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Resumo

Compreender o comportamento dos ativos financeiros é de extrema im-

portância para determinar a alocação de capital entre as diferentes formas de

investimento dispońıveis. Tal escolha depende, dentre outros fatores, da per-

cepção do indiv́ıduo acerca dos riscos e retornos associados a essas opções de

investimentos. Na literatura, encontram-se diversos modelos cujo objetivo é es-

timar o risco de aplicações financeiras, entretanto, a maioria depende de métodos

MCMC baseados em algoritmos Metropolis, o que os torna computacionalmente

custosos. O presente trabalho apresenta um modelo alternativo, o Modelo Não

Gassiano de Volatilidade Estocástica Com Saltos (NGSVJ), baseado nos Mode-

los Dinâmicos Lineares (DLM) com mistura, capaz de estimar a volatilidade sem

recorrer a métodos computacionais intensivos, utilizando apenas o Amostrador de

Gibbs. Isso é posśıvel devido à estrutura do modelo, que permite obter as condi-

cionais completas a posteriori para os parâmetros. Além disso, a inserção de saltos

nos retornos no modelo o permite capturar os movimentos especulativos pontuais

do mercado, sem que isso se traduza em aumento da volatilidade. São apresen-

tados estudos de simulação a fim de investigar a eficácia do método proposto e,

ao final, realiza-se uma análise com dados reais de retornos dos ı́ndices S&P 500

e iBovespa. Os resultados indicam que o modelo proposto foi capaz de estimar

a volatilidade, com resultados semelhantes aos de outros modelos existentes na

literatura, de forma computacionalmente eficaz e automatizada, sendo que sua ca-

pacidade de identificar saltos é maior quando a série de retornos em estudo possui

movimentos especulativos fortes. Um método não paramétrico também foi uti-

lizado para estimar os saltos, mas os resultados de simulação mostraram que ele

não foi eficaz.

Palavras-chave: Séries Temporais, Modelos de Volatilidade Estocástica,

Amostrador de Gibbs, Modelos Lineares Dinâmicos, Cauda Pesada, Inferência

Bayesiana.
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Abstract

To understand the behavior of asset prices is essential for capital allocation

decisions between the available investment option. Such decision depends on what

one thinks about risks and returns associated with these investment options. On

the literature there are models focused on estimating financial assets risk, however,

most of them depend on MCMC methods based on Metropolis algorithms, which

makes them computationally expensive. This work presents an alternative model,

the Non Gaussian Stochastic Volatility Model with Jumps (NGSVJ), based on the

Dynamic Linear Model (DLM) with mixture, capable of estimating the volatility

without appealing to intensive computational methods, using only Gibbs Sampler.

This is possible due to the model structure, which allows the posterior full con-

ditionals for parameters. Besides that, the insertion of jumps on modeling the

returns allows it to capture isolated speculative movements of the market, without

transferring its effects to volatility. Simulated studies are presented in order to

investigate the efficiency of the proposed method. Finally, an analysis with real

data is performed using return series from S&P 500 and iBovespa indexes. Results

indicate that the proposed model was capable of estimating volatility, with results

similar to other models on literature, in a computationally efficient and automated

way, being that its ability to identify jumps is greater when the series of returns

under study has strong speculative movements. A non-parametric method was also

used for estimating jumps, but simulation results showed that it was not effective.

Key-words: Time Series, Stochastic Volatility Models, Gibbs Sampler.

Dynamic Linear Models, Heavy Tails, Bayesian Inference.
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Chapter 1

Introduction

”The behavior of asset prices is essential for many important decisions, not

only for professional investors but also for most people in their daily life. The

choice between saving in the form of cash, bank deposits or stocks, or perhaps a

single-family house, depends on what one thinks of the risks and returns associated

with these different forms of saving.” (Kungl. Vetenskaps-Akademien, 2013) [13].

This field attracts researches trying to figure out the main market drivers and

how asset returns are influenced by them. The most accepted theory is that the

returns on high volatility1 assets follow a random walk with some outliers, that

usually occur during abnormal volatility increases, such as in financial and political

crisis events. The future returns would be unpredictable, but the volatility can

be estimated and monitored in order to detect the approach of such events and

antecipate its movements.

The stochastic volatility models commonly used are not much efficient on

dealing with high-dimensional data, since Bayesian inference is mostly based on

Markov Chain Monte Carlo (MCMC) methods, for example, using Metropolis-

Hastings algorithms, which raises questions about the usage of more efficient meth-

ods that can be used to bring tangible results in a shorter period of time.

1Measurement of assets return dispersion, variance. The higher an asset price changes in a

short period of time, higher is the risk of earnings or losses on trading this asset. Thus, volatility

can be seen as a risk measurement of a financial asset.
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Dealing with financial time series brings three main challenges. They in-

clude finding a model that: fits well to the data, accommodating the heavy tails

that exist in non-Gaussian returns; is fast enough to bring results on time to be

used by market agents; is flexible to include new source of data and accommodates

outliers and skewness, that improve the model performance.

1.1 Some models on literature

A simple model designed to describe high volatility assets behavior was

developed by Schwartz and Smith (2000) [22]. Their model consists of decomposing

the asset log returns in the short-term deviation in prices and the equilibrium price.

To estimate their values, a Kalman Filter is used, assuming, therefore, a Gaussian

distribution for the errors. The future contract prices, which in economic theory

is believed to represent the market expectations about the convergence of asset

prices in the future, are used to estimate the equilibrium price. The parameter

estimates were obtained by the authors numerically, using the ”maxlik” (Maximum

Likelihood) routine in econometric software GAUSS. This model, however, does

not work well to day-by-day applications since it is not able to adjust to moments

with high volatility in market. It also simplifies too much the reality on considering

Gaussian distribution to returns.

Eraker, Johannes e Polson (2003) [9] adopt the Stochastic Volatility model

(SV) and study the influence of inserting jumps to improve the model. They

suggest including jumps on returns and volatility in order to improve the model

dynamic in case of spot changes in volatility, as in financial crisis moments. The

main contribution of their work was allowing to understand the influence of Jumps

in the model capability of reflecting speculative movements on financial markets.

The advantage of adopting this model is that it fits better to the market move-

ments, with good results for risk analysis and option pricing. On the other hand,

the parameter estimation is somewhat complex, since there are no closed form to

the full conditional distributions, being necessary the use of MCMC methods with

Metropolis steps, which is less efficient in case of high-dimensional data. Other

10



point is that this model still simplifies reality by assuming Gaussian distribution

for errors, underestimating the effect of heavy tails. It also does not allow the

inclusion of exogenous variables, such as future contract prices.

Other models such as the one developed by Warty, Lopes and Polson (2014)

[26] brings some innovations by using State Space Models (SSM) and sequen-

tial MCMC methods in order to model the returns, allowing the introduction of

Jumps and correlated variables, but still assuming Gaussian errors. Brooks and

Prokopczuk (2011) [3] extend the Stochastic Volatility with Jumps (SVJ) model to

an asset portfolio - the multivariate case, which is closer to the day-by-day reality.

Omori et. al (2006) [18] include the leverage effect on SV models, which refers to

the increase in volatility following a previous drop in stock returns, and modeled by

the negative correlation coefficient between error terms of stock returns. Nakajima

and Omori (2007) [17] extend its application to SVJ models with heavy-tail dis-

tribution obtained by a scale mixture of a generalized gamma distributed mixture

component together with a normal distributed error in order to generate general-

ized Skew-t distributed innovations, discussing the fitness gains on including such

feature. Merener (2015) [16] uses a GARCH model including jumps in returns

and volatility, including exogenous variables in the model based on Supply and

Demand concept2, with innovations assuming a Student-t distribution to better

accommodate financial data.

1.2 Objective

Since there are a lot of works on stochastic volatility models for univariate

financial time series, so, one might ask what is the gain on continue developing

methods to model volatility for univariate financial time series. Such models are

not very efficient on dealing with high dimensional data, since they rely on com-

putationally intensive methods, such MCMC with Metropolis steps, which have

2Supply shocks would affect the demand for specific commodities or assets and result in

extreme returns, hence the inclusion of co-variables related to the supply and demand quantity

on trying to explain returns.
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several tunning parameters, and have a complex structure.

With the discussion about financial time series models on background, the

main goal of this work is finding an alternative model that accommodates specu-

lative financial asset returns data, allowing the innovations to assume heavy tails

distributions; include jumps on returns in order to get the impact of uncommon

events on financial markets; find a faster computational procedure, like Gibbs Sam-

pling together with a block sampling structure, to estimate parameters, without

appealing to intensive computational resources, such as Metropolis steps for each

parameter.

This work will be divided in two parts. In the first part the proposed model

will be detailed, in Chapter 2, as well as simulation studies, Chapter 3, and its

results on estimating volatility for the S&P-500 and iBovespa indexes, Chapter

4. In the second part there will be a discussion about the use of an alternative

method to detect jump times for weak jumps scenario, using a non-parametric

approach,Chapter 5 and how it affects the model.

