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Abstract
A detecção de anomalias é usualmente utilizada em análise de fraudes. Entretanto, re-
strições de orçamento podem tornar o processo impraticável quando um número grande
anomalias é identificada. O presente trabalho propõe um método para selecionar casos
probabilisticamente baseado no seus impactos, mas garantindo que a discrepância relativa
entre os valores observados e os valores esperados seja levada em consideração. Ele usa
uma modificação do False Discovery Rate step-up procedure para melhorar a precisão
e garantir a escalabilidade. Aplica-se então o método proposto à um projeto destinado
a monitorar o sistema de pagamentos do serviço de saúde público brasileiro a fim de
encontrar comportamentos fraudulentos.

Palavras-chaves: Detecção de anomalias, Detecção de fraudes, Mineração de Dados,
Aprendizado de Máquina, Classificação.



Abstract
Anomaly detection is commonly used in fraud analysis. However, budget constraints can
turn the audit process infeasible when a sizable number of anomalies are identified. We
propose a method to select cases probabilistically based on their impact, but guaranteeing
that the relative discrepancy between the observed values and the expected behavior is also
taken into account. It uses a modification of the False Discovery Rate step-up Benjamini
Hochberg procedure to improve accuracy and insure scalability. We apply the proposed
method to a project designed to monitor the Brazilian public health care payment system
in search for fraudulent behavior.

Key-words: Anomaly Detection, Fraud Detection, Data Mining, Machine Learning,
Classification.



Extended Abstract
Uma das principais aplicações das técnicas de mineração de dados é a detecção de

fraudes e abusos. Existem diversos exemplos bem sucedidos do uso de tal técnica em
instituições bancárias e de crediário, seguradoras, empresas de comunicação e de serviços
de saúde. Recentemente técnicas estatísticas e de mineração de dados começaram a ser
utilizadas para detectar casos suspeitos. Essas técnicas calculam um escore para cada caso
dependendo dos aspectos que indicam um comportamento fraudulento, sendo que os casos
que possuem um escore alto são classificados como suspeitos.

A auditoria não é somente uma ferramenta para encontrar e punir contraventores, mas
ela também possui efeitos indiretos. Ela pode persuadir indivíduos a obedecer às regras
se eles souberam que existe uma probabilidade positiva de serem auditados. Esse efeito
preventivo é indireto, mas extremamente importante de qualquer forma. Fazer com que
a probabilidade de ser auditado seja positiva é a razão pela qual os auditores sempre
amostram pequenas empresas e indivíduos de baixa renda ao invés de se concentrar nos
grandes pagadores.

No presente estudo, foi adaptado uma proposta inicial por Assunção e Pinheiro
(1988) para amostrar unidades, desenvolvendo assim um método para detectar anomalias
relacionadas à atividades fraudulentas sob a restrição de custos. A solução ingênua para
esse problema seria focar nas possíveis fraudes de maior impacto financeiro. Essa solução,
todavia, pode criar uma sensação de impunidade entre os menores fraudadores. Desenvolve-
se assim um método que envolve todas as unidades sob avaliação, mas direciona de forma
prioritária os recursos para as maiores entre elas. Isto é feito de tal forma que o número total
de unidades avaliadas é limitado pelo total de recursos disponíveis para a auditoria. É criada
assim uma curva de rejeição que classifica as unidades anômalas de forma probabilística,
atribuindo assim uma probabilidade maior de classificação para aquelas unidades que
possuem um tamanho maior. Utiliza-se em seguida um método completamente novo de
classificação baseado na modificação do False Discovery Rate step-up procedure que não
somente melhora a precisão mas também assegura a escalabilidade necessária para se
avaliar um grande número de unidades.

A motivação por trás do presente estudo vem de um sistema de detecção de fraudes
no pagamentos do serviço de saúde público brasileiro chamado InfoSAS. Tal sistema foi
criado para identificar anomalias que poderiam ser fraudes ao erário. Ele processa todos
os pagamentos feitos pelo Sistema Único de Saúde (SUS) para os mais de duzentos mil
estabelecimentos provedores de serviços de saúde. A metodologia foi aplicada à um dos
inúmeros procedimentos realizados pelos estabelecimento e assim pode-se verificar sua
eficácia em classificar um determinado número de estabelecimentos como anômalos. Os
resultados estão de acordo com o esperado, demonstrando assim a viabilidade do uso desse
novo método para a classificação quando diante de limitações de recursos.
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1 Introduction

