

Dissertação de Mestrado

GEOLOGIA E GEOCRONOLOGIA DE ZIRCÕES DETRÍTICOS DA REGIÃO DE SERRO, SERRA DO ESPINHAÇO MERIDIONAL, MINAS GERAIS, BRASIL.

Autor: Vítor Diniz Silveira

Orientador: Carlos Alberto Rosière

№ 163

Belo Horizonte 09/10/2016

Dissertação de Mestrado

GEOLOGIA E GEOCRONOLOGIA DE ZIRCÕES DETRÍTICOS DA REGIÃO DE SERRO, SERRA DO ESPINHAÇO MERIDIONAL, MINAS GERAIS, BRASIL.

Dissertação de Mestrado apresentada junto ao Colegiado de Pós-graduação em Geologia do Instituto de Geociências da Universidade Federal de Minas Gerais como requisito parcial à obtenção do título de mestre.

Área de Concentração: Geologia Regional

Autor: Vítor Diniz Silveira

Orientador: Carlos Alberto Rosière

№ 163

Belo Horizonte 09/10/2016

UNIVERSIDADE FEDERAL DE MINAS GERAIS

PROGRAMA DE PÓS-GRADUAÇÃO EM GEOLOGIA

FOLHA DE APROVAÇÃO

Geologia e Geocronologia da Região de Serro, Serra do Espinhaço Meridional, Minas Gerais, Brasil.

VÍTOR DINIZ SILVEIRA

Dissertação submetida à Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação em GEOLOGIA, como requisito para obtenção do grau de Mestre em GEOLOGIA, área de concentração GEOLOGIA REGIONAL.

Aprovada em 26 de agosto de 2016, pela banca constituída pelos membros:

Prof(a). Carlos Alberto Rosiere - Orientador UFMG

dul 0 Ro Prof(a). Fabrício de Andrade Caxito

UFMG Prof(a). Tiago Amancio Novo ŪFMG

Belo Horizonte, 26 de agosto de 2016.

Agradecimentos

É com grande satisfação que agradeço as pessoas que ao longo de dois anos contribuíram de diversas formas para a realização deste trabalho de dissertação de mestrado. As dificuldades vivenciadas neste período foram superadas pelo imenso apoio dos amigos e familiares. As amizades construídas e ampliadas foram fundamentais nesta etapa de minha vida. Muito obrigados a todos !!

Ao professor orientador Dr. Carlos Alberto Rosière que apoiou desde o início a ideia do trabalho e possibilitou a execução do mesmo. Agradeço pelo espaço que ofereceu às discussões, as criteriosas correções e pelas opiniões de como construir e expressar o pensamento científico.

O agradecimento especial para o amigo, eterno e saudoso chefe, Dr. Vassily Khoury Rolim que ofereceu a oportunidade de realização deste trabalho, as excelentes e inúmeras discussões e elucubrações geológicas e pelo acompanhamento dos trabalhos de campo.

Agradeço ao suporte financeiro vinculado ao Projeto de Pesquisa intitulado "A Sequência de Formações Ferríferas e Minério de Ferro Associado do Grupo Guanhães", CNPq (Pr. Nr 473269/2013-9), coordenador professor Carlos Alberto Rosière e ao projeto "Gênese de Depósitos de Ferro e Ouro do Quadrilátero Ferrífero e áreas Adjacentes: Uma Abordagem pela Geologia Isotópica", FAPEMIG (Pr. Nr. CRA - RDP-00067-10), cooperação UFMG-UFOP, coordenadores professores Cristiano Lana (UFOP) e Lydia Lobato (UFMG).

Aos amigos "Geologistas", em especial Uendel Barroso e Gilberto Luiz, pelo apoio, discussões e participação efetiva nos trabalhos de campo. Aos amigos de pós-graduação e colaboradores bolsistas do laboratório de preparação de amostras para geoquímica e geocronologia – LOPAG, da Universidade Federal de Ouro Preto – UFOP.

Aos meus pais que sempre me incentivaram a estudar e batalhar e nunca desistiram de me dar o que tinha de melhor.

Por fim, o mais especial reconhecimento e profundo agradecimento a minha esposa, Grasiele Luz, pela paciência, resiliência e inestimável apoio a realização do trabalho!

~	,	
Su	ma	rio

Agradecimentosiv
Índice de Figurasvi
Resumo viii
Abstractix
1 - Introdução1
1.1 – Localização
1.2 – Metodologia2
2 – Contexto Geológico Regional
3 – Empilhamento Estratigráfico7
4 – Geologia Estrutural11
4.1 - Descolamentos e Falhas
4.2 – Foliações
4.3 – Dobras
4.4 – Lineações
5 – Geocronologia16
5.1 - Resultados
6 – Discussões e Conclusões
6.1 – Estratigrafia e Geocronologia30
6.2 – Interpretação Estrutural35
7 – Referências Bibliográficas
8 – Anexos

Índice de Figuras

Figura 1 - Localização da cidade de Serro e melhores vias de acesso1
Figura 2 – Mapa contextualizando as principais unidades aflorantes na borda Leste da Serra do
Espinhaco Meridional e mapa geológico simplificado na região de Serro4
Figura 3 - Coluna estratigráfica geral para a região de Serro, MG 7
Figura 4 - Columas estratigráficas da Serra Oeste e da Serra dos Alves, região de Serro, MG 8
Figura 5 - Ortognaisse milonítico do embasamento cristalino. (A e B) Texura <i>augen</i> (C e D)
Textura estromática (E e F) Textura <i>schlieren</i>
Figura 6 - Metaconglomerados e quartzitos aflorantes na região de Serro. Unidades I e II
Figura 7 - (A) Afloramento da BIF em meio a canga. (B) Detalhe do bandamento seccionado por
veio de hematita e magnetita 11
Figura 8 – Perfil geológico esquemático para a região de Serro, MG12
Figura 9 – Mapa geológico esquemático para a região de Serro. MG evidenciando as estruturas
locais
Figura 10 - Embasamento milonítico mostrando; (A) estrutura S-C, (B) cauda de recristalização (C)
feldspato escalonado (D) Conglomerado mergulhando abaixo do saprólito do embasamento. (E)
Detalhes da Falha F2
Figura 11 - (A) Contato acima de Falha F3 (B) Foliação milonítica no embasamento (C e D)
Afloramento e detalhe dos milonitos (E) Fotomicrografia mostrando a clivagem de crenulação no
embasamento (F) Fotomicrografia mostrando a clivagem de crenulação no quartzito, nicóis
paralelos, 500 μm
Figura 12 - (A) Dobra assimétrica com flanco curto rompido vergente para oeste e (B) Afloramento
mostrando detalhe dos seixos estirados <i>down-dip</i> ao caimento para E16
Figura 13 – Mapa geológico, colunas estratigráficas e perfil geológico esquemático na região de
Serro, MG, identificando as amostras coletadas para geocronologia17
Figura 14 – Mapa geológico regional, folha Presidente Kubitschek de Knauer & Fogaça (1995),
seção geológica esquemática identificando as amostras coletadas para estudos geocronológicos18
Figura 15 - Imagens de catodoluminescência dos grãos de zircão detríticos da amostra PT00819
Figura 16 - Histograma de idades ²⁰⁷ Pb/ ²⁰⁶ Pb para os zircões da amostra PT008 20
Figura 17 - Imagens de catodoluminescência dos grãos de zircão detríticos da amostra PT02121
Figura 18 - Histograma de idades ²⁰⁷ Pb/ ²⁰⁶ Pb para os zircões da amostra PT021 21
Figura 19 - Imagens de catodoluminescência dos grãos de zircão detríticos da amostra PT03822
Figura 20 - Histograma de idades ²⁰⁷ Pb/ ²⁰⁶ Pb para os zircões da amostra PT03823
Figura 21 - Histograma de idades ²⁰⁷ Pb/ ²⁰⁶ Pb para os zircões da amostra BEBETO123
Figura 22 - Imagens de catodoluminescência dos grãos de zircão detríticos da amostra PT03924
Figura 23 - Histograma de idades ²⁰⁷ Pb/ ²⁰⁶ Pb para os zircões da amostra PT03925
Figura 24 - Imagens de catodoluminescência dos grãos de zircão detríticos da amostra PT04026
Figura 25 - Histograma de idades ²⁰⁷ Pb/ ²⁰⁶ Pb para os zircões da amostra PT04026
Figura 26 - Imagens de catodoluminescência dos grãos de zircão detríticos da amostra PT04727
Figura 27 - Imagens de catodoluminescência dos grãos de zircão detríticos da amostra PT04928
Figura 28 - Histograma de idades ²⁰⁷ Pb/ ²⁰⁶ Pb para os zircões da amostra PT04928
Figura 29 - Imagens de catodoluminescência dos grãos de zircão detríticos da amostra PT05329
Figura 30 - Histograma de idades ²⁰⁷ Pb/ ²⁰⁶ Pb para os zircões da amostra PT053 30

Figura 31 - Coluna estratigráfica geral na região de Serro, MG, identificando as amostras com as
idades máximas de sedimentação30
Figura 32 - Cartas estratigráficas do Supergrupo Espinhaço na porção central da Serra do
Espinhaço Meridional, na porção leste região da Serra da Serpentina e na região de Serro. Idades
geocronológicas
Figura 33 – Histogramas com frequências relativas de populações de zircões em diferentes projetos
na Serra do Espinhaço Meridional32
Figura 34 – Perfil geológico esquemático caracterizando as duas fases de compressão36
Figura 35 – Expressão da foliação S2 em diferentes estruturas; (A) Crenulação e (B) Clivagem de
crenulação (C) Formação de micrólitons com dobras internas de S1 (D) Formação de dobras por
propagação de falhas no plano de S2 e (E) Retro-empurrão36

Índice de Tabelas

Tabela 1 - Correlação estratigráfica de diferentes trabalhos na borda leste da Serra do Esp	pinhaço5
Tabela 2 - Amostras coletadas para datação na região de Serro, MG	17
Tabela 3 - Amostras coletadas para datação na região de Datas, MG	18
Tabela 4 – Dados isotópicos U-Pb nos zircões detríticos da amostra PT008	39
Tabela 5 - Dados isotópicos U-Pb nos zircões detríticos da amostra PT021	40
Tabela 6 - Dados isotópicos U-Pb nos zircões detríticos da amostra PT038	40
Tabela 7 - Dados isotópicos U-Pb nos zircões detríticos da amostra PT039	41
Tabela 8 - Dados isotópicos U-Pb nos zircões detríticos da amostra PT040	42
Tabela 9 - Dados isotópicos U-Pb nos zircões detríticos da amostra PT047	43
Tabela 10 - Dados isotópicos U-Pb nos zircões detríticos da amostra PT049	44
Tabela 11 - Dados isotópicos U-Pb nos zircões detríticos da amostra PT053	45
1	

Resumo

Este trabalho apresenta os resultados dos estudos estratigráficos, tectônicos e geocronológicos realizados na região de Serro, MG. As rochas metassedimentares ali aflorantes foram subdivididas em quatro unidades litoestratigráficas: a Unidade I é constituída por metassedimentos rudáceos, metaconglomerado e quartzito, a Unidade II é composta por quartzito com metaconglomerado e filito, a Unidade III corresponde a formação ferrífera bandada e a Unidade IV é constituída por quartzito.

Estas unidades são correlacionadas com as formações do Grupo Serra de São José, com idade máxima de deposição em 1666 \pm 32 Ma, e podem ser consideradas como a continuação lateral destas camadas rumo a norte.

A deposição na bacia evoluiu ao final do Paleoproterozóico, período Estateriano, definida pelo pico de idade da população mais jovem dos grãos de zircão detrítico encontrado na base, idade de 1712 Ma, e o pico de idade da população mais jovem encontrado no topo, de idade 1672 Ma.

O empilhamento estratigráfico das unidades basais, somado as idades máximas de sedimentação e as similares distribuições das populações de zircões nos histogramas, propõem a correlação destas unidades com a Formação São João da Chapada aflorante a oeste na Serra do Espinhaço Meridional.

Os resultados dos estudos geocronológicos e estratigráficos permitem nova interpretação para a formação ferrífera bandada de Serro, revelando que esta unidade está associada as rochas de idades Estaterianas que compõe a sequência rift do Supergrupo Espinhaço.