The main contributions of this work are: introducing an automatic DLM

model with jumps and heavy tailed distribution to be applied financial assets

return data, using Gibbs Sampler; presenting simulation studies that attest its ef-

ficiency on estimating volatility and capturing speculative movements, represented

by jumps; applying the model to real financial return time series and presenting

its results. This work proposes a model that is computationally efficient and au-

tomatic in order to estimate volatility for financial return time series, that can be

run on an ordinary home computer and give reliable results for analysis in a little

time for high dimensional data, so that it can be used by market players in order

to build investment strategies.

12



Chapter 2

The proposed model

This chapter presents the proposed model and its properties. This approach

uses only returns data to estimate the models, so that its results are comparable

to the model proposed by Eraker et al. (2003) [9], although it can be extended to

include any other exogenous variable that may be relevant on the analysis, as can

be seen on Gamerman, Santos and Franco (2013) [10].

2.1 DLM Model with Scale Mixtures

The Dynamic Linear Model (DLM) with scale mixtures was proposed by

Gamerman et al. (2013) [10] and is a extension of the classic DLM, which can

be found on West and Harrison (1997) [27]. This model provides the necessary

flexibility by using the SSM form, with mixtures on variance in order to achieve

non-Gaussian distribution for innovations. It has also a formulation that allows

the full conditional distributions to be available, so that a Gibbs Sampler can be

used to sample from the full conditional posterior distributions, decreasing the

computational time and bringing implementation simplicity to the model.

The DLM with scale mixtures (Gamerman et al., 2013) [10] can be written

13



as:

yt = Ftθt + υt, where υt|γt ∼ N(0, γ−1t λ−1t ), (2.1)

θt = Gt−1θt−1 + ωt, where ωt|δt, ϕ ∼ N(0, δ−1t W ), (2.2)

λt = ω−1λt−1ζt, where ζt|Yt−1, ϕ ∼ Beta(ωat−1, (1− ω)at−1), (2.3)

θ0|Y0 ∼ N(m0, C0) independent of λ0|Y0 ∼ Gamma(a0, b0). (2.4)

In this model, yt denotes the tth value of the series, Ft and Gt are system

matrices, θt is the vector of latent states, λt is the precision, always positive, hence

λ−1t is the volatility,Yt is observed value of the series on time t, ϕ = (ω, diag(W )) is

the model hyperparameter and at−1 is a form parameter of the filtering distribution

for λt.

This approach allows inserting exogenous variables directly on returns through

the Ft vector. Also, heavy tail distributions for innovations, such as Student-t, lo-

gistic and GED, can be obtained through the scale mixture on determining γt and

δt. For example, if γt and δt ∼ Gamma(ν
2
, ν
2
), then unconditional errors would

assume a tν(0, λ
−1
t ) distribution. If their values is fixed as 1, than unconditional

errors would assume a Normal distribution.

In this case, there are no dimensionality issues with the parametric space,

since all complete conditional distributions are obtained through the model prop-

erties and sampling from the marginal posterior can be made through a Gibbs

Sampler algorithm. Using proper priors to diag(W) makes it possible to obtain

the posterior complete conditionals, where the priors are chosen in order to re-

sult in a proper posterior distribution. This procedure consists on block-sampling:

first the static and then dynamic parameters. Such procedure leads to a much

faster estimation, since there is no need to use Metropolis-Hasting algorithms, as

on other models exposed previously.

Another advantage lays on sampling mean components θ0:n and volatility

λ0:n in blocks, mitigating convergence problems. A more detailed description for

the model procedures can be seen in Gamerman et al. (2013) [10].

14



2.2 Stochastic Volatility Model with Jumps

Eraker et al. (2003) [9] adopt the Stochastic Volatility (SV) model and

study the influence of inserting jumps to improve the model. The structure pro-

posed by them gives an insight on how to insert jumps in DLM with mixtures on

scale. In their model, jumps are inserted in an additive form in both, returns and

volatility.

In the model proposed by Eraker et al. (2003) [9] ,the log price of an asset

yt = log(St), where St is the asset price on time t, is given by:

yt+1 = yt + µ+
√
vtε

y
t+1 + Jyt+1 (2.5)

vt+1 = vt + κ(θ − vt) + σv
√
vtεvt+1 + Jvt+1 (2.6)

In which εyt+1 and εvt+1 are N(0, 1) with corr(εyt+1, ε
v
t+1) = ρ, between -1 and

1, and the jump components are:

Jyt = ξyt+1N
y
t+1, Jvt = ξvt+1N

v
t+1, P r(Ny

t+1 = 1) = ρy, P r(N v
t+1 = 1) = ρv.

The jumps, therefore, are composed by a component that denotes the pres-

ence of a jump at instant t+1, represented by Ny
t+1 and N v

t+1,which can assume

only two values: 1 or 0; and a component that denotes the jump magnitude at the

same time, ξyt+1 ∼ N(µy, σ
2
y) and ξvt+1 ∼ exp(µv).

This method of including jumps can be adapted to the DLM with mix-

ture on scales to get advantage of its properties that guarantee a faster sampling

method, through block sampling, and more efficient due to Gibbs Sampling. For

this work the concern is about including jumps only in returns, since including

them also on volatility requires a more complex structure in order to preserve the

model properties and a fast inference procedure, and will be addressed in future

works.
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2.3 Non-Gaussian Stochastic Volatility Model with

Jumps on Returns

The Non-Gaussian Stochastic Volatility Model with jumps on returns (NGSVJ)

can be written as:

yt = Ftθt + Jyt + υt, where υt|γt ∼ N(0, γ−1t λ−1t ), (2.7)

θt = Gtθt−1 + ωt, where ωt|δt, ϕ ∼ N(0, δ−1t σ2
µ), (2.8)

λt = ω−1λt−1ζt, where ζt|Yt−1, ϕ ∼ Beta(ωat−1, (1− ω)at−1), (2.9)

µ0|Y0 ∼ N(m0, C0) independent of λ0|Y0 ∼ Gamma(a0, b0). (2.10)

where:

Jyt = ξyt+1N
y
t+1, ξyt+1 ∼ N(µy, σ

2
y), and Pr(Ny

t+1 = 1) = ρy.

In this model, yt represents the log-return in percentage, defined as yt =

100 ∗ (log(St) − log(St−1)), where St is the asset price on time t. Jyt is the jump,

composed by the jump indicator Ny
t+1 and magnitude ξy ∼ N(µy, σ

2
y). µt represents

the equilibrium log-return of yt and, if σ2
µ = 0, it is given by a constant, so that

µt = µ for all t.

γt and δt are the mixture components for variance, in the same way pro-

posed by the previous section. λ−1t is the volatility of returns, and the main interest

lays on estimating its value through time, since it is the main variable on risk and

stock options pricing.

σ2
µ is the variance of µt. ω is a discount factor and is specified, in order to

avoid needing to recur to MH algorithms for its estimation, keeping an automatic

estimation procedure via Gibbs Sampling. at−1 is a form parameter of the filtering

distribution for λt.
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2.4 Bayesian Inference

In this section it will be presented the priors and full conditional posteriors

for each parameter. First it will be presented the parameters related to the DLM

with mixtures on scale and then the parameters related to jumps. A detailed

derivation of full conditional posterior distributions can be seen on Appendix A

and Appendix B.

2.4.1 NGSVJ related parameters: conditional posteriors

For the log-returns mean parameter, µt = θt, a prior N(m0,C0) is specified

and the samples can be obtained through a standard FFBS algorithm. In case it

is defined as static, then σ2
µ must be set zero, so that the error associated to µt,

ωt, will be a zero degenerate Normal, leading to µt = µ.

To simplify notation, let Φ = (µt, J
y
t , γt, δt, λt, σ

2
u), except variable in the

index, i.e. Φ[−λ] = (µt, J
y
t , γt, δt, σ

2
u) .

For λt a prior Gamma(ωat−1, ωbt−1) is defined. Following the method

proposed by Gamerman et al. (2013) [10], the updating distribution is:

p(λt|yt,Φ[−λ]) ∼ Gamma

(
ωat−1 +

1

2
, ωbt−1 + γt

(Yt − Ftθt − Jt)2

2

)
(2.11)

The a and b parameters are obtained through the filtering distribution in

Gamerman et al. (2013) [10]. ω is a fixed discount factor. Appendix C shows the

sampling algorithm used for sampling λ1:n using a smoothing procedure.

For σ2
µ a InverseGamma(a0, b0) non-informative prior is assumed. Appendix

A3 show derivation details. The full conditional posterior distribution is:

p(σ2
µ|yt,Φ[−σ2

µ]
) ∼ InverseGamma

a0 +
n

2
, b0 +

t∑
i=2

δi(θi − θi−1)2

2

 (2.12)
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In case θt is defined as static, then σ2
µ=0.

For the mixture component γt a prior Gamma(ν
2
, ν
2
) is defined, which, ac-

cording to Gamerman et al. (2013) [10], when mixed as γ−1t , resulting in In-

verseGamma, leads to a Student-t with ν degrees of freedom to the innovations.

Appendix A1 show derivation details. The full conditional posterior distribution

is:

p(γt|yt,Φ[−γ]) ∼ Gamma

(
ν

2
+

1

2
,
ν

2
+ λt

(Yt − Ftθt − Jt)2

2

)
(2.13)

The same stands for the mixture δt. Appendix A2 show derivation details.

