tested the robustness of our loop closure stage by running it with two distinct pair-
wise alignment methodologies. We expected that the global optimizer would receive
different inputs from these alignments (a requirement that will be discussed posteri-
orly), but would produce similar results for each one of them. The pairwise alignment
methodologies employed in this stage were small modifications of our front-end stage,
which were as follows:

(A) No photo consistent alignment. The output pose from our coarse alignment
was directly forwarded to the back-end block. In practical terms, this means that
this strategy didn’t perform a dense, fine point cloud registration.

(B) No MARG-based keypoint matcher. The coarse alignment was not per-
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Figure 4.6: Quantile-quantile plot of normalized error versus standard normal distri-
bution.

formed with input from the MARG sensor; instead, keypoints were matched with
a regular brute force matcher, and its output were forwarded to the photo consis-
tent stage.

While the backend detected 76 key frames from Strategy (A), Strategy (B) re-
sulted in 73 key frames. Our first intention was to compute the translational error
among the key frames generated by our methodology and strategies (A) and (B) before
all of them were globally optimized. Since different strategies could classify different
point clouds as key frames, we could not directly compare their key frames according
to their acquisition time, since a point cloud tC could have been classified as key frame
by our methodology but not by strategies (A) and (B). To solve this, we picked the
translational component of the poses of all key frames detected by our methodology,
and the translational component of the poses of these same point clouds as computed
by strategies (A) and (B), regardless of whether or not they were classified as key
frames. Finally, we computed the translational errors as the norm of the difference
between translational component of equivalent point clouds:

o,aek = ‖otk − atk‖,
o,bek = ‖otk − btk‖,
a,bek = ‖atk − btk‖,
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where:

• o,aek is the translational error between our complete approach and Strategy (A)
at key frame k,

• o,bek is the translational error between our complete approach and Strategy (B)
at key frame k,

• o,bek is the translational error between Strategy (A) and Strategy (B) at key frame
k,

• otk is the translational component of the pose of key frame k as estimated by our
complete approach,

• atk is the translational component of the pose of key frame k as estimated by
Strategy (A),

• btk is the translational component of the pose of key frame k as estimated by
Strategy (B).

Figures 4.7-a and 4.7-b illustrates the differences between our methodology and
strategies (A) and (B); the results from Figure 4.7-c were acquired in a similar fashion,
except we used the key frame acquisition times from strategy (A).

As it can be seen in Figure 4.7, the pairwise alignments (A) and (B) yielded
different results from those obtained from the proposed methodology. Figures 4.8
and 4.9 illustrate the estimated trajectory from these strategies, in comparison to
our registration in the same conditions. An important observation that can be made
from these results is that, when comparing the map generated by our methodology
and strategies (A) and (B), there may be different alignments between adjacent key
frames after global optimization. This may happen because our global optimization
stage doesn’t seek to refine the alignment between adjacent point clouds; it focuses on
detecting poorly closed loops instead. Therefore, the alignment error between adjacent
point clouds will remain the same as it was when provided by the pairwise alignment
stage (which depends on the adopted strategy, as those graphics suggest).

After performing global optimization, strategies (A) and (B) yielded maps with
loop closure errors that could have been readily noticed on a visual inspection, as shown
in Figures 4.11. Quantitatively, the normalized error from strategy (A) has a mean
2.62% and standard deviation 1.66 – both values are larger than the corresponding
values obtained from our methodology. As for strategy (B), the data dispersion is
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Figure 4.7: Differences between key frame translations estimated by pairwise trajecto-
ries.

significantly larger, with a mean of 0.14% and standard deviation of 27.32%. These
values can be observed on the histograms of Figure 4.10

Since the match between loop closing frames doesn’t depend on the pre- alignment
stage, we would expect this region of the global map to be consistent with the result
obtained from our complete method presented in the previous section, unless the data
provided to the global alignment stage was different for both strategies (A) and (B).
There is one way this could have happened: by providing the global alignment stage
with a different set of key frames.

As it can be recalled from our methodology, the key frame detection is a byproduct
of the pairwise alignment stage. Therefore, different pairwise alignment strategies
might yield different sets of key frames. This was the case for both strategies (A) and
(B), as can be seen from the instants at which each assessed strategy detected a key
frame, depicted by Figure 4.12.