Palavras Chaves: Formação ferrífera bandada, Estateriano, Serro, Serra do Espinhaço Meridional

Abstract

This work describes the results of stratigraphic, tectonic and geochronological studies in Serro, MG. The metasediments were divided into four lithostratigraphic units: Unit I consists of rudaceos metasediments, metaconglomerate and quartzite; Unit II is composed of quartzite with metaconglomerate and phyllite; Unit III corresponds to banded iron formation; and Unit IV consists of quartzite.

These units are correlated with the formations of the Serra São José Group, with maximum deposition age in 1666 ± 32 Ma, and can be considered as a lateral continuation of these layers toward north.

The basin deposition evolved at the end of the Paleoproterozoic, Statherian period, defined in the histograms by the peak age of the younger population of detrital zircon grains found at the base, age 1712 Ma, and the peak age of the younger population found at the top, with age 1672 Ma.

The stratigraphic stacking of basal units, together with the maximum age of sedimentation and similar distributions of populations of zircons in the histograms, propose the correlation of these units with the São João da Chapada Formation outcropping west in the southern Espinhaço Range.

The results of geochronological and stratigraphic studies allow new interpretation to the banded iron formation of Serro, revealing that this unit is associated of Statherian rocks that constitute the Espinhaço Supergroup rift sequences.

Keywords: Banded iron formation, Statherian, Serro, Southern Espinhaço Range

1 - Introdução

A cidade de Serro, localizada na região central do Estado de Minas Gerais, está inserida na borda leste da Serra do Espinhaço Meridional, onde o empilhamento estratigráfico, por causa da tectônica de cavalgamentos desenvolvida durante a orogênese Brasiliana, tem levado a uma série de interpretações conflitantes, principalmente a correlação das unidades ali existentes com as unidades do Supergrupo Espinhaço aflorantes a oeste.

O foco do trabalho é o entendimento tectônico e estratigráfico da região de Serro, aliado a estudos geocronológicos de zircões detríticos para estabelecer, ou pelo menos restringir, o período geológico de deposição das unidades aflorantes, em especial as formações ferríferas bandadas.

A dissertação se justifica devido ao interesse em desvendar a origem das BIF's na região, entender a evolução da bacia precursora dos depósitos de ferro e sua relação cronoestratigráfica no contexto geológico da Serra do Espinhaço Meridional.

1.1 – Localização

O melhor acesso à área de pesquisa, a partir da capital do estado, Belo Horizonte, é pela rodovia MG-010 rumo a norte, distante aproximadamente 230 km. Outra opção de acesso é seguir pelas rodovias BR-040, BR-135 e BR-259 distante aproximadamente 330 km (Fig.1).

Figura 1 - Localização da cidade de Serro e melhores vias de acesso.

1.2 – Metodologia

Os estudos foram realizados entre os meses de agosto de 2014 e junho de 2016. Duas etapas de campo, com duração de 15 dias cada, proporcionaram a realização dos perfis regionais com ênfase no empilhamento estratigráfico e arcabouço estrutural da região de Serro, MG.

Amostras de campo foram recolhidas para fabricação de laminas delgadas e polidas afim de embasar o trabalho com dados de petrografia e microestruturas. O total de 15 laminas foi confeccionado nas principais litologias; quartzito, granito-gnaisse do embasamento e formação ferrífera bandada.

Para os estudos geocronológicos em zircões detríticos foram coletadas 8 amostras em quartzitos e xistos, com aproximadamente 20 kg cada e enviadas para processamento no laboratório de Preparação de Amostras para Geoquímica e Geocronologia – LOPAG, na Universidade Federal de Ouro Preto – UFOP. As amostras foram britadas e moídas para a concentração dos minerais pesados em bateias manuais. A separação dos minerais magnéticos foi feita por imãs de diferentes intensidades para posteriormente ocorrer a catação manual dos zircões detríticos em lupas de mesa.

Os grãos de zircões separados foram aglutinados em resina epóxi, polidos para expor o centro dos cristais e levados ao imageamento por catodoluminescência usando o *Centaurus Detector* acoplado ao mev JEOL JSM 6510. As imagens são apresentadas em cada amostra para mostrar as variações da morfologia dos grãos, arredondamento e feições internas evidenciando a natureza detrítica com diversidade de fontes e transporte sedimentar.

A datação foi feita pelo método U-Pb utilizando o LA-ICP-MS no Laboratório de Isótopos – DEGEO – UFOP que utiliza o *Thermo-Finnigan Element* II, acoplado ao laser CETAC UV 213 nm. As Idades ²⁰⁶Pb/ ²³⁸U, ²⁰⁷Pb/²³⁵U e ²⁰⁷Pb/²⁰⁶Pb foram calculadas usando o software *Isoplot* 3.0 (Ludwig, 2003), e os histogramas, mostrando a frequência relativa do número de grãos de zircão em relação suas idades, foram montados no *DensityPlotter* 2.7 (Vermeesch, 2012). Os padrões utilizados foram o GJ-1, de idade 600-608 Ma, e o BB-9 de idade 560 Ma.

Idades ²⁰⁷Pb/²⁰⁶Pb foram utilizadas para a fabricação dos histogramas e foram utilizados apenas os grãos de zircão com mais de 90% de concordância entre as idades ²⁰⁶Pb/ ²³⁸U e ²⁰⁷Pb/²⁰⁶Pb. A tabela contendo os dados isotópicos e as idades U-Pb para cada amostra são apresentadas no anexo deste volume.

2 – Contexto Geológico Regional

A área de estudo está localizada no entorno da cidade de Serro na borda leste da Serra do Espinhaço Meridional (Fig.2). A serra é a expressão morfológica do cinturão de dobramentos e cavalgamentos do orógeno Neoproterozóico Araçuaí que margeia a leste do cráton do São Francisco e é preservada durante o Fanerozóico devido a erosão diferencial da litologia dominante, os quartzitos.

A Serra do Espinhaço Meridional é representada principalmente pelas unidades do Supergrupo Espinhaço que compreende um pacote espesso de quartzitos, metapelitos e metaconglomerados com metavulcânicas, BIFs e carbonatos subordinados. Descrito como uma sequência rift de idade Estateriana, (Dossin et al., 1984) o Supegrupo Espinhaço é dividido em dois principais grupos: o Grupo Diamantina, constituído pelas Formações São João da Chapada, Sopa-Brumadinho e Galho do Miguel (Schöll & Fogaça, 1979), interpretado como um rift intracontinental e o Grupo Conselheiro Mata, constituído pelas Formações Santa Rita, Córrego dos Borges, Córrego Bandeira, Córrego Pereira e Rio Pardo Grande (Schöll & Fogaça, 1979), interpretado como uma sequência *sag* de águas marinhas rasas.

O conceito de estratigrafia de sequencias foi aplicado por Silva (1995), e substituiu os dois principais grupos em seis sequencias deposicionais: Basal, Olaria, Natureza, São João da Chapada, Sopa-Brumadinho/Galho do Miguel e Conselheiro Mata, respectivamente da base para o topo, utilizando, como critérios delimitadores as discordâncias. Martins-Neto (1998) subdivide a Bacia Espinhaço em 4 tectonosequencias e as relaciona aos estágios evolutivos; pré-rift correspondente a sequência Olaria; o estágio rift representado pelas sequencias Natureza, São João da Chapada e Sopa-Brumadinho; o estágio transicional definido pela sequência Galho do Miguel e o estágio flexural é o equivalente ao Grupo Conselheiro Mata.

A estruturação está condicionada a tectônica de cavalgamentos caracterizadas por dois domínios principais de deformação (Rolim, 1992, Rosière et al., 1994): na borda leste desenvolvese tectônica de cavalgamentos, na maioria das vezes frontais, de direção aproximada N-S, vergentes para oeste. Neste domínio é maior a magnitude da deformação, com desenvolvimento de zonas de cisalhamento com espessas faixas miloníticas.

O domínio oeste distingue-se pela baixa magnitude de deformação onde predominam dobras assimétricas com vergência para oeste de xistosidade plano axial com direção aproximadamente N-S, eventualmente cortadas por falhas inversas de mesma direção.

Figura 2 – Mapa contextualizando as principais unidades aflorantes na borda Leste da Serra do Espinhaço Meridional (Modificado de Rolim et al., 2016) e mapa geológico simplificado mostrando as principais litologias aflorantes e os lineamentos estruturais na região de Serro. Projeção UTM, *Datum* SAD 69 23S.

A borda leste da Serra do Espinhaço Meridional em virtude da tectônica de cavalgamentos apresenta distintas interpretações para correlacionar as unidades ali aflorantes com as unidades do Supergrupo Espinhaço a oeste. A compilação dos principais trabalhos realizados (Tab.1) ilustra a evolução do conhecimento regional na área de pesquisa.

Atribuindo como referência a Formação Itapanhoacanga e as unidades que definem as formações ferríferas bandadas é possível visualizar as diferentes interpretações para estas formações nos trabalhos regionais (Tab.1). No mapa geológico de Knauer & Grossi-Sad (1995) a Formação Itapanhoacanga está no topo do Grupo Guinda, inserida no Supergrupo Espinhaço e a Unidade Itabirítica é parte do Grupo Serra da Serpentina.

Para Almeida-Abreu & Renger (2002) a Formação Itapanhoacanga e a Formação Serra do Sapo (BIF) fazem parte do Grupo Serro, associadas as rochas ultramáficas da Suíte Alvorada de Minas e separadas do Grupo Guinda. Já Rolim et al. (2016) divide as BIFs em duas unidades; a Formação Serra do Sapo e a Formação Canjica, que está agrupada na mesma sequência da Formação Itapanhoacanga (Tab.1).

Tabela 1 - Correlação estratigráfica de diferentes trabalhos que abordam as unidades da borda leste da Serra do Espinhaço.

	к	nauer & Gross	si-Sad (1995)	1							
Proterozóico Superior		Su	íte Pedro Lessa								
		Gra	nitos Porfiríticos	1							
		Suí	te Borrachudos								
	Su	uíte Metaígnea	a Conceição do Mato Dentro		Almeida-Al	breu & Renger (2002)					
0	2		F.m. Rio Pardo Grande	125		F.m. Rio Pardo Grande					
édic	0	Grupo	F.m. Córrego Pereira]	Grupo	F.m. Córrego Pereira					
M	Jaço	Conselheiro	F.m. Córrego Bandeira		Conselheiro	F.m. Córrego Bandeira					
óicc	luic	Mata	F.m. Corrego dos Borges	0	Mata	F.m. Corrego dos Borges		Rolim	et al. (2016)		
eroz	Est		F.m. Santa Rita	1éc		F.m. Santa Rita	٢		F.m Canjica		
ote	odn	F.	m Galho do Miguel	a P		F.m Galho do Miguel	erio	Grupo Serra	F.m Jacém		
đ	uBu		F.m. Itapanhoacanga	inioi	Grupo Guinda	F.m. Sopa-Brumadinho	Infe	de São José	F.m. Itapanhoacanga		
	npe	Grupo	F.m. Sopa-Brumadinho	nfe		F.m. São João da Chapada	CO		F.m. Lapão		
	S	Guinda	F.m. São João da Chapada	ozóico	Grupo Serro	F.m. Itapanhoacanga	oterozó	Grupo Serra da	F.m. Serra do Sapo		
C 0			Unidade Quartzítica	roter		F.m. Serra do Sapo	Pri	Serpentina	F.m. Meloso		
erozó erior c Aédio	Gru	upo Serra da Serpentina	Unidade Itabirítica	4		F.m. Jacém					
Inf	2.7	erp entite				Suíte Ultramáfica Alvorada					
LL.	_		Unidade Filítica		2	de Minas					
5 8		U	nidade Zagaia								
no o			Grupo Serro								
uea			F.m. Bandeirinha]							
Arqu	Grup	oo Costa Sena	F.m. Barão de Guaicuí								
	Sequ	uência Vulcan	ossedimentar Rio Mata Cavalo								
0			F.m. Superior	1							
ean	Gru	po Guanhães	F.m. Média								
nbu			F.m. Inferior]							
A		Cor	nplexo Gouveia								
		Co	omplexo Basal								

O trabalho mais recente na borda leste feito por Rolim et al. (2016) na região de Morro do Pilar à Alvorada de Minas (Fig.2), subdivide as rochas metassedimentares em dois principais grupos: Serra da Serpentina e Grupo Serra de São José (Tab.1).