One of the main applications of data mining anomaly detection techniques is
fraud and abuse identification. There are many documented successful examples of such
techniques use in banking and credit card institutions (SUDJIANTO et al., 2010; CHAUD-
HARY; YADAV; MALLICK, 2012; CHAN et al., 1999; NGAI et al., 2011), insurance
companies (VIAENE et al., 2002; TENNYSON; SALSAS-FORN, 2002), telecommunica-
tions (BECKER; VOLINSKY; WILKS, 2010; HILAS, 2009; ESTÉVEZ; HELD; PEREZ,
2006), and health care claim payments (BERWICK; HACKBARTH, 2012; WAN; SHASKY,
2012; LIOU; TANG; CHEN, 2008; ORTEGA; FIGUEROA; RUZ, 2006). Systems for pro-
cessing data in these domains have been implemented and allow for automatic case selection
for auditing. Recently, data mining and statistical techniques started to be used as tools
to detect suspect cases (BOTS; LOHMAN, 2003; BHOWMIK, 2011). The data mining
techniques calculate a score for each case depending on specific aspects that indicate a
fraudulent behavior. Those cases with high scores are deemed suspicious. Audit is not
only the tool to find and punish those committing frauds but it also has indirect effects. It
can persuade individuals to comply with the rules if they know that there is a non-null
probability of being audited. This preventive and deterrent effect is an indirect one, but
extremely important nonetheless. Making this audit probability non-null for everyone
is the reason why tax auditors always sample small business and taxpayers rather than
concentrating only on the large ones (CLEARY; TAX, 2011).

The domain we are mainly interested is the detection of health care payment
frauds. The health care economic sector is an attractive fraud target due to its large size
and the volume of money involved. The National Health Care Anti-Fraud Association
estimates that over $60 billion is lost to health care fraud in United States each year
(see <www.nhcaa.org>). In this sector, after a preliminary spotting of suspicious cases, a
time-consuming and expensive human audit process is needed to ascertain the validity of
the evidence found, as well as posterior in-field to obtain confirmatory fraud demonstration
(CHALKLEY; MALCOMSON, 2000; FU et al., 2004). Therefore, a false positive has a
very high cost for the system: the in-field auditing of a false positive plus the opportunity
cost of not visiting a truly positive case instead. In the case of health care payments
frauds, the institutions face limited human resources to carry out the time-consuming and
expensive auditing. At the same time, the relatively large number of high score suspicious
cases (see section 3) represent far more than the resources allow to audit. This resource
constraint problem creates a need for a systematic approach to identify which cases to
audit.

In the present study, we adapt an initial proposal by (ASSUNçãO; PINHEIRO,

www.nhcaa.org
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1988) for sampling units to develop a method to detect outliers related to fraudulent
activities under a cost constraint. The naive solution would be to focus on the frauds
that could have the largest financial impact. This solution has the unintended result of
creating a sense of impunity among the smaller perpetrators. We designed a method that
covers all units under scrutiny while directing more resources to the largest ones. This is
done in such a way that the total number of cases to audit is constrained within an upper
bound determined by the scarce resources available. It also introduces a completely new
approach based on a modification of the False Discovery Rate (BENJAMINI, 2010) step-up
Benjamini Hochberg (HB) procedure that not only improves the accuracy of the previous
proposal, but it further insures the scalability necessary to evaluate a large number of
establishments and medical procedures simultaneously.

The motivation behind the current study comes from a fraud detection system for
health care services payments called InfoSAS. It is a system designed to detected anomalies
that could possibility be frauds to the government. It processes all payments carried out by
the public health system in Brazil to the more than 200 thousand health service providers.
Presently, in each year, these services comprise more than 3.5 billion ambulatory and
11 million hospitalization procedures, classified in more than 5000 different types. It is
currently one the largest data mining systems in Brazil and it identifies anomalous medical
providers that should be visited in-field. We show how we combine the anomaly scores
and achieve a balance between value involved and the need to not focus exclusively on
large providers.
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2 Methodology

Usually, anomaly scores are based on ratios between an observed value and a
prescriptive or expected behavior under normal conditions, allowing for natural variation.
Hence, the score can evaluate the relative amount of upper airway and neck surgeries in
a given municipality administered by a single health service provider, and then it can
be compared with the amount one expect based on the municipality population size and
composition. This ratio misses the values involved in the case of equivalent fractions as,
for example, when we have 110/100 = 110000/100000. Therefore, besides the ratio itself,
one must also take into account the values involved. However, if we focus on the difference
we can miss gross relative discrepancies, stimulating the occurrence of frauds among small
size establishments. We describe next a principled way to take both aspects into account.

