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Resumo

O modelo de regressão de Poisson é muito utilizado para o ajuste de dados de

contagem, conforme esclarecem Lawless (1987) and Karlis (2001), porém um prob-

lema que surge da utilização dessa distribuição é que ela é equidispersa, ou seja, a

variância é igual à média. Porém, o que se observa na prática é que os dados são

sobredispersados em sua grande maioria. Na literatura é posśıvel encontrar diversos

modelos que lidam com o problema da sobredispersão, como é o caso dos modelos de

regressão binomial negativa (NB) [Lawless (1987)] e Poisson-inversa Gaussiana (PIG)

[Dean et al. (1989)], derivados de misturas de Poisson. Uma classe geral de modelos

de regressão de Poisson misturada foi introduzida por Barreto-Souza and Simas (2016).

Contudo, o excesso de zeros em dados de contagem é um fator que leva à sobredis-

persão e, quando a taxa de inflação de zeros é muito elevada, os modelos de mistura

de Poisson não são suficientes para adequar a variabilidade, conforme explicam Dean

and Nielsen (2007). Então, para contornar esse problema, modelos zero-inflados são

facilmente encontrados na literatura, como é o caso dos modelos de regressão Poisson

zero-inflado, introduzido por Lambert (1992), binomial negativa zero-inflado, utilizado

por Yau et al. (2003), e Poisson generalizada zero-inflado, introduzida por Famoye and

Singh (2006). Além disso, dados zero-inflacionados são encontrados em diversas áreas,

como biologia [Oliveira et al. (2016)], manufatura e engenharia [Lambert (1992), Li

et al. (1999)], agricultura [Ridout et al. (2001)], saúde [Mwalili et al. (2008), Lim et al.

(2014)], ciências sociais [Famoye and Singh (2006)], entre outras.

Dessa forma, o objetivo deste trabalho é fornecer suporte apropriado para lidar

com dados de contagem sobredispersados e o excesso de zeros e, para tal, propõe-se

um modelo de regressão geral com base numa classe de distribuições de misturas de

Poisson zero-infladas, onde unifica-se modelos já consolidados, como os modelos ZINB

e ZIPIG, bem como permite o surgimento de novos modelos zero-inflados.



Portanto, está sendo proposto uma classe geral de modelos de regressão de Poisson

misturada zero-inflado para lidar, simultaneamente, com a sobredispersão e o excesso

de zeros. Logo, em relação aos recursos computacionais, propôs-se obter as estimati-

vas dos parâmetros do modelo por meio do algoritmo EM, que consegue lidar com a

estrutura latente existente. Além disso, são fornecidas as expressões expĺıcitas para

obtenção da matriz de informação sendo posśıvel, dessa forma, obter os desvios padrão

das estimativas dos parâmetros, o que permite, por exemplo, a construção de intervalos

de confiança.

Um estudo de simulação foi executado para avaliar o comportamento das estima-

tivas obtidas por meio do algoritmo EM, como por exemplo o comportamento para

amostras de tamanho pequeno, bem como também avaliar a matriz de informação es-

timada. Ademais, para investigar pontos discrepantes e sua posśıvel influência, uma

análise de reśıduos foi executada, com base na simulação de envelopes. Com o objetivo

de aferir a influência global de outliers, está sendo utilizada a distância de Cook gener-

alizada, proposta por Zhu et al. (2001), tendo sido fornecidas as expressões expĺıcitas

dessa medida para o modelo proposto, objetivando assim checar a adequabilidade da

distribuição assumida para a variável resposta.

Palavras-chave: excesso de zeros, modelos de regressão para contagens, sobredis-

persão, algoritmo EM.



Abstract

When someone is dealing with discrete response variables, the Poisson regres-

sion model is commonly used for fitting count data, just as described by Lawless

(1987), Karlis (2001) and Sellers and Shmueli (2010), for instance. However,

a drawback of this model is that Poisson distribution is equidispersed, that is,

variance equal to mean. In practice, overdispersed count data are often observed

and to handle this problem, different kind of mixed Poisson regression models,

wherein the variance is larger than the mean, have been introduced in the lit-

erature, such as the negative binomial (NB) regression model [Lawless (1987)],

which is widely used, and Poisson-inverse Gaussian (PIG) regression model [Dean

et al. (1989), Holla (1967)]. A general class of mixed Poisson regression models

was proposed by Barreto-Souza and Simas (2016).

As mentioned by Garay et al. (2011) and Barreto-Souza and Simas (2016), a

factor that can lead to overdispersion is the excess of zeros in count data, although

Dean and Nielsen (2007) clarify that mixed Poisson regression models may not

be suitable for modeling data with high zero-inflation rate, since overdispersion

may remain. To deal with this issue, zero-inflated models for count data are

easily found in literature, such as zero-inflated Poisson (ZIP) regression model,

introduced by Lambert (1992), zero-inflated negative binomial (ZINB) regression

model [see, for example, Yau et al. (2003)] and, moreover, zero-inflated general-

ized Poisson (ZIGP) regression models, proposed by Famoye and Singh (2006).



Data with too many zeros are easily encountered in several fields, as biol-

ogy [Oliveira et al. (2016)], manufacturing application and engineering [Lambert

(1992), Li et al. (1999)], agriculture [Ridout et al. (2001)], health [Mwalili et al.

(2008), Lim et al. (2014)], social sciences [Famoye and Singh (2006)] and many

other disciplines. Thus, in order to deal with overdispersion and the excess of

zero in count data, the goal of this work is to provide appropriated support for

modeling these kind of data. For this purpose, we are proposing a general regres-

sion model based on a class of zero-inflated mixed Poisson distributions. With

this approach, we unify some existent models, such as ZINB and zero-inflated

Poisson-inverse Gaussian (ZIPIG) regression models, as well as open the possi-

bility of introducing new zero-inflated models.

Keywords: zero-inflation, count regression models, overdispersion, EM algo-

rithm.
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1 Introduction

The regression models that handle data with zeros excess arises at a first moment

from the model proposed by Lambert (1992), the zero-inflated Poisson (ZIP) regression

model. The model is a mixture of the Poisson distribution and a point mass of one

at zero and, with this, the count of zeros may come from two sources, it is, from the

Poisson distribution (sampling zeros) or from the point of mass, named as structural

zeros. Lambert (1992) gives motivation for the ZIP model explaining that, in manu-

facturing process, the equipment is near to no defect when it is properly aligned and

it is the source of the structural zero defects. But when the equipment is misaligned,

then the defects number of the equipment may come from a Poisson distribution. The

estimates of the model were obtained through the EM algorithm proposed by the au-

thor, maximizing iteratively the incomplete log-likelihood function. According to the

author, the EM algorithm converges and reasonably fast.

Despite the ZIP models without covariates have already been studied earlier by Co-

hen (1963), Johnson and Kotz (1969), the author explains that the parameter related

to the structural zeros and the mean of the Poisson distribution may depend on co-

variates. This argument is strengthened by Cameron and Trivedi (1998), that explain

that regression analysis of counts are motivated by the observation that, in many real

situations, the assumption that samples are independent and identically distributed

is too strong. They complete their argument giving an example, explaining that the

occurrence of an event may depend on some covariates and can vary from case to case,

accomplishing by a regression model for event count.

In the paper of Ridout et al. (1998), the authors speech about the problems of the

zeros excess and review some models that can handle these issues. They clarify that

despite the Poisson regression model provides a standard structure for modeling count

data, count data frequently are overdispersed relative to the Poisson distribution, what
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turns the Poisson models inappropriate. The authors also explain that the incidence

of zeros is a source of overdispersion because it is greater than the expected from the

Poisson distribution. According to Ridout et al. (1998), the interest in models that

deal with zero-inflation has been substantial and a reason is because zero counts have

a special status, it is, the structural zeros and the ones that come from de count dis-

tribution, as mentioned by them.

In their models review, Ridout et al. (1998) start talking about the mixed Poisson

distributions, that have been oftentimes used for modeling overdispersed data. The

overcome can be noticed considering that a random variable Y follows the Poisson

distribution with µV parameter, where V is a random variable with one as expected

value and α as variance. Then, E(Y ) = µ and Var(Y ) = µ+αµ2, which is larger than

the mean.

Subsequently they introduce what they call as zero-modified distributions, present-

ing first the ZIP distribution given by

P (Y = y) =

 ω + (1− ω) exp(−λ), y = 0

(1− ω) exp(−λ)λy/y!, y > 0
,

where Y follows the ZIP distribution, ω is the structural zeros parameter and λ is the

Poisson distribution parameter. According to the authors, a zero-deflated model can

be derived considering ω as a negative number, although the distribution cannot arise

from a mixture and, moreover, zero-deflated data are uncommon in practice. Then,

they explain that other models can arise with the same structure presented at the

expression above, for example when one uses the negative binomial or the generalized

Poisson distributions instead of the Poisson distribution.

2



Thereafter, the authors present other kinds of models to deal with the excess of

zeros, such as the hurdle models introduced by Mullahy (1986), it is, a two part mod-

els, wherein the first one is ruled by the binomial probability model which determines

whether a zero or non-zero outcome occurs, while the second part is ruled by a trun-

cated count distribution. The idea is that given an event has occurred, that is, the

“hurdle has been crossed”, the conditional distribution of this event is controlled by a

truncated at zero distribution. Finely, they present some inferential aspects, as some

criterion for comparison between models and, moreover, they fitted the Poisson, NB,

ZIP and the ZINB regression models for a horticultural count data, the same that has

been used in the empirical illustration of this work.

Applications of the ZINB regression model are easily encountered in literature,

especially because the ZIP regression model may not be adequate for some data in

which there is evidence of overdispersion after the fit, it is, when the overdispersion

remain. According to Famoye and Singh (2006), the ZINB regression model is not

always a good choice, since the model could not be fitted to some data sets because its

failure on the convergence by a iterative technique for parameter estimation. A similar

observation was pointed by Lambert (1992), explaining that the ZINB regression model

is possibly a better model for the manufacturing case, however the ZINB regression

model did not succeed in fitting the data set. That issue was the motivation for Famoye

and Singh (2006) develop the ZIGP regression model in order to fit overdispersed count

data with many zeros. The probability function of the zero-inflated generalized Poisson

distribution is given by

P (Y = y) =

 ϕ+ (1− ϕ)f(µ, α; y), y = 0

(1− ϕ)f(µ, α; y), y > 0
,

3



where Y follows the ZIGP distribution and f(µ, α; y) is the generalized Poisson prob-

ability function, given by

f(µ, α; y) =

(
µ

1 + αµ

)y
(1 + αy)y−1

y!
exp

[
−µ(1 + αy)

1 + αµ

]
, y = 0, 1, 2, . . . .

An interesting point of the ZIGP model is that it allows the fit of a zero-deflated

model by using some appropriate link function that may enables ϕ assumes negative

values, but the authors pay attention that zero-deflation cases seldom occurs in prac-

tice. A second remark is that the ZIGP model reduces to the ZIP model when α = 0.

The authors also present a score test for the model and highlight the importance of

the test explaining that one maybe does not need to fit the ZIPG regression model, but

just the generalized Poisson regression model (GPR), which is the distribution under

the null hypothesis. Then, the score statistic, that has an asymptotic chi-square distri-

bution with one degree of freedom, will reveal if the GPR model fits well the number

of zeros.

An application is presented in the article, using a domestic violence data set, where

the authors argue, throughout the score test, that there are too many zeros in the data

and through a measure of goodness-of-fit they conclude that ZIGP regression model is

more adequate than ZIP regression model, since the α parameter that reduces ZIGP

model to the ZIP model is significant different of zero. The conclusion is that ZIGP

regression model fits well the domestic violence data and its also a competitor to the

ZINB regression model. However, the authors do not know in which terms one can be

better than the another, it is, which is the better model, they only point that in few

cases the ZINB regression model did not converges.
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Another example of zero-inflated model is the zero-inflated Poisson-inverse Gaus-

sian regression model. It has the same framework as the models previously presented,

it is, a point mass of one at zero, for handle the structural zeros, mixed with the

Poisson-inverse Gaussian (PIG) distribution, introduced by Holla (1967), for handle

the sampling zeros. According to Willmot (1987), the PIG distribution can be viewed

as an alternative to the NB distribution and the regression model with the PIG distri-

bution was presented by Dean et al. (1989). Hilbe (2014) presents a chapter about the

Poisson-inverse Gaussian distribution and some applications and, according to him, the

PIG regression is preferable when the count data have a high peak in the lower range

of number and long right skewed tail, as well as for strongly Poisson overdispersed

data. Hilbe (2014) also presents, in the seventh chapter, zero-inflated models and next

explains the problems with zeros. The author fitted the number of visits to doctor

during year, from a German health data set, several zero-inflated models, such as ZIP,

ZINB and ZIPIG regression models, concluding that the ZIPIG regression models was

the best-fitted model.

Other kinds of zero-inflated models have been proposed, such as the zero-inflated

binomial (ZIB) regression model, introduced by Hall (2000), for upper bounded counts.

The data set applied in that paper was a horticultural data set that concern estab-

lish the relationship among the number of live adults insects and some covariates. To

this end, the author explains that the ZIP regression model could be adapted to the

ZIB regression model, since the number of insects was bounded between zero and n.

