Escola de Engenharia Universidade Federal de Minas Gerais Belo Horizonte, agosto de 2002

ESTUDO DE BASES DE PILARES METÁLICOS PELO MÉTODO DOS ELEMENTOS FINITOS

MARCELO MELO MARTINS Curso de Pós-Graduação em Engenharia de Estruturas

UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA DE ESTRUTURAS

"ESTUDO DE BASES DE PILARES METÁLICOS PELO MÉTODO DOS ELEMENTOS FINITOS"

Marcelo Melo Martins

Dissertação apresentada ao Curso de Pós-Gradução em Engenharia de Estruturas da Escola de Engenharia da Universidade Federal de Minas Gerais, como parte dos requisitos necessários à obtenção do título de "Mestre em Engenharia de Estruturas".

Comissão Examinadora:

Prof. Dr. Ricardo Hallal Fakury DEES – UFMG – (Orientador)

Prof. Dr. Fernando Amorim de Paula DEES – UFMG – (Co-orientador)

Prof. Dr. Francisco Carlos Rodrigues DEES – UFMG

Prof. Dr. Luiz Fernando Loureiro Ribeiro UFOP

Belo Horizonte, 27 de setembro de 2002

AGRADECIMENTOS

A todos que, das mais variadas formas e nas mais diversas ocasiões e situações, em maior ou menor grau, contribuíram para a realização deste trabalho.

Aos meus pais, minha irmã e minha companheira, pelo apoio e incentivo que me foi dado.

Ao professor Gustavo de Souza Veríssimo, pelo incentivo a me ingressar neste curso.

Aos professores Ricardo Hallal Fakury e Fernando Amorim de Paula, pela paciência e atitude sempre prestativa.

Aos professores, alunos e funcionários, especialmente as meninas da secretaria e o Eliezer, do Departamento de Engenharia de Estruturas da UFMG, pelas contribuições do cotidiano e pela agradável convivência.

SUMÁRIO

1 IN	TRODUÇÃO	1
1.1.	Considerações Gerais	1
1.2.	Tipos das Bases de Pilares	1
1.3.	Carregamentos mais Comuns em Projeto	2
1.4.	Bases Carregadas Axialmente	3
1.5.	Bases Sujeitas à Compressão Axial com Momento Fletor	4
1.6.	Objetivo e metodologia	5
2 PR	ROCEDIMENTOS TRADICIONAIS EM PROJETO	6
2.1.	Introdução	6
2.2.	Força Axial de Compressão	6
2.2	2.1. Procedimento de Blodgett (1966)	7
2.2	2.2. Procedimento de DeWolf & Richer (1990)	9
2	2.2.2.1. Cálculo para placas mais leves	10
2	2.2.2.2. Procedimento geral de cálculo	11
2	2.2.2.3. Cálculo de placas de base carregadas levemente	12
2.3.	Força Axial de Compressão com Momento Fletor	15
2.3	3.1. Procedimento de Blodgett (1966)	15
2.3	3.2. Procedimento de DeWolf & Richer (1990)	20
2	.3.2.1. Cálculo para excentricidades pequenas e moderadas	
2	.3.2.2. Cálculo para grandes excentricidades	
2.4.	Força Axial de Tração	
2.4	1.1. Procedimento de DeWolf & Richer (1990)	
2.5.	Força Cortante	
2.5	5.1. Procedimento de DeWolf & Richer (1990)	
2.6.	Chumbadores	31
2.6	6.1. Resistência de Cálculo do Chumbador à Tração	32
2	2.6.1.1. DeWolf & Richer (1990)	32
2.6	6.2. Resistência de Cálculo ao Arrancamento – Chumbadores de	Gancho
	33	

2.6.	2.1. DeWolf & Richer (1990)	33
2.6.3.	Resistência de Cálculo ao Arrancamento – Chumbadores tipo	
	Parafuso Invertido ou Barra Redonda com Porca	34
2.7. P	rograma de Dimensionamento	36
2.7.1.	Tela Principal	36
2.7.2.	Janela Propriedades	37
2.7.3.	Janela Carregamento	38
2.7.4	Janelas de Dimensionamento	39
2.7.	4.1. Compressão axial	39
2.7.	4.2. Compressão axial com momento fletor	41
2.7.	4.3. Tração axial	42
2.7.	4.4. Chumbadores	43
2.7.	4.5. Barra de Cisalhamento	44
ANÁL	ISE NUMÉRICA VIA MEF	46
8.1. C	onsiderações Gerais	46
8.2. N	lodelo 01	48
3.2.1.	Propriedades Geométricas	48
3.2.2.	Situações de Carregamento	49
3.2.3.	Modelagem via Programa Ansys	49
3.2.4.	Condições de Contorno	55
8.3. N	lodelo 02	56
8.4. N	lodelo 03	58
3.4.1.	Propriedades geométricas e carregamento	58
3.4.2.	Modelagem e condições de contorno	59
8.5. N	odelo 04	61
RESI	JLTADOS	62
I.1. C	onsiderações Gerais	62
.2. R	esultados Numéricos e Analíticos	63
4.2.1.	Modelo 01 – Compressão axial com momento fletor (chumbador ti	ро
	Gancho)	63
4.2.2.	Modelo 02 – Compressão axial com momento fletor (chumbador ti	ро
	Barra Reta com Porca Embutida)	78
4.2.3.	Modelo 03 – Compressão Axial	81
	2.6.3 2.6.3. 2.7. P 2.7.1. 2.7.2. 2.7.3. 2.7.4. 2.7.4 2.7.4 2.7.4 2.7.4 2.7.4 2.7.4 2.7.4 3.2.2 3.2.3 3.2.4 3.2.4 3.2.1 3.2.2 3.2.3 3.2.4 3.2.1 3.2.2 3.2.3 3.2.4 3.2.1 3.2.2 3.2.3 3.2.4 3.2.1 3.2.2 3.2.3 3.2.4 3.2.1 3.2.2 3.2.3 3.2.4 3.2.1 3.2.2 3.2.3 3.2.4 3.2.2 3.2.3 3.2.4 3.2.2 4.2.3 4.2.3 4.2.3 5.0 4.2.3 5.0 4.2.3 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	 2.6.2.1. DeWolf & Richer (1990) 2.6.3. Resistência de Cálculo ao Arrancamento – Chumbadores tipo Parafuso Invertido ou Barra Redonda com Porca 2.7. Programa de Dimensionamento 2.7.1. Tela Principal 2.7.2. Janela Propriedades 2.7.3. Janela Carregamento 2.7.4. Janelas de Dimensionamento 2.7.4.1. Compressão axial 2.7.4.2. Compressão axial com momento fletor 2.7.4.3. Tração axial 2.7.4.4. Chumbadores 2.7.4.5. Barra de Cisalhamento 2.7.4.6. Burbárdores 2.7.4.7.5. Barra de Cisalhamento 2.7.4.6. Numbadores 2.7.4.7.5. Barra de Cisalhamento 2.7.4.6. Numbádores 2.7.4.7.5. Barra de Cisalhamento 2.7.4.6. Numbádores 2.7.4.7.5. Barra de Cisalhamento 2.7.4.7.5. Barra de Cisalhamento 2.7.4.8. NumÉRICA VIA MEF 3.1. Considerações Gerais 3.2. Modelo 01 3.2.1. Propriedades Geométricas 3.2.2. Situações de Carregamento 3.2.3. Modelagem via Programa Ansys 3.2.4. Condições de Contorno 3. Modelo 02. 3.4.1. Propriedades geométricas e carregamento. 3.4.2. Modelagem e condições de contorno 4.2.3. Modelo 02 – Compressão axial com momento fletor (chumbador ti Gancho). 4.2.3. Modelo 03 – Compressão axial com momento fletor (chumbador ti Gancho). 4.2.3. Modelo 03 – Compressão axial com momento fletor (chumbador ti Barra Reta com Porca Embutida).

	4.2.4. Modelo 04 – Placa Levemente Carregada	87
5	CONCLUSÕES	88
6	SUGESTÕES PARA ESTUDOS FUTUROS	92
RE	FERÊNCIAS	93
AP	ÊNDICE	95

LISTA DE FIGURAS

FIGURA 1.1 – Bases de Pilar	2
FIGURA 1.2 – Situações de carregamento comuns no projeto da base de um pi	ilar
de aço	3
FIGURA 2.1 – Carga axial de compressão.	7
FIGURA 2.2 – Seção crítica	7
FIGURA 2.3 – Balanço para determinação do momento fletor na placa	10
FIGURA 2.4 - Área de contato para placas de base levemente carregadas	13
FIGURA 2.5 – Placa submetida a força axial com momento fletor	15
FIGURA 2.6 – Comportamento elástico do bloco de concreto e chumbadores	18
FIGURA 2.7 – Situação geral	21
FIGURA 2.8 – Pequena excentricidade – contato em toda placa.	22
FIGURA 2.9 – Excentricidade moderada – contato em parte da placa	23
FIGURA 2.10 – Grande excentricidade	24
FIGURA 2.11 – Placa de base submetida à tração	26
FIGURA 2.12 – Linhas de escoamento ou charneiras plásticas.	27
FIGURA 2.13 – Esquema da barra de cisalhamento	30
FIGURA 2.14 – Tipos de chumbador.	31
FIGURA 2.15 – Área projetada.	35
FIGURA 2.16 – Tela principal do programa	36
FIGURA 2.17 – Janela propriedades.	38
FIGURA 2.18 – Janela carregamento.	38
FIGURA 2.19 – Janela procedimento de cálculo	39
FIGURA 2.20 – Janela compressão axial / procedimento AISC (DeWolf & Riche	۶r
1990)	40
FIGURA 2.21 – Botões para ativar as janelas para o dimensionamento dos	
chumbadores e da barras de cisalhamento	40
FIGURA 2.22 – Janela compressão + momento / procedimento Blodgett (1966)	.41
FIGURA 2.23 – Janela tração axial / AISC	42
FIGURA 2.24 – Janela cálculo dos chumbadores	43
FIGURA 2.25 – Janela barra de cisalhamento.	44

FIGURA 2.26 – Janela ajuda 45
FIGURA 3.1 – Geometria do modelo 01 48
FIGURA 3.2 – Elemento SOLID45 50
FIGURA 3.3 – Elemento SHELL63 51
FIGURA 3.4 – Elemento BEAM4 52
FIGURA 3.5 – Par de elementos de contato 53
FIGURA 3.6 - Curva do comportamento não-linear do elemento de mola 54
FIGURA 3.7 - Malha gerada para o modelo 01 e seus respectivos contornos 54
FIGURA 3.8 - Geometria do modelo 02 56
FIGURA 3.9 - Malha gerada para o modelo 02 e seus respectivos contornos 57
FIGURA 3.10 – Detalhe do chumbador com porca embutida 57
FIGURA 3.11 – Geometria padrão para o modelo 03 58
FIGURA 3.12 – Malha gerada para o modelo 03 com o carregamento aplicado. 60
FIGURA 3.13 – Malha gerada para o modelo 04 61
FIGURA 4.1 – Condição deformada do modelo 01 63
FIGURA 4.2 – Tensões normais à superfície do bloco de concreto 64
FIGURA 4.3 – Sistema de coordenadas do modelo 64
FIGURA 4.4 – Distribuição da tensão de contato (placa/bloco) no plano da alma
do pilar para as quatro situações de carregamento na análise numérica 65
FIGURA 4.5 – Comparativo entre a distribuição da análise numérica e teórica da
tensão de contato (placa/bloco) no plano da alma do pilar para a situação 01
de carregamento 65
FIGURA 4.6 – Comparativo entre a distribuição da análise numérica e teórica da
tensão de contato (placa/bloco) no plano da alma do pilar para a situação 02
de carregamento 66
FIGURA 4.7 – Comparativo entre a distribuição da análise numérica e teórica da
tensão de contato (placa/bloco) no plano da alma do pilar para a situação 03
de carregamento 67
FIGURA 4.8 – Comparativo entre a distribuição da análise numérica e teórica da
tensão de contato (placa/bloco) no plano da alma do pilar para a situação 04
de carregamento 67
FIGURA 4.9 – Distribuição da tensão de contato (placa/bloco) no plano da alma
do pilar para as seis situações de carregamento conforme Blodgett (1966). 68

FIGURA 4.10 - Distribuição da tensão de contato (placa/bloco) no plano da alm	าล
do pilar para as seis situações de carregamento conforme AISC (DeWolf &	
Richer (1990))	69
FIGURA 4.11 – Comparativo entre a distribuição da tensão de contato nas	
situações 4,5 e 6 para ambos os procedimentos.	69
FIGURA 4.12 – Tensões SX nas fibras superiores da placa de base com	
espessura de 63mm	70
FIGURA 4.13 – Tensões SZ nas fibras superiores da placa de base de espessu	ıra
de 63mm	71
FIGURA 4.14 – Pontos da placa de base onde foram obtidas as tensões SX e S	SZ.
	72
FIGURA 4.15 - Resultante de tensão de contato para obtenção do momento fle	etor
no ponto A	73
FIGURA 4.16 – Gradiente de tensão axial nos chumbadores	74
FIGURA 4.17 – Comparativo entre a distribuição da análise numérica e teórica	da
tensão de contato (placa/bloco) no plano da alma do pilar para a situação 04	4
de carregamento	75
FIGURA 4.18 – Distribuição da tensão de contato (placa/bloco) para a situação	04
de carregamento para espessuras da placa tendendo à infinito para o mode	lo
01	76
FIGURA 4.19 – Condição deformada para a situação 4	78
FIGURA 4.20 – Tensões SY no bloco de concreto.	79
FIGURA 4.21 – Tensões na placa de base	79
FIGURA 4.22 – Placa de base do modelo HPL300	81
FIGURA 4.23 – Distribuição da tensão normal à superfície do bloco (SY)	82
FIGURA 4.24 – Distribuição da tensão SX na placa de base	83
FIGURA 4.25 – Distribuição da tensão SZ na placa de base do modelo HPM 30	0.
	83
FIGURA 4.26 – Pontos da placa de base onde foram obtidas as tensões SX e S	3Z.
	84
FIGURA 4.27 – Seção crítica.	85
FIGURA 4.28 – Status do contato entre a placa de base e o bloco de concreto.	87
FIGURA 4.29 – Área de contato obtida pelo método de DeWolf & Richer (1990)	.87
FIGURA 5.1 – Representação da distribuição da tensão de contato	89

IGURA 5.2 – Seção crítica

LISTA DE TABELAS

TABELA 2.1 – Tensões de contato admissíveis para o bloco de concreto
TABELA 2.2 – Valores para o coeficiente de atrito. 28
TABELA 2.3 – Parâmetros Mínimos para instalação dos chumbadores
TABELA 3.1 – Espessura da placa de base obtida através do procedimentos
Blodgett (1966) e DeWolf & Richer (1990) 49
TABELA 3.2 – Situações de carregamento.49
TABELA 3.3 – Dimensões dos perfilados utilizados no modelo 03 58
TABELA 3.4 – Resistência de Cálculo à Compressão Axial. 59
TABELA 3.5 – Dimensões da placa de base para o modelo 03 em milímetros 59
TABELA 4.1 – Situações de carregamento para comparativo entre procedimentos
teóricos
TABELA 4.2 – Tensões SX e SZ na placa de base com espessura de 63 mm 72
TABELA 4.3 – Tensões SX e SZ na placa de base com espessura de 50 mm 72
TABELA 4.4 – Momento fletor na placa de base em uma faixa unitária para o
procedimento de DeWolf & Richer (1990)73
TABELA 4.5 – Momento fletor na placa de base em uma faixa unitária para o
procedimento de Blodgett (1966)
TABELA 4.6 – Força de tração no chumbador e sua respectiva resistência de
cálculo
TABELA 4.7 – Força de tração no chumbador e sua respectiva resistência de
cálculo para 7 espessuras da placa de base77
TABELA 4.8 – Tensões SX e SZ na placa de base com espessura de 63 mm 79
TABELA 4.9 – Momento fletor na placa de base em uma faixa unitária na seção
crítica
TABELA 4.10 – Valor da máxima tensão normal à superfície do bloco (SY) 82
TABELA 4.11 – Tensões SX e SZ da placa de base
TABELA 4.12 – Momento fletor em uma faixa unitária da placa de base

RESUMO

Os procedimentos de projeto mais usuais para bases de pilares metálicos apresentam diferentes hipóteses para a distribuição dos esforços nos componentes das mesmas. Este trabalho teve como objetivo analisar bases de pilares metálicos, através de um programa computacional com elementos finitos, para obter com maior precisão o comportamento de seus componentes e, por meio dos resultados desta análise, avaliar os procedimentos usuais de projeto. São tratados pilares com seção "H" e placas de base sem nervuras. Na análise numérica foram abordadas as bases carregadas axialmente por uma força de compressão, atuando ou não um momento fletor. Para as situações em que atua um momento fletor, criaram-se modelos abordando tanto chumbadores tipo gancho quanto do tipo barra reta com porca embutida no concreto.

Observou-se neste trabalho a influência da espessura da placa de base no comportamento do conjunto da base de um pilar metálico (pilar, placa de base, chumbadores e bloco de concreto) e na distribuição dos esforços nestes componentes. Verificou-se ainda que os resultados teóricos, encontrados através dos procedimentos de projeto usuais, se aproximam dos resultados da análise numérica para valores específicos da espessura da placa de base.

ix

ABSTRACT

The most used design methods for steel column bases present hypotheses to the stress distribution on their connection components. The goal of this work was to analyze steel column bases through a finite element computational program in order to obtain more accurately the behavior of their components and through the results of this analysis to assess the design usual methods. The study include H profile columns with base plates without shear legs. In the numerical analysis were discussed the bases axially loaded by a compression load with or without a bending moment. To the situation that act a bending moment it has been created models using either hooked anchor bolts and thread rods with an end welded nut embedded in the concrete.

It was observed in this work the influence of the thickness of a base plate in the behavior of the components of a steel column base (column, base plate, anchor bolts and concrete block) and in the stress distribution of these components. It was still verified that the theorical results which were found through the usual design methods approximate from the numerical analysis results to specific values of the thickness of the base plate.

1

INTRODUÇÃO

1.1. CONSIDERAÇÕES GERAIS

Nas estruturas metálicas, as bases de pilares têm sido muito pouco estudadas. Os elementos que compõem a base, placa de base e chumbadores, têm como objetivo conduzir os esforços solicitantes do pilar ao bloco de concreto e garantir a fixação da extremidade inferior do pilar na fundação, de acordo com o esquema estrutural adotado.

1.2. TIPOS DAS BASES DE PILARES

Na classificação tradicional, as bases de pilares podem ser rotuladas ou engastadas.

A base rotulada ideal assemelha-se a uma rótula perfeita (FIG. 1.1a). Esse tipo de base é pouco utilizado devido às dificuldades de fabricação. A base rotulada mais simples e mais utilizada é formada por uma placa soldada à extremidade inferior do pilar e pela colocação de chumbadores posicionados o mais próximo possível

de seu eixo de interesse (FIG. 1.1b). Esse tipo de base torna menor o custo da fundação.

Geralmente, as bases engastadas propiciam estruturas mais econômicas e fundações mais onerosas que as rotuladas. Esse tipo de base tem a capacidade de resistir, além das forças verticais, aos momentos fletores devidos ao esquema estrutural adotado. A base engastada mais simples e mais utilizada consiste em uma placa soldada à extremidade inferior do pilar, com chumbadores afastados da linha de centro, com objetivo de se formar um braço de alavanca (FIG. 1.1c).

FIGURA 1.1 – Bases de Pilar.

1.3. CARREGAMENTOS MAIS COMUNS EM PROJETO

Na base de um pilar, duas situações de carregamento são mais comuns em projeto: força axial e força axial com momento fletor, podendo atuar, nos dois casos, também uma força cortante.

O caso em que o pilar é carregado axialmente é mostrado na FIG. 1.2a. A força é perpendicular à placa de base e passa pelo centro de gravidade da seção transversal do pilar. As bases rotuladas são empregadas neste caso. Os chumbadores são usados apenas para estabilizar o pilar na fase de montagem, tendo sua resistência desprezada.

(a) força axial
 (b) força axial e momento fletor
 FIGURA 1.2 – Situações de carregamento comuns no projeto da base de um pilar de aço.

O segundo caso, mostrado na FIG. 1.2b, inclui tanto uma força axial, quanto um momento fletor. Este tipo de ligação (engastada) deve ser empregada nas bases de pórticos onde a capacidade de resistir a um momento fletor é necessária. Esse tipo de combinação de esforços surge também quando uma força é aplicada excentricamente ao eixo do pilar, que pode ser substituída por esta força aplicada axialmente e um momento fletor resultante. Se o momento fletor é relativamente pequeno, a ligação da base do pilar pode ser calculada desconsiderando-se a presença dos chumbadores; embora, estes sejam necessários na fase de montagem.

A força cortante pode atuar em ambos os casos anteriores, podendo ser resistida através do atrito entre a placa de base e bloco de concreto ou pelo uso de barras de cisalhamento, fixadas na parte inferior da placa de base, ou pelos próprios chumbadores.

Este trabalho é direcionado principalmente ao estudo das bases carregadas axialmente, atuando simultaneamente ou não um momento fletor. Desta forma, no que diz respeito à resistência da base de um pilar à força cortante, será apenas apresentado o procedimento para a obtenção da mesma no segundo capítulo, não sendo este item incluído nos capítulos referentes à análise numérica, resultados e conclusão.

1.4. BASES CARREGADAS AXIALMENTE

Placas de base carregadas axialmente são aquelas em que a força é perpendicular à sua superfície, passando pelo centro de gravidade do pilar.

DeWolf & Richer (1990) e Blodgett (1966) apresentam métodos semelhantes para o dimensionamento dessas placas. Ambos os estudos assumem que a placa de base flete em torno de uma seção crítica como uma viga em balanço, carregada com uma tensão de contato uniformemente distribuída sob esta placa.

Bases levemente carregadas com as dimensões da placa de base aproximadamente iguais às dimensões do pilar foram inicialmente tratadas por Fling (1970), utilizando como aproximação uma flexão elástica da placa e a hipótese de que toda a área da placa esteja em contato com o concreto. Esta aproximação tem sido utilizada no AISC/ASD (1989). Esta aproximação mostrouse conservadora. Stockwell (1975), com modificações de Murray (1983), desenvolveu um método com base na hipótese de que o contato ocorre somente sob a região das mesas e da alma do pilar metálico.

1.5. BASES SUJEITAS À COMPRESSÃO AXIAL COM MOMENTO FLETOR

As bases de pilares podem estar sujeitas a uma força axial de compressão juntamente com momento fletor ou a cargas de compressão excêntricas. Blodgett (1966) e DeWolf & Richer (1990) tratam deste assunto de formas diferentes. Em ambos os procedimentos, hipóteses são feitas sobre a magnitude e distribuição da tensão de contato entre o bloco de concreto e a placa de base e a tensão ou força nos chumbadores. A diferença entre os procedimentos é devida à formulação dessas hipóteses.

Segundo Blodgett (1966), as seções planas do contato entre a placa de base e o bloco de concreto *permanecem planas*, supondo portanto, que a placa de base seja perfeitamente rígida. Ao contrário do que admite Blodgett (1966), DeWolf & Richer (1990) consideram que as seções *não permanecem planas*. Desta forma não uma relação de proporcionalidade entre a deformação dos chumbadores e a do concreto sob à extremidade da placa de base.

1.6. OBJETIVO E METODOLOGIA

Geralmente, a placa de base é maior que as dimensões externas do pilar, assim a flexão da mesma ocorre resultando uma tensão de contato no concreto de magnitude pequena ou inexistente nas extremidades da placa e maiores sob o pilar (alma e mesas). Esta distribuição não-linear de tensões é função do comportamento flexível da placa, do comportamento não-linear do concreto e da relação entre a área de contato entre o concreto e a placa de base, que cria o efeito de confinamento e, conseqüentemente, um estado de tensão triaxial no concreto. Apresentar aproximações para o problema resulta na formulação de hipóteses para a distribuição dos esforços nos componentes da ligação para se estabelecer as variáveis.

Portanto, este trabalho tem como objetivo apresentar e discutir, de uma forma crítica, as hipóteses dos procedimentos de projeto mais usuais para bases de pilares metálicos, fazendo uma análise comparativa entre os mesmos. Para melhorar a eficiência dessa análise, criou-se um programa em linguagem Delphi, contendo os procedimentos de projeto estudados.

Numa fase posterior, foi feita a análise numérica de quatro modelos via Método dos Elementos Finitos. Para tanto, foi empregado o programa ANSYS versão 5.7, disponível no Laboratório de Mecânica Computacional (LAMEC) do Departamento de Engenharia de Estruturas (DEES). Dois desses modelos simularam o comportamento de bases de pilares sujeitas à uma força axial de compressão e a um momento fletor, ambos contendo os componentes da base de um pilar metálico (pilar, placa de base, chumbadores e bloco de concreto), um com chumbadores tipo gancho e outro com chumbadores tipo barra reta com porca soldada. Os outros dois modelos simularam bases sujeitas somente à força axial de compressão.

Os resultados da análise numérica foram comparados com os valores obtidos através dos procedimentos de cálculo estudados, com objetivo de avaliar a precisão destes últimos.

PROCEDIMENTOS TRADICIONAIS EM PROJETO

2.1. INTRODUÇÃO

Para dimensionar a base de um pilar metálico, submetida aos carregamentos descritos no capítulo anterior, tradicionalmente utiliza-se para o dimensionamento dos seus componentes, dois procedimentos de projeto: Blodgett (1966) e DeWolf & Richer (1990).

O aspecto mais importante na discussão desses procedimentos é a forma ou o conjunto de hipóteses com as quais estes chegam aos valores dos esforços nos componentes da base.

2.2. FORÇA AXIAL DE COMPRESSÃO

Entre os casos de carregamento mais freqüentes encontra-se o de pilares carregados axialmente (FIG. 2.1). Considera-se, nesse caso, que o carregamento é perpendicular à placa e aplicado sobre eixo do pilar. Esta condição de

carregamento é utilizada em pórticos para os quais as bases dos pilares são consideradas como rótulas.

Os chumbadores não são submetidos a qualquer solicitação, têm apenas a função construtiva de estabilizar o pilar durante a montagem da estrutura.

FIGURA 2.1 – Carga axial de compressão.

2.2.1. Procedimento de Blodgett (1966)

A placa de base é dimensionada assumindo-se que a mesma flete em torno de uma seção crítica (extremidade a área hachurada da FIG. 2.2) como uma viga em balanço. A carga decorrente da flexão neste balanço é considerada uniformemente distribuída e igual à tensão de contato que atua no bloco de concreto. Blodgett (1966) utiliza o método das tensões admissíveis (ASD).

FIGURA 2.2 – Seção crítica.

