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nadora designada pelo Colegiado do Programa

de Pós-Graduação em Estat́ıstica da Universidade

Federal de Minas Gerais, como requisito parcial

para obtenção do t́ıtulo de Doutor em Estat́ıstica.
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Abstract

There is considerable uncertainty in the disease rate estimation for aggre-

gated area maps, especially for small population areas. As a consequence the

delineation of local clustering is subject to substantial variation. Consider

the most likely disease cluster produced by any given method, like SaTScan

Kulldorff [2006], for the detection and inference of spatial clusters in a map

divided into areas; if this cluster is found to be statistically significant, what

could be said of the external areas adjacent to the cluster? Do we have enough

information to exclude them from a health program of prevention? Do all

the areas inside the cluster have the same importance from a practitioner

perspective?

We propose a criterion to measure the plausibility of each area being

part of a possible localized anomaly in the map. In this work we assess the

problem of finding error bounds for the delineation of spatial clusters in maps

of areas with known populations and observed number of cases. A given map

with the vector of real data (the number of observed cases for each area) shall

be considered as just one of the possible realizations of the random variable

vector with an unknown expected number of cases. In our methodology we

perform m Monte Carlo replications: we consider that the simulated number

of cases for each area is the realization of a random variable with average

equal to the observed number of cases of the original map. Then the most
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likely cluster for each replicated map is detected and the corresponding m

likelihood values obtained by means of the m replications are ranked. For

each area, we determine the maximum likelihood value obtained among the

most likely clusters containing that area. Thus, we construct the intensity

function associated to each area’s ranking of its respective likelihood value

among the m obtained values.

The method is tested in numerical simulations and applied for three differ-

ent real data maps for sharply and diffusely delineated clusters. The intensity

bounds found by the method reflect the geographic dispersion of the detected

clusters.

The proposed technique is able to detect irregularly shaped and multiple

clusters, making use of simple tools like the circular scan. Intensity bounds

for the delineation of spatial clusters are obtained and indicate the plausibility

of each area belonging to the real cluster. This tool employs simple mathe-

matical concepts and interpreting the intensity function is very intuitive in

terms of the importance of each area in delineating the possible anomalies of

the map of rates. The Monte Carlo simulation requires an effort similar to

the circular scan algorithm, and therefore it is quite fast. We hope that this

tool should be useful in public health decision making of which areas should

be prioritized.

Keywords: Error bounds of spatial cluster; Spatial disease cluster; Spatial

scan statistics.
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Apresentação

Motivação

Existe uma incerteza considerável na estimativa de taxas de doenças para

mapas de área, especialmente para áreas de população pequena. Como con-

seqüência, a delimitação do agrupamento local é sujeito a variações substan-

ciais. Considere um cluster detectado por um determinado método, como

SaTScan, para a detecção e inferência de conglomerados espaciais em um

mapa dividido em áreas. Se este cluster é considerado estatisticamente signi-

ficativo, o que poderia ser dito das áreas externas adjacentes ao cluster? Não

temos informações suficientes para exclui-las de um programa de prevenção?

Será que todas as áreas dentro do cluster têm a mesma importância do ponto

de vista do usuário?

O problema de detecção de clusters espaciais encontra-se presente em

diversas situações, sendo importante determinar modelos satisfatórios para

a execução de procedimentos para detecção e avaliação destes clusters que

considerem diversos fatores inclusive os citados acima.
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Principais contribuições

Nesta Tese desenvolvemos um novo conceito para a detecção e representação

de clusters em mapas, descrevendo seus limites de erro. Tratamos um dos

principais problemas em detecção de clusters, a medição da incerteza da

definição das áreas que pertencem a um cluster detectado. A técnica desen-

volvida pode potencialmente ajudar em uma limitação existente ao utilizar

o scan circular, que é a não discriminação entre os grupos que são mais ho-

mogêneos daqueles que são mais irregulares ou em forma de anel. O método

proposto supera várias limitações em relação à estat́ıstica espacial scan: (i)

conseguimos interpretar e delinear clusters diferentes do cluster primário; (ii)

fornecemos uma interpretação para a incerteza de áreas que podem pertencer

ao cluster. Além disso, esse método é computacionalmente muito rápido.

Outra caracteŕıstica importante se refere à interpretação intuitiva desta nova

metodologia, tornando o conceito fácil de ser compreendido para os usuários.

Esperamos que a utilização desta nova metodologia seja utilizada por diversos

profissionais de saúde pública que fazem uso de busca de clusters geográficos

para definir melhor suas prioridades.

Organizacão da Tese

Esta Tese está organizada da seguinte forma: no caṕıtulo 1 apresenta-se uma

introdução sobre trabalhos encontrados na literatura que abordam temas

relacionados com a motivação da metodologia desenvolvida, assim como a

descrição de técnicas utilizadas para visualização e detecção de clusters ge-

ográficos. No caṕıtulo 2 descreve-se todas as metodologias que foram imple-

mentadas computacionalmente nesta Tese, como os métodos de detecção de

clusters scan circular e genético, e um método de suavização de taxas muito
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utilizado na literatura. Neste caṕıtulo apresentamos também o desenvolvi-

mento da nova metodologia proposta nesta Tese, que chamamos de função

intensidade. No caṕıtulo 3 apresentamos um estudo numérico através de

simulações em diversos tipos de mapas para testarmos a eficiência da nossa

metodologia proposta. No caṕıtulo 4 apresentamos a aplicação da metodolo-

gia proposta em três estudos de casos, utilizando como método de detecção de

cluster o scan circular. Nos caṕıtulos 5 e 6 utilizamos simulações para obser-

var o comportamento da função intensidade com um método de detecção de

cluster irregular em situações computacionais mais complexas. Finalmente

no caṕıtulo 7 fazemos as considerações finais desta Tese.
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Chapter 1

Introduction

There are many methods for the detection and inference of geographic clus-

ters Cressie [1993], Elliott et al. [1995], Kulldorff [1999], Moore and Carpenter

[1999], Waller and Jacquez [2000], Lawson et al. [1999], Glaz et al. [2001],

Lawson [2001], Balakrishnan and V [2002], Buckeridge et al. [2005]. A large

number of methods rely on the Spatial Scan Statistic (Kulldorff [1997]), a

development of the Naus spatial scan statistic (Naus [1965]). Based on this

statistic, several extensions were proposed, modifying the shape of the cir-

cular window used in the circular scan statistic (Kulldorff and Nagarwalla

[1995]) to include irregular shapes (Duczmal and Assunção [2004], Patil and

Taillie [2004], Tango and Takahashi [2005], Kulldorff [2006], Duczmal et al.

[2006, 2007], Yiannakoulias et al. [2005]), see Duczmal et al. [2009] for a re-

cent review. However, those methods generally do not discuss the possible

uncertainty in the delineation of the most likely cluster found. There exists

nowadays a crescent demand of interactive software for the visualization of

spatial clusters (Hardisty and Conley [2008]).

A technique was developed in Boscoe et al. [2003] to visualize relative

risk and statistical significance simultaneously. Given a map of k areas, with
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their respective centroids, the procedure builds a grid of equidistant points

between all combinations of two, three and four adjacent area centroids. For

each grid point the distances to the areas centroids are computed and sorted.