A Formação Meloso, base do Grupo Serra da Serpentina, é composta por quartzo-cloritasericita xisto fino, branco esverdeado, seguidos de filitos de cor cinza claro a prateado, que mostra alternância de níveis sericíticos e níveis quartzosos, quartzo-grafita filito negro, rochas manganesíferas e lentes de quartzitos. O topo do grupo é representado pela Formação Serra do Sapo definida pela predominância de metassedimentos químicos, composta por formações ferríferas e localmente por um nível de dolomitos no topo.

O Grupo Serra de São José é caracterizado por predominância de metassedimentos rudáceos e é subdividido, da base para o topo, na Formação Lapão, um conjunto de metaconglomerados polimíticos e quartzitos grossos a médios, a Formação Itapanhoacanga, representada por espessos pacotes de quartzitos com níveis de metaconglomerados de seixos seguindo para quartzitos finos, laminados por planos sericíticos. A Formação Jacém (Almeida-Abreu et al. (1989) e Knauer (1990)) é composta por quartzitos monótonos brancos, de grão fino a médio, com laminas paralelas sericíticas seguidos de filitos e quartzo sericita-xistos finos de cor cinza clara. A unidade superior do grupo, a Formação Canjica é caracterizada pela precipitação química de formações ferríferas bandadas.

Idades U/Pb em grãos de zircões detríticos, restringem o período de deposição da Formação Meloso em torno de 2.0 Ga e a Formação Itapanhoacanga em torno de 1.7 Ga. Estas idades mostram que o Grupo Serra da Serpentina possui a idade correlata com a Formação Barão de Guaicuí e a base do Grupo Serra de São José tem uma correlação cronoestratigráfica com as Formações São João da Chapada e Formação Bandeirinha (Rolim et al., 2016).

O embasamento é composto pelas rochas arqueanas de 2,66 a 2,87 Ga (Brito Neves et al. 1979 e Silva et al. 2002) descritas no Complexo Basal e no Complexo Gouveia (Knauer & Grossi-Sad, 1995). O primeiro, em linhas gerais, é composto por leucognaisses e gnaisses granitóides, contendo intercalações anfibolíticas, bem como seus derivados miloníticos (milonito gnaisse e milonito xisto). O Complexo Gouveia é representado por rochas granitoides, incluindo migmatito, gnaisses, além de milonitos e filonitos.

As rochas metaultramáficas da Suíte Alvorada de Minas (Almeida-Abreu & Renger, 2002) são caracterizadas por talco xisto, talco-clorita xisto, talco-carbonato xisto, cloritito e serpentinitos.

A origem e o posicionamento geotectônico desta unidade são incertos, podendo corresponder a corpos ofiolíticos (Renger, 1972), a um possível greenstone belt do Arqueano

6

(Uhlein, 1982), ou partes de complexos acamadados, intrusivos (Zapparolli, 2001). Idades U/Pb indicaram períodos de formação entre 2,05 e 2,22 Ga (Hagedorn, 2004).

3 – Empilhamento Estratigráfico

A sequência metassedimentar, foco deste trabalho, aflora na região centro-oeste da área de estudo, e o embasamento composto por metaultramáficas e o complexo granito-gnáissico aflora na região centro-leste (Fig.2).

A bacia é constituída na base por depósitos rudáceos que gradam para sedimentos arenosos, pelíticos e químicos (BIF). Esta sequência de fácies transgressiva, com afinamento dos sedimentos rumo ao topo, é recoberta por outra sequência de sedimentos arenosos. Os litotipos clásticos formam as Unidades I e II, a formação ferrífera bandada compõe a Unidade III e o quartzito superior a Unidade IV (Fig.3).

Figura 3 - Coluna estratigráfica geral para a região de Serro, MG.

A coluna estratigráfica geral da região de Serro é a correlação do empilhamento estratigráfico realizado em diferentes regiões da área de estudo (Fig.4).

O embasamento dos metassedimentos é constituído por ortognaisse, por vezes migmatítico e milonítico, que possui diferentes características texturais ao longo de sua extensão; <u>textura</u> <u>schlieren</u>, a mais comum (Fig.5 E e F), ocorre próximas as zonas de cisalhamento, onde partes félsicas e máficas se misturam de forma caótica seguindo a estrutura foliada da rocha; <u>textura</u> <u>estromática</u> exibindo finas lentes de rocha máfica de granulação fina com biotitas e anfibólios,

intercaladas com rocha félsica de granulação grossa com feldspatos e quartzo (Fig.5 C e D); e a textura augen, de ocorrência esporádica, mostra a rocha porfirítica com fenocristais de feldspatos euédricos centimétricos envoltos pela foliação em matriz fina (Fig.5 A e B).

Serra dos Alves

Figura 4 - Colunas estratigráficas da Serra Oeste e da Serra dos Alves, região de Serro, MG.

A Unidade I, sobrejacente aos ortognaisses miloníticos, é representada por lentes de metaconglomerado polimítico suportados pela matriz, com clastos de tamanho seixo a raros matacões (Fig.6 A). Os clastos são de quartzito, quartzo de veio, quartzito ferruginoso e, menos frequente, de BIFs. Metaconglomerado e metabrecha com blocos e matacões de formação ferrífera bandada suportados por matriz quartzítica ocorrem como uma variação lateral associada a unidade (Fig.6 C). Intercaladamente afloram camadas de quartzito com estratificação plano paralela (Fig.6 D e E).

Esta unidade possui direção N-S, aflora apenas na Serra Oeste, com aproximadamente 20 metros de espessura e seu contato basal com o embasamento cristalino é erosivo.

A Unidade II é formada por um extenso pacote de quartzito intercalado com metaconglomerado e filito. Na base ocorrem camadas de metaconglomerados suportados por matriz quartzosa com espessura máxima de 3 metros. Os clastos são de tamanho grânulo a seixo, constituídos por quartzito, quartzo de veio e quartzito ferruginoso (Fig.6).

Acima das camadas de metaconglomerados ocorrem quartzitos com grano-decrescência ascendente, na base apresentam de granulação grossa a grânulo com seixos esparsos seguidos de quartzito mal selecionado de granulação fina a grossa chegando a quartzito de granulação fina no topo.

Figura 5 - Ortognaisse milonítico do embasamento cristalino. (A e B) Texura *augen*, porfirítico com fenocristais de feldspatos. (C e D) Textura estromática, por vezes dobrada, com bandamentos finos de máficos e félsicos. (E e F) Textura *schlieren* com bandamentos caóticos irregulares.

Sobreposto a este pacote ocorrem diversos tipos de quartzitos intercalados com filitos como: quartzito micáceo fino, quartzito mal selecionado de granulação fina a grossa com ou sem mica, quartzito com laminação de óxido de ferro e quartzito com laminação plano paralela de sericita (Fig.6 F).

Estratificação cruzada tabular e plano paralela ocorrem separadamente nos diferentes estratos dos quartzitos e são comuns em toda sequência.

Figura 6 - Metaconglomerados e quartzitos aflorantes na região de Serro (A) Metaconglomerado da Unidade I. (B) Metaconglomerado da Unidade II. (C) Metaconglomerado e metabrechas com clastos de formação ferrífera bandada em matriz quartzítica, Unidade I (D e E) Camadas de quartzitos em meio aos blocos e matacões de BIF's com estratificação tabular plano paralela, Unidade I (F) Quartzito laminado com óxidos de ferro, Unidade II.

Na camada superior da unidade predomina filito prateado por vezes rico em hematita e magnetita, intercalados com quartzito e quartzito ferruginoso. A espessura aproximada para esta unidade é de 180 metros e o contato com a Unidade I é gradacional.

A **Unidade III** é definida pela formação ferrífera bandada aflorante no topo da Serra dos Alves. O bandamento é caracterizado pela alternância de níveis de quartzo, de cor branca e de óxido de ferro, hematita e magnetita, com espessura milimétrica a centimétrica.

A camada possui direção N-S é descontínua e possui variação lateral abrupta de espessuras sendo a máxima de 70 metros no centro da unidade. O contato com a Unidade II é gradacional, o topo dessa unidade apresenta a diminuição gradativa da granulometria e o aumento da proporção de óxido de Fe ocorrendo filito com magnetita e quartzito ferruginoso.

Uma carapaça de canga ocorre nas maiores altitudes, cobre a formação ferrífera na região de maior espessura e é responsável em manter o relevo protegendo a serra da erosão (Fig.7).

Figura 7 - (A) Afloramento da BIF em meio a canga. (B) Detalhe do bandamento seccionado por veio de hematita e magnetita.

A **Unidade IV** corresponde ao topo da Serra Oeste, é formada por quartzito branco micáceo mal selecionado de granulação fina a grossa, eventualmente com seixos esparsos. Esta unidade aflora em área expressiva na região e não possui variações litológicas significativas tornando-a uma sequência homogênea, o que a diferencia das unidades quartzíticas sotopostas. A espessura máxima observada é de aproximadamente 100 metros e o contato com a Unidade II é tectônico.

4 – Geologia Estrutural

As rochas em análise foram submetidas a tectônica compressiva na qual falhas de empurrão são as estruturas dominantes, vergentes para oeste com rampas e patamares de cavalgamento variando de 20° a 45° graus (Fig.8), definidas por zonas de cisalhamentos onde afloram milonitos.

Figura 8 – Perfil geológico esquemático para a região de Serro, MG.

A área de estudo pode ser dividida em dois setores estruturais na região do perfil, delimitados pelo Rio do Peixe. O setor leste do rio caracterizado por uma superfície de deslocamento basal D1, de direção NE-SW identificado na base da Serra dos Alves e o setor oeste da drenagem definido pelas rampas frontais de cavalgamentos F1, F2 e F3 de direção NE-SW que formam a estrutura da Serra Oeste (Fig.9).

Figura 9 – Mapa geológico esquemático para a região de Serro, MG evidenciando as estruturas locais. Projeção UTM, *Datum* SAD 69 23S.

4.1 - Descolamentos e Falhas

A superficie de descolamento basal D1 corresponde a uma descontinuidade estrutural regional onde não há inversão estratigráfica. Ela é definida por uma zona de cisalhamento ao longo do contato do metaconglomerado da Unidade II com o embasamento onde afloram ultramilonitos a milonitos com mergulhos de 20° a 30° para leste.

Várias estruturas mesoscópicas em escala de afloramento podem ser visualizadas envoltas pela foliação milonítica indicando vergência para oeste como *boudins* e *pods* de veios de quartzo, caudas de recristalização em cristais de feldspatos, estruturas S-C e S-C', *tension gashes*, feldspatos escalonados e dobras rompidas (Figs.10 A, B e C). Estruturas microscópicas como; sombras de pressão, caudas de recristalização, porfiroclastos com grãos de quartzo recristalizados e extinção ondulante também foram visualizadas.

A rampa de cavalgamento F1 possui extensão regional podendo ser mapeada pela inversão estratigráfica do embasamento cristalino sobre o metaconglomerado da Unidade I (Figs. 8 e 9). Em campo é possível visualizar o saprólito do embasamento, rico em feldspato/caulinita, sobre o metaconglomerado mais competente e resistente ao intemperismo, e a ocorrência do embasamento em cotas topográficas acima dos metassedimentos próximos aos contatos (Fig.10 D).

A falha de empurrão F2 apresenta caráter local com pouca continuação lateral e duplica a camada dos metassedimentos da Unidade II (Fig.9 e 10 E). As estruturas que definem F2 em afloramento são; a rampa principal (RP1), foliação milonítica anastomosada (S1), *tension gashes* (TG) perpendiculares ao principal plano de deslizamento e intensa percolação de veios de quartzo. Abaixo da principal descontinuidade (RP1) ocorre em escala de afloramento uma segunda rampa (RP2) com mergulho de 40° a 45° para leste.

A rampa de cavalgamento F3 de extensão regional ocorre no contato entre os quartzitos da Unidade II sobre os quartzitos da Unidade IV (Fig.11 A). Em afloramento a capa é caracterizada por um espesso pacote de quartzitos contendo foliação milonítica e bandas ferruginosas apresentando dobras e camadas rompidas segundo a foliação.

A lapa é composta pela sequência de quartzitos brancos micáceos mal selecionados com *tension gashes* orientadas aproximadamente 90° do plano de deslizamento entre os estratos, indicando movimento sinistral, desenvolvido durante o dobramento entre as unidades.

Figura 10 - Embasamento milonítico mostrando; (A) estrutura S-C, (B) cauda de recristalização em quartzo e grãos recristalizados substituindo porfiroclasto de quartzo, fotomicrografia, nicóis cruzados, 500 µm e (C) feldspato com fratura antitética (D) Conglomerado mergulhando abaixo do saprólito do embasamento. (E) Detalhes da Falha F2, foliação milonítica S1 em preto, *tension gashes* em vermelho (TG) e as rampas de cavalgamento em amarelo, RP1 a principal e RP2 secundária.