Primeiramente, as dimensões da placa de base são determinadas dividindo-se a carga axial que atua no pilar pela resistência à compressão do bloco de concreto. A TAB. 2.1 fornece as tensões de contato admissíveis no bloco de concreto conforme Blodgett (1966).

TABELA 2.1 – Tensões de contato admissíveis para o bloco de concreto.

Toda área do bloco ocupada pela placa de base	0,250f _{ck}
1/3 da área do bloco ocupada pela placa de base	0,375f _{ck}

Determina-se então, as dimensões do balanço *m* e *n* conforme as equações 2.1 e 2.2 (ver FIG. 2.2).

$$m = \frac{1}{2} (H - 0.95d)$$
(2.1)

$$n = \frac{1}{2} (B - 0.80b_f)$$
(2.2)

A primeira função da espessura da placa de base é fornecer resistência suficiente para suportar o momento fletor (M_{placa}) gerado pelo balanço da placa de base (m ou n). O momento M_{placa} , para uma faixa de largura unitária, é dado pelo maior valor entre:

$$\frac{f_{cd}m^2}{2}$$
 e $\frac{f_{cd}n^2}{2}$

A tensão na placa de base por unidade de comprimento devido ao momento é dada por:

$$\sigma = \frac{M_{placa}}{W}$$

sendo

$$W = \frac{t^2}{6}$$

Então:

$$t^{2} = 6 \frac{M_{placa}}{\sigma}$$
$$t^{2} = \begin{cases} \frac{6pm^{2}}{2\sigma} = \frac{3pm^{2}}{\sigma}\\ \frac{6pn^{2}}{2\sigma} = \frac{3pn^{2}}{\sigma} \end{cases}$$

Portanto, a espessura da placa de base necessária é obtida conforme a equação 2.3, utilizando-se o maior valor entre:

$$m\sqrt{\frac{3\sigma_c}{0.75f_y}} \quad \mathbf{e} \quad n\sqrt{\frac{3\sigma_c}{0.75f_y}} \tag{2.3}$$

onde σ_c é o valor da tensão de contato.

2.2.2. Procedimento de DeWolf & Richer (1990)

Neste procedimento, assume-se que o pilar está centrado na placa, a qual, por sua vez está centrada na fundação de concreto. O procedimento de DeWolf & Richer (1990) possui dois passos. A área necessária da placa de base é primeiro determinada, a partir da resistência de cálculo do concreto à compressão. No *Método dos Estados Limites,* o valor da carga de cálculo que atua no pilar (P_d) é limitado pela seguinte equação:

$$P_{d} = \varphi_{c} R_{n} = 0.85 \varphi_{c} f_{ck} A_{1} \sqrt{\frac{A_{2}}{A_{1}}} \le \varphi_{c} 1.7 f_{ck} A_{1}$$
(2.4)

onde: f_{ck} = resistência nominal do concreto a compressão;

 A_1 = área da placa de base;

 A_2 = área do bloco de concreto;

 φ_c = fator de resistência para o contato no concreto igual a 0,60;

R_n = resistência nominal do concreto no contato.

Há um aumento da resistência do concreto no contato, quando a área do bloco é maior que a área da placa, devido ao efeito benéfico de confinamento. Este acréscimo de resistência é máximo quando a relação é igual ou maior que 4, e isto resulta em dimensões menores para a placa de base.

O segundo passo, então, é determinar a espessura da placa de base. De maneira similar ao procedimento de Blodgett (1966), assume-se que a placa flete em torno de uma seção crítica como uma viga em balanço, carregada com uma tensão de

contato uniformemente distribuída. As seções críticas estão próximas das extremidades do pilar conforme mostrado na FIG. 2.2 e o balanço utilizado no cálculo é mostrado na FIG. 2.3.

FIGURA 2.3 – Balanço para determinação do momento fletor na placa.

O momento plástico é empregado para se determinar a capacidade da placa. É igual Zf_y , onde Z é o módulo plástico da seção, igual a $t^2/4$, para uma faixa de largura unitária. O coeficiente de resistência para o momento φ_b é 0,90.

2.2.2.1. Cálculo para placas mais leves

As placas de base mais econômicas ocorrem quando m e n, mostrados na FIG. 2.2, são iguais e a relação entre a área do bloco de concreto e da placa é maior ou igual a 4. O primeiro caso ocorre quando a diferença entre B e H, mostrados na FIG. 2.2, é igual à diferença entre $0,95d e 0,80b_f$. O procedimento seguinte fornece os passos necessários para a obtenção da placa mais leve:

Procedimento de cálculo pelo LRFD:

 \rightarrow Determinar a carga de cálculo de compressão que atua no pilar (P_d);

 \rightarrow A área da placa de base necessária (A₁) é:

$$A_1 = \frac{P_d}{1,7\varphi_c f_{ck}}$$
, onde φ_c = 0,60;

 \rightarrow As dimensões, *B* e *H*, são calculadas para que *m* e *n* tenham valores próximos;

 $H = \sqrt{A_1} + \Delta$ onde $\Delta = 0,5(0,95d - 0,80bf)$ Então:

$$B = \frac{A_1}{H}$$

Estes valores deverão ser arredondados para cima até a metade ou o inteiro mais próximo.

- \rightarrow Determinar *m* e *n* conforme equação 2.1 e 2.2;
- \rightarrow Determinar a espessura da placa necessária (*t*) utilizando o maior valor entre;

$$m\sqrt{\frac{2P_d}{0.9f_yBH}} \quad \mathbf{e} \quad n\sqrt{\frac{2P_d}{0.9f_yBH}} \tag{2.5}$$

→ As dimensões do bloco são então determinadas. Como o procedimento foi baseado na maior tensão de contato admissível, a área de concreto mínima deverá ser:

$$A_2 = 4HB$$

2.2.2.2. Procedimento geral de cálculo

Nem sempre é possível se ter a relação entre a área do bloco de concreto e da placa de base e igual a 4. Se esta relação é determinada antes do cálculo da placa, o cálculo seguirá o exemplo anterior, com a mudança da resistência de cálculo do concreto no contato (Eq. 2.4).

Quando as dimensões do bloco são conhecidas o seguinte procedimento deverá ser empregado:

Procedimento de cálculo pelo LRFD:

- \rightarrow Determinar a carga de cálculo de compressão que atua no pilar (P_d);
- \rightarrow A área da placa será igual ao maior valor de:

$$A_{1} = \frac{1}{A_{2}} \left[\frac{P_{d}}{(0,60 \times 0.85f_{ck})} \right]^{2}$$

$$A_{1} = \frac{P_{d}}{P_{d}}$$

$$A_1 = \frac{P_d}{1,7 \times 0,6f_{ck}}$$

Obs.: Se a segunda equação prevalecer, a área de concreto A_2 é igual ou maior que 4 vezes a área da placa.

 \rightarrow As dimensões, *B* e *H*, são calculadas para que *m* e *n* tenham valores próximos;

$$H = \sqrt{A_1} + \Delta$$

onde ⊿ = 0,5(0,95d – 0,80bf). Então:

$$B = \frac{A_1}{H}$$

Estes valores deverão ser arredondados para cima até a metade ou o inteiro mais próximo.

- \rightarrow Determinar *m* e *n* conforme equação 2.1 e 2.2;
- → Determinar a espessura da placa necessária (*t*) utilizando o maior valor entre *m* e *n* conforme equação 2.5.

2.2.2.3. Cálculo de placas de base carregadas levemente

Placas de base levemente carregadas são aquelas em que o tamanho da placa é igual ou ligeiramente maior que as dimensões do pilar. Com isso m e n são aproximadamente zero, e a região crítica devido à flexão da placa é a área entre as mesas do pilar.

Este procedimento inclui tanto a verificação da área entre as mesas do pilar quanto o procedimento geral de cálculo visto anteriormente. Todas as placas podem ser totalmente calculadas por este procedimento. Se *m* ou *n* são maiores que $b_{f}/2$ ou d/2, o procedimento para a área entre as mesas é desnecessário.

Procedimento de cálculo pelo LRFD:

 \rightarrow A área da placa de base A₁, deverá ser igual ao maior valor entre:

$$A_{1} = \frac{1}{A_{2}} \left[\frac{P_{d}}{(0,60 \times 0,85f_{ck})} \right]^{2}$$
$$A_{1} = \frac{P_{d}}{1,7 \times 0,6f_{ck}}$$
$$A_{1} = b_{f}d$$

→ A área de contato baseia-se na hipótese desta possuir forma de "H" e está localizada logo abaixo dos elementos do pilar, conforme ilustra a FIG. 2.4. O valor desta área será o maior entre:

$$A_{H} = \frac{P_{d}}{\left(0,60 \times 0.85 f_{ck} \sqrt{\frac{A_{2}}{b_{f}d}}\right)}$$
$$A_{H} = \frac{P_{d}}{0,6 \times 1.7 f_{ck}}$$

FIGURA 2.4 - Área de contato para placas de base levemente carregadas.

→ A distância para a seção em balanço utilizada no cálculo da tensão de flexão é determinada como segue:

$$c = 0.25 \left[d + b_f - \sqrt{\left(d + b_f \right)^2 - 4A_H} \right]$$
(2.6)

→ A espessura é então determinada, como anteriormente, assumindo um comportamento elástico:

$$t = c_{\sqrt{\frac{2P_d}{0.9f_y A_H}}}$$
(2.7)

2.3. FORÇA AXIAL DE COMPRESSÃO COM MOMENTO FLETOR

2.3.1. Procedimento de Blodgett (1966)

Quando um momento M é aplicado a um pilar já submetido a uma força axial de compressão P_c , é conveniente substituir para efeito de cálculo este carregamento combinado pela força P_c , aplicada com uma excentricidade "e" do eixo do pilar. Blodgett (1966) admite que as seções planas da junção entre a placa de base e o bloco de concreto *permanecem planas*, supondo portanto, que a placa de base seja perfeitamente rígida. A distribuição de tensão é linear. Desta forma, a tensão nos chumbadores depende da distribuição de tensão na área do contato.

Se a excentricidade "e" é menor que *H*/6 (pequena excentricidade), não há arrancamento da placa de base da superfície do bloco de concreto (FIG. 2.6a). O módulo resistente da seção da placa de base é dado por:

$$W = \frac{BH^2}{6}$$
(2.15)

Desta forma, as tensões de contato nas extremidades opostas da placa, $\sigma_{c1} e \sigma_{c2}$ são determinadas através de:

$$\sigma_{c(1,2)} = \frac{P_c}{A_p} \pm \frac{P_c e}{S}$$
(2.16)

onde: P_c = carga nominal de compressão que atua no pilar;

e = excentricidade equivalente;

 A_p = área da placa de base.

Quando a excentricidade "e" excede *H*/6 (grande excentricidade), ocorre o arrancamento de parte da placa de base que é resistido pelos chumbadores. A tensão de contato no concreto é máxima na extremidade da placa que permanece em contato com o bloco. Assume-se que esta tensão decresce linearmente na direção da extremidade oposta da placa até igualar-se a zero a uma distância *Y*. Entretanto, inicialmente o valor do comprimento do contato (*Y*) não é conhecido.

Existem três equações e três incógnitas; P_t , Y e σ_c , onde P_t é o somatório da força de tração nos chumbadores:

1^a <u>Equação</u>: somatório das forças verticais iguais a zero: $\Sigma V = 0$:

$$\frac{1}{2} Y \sigma_c B - P_t - P_c = 0$$

ou

$$P_c + P_t = \frac{\sigma_c YB}{2}$$

Então:

(2.17)

$$\sigma_c = \frac{2(P_c + P_t)}{YB}$$
(2.18)

 2^{a} <u>Equação</u>: somatório de momentos em relação ao eixo do pilar: $\Sigma M = 0$:

$$P_t f + (P_c + P_t) \left(\frac{H}{2} - \frac{Y}{3}\right) - P_c e = 0$$

ou

$$P_{c} = -P_{t} \left[\frac{\frac{H}{2} - \frac{Y}{3} + f}{\frac{H}{2} - \frac{Y}{3} - e} \right]$$
(2.19)

e então,

$$P_{t} = -P_{c} \left[\frac{\frac{H}{2} - \frac{Y}{3} - e}{\frac{H}{2} - \frac{Y}{3} + f} \right]$$
(2.20)

onde f é a distância entre o eixo do pilar e a linha de chumbadores, como mostrado na FIG. 2.6b.

3ª <u>Equação</u>: representando o comportamento elástico do bloco de concreto e da placa de base (FIG. 2.7):

$$\frac{a}{b} = \frac{\varepsilon_s}{\varepsilon_c} = \frac{\frac{\sigma_s}{E_s}}{\frac{\sigma_c}{E_c}}$$

Então,

$$\frac{a}{b} = \frac{\sigma_s E_c}{\sigma_c E_s}$$

 σ_{c} pode também ser escrito na forma:

$$\sigma_s = \frac{P_t}{A_s}$$

e sendo

$$n = \frac{E_s}{E_c}$$

Então,

$$\frac{a}{b} = \frac{\frac{P_t}{A_s}}{\sigma_c n} = \frac{P_t}{A_s \sigma_c n},$$

- onde: A_s = área total da placa de base em contato com o concreto;
 - σ_s = tensão de tração nos chumbadores;
 - ε_s = deformação no chumbador tracionado;
 - E_s = módulo de elasticidade do aço da placa de base;
 - σ_c = tensão de compressão no concreto;
 - ε_c = deformação da fundação de concreto;
 - E_c = módulo de elasticidade do concreto da fundação;
 - *n* = relação entre os módulos elásticos do aço e do concreto.

FIGURA 2.6 – Comportamento elástico do bloco de concreto e chumbadores.

Por semelhança de triângulos:

$$\frac{a}{b} = \frac{\frac{H}{2} - Y + f}{Y}$$

Então,

$$\frac{P_t}{A_s \sigma_c n} = \frac{\frac{H}{2} - Y + f}{Y}$$

ou

$$\sigma_c = \frac{P_t Y}{A_s n \left(\frac{H}{2} - Y + f\right)}$$
(2.21)

Substituindo-se a equação 2.21 na equação 2.17:

$$P_{c} + P_{t} = \frac{P_{t}Y^{2}B}{2A_{s}n\left(\frac{H}{2} - Y + f\right)}$$
(2.22)

Substituindo-se a equação 2.19 na equação 2.22:

$$-P_{t}\left[\frac{\frac{H}{2}-\frac{Y}{3}+f}{\frac{H}{2}-\frac{Y}{3}-e}\right]+P_{t}=\frac{P_{t}Y^{2}B}{2A_{s}n\left(\frac{H}{2}-Y+f\right)}$$
(2.23)

Resolvendo a equação 2.23 para a variável Y, obtém-se:

$$-2nA_{s}\left(\frac{H}{2}-Y+f\right)\left(\frac{H}{2}-\frac{Y}{3}+f\right)+\left(\frac{H}{2}-\frac{Y}{3}-e\right)\left(2nA_{s}\right)\left(\frac{H}{2}-Y+f\right)=$$
$$=Y^{2}B\left(\frac{H}{2}-\frac{Y}{3}-e\right)$$

que se reduz a:

$$Y^{3} + 3\left(e - \frac{H}{2}\right)Y^{2} + \frac{6nA_{s}}{B}\left(f + e\right)Y - \frac{6nA_{s}}{B}\left(\frac{H}{2} + f\right)\left(f + e\right) = 0$$
(2.24)

Para expressar a equação 2.24 de uma maneira a facilitar o seu uso, obtém-se:

$$K_1 = 3\left(e - \frac{H}{2}\right);$$
 $K_2 = \frac{6nA_s}{B}(f + e);$ $K_3 = -K_2\left(\frac{H}{2} + f\right)$
Então:

Então:

$$Y^{3} + K_{1}Y^{2} + K_{2}Y + K_{3} = 0$$
(2.25)

Tendo encontrado o comprimento efetivo do contato Y, a equação 2.20 pode ser usada para calcular a força de tração P_t nos chumbadores. A equação 2.21 fornece então, o valor da tensão de contato máxima σ_c no bloco de concreto.

Estabelecida a distribuição da tensão de contato, a espessura da placa de base é obtida de acordo com equação 2.3 do item 2.2.1.

2.3.2. Procedimento de DeWolf & Richer (1990)

DeWolf & Richer (1990) utilizam para o cálculo de placas de base sujeitas a uma carga axial mais um momento fletor, uma aproximação baseada no comportamento elástico. Ao contrário do que admite Blodgett (1966), este método considera que as seções planas da junção entre a placa de base e o bloco de concreto *não permanecem planas*. Desta forma não uma relação de proporcionalidade entre a deformação dos chumbadores e a do concreto sob à extremidade da placa de base. É assumida uma distribuição de tensão elástica linear como mostrada na FIG. 2.8. Esta aproximação é adotada porque é mais consistente com o comportamento real.

FIGURA 2.7 – Situação geral.

O cálculo é realizado para uma excentricidade "e" equivalente, igual ao momento fletor M_d dividido pela força axial P_d . O momento e a força axial são substituídos por uma força axial equivalente a uma distância e do eixo do pilar. Para pequenas excentricidades, a força axial equivalente é resistida somente pelo contato entre a placa de base e o bloco de concreto. Para grandes excentricidades, é necessário o uso de chumbadores. É preciso atribuir-se dimensões à placa de base para determinar se chumbadores são exigidos.

2.3.2.1. Cálculo para excentricidades pequenas e moderadas

Se a excentricidade "e" é igual ou menor que *H*/6, a tensão de contato de compressão atua em toda placa (FIG. 2.9). Para as extremidades da placa esta tensão é obtida da seguinte forma:

$$f_{pd(1,2)} = \frac{P_d}{BH} \pm \frac{M_d c}{I}$$
(2.26)

onde: *B* e *H* = largura e comprimento da placa de base, respectivamente;

I = momento de inércia, $BH^{3}/12$.

FIGURA 2.8 – Pequena excentricidade – contato em toda placa.

O cálculo é realizado pelo método *LRFD*. Assim a carga *P* e o momento *M* devem ter valores de cálculo e a máxima tensão f_{pd1} não deve exceder:

$$0.85\varphi_{c}f_{ck}\sqrt{\frac{A_{2}}{A_{1}}} \le 1.7\varphi_{c}f_{ck}$$
(2.27)

onde $\varphi_{c} = 0,60$.

Se a excentricidade equivalente "e" está entre *H*/6 e *H*/2 (moderada), o contato ocorre somente sob uma parcela da placa (FIG. 2.10). Para o equilíbrio, a resultante da distribuição triangular da tensão de contato deve ser igual à carga axial que atua no pilar localizada a uma distância "e" do centro da placa. Assim a máxima tensão f_{pd} é então:

$$f_{pd} = \frac{2P_d}{YB}$$
(2.28)

onde Y é a distância que o contato ocorre, igual a Y = 3(H/2 - e).

FIGURA 2.9 – Excentricidade moderada – contato em parte da placa.

O procedimento de cálculo pelo LRFD é descrito a seguir:

- \rightarrow Determinar os valores de cálculo da carga axial e do momento ($P_d \in M_d$);
- → Determinar a tensão de contato máxima de cálculo F_p de acordo com a equação 2.27:
- \rightarrow Atribuir valores para as dimensões da placa, *H* e *B*;
- → Determinar a excentricidade equivalente (*e* = *M_d*/*P_d*), e a máxima tensão de contato (*f_{pd}*) devido ao carregamento, conforme pequena excentricidade ou moderada (equações 2.26 e 2.28 respectivamente). Se esta tensão é menor que *F_p*, passar para o próximo passo, caso contrário alterar as dimensões da placa;
- → Determinar a espessura da placa, com base na distribuição de tensão de contato elástica, usando a seção crítica como determinada para placas carregadas axialmente:

$$t = \sqrt{\frac{4M_{placa}}{0.90f_{y}}}$$
(2.29)

onde M_{placa} é o momento na seção crítica da placa, para uma faixa de largura unitária, devido a distribuição da tensão de contato.
2.3.2.2. Cálculo para grandes excentricidades

Quando a excentricidade efetiva é grande, o uso de um ou mais chumbadores é necessário para resistir à componente de tração resultante do momento M_d (FIG. 2.11).

FIGURA 2.10 – Grande excentricidade.

Com as dimensões das placas atribuídas, de forma que a tensão de contato resultante não exceda o valor máximo F_p , as incógnitas são a magnitude da força T nos chumbadores e o comprimento do contato Y.

Duas equações de equilíbrio são então empregadas para que se determine as incógnitas. A soma das forças verticais, fornece:

$$T + P_d = \frac{f_{pd}YB}{2} \tag{2.30}$$

A soma dos momentos em relação ao eixo da força de tração nos chumbadores, fornece:

$$P_{d}f + M_{d} = \frac{f_{pd}YB}{2} \left(H' - \frac{Y}{3} \right)$$
(2.31)

onde: f = distância entre a linha de chumbadores e o eixo do pilar;

 H' = distância entre a borda da placa onde a tensão de contato é máxima e a linha de chumbadores tracionados (FIG. 2.8).

A equação 2.32 fornece o comprimento do contato Y:

$$Y = \frac{f' \pm \sqrt{\left[f'^2 - 4\left(\frac{f_{pd}.B}{6}\right) \cdot \left(P_d \cdot f + M_d\right)\right]}}{\frac{f_{pd} \cdot B}{3}}$$
(2.32)

onde $f' = f_{pd}BH'/2$. A equação 2.33 então fornece a força resultante T nos chumbadores:

$$T = \frac{f_{pd}YB}{2} - P_d \tag{2.33}$$

Procedimento de cálculo pelo LRFD:

- \rightarrow Determinar os valores de cálculo da força axial e do momento (P_d e M_d);
- → Determinar a tensão de contato máxima de cálculo F_p de acordo com a equação 2.27;
- \rightarrow Atribuir valores para as dimensões da placa, *H* e *B*;
- → Utilizar o carregamento de cálculo para determinar o comprimento de contato Y, igual ao menor valor positivo da equação 2.32. Se este valor for razoável, passe para o próximo passo. Se for próximo do valor de H', a solução não é prática, já que isso implica que o contato se estende até as proximidades dos chumbadores, fazendo com que estes não desenvolvam toda sua resistência à tração. É então necessário retornar ao passo anterior e atribuir novos valores para H e B;
- → Determinar a resultante de tração T nos chumbadores, de acordo com a equação 2.33;
- \rightarrow Determinar a espessura da placa conforme a equação 2.29.

2.4. FORÇA AXIAL DE TRAÇÃO

Blodgett (1966) não apresenta um procedimento de cálculo para placas de base submetidas à força axial de tração.

2.4.1. Procedimento de DeWolf & Richer (1990)

Sob certas condições, placas de bases estão sujeitas a uma tração axial ou arrancamento. Estas placas devem ser verificadas à flexão quando o cálculo resulta em uma placa relativamente flexível, aproximadamente com as mesmas dimensões externas do pilar, isto é, placas levemente carregadas. Uma situação típica é mostrada na FIG. 2.13. Os chumbadores são posicionados na área entre as mesas, adjacentes à alma do pilar.

FIGURA 2.11 – Placa de base submetida à tração.

Murray (1983) fornece equações para a determinação da espessura da placa de base em que os chumbadores encontram-se entre as mesas do pilar próximos à alma, usando o *método da linha de escoamento* (FIG. 2.14). DeWolf & Richer (1990) adaptam estas equações com a adição do fator de resistência à flexão utilizado pelo LRFD.

FIGURA 2.12 – Linhas de escoamento ou charneiras plásticas.

Quando $\sqrt{2}b_{\scriptscriptstyle f} \leq d$, a espessura da placa necessária é:

$$t = \sqrt{\frac{\sqrt{2}P_dg}{4\varphi_b b_f f_y}}$$
(2.39)

Quando $\sqrt{2}bf > d$, a espessura da placa necessária é:

$$t = \sqrt{\frac{P_d g d}{\varphi_b f_y (d^2 + 2b_f^2)}}$$
(2.40)

onde: g = espaçamento entre os chumbadores, conforme FIG. 2.13;

 φ_b = fator de resistência à flexão igual a 0,90;

 P_d = força axial de cálculo de tração.

2.5. FORÇA CORTANTE

2.5.1. Procedimento de DeWolf & Richer (1990)

DeWolf & Richer (1990), no cálculo da placas sujeitas a uma força cortante, levam em consideração a resistência devido ao atrito entre a placa de base e o bloco de concreto e o uso de barras de cisalhamento quando necessário. A parcela de resistência ao cisalhamento desenvolvida pelo atrito é calculada com o coeficiente de atrito do LRFD de acordo com a TAB. 2.4.

I ABELA 2.2 – Valores para o coeficiente de atrito.			
Disposição Construtiva	Coeficiente de Atrito (µ)		
O plano de contato se encontra abaixo da superfície do bloco de concreto	0,90		
O plano de contato coincide com superfície do bloco de concreto	0,70		
O plano de contato se encontra acima da superfície do bloco de concreto (<i>grout</i>)	0,55		

TABELA 2.2 – Valores para o coeficiente de atrito.

O carregamento utilizado deverá ser a ação permanente, para o cálculo da força de atrito, e ação acidental que gera força cortante, como por exemplo, ação do vento, ambas de cálculo.

O cálculo da barra de cisalhamento baseia-se na resistência a compressão do concreto de contato, desprezando-se os efeitos de confinamento, que é igual a $0.85\varphi_c f_{ck}$, com $\varphi_c = 0.60$. A espessura da barra de cisalhamento não deve ser maior que a espessura da placa de base.

Procedimento de cálculo pelo LRFD:

 Determinar a parcela da força cortante que pode ser resistida pela força de atrito, igual a μ multiplicado pela carga permanente de cálculo mais a carga acidental que gera força de atrito. A parcela que será resistida pela barra de cisalhamento (V_{sld}), será então, a diferença entre a carga cisalhante de cálculo e esta força.

 \rightarrow A área de contato para a(s) barra(s) de cisalhamento é:

$$A_{sl} = \frac{V_{sld}}{0.85\varphi_c f_{ck}}$$
(2.44)

- → Determinar as dimensões da barra de cisalhamento (FIG. 2.17) assumindo que o contato ocorre na região da barra logo abaixo da superfície do bloco de concreto, isto é, a resistência do *grout* é desprezada, caso ele exista.
- → O momento de cálculo na extremidade do balanço M_{sld} atuando em uma faixa de largura unitária da barra de cisalhamento é igual a:

$$M_{sld} = \left(\frac{V_{sld}}{B_{sl}}\right) \left(\frac{h + e_g}{2}\right)$$
(2.45)

onde: B_{sl} = largura total da(s) barra(s) de cisalhamento;

- *h* = altura vertical da barra;
- e_g = espessura do grout.
- → A espessura da barra de cisalhamento e então determinada. É obtida através da expressão empregada para placas sujeitas a momento:

$$t_{sl} = \sqrt{\frac{4M_{sld}}{0.90f_{y}}}$$
(2.46)

FIGURA 2.13 – Esquema da barra de cisalhamento.