Hall (2000) obtained the parameters estimates in a similar way as Lambert (1992),

using the EM algorithm. The author also proposed modification to the ZIP and the

ZIB regression models, proposing an approach for these models by introducing random

effects into the portion that describes the dependence of the non-zero-state mean on

covariates, becoming these models useful for modeling heterogeneity and dependence

in zero-inflated count data. According to the author, the assumption of independence

among the responses can be violated in data sets such as the analyzed in the paper. A

5



table with observed values and predictions for the percentage of counts are presented

for the ZIB model, where it is possible to notice the efficiency of this model, specially

when a comparison is made between the ZIB regression model and the Poisson re-

gression model and also between the ZIB regression model and the binomial logistic

regression model, where both Poisson and binomial logistic regression models were un-

der predicting the zeros count.

Essentially, we can say that count data with many zeros can be found in several

fields, as mentioned by almost all of the authors, previously cited, in their works. For

instance, Ridout et al. (1998) made a review wherein they cite applications in areas

such as agriculture, patent applications, health care, biology, sexual behavior, road

safety, use of recreational facilities, among others. Thus, in order to show the relevance

of this theme and point out its importance, as well as strengthen the motivation to

work with this subject, we highlight that models to handle the excess of zeros has

received much attention in the literature recently and since its first appearance. To

support that argument, other authors and their works can be cited besides those al-

ready mentioned.

Shankar et al. (1997) applied the ZIP regression model and the ZINB regression

model to a roadway section accident data with the aim of determine which sections of

the roadway was really safe, it is, those that have near zero accidents and which are

not safe but have zero accidents observed during the period of observation. Böhning

et al. (1999) concluded that the ZIP regression model could be considered adequate

to fit a dental health care data set from a dental epidemiological study in Belo Hor-

izonte, which evaluate programmes for reducing caries, using as response variable an

important index of the dental status and as covariates age, gender, ethnicity and school.
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Lee et al. (2001) made a modification to the ZIP regression model to incorporate

individual exposure in the Poisson component. According to the authors, in some

cases a count data is observed combined with extent of exposure and, for this reason,

they generalized the ZIP regression model, with and without covariates, and applied

to a manual handling injuries data set, wherein the response was the lost time injury

count and the exposure was the hours worked by the orderlies from a public hospital

in Western Australia.

Ridout et al. (2001) and Garay et al. (2011) applied the ZINB regression model to

the apple cultivar data set reported by Ridout et al. (1998). In the paper of Ridout

et al. (2001), a score test for testing the ZIP regression model against the ZINB regres-

sion model was proposed and in the paper of Garay et al. (2011), the authors report

some influence diagnostics techniques, global and local ones. In a recent work, Oliveira

et al. (2016) applied the ZIP and the ZINB regression models to a radiation-induced

chromosome aberration data and also made a comparison among other models that

handle overdispersion, such as the NB and the PIG regression models. The authors

present a table resume from those models that seem to be the most appropriated to fit

that kind of data.

1.1 Aims of the Thesis

The goal of this work is to deal with overdispersion and the excess of zero in count

data simultaneously and, for this purpose, we will provide appropriated support for

modeling these kind of data by proposing a general regression model based on a class

of zero-inflated mixed Poisson distributions, exploring computational resources in the

R program to obtain the model parameters estimates, as well as residual analysis and

diagnostic for assess global influence.
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Therefore, we have proposed a general class of zero-inflated mixed Poisson regression

models to deal with overdispersion and zeros excess, which embrace some zero-inflated

models, such as the ZINB regression model, and opens the opportunity to raise other

models. Different of most of the works in this field, we are modeling the dispersion

parameter as function of explanatory variables because the assumption that the dis-

persion is constant may be unrealistic in real-word cases.

On computational resources, we have proposed to obtain the model parameters

estimates through the EM algorithm, which can deal with the latents variables. We

have also provided the explicit expressions of the information matrix. Thus, one can

obtain standard errors of the parameters estimates and, for instance, construct confi-

dence intervals for the model parameters. With the purpose of evaluate the estimates

produced by the EM algorithm, a Monte Carlo study will be presented, as well as for

evaluating the estimated information matrix behavior.

In order to investigate outliers and its potential as influencer, we have made a resid-

uals analysis based on simulated envelopes and to assess the global influence, we have

used the generalized Cook’s distance measure provided by Zhu et al. (2001) and, for

this purpose, we provided the expressions for the zero-inflated mixed Poisson regression

models of that measure, in order to check the adequacy of the assumed distribution for

the response variable.
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2 The Model

To make this work self-contained, in the first section we briefly present the general

class of mixed Poisson (MP) distributions, which will be necessary to construct and

define the class of zero-inflated mixed Poisson (ZIMP) distributions in the second one.

Then, we also present in the second section the regression structure for the proposed

class.

2.1 General Mixed Poisson Distributions

In order to introduce the general mixed Poisson distributions, following Barreto-

Souza and Simas (2016), let Z be a continuous positive random variable belonging to

the exponential family, denoting Z ∼ EF(ξ0, φ), with density function given by

fZ(z) = exp {φ [zξ0 − b (ξ0)] + c (z;φ)} , z > 0, φ > 0. (1)

In addition, to define the MP class, let Y |Z = z follows the Poisson distribution

with µz mean, denoting Y |Z = z ∼ Poisson(µz), µ > 0. In this way, a class of mixed

Poisson distributions is established and we say that Y follows a general mixed Poisson

distributions with µ and φ parameters, denoting Y ∼ MP(µ, φ). Then, its probability

function is given by

pY (y;µ, φ) = P (Y = y) =

∞∫
0

e−µz(µz)y

y!
fZ(z)dz, y = 0, 1, 2, . . . . (2)

It is possible to show that E (Z) = b′(ξ0) and V ar (Z) = φ−1b′′(ξ0). How proposed

by the authors, here assuming the c(z;φ) function as a composition of φ and z func-

tions, expressing c(z;φ) = d(φ) +φg(z) +h(z). Furthermore, b(·) and d(·) are assumed

being a three times differentiable functions and also ξ0 will be determined in order to

obtain b′(ξ0) = 1.

9



Stoyanov and Lin (2011) describe the identifiability question in mixture distribu-

tions, what we briefly expose as follows. Lets (X, θ) be a two dimensional random

vector defined in the (Ω,=, P ) probability space, X taking values in the natural num-

bers set or a subset of natural, finite or infinite, and θ assuming values in T and

T ⊂ [0,∞). If the conditional distribution of X given that θ = t is represented by

f(k|t) = P (X = k|Θ = t), for k = 0, 1, 2, . . . , and that θ has a distribution function

G(t), then the unconditional distribution of the random variable X, can be obtained

as the mixture distribution

hk = P (X = k) =

∫
T

f(k|t)dG(t), k = 0, 1, 2, . . . .

Then, the mixture distribution hk is identifiable if, given f(k|t), there is only one

mixing distribution G(· ) on T, it is, if there are two distributions on T, such that

hk = P (X = k) =

∫
T

f(k|t)dG1(t) =

∫
T

f(k|t)dG2(t), k = 0, 1, 2, . . . ,

G1 6= G2, then the mixture distribution hk is non-identifiable. According to Karlis and

Xekalaki (2005), mixed Poisson distributions are identifiable, it is, in their words, every

mixed Poisson distribution corresponds to one and only one mixing distribution.

Here, b′(ξ0) is assumed to be one not exactly because of an identifiability issue, but

at first because we know that there is no loss of generality due to its choice, since mixed

Poisson distributions are always identifiable and also because of a parsimonious model,

otherwise the mixed Poisson distributions would depend of one more parameter. To

clarify, lets begins saying that different choices for Z conduct to distinct distributions of

Y . For instance, if Z follows the gamma distribution, then solving (2) one may figures

out that Y follows the negative binomial distribution. Then, if Z follows the gamma

10



distribution with mean λ and shape parameter φ, the probability density function is

fZ(z) =
φφ

Γ(φ)λφ
zφ−1 exp

(
−φ
λ
z

)
, z > 0,

and replacing this function in expression (2), we have

P (Y = y) =

∞∫
0

e−µz(µz)y

y!

1

Γ(φ)

(
φ

λ

)φ
zφ−1 exp

(
−φ
λ
z

)
dz

=
µy

y!Γ(φ)

(
φ

λ

)φ ∞∫
0

zy+φ−1 exp

[
−
(
φ

λ
+ µ

)
z

]
dz

=
Γ(y + φ)

y!Γ(φ)

(
µλ

µλ+ φ

)y (
φ

µλ+ φ

)φ
, y = 0, 1, 2, . . . ,

leading Y to follows the negative binomial distribution with µλ and φ parameters,

with mean E(Y ) = µλ and V ar(Y ) = µλ(1 + µλφ−1). However, the result µλ can

be yield from an infinite set of combination between values of µ and λ. Thus, if we

have a parameter µ∗ representing the multiplication µλ, then we would have the same

negative binomial distribution but with two parameters instead of three, what can be

reached determining ξ0 to obtain b′(ξ0) = 1.

Continuing with some properties, the moment generating function of the gen-

eral mixed Poisson distributions, ϕY (t) = E(etY ), can be expressed by ϕY (t) =

exp{−φ[b(ξ0)−b(ξ0+µφ−1(et−1))]} and, with this measure, it is possible to show that

the mean of Y is E(Y ) = µ and its variance is Var(Y) = µ[1 + µφ−1b′′(ξ0)]. Taking a

look at the variance of the general mixed Poisson distributions, it is easily noticeable

that this class can handle overdispersion, since the variance is larger than the mean.

11



2.2 Zero-Inflated Mixed Poisson Distributions

To introduce the zero-inflated mixed Poisson distributions was necessary first to

present the class of mixed Poisson distributions in the previous section and, to present

the zero-inflated class, we are going to use the same structure of the last section, it

is, the same nomenclature and notation, for instance, a random variable Y follows the

MP distribution or, in other words, Y ∼ MP(µ, φ), as well as Z ∼ EF(ξ0, φ).

Thus, let B be distributed as a Bernoulli with probability function given by

P (B = b) = τ 1−b(1− τ)b, b = 0, 1 and 0 ≤ τ ≤ 1.

Therefore, to set the class of zero-inflated mixed Poisson (ZIMP) distributions, we

assume B and Y independent variables and define W = BY . Hence,

W =

 0, with τ probability

Y, with 1− τ probability
.

If W belongs to the general class of zero-inflated mixed Poisson distributions, we denote

W ∼ ZIMP(µ, φ, τ) and its probability function is given by

pW (w;µ, φ, τ) = P (W = w) =

 τ + (1− τ) pY (w;µ, φ), w = 0

(1− τ)pY (w;µ, φ), w = 1, 2, 3, . . .
. (3)

The idea is to mix a class of mixed Poisson distributions with a point mass of one at

zero and we say that the count of zeros of the count data is derived from two sources,

some may come from the mixed Poisson distributions (or sampling zeros) and the others

may come from the structural zeros, it is, that ones that do not follow or are not at the

risk of the mentioned distribution, but a process ruled by a binary distribution instead.

12



ZIMP regression models can take some specific shape according to the distribution

of its latent variable Z. For instance, if Z follows the gamma distribution with mean

one and dispersion φ, the probability density function of Z written in terms of the

exponential family is

f(z; ξ0, φ) = exp {φ [zξ0 − (− log(−ξ0))] + φ log φ− log Γ(φ) + φ log z − log z} , z ≥ 0,

Without loss of generality, as previous clarified, we have ξ0 = −1 to obtain b′(ξ0) = 1.

Then, replacing the probability density function of gamma in expression (2), after some

calculation, we obtain the negative binomial probability function

pY (y;µ, φ) =
Γ(y + φ)

y!Γ(φ)

(
µ

µ+ φ

)y (
φ

µ+ φ

)φ
, y = 0, 1, 2, . . . ,

yielding Y ∼ NB(µ, φ). Thus, sinceW was defined asW = BY , thenW ∼ ZINB(µ, φ, τ),

it is, W = 0, with τ probability, or W = NB(µ, φ), with 1 − τ probability. Another

example of distribution that belongs to the ZIMP distributions is when Z follows an in-

verse Gaussian distribution with mean one and dispersion parameter φ with probability

density function given by

f(z; ξ0, φ) = exp

{
φ
[
zξ0 −

(
−(−2ξ0)

1
2

)]
+

1

2
log φ+ φ

(
−1

2z

)
− 1

2
log(2πz3)

}
, z ≥ 0.

To ensure that b′(ξ0) = 1, ξ0 has been determined as ξ0 = −1
2
. Thus, after replacing the

PIG distribution and solving expression (2), one may notice that Y follows the Poisson-

inverse Gaussian distribution, Y ∼ PIG(µ, φ), with probability function expressed by

pY (y;µ, φ) = eφ
(µφ)y

y!

√
2

π
[φ(φ+ 2µ)]−(y−1/2)/2K(y−1/2)

(√
φ(φ+ 2µ)

)
, y = 0, 1, 2, . . . ,

Thus, since W was defined as W = BY , then W ∼ ZIPIG(µ, φ, τ), it is, W = 0, with

τ probability, or W = PIG(µ, φ), with 1− τ probability.
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Some properties of ZIMP distributions can be derived by its moment generating

function (mgf) ϕ(·). The mfg of W , denoted by ϕW (·), can be determined in function

of the mgf of the general class of MP distributions. Therefore, proceeding with the

calculation of Y moment generating function, denoted by ϕY (·), after some manipula-

tion one may notice that ϕY (t) = exp {−φ [b(ξ0)− b(ξ0 + µφ−1(et − 1))]}. With this,

the mgf of W can be derived as follows

ϕW (t) = E(etW ) = E(etBY ) = E[E(etBY |B)]

= E[BE(etY ) + (1−B)]

= (1− τ)ϕY (t) + τ

= τ + (1− τ) exp
{
−φ
[
b(ξ0)− b(ξ0 + µφ−1(et − 1))

]}
. (4)

Using the mgf of W provided in (4), it is possible to show that the mean and the

variance of W are E(W ) = (1 − τ)µ and Var(W) = µ{1 + µ[φ−1b′′(ξ0) + τ ]}(1 − τ),

respectively. As mentioned earlier, one may figures out that MP distributions are a

particular case of ZIMP distributions, when the inflation parameter τ is equal to zero.

