
ERICA CASTILHO RODRIGUES

INFERINDO A ESTRUTURA DE VIZINHANÇA EM

MODELOS BAYESIANOS ESPACIAIS

Belo Horizonte

21 de fevereiro de 2011



ERICA CASTILHO RODRIGUES

Orientador: Renato Martins Assunção

INFERINDO A ESTRUTURA DE VIZINHANÇA EM

MODELOS BAYESIANOS ESPACIAIS

Dissertação apresentada ao Programa de Pós-
Graduação em Estatística da Universidade
Federal de Minas Gerais como requisito parcial
para a obtenção do grau de Mestre em Estatís-
tica.

ERICA CASTILHO RODRIGUES

Belo Horizonte

21 de fevereiro de 2011



ERICA CASTILHO RODRIGUES

Advisor: Renato Martins Assunção

INFERINDO A ESTRUTURA DE VIZINHANÇA EM

MODELOS BAYESIANOS ESPACIAIS

Dissertation presented to the Graduate Pro-
gram in Estatística of the Universidade Fed-
eral de Minas Gerais in partial fulfillment of
the requirements for the degree of Master in
Estatística.

ERICA CASTILHO RODRIGUES

Belo Horizonte

February 21, 2011



UNIVERSIDADE FEDERAL DE MINAS GERAIS

FOLHA DE APROVAÇÃO

Inferindo a estrutura de vizinhança em modelos bayesianos espaciais

ERICA CASTILHO RODRIGUES

Dissertação defendida e aprovada pela banca examinadora constituída por:

Ph. D. Renato Martins Assunção – Orientador
Universidade Federal de Minas Gerais

Ph. D. Rosângela Helena Loschi
Universidade Federal de Minas Gerais

Ph. D. Marc Genton
Texas A&M University

Belo Horizonte, 21 de fevereiro de 2011



Acknowledgments

Agradeço primeiramente a Deus, por me permitir terminar mais essa etapa.
Não poderia deixar de agradecer em primeiro lugar aos meus pais, Ricardo e Marcia. À

minha mãe, pela paciência em me ouvir todos os dias, por participar em todos os momento,
sempre me confortando e me incentivando. Ao meu pai, por sempre acreditar em mim,
por sempre me ajudar em tudo que fosse possível. À Gabriela, pela compreensão e pela
torcida sempre constante. Gostaria de agradecer também ao Taciano, pelo amor e incentivo
incondicionais. Por sempre me ouvir, me dar conselhos e por sempre compartilhar comigo cada
momento dessa jornada. Não posso também deixar de agradecer às minhas grandes amigas,
Poliana, Natália e Sarah, pelos ótimos momentos compartilhados e por sempre torcerem por
mim.

Devo agradecer também a todos os amigos da UFMG. À Vanessa, com seu jeito meigo
e generoso, quantos momentos de sufoco não passamos juntas. Às meninas do Leste, Aline,
Letícia, Thaís, Márcia, Paola pelas horas de trabalho tão agradáveis ao lado de vocês. Pelos
muitos momentos de descontração e por fazerem meu dia bem mais divertido. o João Vitor,
pelo pouco tempo que trabalhamos juntos. Não posso esquecer da Alesssandra, ouvinte oficial
do LESTE, por sempre me ajudar quando precisei. Gostaria também de agradecer a todos os
mestres do Departamento de Estatística. Em especial à Rosângela e Denise, pelo incentivo
sempre e pelo tanto que me ensinaram. Não posso deixar de agradecer também aos mestres do
Departamento de Matemática, Bernardo e Remy, que acreditaram em mim bem no comecinho
e me iniciaram na vida acadêmica. Gostaria também de agradecer ao Renato pela orientação,
sempre firme, segura, por me mostrar com é importante amar o que se faz. Pela paciência
em entender minhas dificuldades e por me motivar a superá-las a todo momento. Gostaria
de agradecer também ao professor Marc Genton, por aceitar em participar da banca dessa
dissertação e pelas sugestões dadas.

i



Resumo

No mapeamento de doenças, é necessário especificar uma estrutura de vizinhança para fazer
inferências sobre a distribuição geográfica dos riscos relativos. Propomos um modelo em
que a estrutura de vizinhança é parte do espaço paramétrico. Mantemos a propriedade de
Markov usual de modelos Bayesianos espaciais: dado o grafo de vizinhança, as taxas de
doença seguem um modelo auto-regressivo condicional. No entanto, o grafo em si é um
parâmetro que também precisa ser estimado. Investigamos propriedades teóricas do nosso
modelo. Em particular, investigamos cuidadosamente a matriz de covariância a priori e a
posteriori induzida por esta estrutura de vizinhança aleatória fornecendo interpretação para
cada elemento dessas matrizes. Também ilustramos as vantagens do nosso modelo com os
dados simulados e exemplos de mapeamento real da doença.

Palavras-chaves: Mapeamento de doenças; Campos Aleatórios de Markov; Modelos
Hierárquicos Espaciais.
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Abstract

In Bayesian disease mapping, one needs to specify a neighborhood structure to make inference
on the underlying geographical relative risks. We propose a model in which the neighborhood
structure is part of the parameter space. We retain the Markov property of the usual Bayesian
spatial models: given the neighborhood graph, the disease rates follow a conditional autore-
gressive model. However, the neighborhood graph itself is a parameter that also needs to be
estimated. We investigate the theoretical properties of our model. In particular, we investi-
gate carefully the prior and posterior covariance matrix induced by this random neighborhood
structure providing interpretation for each element of these matrices. We also illustrate the
advantages of our model with simulated data and real disease mapping examples.

Key words: Disease mapping; Markov Random Field; Spatial Hierarchical Models.

iii



Resumo Estendido

Em modelos espaciais e, mais especificamente, em modelos para mapeamento de doenças, um
ponto importante é a especificação da estrutura de vizinhança. Apesar da importância dessa
escolha, em geral, são utilizadas apenas relações de adjacência entre as áreas. Existem poucas
justificativas para essa prática além da facilidade de implementação através de rotinas GIS.
O nosso objetivo, portanto, é propor um modelo mais flexível, no qual a própria estrutura de
vizinhança faz parte do espaço paramétrico. Ela será estimada e se adaptará de acordo com
a estrutura espacial da base de dados que está sendo analisada.

Para tanto, utilizamos Campos Markovianos Gaussianos e mantemos a propriedade usual
de Markov dos modelos espaciais. A nossa modificação é colocar uma matriz de precisão que
apresenta uma forma mais genérica e que nos permite estimar o grafo de vizinhança. Ao
invés de considerarmos apenas vizinhanças locais, incluímos a possibilidade de vizinhanças
com alcances mais longos. Mostramos através de exemplos simulados e com dados reais, que
em muitos casos a estrutura de vizinhança local pode não ser suficiente para captar toda
informação espacial contida nos dados.

Esse trabalho está organizado da seguinte maneira.
No Capítulo 1, apresentamos a notação utilizada e o modelo proposto pelos autores.