Com relação aos chumbadores, a tensão que atua na área bruta dos mesmos, não deve ultrapassar a tensão admissível do material.

2.6. CHUMBADORES

Chumbadores são necessários em todas as placas de base. Primeiramente eles são usados para prevenir o tombamento dos pilares na fase de montagem. São também necessários quando a placa de base está sujeita a grandes momentos de cálculo ou arrancamento. Os tipos de chumbadores mais utilizados são:

- → barras redondas rosqueadas com ancoragem no concreto proporcionada por gancho semi-circular feito a quente (FIG. 2.18a);
- \rightarrow parafusos com cabeça embutida no concreto para ancoragem (FIG. 2.18b);
- → barras redondas rosqueadas com porca embutida no concreto para ancoragem (FIG. 2.18c).

FIGURA 2.14 – Tipos de chumbador.

Estes chumbadores, ao serem instalados, devem possuir uma distância mínima de cobrimento lateral e um comprimento mínimo embutido no bloco de concreto de acordo com a TAB. 2.3 (DeWolf & Richer, 1990).

	TABELA 2.3 -	Parâmetros	Mínimos	para	instalação	dos	chumbadores.
--	--------------	------------	---------	------	------------	-----	--------------

Tipo de Aço	Comprimento mínimo embutido	Distância mínima de cobrimento lateral
A307, A36	12d	5 <i>d</i> > 100mm
A325, A449	17 <i>d</i>	7 <i>d</i> > 100mm
* d = diâmotro nomina	l de ebumbeder	

* d = diâmetro nominal do chumbador.

2.6.1. Resistência de Cálculo do Chumbador à Tração

2.6.1.1. DeWolf & Richer (1990)

DeWolf & Richer (1990) apresentam somente um estado limite último (ruptura da seção rosqueada) dado por:

$$T_u = 0.75\varphi_t f_u A_g \tag{2.47}$$

- onde: φ_t = coeficiente de resistência à tração, igual a 0,75;
 - f_u = limite de escoamento do aço;
 - A_g = área do fuste do chumbador.

2.6.2. Resistência de Cálculo ao Arrancamento – Chumbadores de Gancho

2.6.2.1. DeWolf & Richer (1990)

O cálculo dos chumbadores de gancho deverá ser fundamentado somente na ancoragem fornecida pelos respectivos ganchos. A resistência do gancho deve-se ao atrito com o concreto. Sua capacidade à tração, T_h , é:

$$T_h = 0,7f_{ck}dL_h \tag{2.50}$$

onde *d* é o diâmetro do chumbador e L_h o comprimento do gancho.

Como a ruptura pode ocorrer pelo desdobramento do gancho e conseqüente arrancamento do chumbador, é recomendado que o gancho seja calculado para desenvolver uma resistência mínima igual a metade da resistência à tração do chumbador, T_u (equação 2.47). Desta forma, o comprimento necessário do gancho é:

$$L_{h} = \frac{\left(\frac{T_{u}}{2}\right)}{0.7f_{ck}d}$$
(2.51)

O comprimento total do chumbador será no mínimo igual ao comprimento do gancho mais o da parte reta tomado da TAB. 2.5.

2.6.3. Resistência de Cálculo ao Arrancamento – Chumbadores tipo Parafuso Invertido ou Barra Redonda com Porca

No caso dos chumbadores constituídos por parafusos com cabeça embutida ou por barras redondas com porca para ancoragem, o colapso por arrancamento se dá quando o cone que envolve o chumbador se separa da fundação (FIG. 2.20a). O cone é suposto com um ângulo de radiação de 45° estabelecido da extremidade da cabeça do parafuso ou da porca. O colapso ocorre a uma tensão média (em MPa) de $4\sqrt{0,007 f_{ck}}$, com f_{ck} em MPa, aplicada à área do círculo projetada pelo cone na superfície do bloco de concreto, A_{psf} . Assim, a resistência de cálculo ao arrancamento pode ser expressa por $\varphi_a R_{na}$, onde φ_a é o coeficiente de resistência, igual a 0,75 e R_{na} a resistência nominal ao arrancamento (em N), dada por (A_{psf} em mm² e f_{ck} em MPa):

$$R_{na} = 4A_{psf} \sqrt{0.007} f_{ck} \tag{2.52}$$

Pode ocorrer que dois chumbadores tracionados estejam situados muito próximos entre si, de modo que parte de suas áreas projetadas se sobreponham. Neste caso, a parte sobreposta deve ser dividida igualmente entre ambos. A FIG. 2.20b mostra a área projetada, considerando a influência, para chumbadores distanciados de *S*. O valor da área projetada, considerando tal influência, é:

$$A_{psf} = \pi l_a^2 - \frac{2 \arccos\left(\frac{S}{2l_a}\right) \pi l_a^2}{360} + \frac{S}{2} \sqrt{l_a^2 - \frac{S^2}{4}}$$
(2.53)

2.7. PROGRAMA DE DIMENSIONAMENTO

Na análise comparativa entre os procedimentos estudados e na determinação dos modelos da análise numérica, ambos discutidos nos capítulos seguintes, o dimensionamento dos componentes da base (placa de base, chumbadores e bloco de concreto) foi realizado inúmeras vezes.

Com o objetivo de agilizar este processo repetitivo, desenvolveu-se um programa compilado em linguagem Delphi, versão 4.0, contendo as situações de carregamentos mais comuns para todos os procedimentos descritos neste capítulo. A seguir é apresentada a interface do programa.

2.7.1. Tela Principal

A FIG. 2.21 mostra a tela principal do programa onde se apresenta o *menu* e a barra de ferramentas. Na barra de ferramentas encontram-se as seguintes opções:

FIGURA 2.16 - Tela principal do programa

- → Novo Dimensionamento: o programa inicia a entrada de dados com os campos limpos;
- → Abrir Dimensionamento: o programa abre um arquivo de entrada de dados em formato de documento texto, já existente;
- → Salvar: se o arquivo ainda não foi salvo, esta opção abre a caixa de diálogo Salvar Como padrão de Windows, caso contrário, esta opção atualiza o arquivo.
- → Salvar Como: esta opção chama uma caixa de diálogo "Salvar Como", padrão do Windows;
- → Memorial: caso algum dimensionamento tenha sido efetuado pelo programa, esta opção retorna o resultado deste dimensionamento na tela principal.
- \rightarrow *Finalizar*: finaliza o programa;
- → Id.: mostra a janela da identificação da estrutura (nome, data e nome do arquivo de saída);
- → Carregamento: mostra a janela para entrada do carregamento;
- → Propriedades: mostra a janela para entrada das propriedades geométricas do perfil do pilar e mecânicas dos materiais;
- → Os quatro últimos botões mostram as janelas para o dimensionamento de bases submetidas a compressão axial, compressão axial com momento fletor, tração axial e tração axial com momento fletor, respectivamente.

2.7.2. Janela Propriedades

Na janela Propriedades (FIG. 2.22) são fornecidos ao programa as propriedades geométricas do perfil do pilar (altura *d*, largura e espessura das mesas, $b_f e t_f e a$ espessura da alma, t_w), assim como o tipo de aço da placa de base com seu respectivo módulo elástico. Os limites de escoamento (f_y) e resistência (f_u) o programa fornece automaticamente. Também são fornecidos ao programa, a resistência do concreto a compressão (f_{ck}) e seu módulo elástico (E_c).

H Propriedades		X		
Identificação da Base : Carga4				
Dimensões do Perfil	Propriedades Mecânicas do Aço da	PLaca		
d : 190 mm	Tipo de Aço: ASTM A36	•		
bf : 200 mm	Limite de Escoamento (fy):	25 kN/cm²		
tf: 10 mm	Limite de Resist. à Tração (fu):	40 kN/cm²		
tw: 6,5 mm	Módulo Elástico (E):	20500 kN/cm ²		
	Propriedades Mecânicas do Concreto			
🕐 Cancel	Resistência à Compressão (fck):	2 kN/cm ²		
🗸 ок	Módulo Elástico (E):	2880 kN/cm ²		

FIGURA 2.17 – Janela propriedades.

2.7.3. Janela Carregamento

A entrada de dados do carregamento é feita na janela Carregamento (FIG. 2.23), que possui a opção de se inserir as cargas nominais ou de cálculo. Caso a opção das cargas nominais seja utilizada, o programa realiza as combinações possíveis para os tipos de carregamentos disponíveis (carga permanente, sobrecarga, vento e equipamento) e retorna aquela mais desfavorável para a força axial, momento fletor e força cortante. A identificação da base do pilar também é feita nesta janela.

<mark>H</mark> Carregamento			2	H Carregamento
ldentificação d	la Base : 🛛	HPL200		Identificação da Base : Carga4
Carregamento © Nominal	🔿 De Cálcu	lo		Carregamento C Nominal C De Cálculo
Esfor	rços Solici	itantes Nomi	inais	Esforços Solicitantes de Cálculo
	Normal (kN)	Momento (kN.cm)	Cortante (kN)	\rightarrow Força de Compressão de Cálculo : 1520 kN
Carga Permanente	300	14300	0,00	
Sobrecarga 1	300	10000	0,00	→ Forca de Tração de Cálculo : 0 kN
Sobrecarga 2	0,00	0,00	0,00	
Equipamento 1	275	10000	0,00	N Manageta Flates de Céleste () :
Equipamento 2	📙 Carga Perma	nente	×	Momento Fletor de Calculo (+) : [33623] KN.ch
Equipamento 3 Equipamento 4 Vento 1	 Pequena Grande Va 	√ariabilidade ariabilidade		→ Momento Fletor de Cálculo (,) : 0 kN.cn
Vento 2				→ Força Cortante de Cálculo (+): 0 kN
Vento 3	[
Vento 4	L			→ Força Cortante de Cálculo (.): 0 kN
Vento 5	0,00	0,00	0,00	
	alcular	?		√ <u>C</u> onfirmar

(a) cargas nominais

(b) cargas de cálculo

FIGURA 2.18 – Janela carregamento.

2.7.4. Janelas de Dimensionamento

Na janela principal, quando se aciona qualquer um dos quatro botões de dimensionamento, a janela Procedimento de Cálculo (FIG. 2.24) é aberta, para que a escolha do procedimento de cálculo seja feita. Ao clicar no botão OK, após a seleção do procedimento, a janela de dimensionamento correspondente à opção de carregamento pré-determinada se ativará.

 AISC 		
C Diadaa		
C Blodge	(

FIGURA 2.19 – Janela procedimento de cálculo.

2.7.4.1. Compressão axial

A FIG. 2.25 mostra a Janela Compressão Axial para o procedimento sugerido por DeWolf & Richer (1990) (AISC), que possui como entrada de dados somente a relação entre a área da placa de base e do bloco de concreto quando a segunda não é conhecida ou o seu valor quando é previamente determinado. Esta janela também é utilizada para Blodgett (1966), já que estes dois procedimentos são semelhantes. O programa retorna, para os dois procedimentos, o valor da tensão de compressão no concreto, a espessura de cálculo da placa de base e a espessura comercial adotada.

Método • Processo Geral	Força Normal de Cálculo (Nd) :	915,0 kN
C Placas Levemente Carregadas	Resistência do Concreto à Comp	oressão : 2 kN/cn
Dimensões do Perfil	Limite de Escoamento do Aço da	a Placa (fy) : 30 kN/cn
Altura (d) : 190 mm		
Largura (bf) : 200 mm	Fpd = 1,9	09 kN/cm²
Dimensões da Placa	t = 9,5	50 mm
Altura (H) : 230 mm	f = 12,	50 mm
Largura (B) : 200 mm	Cálculo dos Chumbadores	Barra de Cisalhamento

FIGURA 2.20 – Janela compressão axial / procedimento AISC (DeWolf & Richer 1990).

Nesta, como em todas as janelas de dimensionamento, é possível chamar as janelas para o dimensionamento dos chumbadores e da barra de cisalhamento, que serão descritas nos itens seguintes, através dos botões da FIG. 2.26, assim como a Janela Carregamento (FIG. 2.22).

FIGURA 2.21 – Botões para ativar as janelas para o dimensionamento dos chumbadores e da barras de cisalhamento.

2.7.4.2. Compressão axial com momento fletor

dentificação da Base	modelo4	Edit27	E dit30	Edit28
Dimensões do Perfil	Força Normal	de Cálculo (Nd) :	1252,5	kN
Altura (d) : 450 m	m Momento Fleto	or de Cálculo (Md):	48590,0	kN.cm
Largura (bf) : 450 m	m			
Esp. Mesa (tf) : 22,4 m	m Módulo Elástic	co do Aço (Es) :	20500	kN/cm
Esp. Alma (tw) : 12,5 m	m Limite de Esco	amento do Aço (fy):	30	kN/cm
	Módulo Elástic	o do Concreto (Ec)	2880	kN/cm
Dimensões da Base	Resistência à	Compressão do Con	creto (fck): 2	kN/cm
Altura (H) : 790 m	m			
Largura (B) : 490 m	m e	$e = 41,86 \ cm \ - \ Gr$	ande Excentricida	de
f. ? 310 m	Fpd =	1,81 kN/cm²	Fcd = 1,96	kN/cm²
•	Pt =	218,86 kN	Y = 33,2	6 cm
Chumbadores Tracionados	t =	62,01 mm	t = 63,00	mm
Diâmetro : 1 p Área : 5,07 c	ol. m² Cálculo d	os Chumbadores	Barra de Cisa	alhamento
]			
Nº de Chumb. : 🗲	🔳 <u>C</u> alcula	r 🏹 A <u>n</u> otar	🖙 Esforços	🗙 F <u>e</u> char
	5×001 - 1 5×501			

FIGURA 2.22 - Janela compressão + momento / procedimento Blodgett (1966).

A FIG. 2.27 mostra a Janela Compressão + Momento para o procedimento sugerido por Blodgett (1966), que possui como entrada de dados as dimensões da placa de base, a distância entre o eixo do pilar e a linha de chumbadores e informações sobre os chumbadores, tais como sua quantidade e diâmetro. O programa possui um banco de dados com valores de diâmetros comerciais para os chumbadores e suas respectivas áreas da seção transversal. Para DeWolf & Richer (1990) não é necessário fornecer informações sobre os chumbadores. O programa retorna, para os dois procedimentos, o valor da excentricidade equivalente com sua classificação, a tensão de contato que atua no concreto e a sua respectiva resistência, o valor de força de tração nos chumbadores, o comprimento do contato e as espessuras de cálculo e comercial adotada para a placa de base. Caso o usuário forneça as cargas nominais o programa apresenta a combinação mais desfavorável para cálculo da espessura da placa e da tração nos chumbadores.

2.7.4.3. Tração axial

A FIG. 2.28 apresenta a Janela Tração para o dimensionamento conforme DeWolf & Richer (1990). Deve-se fornecer ao programa, as dimensões da placa de base, o número de chumbadores e as propriedades geométricas indicadas. O número de chumbadores é fixado em dois e o programa fornece apenas opção de chumbadores posicionados entre as mesas do pilar. O programa retorna, para os dois procedimentos, o valor da espessura de cálculo e comercial adotada.

Força de Tração no Chumbador (Td): 500.0 kN	
imite de Escoamento do Aco (fv): 25 kN/cm²	bf
Dimensões do Perfil e da Placa	
Altura (d) : 200 mm	
Largura (bf) : 190 mm	
g: 95 mm	
t = 19.4 mm t = 22.4 mm	
	Dimensões da Placa
Cálculo dos Chumbadores Barra de Cisalhamento	H : 210 mm B : 200 mm

FIGURA 2.23 – Janela tração axial / AISC.

2.7.4.4. Chumbadores

A FIG. 2.30 mostra a janela para a verificação dos chumbadores. O usuário deve informar o número de chumbadores tracionados, bem como o tipo de aço que os compõe. O programa fornece três opções para o tipo de chumbador: barra redonda com gancho semi-circular, parafuso com a cabeça embutida no concreto e barra redonda com porca soldada embutida no concreto. A verificação para as duas últimas opções é a mesma.

O programa utiliza a força de tração nos chumbadores, na verificação dos mesmos, encontrada na janela de dimensionamento de onde se ativou a presente janela. Como saída de dados tem-se a força de tração de cálculo em cada chumbador com sua respectiva resistência, a verificação se o chumbador atende ou não e o valor *d1* para que não haja arrancamento no caso de chumbadores tipo barra reta ou o comprimento mínimo de ancoragem (l_a) no caso de chumbadores de gancho.

🕂 Cálculo dos Chumbadores	X
Identificação da Base : Carga4 Força de Tração nos Chumb. (Pt) : 71,2 kN Número de Chumbadores Tracionados (n) : 3 • Tipo de Aço do Chumbador ASTM A36 • 0 utros fy : 250 • MPa fu : 400 • MPa Tipo de Chumbador • Barra redonda con gancho semi-circular • Parafuso c/ a cabeça embutida no concreto Barra redonda c/ porca embutida no concreto • Barra redonda c/ porca embutida no concreto Propriedades Geométricas do Chumbador Diâmetro (d) : 1 pol. Área (Ap) : 5,07 cm²	Pi Historic de Concreto Pi Historic de Concreto Galance de Concreto Concreto Juit de Concreto Frad Bisco de Concreto Concreto Juit de Concreto Frad Bisco de Concreto Concreto Juit de Concreto Frad Bisco de Concreto Concreto Juit de Concreto Frad Concreto Concreto Image: Concreto <
	Não há Arrancamento
Ealcular	d1 > 305 mm

FIGURA 2.24 – Janela cálculo dos chumbadores.

2.7.4.5. Barra de Cisalhamento

Para a verificação da barra de cisalhamento (FIG. 2.31), quando esta é necessária, o usuário deve fornecer o valor da altura do enchimento (c), a altura do contato entre a barra de cisalhamento e o bloco de concreto e a largura da barra. O valor do coeficiente de atrito depende do procedimento escolhido.

O programa informa o valor da força de atrito (V_{at}), da resultante da tensão de contato (V_{ds}), da resistência do concreto à compressão a as espessuras de cálculo e comercial adotada para a barra de cisalhamento.

Nesta, como também em algumas janelas do programa, o botão 🔽 se encontra próximo de algumas variáveis. Ao se clicar neste botão, o programa chama a janela da FIG. 2.32 contendo a desenho que identifica a variável em questão.

FIGURA 2.25 – Janela barra de cisalhamento.

FIGURA 2.26 – Janela ajuda.

ANÁLISE NUMÉRICA VIA MEF

3.1. CONSIDERAÇÕES GERAIS

Devido às incertezas envolvidas nas hipóteses de projeto anteriormente abordadas, sobre a distribuição da tensão de contato entre a placa de base e o concreto e sobre a flexibilidade desta placa, realizou-se a análise numérica de quatro modelos de base de pilar, via *Método dos Elementos Finitos*, para verificar o seu comportamento global e de suas partes integrantes. As análises foram realizadas neste trabalho utilizando-se o programa ANSYS, versão 5.7.

Trata-se de um programa bastante rico quanto à biblioteca de elementos, tipos de análises possíveis, recursos numéricos disponíveis, pré e pós-processadores. Permite a análise de problemas de estruturas (objeto deste trabalho), fenômenos eletromagnéticos, transferência de calor, escoamento de fluídos e acústica.

Realizou-se a entrada de dados dos quatro modelos através de arquivos de texto contendo a *linguagem de projeto paramétrica do Ansys* (APDL), permitindo a construção dos modelos de forma paramétrica através de variáveis. A utilização deste recurso torna possíveis alterações no modelo de forma rápida, permitindo também o uso de operações matemáticas, rotinas de repetição (*loops*), comandos para tomada de decisão (*if-then-else*), etc. Todos os comandos, pertinentes ao programa, necessários a construção de um modelo, são fornecidos através deste arquivo de texto, sem a utilização da *Interface Gráfica do Usuário* (GUI).

3.2. MODELO 01

Criou-se este modelo com o objetivo de simular bases submetidas à força axial de compressão juntamente com um momento fletor.

3.2.1. Propriedades Geométricas

O modelo tem como componentes o pilar, a placa de base, os chumbadores e o bloco de concreto. O esquema da FIG. 3.1 ilustra, com detalhes, sua geometria com suas respectivas dimensões em milímetros.

FIGURA 3.1 – Geometria do modelo 01.

Adotou-se o perfil *CS 450×198* (450×450×22,4×12,5) para o pilar metálico. Os chumbadores empregados, quando necessários, são do tipo *gancho* com diâmetro de 12,7mm (1/2"). As dimensões da placa de base foram obtidas utilizando-se os procedimentos de cálculo abordados. A TAB. 3.1 apresenta a espessura da placa de base para as quatro situações de carregamento descritas no próximo sub-item. As demais propriedades geométricas não variam para todas as situações e são mostradas na FIG. 3.1.

S	ituações de	espessura da pla	aca de base (mm)
Ca	arregamento	DeWolf	Blodgett
	1	50	63
	2	50	63
	3	50	63
	4	63	63

TABELA 3.1 – Espessura da placa de base obtida através do procedimentos Blodgett (1966) e DeWolf & Richer (1990).

3.2.2. Situações de Carregamento

As situações de carregamento envolvendo uma combinação de força normal e momento fletor, foram determinadas tendo em vista uma tensão máxima no pilar, devido a estes dois esforços, igual a 15 kN/cm². Tais situações são apresentadas na TAB. 3.2.

Situação	Força Normal (kN)	Momento Fletor (kN.cm)
1	3800	0
2	3040	13275
3	2280	26550
4	1520	39825

TABELA 3.2 – Situações de carregamento.

3.2.3. Modelagem via Programa Ansys

O modelo é composto pelo pilar metálico, placa de base, chumbadores e pelo bloco de concreto. O conteúdo do arquivo de entrada de dados para o programa Ansys deste modelo, assim com para os demais, está contido no Anexo I.

Como o bloco de concreto é uma estrutura tridimensional, utilizou-se o elemento SOLID45, que é usado para modelagem tridimensional de estruturas sólidas. Ele é definido por oito nós, tendo três graus de liberdade em cada um: translações nas direções X, Y e Z. A geometria, a posição dos nós e o sistema de coordenadas para este elemento são mostrados na FIG. 3.2.

FIGURA 3.2 - Elemento SOLID45.

Inicialmente, atribuiu-se um comportamento elástico a este elemento. Após a verificação dos resultados da respectiva análise, observou-se que as tensões nos elementos em questão, ultrapassaram o limite de resistência à compressão do concreto adotado de fck=2,0 kN/cm². Desta forma, o elemento SOLID45 foi mantido, e o comportamento não-linear do concreto foi considerado utilizando-se o critério de escoamento de Drucker-Prager, aplicável a materiais granulares, tais como solo, rochas e o próprio concreto. Este critério de escoamento é adequado para o concreto por permitir que sejam consideradas diferentes resistências a tração e compressão. O critério de Drucker-Prager é definido pelos parâmetros do material α e *k* fornecidos por Barbosa (1997) através das equações.

$$\alpha = \frac{f_{ck} - f_{tk}}{\sqrt{3}(f_{ck} + 2f_{tk})}$$
(3.1)

$$k = \frac{\sqrt{3}f_{ck}f_{tk}}{f_{ck} + 2f_{tk}}$$
(3.2)

onde f_{ck} e f_{tk} são, respectivamente, as resistências do concreto à compressão e tração.

Segundo Barbosa (1997), a grande limitação do uso deste critério, para estruturas de concreto, consiste no fato de não haver mudanças na superfície de escoamento, resultando em um modelo necessariamente elastoplástico perfeito, sem encruamento ou amolecimento. A implicação disso na análise de estruturas de concreto é a incapacidade de representar adequadamente o processo de ruptura do material, especialmente na tração onde, uma vez atingida a tensão máxima, o material entra em escoamento. Não há como se caracterizar a ruptura do concreto devida à fissuração. Nem mesmo o procedimento, usual em

dimensionamento, de desprezar-se a resistência à tração do concreto é possível, em virtude de dificuldades numéricas quando se adotam valores muito baixos para a resistência a tração. Dessa forma, nos modelos que empregam esse critério, a fissuração é substituída por um processo de escoamento, que, embora limite o crescimento das tensões de tração, torna o modelo mais rígido que a estrutura real, ao não permitir também seu decaimento.

Os valores do módulo elástico, do coeficiente de *Poison* e da resistência à compressão do concreto foram de 2880 kN/cm², 0,19 e 2 kN/cm² respectivamente.

Com relação ao pilar metálico e a placa de base, utilizou-se elementos de casca (SHELL63) para representá-los. O elemento SHELL63 possui tanto comportamento de membrana quanto de placa, ou seja, forças normais e perpendiculares ao plano do elemento são permitidas. O elemento é definido por quatro nós, tendo seis graus de liberdade em cada um: translações nas direções X, Y e Z, e rotações em torno dos eixos X, Y e Z. A geometria, a posição dos nós e o sistema de coordenadas para este elemento são mostrados na FIG. 3.3.

FIGURA 3.3 – Elemento SHELL63.

A constante real, que para o elemento SHELL63 se refere à espessura do mesmo, diferencia a placa de base dos elementos do pilar (mesas e alma).

Como a resistência à flexão dos chumbadores é uma grandeza considerada importante, empregou-se o elemento de viga BEAM4 para representá-los. Este elemento é definido por dois ou três nós, área da seção transversal, por dois momentos de inércia (IZZ e IYY), duas espessuras (TKY e TKZ), por um momento

de inércia à torção e pelas propriedades do material. Possui seis graus de liberdade em cada nó: translações nas direções X, Y e Z, e rotações em torno dos eixos X, Y e Z. A geometria, a posição dos nós e o sistema de coordenadas para este elemento são mostrados na FIG. 3.4.

FIGURA 3.4 – Elemento BEAM4.

Os elementos dos chumbadores foram gerados de forma que a posição de seus nós coincidissem com a posição dos nós dos elementos sólidos. Isto foi feito para facilitar a ligação dos chumbadores ao concreto através dos elementos de mola, que serão descritos nos parágrafos seguintes.

O aço utilizado nos chumbadores, na placa de base e no pilar possui valores para o módulo elástico e coeficiente de *Poison* de 20500 kN/cm² e 0,3 respectivamente. Optou-se por considerar um comportamento elástico dos elementos destes três componentes do modelo, já que as tensões obtidas nos mesmos não atingiram o limite de escoamento do aço adotado.

Além dos elementos utilizados para representar as partes físicas do modelo (pilar, placa de base, chumbadores e bloco de concreto), outros foram empregados para simular tanto o contato entre a placa de base e o bloco de concreto quanto o atrito entre os chumbadores e o concreto.