4.2 - Foliações;

<u>Xistosidade</u>; as rochas da região desenvolvem xistosidade de morfologia anastomosada e sigmoidal caracterizada pela orientação das paletas de sericita envolvendo porfiroclastos de quartzo e feldspato (Fig.11 B) constituindo frequentemente uma textura milonítica (S1) paralela ao

Figura 11 - (A) Contato acima de Falha F3, dobra aberta com deslizamento entre estratos e formação de *tension gashes* em vermelho (TG) abaixo. (B) Foliação milonítica no embasamento envolvendo porfiroclastos de feldspatos e quartzo, fotomicrografia, nicóis paralelos, 500 µm. (C e D) Afloramento e detalhe dos milonitos mostrando a clivagem de crenulação S2 cortando S1 associadas a dobras de propagação de falha vergentes para leste. (E) Fotomicrografia mostrando a clivagem de crenulação no embasamento, nicóis cruzados, 500 µm e (F) Fotomicrografia mostrando a clivagem.

acamamento e as zonas de cisalhamento. A foliação possui direção aproximada N-S com mergulho suave para leste.

<u>Clivagem de crenulação</u>; esta foliação (S2) ocorre com mergulho de 40° a 70° para oeste cortando a foliação regional (S1). No plano da estrutura o movimento pode evoluir e formam dobras

por propagação de falhas vergentes para leste (Fig.11 C e D). No embasamento milonítico (Fig.11 E), nos filitos e na BIF as clivagens são comuns e persistentes e nos quartzitos são visualizadas apenas em lâminas delgadas (Fig.11 F). Esta estrutura é comum ser encontrada no setor leste da área e próximas a falha F1 no setor oeste.

4.3 – **Dobras**; São visualizadas apenas nas formações ferríferas e quartzitos ferruginosos no setor leste. Caracterizadas por serem apertadas a isoclinais, assimétricas, com os flancos curtos muitas vezes rompidos na região próxima a charneira mostrando sinais de transposição e ruptura por cisalhamento (Fig.12 A). A vergência é sempre para oeste com eixos sub-horizontais de direção norte sul. Dobras intrabandamentos ocorrem e são muitas vezes recumbentes dentro das camadas na BIF.

4.4 – **Lineações;** Três tipos de lineações podem ser visualizadas relacionadas a S1: lineação mineral, lineação de estiramento e as estrias de deslizamento. A primeira é caracterizada pela orientação de palhetas de sericita no plano da foliação S1, de caimento *down-dip*; a lineação de estiramento é o resultado da deformação nos grãos de quartzo e nos seixos dos metaconglomerados e ocorrem próximas as rampas de cavalgamento (Fig.12 B). As estrias de deslizamento ocorrem nos planos espelhados de falha indicando o sentido do movimento através dos sulcos e degraus.

Figura 12 - (A) Dobra assimétrica com flanco curto rompido vergente para oeste e (B) Afloramento mostrando detalhe dos seixos estirados *down-dip* ao caimento para E.

5 – Geocronologia

Sequencia do Serro

Os estudos geocronológicos apresentados foram feitos nos metassedimentos das Unidades I, II e IV aflorantes próximo à cidade de Serro, MG. Cinco amostras de quartzitos foram coletadas em afloramentos, com peso aproximado de 20 kg (Tab.2; Fig.13) e enviadas para processamento no Laboratório de Preparação de Amostras para Geoquímica e Geocronologia – LOPAG -Universidade Federal de Ouro Preto. Este estudo utiliza e complementa os resultados apresentados por Rolim et al. (2016) para o Grupo Serra de São José aflorante a sul, entre as cidades de Morro do Pilar e Alvorada de Minas (Fig.2) e as idades U-Pb obtidas da amostra BEBETO1, coletada na região, foram, dessa forma, incluídas no trabalho (Tab.2).

Região	Ponto	UTM E	UTM N	Litologia	Obsevação										
	PT008	670002	7949001	Quartzito		Afloramento abaixo da BIF. Unidade II, Serra dos Alves.									
	PT021	668527	7943819	Quartzito	Afloramento aci	ima dos metaconglomerados, Unidade II. Trevo BR259, entrada da cidade de Serro.									
2	PT038	666675	7948524	Quartzito	Qu	artzito laminado, estrada Serro - Milho Verde, Unidade II, Serra Oeste.									
Sel	PT039	665873	7948864	Quartzito	Quartzito bran	co mal selecionado, estrada Serro - Milho Verde, Unidade IV, topo da Serra Oeste.									
	PT040	665066	7949750	Quartzito	Quartzito bran	co mal selecionado, estrada Serro - Milho Verde, Unidade IV, topo da Serra Oeste.									
	BEBETO1	664620	7942802	Quartzito	Aflora	mento acima dos metaconglomerados, Unidade I. De Rolim et al., (2016)									
		65000		670000	675000	Serra dos Alves									
	OUDHEL OUDHEL OUDHEL OUDHEL	PT040 * * PT039 33 Deste 	8 PT001	Serro Serro	os Alves	Serra Oeste									

Legenda

Filito

Quartzito

Rocha Básica Intrusiva

Formação Ferrífera Bandada

Complexo Granito Gnaisse

Metabrecha e metaconglomerado de Formação Ferrífera

📃 Quartzito Branco

Metaconglomerado

Metaultramáfica

Tabela 2 - Amostras coletadas para datação. Datum: South American 1969, meridiano central 23S.

Figura 13 – Mapa geológico, colunas estratigráficas e perfil geológico esquemático na região de Serro, MG, identificando as amostras coletadas para análises geocronológicas.

Serra dos Alves

PT008

Supergrupo Espinhaço: Serra da Matriculada, Datas, MG.

Rio do Peixe

Serra Oeste

PT038

BEBETO1

PT039

PT040

Com objetivo de comparar as idades da sequência metassedimentar de Serro com as idades da base do Supergrupo Espinhaço aflorantes mais a leste, foram coletadas mais três amostras em metassedimentos na região de Datas, MG (Tab.3, Fig.2 e Fig.14). A região da Serra da Matriculada foi escolhida por aflorarem as formações basais deste Supergrupo, Formação São João da Chapada e Sopa-Brumadinho, e os xistos do Grupo Costa Sena (Tab.1 de Knauer & Grossi-Sad (1995)) e

Amostras para Geocronologia

Deslocamento Basal Falha de Cavalgamento

Foliação

X Acamamento

Zona Urbana

- Lineamentos

Falha de Cavalgamento

apresentar a estruturação regional semelhante à região de Serro, com envolvimento do embasamento nos cavalgamentos e presença da clivagem de crenulação S2.

Região	Ponto	UTM E	UTM N	Litologia	Obsevação
SE	PT047	646079	7966273	Xisto	Xisto com lentes centimétricas de quartzito. Grupo Costa Sena.
at i	PT049	646337	7967333	Quartzito	Quartzito mal selecionado com percolações de oxido de ferro. F.m São João da Chapada.
Δ	PT053	644223	7965946	Quartzito	Quartzito mal selecionado com seixos esparços. F.m Sopa Brumadinho.

Tabela 3 - Amostras coletadas para datação. Datum: South American 1969, meridiano central 23S.

Figura 14 – Mapa geológico regional, folha Presidente Kubitschek de Knauer & Fogaça (1995), seção geológica esquemática, modificada do mesmo trabalho, com localização das amostras coletadas para estudos geocronológicos.

O Complexo Gouveia é representado por granitoides, incluindo migmatito, gnaisses, além de milonitos e filonitos. O Grupo Costa Sena é constituído essencialmente por quartzo-mica xistos da Formação Barão do Guaicuí e quartzitos da Formação Bandeirinha.

Acima o Grupo Guinda é representado pela Formação São João da Chapada caracterizada por quartzitos finos até médios com intercalações de filitos hematíticos e lentes de metaconglomerado, e a Formação Sopa-Brumadinho com variados tipos de quartzitos, comumente ferruginosos, com intercalações variadas de metaconglomerados polimíticos, filito hematítico, quartzo filito e formações ferríferas (Knauer & Fogaça (1995)).

5.1 - Resultados

Amostra PT008 – Unidade II

A quantidade aproximada de 100 grãos de zircão foi separada nesta amostra, onde 66 foram datados. Os resultados de 36 análises, com concordância acima de 90%, foram utilizados para confecção do histograma (Tab.3 Anexos). A maioria dos grãos de zircão são sub-arredondados a bem arredondados com baixa esfericidade, de dimensões que variam de 50µm a 300 µm (Fig.15). A estrutura interna dos grãos predominante é o zoneamento oscilatório de baixa a alta luminescência, seguidos por grãos não zoneados de tonalidades preto, cinza escuro a claro até branco, mostrando sobrecrescimentos e inclusões.

Figura 15 - Imagens de catodoluminescência dos grãos de zircão detríticos da amostra PT008. *Spots* com concordância entre as idades U-Pb maior de 90% estão ilustrados.

O histograma mostra que a proveniência dos zircões detríticos podem ser reunidas em três principais grupos: Arqueanos (33%), Riacianos (50%) e Estaterianos (8%; Fig.16). Idades Arqueanas estão entre 2578 ± 29 Ma e 2883 ± 18 Ma, as idades Riacianas entre 2065 ± 18 Ma e 2253 ± 18 Ma e as idades Estaterianas entre 1719 ± 21 Ma e 1747 ± 25 Ma. Dois zircões Orosirianos (6%) foram encontrados porem suas idades não formaram pico de frequência por terem

valores dispersos no período, e mostram idades de 1825 ± 20 Ma a 2032 ± 19 respectivamente e apenas um zircão Sideriano (3%) está presente de 2386 ± 19 Ma.

O grão de zircão mais jovem encontrado é de 1683 ± 14 Ma dada pela idade 206 Pb/ 238 U (99,1% concordante; *Spot* 5.s.042) inserido na família mais nova com pico em 1734 Ma.

Figura 16 - Histograma de idades ²⁰⁷Pb/²⁰⁶Pb para os zircões da amostra PT008.

Amostra PT021 – Unidade II

A quantidade aproximada de 120 grãos de zircão foi separada nesta amostra, onde 70 foram datados. Os resultados de 64 análises, com concordância acima de 90%, foram utilizados para confecção do histograma (Tab.4 Anexos). A maioria dos grãos de zircão são sub-arredondados a bem arredondados com baixa esfericidade, de dimensões que variam de 100µm a 400 µm (Fig.17). A estrutura interna dos grãos predominante é o zoneamento oscilatório de baixa a alta luminescência, seguidos por grãos não zoneados de tonalidades preto, cinza escuro a claro até branco, mostrando sobrecrescimentos e inclusões.

A amostra possui três populações principais de zircões detríticos: Arqueanos (17%), Riacianos (63%) e Estaterianos (14%; Fig.18). Idades Arqueanas estão entre 2545 ± 30 Ma e 2824 ± 17 Ma, as Riacianas entre 2057 ± 18 Ma e 2204 ± 23 Ma e as Estaterianas entre 1637 ± 23 Ma e 1779 ± 25 Ma. Três zircões Orosirianos (5%) foram encontrados e mostram idades entre 1883 ± 68 Ma a 2004 ± 24 . Apenas um zircão Sideriano foi identificado de idade 2481 ± 20 .

Figura 17 - Imagens de catodoluminescência dos grãos de zircão detríticos da amostra PT021. *Spots* com concordância entre as idades U-Pb maior de 90% estão ilustrados.

O grão de zircão mais jovem encontrado é de 1629 ± 13 Ma dada pela idade 206 Pb/ 238 U (99,8% concordante; Spot 5.s.034) contido na família mais nova com pico em 1723 Ma.

Figura 18 - Histograma de idades ²⁰⁷Pb/²⁰⁶Pb para os zircões da amostra PT021.

Amostra PT038 – Unidade II

A quantidade aproximada de 110 grãos de zircão foi separada nesta amostra, onde 70 foram datados. Os resultados de 32 análises, com concordância acima de 90%, foram utilizados para confecção do histograma (Tab.5 Anexos). A maioria dos grãos de zircão são sub-arredondados a bem arredondados com baixa esfericidade, de dimensões que variam de 50µm a 300 µm (Fig.19). A estrutura interna dos grãos predominante é o não zoneamento, com tonalidades preto, cinza escuro a claro até branco, seguidos de grãos com zoneamento oscilatório de baixa a alta luminescência, mostrando sobrecrescimentos e inclusões.