When it happens, the mgf of W is reduced to ϕY (t), the mgf of Y , and the mean and

the variance of W are reduced to E(W ) = µ and Var(W) = µ[1 +µφ−1b′′(ξ0)] respec-

tively, it is, the mean and the variance of Y , which follows a mixed Poisson distributions.

In order to construct the zero-inflated mixed Poisson regression models, we take into

account three regression structures for the mean, the dispersion and the zero-inflation

parameters. Thus, we have the following functions

log(µi) = x>i β,

log(φi) = v>i α,

logit(τi) = s>i γ,
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where xi, vi and si are the explanatory variables vectors with p × 1, q × 1 and

r × 1 dimensions, respectively, for i = 1, . . . , n, with n denoting the sample size and

β = (β1, . . . , βp)
>, α = (α1, . . . , αq)

> and γ = (γ1, . . . , γr)
> are the parameters related

to those covariates.

As previously mentioned, in many real situations the assumption that samples are

independent and identically distributed is too strong and the model parameters may

depend on covariates. This argument, strengthened by Cameron and Trivedi (1998),

prompted us to use the regression analysis to try to understand the relationship be-

tween a count data with zeros excess and its potential explanatory variables, leading

us to build regression structures for the three parameters of the zero-inflated mixed

Poisson distributions. Three link functions were used, the log function, for the mean

and the dispersion parameters, and the logit function, for the zero-inflation parameter.

They were chosen to guaranteer the restrictions of the parameters, once the mean and

the dispersion parameters are positive values and the zero-inflation parameter are re-

stricted to the interval between zero and one. Nevertheless, other link functions that

can handle the parameters restrictions could be used. In a first moment, the structure

was made with three vector of covariates, however it is important to clarify that the

same vector of the explanatory variables were used in the illustration chapter and we

let the own model decide each one was or was not considerable.

Therefore, some zero-inflated models that can handle excess of zeros and overdis-

persion, that have been studied separately, are unified by the ZIMP regression models,

it is, if the latent variable Z follows the gamma distribution or the inverse Gaussian

distribution, than one can notices that W follows the zero-inflated negative binomial

distribution and the zero-inflated Poisson-inverse Gaussian distribution, respectively,

and with the regression structure we reach the zero-inflated negative binomial and the

zero-inflated Poisson-inverse Gaussian regression models.
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3 EM Algorithm

The EM algorithm was presented by Dempster et al. (1977) as a general approach

to iterative computation of maximum likelihood estimates when the observations can

be viewed as incomplete data, it is, when only a subset of the data is available. The

algorithm name became from the fact that each iteration is composed of an expectation

step followed by a maximization step.

In essence, the EM algorithm is used when one do not have a complete data set of

observations and/or maybe the observed log-likelihood function does not have a sim-

ple constitution and, for this reason, obtain the maximum likelihood estimates can be

a cumbersome process. For instance, we highlight that the log-likelihood function of

the ZIPIG model, particular case of the ZIMP models, is related to the complicated

modified Bessel function of the third kind. Therefore, in next paragraphs we present

the steps of the algorithm.

For the zero-inflated mixed Poisson models, there are two latent variable denoted

by Z, that is a distribution belonging to the continuous exponential family and mixed

with the Poisson distribution to generate the mixed Poisson distribution, as mentioned

in the previous chapter, and B, that is distributed as a Bernoulli(τ) distribution with τ

probability at zero, related to the zero-inflation. In the general mixed Poisson models

there is only Z as a latent variable.

Let θ be the following parameters vector θ = (β>,α>,γ>)>. We have worked with

the complete data (W1, Z1, B1), . . . , (Wn, Zn, Bn), where W1, . . . ,Wn are the observable

count data and Z1, . . . , Zn and B1, . . . , Bn are the random effects. However, the Zi’s

and Bi’s are unobservable variables. Thus, the complete log-likelihood function is given

by
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lc(θ) =
n∑
i=1

log {P (Wi = wi|Zi = zi, Bi = bi)fZ(z)P (Bi = bi)}

∝
n∑
i=1

{biwi log µi − biziµi + bid(φi) + φi [biziξ0 − bib(ξ0) + big(zi)]

+ bilogit(1− τi) + log(τi)} . (5)

Two steps are required to carry out the EM algorithm, the E-step (expectation

step) and the M-step (maximization step). The goal of the first one is to compute the

complete log-likelihood function conditional expectation, which defines the Q function.

In the second one, the aim is maximize the Q function. If we denote θ(0) as the initial

θ estimate, the Q function is updated and an estimate θ(1) is obtained as the argument

which maximizes Q and this is the first-step estimate of θ. Then, this procedure is

performed as much as needed to some criterion convergence be reached. The algorithm

is described in details in what follows.

Expectation Step

Let θ(r) be the estimate of θ on the rth step. First of all, it is necessary to compute

the Q function as follows

Q(θ;θ(r)) = E(lc(θ)|W;θ(r))

∝
n∑
i=1

{
wi log µiδ

(r)
i − µiλ

(r)
i + d(φi)δ

(r)
i + φi[ξ0λ

(r)
i − δ

(r)
i b(ξ0)

+ κ
(r)
i ] + δ

(r)
i logit(1− τi) + log(τi)

}
, (6)
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where

δ
(r)
i = E(Bi|W;θ(r)),

λ
(r)
i = E(BiZi|W;θ(r)),

κ
(r)
i = E(Big(Zi)|W;θ(r)).

The results of the previous conditional expectations are given in the following propo-

sition.

Proposition 1 Let W ∼ ZIMP(µ, φ, τ), with Z ∼ EF(ξ0, φ) and B ∼ Bernoulli(τ),

the previous latent variables defined, and Y ∼ MP(µ, φ). Thus,

E(B|W ) = (1− τ)
pY (w;µ, φ)

pW (w;µ, φ, τ)
, (7)

E(BZ|W ) = (1− τ)
pY (w;µ, φ)

pW (w;µ, φ, τ)
(w + 1)

pY (w + 1, µ, φ)

µpY (w, µ, φ)

=
(1− τ)(w + 1)

µ

pY (w + 1;µ, φ)

pW (w;µ, φ, τ)
, (8)

E(Bg(Z)|W ) = (1− τ)
pY (w;µ, φ)

pW (w;µ, φ, τ)

(
dpY (w;µ∗t , φ+ t)/dt|t=0

pY (w;µ, φ)
− d′(φ)− ξ0 + b(ξ0)

)
, (9)

where µ∗ = b′
(
φξ0
φ+ t

)
. When we are at the case that there is no zero-inflation, it is,

when the zero-inflation parameter τ is equal to zero, then W is reduced to Y . If its

happen, then the term (1 − τ)
pY (w;µ, φ)

pW (w;µ, φ, τ)
goes to one and disappear, while and the

equations (8) and (9) are reduced to E(Z|Y ) and E(g(Z)|Y ), respectively, the condi-

tional expectations of the complete log-likelihood function in the class of mixed Poisson

regression models. Because of that, we can easily notice that the MP regression models

are particular cases of the zero-inflated mixed Poisson regression models proposed in

this work.

Remark: The proof of Proposition 1 is presented in the Appendix.
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Maximization Step

In order to improve the algorithm to obtain the argument that maximizes the Q

function, it is necessary to obtain the score function associated to the Q function, given

by

∂Q

∂βj
=

n∑
i=1

{
δ
(r)
i wi − µiλ(r)i

}
xij, j = 1, . . . , p; (10)

∂Q

∂αl
=

n∑
i=1

φi

{
ξ0λ

(r)
i + δ

(r)
i [d′(φi)− b(ξ0)] + κ

(r)
i

}
yil, l = 1, . . . , q; (11)

∂Q

∂γm
=

n∑
i=1

{
1− τi − δ(r)i

}
sim, m = 1, . . . , r. (12)

Therefore, the estimates can be obtained updating Q(θ;θ(r)) with δ
(r)
i , λ

(r)
i and κ

(r)
i

through the estimate θ(r) in the rth step. Then, Q(θ;θ(r)) needs to be maximized un-

der θ and it can be done through a numerical optimization algorithm (in this work the

method Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm has been applied) and

improved by using the score function. This routine will be repeated until some conver-

gence criterion be reached, for instance ‖ θ(r+1)−θ(r) ‖< ε, ‖ θ(r+1)−θ(r) ‖ / ‖ θ(r) ‖< ε

or ‖ Q(θ;θ(r+1)) − Q(θ;θ(r)) ‖< ε. In this work, a combination between the first one

and the last one has been used taking into account ε = 10−4.

3.1 Information Matrix

According to Louis (1982), the observed information matrix when one uses the EM

algorithm, here denoted as I(θ), is given by

I(θ) = E

(
−∂lc(θ)2

∂θ∂θ>
|W
)
− E

(
∂lc(θ)

∂θ

∂lc(θ)

∂θ

>

|W

)
. (13)
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The elements of the observed information matrix (13), presented below, have been

used to obtain the standard errors of the parameters estimates, as it is possible to see in

Empirical Illustration chapter. In the Simulation Study chapter a Monte Carlo study

is presented in order to show the finite sample behavior of the estimated information

matrix I(θ̂), where θ̂ is the maximum likelihood estimate of θ obtained thorough

the EM algorithm. Thus, the elements of the observed information matrix (13) are

obtained by

E

(
− ∂l2c
∂βj∂βl

|W
)

=
n∑
i=1

λiµixijxil, for j, l = 1, . . . , p;

E

(
− ∂l2c
∂αj∂αl

|W
)

=
n∑
i=1

φi {δi [b(ξ0)− d′(φi)− d′′(φi)φi]− λiξ0 − κi} vijvil,

for j, l = 1, . . . , q;

E

(
− ∂l2c
∂γj∂γl

|W
)

=
n∑
i=1

τi(1− τi)sijsil, for j, l = 1, . . . , r;

E

(
− ∂l2c
∂βj∂αl

|W
)

= 0, for j = 1, . . . , p and l = 1, . . . , q;

E

(
− ∂l2c
∂βj∂γl

|W
)

= 0, for j = 1, . . . , p and l = 1, . . . , r;

E

(
− ∂l2c
∂γj∂αl

|W
)

= 0, for j = 1, . . . , r and l = 1, . . . , q;
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E

(
∂lc
∂βj

∂lc
∂βl
|W
)

=
n∑
i=1

{ψiw2
i − 2ζiµiwi + ηiµ

2
i }xijxil

+
∑
i 6=k

(δiwi − λiµi)(δkwk − λkµk)xijxkl,

for j, l = 1, . . . , p;

E

(
∂lc
∂αj

∂lc
∂αl
|W
)

=
n∑
i=1

φ2
i {ηiξ20 + 2ρiξ0 − 2[ζiξ0 + υi][b(ξ0)− d′(φi)]

+ ψi[b(ξ0)− d′(φi)]2 + νi}vijvil

+
∑
i 6=k

φiφk {λiξ0 + κi − δi [b(ξ0)− d′(φi)]} {λkξ0 + κk

− δk [b(ξ0)− d′(φk)]} vijvkl,

for j, l = 1, . . . , q;

E

(
∂lc
∂γj

∂lc
∂γl
|W
)

=
n∑
i=1

{(1− τi)2 − 2(1− τi)δi + ψi}sijsil

+
∑
i 6=k

(1− τi − δi)(1− τk − δk)sijskl,

for j, l = 1, . . . , r;

E

(
∂lc
∂βj

∂lc
∂αl
|W
)

=
n∑
i=1

φi{ζi[wiξ0 − µi[d′(φi)− b(ξ0)]]

+ [υi + ψi[d
′(φi)− b(ξ0)]]wi − [ηiξ0 + ρi]µi}xijvil

+
∑
i 6=k

φk {[δiwi − λiµi][λkξ0 + κk + δk[d
′(φk)− b(ξ0)]]}xijvkl,

for j = 1, . . . , p and l = 1, . . . , q;
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E

(
∂lc
∂βj

∂lc
∂γl
|W
)

=
n∑
i=1

{[(1− τi)δi − ψi]wi − [(1− τi)λi − ζi]µi}xijsil

+
∑
i 6=k

(δiwi − λiµi)(1− τk − δk)xijskl,

for j = 1, . . . , p and l = 1, . . . , r;

E

(
∂lc
∂γj

∂lc
∂αl
|W
)

=
n∑
i=1

φi{(1− τi)[λiξ0 + κi + δi[d
′(φi)− b(ξ0)]]

− ζiξ0 − υi − ψi[d′(φi)− b(ξ0)]}sijvil

+
∑
i 6=k

φk(1− τi − δi) {λkξ0 + κk + δk[d
′(φk)− b(ξ0)]]} sijvkl,

for j = 1, . . . , r and l = 1, . . . , q.

Here, δi, λi and κi are defined as in Propositon 1 and ψi, ζi, ηi, υi, νi and ρi will be

defined as

ψi = E(B2
i |W;θ(r)),

ζi = E(B2
i Zi|W;θ(r)),

ηi = E(B2
i Z

2
i |W;θ(r)),

υi = E(B2
i g(Zi)|W;θ(r)),

νi = E(B2
i g

2(Zi)|W;θ(r)),

ρi = E(B2
i Zig(Zi)|W;θ(r)).