We suspected that the poorly closed loops obtained by Strategies (A) and (B)
was a result of a different set of key frames given to the global optimization stage. To
verify this hypothesis, we changed the set of point clouds categorized as key frames
by those strategies. Instead of using the key frames detected by them, we used the
key frames detected by our methodology – but still used their poses as estimated by
strategies (A) and (B). Should our original hypothesis be correct, the expected result
would be a map whose loop is consistent with the one generated by our methodology,



4.3. Back-end Robustness 47

−6 −5 −4 −3 −2 −1 0 1 2
−4

−2

0

2

Position X (m)

P
os

it
io

n
Y

(m
)

Our method vs Strategy (A)

(Top view)

Our method
Strategy (A)

−6 −5 −4 −3 −2 −1 0 1 2
−4

−2

0

2

Position X (m)

P
os

it
io

n
Y

(m
)

Our method vs Strategy (B)

(Top view)

Our method
Strategy (B)

−6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Position X (m)

P
os

it
io

n
Y

(m
)

Strategy (A) vs Strategy (B)

(Top view)

Strategy (A)
Strategy (B)

Figure 4.8: Comparison of trajectories as computed by all employed pairwise strategies.
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Figure 4.9: Side view of trajectories estimated by our methodology, Strategy (A) and
Strategy (B). As can be seen, the trajectory estimated by Strategy (B) has larger
displacements in the Z axis.
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(a) (b)

(c) (d)

Figure 4.11: (a) real scene; (b) global registration by our full methodology; (c) global
registration after strategy (A); (d) global registration after strategy (B). Comparison
of loop closing region as obtained from all strategies. Figure (b) doesn’t contain any
visible errors. A discontinuity can be spotted in the cabinet on the right, in Figure
(c); the same occurs in Figure (d), with several other discontinuities that makes it the
worst map estimated.
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Figure 4.12: Instants at which each strategy detected their last 30 key frames.

(a) (b)

Figure 4.13: (a) Loop closure region with no visually detectable discontinuities; (b)
errors due to pairwise misalignment (original scene is shown by Figure 4.2-b). Those
are alignment results after performing the pairwise alignment by strategy (A) followed
by our global optimization step on a key frame set computed by our methodology.

the only differences being for adjacent key frames aligned during pairwise registration.

As it can be seen in Figure 4.13, strategy (A) yields a global map visually con-
sistent with our methodology after we used the set of key frames detected by our
approach, despite local errors introduced by its pairwise registration (also shown in the
same figure). After this change, the normalized error was changed to a mean of 1.38%

and standard deviation 1.64.
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(a) (b)

Figure 4.14: (a) Loop closure region with no visually detectable discontinuities; (b)
errors due to pairwise misalignment (top view of the experimental set). Those are
results after performing the pairwise alignment by strategy (B) followed by our global
optimization step on a key frame set computed by our methodology.

In spite of producing a good loop closure, strategy (B) presented several disconti-
nuities as illustrated by Figure 4.14. These discontinuities appear between key frames
that were registered by a pairwise method, which suggests that their bonds were too
weak and, therefore, were disregarded by the global optimization process. A close anal-
ysis revealed that no reliable matches were found for the key frame with acquisition
id t = 7, shown in Figure 4.15-a. That is, adjacent key frames were matched by a
very small number of keypoints – all of them fell below our threshold of 20 keypoints
for an acceptable match. In fact, those matches had visually protruding discontinu-
ities, as seen in Figure 4.15-b. This happened because the global optimization takes
into account the pairwise registration transform in order to align adjacent key frames.
Since the alignment provided by strategy (B) had a significant accumulated error at
this point, the key point matching algorithm had to deal with a larger uncertainty than
it was supposed to, resulting in spurious alignments with its adjacent frames.

Although this explains how different results could be obtained after global opti-
mization, it still leaves questions as to why such results emerge. Since such differences
are being observed in a region of the map where loop closure is expected to take place,
our search for an explanation should concentrate on what is happening on the relaxed
coarse transform algorithm, responsible for detecting loop closures and finding their
respective transformations.

In a frame-by-frame analysis, we found that, in several occasions, the ambiguity
between candidates of loop closing key frames was the cause of their incorrect align-
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(a) (b)

Figure 4.15: (a) Key frame of acquisition ID t = 7, for which no reliable correspon-
dents were found when globally optimizing the results of strategy (B) with key frames
detected by our methodology; (b) key frame of acquisition ID t = 7, aligned with
its predecessor. This alignment was discarded due to the small number of keypoint
correspondences. This frame was the source of the discontinuity in experiment with
strategy (B) when the key frame list provided by our method.

ment. As Figure 4.16 shows, the edge of the leftmost cabinet was vertically constant,
allowing for keypoint matches that had a significant vertical error. In some other cases,
similarities between the two adjacent cabinet led to a condition where several local min-
ima could be found in which keypoints on the top cabinet were matched to the one in
the bottom, but in these circumstances, the intersection between the frames after align-
ment fell below our acceptable threshold, which eliminated these wrong transforms.