In this case, posterior is given by:

p(δt|yt,Φ[−δ]) ∼ Gamma

(
ν

2
+

1

2
,
ν

2
+

(θt − θt−1)(σ2
µ)−1(θt − θt−1)
2

)
(2.14)

The parameter ν will not be estimated using MCMC methods, since it

would lead to Metropolis based algorithms, as there is no closed form for its pos-

terior. Instead, a sensibility analysis will be made, comparing the B-statistics,

which will be defined on section 2.4.4 for different values of ν. Recall that the

main objective of the NGSV¡ model is keeping an automatic and fast procedure

for estimation, thus, such procedure will avoid the need to recur to computational

intensive methods for estimating ν.

2.4.2 Jump related parameters

Detailed derivation of the full conditionals shown in this topic can be seen

on Appendix B. The jump sizes ξyt+1 follow a N(µy,σ
2
y). For the mean µy a non-

informative prior N(m, v) is set, resulting in a full conditional posterior:

p(µy|yt,Φ[−µy ]) ∼ N

(
mσ2

y + vnj ξ̄y

σ2
y + njv

,
vσ2

y

σ2
y + njv

)
(2.15)

For the variance σ2
y a prior InverseGamma(α, β) is set, resulting in a full
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conditional posterior:

p(σ2
y|yt,Φ[−σ2

y ]
) ∼ InverseGamma

α +
nj
2
, β +

∑t
i=1
Ji 6=0

(ξyi+1 − µy)2

2

 (2.16)

In both cases, nj is the number of times the jump is observed, and ξ̄y the

mean of its sizes ξy. As jump sizes are assumed to be Normal, the posterior is also

Normal, with parameters:

p(ξyt+1|yt,Φ[−ξ]) ∼ N

(
µyγ

−1
t λ−1t + ytσ

2
y − Ftθtσ2

y

σ2
y + γ−1t λ−1t

,
σ2
yγ
−1
t λ−1t

σ2
y + γ−1t λ−1t

)
(2.17)

For jump probabilities ρ, a prior Beta(α, β) is set. The full conditional

posterior is given by:

p(ρ|yt,Φ[−ρ]) ∼ Beta

(
α +

n∑
i=0

Ny
i , β + n−

n∑
i=0

Ny
i

)
(2.18)

Since the jump indicator Ny can assume only two values, 0 or 1, the prob-

ability of observation t+1 be a jump is given by:

P (Ny
t+1 = 1|Φ[−N ]) ∝ ρP (Yt+1|Ny

t+1 = 1,Φ[−N ]) (2.19)

which is easy to calculate, since the density P (Yt+1|Ny
t+1 = 1,Φ[−N ]) can be cal-

culated from a Normal distribution. Using the concept proposed by Brooks and

Prokopczuk (2011) [3], if P (Ny
t+1 = 1|Φ[−N ]) is greater then a threshold α, then

Ny
t+1 = 1. The threshold α is chosen such that the number of jumps identified

corresponds to the estimate of the jump intensity ρ.

As said before, all conditional posterior distributions are known and have

closed form, so it is possible to sample directly using a Gibbs Sampler instead

of Metropolis steps. In order to preserve this structure, the degrees of freedom

of the resulting Student-t distribution, ν, is specified and a sensibility analysis is

made in order to evaluate it, since posterior distribution for this parameter does

not have closed form, and one of the objectives of using this model is avoiding

computational intensive methods. For the same purpose, the discount factor, ω, is

also specified. This is particularly useful when dealing with high dimensional data.
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Since Metropolis uses an accept-reject algorithm, with several tunning parameters,

it tends to be a much less efficient method for estimation than Gibbs Sampler. For

practical applications on financial markets, the sooner information is available

more time analysts will have to make their strategies and orient investors about

capital allocation.

2.4.3 MCMC Algorithm

Let Yn = {yt}nt=1, θ = {θt}nt=1, J = {Jyt }nt=1 = {ξyt+1N
y
t+1}nt=1, γ = {γt}nt=1,

λ = {λt}nt=1, δ = {δt}nt=1, ξ = {ξyt+1}nt=1, N = {Ny
t+1}nt=1 and prior probability

density π(γ), π(σ2
µ), π(δ), π(µy), π(σ2

y), π(ξ), π(ρy) are set for γ, σ2
µ, δ, µy, σ

2
y , ξ, ρy.

Then, a sample from the posterior distribution π(θ, λ, γ, σ2
µ, δ, µy, σ

2
y, J, ρy|Yn) is

drawn by the MCMC technique. The following sampling algorithm is followed:

1. Initialize θ(0), λ(0), γ(0), (σ2
µ)(0), δ(0), µ

(0)
y , (σ2

y)
(0), ξ(0), N (0) and ρ

(0)
y .

2. Set j = 1.

3. Sample θ(j)|Yn, J (j−1), λ(j−1), γ(j−1), δ(j−1), (σ2
µ)(j−1) using FFBS algorithm.

4. Block sample λ(j)|Yn, θ(j), J (j−1), γ(j−1) using algorithm described on Ap-

pendix C.

5. Block sample γ(j)|Yn, θ(j), J (j−1), λ(j) as in Eq.(2.13).

6. Sample (σ2
µ)(j)|θ(j), δ(j−1) as in Eq.(2.12).

7. Block sample δ(j)|θ(j), (σ2
µ)(j) as in Eq.(2.14).

8. Sample µ
(j)
y |ξ(j−1), (σ2

y)
(j−1) as in Eq.(2.15).

9. Sample (σ2
y)

(j)|ξ(j−1), µ(j)
y as in Eq.(2.16).

10. Block sample J (j)|Yn, θ(j), λ(j), γ(j), µ(j)
y , (σ2

y)
(j) by

Block sample ξ(j)|Yn, θ(j), λ(j), γ(j), µ(j)
y , (σ2

y)
(j) as in Eq.(2.17).
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Block sample N (j)|Yn, θ(j), λ(j), γ(j), ξ(j) as in Appendix B.5.

11. Sample ρ
(j)
y |J (j) as in Eq.(2.18).

12. Set j = j + 1.

13. If j ≤M , go to 3, otherwise stop.

Since all conditional posterior distributions have closed form, the technique

used is the Gibbs Sampler. Appendix A, Appendix B and Appendix C brings more

details on conditional posterior distributions used for sampling and the method

for sampling λ.

2.4.4 Model Diagnostics and Specification Tests

The approach to compare different specifications for model parameters is

the B-statistic criteria. According to Ibrahim et al. (2001) [12], cited by Demarqui

(2010) [5], this approach uses the average of the logarithm of the pseudo-marginal

likelihood as a measure to assess the goodness of fit of the models to be compared.

This measure is based on the conditional predictive ordinate (CPO) statistic, and

is defined as:

B =
1

n

n∑
i=1

log(CPOi) (2.20)

where n is the number of observations and CPOi corresponds to the pos-

terior predictive density of yi. It can be well approximated by:

ˆCPOi = M{
M∑
l=1

[
L
(
yi|µl, J l, γl, λl

)]−1}−1 (2.21)

where L is the likelihood function, (µl, J l, γl, λl) corresponds to the l-th draw of

the posterior distribution π(µl, J l, γl, λl|D), l = 1, ...,M , and M the size of the

posterior sampled distribution of the parameters.

It is desirable to obtain the highest B-statistic possible with the parameters

specification.
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Chapter 3

Simulations

This chapter will discuss the model results for simulated data. The first

simulation set was made using Gaussian distribution and its main goal is to check

the model capability of estimating the jump parameters, as well as understand

how the choice of the model hyperparameters, threshold α and degrees of freedom

ν, influences the estimates.

The second simulation set was made using a Student’s t distribution and

the main goal is to check how heavier tails influence the model capability of esti-

mating jump parameters and how a degree of freedom, ν, choice affects the model

estimation.

3.1 Procedure

For all Gaussian simulation scenarios, one series with 1,000 observations

was generated from:

yt = µ+ Jyt + υt, υt ∼ N(0, λ−1), (3.1)

where µ and λ−1 were considered static parameters, and their values were the
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same for all scenarios. Table 3.2 shows a summary of their values and simulated

scenarios.

Jump components ξy andNy were generated from aN(µy, σ
2
y) andBernoulli(ρy)

respectively. In each scenario, different values for µy and σ2
y were chosen, but ρy

was the same. In the scenario of manually imputed jumps, together with this

structure, jumps were manually imputed according to Table 3.1.

Position (t) Jump size ξy Ny

100 15 1

200 -20 1

400 -8 1

500 -30 1

600 25 1

800 -10 1

900 -40 1

Table 3.1: Manually imputed jumps

For Student’s-t scenarios, 1,000 observations were generated from:

yt = µ+ Jyt + εt, εt ∼ t20(0, λ
−1) (3.2)

where µ and λ−1 were considered static parameters, and their value was the same

used in Gaussian scenarios for jump components.
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Gaussian Scenarios Student’s t Scenarios

yt = µ+ Jyt + υt, yt = µ+ Jyt + εt,

υt ∼ N(0, λ−1) εt ∼ t20(0, λ
−1)

Parameter (True)

Scenario µ γ−1 λ−1 ρy µy σy

Strong Jumps 0.10 − 0.5 0.05 -3.0 4

Weak Jumps 0.10 − 0.5 0.05 -1.5 1

Man. Imp.