These distances are used to define almost circular groupings of areas, with

their respective cumulative numbers of observed and expected cases. The

relative risk and the likelihood ratio are then calculated for each circular

grouping. The likelihood ratio values are compared to the results of a Monte

Carlo simulation under the null hypothesis that there are no clusters and

the cases are uniformly distributed in the population, such that the expected

number of cases in each area is proportional to its population. Groupings with

likelihood ratios values exceeding 95% of those obtained from the simulation

are stored and stratified into ten levels of relative risk. Within each risk

level, the grouping with largest likelihood ratio is then mapped. Circular

groupings with lower likelihood ratio are also mapped if they did not overlap

any grouping previously mapped. The final result is a ten color shaded map

of areas with statistically significant relative risks, providing a very effective

visualization tool to grasp these two concepts.

A visual tool was developed in Chen et al. [2008] to find circular clusters

using SaTScan, repeating the search for a set of S different values for the

maximum cluster size parameter. The reliability of an area ai is defined as

the number of times this area is part of a significant circular cluster found

by SaTScan, divided by the number S. A typical value of S is 8, with

maximum-sizes ranging from 5% to 49%, as given in the paper Chen et al.

[2008]. This approach allows the interactive visual identification the so-called

“core clusters”, which are loosely defined as those clusters which appear more

consistently through the S multiple runs varying the maximum-size parame-

ters. This method reveals additional information about the cluster structure,
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although restricted to the circular shape delineation imposed by formalism

of the circular scan.

The program SaTScan detects a spatial cluster in aggregated-area maps

and compute its significance based on Monte Carlo simulations. This ap-

proach allows the characterization of a potential map anomaly, dividing the

map into two areas, the cluster and the area outside it. In this work pro-

posed this thesis we are interested in pursuing further questions regarding

the properties of individual areas inside and outside the detected cluster. We

would like to assess the relative importance of individual areas within the

cluster. We would also like to verify if the areas outside the cluster and ad-

jacent to it could be indeed excluded from the suspected anomaly region in

the map. These questions are important from a public health practitioner

perspective. How to access quantitatively the risk of those areas, given that

the information we have (cases count) is also subject to variation in our sta-

tistical modeling? A few papers have tackled these questions recently. For

example Rosychuk [2006] produces confidence intervals for the risk in every

area, which are compared to the risks inside the most likely cluster.

Geographic variability studies of disease rates are essential tools in eti-

ology (Lawson [2009]). Maximum Likelihood Estimate Bayesian methods

have been proposed to obtain unbiased rates, especially for rare diseases

occurring in small population areas (Efron and Morris [1973]), thus provid-

ing more precise results than the usual maximum likelihood estimators (see

Marshall [1991]). This approach includes information from adjacent areas to

estimate locally the risk, consequently reducing the quadratic mean error of

the estimated rates. In Manton et al. [1981, 1987], Stone [1988] approaches

adjust the test significance levels for geographic risk excess. Clayton and

Kaldor [1987] proposed an empirical Bayes method employing Poisson like-
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lihood with gamma prior distribution in disease mapping. The authors also

presented a non-parametric estimation for the prior using a method which is

based on a spatial autoregressive procedure to model the prior distribution

parameter devised by Laird [1978].

In this thesis, a different approach is proposed to delineate the “intensity

bounds” associated to the most likely cluster, by running Monte Carlo sim-

ulations. The number of cases for each area is now considered as a random

variable with mean equal to the observed rate, or to some smoothing function

which takes into account its first order neighborhood. We will introduce a

novel approach to assess the relative importance of individual areas in the

composition of the clustering structure. The main purpose of our method

is to find the error bounds for the delineation of spatial clusters in maps

divided into areas, through the definition of a criterion to measure the plau-

sibility of each area being part of the cluster. As a by-product, our method

is capable of identifying irregularly shaped clusters and multiple local clus-

tering. This method is computationally fast and relies on basic ideas about

the intrinsic variation of the observed number of cases for each area. This

procedure allows the quantification of the uncertainty in the delineation of

spatial clusters in a very precise and intuitive way, through the definition of

the intensity function.
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Chapter 2

Methods

2.1 Kulldorff’s Spatial Scan Statistic

Consider a map divided into k areas, with under-risk population N and C

cases of an observable phenomenon. The analysis is conducted conditioned

on the total number of cases so that C is considered a known constant. We

define a zone as any set z of connected areas. Any circular window over the

study area defines a zone z formed by areas whose centroids are inside the

window.

Let Z be the set of all possible zones obtained by circular windows with

varying radio and centered along each of the k areas centroids. The test

proposed by Kulldorff [1997] is based on the maximization of the likelihood

ratio. The parameters set is (z; p; q) in which z denotes a zone in Z, p is

the probability of an individual in z to be a case and q is the probability

of an individual outside z to be a case. Such probabilities are constant for

all individuals. Considering that there are no clusters within the map (null

hypothesis), the number of cases in each area follows a Poisson distribution,

with expected value proportional to its population. Define L(z) as the like-
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lihood under the hypothesis that the zone z is a cluster (HA : p > q), and

L0 the likelihood under the null hypothesis (H0 : p = q). Let n(z) and c(z)

be, respectively, the population and cases inside z, and µ(z) = n(z)
N
C the

expected number of cases inside z under the null hypothesis. For the Poisson

model the likelihood function(Kulldorff [1997]) is:

L(z, p, q) =
e−pn(z)−q(N−n(z))

C!
pc(z)qC−c(z)

m∏
j=1

n(j) (2.1)

The likelihood ratio, λ, can be written as

λ =
SupHA

{L(z)}
SupH0{L(z)}

=
Supz∈Z,p>q{L(z, p, q)}
Supp=q{L(z, p, q)}

=
L(ẑ)

L0

(2.2)

By definition, L0 = e−C

C!

(
C
N

)C m∏
j=1

n(j).

Hence, likelihood ratio is expressed by

λ =


Supz∈Z

(
c(z)
n(z)

)c(z) (
C−c(z)
N−n(z)

)C−c(z)
(
C
N

)C , if c(z)
n(z)

> C−c(z)
N−n(z)

1 , otherwise

The distribution of (λ | C) must be obtained by a Monte Carlo simu-

lation process (Kulldorff and Nagarwalla [1995]), since the distribution of

λ depends on the population distribution, what makes it almost impossible

to be obtained analytically, and the usual assintotic aproximation via Chi-

square distribution, since the transformation −2logλ is not valid because

regularity conditions are not satisfied.

A simplified form for the likelihood ratio is obtained considering

I(z) = c(z)
µ(z)

and O(z) = C−c(z)
C−µ(z)

, respectively the relative risk inside and

outside z:

10



LR(z) =
L(z)

L0

=


I(z)c(z)O(z)C−c(z) , if I(z) > 1

1 , otherwise

The most likely cluster is the zone ẑ that maximizes LR(z) (LR(ẑ) ≥

LR(z) ∀z ∈ Z). Since the logarithm is a strictly increasing function and

LR(z) increases very quickly, it is more convenient to maximize LLR(z) =

log{LR(z)}.

Alternatively we could detect a cluster simply considering the incidence

of cases in each zone, that is, the ratio between the number of observed cases

and the population, or even the relative risk given by the number of observed

cases divided by the expected number of cases. However, these measures do

not take into account that, a low populated zone will most likely present low

significance, even if it presents high relative risk. The test based on the LLR

(Kulldorff [1997]) bypass this problem since it also considers not only the

relative number but also the absolute number of cases.