Mostramos que a matriz apresentada é, de fato, uma matriz de precisão de uma distribuição
normal multivariada, visto que ela é definida positiva. Encontramos ainda as distribuições
condicionais do efeito aleatório de uma área dado o resto do mapa e observamos que elas
apresentam um apelo intuitivo. Finalmente, ainda nessa seção, reescrevemos a distribuição
conjunta de uma maneira mais simples a fim de evidenciar mais uma forma de interpretá-la
e mostrar que ela consiste, na verdade, em uma mistura geométrica de distribuições normais.

No Capítulo 2, analisamos algumas propriedades teóricas do modelo. Em particular,
estudamos cuidadosamente o formato das matrizes de covariância a priori e a posteriori
induzidas por essa vizinhança aleatória. Apresentamos uma interpretação de cada um de seus
elementos e mostramos como eles refletem o tipo de estrutura especificada através da matriz
de precisão. Além disso, para um melhor entendimento do modelo, consideramos um caso
específico, no o qual a inversão das matrizes de covariância a priori e a posteriori são mais
simples e a interpretação dos seus termos pode ser feita de maneira mais direta.

No Capítulo 3, ilustramos algumas vantagens do modelo por meio de dados simulados e
exemplos com dados reais. O primeiro exemplo considerado se refere aos dados de mortal-
idade infantil na cidade de Auckland. Nesse caso, notamos que a estrutura de vizinhança
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mais razoável é aquela que considera todas as áreas como vizinhas umas das outras. Isso
provavelmente se deve à homogeneidade da região analisada. O segundo exemplo analisado se
refere à mortalidade causada por câncer pulmão, traquéia, brônquios e plêura. Novamente a
estrutra de vizinhança estimada a posteriori foi aquela que considera todas as áreas vizinhas
entre si. Para fins de comparação, consideramos uma terceira base de dados referente aos
casos de mortes súbitas na infância. Calculamos algumas medidas de ajuste de modelos como
DIC e o CPO e ambos mostraram que o nosso modelo apresenta resultados mais satisfatórios
que os demais. Finalmente, geramos uma simulação de casos com risco constante e notamos
que apesar de pontualmente todos os modelos darem a estimativa correta do risco relativo,
nós fomos capazes de obter estimativas mais precisas.

Ainda no Capítulo 3, apresentamos algumas discussões a respeito das vantagens do modelo
que estamos propondo. Apresentamos ainda algumas possíveis extensões que podem ser feitas,
por exemplo, incluindo outros tipos de vizinhança na matriz de precisão ou considerando uma
versão contínua da mesma, substituindo a soma por uma integral.
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Chapter 1

Introduction

1.1 Motivation

In disease mapping, the Bayesian model proposed by Besag, York and Mollié (1991), and
denoted by BYM, is the most popular choice to estimate relative risks in small areas or to
evaluate the effects of covariates acting as exposure measurements surrogates. Originally,
BYM was introduced to model a cross-section of counts collected in a set disjoint geograph-
ical areas composing a partitioned map. Since then, BYM has been extended into several
directions to include space-time generalized linear models (MacNab (2001), Beneito et al.
(2008), Knorr-Held et al. (2001), Sun et al. (2000), Silva (2008)), spatial survival models
(Carlin et al. (2003), Jin and Carlin (2005)), spatially-varying parameters models (Assunção
et al. (2002), Assunção (2003), Gelfand et al. (2003)), and generalized additive models (Lan
and Fahrmeir (2001)). Multivariate extensions incorporating two correlated sets of spatial
effects have also been proposed in recent years Jin et al. (2005) , Gelfand and Vounatsou
(2003), Held et al. (2005), Held et al. (2006). Many of these models can be fit using freely
available software such as WinBUGS and BayesX.

BYM is based on a conditional autoregressive (CAR) model for the spatial random effects.
In the CAR model, spatial dependence is expressed conditionally by requiring that the random
effect in a given area, given the values in all other areas, depends only on a small set of
neighboring values. More specifically, the random effect θi associated with the i-th area is
the sum ϕi + ψi of two components where ϕi is a spatially structured random effect assigned
an improper CAR prior distribution, and ψi is a second set of i.i.d. zero-mean normally
distributed unstructured random effects. This is termed a convolution prior (Besag, York and
Mollie, 1991) since the density of θi’s will be the convolution of the joint densities of ϕi vector
and the ψi vector.

An essential aspect of the BYM model and its extensions is the specification of the neigh-
borhood structure for the areas. Although this is quite flexible and can be arbitrarily defined,
in practice, it is typically based only on adjacency relationships. There are few justifications
for this practice other than its conveniently easy calculation by means of GIS (Geographic
information system) routines.

1



1. Introduction 2

Notwithstanding its crucial role in the spatial Bayesian models, very few studies have
considered different neighborhood structures for disease mapping problems. One notable
exception is MacNab and Dean (2000) where the authors considered a model for disease rates
with spatial effects structured at two geographical levels. They used infant mortality data
over the period 1985-1994 from the province of British Columbia (BC) in Canada. The areas
were organized in 21 health units and their sub-divisions, 79 local health areas. Health units
(HUs) are administrative health divisions overseeing the functioning of the health sub-units,
the local health areas (LHAs). Therefore, it was natural to expect that LHAs within the same
HUs should share many health service and care characteristics beyond those determined by
factors that vary smoothly in space. Hence, they assumed a random effect shared by all LHAs
within the same HU. They also considered a neighborhood structure in which two LHAs are
considered neighbors if they share boundaries or if there is a third LHA sharing boundaries
with both local health areas. This second-order neighborhood structure is less usual and it
reminds the higher autoregressive order models in the time series setting.

A more recent reference is White and Ghosh(2009), who introduced a stochastic neighbor-
hood CAR model where the selection of the neighborhood depends on unknown parameters.
They estimate how far should the neighborhood of the areas be assuming proximity weights
that stay constant and equal to 1 up to a certain distance and thereafter decreases exponen-
tially towards zero. In contrast with most of the published applied papers in disease mapping,
they base their model in the proper CAR model rather than BYM. Most people prefer to use
BYM, implying in an improper CAR model to deal with the spatial random effects, because
the proper CAR model induces little marginal correlation between neighboring areas (See
Banerjee, Carlin and Gelfand, 2004, page 81) and Assunção (2009).

These studies consider only locally larger neighborhoods than the first order neighborhood
provided by the simple adjacency between the areas. Although in some situations a local
neighborhood will be enough to deal with the spatial effects, we feel that spatial models
should span a larger range of possibilities. Fundamentally, BYM and its variations consider
the random effects being composed of either unstructured over-dispersion or small range
spatial conditional variation. These are two extremes models and allowing for intermediate
situations will be useful in some applications. We will show examples where the typical
adjacency neighborhood structure is not sufficient to estimate the underlying risks, providing
less smooth estimates than what should be inferred from the data. Our purpose is to introduce
spatial effects with longer range than the immediate geographical neighborhood. This is likely
to be useful specially in situations where the underlying risk changes so smoothly over larger
regions as to be considered indistinguishable from a random constant value for all areas within
it.

In this work, we investigate more flexible spatial conditional autoregressive models in
terms of the neighborhood structure. We propose a model in which the neighborhood struc-
ture is part of the parameter space. We retain the same Markov property that is part of most
Bayesian spatial models. That is, the disease rates follow a conditional autoregressive model,
given the neighborhood graph. However, the neighborhood graph itself is a parameter that



1. Introduction 3

also needs to be estimated. The methodology described herein permits arbitrary neighbor-
hood extension for incorporating spatial random effects. It provides a simple mechanism for
identifying the geographical extent of the conditional influence of neighboring areas.

