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Abstract

Conventional Monte Carlo tests require the simulation of m independent copies from the test statistic

U under the null hypothesis H0. The execution time of these procedures can be substantially reduced by

a sequential monitoring of the simulations. The sequential Monte Carlo test power and its expected time

are analytically intractable. The literature has evaluated the properties of sequential Monte Carlo tests

implementations by using some restrictions on the probability distribution of the p-value statistic. Such

restrictions are used to bound the resampling risk, the probability that the accept/reject decision is different

from the decision from the exact test. This paper develops a generalized sequential Monte Carlo test that

includes the main previous proposals and that allows an analytical treatment of the power and the expected

execution time. This results are valid for any test statistic. We also bound the resampling risk and obtain

optimal schemes minimizing the expected execution time within a large class of sequential design.

Keywords: Sequential Monte Carlo test, Power loss, p-value density, Resampling risk, Sequential design,

Sequential probability ratio test.

1. Introduction

In the conventional Monte Carlo (MC) tests, the user selects the number m of simulations of the test

statistic U under H0. A Monte Carlo p-value is calculated based on the proportion of the simulated values

that are larger or equal than the observed value of U , assuming that large values of U lead to the null

hypothesis rejection. This procedure can take a long time to run if the test statistic requires a complicated

calculation as, for example, those involved in complex models. These situations are exactly those where the

MC tests are likely to be most useful, as analytical exact or asymptotic results concerning the test statistic

U is hard to obtain. The adoption of sequential procedures to carry out MC tests is a way to reach a faster

decision. In contrast with the fixed size MC procedure, in the sequential MC test the number of simulated

statistics is a random variable. The basic idea is to stop simulating as soon as there is enough evidence either

to reject or to accept the null hypothesis. For example, it is intuitively clear that, if the observed value of
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U is close to the median of the first 100 simulated values, the null hypothesis is not likely to be rejected

even if we perform another 950 simulations. If a valid p-value could be provided, most researchers would be

confident to stop at this point. Sequential Monte Carlo tests are procedures that provide valid p-values in

these situations.

Let Xt be the number of simulated statistics under H0 exceeding the observed value u0 at t-th simulation.

In general, sequential MC procedures track the Xt evolution by checking if it crosses an upper or a lower

boundary. When it does, the test is halted and a decision is reached. Typically, crossing the lower boundary

leads to the rejection of the null hypothesis while the upper boundary crossing leads to the acceptance of

the null hypothesis.

There are different proposals for a sequential Monte Carlo test in the statistical literature. Besag and

Clifford (1991) proposed a very simple scheme that provides valid p-value for a sequential test with an upper

bound n − 1 in the number of simulations of U . It depends on a single tuning parameter h, making it

extremely simple to use. We stop the simulations when Xt = h for the first time and t < n. If Xn−1 < h,

the simulations are halted. If h ≤ l ≤ n − 1 is the number of simulations carried out and if we stop at time

t, the sequential p-value is given by

pBC =







Xt/t, if Xt = h,

(Xt + 1)/n, if Xt < h.
(1)

The support set of pBC is

S = {1/n, 2/n, . . . , h/n, h/(n− 1), . . . , h/(h + 2), h/(h + 1), 1} .

and we have P(Ps ≤ a) = a under the null hypothesis if a ∈ S. This is a valid p-value estimator, because, a

p-value estimator Pe is valid if P(Pe ≤ b) ≤ b, where b is an element from the support set of Pe. Additional

randomization can provide a continuous p-value with uniform distribution in the interval (0, 1), rather than

distributed on the discrete set S.

Therefore, the boundaries of Besag and Clifford (1991) are given by the horizontal line Xt = h and

the vertical line t = n − 1. There is no lower boundary but only a predetermined maximum number of

simulations, typically called a truncated sequential Monte Carlo test. The Besag and Clifford sequential

MC test brings a reduction in execution time only when the null hypothesis is true. When it is false, one

will often run the Monte Carlo simulation up to its upper bound n− 1. Therefore, additional gains could be

obtained by adopting a stopping criterium based on large values of Xt. For any fixed type I error probability

α, Silva et al. (2009) showed that one can design a Besag and Clifford sequential MC test with the same

power as a conventional Monte Carlo test and with shorter running time. Silva et al. (2009) showed also

the puzzling result that this sequential Monte Carlo should have a maximum sample size equal to h/α + 1,

because, for n ≥ h/α + 1, the power is constant.
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In addition to Besag and Clifford (1991), alternative sequential Monte Carlo tests have been suggested

recently. These other procedures are mainly concerned with the resampling risk, defined by Fay and Follmann

(2002) as the probability that the test decision of a realized MC test will be different from a theoretical

MC test with an infinite number of replications. Fay and Follmann (2002) proposed the curtailed sampling

design, where, if Xt ≥ ⌊α(n + 1)⌋, the procedure is interrupted and H0 is not rejected, and, if t − Xt ≥
⌈(1 − α)(n + 1)⌉ or the number of simulations reaches n, the procedure is interrupted and H0 is rejected,

where n is the maximum number of simulations. They also introduced the interactive push out (IPO)

procedure that requires a sequential algorithm to define the boundaries of the sequential procedure. This

procedure is not proven to be optimal but simply to decrease the sample size with respect to a curtailed

sampling design. For all their results, Fay and Follmann (2002) assumed a specific class of distribution

for the p-value statistic, that distribution implied by a test statistic U that follows the standard normal

distribution under the null hypothesis and follows a N(µ, 1) under the alternative hypothesis. Conditional

to this class of distributions, they found numerically the worst distribution to bound the resampling risk.

IPO has a smaller expected execution time than the curtailed sampling design but its implementation is

not practical for bounding the resampling risk in arbitrarily low values such as 0.01, for example. Also, we

think that the assumption on the p-value distribution is too restrictive and, in fact, we show that it is not

necessary to obtain optimal procedures.

Fay et al. (2007) proposed an algorithm (and an R package) to implement a truncated Sequential Prob-

ability Ratio Test (tSPRT) to bound the resampling risk and studied its behaviour as a function of the

p-value. The algorithm, denoted here as the FKH algorithm, calculates a valid p-value, which depends on

the calculation of the number of ways to reach each point on the stopping boundary of the MC test.

Gandy (2009) proposed an algorithm to build a sequential MC test that uniformly bounds the resampling

risk in arbitrarily small values and provides lower bounds to the expected number of simulations. His

algorithm is not truncated and the expected number of simulations can be infinite for p-values close to

α. Therefore, the simulations may go on indefinitely. One missing issue in his paper is the lack of results

concerning the type I error probability when the number of simulations is truncated.

Kim (2010) explored the approach from Fay and Follmann (2002) to bound the resampling risk using

their same restrictive class of p-value distributions. She used the B-value boundaries proposed by Lan and

Wittes (1988) and applied the algorithm of Fay et al. (2007) to obtain valid p-values estimates. She was able

to obtain arbitrarily low bounds to the resampling risk and showed empirically that the B-value boundaries

produces a smaller expected number of simulations than the IPO designs. In this paper, she also defined an

approximated B-value procedure, which is easy to calculate and has analytical formulas that give insights

on the choice of parameter values of the exact B-value design.

These B-value boundaries have the main advantages from the other procedures cited and, in our opinion,
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is the best alternative for a sequential MC test at the moment. However, its main results, concerning the

resampling risk and the expected number of simulations, depend on the same restrictive class of p-value

distributions of Fay and Follmann (2002). Moreover, important topics were not explored for the B-value

boundaries such as, for example, its power with respect to the conventional MC test or the establishment

of lower bounds for the expected number of simulations for any test statistic.