The statistical significance of the most likely cluster of observed cases

is computed through a Monte Carlo simulation, according to Dwass [1957].

Under null hypothesis, simulated cases are distributed over the map and

the scan statistic is computed for the most likely cluster. This procedure is

repeated many times, and the obtained distribution of the values is compared

with the LLR of the most likely cluster of observed cases, producing an

estimate of its p-value.

2.2 Single-Objective Genetic Algorithms

Conley et al. [2005] proposed a genetic algorithm to explore a configuration

space of multiple agglomerations of ellipses for point data sets. The method

11



employed a strategy to “clean-up” the best configuration found in order to

geometrically simplify the cluster. A genetic algorithm was used to find clus-

ters in point data sets, shaped as the intersections of circles with different

sizes and centers (see Sahajpal et al. [2004]). In order to use the procedures

mentioned above , it is necessary to use some heuristic optimizer. Among

the possible heuristics to be used in the detection spatial clusters problem,

genetic algorithm was implemented for the detection of clusters and inference

in Duczmal et al. [2007] using the objective maximized the test Kulldorff’s

Scan statistic. The algorithm parts of an initial population of possible solu-

tions in order to build a sequence of generations. In the generations, three

operators are used: crossover and mutation serve to increase the variability

of the population of solutions and the selection operator chooses who will

be part of the next generation, directing the search and maintaining a fixed

population size within a generation. The crossover operator creates new in-

dividuals (new zones), combining the features of two individuals (zones) were

randomly chosen and named by parents A and B. Several new individuals

are produced which are intermediate zones between the two extreme zones

A and B. The mutation operator introduces random perturbations in the

characteristics of an individual zone (adding or removing one random region)

thus increasing the variability of the population. The selection operator clas-

sifies the zones according to the value of the objective function, in this case

of the Spatial Scan statistic, choosing those which will be part of the next

generation. It is expected to find individuals (zones) with higher values for

the objective function as the generations evolve. A geometric compactness

penalty function is employed to avoid excessive irregularity of the cluster ge-

ometric shape. This algorithm is an order of magnitude faster and exhibits

less variance compared to other algorithms (see Duczmal et al. [2007]), such
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as the Simulated Annealing Scan presented in Duczmal and Assunção [2004],

and it is more flexible than the Elliptic Scan. It has about the same power of

detection as the Simulated Annealing Scan for mildly irregular clusters and

it is superior for the very irregular ones.

2.3 Multi-objective Genetic Algorithms

Genetic algorithms are widely used for optimization problems in multi-objective,

assessing the development of possible solutions, simultaneously evaluating

two or more objectives as in Fonseca and Fleming [1995], Takahashi et al.

[2003]. In Duczmal et al. [2007] it is suggested the use of Compactness Ge-

ometric penalty for a multi-objective Scan algorithm. In this proposal the

penalty would be one of the objective functions, while the likelihood ratio

LLR(z) would be another objective function.

The pairs (LLRi, Ki), representing the logarithm of the Scan statistic

value and Compactness (or other penalty function) computed for each indi-

vidual i (connected set of regions in the map) in the genetic population, are

plotted in the Cartesian plane. The selection operator uses the concept of

dominance: a point is called dominated if it is worse than another point in

at least one objective, while not being better than that point in any other

objective (see Chankong and Haimes [1983]). The non-dominated set consists

of all solutions which are not dominated by any other solution.

The construction of the initial population and the operators of crossover

and mutation are identical to those used in the single-objective genetic algo-

rithm (see Duczmal et al. [2007] for a detailed description of those operators).

At the beginning of each generation, we compute the current generation list,

which consists of the set of parent individuals augmented several times with
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the addition of newly produced offspring through the crossover operator. The

next generation list, initially empty, stores the individuals that will survive

for the next generation. We compute the set of non-dominated solutions

P0 of the current generation list, which is transferred to the initially empty

next generation list; the same set P0 is also removed from the current gen-

eration list. A new set P1 of the remaining individuals is computed, and

the procedure is repeated until the new generation list has grown to con-

tain M individuals, where M is the number of regions of the original map

and corresponds to the population size that will be held constant along the

generations. After a number of steps, say l, the set Pl will eventually not

be totally added to the next generation list, because this would cause the

list to contain more than M individuals. In such cases, the individuals of Pl

are transferred randomly, one by one, until the next generation list contains

exactly M individuals. This procedure is known as non-dominated sorting

(see Deb et al. [2002]).

In the context of irregularly shaped clusters, the first of the competing

objectives (regularity of shape) could not be considered appropriate if it was

the only objective of the search. If so, we would inevitably obtain a circularly

shaped, but possibly meaningless, solution. Conversely, consider the comple-

mentary situation, when the maximization of the likelihood ratio, irrespec-

tive of shape, is the only objective: as we have seen in the introduction, this

would also produce solutions which are not useful from a geographic perspec-

tive. The maximization of shape regularity only makes sense when coupled

with the maximization of likelihood ratio, as developed in the multi-objective

methodology. Isolated, neither objective is sufficient to guide the search for

the most likely clusters, when we have the freedom to choose among clus-

ters of arbitrary shape. A rather regularly shaped cluster usually has many
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neighborhood connections with its adjacent regions compared to the number

of component regions within the cluster due to the fact that its compactness

is high. Otherwise, an irregularly shaped cluster is probably “tree-like” in

the sense that the number of connections with adjacent regions is small com-

pared to the number of component regions. In a situation where two clusters

have the same LLR and one is more regularly shaped than the other, the

former is preferred: the compactness of a cluster is generally related to the

strength with which its component regions connect to each other. In this

regard, compactness is considered as a measure of stability of the cluster,

as a solid geographic entity: we probably can remove a few regions from a

regularly shaped cluster without breaking it apart, but a similar operation

may not be possible for a highly irregularly shaped cluster.

2.4 The intensity function

In this section we define a criterion to measure the plausibility of each area

being part of a possible localized anomaly in the map Oliveira et al. [2011].

Instead of finding the most likely cluster in the original map with the observed

number of cases for each area, we consider maps where the number of cases

are replications of a vector of random variables, whose averages are defined

based on the observed number of cases of the original map. We formalize

this procedure in the following.

The original map has ci observed cases in the area ai, i = 1, . . . , K.

Now we construct a Monte Carlo replication distributing randomly the C =∑K
i=1 ci cases among the K areas a1, . . . , aK according to a multinomial

distribution where the probability associated to the area ai is ci/C. Let

V = (s1, . . . , sK) the realization of the multinomial random vector where
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si is the number of simulated cases in the area ai, i = 1, . . . , K, where∑K
i=1 si = C. The cluster finder algorithm (in our setting we use the circular

scan or we use the elliptic scan) now finds the most likely cluster MLC1 with

likelihood ratio value LLR1. The Monte Carlo procedure above is repeated

m times, generating a set of m likelihood ratio values {LLR1, . . . , LLRm}

corresponding to the most likely clusters {MLC1, . . . ,MLCm}. The likeli-

hood ratio values are sorted in increasing order as {LLR(1), . . . , LLR(m)} for

the corresponding most likely clusters found {MLC(1), . . . ,MLC(m)}. We

now define the intensityfunction

f : {1, . . . ,m} −→ R by f(j) = LLR(j), j = 1, . . . ,m.