The manuscript is organized as follows. In Section 1.2, we introduce the notation and
present our model. In Section 2.1, we investigate the theoretical properties of the model.
In particular, we carefully study the prior and posterior covariance matrix induced by this
random neighborhood structure providing interpretation for each element of these matrices.
We also present a specific and simpler case of our model allowing for a more thorough under-
standing of the covariance structure. In Section 3.1, we illustrate the advantages of our model
with simulated data and real disease mapping examples. We end in Section 3.2 presenting
the main conclusions.

1.2 Disease Mapping

A Bayesian hierarchical model is one of the main tools to make inference on the underlying
relative risks of a disease observed into disjoint geographical areas of a map. These models can
be described in this way: suppose that we have N geographic areas and each of them has a
relative risk ψi for i = 1, ..., N , that needs to be estimated. The Bayesian inference is based on
the posterior distribution of ψ = (ψ1, ..., ψN ) given by f(ψ|y1, ..., yN ) = l(y1, ..., yN |ψ)f(ψ),
where l(y1, ..., yN |ψ) is the likelihood function and f(ψ) is the prior distribution of the pa-
rameters vector ψ. Conditionally on the values ψ1, ..., ψN , the values Y1, ..., YN are supposed
to be independent with a Poisson distribution with mean ψiEi, where Ei is the expected value
of cases under the hypotheses of constant relative risk over the areas. The modeling of the
prior distribution f(ψ) allows the introduction of spatial dependence between the risks such
that close regions tend to have similar relative risks. This dependence appears as a Markovian
structure in which the value ψi of one area, conditionally on all other areas values, depends
only upon the ψj ’s values of its neighbors.

More specifically, the relative risk ψi is written as

log(ψi) = µ+ bi (1.1)

where µ is the general level of the relative risk and bi is the random effect of the i-th area.
One simple possibility is to assume that the random effects bi are independent and identically
distributed with a normal distribution N(0, σ2). In this case, there will be no spatial effects
imposed on the relative risks and the posterior distribution of ψ will reflect this independence.
However, one typically anticipates a spatial dependence between the relative risks due to
environmental and genetic similarities of neighboring areas. The most popular distribution to
reflect the spatial structure of the data in the prior distribution was introduced by Besag et
al (1991). They decomposed the random effect bi into two parts, a non-spatially-structured
component and a spatially structured component:

log(ψi) = µ+ θi + βi
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where θ1, . . . , θn are the non-structured errors, independently and identically distributed ac-
cording to a normal distribution. The random effects βi have a spatially structured prior
distribution with intrinsic CAR (ICAR) distribution. The ICAR prior distribution is an im-
proper prior with a Markovian structure. The distribution of βi, conditional on all the other
values βj for j ̸= i, is given by

βi|β−i ∼ N

(
β̄i,

σ2

ni

)
(1.2)

where β̄i is the mean of the i-th area neighboring values βj .
This model presents some identifiability problems of the spatial and non-spatial effects,

as noticed by Eberly and Carlin(2000). To fix this problem, Leroux(1999) presented an
alternative, including a parameter λ which is able to measure the effect of each component.
This parameter measures the level of spatial correlation among the areas. In addition to
this, it is included a parameter σ2 to measure the random effect variance. He proposed a
multivariate normal distribution for the random effects b = (b1, . . . , bN ) in (1.1) with the
following precision matrix

Q = (σ2)−1 ((1− λ)I+ λR) (1.3)

where I is the identity matrix and R is the precision matrix of the ICAR model, which means
that

Rij =


ni if i = j

−1 if j ∼ j

0 otherwise

where ni is the number of neighbors of site i and i ∼ j means i neighbor of j.
For this model, the parameter λ assumes values in the interval [0, 1], anda hence, the

precision matrix Q is a weighted sum of the I and R matrices.
The BYM and Leroux models represent a mixing of two extreme situations. One situation

considers a conditional dependence only on the immediate neighbors represented by the single
neighborhood structure while the other situation represents the complete independence be-
tween the random effects. Both models consider that, if we have information on the immediate
neighbors, no additional information about the other areas is necessary to make inference on
the random effects. We think that in many practical situations this is too restrictive. Con-
sider, for example, another extreme but possible situation in which the distribution of bi (and
hence, of ψi) in a given area, conditional on the rest of the map, should depend upon all
the other sites, not only on the immediate neighbors. In this case, all areas are neighboring
areas of all other areas. This can be a reasonable model when the region under study is small
enough such that the economic, social and environmental characteristics are approximately
constant over the entire region. This implies a certain exchangeability between the areas and
therefore an all-inclusive dependence between the areas’ pairs. Every area gives incremental
additional information on a fixed area value, even if conditioning on all the other areas.

We propose a model that expands the single neighborhood structure of BYM and Leroux
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models to a larger class that has geographically increasing orders of neighborhood extension.
Through Bayesian updating, we can make inference about the more appropriate neighborhood
structure underlying the observed data. More specifically, we extend the weighted sum preci-
sion matrix (1.3) by including matrices that represent neighborhoods of all possible orders in
the simple adjacency graph.

Let each area i be a node or site of a graph and connect two nodes by one edge if they
share boundaries. Let A be the n× n binary adjacency matrix where Aij = 1 if i and j are
connected by one edge, and Aij = 0 otherwise. We say that i is a l-th order neighbor of j if
the (i, j)-th element of the power matrix Al is greater than zero and As

ij = 0, for s < l and
l ≥ 1. The maximum neighborhood order is given by the diameter of the graph, which is the
longest path among all the shortest paths that connect two sites. In other words, it counts
the minimum number of steps necessary to leave a site and go to any other site in the graph.

In our model, the vector b = (b1, . . . , bN ) in (1.1) has a multivariate normal distribution
with mean zero and precision matrix given by:

Q = (σ2)−1
(
λ1I+ λ2R

(1) + λ3R
(2) + ....+ λk+1R

(k)
)

where λ1+λ2+ ...+λk+1 = 1 and λi ≥ 0 for all i. The integer k is the diameter of the graph
and R(l) is the graph Laplacian that includes neighborhoods up to order l. That is,

R
(l)
ij =


n
(l)
i if i = j

−1 if j ∈ ∂
(l)
i

0 otherwise

where n(l)i is the number of neighbors of site i up to order l and ∂
(l)
i is the set of neighbors

of area i, from order 1 up to order l. Notice that, we are considering that the neighborhood
relationship is symmetric, that is, j ∈ ∂

