MACROLACTAMAS DERIVADAS DE CARBOIDRATOS: SÍNTESE E ANÁLISE CONFORMACIONAL POR MÉTODOS QUANTO-MECÂNICOS

Belo Horizonte Faculdade de Farmácia da UFMG 2009

MACROLACTAMAS DERIVADAS DE CARBOIDRATOS: SÍNTESE E ANÁLISE CONFORMACIONAL POR MÉTODOS QUANTO-MECÂNICOS

Tese apresentada ao Curso de Pós-Graduação em Ciências Farmacêuticas da Faculdade de Farmácia da Universidade Federal de Minas Gerais como requisito parcial à obtenção do título de Doutor em Ciências Farmacêuticas Orientador: Prof. Dr. Ricardo José Alves Co-orientador: Prof. Dr. Amary Cesar Ferreira

Belo Horizonte Faculdade de Farmácia da UFMG 2009 Leal, Daniel Henriques Soares. L435m Macrolactamas derivadas de carboidratos: síntese e análise

conformacional por métodos quanto-mecânicos / Daniel Henriques Soares Leal. – 2009. 404 f.: il.

0 1 1.. 1..

Orientador: Prof. Dr. Ricardo José Alves. Co-Orientador: Prof. Dr. Amary Cesar Ferreira. Tese (doutorado) - Universidade Federal de Minas Gerais, Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas.

1. Carboidratos – Teses. 2. Ciclização radicalar – Teses. 3. Galactose – Teses. 4. Macrolactamas – Teses. 5. Análise Conformacional – Teses. 6. Química farmacêutica – Teses. I. Título. II. Alves, Ricardo José. III. Ferreira, Amary Cesar. IV. Universidade Federal de Minas Gerais. Faculdade de Farmácia.

CDD: 615.19

Este trabalho foi desenvolvido no Laboratório de Química Farmacêutica da Faculdade de Farmácia da UFMG e no Laboratório de Química Teórica do Departamento de Química do Instituto de Ciências Exatas da UFMG, sob a orientação dos professores Dra. Maria Auxiliadôra Fontes Prado e Dr. Ricardo José Alves e co-orientação do professor Dr. Amary Cesar Ferreira.

"O espírito sem limites é o maior tesouro do homem." (J. K. Rowling)

"Escrever é fácil. Começa com uma letra maiúscula e termina com um ponto final. No meio se colocam as idéias." (Pablo Neruda) O tempo passou, mas eu continuo discordando!...

Dedico este trabalho a todos que acreditaram na minha capacidade de superar meus limites e dar a volta por cima. Com carinho especial, eu dedico esta Tese ao amor da minha vida, companheira carinhosa e eternamente namorada, Roberta.

AGRADECIMENTOS

Já se passaram cinco anos desde a última vez que escrevi uma página deste tipo. Certas coisas, no entanto, não mudaram. Uma delas, com certeza, é a dificuldade de se poder colocar, em poucas páginas, a gratidão por todos aqueles que contribuíram para este trabalho. Tantas vezes ensaiei o que iria escrever nesta página, mas, agora, vejo o quanto é difícil. Mas vamos tentar assim mesmo.

Antes de tudo, acima de tudo, sobre tudo, todo ser humano deve ser grato a Deus, Pai de misericórdia infinita que concede a cada um de nós as oportunidades abençoadas para que, com elas, nos melhoremos e cresçamos. Por isso, a minha gratidão pela oportunidade de aprender para, com este conhecimento, ajudar a construir um mundo melhor.

À minha família, grande e feliz, aos meus pais Agnes e Rogers, aos meus irmãos Rafael, Lívia e Letícia, aos meus avós, primos, tios e agregados, que sempre torceram pelo meu sucesso e me apoiaram, por mais difícil que tenha sido. Sei que é muita gente, mas tem um agradecimento especial ao primo Tosko, um irmão muito querido e que sempre me deu força.

À Roberta, minha namorada, companheira amada do coração, maior presente que Deus me deu, minha eterna gratidão pelo amor, pelo companheirismo, pela renúncia, carinho, cumplicidade, amizade e pela muita paciência para comigo. Sei que não foi fácil pra você também. Amo você.

À família da Roberta, é claro: Maria Emília, minha sogra querida, aos seus irmãos Victor e André, bem como Adriana, Sabrina, Dona Conceição etc. É muita gente, graças a Deus. Pena que não caibam todos no papel. Mas tem o lugar de todos vocês no meu coração. Obrigado pela torcida e por me receberem como filho junto a vocês.

Aos queridos e amados tios Jolande (agora no seio de Deus, nosso Pai, mas fica a saudade) e Aurélio, bem como a toda sua enorme família, pela torcida, pelo incentivo constante e pelo carinho de todos estes anos de convivência, me acolhendo desde muito antes de minha mudança para Belo Horizonte para prosseguir meus estudos. A saudade dói, mas o amor balsamiza e cura as feridas.

Aos amigos queridos, cuja convivência muito me fez falta, mas que sempre

mostraram o valor da amizade verdadeira que não enxerga distâncias. Vocês são muitos, mas todos moram em meu coração. Em especial, ao Luciano, ao Peninha, ao Tabajara e ao Rômulo.

Agradeço também o carinho e a torcida de dois grandes amigos: a você, Alexandre, seu cruzeirense chato (que pleonasmo!), pela torcida! E a você, Jô, muito importante em nossas vidas pelo seu carinho, sua amizade e sua vibração com as conquistas. Você, que é uma mãezona, e o Rafinha, meu sobrinho amado, bebein da voínha, o feijãozinho de sempre, são muito amados!

Aos amigos, companheiros e afetos da Fraternidade Espírita Irmão Glacus, pela torcida, compreensão e grande amizade.

Aos professores Ricardo, Dôra, Thaïs, Basílio e... Paola, da Química Farmacêutica, por todos estes anos de convivência, de crescimento, de aprendizado e tantas outras coisas.

Aos meus três orientadores que, com muita paciência e perseverança, me acompanharam, me aceitaram e cuidaram de mim, muitas vezes com o rigor necessário ao meu amadurecimento. A minha gratidão a vocês três não pode ser expressa em palavras, mas vou tentar assim mesmo.

À professora Maria Auxiliadora Fontes Prado, que me aceitou no início desta jornada e que, com a dedicação que só uma grande mãe poderia ter, necessitou dar-me uma grande lição sobre o peso de nossas responsabilidades.

Ao professor Ricardo José Alves, que, assim como a Dora, sempre acreditou na minha capacidade de crescer e dar a volta por cima e me conduziu pelo resto do trabalho.

Ao professor Amary Cesar Ferreira, meu co-orientador, que sempre acreditou, torceu e muito me ensinou, não apenas no trabalho, mas com valores que levarei por toda a vida.