For each area ai, let:

q(ai) =
1

m
arg max

1≤j≤m,ai∈MLC(j)

f(j), i = 1, . . . , K

If the area ai does not belong to any of the sets MLC(1), . . . ,MLC(m)

then we set q(ai) = 0.

The value q(ai) represents the quantile of the highest likelihood ratio

among the ranked values of the likelihood ratios of the most likely clusters

found in the m Monte Carlo replications, which take into account the vari-

ability of the number of cases in each area. In this sense, the value q(ai)

may be interpreted as the relative importance of the area ai as part of the

anomaly of the map, where the value f(ai) represents the maximum likeli-

hood ratio found for the most likely clusters which contain the area ai. This

concept gives more information about the anomaly than the clear-cut divi-

sion between cluster and non-cluster areas, as given by the usual process of

finding the most likely cluster in the original map.
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2.5 Rate correction using empirical Bayesian

estimator

We shall consider a variation of the procedure described in the previous

section. Instead of using the observed number of cases, this variant uses

Marshall’s smoothed estimates of the number of cases based on the informa-

tion of first order neighborhood of each area. We then compute the intensity

function in those two situations, employing the raw number of cases and

Marshall’s estimates.

Empirical Bayes methods were employed by Marshall [1991] and Yasui

et al. [2000]. Studies involving disease rates to show the geographical vari-

ability are common in epidemiological approaches. For this kind of approach

it is important to assess the problem of obtaining unbiased estimates. Some

Bayesian methods have been proposed in the literature for estimation of risks

in small areas. These methods are based on information from other areas

that comprise the region of study. One consequence of using these meth-

ods is the decreasing of the total mean square error of the estimates Efron

and Morris [1973]. That is, relative risks are estimated more accurately by

Bayesian methods than by using maximum likelihood estimation. Authors

like Marshall [1991] and Yasui et al. [2000] address this issue.

Efron and Morris [1973] were among the first to work with this approach

using empirical Bayes methods. Clayton and Kaldor [1987] proposed a proce-

dure for empirical Bayes estimation using a Poisson likelihood and a gamma

priori distribution. One approach was suggested by Stone [1988] to adjust

the significance levels in testing for geographical risks in excess, as well as in

Manton et al. [1981] and Manton et al. [1987]. Clayton and Kaldor [1987]

also suggested a non-parametric estimate for the prior distribution using a
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method proposed by Laird [1978] who proposed a procedure to model the

parameters of a priori distribution using a spatial autoregressive method.

Using Bayesian methods in the estimation of spatial phenomena have the

extra advantage of allowing the incorporation of spatial similarities between

adjacent areas in risk estimates. Adding this information to the estimation

of risk can lead to maps with more stable estimates and more precise differ-

entiation between what is a true high (or very low) risk and what is indeed

a random fluctuation caused by small populations. Moreover, it is expected

that the estimates reproduce the spatial pattern of the real risks.

In this thesis we use the estimation procedure proposed by Marshall [1991]

to obtain estimates of relative risks. We use local empirical Bayesian estima-

tors, because it is often reasonable to consider adjacent areas whose rates are

similar because they are likely to be similar in other aspects. We use the first

order neighbors of the area for which we want to get the estimated rate. The

methodology developed by Marshall proposed an empirical Bayesian estima-

tor for the risk of rare diseases, where one can approximate the distribution

of the number of cases by the Poisson distribution with parameter estimated

by the method of moments. Consider a map divided into k areas indexed by

i, i = 1, 2, ..., k. Suppose that events are recorded for each area in a period of

time. Let θi be the event rate in the i-th area and assume that yi, the number

of events accumulated in the i-th area during this period, is distributed as

a Poisson random variable with mean E(yi|θi) = niθi, where ni is the pop-

ulation at risk in the i-th area. The maximum likelihood estimator of θi is

ti = yi/ni. This estimator has mean and variance conditioned on θi given by

E(ti|θi) = θi and V (ti|θi) = θi/ni, respectively. In the Bayesian approach,

θi has a prior distribution with mean mi = Eθi and variance Ai = Vθi . Un-

conditionally, ti has mean mi = Eti and variance Vti = Ai + mi

ni
. Efron and
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Morris [1973] showed that, given mi and ai, the best linear Bayes estimator

for θi is expressed by

θ̂i = witi + (1− wi)mi

where wi = Ai

(Ai+mi/ni)
is the a ratio between the a prior variance of θi and

the unconditional variance of ti. The global empirical Bayesian estimator

proposed by Marshall [1991] assumes that the distribution of θi is the same

for all areas and then replaces mi and Ai by m and A, respectively. Using

the method of moments, Marshall showed that the estimates for m and A

are given, respectively, by m̃ =
∑
yi∑
ni

and Ã = s2 − m̃
n̄

, where s2 =
∑
ni(ti−m̃)∑

ni
,

n̄ =
∑
ni

N
and k is the number of areas of the map. As the overall proposal

is spatially invariant, i.e., independent of the performed permutation, the

estimates do not change. It is necessary to change the expression of θi for

the estimation of the a prior parameters set to be performed based on in-

formation from the neighboring areas of i. In this case, wi, m, s2 and n are

replaced by Wi, Mi, s
2
i and ni, respectively, calculated only with data from

the neighboring areas of i, and are defined as the local empirical Bayesian

estimators.

Marshall’s smoothing procedure is advantageous when the number of

cases is very small. It will be used for the Chagas’ disease map, which has a

reduced number of cases, as we will see in the Results section.
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Chapter 3

Results and Discussion

The methodology proposed in this thesis 2.4 was tested in numerical simula-

tions and it was applied in three case studies.

3.1 Numerical Simulations

Three different types of “true” artificial clusters will be tested: a single cir-

cular cluster (in two maps with different relative risks), a L-shaped irregular

cluster, and a double circular cluster (also in two maps with different rela-

tive risks). In all situations, the map consists of a rectangular array of 203

hexagonal cells, each cell with population 1000. The centroids of the hexag-

onal cells are not placed in a perfectly regular array; we introduced a slight

random displacement on both x and y axes, in order to avoid ties when mea-

suring distances between any two centroids. Cases are randomly distributed

such that the cells inside the true cluster have higher probability of receiving

cases than the areas outside it; the resulting maps with the randomly dis-

tributed cases are also displayed. That means that we will find clusters in

“noisy” maps, where the number of cases is not homogeneously distributed
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inside and outside the artificial clusters. The clusters found by the circular

scan are also shown. Finally, we display the resulting maps built through the

intensity function. Supposing a normal distribution of risks in the map, we

consider very high relative risk clusters (the relative risk inside the cluster

is 5 standard deviations above the average global risk) and moderately high

relative risk clusters (the relative risk inside the cluster is 3 standard devia-

tion above the average global risk). For a given map, the (greater than 1.0)

risk is the same for all areas inside the cluster, and the risk is the same (1.0)

for all areas outside the cluster.