(l)
i if, and only if, i ∈ ∂

(l)
j . It is important to point out

that these matrices are linearly independent, ensuring the parameters identifiability.
This matrix is positive definite, as it satisfies the sufficient condition of being diagonal

dominant. That is, for all i = 1, . . . , n

Qii >

N∑
j=1

|Qij |

because

Qii = λ1 + λ2n
(2)
i + λ3n

(3)
i + ...+ λk+1n

(k)
i = λ1 +

N∑
j=1

|Qij | >
N∑
j=1

|Qij |

as λ1 ∈ (0, 1), and, therefore, Q can be a precision matrix.
From the precision matrix, it is possible to obtain the conditional distribution bi|b−i of

each area given the vector b−i = (b1, . . . , bi−1, bi+1, . . . , bn). It is a normal distribution with
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mean f(b, λ) and variance g(b, λ) given by

f(b, λ) =
λ2n

(1)
i b̄

(1)
i + λ3n

(2)
i b̄

(2)
i + . . .+ λk+1n

(k)
i b̄

(k)
i

λ1 + λ2n
(1)
i + λ3n

(2)
i + ...+ λk+1n

(k)
i

and

g(b, λ) =
σ2

λ1 + λ2n
(1)
i + λ3n

(2)
i + ...+ λk+1n

(k)
i

where b̄
(l)
i is the mean of neighbors of site i up to order l. The conditional expectation

is a convex linear combination of the means of its neighbors of all possible orders and the
conditional variance is inversely proportional to the number of neighbors of each of these
orders multiplied by their respective weight λl.

Let the (n−2) dimensional b−ij be the vector b without its i− th and j− th coordinates.
It can be shown that the conditional correlation between the areas, Corr(bi, bj |b−ij) is given
by

Corr(bi, bj |b−ij) ∝



λ2 + λ3 + . . .+ λk if j ∈ ∂
(1)
i

λ3 + . . .+ λk if j ∈ ∂
(2)
i − ∂

(1)
i

.

.

λk if j ∈ ∂
(k)
i −

∪k−1
l=1 ∂

(l)
i

.

with the proportionality constant given by the inverse of

k∑
l=1

λln
(l−1)
i

k∑
l=1

λln
(l−1)
j

and with n
(0)
i ≡ 1 by definition, for all i = 1, . . . , N . This shows that the conditional

correlation between the areas decreases with the neighborhood order l. For example, if a pair
of sites are third order neighbors, the conditional correlation between them will be smaller
than that between two first order neighbors. Notice also that, if all the λl are positive, then
the conditional correlation between any pair of areas is different from zero.
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We can also write the joint distribution in a more interpretable way:

f(b) ∝ exp

− 1

2σ2

∑
i

b2i (λ1 + ...+ λk+1n
(k)
i )− λ2

∑
i

∑
j:j∈∂

(1)
i

bibj

−λ3
∑
i

∑
j:j∈∂

(2)
i

bibj − ...− λk+1

∑
i

∑
j:j∈∂

(k)
i

bibj




= exp

− 1

2σ2

λ1∑
i

b2i +
2λ2
2

∑
i

∑
j:j∈∂

(1)
i

b2i + . . .+
2λk+1

2

∑
i

∑
j:j∈∂

(k)
i

b2i

−

2λ2
2

∑
i

∑
j:j∈∂

(1)
i

bibj + ...+
2λk+1

2

∑
i

∑
j:j∈∂

(k)
i

bibj





= exp

− 1

2σ2

∑
i

λ1b2i + λ2
2

∑
j:j∈∂

(1)
i

(bi − bj)
2 + . . .+

λk+1

2

∑
j:j∈∂

(k)
i

(bi − bj)
2



 .(1.4)

If λl = 0 for all l > 1, we are in the case of independent normal distributions. We can interpret
the term associated with λl as a penalization for configurations showing too much variation
among l-th order neighbors. The larger the value of λl, the smoother is the spatial pattern
up to neighborhood order l.

This distribution can also be written as

f(b) ∝

(
exp

{
− 1

2σ2

∑
i

b2i

})λ1

exp

− 1

4σ2

∑
i

∑
j:j∈∂(l)

i

(bi − bj)
2




λ2

...

exp

− 1

4σ2

∑
i

∑
j:j∈∂(l)

i

(bi − bj)
2




λk

which is a geometric mixture of normal distributions.
To complete the model specification, one needs to adopt prior distributions for the weights

(λ1, . . . , λk) and for the hyperparameter σ2. In our applications, we assumed an inverse
Gamma prior distribution for σ2 and a uniform distribution on the k-dimensional simplex
with the restriction that the λl > 0 and that they add to 1.



Chapter 2

Model

2.1 Model properties

To gain a better understanding of the prior and posterior distribution properties, we obtain its
marginal covariance matrix in addition to the conditional correlation given earlier. To avoid
a cumbersome notation and long formulas, we will consider the model that includes three
different values for λl, one corresponding to λ1 (associated with the individual areas and the
independent case), another corresponding to λ2 (associated with pairs of adjacent areas), and
the third one, λ3, corresponding to the highest possible order k, associated with a complete
graph, where every area is neighbor of every other area. The extension to the general case is
straightforward.

Considering only three components, our precision matrix reduces to

Q = (σ2)−1
(
λ1I+ λ2R

(1) + λ3R
(k)
)

(2.1)

where R(1) is the precision matrix of the ICAR model and R(k) is given by

R(k) = diag(N)− 11T

where N = N1 with N being the total number of areas in the map and 1 denotes a N -
dimensional vector of ones. The precision matrix in (2.1) can be rewritten as

Q = (σ2)−1
(
λ1I+ λ2diag(n) + λ3diag(N)− λ2A− λ311

T
)

where A is the binary adjacency matrix and A1 = n = (n1, . . . , nN ) is the vector which has
the number of adjacent neighbors of each area.

From matrix algebra, we know that

(
P+ uvT

)−1
= P−1 − P−1uvTP−1

1 + vTP−1u
(2.2)

if P is an invertible matrix and u and v are vectors with the same dimension. Let M =

8
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λ1I+ λ2diag(n) + λ3diag(N)− λ2A and denote by mij the ij-th element of M−1. Using the
result (2.2), we have that the covariance matrix Q−1 is given by

Q−1 = σ2
(
M−1 + λ3

M−111TM−1

1− λ31M−11T

)

= σ2M−1 +
σ2λ3

1− λ3
∑

i,j mij



∑
j m1j

∑
imi1 ...

∑
j m1j

∑
imiN

.

.

.∑
j mNj

∑
imi1 ...

∑
j mNj

∑
imiN


As the matrix M is symmetric, M−1 is also symmetric and therefore, for all l = 1, ..., N ,∑

j

mlj =
∑
i

mil .

Let Sl+ =
∑

j mlj =
∑

imil. We can write the covariance matrix as

Q−1 = σ2M−1 +
σ2λ3

1− λ3
∑

ijmij
[S1+ S2+ . . . SN+]

T [S1+ S2+ ... SN+] . (2.3)

To understand this covariance matrix, we consider initially the matrix M−1 by following
the analytical approach adopted by Assunção and Krainski (2009). We can write

M−1 = M−1 [λ1I+ λ2diag(n) + λ3diag(N)] [λ1I+ λ2diag(n) + λ3diag(N)]−1

= [I− λ2TA]−1T

where
T = diag

{
1

λ1 + λ2n1 + λ3N
, . . . ,

1

λ1 + λ2nN + λ3N

}
. (2.4)

In the appendix, we show that we can expand the inverse matrix obtaining

[I− λ2TA]−1T = IT+ λ2(TA)T+ λ22(TA)2T+ λ32(TA)3T+ . . .