In this paper, we introduce a generalized sequential Monte Carlo allowing any monotonic shapes for the

boundaries. For example, it is possible to construct boundaries which are close to each other in the beginning

of the simulations, departing from each other as the simulations proceed and approaching each other again

in the end of the simulations. We have been able to obtain bounds for the power loss of the sequential MC

test. In fact, we establish boundaries shapes such that the sequential MC test has the same power as the

conventional MC test for any α level. These boundaries are simple to calculate and they are valid in the

general case of any p-value distribution. Moreover, we are able to provide an algorithm to find the truncated

boundaries that lead to a design with minimum expected sampling size. Concerning the resampling risk, we

consider a larger class of distributions for the p-value than Fay and Follmann (2002) and we show that it is

suitable to explicit algebraic manipulation allowing simple bounding of the resampling risk for any sequential

MC test design.

This paper is organized in the following way. In the next section, we describe the B-value boundaries.

Section 3 defines our sequential MC test and develops its properties. In Section 4 we discuss a general class

for the p-value distribution and provide some analytical results for the sequential tests. Section 5 presents a

numeric routine for the preliminary choice of our boundaries and some specific suggestions for practical use.

Section 6 offers a comparison between the B-value procedure and our procedure. Section 7 closes the paper

with some discussion.

2. The B-value Procedure

Consider a hypothesis test of a null hypothesis H0 against an alternative hypothesis Ha by means of a

test statistic U . The MC test can be seen as an estimation procedure to the unknown decision from the

exact test based on the null hypothesis distribution of U . Kim (2010) has adopted this point of view by

seeing the MC test as a decision procedure concerning in which (0, 1) interval, either (0, α] or (α, 1), does

belong the exact p-value associated with the test statistic U . The parameter α is the significance level of

the exact test. This interpretation leads to the following pair of hypotheses:

H∗
0 : p ≤ α

H∗
A : p > α (2)
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where p is the observed and unknown p-value generated from the random variable p-value. Viewed as a

random variable, we denote the p-value by P . Clearly, the decision in favor of any hypotheses above leads

to a decision concerning the original hypotheses H0 and HA.

Let U be the test statistic, u0 be its observed value for a fixed sample and ui, i = 1, ..., be the independently

simulated values from U under H0. Let

Xt =
t

∑

i=1

1{[u0,∞)}(ui) ,

where 1{[u0,∞)}(ui) is the indicator function that ui ≥ u0.

Kim (2010) used the B-value introduced by Lan and Wittes (1988) to propose a sequential procedure to

test H∗
0 versus H∗

A. Define:

V (t) = min
{

s ≥ 0 : x − tx ≥ c1

√

nα(1 − α)
}

and

L(t) = max
{

s ≥ 0 : x − tα ≤ c2

√

nα(1 − α)
}

.

Define also:

BSup =
{

(t, x) = (t, min{V (t), r1}) : t = t+0 , t+0 + 1, ..., n)
}

,

the upper boundary, and

BInf =
{

(t, x) = (t, max{L(t), t − r0}) : t = t−0 , t−0 + 1, ..., n)
}

,

the lower boundary of a sequential Monte Carlo test, where t+0 is the smaller value of t such that V (t) ≤ t

and t−0 is the smaller value of t such that L(t) ≥ 0. Similarly, let t+1 be the smaller value of t such that

V (t) ≥ r1 and t−1 the smaller value of t such that L(t) ≤ t − r0. The stopping boundaries from Kim (2010)

are given by B = BInf ∪ BSup. The B boundaries are formed by the union of linear functions in t. Figure

1 illustrate the B-boundaries BSup and BInf using c1 = −c2 = 1.282, n = 600 and α = 0.05.

The upper boundary BSup is formed by the union of the line V (t) = c1

√

nα(1 − α) + tα until t = t+1 ,

when the upper boundary becomes the horizontal line with height r1 = ⌊α(n + 1)⌋. The lower boundary

BInf is formed by the line L(t) = c2

√

nα(1 − α) + tα up to t = t−1 when it becomes the vertical line

r0 = t − ⌈(1 − α)(n + 1)⌉.
Kim (2010) uses φFKH , the test criterium based on the valid p-value presented in Fay et al. (2007). The

valid p-value is defined as p̂v(Xt, t) = Fp̂MLE
(Xt/t), where p̂MLE is the maximum likelihood estimator of p

and Fp̂ is defined in (5.2) from Fay et al. (2007). The estimate p̂v(Xt, t) of the p-value can be computed

using the FKH algorithm. The test adopted by Kim (2010) for the B boundaries is given by:

φFKH(t, x) =







1, if p̂v(x, t) ≤ α

0, if p̂v(x, t) > α.
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Figure 1: Example of the B boundaries with α = 0.05 and maximum number of simulations equal to n = 600.

When φFKH(t, x) = 0, H0 is not rejected (because H∗
0 : p ≤ α is rejected). For φFKH(t, x) = 1, H0 is

rejected (that is, H∗
0 : p ≤ α is not rejected). Henceforth, this procedure is called MCB.

It is very important to remark that there is no need to check the value of Xt at every moment t. To

see this, noticed that the boundaries BSup and BInf are composed by non-integer numbers while Xt is a

count. As a consequence, there will be times t for which the simulations can not be interrupted by BInf and

therefore there is no need to check against the lower boundary at these times. To illustrate this, consider the

example from Kim (2010) illustrated in Figure 1. Table 1 shows the values of BSup and BInf between the

times 134 and 179. The lower boundary is equal to zero until t = 136 and it is formed by numbers smaller

than 1 until t = 156. Therefore, Xt reach the lower boundary during this period if X137 = 0 and there is no

need to check against it for t ≤ 136. Likewise, if Xt is not interrupted by BInf at t = 156 (that is, X156 ≥ 2),

it will not reach it at least until t = 176. Therefore, in practice, there is no need to check against the lower

boundary for every simulated value. One needs to check only on those times t such that

BInf(t − 1) < BInf(t)

for t = 2, . . . , m where BInf(t) is the value of the lower boundary at time t. This will be explored by our

generalized sequential Monte Carlo method described in Section 3.

Since BSup will typically be non-integer, it is always possible to define step functions equivalent to the

upper boundary. To see this, consider again the Table 1. From t = 134 to t = 143, it is clear that the values

BSup(t) could be all substituted by 14 and the procedure would remain the same.
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2.1. Bounding the resampling risk of MCB

Fay and Follmann (2002) considered the IPO procedure that, interactively with the current simulations,

adjusts the initial boundaries. This method allows the bounding of the resampling risk. The IPO procedure

is not described in details here, but it should be noted that it is a computationally intensive procedure,

and its implementation is intractable for bounding the resampling risk in arbitrarily small values (see (Kim,

2010)). Fay and Follmann (2002) considered a rather restrictive class of p-value distributions, with cumulative

distribution function given by:

Hα,1−β(p) = 1 − Φ
{

Φ−1(1 − p) − Φ−1(1 − α) + Φ−1(β)
}

(3)

where Φ(.) is the cumulative distribution function of a standard Normal distribution, α is the desired signif-

icance level and β is the type II error probability. When α = 1 − β, the cumulative distribution Hα,1−β(p)

has a uniform distribution on (0, 1), as is expected when H0 is true.