The method can be summarized as follows. Let Y be a variable obtained as a
ratio between observed and expected quantities. Therefore, Y is a measure of relative
discrepancy. The larger the value of Y , the more evidence we have for its anomalous
behavior. Let S be a size variable correlated with Y and α be the general proportion of
cases that can be audited, a value determined by the available resources. Let PY (S) be the
conditional probability of finding an anomalous case given that the size is S. We determine
a function CY (S), called rejection curve, giving a Y -threshold for each size S. This curve
is computed to satisfy two conditions: the global probability of some case being anomalous
is α; given its size S, a case will be anomalous with the desired probability PY (S).

As a second step we use a modified version of the False Discovery Rate (FDR)
procedure to improve the accuracy of the classification and insure its scalability. Let m be
the number of hypotheses tests being performed and m0 the number of true null hypotheses
among them. In this case, one hypotheses test is done for each observation, i.e. for each of
the medical procedure performed by each establishment. The null hypotheses represents
that the establishment has a normal score compared to its peers, whereas the alternative
hypotheses classifies it as anomalous. After the rejection curve has been determined, we use
it to calculate a p-value for each observation under analysis. Then we use the BH step-up
procedure to classify them and control for the false positive results among all rejected null
hypotheses. We adapted the method initially proposed by (BENJAMINI; HOCHBERG,
2000) and further extended by (STOREY; TAYLOR; SIEGMUND, 2004) (BENJAMINI;
KRIEGER; YEKUTIELI, 2006) to restrict to α the proportion of observations classified
as anomalous. The adaptive procedure in its standard format requires us to estimate m0,
but instead of doing so we use (1− α) ∗m as its value, since we already know the number
of observations that we want to classify as abnormal.
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2.1 Determining the Theoretical Rejection Curve
There is a duality between CY (S) and PY (S) in the sense that, once the distributions

of Y and S are known, one of the functions can be obtained from the other. In the
present approach, we determine the function PY (S) from a probability model and a set of
constraints. After that, the CY (S) curve is determined.

We impose a monotonicity constrain: PY (S) increases with S in order to direct the
resources to the larger units, with potentially greater financial consequences. Besides that,
two other restrictions are applied to the function:

0 ≤ PY (S) ≤ 1 ,

as it must if it is a probability, and the expected value of this random probability must
satisfy

E(PY (S)) = α (2.1)

It is important to notice that PY (S) will be greater than α for large sized establishments
and smaller that α for the small ones, reaching the overall unconditional level α.

Taking these restrictions into consideration, the following model was chosen due to
its simplicity for the conditional probability function:

PY (S) = AeBS + C (2.2)

where A, B and C are constants to be determined. Due to the previous constraints the
following inequalities must be satisfied:

A,B < 0

1 > C > 0

|A| < C

We select two size values s0 < s1 and apportion the percentage α of items that can
be audited:

PY (s0) = AeBs0 + C = δ0α (2.3)

PY (s1) = AeBs1 + C = δ1α (2.4)

where δ0 and δ1 are between 0 and 1. Substituting the chosen function (2.2) in (2.1) we
obtain:

E(PY (S)) = AψS(B) + C = α (2.5)

where ψS(B) = E(eBS) is the moment generating function of S evaluated at B.
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The system of equations has a trivial solution when we set δ0 = δ1 = 1 which is
given by B = 0 and A+ C = α. This solution means that the rejection curve assumes a
constant value which is equal to the 1− α percentile of the Y distribution. To ensure that
the PY (S) is strictly increasing in S we impose the restrictions δ0 6= δ1 and B < 0.

The equations (2.3), (2.4) and (2.5) can be rewritten as follows:

A = (δ1 − δ0)α
eBs1 − eBs0

C = [δ1 −
(δ1 − δ0)eBs1

eBs1 − eBs0
]α

ψS(B)− eBs1

eBs1 − eBs0
= 1− δ1

δ1 − δ0

The last three equations can be simplified if we consider δ1 = 1 implying that the probability
of the analyzed variable being classified as an anomaly is α when its corresponding size is
s1. Thus, the equations become:

A = (1− δ0)α
eBs1 − eBs0

(2.6)

C = (δ0e
Bs1 − eBs0)α
eBs1 − eBs0

(2.7)

ψS(B) = eBs1 (2.8)

Once we have obtained A,B, and C, we can determine the rejection curve CY (S).