The elements
[
(TA)lT

]
ij

of the the l-th matrix in this expansion are weighted sums of all
possible paths of length l starting at the i-th site and ending at the j-th site. For example,
the three first matrices have elements equal to

[(TA)T]ij =
aij

(λ1 + λ2ni + λ3N)(λ1 + λ2nj + λ3N)

[
(TA)2T

]
ij
=

N∑
k=1

aikakj
(λ1 + λ2ni + λ3N)(λ1 + λ2nk + λ3N)(λ1 + λ2nj + λ3N)
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[
(TA)3T

]
ij
=

N∑
l=1

N∑
k=1

aikaklalj
(λ1 + λ2ni + λ3N)(λ1 + λ2nk + λ3N)(λ1 + λ2nl + λ3N)(λ1 + λ2nj + λ3N)

.

Considering the second matrix for illustration, the element
[
(TA)2T

]
ij

counts all paths i →
k → j giving a weight inversely proportional to the number of immediate neighbors ni, nk,
and nj the areas have. Going from i to j through a highly connected area has a smaller
contribution to M−1

ij than if the path goes through a poorly connected intermediate area.
This shows that two areas in a region of the map with highly connected areas will tend to
be less correlated than two areas in a region where the areas has few immediate neighbors.
Isolated

To complete the understanding of the covariance matrix Q−1 in (2.3), we consider now
the value Si+. We have

Si+ =
N∑
j=1

mij

=

N∑
j=1

∞∑
k=0

λk2

[
(TA)kT

]
ij

=
∞∑
k=0

λk2

N∑
j=1

[
(TA)kT

]
ij
.

where we interchange the order of the terms because the sum is absolutely convergent. This
quantity is a weighted sum of all paths leaving site i, the weight decreasing with the path
length k. It is inversely related to the average degree of connectivity that area i has with the
other areas in the graph. It is a value associated with the individual area, not with specific
pairs of areas.

In summary, the covariance Cov(bi, bj) = Q−1
ij is the sum of two components. The first one

is M−1
ij and represents a weighted sum of all paths from i to j with weights inversely related

to their length and to the connectivity of the areas in the path. The second component is
given by the product of Si+S+j where Si+ is a score associated with the average connectivity
of area i to the other areas in the map. The first component is influenced by the neighborhood
structure through a weighted counting of each path from i to j. The second component is
also influenced by the neighborhood structure but it considers only a marginal structure. Its
presence in the covariance matrix position (i, j) is by means of the product of these marginal
values associated with the individual areas.

2.1.1 Posterior Covariance Matrix

More relevant to the Bayesian data analysis is the posterior covariance implied by our prior
spatial model. To obtain analytical expressions, assume that yi can be approximated by a
normal distribution with variance 1/τy. The posterior precision matrix is given by

Q∗ = τyI+Q = τy +
(
σ2
)−1 [

λ1I+ λ2diag(n) + λ3diag(N)− λ2A− λ311
T
]
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and therefore, the covariance matrix is

Q∗−1 = M∗−1 +

(
σ−2λ3

)
(M∗)−1 (11T ) (M∗)−1

1− (σ−2λ3)1T (M∗)−1 1
.

where
M∗ =

(
τy +

λ1
σ2

)
I+

λ2
σ2

diag(n) +
λ3
σ2

diag(N)− λ2
σ2

A

It is rather surprising that it is possible to interpret each one of the two component matrices
of the covariance Q∗−1. Considering initially (M∗)−1, after some algebraic manipulations
analogous to those carried out earlier for the prior covariance matrix, we have that

M∗−1 = [I− (τyλ3)T
∗A]−1T∗

where

T∗ = diag
{

1

τy + σ−2 (λ1 + λ2n1 + λ3N)
, . . . ,

1

τy + σ−2 (λ1 + λ2nN + λ3N)

}
.

The elements of this diagonal matrix involve the data precision τy and the weights of the prior
covariance σ−2 (λ1 + λ2nN + λ3N). The relevance of each of these parts on the posterior
covariance will depend on the ratio between the variance of the observations and the prior
variance.

The same matrix expansion that was used earlier can be applied here. Thus we have

M∗−1 = T∗ +
(
σ−2λ2

)
T∗AT∗ +

(
σ−2λ2

)2
(T∗A)2T∗ +

(
σ−2λ2

)3
(T∗A)3T∗ + . . .

As a result, the posterior covariance matrix Q∗−1 has the same structure as the prior covari-
ance matrix, being written as sum of two matrices:

σ−2λ3
1− σ−2λ3

∑
i,j S

∗
ij



(
S∗
1+

)2
S∗
1+S

∗
2+ ... S∗

1+S
∗
N+

.

.

.

S∗
N+S

∗
1+ S∗

N+S
∗
2+ ...

(
S∗
N+

)2


and 

m∗
11 m∗

12 ... m∗
1N

.

.

.

m∗
N1 m∗

N2 ... m∗
NN

 .

where m∗
ij is the (i, j)-th element of the matrix M∗−1 and S∗

l+ =
∑

j m
∗
lj =

∑
im

∗
il

Therefore the posterior covariance matrix can be interpreted in the same way as the prior
covariance matrix. The only difference here are the weights appearing in the counts of the
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possible paths between pairs of areas. While they were equal to (λ1 + λ2ni + λ3N)−1 for
the prior, they are now equal to σ2/

(
τy + σ2 (λ1 + λ2ni + λ3N)

)
. This means that, as the

prior covariance, the posterior covariance can be decomposed into two components reflecting
different aspects of the neighborhood graph. One component is a weighted average of all paths
connecting areas i and j, longer paths having smaller weights than shorter ones. Additionally,
the paths are weighted according to the connection degree of the intervening areas in the path,
more connected paths having less weights. The other component of [Q∗−1]ij reflects intrinsic
aspects of the pair of areas i and j. It does not matter where they are located with respect
to each other, this covariance component is simply a product of scores specific to each area
and, in this sense, has less spatial content than the first component.

2.1.2 The specific case of two components

We consider briefly a specific case in which the inversion of the prior and posterior covariance
matrices are feasible and allow an easier interpretation of the covariance matrix. Suppose
that, a priori, the area-specific values bi follows a multivariate normal distribution with mean
zero and precision matrix

Q =
1

σ2
(
(1− λ)I+ λ

(
NI− 11T

))
.

where λ ∈ (0, 1). Compared with Leroux model in (1.3), this model exchanges the first order
neighborhood matrix R of Leroux’s model by the matrix associated with the exchangeable
risks model of Bernadinelli and Montomoli (1992).

Using (2.2), we can calculate the covariance matrix:

Q−1 =
σ2

1− λ+ λN

[
I+

λ

1− λ
11T

]
.

and the correlation Corr(bi, bj) = λ. The correlation approaches 1 as the weight of the
exchangeable model increases.

We can also find the posterior covariance matrix, if we assume that the data are normally
distributed with variance (τy)

−1. In this case, the posterior correlation of the random effects
of areas i and j is given by

Corr(bi, bj |y) =
λ

τy + (σ2)−1(1− λ)

This correlation is close to zero if λ is also close to zero. In the opposite direction, to get
correlation close to 1, we need to have λ close to 1 and also the ratio (σ2)τy between prior
and likelihood variances close to one. That is, we need an exchangeable component with large
relative weight and, at the same time, the underlying risks should have a variation similar to
the likelihood variance.