The p-value distribution defined in (3) assumes a variety of shapes, but the analytical manipulation of

the resampling risk or of the expected number of simulations is intractable. To circumvent this problem,

Fay and Follmann (2002) used a Beta(a, b) distribution to approximate Hα,1−β(p), and this approximation

is denoted by H̃α,1−β(p). This approximation is chosen such that the expected value of P coincides with

that from Hα,1−β(p) and such that H̃α,1−β(α) = Hα,1−β(α) = 1 − β. Numerical studies were performed by

Fay and Follmann (2002) to obtain the worst case F̃ within the class (3) in the sense of having the largest

resampling risk. Let F̃ ∗ be the correspondent Beta distribution approximation to F̃ .

Although MCB is simpler and present a smaller expected time execution than the IPO procedure, it

depends on the FKH algorithm which requires rather complex modifications for each type of sequential

design. Kim (2010) proposes an approximation for the MCB procedure. With this approximation, if BSup

is reached before BInf, H∗
0 is rejected, while H∗

A is accepted if BInf is reached first. The approximation

may be used to gain analytic insights on the properties of the MCB procedure or to help on choosing the

parameters c1, c2, and n, as well as providing an approximation for the expected number of simulations. An

undesirable characteristic of the approximated MCB is that it is not truncated and the expected number

of simulations must be calculated letting the maximum number of simulations go to infinity. Moreover, the

approximation to MCB does not offer guarantee that the type I error probability is under control for any

choice of c1 and c2. For this reason, the approximation MCB will not be explored here.

3. Our proposed generalized sequential Monte Carlo test

The analytical treatment of the MC test power function, when it is based on two interruption boundaries,

is a cumbersome task. The reason is that it involves the calculation of the large number of possible trajectories

of the random variable Xt responsible for H0 rejection. Fay et al. (2007) present an algorithm to calculate
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the terms associated with such number, and they used this algorithm to obtain both, the expected number of

simulations and the resampling risk, for each fixed p-value. Fay et al. (2007) emphasize that such algorithm

is valid only for the specific sequential procedure treated in that article, and adjustments are needed to use it

with other sequential designs. Kim (2010) also used that algorithm for her calculations, and the approximate

MCB is an attempt to escape from the dependence on special algorithms.

Aiming to overcome this limitation, we propose a truncated sequential procedure with two boundaries

that have the shape of step functions. The values of X(t) are checked against the upper boundary for every

t while they are checked against the lower boundary in an arbitrary set of predetermined discrete moments,

possibly a smaller set than all integers between 1 and m. As we showed in Section 2, the B-boundaries can

also be expressed by step functions with jumps equal to positive integer numbers. Therefore, the boundaries

of MCB and of our sequential procedure can be expressed in the same way. To express the boundaries by

means of step functions is more cumbersome in terms of notation. The motivation for this design, where the

lower boundary monitoring is not carried out for every time t, is mainly to allow for the analytical treatment

of the power function, the expected number of simulations of the sequential MC test for any test statistic.

We also bound the resampling risk of our sequential MC test.

Let ηI =
{

nI
1, n

I
2, ..., n

I
k1

}

, with nI
j < nI

j+1, be a set containing the moments when Xt must be checked

against the lower boundary given by the values I = {I1, I2, ..., Ik1
}. If XnI

j
< Ij , the simulations are

interrupted and H0 is rejected.

The monitoring of Xt with respect to the upper boundary crossing is carried out at all moments t =

1, . . . , m and this upper boundary is a step function. Let ηS =
{

nS
1 , nS

2 , ..., nS
k2

}

, with nS
j < nS

j+1 be the jump

moments for the upper boundary. For nS
j−1 ≤ t < nS

j , the upper boundary is given by Sj where nS
0 = 0 and

S1 < S2 . . . < Sk2
. Let S = {S1, S2, ..., Sk2

}. Therefore, the simulations are interrupted if Dt = 1, where:

Dt =







1, if (t ∈ ηI and Xt < Ij , for t = nI
j ) or (Xt = Sj, for nS

j−1 < t ≤ nS
j )

0, otherwise
(4)

or if the number of simulations reach a predetermined maximum equal to m.

Let xt be the observed value of the random variable Xt. The p-value can be estimated by:

pI =







xt/t, if xt = Sj , n
S
j−1 < t ≤ nS

j

(xt + 1)/(t + 1), if xt < Ij , t = nI
j .

We define the test decision function for this sequential test:

φI(t, x) =







1, if the lower boundary I is reached before the upper S or the simulations reach m

0, if the upper boundary S is reached before the lower I.

The hypothesis H0 is rejected if φI = 1 and it is not rejected if φI = 0. This sequential MC test will be

denoted by MCG.
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As an example, take k1 = k2 = 10, m = 600, and consider I = {0, 1, 2, 3, 9, 15, 20, 24, 27, 29} for the

lower boundary values, S = {5, 7, 9, 13, 17, 23, 26, 29, 29, 30} for the upper boundary values, and ηI = ηS =

{20, 50, 79, 119, 239, 359, 459, 539, 569, 600}. Figure 2 shows these boundaries as dashed lines.

The choice of the boundaries is closely linked to the desired αmc, which is equal to 0.05 in this example.

In Section 5, we present an algorithm to obtain the appropriate boundaries for any αmc and m in an easy and

fast way. The solid lines are the B boundaries calculated by Kim (2010) using c1 = −c2 = 1.282, n = 600,

and α = 0.05.
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Figure 2: Example of the MCG (S and I) and B boundaries with α = 0.05 and a maximum number of simulations equal to

m = 600.

3.1. Power and Size of the MCG

In the MCG procedure, the rejection of H0 occurs in the first moment t = nI
j such that xt < Ij . The

power calculation is simpler if we merge the two sets ηI and ηS . Define η = ηI ∪ ηS = {n1, n2, ..., nk}
with k = #η. Let S

′

=
{

S
′

1, S
′

2, ..., S
′

k

}

be the upper boundary adjusted for each ni ∈ η in the following

way. If ni = nS
j ∈ ηS for some j, then S

′

i = Sj . If ni ∈ ηI ∩
(

ηS
)c

, then S
′

i = Sj where j is such that

nS
j = max

{

nS
r < ni

}

. Thus, if ni matches with some jump time in the set ηS , then S
′

i is equal to the value in

S for the time ni. If ni is not an element in ηS , then S
′

i is the jump value of the time immediately preceding

ni.

Similarly, let I
′

=
{

I
′

1, I
′

2, ..., I
′

k

}

be the adjusted lower boundary. That is, when ni = nI
j ∈ ηI or some

j, then I
′

i = Ij . If ni ∈ ηS but ni /∈ ηI , then I
′

i = Ij where j is such that nI
j = max

{

nI
j < ni

}

.
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Thus, for a given value of p ∈ (0, 1), the power function of the MCG procedure, is given by:

πG(p) =

I
′

1−1
∑

x1=0





n1

x1



 px1(1 − p)n1−x1 +

+

min
{

S
′

1−1,I
′

2−1
}

∑

x1=I
′

1

min
{

I
′

2−x1−1,n2−n1

}

∑

y=0





n2 − n1

y



 py(1 − p)n2−n1−y ×

×









n1

x1



 px1(1 − p)n1−x1



 +

+

k−1
∑

j=2

min
{

S
′

j−1,I
′

j+1−1
}

∑

xj=I
′

j

min
{

I
′

j+1−xj−1,nj+1−nj

}

∑

y=0

min
{

S
′

j−1−1,xj

}

∑

xj−1=I
′

j−1

· · ·

· · ·
min

{

S
′

1−1,x2

}

∑

x1=I
′

1





nj+1 − nj

y



 ×

×





n1

x1



 py+xj(1 − p)nj+1−y−xj

j
∏

i=2





ni − ni−1

xi − xi−1



 . (5)

This expression is composed by k summands. If k is not too large, the direct application of this expression

produces results quickly and easily. The calculation would be computationally hard if we used a similar

expression for sequential procedure where k = m. Note that, in the MCB procedure, the number of

summands in (5) can reach up to 2αmcm.