The explicit expressions for the conditional expectations above will be given in Ap-

pendix.
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3.2 Residuals

The cycle of model specification includes estimation, testing and evaluation to ana-

lyze a count data. For the last step, one might perform, for instance, residuals analysis

and use goodness-of-fit measures.

According to Cameron and Trivedi (1998), a residuals analysis can be used for sev-

eral objectives such as to detect model misspecification, outliers, poor fit observations,

influential observations or those ones that produce a big impact on the fitted model.

In other words, residuals analysis measures the departure of fitted values from actual

values of the dependent variable and a visual analysis may potentially indicates the

nature of misspecification and the magnitude of its effect.

The raw residual is defined as the difference between the actual and the fitted value

and, for the classical linear regression model the raw residual is, asymptotically, sym-

metrically distributed around zero with constant variance. However, it is not true for

count data, it is, the residuals do not necessarily have zero mean, constant variance or

symmetric distribution. Thus, the Pearson residual is a correction for the heteroscedas-

ticity and it is defined as

ri =
wi − µ̂i√

σ̂2
, (14)

where

µ̂i =
exp(x>i β̂)

1 + exp(s>i γ̂)
,

σ̂2 = exp(x>i β̂)

{
1 +

[
exp(x>i β̂)− exp(s>i γ̂)

1 + exp(s>i γ̂)

] [
b′′(ξ0)

exp(v>i α̂)
+

exp(s>i γ̂)

1 + exp(s>i γ̂)

]}

and β̂, α̂ and γ̂ are the maximum likelihood estimates (MLE’s) of β, α and γ, respec-

tively.
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One may expect that the residuals be concentrated around zero, but they do not

follow the normal distribution. Therefore, a way to take it into account and check

the model adequacy is to use simulated envelopes, which takes account of the overdis-

persion, as pointed by Hinde and Demétrio (1998). Then, the algorithm to build the

simulated envelope is presented at Algorithm 1.

Algorithm 1 - Simulated envelope for residuals

1. For each i = 1, . . . , n, compute µ̂i, φ̂i and τ̂i.

2. Generate n observations W̃i, where W̃i ∼ ZIMP(µ̂i, φ̂i, τ̂i).

3. Obtain the regression coefficients θ̃ = (β̃>, α̃>, γ̃>)> from the regression of W̃ on the covariates.

4. Compute Pearson residual using W̃i and expression (14) and denote the resulting residual by R̃i.

5. Repeat the previous steps m times, thus obtaining m residuals R̃ij, for i = 1, . . . , n and

j = 1, . . . ,m.

6. For each j, sort the n residuals in non-decreasing order, obtaining R̃(i)j.

7. For i, obtain the percentiles 2.5% and the 97.5% of the ordered residuals R̃(i)j over j:

R̃2.5%
i and R̃97.5%

i respectively.

8. The lower and the upper bounds for each residual Ri of the original regression are given by

R̃2.5%
i and R̃97.5%

i , respectively.

3.3 Diagnostics

Outliers are defined as the value of some point that is very distinct from the value

predicted by the regression model. In other words, an outlier is the observation that

has large residual. However, an outlier is not necessary an influential point, it is, an

observation that pursue a large influence on the fit of the model. For this reason, the

residuals analysis might not evaluate the impact that an observation may causes in the
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estimation and the inference of the model parameters.

For such purpose, in this work we focus on the global influence to measure the

impact that some observation may causes in the model fit. One method to find out

influential points is comparing the fit of the model with and without each observation.

Thus, we are going to use the generalized Cook’s distance, proposed by Zhu et al.

(2001), that measures, in a general way, the influence of each observation of the regres-

sion coefficients, it is, they generalized the statistic prosed by Cook (1977) as a measure

of the extent of change in model estimates when a particular observation is omitted.

In other words, the idea is to compare the difference between the maximum likelihood

estimates with and without an observation and observe how far they are each other.

If the deletion of that observation seriously impact the estimates, then that particular

point requires more investigation.

Zhu et al. (2001) obtained the generalized Cook’s distance (GCD) measure on

bases of the complete log-likelihood function conditional expectation for models with

incomplete data

GCDi(θ) = (θ̂[i] − θ̂)>{−Q̈(θ̂; θ̂)}(θ̂[i] − θ̂),

where Q̈(θ̂; θ̂) =
∂2Q(θ; θ̂)

∂θ∂θ>
|θ=θ̂ and a measure with the subscript [i] indicates a quan-

tity that was computed without the ith observation deleted. In order to avoid compute

all θ̂[i] cases, what can be a cumbersome task, the authors provided the following one

step approximation θ̂
1

[i] of θ̂[i]

θ̂
1

[i] = θ̂ + {−Q̈(θ̂; θ̂)}−1Q̇[i](θ̂; θ̂),

where Q̇[i](θ̂; θ̂) =
∂Q[i](θ; θ̂)

∂θ
|θ=θ̂. In what follows, we present the expressions of the
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ZIMP models for that approximation

β̂
1

[i] = β̂ + {(X>G1X)−1aixi}|θ=θ̂,

α̂1
[i] = α̂+ {(V >G2V )−1bivi}|θ=θ̂,

γ̂1
[i] = γ̂ + {(S>G3S)−1cisi}|θ=θ̂.

where ai = δiwi − λiµi, bi = φi{ξ0λi + κi + δi[d
′(φi)− b(ξ0)]}, ci = 1− τi − δi, G1 =

diag(µiλi), G2 = diag(δi[b(ξ0)−d′(φi)−d′′(φi)]−ξ0λi−κi) and G3 = diag(τi(1−τi)),

for i = 1, . . . , n. Therefore, those approximations can be used to obtain one step

approach of the GCD as

GCD1
i (θ) = Q̇[i](θ̂; θ̂)>{−Q̈(θ̂; θ̂)}−1Q̇[i](θ̂; θ̂)

=
{
a2
ix
>
i (X>G1X)−1xi

}
+

{
b2iv

>
i (V >G2V )−1vi

}
+

{
c2is

>
i (S>G3S)−1si

}
. (15)

Furthermore, expression (15) can be divided in three components, the β component,

the α component and the τ one, as we respectively reported below

GCD1
i (β) =

{
a2
ix
>
i (X>G1X)−1xi

}
,

GCD1
i (α) =

{
b2iv

>
i (V >G2V )−1vi

}
,

GCD1
i (γ) =

{
c2is

>
i (S>G3S)−1si

}
.

In the next chapter, a Monte Carlo study will be exhibited in order to check the

finite sample maximum likelihood estimates performance, produced by the EM algo-

rithm previously introduced and, in the Empirical Illustration chapter the measures of

residuals analysis and diagnostics will be applied.
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4 Simulation Study

A simulation study was performed in order to check the results obtained through

the EM algorithm for finite samples. Three simulation scenarios were performed, con-

sidering a low zero-inflation rate, an average zero-inflation rate and a high zero-inflation

rate, using the R program (R Core Team 2016) and taking into account 4500 runs of

Monte Carlo and with the following regression structure for the mean, the dispersion

and the zero-inflation parameters

− log(µi) = β0 + β1x1i + β2x4i,

− log(φi) = α0 + α1x2i + α2x4i,

− logit(τi) = γ0 + γ1x3i + γ2x4i,

for i = 1, . . . , n, with x1i, x2i and x3i generated independently from standard uniform

distributions and x4i generated independently from the Poisson distribution with a 0.5

mean rate, all variables fixed throughout the simulation.

For all scenarios were performed samples of sizes n = 50, 100, 200, 300. In

the first one, we set (β0, β1, β2) = (1.0, 1.0, 1.5), (α0, α1, α2) = (0.5, 1.5, 1.0)

and (γ0, γ1, γ2) = (−2.0, 1.0, −1.5), providing ranges equal to (2.72, 13, 359.73),

(1.65, 1, 096.63) and (2.0×10−4, 0.12) for µ, φ and τ , respectively, and an average zero-

inflation rate of 10%. In the second and third scenarios we set almost the same values,

however (γ0, γ1, γ2) has been modified to (0.5, −1.5, −2.0) and (1.0, −0.5, −1.5) with

the purpose of get a moderate and a higher zero-inflation rate, approximately 30% and

50%, respectively. With this, the range of τ is (1.67×10−5, 0.62) and (9.0×10−4, 0.73)

for the moderate and the high zero-inflation scenarios, respectively.
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In each scenario, we set the zero-inflated negative binomial regression model and

the zero-inflated Poisson-inverse Gaussian regression model, two particular cases from

the general class of zero-inflated mixed Poisson regression models. We generate the

count data from the negative binomial distribution and the Poisson-inverse Gaus-

sian distribution, both with mean µi and dispersion parameter φi and then they

were inflated through a Bernoulli with τi probability at zero. Therefore, yielding

wi ∼ ZINB(µi, φi, τi) and wi ∼ ZIPIG(µi, φi, τi) for each case.

Hereinafter, the results of the three scenarios for the ZINB and the ZIPIG regression

models will be presented in tables 1, 2 and 3 for the ZINB case and table 5 for ZIPIG

case, wherein it is possible to check the EM algorithm estimates performance through

the mean and the root of the mean square error(RMSE) of the estimated parameters.

We remark that a table with the EM algorithm time to performs the simulation was

reported in the appendix.

We have also made a comparison between the estimates of the proposed ZIMP

regression models and the generalized additive models for location, scale and shape

(GAMLSS). According to Stasinopoulos and Rigby (2007), GAMLSS is a structure for

fitting regression models wherein the premise that the distribution of the response vari-

able belongs to the exponential family is relaxed, being replaced by highly skew and

kurtotic continuous and discrete distributions. GAMLSS allows modeling the mean

and other parameters, being used to model a response variable that does not follows

a distribution belonging to the exponential family and also to deal with heterogene-

ity. Among the distributions that belong to GAMLSS, we can cite the ZINB and the

ZIPIG distributions. The difference between GAMLSS and the proposed ZIMP regres-

sion models is that here an EM algorithm has been proposed to obtain the maximum

likelihood estimates of the parameters, while in GAMLSS they are direct obtained by

maximizing the likelihood function. The results presented hereafter strengthen the

proposed EM algorithm.
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Table 1: Mean and root of the mean square error, in parentheses, of the parameters
estimates for the ZINB model - 10% zero-inflation scenario

Sample size n = 50 n = 100

Θ ZINB GAMLSS ZINB GAMLSS

β0 0.987 (0.388) 0.990 (0.389) 0.988 (0.275) 0.989 (0.275)

β1 0.995 (0.524) 0.993 (0.526) 1.004 (0.308) 1.005 (0.309)

β2 1.512 (0.453) 1.510 (0.455) 1.506 (0.312) 1.505 (0.313)

α0 0.737 (1.872) 0.856 (2.859) 0.571 (1.160) 0.579 (1.204)

α1 1.563 (2.478) 1.749 (3.289) 1.584 (1.449) 1.626 (1.532)

α2 1.013 (2.477) 0.829 (3.526) 1.077 (1.571) 1.055 (1.634)

γ0 −3.186 (6.729) −1×1012 (7×1013) −2.195 (1.665) −2.189 (1.630)

γ1 1.469 (2.726) −4×1012 (2×1014) 1.089 (0.775) −4×1011 (4×1013)

γ2 −1.603 (10.442) −2×1012 (1×1014) −1.623 (2.512) −1.623 (2.496)

Sample size n = 200 n = 300

Θ ZINB GAMLSS ZINB GAMLSS

β0 0.995 (0.172) 0.996 (0.172) 0.996 (0.135) 0.997 (0.135)

β1 1.001 (0.199) 1.002 (0.200) 1.001 (0.155) 1.002 (0.155)

β2 1.505 (0.198) 1.504 (0.198) 1.502 (0.157) 1.501 (0.156)

α0 0.510 (0.742) 0.519 (0.759) 0.516 (0.595) 0.527 (0.608)

α1 1.578 (0.996) 1.605 (1.022) 1.532 (0.798) 1.557 (0.822)

α2 1.044 (0.997) 1.020 (1.020) 1.034 (0.777) 1.007 (0.793)

γ0 −2.098 (0.813) −196.881 (2×104) −2.068 (0.613) −2.056 (0.607)

γ1 1.049 (0.457) 98.445 (9×103) 1.034 (0.343) 1.032 (0.343)

γ2 −1.560 (1.362) −1.576 (1.362) −1.516 (1.042) −1.534 (1.040)

Taking a look at table 1, in general the estimates obtained through the EM algo-

rithm performs well about bias and RMSE criteria, even for small samples size, except

for γ’s parameters on 50 samples size, which has −3.186 as estimate for the right −2

value of γ0 and 10.442 as RMSE value for γ2, a large value when comparing with the

others. Comparing the EM estimates of the proposed model with the estimates pro-

duced by the GAMLSS, one can notice that GAMLSS performs well as EM only for the

samples of size 300, but when one take a look at the smaller samples size it is possible

to observe the γ’s parameters extremely biased and with high RMSE values, as well as

a not so good performance of α’s parameters for samples of size 50.
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Therefore, the EM algorithm estimates performed low bias, mainly for moderate

or large samples size. Briefly describing the EM algorithm estimates performance for

RMSE criterion, it performs well for almost all parameters, except for γ’s on 50 sam-

ples size, however RMSE fast decreases when samples size increases.

Analyzing table 2, we see a similar pattern about the bias and the RMSE criteria,

just as the results presented in table 1. Furthermore, in the second scenario, which has

a moderate zero-inflation rate, around 30%, we observe a better performance than in

the first one, since the bias and the RMSE are lower, even for γ’s parameters on 50

samples size.