Aos amigos e colegas da "comunidade" do Laboratório de Química Farmacêutica, de todas as épocas. Em particular, à turma com a qual passei a maior parte do meu tempo nos últimos anos: Marcelo, Diogo, Rute, Rozângela, Paola, Danielle, André, Renato, Marilda, Hugo, Magno, Carla, Saulo etc. Dedico um agradecimento especial à Rute, pelo apoio e amizade, tão bem mostrados em um momento de necessidade e que muito me marcou a respeito do valor das amizades. Obrigado a todos vocês pelas conquistas de cada dia, pelos sucessos, pelas conversas, por todos os momentos descontraídos e de grande aprendizado acadêmico.

Aos colegas do Laboratório de Química Teórica, cuja maravilhosa convivência sempre me trará ótimas lembranças: Jarbas, Maicon, Freddy, Márcia, Kátia, Bianca, Priscila e Luan. Um agradecimento especial também ao colega e amigo Marcelo por todos os momentos de convivência, mesmo do outro lado do Atlântico, pela torcida, pelas contribuições e pela presteza na colaboração para este trabalho.

Aos professores, colegas e funcionários das comunidades da Faculdade de Farmácia e do Departamento de Química, pela convivência do dia-a-dia, pelos cumprimentos, pelas conquistas de sempre.

Um grande agradecimento ao ex-patrão Aluízio, da Granfarma, por ter permitido que eu me dedicasse melhor à preparação para ingresso no Doutorado. Aos colegas da Granfarma, agradeço pela convivência.

Agora, recentemente, agradeço a todos os novos colegas, professores e funcionários da comunidade da UNA e do UNI-BH, pela acolhida e pelo respeito à finalização deste trabalho e desta importante etapa da minha vida, bem como pela nova oportunidade de trabalho e crescimento que se desponta em meus horizontes.

Finalmente, a todos aqueles de quem, por infelicidade, não me lembrei dos nomes, mas que, não obstante, estarão sempre no coração e que, mesmo no silêncio, sempre torceram por meu sucesso. Obrigado a todos vocês. Que Deus os abençoe.

AGRADECIMENTO ESPECIAL

"Por mais que eu pense, que eu sinta, que eu fale, tem sempre alguma coisa por dizer. Por mais que o mundo dê voltas em torno do sol, vem a lua me enlouquecer." Herbert Vianna

Acho que você já sabe que é de você que eu estou falando. Achou mesmo que eu iria dedicar apenas um parágrafo a você?

Nem nesta página nem em todas as folhas de papel do mundo, não haveria espaço suficiente para expressar com palavras o que significam pra mim estes quatro anos de nossa convivência, estes quatro anos de alegria, cumplicidade, felicidade e tantas outras coisas.

Você chegou em minha vida embrulhada em papel de presente, tão linda, no dia da sua formatura. Mal sabia eu que aquele dia seria o começo da fase mais especial da minha vida.

Você esteve comigo praticamente em todo este trabalho, me acompanhou em tantas coisas, dividiu comigo alegrias e tristezas, conquistas e fracassos e esteve sempre comigo em todos estes momentos. Francamente, há palavra no mundo que traduza o que isto significa? Para mim, há sim. Uma, e somente uma: *AMOR*.

Mesmo que eu pense, que eu fale ou o que for, sempre haverá em meu coração a vontade de sempre lhe dizer o quanto eu lhe amo e quero viver contigo por toda a vida.

No calor do sol, no dia-a-dia, no giro do mundo ao seu redor, estarei buscando retribuir ao mundo, no trabalho muitas vezes silencioso da pesquisa, o que o mundo fez por mim. Mas, ao chegar em casa, quero poder, todos os dias, olhar para o céu e ver e sentir, na beleza e brilho do luar, o reflexo do teu sorriso e a meiguice do seu olhar a acalentar meu coração.

Obrigado por você estar sempre comigo. Eu te amo, Roberta!

SUMÁRIO

LISTA DE TABELAS

LISTA DE FIGURAS

LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS

LISTA DE ESPECTROS

RESUMO

ABSTRACT

CAPÍTI	JLO	1 -	 Síntese 	de	macrolactamas	а	partir	de	2-iodobenzamidas
	deriv	vada	as da D-ga	lacto	ose por carbocicl	iza	ção rac	lical	ar
1	INTE	ROD	UÇÃO						45

1.1	Macrociclos e terapêutica	45
1.2	Macrociclos e restrição conformacional	47
1.3	Métodos de síntese de macrociclos	48
1.4	Derivados de estanho e ciclizações radicalares	54
1.5	Regras de Baldwin, cinética e mecanismo das ciclizações radicalares	i 57
1.6	Carboidratos em síntese orgânica	63
1.7	Contribuições feitas pelo grupo	65
2	OBJETIVOS E PLANO DE TRABALHO	70
3	PARTE EXPERIMENTAL	74
3.1	Métodos gerais	74
3.1.1	Aparelhagem empregada na identificação e caracterização	74
3.1.2	Purificação de solventes e reagentes	74
3.1.3	Cromatografia	75
3.2	Preparação de 6-O-alil-4-azido-2,3-di-O-benzil-4-desoxi-α-D-galactopi	ira-
	nosídeo de metila (<u>222</u>)	76
3.3	Preparação de 6-O-alil-4-amino-2,3-di-O-benzil-4-desoxi-α-D-galacto	pi-
	ranosídeo de metila (224) e de 6- <i>O</i> -alil-2,3-di- <i>O</i> -benzil-4-desox	i-4-
	(2-iodobenzamido)-α- D-galactopiranosídeo de metila (<u>202</u>)	79
3.4	Preparação de 4-azido-2,3-di-O-benzil-6-O-cinamil-4-desoxi-α-D-galac	to-
	piranosídeo de metila (<u>223</u>)	85
3.5	Preparação de 4-amino-2,3-di-O-benzil-6-O-cinamil-4-desoxi-α-D-gal	ac-
	topiranosídeo de metila (225) e de 2,3-di-O-benzil-6-O-cinamil-4-desc	oxi-
	4-(2-iodobenzamido)-α-D-galactopiranosídeo de metila (<u>20</u> 3)	89
3.6	Preparação de 6-O-alil-2,3-di-O-benzil-4-[3-(cloroacetamido)benzamid	lo]-