The rejection curve determination is based on the idea that values of the variable
Y that are greater than a threshold should be classified as outliers. This threshold is given
by the rejection curve and thus it translates into the following:

PY (S) = P (Y > CY (S)|S) = 1− FY (CY (S)|S) (2.9)

where FY (CY (S)|S) is the cumulative distribution function of Y conditioned on S. If we
assume that the variable Y and the size variable S are independent (2.9) becomes

PY (S) = 1− FY (CY (S)) (2.10)

where FY (.) is the cumulative distribution function of Y . Hence,

CY (S) = F−1
Y (1− PY (T )) (2.11)

and the threshold is given by the 1− PY (S) quantile of the Y distribution.

2.2 Estimation Procedure
The Y and S distributions are unknown, and thus we use estimation procedures to

determine the rejection curve. The S distribution is used to determine PY (S) through its
constants A,B and C and the Y distribution is used to determine CY (S). Equation (2.8)
provides an estimate for B. Two different procedures are used to solve this equation, a
parametric and a nonparametric.
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2.2.1 Nonparametric Estimation

The nonparametric procedure uses the well known result that the moment generat-
ing function uniquely determines the probability distribution of a random variable (see
(BILLINGSLEY, 1995, p. 342–345)). No assumption is made about the distribution of
the size variable S except that it has all its moments E(Sk) <∞ and hence its moment
generating function ψS(t) is well defined. This is an easily satisfied requirement in virtually
all practical cases. So, for large enough moment order p, we have:

ψS(B) ≈ 1 +
p∑
i=1

m(i)Bi

i!

where m(i) represents the i moment of the variable S. Replacing the parameters m(i) with
the sampled ones, the estimation of B is given by the solution of the following equation:

1 +
p∑
i=1

m̂(i)Bi

i! = eBs1 (2.12)

The value of p is determined simultaneously with B. First, an initial value p0 is
used to compute the first estimate B0 of B. Second, a new value p1 = p0 + 1 is chosen
with its estimate B1. This procedure is carried out until convergence of B is reached. The
number of iterations is used as the value of p.

2.2.2 Parametric Estimation

In this case the size variable S is assumed to have a distribution Pθ̂ with θ̂ parameters.
After the parameters are estimated we can then proceed to the estimation of B from the
following equation:

ψS,θ̂(B) = eBs1

For example, if we assume that S ∼ N(µ, σ2) and represent the parameters estimates by
µ̂ and σ̂2, we can obtain B̂ as the solution of the following equation:

eµ̂B+ σ̂2B2
2 = eBs1

which is:
B̂ = 2(s1 − µ̂)

σ̂2

Sometimes it will not be possible to determine a closed-form solution to (8) and
numeric methods need to be used to find a solution. As an example, if S ∼ Γ(α, β), and α̂
and β̂ are the associated estimators, equation (8) turns out to be:

( β̂

β̂ −B
)α̂ = eBs1 ,

which has no closed-form solution. Once B̂ is estimated, the constants A and C can be
obtained from (6) and (7).
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2.2.3 Estimating the Rejection Curve

The methodology used to estimate CY (S) is nonparametric and it is based on the
function PY (S) and on the distribution of the variable being evaluated Y . We can write
(11) as

FY (CY (S)) = θ (2.13)

1− PY (S) = θ (2.14)

The idea is to vary θ and solve these equations. As the size variable S is limited to an
interval (smin, smax), the CY (S) curve only needs to be determined on this interval. This
means using only values of θ in the interval [1− PY (smax), 1− PY (smin)]. Once the CY (S)
points are determined from equations (2.13) and (2.14), we can use a nonparametric
procedure to fit the rejection curve.

2.3 Multiple Hypothesis Testing
In our application, we have more than one ratio variable Y . We wish to obtain a

single set of anomalous observations, regardless of the number of ratio variables being
evaluated. In order to do so we use two different procedures to deal with the multiple
hypothesis testing problem: the Bonferroni’s Correction and the False Discovery Rate
(FDR).

2.3.1 Bonferroni’s Correction

We use the Bonferroni procedure to split the global α probability value. Each
individual rejection curve will select a percentage α/n of its observations as outliers, where
n is the number of ratio variables being used for audit.

2.3.2 False Discovery Rate (FDR)

The FDR procedure can be used either to enable multiple hypothesis testing or
to refine the result obtained when using a single ratio variable Y . We briefly introduce
the method consecrated in (BENJAMINI; HOCHBERG, 1995), however focusing on the
adapted procedures that led to a extension of our method.

Let R be the number of hypothesis rejected, and let m be the number of hypothesis
being tested of which m0 are true, as defined previously. Table 1 describes the possible
outcomes.