3.2 Single Circular Cluster

Figure 3.1 shows a circularly shaped true artificial cluster with very high

relative risk (a), the random generated cases map of rates (b), and the cluster

detected by the circular scan (c). The intensity function is displayed in Figure

3.2(a). Finally, the intensity bounds map obtained by our method is shown

in Figure 3.2(b).
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Figure 3.1: A single circularly shaped true artificial cluster with very high

relative risk (a), the random generated cases map of rates (b), and the cluster

detected by the circular scan (c).
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Figure 3.2: The intensity function (a) and the intensity bounds map (b) for

the very high relative risk single circular cluster.

Figures 3.3 and 3.4 show the analogous results for another circularly

shaped true cluster, with moderately high relative risk, for comparison.

Figure 3.3: A single circularly shaped true artificial cluster with moderately

high relative risk (a), the random generated cases map of rates (b), and the

cluster detected by the circular scan (c).
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Figure 3.4: The intensity function (a) and the intensity bounds map (b) for

the moderately high relative risk single circular cluster.

The intensity bounds of the very high relative risk cluster are more sharply

defined than those corresponding to the moderately high relative risk cluster,

as expected. Observe that in both instances the true clusters were clearly

detected, as represented by the darkest shade in Figures 3.2 and 3.4.

3.3 Irregularly Shaped Cluster

Figure 3.5 shows a L-shaped true artificial cluster (a), the random generated

cases map of rates (b), and the cluster detected by the circular scan (c). The

intensity function is displayed in Figure 3.6(a). The intensity bounds map

obtained by our method is shown in Figure 3.6(b).

25



Figure 3.5: The L-shaped true artificial cluster (a), the random generated

cases map of rates (b), and the cluster detected by the circular scan (c).
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The circular scan detected a circular cluster centered in the angle formed

by the two braces of the L-shaped cluster. However, the intensity bounds

roughly delineated the L-shape, with a more intense region located around

the angle of the L-shaped cluster. Sometimes the realizations of the random

variable produced maps where circular clusters were found centered in the

angle of the L-shaped cluster, but, very interestingly, also produced circular

clusters centered along the braces of the L-shaped cluster. As a result, the

overall intensity map of Figure 3.6 indicates the form of the L-shaped cluster.

Figure 3.6: The intensity function (a) and the intensity bounds map for the

L-shaped artificial cluster.

3.4 Double Circular Cluster

Figure 3.7 shows a double circularly shaped true artificial cluster with very

high relative risk (a), the random generated cases map of rates (b), and the

cluster detected by the circular scan (c). The intensity function is displayed

in Figure 3.8(a). Finally, the intensity bounds map obtained by our method

is shown in Figure 3.8(b).
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Figure 3.7: A double circularly shaped true artificial cluster with very high

relative risk (a), the random generated cases map of rates (b), and the cluster

detected by the circular scan (c).

Figure 3.8: The intensity function (a) and the intensity bounds map (b) for

the double circularly shaped cluster with very high relative risk.
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Figures 3.9 and 3.10 show the analogous results for another double circular

true cluster, with moderately high relative risk, for comparison.

Figure 3.9: A double circularly shaped true artificial cluster with moderately

high relative risk (a), the random generated cases map of rates (b), and the

cluster detected by the circular scan (c).

Figure 3.10: The intensity function (a) and the intensity bounds map (b) for

the moderately high relative risk double circular cluster.

As displayed in Figures 3.7(b) and 3.9(b), the local rates of the two com-

ponents of the double cluster are not equal, and the circular scan detected

only the circular component cluster with the highest rate (Figures 3.7(c)

and 3.9(c)). However, the intensity bounds delineated both circular clusters,
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with a more intense region located around the highest risk circular compo-

nent (Figures 3.8(b) and 3.10(b)). Sometimes the realizations of the random

variable produced maps where the highest risk circular component was found,

but also produced circular clusters centered in the lower risk component. As a

result, the overall intensity map indicates the two components, with different

intensities.
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Chapter 4

Real Data Case Studies

To illustrate the method proposed in this thesis, we present three real data

case studies. In the first study, with homicide cases from Minas Gerais state,

Brazil, the most likely cluster is compact and very sharply delineated, with

negligible geographic dispersion. The second study is a well-known bench-

mark of female breast cancer in the Northeast U.S. (Kulldorff [1997]), and

the third case study displays Chagas’ disease cases in puerperal women, also

data from Minas Gerais state, Brazil. In those two last studies, the most

likely clusters are not sharply delineated, presenting moderate geographic

dispersion. The breast cancer study has many cases, compared to the re-

duced number of cases of the Chagas’ disease study, allowing us to compare

the performance of the map in two very different situations.

In the Chagas’ disease study we used both the raw and Marshall’s smoothed

rates, due to the small number of cases. On the other hand, for the the other

two studies we have only presented raw rates results, because there are no

advantages in employing smoothed rates when the raw rates are based in a

large number of cases. For all maps, each area ai will be colored according to

the quantile given by the function value q(ai), as explained in the previous
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section. The choice of the quantile level representation by distinct shades of

color varies in each map. We have chosen quantile levels in order to improve

the visualization of the intensity function in the maps. All blank areas were

never part of any cluster in the Monte Carlo simulations, corresponding to

those areas ai for which q(ai) = 0. In the software, the user may choose

arbitrary quantiles to represent the data. All the programming was made

using Matlab 7.10 and the code is available from the authors.

4.1 Homicide Clusters

Minas Gerais state is located in Brazil’s Southwest and consists of 853 mu-

nicipalities, with 20,912 registered homicides from 2003 to 2007, and an esti-

mated population of 19,150,344 in 2005. Data are available from the Brazilian

Ministry of Health (http:www.datasus.gov.br) and the Brazilian Institute

of Geography and Statistics (http:www.ibge.gov.br).

The raw rates map is presented in Figure 4.1(a) and the population at risk

map in Figure 4.1b. The Monte Carlo procedure described in the Methodol-

ogy section is performed for the raw rates, producing their respective intensity

function. The intensity function for the raw rates map is displayed in Fig-

ure 4.2. Figure 4.3(a) shows the most likely cluster found by circular scan.

Figure 4.3(b) show the map corresponding to the intensity function derived

from the raw rates map.
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Figure 4.1: Homicide rates map (a) and population at risk map (b) in Minas

Gerais State, Brazil.

Figure 4.2: The intensity function for the homicides map.
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Figure 4.3: The most likely cluster found by the circular scan (a) and intensity

function map (b) for the homicides map.

Figure 4.4: The most likely cluster found by the circular scan (a) and intensity

function map (b) for the homicides map.(Zoom)

In the intensity function map, the non-blank areas attain almost the same

level, meaning that the anomaly is very conspicuous. On the other hand, this

anomaly is compact and coincides with the most likely cluster found by the

circular scan. Although there are other places in the map where the rates

are elevated, the values of the intensity function are not elevated enough to

produce non-blank areas outside the anomaly in the center of the map.
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4.2 The Breast Cancer Clusters in Northeast-

ern United States

The data set of mortality from breast cancer in the Northeastern U.S. consists

of age-adjusted 58,943 deaths for the period from 1988 to 1992, with the

female population at risk of 29,535,210 in 1990. This map consists of 245

counties in 10 states and the District of Columbia. This dataset has been

studied in detail using the circular spatial scan statistic (Kulldorff et al.