Jumps

0.10 − 0.5 0.05 -3.69 8.67

Vol. Chang-

ing

0.10 − 0.5 ↔ 5 0.05 -3.0 4

Table 3.2: Summary of Simulation Scenarios

3.2 Results and comments

Simulation results for each scenario are discussed in this section.

For model hyperparameters, the discount factor ω was fixed as 0.9, α and ν

vary according do simulation scenario. A G(ν
2
, ν
2
) prior distribution was specified

for γt in order to obtain the Student’s tν-errors for the observation and system dis-

turbances. In order to keep the model comparable to Eraker et al. (2003) [9], θ = µ

component was set to be fixed over time, so that σ2
µ = 0. For the mean compo-

nents, µ and µy, N(0,100) priors were specified and for σ2
y a InverseGamma(0.1,0.1)

prior. Also, a0 = 0.1 and b0 = 0.1, as suggested in West et al. (1987,p. 333), cited

by Gamerman et al. (2013) [10]. A Beta(2,40) prior distribution was specified to

ρy, as in Eraker et al. (2003) [9].

The results were obtained with a 100,000 iteration chain, burning 60,000

observations, with a lag of 30 observations, resulting in 1,291 observations. MCMC

chains convergence was verified through informal graphic methods. All program-

ing was done in the Ox software (Doornik, 2008) [6]. The R software (The R

foundation for Statistical Computing, 2015) [23] was used for plotting graphics.

24



Machine used was an Intel Core i5 - 2310 CPU at 2.90 Ghz, 4 GB RAM, and 64

bit Windows Seven operating system.

3.2.1 Simulations for the Gaussian approach

Three simulation scenarios were made using Normal distribution. The first

has strong jumps, the second has weak jumps and the third includes manually

imputed jumps.

Tables 3.3, 3.4 and 3.5 show true and estimated values for each scenario.

Point estimates are the posterior mean and, inside brackets, are the standard de-

viation of posterior distribution. For each of three scenarios, the model parameter

ν was set as 100, 20 or 5, so that smaller values give more flexibility to the model

to capture heavy tails. The threshold α was set as 0.70, 0.80 or 0.90, and gives

the probability cut-point to an observation to be considered a jump.

For data generated from a Normal distribution, results suggests that the

best option is to give low flexibility to the model through ν parameter. As ν

decreases, γ−1 component distances itself from 1, value that would indicate that

the model assumes a normal distribution for innovations. Giving flexibility to

the model through ν can also influence the jump components estimates, since

some jumps can be identified by the model as a mere heavy tail, thus reducing

the number of jumps identified by the model, resulting in lower jump probability,

ρy, and higher jump means and standard deviation, µy and σy , since they are

estimated based on observations that were considered jumps by the model, so that

only the bigger outliers will be considered jumps.
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ν = 100

Parameters True α = 0.70 α = 0.80 α = 0.90

µ 0.10 0.1085 (0.0245) 0.1054 (0.0245) 0.1013 (0.0245)

λ−1 0.5 0.5196 (0.1449) 0.5441 (0.1526) 0.5687 (0.1664)

γ−1 0.9997 (0.0124) 1.0001 (0.0069) 1.0003 (0.0136)

ρy 0.05 0.0406 (0.0061) 0.0346 (0.0057) 0.0283 (0.0052)

µy -3 -2.8917 (0.8207) -3.3448 (0.8737) -3.8142 (1.0526)

σy 4 4.8558 (5.5912) 5.0687 (7.1876) 5.4448 (9.2952)

B -2.1860 -2.1316 -2.1590

ν = 20

Parameters True α = 0.70 α = 0.80 α = 0.90

µ 0.10 0.1026 (0.0245) 0.1007 (0.0100) 0.0949 (0.0100)

λ−1 0.5 0.516 (0.1442) 0.5335 (0.01546) 0.5624 (0.1744)

γ−1 0.9999 (0.0558) 1.0002 (0.0577) 1.0000 (0.0599)

ρy 0.05 0.0360 (0.0058) 0.0307 (0.0054) 0.0257 (0.0050)

µy -3 -3.1681 (0.8985) -3.5272 (1.0151) -3.9760 (1.1091)

σy 4 5.0432 (7.6764) 5.3023 (8.6246) 5.5548 (10.2356)

B -2.8880 -2.8168 -3.4564

ν = 5

Parameters True α = 0.70 α = 0.80 α = 0.90

µ 0.10 0.0343 (0.0574) 0.0270 (0.0557) 0.0248 (0.0539)

λ−1 0.5 0.7039 (0.3530) 0.7141 (0.3619) 0.7224 (0.3707)

γ−1 1.0173 (0.1860) 1.0181 (0.1890) 1.0175 (0.1954)

ρy 0.05 0.0166 (0.0041) 0.0126 (0.0036) 0.0090 (0.0032)

µy -3 -3.2192 (1.6955) -3.7722 (2.0005) -4.635 (2.5715)

σy 4 5.0499 (14.7474) 5.2446 (23.4603) 5.5002 (36.8306)

B -4.7795 -4.6739 -4.07547

Table 3.3: Simulation 1 - Normal with Strong Jumps
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ν = 100

Parameters True α = 0.70 α = 0.80 α = 0.90

µ 0.10 0.0838 (0.0245) 0.0816 (0.0245) 0.0777 (0.0245)

λ−1 0.5 0.5463 (0.1552) 0.5765 (0.1513) 0.6001 (0.0257)

γ−1 0.9997 (0.0128) 0.9998 (0.0134) 0.9997 (0.0139)

ρy 0.05 0.0224 (0.0047) 0.0135 (0.0037) 0.0086 (0.0031)

µy -1.5 -1.7584 (0.5561) -2.6896 (0.6550) -3.2649 (0.5548)

σy 1 2.1459 (1.9775) 1.5889 (2.4945) 1.1317 (1.8626)

B -1.7125 -1.6837 -1.6319

ν = 20

Parameters True α = 0.70 α = 0.80 α = 0.90

µ 0.10 0.0796 (0.0265) 0.0766 (0.0245) 0.0726 (0.0265)

λ−1 0.5 0.5383 (0.1411) 0.5567 (0.1442) 0.5736 (0.1520)

γ−1 0.9999 (0.0578) 0.9998 (0.0600) 0.9994 (0.0622)

ρy 0.05 0.017 (0.0041) 0.0109 (0.0034) 0.0068 (0.0028)

µy -1.5 -2.0978 (0.6472) -2.8237 (0.6353) -3.2626 (0.0624)

σy 1 1.9467 (2.4967) 1.5501 (3.7867) 36.1164(3.87x104)

B -2.1188 -2.0660 -1.9050

ν = 5

Parameters True α = 0.70 α = 0.80 α = 0.90

µ 0.10 0.0650 (0.0316) 0.0672 (0.0300) 0.0743 (0.0283)

λ−1 0.5 0.4816 (0.1196) 0.4813 (0.1192) 0.4765 (0.1170)

γ−1 1.0061 (0.1895) 1.0051 (0.1944) 1.0028 (0.1998)

ρy 0.05 0.0103 (0.0033) 0.0065 (0.0028) 0.0031 (0.0022)

µy -1.5 -1.5721 (1.2964) -1.7153 (2.2590) -1.4104 (4.9927)

σy 1 2.3876 (10.6410) 4.30x107

(5.59x1016)

4.01x1011

(4.85x1024)

B -3.8856 -3.6652 -2.9516

Table 3.4: Simulation 2 - Normal with Weak Jumps
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ν = 100

Parameters True α = 0.70 α = 0.80 α = 0.90

µ 0.10 0.1026 (0.0245) 0.0999 (0.0245) 0.0949 (0.0245)

λ−1 0.5 0.5157 (0.1473) 0.5341 (0.1483) 0.5584 (0.1565)

γ−1 0.9997 (0.0124) 0.9997 (0.0130) 0.9999 (0.0133)

ρy 0.05 0.0455 (0.0065) 0.0402 (0.0061) 0.0352 (0.0057)

µy -3.69 -4.1425 (1.3731) -4.6041 (1.5686) -4.9769 (1.7611)

σy 8.67 9.4938 (20.6795) 9.9238 (23.8756) 10.5485(29.2459)

B -0.2039 -0.2191 -0.2179

ν = 20

Parameters True α = 0.70 α = 0.80 α = 0.90

µ 0.10 0.0964 (0.0245) 0.0859 (0.0283) 0.0703 (0.0300)

λ−1 0.5 0.5121 (0.1418) 0.5700 (0.2488) 0.6093 (0.2364)

γ−1 0.9992 (0.0549) 0.9999 (0.0573) 0.9996 (0.0614)

ρy 0.05 0.0419 (0.0062) 0.0349 (0.0057) 0.0278 (0.0052)

µy -3.69 -4.261 (1.5869) -4.801 (1.7731) -5.3818 (2.3785)

σy 8.67 9.8403 (23.1824) 10.5741(33.1793) 11.9052(49.3205)

B -0.2953 -0.3921 -0.3369

ν = 5

Parameters True α = 0.70 α = 0.80 α = 0.90

µ 0.10 0.0047 (0.0624) 0.0079 (0.0624) 0.0123 (0.0592)

λ−1 0.5 0.7969 (0.5517) 0.8016 (0.5534) 0.7877 (0.5302)

γ−1 1.0176 (0.1917) 1.0165 (0.1957) 1.0160 (0.2017)

ρy 0.05 0.0162 (0.0041) 0.0122 (0.0036) 0.0088 (0.0031)

µy -3.69 -3.5916 (2.0887) -3.8937 (3.0522) -4.5051 (3.5466)

σy 8.67 6.4283 (46.7027) 7.9884 (77.5201) 29.3070(2.19x104)

B -1.0225 -1.0512 -0.9017

Table 3.5: Simulation 3 - Normal with Manually Imputed Jumps
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Figure 3.1: Normal Simulations - B-statistic comparison

Figure 3.1 shows a comparison between B-statistics for each simulation

scenario. In all cases a higher ν gave a better model fit. On the other hand,

for each case a different choice threshold α gave a better fit. Overall α = 0.7

seems to be a good choice, since its results are reasonably good for both strong

and manually imputed jumps, being the worst choice only for weak jumps, where

the model is known to have difficult on estimating parameters independently of

parameters choice.