The number of hypothesis being tested are the observations being classified, so it is
known in advance. R is traditionally an observable random variable, whereas U, V, S and
T are unobserved random variables. The proportion of null hypothesis being erroneously
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Table 1 – Number of errors committed when testing m hypothesis

Declared Declared Total
non-significant significant

True null hypothesis U V m0

Non-true null hypothesis T S m−m0

m-R R m

rejected among all rejected ones is Q = V/(V + S), which is a random variable as well.
We define the FDR Qe to be the expectation of Q,

Qe = E(Q) = E
(

V

V + S

)
= E

(
V

R

)
When testing the hypothesis H1, H2, ..., Hm let P1, P2, ..., Pm be the corresponding

p-values. Let P(1) 6 P(2) 6, ...,6 P(m) be the ordered p-values where Hi denotes the null
hypothesis corresponding to Pi. Define the multiple hypothesis test as the following: let
k be the largest i for which Pi 6 i

m
q, where q is the level at which we wish to control

Q similarly to the level os significance in the traditional hypothesis test. Then reject all
Hi, i = 1, 2, ..., k. This procedure came to be known as Benjamini – Hochberg Step-up
procedure (BH Step-up).

For independent test statistics the above procedure controls the FDR at q, i.e:

E(Q) 6 m0

m
q 6 q (2.15)

An extension of the original FDR procedure was introduced by (BENJAMINI;
KRIEGER; YEKUTIELI, 2006), which is called Adaptive Linear Step-up procedure. As
we can see from equation 15 the term m0/m is a factor of conservativeness, since it is
always less or equal to 1 due to the fact that m0 6 m. If m0 was known, we could alter the
the BH Step-up and instead of using i

m
q we could use i

m0
q which would in turn control

the FDR at exactly q, i.e:

E(Q) = q (2.16)

As m0 is traditionally unknown, different estimation procedures have been created
to estimate its value based on the entire sample of p-values. A few examples can be
found in (BENJAMINI; HOCHBERG, 2000), (STOREY; TAYLOR; SIEGMUND, 2004),
(YEKUTIELI; BENJAMINI, 1999).

When applying the FDR procedure to anomaly detection using the rejection curve,
the first step is to calculate the p-value of each observation under analysis. According to
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(HOGG; CRAIG, 1995)[p. 255–256] a p-value is the observed probability of a statistics
being at least as extreme as the particular observed value, when the null hypothesis is
true. Therefore, we devise a method to calculate the p-value using the rejection curve as
displayed on Figure 1.

Figure 1 – Calculating the p-value using the rejection curve

The method consists on dislocating the rejection curve to each observation, and
then calculating the p-value as the number of establishments above the curve divided by
the total number of establishments. Since it uses the rejection curve as the threshold for
the "at least as extreme as the particular observed value", it ascertains that the size of
each observation is taking into account when calculating the p-value.

After the p-values are calculated and sorted we use a modification of the Adaptive
Linear Step-up procedure described earlier to classify the observations. Normally, in order
to use this method we would have to estimate m0. However, in our particular case this is
not necessary. Since we know how many observations we want to classify as anomalous,
we know the true number of null hypotheses being tested, i.e, we know the exact value of
m0. Since α is the number of observations being classified as anomalous culminating on
having the null hypothesis rejected, m0 can be defined as:

m0 = (1− α)×m

Finally, we can use the Adaptive Linear Step-up procedure to classify the ob-
servations. However, in lieu of defining q as we usually do in a hypothesis test, we are
going to use it as a tuning parameter. The idea is that allowing for a greater number of
false discoveries among the discoveries, we can improve the classifier’s accuracy regarding
α . Therefore, there is a trade-off between accuracy of the classifier and possible false
classifications.
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3 Healthcare Payment System Outlier Detec-
tion (HEPSOD)

The Brazilian health care system can be described as a hybrid between a public
system, called Sistema Único de Saúde (SUS) and a private one, the Sistema de Saúde
Suplementar (SSAM). The SUS is one of the largest public health care systems in the
world, providing services ranging from simple ambulatory procedures to organ transplants.
The Brazilian Constitution guarantees free and universal access to every Brazilian and
80% of the its population depends solely on SUS health care services. The numbers are
staggering. In the year of 2014, 4.1 billion ambulatory procedures, 1.4 billion medical
appointments, 11.5 million hospitalizations, 19 million oncology procedures and 3.1 million
chemotherapy procedures were performed through SUS. The Brazilian Health Minister
had a R$91.5 billion budget for 2015, which happened to be the largest among all federal
government sectors.