[1997]) and the elliptic spatial scan statistic (Kulldorff et al. [2006]). The

raw rates map is presented in Figure 4.5(a) and the population at risk map

in Figure 4.5(b). The Monte Carlo procedure is performed producing its

respective intensity function, displayed in Figure 4.6.

Figure 4.5: The rates map (a) and population at risk map (b) for the North-

east U.S. breast cancer data.
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Figure 4.6: The intensity function for the Northeast U.S. breast cancer data.

Figure 4.7: The three strongest clusters found by SaTScan Kulldorff et al.

[1997] (a) and intensity function map (b) for the Northeast U.S. breast cancer

data.
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This case study presents a very different situation from the first example.

The map derived from intensity function in Figure 4.7(b) shows the presence

of various anomalies placed at different parts of the study area, indicat-

ing their geographic dispersion. We clearly observe three distinct groups of

shaded areas in Figure 4.7(b), consistently matching with the three strongest

clusters found by SaTScan (Kulldorff et al. [1997]), shown in Figure 4.7(a).

The darkest shaded group is associated to the New York, NY-Philadelphia,

PA primary cluster, with p-value 0.0001. The upper left group of four gray

areas coincides exactly with the Buffalo, NY secondary cluster, with p-value

0.122. Finally the gray area at the lower center of the map corresponds to

the Washington, DC secondary cluster, with p-value 0.147.

This example shows that the intensity function has the ability to delineate

even the multiple and irregularly shaped potential clusters. We stress the fact

that, for each Monte Carlo replication, only the primary most likely cluster

was used to build the map derived from the intensity function of Figure

4.7(b).

4.3 Chagas’ Disease Clusters

This subsection presents the data set of Chagas’ disease cases in puerperal

women in Minas Gerais state, Brazil. The population at risk consists of

women that gave birth to babies in the period of July to September, 2006.

The new-born babies were blood tested to detect the presence of the Chagas

disease antigen, with coverage above 96%. A positive test means that the

mother is infected. These tests were conducted through the project PETN-

MG (Minas Gerais State Program of New-Born Screening) coordinated by

the research group NUPAD-MEDICINA/UFMG from Federal University of
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Minas Gerais Medical School (http:www.nupad.medicina.ufmg.br) in col-

laboration with Minas Gerais State Health Secretary. The state is divided

into 853 municipalities with a total population at risk of 24,969 women. Af-

ter a comprehensive screening to eliminate false positives a total number of

113 cases were obtained.

The raw rates map is presented in Figure 4.8(a) and the population at

risk map in Figure 4.8(b). The Monte Carlo procedure is performed for

both the raw rates and Marshall’s smoothed rates maps, producing their

respective intensity functions. The intensity function for the raw rates map

is displayed in Figure 4.9(a). The intensity function for Marshall’s smoothed

rates is displayed in Figure 4.9(b). Figure 4.10(a) shows the most likely

cluster found by circular scan. Figures 4.10(b) and 4.10(c) show the maps

corresponding to the intensity function derived from the raw rates map and

the smoothed rates map, respectively.

Figure 4.8: Chagas’ disease rates map (a) and population at risk map (b) in

Minas Gerais State, Brazil.
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Figure 4.9: The intensity functions of the raw rates (a) and smoothed rates

(b) for the Chagas’ disease map.

Figure 4.10: The most likely cluster found by the circular scan for the

raw rates map (a), the raw rates intensity function map (b) and Marshall’s

smoothed rates intensity function map (c) for the Chagas’ disease map.

The maps derived from the raw (Figure 4.10(b)) and smoothed (Figure

4.10(c)) intensity functions show the presence of a strong anomaly. For the

map of Figure 4.10(b), the area formed by the highest intensity areas (dark

colored) coincides almost perfectly with the primary cluster found by the

circular scan. However, the corresponding area of Figure 4.10(c) does not

match so well the primary cluster, due to the overdispersion created by Mar-

shall’s smoothing procedure. In both maps, we observe the high geographic
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dispersion of the anomaly, which spreads over the northern part of the state.

This example shows that the error bounds of the existing cluster were easily

visualized by means of the intensity function. The application of Marshall’s

smoothing procedure does not contribute to improve the delineation of the

anomaly, even considering that there are few cases in the study area.
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Chapter 5

Irregulary shaped clusters

The circular spatial scan has several limitations, which were discussed in

the literature (Duczmal et al. [2006], Kulldorff et al. [2006]). In particular

the circular window is not adequate to delineate irregularly shaped clusters

- either choosing a small proper subset of the cluster (underestimation) or

choosing a large circle containing the cluster as a proper subset (overestima-

tion). One important consequence is the reduction of the power of detection.

In order to overcome this limitation, many algorithms were proposed in the

last five years to detect irregularly shaped clusters, substituting the circu-

larly shaped window. Usually, the only limitation in shape for those clusters

is a connectivity requirement. In this section, we will analyze the impact

of irregularly shaped algorithms for the application of the intensity function

discusssed in the previous sections, compared to the use of the simple cir-

cular scan, which was employed as the standard method. We will present

results only for the multi-objective genetic algorithm scan (Duczmal et al.

[2007, 2008], Duarte et al. [2010]), adapted for the weighted non-connectivity

penalty function (Cançado et al. [2010], Duarte et al. [2011]), see 8.1 in this

thesis the procedure for the weighted non-connectivity penalty function.
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Figure 5.1: The most likely cluster of breast cancer among woman for the pe-

riod 1988-1992, occurring sround New York, and Philadelphia, Pennsylvania,

as well as four secondary clusters.
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Figure 5.2: The intensity function map for the Northeast U.S. breast cancer

data.
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The map derived from intensity function in Figure 5.2 shows the presence

of various anomalies placed at different parts of the study area, indicating

their geographic focus. We observe several distinct groups of shaded areas

in Figure 5.2, consistently matching with the five strongest clusters found by

SaTScan (Kulldorff et al. [1997]), shown in Figure 5.1. The darkest shaded

group spreads through a larger portion of the map (compared with the cor-

responding group found in chapter 4) and is associated to the New York,

NY-Philadelphia, PA primary cluster, with p-value 0.0001. The same thing

happens with the upper left group of 13 gray areas, containing the Buffalo,

NY secondary cluster of four areas, with p-value 0.122. Finally the gray area

at the lower center of the map corresponds to the Washington, DC secondary

cluster, with p-value 0.147. The remaining two secondary clusters of Figure

5.1 have even higher p-values, and the corresponding groups in Figure 5.2

are less sharply defined. Other scattered groups also were formed through

the map.

This example shows that the intensity function has the ability to delineate

even more multiple and irregularly shaped potential clusters, but there is

considerably more noise.
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Figure 5.3: Three artificial clusters

We also present a set of simulations to illustrate the average behavior of

the intensity function using the multiobjective genetic algorithm scan. We

generated 100 Monte Carlo replications for the construction of the intensity

function, for each one of the three artificial clusters shown in Figure 5.3. The

intensity function map was built and then we repeated the whole process 100

times, composing the average maps shown in Figure 5.4. We stress the fact

that this result is an average process, and we found a large variance in the

delineation of the original clusters (Figure 5.3), as expected. Even then, the

maps of Figure 5.4 show consistently the outline of the original clusters.
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Figure 5.4: The three results for intensity function map (a) New York, (b)

Boston and (c) Washington DC.
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The same procedure was done for the Chagas’ disease map of Minas

Gerais, representing a situation where the total number of cases is small.