4-desoxi- α -D-galactopiranosídeo de metila (226) 94 3.7 Preparação de 2,3-di-O-benzil-6-O-cinamil-4-[3-(cloroacetamido)benzamido]-4-desoxi- α -D-galactopiranosídeo de metila (227) 99 3.8 de 6-O-alil-2,3-di-O-benzil-4-desoxi-4-[3-(iodoacetami-Preparação do)benzamido]- α -D-galactopiranosídeo de metila (208) 103 3.9 Preparação de 2,3-di-O-benzil-6-O-cinamil-4-desoxi-4-[3-(iodoacetamido)benzamido]- α -D-galactopiranosídeo de metila (209) 107 3.10 Reação radicalar com 6-O-alil-2,3-di-O-benzil-4-desoxi-4-(2-iodobenzamido)-α-D-galactopiranosídeo de metila (202) 111 3.11 Reação radicalar com 2,3-di-O-benzil-6-O-cinamil-4-desoxi-4-(2-iodobenzamido)- α -D-galactopiranosídeo de metila (203) 118 3.12 Reação radicalar com 6-O-alil-2,3-di-O-benzil-4-desoxi-4-[3-(iodoacetamido)benzamido]- α -D-galactopiranosídeo de metila (208) 122 3.13 Reação radicalar com 2,3-di-O-benzil-6-O-cinamil-4-desoxi-4-[3-(iodoacetamido)benzamido]- α -D-galactopiranosídeo de metila (209) 129 **RESULTADOS E DISCUSSÃO** 4 133 4.1 Obtenção dos azidoéteres 222 e 223 139 4.2 Redução de 222 e 223 aos aminoéteres 224 e 225 142 4.3 Formação das 2-iodobenzamidas 202 e 203 e das 3-(cloroacetamido)benzamidas 226 e 227 143 4.4 Conversão de 226 e 227 em 208 e 209 150 4.5 Ciclização radicalar de 202, 203, 208 e 209 151 5 CONCLUSÕES 161 **REFERÊNCIAS BIBLIOGRÁFICAS** 6 162 CAPÍTULO 2 - Análise conformacional de 2-iodobenzamidas, radicais arila, estados de transição e produtos de carbociclização radicalar por métodos quanto-mecânicos 1 INTRODUCÃO 181 1.1 Química Computacional, Modelagem Molecular e planejamento racional de fármacos 181 1.2 Métodos de cálculo 184 1.3 Teoria do funcional densidade 190 1.4 QC e estados de transição 192 1.5 Regio- e estereosseletividade nas reações radicalares 193

194

1.6

Exemplos selecionados

1.7	Contribuições do grupo	198
2	OBJETIVOS E PLANO DE TRABALHO	201
3	PARTE EXPERIMENTAL	207
3.1	Métodos gerais	207
3.2	Substituição dos grupos <i>O</i> -benzila por <i>O</i> -metila	208
3.3	Análise conformacional para a torção ϕ (N-C ¹⁰ -C ¹¹ -C ¹²) em <u>21</u> e <u>27</u>	211
3.4	Análise conformacional para as torções τ_1 a τ_4 (grupo O-alila)	em
	<u>21</u> e <u>27</u>	213
3.5	Varredura do espaço conformacional e determinação das estrute	uras
	dos estados de transição e produtos de ciclização para o rac	dical
	alílico <u>27</u>	217
3.6	Varredura do espaço conformacional e determinação das estrute	uras
	dos estados de transição e produtos de ciclização para o rac	dical
	cinamílico <u>28</u>	222
3.7	Determinação de parâmetros cinéticos e termodinâmicos dos radi	cais
	reagentes <u>27</u> e <u>28</u> , dos estados de transição <u>29</u> a <u>32</u> e dos radi	cais
	ciclizados <u>33</u> a <u>36</u>	224
3.8	Determinação das estruturas dos estados de transição <u>43</u> a <u>48</u> e <u>1</u>	<u>08</u> e
	dos radicais resultantes de transferência de átomos de hidrogênio	227
3.9	Refinamento estrutural e determinação de parâmetros cinético	s e
	termodinâmicos das estruturas dos estados de transição e dos radi	cais
	resultantes de ciclização e de transferência de hidrogênio	230
3.10	Análise conformacional das torções $ au_1$ a $ au_5$ em <u>67</u> a <u>72</u>	233
3.11	Varredura do espaço conformacional e determinação das estrut	uras
	dos estados de transição e produtos de ciclização para os radi	cais
	<u>67</u> a <u>72</u>	237
3.12	Determinação de parâmetros cinéticos dos radicais reagentes 67	a <u>72</u>
	e dos estados de transição <u>73</u> a <u>84</u>	242
4	RESULTADOS E DISCUSSÃO	247
4.1	Substituição dos grupos <i>O</i> -benzila por <i>O</i> -metila	247
4.2	Análise conformacional para as torções ϕ e τ_1 a τ_4 em 21 e 27	248
4.3	Determinação de estados de transição e produtos de ciclização a p	artir
	dos radicais reagentes <u>27</u> e <u>28</u>	255
4.4	Determinação de parâmetros cinéticos e termodinâmicos das espé	cies
	radicais <u>27</u> a <u>36</u>	263

4.5	Determinação das estruturas dos estados de transição 43 a 48 e	e <u>108</u>
	e dos radicais <u>37</u> a <u>42</u> e <u>109</u> , resultantes de transferência de átomo	os de
	hidrogênio	268
4.6	Refinamento estrutural dos radicais reagentes 27 e 28 e determin	ação
	pós-refinamento de parâmetros cinéticos e termodinâmicos	de
	ativação e reação global das reações de ciclização e transferênci	ia de
	hidrogênio	276
4.7	Análise conformacional das torções $ au_1$ a $ au_5$ em <u>67</u> a <u>72</u>	283
4.8	Determinação das estruturas dos estados de transição e produto	s de
	ciclização derivados dos radicais <u>67</u> a <u>72</u>	291
4.9	Determinação dos parâmetros cinéticos dos radicais reagentes 67	′a <u>72</u>
	e dos estados de transição <u>73</u> a <u>84</u>	295
5	CONCLUSÕES	301
6	REFERÊNCIAS BIBLIOGRÁFICAS	304
APÊND	DICE - ESPECTROS	315

LISTA DE TABELAS

1.1 - Precursores e produtos isolados das reações de ciclização radicalar 65 **1.2** - Principais dados do espectro de absorção no IV de **222** (v, cm⁻¹, filme oleoso), Espectro 1, página 315 77 **1.3** - Dados dos espectros de RMN ¹H de **222** (δ , 200 MHz, CDCl₃), espectros 2 e 3, página 316 78 **1.4** - Dados dos espectros de RMN ¹³C de **222** (δ , 50 MHz, CDCl₃), espectros 4 e 5, página 317 78 **1.5** - Principais dados do espectro de absorção no IV de **224** (v, cm⁻¹, filme oleoso), 81 Espectro 10, página 320 **1.6** - Principais dados do espectro de absorção no IV de **202** (v, cm⁻¹, filme oleoso), Espectro 11, página 321 82 **1.7** - Dados dos espectros de RMN ¹H de **202** (δ , 200 MHz, CDCl₃), espectros 12 e 13, página 322 83 **1.8** - Dados dos espectros de RMN ¹³C de **202** (δ , 50 MHz, CDCl₃), espectros 14 e 15, página 323 84 **1.9** - Principais dados do espectro de absorção no IV de **223** (v, cm⁻¹, filme oleoso), 86 Espectro 22, página 327 **1.10** - Dados dos espectros de RMN ¹H de **223** (δ_1 200 MHz, CDCl₃), espectros 23 e 24, página 328 87 **1.11** - Dados dos espectros de RMN ¹³C de **223** (δ , 50 MHz, CDCl₃), espectros 25 e 26, página 329 88 **1.12** - Principais dados do espectro de absorção no IV de **225** (v, cm⁻¹, filme oleoso), Espectro 33, página 333 90 **1.13** - Principais dados do espectro de absorção no IV de **203** (v, cm⁻¹, filme oleoso), 91 Espectro 34, página 334 **1.14** - Dados dos espectros de RMN ¹H de **203** (δ , 200 MHz, CDCl₃), espectros 35 e 36, página 335 92 **1.15** - Dados dos espectros de RMN ¹³C de <u>203</u> (δ , 50 MHz, CDCl₃), espectros 37 e 38, página 336 93 1.16 - Principais dados do espectro de absorção no IV de 226 (v, cm⁻¹, filme sólido), Espectro 45, página 342 96 **1.17** - Dados dos espectros de RMN ¹H de <u>226</u> (δ , 200 MHz, CDCl₃), espectros 46 e