Chapter 3

Application and conclusion

3.1 Some illustrative applications

In this section we will present some examples of application of our model and we will compare
it whith ICAR and Leroux models.

3.1.1 Case study 1

Marshall(1990) studied the geographical variation of the infant (under 5 year of age) mor-
tality in Auckland, New Zealand, for the period 1977-1985. Infant mortality rates differed
appreciably between developed countries between 1960 and 1990, with a typical decreasing
trend. However, New Zealand and Sweden presented a different pattern with increasing rates,
mostly due to the increase in the sudden death syndrome rates (see Mitchell, 1990). Figure
3.1 shows in the left hand side the mortality rates on 167 geographical units of the Auckland
using the population of children under 5 years of age according to the 1981 census. In the
right hand side is presented a map with the median of the rates estimated by our model,
which is described in more details below. The global mean is 2.633 deaths per year per thou-
sand but there is a large variation around this average level. The spatial pattern reflects the
socioeconomic differences between the areas, with those less affluent with higher rates.

We fitted our model using the software WinBUGS to obtain the posterior distribution. If
we take all possible neighborhood matrices R(l), we have l varying from 1 to 29. However,
the higher order matrices are almost identical, varying by few entries from the previous order
precision matrix. This shows that there will be little information to differentiate between
them, which leads to severe identifiability problems. Therefore, we fit our model using the
identity matrix, the neighborhood matrices up to order 11, and the matrix 11T full of ones.
We adopted a gamma distribution with parameters equal to 0.5 and 0.005 for the inverse of
σ2 and a uniform distribution on the 13-dimensional simplex for the weights (λ1, . . . , λ13).
This hyperprior distributions will be used in all the following examples.

The posterior distribution of the λl parameters is represented in the Figure 3.2. In the right
left hand side we show the estimated posterior density of λ1, the weight parameter associated
with the identity matrix and hence with the independent effects component. In the right

13
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0.8 0.9 1.0 1.1 1.2 1.3 0.8 0.9 1.0 1.1 1.2 1.3

Figure 3.1: Map of SMR (left) and estimated relative risk (right) for Auckland data set.

hand side, we show all the other weights λ2, . . . , λ13. The matrix with the largest weight is
the identity, with the other neighborhood matrices receiving much smaller weights. In the
right hand side, the density that stands out is that associated with the parameter λ13. This
means that the matrix 11T has a substantial weight if compared to the other neighborhood
matrices and it is likely due to the homogeneity of the region. In this example, the matrix
associated with the exchangeable random effect component is more relevant in the estimation
than the adjacency matrix, which is typically used in these analysis.

In order to compare the models, we calculated the DIC criterion for this model with 13
components (hereafter, called the K components model) and also for the Leroux and BYM
models. From Table 3.1 we see that, in spite of the fact that this value for our model was a
bit larger then the others, the three models compared are very similar in this regard.

To see if we can retain only the exchangeable component for this data set and throw
away the spatial component, we also fit two specific cases of the general model. The first one
is the model that was analyzed in Section 2.1 (three components) and is composed by the
spatial and exchangeable matrices. The second one is the one analyzed in Section 2.1.2 (two
components), which has only the exchangeable part. The results presented in Table 3.1 show
that the DIC criterion is a bit larger for the model with only two components if compared
with the model composed by three. This means that the spatial effect is relevant here. Even
the results showing that the exchangeable component is the most important one, it is clear,
from the map of SMR (Figure 3.1), that there is an spatial structure in this data set and this
behavior was confirmed here comparing these two models.

3.1.2 Case study 2

As a second example of the practical relevance of our model, we considered data from the
National Cancer Institute. We analyzed the mortality rate of white women due to lung, tra-
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Table 3.1: DIC criterion for Auckland data base.

K components Two components Three components Leroux BYM
837.90 847.66 846.53 831.30 832.85
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Figure 3.2: Posterior Densities of the parameters λ1, . . . , λ14 for the infant mortality rates in
Auckland.

chea, bronchus, and pleura cancers in the state of Tennessee. The period that was considered
ranged from 1970 to 1994. It is well known that the changing in mortality patterns for this
kind of cancer generally coincide with regional trends in cigarette smoking. Other studies
have shown that the incidences rate is also related to occupational health hazard risks due to
exposure to asbestos particles.

The map is divided into 95 counties and for each one of them we had the observed number
of deaths as well as the expected number of deaths under the hypothesis of constant relative
risk based on US rates. Figure 3.3 shows above the map with the relative risks estimated by
the simple standardized mortality rate. Below it shows the estimates using our model. In
this example, we are able to fit the model with all possible neighborhood matrices. Figure
3.4 presents the posterior densities of the weights. The graph on the left hand side shows
that again the identity matrix is the most important. In the right hand side, we show density
estimates of all remaining weights. The density that stands out is the weight associated
with the matrix full of ones. Therefore, as happened with the previous example, a higher
neighborhood order is required in the fit in order to estimate the underlying risks.

We also calculated for this data set some measures of model evaluation. For the sake of
comparison, this measure was calculated for Leroux and BYM models as well. The first one
that was computed is the DIC criterion and its values are presented in Table 3.2. As it was
done before, besides the three main models, we also consider two additional ones: the three
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Table 3.2: DIC criterion for Tennessee data base.

K components Two components Three components Leroux BYM
868.813 864.63 864.70 860.44 858.80

and the two components models. We notice then that, although our model has shown a worse
performance in relation to this criterion, the difference among them is small. An interesting
fact to note here is that the DIC criterion for the model of three components does not differ
too much from that of the two components. This means that for this data set we could
eliminate the spatial component and keep only the exchangeable one. This characteristic can
be confirmed in the SMR map shown in Figure 3.3. This map shows that this disease, in fact,
does not have a spatial structure. The observed number of cases is high all over the state with
little spatial variation. What we see as spatial structure in the data could as well be assigned
to unstructured random variation.

0.8 0.9 1.0 1.1 1.2 1.3

0.8 0.9 1.0 1.1 1.2 1.3

Figure 3.3: Map of SMR (above) and estimated relative risk (below).

As an alternative way of assessing the fit of the model we also calculate the conditional
probability ordinate (CPO). This quantity measures the probability that we predict correctly
one observation that was dropped from the data set. This is a cross validation procedure.
As we had numerical problems to execute this computation considering that the data has a
Poisson distribution, we consider for this case that the data are normally distributed. This
assumption is reasonable for the database, because the observed number of cases is very high
in all areas. Besides this, since the calculation is very computationally demanding, we were
not able to apply it for the model with all matrices. We considered the three component,
Leroux and BYM models. To extract the information contained on these results we calculated
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Table 3.3: Summary measures of CPO considering Tennessee data set.

Number of times that the CPO was the minimum
Three components Leroux BYM

36 27 32
Number of times that the CPO was less than 5 %.