Figures 3.2, 3.3 and 3.4 show jumps probabilities and sizes for each sim-

ulation scenario, given ν = 100. They allow to see graphically the influence of

threshold α on estimating jump probabilities and sizes. The light gray line is the

true value and the superimposed black line is the value estimated by the model.
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ν = 100

α = 0.70 α = 0.80 α = 0.90

Figure 3.2: Simulation 1 - Normal with Strong Jumps - Jump probabilities and

sizes

For strong jumps, Figure 3.2, it is possible to see that as the threshold α

increases less observations are considered jumps, thus reducing estimate for jump

probability mean. Higher α values tend to capture only the stronger outliers,

leaving smaller jumps behind.
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ν = 100

α = 0.70 α = 0.80 α = 0.90

Figure 3.3: Simulation 2 - Normal with Weak Jumps - Jump probabilities and

sizes

For weak jumps, Figure 3.3, it is possible to see that, independently of the

choice of α, the model has difficult on estimating jump probabilities and sizes.

Only the biggest jumps are considered by the model, which explains the higher µy

and σy estimates seen on Table 3.4. Since the model uses the observations that

were actually considered jumps to estimate these parameters, the sample obtained

by the model for estimation is not representative for jumps as a whole, since only

the stronger ones are taken in account. This leads to a jump mean estimative that

is higher than the real one and also a higher standard deviation.
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ν = 100

α = 0.70 α = 0.80 α = 0.90

Figure 3.4: Simulation 3 - Normal with Manually Imputed Jumps - Jump proba-

bilities and sizes

For manually imputed jumps, Figure 3.4, results were very similar to strong

jumps, again giving the lead to α = 0.70, since gives jump probability estimate

closer to the true. The model was able to capture all the manually imputed jumps,

no matter what was the choice of α.

3.2.2 Sudent’s t Simulations

Three simulations scenarios were made using Student’s t distribution with

20 degrees of freedom. First has strong jumps, second has weak jumps and third
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includes manually imputed jumps.

A forth simulation was made in order to verify how volatility changes affects

jump related parameters estimation. For this case, model parameters were fixed at

ν = 30 and α = 0.7, as suggests the previous simulation results. In this simulation,

three scenarios were built: first on which true λ−1 assumes 0.5; second with true

λ−1 = 5; third were true λ−1 assumes 0.5 for certain periods of time and 5 for

others.
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Strong Jumps

Parameters True ν = 10 ν = 20 ν = 30

µ 0.10 0.0592 (0.0346) 0.0776 (0.0245) 0.0806 (0.0224)

λ−1 0.5 0.5910 (0.2243) 0.5383 (0.1503) 0.5353 (0.1500)

γ−1 1.0031 (0.1068) 1.0001 (0.0557) 0.9995 (0.0387)

ρy 0.05 0.0297 (0.0053) 0.0382 (0.0060) 0.0405 (0.0061)

µy -3 -2.8919 (1.0753) -2.8134 (0.8941) -2.7093 (0.8355)

σy 4 5.1603 (10.1587) 4.8859 (6.0511) 4.8445 (6.0036)

B -2.9944 -3.0956 -2.3654

Weak Jumps

Parameters True ν = 10 ν = 20 ν = 30

µ 0.10 0.0491 (0.0300) 0.0603 (0.0245) 0.0681 (0.0245)

λ−1 0.5 0.5385 (0.1371) 0.5534 (0.1466) 0.5592 (0.1507)

γ−1 1.0019 (0.1091) 1.0000 (0.0592) 0.9998 (0.0412)

ρy 0.05 0.0138 (0.0038) 0.0177 (0.0042) 0.0191 (0.0044)

µy -1.5 -2.1209 (0.6937) -2.3737 (0.4834) -2.4673 (0.3964)

σy 1 3.176 (4.2308) 1.7956 (1.7863) 1.1639 (1.2341)

B -2.6069 -2.0139 -1.8102

Manually Imputed Jumps

Parameters True ν = 10 ν = 20 ν = 30

µ 0.10 0.0354 (0.0387) 0.0674 (0.0265) 0.0716 (0.0245)

λ−1 0.5 0.7087 (0.7638) 0.5559 (0.2057) 0.5340 (0.1487)

γ−1 1.0026 (0.1082) 0.9999 (0.0574) 0.9994 (0.0387)

ρy 0.05 0.0299 (0.0053) 0.0404 (0.0061) 0.0429 (0.0063)

µy -3.69 -3.7001 (2.0452) -4.0406 (1.5861) -3.9569 (1.5381)

σy 8.67 10.1371(38.7786) 9.7148 (25.3517) 9.5976 (22.8319)

B -0.5748 -0.3388 -0.2388

Table 3.6: Simulation 4 - Student’s t - 20 degrees of freedom

For all simulations threshold α was fixes as 0.7. Table 3.6 shows the results

for simulations. Even though ν = 20 corresponds to a Student’s t distribution

with 20 degrees of freedom, ν = 30 shows point estimates closer to true values

and a higher B-statistic for all cases. Because giving more flexibility to the model
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disrupts the capability of the model to identify jumps, it seems that a slightly

higher value for ν can improve model sensibility for jumps.

Figure 3.5: B-statistics comparison for Student’s t scenario

Figure 3.5 shows the comparison between B-statistics for each scenario.

For all cases ν = 30 has a higher B-statistic. Curiously, for strong jumps scenario,

ν = 10 had a higher B-statistic than ν = 20. This suggests that, on giving more

flexibility to the model, some jumps were considered by the model as part of the

distribution tail, giving a better fit than considering them as jumps itself, since,

as can be seen on Figure 3.6, the model underestimated most of jump sizes when

using ν = 10.
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ν = 10 ν = 20 ν = 30

Figure 3.6: Simulation 4 - Strong Jumps - Jump probabilities and sizes

For strong jumps, Figure 3.6, results are similar to the observed on Gaussian

simulations. Using a higher value for ν gives the model a better perception for

jumps, since smaller values tend to classify smaller jumps as part of the distribution

tail.
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ν = 10 ν = 20 ν = 30

Figure 3.7: Simulation 4 - Weak Jumps - Jump probabilities and sizes

For weak jumps, Figure 3.7, it is evident that the model has difficult on

separating jumps from distribution tail components. Since data is now generated

from a distribution with heavier tail than Normal, this difficult is now exacerbated.

Jump probabilities are underestimated in all cases. Also, it can be seen that only

the strongest jumps were considered by the model as jumps, others were considered

as part of distribution tail.
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ν = 10 ν = 20 ν = 30

Figure 3.8: Simulation 4 - Manually Imputed Jumps - Jump probabilities and sizes

For manually imputed jumps, Figure 3.8, it can be seen that, for ν = 10 the

model was not able to capture some of the jumps, since giving this much flexibility

led to consider part of the jumps as a component of the distribution tail. The

same is observed for ν = 20 on position 900, a small part of the jump size was left

behind by the model. With ν = 30 the model was able to capture all manually

imputed jumps precisely.
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True λ−1 = 0.5 True λ−1 = 5 True λ−1 = 0.5 and 5

Figure 3.9: Simulation 5 - Influence of volatility changes

Figure 3.9 shows the effect of volatility changes on jump estimates. Con-

tinuous line represents the posterior mean and the gray area indicates the 95%

credibility interval. Increases on estimated volatility affect the model increasing

tail weight, since in the model υt|γt ∼ N(0, γ−1t λ−1t ). Therefore, some outliers

can be captured by model tail, reducing observations that are considered jumps,
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affecting jump probabilities and size estimates. However, such effect was already

expected, since in moments of market tensions, where risk rises above normal, ex-

cess in returns are not merely isolated speculative movements, that can be capture

by the jump component, but reflex of the increase in market risk. It is notable

that the model was able to capture the changes in volatility over the time, which

is particularly important, since the main focus is on precisely estimating changes

in volatility, which represents market risk.