Under the null hypothesis, p follows the U(0, 1) distribution. Hence, by integrating out (5) with respect

to p with a U(0, 1) density, we obtain the type I error probability for MCG:

P (type I error) =

∫ 1

0

πG(p)dp =
I

′

1

n1 + 1
+

+

min
{

S
′

1−1,I
′

2−1
}

∑

x1=I
′

1

min
{

I
′

2−x1−1,n2−n1

}

∑

y=0





n2 − n1

y









n1

x1





(n2 + 1)





n2

y + x1





+

+
k−1
∑

j=2

min
{

S
′

j−1,I
′

j+1−1
}

∑

xj=I
′

j

min
{

I
′

j+1−xj−1,nj+1−nj

}

∑

y=0

min
{

S
′

j−1−1,xj

}

∑

xj−1=I
′

j−1

· · ·

· · ·
min

{

S
′

1−1,x2

}

∑

x1=I
′

1





nj+1 − nj

y









n1

x1





∏j
i=2





ni − ni−1

xi − xi−1





(nj+1 + 1)





nj+1

y + xj





.
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Similarly to Silva and Assunção (2011), an upper bound for the power difference between MCG and the

exact test can be obtained by:

bG = max
p∈(0,1)

{

1(0,α] − πG(p)
}

(6)

where α is the significance level of the exact test.

The power function of πG(p) evaluated for a fixed p is equal to the probability of Xt reaching I before

reaching S, and this probability is decreasing with p. In this way, the largest power loss of MCG as compared

to the exact test is given by:

bG = max
p∈(0,α]

{1 − πG(α)} = 1 − πG(α). (7)

Let MCm be the conventional MC test performed with a fixed number m of simulations. An upper

bound for the power difference between MCm and MCG is given by:

bm,G = max
p∈(0,1)

{πm(p) − πG(p)} (8)

where πm(p) = P(G ≤ ⌊mαmc⌋ − 1) is the power function of MCm for a given p, and G is distributed

according to a binomial distribution with parameters m − 1 and p.

3.2. Expected Number of Simulations for MCG

Let L be the random variable that represents the number of simulations carried out until the halting

moment. To perform the computation of the expectation of L, obtained by E(L|P = p) =
∑nk

l=1 l P(L =

l|P = p), for each fixed p. The probability P(L = l|P = p) is given by:

P(L = l|P = p) =



































































































































l − 1

l − S
′

1



 pl−S
′

1(1 − p)S
′

1 if l < n1





l − 1

l − S
′

1



 pl−S
′

1(1 − p)S
′

1 +
∑I

′

1−1
x=0





n1

x



 px(1 − p)n1−x if l = n1

∑I
′

1−1
x=0





n1

x1









l − n1 − 1

l − n1 − (S
′

2 − x)



 pS
′

2(1 − p)l−S
′

2 if n1 < l < n2

∑I
′

1−1
x=0





n1

x1









l − n1 − 1

l − n1 − (S
′

2 − x)



 pS
′

2(1 − p)l−S
′

2+

∑min
{

S
′

1−1,I
′

2−1
}

x=I
′

1

∑min
{

I
′

2−x−1,n2−n1

}

y=0





n2 − n1

y



 py(1 − p)n2−n1−y×

×









n1

x



 px(1 − p)n1−x



 if l = n2.

We need to consider this calculation depending on l being equal to one of the nj or not. For l = nj, j =

11



3, ..., k − 1, we have:

P(L = l|P = p) =

min
{

S
′

j−1−1,I
′

j−1
}

∑

xj−1=I
′

j−1

min
{

I
′

j−xj−1−1,nj−nj−1

}

∑

y=0

min
{

S
′

j−2−1,xj−1

}

∑

xj−2=I
′

j−2

· · ·

· · ·
min

{

S
′

1−1,x2

}

∑

x1=I
′

1





nj − nj−1

y



 ×

×





n1

x1



 py+xj−1(1 − p)nj−y−xj−1

j−1
∏

i=2





ni − ni−1

xi − xi−1



 +

+

min
{

S
′

j−1−1,I
′

j−1
}

∑

xj−1=I
′

j−1

min
{

S
′

j−2−1,xj−1

}

∑

xj−2=I
′

j−2

· · ·

· · ·
min

{

S
′

1−1,x2

}

∑

x1=I
′

1





nj − nj−1 − 1

nj − nj−1 − (S
′

j − xj−1)



 ×

×





n1

x1



 pl−S
′

j (1 − p)S
′

j

j−1
∏

i=2





ni − ni−1

xi − xi−1



 .

For nj−1 < l < nj , j = 3, ..., k:

P(L = l|P = p) =

min
{

S
′

j−1−1,I
′

j−1
}

∑

xj−1=I
′

j−1

min
{

S
′

j−2−1,xj−1

}

∑

xj−2=I
′

j−2

· · ·

· · ·
min

{

S
′

1−1,x2

}

∑

x1=I
′

1





nj − nj−1 − 1

nj − nj−1 − (S
′

j − xj−1)



 ×

×





n1

x1



 pl−S
′

j (1 − p)S
′

j

j−1
∏

i=2





ni − ni−1

xi − xi−1



 .

Finally, for l = nk:

P(L = l|P = p) =

min
{

S
′

j−1−1,I
′

j−1
}

∑

xj−1=I
′

j−1

min
{

I
′

j−xj−1−1,nj−nj−1

}

∑

y=0

min
{

S
′

j−2−1,xj−1

}

∑

xj−2=I
′

j−2

· · ·

· · ·
min

{

S
′

1−1,x2

}

∑

x1=I
′

1





nj − nj−1

y



 ×

×





n1

x1



 py+xj−1(1 − p)nj−y−xj−1

j−1
∏

i=2





ni − ni−1

xi − xi−1



 . (9)
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Using that p has a U(0, 1) distribution under the null hypothesis, we have

E (L|H0 is true) =

∫ 1

0

E(L|P = p)dp . (10)

To calculate E(L) under HA it is necessary to know the p-value distribution. However, a bound is easier

to calculate as

bE(L) = maxp∈(0,1) {E(L|P = p)} . (11)

bE(L) is a very conservative upper bound for E(L). However, as we will illustrate in Section 5, this bound is

useful to bound the expectation of L in values less than 65% of m.

4. A class of distributions for the p-value

Kim (2010) showed that, for p = α, the resampling risk is at least 0.5. Hence, it is not possible to bound

the resampling risk in relevant values if we allow all distributions of p-values. This is the reason to define a

class for the p-value distribution, taken as the set ℑ of all continuous probability distributions in (0, 1) with

differentiable densities that are non-increasing (that is, f ′
P (p) ≤ 0, for all p ∈ (0, 1), with f ′

P representing

the first derivative with respect to p of the p-value density function f .