Espectro 105, página 373 119
1.35 - Dados dos espectros de RMN ¹ H de <u>236</u> (δ , 400 MHz, CDCl ₃), espectros 106
e 107, página 374 120
1.36 - Dados dos espectros de RMN ¹³ C de <u>236</u> (δ , 100 MHz, CDCl ₃), espectros 108
e 109, página 375 121
1.37 - Principais dados do espectro de absorção no IV de <u>210</u> (v, cm ⁻¹ , filme sólido),
Espectro 118, página 380 123
1.38 - Dados dos espectros de RMN ¹ H de <u>210</u> (δ , 400 MHz, CDCl ₃), espectros 119
a 121, páginas 381 e 382 124
1.39 - Dados dos espectros de RMN ¹³ C de <u>210</u> (δ , 100 MHz, CDCl ₃), espectros 122
e 123, página 383 125
1.40 - Principais dados do espectro de absorção no IV de 237 (v, cm ⁻¹ , filme sólido),
Espectro 133, página 389 126
1.41 - Dados dos espectros de RMN ¹ H de <u>237</u> (δ , 400 MHz, CDCl ₃), espectros 134
e 135, página 390 127
1.42 - Dados dos espectros de RMN ¹³ C de <u>237</u> (δ , 100 MHz, CDCl ₃), espectros 136
e 137, página 391 128
1.43 - Principais dados do espectro de absorção no IV de 238 (v, cm ⁻¹ , filme sólido),
Espectro 147, página 397 130
1.44 - Dados dos espectros de RMN ¹ H de <u>238</u> (δ , 400 MHz, CDCl ₃), espectros 148
e 149, página 398 131
1.45 - Dados dos espectros de RMN ¹³ C de <u>238</u> (δ , 100 MHz, CDCl ₃), espectros 150
e 151, página 399 132
1.46 - Condições empregadas e resultados obtidos nas diversas repetições das
reações de carbociclização radicalar dos precursores <u>202</u> , <u>203</u> , <u>208</u> e <u>209</u> 154
2.1 - Dados de energia no ponto encontrados para as conformações com e sem
interação em π - <i>stacking</i> para o radical 1-(2-benzamido)-3-benziloxipropano 210
2.2 - Energias eletrônicas relativas U-PM3 (kcal/mol) das estruturas estudadas na
análise conformacional da torção $\phi \text{ em } \underline{27}$ 212
2.3 - Parâmetros estruturais das conformações do radical 27, distâncias
interatômicas e energias eletrônicas relativas 215
2.4 - Parämetros estruturais das conformações da 2-iodobenzamida <u>21</u> e energias
eletrönicas relativas 216
2.5 - Energias relativas determinadas para alguns pontos do IRC traçado na

220 Figura 2.13 2.6 - Energias eletrônicas relativas (kcal/mol) para as nove famílias de cinco estruturas baseados no reagente radical alílico 27 221 2.7 - Energias eletrônicas relativas (kcal/mol) para as nove famílias de cinco estruturas baseados no reagente radical cinamílico 28 223 2.8 - Parâmetros médios de ativação calculados com U-PM3 e corrigidos com a energia eletrônica U-B3LYP para as espécies 27 a 36 225 2.9 - Parâmetros médios da reação global calculados com U-PM3 e corrigidos com a energia eletrônica U-B3LYP para as espécies 27 a 36 226 2.10 - Distâncias interatômicas (Å) de C¹² a C⁹, C⁸, H⁷, H⁸, H⁹ e H^{orto} para as diferentes conformações dos radicais reagentes 27 e 28 228 2.11 - Parâmetros termodinâmicos recalculados e corrigidos após o refinamento estrutural de reagentes, estados de transição e produtos de ciclização e de transferência de hidrogênio 231 2.12 - Distâncias interatômicas e energias relativas das conformações dos radicais 67 a 72 filtradas na janela de 6 Å 235 2.13 - Classificação estereoquímica dos estados de transição 73 a 84 determinados com U-PM3 237 2.14 - Energias eletrônicas relativas (kcal/mol) calculadas para os conjuntos de estruturas dos radicais reagentes 67 a 72 e estados de transição 73 a 84 239 2.15 - Parâmetros médios de ativação calculados com U-PM3 e corrigidos com a energia eletrônica calculada com U-B3LYP para as espécies 67 a 84 243 2.16 - Parâmetros médios de ativação calculados com U-PM3, corrigidos com a energia eletrônica (U-B3LYP) considerando-se os grupos dentro do critério de 5 kcal/mol acima do estado de transição mais estável para as espécies 67 a 84 245 2.17 - Parâmetros recalculados e corrigidos após o refinamento estrutural tomandose os reagentes radicais originais como reagentes dos IRCs 279 2.18 - Energias eletrônicas médias dos estados de transição 73 a 84 antes e após uma seleção por aplicação do critério de corte de 5 kcal/mol 293 2.19 - Diferença de energia em kcal/mol entre os estados de transição 11-endo e 10-exo de menor energia e proporção entre ambos a várias temperaturas 294 2.20 - Resumo dos resultados dos cálculos de favorecimento dos modos de ciclização 11-endo e 10-exo dos radicais 67 a 72 segundo as diferentes abordagens 300