As idades dos grãos de zircão detrítico desta amostra são similares às das outras amostras e podem ser associadas em três principais famílias: Arqueanas (22%) com picos entre 2644 Ma e 2927Ma, Riacianas (59%) com pico em 2162 Ma e Estaterianas (16%) com máxima em 1727 Ma (Fig.20). O grão de zircão mais jovem encontrado é de 1648 \pm 14 Ma dada pela idade ²⁰⁶Pb/²³⁸U (98% concordante; *Spot* 5.s.094).

Figura 19 - Imagens de catodoluminescência dos grãos de zircão detríticos da amostra PT038. *Spots* com concordância entre as idades U-Pb maior de 90% estão ilustrados.

Figura 20 - Histograma de idades ²⁰⁷Pb/²⁰⁶Pb para os zircões da amostra PT038 com concordância entre as idades U-Pb maior de 90%.

Amostra BEBETO1 – Unidade II

Figura 21 - Histograma de idades ²⁰⁷Pb/²⁰⁶Pb para os zircões da amostra BEBETO1 com concordância entre as idades U-Pb maior de 90%. Dados de Rolim et al., (2016).

A amostra possui os três picos de populações característicos: Arqueanos (27%) com picos entre 2731 e 2960 Ma, Riacianos (46%) com pico principal em 2114 Ma e Estaterianos (24%) com máxima em 1712 Ma (Fig.21). O grão de zircão mais jovem encontrado é de 1683 \pm 30 Ma dada pela idade ²⁰⁷Pb/²⁰⁶Pb (98,5% concordante).

Amostra PT039 – Unidade IV

A quantidade aproximada de 100 grãos de zircão foi separada nesta amostra, onde 71 foram datados. Os resultados de 63 análises, com concordância acima de 90%, foram utilizados para confecção do histograma (Tab.6 Anexos). A morfologia dos grãos de zircão é semelhante à das outras amostras com dimensões que variam de 100µm a 300 µm (Fig.22). A estrutura interna dos grãos predominante é o não zoneamento, com tonalidades preto, cinza escuro a claro até branco, seguidos de grãos com zoneamento oscilatório de baixa a alta luminescência, mostrando sobrecrescimentos e inclusões.

Esta amostra possui os três picos de populações de idades característicos das outras amostras, porém a grande quantidade de zircões Estaterianos (83%), com máxima em 1680 Ma, a difere das outras. Grãos de zircões Arqueanos (11%) com picos em 2812 Ma e Riacianos (6%) com pico em 2116 Ma definem a distribuição dos grupos de idades da amostra (Fig.23). O grão de zircão mais jovem é datado em 1596 \pm 19 Ma, idade ²⁰⁶Pb/²³⁸U (99% concordante; *Spot* 5.s.022).

Figura 22 - Imagens de catodoluminescência dos grãos de zircão detríticos da amostra PT039. Spots com concordância entre as idades U-Pb maior de 90% estão ilustrados.

Figura 23 - Histograma de idades ²⁰⁷Pb/²⁰⁶Pb para os zircões da amostra PT039 com concordância entre as idades U-Pb maior de 90%.

Amostra PT040 – Unidade IV

A quantidade aproximada de 100 grãos de zircão foi separada nesta amostra, onde 63 foram datados. Os resultados de 46 análises, com concordância acima de 90%, foram utilizados para confecção do histograma (Tab.7 Anexos). A morfologia dos grãos de zircão é semelhante à das outras amostras com dimensões que variam de 100µm a 350 µm (Fig.24). A estrutura interna dos grãos predominante é o não zoneamento, com tonalidades preto, cinza escuro a claro até branco, seguidos de grãos com zoneamento oscilatório de baixa a alta luminescência, mostrando sobrecrescimentos e inclusões.

A amostra possui os três picos de populações característicos: Arqueanos (15%) com máximo em 2660 Ma, Riacianos (74%) com pico em 2120 Ma e Estaterianos (9%) com máximo em 1672 Ma (Fig.25). O grão de zircão mais jovem encontrado é de 1641 ± 13 Ma dada pela idade 206 Pb/ 238 U (98% concordante; *Spot* 5.s.100).

Amostra PT047 – Xisto Costa Sena – Serra da Matriculada - Datas

A morfologia dos grãos de zircão da amostra PT047 são diferentes quando comparados com os de outras amostras. Esses grãos geralmente são de menores dimensões, variam de 30 μ m a 150 μ m, possuem uma maior homogeneidade no tamanho e apresentam uma cor bege pálido com raras estruturas de zoneamento interno (Fig.26).

Figura 24 - Imagens de catodoluminescência dos grãos de zircão detríticos da amostra PT040. *Spots* com concordância entre as idades U-Pb maior de 90% estão ilustrados.

Figura 25 - Histograma de idades ²⁰⁷Pb/²⁰⁶Pb para os zircões da amostra PT040 com concordância entre as idades U-Pb maior de 90%.

Figura 26 - Imagens de catodoluminescência dos grãos de zircão detríticos da amostra PT047.

Cerca de 100 grãos de zircão foram separados, onde 52 foram datados. Os dados geocronológicos desta amostra não foram utilizados pois os resultados das idades U-Pb nos diferentes grãos de zircão não possuem concordância entre as idades maior de 90% (Tab.9 Anexos). Este fato indica que os grãos tiveram a abertura de seu sistema isotópico radiométrico possivelmente por esta rocha estar hidrotermalizada.

Amostra PT049 – Formação São João da Chapada – Serra da Matriculada - Datas

A quantidade aproximada de 90 grãos de zircão foi separada nesta amostra, onde 65 foram datados. Os resultados de 54 análises, com concordância acima de 90%, foram utilizados para confecção do histograma (Tab.9 Anexos). A morfologia dos grãos de zircão é semelhante à das outras amostras com dimensões que variam de 50µm a 350 µm (Fig.27).

A estrutura interna dos grãos predominante é o não zoneamento, com tonalidades preto, cinza escuro a claro até branco, seguidos de grãos com zoneamento oscilatório de baixa a alta luminescência, mostrando sobrecrescimentos e inclusões.

O histograma mostra que a proveniência dos zircões detríticos podem ser reunidas em dois principais grupos: Arqueanos (19%) e Riacianos (78%) (Fig.28). Completam a amostra um grão de zircão Orosiriano (2%) e um zircão Sideriano (2%). O grão de zircão mais jovem encontrado nesta amostra é de 1975 \pm 15 Ma dada pela idade ²⁰⁶Pb/²³⁸U (99% concordante; *Spot* 5.s.019).

Figura 27 - Imagens de catodoluminescência dos grãos de zircão detríticos da amostra PT049. *Spots* com concordância entre as idades U-Pb maior de 90% estão ilustrados

Figura 28 - Histograma de idades ²⁰⁷Pb/²⁰⁶Pb para os zircões da amostra PT049 com concordância entre as idades U-Pb maior de 90%.

Amostra PT053 – Formação Sopa Brumadinho – Serra da Matriculada - Datas

A quantidade aproximada de 100 grãos de zircão foi separada nesta amostra, onde 40 foram datados. Os resultados de 27 análises, com concordância acima de 90%, foram utilizados para confecção do histograma (Tab.10 Anexos). A maioria dos grãos de zircão são sub-arredondados a bem arredondados com baixa esfericidade, de dimensões que variam de 50µm a 200 µm (Fig.29). A estrutura interna dos grãos predominante é o zoneamento oscilatório de baixa a alta luminescência, seguidos por grãos não zoneados de tonalidades preto, cinza escuro a claro até branco, mostrando sobrecrescimentos, fraturas preenchidas e inclusões.

O histograma mostra uma significativa distribuição das idades com diversos picos de podem ser agrupados os dois grupos: Arqueanos (19%) e Riacianos (67%) (Fig.30). Completam a amostra um zircão Sideriano (4%), dois zircões Orosirianos (7%) e um zircão Calimiano (4%). O grão de zircão mais jovem encontrado nesta amostra é de 1577 \pm 15 Ma dada pela idade ²⁰⁶Pb/²³⁸U (100% concordante; *Spot* 5.s.032).

Figura 29 - Imagens de catodoluminescência dos grãos de zircão detríticos da amostra PT053. *Spots* com concordância entre as idades U-Pb maior de 90% estão ilustrados

Figura 30 - Histograma de idades ²⁰⁷Pb/²⁰⁶Pb para os zircões da amostra PT053 com concordância entre as idades U-Pb maior de 90%.

6 – Discussões e Conclusões

6.1 - Estratigrafia e Geocronologia

A partir dos resultados obtidos e apresentados pode-se admitir que a evolução deposicional da bacia na região de Serro decorreu ao final do Paleoproterozóico, período Estateriano, balizada nos histogramas pelo pico de idade da população mais jovem de grãos de zircão detrítico encontrado na unidade basal, idade de 1712 Ma (BEBETO1) e o pico de idade da população mais jovem encontrado no topo, de idade de 1672 Ma (PT040) (Fig.31).

Figura 31 - Coluna estratigráfica geral na região de Serro, MG, identificando as amostras com as idades máximas de sedimentação.

A sequência metassedimentar estudada mostra o grão de zircão detrítico mais jovem da Unidade I com idade de 1683 ± 30 Ma (BEBETO1), a Unidade II com grãos mais jovens de idades que variam entre 1629 ± 13 Ma (PT021) e 1683 ± 14 Ma (PT038) e o topo, definido pela Unidade IV, com grãos mais jovens de idades entre 1641 ± 13 Ma (PT040) até 1596 ± 19 Ma (PT039).

Correlações Estratigráficas

As unidades aflorantes possuem correlação com as formações do Grupo Serra de São José relatadas mais a sul por Rolim et al. (2016), e podem ser consideradas como a continuação lateral destas camadas (Fig.2 e 32).

	Se	rra do Espinhaç	o Central			S	erra da Ser	pentina	Área	de Serro
Supergrupo	Grupo	Formação	Litotipos		Supergrupo	Grupo	Formação	Litotipos	Formação	Litotipos
		Galho do Miguel	Quartzitos				Canjica	Bif's	 Unidade IV	Quartzitos
inhaço	nantina	Sopa-Brumadinho	Metaconglomerados, quartzitos, metapelitos,		Espinhaço	Serra de São José	Jacém	Quartzitos, metapelitos	Unidade III	Bif's
Esp	Diar	São João da Chapada 1683 ± 11Ma ¹	metavulcanicas Metaconglomerados, quartzitos, metavulcanicas				ltapanhoacanga 1666 ± 32 Ma ²	Quartzitos, metaconglomerados	Unidade II 1629 ± 13 Ma³	Quartzitos, metapelitos, metaconglomerados
				``````````			Lapão	Metaconglomerados, Quartzitos	Unidade I <b>1683 ± 30 M</b> a ²	Metaconglomerados, Quartzitos

**Figura 32** - Cartas estratigráficas do Supergrupo Espinhaço na porção central da Serra do Espinhaço Meridional (Martins-Neto, 2000; Chemale Jr. et al., 2011), na porção leste região da Serra da Serpentina (Rolim et al., 2016) e na região de Serro. Idades geocronológicas; (1) Santos et al., (2013); (2) Rolim et al., (2016) e (3) deste trabalho.

#### Unidades Basais I e II

Os litotipos subdivididos assim como o empilhamento estratigráfico da Unidade I são correspondentes e cronocorrelatos aos descritos para Formação Lapão. A sequência de quartzitos, metapelitos e metaconglomerados da Unidade II é correlacionável com a Formação Itapanhoacanga na idade máxima de sedimentação, PT021 com 1723 Ma, e na similaridade da distribuição das populações de zircões detríticos nas amostras analisadas (Fig.33 G, H e I).

As idades máximas de sedimentação obtidas das amostras BEBETO1 e PT021, somadas à similaridade da distribuição das populações de zircões nos histogramas, sugerem igualmente a correlação da Unidade I e II com a Formação São João da Chapada aflorante a oeste na Serra do Espinhaço Meridional (Fig.32 e 33 J) (Brito Neves et al., 1979; Machado et al., 1989; Dossin, 1994, Chemale Jr. et al., 2011 e Rolim et al., 2016).



**Figura 33** – Histogramas com frequências relativas de populações de zircões em diferentes projetos na Serra do Espinhaço Meridional. (A a E) Histogramas das amostras na região de Serro. (F) (G, H e I) Histogramas para as amostras da Formação Itapanhoacanga (Rolim et al., 2016) e (J) Histograma para amostra da Formação São João da Chapada (Chemale Jr. et al., 2011).