This massive infrastructure created the necessity of a monitoring system to evaluate
and oversee the expenditures in order to detect any illegal activities within the health
care providers. The federal health care department in conjunction with the Universidade
Federal de Minas Gerais created the InfoSAS project with such intent. This is one of the
largest data mining projects ever implemented in Brazil and it is designed to monitor the
health care procedures using 4 large public data systems: the hospital information system
(SIH), the ambulatory system (SIA), the healthcare establishment database (CNES) and
the population data from the Instituto Brasileiro de Geografia e Estatística (IBGE).

The InfoSAS project has two assumptions: the fraudulent behavior occurs either
when the service provider charges more for a procedure than its real value, or when it files
for reimbursement of a number of procedures greater than what it has actually performed.
For each case, the team created different algorithms to evaluate and detect anomalies
within the database so as to guide the audit department to work in a more efficient way.
On a monthly basis, the production and population data are inputed on a basic fact sheet
that feeds the data mining algorithms. These algorithms generate a more comprehensive
fact sheet containing tables and graphics providing detailed information about a procedure
within a establishment during a period of time.

In the present study the algorithms being used deal with the second case, regarding
the number of procedures of a given type carried out by each health care provider. These
algorithms use time series analysis to attribute a discrepancy score to a procedure type
within a single health care provider during a fixed period of time. Even though procedures
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are computed within a single health care provider, they are compared with their peers
all around the country. There are five such algorithms that are then combined into a
single one, making it easier to evaluate. This merger takes into consideration the weight
that each of those algorithms have on the anomaly detection efficacy, according to health
experts that worked in the project. The score created by this technique range from 0 to 1,
where 0 represents that the establishment being assessed conforms with the expected level
of production while 1 represents a total inconformity with the expected level. Therefore,
we need to fix a threshold between 0 and 1 to classify the different establishments between
normal and anomalous.
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4 Using HEPSOD in the INFOSAS

The time period analyzed is from first of January/2014 to 31st of December/2014.
The audit case selection procedure starts by choosing the variable that measures the size
of the health care establishments under assessment. We choose the annual expenditure
of the health provider. Since this variable has a highly asymmetric distribution, we took
its logarithm in basis 10 as the size variable S. Second, we have to fix the number of
anomalous observations that are going to be audited in the field. This input is set by the
resources available for the auditing task. In this paper, only for illustrative purposes, we
selected α = 0.05. We included an analysis of how changes in the value of this parameter
affect the conditional probability and the rejection curve. We have set s0 = 4.42 = min{Si},
the minimum of the observed sizes, and its relative weight of rejection δ0 as 0.01. The
median size was the value chosen as s1 = 7.29. We also included an analysis of how δ0

influences the rejection curve.

The analysis goes as follows: first we apply the classification procedure to the
unified score analyzing all of its instances. Then we apply it to the individual scores that
compose the unified one and compare the combined results. Finally, we implement the
FDR Adaptive Step-up Procedure to the unified score in order to improve its classification
accuracy.

4.1 Parameter Estimation
For the parametric procedure, the first step is to analyze the logarithm of the

annual expenditure distribution and determine if a theoretical and known distribution fits
closely to the empirical data. As we can see from Figure 2, the histogram of the logarithm
transformation of annual expenditure does not follow any easily recognizable distribution.
A Gaussian distribution seems to fit well the half upper part of the distribution but the
peaks on its lower tail prevents a Gaussian as a good model for these data.

Resorting to the non-parametric approach, we calculate the empirical moments up
to p = 6 and estimate the parameter B in equation (2.12) using the moment generating
function. More specifically, using the empirical moments m̂(i), we must find B such that

e7.29B = 1 + 7.37B
1 + 55.79B2

2 + 432.73B3

6 +

3438.88B4

24 + 27975.82B5

120 + 232741.4B6

720
The conditional probability function that results from this nonparametric approach is:

PY (S) = 0.1704− 0.2891e−0.1202S
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Figure 2 – Size Variable Histogram. Size is the basis 10 logarithm of the annual expenditure
of the health provider.

Figure 3 shows the graph of PY (S) versus the size variable S. The conditional
probability has the specified functional form. As the establishment size increases, the
probability of classifying a score as anomalous raises as well. Observe that PY (S) > α = 0.05
for S > 7.2, reaching almost 2α = 0.10 when S ≈ 12 while it is smaller than α for S < 7.2.
For the same relative discrepancy on the variable Y , we reject the case more easily if S
is large than when S is small. However, this is done in such a way that we still have an
overall rejection rate equal to α. The inequality |A| < C has not been satisfied. However,
this inequality exists to assure that the probability function only has values between 0
and 1, where it is defined. This is not a problem in this particular case, because the size
variable has values in the interval (4.42, 12.14) thus maintaining the probability function
within its theoretical limits.
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Figure 3 – Nonparametric Conditional Probability Curve PY (S)