Devido às restrições impostas pela malha do bloco de concreto, causadas pelo formato de gancho dos chumbadores, a projeção dos nós da placa sobre o bloco de concreto não coincidia com os nós dos elementos sólidos. Então, o uso dos elementos de contato superfície-superfície foi a melhor opção encontrada para representar o contato placa de base/bloco de concreto, uma vez que estes elementos não exigem tal situação. Para o par de elemento deste contato, utilizou-se o elemento TARGE170 (bloco) juntamente com o CONTA173 (placa). O par é definido pelo uso de um mesmo número para as respectivas constantes reais. O elemento CONTA173 é usado para representar o contato 3-D entre uma superfície "alvo" (TARGE170) e uma superfície deformável, definida por este elemento. Este elemento é disposto nas superfícies de elementos 3-D sólidos ou de cascas, tendo as mesmas características da face de um elemento sólido ou de casca com a qual está conectado. A geometria e localização dos nós, de ambos os elementos de contato, são mostradas na FIG. 3.5.

FIGURA 3.5 – Par de elementos de contato.

O atrito entre os chumbadores e o concreto foi simulado com auxílio do elemento de mola COMBIN39, que possui característica unidirecional com comportamento não-linear, determinado através de uma curva genérica da força em função do deslocamento. A curva força-deslocamento utilizada para simular o atrito entre chumbadores e o concreto foi definida por cinco pontos, e é mostrada na FIG. 3.6. Os valores que definem os pontos 2 e 4, D_{lim} e F_{bu_sm} , são respectivamente, o deslocamento limite de 0,1mm que define o ponto até o qual há variação da força de atrito e a força de atrito máxima para um segmento do chumbador, definida pela tensão de aderência entre aço e concreto τ_{bu} , obtida pela equação 3.1, conforme NBR 6118 (1980):

$$\tau_{bu} = 0.9\sqrt{f_{cd}} \tag{3.1}$$

onde f_{cd} é a resistência de cálculo do concreto à compressão.

FIGURA 3.6 - Curva do comportamento não-linear do elemento de mola.

Inseriram-se os elementos de mola somente na parte reta dos chumbadores, isto devido à dificuldade de se determinar um sistema de coordenadas para cada nó do gancho, em que a direção do deslocamento relativo entre os nós da mola fosse tangente ao gancho. Tal fato não compromete o comportamento geral do modelo, já que a força de tração obtida no início do gancho é pequena, pois as molas, que acima dele se encontram, absorvem grande parte desta força.

Toda a malha do modelo, ou seja, a malha do pilar, da placa de base, do bloco de concreto e dos chumbadores, foi gerada utilizando-se o mapeamento, que consiste em um controle na geração da malha. Utilizou-se este processo com o objetivo de diminuir o número de elementos, e conseqüentemente o número de nós, e de se ter uma malha bem definida. A malha gerada para o bloco de concreto, placa de base e pilar metálico é mostrada na FIG. 3.7.

FIGURA 3.7 - Malha gerada para o modelo 01 e seus respectivos contornos.

3.2.4. Condições de Contorno

Por se tratar de um modelo tridimensional que envolve elementos sólidos, o número de nós gerados é muito grande, o que aumenta o tempo e esforço computacional necessários para o processamento. O uso da simetria do modelo, em relação ao plano X-Y (FIG. 3.1), foi indispensável para contornar esse problema. Para garantir tal simetria, restringiu-se a translação na direção do eixo Z e as rotações em torno dos eixos X e Y, dos nós contidos no plano de simetria.

Apoiou-se a face inferior do bloco, restringindo-se a translação na direção do eixo Y de todos os nós dessa região. Para impedir o deslocamento do bloco na direção do eixo Z, restringiu-se a translação, nesta direção, dos nós contidos na linha que divide ao meio a face inferior do bloco, paralela ao eixo Z.

O nó localizado no centro da placa de base possui o deslocamento UX nulo, impedindo assim, que a mesma se desloque nesta direção.

3.3. MODELO 02

Este modelo é uma variação do *Modelo 01*. Também tem o objetivo de simular bases submetidas à força axial de compressão juntamente com um momento fletor. A diferença está no tipo de chumbador empregado que, neste caso, é do tipo barra reta com porca soldada na extremidade embutida no concreto. A conseqüência desta mudança é a alteração da malha do bloco de concreto, que está vinculada ao formato do chumbador. Desta forma, a ancoragem não é proporcionada mais pelo atrito entre o chumbador e o concreto, e sim pelo contato entre a porca embutida e o concreto, ocasionando a formação do cone de arrancamento.

A FIG. 3.8 ilustra, a geometria do modelo com suas respectivas dimensões em milímetros.

FIGURA 3.8 - Geometria do modelo 02.

As características geométricas do perfil metálico e da placa de base são as mesmas do Modelo 01. Os chumbadores, quando necessários, também possuem diâmetro de 12,7mm (1/2"). Apesar da geometria deste modelo ser basicamente a mesma do anterior, a malha do bloco de concreto é diferente, já que está vinculada ao formato dos chumbadores. A FIG. 3.9 mostra a malha do *Modelo 02* e seus respectivos contornos.

FIGURA 3.9 - Malha gerada para o modelo 02 e seus respectivos contornos.

Conforme descrito anteriormente, neste sistema a ancoragem é garantida pelo contato entre a porca embutida e o concreto. Por esta razão, fez-se necessário seccionar o bloco horizontalmente ao nível das porcas dos chumbadores (FIG. 3.8b), com o objetivo de se criar o contato entre estas e o concreto mais facilmente. Apoiou-se a face desta seção, restringindo-se a translação na direção do eixo Y de todos os nós dessa região, com exceção daqueles ao redor das porcas embutidas, permitindo a deformação do concreto devido à tensão de compressão e evitando uma possível concentração de tensões de tração nesta região. Com o mesmo objetivo de se evitar concentrações de tensão no contato, criaram-se as porcas com a forma de um octógono, evitando assim, arestas muito angulosas. A FIG. 3.10 mostra o detalhe da porca do chumbador. Da mesma forma que o Modelo 01, os deslocamentos no plano horizontal (plano X-Z) dos chumbadores e do bloco de concreto foram compatibilizados.

FIGURA 3.10 – Detalhe do chumbador com porca embutida.

3.4. MODELO 03

Bases submetidas apenas à força axial de compressão também foram simuladas através do modelo 03. Desta forma, a modelagem dos chumbadores foi dispensada.

3.4.1. Propriedades geométricas e carregamento

A FIG. 3.11 mostra a geometria padrão do Modelo 03.

FIGURA 3.11 – Geometria padrão para o modelo 03.

O modelo foi analisado para nove pilares, cujas propriedades geométricas se encontram na TAB. 3.3. Tomou-se como valor da carga de compressão, noventa por cento da resistência de cálculo à compressão axial dos pilares (TAB. 3.4), com comprimento de flambagem de 3m, conforme NBR8800 (1986).

Perfil	d (mm)	b _f (mm)	t _w (mm)	t _f (mm)	A (cm ²)
HPL 100	96	100	5,0	8	21,2
HPL 200	190	200	6,5	10	53,8
HPM 200	200	200	9,0	15	78,1
HPL 300	290	300	8,5	14	113,0
HPM 300	300	300	11,0	19	149,0
HPP 300	340	310	21,0	39	303,0
HPM 400	400	300	13,5	24	198,0
HPM 500	500	300	14,5	28	239,0
HPP 600	620	305	21,0	40	364,0

TABELA 3.3 – Dimensões dos perfilados utilizados no modelo 03.

Perfil	L _{bx} (cm)	L _{by} (cm)	Rd (kN)	0,9.Rd (kN)
HPL 100	300	300	182,7	164,4
HPL 200	300	300	893,3	804,0
HPM 200	300	300	1307,4	1176,7
HPL 300	300	300	2219,6	1997,6
HPM 300	300	300	2943,5	2649,1
HPP 300	300	300	6026,7	5424,0
HPM 400	300	300	3889,2	3500,3
HPM 500	300	300	4662,3	4196,1
HPP 600	300	300	7100,7	6390,7

TABELA 3.4 – Resistência de Cálculo à Compressão Axial.

As dimensões da placa de base são apresentadas na TAB. 3.5.

Perfil Comprimento (H) Largura (B) Espessura (t) HPL 100 100 105 16,0 HPL 200 200 210 31,5 HPM 200 250 37,5 250 HPL 300 315 325 50,0 HPM 300 370 370 63,0 HPP 300 550 505 63,0 **HPM 400** 490 370 63,0 HPM 500 600 360 75,0 HPP 600 815 405 75,0

TABELA 3.5 – Dimensões da placa de base para o modelo 03 em milímetros.

3.4.2. Modelagem e condições de contorno

Apesar do modelo 03 tratar de bases axialmente comprimidas, os elementos utilizados para modelar o concreto, o pilar de aço e a placa de base foram os mesmos utilizados no modelo 01, ou seja, os elementos SOLID45 e SHELL63 respectivamente. Os materiais empregados são os mesmos utilizados no modelo 01. A FIG. 3.12 mostra a malha gerada e o carregamento aplicado.

FIGURA 3.12 – Malha gerada para o modelo 03 com o carregamento aplicado.

Devido a menor complexidade deste modelo, gerando assim um menor número de elementos e nós, foi possível modelar sua geometria completa e não somente sua parte simétrica. Os deslocamentos na direção dos eixos X e Z bem como a rotação em torno do eixo Y do nó central da placa de base foi impedida. A base do bloco de concreto foi apoiada restringindo-se o deslocamento UY destes nós. Para que não houvesse a rotação do bloco, os deslocamentos UX e UZ de dois nós situados em faces opostas foram impedidos, lembrando-se que o sistema de coordenadas é o mesmo para todos os modelos e é mostrado na FIG. 3.11.

3.5. MODELO 04

DeWolf & Richer (1990), para placas levemente carregadas, supõem que o contato, entre a placa de base e o bloco de concreto, ocorra somente em uma faixa sob a alma e as mesas do pilar. Criou-se então este modelo para simular este tipo de situação e verificar o comportamento do contato entre a placa de base e o concreto.

Adotou-se o perfil CS 300x62 (300x300x9,5x8,0) para o pilar metálico. Não foram utilizados chumbadores, por se tratar de uma compressão axial. A placa de base possui área de 300x300mm e espessura de 27 mm, obtidas através do procedimento de DeWolf & Richer (1990) (placas levemente carregadas), para uma força normal no pilar de 1300kN. Toda a modelagem empregada neste modelo, desde os tipos de elementos até as condições de contorno, é a mesma utilizada no modelo 03. A FIG. 3.13 ilustra a malha gerada para este modelo.

FIGURA 3.13 – Malha gerada para o modelo 04.

4

RESULTADOS

4.1. CONSIDERAÇÕES GERAIS

Como resultados de maior interesse a este trabalho, são enfatizadas neste capítulo as tensões normais na placa de base devido à sua flexão, a distribuição e valores das tensões de contato entre a placa de base e o bloco de concreto e a força de tração que atua nos chumbadores para os modelos apresentados no capítulo anterior.

São mostrados também os valores obtidos, para os itens citados no parágrafo anterior, através dos procedimentos teóricos já discutidos, a fim de se ter um comparativo entre a análise teórica e numérica.

As unidades utilizadas no programa Ansys para força e deslocamento foram respectivamente quilonewton (kN) e milímetro (mm).

4.2. RESULTADOS NUMÉRICOS E ANALÍTICOS

4.2.1. Modelo 01 – Compressão axial com momento fletor (chumbador tipo Gancho)

A FIG. 4.1 apresenta como resultados iniciais, a condição deformada do modelo para as situações de carregamento 1 a 4. É válido lembrar que na primeira situação o pilar é carregado somente com uma força axial de compressão. Nas situações seguintes, a força normal é reduzida em vinte por cento (20%) em cada uma delas e o momento aumentado de forma que tensão de compressão no pilar permaneça em 15 kN/cm² (ver TAB. 3.2).

A seguir é mostrada na FIG. 4.2 a distribuição das tensões SY no bloco de concreto, perpendiculares à superfície superior do mesmo. O sistema de coordenadas é mostrado na FIG. 4.3 para auxiliar na visualização das direções das tensões. Na escala de cores da FIG. 4.2 o azul escuro representa os valores

máximos da tensão de compressão e o vermelho, por sua vez, os valores mínimos, podendo chegar a valores positivos (tração).

FIGURA 4.3 – Sistema de coordenadas do modelo.

A distribuição da tensão de contato, entre a placa de base o e bloco de concreto, no plano XY (plano médio da alma do pilar) obtida na análise numérica é a apresentada na FIG. 4.4 para os quatro carregamentos. Há uma simetria nesta distribuição para o carregamento 1, onde há apenas compressão axial e seu valor máximo ocorre sob as mesas do pilar. Nos carregamentos seguintes, há uma concentração gradual da tensão de contato sob a mesa onde há maior compressão. Na situação 4 houve uma concentração da tensão de compressão apenas sob uma das mesas já que nesta condição de carregamento os chumbadores foram solicitados.

FIGURA 4.4 – Distribuição da tensão de contato (placa/bloco) no plano da alma do pilar para as quatro situações de carregamento na análise numérica.

FIGURA 4.5 – Comparativo entre a distribuição da análise numérica e teórica da tensão de contato (placa/bloco) no plano da alma do pilar para a situação 01 de carregamento.

Nas figuras 4.5 a 4.8 foram comparadas as distribuições da tensão de contato da análise numérica e aquelas obtidas nos procedimentos teóricos para as quatro situações de carregamento.

FIGURA 4.6 – Comparativo entre a distribuição da análise numérica e teórica da tensão de contato (placa/bloco) no plano da alma do pilar para a situação 02 de carregamento.

Como foi apresentado no capítulo 2, tanto DeWolf & Richer (1990) como Blodgett (1966) admitem uma distribuição uniforme da tensão de contato ao longo da largura da placa e uma variação linear ao longo de seu comprimento, dependendo do valor do momento, até atingir seu valor máximo em sua extremidade. Nas quatro situações de carregamento, observa-se que esta variação linear não ocorre ao longo do comprimento da placa conforme análise numérica, já que a placa de base não é perfeitamente rígida. Nas regiões onde sua rigidez é maior (sob o pilar) a tensão de contato também é maior. É importante lembrar que a distribuição da tensão de contato da análise numérica apresentada nos gráficos das figuras 4.4 a 4.8 está no plano XY, ou seja, sob a alma do pilar. Desta forma, as distribuições obtidas em planos paralelos a este se concentram cada vez mais sob as mesas do pilar, à medida que se afastam do plano XY.

FIGURA 4.7 – Comparativo entre a distribuição da análise numérica e teórica da tensão de contato (placa/bloco) no plano da alma do pilar para a situação 03 de carregamento.

FIGURA 4.8 – Comparativo entre a distribuição da análise numérica e teórica da tensão de contato (placa/bloco) no plano da alma do pilar para a situação 04 de carregamento.

Os dois procedimentos apresentam distribuições semelhantes quando a excentricidade equivalente (M_d/N_d) é menor que H/6, onde H é o comprimento da placa de base. Como esta excentricidade nas três primeiras situações de carregamento se manteve nesta faixa, criaram-se mais duas situações somente com o objetivo de se comparar os procedimentos de DeWolf & Richer (1990) e Blodgett (1966) para bases carregadas axialmente com um momento fletor. Na obtenção destes dois novos carregamentos, seguiu-se a mesma idéia de se manter a tensão de compressão no pilar em 15 kN/cm² reduzindo-se a força normal gradualmente em 20%. A TAB. 4.1 apresenta as seis situações de carregamento.

Situação	Força Normal (kN)	Momento Fletor (kN.cm)
1	3800	0
2	3040	13275
3	2280	26550
4	1520	39825
5	760	53100
6	0	66375

TABELA 4.1 – Situações de carregamento para comparativo entre procedimentos teóricos.

As figuras 4.9 e 4.10 mostram a distribuição da tensão de contato para o procedimento de Blodgett (1966) e DeWolf & Richer (1990) respectivamente nas seis situações de carregamento.

FIGURA 4.9 – Distribuição da tensão de contato (placa/bloco) no plano da alma do pilar para as seis situações de carregamento conforme Blodgett (1966).

FIGURA 4.10 – Distribuição da tensão de contato (placa/bloco) no plano da alma do pilar para as seis situações de carregamento conforme AISC (DeWolf & Richer (1990)).

Como os dois procedimentos não apresentaram diferenças na distribuição da tensão de contato para os carregamentos 1, 2 e 3, a FIG. 4.11 apresenta os resultados apenas para os carregamentos 4, 5 e 6.

FIGURA 4.11 – Comparativo entre a distribuição da tensão de contato nas situações 4,5 e 6 para ambos os procedimentos.

Apesar dos dois procedimentos apresentarem teorias diferentes para a composição de esforços na placa de base a distribuição de tensão de contato em ambos diverge pouco, como ilustra a FIG. 4.11.

A FIG. 4.12 apresenta a distribuição das tensões SX nas fibras superiores das placas de base com espessura de 63 mm. As regiões em azul escuro representam as fibras mais comprimidas exatamente sob as mesas, também comprimidas, em torno das quais a placa sofre maior flexão. Os resultados para as fibras inferiores da placa de base são semelhantes aos das fibras superiores porém com sinais trocados, ou seja, em um nó quando a fibra superior está comprimida a inferior está tracionada. Na situação 4 surgem tensões de tração sob uma das mesas, já que apenas neste caso os chumbadores foram solicitados como será mostrado posteriormente.

FIGURA 4.12 – Tensões SX nas fibras superiores da placa de base com espessura de 63mm.

A distribuição das tensões SX nas placas base com espessura de 50 mm é semelhante à mostrada na FIG. 4.4 para as placas com espessura de 63 mm.

Agora são mostradas na FIG. 4.13 as tensões SZ novamente nas fibras superiores da placa de base. As máximas tensões de compressão surgem sob a alma do perfil por ser uma região onde há maior facilidade de flexão da placa em torno do eixo X.

FIGURA 4.13 – Tensões SZ nas fibras superiores da placa de base de espessura de 63mm.

Como resultados numéricos, tomaram-se os valores das tensões SX nos pontos 4, 5, 6, 7 e 8 da FIG. 4.14 e são mostrados na TAB. 4.2. Utilizou-se os pontos 1, 2 e 3 para se obter os valores da tensão SZ. Os resultados da TAB. 4.2 são referentes às placas de espessura de 63 mm. Tais resultados para as placas de espessura de 50 mm estão na TAB. 4.3.

FIGURA 4.14 – Pontos da placa de base onde foram obtidas as tensões SX e SZ.

	Situação 1			Situação 2	2
Pontos	SX (kN/cm ²)	SZ (kN/cm ²)	Pontos	SX (kN/cm ²)	SZ (kN/cm ²)
1		-9,34	1		-7,27
2		-9,49	2		-7,59
3		-9,34	3		-7,68
4	-11,61		4	-12,01	
5	-10,40		5	-10,65	
6	-10,75		6	-10,93	
7	-11,14		7	-11,26	
8	-10,17		8	-10,10	

TABELA 4.2 – Tensões SX e SZ na placa de base com espessura de 63 mm.

Situação 3				Situação -	4
Pontos	SX (kN/cm ²)	SZ (kN/cm²)	Pontos	SX (kN/cm ²)	SZ (kN/cm ²)
1		-5,20	1		-1,80
2		-5,70	2		-2,19
3		-6,02	3		-2,63
4	-12,41		4	-16,35	
5	-10,90		5	-13,14	
6	-11,11		6	-13,13	
7	-11,37		7	-13,18	
8	-10,03		8	-11,17	

TABELA 4.3 – Tensões SX e SZ na placa de base com espessura de 50 mm.

	Situação	1		Situação	2	Situação 3		
Pontos	SX	SZ	Ponto	SX	SZ	Pontos	SX	SZ
1 01103	(kN/cm²)	(kN/cm²)	S	(kN/cm²)	(kN/cm²)	1 011103	(kN/cm²)	(kN/cm ²)
1		-12,22	1		-9,49	1		-6,75
2		-12,43	2		-9,95	2		-7,45
3		-12,21	3		-10,06	3		-7,90
4	-13,93		4	-14,41		4	-14,87	
5	-12,92		5	-13,16		5	-13,38	
6	-13,52		6	-13,67		6	-13,80	
7	-14,15		7	-14,21		7	-14,26	
8	-13,20		8	-13,06		8	-12,88	

Comparou-se entre os procedimentos teóricos e a análise numérica o valor do momento fletor sob a parte externa da mesa mais comprimida do pilar. As tabelas 4.4 e 4.5 apresentam estes valores para uma faixa de largura unitária da placa de base. O momento fletor apresentado nas nestas tabelas, para os procedimentos teóricos, são oriundos da resultante (R) da tensão de contato vezes o braço de alavanca L conforme mostrado da FIG. 4.15. No caso na análise numérica, transformou-se o valor da máxima tensão entre os pontos 4 e 8 em um momento fletor equivalente para um comportamento elástico da placa de base.

Situação de carregamento	DeWolf (A) (kN.cm/cm)	Análise Numérica (B) (kN.cm/cm)	$\frac{B}{A}$ × 100		
1	161,20	58,04	36,0		
2	165,20	60,04	36,3		
3	169,20	61,96	36,6		
4	216,70	108,15	49,9		

TABELA 4.4 – Momento fletor na placa de base em uma faixa unitária para o procedimento de DeWolf & Richer (1990).

TABELA 4.5 – Momento fletor na placa de base em uma faixa unitária para o procedimento de Blodgett (1966).

Situação de carregamento	Blodgett (A) (kN.cm/cm)	Análise Numérica (B) (kN.cm/cm)	$\frac{B}{A}$ × 100
1	151,10	76,80	50,8
2	145,70	79,45	54,5
3	149,60	82,09	54,8
4	208,00	108,15	52,0

FIGURA 4.15 – Resultante de tensão de contato para obtenção do momento fletor no ponto A.

Pelo fato de, tanto DeWolf & Richer (1990) quanto Blodgett (1966), adotarem em suas hipóteses uma distribuição linear da tensão de contato, com seu valor máximo na extremidade da placa de base, a resultante desta distribuição provoca um momento fletor maior (de 2 a 2,7 vezes maior) que na análise numérica, já que nesta o valor máximo da tensão de contato de encontra sob a mesa mais comprimida e seu valor mínimo na extremidade da placa, conseqüentemente sua resultante se encontra mais próxima desta mesa, região de referência na determinação do momento fletor na placa.

Como já citado anteriormente, somente na situação 4 de carregamento os chumbadores foram solicitados. A FIG. 4.15 mostra o gradiente de tensões axiais nos chumbadores para tal situação. A tensão máxima (31,40 kN/cm²) ocorre no elemento de ligação entre o chumbador e a placa de base e decresce à medida que os elementos *mergulham* no concreto. Este efeito acontece devido ao uso das molas que conectam os chumbadores ao bloco de concreto com o intuito de simular a aderência entre os mesmos.

FIGURA 4.16 – Gradiente de tensão axial nos chumbadores.

A TAB. 4.6 apresenta os valores da força de tração em um chumbador, obtidos pelos procedimentos de DeWolf & Richer (1990) e Blodgett (1966) e através da análise numérica para a quarta situação de carregamento, assim como a resistência de cálculo do chumbador utilizado.

Proced Situação de carregamento DeWol	Procediment	o teórico (kN)	- Análise	Resistência de cálculo à tração	
	DeWolf	Blodgett	numérica (kN)	do chumbador de 12,7mm, aço ASTM A36 (kN)	
4	0,00	8,64	39,96	24,77	

TABELA 4.6 – Força de tração no chumbador e sua respectiva resistência de cálculo.

A força de tração no chumbador encontrada na análise numérica foi muito superior à obtida conforme Blodgett (1966) e maior também que sua respectiva resistência de cálculo à tração. Pelo fato dos chumbadores serem solicitados nesta condição de carregamento, houve um maior descolamento entre a placa de base e o bloco de concreto. Desta forma, a tensão de contato se concentrou principalmente sob a mesa comprimida do pilar conforme ilustra a FIG. 4.17. Isto fez com que sua resultante de compressão se aproximasse dos chumbadores. Para que o equilíbrio desse sistema pudesse ocorrer, a resultante de tração nos chumbadores tem que ser maior. Esta nova distribuição de esforços pode explicar o valor elevado da força de tração encontrado no chumbadore.

FIGURA 4.17 – Comparativo entre a distribuição da análise numérica e teórica da tensão de contato (placa/bloco) no plano da alma do pilar para a situação 04 de carregamento.

Analisou-se o modelo em questão, para a quarta situação de carregamento, variando-se a espessura da placa de base até que esta tivesse um comportamento de uma placa infinitamente rígida, com o objetivo de observar a distribuição da tensão de contato e a força de tração nos chumbadores. A FIG. 4.18 mostra o comportamento da tensão de contato encontrada, tendendo a uma distribuição linear, com seu valor máximo na extremidade da placa de base mais rígida (t = 800mm). Devido ao efeito de borda do contato (isto foi observado quando a rigidez das placas é grande) sua variação linear foi interrompida na extremidade da placa.

FIGURA 4.18 – Distribuição da tensão de contato (placa/bloco) para a situação 04 de carregamento para espessuras da placa tendendo à infinito para o modelo 01.

A TAB. 4.7 apresenta o valor da força de tração em cada chumbador obtido para o modelo. Simulou-se sete placas com espessuras de 75, 100, 150, 200, 250, 500 e 800mm. À medida que a rigidez da placa aumenta a força de tração nos chumbadores diminui, tendendo a um valor constante.

Espessura da placa (mm)	Situação de carregamento	Procedimento teórico (kN)		A (1)	Resistência de cálculo à	
		DeWolf	Blodgett	Análise numérica (kN)	tração do chumbador de 12,7mm, aço ASTM A36 (kN)	
75				36,38		
100))))			28,89		
150		0,00		15,82		
200			0,00 8,64	8,62	24,77	
250				5,49		
500				2,55		
800				2,17		

TABELA 4.7 – Força de tração no chumbador e sua respectiva resistência de cálculo para 7 espessuras da placa de base.

4.2.2. Modelo 02 – Compressão axial com momento fletor (chumbador tipo Barra Reta com Porca Embutida)

A diferença entre este modelo e o primeiro é o tipo de chumbador empregado. Como observado no modelo 01, também no modelo 02, os chumbadores foram solicitados somente na situação 4 de carregamento. Apesar da malha do bloco de concreto ser diferente em ambos os modelos, os resultados discutidos para o modelo 01 foram os mesmos para as situações 1, 2 e 3 no modelo 02, onde os chumbadores não interferem nos resultados. Desta forma, são apresentados somente os resultados deste modelo para a situação 4 de carregamento.

A FIG. 4.19 mostra a condição deformada do modelo com um fator de multiplicação de 200, onde o deslocamento máximo da placa de base foi de 1,07mm.

FIGURA 4.19 – Condição deformada para a situação 4.