O histograma da população dos grãos de zircão da amostra PT049, coletada na Formação São João da Chapada (Knauer & Fogaça (1995), na Serra da Matriculada, na região de Datas (Fig.28), por outro lado, não mostra a população de idade Estateriana característica. Esse fato pode ser interpretado de diversas maneiras:

- 1) Ausência fortuita de zircões Estaterianos no estrato sedimentar amostrado
- 2) Variação local das fontes ou das correntes alimentadoras do sedimento
- 3) A existência de nova unidade estratigráfica

Embora essa incerteza possa ser definitivamente esclarecida através de nova amostragem sistemática em diversos níveis da camada, a terceira hipótese dificilmente se justifica, já que a idade máxima de sedimentação, 2133 Ma encontrada, assim como a distribuição das outras populações de zircão e a idade mais jovem de 1975  $\pm$  15 Ma, não é correlacionável a nenhuma outra unidade descrita até o momento.

#### Unidades Superiores III e IV

A formação ferrífera bandada da Unidade III associada aos metassedimentos Estaterianos é correspondente da Formação Canjica. As idades máximas de sedimentação das unidades basais somadas a similar sequência metassedimentar em que está encaixada e as feições características de campo como as variações abruptas de espessuras corroboram esta correlação.

A Unidade IV correspondente ao quartzito superior não é correlacionável a nenhuma outra unidade descrita e a distribuição de idades de seus grãos de zircão detrítico pode ser interpretada de duas formas;

- os histogramas das amostras referentes a Unidade IV (Fig.33 D e E) mostram uma distribuição das populações de zircões equivalente aos histogramas apresentados para a Unidade II (Fig.33 A, B e C), indicando conter as mesmas fontes de aporte sedimentar no continuo preenchimento da bacia, podendo ser interpretada como uma formação superior do Grupo São José com idade máxima de sedimentação em 1727 Ma, embora o número de indivíduos de cada população seja bastante distinto. O fato da quantidade de zircões Estaterianos na amostra PT039 ser anomalamente alto e os Orosirianos, em contraste, aparecerem sub-representados (Fig.33 D) pode indicar que as fontes destes zircões estavam mais expostas e próximas durante período de erosão em comparação com as fontes Riacianas e Arqueanas cujos grãos de zircão também estão presentes na amostra.
- a Unidade IV é correlacionável com a Formação Sopa-Brumadinho, descrita na região por Knauer & Grossi-Sad, (1995). A sequência quartzítica homogênea é diferente da Formação Itapanhoacanga e o pico anômalo de zircões Estaterianos no topo da camada, por este ponto de

vista, pode a diferenciar (Fig.33 D). A equivalência na distribuição das populações de zircões nos histogramas das Unidades II e IV (Fig.33 A, B, C e E) pode indicar que a fonte dos zircões detríticos depositados na unidade superior foi derivada principalmente do retrabalhamento das unidades inferiores sem a contribuição de novas fontes de zircões ígneos na região. Essa interpretação explicaria a quantidade anômala de zircões Estaterianos datados na amostra PT039 (Fig.33 D) pois o topo da sequência metassedimentar ficaria distante das fontes mais antigas de zircões, Arqueanas e Riacianas.

O histograma com as populações de zircões da amostra PT053 extraído da Formação Sopa-Brumadinho (Knauer & Fogaça, 1995), na região de Datas (Fig.30), mostra uma distribuição das populações semelhante com os histogramas da Unidade IV e similar idade máxima de sedimentação em 1588 Ma. Essa correlação pode corroborar com a interpretação de que esta unidade é derivada de uma sequência de quartzitos diferente da Unidade II, possuindo uma expressiva continuação lateral nos mapas regionais na Serra do Espinhaço Meridional.

#### As Fontes dos Grãos de Zircão

As três principais fontes de populações de zircões encontradas; Arqueanas, Riacianas e Estaterianas podem ser relacionadas as rochas que compõem o embasamento em escala regional. Os zircões de idade Arqueana são associados ao complexo basal, o Granito Gouveia e a sequência de gnaisses TTG do Complexo Guanhães. Idades paleoarqueanas podem estar associadas a cinturões de *greenstone belt* contemporâneos ao SG Rio das Velhas cujas unidades afloram a SW na região do Quadrilátero Ferrífero (Teixeira et al., 1996; Machado et al., 1996; Valeriano et al., 2004; Hartmann et al., 2006; Rolim et al., 2016).

As populações de idade Riaciana são relacionadas às rochas do cinturão Mineiro e Complexos Mantiqueira e Juiz de Fora aflorantes a leste do estado de Minas Gerais (Reis et al., 2013; Teixeira et al., 2015; Rolim et al., 2016) e os grãos de zircão de idade Estateriana são associados aos granitos Borrachudos e metarriolitos da Suíte Conceição do Mato Dentro.

#### Ambiente Tectônico

O histograma de frequência relativa com todas as idades dos grãos de zircões detríticos estudados (Fig.33 F), mostra uma distribuição de picos indicando que o preenchimento da bacia foi dominado por aportes de fontes mais antigas e sugere um ambiente tectônico extensional, tipo rifte e/ou margem passiva, para as Unidades I a IV (Cawood et al., 2012).

As formações ferríferas bandadas da Unidade III recobrem a sequência clástica da Unidade II, representam a parte mais profunda da bacia e indicam o ápice da transgressão marinha para este período nessa região. A ocorrência da Unidade III indica que a bacia rift se desenvolveu em um ambiente epicontinental que se conectou a águas oceânicas possibilitando a entrada de ferro no sistema e a precipitação das BIFs.

A fonte do ferro hidrotermal para o período Estateriano não foi evidenciada na região e não foi descrita por nenhum autor na literatura. As rochas ultramáficas e máficas de Serro não podem ser consideradas como a provável fonte por serem mais antigas, com idade entre 2,05 e 2,22 Ga (Hagedorn, 2004).

### Conclusões

Os resultados dos estudos geocronológicos e estratigráficos permitem nova interpretação para a formação ferrífera bandada de Serro revelando que esta unidade está associada as rochas de idade Estateriana que compõe a sequência rift do Supergrupo Espinhaço.

Com os dados apresentados neste trabalho e os recentes de Rolim et al., (2016) podemos construir um novo empilhamento estratigráfico para a região de Serro associando as raras BIFs de idade Estateriana aos metassedimentos do Grupo Serra de São José, desvinculando a associação desta unidade com as rochas metaultramáficas da Suíte Alvorada de Minas do Grupo Serro (Almeida-Abreu & Renger, 2002 (Tab.1)), que possuem idades de formação mais antigas, período Riaciano, entre 2,05 e 2,22 Ga (Hagedorn, 2004).

#### 6.2 – Interpretação Estrutural

O acervo de estruturas está associado a um único evento deformacional onde se desenvolveram falhas de empurrão e dobras associadas, vergentes para oeste, como uma resposta a orogênese Brasiliana (Pedrosa-Soares et al., 2001).

As estruturas estão associadas a duas fases de compressão (Fig.34). Durante a primeira fase formam-se zonas de cisalhamento paralelas ao bandamento que obliteram as estruturas sedimentares sem alterar a sequência estratigráfica. Estas zonas geram a foliação milonítica S1, a lineação mineral e a lineação de estiramento, que progridem para formar rampas de empurrão e dobras por propagação das falhas, assimétricas, invertidas com flancos curtos rompidos vergentes para oeste.

As falhas de cavalgamento constituem um sistema do tipo leque imbricado com envolvimento do embasamento gnáissico nos empurrões evidenciado pela inversão estratigráfica e a presença de milonitos na rampa do muro.

A segunda fase está relacionada ao desenvolvimento de retro-cavalgamentos e dobras de propagação vergentes para leste (Rolim et al., 2016). Nos domínios destas estruturas se desenvolve

a clivagem de crenulação S2 que transpõem a foliação regional S1. Nos planos da clivagem podem formar micrólitons e dobras assimétricas com flancos curtos rompidos que evoluem para a formação dos retro-empurrões (Fig.34 e 35).



Figura 34 – Perfil geológico esquemático caracterizando as duas fases de compressão mostrando; a interpretação morfológica dos cavalgamentos em leques imbricados e prováveis retro-empurrões que geram a foliação S2.



**Figura 35** – Expressão da foliação S2 em diferentes estruturas; (A) Crenulação e (B) Clivagem de crenulação formada por dissolução por pressão, fotomicrografias, nicóis cruzados, 500 µm; (C) Formação de micrólitons com dobras internas de S1 separando os domínios da clivagem; (D) Formação de dobras por propagação de falhas no plano de S2 e (E) Retro-empurrão.

## 7 – Referências Bibliográficas

- Almeida Abreu, P.A., Knauer, L.G., Hartmann, M.B., Santos, G.G.V., Guimarães M.L.V., Abreu, F.R., Schrank, A. & Pflug, R., 1989. Estratigrafia, faciologia e tectônica do supergrupo espinhaço na região de Serro - Conceição do Mato Dentro, Minas Gerais, Brasil. Zbl. Geol. Paläont., 5(6): 857–873.
- Almeida Abreu, P.A. & Renger, F.E., 2002. Serra do Espinhaço Meridional: um orógeno de colisão do Mesoproterozóico. Rev. Bras. Geoc., 32(1): 1–14.
- Brito Neves, B.B., Cordani, U.G., Kawashita, K. & Delhal J., 1979. A Evolução geocronológica da Cordilheira do Espinhaço Dados novos e Integração. Revista Brasileira de Geociências, (9):71-85.
- Cawood, P.A., Hawkesworth, C.J., Dhuime, B., 2012. Detrital zircon record and tectonic setting. Geology, 40(10), 875-878
- Chemale, Jr. F., Dussin, I.A., Alkmim, F.F., Martins, M.S., Queiroga, G., Armstrong, R. & Santos, M.N., 2011. Unraveling a Proterozoic basin history through detrital zircon geochronology: The case of the Espinhaço Supergroup, Minas Gerais, Brazil. Gondwana Research. 22(1):200–206.
- Dossin, I.A., 1994. Evolution structurale de la region de L'Espinhaço Meridional, Bordure Sud-Est-du Craton São Francisco, Brésil – Tectoniques Superposées au Proterozoique. Tese de Doutorado, Universidade de Orleans, 183 p.
- Dossin, I.A., Uhlein, A. & Dossin, T.M., 1984. Geologia da Faixa Movel Espinhaço em sua porção meridional, MG . XXXIII Cong. Bras. Geol., Anais 7: 3118-3134, Rio de Janeiro.
- Hagedorn, M.G., 2004. Contexto geotectônico da Serra do Espinhaço e domínios adjacentes a leste (Minas Gerais) com ênfase em aspectos geoquímicos e geocronológicos. Tese de Doutorado, Universidade Estadual Paulista, 222 p.
- Hartmann, L.A., Endo, I., Suita, M.D.F., Santos, J.O.S., Frantz, J.C., Carneiro, M.A., McNaughton, N.J., Barley, M.E., 2006. Provenance and age delimitation of Quadrilátero Ferrífero sandstones based on zircon U–Pb isotopes. Journal of South American Earth Sciences 20, 273–285.
- Knauer, L.G., 1990. Evolução geológica do Pré-cambriano da porção centro-oeste da Serra do Espinhaço Meridional e metalogênese associada. Dissertação de Mestrado, Universidade de Campinas, 298 p.
- Knauer, L. G. & Fogaça, A. C. C., 1995. Geologia da Folha Presidente Kubitschek (SE-23-Z-A-VI). Minas Gerais. COMIG/UFMG, 263 pp.
- Knauer, L. G. & Grossi-Sad, J. H., 1995. Geologia da Folha Serro (SE-23-Z-B-IV). Minas Gerais. COMIG / UFMG, 263 pp.
- Ludwig, K.R., 2003. Isoplot/Ex Version 3.00, a geochronological took-kit for Excel. Berkely Geochronology Center Special Publication 4, 67 p.
- Machado, N., Schrank, A., Abreu, F.R. de Knauer, L.G. & Almeida-Abreu, P.A., 1989. Resultados preliminares da geocronologia U/Pb na Serra do Espinhaço Meridional. In: 5° SIMP. GEOL., Núcleo de MG 1° SIMP. GEOL. Núcleo Brasília, SBG Núcleo MG, Anais. Belo Horizonte, BOL. (10):171-174.
- Machado, N., Schrank, A., Noce, C.M., Gauthier, G., 1996. Ages of detrital zircon from Archean– Paleoproterozoic sequences: implications for greenstone belt setting and evolution of a Transamazonian foreland basin in Quadrilátero Ferrífero, southeast Brazil. Earth and Planetary Science Letters 141, 259– 276.
- Martins -Neto, M.A., 1998. O Supergrupo Espinhaço em Minas Gerais: registro de uma bacia rift-sag do Paleo/Mesoproterozóico. Revista Brasileira de Geociências, V.28: p. 151-168.
- Martins -Neto, M.A., 2000. Tectonics and sedimentation in a paleomesoproterozoic rift-sag basin (Espinhaço basin, southeastern Brazil). Precambrian Res. 103, 147–173.