Remarkably, we obtain very similar results using the parametric approach based
on a Gaussian approximation for the empirical distribution of S shown in Figure 2. The
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conditional probability function that results from the parametric estimation is:

PY (S) = 0.1689− 0.2882e−0.1214S

After obtaining PY (S), we determine the rejection curve CY (S). This curve depends
on the specific variable Y under monitoring. We illustrate the results for one target
score variable, Paediatric Clinic: Treatment of infectious and parasitic diseases. This is a
discrepancy score unifying five other discrepancy scores, all of them based on the ratio
variables between the amount of these procedures carried out by one health provider
and what we expect based on the population size and composition it serves. Figure 4
shows that the rejection curve has a functional form such that as the establishment size
increases the threshold decreases. Hence, the model works as intended, and the number of
scores classified as anomalous is 6.55% of the total. This is approximately what we had
determined when we set the theoretical overall level as α = 5%.

Figure 4 – Rejection Curve CY (S)

We included an analysis of how different values of δ0 affect the rejection curve, as
it determines the probability of classifying an observation of size s0 as anomalous. Since
s0 was set to be s0 = 4.42 = min{Si}, i.e. the minimum of the observed sizes, we can use
it as a tuning parameter that determines the relative slope of the curve. In our example it
resulted in almost identical rejection curves as we can see from Figure 5. This outcome is
due to the limited number of observations with relative small sizes compared to the entire
population. Since the curve has only a few observations to classify at small sizes, the δ0

does not influence its overall shape and slope, so the choice among δ0 = 0.001, δ0 = 0.01
and δ0 = 0.025 does not affect the classification.

A comparison can be made for different levels of α. In Figure 6 we traced the
rejection curve for 3 different levels of α : 0.01, 0.05, 0.10. We can see that, as we choose
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Figure 5 – Rejection Curve CY (S) for different δ0’s. Dotted line: δ0 = 0.001; Continuous
line: δ0 = 0.01; Dashed line: δ0 = 0.025.

to select less anomalous cases to audit, the rejection curve moves upwards. It takes an
interesting shape for α = 0.10 due to the score distribution shape, as it has to contour
a densely populated section of the observation points. The percentage of anomalous
observations for α = 0.01, 0.05, 0.10 is equal to 1.40%, 6.55%, and 11.60%, respectively,
close to the α target.

Figure 6 – Rejection Curve CY (S) for different α’s. Dotted line: α = 0.01; Continuous
line: α = 0.05; Dashed line: α = 0.10.
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4.2 Estimation of Individual Scores
In this section, we apply our case selection method to the discrepancy scores that

compose the unified score analyzed in the previous section. As explained at the end
of section 3, this unified score is composed by five individual scores capturing different
discrepancy aspects of the time series of procedures carried out by the health care provider.
All scores represent different algorithms applied to the same database of a single health care
procedure provided by different establishments. The results for the parametric estimations
are displayed on Table 2 and for the nonparametric estimation are displayed on Table 3.
The global level of significance is α = 0.05 and we used the Bonferroni correction with the
same weight given by the unified method to create each individual rejection curve, instead
of simply dividing by n.

Table 2 – Parametric Classification of Individual Scores

Score A B C Weight Anomalous
KNN -0.0432 -0.1214 0.0253 0.15 268 (1.05%)
Insta -0.0288 -0.1214 0.0169 0.10 149 (0.59%)

Med Est -0.0288 -0.1214 0.0169 0.10 154 (0.60%)
Med Mun -0.0432 -0.1214 0.0253 0.15 281 (1.10%)
Produc -0.1441 -0.1214 0.0845 0.50 822 (3.23%)

The expected number of anomalous observations are 0.75%, 0.5%, 0.5%, 0.75% and
2.5% and the respective results from the methodology are 1.05%, 0.59%, 0.60%, 1.10%,
3.23%. We can see that they are close to the expected numbers, and even when applied to
scores with different distributions the outcomes are similar, indicating that the method is
robust to the variable’s distribution.