A distribuição da tensão SY na superfície do bloco de concreto para este modelo é semelhante à do modelo 01 para a situação 4 de carregamento. A FIG. 4.20a mostra tal distribuição. Já a FIG. 4.20b apresenta a distribuição da tensão de mesma natureza na parte inferior do modelo, no plano horizontal que seciona as porcas embutidas, onde é notável a região do bloco comprimida pelas porcas embutidas no mesmo, lembrando que somente a parte simétrica do conjunto (bloco, placa, chumbadores e pilar) foi modelada e que o modelo possui três chumbadores tracionados. A tensão SY obtida no bloco foi de 2,31 kN/cm² na região sob a ligação entre a mesa comprimida e a alma do pilar (região mais rígida da placa de base).

FIGURA 4.20 – Tensões SY no bloco de concreto.

As figuras 4.21a e 4.21b mostram a distribuição da tensão SX e SZ, respectivamente, na placa de base. Ambas as distribuições são semelhantes àquelas encontradas no modelo 01 para a situação 4 de carregamento. Os resultados nos pontos indicados na FIG. 4.14 são apresentados na TAB. 4.8.

	TABELA 4.8 -	Tensões S	X e SZ na	placa de	base com	espessura	de 63 i	mm.
--	--------------	-----------	-----------	----------	----------	-----------	---------	-----

Situação 4					
Pontos	SX (kN/cm ²)	SZ (kN/cm ²)			
1		-1,08			
2		-1,39			
3		-1,82			
4	-17,67				
5	-13,93				
6	-13,84				
7	-13,82				
8	-11,62				

Apresentaram-se somente os resultados para a placa de base com espessura de 63mm pois não há variação desta dimensão na situação 4 de carregamento.

A TAB. 4.9 apresenta o comparativo entre os valores do momento fletor dos procedimentos teóricos e da análise numérica, sob a face externa da mesa mais comprimida do pilar.

|--|

Situação de	DeWolf (A)	Blodgett	Análise Numérica	$\frac{B}{A}$ × 100
carregamento	(kN.cm/cm)	(kN.cm/cm)	(B) (kN.cm/cm)	
4	216,70	208,00	116,89	54,0

Com exceção dos chumbadores, por ter o mecanismo de ancoragem diferente, o comportamento deste modelo foi semelhante àquele com chumbador de gancho (modelo 01), desta forma, os comentários sobre a distribuição da tensão de contato, sobre a placa de base e sobre o força de tração nos chumbadores são também pertinentes neste modelo.

Como os chumbadores deste modelo são do tipo barra reta com porca embutida no concreto, a ancoragem é fornecida através destas porcas e não pelo atrito. Desta forma não há gradiente de tensão axial nos chumbadores, já que o uso das molas para simular a aderência entre aço e concreto não foi necessário. A tensão axial obtida nos chumbadores foi de 26,78 kN/cm² que fornece uma força de tração de 33,92 kN.

O deslocamento vertical máximo da placa de base foi de 1,07mm, um pouco maior que no modelo 01 (0,96mm). A deformação da região de contato entre as porcas imersas e o concreto e a ausência de molas ao longo do chumbador para simular a aderência aço-concreto pode justificar esta diferença.

4.2.3. Modelo 03 – Compressão axial

A configuração da condição deformada foi semelhante para as nove variações do modelo 03, havendo um pequeno descolamento da placa de base do bloco de concreto no centro das extremidades paralelas à alma do pilar. A FIG. 4.21a apresenta a condição deformada da placa de base para o modelo HPL 300 e seu descolamento é mostrado na FIG. 4.22b na qual a cor vermelha representa a região de contato entre a placa e o bloco e a cor azul escuro a região com maior descolamento.

A distribuição da tensão normal à superfície do bloco de concreto (SY) conseqüentemente, também foi semelhante nos nove modelos onde seu valor máximo está sempre na região do bloco sob o encontro das mesas a da alma do pilar metálico (representada pela cor azul escuro). A FIG. 4.23 apresenta tal distribuição e a TAB. 4.10 traz seus valores máximos.

Modelo	Tensão Máxima (kN/cm²)
HPL100	2,46
HPL200	4,07
HPM200	3,41
HPL300	4,23
HPM300	3,90
HPP300	4,01
HPM400	3,54
HPM500	3,61
HPP600	3,40

TABELA 4.10 – \	/alor da máxima	tensão normal à	superfície do bloco	(SY).
-----------------	-----------------	-----------------	---------------------	-------

Os valores da TAB. 4.10 estão acima da resistência à compressão do concreto adotada de 2 kN/cm². Isso pode ser explicado pelo aumento da tensão de escoamento com o aumento da pressão de confinamento conforme o critério de Drucker-Prager adotado para o concreto.

A distribuição da tensão SX na placa de base é mostrada na FIG. 4.24. Seus valores máximos surgem sob as extremidades e centro das mesas do pilar. A distribuição da tensão SZ foi semelhante nos nove modelos, onde seu valor máximo está sempre na região central da mesa do pilar. Como exemplo tomou-se a placa de base do modelo HPM 300 (FIG. 4.25). Tomaram-se os valores das tensões SX nos pontos 4, 5, 6 e 7 da FIG. 4.26 e são mostrados na TAB. 4.11. Para os valores da tensão SZ tomaram-se os pontos 1, 2 e 3.

FIGURA 4.25 – Distribuição da tensão SZ na placa de base do modelo HPM 300.

FIGURA 4.26 – Pontos da placa de base onde foram obtidas as tensões SX e SZ.

	HPL 100)		HPL 200)		HPM 20	0
Pontos	SX (kN/cm²)	SZ (kN/cm²)	Pontos	SX (kN/cm²)	SZ (kN/cm²)	Pontos	SX (kN/cm²)	SZ (kN/cm²)
1		-6,35	1		-7,69	1		-8,70
2		-6,41	2		-7,90	2		-8,61
3		-6,35	3		-7,69	3		-8,70
4	-3,74		4	-3,31		4	-8,74	
5	-4,45		5	-4,18		5	-10,54	
6	-2,23		6	-2,27		6	-8,37	
7	-2,40		7	-2,55		7	-8,85	

TABELA 4.11 – Tensões SX e SZ da placa de base.

HPL 300			HPM 300			HPP 300		
Pontos	SX (kN/cm²)	SZ (kN/cm²)	Pontos	SX (kN/cm²)	SZ (kN/cm²)	Pontos	SX (kN/cm²)	SZ (kN/cm²)
1		-7,70	1		-7,63	1		-13,92
2		-7,75	2		-7,64	2		-13,95
3		-7,70	3		-7,63	3		-13,95
4	-3,68		4	-6,44		4	-19,10	
5	-4,84		5	-7,98		5	-23,21	
6	-2,99		6	-6,91		6	-19,28	
7	-3,22		7	-7,08		7	-19,59	

HPM 400			HPM 500			HPP 600		
Pontos	SX (kN/cm²)	SZ (kN/cm²)	Pontos	SX (kN/cm²)	SZ (kN/cm²)	Pontos	SX (kN/cm²)	SZ (kN/cm²)
1		-9,59	1		-8,99	1		-13,10
2		-9,67	2		-9,02	2		-13,17
3		-9,59	3		-8,99	3		-13,10
4	-10,21		4	-9,55		4	-15,60	
5	-12,08		5	-10,99		5	-18,62	
6	-10,46		6	-10,07		6	-17,15	
7	-10,80		7	-10,37		7	-17,53	

Comparou-se entre os procedimentos teóricos e a análise numérica o valor do momento fletor máximo em uma faixa de largura unitária da placa de base. Este comparativo é apresentado na TAB. 4.12. Nos modelos HPL100 e HPL200 o momento máximo ocorreu no centro da alma do pilar, nos modelos restantes este valor foi detectado próximo às extremidades das mesas no ponto 5.

Modelo	DeWolf / Blodgett (A) (kN.cm/cm)	Análise Numérica (B) (kN.cm/cm)	$\frac{B}{A}$ × 100
HPL100	8.78	2.73	25.9
HPL200	6.38	13.06	24.7
HPM200	20.66	24.70	40.1
HPL300	18.42	32.29	25.2
HPM300	43.10	52.79	36.7
HPP300	168.42	153.53	82.0
HPM400	43.05	79.91	39.8
HPM500	39.84	103.03	44.5
HPP600	130.24	174.56	55.8

TABELA 4.12 – Momento fletor em uma faixa unitária da placa de base.

O valor do momento fletor apresentado na tabela acima, para os procedimentos teóricos, foi tomado na seção crítica conforme a FIG. 4.27, com exceção do modelo HPL100, onde se utilizou a teoria de Bases Levemente Carregadas de DeWolf & Richer (1990) que não se aplica aos modelos restantes devido a inconsistências matemáticas (raiz quadrada de número negativo) na determinação do valor da variável "*c*" (Eq. 2.6).

FIGURA 4.27 – Seção crítica.

De uma forma geral, os procedimentos de DeWolf & Richer (1990) e Blodgett (1966) apresentaram momentos abaixo dos encontrados na análise numérica, principalmente quando as dimensões da placa de base são mais próximas das dimensões externas do pilar. Quando isso acontece, o braço de alavanca que determina o momento fletor na placa de base é pequeno, tornando esses procedimentos poucos confiáveis uma vez que o momento fletor crítico se situa na região central da alma do pilar.

4.2.4. Modelo 04 – Placa Levemente Carregada

Avaliou-se apenas, como resultado do modelo 04, o *status* do contato, se o mesmo se encontrava fechado ou aberto. A FIG. 4.28 apresenta estes resultados, onde o valor 2 (vermelho) da escala representa o contato fechado e o valor 1 (azul) o contato aberto.

FIGURA 4.28 – Status do contato entre a placa de base e o bloco de concreto.

O valor obtido de "*c*" pelo procedimento de DeWolf & Richer (1990) foi de 69 mm para o perfil *CS 300x62* (300x300x9,5x8,0) e uma carga de compressão de 1300 kN, enquanto na análise numérica obteve-se tanto para c_2 , tomado a um quarto da largura da mesa, e como para c_1 o valor de 42 mm. A hipótese de DeWolf & Richer (1990) de que a área de contato para esse tipo de base possui a forma de "*H*" foi confirmada pela análise numérica através da comparação da área de contato das figuras 4.28 (área vermelha) e 4.29 (área pontilhada).

FIGURA 4.29 – Área de contato obtida pelo método de DeWolf & Richer (1990).

CONCLUSÕES

A principal meta deste trabalho foi criar modelos, via método dos elementos finitos, que representassem o comportamento dos componentes da base de um pilar metálico: placa de base, chumbadores e bloco de concreto, e através dos resultados da análise numérica desses modelos, avaliar procedimentos de projeto normalmente usados na prática.

Inicialmente realizou-se uma revisão bibliográfica sobre os procedimentos de projetos mais utilizados para bases de pilares metálicos. Estes procedimentos foram apresentados no Capítulo 2. Criaram-se então modelos numéricos a partir dos resultados de simulações realizadas a partir destes procedimentos. Na análise numérica foram abordadas apenas as bases carregadas axialmente por uma força de compressão atuando ou não um momento fletor. Para a situação em que atua um momento fletor, criaram-se modelos abordando tanto chumbadores tipo gancho quanto do tipo barra reta com porca embutida do concreto.

Nos modelos 01 e 02, que tratam de bases carregadas por um força axial de compressão juntamente com um momento fletor, houve diferenças significativas entre seus resultados e dos procedimentos de DeWolf & Richer (1990) e Blodgett (1966), tanto para a placa de base quanto para os chumbadores. Uma possível

explicação para estas diferenças está na distribuição da tensão de contato entre a placa de base e o bloco de concreto. De acordo com procedimentos práticos, este contato ocorre uniformemente ao longo da largura da placa e varia linearmente, dependendo do valor do momento fletor, ao longo do comprimento tendo seu valor máximo na extremidade (FIG. 5.1). A análise numérica mostrou que a distribuição não possui esta configuração. As tensões máximas situam-se exatamente sob a(s) mesa(s) comprimida(s) do pilar com uma conformação aproximada em forma de parábola.

FIGURA 5.1 – Representação da distribuição da tensão de contato.

O momento fletor na placa de base em relação à face externa da mesa comprimida ficou cerca de 50 % menor na análise numérica em comparação com os procedimentos teóricos. A distribuição em forma de parábola reduz o momento fletor na placa já que sua resultante se encontra mais próxima da mesa.

A força de tração no chumbador, fornecida pela análise numérica, ficou acima de sua resistência de cálculo, enquanto de acordo com Blodgett (1966), o valor desta força foi 3 vezes menor que sua resistência de cálculo. Na situação de carregamento em que os chumbadores foram solicitados, houve uma concentração da tensão de contato, com valores máximos sob a mesa comprimida do pilar, fazendo com que a resultante desta tensão se aproximasse da linha dos chumbadores tracionados. Para que este sistema se equilibre, a resultante de tração nos chumbadores deve ser maior do que na distribuição adotada pelos procedimentos teóricos.

A força de tração nos chumbadores do tipo barra reta foi um pouco menor em relação ao outro modelo deste elemento (tipo gancho). A deformação da região de contato entre as porcas imersas e o concreto e a ausência de molas ao longo do chumbador para simular a aderência aço-concreto pode justificar esta diferença.

Desta forma, pode-se dizer com o que foi apresentado, que os procedimentos de DeWolf & Richer (1990) e Blodgett (1966) para bases carregadas axialmente com um momento fletor são conservadores com relação à placa de base e podem subdimensionar os chumbadores. Não houve diferenças significativas entre os procedimentos, apesar de apresentarem teorias diferentes a respeito das seções do contato entre a placa de base e o bloco de concreto.

Após a análise do modelo 01 para placas de base com grandes espessuras, ou seja, placas rígidas, observou-se que o valor da força de tração nos chumbadores diminui sensivelmente à medida que cresce a espessura da chapa, tendo sido observada uma tendência de estabilização (vide TAB. 4.7), salientando-se que o valor obtido com a aplicação do procedimento de Blodgett (1966) é da mesma ordem de grandeza obtido na análise numérica para a chapa com 200mm de espessura. A distribuição da tensão de contato, entre a placa de base e o bloco de concreto, também se aproximou da condição teórica. Isto mostra a influência da rigidez da placa de base na distribuição de esforços e que apesar das hipóteses dos procedimentos usuais sobre a distribuição da tensão de contato, seus resultados estão de acordo com suas hipóteses.

O procedimento para bases axialmente comprimidas de DeWolf & Richer (1990) e Blodgett (1966) apresentou valores para o momento fletor na placa de base menores quando comparados com os resultados numéricos, principalmente quando as dimensões da placa se aproximam das dimensões externas do pilar. Como o momento fletor é tomado na seção crítica (FIG. 5.2), o braço de alavanca para sua determinação torna-se muito reduzido, gerando valores muito elevados para o momento na placa não representativos de sua condição real. Desta forma, estes procedimentos não são indicados nas situações em que as dimensões da placa de base são reduzidas.

FIGURA 5.2 – Seção crítica.

A hipótese adotada por DeWolf & Richer (1990) de que o contato entre a placa de base e o bloco de concreto ocorra somente em uma faixa sob a alma e as mesas do pilar, para placas levemente carregadas (modelo 04), é válida mas conservadora, uma vez que o valor de "*c*" pelo procedimento teórico foi 64% maior do que o obtido na análise numérica. Este método é adequado somente a placas de base em que as dimensões estejam muito próximas das do pilar, caso contrário inconsistências matemáticas surgem na determinação do valor da variável "*c*".

SUGESTÕES PARA ESTUDOS FUTUROS

Inclusão da força horizontal para verificar a resistência dos chumbadores a este tipo de solicitação isolada e em conjunto com a tração;

Modelagem de bases com nervuras para verificar a sua influência no comportamento do conjunto da base de um pilar metálico;

Realização do mesmo estudo presente nesta dissertação utilizando-se outro tipo de seção para o pilar, como por exemplo perfis tubulares;

Utilização de outro tipo de elemento de contato para se saber sua influência no comportamento do modelo;

Estudo da influência dos chumbadores não solicitados na deformação do concreto na região comprimida do mesmo;

Elaboração de um novo procedimento de projeto para bases de pilares metálicos com base na curva momento rotação do conjunto pilar-placa de base, estabelecida através dos modelos numéricos.

- AISC/ASD. *American Institute of Steel Construction.* Manual of Steel Construction, Allowable Stress Design, 8^a ed., 1989.
- AISC/LRFD. American Institute of Steel Construction. Manual of Steel Construction, Load and Resistance Factor Design, 2^a ed., 1994.
- BARBOSA, A. F. *Estudo de Modelos para Análise Não-Linear de Estruturas de Concreto pelo Método dos Elementos Finitos* (Tese de Mestrado). Escola de Engenharia de Universidade Federal de Minas Gerais, 1997.
- BLODGETT, O. W. Design of Welded Structures. Cleveland, Ohio, 3.3:1-32, 1966.
- DEWOLF, J. T. Axially Loaded Column Base Plates. Journal of the Structural Division, ASCE, Vol. 104, nº ST5, pp 781-794, 1978.
- DEWOLF, J. T. & SARISLEY, E. F. Column Base Plates with Axial Loads and Moments. Journal of the Structural Division, ASCE, Vol. 106, nº ST11, pp 2167-2184, 1980.
- DEWOLF, J. T. & RICHER, D. T. Column Base Plates, Steel Design Guides Series 1, American Institute of Steel Construction, Chicago, 1990.
- FAKURY, R. H. *Notas de Aula do Curso de Mestrado.* Departamento de Estruturas, UFMG, 1995.
- FLING, R. S. *Design of Steel Bearing Plates.* Engeneering Journal, AISC, Vol. 7, nº 2, 1970.
- MURRAY, T, M. Design of Lightly Loaded Column Base PLates. Engeneering Journal, AISC, Vol. 20, n° 4 (Fourth Quarter), pp. 143-152, 1983.
- NBR 6118. *Projeto e Execução de Obras de Concreto Armado.* ABNT, Rio de Janeiro, 1980.

- NBR 8800. Projeto e Execução de Estruturas de Aço de Edifícios, Método dos Estados Limites. ABNT, Rio de Janeiro, 1986.
 QUEIROZ, G. Elementos das Estruturas de Aço. 4ª edição, 1993.
- SIDERBRÁS. *Galpões para Usos Gerais.* Publicações Técnica para o Desenvolvimento da Construção Metálica, Vol. 1, 1987
- STOCKWELL, F, W. *Preliminary Base Plate Selection.* Engeneering Journal, AISC, Vol. 12, n° 3 (Third Quarter), pp. 92-99, 1975.

Apresenta-se a seguir a entrada de dados para o programa Ansys 5.7 dos modelos gerados neste trabalho.

A.1 – Modelo 01 – Força normal de compressão com momento fletor – chumbador de gancho (situação 03).

/COM,		
/COM,		==== MODELO 01: 6 CHUMBADORES DE GANCHO ====================================
/COM,		==== COMPRESSÃO NORMAL + MOMENTO FLETOR ====================================
/COM,		
/COM,		
/COM,	AUTOR:	Marcelo Melo Martins
/COM,	ORIENTADOR:	Prof. Ricardo Hallal Fakury
/COM,	CO-ORIENTADOR:	Prof. Fernando Amorim de Paula
/COM,		
/COM,		
/COM,	OBSERVAÇÕES:	1 - Não utilizar o comando para comprimir a numeração de
/COM,		qualquer entidade;
/COM,		
/COM,		2 - Uso da simetria do modelo em relação ao plano XY;
/COM,		
/COM,		3 - Unidade de comprimento = mm, unidade de força = kN.
/COM,		
/COM,		
/COM,	AITEDACOEC.	$1 - E_{\alpha} (2000 \text{ kN}/\text{cm}^2)$ a pairon (0.10) de concreta
/COM	ALIERACOES.	I - RC (2000 KN/CM) e poison (0.19) do concieto
/COM.		2 - GAP igual à 25mm
/COM.		2 oni iguai a zonan
/COM.		3 - Elem. de viga entre placa e chumb. tracionado
/COM,		
/COM,		4 - Ha apenas chumbadores tracionados
/COM,		-
/COM,		5 - Porcas na placa retiradas
/COM,		
/COM,		6 – Molas na parte reta dos chumbadores
/COM,		
/COM,		7 – Concreto c/ Drucker-Prager – Carregamento 3
/COM,		
/COM,		
/	MODELO C/ 6 C	UIIMD DE CANCUO
/ 1 1 1 1 1	I, MODELO C/ 0 C	NUMB. DE GANCHO
/PLOP	TS,LOGO,0	
KEYW.	PR STRUC.1	

KEYW, PR_STRUC, /PMETH, OFF

/PREP7

/COM, TIPOS DE EI	LEMENTOS ************************************
ET,1,SOLID45	! BLOCO DE CONCRETO
ET,2,BEAM4	! CHUMBADORES (COMPRESSÃO e TRAÇÃO)
ET,3,LINK10	! LIGAÇÃO ENTRE PLACA E CHUMBADORES
ET,4,SHELL63 ! ELEMENTO CO ! ELEMENTO EN ! PERFIL METÁ ! PERFIL METÁ)NVENCIONAL DA PLACA IRIJECIDO DA PLACA (porcas) .LICO (alma) .LICO (mesas)
---	---
ET,5,CONTA173 ! ELEMENTOS E	O CONTATO DA PLACA DE BASE
ET,6,TARGE170 ! ELEMENTOS D	E CONTATO DO BLOCO DE CONCRETO
ET,7,COMBIN39 ! ELEMENTOS E	E MOLA (CHUMBADORES E BLOCO)
/COM, DADOS GERAIS ********	****
! Carregamento Nd = -2280	Forca avial de compressão no pilar (kN)
Md = 265500	Momento fletor de cálculo no pilar (kN.mm)
! Constantes Geométricas	laltura da nonfil
d = 450 tf = 22.4	!Altura do perili !Espessura das mesas do pilar
tw = 12.5	!Espessura da alma do pilar
tp1 = 50	Espessura da placa de base
tp2 = 500 ap1 = 126.68	Espessura da placa na regiao das porcas Lárea do chumbador fora do plano de simetria
ap1 = ap1/2	!Área do chumbador no plano de simetria
Dch = 12.7	!Diâmetro do chumbador (mm)
ex = Md/Nd	!Excentricidade X da carga normal
IZp = 991670000	Inércia em torno do eixo Z do modelo(mm4)
IXch = (3.14159*Dch**4)/64	!Momento de inércia do chumbador
! Constantes Físicas	
Ea = 205 !Módulo	o de elasticidade do aço (kN/mm²)
nua = 0.3 !Coefic	ciente de Poisson do aço 2 de elasticidade do concreto (kN/mm²)
nuc = 0.19 !Coefic	ciente de Poisson do concreto
/00M	
/COM, TIPOS DE MATERIAIS ****	
UIMP,1,EX, , ,Ea, UIMP,1,NUXY, , ,nua, ! Aço	
UIMP,2,EX, , ,Ec, UIMP,2,NUXY, , ,nuc, ! Conce	reto
UIMP,3,MU, ,,0, ! Conta	ato
TB, DP, 2 TBDATA, 1, 0.433012, 0.0028867, 0	: Drucker-Frager)
/COM, CONSTANTES REAIS *****	******
R,1,ap1,IXch,IXch,Dch,Dch, , RMORE, ,IXch/100000, , , , ,	!Chumbadores internos
R,2,ap2,IXch/2,IXch/2,Dch/2,I RMORE, ,IXch/200000, , , , ,)ch/2, , !Chumbadores simetria
R,3,tp1, , , , , , , , , , , , , , , , , , ,	!Placa convencional
R,4,tp2, , , , , , , , , , , , , , , , , , ,	!Placa - Porcas
R,5,tw, , , , , , , , , , , , , , , , , , ,	!Alma do pilar
R,6,tf, , , , , , , , , RMORE, , , , ,	!Mesa do pilar

R,7, , ,250,0.1,-25.001, , RMORE, , , , , , , !Contato entre placa e bloco R,8,ap1, !Contato placa-chumb interno R,9,ap2, !Contato placa-chumb simetria DEF = 0.1FORCA = 2.833R,10,-1,-0.75,-DEF,-FORCA/4,0,0 ! MOLA1 - PRIMEIRA (SIMETRIA) RMORE, DEF, FORCA/4, 1, 0.75 R,11,-1,-1.5,-DEF,-FORCA/2,0,0 ! MOLA1 - OUTRAS (SIMETRIA) RMORE, DEF, FORCA/2, 1, 1.5 R,12,-1,-1.5,-DEF,-FORCA/2,0,0 ! MOLA2 - PRIMEIRA (INTERNO) RMORE, DEF, FORCA/2, 1, 1.5 ! MOLA2 - OUTRAS (INTERNO) R,13,-1,-3,-DEF,-FORCA,0,0 RMORE, DEF, FORCA, 1, 3 /AUTO,1 /REP K,1,-800,0,0 K,2,-580,0,0 к,3,-395,0,0 K,4,-310,0,0 к,5,-250,0,0 К,6,-190,0,0 к,7,-105,0,0 K,8,0,0,0 К,9,-800,-60,0 K,10,-580,-60,0 K,11,-395,-60,0 K,12,-310,-60,0 K,13,-250,-60,0 К,14,-190,-60,0 K,15,-105,-60,0 K,16,0,-60,0 к,17,-800,-235,0 к,18,-580,-235,0 K,19,-395,-235,0 K,20,-310,-235,0 к,21,-250,-235,0 к,22,-190,-235,0 к,23,-105,-235,0 K,24,0,-235,0 K,25,-250,-370,0 K,26,-800,-430,0 К,27,-580,-430,0 K,28,-395,-430,0 K,29,-310,-430,0 к,30,-250,-410,0 к,31,-190,-430,0 к,32,-105,-430,0 K,33,0,-430,0 K,34,-800,-470,0 K, 35, -580, -470, 0 к,36,-395,-470,0 K,37,-310,-470,0 K,38,-250,-470,0 K,39,-190,-470,0 K,40,-105,-470,0 K,41,0,-470,0 к,42,-292.43,-512.43,0 к,43,-250,-530,0 K,44,-207.57,-512.43,0 к,45,-352.53,-572.53,0 K,46,-250,-615,0 к,47,-147.47,-572.53,0 к,48,-800,-800,0