By looking the GAMLSS results, just as for the scenario of the 10% zero-inflation

rate, one can see bad performance for γ1 parameter in any of the samples size, even

for samples of size 300. This parameter is related to the variable generated according

to the Poisson distribution with a 0.5 mean rate, but it did not affect the estimates of

the proposed EM algorithm, that performs well even for small samples size.

Table 3 holds the scenario with a high zero-inflation rate and allows one to notice

that the EM algorithm produced good estimates for all samples size, since we can real-

ize low bias and RMSE, whereas the GAMLSS did not performs well for γ1 parameter

on samples of size 50 and 100, producing estimates completely biased and with high

RMSE values. In summary, the GAMLSS performs well for the high zero-inflation

scenario for 200 samples size or higher.
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Table 2: Mean and root of the mean square error, in parentheses, of the parameters
estimates for the ZINB model - 30% zero-inflation scenario

Sample size n = 50 n = 100

Θ ZINB GAMLSS ZINB GAMLSS

β0 0.974 (0.498) 0.970 (0.506) 0.983 (0.298) 0.982 (0.299)

β1 1.004 (0.449) 1.006 (0.453) 1.006 (0.289) 1.008 (0.290)

β2 1.523 (0.518) 1.527 (0.528) 1.514 (0.340) 1.513 (0.341)

α0 0.706 (1.903) 0.751 (3.399) 0.597 (1.328) 0.598 (1.394)

α1 1.540 (2.558) 1.678 (3.817) 1.579 (1.610) 1.628 (1.686)

α2 1.067 (2.445) 1.154 (3.848) 1.052 (1.761) 1.036 (1.857)

γ0 0.448 (1.259) 0.397 (1.435) 0.523 (0.870) 0.519 (0.868)

γ1 −2.444 (4.200) −3×1010(1×1015) −1.787 (1.692) −2×1013(2×1014)

γ2 −2.118 (2.102) −2.060 (2.239) −2.069 (1.468) −2.063 (1.465)

Sample size n = 200 n = 300

Θ ZINB GAMLSS ZINB GAMLSS

β0 0.995 (0.203) 0.995 (0.203) 0.996 (0.164) 0.997 (0.164)

β1 0.997 (0.217) 0.997 (0.217) 1.002 (0.172) 1.002 (0.172)

β2 1.505 (0.224) 1.505 (0.225) 1.502 (0.184) 1.500 (0.184)

α0 0.520 (0.877) 0.530 (0.909) 0.511 (0.681) 0.527 (0.692)

α1 1.574 (1.077) 1.597 (1.110) 1.531 (0.836) 1.550 (0.857)

α2 1.045 (1.070) 1.025 (1.107) 1.043 (0.892) 1.013 (0.905)

γ0 0.497 (0.527) 0.498 (0.525) 0.495 (0.437) 0.499 (0.436)

γ1 −1.587 (0.715) −2×1012(5×1013) −1.553 (0.483) −5×1010(4×1012)

γ2 −2.019 (0.897) −2.020 (0.895) −2.008 (0.768) −2.014 (0.768)

Before presenting the results of the ZIPIG case, we may first check how some pa-

rameters estimates of the 4500 samples are distributed, making a comparison between

the estimates of the ZIMP models and the GAMLSS.
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Table 3: Mean and root of the mean square error, in parentheses, of the parameters
estimates for the ZINB model - 50% zero-inflation scenario

Sample size n = 50 n = 100

Θ ZINB GAMLSS ZINB GAMLSS

β0 0.957 (0.638) 0.949 (0.659) 0.980 (0.369) 0.978 (0.373)

β1 1.010 (0.592) 1.014 (0.603) 1.008 (0.407) 1.010 (0.410)

β2 1.541 (0.749) 1.549 (0.776) 1.512 (0.447) 1.514 (0.451)

α0 0.744 (2.646) 0.779 (4.787) 0.642 (1.653) 0.634 (2.110)

α1 1.116 (2.939) 1.279 (5.332) 1.499 (2.035) 1.612 (2.653)

α2 1.303 (3.260) 1.393 (5.477) 1.123 (2.152) 1.154 (3.102)

γ0 0.892 (1.337) 0.835 (1.494) 1.010 (0.693) 1.003 (0.702)

γ1 −0.607 (0.955) −2×1012 (6×1013) −0.536 (0.528) −2×1011 (1×1013)

γ2 −1.407 (2.016) −1.340 (2.193) −1.547 (1.255) −1.539 (1.269)

Sample size n = 200 n = 300

Θ ZINB GAMLSS ZINB GAMLSS

β0 0.991 (0.241) 0.992 (0.241) 0.995 (0.205) 0.995 (0.205)

β1 1.000 (0.268) 1.001 (0.268) 0.997 (0.225) 0.998 (0.225)

β2 1.507 (0.292) 1.505 (0.292) 1.505 (0.233) 1.504 (0.233)

α0 0.555 (1.132) 0.570 (1.172) 0.535 (0.913) 0.550 (0.932)

α1 1.548 (1.333) 1.581 (1.395) 1.563 (1.110) 1.581 (1.138)

α2 1.069 (1.479) 1.039 (1.519) 1.026 (1.121) 1.000 (1.139)

γ0 1.003 (0.462) 1.004 (0.462) 1.006 (0.392) 1.007 (0.392)

γ1 −0.511 (0.349) −0.511 (0.349) −0.514 (0.267) −0.514 (0.266)

γ2 −1.508 (0.772) −1.510 (0.772) −1.505 (0.622) −1.508 (0.623)

In figure 1, through the boxplots it is possible to verify that GAMLSS produced

several outliers for the α’s parameters, what does not happen with the EM algorithm

estimates. The analysis of γ1, for n = 50, shows the same behavior of α’s, helping

us to understand the reason of such bad estimates presented in table 1. However, it

is important to point that the bad estimates of γ0, for n = 50 and n = 200, occur

because of some few extreme outliers (one or two), which leads us to believe in better

estimates after removing the corresponding samples, but it is not the case for samples

of size 100, once its has some outliers but not with extreme high values. Moreover,

the EM algorithm estimates performs similar, as one see through the boxplot, but did

not produces strong biased estimates as GAMLSS. The same pattern is observed for
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Figure 1: Estimates distribution of the ZINB model - 10% zero-inflation scenario

γ1 parameters, but for samples of size 100 and 200.

An important remark is that, in a general way, the outliers of the γ’s parameters

from GAMLSS reach extremely high values. The dotted red line represents the real

parameters value. Another important remark is that we decided do not put the box-

plots of the β’s parameters because of its good behavior for the EM algorithm and the

GAMLSS estimates.
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Figure 2: Estimates distribution of the ZINB model - 30% zero-inflation scenario

The assessment of figure 2 reveals that GAMLSS produced several outliers for the

α’s parameters, with a scale that goes from −40 to 40. Different from what happened

in the 10% zero-inflation scenario, here one can realize that the bloxplots of γ1, for

any of the samples size, have lots of outliers that reach extreme high values, explaining

the bad estimates presented in table 2, except for n = 300, whereas only one outlier is

extremely high and if one remove that sample, then the estimate would be good. One

more time, we reinforce that the EM algorithm could deal well with that issue and

have presented good estimates, even for small samples size.
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Figure 3: Estimates distribution of the ZINB model - 50% zero-inflation scenario

Figure 3 represents the estimates bloxplots of the 50% zero-inflation scenario. The

analyzes of α’s for 50 samples size are quite similar to the 10% and the 30% scenar-

ios, with outliers produced by GAMLSS in a scale that goes to −40 to 40. The same

pattern is also observed in 100 samples size, but it did not happen in the previous

scenarios for samples of size 100. In this case, the many extreme values for γ1 occur

only for 50 samples size, once the bad estimate for the 100 samples sizes occur because

only one extreme outlier, what could be solved removing that sample.
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Essentially, GAMLSS use to produces hugely biased estimates for γ’s, even for large

samples size, as we noticed for γ1 at the 30% zero-inflation scenario. Even in cases in-

volving only one questionable sample, it is important to remember that such cases with

extreme values produced did not arise from the EM algorithm estimates. Another im-

portant observation is that even GAMLSS has been produced not so biased estimates

for the α’s parameters and not so RMSE high values, we could observe the presence

of lots of outliers that sometimes reach a large range, which can lead to unpleasant

estimates for the dispersion parameter φ, as we will see at table 4.

Table 4: Average estimates of µ, φ and τ parameters from the ZINB model

10% zero-inflation scenario 30% zero-inflation scenario 50% zero-inflation scenario

n = 50 µ φ τ µ φ τ µ φ τ

Θ 9.508 6.693 0.134 11.338 7.063 0.276 11.902 6.406 0.489

ΘEM 9.536 15.388 0.130 11.363 13.630 0.268 12.003 12.478 0.469

ΘGAMLSS 9.542 1×1012 NA 11.359 1×1013 NA 12.010 2×1014 0.465

n = 100 µ φ τ µ φ τ µ φ τ

Θ 10.506 6.316 0.130 11.499 6.847 0.259 10.377 5.800 0.520

ΘEM 10.495 8.786 0.128 11.502 9.843 0.258 10.392 9.479 0.515

ΘGAMLSS 10.499 12.281 0.128 11.506 10.434 NA 10.397 5×1011 0.514

n = 200 µ φ τ µ φ τ µ φ τ

Θ 10.188 6.382 0.122 10.903 6.72 0.271 10.391 6.569 0.516

ΘEM 10.196 7.490 0.120 10.895 8.059 0.270 10.385 8.600 0.515

ΘGAMLSS 10.199 7.621 NA 10.898 8.213 0.270 10.391 9.180 0.515

n = 300 µ φ τ µ φ τ µ φ τ

Θ 10.657 6.470 0.127 11.582 6.712 0.266 10.875 6.130 0.499

ΘEM 10.652 7.174 0.126 11.578 7.486 0.265 10.866 7.271 0.499

ΘGAMLSS 10.656 7.280 0.126 11.583 7.580 0.265 10.872 7.388 0.499
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By looking table 4, we observe good average estimates of µ and τ produced by

the EM algorithm for the three scenarios. GAMLSS also produced good estimates,

except for τ in the 10% zero-inflation scenario, on 50 and 200 samples size, and in the

30% zero-inflation scenario, on 100 and 200 samples size, whom could not produce an

average estimate for τ because of the extreme γ’s parameters estimates values. We

highlight that for 200 samples size, at the 10% zero-inflation scenario, only one sample

produced a high value for γ0 and γ1 and, removing that sample, probably GAMLSS

would produces a good estimate. However, for the other samples size, several samples

produced γ’s estimates with huge values.

Despite GAMLSS did not produces strong biased values for α’s parameters, its had

several outliers that reached a range between −40 and 40, which reflected in the φ

estimative, because it generated really biased estimates for 50 and 100 samples size,

getting better only for 200 samples size or higher. It is true that the EM algorithm did

not produces so positive estimates, but they were not so biased for samples of size 100

or higher. For samples of size 50 the estimates are biased, but not so strong as those

produced by GAMLSS, and it is well known that modeling the dispersion parameter

is not truly easy.

Now, the estimates of the ZIPIG regression model will be presented at table 5 for

the three zero-inflation scenarios. A general analysis of table 5 shows that the estimates

obtained through the EM algorithm performs well about bias and RMSE criteria, even

for small samples size, except maybe for γ’s parameters on samples of size 50 in the

10% zero-inflation scenario, specially γ0 and γ2, that are biased and with a high RMSE

value.
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Table 5: Mean and root of the mean square error, in parentheses, of the parameters
estimates for the ZIPIG model

ZIPIG 10% zero-inflation scenario

Θ n = 50 n = 100 n = 200 n = 300

β0 0.987 (0.368) 0.994 (0.246) 0.993 (0.179) 0.996 (0.143)

β1 1.001 (0.497) 1.000 (0.249) 1.002 (0.197) 1.001 (0.171)

β2 1.510 (0.429) 1.505 (0.303) 1.505 (0.209) 1.503 (0.164)

α0 0.673 (3.121) 0.603 (1.365) 0.522 (0.813) 0.524 (0.653)

α1 2.023 (3.867) 1.600 (1.814) 1.578 (1.121) 1.516 (0.850)

α2 1.097 (3.544) 1.042 (1.730) 1.036 (1.105) 1.027 (0.838)

γ0 −3.262 (10.037) −2.282 (3.177) −2.083 (0.850) −2.061 (0.636)

γ1 1.538 (4.688) 1.131 (1.475) 1.042 (0.399) 1.034 (0.403)

γ2 −2.399 (20.419) −1.591 (3.193) −1.548 (1.385) −1.530 (1.044)

ZIPIG 30% zero-inflation scenario

Θ n = 50 n = 100 n = 200 n = 300

β0 0.987 (0.499) 0.994 (0.286) 0.997 (0.181) 0.994 (0.162)

β1 1.005 (0.479) 0.998 (0.323) 0.998 (0.195) 1.001 (0.173)

β2 1.506 (0.509) 1.504 (0.360) 1.503 (0.211) 1.505 (0.190)

α0 0.691 (3.356) 0.600 (1.752) 0.539 (1.036) 0.531 (0.764)

α1 2.158 (4.240) 1.743 (2.112) 1.573 (1.195) 1.558 (0.969)

α2 1.093 (3.930) 1.031 (2.099) 1.030 (1.213) 1.010 (0.991)

γ0 0.521 (1.118) 0.521 (0.686) 0.510 (0.502) 0.509 (0.418)

γ1 −1.735 (2.024) −1.793 (1.738) −1.592 (0.691) −1.564 (0.503)

γ2 −2.121 (2.006) −2.080 (1.383) −2.042 (0.899) −2.026 (0.751)

ZIPIG 50% zero-inflation scenario

Θ n = 50 n = 100 n = 200 n = 300

β0 0.997 (0.588) 0.985 (0.384) 0.992 (0.251) 0.998 (0.193)

β1 1.007 (0.478) 1.003 (0.359) 1.000 (0.253) 1.001 (0.196)

β2 1.491 (0.722) 1.513 (0.429) 1.505 (0.292) 1.497 (0.222)

α0 1.210 (5.246) 0.710 (2.146) 0.558 (1.249) 0.551 (0.979)

α1 2.075 (6.113) 1.854 (2.752) 1.643 (1.672) 1.587 (1.204)

α2 0.921 (6.552) 0.891 (2.695) 1.054 (1.649) 1.004 (1.236)

γ0 1.003 (1.172) 1.036 (0.744) 1.021 (0.457) 1.009 (0.387)

γ1 −0.665 (1.229) −0.532 (0.450) −0.521 (0.316) −0.516 (0.255)

γ2 −1.515 (1.691) −1.555 (1.131) −1.531 (0.788) −1.508 (0.612)
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The comparison between the EM algorithm estimates and GAMLSS estimates has

not been made because GAMLSS could not fit most of the 4500 samples of the Monte

Carlo study. Then, we present at table below how many samples GAMLSS could fit

among the 4500 samples, considering the three scenarios of different zero-inflation rates

and for samples of size 50, 100, 200 and 300.