Table 3 – Nonparametric Classification of Individual Scores

Score A B C Weight Anomalous
KNN -0.0430 -0.1202 0.0256 0.15 267 (1.05%)
Insta -0.0289 -0.1202 0.0170 0.10 148 (0.59%)

Med Est -0.0289 -0.1202 0.0170 0.10 154 (0.60%)
Med Mun -0.0430 -0.1202 0.0256 0.15 282 (1.10%)
Produc -0.1446 -0.1202 0.0852 0.50 822 (3.23%)

We can see that the results of the parametric and nonparametric estimation are
very similar. When combined, the number of observations classified as anomalous is
equal to 4.4% of the total number of cases, disregarding the estimation procedure. Some
establishments are classified as anomalous by more than one score, and thus generating
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an overlapping when merged together. This situation implies that the total number of
anomalous establishments analyzed by the individual scores sums up to a smaller number
than the total one under the unified score. Another point to be taken into consideration is
that virtually all of the establishments that were classified as anomalous by the individual
scores were also classified as such by the unified one. We are studying ways to take into
account the correlation between individual discrepancy scores to better control this joint
behavior.

4.3 The FDR Adaptive Step-up procedure
Lastly, we apply the FDR procedure to the unified score in order to improve its

accuracy. The result obtained when we applied the classification procedure using the
nonparametric estimation was 6.55% when α was set to 5%, i.e. roughly 30% over our
intended target.

In order to use the FDR procedure we first calculate the p-value of each establish-
ment under analysis. The algorithm responsible for this operation has a complexity of
θ(n2) and due to the massive amount of observations, approximately 25000, we had to
devise an approach to reduce the computational time. Instead of calculating the p-value of
each observation, we used the fact that the rejection curve systematically overestimate
the number of observations being classified as anomalous, and calculated the p-values only
of those that were initially above the original curve which we will call m′. This technique
reduces in 2 orders of magnitude the number of observations being evaluated and thus
reduces considerably the computational cost.

After calculating the p-values we need to calculate m0, the number of true null
hypothesis. Since the new m′ under evaluation is 1668 after we have reduced the scope of
the classification procedure, we have:

m0 = m′ − α×m = 1668− 0.05× 25461 = 395

We can now use the Adaptive Step-up Procedure to classify the observations. We
use the q in the i

m0
q as a tuning parameter to adjust the accuracy of our classification

regarding how close the number of anomalous observations is to α. Bearing in mind that q
is also the number of false discoveries among the discoveries, we need to be aware of the
trade-off that such technique imposes. The results were remarkable nonetheless, as the
number of observations being classified as anomalous were 5.02%, within less than 1% of
the chosen α. The q resulting from the tuning procedure was 0.015, which does not result
in a great number of false discoveries among the ones obtained.



27

5 Conclusions

Anomaly detection has become an important field due to its broad applicability
and the impact of big data in commercial, social and scientific environments. As a result,
intense research of new techniques and methods to detect and classify their presence are
underway, and specific approaches are being crafted to deal with individual problems
(CHANDOLA; BANERJEE; KUMAR, 2009).

In the present study, we created a method to detect anomalies related to fraudulent
activities. There are two different types of repercussions of such work. The direct effects
can be listed as: recover undue payments; public sanction; law enforcement applicability
visible within the community and thus encouraging others to comply. The indirect effects
can be summed as deterrent and preventive effects on other local level audits.

In this particular case, budget constraints in the institution responsible for the
audit process creates a need for limiting the number of observations being classified as
anomalous. The naive solution would be to focus on the frauds that could have the biggest
impact, financially or else wise. This solution may lead to smaller perpetrators knowing
they are free to act. We designed a method that covers all units under scrutiny while
directing the resources primarily to the largest ones.

The methodology showed promising results when applied to the InfoSAS project.
We selected one of several medical procedures being monitored and adopted its scores
as the variable being evaluated by the method. The research was conducted using both
parametric and nonparametric estimation, and two different approaches, the first using
unified scores and the second, using its components. They resulted in different outcomes,
whereas the first one classified more observations as anomalous than initially expected,
the second one classified less than what was initially intended.

We select a functional specification for PY (S) that suits our aims. However, the
methodology we propose is general and can be adapted for any other parametric specifi-
cation of the probability curve. Although, it does not seem to be an easy way to extend
our method for a case where one does not assume a parametric shape for PY (S). It is an
interesting research issue to verify what can be done if we assume only general properties
for this probability function, such as its continuity and increasing monotonicity.

The modified version of the FDR Adaptive Step-up procedure that we applied to
our classification problem resulted in a dramatically increase in accuracy of the rejection
curve. It also solves the scalability problem with the Bonferroni correction, since the
InfoSAS detection system monitors a large number n of ratio variables, and Bonferrori
does not scale well when n is large. The rejection level associated with each ratio variable
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becomes α/n, too small to be useful when dealing with a large number of variables. The
FDR does not have this issue since it stacks the observations on a single classification
procedure, after their appropriate p-values have been calculated.
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