K,49,-580,-800,0 K,50,-250,-800,0 K,51,0,-800,0

KPLOT

/COM,	LINHAS	DO	PLANO	PRINCIPAL	*******
LSTR,1	2				
LSTR,2	, 3				
LSTR,3	, 4				
LSTR,4	, 5				
LSTR,5	, 6				
LSTR, 6,	, 7				
LSTR, /,	10				
LSTR, 1	, 10) . 11				
LSTR, 1	1,12	!*	T.TNHA	10	
LSTR,12	2,13				
LSTR,1	3,14				
LSTR,14	4,15				
LSTR,1	5,16				
LSTR, I	/,18 2 1 0				
LSTR.10	9,20				
LSTR,20),21				
LSTR,2	L,22				
LSTR,22	2,23	!*	LINHA	20	
LSTR,2	3,24				
LSTR,20	0,27 7.20				
LSTR, 2	7,20				
LSTR, 2	9,25				
LSTR,2	, 5,31				
LSTR,3	L , 32				
LSTR, 32	2,33				
LSTR, 34	1,35	1+	T T.N.117.	20	
LSTR, 3: ISTR, 3:	5,30 5,37	! ^	LINHA	30	
LSTR, 3	7.30				
LSTR, 30),39				
LSTR, 3	9,40				
LSTR,40	0,41				
LSTR,48	3,49				
LSTR, 4	9,50 5 51				
LSTR, 1	, J I . 9				
LSTR, 9	,17	!*	LINHA	40	
LSTR,1	7,26				
LSTR,2	5,34				
LSTR, 34	4,48				
LSTR, Z	, 10 1 1 0				
LSTR, 18	3.27				
LSTR, 2	7,35				
LSTR,3	5,49				
LSTR,3	,11				
LSTR,1	L,19	!*	LINHA	50	
LSTK, 19	⊅,∠X 3,36				
LSTR, 4	,12				
LSTR,12	2,20				
LSTR,20),29				
LSTR,2	9,37				
LSTR, 5	, 13 2 21				
LSTR. 2	,∠⊥ 1,25				
LSTR,2	5,30	!*	LINHA	60	
LSTR, 3),38				
LSTR,43	3,46				
LSTR,4	5,50				
LSTR, 6,	,⊥4 1 22				
LSTR.2	2,31				
LSTR, 3	1,39				
LSTR,7	15				

LSTR,15,23 LSTR, 23, 32 !* LINHA 70 LSTR, 32, 40 LSTR,8,16 LSTR, 16, 24 LSTR,24,33 LSTR, 33, 41 LSTR, 41, 51 LSTR, 38, 42 LSTR, 42, 45 LSTR,45,49 LSTR, 38, 44 !* LINHA 80 LSTR,44,47 LSTR,47,51 larc, 37, 42, 38, 60 larc, 42, 43, 38, 60 larc,43,44,38,60 larc, 44, 39, 38, 60 larc, 36, 45, 38, 145 larc, 45, 46, 38, 145 larc,46,47,38,145 larc,47,40,38,145 !* LINHA 90

AL,1,39,8,44 !* ÁREA 1 AL,2,44,9,49 AL,3,49,10,53 AL,4,53,11,57 AL,5,57,12,64 AL, 6, 64, 13, 68 AL,7,68,14,72 AL,8,40,15,45 AL,9,45,16,50 AL,10,50,17,54 !* ÁREA 10 AL,11,54,18,58 AL,12,58,19,65 AL,13,65,20,69 AL,14,69,21,73 AL,15,41,22,46 AL,16,46,23,51 AL,17,51,24,55 AL,18,55,25,59 AL,19,59,26,66 !* ÁREA 20 AL,20,66,27,70 AL,21,70,28,74 AL,22,42,29,47 AL,23,47,30,52 AL,24,52,31,56 AL,25,56,32,60 AL,26,60,33,67 AL,27,67,34,71 AL,28,71,35,75 AL,29,43,36,48 AL,30,48,79,87 !* ÁREA 30 AL,31,87,78,83 AL,32,83,77,61 AL, 33, 61, 80, 86 AL,34,86,81,90 AL,35,90,82,76 AL,88,79,37,63 AL,84,78,88,62 AL,80,77,84,85 AL,85,62,89,81

!* ÁREA 40

ALLSEL,ALL LSEL,ALL

AL,89,63,38,82

LESIZE,39, , ,2, , , ,
LESIZE,44, , ,2, , , ,
LESIZE,49, , ,2, , , ,
LESIZE,53, , ,2, , , ,
LESIZE,57, , ,2, , , ,
LESIZE,64, , ,2, , , ,
LESIZE, 68, , ,2, , , ,
LESIZE, 72, , ,2, , , ,
LESIZE,40, , ,5, , ,
LESIZE,45, , ,5, , , ,
LESIZE.50
LESTZE. 54 5
LESIZE.585
LESIZE 65 5
LESIZE 69,
LESIZE 73 5
LESIZE 41
LESTER 46 6
LESIZE, 60, , , , 2, , , , ,
LESIZE, 6/, , , , 2, , , , ,
LESIZE,/1, , , , , , , , , , , , , , , , , , ,
LESIZE, 43, , ,3, , ,
LESIZE,48, , ,3, , ,
LESIZE,87, , ,3, , ,
LESIZE,83, , ,3, , , ,
LESIZE, 61, , ,3, , , ,
LESIZE,86, , ,3, , , ,
LESIZE,90, , ,3, , , ,
LESIZE, 76, , ,3, , , ,
LESIZE,62, , ,3, , , ,
LESIZE,63, , ,3, , , ,
LESIZE,77, , ,3, , , ,
LESIZE,78, , ,3, , , ,
lesize,79, , ,3, , , ,
LESIZE,80, , ,3, , , ,
LESIZE,81, , ,3, , , ,
LESIZE,82, , ,3, , , ,
LESIZE,84, , ,3, , , ,
LESIZE,85, , ,3, , , ,
LESIZE,88, , ,3, , , ,
LESIZE,89, , ,3, , , ,
/COM, SOLIDOS (EXIRODE)
/view.i/0.4//0.204/0.042
/ 101 / FRO1
VEXT. ALL
ASEL, S. LOC. 7, 160
VEXT.ALL

VEXT,ALL, , , , , , 255, , ,

ALLSEL,ALL /REP,FAST

```
LSEL, S, LOC, Z, 80
LPLOT
LESIZE,ALL, , ,7, , , ,
LSEL, S, LOC, Z, 202.5
T.PT.OT
LESIZE, ALL, , ,3, , ,
LSEL, S, LOC, Z, 372.5
LPLOT
LESIZE,ALL, , ,4, , ,
ALLSEL, ALL
VPLOT
TYPE,1,
MAT,2,
MSHKEY,1
VMESH.ALL
VSYMM, X, ALL, , , ,0,0
VPLOT
NUMMRG,NODE, , ,
NUMMRG,KP, , ,
KPLOT
ERASE
/VIEW, 1, 1, 1, 1, 1
/ANG,1
/REP,FAST
/AUTO, 1
/REP
! X(-) E Z = 0 *********************
K,410,-310.0000,0.0000000,0.0000000
K,411,-310.0000,-60.00000,0.0000000
K,412,-310.0000,-235.0000,0.0000000
K,413,-310.0000,-430.0000,0.0000000
K,414,-310.0000,-470.0000,0.0000000
к, 415, -292.4300, -512.4300, 0.0000000
K,416,-250.0000,-530.0000,0.0000000
K,417,-207.5700,-512.4300,0.0000000
K,418,-190.0000,-470.0000,0.0000000
к,419,-190.0000,-430.0000,0.0000000
! X(-) E Z = 160 *************
K,420,-310.0000,0.0000000,160.0000
K,421,-310.0000,-60.00000,160.0000
K,422,-310.0000,-235.0000,160.0000
K,423,-310.0000,-430.0000,160.0000
K,424,-310.0000,-470.0000,160.0000
к,425,-292.4300,-512.4300,160.0000
K,426,-250.0000,-530.0000,160.0000
K,427,-207.5700,-512.4300,160.0000
K,428,-190.0000,-470.0000,160.0000
к, 429, -190.0000, -430.0000, 160.0000
к,430,310.0000,0.0000000,0.0000000
```

К,432,310.0000,-235.0000,0.0000000 к, 433, 310.0000, -430.0000, 0.0000000 К, 434, 310.0000, -470.0000, 0.0000000 к,435,292.4300,-512.4300,0.000000 K,436,250.0000,-530.0000,0.0000000 к,437,207.5700,-512.4300,0.0000000 K,438,190.0000,-470.0000,0.0000000 K, 439, 190.0000, -430.0000, 0.0000000 ! X(+) E Z = 160 **************** к,440,310.0000,0.0000000,160.0000 K,441,310.0000,-60.00000,160.0000 K,442,310.0000,-235.0000,160.0000 к,443,310.0000,-430.0000,160.0000 K,444,310.0000,-470.0000,160.0000 K,445,292.4300,-512.4300,160.0000 K,446,250.0000,-530.0000,160.0000 к,447,207.5700,-512.4300,160.0000 K,448,190.0000,-470.0000,160.0000 K,449,190.0000,-430.0000,160.0000 ! KEYPOINTS DA PLACA ***** к,450,-395,25,0 K,451,-330,25,0 K,452,-310,25,0 ! CHUMBADOR(X- e Z=0) K,453,-290,25,0 к,454,-250,25,0 к,455,-213.8,25,0 к,456,-105,25,0 к,457,0,25,0 к,458,105,25,0 к,459,213.8,25,0 K,460,250,25,0 к,461,290,25,0 K,462,310,25,0 ! CHUMBADOR(X+ e Z=0) к,463,330,25,0 к,464,395,25,0 KSEL,S,KP, ,450,464 KGEN,2,ALL, , , , ,20,15,0,0 KSEL,S,KP, ,465,479 KGEN,2,ALL, , , , ,120,15,0,0 KSEL,S,KP, ,480,494 KGEN,2,ALL, , , ,20,15,0,0 KSEL,S,KP, ,495,509 KGEN,2,ALL, , , , ,20,15,0,0 KSEL,S,KP, ,510,524 KGEN,2,ALL, , , , , ,45,15,0,0 KSEL,S,KP, ,525,539 KGEN,2,ALL, , , , ,20,15,0,0 KSEL, S, KP, ,410,554 KPLOT /VIEW, 1, 1, 1, 1, 1 /ANG,1 /REP,FAST /AUTO, 1 /REP NUMSTR, LINE, 1050, ! INICIA A NUMERAÇÃO DAS NOVAS LINHAS EM 1050 LSTR,410,411 ! LINHA 1050 LSTR, 411, 412 LSTR, 412, 413 LSTR, 413, 414 LARC, 414, 415, 419, 60 LARC, 415, 416, 419, 60 LARC, 416, 417, 413, 60 LARC, 417, 418, 413, 60 LSTR, 418, 419 LSTR, 420, 421 ! LINHA 1059

LSTR, 421, 422 LSTR, 422, 423 LSTR, 423, 424 LARC,424,425,429,60 LARC, 425, 426, 429, 60 LARC, 426, 427, 423, 60 LARC, 427, 428, 423, 60 LSTR, 428, 429 LSTR,430,431 ! LINHA 1068 LSTR,431,432 LSTR,432,433 LSTR,433,434 LARC,434,435,439,60 LARC, 435, 436, 439, 60 LARC,436,437,433,60 LARC,437,438,433,60 LSTR,438,439 LSTR,440,441 ! LINHA 1077 LSTR,441,442 LSTR,442,443 LSTR,443,444 LARC,444,445,449,60 LARC,445,446,449,60 LARC,446,447,443,60 LARC,447,448,443,60 LSTR,448,449 LSEL, S, LINE, ,1050,1085 LESIZE, ALL, , , 3, , , , LESIZE,1050, , ,2, , , LESIZE,1059, , ,2, , , LESIZE,1068, , ,2, , , LESIZE,1077, , ,2, , , LESIZE,1051, , ,5, , , , LESIZE,1060, , ,5, , , , LESIZE,1069, , ,5, , , , LESIZE,1078, , ,5, , , , LESIZE,1052, , ,6, , , , LESIZE,1061, , ,6, , , , LESIZE,1070, , ,6, , , , LESIZE,1079, , ,6, , , , LESIZE,1053, , ,2, , , LESIZE,1058, , ,2, , , LESIZE,1062, , ,2, , , LESIZE,1067, , ,2, , , , LESIZE,1071, , ,2, , , LESIZE,1076, , ,2, , , LESIZE,1080, , ,2, , , LESIZE,1085, , ,2, , , CM,LCHUMB,LINE ! CRIA UM BLOCO C/ AS LINHAS DOS CHUMBADORES /AUTO, 1 /REP LPLOT TYPE,2, MAT, 1, REAL,1, LSEL,S,LINE, ,1059,1067 ! Chumb. tracionados MSHKEY,1 LMESH, ALL TYPE,2, ! CHUMBADORES DO PLANO DE SIMETRIA MAT,1,

REAL,2, LSEL,S,LINE, ,1050,1058 ! Chumb. tracionados MSHKEY,1 LMESH,ALL /COM, COMPONENTE DOS NÓS E ELEMENTOS DA PROJEÇÃO DA PLACA NO BLOCO ************** ESEL, S, TYPE, , 1 NSLE,S NPLOT NSEL, R, LOC, Y, 0 /REPLOT NSEL, R, LOC, X, -460, 460 /REPLOT NSEL, R, LOC, Z, 0, 310 /REPLOT CM, TARGET, NODE ESLN,R EPLOT CM,E TARGET,ELEM ALLSEL, ALL KSEL,S,KP, ,410,554 KPLOT /VIEW, 1, 1, 1, 1, 1 /ANG,1 /REP,FAST /AUTO, 1 /REP ! LINHAS NA DIREÇÃO DE "X" I = 450*DO,K,1,7 L,I,(I+1),3, , , , , , , , I = I + 15*ENDDO I = 451*DO,K,1,7 L,I,(I+1),1, , , , , , , , I = I + 15*ENDDO I = 452*DO,K,1,7 L,I,(I+1),1, , , , , , , , I = I + 15*ENDDO I = 453*DO,K,1,7 L,I,(I+1),2, , , , , , , , I = I + 15*ENDDO I = 454*DO,K,1,7 L,I,(I+1),3, , , , , , , , I = I + 15*ENDDO T = 455*DO,K,1,7 L,I,(I+1),4, , , , , , , , I = I + 15*ENDDO I = 456*DO,K,1,7 L,I,(I+1),3, , , , , , , , I = I + 15*ENDDO I = 457*DO,K,1,7 L,I,(I+1),3, , , , , , , ,

```
I = I + 15
*ENDDO
I = 458
*DO,K,1,7
L,I,(I+1),4, , , , , , , ,
 I = I + 15
*ENDDO
I = 459
*DO,K,1,7
L,I,(I+1),3, , , , , , , ,
 I = I + 15
*ENDDO
I = 460
*DO,K,1,7
L,I,(I+1),2, , , , , , , ,
 I = I + 15
*ENDDO
I = 461
*DO,K,1,7
L,I,(I+1),1, , , , , , , ,
 I = I + 15
*ENDDO
I = 462
*DO,K,1,7
L,I,(I+1),1, , , , , , , ,
I = I + 15
*ENDDO
I = 463
*DO,K,1,7
L,I,(I+1),3, , , , , , , ,
 I = I + 15
*ENDDO
! LINHAS NA DIREÇÃO DE "Z"
I = 450
*DO,K,1,15
L,I,(I+15),1, , , , , , , ,
I = I + 1
*ENDDO
I = 465
*DO,K,1,15
L,I,(I+15),5, , , , , , , ,
I = I + 1
*ENDDO
I = 480
*DO,K,1,15
L,I,(I+15),1, , , , , , , ,
I = I + 1
*ENDDO
I = 495
*DO,K,1,15
L,I,(I+15),1, , , , , , , ,
 I = I + 1
*ENDDO
I = 510
*DO,K,1,15
L,I,(I+15),2, , , , , , ,
 I = I + 1
*ENDDO
I = 525
*DO,K,1,15
L,I,(I+15),1, , , , , , , ,
I = I + 1
*ENDDO
NUMSTR, AREA, 870,
F = 99
H = 98
I = 1086
*DO,K,1,14
AL, I, (I+F), (I+1), (I+H)
```

I = I + 7F = F - 6H = H - 6*ENDDO F = 113H = 112I = 1087 *DO,K,1,14 AL, I, (I+F), (I+1), (I+H) I = I + 7F = F - 6H = H - 6*ENDDO F = 127H = 126 I = 1088 *DO,K,1,14 AL, I, (I+F), (I+1), (I+H) I = I + 7F = F - 6Н = Н - 6 *ENDDO F = 141H = 140 I = 1089 *DO,K,1,14 AL, I, (I+F), (I+1), (I+H) I = I + 7F = F - 6Н = Н - 6 *ENDDO F = 155н = 154 I = 1090*DO,K,1,14 AL, I, (I+F), (I+1), (I+H) I = I + 7F = F - 6. Н = Н - 6 *ENDDO F = 169H = 168I = 1091*DO,K,1,14 AL, I, (I+F), (I+1), (I+H) I = I + 7F = F - 6Н = Н - 6 *ENDDO KSEL,S,KP, ,410,554 LSLK,S,1 LPLOT ASEL,S,AREA, ,870,953 TYPE,4, MAT,1, REAL,3, MSHKEY,1 AMESH,ALL ASEL, S, AREA, , 870, 953 ESEL, S, REAL, , 3, 4 NSLE, S CM, CONTACT, NODE

AL, 1285, 1300, 1223, 1299 AL, 1286, 1301, 1238, 1300

K,555,-213.8,525,225 к,556,-213.8,525,180 к,557,-213.8,525,160 к,558,-213.8,525,140 к,559,-213.8,525,20 к,560,-213.8,525,0 к,561,-105,525,0 к,562,0,525,0 к,563,105,525,0 К,564,213.8,525,0 к,565,213.8,525,20 к,566,213.8,525,140 к,567,213.8,525,160 К,568,213.8,525,180 к,569,213.8,525,225 KPLOT /AUTO, 1 /REP I = 555*DO,K,1,14 LSTR, I, (I+1) I = I + 1*ENDDO LESIZE,1274, , ,2, , , LESIZE,1275, , ,1, , , , LESIZE,1276, , ,1, , , , LESIZE,1277, , ,5, , , LESIZE,1278, , ,1, , , , LESIZE,1279, , ,4, , , LESIZE,1280, , ,3, , , LESIZE,1281, , ,3, , , LESIZE,1282, , ,4, , , , LESIZE,1283, , ,1, , , , LESIZE,1284, , ,5, , , , LESIZE,1285, , ,1, , , , LESIZE,1286, , ,1, , , , LESIZE,1287, , ,2, , , L,530,555,16,2, , , , , , L,515,556,16,2, , , , , , L,500,557,16,2, , , , , , L,485,558,16,2, , , , , , L,470,559,16,2, , , , , , L,455,560,16,2, , , , , , L,456,561,16,2, , , , , , L,457,562,16,2, , , , , , L,458,563,16,2, , , , , , L,459,564,16,2, , , , , , L,474,565,16,2, , , , , , L,489,566,16,2, , , , , , L,504,567,16,2, , , , , , L,519,568,16,2, , , , , , L,534,569,16,2, , , , , , AL,1274,1289,1249,1288 AL, 1275, 1290, 1234, 1289 AL,1276,1291,1219,1290 AL, 1277, 1292, 1204, 1291 AL, 1278, 1293, 1189, 1292 AL, 1279, 1294, 1121, 1293 AL,1280,1295,1128,1294 AL, 1281, 1296, 1135, 1295 AL,1282,1297,1142,1296 AL,1283,1298,1193,1297 AL, 1284, 1299, 1208, 1298

```
AL,1287,1302,1253,1301
! Malha de uma Mesa do pilar
TYPE,4,
MAT,1,
REAL,6,
ASEL, S, LOC, Y, 275
ASEL, R, LOC, X, -213.8
MSHKEY,1
AMESH, ALL
! Malha da outra Mesa do pilar
TYPE,4,
MAT,1,
REAL,6,
ASEL,S,LOC,Y,275
ASEL, R, LOC, X, 213.8
MSHKEY,1
AMESH,ALL
! Malha da Alma do pilar
TYPE,4,
MAT,1,
REAL,5,
ASEL, S, LOC, Y, 275
ASEL, R, LOC, Z, 0
MSHKEY,1
AMESH,ALL
ALLSEL,ALL
EPLOT
/NUMBER,1
/PNUM, TYPE, 1
/REPLOT
/COM, ELEMENTOS DE LIGAÇÃO ENTRE A PLACA E OS CHUMBADORES ***********************
L,452,410,1, , , , , , , ,
LPLOT
/AUTO,1
/REP
! Chumbadores tracionados (elementos de viga)
MAT,1,
TYPE,2,
REAL,2,
LSEL, S, LOC, Y, 12.5
LSEL, R, LOC, Z, 0
LSEL, R, LOC, X, -310
MSHKEY,1
LMESH,ALL
MAT,1,
TYPE,2,
REAL,1,
LSEL,S,LOC,Y,12.5
LSEL, R, LOC, Z, 160
LSEL, R, LOC, X, -310
MSHKEY,1
LMESH,ALL
```

/COM, CONTATO PLACA DE BASE E BLOCO DE FUNDAÇÃO **************** MAT,3, ! TARGE170 (TARGET) TYPE,6, REAL,7, !GCGEN,CONTACT,TARGET,5, , , KSEL,ALL KSEL, S, LOC, Y, O KSEL, R, LOC, X, -580, 580 LSLK,S,1 ASLL,S,1 APLOT AMESH,ALL МАΤ,З, ! CONTA173 (CONTACT) TYPE,5, REAL,7, CMSEL, S, CONTACT NPLOT ESURF,,BOTTOM ESEL, S, TYPE, , 5, 6 /REPLOT ESURF,,REVE KEYOPT, 7, 3, 2 !(deslocamento das molas somente na direção Y global) NSEL,ALL NSEL, S, LOC, Y, 0, -800 NSEL, R, LOC, X, -310 NSEL, R, LOC, Z, 0 NSEL, R, LOC, Y, 0, -400 NPLOT CM,CHUMB1,NODE !(SIMETRIA) NSEL,ALL NSEL, S, LOC, Y, 0, -800 NSEL, R, LOC, X, -310 NSEL, R, LOC, Z, 160 NSEL, R, LOC, Y, 0, -400 NPLOT CM, CHUMB2, NODE ! (INTERNO) ! (PRIMEIRA MOLA, SIMETRIA) TYPE,7, REAL,10, CMSEL, S, CHUMB1 NSEL, R, LOC, Y, 0 *GET,MAXIMO,NODE,0,NUM,MAX, , *GET,MINIMO,NODE,0,NUM,MIN, , E, MINIMO, MAXIMO ! (DEMAIS MOLAS, SIMETRIA) TYPE,7, REAL,11, CMSEL, S, CHUMB1 NSEL, R, LOC, Y, -30 *GET, MAXIMO, NODE, 0, NUM, MAX, , *GET, MINIMO, NODE, 0, NUM, MIN, , E,MINIMO,MAXIMO CMSEL, S, CHUMB1

```
NSEL, R, LOC, Y, -60
*GET, MAXIMO, NODE, 0, NUM, MAX, ,
*GET, MINIMO, NODE, 0, NUM, MIN, ,
E,MINIMO,MAXIMO
CMSEL, S, CHUMB1
NSEL, R, LOC, Y, -95
*GET,MAXIMO,NODE,0,NUM,MAX, ,
*GET,MINIMO,NODE,0,NUM,MIN, ,
E, MINIMO, MAXIMO
CMSEL, S, CHUMB1
NSEL, R, LOC, Y, -130
*GET, MAXIMO, NODE, 0, NUM, MAX, ,
*GET,MINIMO,NODE,O,NUM,MIN, ,
E,MINIMO,MAXIMO
CMSEL, S, CHUMB1
NSEL, R, LOC, Y, -165
*GET, MAXIMO, NODE, 0, NUM, MAX, ,
*GET,MINIMO,NODE,0,NUM,MIN, ,
E,MINIMO,MAXIMO
CMSEL, S, CHUMB1
NSEL, R, LOC, Y, -200
*GET, MAXIMO, NODE, 0, NUM, MAX, ,
*GET,MINIMO,NODE,0,NUM,MIN, ,
E, MINIMO, MAXIMO
CMSEL, S, CHUMB1
NSEL, R, LOC, Y, -235
*GET, MAXIMO, NODE, 0, NUM, MAX, ,
*GET, MINIMO, NODE, 0, NUM, MIN, ,
E,MINIMO,MAXIMO
CMSEL, S, CHUMB1
NSEL, R, LOC, Y, -267.5
*GET,MAXIMO,NODE,0,NUM,MAX, ,
*GET,MINIMO,NODE,0,NUM,MIN, ,
E, MINIMO, MAXIMO
CMSEL, S, CHUMB1
NSEL, R, LOC, Y, -300
*GET, MAXIMO, NODE, 0, NUM, MAX, ,
*GET,MINIMO,NODE,0,NUM,MIN, ,
E,MINIMO,MAXIMO
CMSEL, S, CHUMB1
NSEL, R, LOC, Y, -332.5
*GET, MAXIMO, NODE, 0, NUM, MAX, ,
*GET, MINIMO, NODE, 0, NUM, MIN, ,
E,MINIMO,MAXIMO
CMSEL, S, CHUMB1
NSEL, R, LOC, Y, -365
*GET, MAXIMO, NODE, 0, NUM, MAX, ,
*GET,MINIMO,NODE,O,NUM,MIN, ,
E, MINIMO, MAXIMO
CMSEL, S, CHUMB1
NSEL, R, LOC, Y, -397.5
*GET, MAXIMO, NODE, 0, NUM, MAX, ,
*GET, MINIMO, NODE, 0, NUM, MIN, ,
```