5.5 shows the most likely cluster of Chagas’ disease in Minas Gerais found by

the multi-objective genetic algorithm. 5.6 displays the combined solutions of

the Pareto set, when the maximum cluster size was 5 (5.6(a)) and 10 (5.6(b)).

The results show clusters considerably more sharply defined, compared to the

New England map’s clusters.

Figure 5.5: Most likely cluster found by genetic algorithm.
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Figure 5.6: Cluster found by genetic algorith with maximum cluster size was

5(a) and cluster found by genetic algorith with maximum cluster size was

10(b).
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In conclusion, our examples using artificial and real data show that there

is a palpable gain when using irregularly shaped methods. This gain is trans-

lated here as a greater sensitivity to detect boundaries of the clusters, and

also the capacity to detect secondary clusters. However, the informational

gain is somewhat offset by the increased amount of detected noise, generated

by the possibly excessive freedom of shape and/or size of the window used.

Smaller, more compact windows generate less noise, but also less sensitivity.

The opposite is true for larger, less penalyzed (in terms of shape) windows,

which generate noiser maps with more clusters.

Our simulations seem to indicate that more complicated spatial popula-

tion distributions, with several highly populated nuclei in different parts of

the map, are better suited for the application of the intensity function with

the circular scan; otherwise, when the population is more evenly distributed,

irregularly shaped algorithms may be more useful.

It is possible to find a balance between the informational gain, but cur-

rently the most adequate parameters are not automatically chosen. A more

prudent strategy, in our setting, is to evaluate several simulations with differ-

ent parameter settings. Further work is needed to assess the optimal choices

which could generate maps representing the adequate balance between noise

and informational content. We presented results with the multi-objective ge-

netic algorithm scan, employing the weighted non-connectivity penalty func-

tion. Other algorithms could also be used, but there is no reason to believe

that the basic features should be different, when using other types of algo-

rithms. It seems that only the range of the window size, measured as the

maximum allowed population in the candidate clusters, is relevant to modify

the balance of the algorithm’s sensitivity to detect secondary clusters and

the amount of noise in the final map.
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Chapter 6

Relative Frequency Studies

One is tempted to ask if simpler criteria, aside from the intensity function

definition, should suffice for the delineation of the uncertainty bounds of

spatial clusters. For instance a very simple frequentist approach could be used

instead: for each area ai, consider the number mi of Monte Carlo replications

when ai is included in a most likely cluster, divided by the total number of

replications m. In Figure 6.1 we compare the intensity function map with the

relative frequency map described above, for the New England breast cancer

map. It could be observed that the results are almost identical. On the other

hand, Figure 6.2 makes a similar comparison for the Minas Gerais Chagas’

disease map. The results are considerably different; this happen because,

for each area ai, the frequentist approach does not take into account the

value of the highest LLR clusters which contain the area ai. The intensity

function method, otherwise, does not produce underestimated LLR value

clusters. This difference is most notable when the number of cases in the

map is small, and the relative variance is larger. When the total number of

cases is the map is large, both evaluations tend to produce similar clusters

for each area.
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Figure 6.1: The intensity function for the raw rates map and the relative

frequency map.

Figure 6.2: The intensity function for the raw rates map and the relative

frequency map.
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Chapter 7

Conclusions

Our methodology takes into account the variability in the observed number of

disease cases on area-aggregated maps to nonparametrically infer the uncer-

tainty in the delineation of spatial clusters. A given real data map is regarded

as just one possible realization of an unknown random variable vector with

expected number of cases. The real data vector of the number of observed

cases in each area is used to construct a new vector of expected values of

random variables, either as a composition of neighboring areas in the map,

employing Marshall’s smoothing, or either considering the raw count of cases

as the average of the random variables. This vector is now an estimate of

the unknown random variable vector with expected number of cases. Our

methodology performs m Monte Carlo replications based on this estimated

vector of averages. The most likely cluster of each replicated map is detected

and the m corresponding likelihood values obtained in the replications are

ranked. For each area we determine the maximum likelihood value among

the most likely clusters containing that area. Thus, we obtain the intensity

function associated to each area’s ranking of their respective likelihood value

among the m values. The intensity of each area can be interpreted as the
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importance of that area in the delineation of the possibly existing anomaly

on the map, considering only the initially given information of the observed

number of cases. This procedure, based on empirical distribution, takes into

account the intrinsic variability of the observed number of cases, which gen-

erally is not considered directly in the existing algorithms used to detect

spatial clusters.

In our case studies we could see different situations with respect to the

intrinsic variability of the existing spatial anomaly. When the most likely

cluster is quite prominent, as seen in the homicides map example, the in-

tensity function is such that almost all areas associated with the most likely

clusters found in the m replications coincides with those areas composing the

most likely cluster detected for the original observed cases. In this example

low geographic dispersion occurs. However, in the other two case studies, the

opposite happens. The Chagas’ disease map presents an intrinsically wide

variability of data. Many areas near or adjacent to the most likely cluster

have values of the intensity function close to the values corresponding to ar-

eas of the most likely cluster. In the case study of breast cancer, this intrinsic

variability produces a map with clearly unrelated areas, but with rather close

probability ranking, indicating a situation of multiplicity of clusters, i. e.,

the most likely cluster is clearly poorly delineated. It is noteworthy that

the entire procedure was performed using the circular scan, and even then it

identifies irregular and multiple clusters.

An analogy with our proposed method can be found in image analysis:

suppose we take several short digital exposures of a very low light level scene,

e.g. some deep-sky field of galaxies. Each exposure generates an image con-

sisting of a rectangular matrix of pixels, each pixel receiving a small number

of photons corresponding to the illumination of its small associated portion
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of the image. The expected rate of photons is constant during all the ex-

posures, but the number of photons received by the same pixel varies from

one exposure to the other due to the stochastic nature of the process. Usu-

ally, one simply adds the values for the same pixel through all the exposures,

to compose a single final image with higher sharpness (signal-to-noise). In-

stead, we first submit each exposure image through a filter, which in our

case is the algorithm to detect the most likely cluster, and then compose

all the corresponding clusters into a single “cluster image” by means of the

intensity function. If the “real” cluster is very contrasting with the back-

ground noise, all exposures will produce very similar clusters, thus producing

a sharply defined final cluster image. Otherwise, when the real cluster is not

very conspicuous, we should observe a large variation in individual clusters,

producing a poorly delineated cluster in the final image.

We presented two variants of the computation of the intensity function.

The first employed the raw number of cases, and the second used Marshall’s

smoothed estimates of the number of cases based on the information of the

first order neighborhood of each area. This was done because we were espe-

cially concerned with areas containing zero cases, which could generate biased

Monte Carlo distributions of cases over the map. Marshall’s smoothed es-

timates of cases could potentially alleviate this problem providing non-zero

averages employed in the multinomial random vector. However, we have

noted in all our examples that the application of Marshall’s smoothed es-

timates produces less sharply defined intensity function maps, compared to

those obtained by the use of the raw cases data. On the other hand, we could

not observe any artifacts due to the use of non-smoothed raw cases data in

the delineation of the anomaly. This may be explained by the simple fact

that the circular spatial scan works itself as a “filter”, when it joins several
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areas within the circular window, thus naturally diminishing the effect of the

zero cases areas in the composition of the cluster candidates. This suggests

that the utilization of raw cases data does not seem to interfere with the

visualization of the intensity bounds.