Table 6: Number of samples fitted by GAMLSS in 4500 samples

Scenarios n = 50 n = 100 n = 200 n = 300

10% zero-inflation 1239 3857 3975 1

30% zero-inflation 208 11 1 88

50% zero-inflation 5 0 0 1098

The figure below allow us to check how the parameters estimates of some of the

4500 samples are distributed for the ZIPIG case, making a comparison between the

estimates of the EM algorithm and GAMLSS for the 10% zero-inflation scenario, the

only one that GAMLSS could fit more than 1000 samples, considering samples of size

50, 100 and 200.
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Figure 4: Estimates distribution of the ZIPIG model - 10% zero-inflation scenario
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We are drawing attention to the α’s parameters because the estimates produced by

GAMLSS are underestimated for α0 in samples of size 100 and 200 and overestimated

for α2, which can conduct to bad estimates of the dispersion parameter φ.

We now observe tables 7 to 9, that hold the empirical standard deviation of the pa-

rameters estimates of the model and theoretical standard deviation of the parameters

for the ZINB regression model, it is, the average of the standard errors extracted from

the observed information matrix. The tables reveal good results even for 50 samples

size, leading to the conclusion that the standard errors obtained through the observed

information matrix are appropriate for estimating the parameter estimators standard

errors.

Table 7: Empirical and theoretical standard errors of the estimates for the parameters of
the ZINB model - 10% zero-inflation scenario

10% zero-inflation β0 β1 β2 α0 α1 α2 γ0 γ1 γ2

n = 50

Empirical 0.274 0.370 0.320 1.313 1.752 1.752 4.684 1.899 7.384

Theoretical 0.263 0.351 0.309 1.347 1.909 1.932 5.241 2.569 3.868

n = 100

Empirical 0.194 0.218 0.221 0.819 1.023 1.109 1.169 0.545 1.774

Theoretical 0.189 0.211 0.215 0.796 1.024 1.097 0.876 0.442 1.490

n = 200

Empirical 0.122 0.141 0.140 0.525 0.702 0.705 0.571 0.321 0.962

Theoretical 0.118 0.138 0.136 0.508 0.698 0.688 0.526 0.296 0.948

n = 300

Empirical 0.095 0.110 0.111 0.421 0.564 0.549 0.431 0.242 0.737

Theoretical 0.098 0.110 0.113 0.416 0.561 0.548 0.423 0.234 0.710
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Table 8: Empirical and theoretical standard errors of the estimates for the parameters of
the ZINB model - 30% zero-inflation scenario

30% zero-inflation β0 β1 β2 α0 α1 α2 γ0 γ1 γ2

n = 50

Empirical 0.352 0.317 0.366 1.338 1.809 1.728 0.889 2.894 1.484

Theoretical 0.337 0.305 0.346 1.391 1.988 1.931 0.816 12.338 1.352

n = 100

Empirical 0.210 0.205 0.240 0.937 1.137 1.245 0.615 1.179 1.037

Theoretical 0.204 0.196 0.235 0.949 1.184 1.262 0.597 1.329 1.001

n = 200

Empirical 0.143 0.153 0.159 0.620 0.760 0.756 0.373 0.502 0.634

Theoretical 0.140 0.149 0.155 0.626 0.763 0.773 0.376 0.460 0.633

n = 300

Empirical 0.116 0.121 0.130 0.482 0.591 0.630 0.309 0.339 0.543

Theoretical 0.113 0.119 0.129 0.478 0.588 0.633 0.307 0.338 0.540

Table 9: Empirical and theoretical standard errors of the estimates for the parameters of
the ZINB model - 50% zero-inflation scenario

50% zero-inflation β0 β1 β2 α0 α1 α2 γ0 γ1 γ2

n = 50

Empirical 0.450 0.418 0.529 1.863 2.061 2.295 0.942 0.671 1.424

Theoretical 0.429 0.397 0.509 2.327 2.635 2.855 0.923 0.607 1.393

n = 100

Empirical 0.261 0.288 0.316 1.165 1.439 1.519 0.490 0.373 0.887

Theoretical 0.253 0.269 0.307 1.278 1.633 1.744 0.490 0.362 0.883

n = 200

Empirical 0.170 0.189 0.206 0.800 0.942 1.045 0.327 0.246 0.546

Theoretical 0.169 0.186 0.201 0.792 0.970 1.036 0.326 0.241 0.542

n = 300

Empirical 0.145 0.159 0.165 0.645 0.784 0.792 0.277 0.188 0.440

Theoretical 0.143 0.154 0.162 0.643 0.801 0.785 0.271 0.183 0.433
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Tables 10 to 12 hold the empirical standard deviation of the parameters estimates

of the model and theoretical standard deviation of the parameters for the ZIPIG re-

gression model. The tables lead to the same conclusion as in the ZINB case, it is, reveal

good results even for samples of size 50, except for γ’s in the 10% zero-inflation scenario,

leading to the conclusion that the standard errors obtained through the observed infor-

mation matrix are appropriate for estimating the parameter estimators standard errors.

Table 10: Empirical and theoretical standard errors of the estimates for the parameters of
the ZIPIG model - 10% zero-inflation scenario

10% zero-inflation β0 β1 β2 α0 α1 α2 γ0 γ1 γ2

n = 50

Empirical 0.260 0.351 0.303 2.203 2.710 2.505 7.041 3.293 14.425

Theoretical 0.242 0.317 0.282 1.941 2.348 2.214 500.479 254.738 6.229

n = 100

Empirical 0.174 0.176 0.215 0.962 1.281 1.223 2.238 1.039 2.257

Theoretical 0.171 0.170 0.208 0.934 1.197 1.200 3.364 1.705 1.581

n = 200

Empirical 0.126 0.140 0.148 0.575 0.791 0.781 0.598 0.280 0.979

Theoretical 0.126 0.136 0.148 0.577 0.784 0.788 0.576 0.269 0.958

n = 300

Empirical 0.101 0.121 0.116 0.462 0.601 0.592 0.448 0.284 0.738

Theoretical 0.098 0.116 0.115 0.468 0.606 0.599 0.451 0.283 0.729
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Table 11: Empirical and theoretical standard errors of the estimates for the parameters
of the ZIPIG model - 30% zero-inflation scenario

30% zero-inflation β0 β1 β2 α0 α1 α2 γ0 γ1 γ2

n = 50

Empirical 0.353 0.339 0.360 2.369 2.962 2.779 0.791 1.422 1.416

Theoretical 0.322 0.313 0.327 2.077 2.513 2.411 0.745 2.225 1.310

n = 100

Empirical 0.202 0.228 0.254 1.237 1.484 1.484 0.485 1.212 0.976

Theoretical 0.191 0.216 0.239 1.195 1.442 1.461 0.479 1.376 0.959

n = 200

Empirical 0.128 0.138 0.149 0.732 0.843 0.858 0.355 0.484 0.635

Theoretical 0.127 0.132 0.151 0.733 0.862 0.856 0.349 0.438 0.625

n = 300

Empirical 0.114 0.123 0.135 0.539 0.684 0.701 0.295 0.353 0.531

Theoretical 0.112 0.121 0.135 0.539 0.685 0.701 0.295 0.339 0.528

Table 12: Empirical and theoretical standard errors of the estimates for the parameters
of the ZIPIG model - 50% zero-inflation scenario

50% zero-inflation β0 β1 β2 α0 α1 α2 γ0 γ1 γ2

n = 50

Empirical 0.416 0.338 0.511 3.676 4.304 4.633 0.829 0.861 1.195

Theoretical 0.357 0.292 0.432 3.555 3.695 4.181 0.767 0.741 1.116

n = 100

Empirical 0.271 0.254 0.303 1.510 1.930 1.904 0.525 0.317 0.799

Theoretical 0.255 0.240 0.286 1.387 1.808 1.806 0.508 0.300 0.768

n = 200

Empirical 0.177 0.179 0.207 0.882 1.178 1.166 0.323 0.223 0.557

Theoretical 0.172 0.172 0.202 0.856 1.145 1.143 0.320 0.219 0.554

n = 300

Empirical 0.136 0.139 0.157 0.691 0.849 0.874 0.274 0.180 0.433

Theoretical 0.134 0.137 0.155 0.683 0.840 0.873 0.274 0.179 0.435
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We have also performed a simulation study considering the zero-inflation parameter

τ near to zero, it is, when the data set does not have zeros excess. When one takes

a look at the γ’s parameters estimates, they are far from the real values especially

for samples of size 50 and 100, being closer to the real parameters for samples of size

200 or higher. However, when we take a look at the average estimates of µ, φ and τ

parameters, we may notice a satisfactory performance, as showed by table 13 below

Table 13: Average estimates of µ, φ and τ parameters from the ZINB and the ZIPIG
models

Non zero-inflation scenario

ZINB ZIPIG

n = 50 µ φ τ n = 50 µ φ τ

Θ 11.857 6.495 0.017 Θ 11.362 6.620 0.015

ΘEM 11.902 84.881 0.021 ΘEM 11.409 1021.983 0.015

n = 100 µ φ τ n = 100 µ φ τ

Θ 10.647 6.801 0.016 Θ 11.548 7.016 0.014

ΘEM 10.652 9.252 0.019 ΘEM 11.557 10.800 0.017

n = 200 µ φ τ n = 200 µ φ τ

Θ 10.822 6.396 0.015 Θ 11.325 6.368 0.015

ΘEM 10.823 7.324 0.016 ΘEM 11.339 7.436 0.018

n = 300 µ φ τ n = 300 µ φ τ

Θ 10.756 6.476 0.016 Θ 10.568 6.287 0.015

ΘEM 10.760 6.981 0.016 ΘEM 10.566 6.902 0.015
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5 Empirical Illustration

This chapter is dedicated to show how useful the proposed class is through an ap-

plication to a real data set, which is described as follows. The data, reported by Ridout

et al. (1998) and also analyzed, for instance, by Ridout et al. (2001) and Garay et al.

(2011), is an apple cultivar data with the number of roots produced by 270 microprop-

agated shoots of the columnar apple cultivar Trajan.

According to Ridout et al. (1998), during the rooting period, all shoots were main-

tained under identical conditions, but the shoots themselves were cultured on media

containing one of four different concentrations of the cytokinin BAP, in growth cabi-

nets with an 8 or 16 hour photoperiod. There were 30 or 40 shoots of each of these

eight treatment combinations. Of the 140 shoots produced under the 8 hour photope-

riod, only 2 failed to produce roots, but 62 of the 130 shoots produced under the 16

hour photoperiod failed to root. Thus, the response variable, denoted by wi, and the

covariates of interest are

− wi : count of roots,

− xi1 : concentrations of the cytokinin BAP,

− xi2 : photoperiod (0 = 8 hrs, 1 = 16 hrs).

Therefore, the model may be write as follows

− log(µi) = β0 + β1x1i + β2x2i,

− log(φi) = α0 + α1x1i + α2x2i,

− logit(τi) = γ0 + γ1x1i + γ2x2i,
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for i = 1, . . . , 270. Two scenarios will be taking into account for fit the apple cultivar

data, it is, two models with that regression structure will be considered, the first one

is the zero-inflated negative binomial regression model and the second one is the zero-

inflated Poisson-inverse Gaussian regression model.

Starting our study by the zero-inflated negative binomial case, the estimates of the

full fitted model is presented at table 14, as well as its standard errors, z values and p

values.