3.3 Simulation conclusions

Based on simulations, it is possible to conclude that the model is able to

capture both jump and heavy tails structures and estimate parameters with good

precision. The model has some difficulty on estimating jump size variance, since

estimation is based only observations which are considered jumps by the model,

leading to a value generally higher than true parameter. It is also evident that

when jumps are weak, the model has trouble on recognizing them, which leads to

a drop on jump probabilities estimative and increase in jump sizes variance. This

problem is worsen for higher threshold α values and smaller ν values.

Simulated data suggests that, for practical applications, where there is not

much time and computational resources available and real parameters are not

known, using α = 0.70 and ν = 30 would bring best results overall, but such

parameters can be specified in other way by model user. If there is time and

computational resources available, a sensibility analysis can be made for a grid

of different α and ν values, as shown on the simulations, and best model can be

chosen based on B-statistics.

Simulations also suggests that jumps are an effective way to capture isolated

speculative movements in asset returns, so that the estimative of the risk is not

influenced by such movements. When it comes to an increase on market volatility,

jump role in the model is diminished, since excess in returns are, in this case, reflex

of the increase in market risk.
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Chapter 4

Applying model to stock market

index data

In this section the proposed model will be applied to stock market index

data. The first dataset contains S&P 500 stock index returns from January 2, 1980,

to December 31, 1999. Excluding weekends and holidays, there are 5,054 daily

observations for the S&P. The second dataset contains iBovespa stock index returns

from May 11, 2001, to December 18, 2015. Excluding weekends and holidays, there

are 3,647 daily observations for iBovespa. Figures 4.1 and 4.2 shows a histogram for

the indexes log returns. Table 4.1 provides summary statistic for the log returns,

scaled by 100, Figure 4.3 shows S&P500 log returns through time and Figure 4.4

shows iBovespa log returns through time.
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Figure 4.1: S&P500 log return histogram Figure 4.2: iBovespa log return histogram

Mean Variance Skewness Kurtosis Min Max

S&P500 0.05205 0.9978 -2.6357 63.0710 -22.8997 8.7089

iBovespa 0.0134 0.6137 -0.0931 7.3176 -5.2533 5.94038

Table 4.1: Summary Statistics

Figure 4.3: S&P500 log return series Figure 4.4: iBovespa log return series

As summary statistics, histogram and plot of time series suggests, the

S&P500 and iBovespa have different characteristics. For the analyzed period the

american index has a much bigger amplitude on its daily returns than the brazilian

42



index. Two main reasons for that are: the period being analyzed, since economy

characteristics substantially changed from the decade of 80 to year 2000 and on;

and also mechanisms of limiting loss that were recently implemented, in which

assets trade are suspended in case of a big daily loss or gain. Due to such mecha-

nisms, speculative movements are limited, avoiding big losses as the one observed

in S&P500 of 22.89% in one day. Due to that, it is expected that jumps will play

a much greater role on american index than brazilian.

For applying on stock market index data, based on simulations conclusion

that suggest ν = 30, a G(15,15) prior distribution was specified for γt in order to

obtain the Student’s t30-errors for the observation and system disturbances. The

threshold, based on simulations conclusion, was fixed at α = 0.7 and the discount

factor ω fixed at 0.9. All other priors and the MCMC parameters were specified

in the same way it was for simulation, in section 3.2. MCMC results are shown on

Appendix D.

4.1 S&P 500

Table 4.2 provides parameter posterior means and standard deviation for

the proposed model. λ−1 value represents mean and standard deviation for the set

of λ−1t means. Analogously, γ refers to the set of γ.

Parameter Estimated value

µ 0.0658 (0.01066)

λ−1 2.3529 (1.5823)

γ 0.9997 (0.0409)

ρy 0.0149 (0.0022)

µy -0.3567 (0.3895)

σy 2.6999 (0.2906)

B -1.8454

Table 4.2: Parameter estimates for S&P 500 index data
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Figure 4.5 provides jump sizes and probabilities for each observation. As

observed on simulations, part of the excess in returns are absorbed by the dis-

tribution tail or in the form of an increase in variance, which would mean an

increase on the risk measure. Before periods of higher volatility, it is possible

to observe an increase in jump sizes and probabilities, when compared to periods

with lower volatility, thus evidencing that such periods are preceded by speculative

movements, captured in the model by jumps.

Figure 4.6 provides spot volatility estimates over the whole period, Jan/1980

to Dec/1999, and over two specific periods, 1987 to 1989, when took place the Black

Monday, on Oct/1987, and 1997 to 1999, when Asian and Russian financial cri-

sis shaken the stock market. Continuous line represents the posterior mean and

the gray area indicates the 95% credibility interval for spot volatility. Although

measure differs, since a different distribution specification was made, volatility be-

havior is consistent with Eraker et al. (2003) [9] findings, with peaks occurring at

the same time.

Figure 4.7 provides posterior mean for mixture component γ. As it gets

farer from 1, it indicates increasing activity on capturing heavy tails in returns.

A distinguishable point is seen on Oct/1987, when Black Monday occurred. The

model consider this point as a heavy tail event, thus reducing jump size on that

point and increasing volatility measure. Variance, Figure 4.8, defined as γ−1t λ−1t
shows behavior similar to volatility.
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Figure 4.5: Estimated jump times and sizes for the S&P500 index
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Figure 4.6: Estimated volatility for the S&P500 index. Continuous line represents

the posterior mean. The grey area indicates the 95% credibility intervals.

Figure 4.7: Mixture component, γt Figure 4.8: Variance, γ−1t λ−1t
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4.2 iBovespa

Table 4.3 provides parameter posterior means and standard deviation for

the proposed model. λ−1 value represents mean and standard deviation for the set

of λ−1t means. Analogously, γ refers to the set of γ.

Parameter Estimated value

µ 0.0300 (0.0107)

λ−1 0.5655 (0.6741)

γ 0.9997 (0.0389)

ρy 0.0090 (0.0021)

µy -0.3025 (0.4947)

σy 1.9987 (0.3357)

B -1.6640

Table 4.3: Parameter estimates for iBovespa index data

Figure 4.9 provides jump sizes and probabilities for each observation. Since

iBovespa returns on this period is more stable when compared to S&P 500 index

on 1987 to 1999 period, jump sizes and probabilities are smaller than what is

observed in American index. Since log return magnitudes are smaller than S&P’s,

model heavy tails tend to accomodate more observations, which also reduces jump

probability and size estimates. In iBovespa index, increase on jumps probabilities

and sizes can also be observed days before increases on volatility, so that the

presence of higher jumps can indicate near future increases on market risk.

Figure 4.10 provides the spot volatility estimates over the whole period,

May/2001 to Dec/2015, and over two specific periods, 2007 to 2009, when took

place the American subprime crisis, and 2014 to early 2015, when Brazilian presi-

dential elections brought instability to stock markets. Continuous line represents

the posterior mean and the gray area indicates the 95% credibility interval for spot

volatility. Increase in volatility is consistent with political or financial events that

occurred on the period.
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Figure 4.11 provides posterior mean for mixture component γt. As it gets

farer from 1, it indicates activity on capturing heavy tails in returns. It’s possible

to see that this component is persistently capturing heavy tails, which can explain

the absence of stronger jumps for this market. Variance (Figure 4.12) defined as

γ−1t λ−1t shows behavior similar to volatility.
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Figure 4.9: Estimated jump times and sizes for the iBovespa index
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Figure 4.10: Estimated volatility for the iBovespa index. Continuous line repre-

sents the posterior mean. The grey area indicates the 95% credibility intervals.

Figure 4.11: Mixture component, γt Figure 4.12: Variance, γ−1t λ−1t
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4.3 Experimental conclusions

The NGSVJ model was able to capture speculative movements in the mar-

ket through the jump components and detect periods with increased market risk

through the volatility component. Results obtained by applying the model to

S&P 500 return series are consistent with Eraker et al. (2003) [9] findings, since

volatility peaks occur at same times. Historical events of known volatility effects

on financial markets, such as Black Monday and Asian/Russian Financial Crisis,

for S&P index, and Subprime crisis and Presidential Elections, for iBovespa index,

can be detected by the model precisely.

Results also suggest that the model can adapt to data despite the charac-

teristics of the market being analysed. Jumps play a greater role on markets with

bigger discrepancy between returns, like in S&P index, where log returns ampli-

tude is around 31 points, three times bigger than iBovespa’s log returns amplited

of just around 11 points. On iBovespa index, less jumps are detected and some of

excess returns are absorbed by distribution tail.

One recurrent behavior, that is also noted by Eraker et al. (2003) [9], is the

increase on jump probabilities and sizes days before increases in volatility. This

pattern can be observed on both indexes and may indicate that jumps, beyond

being a tool to capture speculative movements, can be a way of forecasting near

future increases on market risk.
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Chapter 5

A proposal for weak jumps

scenario

This chapter presents an alternative method for jump detection and simu-

lations on using such method.

5.1 Jump Detection Algorithm: a Non-Parametric

Approach

On trying to solve the issue of estimating jumps on a weak jumps scenario,

an alternative jump detection algorithm based on a non parametric approach can

be used. For that purpose, the algorithm proposed by Riley (2008) [21] can be used.