4.4 Comparison to RGB-D SLAM

We decided to compare our approach to the RGB-D SLAM methodology [Endres et al.,
2012], as it is similar to our methodology in the respect that it comprises a front-end
where it performs pairwise feature matching followed by a fine alignment, and a back-
end where global optimization is executed. Also, its implementation is available as
open source, which makes our results easily reproducible.

This experiment was performed by using the same point cloud set from our lab-
oratory, which was processed by our approach and the results were studied in the
previous sections.

During the RGB-D SLAM alignment, the loop closure region was not detected,
leaving the final map globally inconsistent, as Figure 4.17-a illustrates. The trajectory
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(a)

(b)

(c) (d)

Figure 4.16: (a) Spurious keypoint match computed by strategy (A); (b) spurious key-
point match computed by strategy (B); (c) key frames aligned by transform computed
from matches in fig. (a); (d) key frames aligned by transform computed from matches
in fig. (b). Figs. (a) and (b) illustrate the keypoint match relative to the local min-
ima found by the relaxed keypoint matcher algorithm, while (c) and (d) show the key
frames aligned by these transforms, respectively.
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(a) (b)

Figure 4.17: (a) RGB-D SLAM map; (b) map by our pairwise methodology. Not
only the translational error of our methodology is smaller throughout the map, but its
attitude estimates suffer from a smaller rotation drift.

corresponding to this map is shown by Figure 4.19, where the trajectory estimated
by our methodology after loop closure is also displayed. Figure 4.18-a depicts the
translational difference between the trajectory estimated by our methodology and the
one computed by RGB-D SLAM.

Since the loop in our map was not closed by RGB-D SLAM, we did not perform
a quantitative analysis by computing the distance between known points in the final
map. However, for comparison purposes, we show in Figure 4.18-b the translational
error of the pairwise alignment of our methodology, before global optimization took
place. As can be seen, the accumulated error of our pairwise methodology is still
smaller than the one by RGB-D SLAM. As Figure 4.17 shows, the map by RGB-D
SLAM was prone to a larger drift in its attitude, while the attitude error was smaller
in the map provided by our methodology. At the end of the trajectory, the RGB-D
SLAM had a translational error of 2.16m, while our pairwise approach had an error
of 1.76m. Although it cannot be seen on Figure 4.17 (which depicts a top view of
our map), the trajectory computed by our pairwise methodology has a displacement
of 1.55m in the z axis, with respect to the loop closed trajectory.

4.5 Qualitative Analysis

Our qualitative analysis sought to validate our mapping methodology in an environ-
ment that differs from the control environment. We selected a coffee room with several
windows, which provided natural illumination to the room.
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Figure 4.18: (a) Translational error from RGB-D SLAM; (b) translational error from
our pairwise methodology. The error is computed using our loop closed map as a
reference.
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Figure 4.19: Top view trajectories from RGB-D SLAM and our methodology (after
loop closure).
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In this experiment, we did not map all the walls of this room, since some of the
walls consisted mostly of windows, which would not provide us with enough geometric
and color information. Furthermore, it is likely that the depth sensor would not be
capable of capturing significant data due to sunlight interference, which could saturate
the infrared patterns emitted by the sensor. Therefore, we did not perform global
optimization, since there were no loops to be closed.

As Figure 4.20 illustrates, our methodology was capable of completing the map-
ping process without major divergences. Small misalignments still exist, mostly close
to the windows. They can be explained by the fact that, near windows, the exposure
time of the camera got lower, which could hide visual features and making it difficult
to perform the photoconsistent alignment.

We also executed the RGB-D SLAM methodology with the same point cloud set
in order to have another map for comparison purposes. Shown by Figure 4.21, the map
provided by RGB-D SLAM had a smooth representation of a couch, in contrast to a
small discontinuity in the map generated by our methodology. However, it contains
several visible discontinuities throughout the whole scene.
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(a) (b)

(c)

Figure 4.20: Mapping results for a naturally lit cafe room by using our methodology.
(a) A misalignment on a frame hanging on the wall; (b) a misalignment on the couch;
(c) the whole scene.
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(a) (b)

(c)

Figure 4.21: Mapping results for a naturally lit cafe room by using RGB-D SLAM. (a)
Major misalignments can be spotted at the wall board (right), trash bin (middle) and
the leftmost window; (b) misalignments at the window and at the corner of the couch;
(c) the whole scene.