From the p-value definition, its probability distribution function can be written in the following way:

P(P ≤ p) = 1 − FA

{

F−1
0 (1 − p)

}

(12)

where FA denotes the probability distribution function of the test statistic U under HA and F0 is the

distribution of U under H0.

Assuming the existence of densities functions fA(u) and f0(u) of U under HA and H0, respectively, the

p-value density can be written as:

fP (p) =
fA

{

F−1
0 (1 − p)

}

f0

{

F−1
0 (1 − p)

} . (13)

Hence, we can study the behavior of the p-value distribution by studying the behavior of the ratio between

fA(u) and f0(u).

In the majority of the real applications, the ratio (13) is non-increasing with p and this is the motivation

to restrict the analysis of the resampling risk to the set ℑ. Let ℑB be the class of p-value distributions

defined in Fay and Follmann (2002) with cumulative distribution Hα,1−β(p), as described in Section 2. Let

π be the power of the exact test. We will show now that, for π ≥ α, ℑ is more general than ℑB.

From the expression (3), the densities h(p) ∈ ℑB can be indexed by α and β and they are given by:

hα,1−β(p) = exp

{

−1

2

[

Φ−1(β) − Φ−1(1 − α)
] [

Φ−1(β) − Φ−1(1 − α) + 2Φ−1(1 − p)
]

}

(14)
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where Φ−1 is the inverse function of the standard normal cumulative distribution function Φ(·). The first

derivative of hα,1−β(p) with respect to p is equal to:

h′
α,1−β(p) =

[

Φ−1(β) − Φ−1(1 − α)
]

φ(Φ−1(1 − p))
hα,1−β(p) (15)

where φ(·) is the density function of the standard normal distribution. For 1−β ≥ α, we have h
′

α,1−β(p) ≤ 0

for all p ∈ (0, 1).

Consider the subset of densities ℑ∗
B = {fP (p) ∈ ℑB : 1 − β ≥ α}. That is, ℑ∗

B is a subset from ℑB formed

only by densities that implies an exact test power greater or equal to α. Therefore, ℑ∗
B ⊂ ℑ. Thus, at least

for useful test statistic (P(P ≤ p) ≥ α), the class ℑB is a particular case from ℑ.

The formulation of the class ℑB in Fay and Follmann (2002) was inspired on the behavior of the p-value

distribution for the cases where U0 ∼ N(0, 1) and UA ∼ N(µ, 1), with µ = Φ−1(1−α)−Φ−1(β), which results

in a distribution with shape Hα,1−β(p). Fay and Follmann (2002) have explained that this same distribution

can be derived from the cases where U0 ∼ χ2
1(0) and UA ∼ χ2

1(µ
2), where χ2

1(µ
2) is the random variable

with non-central Chi-square distribution with 1 degree of freedom and non-centrality parameter equal to µ2.

They argued that, for the cases in which U ∼ F1,d(µ
2) the p-value distribution converges in distribution to

Hα,1−β(p) when d → ∞, where F1,d(µ
2) is the random variable with F distribution with 1 and d degrees of

freedom and non-centrality parameter equal to µ2.

The class ℑB is smaller than ℑ and does not cover all cases of interest. For example, the spatial scan

statistic developed by Kulldorff (2001) to detect spatial clusters follows very closely a Gumbel distribution

under the null hypothesis and a chi-square distribution under HA (see Abrams et al. (2010)). Therefore,

even in interesting applied situations, there is not guarantee that fP (p) ∈ ℑB and a larger class such as our

ℑ may be useful.

It is worth mentioning that hα,1−β(p) is a convex function when 1 − β ≥ α and p ≤ 0.5. Indeed, the

second derivative of hα,1−β(p) with respect to p is given by:

h′′
α,1−β(p) =

[

Φ−1(β) − Φ−1(1 − α) − φ′(Φ−1(1 − p))
]

φ(Φ−1(1 − p))
h′

α,1−β(p) (16)

and we have that

φ′(Φ−1(1 − p)) =
Φ−1(1 − p)√

2πφ(Φ−1(1 − p))
exp

{

−1/2
[

Φ−1(1 − p)
]2

}

≥ 0

if p ≤ 0.5.

Cases where the real situation of the data presents a small distance from H0 are examples of applications

in that the density of the p-value could escape from ℑB. When the p-values tend to small values, in direction

to α, that is the situation where the p-value density is deforming, from an uniform density, to an asymmetric
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curve to the left hand, the convexity could not be verified for p ≤ 0.5. For example, suppose U0 ∼ χ2
1(0) e

UA ∼ χ2
1,01(0). The corresponding p-value density from this conjecture is not concave for p > 0.32.

The family ℑ for bounding the resampling risk is not restricted to families such as the normal, chi-square

or F distributions. It also contains p-value densities with mixed shapes, with concave and convex parts. As

an additional benefit, ℑ allows the bounding of the resampling risk in a very simple way.

In the next subsections, we analyze the power, the expected number of simulations and the resampling

risk of our generalized Monte Carlo test procedure when the p-value distribution belongs to the class ℑ.

It is important to remember that, when using the MCG, the class ℑ is not needed neither to calculate a

bound for the power loss with respect to the MCm or to the exact test nor to establish the bound for the

expected number of simulations under HA. Indeed, the results in the Sub-sections 3.1 and 3.2 are valid for

any test statistic. However, when the additional assumption that the p-value density fP (p) belongs to ℑ
holds, stronger results can be obtained.

4.1. Upper bound for the power difference between the exact test and MCG

The power of the generalized Monte Carlo test is given by integrating out the probability πG(p) of

rejecting the null hypothesis conditioned on the p-value p with respect to the p-value density:

πG =

∫ 1

0

πG(p)fP (p)dp .

The power difference between the exact test and MCG is given by:

δ∗G =

∫ 1

0

(

1(0,αmc](p) − πG(p)
)

fP (p)dp. (17)

An upper bound for δ∗I can be obtained if we use fP,w(p) = 1/αmc if p ∈ (0, αmc], and fP,w(p) = 0, otherwise:

δ∗G ≤ b∗I =

∫ 1

0

(

1(0,αmc](p) − πG(p)
)

fP,w(p)dp =

∫ αmc

0

1

αmc
dp −

∫ αmc

0

πG(p)
1

αmc
dp

= 1 − 1

αmc

∫ αmc

0

πG(p)dp. (18)

Because the function (5) is a sum of Beta(a, b) density kernels, the integral (18) can be rewritten as a

function of incomplete Beta(a, b) functions, all of them evaluated at p = αmc, with a and b depending only

of the parameters I, S e η. In the same way, an upper bound for the power difference between MCm and

MCG is given by:

b∗m,G =

∫ αmc

0

(πm(p) − πG(p))
1

αmc
dp. (19)

As before, (19) can also be expressed using incomplete beta functions.
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4.2. An upper bound for the expected number of simulations

For values of p near 0, the simulation time is around n1, the first checking point of the lower boundary. For

values of p near 1, the simulation time is around S
′

1, the smallest height of the upper boundary. Numerically,

we find that E(L|P = p) is maximized for p around αmc. Let

pmax = argmax
p

E(L|P = p)

and define fP,max(p) = 1/pmax, for p ∈ (0, pmax], and f̄P,max(p) = 0, otherwise. Thus, it follows that

E(L) =

∫ 1

0

E(L|P = p)f̄P (p)dp ≤
∫ 1

0

E(L|P = p)f̄P,max(p)dp =

∫ 1/pmax

0

E(L|P = p)
1

pmax
dp. (20)

The right hand side of the inequality (20) defines an upper bound b∗E(L) for E(L).