The Sequential Average method consists on comparing the difference between the

average values within a pair of adjacent windows of adjustable length against a

selectable jump threshold. If a potential jump is detected, the following points are

examined in an averaging window to accept or reject the jump. According to Riley

(2008) [21], the advantage of this method is that it gives the right jump location

and no offset parameter is needed. A similar approach is also developed by Lee
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and Maykland (2008) [14]. If the length for analysis is 1, the algorithm for the

process is given by the following chart.

Figure 5.1: Block average jump detection flowchart. Source: Riley(2008).

In other words, if the observation yt+1 is out of the interval yt ± Z ×√
γ−1t λ−1, where Z is a threshold selected according to the area of a Normal curve

corresponding to a tail probability1, it is considered a jump at time t+ 1.

The jump probabilities can be easily calculated by getting the average value

of Jt. The average in this case would be the number of times there was considered

a jump at time t divided by the number of iterations taken, which would be a

number inside [0,1].

1Based on a N(0,1) test on which Z refers to the value in which probability of occurrence is

low enough to be considered a jump.
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5.2 Simulations

For the non-parametric approach, the simulation data used was the same

as Simulation 4 - Student’s t distribution with 20 degrees of freedom and weak

jumps. For a Z selected so that the cut-point is 95% and 99% of a Normal curve,

three different values for ν were tested: 10, 20 and 30.

Figure 5.2: B-statistics comparison for Student’s t scenario - Non Parametric

Approach

Figure 5.2 shows B-satistics results for the parametric (NGSVJ) approach,

obtained on Simulation 4, and non-parametric (NP). In all cases, the parametric

approach had a better fit according to B-statistic.
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Weak Jumps - NGSVJ

Parameters True ν = 10 ν = 20 ν = 30

µ 0.10 0.0491 (0.0300) 0.0603 (0.0245) 0.0681 (0.0245)

λ−1 0.5 0.5385 (0.1371) 0.5534 (0.1466) 0.5592 (0.1507)

γ−1 1.0019 (0.1091) 1.0000 (0.0592) 0.9998 (0.0412)

ρy 0.05 0.0138 (0.0038) 0.0177 (0.0042) 0.0191 (0.0044)

µy -1.5 -2.1209 (0.6937) -2.3737 (0.4834) -2.4673 (0.3964)

σy 1 3.176 (4.2308) 1.7956 (1.7863) 1.1639 (1.2341)

B -2.6069 -2.0139 -1.8102

Weak Jumps - Non Parametric Approach - cut 99%

Parameters True ν = 10 ν = 20 ν = 30

µ 0.10 0.0711 (0.0391) 0.0692 (0.0331) 0.0706 (0.0349)

λ−1 0.5 0.4866 (0.1087) 0.5100 (0.1149) 0.5163 (0.1122)

γ−1 1.0019 (0.0979) 0.9986 (0.0555) 0.9993 (0.0384)

ρy 0.05 0.0483 (0.0066) 0.0453 (0.0064) 0.0453 (0.0064)

µy -1.5 -1.9811 (1.7849) -1.9665 (1.3807) -1.8711 (1.2589)

σy 1 2584.51(77880.84) 2.7826(6.0222) 2.4737 (1.1679)

B -5.6193 -3.3669 -2.8792

Weak Jumps - Non Parametric Approach - cut 95%

Parameters True ν = 10 ν = 20 ν = 30

µ 0.10 0.086 (0.0363) 0.0814 (0.0301) 0.0817 (0.0278)

λ−1 0.5 0.3983 (0.0811) 0.3996 (0.0794) 0.4022 (0.0791)

γ−1 0.9986 (0.0873) 0.9963 (0.0489) 0.9966 (0.0342)

ρy 0.05 0.1168 (0.0098) 0.1113 (0.0096) 0.1145 (0.0098)

µy -1.5 -1.0547 (1.1567) -0.9757 (0.7974) -0.9108 (0.6494)

σy 1 1.9908 (0.645) 2.0355 (0.5762) 1.9908 (0.645)

B -∞ -5.9567 -4.0273

Table 5.1: Simulation 6 - Non-Parametric Approach - Student’s t - 20 degrees of

freedom

For non-parametric approach, there is no significant change on jumps esti-

mation by varying ν parameter. Since this approach is based on critical regions

of the distribution, as tail get heavier, smaller is the critical region, so the num-
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ber of outliers stays more or less the same. For cut-point = 99% and ν = 30,

non-parametric approach shows point estimates slightly closer to real values than

other models in general. However, B-statistics indicates that model fit is worse

than NGSVJ parametric approach. Figure 5.3 gives a glue of the reason why this

happens: even though point estimate matches with real value, model is not able

to capture precisely jump times, underestimating probabilities for real jump times

and detecting jumps where there are not.

Using cut-point = 95%, the model over-estimates jump probabilities. This

leads to worse B-satistics when compared to other models.

Figure 5.3 compares the three models, each of them with parameters that

lead to the highest B-statistics possible. Even though non-parametric approach

can capture more jumps, it misses several points, so that jump estimates may

not reflect real values. Non-parametric model captures non existing jumps several

times, and also misses real jumps. There are several cases of wrong classifications,

which can be seen on jump sizes graphics.
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NGSVJ - ν = 30 NP - 99% NP - 95%

Figure 5.3: Simulation 6 - Weak Jumps - Non-Parametric Approach

5.2.1 Simulation conclusions

The non-parametric approach was not effective on estimating jump times

and sizes. This affects estimation of other parameters, and has a negative effect on

the model as a whole. Even tough non parametric approach could get better point

estimates in some cases, in a practical application it can miss real values, since

data is generally more complex and the jump miss-classifications can interfere on

other parameters estimates.
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Chapter 6

Discussion about the NGSVJ

model

There are a lot of works on stochastic volatility models for univariate fi-

nancial time series. This work used as base for comparison the models presented

by Eraker et. al. (2003) [9], but there are also developments on SV models, as the

proposed by Warty et al (2014) [26], using variance-gamma jumps, and Nakajima

and Omori (2007) [18], including in the model the leverage effect together with

heavy tails and correlated jumps.

Since a lot has been already discussed on these previous works, one might

ask what is the gain on continue developing methods to model volatility for uni-

variate financial time series. This chapter focus on discussing the key points that

justify the importance of NGSVJ model as an alternative to the classic SV model

and its variations.

6.1 NGSVJ model advantages

The most notable advantage of using NGSVJ is its computational simplicity
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and the structure of the DLM model, on which it is based, that grants an automatic

sampling process for parameters.

Using Gibbs Sampler to obtain a sample from conditional posterior distri-

butions is computationally cheaper than recurring to Metropolis based algorithms.

Since Metropolis is an accept-reject algorithm, it can take several steps until a full

sample is obtained in order to make statistical inference, unless a very good pro-

posal distribution is given to the algorithm. On using Gibbs Sampler, only one

step is needed in order to obtain the same sample. This is specially relevant when

dealing with high dimensional data, such as market daily returns from several

years.

Due to this computational simplicity, NGSVJ model can be run on an

ordinary home computer and give reliable results for analysis in some hours, even

for long iteration chains, such as 100,000 observations. The practical consequence

of such advantage is that the model can be run after market closes and results will

be available before market opens on the next day. Also, it can potentially bring

cost reductions and be available for any market player, since there is no need for

advanced hardware configuration in order to the computer to run the model.

As the model is build over the Dynamic Linear Model with scale mixtures

proposed by Gamerman et al.(2013) [10], it takes advantage of the sampling process

mentioned on Chapter 2.4.1. Theorems 1 and 2 cited by Gamerman et al. (2013)

[10] can be applied so that an exact sample of Volatility parameter λ−1t is obtained.

The two main advantages that comes from this process are: there is no need to

make approximations in order to estimate volatility, and it is a faster method,

since all parameters are sampled at once.

Another advantage is the model flexibility. It can be adapted to include

jumps, covariates, heavy tails and different distributions can be adopted based on

the mixture component used. In this work, Student-t distribution was used trough

a Gamma distributed mix component, but other distributions can also be used to

give satisfactory results.
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6.2 Comparison to other models

Since SV models presented by Eraker et al. (2003) [9] have a different struc-

ture from the proposed model, comparison between models is not straightforward.

Comparison can be made between parameters that exist on both NGSVJ and SV

models with the same roles on both models, that is, equilibrium return and jump

related parameters. Table 6.1 compares posterior mean of common parameters

estimates between the proposed model and the stochastic volatility with jumps on

returns (SVJ), with independently arriving jumps on returns and volatility (SVIJ)

and contemporaneous arriving jumps (SVCJ), omitting the ones that are exclusive

for each model, for S&P 500 returns.