E,MINIMO,MAXIMO

TYPE,7, ! (PRIMEIRA MOLA, INTERNO) REAL, 12, CMSEL,S,CHUMB2 NSEL, R, LOC, Y, 0 *GET, MAXIMO, NODE, 0, NUM, MAX, , *GET, MINIMO, NODE, 0, NUM, MIN, , E,MINIMO,MAXIMO TYPE,7, ! (DEMAIS MOLAS, SIMETRIA) REAL,13, CMSEL, S, CHUMB2 NSEL, R, LOC, Y, -30 *GET, MAXIMO, NODE, 0, NUM, MAX, , *GET,MINIMO,NODE,0,NUM,MIN, , E,MINIMO,MAXIMO CMSEL, S, CHUMB2 NSEL, R, LOC, Y, -60 *GET, MAXIMO, NODE, 0, NUM, MAX, , *GET, MINIMO, NODE, 0, NUM, MIN, , E,MINIMO,MAXIMO CMSEL, S, CHUMB2 NSEL, R, LOC, Y, -95 *GET,MAXIMO,NODE,0,NUM,MAX, , *GET,MINIMO,NODE,0,NUM,MIN, , E, MINIMO, MAXIMO CMSEL, S, CHUMB2 NSEL, R, LOC, Y, -130 *GET, MAXIMO, NODE, 0, NUM, MAX, , *GET,MINIMO,NODE,0,NUM,MIN, , E,MINIMO,MAXIMO CMSEL, S, CHUMB2 NSEL, R, LOC, Y, -165 *GET, MAXIMO, NODE, 0, NUM, MAX, , *GET, MINIMO, NODE, 0, NUM, MIN, , E,MINIMO,MAXIMO CMSEL, S, CHUMB2 NSEL, R, LOC, Y, -200 *GET, MAXIMO, NODE, 0, NUM, MAX, , *GET,MINIMO,NODE,0,NUM,MIN, , E, MINIMO, MAXIMO CMSEL, S, CHUMB2 NSEL, R, LOC, Y, -235 *GET, MAXIMO, NODE, 0, NUM, MAX, , *GET, MINIMO, NODE, 0, NUM, MIN, , E,MINIMO,MAXIMO CMSEL, S, CHUMB2 NSEL, R, LOC, Y, -267.5 *GET, MAXIMO, NODE, 0, NUM, MAX, , *GET,MINIMO,NODE,0,NUM,MIN, , E,MINIMO,MAXIMO CMSEL, S, CHUMB2 NSEL, R, LOC, Y, -300 *GET, MAXIMO, NODE, 0, NUM, MAX, , *GET,MINIMO,NODE,0,NUM,MIN, , E,MINIMO,MAXIMO

```
CMSEL, S, CHUMB2
NSEL, R, LOC, Y, -332.5
*GET, MAXIMO, NODE, 0, NUM, MAX, ,
*GET, MINIMO, NODE, 0, NUM, MIN, ,
E, MINIMO, MAXIMO
CMSEL, S, CHUMB2
NSEL, R, LOC, Y, -365
*GET, MAXIMO, NODE, 0, NUM, MAX, ,
*GET, MINIMO, NODE, 0, NUM, MIN, ,
E, MINIMO, MAXIMO
CMSEL, S, CHUMB2
NSEL, R, LOC, Y, -397.5
*GET, MAXIMO, NODE, 0, NUM, MAX, ,
*GET,MINIMO,NODE,0,NUM,MIN, ,
E,MINIMO,MAXIMO
ESEL, S, TYPE, , 7
EPLOT
ESEL, S, TYPE, , 1, 2
NSLE,S
CMSEL, U, CHUMB1
CMSEL, U, CHUMB2
NPLOT
CPINTF, ALL, 0001
CMSEL, S, CHUMB1
CMSEL, A, CHUMB2
ESEL, A, TYPE, ,1
CPINTF, UX, 0001
CPINTF,UZ,0001
FINISH
/SOLU
NSEL,ALL
NSEL, S, LOC, Y, -800
/AUTO, 1
/REP
D,ALL,UY,0, , , , , , ,
                                ! Impede o desloc. UY do bloco
NSEL, S, LOC, Z, 0
/AUTO, 1
/REP
D,ALL,UZ,0,,,,,,,,,,
D,ALL,ROTX,0,,,,,,,,
D,ALL,ROTY,0,,,,,,,,
                                 ! Impede o desloc. UZ do plano de simetria
                        ! Impede a rotação ROT_X do plano de simetria
! Impede a rotação ROT_Y do plano de simetria
NSEL, S, LOC, Y, -800
NSEL, R, LOC, X, 0
/AUTO, 1
/REP
D,ALL,UX,0, , , , , , , ,
                                ! Impede o desloc. UX do bloco
NSEL, S, LOC, Y, 25
NSEL, R, LOC, X, 0
NSEL, R, LOC, Z, 140
                                ! Impede o desloc. UX da placa
D,ALL,UX,0, , , , , , , ,
```

Md aux = $1.0 \times Md$ $Nd_aux = 1.0*Nd$ = D - tfV = D - tI = (Nd_aux/Api+(Md_aux/IZp)*(y/2))*tf Syf1 !Tensão mesa esquerda Syf2 = $(Nd_aux/Api-(Md_aux/IZp)*(y/2))*tf$!Tensão mesa direita = -Syf1 Syf1 = -Syf2 Syf2 = (Nd_aux/Api+(Md_aux/IZp)*(y/2))*(tw/2) !Tensão no lado esquerdo da alma Syw1 = (Nd_aux/Api-(Md_aux/IZp)*(y/2))*(tw/2) = -Syw1 !Tensão no lado direito da alma Syw2 Syw1 = -Syw2 Syw2 ! Pressão nas mesas LSEL, S, LOC, Y, 525 LSEL, R, LOC, X, -213.8 SFL, ALL, PRES, Syf1, , LSEL,S,LOC,Y,525 LSEL, R, LOC, X, 213.8 SFL, ALL, PRES, Syf2, , ! Pressão na alma LSEL, S, LOC, Y, 525 = Syw1 = (108.8/y)*(Syw2-Syw1)+Syw1 Sy1 Sy2 SFL, 1279, PRES, Sy1, Sy2, = Sy2 = (213.8/y)*(Syw2-Syw1)+Syw1 Sy1 Sy2 SFL,1280, PRES, Sy1, Sy2, = Sy2 = (318.8/y)*(Syw2 - Syw1)+Syw1 Sy1 Sy2 SFL,1281,PRES,Sy1,Sy2, = Sy2 = Syw2 Sy1 Sy2 SFL, 1282, PRES, Sy1, Sy2, LSEL, S, LOC, Y, 525 LPLOT /VIEW, 1, 1, 1, 1, 1 /ANG,1 /REP, FAST /AUTO, 1 /REP /PSF, PRES, NORM, 1 /VSCALE,1,10,0 /REPLOT SFTRAM ! Transfere a tensão das linhas p/ os elementos TIME,100 ! Valor para o time NSUBST, 5, 10, 5 ! Valor do delta time CNVTOL,F, ,0.05,2, , ALLSEL, ALL SOLVE FINISH /EXIT, SOLU

A.2 – Modelo 02 – Força normal de compressão com momento fletor – chumbador tipo barra reta (situação 04).

/COM, == /COM, == /COM, ==	M, ====================================				
/COM, /COM, AU /COM, OR /COM, CO /COM,	TOR: IENTADOR: -ORIENTADOR:	Marcelo Melo Martins Prof. Ricardo Hallal Fakury Prof. Fernando Amorim de Paula			
/COM, /COM, OB /COM,	SERVAÇÕES:	1 - Não utilizar o comando para comprimir a numeração de qualquer entidade;			
/COM, /COM, /COM,		2 - Uso da simetria do modelo em relação ao plano XY.			
/COM, /COM, AL	TERAÇÕES:	1 - Existem apenas chumbadores tracionados			
/COM, /COM,		2 - Gap = 31.5mm p/ a placa e de 5mm p/ as porcas			
/COM, /COM,		3 - Surperfície inferior do bloco na cota de Z = -400mm.			
/COM, /COM,		4 - Contato entre porcas inferiores e bloco.			
/COM, /COM,		5 - Não há porcas na placa de base.			
/COM, /COM,		6 - Porca octaédrica			
/COM, /COM,		7 - Malha do bloco refinada			
/COM, /COM,		8 - Variação do Carregamento em 5 etapas 0,25,50,75,100			
/COM, /COM,					
/COM, ==					
/TITLE,	MODELO C/ 6 C	HUMB. DE BARRA RETA COM PORCA SOLDADA			
/PLOPTS,	LOGO,0				
KEYW, PR_ /PMETH, O	STRUC , 1 FF				
/PREP7					
/COM, TI	POS DE ELEMEN'	TOS ************************************			
ET,1,SOL	ID45 ! BL	OCO DE CONCRETO			
ET,2,BEA	ET,2,BEAM4 ! CHUMBADORES (COMPRESSÃO e TRAÇÃO)				
ET,3,LIN	ET,3,LINK10 ! LIGAÇÃO ENTRE PLACA E CHUMBADORES				
ET,4,SHE	F,4,SHELL63 ! ELEMENTO CONVENCIONAL DA PLACA ! PORCAS ! PERFIL METÁLICO (alma) ! PERFIL METÁLICO (mesas)				
ET,5,CON	,5,CONTA173 ! ELEMENTOS DO CONTATO DA PLACA DE BASE				
ET,6,TAR	,6,TARGE170 ! ELEMENTOS DE CONTATO DO BLOCO DE CONCRETO				
ET,7,COMBIN39 ! ELEMENTOS DE MOLA (CHUMBADORES E BLOCO)					
/COM, DADOS GERAIS ************************************					
! Carreg Nd =	amento = -1520	!Força axial de compressão no pilar (kN)			

Md = 398250 !Momento fletor de cálculo no pilar (kN.mm) ! Constantes Geométricas !Altura do perfil d = 450= 22.4 tf !Espessura das mesas do pilar = 12.5 !Espessura da alma do pilar tw = 63 !Espessura da placa de base t.p1 = 500 !Espessura da placa na região das porcas tp2 = 12.7 !Diâmetro do chumbador (mm) = (3.1419*Dch**2)/4 !Área do chumbador fora do plano de simetria = ap1/2 !Área do chumbador no plano de simetria Dch ap1 ap2 = ap1/2 = Md/Nd !Excentricidade X da carga normal ex !Área do perfil do pilar (mm²) = 25230Api = 991670000 !Inércia em torno do eixo Z do modelo(mm4) IZp = (3.14159*Dch**4)/64 !Momento de inércia do chumbador IXch ! Constantes Físicas = 205 !Módulo de elasticidade do aço (kN/mm²) Ea Modulo de elasticidade en electronica en electronica en electronica e electronica electronica electron = 0.3 nua !Módulo de elasticidade do concreto (kN/mm²) !Coeficiente de Poisson do concreto = 28.8 Еc = 0.19 nuc KN = 1000!Parâmetro de rigidez normal entre a placa e o bloco (kN/mm) UIMP,1,EX, , ,Ea, UIMP,1,NUXY, , ,nua, ! Aço UIMP,2,EX, , ,Ec, UIMP,2,NUXY, , ,nuc, ! Concreto UIMP,3,MU, , ,0, ! Contato TB,DP,2 ! Drucker-Prager TBDATA,1,0.433012,0.0028867,0 R,1,ap1,IXch,IXch,Dch,Dch, , !Chumbadores internos RMORE, ,IXch/100000, , , , , R,2,ap2,IXch/2,IXch/2,Dch/2,Dch/2,, !Chumbadores simetria RMORE, ,IXch/200000, , , , , , R,3,tp1, , , , , , !Placa convencional RMORE, , , , R,4,tp2, , , , , , !Placa - Porcas RMORE, , , , R,5,tw, , , , , , , !Alma do pilar RMORE, , , , R,6,tf, , , , , , !Mesa do pilar RMORE, , , , R,7, , ,250,0.1,-31.5001, , !Contato entre placa e bloco RMORE, , , , , , , , !ligação placa-chumb interno R.8.ap1. R,9,ap2, !ligação placa-chumb simetria R,10, , ,250,0.1,-5.001, , !Contato entre porcas inferiores e bloco RMORE, , , , , , , ! Concreto

/VIEW,1, ,-1 /ANG, 1		
K,1,800,0,0 K,2,455,0,0 K,3,310,0,0	!	Chumbador X(+) Z=0
K,4,-310,0,0 K,5,-455,0,0 K,6,-800,0,0 K,7,800,0,250 K,8,455,0,160	!	Chumbador X(-) Z=0
K,9,310,0,160 K,10,-310,0,160 K,11,-455,0,160 K,12,-800,0,250 K,13,800,0,500 K,14,455,0,285 K,15,310,0,285 K,16,-310,0,285 K,17,-455,0,285 K,18,-800,0,500 K,19,310,0,500 K,20,-310,0,500	!	Chumbador X(+) Z=160 ! Chumbador X(-) Z=160

KPLOT

/COM, CRIAÇÃO DAS LINHAS C/ DIVISÕES DO PLANO PRINCIPAL *********** I = 1*DO,K,1,6 L,I,(I+6),7,,,,,,,, I = I + 1 *ENDDO I = 7*DO,K,1,6 L,I,(I+6),6, , , , , , , , I = I + 1*ENDDO I = 1*DO,K,1,5 LSTR,I,(I+1) I = I + 1*ENDDO LESIZE,13, , ,7,0.33, , , LESIZE,14, , ,7, , , , LESIZE,15, , ,20, , , , LESIZE,16, , ,7, , , , LESIZE,17, , ,7,3, , , I = 7*DO,K,1,5 LSTR, I, (I+1) I = I + 1*ENDDO LESIZE,18, , ,7,0.33, , , LESIZE,19, ,7, , , LESIZE,20, ,20, , , LESIZE,21, ,7, , , LESIZE,22, ,7,3, , I = 13*DO,K,1,5 LSTR,I,(I+1) I = I + 1*ENDDO ^ENDDO
LESIZE,23, , ,7,0.33, , ,
LESIZE,24, , ,7, , , ,
LESIZE,25, , ,20, , , ,
LESIZE,26, , ,7, , , ,
LESIZE,27, , ,7,3, , , L,15,19,7,3, , , , , , L,16,20,7,3, , , , , , , L,13,19,7, , , , , , , , L,19,20,10, , , , , , , , ,

```
L,20,18,7, , , , , , , ,
I = 13
*DO,K,1,5
AL, I, (I-11), (I+5), (I-12)
I = I + 1
*ENDDO
I = 18
*DO,K,1,5
AL, I, (I-10), (I+5), (I-11)
I = I + 1
*ENDDO
AL,23,24,28,30
AL,25,29,31,28
AL,26,27,32,29
/VIEW,1,0.47,0.264,0.842
/ANG,1
/REP,FAST
VEXT,ALL, , , ,-400, , , ,
!ASEL, S, LOC, Y, -400
!VEXT,ALL, , , ,-400, , , ,
ALLSEL,ALL
/REP,FAST
LSEL, S, LOC, Y, -200
LPLOT
LESIZE,ALL, , ,10, , , ,
!LSEL, S, LOC, Y, -600
!LPLOT
!LESIZE,ALL, , ,6,3.33, , ,
/VIEW,1,1,1,1
/ANG,1
/REP,FAST
VPLOT
TYPE,1,
MAT,2,
!REAL,11,
!VSEL,U, , ,25
VSEL,U, , ,12
MSHKEY,1
VMESH,ALL
VSEL,ALL
VSEL,S, , ,12
MSHKEY,1
VMESH, ALL
ALLSEL,ALL
EPLOT
```

```
ERASE
KPLOT
/AUTO, 1
/REP
! X(-) E Z = 0 *******************
K,61,310,0,0
                       ! Chumbador X(+) Z=0
                                                       (137)
                     ! Chumbador X(-) Z=0
K,62,-310,0,0
                                                       (138)
                       ! Chumbador X(+) Z=160 (139)
к,63,310,0,160
                        ! Chumbador X(-) Z=160
к,64,-310,0,160
                                                               (140)
K,65,310,-405,0
                               ! Chumbador X(+) Z=0

      K, 66, -310, -405, 0
      ! Chumbador X(-) Z=0

      K, 67, 310, -405, 160
      ! Chumbador X(-) Z=160

      K, 68, -310, -405, 160
      ! Chumbador X(-) Z=160

NUMSTR, LINE, 137,
I = 61
*DO,K,1,4
L,I,(I+4),12, , , , , , ,
 I = I + 1
*ENDDO
! KEYPOINTS DA PLACA *****
к,450,-395,31.5,0
к,451,-330,31.5,0
K,452,-310,31.5,0
                       ! CHUMBADOR(X- e Z=0)
к,453,-290,31.5,0
к,454,-250,31.5,0
к,455,-213.8,31.5,0
к,456,-105,31.5,0
к,457,0,31.5,0
к,458,105,31.5,0
к,459,213.8,31.5,0
к,460,250,31.5,0
к,461,290,31.5,0
                              ! CHUMBADOR(X+ e Z=0)
к,462,310,31.5,0
к,463,330,31.5,0
к,464,395,31.5,0
KSEL,S,KP, ,450,464
KGEN,2,ALL, , , , ,20,15,0,0
KSEL,S,KP, ,465,479
KGEN,2,ALL, , , , ,120,15,0,0
KSEL,S,KP, ,480,494
KGEN,2,ALL, , , , ,20,15,0,0
KSEL,S,KP, ,510,524
KGEN,2,ALL, , , , ,45,15,0,0
KSEL,S,KP, ,525,539
KGEN,2,ALL, , , , ,20,15,0,0
KSEL,S,KP, ,410,554
KPLOT
/VIEW,1,1,1,1
/ANG,1
/REP,FAST
/AUTO, 1
/REP
! CRIAÇÃO DAS LINHAS************
NUMSTR, LINE, 1090,
! INICIA A NUMERAÇÃO DAS NOVAS LINHAS EM 1090
```

TYPE,2, MAT,1, ! CHUMBADORES DO PLANO DE SIMETRIA REAL,2, LSEL,S,LINE, ,138 MSHKEY,1 LMESH,ALL TYPE,2, MAT,1, REAL,1, LSEL,S,LINE, ,140 MSHKEY,1 LMESH, ALL /COM, COMPONENTE DOS NÓS E ELEMENTOS DA PROJEÇÃO DA PLACA NO BLOCO ************** !ESEL,S,TYPE,,1 !NSLE,S !NPLOT !NSEL, R, LOC, Y, 0 !/REPLOT !NSEL, R, LOC, X, -460, 460 !/REPLOT !NSEL, R, LOC, Z, 0, 310 !/REPLOT !CM, TARGET, NODE !ESLN,R !EPLOT !CM,E TARGET,ELEM ALLSEL,ALL KSEL,S,KP, ,450,554 KPLOT /VIEW, 1, 1, 1, 1, 1 /ANG,1 /REP,FAST /AUTO, 1 /REP ! LINHAS NA DIREÇÃO DE "X" I = 450*DO,K,1,7 L,I,(I+1),3, , , , , , , , I = I + 15*ENDDO I = 451*DO,K,1,7 L,I,(I+1),1, , , , , , , , I = I + 15*ENDDO I = 452*DO,K,1,7 L,I,(I+1),1, , , , , , , , I = I + 15*ENDDO T = 453*DO,K,1,7 L,I,(I+1),2, , , , , , , , I = I + 15*ENDDO I = 454*DO,K,1,7 L,I,(I+1),3, , , , , , , , I = I + 15*ENDDO I = 455*DO,K,1,7

L,I,(I+1),4, , , , , , , ,

```
I = I + 15
*ENDDO
I = 456
*DO,K,1,7
L,I,(I+1),3, , , , , , , ,
 I = I + 15
*ENDDO
I = 457
*DO,K,1,7
L,I,(I+1),3, , , , , , , ,
 I = I + 15
*ENDDO
T = 458
*DO,K,1,7
L,I,(I+1),4, , , , , , , ,
 I = I + 15
*ENDDO
I = 459
*DO,K,1,7
L,I,(I+1),3, , , , , , , ,
 I = I + 15
*ENDDO
I = 460
*DO,K,1,7
L,I,(I+1),2, , , , , , , ,
I = I + 15
*ENDDO
I = 461
*DO,K,1,7
L,I,(I+1),1, , , , , , , ,
 I = I + 15
*ENDDO
I = 462
*DO,K,1,7
L,I,(I+1),1, , , , , , , ,
 I = I + 15
*ENDDO
I = 463
*DO,K,1,7
L,I,(I+1),3, , , , , , , ,
 I = I + 15
*ENDDO
! LINHAS NA DIREÇÃO DE "Z"
I = 450
*DO,K,1,15
L,I,(I+15),1, , , , , , , ,
I = I + 1
*ENDDO
I = 465
*DO,K,1,15
L,I,(I+15),5, , , , , , , ,
 I = I + 1
*ENDDO
I = 480
*DO,K,1,15
L,I,(I+15),1, , , , , , ,
 I = I + 1
*ENDDO
I = 495
*DO,K,1,15
L,I,(I+15),1, , , , , , , ,
 I = I + 1
*ENDDO
I = 510
*DO,K,1,15
L,I,(I+15),2, , , , , , , ,
I = I + 1
*ENDDO
I = 525
*DO,K,1,15
L,I,(I+15),1, , , , , , , ,
I = I + 1
*ENDDO
```

NUMSTR, AREA, 870, F = 99H = 98I = 1090 *DO,K,1,14 AL, I, (I+F), (I+1), (I+H) I = I + 7F = F - 6H = H - 6*ENDDO F = 113 H = 112 I = 1091 *DO,K,1,14 AL, I, (I+F), (I+1), (I+H) I = I + 7F = F - 6Н = Н - 6 *ENDDO F = 127H = 126 I = 1092 *DO,K,1,14 AL, I, (I+F), (I+1), (I+H) I = I + 7F = F - 6Н = Н - 6 *ENDDO F = 141H = 140I = 1093 *DO,K,1,14 AL, I, (I+F), (I+1), (I+H) I = I + 7F = F - 6. Н = Н - 6 *ENDDO F = 155н = 154 I = 1094*DO,K,1,14 AL, I, (I+F), (I+1), (I+H) I = I + 7F = F - 6Н = Н - б *ENDDO F = 169H = 168I = 1095*DO,K,1,14 AL, I, (I+F), (I+1), (I+H) I = I + 7F = F - 6Н = Н - б *ENDDO KSEL,S,KP, ,61,554 LSLK,S,1 LPLOT ASEL,S,AREA, ,870,953 !ASEL,U,AREA, ,913 !ASEL,U,AREA, ,914 !ASEL,U,AREA, ,899

!ASEL,U,AREA, ,900 !ASEL,U,AREA, ,871 !ASEL,U,AREA, ,872 !ASEL,U,AREA, ,923 !ASEL,U,AREA, ,924 !ASEL,U,AREA, ,909 !ASEL,U,AREA, ,910 !ASEL,U,AREA, ,881 !ASEL,U,AREA, ,882 TYPE,4, MAT,1, REAL,3, MSHKEY,1 AMESH, ALL ASEL,S,AREA, ,870,953 !TYPE,4, !MAT,1, !REAL,4, !AMESH,913 !AMESH,914 !AMESH,899 !AMESH,900 !AMESH,871 !AMESH,872 !AMESH,923 !AMESH,924 !AMESH,909 !AMESH,910 !AMESH,881 !AMESH,882 ESEL, S, REAL, , 3, 4 NSLE,S CM, CONTACT, NODE к,555,-213.8,531.5,225 к,556,-213.8,531.5,180 к, 557, -213.8, 531.5, 160 K,558,-213.8,531.5,140 к,559,-213.8,531.5,20 К,560,-213.8,531.5,0 к,561,-105,531.5,0 к,562,0,531.5,0 к,563,105,531.5,0 к,564,213.8,531.5,0 к,565,213.8,531.5,20 к,566,213.8,531.5,140 к,567,213.8,531.5,160 K,568,213.8,531.5,180 к,569,213.8,531.5,225 KPLOT /AUTO, 1 /REP I = 555*DO,K,1,14 LSTR, I, (I+1) I = I + 1*ENDDO LESIZE,1278, , ,2, , , , LESIZE,1279, , ,1, , , , LESIZE,1280, , ,1, , , , LESIZE,1281, , ,5, , , ,

LESIZE,1282, , ,1, , , LESIZE,1283, , ,4, , , LESIZE,1284, , ,3, , , LESIZE,1285, , ,3, , , , LESIZE,1286, , ,4, , , LESIZE,1287, , ,1, , , LESIZE,1288, , ,5, , , LESIZE,1289, , ,1, , , LESIZE,1290, , ,1, , , , LESIZE,1291, , ,2, , , L,530,555,16,2, , , , , , L,515,556,16,2, , , , , , L,500,557,16,2, , , , , , L,485,558,16,2, , , , , , L,470,559,16,2, , , , , , L,455,560,16,2, , , , , , L,456,561,16,2, , , , , , L,457,562,16,2, , , , , , L,458,563,16,2, , , , , , L,459,564,16,2, , , , , , L,474,565,16,2, , , , , , L,489,566,16,2, , , , , , L,504,567,16,2, , , , , , L,519,568,16,2, , , , , , L,534,569,16,2, , , , , , AL,1278,1293,1253,1292 AL, 1279, 1294, 1238, 1293 AL,1280,1295,1223,1294 AL, 1281, 1296, 1208, 1295 AL,1282,1297,1193,1296 AL, 1283, 1298, 1125, 1297 AL,1284,1299,1132,1298 AL,1285,1300,1139,1299 AL,1286,1301,1146,1300 AL, 1287, 1302, 1197, 1301 AL,1288,1303,1212,1302 AL,1289,1304,1227,1303 AL,1290,1305,1242,1304 AL,1291,1306,1257,1305 ! Malha de uma Mesa do pilar TYPE,4, MAT,1, REAL,6, ASEL, S, LOC, Y, 281.5 ASEL, R, LOC, X, -213.8 MSHKEY,1 AMESH, ALL ! Malha da outra Mesa do pilar TYPE,4, MAT,1, REAL,6, ASEL, S, LOC, Y, 281.5 ASEL, R, LOC, X, 213.8 MSHKEY,1 AMESH,ALL ! Malha da Alma do pilar TYPE,4, MAT,1, REAL, 5, ASEL, S, LOC, Y, 281.5 ASEL, R, LOC, Z, O MSHKEY,1 AMESH,ALL ALLSEL,ALL EPLOT

/NUMBER,1 /PNUM, REAL, 1 /REPLOT /COM, ELEMENTOS DE LIGAÇÃO ENTRE A PLACA E OS CHUMBADORES *********************** L,462,61,1, , , , , , , , ! Chumbador X(+) Z=0 L,507,63,1, , , , , , , , L,452,62,1, , , , , , , , , ! Chumbador X(+) Z=160 ! Chumbador X(-) Z=0 L,497,64,1, , , , , , , , ! Chumbador X(-) Z=160 LPLOT /AUTO,1 /REP ! Chumbador X(+) Z=0 (tracionado) MAT,1, TYPE,2, REAL,2, LSEL,S,LOC,Y,15.75 LSEL, R, LOC, Z, 0 LSEL, R, LOC, X, -310 MSHKEY,1 LMESH,ALL MAT,1, ! Chumbador X(+) Z=160 (tracionado) TYPE,2, REAL,1, LSEL, S, LOC, Y, 15.75 LSEL, R, LOC, Z, 160 LSEL, R, LOC, X, -310 MSHKEY,1 LMESH, ALL TYPE,6, ! TARGE170 (TARGET) REAL,7, !GCGEN,CONTACT,TARGET,5, , , KSEL,ALL KSEL,S,LOC,Y,O KSEL, R, LOC, X, -455, 455 KSEL, R, LOC, Z, 0, 285 LSLK,S,1 ASLL,S,1 APLOT AMESH,ALL ! CONTA173 (CONTACT) TYPE,5, REAL,7, CMSEL, S, CONTACT NPLOT ESURF, , BOTTOM ESEL,S,TYPE, ,5 /REPLOT ESURF, , REVE ! Porcas p/ X(-) K,700, (-310+25),-405,0 K,701, (-310+17.67),-405,17.67 к,702,-310,-405,25 K,703,(-310-17.67),-405,17.67