4.3. An upper bound for the resampling risk

Let RR be the resampling risk in a MC test defined as:

RR = Pmc(H0 is not rejected|P ≤ α)P(P ≤ α) + Pmc(H0 is rejected|P ≥ α)P(P ≥ α) (21)

where Pmc is the probability measure associated with the events generated by MC simulations. For the

MCG test, denote its resampling risk by RRG, which is computed as:

RRG =

∫ α

0

[1 − πG(p)] fP (p)dp +

∫ 1

α

πG(p)fP (p)dp. (22)

As πG(p) is a decreasing function, the function
[

1p∈(0,α](p) − πG(p)
]

is maximum at p = α. Thus, RRG

is maximum when fP (p) puts the largest possible mass at α, which is the worst case fP,w(p). Substituting

fP (p) in (22) by fP,w(p) and setting α = αmc, we have :

RRG ≤ 1 − 1

αmc

∫ αmc

0

πG(p)dp. (23)

Therefore, an upper bound for RRG is equal to the upper bound (18) for the power loss with respect to the

exact test. That is, b∗RRG
= b∗G.

The expression (22) can be rewritten in a way that emphasizes another property. The situation where

π ≥ πG is that where the control of RRG is important. If π ≥ πG, then RRG ≥ δI , where δI is the power

difference between the exact test and MCG. Therefore, equal power of the exact test and the MCG test

does not imply a null resampling risk. To see this:

RRG =

∫ αmc

0

fP (p)dp −
∫ αmc

0

πG(p)fP (p)dp +

∫ 1

αmc

πG(p)fP (p)dp

= π − πG + 2

∫ 1

αmc

πG(p)fP (p)dp = δI + 2

∫ 1

αmc

πG(p)fP (p)dp. (24)
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5. Choosing Parameters to Operate MCG

This section aims to provide the reader with a useful set of choices for the parameters I, S and η to run

the MCG test. The choices we suggest produce a MCG test with power equal to a MCm test for any test

statistic with small expected number of simulations.

Optimizing E(L) analytically is undoubtedly a complex task. In contrast, a numeric approach is feasible

and simple to operate, and this is the approach adopted here. Define the class M , the set of MCG procedures

that, under H0, leads to the same decision about rejecting H0 than the MCm. Conditioned on this class

M , the three next steps were developed to estimate the parameters of the MCG with minimum E(L). Let

MCIop
be such scheme with minimum E(L).

1. This step is intended to emulate the Xt path under H0. Generate N observations from an U(0, 1)

distribution, and label them as pi, i = 1, ..., N . For each pi, generate m values xij , with j = 1, . . . , m

following a Bernoulli distribution with success probability pi. Define the partial sum processes

Si =

{

Sit, such that Sit =

t
∑

l=1

xil, t = 1, ..., m

}

.

2. We build envelopes for the path Xt based on the simulated ones. For that, select those Si se-

quences leading to the rejection of H0 by MCm. That is, to be selected the sequence Si must satisfy

maxt {Sit} < mαmc. Suppose there are s of those sequences and they form the set R. If N is large, we

expect s/N ≈ αmc. Define the sequence Ŝt = {maxi {Sit} + 1, i ∈ R}. The curve Ŝt is an estimator

for the upper boundary of MCGop
.

Next, take the r sequences Si such that maxt {Sit} ≥ mαmc and collect them in the set A. These are

the sequences S′
is that do not reject H0. Define the sequence Ît = {mini {Sit} , i ∈ A}. The curve Ît is

the estimator for the lower boundary of MCGop
.

3. Take the set η̂S containing the jumping moments of Ŝ. η̂S is an estimator for ηS associated to MCGop
.

Take also the set η̂I formed by the jumping moments of Î. η̂I is an estimator of ηI associated to

MCGop
. Formally:

η̂I =
{

n̂I
t = n̂I

t−1 if
⌈

Ît

⌉

=
⌈

Ît−1

⌉

, or n̂I
t = t if

⌈

Ît

⌉

>
⌈

Ît−1

⌉}

(25)

with, t = 2, ...., m and n̂I
1 = min

{

l : Îl > 0
}

, l = 1, ..., m. Also,

η̂S =
{

n̂S
t = n̂S

t−1 if
⌊

Ŝt ⌋ =
⌊

Ŝt−1 ⌋ , or n̂S
t = t if

⌊

Ŝt ⌋ >
⌊

Ŝt−1 ⌋ (26)

with, t = 2, ...., m and n̂S
1 = min

{

Ŝt

}

. The estimation procedure ends here.

As an heuristic argument to show that these boundaries estimated using this algorithm are indeed esti-

mates of the MCGop
boundaries, consider that, for N sufficiently large, Ŝt and Ît are constructed to ensure
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Figure 3: Scheme E1 from Table 5 versus estimates for I and S considering m = 1000, N = 100000 and αmc = 0.05

that, under H0, the decision of the MCG will be always the same as that reached with MCm. In addition,

if fP (p) ∈ ℑ, we have

P(Xt reach I before reach S |H0) ≤ P(Xt reach I before reach S |HA) ,

and then the power of these estimated boundaries is, at least, equal to that from MCm. Concerning the

expected number of simulations, E(L) decreases by increasing the I elements and by decreasing the S

elements. The construction of Ŝt and Ît follows this logic. The reasoning is to scan each t taking the

maximum value for I which does not restrict the Xt trajectories which would not reject H0 by using MCm.

Simultaneously, it takes the minimum value for S which does not restrict the Xt trajectories which would

reject H0 by using MCm.

The resulting estimators of ηI and ηS are quite sparse using this algorithm, while they could be com-

putationally costly if calculated by means of the expressions developed in Section 3. An alternative and

satisfactory way to construct ηI and ηS is based on the identification of the moments with high incidence

of impact of Xt with the estimated boundaries. For that, let n∗
q = min

{

t ∈ [1, ..., m], t : Sit ≤ Î , i ∈ R
}

be

an element of the sequence formed by the impact moments of each sequence Sit with Î (considering only

those sequences i ∈ R). The most frequent impact moments of these sequences Sit with Î are appropriate

candidates for composing ηI . Apply the same reasoning for constructing ηS , and denote the correspondent

sequence by n∗
r . Thus, as an alternative way to construct ηI and ηS , by arbitrary and conveniently low values

k1 and k2, choose the most frequent elements in n∗
q and n∗

r to compose ηI and ηS , respectively. Extensive

simulated examples indicate that, for k1 = k2 ≥ 5, the exact computation of power loss and expected number
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of simulations have a small computational cost, and the results are close to that using η̂I and η̂S .

Figure 3 shows the estimates Î and Ŝ obtained according to the steps 1, 2, and 3, of our algorithm,

using N = 100000, m = 1000 and αmc = 0.05. The estimated boundaries are not parallel, but they are

characterized by a funnel in the extremities. This behavior was verified in all of the simulations performed by

us. For these specific estimates, if we take η = ηS = ηI , we obtain the times η̂ = {99, 339, 539, 699, 839, 999}.
From the estimates plotted in Figure 3, we obtain Î = {2, 12, 22, 30, 40, 49}, and Ŝ = {10, 23, 32, 38, 45, 50}.
This specific scheme for our generalized sequential MC test is available in Table 5 and it is labeled as E1.