LISTA DE FIGURAS

1.1 - Alguns exemplos de macrociclos bioativos	46
1.2 - Entropia adversa (variação de entropia desfavorável à ciclização) de estrutu	ras
cíclicas e acíclicas	48
1.3 - Exemplo de síntese de macrociclos por expansão de anel	49
1.4 - Exemplo de macrociclização por metátese com fechamento de anel	50
1.5 - Exemplo de macrociclização por acoplamento com paládio	50
1.6 - Exemplo de macrociclização aniônica	51
1.7 - Exemplo de macrolactonização e macrolactamização	52
1.8 - Exemplo de macrociclização oxidativa	53
 1.9 - Exemplo de macrociclização redutiva mediada por samário 	53
1.10 - Alguns produtos de reação isolados por Walling e colaboradores	55
1.11 - Produtos macrocíclicos e acíclicos isolados por Porter e Chang	56
1.12 - Possíveis modos de fechamento de anel (regras de Baldwin)	58
1.13 - Ciclizações segundo as regras de Baldwin	58
1.14 - Mecanismo geral de carbociclização radicalar com Bu ₃ SnH	63
1.15 - Derivados de carboidratos obtidos por ciclização com Bu ₃ SnH	64
1.16 - Benzamidas planejadas e seus possíveis produtos de ciclização	70
1.17 - Relação estereo- e regioquímica entre as 2-iodobenzamidas 140, 141, 1	<u>43</u> ,
<u>144, 158, 159, 202</u> e <u>203</u>	71
1.18 - Rota sintética planejada para obtenção das 2-iodobenzamidas 202 e 203	<u>3</u> e
das 3-(iodoacetamido)benzamidas <u>208</u> e <u>209</u>	73
1.19 - Resultados alcançados nas etapas realizadas por meio da rota original pa	ara
obtenção de <u>202</u> , <u>203</u> , <u>208</u> e <u>209</u> 1	34
1.20 - Nova rota sintética modificada para obtenção de 202, 203, 208 e 2	<u>09</u> ,
contendo os resultados obtidos 1	35
1.21 - Produtos da reação radicalar de <u>202</u> , <u>203</u> , <u>208</u> e <u>209</u> 1	37
1.22 - Mecanismo simplificado da formação de <a>222 e <a>223 por CTF 1	40
1.23 - Possíveis causas dos rendimentos menores na obtenção das amidas 1	44
1.24 - Sequências de redução de azidas a aminas e formação de amidas 1	46
1.25 - Papel dos iniciadores nas reações radicalares 1	52
1.26 - Aspectos regioquímicos e conformacionais dos diferentes resultados obtic	soc
para a ciclização radicalar das benzamidas alílicas 140, 143, 158 e 202	56
2.1 - Mecanismo geral de ciclização radical mediada por Bu ₃ SnH1	93

2.2 - Formação do radical fenila e produtos de adição ao propeno	196
2.3 - Produtos de ciclização obtidos por Liu e colaboradores	197
2.4 - Resultados de ciclização radicalar estereosseletiva obtidos pelo grupo	199
2.5 - Principais espécies envolvidas na ciclização de <u>21</u> e <u>22</u>	202
2.6 - Principais caminhos para transferência intramolecular de hidrogênio	202
2.7 - Espécies envolvidas na ciclização de <u>49</u> a <u>54</u>	203
2.8 - Resultados do grupo utilizados como base para os estudos teóricos	204
2.9 - Simplificação empregada para estudo das interações em π -stacking	209
2.10 - Ângulo torsional ϕ definido para as benzamidas alílicas <u>21</u> e <u>27</u>	211
2.11 - Ângulos torsionais τ_1 a τ_4 analisados em <u>21</u> e <u>27</u> e código identificador us	sado
em sua análise conformacional	213
2.12 - Energia relativa em função da distância C ¹² -C ⁹ para as estrut	uras
semi-otimizadas originadas do radical ciclizado <u>33</u>	218
2.13 - Energia relativa das estruturas do IRC. Em destaque, no lado direit	o, a
estrutura encontrada para o estado de transição <u>29</u>	219
2.14 - Principais estados de transição e radicais finais para transferê	encia
intramolecular de átomos de hidrogênio pelo radical arila investigadas	227
2.15 - Principais ângulos torsionais analisados em 67 a 72 e código identific	ador
usado em sua análise conformacional	234
2.16 - Ângulos torsionais analisados em 21 e 27 e código usado em sua an	álise
conformacional	249
2.17 - Barreira de rotação para a torção ϕ (N-C ¹⁰ -C ¹¹ -C ¹²) do radical <u>27</u>	250
2.18 - Interações eletrônicas entre o SOMO e o grupo amida em <u>27</u>	251
2.19 - Distribuição das 57 conformações do radical 27 em função das distâr	ncias
C ¹² C ⁸ e C ¹² C ⁹ e da faixa de energia calculada com U-PM3	253
2.20 - Estruturas otimizadas da 2-iodobenzamida <u>21</u> e do radical <u>27</u>	254
2.21 - Diagramas de energia para as nove famílias derivadas do radical 27	258
2.22 - Diagramas de energia para as nove famílias derivadas do radical <u>28</u>	258
2.23 - Parâmetros médios de ativação calculados com U-PM3 e corrigidos co	m a
energia eletrônica U-B3LYP	264
2.24 - Parâmetros médios de reação global calculados com U-PM3 e corrigidos	com
a energia eletrônica U-B3LYP	264
2.25 - Alguns mecanismos possíveis para formação do produto de hidrogenólise	269
2.26 - Estruturas encontradas com U-PM3 para os IRC's de transferência	a de
hidrogênios para as estruturas derivadas de <u>27</u> e <u>28</u>	271

2.27 - Perfis de reação em função das energias eletrônicas calculadas com U-B3LYP para as estruturas derivadas de 27 e 28 272 2.28 - Causas possíveis da maior acidez dos hidrogênios metilênicos 274 2.29 - Estruturas refinadas com U-PM3 para os IRC's de carbociclização 277 2.30 - Parâmetros de ativação refinados com U-PM3 e corrigidos com a energia eletrônica U-B3LYP para reações de ciclização e abstração de hidrogênio 278 2.31 - Distribuição das 152 conformações do radical 67 em função das distâncias $C^{12}...C^{8} \in C^{12}...C^{9} \in da$ faixa de energia calculada com U-PM3 285 2.32 - Distribuição das 153 conformações do radical 68 em função das distâncias $C^{12}...C^{8} \in C^{12}...C^{9} \in da$ faixa de energia calculada com U-PM3 285 2.33 - Distribuição das 159 conformações do radical 69 em função das distâncias $C^{12}...C^{8} \in C^{12}...C^{9} \in da$ faixa de energia calculada com U-PM3 286 2.34 - Distribuição das 157 conformações do radical 70 em função das distâncias $C^{12}...C^{8} \in C^{12}...C^{9} \in da$ faixa de energia calculada com U-PM3 286 2.35 - Distribuição das 158 conformações do radical 71 em função das distâncias $C^{12}...C^8 \in C^{12}...C^9 \in da$ faixa de energia calculada com U-PM3 287 2.36 - Distribuição das 167 conformações do radical 72 em função das distâncias $C^{12}...C^{8} \in C^{12}...C^{9} \in da$ faixa de energia calculada com U-PM3 287 2.37 - Ampliação das regiões até 6 Å para as distâncias C¹²...C⁸ e C¹²...C⁹ e faixa de energia (em kcal/mol) calculada com U-PM3 para os radicais 67 a 72 288 2.38 - Histogramas de distribuição das energias das estruturas dos radicais 67 a 72 na região de até seis ângstrons para as distâncias C¹²...C⁸ e C¹²...C⁹ 289 2.39 - Perfis de reação em função das energias eletrônicas U-B3LYP para os radicais 67 a 72 e seus estados de transição derivados 73 a 84 292 2.40 - Parâmetros de ativação médios calculados com U-PM3 e corrigidos com a energia eletrônica U-B3LYP para os radicais 67 a 72 e seus estados de transição derivados 73 a 84 considerando-se todas as famílias de estruturas 296 2.41 - Parâmetros de ativação médios calculados com U-PM3 e corrigidos com a energia eletrônica U-B3LYP para os radicais 67 a 72 e seus estados de transição derivados 73 a 84 considerando-se apenas as famílias que se enquadram no critério arbitrário de 5 kcal/mol acima do estado de transição mais estável 297

LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS

[α] _D	Rotação específica
Ac	Acetila
AIBN	Azoisobutironitrila
Bz	Benzoíla
С	Concentração em gramas por 100 mililitros
Cbz	Benziloxicarbonila
CCD	Cromatografia em camada delgada
CCS	Cromatografia em coluna de sílica
COD	1,5-Ciclooctadieno
COSY	Correlation Spectroscopy
CRDS	Cavity Ringdown Spectrometry
CTF	Catálise de transferência de fase
Су	Cicloexila
d	Dupleto
DBU	1,8-Diazabiciclo[5.4.0]undeceno-7
DCC	N,N'-Dicicloexilcarbodiimida
dd	Dupleto duplo
ddd	Duplo dupleto duplo
DDQ	2,3-Dicloro-5,6-dicianobenzoquinona
Def.	Deformação
DEPT	Distortionless Enhancement by Polarization Transfer
DFT	Density Functional Theory
DIPEA Diisopro	opiletilamina
DMAP	Dimetilaminopiridina
DMSO-d ₆	Dimetilsulfóxido hexadeuterado
EDC	Cloridrato de 1-etil-3-[3-dimetilaminopropil]carbodiimida
EE	Etoxietila
Et	Etila
FDPP	Difenilfosfinato de pentafluorofenila
FF	Faixa de fusão
Fmoc	9-Fluorenilmetiloxicarbonila
HF	Hartree-Fock
НМВС	Heteronuclear Multiple Bond Correlation

HMPA	Hexametilfosforamida
HMQC Hete	ronuclear Multiple Quantum Correlation
HOBt	1-Hidroxibenzotriazol
<i>i</i> -Bu	Isobutila
<i>i</i> -Pr	Isopropila
IRC	Intrinsic Reaction Coordinates
IV	Infravermelho
LAH	Hidreto de alumínio e lítio
LHMDSHexa	metildissililazida de lítio
m	Multipleto
m/v	Massa por volume
Ме	Metila
Mes	Mesitila (2,4,6-trimetilfenila)
MOM	Metoximetila
<i>n</i> -Bu	<i>n</i> -Butila
NMO	N-Óxido de N-metilmorfolina
nOe	Nuclear Overhauser Effect
Ph	Fenila
PM3	Parametric Method 3
pni	produto não-isolado
PPTS	<i>p</i> -Toluenossulfonato de piridínio
Ру	Piridina
QC	Química Computacional
QCISD(T)	Quadratic Configuration Interaction including Singles, Doubles and
	Triples
RCM	Ring Closing Metathesis
RHF	Restricted Hartree-Fock
RMN	Ressonância Magnética Nuclear
ROHF	Restricted Open Hartree-Fock
S	Simpleto
s-Bu	sec-Butila
SOMO	Single Occupied Molecular Orbital
t	Tripleto
TBAF	Fluoreto de tetra-N-butilamônio
TBDMS <i>tert</i> -B	Butildimetilsilila

<i>t</i> -Bu	<i>tert</i> -Butila
td	Tripleto duplo
TMS	Tetrametilsilano (como referência interna em RMN) OU trimetilsilano
	(grupo protetor)
TMSil	lodeto de trimetilsilila
TPAP	Perrutenato de tetra- <i>n</i> -propilamônio
TTMSS Hidre	eto de tris(trimetilsilil)silano
UHF	Unrestricted Hartree-Fock
v/v	Volume por volume
δ	Deslocamento químico
ν	Freqüência de vibração

LISTA DE ESPECTROS

1 - Espectro de absorção no IV de <u>222</u> (ν, cm ⁻¹ , filme oleoso)	315
2 - Espectro de RMN ¹ H de <u>222</u> (δ , 200 MHz, CDCl ₃)	316
3 - Expansões do espectro de RMN ¹ H de <u>222</u>	316
4 - Espectro de RMN ¹³ C de <u>222</u> (δ , 50 MHz, CDCI ₃)	317
5 - Expansões do espectro de RMN ¹³ C de 222	317
6 - Subespectro DEPT135 de <u>222</u> (δ , 50 MHz, CDCI ₃)	318
7 - Expansões do subespectro DEPT135 de 222	318
8 - Mapa de contornos HMQC de <u>222</u> (δ , 200 MHz, CDCl ₃)	319
9 - Expansões do mapa de contornos HMQC de 222	319
10 - Espectro de absorção no IV de <u>224</u> (v, cm ⁻¹ , filme oleoso)	320
11 - Espectro de absorção no IV de <u>202</u> (v, cm ⁻¹ , filme oleoso)	321
12 - Espectro de RMN ¹ H de <u>202</u> (δ , 200 MHz, CDCl ₃)	322
13 - Expansões do espectro de RMN ¹ H de <u>202</u>	322
14 - Espectro de RMN ¹³ C de <u>202</u> (<i>δ</i> , 50 MHz, CDCI ₃)	323
15 - Expansões do espectro de RMN ¹³ C de <u>202</u>	323
16 - Subespectro DEPT135 de <u>202</u> (δ , 50 MHz, CDCl ₃)	324
17 - Expansões do subespectro DEPT135 de <u>202</u>	324
18 - Mapa de contornos COSY de <u>202</u> (δ , 200 MHz, CDCl ₃)	325
19 - Expansões do mapa de contornos COSY de <u>202</u>	325
20 - Mapa de contornos HMQC de <u>202</u> (δ , 200 MHz, CDCl ₃)	326
21 - Expansões do mapa de contornos HMQC de 202	326
22 - Espectro de absorção no IV de <u>223</u> (v, cm ⁻¹ , filme oleoso)	327
23 - Espectro de RMN ¹ H de <u>223</u> (δ , 200 MHz, CDCl ₃)	328
24 - Expansões do espectro de RMN ¹ H de <u>223</u>	328
25 - Espectro de RMN ¹³ C de <u>223</u> (δ, 50 MHz, CDCI ₃)	329
26 - Expansões do espectro de RMN ¹³ C de 223	329
27 - Subespectro DEPT135 de <u>223</u> (δ , 50 MHz, CDCl ₃)	330
28 - Expansões do subespectro DEPT135 de 223	330
29 - Mapa de contornos COSY de <u>223</u> (δ , 200 MHz, CDCl ₃)	331
30 - Expansões do mapa de contornos COSY de 223	331
31 - Mapa de contornos HMQC de <u>223</u> (δ , 200 MHz, CDCl ₃)	332