Chapter 5

Conclusions

This work has presented a methodology for creating globally consistent maps of static
environments by using depth, color and inertial information. The global consistency
property specifies that any two adjacent frames captured by the depth sensor must be
represented without discontinuities in the final map – a property that becomes difficult
to maintain when a particular region of the environment is revisited after a long time
is spent mapping other areas.

Although several methodologies have been presented in the literature for the
problem of environment mapping, few publications have devoted some attention to
the possibility of fusing inertial information to RGB-D data for mapping purposes.
Considering that many robots include MARG sensors, this methodology could be used
with no additional cost if an RGB-D sensor were present. Furthermore, with the growth
of devices that incorporate inertial sensors, we expect the prices of these sensors to
further drop in the near future, making it feasible for a larger number of applications
to benefit from them.

In this dissertation, we have used the inertial information in a keypoint matching
algorithm that seeks the best correspondences at the same time it preserves Euclidean
constraints. It is also used to discard false positives in the loop closure detection
procedure, as loop closing key frames must have a small angular distance from each
other.

In our experiments, we not only have validated the proposed method in an exper-
iment, but we also studied in detail the robustness of the global optimization module,
particularly analyzing its response to a poor pairwise alignment and to ambiguities in
the environment. We have also seen that disabling the input from the MARG sensors,
and our keypoint matcher by using the brute force matcher from OpenCV instead, the
pairwise alignment ultimately led to a map with several inconsistencies after global

59
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optimization, especially in regions with few color features.

5.1 Known issues of our work

As we have previously discussed, regions with a significantly varying magnetic field
would render our methodology useless, since the keypoints matching stage would be
too much likely to find wrong correspondences, which would ultimately lead to either
misalignments or even divergence in pairwise registration.

Yet another problematic condition we have observed is that points that lie outside
the depth sensor practical range (typically up to 3.5m in RGB-D sensors) are subject
to a great deal of noise and uncertainty, and such points can not only introduce a large
uncertainty in the coarse alignment stage, but also make it unfeasible if we employ a
keypoint descriptor that makes use of normal information at each point. This happens
because, by introducing depth error, the normals estimated at each point may vary
largely.

5.2 Future Work

A few future work directions may be considered:

• Image Deblurring. Image blurring is of major concern especially when the
scene being mapped lacks geometric features. The RGB-D mapping field would
greatly benefit from advances in RGB deblurring techniques, especially if they
become computationally inexpensive.

• Sensor synchronization. Our experimental setup relied on slow sensor move-
ments to mitigate the synchronization issue. Real world applications, however,
may not impose such a restriction, which means that further research must be
made seeking to synchronize MARG and RGB-D sensors in order to make this
technology commercially available.

• Optimize the feature matcher algorithm. Not only is it possible to increase
computational speed by parallelizing the feature correspondence method, but
we also can decrease its complexity by avoiding similar configurations from being
evaluated multiple times. Another principle for reducing computational expenses
would be to terminate the algorithm as soon as it finds a score that lies below a
certain threshold, in contrast to trying all combinations and returning the best



5.2. Future Work 61

possible configuration. This would prove to be very useful for platforms with a
relatively small computational power, such as notebooks.

• Avoid unconnected key frames on global optimizer. As we saw during our
experiments, it is possible for the global optimization stage to generate uncon-
nected graphs if the bond between adjacent key frames is too weak. The usage of
the relaxed keypoint matching algorithm in such circumstances might, at least,
help to mitigate this problem.

• Disregard points outside safe range. We know that points outside the depth
sensor’s practical range display a great amount of noise, which makes them unreli-
able for mapping purposes. Future works should be concerned with this problem,
possibly by eliminating these points. It is important to notice, however, that such
strategy could make the point cloud too small, leaving it useless for the purpose
of registration.

• Reconstruct dynamic environments. Our methodology has been developed
to reconstruct static environments. This means that the subject being recon-
structed must remain still when the point clouds are being grabbed. This re-
quirement may not be available under some circumstances, in which objects from
the scene can be removed or deformed during the mapping procedure. This is a
field that may benefit from inertial data.
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