As we can see in the Table 2, column bm,I , this scheme is efficient, presenting practically the same power

than MCm for m = 1000, with size equal to 0.049864. From Table 3, columns E(L|H0) and bE(L), we see

that this scheme have a small expected number of simulations, equal to 58.606 under H0, and with an upper

bound under HA for any statistic, that is approximately 65% of the maximum 999. By using the class ℑB

and the larger class ℑ for the p-value distribution, the bounds are expressively low, equal to 172.612 and

246.354, respectively. We consider that this scheme is a good option to replace MCm. We must enphasize

that, although the boundaries presented in Table 5 were guided by the algorithm above, all results in tables

2 and 3 are exact, because they were obtained by applying the expressions from Sections 3 and 4. Such

algorithm is useful to construct preliminary choices of boundaries. The validation of an arbitrary design to

practical use must be based on such exact calculations.

We provide other interesting schemes in Table 5. For each scheme, Table 2 offers the type I error

probability, the upper bound for the power loss comparatively to MCm and to the exact test, and the upper

bound for the resampling risk. Table 3 gives the expected number of simulations under H0 and the upper

bounds under HA. We adopt bm,G to denote the general upper bound for the power loss comparatively

to MCm, b∗G and b∗RRG
, the upper bounds for the power loss, with respect to the exact test, and for the

resampling risk, respectively, where the super index ∗ indicates that the calculations are restricted to the

p-value distribution on the class ℑ. The same symbol was used to indicate the use of this class for the bounds

in Table 3. Upper bounds using the class ℑB are also available in Tables 2 and 3, and they are indicated by

a tilde accent. Concerning the use of ℑB, the numerical explorations of Fay and Follmann (2002) were not

used here to define the worst case of a p-value distribution with shape Hα;1−β(p). As discussed in Section

4.3, hα,1−β(p) (for 1 − β ≥ α) and πG are decreasing with p. Therefore, the worst case within the class ℑB,

in the sense of bounding RRI , occurs at the point of maximum of the function Hα;1−β(α) with respect to

β. For 1 − β ≥ α, the point of maximum in β for the function Hα;1−β(α) is 0.5. Then, the analytical worst

case is given by Hα;0.5(α). We used this result to compute b̃I , b̃RRG
and b̃E(L) here.
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6. MCG versus MCB

In this Section we offer a comparison between the MCB and MCG sequential test procedures. We use an

example of the MCB test given by Kim (2010). In this comparison, we focus on resampling risk bound and

on the expected number of simulations. We assume that the p-value distribution fP (p) belongs to the class

ℑB. We did not consider other important characteristics of a test, such as the power loss with respect to the

exact test and expected number of simulations for an arbitrary fP (p), because they were not treated by Kim

(2010). We built our MCG boundaries using the algorithm from Section 5. After securing an upper bound

for the resampling risk to MCG equal to that presented by the MCB scheme developed in Kim (2010), we

compared the average simulation time of the two procedures.

An obvious fact is that the B boundaries are particular cases of I and S, because MCG was designed to

be a generalized sequential with two stopping boundaries. We can rewrite the B boundaries using the MCG

notation, based on the sets I, S, ηI and ηS . In this way, for an MCB test, the user can apply the general

expressions for the power and the expected number of simulations developed in Section 3.

Define:

T ∗
1 =

{

t > 2 :
⌈

BInf(t − 1)
⌉

<
⌈

BInf(t)
⌉}

and

T ∗
2 =

{

t > 2 :
⌊

BSup(t − 1)
⌋

<
⌊

BSup(t)
⌋}

.

Let t∗11 < t∗12 < ... < t∗1k1
be the ordered elements of T ∗

1 , and t∗21 < t∗22 < ... < t∗2k2
be the ordered elements

of T ∗
2 . Rewritten in terms of I and S, the B boundaries are denoted by I∗, S∗, ηI∗ and ηS∗, and they are

built as follows:

I∗ =
{

⌈BInf (t∗11)⌉ , ⌈BInf (t∗12)⌉ , ...,
⌈

BInf (t∗1k1
)
⌉}

S∗ =
{

⌊BInf (t∗21)⌋ , ⌊BInf (t∗22)⌋ , ...,
⌊

BInf (t∗2k2
)
⌋}

ηI∗ =
{

t∗11, t
∗
12, ..., t

∗
1k1

}

ηS∗ =
{

t∗21, t
∗
22, ..., t

∗
2k2

}

.

It should be noted that some important shapes for I and S, as the funnel behavior estimated in Section

5, can not be represented by the MCB boundaries.

Table 4 shows the upper bounds for the resampling risk and for the expected number of simulations

presented in Kim (2010) for n = 600, α = 0.05 and c1 = −c2 = 1.282, as well the bounds associated to MCG
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Figure 4: Boundaries for MCG and MCB sequential test procedures.

using the scheme E12 detailed in Table 5. Concerning the worst case of distribution within the class ℑB,

Kim (2010) adopted the numerical studies from Fay and Follmann (2002) and she found F̃ ∗ = H0.05;0.47(p)

for α = 0.05, with approximation H̃0.05;0.47(p) := Beta(0.389; 2.523).

These bounds are also computed here for the sequential procedure proposed by Besag and Clifford (1991),

which will be denoted by MCh. This MCh procedure is a very simple way to perform sequential tests, because

it is based just in an upper boundary fixed in a value denoted by h and truncated in a maximum number

of simulations n. Silva et al. (2009) had showed that MCh has the same power than MCm if h = αmcm

and its power is constant for n ≥ h/αmc + 1, noting that the combination of this two last rules implies that

MCm must be replaced by MCh, because they have the same power for a maximum number of simulations

practically equal (that is, for n = m + 1).

Under either hypothesis, MCG is substantially faster than the MCB procedure with their expected time

ratio being around 60%. This illustrates the gain provided by our MCG algorithm. The estimated boundaries

for m = 600 and αmc = 0.05 for the MCG procedure are available in Figure 4, where we can also see the B

boundaries and the boundaries I and S (built according to the scheme E12). It is clear the greater flexibility
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given by the MCG boundaries. While the B boundaries are parallel almost up to the end of the experiment,

the I and S boundaries are tapered when t gets close to the maximum number of simulations. This can

be intuitively thought as if the boundaries were using the information that Xt not touching the boundaries

after a long time was inducing a narrower vigilance.

7. Discussion

The generalized sequential Monte Carlo test has properties that recommend it in substitution to the

conventional Monte Carlo test for any test statistic. In this paper, we gave simple expressions for the

calculation of the test size, the expected number of simulations under the null hypothesis, and upper bounds

for the expected number of simulations under the alternative hypothesis and for the power loss with respect

to the fixed length conventional Monte Carlo test.

Exact calculations for some specific design indicates that our generalized sequential test has a substantially

smaller execution time than other sequential methods proposed in the literature. Under a wide class of

distributions for the p-value statistic, the bounds for the execution time under the alternative hypothesis

is even more substantial. Under this class, the generalized sequential test has power virtually identical to

the exact test, even for such intermediate maximum number of simulations as 4999. The use of this class

allows the construction of optimal boundaries from a simple algorithm and they have a surprising funnel-type

shape. These optimal boundaries, or any other generalized design, for any test statistic, can be evaluated

by calculating the size, expected number of simulations under H0, upper bound for the power loss and for

the expected number of simulations under HA, by using the expressions developed in section 3.
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t BSup BInf t BSup BInf
...