32 - Expansões do mapa de contornos HMQC de <u>223</u>	332
33 - Espectro de absorção no IV de <u>225</u> (v, cm ⁻¹ , filme oleoso)	333
34 - Espectro de absorção no IV de <u>203</u> (v, cm ⁻¹ , filme oleoso)	334
35 - Espectro de RMN ¹ H de <u>203</u> (δ , 200 MHz, CDCl ₃)	335
36 - Expansões do espectro de RMN ¹ H de <u>203</u>	335
37 - Espectro de RMN ¹³ C de <u>203</u> (δ , 50 MHz, CDCl ₃)	336
38 - Expansões do espectro de RMN ¹³ C de <u>203</u>	336
39 - Subespectro DEPT135 de <u>203</u> (<i>δ</i> , 50 MHz, CDCl ₃)	337
40 - Expansões do subespectro DEPT135 de <u>203</u>	337
41 - Mapa de contornos COSY de <u>203</u> (δ , 200 MHz, CDCl ₃)	338
42 - Expansões do mapa de contornos COSY de <u>203</u>	338
43 - Mapa de contornos HMQC de <u>203</u> (δ , 200 MHz, CDCl ₃)	339
44 - Expansões do mapa de contornos HMQC de <u>203</u>	339
45 - Espectro de absorção no IV de <u>226</u> (v, cm ⁻¹ , filme sólido)	340
46 - Espectro de RMN ¹ H de <u>226</u> (<i>δ</i> , 200 MHz, CDCl ₃)	341
47 - Expansões do espectro de RMN ¹ H de <u>226</u>	341
48 - Espectro de RMN ¹³ C de <u>226</u> (δ , 50 MHz, CDCl ₃)	342
49 - Expansões do espectro de RMN ¹³ C de <u>226</u>	342
50 - Subespectro DEPT135 de <u>226</u> (δ , 50 MHz, CDCl ₃)	343
51 - Expansões do subespectro DEPT135 de <u>226</u>	343
52 - Mapa de contornos COSY de <u>226</u> (δ , 200 MHz, CDCl ₃)	344
53 - Expansões do mapa de contornos COSY de 226	344
54 - Mapa de contornos HMQC de 226 (δ , 200 MHz, CDCl ₃)	345
55 - Expansões do mapa de contornos HMQC de 226	345
56 - Espectro de absorção no IV de <u>227</u> (v, cm ⁻¹ , filme sólido)	346
57 - Espectro de RMN ¹ H de <u>227</u> (<i>δ</i> , 200 MHz, CDCl ₃)	347
58 - Expansões do espectro de RMN ¹ H de <u>227</u>	347
59 - Espectro de RMN ¹³ C de <u>227</u> (δ , 50 MHz, CDCl ₃)	348
60 - Expansões do espectro de RMN ¹³ C de <u>227</u>	348
61 - Subespectro DEPT135 de <u>227</u> (δ , 50 MHz, CDCl ₃)	349
62 - Expansões do subespectro DEPT135 de 227	349
63 - Mapa de contornos COSY de <u>227</u> (δ , 200 MHz, CDCl ₃)	350
64 - Expansões do mapa de contornos COSY de 227	350
65 - Mapa de contornos HMQC de <u>227</u> (δ , 200 MHz, CDCl ₃)	351

66 - Expansões do mapa de contornos HMQC de 227	351
67 - Espectro de absorção no IV de <u>208</u> (v, cm ⁻¹ , filme sólido)	352
68 - Espectro de RMN ¹ H de <u>208</u> (δ , 200 MHz, CDCl ₃)	353
69 - Expansões do espectro de RMN ¹ H de <u>208</u>	353
70 - Espectro de RMN ¹³ C de <u>208</u> (δ, 50 MHz, CDCl ₃)	354
71 - Expansões do espectro de RMN ¹³ C de <u>208</u>	354
72 - Subespectro DEPT135 de <u>208</u> (δ , 50 MHz, CDCl ₃)	355
73 - Expansões do subespectro DEPT135 de 208	355
74 - Espectro de absorção no IV de <u>209</u> (v, cm ⁻¹ , filme sólido)	356
75 - Espectro de RMN ¹ H de <u>209</u> (δ , 200 MHz, CDCI ₃)	357
76 - Expansões do espectro de RMN ¹ H de <u>209</u>	357
77 - Espectro de RMN ¹³ C de <u>209</u> (δ, 50 MHz, CDCl ₃)	358
78 - Expansões do espectro de RMN ¹³ C de <u>209</u>	358
79 - Subespectro DEPT135 de <u>209</u> (δ , 50 MHz, CDCl ₃)	359
80 - Expansões do subespectro DEPT135 de 209	359
81 - Espectro de absorção no IV de <u>204</u> (v, cm ⁻¹ , filme sólido)	360
82 - Espectro de RMN ¹ H de <u>204</u> (δ , 400 MHz, CDCI ₃)	361
83 - 1º grupo de expansões do espectro de RMN ¹ H de <u>204</u>	361
84 - 2º grupo de expansões do espectro de RMN ¹ H de <u>204</u>	362
85 - 3º grupo de expansões do espectro de RMN ¹ H de <u>204</u>	362
86 - Espectro de RMN ¹³ C de <u>204</u> (δ , 100 MHz, CDCl ₃)	363
87 - Expansões do espectro de RMN ¹³ C de <u>204</u>	363
88 - Subespectro DEPT135 de <u>204</u> (δ, 100 MHz, CDCl ₃)	364
89 - Expansões do subespectro DEPT135 de 204	364
90 - Mapa de contornos COSY de <u>204</u> (δ , 400 MHz, DMSO-d ₆)	365
91 - Expansões do mapa de contornos COSY de 204	365
92 - Mapa de contornos HMQC de <u>204</u> (δ , 400 MHz, CDCl ₃)	366
93 - Expansões do mapa de contornos HMQC de 204	366
94 - Espectro de absorção no IV de <u>235</u> (v, cm ⁻¹ , filme oleoso)	367
95 - Espectro de RMN ¹ H de <u>235</u> (δ , 200 MHz, CDCl ₃)	368
96 - Expansões do espectro de RMN ¹ H de <u>235</u>	368
97 - Espectro de RMN ¹³ C de <u>235</u> (δ , 50 MHz, CDCl ₃)	369
98 - Expansões do espectro de RMN ¹³ C de 235	369
99 - Subespectro DEPT135 de <u>235</u> (δ, 50 MHz, CDCl ₃)	370