Table 14: Estimates, standard errors, z values and p values of the full ZINB model fit

Θ Est. SE z value p value

β0 1.961 0.070 27.835 0.000

β1 0.003 0.006 0.450 0.653

β2 −0.383 0.092 −4.140 0.000

α0 1.641 0.634 2.588 0.010

α1 0.187 0.098 1.898 0.058

α2 −1.522 0.689 −2.210 0.027

γ0 −4.423 0.795 −5.560 0.000

γ1 0.016 0.031 0.502 0.615

γ2 4.078 0.773 5.278 0.000

One can notice through table 14 that the covariate concentrations of the cytokinin

BAP, x1, is not significant for modeling both the mean µi and the zero-inflation pa-

rameter τi of the count of roots, once the p values related to the parameters β1 and

γ1 are not significant at the 5% usual significance level. But, in a first moment, that

covariate seems to be considerable for explain the dispersion parameter, since its value

is closer to the significance level. For this reason, a second and reduced model was

fitted, considering β1 = γ1 = 0, as it is possible to see at table 15.
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Table 15: Estimates, standard errors, z values and p values of the reduced ZINB
model fit

Θ Est. SE z value p value

β0 1.987 0.038 52.758 0.000

β2 −0.371 0.087 −4.262 0.000

α0 1.613 0.633 2.546 0.011

α1 0.187 0.101 1.860 0.063

α2 −1.376 0.635 −2.166 0.030

γ0 −4.296 0.756 −5.680 0.000

γ2 4.114 0.780 5.272 0.000

After fitting the reduced model, at the 5% significance level, table 15 suggests that

the parameter α1 is not significant indeed. Therefore, how the covariate x1 is showing

to be not relevant, a third model is presented in the following table, taking into account

just the covariate photoperiod, x2.

Table 16: Estimates, standard errors, z values and p values of the final reduced ZINB
model fit

Θ Est. SE z value p value

β0 1.972 0.037 53.618 0.000

β2 −0.303 0.088 −3.425 0.001

α0 3.083 0.522 5.903 0.000

α2 −1.562 0.660 −2.369 0.018

γ0 −4.387 0.831 −5.277 0.000

γ2 4.231 0.852 4.968 0.000

Now, taking a look at figure 5, which presents the simulated envelopes of the Pear-

son residual against the theoretical quantiles of the standard normal distribution, we

may conclude that the fitting looks suitable, since the residuals remain all inside of the

envelope and, furthermore, is difficult detect the presence of outliers.
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Figure 5: Simulated envelopes for the Pearson residual in the ZINB model

To verify the presence of observations that may be influential, lets take a look at

figure 6 that contains the generalized Cook’s distance measure. In the figure there

are four plots, a general plot and one for each group of parameters, it is, for β’s, α’s

and γ’s. In essence, the plots indicate two observations as potential outliers that can

pursue influence, observations 101 and 102. In order to identify how this observations

can influence the fit, after the influence analysis of the ZIPIG model, we present a new

fit for ZINB and ZIPIG regression models, but removing those points.
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Figure 6: Generalized Cook’s Distance of the ZINB model

Pursuing with the models fit, we now focus on zero-inflated Poisson-inverse Gaus-

sian regression model. Thus, the estimates of the full fitted model is presented at table

17, as well as its standard errors, z values and p values.

Table 17: Estimates, standard errors, z values and p values of the full ZIPIG model fit

Θ Est. SE z value p value

β0 1.970 0.070 28.161 0.000

β1 0.002 0.006 0.299 0.765

β2 −0.358 0.084 −4.255 0.000

α0 1.657 0.748 2.215 0.027

α1 0.184 0.111 1.662 0.097

α2 −1.275 0.701 −1.819 0.069

γ0 −4.363 0.790 −5.524 0.000

γ1 0.009 0.029 0.303 0.762

γ2 4.133 0.771 5.360 0.000

49



Analyzing table 17, it is possible to reach the same conclusions as that pointed

about table 14, wherein the covariate x1 is not significant for modeling the mean, the

zero-inflation and also the dispersion parameters of the count of roots, since the p

values related to the parameters β1, α1 and γ1 are not significant at the 5% usual

significance level. The covariate x2 seems significant, except maybe for the α2, related

to the dispersion parameter. However, the p value for α2 is smaller than the 10% level

and one can consider keep the covariate and decides or not by its exclusion after fit

the reduced model. For this reason, a second and reduced model was fitted and the

covariate x2 has been kept, considering β1 = α1 = γ1 = 0.

Table 18: Estimates, standard errors, z values and p values of the reduced ZIPIG
model fit

Θ Est. SE z value p value

β0 1.972 0.037 53.753 0.000

β2 −0.295 0.086 −3.432 0.001

α0 3.103 0.526 5.894 0.000

α2 −1.523 0.682 −2.231 0.026

γ0 −4.373 0.819 −5.339 0.000

γ2 4.235 0.839 5.047 0.000

The analysis of the reduced model at table 18 suggests that we have found a final

model, since all parameters are significant at 5% significance level. Therefore, the final

proposed model for both the ZINB and the ZIPIG regression models agree one each

other because both reach the same conclusion, it is, that only the covariate photoperiod

was significant for modeling the count of apple roots. An interesting remark is that the

ZINB model reaches the final reduced model in three steps whereas the ZIPIG model

reaches the final reduced model directly, in two steps.
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Now, taking a look at figure 7, which presents the simulated envelopes of the Pear-

son residual against the theoretical quantiles of the standard normal distribution, we

may conclude that the fitting looks suitable, since the residuals remain almost all inside

of the envelope, except perhaps the one next to the last.
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Figure 7: Simulated envelopes for the Pearson residual in the ZIPIG model

To verify the presence of observations that may be influential in the ZIPIG regres-

sion model, we should look at figure 8 that contains the generalized Cook’s distance

measure for its case. The plots indicate the same two observations as that pointed in

the ZINB regression model as potential outliers that can pursue influence. Then, we

present in what follows the results of the fit for the ZINB and the ZIPIG regression

models case after removing 101 and 102 observations.
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Figure 8: Generalized Cook’s Distance of the ZIPIG model

Table 19: Estimates, standard errors, z values and p values after removing 101 and
102 observations

ZINB Θ Est. z value p value

β0 1.974 0.036 54.306 0.000

β2 −0.305 0.088 −3.455 0.001

α0 3.134 0.527 5.951 0.000

α2 −1.612 0.663 −2.429 0.015

γ0 −11.581 27.868 −0.416 0.678

γ2 11.425 27.869 0.410 0.682

ZIPIG Θ Est. z value p value

β0 1.974 0.036 54.714 0.000

β2 −0.297 0.086 −3.460 0.001

α0 3.197 0.553 5.785 0.000

α2 −1.621 0.702 −2.310 0.021

γ0 −10.449 15.847 −0.659 0.510

γ2 10.310 15.848 0.651 0.515
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Table 19 provides a first print that ZIMP regression models perhaps are not the

best choice to fit the chosen data set, once all γ’s parameters are not significant at

any usual significance level, but we should be careful in our assessment. Here we could

notice the importance of the diagnostic analysis, that raise awareness of that maybe

the data set is not zero-inflated.

Then, proceeding with a particular data set examination, one may notice that the

data set can be divided in two data sets, the first one composed by those 140 shoots

produced under the 8 hour photoperiod, wherein only 2 failed to produce roots, and the

second one composed by 130 shoots produced under the 16 hour photoperiod, wherein

62 failed to produce roots. It is important to realize that the observations pointed as

possible influential are exactly the only 2 shoots that failed under the 8 hour photope-

riod.

Thus, the choice of the apple cultivar data set was interesting because of some rea-

sons, such as researches must pay attention to their data sets, as well as which model

should be applied, once the fit can be compromised. Furthermore, one can realize the

importance of the diagnostics analysis. We must acknowledge that we have made just

the global influence analysis, but this was enough to identify that maybe the data set

should not be directly be fitted by a ZIMP regression model. The fact is the data is

composed by to distinct groups, one non-zero-inflated and a second one that have zeros

excess. Therefore, the reader will find in the next section the fit of the apple cultivar

data set, but now divided in two data sets, the first one with no zero excess and the

second one zero-inflated.

We highlight to the fact that some analyzes made by Garay et al. (2011) are compro-

mised, especially about the diagnostic analysis on the application section, unfortunately

because of a error type in the data set, once they reported one of the concentrations of

the cytokinin BAP as 18.6 instead of 17.6. Despite they have found similar parameters
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estimates, they have found different observations as possible influential points through

the GCD measure, observations 191 and 192, while we have found observations 101

and 102, changing completely assessments about that data set.

We would like to draw attention to the fact that we fit GAMLSS for the ZINB

and the ZIPIG cases. As expected, the ZINB case was fitted successfully, but for

the ZIPIG case, as already indicated in the simulation chapter, GAMLSS could not

fit this data set, reporting the following error: “Error in RS(): The global deviance

is increasing. Try different steps for the parameters or the model maybe inappropriate”.

Lets check now the fit of the models without the zero-inflation structure, it is, the fit

of the negative binomial regression model and the Poisson-inverse Gaussian regression

model, as well as, the ZIP regression model in order to show its inadequacy. For that,

we present in what follows a table with the observed versus the predicted values for

the percentage of counts of apple roots equal to w for each model, but just for those

shoots that were produced under the 16 hour photoperiod, according to the previous

discussion made after de diagnostic analysis.

The analysis of the table 20 allows us to realize that the ZINB and the ZIPIG are the

regression models that have had the better performance, since the difference between

the observed percentage of counts values and the predicted ones are smaller than NB,

PIG and ZIP regression models, especially for the percentage of zeros. While the ZINB

and the ZIPIG regression models provide correctly predictions for the zeros count, the

NB and the PIG models underestimate the zeros count. The bad performance occurs

also at one and two roots counts, where the ZINB and the ZIPIG produces the best

predictions, while the ZIP regression model underestimates and, on the other hand,

the NB and the PIG regression models strongly overestimate.
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Table 20: Observed x Predicted values of the apple roots count

16 hrs photoperiod NB PIG ZIP ZINB ZIPIG

w Observed Predic Diff Predic Diff Predic Diff Predic Diff Predic Diff

0 47.70 43.00 −4.70 37.30 −10.40 47.70 0.00 47.70 0.00 47.70 0.00

1 5.40 15.20 9.80 22.20 16.80 1.20 −4.20 3.90 −1.50 3.50 −1.90

2 5.40 9.40 4.00 11.90 6.50 3.40 −2.00 5.80 0.40 5.80 0.40

3 6.20 6.60 0.40 7.00 0.80 6.10 −0.10 6.90 0.70 7.10 0.90

4 6.20 4.90 −1.30 4.60 −1.60 8.30 2.10 7.00 0.80 7.30 1.10

5 4.60 3.80 −0.80 3.20 −1.40 9.00 4.40 6.40 1.80 6.70 2.10

6 7.70 3.00 −4.70 2.30 −5.40 8.20 0.50 5.50 −2.20 5.60 −2.10

7 3.10 2.40 −0.70 1.80 −1.30 6.40 3.30 4.50 1.40 4.50 1.40

8 1.50 1.90 0.40 1.40 −0.10 4.30 2.80 3.50 2.00 3.40 1.90

9 5.40 1.60 −3.80 1.10 −4.30 2.60 −2.80 2.60 −2.80 2.50 −2.90

10 3.10 1.30 −1.80 0.90 −2.20 1.40 −1.70 1.90 −1.20 1.80 −1.30

11 1.50 1.10 −0.40 0.80 −0.70 0.70 −0.80 1.40 −0.10 1.30 −0.20

12 2.30 0.90 −1.40 0.60 −1.70 0.30 −2.00 0.90 −1.40 0.90 −1.40

RSDS 13.39 22.26 8.93 5.37 5.68

(a) NB model
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(b) PIG model
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Figure 9: Simulated envelopes for the Pearson residual in the NB and the PIG
regression models
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In summary, inadequacy of the NB, PIG and the ZIP regression models may be

noticed by the root of square difference sum (RSDS) measure, wherein the prediction

error was higher than the prediction error of the ZINB and the ZIPIG regression models.

The results presented previously lead to the conclusion that the overdispersion

might be caused from more than one source and one of them is the excess of zeros.

Then, because of the heterogeneity of the data set that produces overdispersion, we

may conclude that it is a scenario where a model that just carry out overdispersion,

but that do not take into account the excess of zero, such the NB and the PIG regres-

sion models, can not handle. Despite the ZIP regression models handle the excess of

zeros, we might remember that the Poisson distribution is equidispersed, reason why

it showed poor fit if compared with the ZINB and the ZIPIG models.

The figures above strengthen our argument, once we plot the simulated envelopes

of the Pearson residual against the theoretical quantiles of the standard normal dis-

tribution of the NB and the PIG regression models, wherein there are many residuals

lying out of the envelopes in both models, indicating a possibly model misspecification.

5.1 Splitting Apple Cultivar Data Set

The figure 10 represents the frequency of the roots count, wherein the first one is

the full data set, the second one is the data set considering the 8 hours of photoperiod

and the last one is the data under the 16 hours of photoperiod. By looking figure 10

one can think the data is zero-inflated but, after dividing the data, it is possible to see

the excess of zeros only under the 16 hours photoperiod case.
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Figure 10: Frequency of roots count

We tried to readjust the models for the divided data sets considering the covariate

concentrations of the cytokinin BAP, x1, but, as expected, it keeps insignificant and,

for this reason, the following results are from a fit without covariates.