...
...

...
...

...

134 13.54 0.00 157 14.69 1.01

135 13.59 0.00 158 14.74 1.06

136 13.64 0.00 159 14.79 1.11

137 13.69 0.01 160 14.84 1.16

138 13.74 0.06 161 14.89 1.21

139 13.79 0.11 162 14.94 1.26

140 13.84 0.16 163 14.99 1.31

141 13.89 0.21 164 15.04 1.36

142 13.94 0.26 165 15.09 1.41

143 13.99 0.31 166 15.14 1.46

144 14.04 0.36 167 15.19 1.51

145 14.09 0.41 168 15.24 1.56

146 14.14 0.46 169 15.29 1.61

147 14.19 0.51 170 15.34 1.66

148 14.24 0.56 171 15.39 1.71

149 14.29 0.61 172 15.44 1.76

150 14.34 0.66 173 15.49 1.81

151 14.39 0.71 174 15.54 1.86

152 14.44 0.76 175 15.59 1.91

153 14.49 0.81 176 15.64 1.96

154 14.54 0.86 177 15.69 2.01

155 14.59 0.91 178 15.74 2.06

156 14.64 0.96 179 15.79 2.11
...

...
...

...
...

...

Table 1: Boundary values BSup(t) and BInf (t) for 134 ≤ t ≤ 179.
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α nk Scheme P(erro tipo I) bm,I b̃I b∗I = b∗RRG
b̃RRG

E1 0.049864 0.031032 0.000000 0.060000 0.023000

E2 0.049681 0.031748 0.000000 0.060895 0.023337

0.05 999 E3 0.049920 0.027828 0.000000 0.060118 0.022348

E4 0.049982 0.024751 0.000000 0.053977 0.022826

E5 0.049998 0.020890 0.000218 0.058518 0.021326

0.01 999 E6 0.009999 0.030136 0.002921 0.136997 0.028048

E7 0.009993 0.000000 0.003344 0.140063 0.028443

0.05 4999 E8 0.050401 0.000000 0.014908 0.021841 0.016746

0,01 E9 0.010003 0.027643 0.000577 0.061952 0.012354

0.05 9999 E10 0.050036 0.008435 0.000000 0.017947 0.001838

0.01 E11 0.009992 0.023415 0.000106 0.043559 0.008821

Table 2: Effective test size, upper bound for the power loss, and for the resampling risk associated to the schemes in the Table

5.

α nk Scheme E(L|H0) bE(L) b̃E(L) b∗E(L)

E1 58.606 644.654 172.612 246.354

E2 96.739 807.572 235.119 402.704

0.05 999 E3 113.597 792.104 264.587 407.943

E4 108.472 670.761 276.496 396.895

E5 128.276 698.242 335.969 474.473

0.01 999 E6 42.717 677.409 225.362 550.574

E7 41.728 625.841 225.334 523.601

0.05 4999 E8 384.591 4283.575 1016.884 1716.704

0.01 E9 121.992 3580.891 1816.592 687.744

0.05 9999 E10 731.131 9477.250 1951.502 3502.344

0.01 E11 190.355 8706.908 1182.462 3968.661

Table 3: Expected Number of Simulations for Schemes from Table 5.
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MCG MCB with n = 600 IPO with n = 576 MCh with h = 30 and m = 600

E12 c1 = −c2 = 1.282

P(erro tipo I) 0.050000 0.050000 0.050000 0.050000

b̃ 0.001888 ≤ 0.025000 ≤ 0.025000 0.001888

b̃RR 0.024562 0.025000 0.025000 0.024562

E(L|H0) 33.720 51.169 62.850 119.351

b̃E(L) 91.877 163.118 213.508 390.507

Table 4: Upper bounds for the resampling risk and expected number of simulations for comparison among MCG using E12,

MCB , with n = 600, α = 0.05 and c1 = −c2 = 1.282, and IPO.

25



I = {2, 12, 22, 30, 40, 49}
E1 S = {10, 23, 32, 38, 45, 50}

η = {99, 339, 539, 699, 839, 999}
I = {2, 12, 20, 35, 49}

E2 S = {19, 30, 37, 45, 49}
η = {99, 379, 539, 779, 999}

I = {7, 16, 24, 35, 49}
E3 S = {28, 35, 41, 49, 49}

η = {199, 499, 699, 899, 999}
I = {13, 22, 30, 35, 49}

E4 S = {28, 35, 42, 45, 49}
η = {299, 559, 719, 799, 999}

I = {17, 26, 35, 42, 49}
E5 S = {34, 39, 43, 46, 49}

η = {399, 639, 799, 899, 999}
I = {1, 5, 7, 8, 9}

E6 S = {8, 9, 9, 9, 9}
η = {299, 599, 799, 899, 999}

I = {2, 5, 7, 8, 9}
E7 S = {8, 8, 8, 9, 9}

η = {399, 599, 769, 899, 999}
I = {27, 100, 199, 249}

E8 S = {80, 150, 219, 249}
η = {799, 2499, 3999, 4999}

I = {5, 20, 35, 49}
E9 S = {20, 31, 43, 49}

η = {799, 2499, 3999, 4999}
I = {17, 79, 499}

E10 S = {79, 249, 499}
η = {499, 2999, 9999}

I = {79, 199, 499}
E11 S = {199, 499, 499}

η = {2399, 4999, 9999}
I = {0, 1, 2, 3, 9, 15, 20, 24, 27, 29}

E12 S = {5, 7, 9, 13, 17, 23, 26, 29, 29, 30}
η = {20, 50, 79, 119, 239, 359, 459, 539, 569, 600}

Table 5: Appropriate Schemes for Replacing MCm by MCG.

26



References

Abrams, A., Kleinman, K., Kulldorff, M., 2010. Gumbel based p-value approximations for spatial scan

statistics. International Journal of Health Geographics 9 (61).

Besag, J., Clifford, P., 1991. Sequential monte carlo p-value. Biometrika 78, 301–304.

Fay, M., Follmann, D., 2002. Designing monte carlo implementations of permutation or bootstrap hypothesis

tests. The American Statistician 56 (1), 63–70.

Fay, M., Kim, H.-J., Hachey, M., 2007. On using truncated sequential probability ratio test boundaries for

monte carlo implementation of hypothesis tests. Journal of Computational and Graphical Statistics 16,

946–967.

Gandy, A., 2009. Sequential implementation of monte carlo tests with uniformly bounded resampling risk.

Journal of the American Statistical Association 104 (488), 1504–1511.

Kim, H.-J., 2010. Bounding the resampling risk for sequential monte carlo implementation of hypothesis

tests. Journal of Statistical Planning and Inference 140, 1834–1843.

Kulldorff, M., 2001. Prospective time periodic geographical disease surveillance using a scan statistic. Journal

of Royal Statistical Society 164A, 61–72.

Lan, K., Wittes, J., 1988. The b-value: a tool for monitoring data. Biometrics 44, 579–585.

Silva, I., Assunção, R., 2011. Monte carlo test under general conditions: Power and number of simulations.

Paper submitted to Journal of Statistical Planning and Inference.

Silva, I., Assunção, R., Costa, M., 2009. Power of the sequential monte carlo test. Sequential Analysis 28 (2),

163–174.

Acknowledgements

We are grateful to Martin Kulldorff for very useful comments and suggestions in the manuscript.

27