NGSVJ SVJ SVCJ SVIJ

µ 0.0658 (0.01066) 0.0496 (0.0109) 0.0554 (0.0112) 0.0506 (0.0111)

ρy 0.0149 (0.0022) 0.0060 (0.0021) 0.0066 (0.0020) 0.0046 (0.0020)

µy -0.3567 (0.3895) -2.5862 (1.3034) -1.7533 (1.5566) -3.0851 (3.2485)

σy 2.6999 (0.2906) 4.0720 (1.7210) 2.8864 (0.5679) 2.9890 (0.7486)

Table 6.1: Comparison between NGSVJ model and SVJ models in Eraker et. al

(2003) [9] for S&P 500 returns

NGSVJ model captures more jump points than Eraker et al. (2003) [9] SV

models. This leads to a smaller estimative for µy, since more points are captured

as jumps. It also identify volatility peaks on same periods that Eraker et al. (2003)

[9] , on Black Monday (1987) and Asian/Russian financial crisis (1997/1998), as

can be seen in Figure 6.1. Even though volatility magnitude is not the same for

both models, which is plausible, since model specification differs, using any of both

volatility estimatives will lead to same conclusions for practical applications.
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Figure 6.1: Comparison between estimated volatility on NGSVJ model and Eraker

et al. (2003) [9] models.
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Chapter 7

Conclusion

The proposed model has a much more simple structure to deal with the

inclusion of heavy tails and jumps than the other methods commonly used. The

possibility of using only Gibbs Sampling method to sample from the posterior

distributions, together with the block sampling structure, give efficiency and speed

to the model, which is crucial in day-to-day operations.

The inclusion of jumps in the model reduces substantially the volatility

estimate. This would have several impacts on risk analysis, since less volatility

indicates less risk, in other words, knowing that some event was a jump, or tail

event, and not a recurrent market event would mean that such asset is still a

safe bet. Usually an increase of jump frequency is observed near the occurrences

of market anomalies, such as Black Monday and the Asian and Russian financial

crisis, in S&P 500, and 2008 crisis and Brazilian presidential elections, in iBovespa,

which may indicate that it can also be used for predicting near future increases on

market risk.

The easiness to include mixture variables in the model is another advantage.

By doing that, there are no simplifications of reality by assuming Gaussian distri-

bution, since it is well documented on the literature that financial asset returns

data have heavy tailed distribution.

Two main difficulties showed up during the development of the model: the
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first is due to dealing with high dimensional data, to keep up speed and save

memory in the computer, optimizations must be done in the code in order to be

able to run it. Such optimizations include: block sampling, squeezing the number

of variables declared and the dimensionality of such variables, creating a burn-lags

routine such that it only saves values that are in fact relevant; the second is on

estimating jumps when jump sizes are small, since the model struggles to detect

jumps that are inside distribution tail, which is worsen by using a heavy tailed

distribution.

The attempt of using a non-parametric method, based on a normal curve

tail analysis, such as proposed by Riley (2008) [21], for detecting jumps in a weak

jumps scenario was not effective, since there is a lot of miss-classification using

such method, which causes more harm than good to the model.

For day-to-day operations, the automatic model is effective and can be

used in order to estimate market volatility, which can be used for options pricing,

VaR calculations, measuring risk, etc. Its lower computational cost compared to

Metropolis-based algorithms make it accessible to firms and investors who does not

have access to high technology computers - common personal computers are able

to run the model and bring reliable results in some hours. Using an Intel Core i5 -

2310 CPU at 2.90 Ghz, 4 GB RAM, and 64 bit Windows Seven operating system,

it took approximately 7 hours to get results from S&P 500 index and 5 hours and

a half to get results from iBovespa index.

For future works is intended to extend the model to the multivariate case,

where, instead of analysing one asset individually, an asset portfolio risk is analysed

as a whole. Another extension intended is the inclusion of jumps in volatility, as

suggested by Eraker et al. (2003) [9], without having to appeal to Metropolis

based algorithms, in order to keep the model fast and accessible. Some other

possibilities include working with a skew heavy tailed distribution, as in Nakajima

and Omori (2007) [17], or working with a stationary evolution to log-volatility,

but still maintaining the block sampling, so that it allows to capture the leverage

effect and correlations between mean and volatility.
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Appendix A

Full Conditional Posterior

Distributions for NGSV Model

This appendix presents the conditional posterior distributions for the vari-

ables NGSVJ model. For simplifying notation, let Φ = (θt, J
y
t , γt, δt, λt, σ

2
u) be all

other model variables, excluding the one which conditional posterior distribution

is being calculated.

A.1 Conditional Posterior Distribution for γt

p(γt) ∼ Gamma(
ν

2
,
ν

2
)

p(γt|yt,Φ[−γ]) ∝ (γt)
ν
2
−1e−γt

ν
2

(
1

γ−1t λ−1t

) 1
2

exp

(
−(Yt − Ftθt − Jt)2

2γ−1t λ−1t

)
p(γt|yt,Φ[−γ]) ∝ (γt)

ν
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+ 1
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−1 exp
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−γt

[
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2
+ λt

(Yt − Ftθt − Jt)2
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])
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2
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1

2
,
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(Yt − Ftθt − Jt)2

2

)
.
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A.2 Conditional Posterior Distribution for δt

p(δt) ∼ Gamma(
ν

2
,
ν

2
)

p(δt|yt,Φ[−δ]) ∝ (δt)
ν
2
−1e−δt

ν
2 |δ−1t (σ2

µ)|−
1
2 exp
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.

A.3 Conditional Posterior Distribution for σ2
µ

p(σ2
µ) ∼ InverseGamma(a0, b0)

p(σ2
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Appendix B

Full Conditional Posterior

Distributions for Jump

Components

This appendix presents the conditional posterior distributions for the jump

components: µy, σ
2
y, ξ

y
t+1 N

y
t+1 and ρ. For simplifying notation, let Φ = (θt, J

y
t , γt, δt, λt, σ

2
u)

be all other model variables, excluding the one which conditional posterior distri-

bution is being calculated.
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B.1 Conditional Posterior Distribution for µy

p(µy) ∼ N(m, v)

p(µy|yt,Φ[−µy ]) ∝ exp

(
− 1

2v
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B.2 Conditional Posterior Distribution for σ2
y
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B.3 Conditional Posterior Distribution for ξyt+1

p(ξyt+1) ∼ N(µy, σ
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B.4 Conditional Posterior Distribution for ρ

p(ρ) ∼ Beta(α, β)

p(ρ|Yn,Φ[−ρ]) ∝ ρα−1(1− ρ)β−1
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i=1

ρN
y
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B.5 Conditional Posterior Distribution for N y
t+1

P (Ny
t+1 = 1|,Φ[−Ny ]) ∝ ρP (Yt+1|Ny

t+1 = 1,Φ[−Ny ])

P (Ny
t+1 = 0|,Φ[−Ny ]) ∝ (1− ρ)P (Yt+1|Ny

t+1 = 0,Φ[−Ny ])
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Since Ny can assume only two values, 0 or 1:

P (Ny
t+1 = 1|,Φ[−Ny ]) =

ρP (Yt+1|Ny
t+1 = 1,Φ[−Ny ])

ρP (Yt+1|Ny
t+1 = 1,Φ[−Ny ]) + (1− ρ)P (Yt+1|Ny

t+1 = 0,Φ[−Ny ])
.

Using the idea proposed by Brooks and Prokopczuk (2011) [3], be α a threshold

so that:

Ny
t+1 =

1 if P (Ny
t+1 = 1|,Φ[−Ny ]) > α

0 if P (Ny
t+1 = 1|Φ) ≤ α

.
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Appendix C

Sampling from λt

This appendix shows how the posterior sample from λt is obtained, as

described by Gamerman et al. (2013) [10].

The joint distribution of (λ|Yn, ϕ) has density

p(λ|ϕ, Yn) = p(λn|ϕ, Yn)
n−1∏
t=1

p(λt|λt+1, ϕ, Yt)p(ϕ|Yn)

where the distribution of (λt|λt+1, ϕ, Yt) is given by

λt − ωλt+1|λt+1, ϕ, Yt ∼ Gamma((1− ω)at, bt),∀t ≥ 0,

where at and bt are the filtering parameters. The on-line or updated distribution

λt|ϕ, Yt, where ϕ = (θt, J
y
t , γt, ω), is given by:

p(λt) ∼ Gamma(ωat−1, ωbt−1)
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exp
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1

2
, ωbt−1 + γt

(Yt − Ftθt − Jt)2

2

)
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Based on that Theorem and a sample of p(ϕ|Yn), an exact sample of the

joint distribution (λ|Yn, ϕ) can be obtained following the algorithm:

1. set t = n and sample p(λn|ϕ, Yn);

2. set t = t-1 and sample p(λt|λt+1, ϕ, Yt);

3. if t > 1, go back to step 2; otherwise, the sample of (λ1, ..., λn|ϕ, Yn) is

complete.

This Theorem allows the implementation of the algorithms step 2 and en-

ables to obtain an exact sample from the smoothed distribution of the states

conditioned on other parameters.
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Appendix D

MCMC Chains for NGSVJ Model

This appendix show MCMC results for static parameters for NGSVJ model

application on S&P 500 and iBovespa applications.
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D.1 S&P 500 MCMC results

Param Histogram MCMC Chain ACF

µ

µy

σy

ρy

Figure D.1: MCMC results for S&P 500 log returns data.
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D.2 iBovespa MCMC results

Param Histogram MCMC Chain ACF

µ

µy

σy

ρy

Figure D.2: MCMC results for iBovespa log returns data.
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