K,704, (-310-25),-405,0 K,705,(-310+25),-405,160 K,706, (-310+17.67),-405, (160+17.67) K,707,-310,-405,(160+25) K,708, (-310-17.67),-405, (160+17.67) K,709,(-310-25),-405,160 K,710, (-310-17.67), -405, (160-17.67) K,711,-310,-405,(160-25) K,712, (-310+17.67),-405, (160-17.67) KSEL, ALL NUMSTR, LINE, 1500, ! INICIA A NUMERAÇÃO DAS NOVAS LINHAS EM 1500 L,700,701,1, , , , , , , , ! Linha 1500 L,703,704,1, , , , , , , , L,700,66,1, , , , , , , , L,701,66,1, , , , , , , , ! Linha 1505 L,702,66,1, , , , , , , , L,703,66,1, , , , , , , , L,704,66,1, , , , , , , L,705,706,1, , , , , , , L,706,707,1, , , , , , , , ! Linha 1510 L,707,708,1, , , , , , , , L,708,709,1, , , , , , , L,709,710,1, , , , , , , L,710,711,1, , , , , , , , L,711,712,1, , , , , , , , ! Linha 1515 L,712,705,1, , , , , , , , L,705,68,1, , , , , , , L,706,68,1, , , , , , , L,707,68,1, , , , , , , , L,708,68,1, , , , , , , , ! Linha 1520 L,709,68,1, , , , , , , L,710,68,1, , , , , , , L,711,68,1, , , , , , , , L,712,68,1, , , , , , , NUMSTR, AREA, 1010 AL,1504,1500,1505 ! Área 1010 AL,1505,1501,1506 AL,1506,1502,1507 AL,1507,1503,1508 AL,1517,1509,1518 AL,1518,1510,1519 AL,1519,1511,1520 AL,1520,1512,1521 AL,1521,1513,1522 AL,1522,1514,1523 AL,1523,1515,1524 AL,1524,1516,1517 ASEL, S, LOC, Y, -405 TYPE,4, MAT,1, REAL,4, MSHKEY,0 AMESH, ALL ESEL, S, REAL, ,1,4 EPLOT /ANG,1 /REP,FAST

TYPE,6, ! TARGE170 (TARGET) REAL, 10, !GCGEN,CONTACT,TARGET,5, , , !ASEL, S, LOC, Y, -400 ! APLOT !AMESH,ALL ESEL, S, TYPE, , 1 NSLE,S NSEL, R, LOC, Y, -400 NPLOT ESURF,,BOTTOM ESURF,,REVE ! CONTA173 (CONTACT) TYPE,5, REAL,10, NSEL, S, LOC, Y, -100, -405 ESLN,S ESEL, R, TYPE, , 4 NSLE,R /AUTO,1 /REP NPLOT ESURF,,BOTTOM ESEL, S, REAL, , 10 !Posiciona o sentido da normal do contato ESURF,,REVE !REPLOT !NSEL, S, LOC, Y, 1031.5 !NPLOT !/VIEW,1,1,1,1 !/ANG,1 !/REP,FAST !/AUTO, 1 !/REP !NSEL, R, LOC, X, 0 !*GET, NoMaster, NODE, 0, NUM, MAX, , !NSEL,ALL !NSEL, S, LOC, Y, 1031.5 !CERIG,NoMaster,ALL,ALL, , , , /COM, COUPLE ENTRE OS NÓS DOS CHUMB. E DO CONCRETO ESEL, S, TYPE, , 1, 2 NSLE,S NSEL, R, LOC, Y, 0, -330 NPLOT CPINTF,UX,5.1 CPINTF,UZ,5.1 FINISH /SOLU

NSEL,ALL NSEL, S, LOC, Y, -400 NSEL, R, LOC, X, (-310-50), (-310+50) NSEL, R, LOC, Z, 0, 50 CM, NOS A, NODE NSEL,ALL NSEL, S, LOC, Y, -400 NSEL, R, LOC, X, (-310-50), (-310+50) NSEL, R, LOC, Z, (160-50), (160+50) CM, NOS_B, NODE NSEL,ALL NSEL, S, LOC, Y, -400 CMSEL, U, NOS A CMSEL, U, NOS B NPLOT /AUTO, 1 /REP ! Impede o desloc. UY do bloco D,ALL,UY,0, , , , , , , NSEL, S, LOC, Z, 0 /AUTO, 1 /REP D.ALL,UZ,0, , , , , , , , ,! Impede o desloc. UZ do plano de simeD.ALL,ROTX,0, , , , , , , ,! Impede a rotação ROT_X do plano de simetriaD.ALL,ROTY,0, , , , , , , ,! Impede a rotação ROT_Y do plano de simetria ! Impede o desloc. UZ do plano de simetria NSEL, S, LOC, Y, -400 NSEL, R, LOC, X, 0 CMSEL, U, NOS A CMSEL, U, NOS B /AUTO, 1 /REP D,ALL,UX,0, , , , , , , , ! Impede o desloc. UX do bloco NSEL, S, LOC, Y, 31.5 NSEL, R, LOC, X, 0 NSEL, R, LOC, Z, 140 D,ALL,UX,0, , , , , , , , ! Impede o desloc. UX da placa = D - tfV = (Nd/Api+(Md/IZp)*(y/2))*tf !Tensão mesa esquerda = (Nd/Api-(Md/IZp)*(y/2))*tf !Tensão mesa direita Syf1 Syf2 Syf1 = -Syf1 Syf2 = -Syf2 Syw1 = (Nd/Api+(Md/IZp)*(y/2))*(tw/2) !Tensão no lado esquerdo da alma = (Nd/Api-(Md/IZp)*(y/2))*(tw/2) !Tensão no lado direito da alma Syw2 = -Syw1 Syw1 = -Syw2 Syw2 ! Pressão nas mesas LSEL, S, LOC, Y, 531.5 LSEL, R, LOC, X, -213.8 SFL, ALL, PRES, Syf1, , LSEL, S, LOC, Y, 531.5 LSEL, R, LOC, X, 213.8 SFL, ALL, PRES, Syf2, , ! Pressão na alma LSEL, S, LOC, Y, 531.5 Sy1 = Syw1 = (108.8/y) * (Syw2-Syw1) +Syw1 Sv2 SFL,1283,PRES,Sy1,Sy2, Sy1 = Sy2 = (213.8/y) * (Syw2-Syw1)+Syw1 Sy2

```
SFL,1284, PRES, Sy1, Sy2,
Sy1 = Sy2
Sy2 = (318.8/y)*(Syw2 - Syw1)+Syw1
SFL,1285,PRES,Sy1,Sy2,
Sy1 = Sy2
Sy2 = Syw2
SFL,1286,PRES,Sy1,Sy2,
LSEL,S,LOC,Y,531.5
LPLOT
/VIEW,1,1,1,1
/ANG,1
/REP,FAST
/AUTO, 1
/REP
/PSF, PRES, NORM, 1
/VSCALE,1,10,0
/REPLOT
SFTRAM
         ! Transfere a tensão das linhas p/ os elementos
ANTYPE,0
                                           ! Análise estática
TIME,100
                                          ! Valor para o time
NSUBST, 5, 10, 5
CNVTOL, F, ,0.05, 2, ,
                                          ! Valor do delta time
ALLSEL,ALL
```

SOLVE FINISH /EXIT,SOLU

A.3 – Modelo 03 – Compressão axial (HPL300).

```
/COM,
/COM,
/COM,
/COM, ORIENTADOR: Marcelo Melo Martins
/COM, ORIENTADOR: Prof. Ricardo Hallal Fakury
/COM, CO-ORIENTADOR: Prof. Fernando Amorim de Paula
/COM,
/COM,
/COM, OBSERVAÇÕES: 1 - Não utilizar o comando para comprimir a numeração de
/COM,
                  qualquer entidade;
/COM,
/COM,
               2 - Unidade de comprimento = mm, unidade de força = kN.
/COM,
/COM,
/COM,
/COM, ALTERACOES: 1 - Ec (2880 kN/cm<sup>2</sup>) e poison (0.19) do concreto
/COM,
/COM,
               2 - Elem. de viga entre placa e chumb. tracionado
/COM,
/COM,
               3 - Concreto c/ Drucker-Prager
/COM,
/COM, ______
/TITLE, HPL 300 - t=50mm
/PLOPTS,LOGO,0
KEYW, PR STRUC, 1
/PMETH, OFF
/PREP7
! BLOCO DE CONCRETO
ET,1,SOLID45
ET,2,SHELL63
           ! ELEMENTO CONVENCIONAL DA PLACA
           ! ELEMENTO ENRIJECIDO DA PLACA (porcas)
           ! PERFIL METÁLICO (alma)
           ! PERFIL METÁLICO (mesas)
ET, 3, CONTA173 ! ELEMENTOS DO CONTATO DA PLACA DE BASE
ET,4,TARGE170 ! ELEMENTOS DE CONTATO DO BLOCO DE CONCRETO
```

! Con	stantes Geométricas	
d	= 290	!Altura do perfil
bf	= 300	!Largura do perfil
tf	= 14	!Espessura das mesas do pilar
tw	= 8.5	!Espessura da alma do pilar
tp	= 50	!Espessura da placa de base
Ар	= 11300	!Área do perfil do pilar (mm²)
Н	= 315	!Comprimento da placa de base
В	= 325	!Largura da placa de base
Apl	= H*B	
Hb	= (4*Apl*H/B)**0.5	!Comprimento do bloco de concreto
Bb	= 4*Apl/Hb	!Largura do bloco de concreto
Ab	= 400	!Altura do bloco
gap	= tp/2	!Distancia entre a placa e o bloco

! Carregamento

Pd = 1997.6 Sd = Pd/Ap !kN !Pressão na seção do pilar (kN/mm²) ! Constantes Físicas Ea= 205!Módulo de elasticidade do aço (kN/mm²)nua= 0.3!Coeficiente de Poisson do açoEc= 28.8!Módulo de elasticidade do concreto (kN/mm²)nuc= 0.19!Coeficiente de Poisson do concreto !Divisões DIV1 = 10 !Placa (mesas) = 14 DTV2 !Placa (alma) = 12 DIV3 !Bloco (ortogonais) DIV4 = 7 !Bloco (inclinadas) = 10 DIV5 !Bloco (extrude) = 7 DTV6 !Bloco (extrude) UIMP,1,EX, , ,Ea, UIMP,1,NUXY, , ,nua, ! Aço UIMP,2,EX, , ,Ec, UIMP,2,NUXY, , ,nuc, ! Concreto UIMP,3,MU, , ,0, ! Elementos de Contato TB,DP,2 ! Drucker-Prager TBDATA,1,0.433012,0.0028867,0 R,1,tp, , , , , , !Placa convencional RMORE, , , , R,2,tw, , , , , , !Alma do pilar RMORE, , , , R,3,tf, , , , , , !Mesa do pilar RMORE, , , , R,4, , ,80,0.1,-(gap+0.001), , !Contato entre placa e bloco RMORE, , , , , , , /AUTO,1 /REP K,1,-H/2,gap,-B/2 K,2,-(d-tf)/2,gap,-B/2 K,3,(d-tf)/2,gap,-B/2 K,4,H/2,gap,-B/2 K,5,-H/2,gap,-bf/2 K, 6, -(d-tf)/2, gap, -bf/2 K,7,(d-tf)/2,gap,-bf/2 K,8,H/2,gap,-bf/2 K,9,-H/2,gap,0 K,10,-(d-tf)/2,gap,0 K,11,(d-tf)/2,gap,0 K,12,H/2,gap,0 K,13,-H/2,gap,bf/2 K,14,-(d-tf)/2,gap,bf/2 K,15,(d-tf)/2,gap,bf/2 K,16,H/2,gap,bf/2 K,17,-H/2, gap, B/2 K,18,-(d-tf)/2,gap,B/2 K,19,(d-tf)/2,gap,B/2 K,20,H/2,gap,B/2 К,21,-H/2,0,-B/2

```
K,22,H/2,0,-B/2
K,23,-H/2,0,B/2
K,24,H/2,0,B/2
K,25,-Hb/2,0,-Bb/2
K,26,Hb/2,0,-Bb/2
K,27,-Hb/2,0,Bb/2
K,28,Hb/2,0,Bb/2
KPLOT
/VIEW,1,,1
/ANG, 1
/REP,FAST
! Linhas verticais
I = 1
*DO,K,1,4
L,I,(I+4),2, , , , , , , ,
I = I + 1
*ENDDO
I = 5
*DO,K,1,4
L,I,(I+4),DIV1, , , , , , ,
 I = I + 1
*ENDDO
I = 9
*DO,K,1,4
L,I,(I+4),DIV1, , , , , , ,
 I = I + 1
*ENDDO
I = 13
*DO,K,1,4
L,I,(I+4),2, , , , , , , ,
I = I + 1
*ENDDO
! Linhas horizontais
I = 1
*DO,K,1,5
L,I,(I+1),2, , , , , , , ,
I = I + 4
*ENDDO
I = 2
*DO,K,1,5
L,I,(I+1),DIV2, , , , , , ,
 I = I + 4
*ENDDO
T = 3
*DO,K,1,5
L,I,(I+1),2, , , , , , , ,
 I = I + 4
*ENDDO
NUMSTR, LINE, 51,
L,26,25,DIV3, , , , , , ,
L,21,22,DIV3, , , , , , ,
L,24,23,DIV3, , , , , , ,
L,27,28,DIV3, , , , , , ,
L,25,27,DIV3, , , , , , ,
L,21,23,DIV3, , , , , , , ,
L,24,22,DIV3, , , , , , ,
L,28,26,DIV3, , , , , , ,
L,25,21,DIV4, , , , , , , ,
```
```
L,22,26,DIV4, , , , , , , ,
L,24,28,DIV4, , , , , , , ,
L,23,27,DIV4, , , , , ,
F = 16
H = 17
I = 1
*DO,K,1,3
AL,I,(I+F),(I+1),(I+H)
I = I + 1
F = F + 4
H = H + 4
*ENDDO
F = 13
H = 14
I = 5
*DO,K,1,3
AL, I, (I+F), (I+1), (I+H)
I = I + 1
F = F + 4
H = H + 4
*ENDDO
F = 10
H = 11
T = 9
*DO,K,1,3
AL, I, (I+F), (I+1), (I+H)
I = I + 1
F = F + 4
H = H + 4
*ENDDO
F = 7
Н = 8
I = 13
*DO,K,1,3
AL,I,(I+F),(I+1),(I+H)
I = I + 1F = F + 4
H = H + 4
*ENDDO
ASEL,S,LOC,Y,gap
TYPE,2,
MAT,1,
REAL,1
MSHKEY,1
AMESH, ALL
NUMSTR, AREA, 1000,
AL,51,59,52,60
AL,60,57,61,58
AL,53,62,54,61
AL, 59, 55, 62, 56
AL,52,56,53,57
/VIEW,1,0.47,0.264,0.842
/ANG,1
/REP,FAST
VEXT,1000,1004,1, ,-Ab, , , ,
ALLSEL,ALL
/REP,FAST
```

```
LSEL, S, LOC, Y, -Ab/2
LPLOT
LESIZE, ALL, , , DIV5, 3, , ,
ALLSEL,ALL
VPLOT
TYPE,1,
MAT,2,
MSHKEY,1
VMESH, ALL
KSEL,S,KP,,6,7
KSEL, A, KP,, 10, 11
KSEL, A, KP,, 14, 15
KGEN,2,ALL, , ,0,300,0,100,0,0
KSEL,ALL
NUMSTR, LINE, 200,
L,6,6+100,DIV6,3, , , , , ,
L,7,7+100,DIV6,3, , , , , ,
L,10,10+100,DIV6,3, , , , , ,
L,11,11+100,DIV6,3, , , , , ,
L,14,14+100,DIV6,3, , , , , ,
L,15,15+100,DIV6,3, , , , , ,
NUMSTR, LINE, 210,
L,106,110,DIV1, , , , , , ,
L,110,114,DIV1, , , , , , , , L,110,111,DIV2, , , , , , , ,
L,107,111,DIV1, , , , , , ,
L,111,115,DIV1, , , , , , ,
NUMSTR, AREA, 1500,
AL,210,200,6,202
AL,213,201,7,203
AL,211,202,10,204
AL,214,203,11,205
AL,212,202,24,203
ASEL, S, AREA, , 1500, 1503
TYPE,2,
MAT,1,
REAL,3
MSHKEY,1
AMESH, ALL
ASEL,S,AREA,,1504
TYPE,2,
MAT,1,
REAL,2
MSHKEY,1
AMESH, ALL
```

MAT,3, TYPE,4, ! TARGE170 (TARGET) REAL,4, KSEL,ALL KSEL, S, LOC, Y, O LSLK,S,1 ASLL,S,1 APLOT AMESH,ALL ALLSEL,ALL MAT,3, TYPE,3, ! CONTA173 (CONTACT) REAL,4, NSEL, S, LOC, Y, (gap) NPLOT ESURF,,BOTTOM ESEL, S, TYPE, , 4 /REPLOT ESURF,, REVE asel,s,area,,1000 asel,a,area,,1002 /REPLOT ESLA,S ESURF,,REVE EPLOT FINISH /SOLU LSEL,S,LOC,Y,300+(gap) SFL, ALL, PRES, Sd, , /VIEW,1,1,1,1 /ANG,1 /REP,FAST /AUTO, 1 /REP /PSF, PRES, NORM, 2, 0, 1 /VSCALE, 1, 2, 0 /REPLOT ALLSEL,ALL SFTRAM ! Transfere a tensão das linhas p/ os elementos ! Bloco de Concreto NSEL, S, LOC, Y, -Ab D,ALL,UY,0, , , , , , , , , , , , , NSEL,S,LOC,Y,-Ab ! Impede o desloc. UY NSEL, R, LOC, Z, O NSEL, R, LOC, X, 0 ! Impede o desloc. UX ! Impede o desloc. UZ NSEL, S, LOC, Y, -Ab NSEL, R, LOC, Z, Bb/2 NSEL, R, LOC, X, Hb/2 ! Impede o desloc. UX ! Impede o desloc. UZ

```
! Placa de Base
NSEL, S, LOC, Y, (gap)
NSEL, R, LOC, Z, 0
NSEL, R, LOC, X, 0
ALLSEL,ALL
EPLOT
/VIEW,1,1,1,1
/ANG,1
/REP,FAST
/AUTO, 1
/REP
                                ! Valor para o time
! Valor do delta time
TIME,100
NSUBST, 5, 10, 5
CNVTOL,F, ,0.05,2, ,
ALLSEL,ALL
SOLVE
FINISH
```

/EXIT,SOLU

A.3 – Modelo 04 – Placas Levemente Carregadas

/COM, /COM, /COM, AUTOR: Marcelo Melo Martins
/COM, ORIENTADOR: Prof. Ricardo Hallal Fakury /COM, CO-ORIENTADOR: Prof. Fernando Amorim de Paula /COM, /COM, /COM, OBSERVAÇÕES: 1 - Não utilizar o comando para comprimir a numeração de /COM, qualquer entidade; /COM, /COM, 2 - GAP = 13.5mm/COM. /COM, /COM, ALTERACOES: 1 - Ec (2880 kN/cm²) e poison (0.19) do concreto /COM, /COM, 2 - Não há chumbadores /COM, /COM, /TITLE, MODELO 03 - Placa levemente carregada /PLOPTS,LOGO,0 KEYW, PR STRUC, 1 /PMETH,OFF /PREP7 ET,1,SOLID45 ! BLOCO DE CONCRETO ET,2,SHELL63 ! ELEMENTO CONVENCIONAL DA PLACA ! PERFIL METÁLICO (alma) ! PERFIL METÁLICO (mesas) ET. 3. CONTA173 I ELEMENTOS DO CONTATO DA PLACA DE BASE ET,4,TARGE170 ! ELEMENTOS DE CONTATO DO BLOCO DE CONCRETO ! Constantes Geométricas = 300 !Altura do perfil d tf = 9.5 !Espessura das mesas do pilar = 8 !Espessura da alma do pilar tw = 27 tp1 !Espessura da placa de base = 7950 !Área dp perfil (mm²) qΑ ! Carregamento !kN Nd = 1300Sd = Nd/Ap !Pressão na seção do pilar (kN/mm²) ! Constantes Físicas Ea = 205 !Módulo de elasticidade do aço (kN/mm²) nua= 0.3!Coeficiente de Poisson do açoEc= 28.8!Módulo de elasticidade do concreto (kN/mm²)nuc= 0.19!Coeficiente de Poisson do concreto ! NÚMERO BÁSICO DE DIVISÕES DIV = 18

UIMP,1,EX, , ,Ea, UIMP,1,NUXY, , ,nua, ! Aço UIMP,2,EX, , ,Ec, UIMP,2,NUXY, , ,nuc, ! Concreto UIMP,3,MU, , ,0, ! Elementos de Contato TB,DP,2 ! Drucker-Prager TBDATA,1,0.433012,0.0028867,0 R,1,tw, , , , , , !Alma do pilar RMORE, , , , R,2,tf, , , , , , !Mesa do pilar RMORE, , , , R,3, , ,70,0.1,-13.5001, , !Contato entre placa e bloco RMORE, , , , , , , , R,4,tp1, , , , , , !Placa de Base RMORE, , , , /VIEW,1,,1 /ANG,1 K,1,-300,0,-300 K,2,300,0,-300 к,3,-150,0,-150 K,4,150,0,-150 к,5,-150,0,150 к,6,150,0,150 K,7,-300,0,300 K,8,300,0,300 KSEL,ALL KPLOT /COM, CRIAÇÃO DAS LINHAS DO PLANO PRINCIPAL *********** I = 1*DO,K,1,4 LSTR, I, (I+1) I = I + 2*ENDDO LSTR,1,7 LSTR,3,5 LSTR,4,6 LSTR,2,8 LSTR,1,3 LSTR,2,4 LSTR,8,6 LSTR,7,5 LSEL,ALL LSEL, S, LINE, , 1, 4 LESIZE,ALL, , ,DIV LSEL, S, LINE, , 5, 8 LESIZE, ALL, , , DIV LSEL, S, LINE, , 9, 12 LESIZE, ALL, , , DIV/3, 1/3

```
LPLOT
```

LSEL,ALL

AL,1,10,2,9 AL,8,11,7,10 AL, 3, 11, 4, 12 AL,6,12,5,9 AL,2,7,3,6 /VIEW,1,0.47,0.264,0.842 /ANG,1 /REP, FAST VEXT,ALL, , , ,-300, , , , ALLSEL, ALL /REP,FAST LSEL, S, LOC, Y, -150 LPLOT LESIZE, ALL, , , DIV/2,3, , , ALLSEL,ALL VPLOT TYPE,1, MAT,2, MSHKEY,1 VMESH, ALL K,50,-150,(tp1/2),-150 K,51,150,(tp1/2),-150 K, 52, -150, (tp1/2), 0 K,53,150,(tp1/2),0 K,54,-150,(tp1/2),150 K,55,150,(tp1/2),150 NUMSTR, LINE, 100, L,50,51,2*DIV, , , , , , , L,52,53,2*DIV, , , , , , , L,54,55,2*DIV, , , , , , , L,52,50,DIV, , , , , , , , L,51,53,DIV, , , , , , , L,54,52,DIV, , , , , , , L,53,55,DIV, , , , , , , AL,100,104,101,103 AL,101,106,102,105 ASEL, S, LOC, Y, (tp1/2) TYPE,2, MAT,1, REAL,4

MSHKEY,1 AMESH,ALL

K,100,-150,300+(tp1/2),-150 K,101,150,300+(tp1/2),-150 K,102,-150,300+(tp1/2),0 K,103,150,300+(tp1/2),0 K,104,-150,300+(tp1/2),150 K,105,150,300+(tp1/2),150 NUMSTR, LINE, 200, L,100,101,2*DIV, , , , , , , L,102,103,2*DIV, , , , , , , , L,104,105,2*DIV, , , , , , , , , L,102,100,DIV, , , , , , , , L,101,103,DIV, , , , , , , L,104,102,DIV, , , , , , , , L,103,105,DIV, , , , , , , , NUMSTR, LINE, 300, I = 50*DO,K,1,6 L,I,(I+50),DIV,3, , , , , , I = I + 1*ENDDO AL,103,302,203,300 AL,105,304,205,302 AL,104,301,204,303 AL,106,303,206,305 AL,101,302,201,303 ASEL, S, LOC, Y, 150+(tp1/2) ASEL, R, LOC, X, -150 TYPE,2, MAT,1, REAL,2 MSHKEY,1 AMESH, ALL ASEL, S, LOC, Y, 150+(tp1/2) ASEL, R, LOC, X, 150 TYPE,2, MAT,1, REAL,2 MSHKEY,1 AMESH, ALL ASEL, S, LOC, Y, 150+(tp1/2) ASEL, R, LOC, X, 0 TYPE,2, MAT,1, REAL,1 MSHKEY,1 AMESH, ALL ASEL,ALL MAT,3, TYPE,4, ! TARGE170 (TARGET) REAL,3, KSEL,ALL KSEL, S, LOC, Y, O

LSLK,S,1 ASLL,S,1 APLOT AMESH, ALL ALLSEL,ALL MAT,3, ! CONTA173 (CONTACT) TYPE,3, REAL,3, NSEL, S, LOC, Y, (tp1/2) NPLOT ESURF,,BOTTOM ESEL, S, TYPE, , 3, 4 /REPLOT ESURF,,REVE FINISH /SOLU LSEL, S, LOC, Y, 300+(tp1/2) LSEL, U, LOC, Z, -150 LSEL, U, LOC, Z, 150 SFL, ALL, PRES, Sd, , /VIEW,1,1,1,1 /ANG,1 /REP,FAST /AUTO, 1 /REP /PSF, PRES, NORM, 1 /VSCALE, 1, 10, 0 /REPLOT ALLSEL,ALL SFTRAM ! Transfere a tensão das linhas p/ os elementos ! Bloco de Concreto NSEL, S, LOC, Y, -300 D,ALL,UY,0, , , , , , , , , , , , , NSEL,S,LOC,Y,-300 ! Impede o desloc. UY NSEL, R, LOC, Z, 0 NSEL, R, LOC, X, 0 ! Impede o desloc. UX D,ALL,UX,0, , , , , , , , D,ALL,UZ,0, , , , , , , , ! Impede o desloc. UZ NSEL, S, LOC, Y, -300 NSEL, R, LOC, Z, 300 NSEL, R, LOC, X, 300 D,ALL,UX,0, , , , , , , , ! Impede o desloc. UX ! Impede o desloc. UZ D,ALL,UZ,0, , , , , , , ! Placa de Base NSEL, S, LOC, Y, (tp1/2) NSEL, R, LOC, Z, 0 NSEL, R, LOC, X, 0 ALLSEL,ALL

EPLOT

/VIEW,1,1,1,1 /ANG,1 /REP,FAST /AUTO, 1 /REP

TIME,100 NSUBST,5,10,5 CNVTOL,F, ,0.05,2, ,

ALLSEL,ALL

SOLVE

! Valor para o time ! Valor do delta time