This tool uses simple mathematical concepts and the interpretation of

the intensity function f is very intuitive in terms of the importance of each

area in delineating the possible anomalies of the map of rates. The Monte

Carlo simulation requires an effort similar to the circular scan algorithm,

and therefore it is quite fast. Furthermore, the accuracy of the interactive

construction of the map from the intensity function f increases gradually

with execution time. Thus the user could stop the simulation process at

any time when it is realized that the delineation of potential anomalies will

converge. We therefore hope that this tool may assist in the decision process

of prioritizing the areas of a map associated with potential spatial anomaly.

In this thesis we developed a new concept for detection and representation

of clusters in maps, describing the their error bounds. We treat one of the

principal problems in cluster detection, the uncertainty of their boundaries,

measured by the plausibity of each area belonging to the real cluster. Our

technique may potentially overcome one of the limitations of the spatial scan

statistic which doesn’t really discriminate between clusters that are homoge-

neous and those that are patchy or ring-like. When actually capturing this

imprecision on the map, our method is able contribute with two long standing

problems: first, how secondary clusters should be reported and interpreted;

second, how the uncertain precision of the cluster locations should be re-

ported and interpreted. We therefore hope that this tool may assist in the

decision process of prioritizing the areas of a map associated with potential

spatial anomaly.
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Trabalhos Futuros

Nesta tese foi desenvolvido uma forma de delineamento da intensidade de

regiões pertencerem ao cluster mais verosśımil, classificando-as no mapa em

questão de acordo com uma escala de intensidade, onde tratamos com dados

agregados. Este procedimento permitiu um avanço em questões que antes

não tinham sido abordadas como: O que pode ser dito das áreas externas

adjacentes ao cluster? As áreas dentro do cluster detectado têm a mesma

importância de pertencerem à anomalia? Entre outras questões. O nome

dado para este procedimento foi função intensidade. Usando métodos de

detecção de clusters conhecidos como scan circular e genético, com o uso

da função de intensidade é posśıvel detectar clusters irregulares e múltiplos.

Este método estima a plausibilidade de todas as regiões pertencerem aos

posśıveis clusters existentes. O esforço computacional da função intensidade

é relativamente baixo. Para trabalhos futuros desejamos estender a função

intensidade para dados pontuais e para detecção de clusters espaço temporal.

Assim pretendemos desenvolver ferramentas importantes para priorização de

regiões que pertencem a uma determinada anomalia detectada.
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Chapter 8

Annexes

8.1 Annexe A - The weighted non-connectivity

penalty

8.1.1 The geometric penalty function

As previously mentioned, algorithms for detecting spatial clusters making

an unrestricted search can eventually choose a cluster that spreads across

the whole map just connecting areas with high cases incidence. One way

to avoid such kind of “meaningless” solution would be to use an algorithm

that besides to consider the LLR(z) would also use some sort of penalty for

the cluster shape. One of the possible penalties that takes into account the

cluster geometric shape is the called compactness geometric penalty function.

This penalty function introduced in Duczmal et al. [2006] aims to penalize

zones in the map that have very irregular shape. The compactness geometric

function k(z) of a zone z is given by the area of z divided by the area of

a circle with the same perimeter as the convex hull of z. The compactness

geometric function takes values between zero and one, and the circle has the
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most compact shape (k(z) = 1). Compactness depends on the shape of the

zone, but not on its size. The expression for k(z) is given by:

k(z) =
4πA(z)

H(z)2
(8.1)

where A(z) is the area of the zone z and H(z) the perimeter of the convex

hull of z. Informally, the convex hull of a planar object is the area inside a

rubber band stretched around it. The compactness penalyzed scan statistic

is defined as maxz∈Zk(z).LLR(z).

8.1.2 The non-connectivity penalty function

Yiannakoulias et al. [2007] proposed a greedy algorithm to scan the set Z

of all possible zones z. A new penalty function called non-connectivity was

proposed. It was based on the ratio of the number of nodes v(z) to the

number of edges e(z) of the subgraph associated with the zone z. The non-

connectivity penalty was used as a multiplier for the LLR(z). The non-

connectivity penalty function of a zone z is defined by

nc(z) =
e(z)

[3 (v(z)− 2)] .
(8.2)

The expression in the denominator represents the maximum number of

edges of a planar graph given its number of vertices. The most penalized

zones are the ones whith tree-like associated graphs, meaning that they have

a small number of nodes compared with the number of edges. Although there

is some similarity between the non-connectivity penalty to the geometric

compactness penalty, there is an important difference: the non-connectivity

penalty does not rely on the geometric shape of the candidate cluster, which

could be an interesting feature when searching for real clusters which are

highly irregularly shaped, but present good connectivity properties.
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8.1.3 The weighted non-connectivity penalty

We employ the multi-objective genetic algorithm, where the first objective

is the logarithm of the likelihood ratio (the LLR function) and the second

objective is given by our new proposal for a regularity/penalty function called

weighted non-connectivity function.

8.1.4 Weighting the edges and nodes

The non-connectivity function proposed by Yiannakoulias et al. [2007] and

given by (8.2) proved to be quite effective in the detection and inference of

spatial clusters. Basically, given a zone z, this function takes into account the

number of edges relative to the number of nodes of the subgraph associated

with the zone z and gives the strength of the zone as a possible cluster by a

measure of the connectivity between its component areas. However the non-

connectivity function does not consider the population heterogeneity among

the component areas. If we consider the problem of disease cluster detec-

tion in epidemiology or disease surveillance, the population heterogeneity is

clearly an important feature to be included in the problem analysis. For in-

stance, we could ask how relevant an edge is for the subgraph connectivity. If

the removal of this edge breaks the graph/zone in two connected pieces, the

edge relevance is different from another edge whose removal does not break

the graph/zone. The original non-connectivity function does distinguish be-

tween these two situations.

But if we consider an edge whose removal breaks the graph/zone, how

relevant is this edge as an element of an associated graph of a possible clus-

ter if this edge connects two nodes corresponding to high populated areas,

or to low populated areas? Our new proposal tries to answer this ques-
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tion. Besides considering the associated graph connectivity structure we

propose to give weights to the edges and the nodes according to their as-

sociated areas’ populations. For an edge ei,j connecting the nodes vi and

vj associated with areas Ri and Rj with populations pop(Ri) and pop(Rj),

we used the average population of the two connected nodes as the weight:

P (ei,j) = (pop(Ri) + pop(Rj)) /2. For a node vi associated with the area

Ri whose population is pop(Ri), the weight is just the node population:

P (vi) = pop(Ri).

8.1.5 Weighted non-connectivity function

Given a zone z composed of k connected areas, we formally define our novel

proposal for a penalty function called weighted non-connectivity function and

denoted by w(z) as:

w(z) =

k−1∑
i=1

k∑
j=i+1

P (ei,j)

3


k∑
i=1

P (vi)− 2


k∑
i=1

P (vi)

k




(8.3)

We remark that if we consider that all areas have the same population,

we recover the expression (8.2) for the non-connectivity function introduced

by Yiannakoulias et al. [2007].
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