- Pedrosa-Soares A.C., Noce C.M., Wiedemann C., Pinto, C.P., 2001. The Araçuaí-West Congo Orogen in Brazil: an overview of a confined orogen formed during Gondwanaland Assembly. Precambrian Research, 110:307–323.
- Reis, N.J., Teixeira, W., Hamilton, M.A., Bispo-Santos, F., Almeida, M.E., D'Agrella-Filho, M.S., 2013. Avanavero mafic magmatism, a late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton: U– Pb ID-TIMS baddeleyite, geochemicaland paleomagnetic evidence. Lithos 174, 175–195.
- Renger, F., 1972. As rochas ultrabásicas da Serra do Espinhaço, Minas Gerais. Revista Brasileira de Geociências, (2):151-160.
- Rolim, V.K., 1992. Uma interpretação das estruturas tectônicas do Supergrupo Espinhaço baseada na geometria dos falhamentos de empurrão. Rev. Esc. Minas, Ouro Preto, 45(1-2): 75-77.
- Rolim, V.K., Rosière, C.A., Santos, J.O.S., Mcnaughton, N.J., 2016. The Orosirian-Statherian banded iron formation-bearing sequences of Southern border of the Espinhaço Range, Southeast Brazil. Journal of South American Earth Sciences (65): 43-66.
- Rosière, C.A., Uhlein, A., Fonseca, M.A. & Torquato, J.R., 1994. Análise cinemática mesoscópica dos cavalgamentos do cinturão espinhaço na região de diamantina, MG, Rev. Bras. Geoc., 24(2):97-103.
- Santos, M.N., Chemale Jr., F., Dussin, I.A., Martins, M., Assis, T.A.R., Jelinek, A.R., Guadagnin, F., Armstrong, R., 2013. Sedimentological and paleoenvironmental constraints of the Statherian and S tenian Espinhaço rift system, Brazil. Sedimentary Geology 290, 47–59.
- Silva, L.C., Armstrong, R., Noce, C.M, Carneiro, M.A., Pimentel, M.M., Pedrosa-Soares, A.C., Leite, C.A., Vieira, V.S., Silva, M.A., Paes, V.J.C. & Cardoso-Filho, J.M., 2002. Reavaliação da evolução geológica em terrenos pré-cambrianos brasileiros com base em novos dados U-Pb SHRIMP, parte II: Orógeno Araçuaí, Cinturão Mineiro e Cráton São Francisco Meridional. Revista Brasileira de Geociências, (32):513-528
- Silva, R.R., 1995. Contribution to the stratigraphy and paleogeography of the lower Espinhaço Supergroup (Mesoproterozoic) between Diamantina and Gouveia, Minas Gerais, Brazil. Ph. D. Thesis, Univ. Freiburg, Freiburg, Germany, Freiburger Geowiss. Beitr., 8, 115 pp.
- Schöll, W.U. & Fogaça, A.C.C., 1979. Estratigrafia da Serra do Espinhaço na região de Diamantina. Anais, Simpósio de Geologia de Minas Gerais, Soc. Bras. Geologia, Núcleo MG, Bol. 1, Belo Horizonte, 55-73.
- Teixeira, W., Carneiro, M.A., Noce, C.M., Machado, N., Sato, K., Taylor, P.N., 1996. Pb, Sr and Nd isotope constraints on the Archean evolution of gneissic-granitoidcomplexes in the southern São Francisco Craton, Brazil. Precambrian Research. 78, 151–164.
- Teixeira, W., Ávila, C.A., Dussin, I.A., Corrêa Neto, A.V., Bongiolo, E.M., Santos, J.O., Barbosa. N.S., 2015. A juvenile accretion episode (2.35–2.32 Ga) in the Mineiro belt andits role to the Minas accretionary o rogeny: Zircon U–Pb–Hf and geochemical evidences. Precambrian Research 256 148–169.
- Uhlein, A., 1982. Geologia e mineralizações de cromita e itabiritos da região do Serro MG. Dissertação de Mestrado, UnB, Brasília, 189 p.
- Valeriano, C.M., Machado, N., Simonetti, A., Valladares, C.S., Seer, H.J., Simões, L.S.A., 2004. U-Pb geochronology of the southern Brasilia belt (SE-Brazil): sedimentary provenance, Neoproterozoic orogeny and assembly of West Gondwana. Precambrian Research 130, 27–55.
- Vermeesch, P., 2012. On the visualisation of detrital age distributions. Chemical Geology, V312–313, p190-194.
- Zapparoli, A. C., 2001. Os depósitos de cromita da borda leste da Serra do Espinhaço Meridional, Minas Gerais: Petrologia, quimismo e implicações genéticas. Dissertação de mestrado. Universidade Estadual de São Paulo. 133 p.

## 8 – Anexos

											Idades (Mo)								
						Razões	Radiogê	nicas					Idad	es (M	a)				
Grain Spot	²⁰⁶ Pb*	²⁰⁷ Pb*	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	r	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	Conc(%)		
1 5.s.011	40066,11	4336,84	0,29	0,10688	0,00146	0,30459	0,003	4,4859	0,05657	0,781032	1747	25	1714	15	1728	10	98%		
2 5.s.012	264636,00	36462,00	0,16	0,13418	0,00138	0,36988	0,00328	6,83957	0,06178	0,981734	2153	18	2029	15	2091	8	94%		
3 5.s.019	383229,84	62613,51	0,23	0,15352	0,00176	0,43727	0,00414	9,25998	0,09683	0,905421	2386	19	2338	19	2364	10	98%		
4 5.s.023	355629,08	70239,62	0,14	0,19459	0,00199	0,53407	0,00455	14,32222	0,12464	0,978963	2781	17	2759	19	2771	8	99%		
5 5.s.030	109028,82	15840,53	0,62	0,14211	0,00151	0,40877	0,00356	8,00605	0,07329	0,951359	2253	18	2209	16	2232	8	98%		
6 5.s.031	231765,00	32507,00	0,18	0,13576	0,00394	0,36103	0,00485	6,70416	0,18552	0,485458	2174	50	1987	23	2073	24	91%		
7 5.s.032	183723,43	25156,53	0,13	0,13194	0,00147	0,38507	0,00358	7,00265	0,07081	0,919414	2124	19	2100	17	2112	9	99%		
8 5.s.033	209682,00	28799,00	0,23	0,13469	0,00143	0,36977	0,00325	6,86364	0,06333	0,95257	2160	18	2028	15	2094	8	94%		
9 5.s.034	267985,44	48807,36	0,23	0,17687	0,00183	0,4923	0,00443	11,99924	0,11062	0,976099	2624	17	2581	19	2604	9	98%		
10 5.s.035	191547,12	24285,24	0,33	0,1252	0,00134	0,36309	0,0031	6,26518	0,05705	0,937617	2032	19	1997	15	2014	8	98%		
11 5.s.036	66842,45	9159,59	0,40	0,13642	0,00147	0,39445	0,00349	7,41586	0,06992	0,938412	2182	19	2143	16	2163	8	98%		
12 5.s.038	62317,00	8678,00	0,19	0,13692	0,00161	0,39616	0,00354	7,47564	0,07627	0,875845	2189	20	2151	16	2170	9	98%		
13 5.s.039	102369,00	20984,00	0,47	0,19868	0,00212	0,54072	0,00496	14,80488	0,14113	0,962265	2815	17	2786	21	2803	9	99%		
14 5.s.042	69479,00	7542,00	0,30	0,10527	0,00121	0,29832	0,00274	4,32779	0,04465	0,890252	1719	21	1683	14	1699	9	98%		
15 5.s.043	135780,00	18122,00	0,17	0,13118	0,00145	0,38301	0,00334	6,92399	0,06625	0,911396	2114	19	2090	16	2102	8	99%		
16 5.s.044	111514,76	15195,00	0,13	0,13282	0,00142	0,38959	0,00344	7,13074	0,06649	0,946954	2136	19	2121	16	2128	8	99%		
17 5.s.045	325180,21	59502,18	0,25	0,18033	0,00193	0,46216	0,00389	11,48608	0,10346	0,934451	2656	18	2449	17	2564	8	92%		
18 5.s.051	70264,96	9906,35	0,17	0,13847	0,00149	0,40199	0,00356	7,67146	0,07197	0,943977	2208	19	2178	16	2193	8	99%		
19 5.s.052	315778,68	63536,77	0,32	0,19606	0,00223	0,53284	0,00458	14,39698	0,13985	0,884866	2794	18	2753	19	2776	9	99%		
20 5.s.053	124580,68	13315,92	0,24	0,10613	0,00119	0,30435	0,00279	4,4516	0,04489	0,90907	1734	20	1713	14	1722	8	99%		
21 5.s.054	120143,00	16482,00	0,22	0,13403	0,0016	0,37882	0,00333	6,99656	0,07218	0,852077	2151	21	2071	16	2111	9	96%		
22 5.s.056	140871,00	19371,00	0,18	0,1339	0,00139	0,38745	0,00337	7,14998	0,06422	0,968387	2150	18	2111	16	2130	8	98%		
23 5.s.059	50990,82	5493,57	0,46	0,11159	0,00126	0,31882	0,00284	4,90321	0,0485	0,900558	1825	20	1784	14	1803	8	98%		
24 5.s.062	248834,00	46757,00	1,00	0,18573	0,00219	0,51566	0,00458	13,20031	0,1354	0,8659	2705	19	2681	19	2694	10	99%		
25 5.s.064	194841,00	25514,00	0,36	0,12758	0,00134	0,37259	0,00329	6,55146	0,06044	0,957146	2065	18	2042	15	2053	8	99%		
26 5.s.072	360626,86	79266,33	0,36	0,20705	0,00233	0,5528	0,00518	15,78083	0,1619	0,913366	2883	18	2837	22	2864	10	98%		
27 5.s.074	133473,00	25378,00	0,46	0,18548	0,00212	0,51176	0,00446	13,08132	0,12868	0,88595	2702	19	2664	19	2686	9	99%		
28 5.s.078	243937.00	32535.00	0.38	0,13068	0.00148	0,37943	0.00329	6,834	0.06691	0.885622	2107	20	2074	15	2090	9	98%		
29 5 s 080	225873.00	44053.00	0.33	0 18926	0.00196	0.52133	0.00458	13 59884	0 12284	0 972556	2736	17	2705	19	2722	9	99%		
30 5 c 087	192816.00	25566.00	0.33	0.12814	0.00136	0.37208	0.00332	6 57115	0.06101	0.047071	2073	10	2030	16	2056		0.9%		
31 5 c 091	300721.63	41479.52	0,33	0,12014	0,00150	0.35499	0,00332	6,57959	0,00131	0.99219	2073	20	1959	14	2050		01%		
32 5 c 092	63691.06	10661.24	0.30	0,10437	0.00132	0,53400	0.00496	14 10011	0.16071	0.979027	2130	20	2733	21	2757	10	00%		
32 5.8.032	101700.00	10031,24	0,33	0,13377	0,00233	0,32131	0,00430	7,0727	0,13071	0,010321	2/14	20	2133	47	2101		3370		
33 5.S.094	104769,32	14620,64	0,29	0,13756	0,0015	0,40063	0,00359	1,59737	0,07338	0,927762	2197	19	21/2	1/	2105	9	99%		
34 5.8.095	241261,20	47540,61	0,39	0,10029	0,00234	0,51662	0,00457	13,40565	0,14609	0,611744	2/2/	20	2665	19	2709	10	90%		
35 5.S.108	221156,67	41191,03	0,08	0,17212	0,00298	0,46301	0,00476	7 40074	0,10302	0,616299	2578	29	2540	21	2563	15	99%		
30 5.S.113	102546,00	14184,00	0,19	0,13369	0,00159	0,3649	0,00335	7,10271	0,07329	0,643463	2150	21	2099	16	2124	9	98%		
37 5.5.077	220618,36	30543,15	0,32	0,13526	0,00141	0,31891	0,00274	5,94511	0,05322	0,959771	2167	18	1/84	13	1968	8	82%		
38 5.s.040	160392,13	22816,29	0,27	0,13498	0,00155	0,31568	0,00297	5,87569	0,06118	0,903564	2164	20	1769	15	1958	9	82%		
39 5.S.063	337458,03	46454,86	0,25	0,13418	0,00139	0,31188	0,00273	5,76731	0,05215	0,968042	2153	18	1750	13	1942	8	81%		
40 5.5.111	129520,07	18018,76	0,31	0,1351	0,00145	0,31097	0,0027	5,79067	0,0539	0,932793	2165	19	1/46	13	1945	0	81%		
41 5.5.037	22249,00	3464,00	1,40	0,15094	0,00253	0,33667	0,00394	7,04827	0,10986	0,745944	2357	28	1661	19	2118	14	80%		
42 5.S.112	92527,00	14699,00	0,27	0,14171	0,00814	0,28939	0,00746	5,48927	0,3265	0,433398	2248	96	1639	31	1699	51	7.3%		
43 5.8.000	192201,03	24504,50	0,43	0,12300	0,00154	0,25255	0,00221	4,30201	0,04037	0,012072	2010	10	1432	20	1094	3	72%		
44 0.5.000	204290.00	10104,57	0.54	0,24298	0.00294	0,44904	0.000442	15,03488	0,10500	0.043643	3 (40	19	2391	10	2010		70%		
40 0.5.022	234389,90	4 1435, 19	0,25	0,13692	0.00146	0,27665	0.00254	9,22101	0.0704/	0.0743013	2109	19	10/5	13	1050	1 0	72%		
40 5.5.021	1092177.00	00047.00	0,00	0,17402	0,00179	0,33506	0,00265	0,03542	0.0100	0.062074	2007	20	1003	6	2235		1 Z 70 E E 9/.		
47 5.5.015	216761.00	26220.00	2,00	0,07941	0.00179	0,1009	0,00096	6,62946	0,0109	0,0000011	2457	10	1604	12	2062	+ <del></del>	00%		
40 5.5.079	46944.00	6190.00	0,29	0,10009	0.001/0	0,30044	0,00236	4 4 2 2 9	0.06009	0,30308	2437	19	1094	10	1710		669/		
45 5.5.008	702052.00	0103,00	0.3/	0,13109	0.00100	0.17010	0.00226	4,4320	0.02517	0,020351	1751	10	1407	0	1214	7	619/		
50 5.8.100	204627.04	26426.04	0,30	0,10/15	0.0014	0,1/919	0,0010	2,04007	0.0251/	0,530059	1022	19	1003	9 10	1/102		6296		
52 5 c 075	105561 72	26701.92	0,19	0,11040	0.0014	0.20430	0.00191	3,3473	0.03504	0.000099	2096	18	1202	10	1432	7	62%		
52 5.5.075 53 5 c 076	734659.00	103110.00	0.54	0,12000	0.00137	0.22230	0,0019	3,37343	0.03862	0,540106	2030	10	12.34	10	1600		50%		
51 5 c 061	205106 /5	32204.07	0,54	0,10004	0.00145	0.14942	0.00135	2 15077	0,00002	0.861866	1703	22	898	8	1165	8	53%		
54 5.5.001	270504.00	37276.00	0.52	0.13265	0.00125	0.1966	0.00184	2,10077	0.02000	0.851122	2133	22	1157	10	1648		54%		
55 5.5.097 56 5 c 072	306332.64	93603.76	0,03	0,13203	0.00314	0,1500	0.00104	16 27520	0.14491	0.051122	3462	16	2150	10	2803		62%		
57 5 c 041	208006.00	30075.00	0.80	0.18532	0.00104	0,35570	0.00335	6 97939	0.06470	0.0501014	2701	17	1557	10	2055	8	68%		
57 5.5.041 58 5 c 057	141025.55	18034 69	0,09	0,10000	0.00154	0.18310	0.00240	3 20526	0.03412	0.886702	2105	20	1084	1 <u>2</u>	1480		52%		
50 5.5.007	230707.26	20733.26	0.14	0,13033	0.00101	0,10319	0.001/0	2.03346	0.02655	0.000703	2105	18	1004	9	1301	7	50%		
60 5 c 000	230101,30	43163 /9	0,24	0,12454	0.00131	0,17035	0.00147	2,55545	0.02000	0.00012	2020	10	1014	8	1/39		50%		
61 5 0 019	326728 10	43103,40	0,05	0.12665	0.00132	0.16993	0.00102	2 9/820	0.02100	0,00007	2003	10	1045	8	130/	7	/0%		
62 5 c 020	5/9587 /2	72000 05	0.52	0,12005	0.00134	0.16633	0.00149	2,34023	0.02614	0,040029	2002	19	902	8	1394	7	4370		
63 5 c 000	282029 77	46560.39	0,00	0.16048	0.00177	0,10033	0.00140	4 43246	0.0/16/	0,000010	2/61	10	1177	0 0	1719		40 /0		
64 5 c 109	549280.00	72308.25	0,40	0.12802	0.00177	0.1/601	0.0017	2 57558	0.02459	0.925764	2401	10	870	7	1294	7	4070		
65 5 0 059	391883 35	50062.40	0.27	0.12402	0.00130	0.13776	0.00125	2,37330	0.0240	0.906764	2018	20	832	7	1234	7	42.70		
66 5 s 098	315609.42	40383.53	0.50	0.12422	0.00179	0.13865	0.00132	2,33741	0.03091	0 73/236	2010	25	837	7	1238	9	/1%		