100 - Expansões do subespectro DEPT135 de 235	370
101 - Mapa de contornos COSY de <u>235</u> (δ , 200 MHz, CDCl ₃)	371
102 - Expansões do mapa de contornos COSY de 235	371
103 - Mapa de contornos HMQC de <u>235</u> (δ , 200 MHz, CDCl ₃)	372
104 - Expansões do mapa de contornos HMQC de 235	372
105 - Espectro de absorção no IV de 236 (v, cm ⁻¹ , filme sólido)	373
106 - Espectro de RMN ¹ H de <u>236</u> (δ , 400 MHz, CDCl ₃)	374
107 - Expansões do espectro de RMN ¹ H de <u>236</u>	374
108 - Espectro de RMN ¹³ C de <u>236</u> (δ , 100 MHz, CDCl ₃)	375
109 - Expansões do espectro de RMN ¹³ C de <u>236</u>	375
110 - Subespectro DEPT135 de <u>236</u> (δ , 100 MHz, CDCl ₃)	376
111 - Expansões do subespectro DEPT135 de <u>236</u>	376
112 - Mapa de contornos COSY de <u>236</u> (δ , 400 MHz, CDCl ₃)	377
113 - Expansões do mapa de contornos COSY de <u>236</u>	377
114 - Mapa de contornos HMQC de <u>236</u> (δ , 400 MHz, CDCl ₃)	378
115 - Expansões do mapa de contornos HMQC de <u>236</u>	378
116 - Mapa de contornos HMBC de <u>236</u> (δ , 400 MHz, CDCl ₃)	379
117 - Expansões do mapa de contornos HMBC de <u>236</u>	379
118 - Espectro de absorção no IV de <u>210</u> (v, cm ⁻¹ , filme sólido)	380
119 - Espectro de RMN ¹ H de <u>210</u> (δ , 400 MHz, CDCl ₃)	381
120 - 1º grupo de expansões do espectro de RMN ¹ H de <u>210</u>	381
121 - 2º grupo de expansões do espectro de RMN ¹ H de <u>210</u>	382
122 - Espectro de RMN ¹³ C de <u>210</u> (δ , 100 MHz, CDCl ₃)	383
123 - Expansões do espectro de RMN ¹³ C de <u>210</u>	383
124 - Subespectro DEPT135 de <u>210</u> (<i>δ</i> , 100 MHz, CDCl ₃)	384
125 - Expansões do subespectro DEPT135 de <u>210</u>	384
126 - Mapa de contornos COSY de <u>210</u> (δ , 400 MHz, CDCl ₃)	385
127 - Expansões do mapa de contornos COSY de <u>210</u>	385
128 - Mapa de contornos HMQC de <u>210</u> (δ , 400 MHz, CDCl ₃)	386
129 - Expansões do mapa de contornos HMQC de 210	386
130 - Mapa de contornos HMBC de <u>210</u> (δ , 400 MHz, CDCl ₃)	387
131 - 1º grupo de expansões do mapa de contornos HMBC de 210	387
132 - 2º grupo de expansões do mapa de contornos HMBC de 210	388
133 - Espectro de absorção no IV de 237 (v, cm ⁻¹ , filme sólido)	389

134 - Espectro de RMN ¹ H de <u>237</u> (<i>δ</i> , 400 MHz, CDCl ₃)	390
135 - Expansões do espectro de RMN ¹ H de <u>237</u>	390
136 - Espectro de RMN ¹³ C de <u>237</u> (δ , 100 MHz, CDCl ₃)	391
137 - Expansões do espectro de RMN ¹³ C de 237	391
138 - Subespectro DEPT135 de <u>237</u> (<i>δ</i> , 100 MHz, CDCl ₃)	392
139 - Expansões do subespectro DEPT135 de 237	392
140 - Mapa de contornos COSY de <u>237</u> (δ , 400 MHz, CDCl ₃)	393
141 - Expansões do mapa de contornos COSY de <u>237</u>	393
142 - Mapa de contornos HMQC de <u>237</u> (δ , 400 MHz, CDCl ₃)	394
143 - Expansões do mapa de contornos HMQC de <u>237</u>	394
144 - Mapa de contornos HMBC de <u>237</u> (δ , 400 MHz, CDCl ₃)	395
145 - 1º grupo de expansões do mapa de contornos HMBC de <u>237</u>	395
146 - 2º grupo de expansões do mapa de contornos HMBC de <u>237</u>	396
147 - Espectro de absorção no IV de <u>238</u> (v, cm ⁻¹ , filme sólido)	397
148 - Espectro de RMN ¹ H de <u>238</u> (<i>δ</i> , 400 MHz, CDCl ₃)	398
149 - Expansões do espectro de RMN ¹ H de <u>238</u>	398
150 - Espectro de RMN ¹³ C de <u>238</u> (δ , 100 MHz, CDCl ₃)	399
151 - Expansões do espectro de RMN ¹³ C de <u>238</u>	399
152 - Subespectro DEPT135 de <u>238</u> (δ , 100 MHz, CDCl ₃)	400
153 - Expansões do subespectro DEPT135 de <u>238</u>	400
154 - Mapa de contornos COSY de <u>238</u> (δ , 400 MHz, CDCl ₃)	401
155 - Expansões do mapa de contornos COSY de 238	401
156 - Mapa de contornos HMQC de <u>238</u> (δ , 400 MHz, CDCl ₃)	402
157 - Expansões do mapa de contornos HMQC de <u>238</u>	402
158 - Mapa de contornos HMBC de <u>238</u> (δ , 400 MHz, CDCl ₃)	403
159 - 1º grupo de expansões do mapa de contornos HMBC de <u>238</u>	403
160 - 2º grupo de expansões do mapa de contornos HMBC de <u>238</u>	404

RESUMO

No primeiro capítulo deste trabalho, a síntese de duas macrolactamas com 11 e 15 membros derivadas da D-galactose é descrita a partir da ciclização radicalar mediada por hidreto de tri-*n*-butilestanho de 2-iodobenzamidas e 3-(iodoacetamido)benzamidas. Foram obtidas duas macrolactamas, formadas pelos modos 11-*endo* e 15-*endo*, bem como produtos de redução não-ciclizados.

No segundo capítulo, descreve-se a análise conformacional por cálculos teóricos com métodos semi-empíricos (PM3) e DFT (B3LYP/6-311+G(d,p) para estes substratos, que apontaram para a preferência pelo modo de ciclização 11-*endo* sobre 10-*exo* para derivados insaturados alílicos, e 10-*exo* sobre 11-*endo*, para compostos insaturados cinamílicos. Os cálculos mostraram também que a reação de abstração de hidrogênios metilênicos compete fortemente com a reação de ciclização.

Descreve-se, ainda, a realização de estudos teóricos com os mesmos métodos para diferentes substratos cinamílicos, cinamoílicos e cinamamídicos ainda inéditos, que apontaram para a preferência pelo modo de ciclização 10-*exo* sobre 11-*endo*.

ABSTRACT

In the first chapter of this work, the synthesis of two macrolactams with 11 and 15 members derived from D-galactose is described from the tri-*n*-butyltin hydride mediated radical cyclization of 2-iodobenzamides and two 3-(iodoacetamido)benzamides. Two macrolactams, resulting from 11- and 15-*endo* mode ciclization, were isolated, plus the uncyclized reduction products.

In the second chapter, it is described the conformational analysis by theoretical calculations with semi-empirical (PM3) and DFT (B3LYP/6-311+G(d,p)) methods for these substracts, which pointed to 11-*endo* over 10-*exo* cyclization mode preference for insaturated allylic derivatives, and 10-*exo* over 11-*endo*, for insaturated cinnamylic compounds. The calculations also showed that methylenic hydrogens abstraction reaction competes strongly with cyclization reaction.

It is also described the performing of theoretical studies with the same methods for still unpublished cinnamylic, cinnamoylic and cinnamamidic different substracts, which pointed to 10-*exo* above 11-*endo* cyclization mode preference.

CAPÍTULO 1

Síntese de macrolactamas a partir de 2-iodobenzamidas e 3-(iodoacetamido)benzamidas derivadas da D-galactose por carbociclização radicalar