Three components Leroux BYM
12 11 12

Number of times that the CPO was minimal cutting in 5 %.
Three components Leroux BYM

4 4 6

some summary measures, which are presented in Table 3.3. The first row shows the number
of times that the CPO was minimum for each of the models, this is, we consider each area
and ascertain which of the three models showed a lower value for the CPO. We notice then
that our model had a worse performance for this criterion, because among the three models,
it showed the highest frequency of low CPO’s. It was also calculated the number of times
that the CPO was less than 5% for each of the models. From the second row Table 3.3, we
see that the three models were very similar with respect to this criterion, but Leroux model
performed slightly better. Considering only the CPO’s less than 5% we also found the number
of times they were minimal in each of the models. The last row of Table 3.3 shows that, with
respect to this criterion, our model and Leroux one were better than the BYM model. It is
important to point out that this last criterion is the most reasonable, because the CPO’s that
are considered bad are really low. For example, if a particular model has the lowest CPO
for one observation, compared with the others, but this value is 40%, this does not means
problems of model fittings.
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Figure 3.4: Posterior Densities of λ’s.
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Table 3.4: DIC criterion for North Carolina data base.

Three comopents Leroux BYM
469.95 471.99 471.98

3.1.3 Case study 3

We also fit the model for one classical data set of sudden infant deaths in North Carolina
that was analyzed by Cressie(1991, page 386). This has also been analyzed by Kulldorff
(1997) and by Lawson and Clark (2002) and it is part of many spatial statistics software
manuals. Despite being intensively studied, it is surprising that we can still extract some
novel information from this dataset using our model. The sudden infant death syndrome,
also known as SIDS, is considered a post-neonatal death and accounts for about 7000 deaths
per year in the United States. However, in spite of its impact, the cause of the syndrome is
not completely understood yet. The period that was considered ranged from 1979 to 1984
and the data were registered in 100 counties of the state. We fit the model with the three
matrices, as the one analyzed in Section 2.1: the identity matrix, the matrix associated with
the adjacency neighborhood (ICAR matrix) and the matrix (N − 1)I−11T corresponding to
a complete graph, in which all areas are neighbors of every other area. Figure 3.5 presents
the posterior densities of the weights. The first graph shows that again the identity matrix is
the most important one. In the second graph, the most flat density is the one related to the
matrix full of ones. Thus we see that we do not have much information about this weight,
because of the shape of its density function.

In order to compare this model with Leroux and BYM ones we also fit both of them and
computed the DIC criterion. These measures are presented in Table 3.4. We see that this
quantity for our model is slightly smaller than the others. Therefore, our model is better in
this regard.

In this case, we cannot consider that the data has normal distribution, since the disease
is rare. Therefore, we computed the approximated CPO using Importance Resampling, as it
was proposed by Stern and Cressie (2000). The general idea of this method is to obtain an
approximated sample of a distribution that we cannot generate, by taking a resample from a
realization of another one that is not too far from the one that we want. In this way, it is not
necessary to pick one observation at each time in order to proceed the cross validation.

The first row of Table 3.5 shows the number of times that the CPO of each model was the
least. We note that with regard to this criterion, the best performing model was Leroux one,
whereas our model was very close to the BYM model. As mentioned earlier, it is interesting,
however, to consider only CPO’s below a certain value, because they indicate real problems
in the model. In this case, we consider values below 1%. We see, from the second row of
Table 3.5, that both, our model and the model presented by Leroux, were well above the
BYM model with respect to this criterion. Still considering only values of CPO below 1%,
we see from the the third row of the same table, that the minimum values were always of the
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Table 3.5: Summary measures of CPO considering North Carolina data set.

Number of times that the CPO was the minimum.
Three components Leroux BYM

47 5 43
Number of times that the CPO was less than 1%.

Three components Leroux BYM
1 1 7

Number of times that the CPO was minimal cutting in 1%.
Three components Leroux BYM

0 0 7

BYM model. We note, therefore, that ours and Leroux models showed a performance much
higher than the BYM one in relation to these criteria.
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Figure 3.5: Posterior Densities of λ’s for Sudden Death data set.

3.1.4 Case study 4

As another example, we analyzed the mortality rate for cancer of the trachea, bronchi and
lungs in the states of São Paulo, Paraná, Santa Catarina and Rio Grande do Sul in 2007. We
again fit the model whith the three matrices as in Section 2.1. The Figure show the posterior
densities of the parameters. We see that the identity matrix is again the most important.
However, the matrix full of ones is more important than the adjacency one. So here again
the exchangeable component receives more weight than the adjacency spatial neighborhood
matrix.

Comparing, in this case, the values of DIC for our model with Leroux and BYM ones we
see that, as shown in Table 3.6, for this criterion our model was worse than the others.
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Table 3.6: DIC criterion for Brazilian data base.

Three components Leroux BYM
989.07 948.48 945.85

Table 3.7: Summary measures of CPO considering Brazilian data set.

Number of times that the CPO was the minimum.
Three components Leroux BYM

53 20 22
Number of times that the CPO was less than 1%.

Three components Leroux BYM
1 1 2

Number of times that the CPO was minimal cutting in 1%.
Three components Leroux BYM

0 0 2

We also calculated the CPO and the same summary measures considered before. We
notice, from the first row of Table 3.7 that, as happened to the previous case, when we
consider all the values of CPO, our model showed lower values than the others. However, the
last tow rows of this table show that when we truncate the values at 1%, our model presents
a performance well above the BYM model and the next to Leroux one. We realize, therefore,
that in this example again, when considering the summary measure of most interest, our
model performed very well.
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Figure 3.6: Posterior Densities of λ’s for Brazilian data.
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3.1.5 Simulation

As we mentioned in the description of the model, we expect it to fit quite well the data when
the relative risk is approximately constant over the region. To verify this, we simulated disease
counts on the Auckland map keeping the risk population equal to that of the infant mortality
example. We generated conditionally independent Poisson counts with the same relative rate,
equals to 2 cases for every thousand inhabitants, in all areas. We fit the model proposed by
Leroux, the BYM ICAR model and our own model to this data. In our model, we used only
three matrices as in Section 2.1.

The posterior densities of the relative risk for the three models are presented in Figures 3.7
and 3.8 . In all models the estimates are centered in the correct value, equal to 1. However,
our model with three components has the smallest variability. The density in this case is more
concentrated around the true value. This means that, by including the matrix full of ones, we
were able to smooth more the estimates. The other models did not consider the possibility of
conditional correlation between all areas in the map and, therefore, in this kind of situation
they have less precise estimates.
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Figure 3.7: Posterior Densities of Relative Risk Bayesian estimates. Results using our model

3.2 Conclusions

In our model, we considered a precision matrix equal to a weighted average of increasing
neighborhood matrices. One possibility we have not explored in this paper is to define a
continuous version of this model. Let λ(t) be a probability density function defined for
t ∈ [0, 1] and R(t) be a continuously defined precision matrix. Assume that R(t) as a function
of t is an injective function. The precision matrix of the mixture model is given then by

Q =
1

σ2

∫ 1

0
λ(t)R(t)dt .
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Figure 3.8: Posterior Densities of Relative Risk Bayesian estimates. Results using Leroux
(left) model and the ICAR estimates (right).