For the observed versus predicted values, we can realize that the NB and the PIG

regression models fitted better for the first data set, under the 8 hour photoperiod, as

already expected. But it is enjoyable that the ZINB and the ZIPIG regression models

fitted as well as the NB and the PIG regression models, conclusion that arises from

table 21, wherein the root of square difference sum is quite similar for all models, just

as well from figure 11 wherein the residuals remain almost all inside the envelopes for

all fitted models.
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Table 21: Observed x Predicted values of the apple roots count under 8 hours
photoperiod

8 hrs photoperiod NB PIG ZIP ZINB ZIPIG

w Observed Predic Diff Predic Diff Predic Diff Predic Diff Predic Diff

0 1.40 0.30 −1.10 0.20 −1.20 1.40 0.00 1.40 0.00 1.40 0.00

1 2.10 1.40 −0.70 1.20 −0.90 0.50 −1.60 1.10 −1.00 1.00 −1.10

2 4.30 3.60 −0.70 3.40 −0.90 1.90 −2.40 3.00 −1.30 2.90 −1.40

3 5.00 6.60 1.60 6.50 1.50 4.60 −0.40 6.00 1.00 5.90 0.90

4 9.30 9.70 0.40 9.70 0.40 8.30 −1.00 9.10 −0.20 9.10 −0.20

5 8.60 11.90 3.30 12.10 3.50 11.90 3.30 11.70 3.10 11.80 3.20

6 10.00 12.90 2.90 13.10 3.10 14.30 4.30 12.90 2.90 13.10 3.10

7 12.10 12.40 0.30 12.70 0.60 14.70 2.60 12.70 0.60 12.90 0.80

8 15.00 11.00 −4.00 11.10 −3.90 13.20 −1.80 11.40 −3.60 11.50 −3.50

9 10.00 9.00 −1.00 9.00 −1.00 10.50 0.50 9.40 −0.60 9.40 −0.60

10 9.30 6.90 −2.40 6.90 −2.40 7.60 −1.70 7.10 −2.20 7.10 −2.20

11 7.10 5.00 −2.10 4.90 −2.20 5.00 −2.10 5.10 −2.00 5.10 −2.00

12 1.40 3.50 2.10 3.40 2.00 3.00 1.60 3.50 2.10 3.40 2.00

13 1.40 2.30 0.90 2.20 0.80 1.70 0.30 2.30 0.90 2.20 0.80

14 2.10 1.50 −0.60 1.40 −0.70 0.80 −1.30 1.40 −0.70 1.40 −0.70

17 0.70 0.30 −0.40 0.30 −0.40 0.10 −0.60 0.30 −0.40 0.30 −0.40

RSDS 7.56 7.73 7.82 7.08 7.16
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(a) NB model
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(b) PIG model
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(c) ZINB model
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(d) ZIPIG model
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Figure 11: Simulated envelopes for the Pearson residual in the regression models
under 8 hours photoperiod
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However, when we observe the second one, the data set under the 16 hours pho-

toperiod, it is possible to conclude that the ZINB and the ZIPIG models are more

adequate, while the NB and the PIG models are not suitable. Those conclusions are

reflexes from table 22, wherein the smaller RSDS comes from the ZINB and the ZIPIG

regression models and we can see this also at figure 12, wherein the residuals remain

almost all inside the envelopes only for the ZINB and the ZIPIG regression models,

while for the NB and the PIG regression models one may notice many residuals out of

the envelopes.

Table 22: Observed x Predicted values of apple roots count under 16 hours
photoperiod

16 hrs photoperiod NB PIG ZIP ZINB ZIPIG

w Observed Predic Diff Predic Diff Predic Diff Predic Diff Predic Diff

0 47.70 43.00 −4.70 37.30 −10.40 47.70 0.00 47.70 0.00 47.70 0.00

1 5.40 15.20 9.80 22.20 16.80 1.20 −4.20 3.90 −1.50 3.50 −1.90

2 5.40 9.40 4.00 11.90 6.50 3.40 −2.00 5.90 0.50 5.80 0.40

3 6.20 6.60 0.40 7.00 0.80 6.10 −0.10 6.90 0.70 7.10 0.90

4 6.20 4.90 −1.30 4.60 −1.60 8.30 2.10 7.00 0.80 7.30 1.10

5 4.60 3.80 −0.80 3.20 −1.40 9.00 4.40 6.40 1.80 6.70 2.10

6 7.70 3.00 −4.70 2.30 −5.40 8.20 0.50 5.50 −2.20 5.60 −2.10

7 3.10 2.40 −0.70 1.80 −1.30 6.40 3.30 4.50 1.40 4.50 1.40

8 1.50 1.90 0.40 1.40 −0.10 4.30 2.80 3.50 2.00 3.40 1.90

9 5.40 1.60 −3.80 1.10 −4.30 2.60 −2.80 2.60 −2.80 2.50 −2.90

10 3.10 1.30 −1.80 0.90 −2.20 1.40 −1.70 1.90 −1.20 1.80 −1.30

11 1.50 1.10 −0.40 0.80 −0.70 0.70 −0.80 1.40 −0.10 1.30 −0.20

12 2.30 0.90 −1.40 0.60 −1.70 0.30 −2.00 0.90 −1.40 0.90 −1.40

RSDS 13.39 22.26 8.93 5.38 5.68
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(a) NB model
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(b) PIG model
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(c) ZINB model
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(d) ZIPIG model

● ● ●●●●●●●●●●●●●

●●

●●

●

●●

●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●

●●

●

●

●●

●

●●

●

●●●

●

●●●●●●●●●●●●

●●●

●●

●

●●

●●

●●●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●

●●●

●

●●●●

●●●

●●

−2 −1 0 1 2

−
1

0
1

2
3

4
5

6

Theoretical Quantiles

P
ea

rs
on

 R
es

id
ua

l

Simulated Envelope for Pearson 
Residual

Figure 12: Simulated envelopes for the Pearson residual in the regression models
under 16 hours photoperiod

61



6 Conclusion

In this master’s thesis work a general class of zero-inflated mixed Poisson regression

models was proposed based on a mixing between the general mixed Poisson distribu-

tions (that arise from a mixing between the Poisson distribution and a distribution

belonging to the continuous exponential family) and a point mass of one at zero.

Thereby, distinct zero-inflated overdispersed models, which have been studied in an

isolated manner were unified. Furthermore, the proposed class opened the possibility

of new models arise.

After all work previously developed, it is possible to conclude that the main goal

was reached. In other words, based on the results presented, the proposed model can

deal with overdispersion and the excess of zero in count data, since satisfactory re-

sults were reached even for samples of size 50 in scenarios with several parameters.

Furthermore, we draw attention to the importance of the proposed model and its tech-

niques to obtain the model estimates, once one could observe good results from the

EM algorithm estimates, while GAMLSS models, in several cases, could not be fitted

or produced unpleasant estimates.

We also pay attention that when the practitioner is dealing with count data, he

must be attentive for overdispersion and zeros excess, otherwise all results and con-

clusions can be compromised, as we could notice through the empirical illustration,

wherein we could realize the importance of the diagnostics analysis. Therefore, stem

from that analysis, we may say that the NB and the PIG regression models are suitable

for dealing with overdispersed count data sets that do not have zeros excess, however

the ZIMP regression models have been fitted just well as those models, at least for the

used data set, producing γ’s parameters that conduct the zero-inflation parameter τ

near to zero.
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Besides of this work, an important contribution for the statistical researches is the

computational tools development. With this in mind, we believe that a package that

summarizes the work here developed, as well as provides appropriated support for

dealing with zero-inflated and overdispersed count data, should be designed. For this

reason, we hope develop a R software package soon.
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Appendix A

This section begins with corrections of some typing errors in Barreto-Souza and

Simas (2016). In that paper, in the second section (The model, p. 3), the exponent of

the term [φ(φ+ 2µ)]−(y−1/2) should be viewed as [φ(φ+ 2µ)]−(y−1/2)/2.

Also in that paper, in the third section (EM algorithm, p. 4), one can find the

expression, in Proposition 1, for the conditional expectation E(g(Z)|Y = y), wherein

is necessary to add the b(ξ0) term. Thus, the correct expression is

E(g(Z)|Y = y) =
d p(y; µ∗t , φ+ t/dt|t=0)

p(y; µ, φ)
− d′(φ)− ξ0 + b(ξ0)

instead of

E(g(Z)|Y = y) =
d p(y; µ∗t , φ+ t/dt|t=0)

p(y; µ, φ)
− d′(φ)− ξ0.

Moreover, in the Proof of Proposition 1 (Appendix, p. 16) there is the expression

for the conditional moment generating function of g(Z) and where one reads n! it should

be read as y!. In addition, the term φ inside of the exponential and before the term

b

(
φξ0
φ+ t

)
should be replaced by (φ+ t). Thus, the correct expression is

E(exp{tg(Z)}|Y = y) =
µy

y!p(y;µ, φ)

∫ ∞
0

e−µzzy × exp{φ[zξ0 − b(ξ0)]

+ d(φ) + (φ+ t)g(z) + h(z)}dz

= exp

{
(φ+ t)b

(
φξ0
φ+ t

)
− d(φ+ t) + d(φ)− φb(ξ0)

}

× p(y;µ∗t , φ+ t)

p(y;µ, φ)
,
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instead of

E(exp{tg(Z)}|Y = y) =
µy

n!p(y;µ, φ)

∫ ∞
0

e−µzzy × exp{φ[zξ0 − b(ξ0)]

+d(φ) + (φ+ t)g(z) + h(z)}dz

= exp

{
φb

(
φξ0
φ+ t

)
− d(φ+ t) + d(φ)− φb(ξ0)

}

×p(y;µ∗t , φ+ t)

p(y;µ, φ)
.

Another typing error that should be corrected, also in the Appendix, p. 16, re-

mains in the Proof of Proposition 2. Where one finds zil, in the expression for the

expectation E

(
∂lc
∂βj

∂lc
∂αl
|Y
)

, the correct term is wil.

In what follows, we present the proof of proposition 1 given in the EM algorithm

chapter.

Proof of Proposition 1

We have that

E(B |W = w) =
1∑
b=0

b P (W = w | B = b) P (B = b)

P (W = w)

=
P (W = w | B = 1) P (B = 1)

P (W = w)

=
(1− τ) pY (w; µ, φ)

pW (w; µ, φ, τ)
,
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E(BZ |W = w) =

∞∫
0

1∑
b=0

bz P (W = w | Z = z,B = b) fZ(z) P (B = b)

P (W = w)
dz

=

∞∫
0

z P (W = w | Z = z,B = 1) fZ(z) P (B = 1)

P (W = w)
dz

=

∞∫
0

z P (Y = w | Z = z) fZ(z) (1− τ)

P (W = w)
dz

=
(1− τ) pY (w; µ, φ)

pW (w; µ, φ, τ)

∞∫
0

z f(Z = z | Y = y) dz

=
(1− τ) pY (w; µ, φ)

pW (w; µ, φ, τ)
E(Z | Y ),

and

E(Bg(Z) |W = w) =

∞∫
0

1∑
b=0

bg(z) P (W = w | Z = z,B = b) fZ(z) P (B = b)

P (W = w)
dz

=

∞∫
0

g(z) P (W = w | Z = z,B = 1) fZ(z) P (B = 1)

P (W = w)
dz

=

∞∫
0

g(z) P (Y = w | Z = z) fZ(z) (1− τ)

P (W = w)
dz

=
(1− τ) pY (w; µ, φ)

pW (w; µ, φ, τ)

∞∫
0

g(z) f(Z = z | Y = y) dz

=
(1− τ) pY (w; µ, φ)

pW (w; µ, φ, τ)
E(g(Z) | Y ).
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Proposition 2 Let W ∼ ZIMP(µ, φ, τ), with Z ∼ EF(ξ0, φ) and B ∼ Bernoulli(τ),

the previous latent variables defined, and Y ∼ MP(µ, φ). Thus,

E(B2|W ) = (1− τ)
pY (w;µ, φ)

pW (w;µ, φ, τ)
,

E(B2Z|W ) =
(1− τ)(w + 1)

µ

pY (w + 1;µ, φ)

pW (w;µ, φ, τ)
,

E(B2Z2|W ) =
(1− τ)(w + 1)(w + 2)

µ2

pY (w + 2;µ, φ)

pW (w;µ, φ, τ)
,

E(B2g(Z)|W ) = (1− τ)
pY (w;µ, φ)

pW (w;µ, φ, τ)

(
dpY (w;µ∗t , φ+ t)/dt|t=0

pY (w;µ, φ)
− d′(φ)− ξ0 + b(ξ0)

)
,

E(B2g2(Z)|W ) = (1− τ)
pY (w;µ, φ)

pW (w;µ, φ, τ)

{
[d′(φ) + ξ0]2 − 2[d′(φ) + ξ0]b(ξ0) +

ξ20b
′′(ξ0)

φ

+ 2[b(ξ0)− d′(φ)− ξ0]
dpY (w;µ∗t , φ+ t)/dt|t=0

pY (w;µ, φ)
b2(ξ0)− d′′(φ)

+
d2pY (w;µ∗t , φ+ t)/dt2|t=0

pY (w;µ, φ)

}
,

E(B2Zg(Z)|W ) =
(1− τ)(w + 1)

µ

pY (w + 1;µ, φ)

pW (w;µ, φ, τ)

(
dpY (w + 1;µ∗t , φ+ t)/dt|t=0

pY (w + 1;µ, φ)
− d′(φ)− ξ0 + b(ξ0)

)
.
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Appendix B

Now, we present in table 23 the time, in minutes, of EM algorithm to produces the

estimates of the 4500 samples runs of the Monte Carlo study for the ZIMP regression

models, presented in the simulation study chapter, performed in a 64-bit version of

Windows 7, an Intel Core i7 @ 3.4 GHz and 8GB RAM.

Table 23: EM algorithm time in minutes

ZINB 10% zero-inflation 30% zero-inflation 50% zero-inflation

n = 50 86 71 102

n = 100 81 88 129

n = 200 137 148 171

n = 300 200 216 222

ZIPIG 10% zero-inflation 30% zero-inflation 50% zero-inflation

n = 50 242 240 295

n = 100 213 239 246

n = 200 323 334 307

n = 300 445 452 381
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