This model would allow different degrees of neighborhood and could be more flexible to adapt
to empirical data. Another possible extension is to treat space-time data with a precision
matrix that is a mixture of simpler precision matrices.

The BYM model is very popular but one problem with it is to find the appropriate
spatial smoothing degree to estimate the relative risks. In fact, other authors have noticed its
tendency to oversmooth the estimates in some cases (Best et al., 2005). The model we treat
in this paper allows for the multiple definition of a smoothing neighborhood. In our model,
the λj parameters control automatically this smoothing. The model can be specially useful
in the situation where the underlying risk is practically constant.

We were able to interpret the conditional distributions involved in our model. The corre-
lation between neighbors depend on the vector of λj values and on the graph structure.
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Appendix A

Demonstration of result (2.4)

A well known linear algebra result (Iosifescu (1989), page 45) states that, if P is a square
matrix and each of the terms of the power matrix Pk tends to zero as k increases, then the
inverse (I−P)−1 exists and it is given by

(I−P)−1 = I+P+P2 +P3 + . . .

To use this result with the matrix [I− λ2TA]−1, we need to show that the terms λl2[(TA)l]ij

of the power matrix approximate zero when the power l increases. This will be done finding
an upper bound. Consider initially l = 2. We see that

λ22
[
(TA)2

]
ij

= λ22

N∑
k=1

aikakj
(λ1 + λ2ni + λ3N)(λ1 + λ2nk + λ3N)

= λ22

N∑
k=1

aikakj/(nink)

(λ1/ni + λ2 + λ3N/ni)(λ1/nk + λ2 + λ3N/nk)

<
λ22

(λ1/N + λ2 + λ3)
2

N∑
k=1

N∑
k=1

aik
ni

akj
nk

,

since ni ≤ N . As diag(1/n)A is an stochastic matrix, it can be seen as a transition matrix
of a random walk on the map with equal probabilities of jumping from a given area to any of
its first-order neighbors. In this way, the second term in the multiplication is the probability
that a random walk leaves site i and reaches site j in two steps and will be denoted by p(2)ij .

For an arbitrary l ≥ 2, we have

λl2

[
(TA)l

]
ij
<

(
λ2

λ1/N + λ2 + λ3

)l

p
(l)
ij

where p(l)ij denotes the probability that the random walk goes from i to j in l steps. Therefore,

26
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p
(l)
ij ∈ [0, 1] and since λ2/(λ1/N + λ2 + λ3) < 1, we have that

0 ≤ lim
l→∞

λl2

[
(TA)l

]
ij
< lim

l→∞

(
λ2

λ1/N + λ2 + λ3

)l

p
(l)
ij = 0 .

This shows that the terms of the matrix λl2
[
(TA)l

]
tends to zero as l goes to infinity and the

matrix expansion is valid.



Appendix B

Another interpretation for the terms
(Si+S+j)

We can write Si+S+j in a way that reflects the structure of a complete graph. To make
this interpretation easier, we leave out the weights that multiply the terms of the adjacency
matrix. We consider only the terms aij , which are one if i and j are neighbors and zero
otherwise. Therefore we have an approximation for Si+ that is given by

Si+ ≈
N∑
j=1

mij =

( ∞∑
k=0

a
(k)
i1

)
+

( ∞∑
k=0

a
(k)
i2

)
+ · · ·+

( ∞∑
k=0

a
(k)
iN

)

So we see that

Si+S+j ≈

[( ∞∑
k=0

a
(k)
i1

)
+ · · ·+

( ∞∑
k=0

a
(k)
iN

)][( ∞∑
k=0

a
(k)
1j

)
+ · · ·+

( ∞∑
k=0

a
(k)
Nj

)]

=

[( ∞∑
k=0

a
(k)
i1

)( ∞∑
k=0

a
(k)
1j

)
+ · · ·+

( ∞∑
k=0

a
(k)
iN

)( ∞∑
k=0

a
(k)
Nj

)]
︸ ︷︷ ︸

A

+
∑
l ̸=m

[( ∞∑
k=0

a
(k)
il

)( ∞∑
k=0

a
(k)
mj

)]
︸ ︷︷ ︸

B

Consider A first. In this sum, we have the term

a
(0)
i1 a

(0)
1i + · · ·+ a

(0)
iNa

(0)
2N

As a(0)ij a
(0)
1j = 1 for all j, their sum is equal to N . In A, we also have the terms

a
(0)
i1 a

(1)
1i + · · ·+ a

(0)
iNa

(1)
2N

a
(1)
i1 a

(0)
1i + · · ·+ a

(1)
iNa

(0)
2N .

Both of them count the possible ways of going from i to j in one step. If we consider the
terms whose exponents summing up to 2, we have
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a
(0)
i1 a

(2)
1i + · · ·+ a

(0)
iNa

(2)
2N

a
(1)
i1 a

(1)
1i + · · ·+ a

(1)
iNa

(1)
2N

a
(2)
i1 a

(0)
1i + · · ·+ a

(2)
iNa

(0)
2N

Each of these three terms counts the number of paths that go from i to j in 2 steps. In
general, what we see is that if we take the terms whose exponent summing up to k, we will
have terms of the following type:

a
(0)
i1 a

(k)
1i + · · ·+ a

(0)
iNa

(k)
2N

a
(1)
i1 a

(k−1)
1i + · · ·+ a

(1)
iNa

(k−1)
2N

...

a
(k)
i1 a

(0)
1i + · · ·+ a

(k)
iN a

(0)
2N

This means that the paths that go from i to j in k steps are counted k + 1 times. Therefore
the term A can be written as

N +

∞∑
n=1

(number of paths from i to j in n steps) (n+ 1) .

Now we analyze the term B. We can see that

N∑
l=1

∑
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( ∞∑
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To see what this sum is counting, consider first the terms for which l = 1 and m = 2.
In the same way that we did for the term A, we will analyze first the multiplication whose
exponents sum up to 1:

[
a
(0)
i1 + a

(1)
2j

]
+
[
a
(1)
i1 + a

(0)
2j

]
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This counts twice the paths that go from i to j in two steps and that have to pass through
an edge connecting areas 1 and 2. If this edge indeed exists in the neighborhood graph, this
is just one of its possible paths. However, if 1 and 2 are not first-order neighbors, this edge
does not exist. In this case, it is as if we include this (1, 2) edge in the neighborhood graph
and count the additional paths that were not considered before.

Lets know consider the multiplications whose exponents summing up to 2:

[
a
(0)
i1 + a

(2)
2j

]
+
[
a
(1)
i1 + a

(1)
2j

]
+
[
a
(2)
i1 + a

(0)
2j

]
We see that they represent three times the number of paths of three steps that go from i

to j and pass through an edge (1, 2), either truly present or not.
In general, for the terms whose exponent sum up k, we will count k times the number of

possible paths of k steps from i to j and that have to pass through an edge (1, 2).
We just considered here the pair of sites 1 and 2, but the sum is over all possible pairs of

sites. Therefore, the term B can be written in this way

∑
k ̸=l

∞∑
n=0

(k + 1) (number of paths of n steps from i to j that pass through edge k − l) .

This means that it counts all possible paths in the graph considering that all possible
edges in the graph, in fact, exist. In other words, it counts all possible paths in a complete
graph.