**Tabela 4** – Dados isotópicos U-Pb nos zircões detríticos da amostra PT008. Razões U-Pb corrigidas por ²⁰⁴Pb. ²⁰⁶Pb* e ²⁰⁷Pb* é a contagem de cintilações por segundo (cps) corrigida pelo background.

				Razões Radiogênicas								Idades (Ma)								
Grain Spot	²⁰⁶ Pb*	²⁰⁷ Pb*	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	r	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	Conc(%)			
1 5.s.011	67332,00	12315,00	0,62	0,18145	0,00207	0,50803	0,00474	12,70693	0,12972	0,913951	2666	19	2648	20	2658	10	99%			
2 5.s.012	122945,00	16993,00	0,17	0,1363	0,00148	0,39501	0,00354	7,42091	0,07105	0,936027	2181	19	2146	16	2164	9	98%			
4 5.s.013	128507.00	17437.00	0.23	0,10455	0.00131	0,29619	0.00267	7,10676	0.06807	0.926883	2139	19	2111	16	2125	9	99%			
5 5.s.015	109190,00	11815,00	0,56	0,1055	0,00127	0,3062	0,00274	4,45201	0,04735	0,841359	1723	22	1722	14	1722	9	100%			
6 5.s.016	227486,83	30596,97	0,17	0,1345	0,00161	0,39198	0,00371	7,26784	0,0796	0,864176	2158	21	2132	17	2145	10	99%			
7 5.s.017	82884,25 57252.00	14617,17	0,52	0,1/661	0,00233	0,49902	0,00508	12,15154	0,14815	0,834979	2621	22	2610	22	2616	11	100%			
9 5.s.010	33659.85	3451.80	0.46	0,17646	0.00195	0,49846	0.00455	4.31259	0.05176	0,931347	1716	25	1680	14	1696	10	98%			
10 5.s.020	131044,00	17581,00	0,19	0,13397	0,00191	0,38986	0,00387	7,19402	0,09313	0,766804	2151	25	2122	18	2136	12	99%			
11 5.s.026	34107,00	6031,00	1,34	0,16876	0,00305	0,48301	0,00606	11,2343	0,1904	0,740279	2545	30	2540	26	2543	16	100%			
12 5.S.U27 13 5 s 028	62998,00 224770.00	8498,00 45786.00	0,34	0,1338	0,00203	0,39119	0,00421	15 0268	0,10235	0,758653	2148	20	2128	20	2138	13	99%			
14 5.s.029	70599,00	9871,00	0,26	0,13493	0,002	0,39418	0,00399	7,32511	0,09884	0,75017	2163	26	2142	18	2152	12	99%			
15 5.s.030	144830,00	26489,00	0,53	0,17986	0,00198	0,50671	0,00468	12,56138	0,12436	0,932917	2652	18	2643	20	2647	9	100%			
16 5.s.031	106828,00	7418.00	0,35	0,13/96	0,001//	0,40043	0,00389	7,61506	0,08976	0,824164	2202	22	21/1	18	2187	11	99%			
18 5.s.033	197514.93	25188.65	0.35	0,12702	0.00133	0,33303	0.00328	6.52506	0,06008	0.955753	2057	18	2042	15	2049	8	99%			
19 5.s.034	45279,00	4656,00	0,51	0,10069	0,00127	0,28751	0,00258	3,98927	0,04534	0,789548	1637	23	1629	13	1632	9	100%			
20 5.s.035	74408,00	9978,00	0,22	0,13144	0,00147	0,38368	0,00342	6,95043	0,06888	0,899447	2117	20	2094	16	2105	9	99%			
21 5.s.040 22 5 s 041	23615,00	3181,00	0,16	0,13251	0,00253	0,38319	0,00447	6,99652	0,12515	0,652146	2131 2004	24	2091	16	2111 1994	11	98%			
23 5.s.042	125990,00	17081,00	0,26	0,13268	0,00143	0,38764	0,00346	7,08893	0,06763	0,935597	2134	19	2112	16	2123	8	99%			
24 5.s.043	131465,00	17756,00	0,24	0,13499	0,00207	0,39229	0,00379	7,29342	0,10054	0,700849	2164	26	2134	18	2148	12	99%			
25 5.s.046	123870,00	16521,00	0,35	0,13062	0,0014	0,38174	0,00337	6,87161	0,06451	0,940359	2106	19	2084	16	2095	8	99%			
27 5.s.056	82629.45	10626.49	0.27	0,13008	0.00153	0,40300	0.00351	6.78242	0.07185	0.875593	2099	20	2403	16	2402	9	99%			
28 5.s.057	216634,01	41707,20	0,32	0,1895	0,00201	0,52903	0,00453	13,81542	0,1252	0,944882	2738	17	2737	19	2737	9	100%			
29 5.s.058	166000,00	21678,00	0,17	0,13052	0,00183	0,38246	0,00347	6,87683	0,08543	0,730334	2105	24	2088	16	2096	11	99%			
30 5.s.059 31 5 s 060	75680.30	16897,87	0,69	0,13687	0,00154	0,40067	0,0036	7,55797	0,07543	0,900278	2188	19	21/2	1/	2180	9	99%			
32 5.s.061	61002,00	6993,00	3,05	0,11518	0,00448	0,33613	0,00507	5,32604	0,19828	0,511444	1883	68	1868	31	1873	32	99%			
33 5.s.062	116878,00	15388,00	0,23	0,12947	0,00152	0,37701	0,00333	6,72739	0,06884	0,863172	2091	20	2062	16	2076	9	99%			
34 5.s.064	168246,00	18640,00	0,48	0,10543	0,00129	0,29815	0,00284	4,33488	0,04886	0,845098	1722	22	1682	14	1700	9	98%			
35 5.s.065 36 5.s.072	129887.00	18231.00	0,21	0,13546	0.00168	0.39345	0.00353	7,14635	0.08167	0.862687	2144	22	2116	18	2150	10	99%			
37 5.s.073	47953,00	5141,00	0,50	0,10553	0,00135	0,30962	0,00282	4,5025	0,0515	0,796281	1724	23	1739	14	1731	10	101%			
38 5.s.074	35050,51	3251,26	0,56	0,10679	0,00145	0,31009	0,00297	4,56383	0,05631	0,77627	1745	25	1741	15	1743	10	100%			
39 5.s.075	116015,52	16044,21	0,21	0,13626	0,00148	0,39747	0,00355	6 96375	0,07187	0,927473	2180	19 21	2157	16	2169	9	99%			
40 5.s.070 41 5.s.077	153528,00	20343,00	0,26	0,12975	0,00146	0,38199	0,00338	6,83175	0,01421	0,892779	2095	20	2086	16	2090	9	100%			
42 5.s.078	230579,68	31043,94	0,33	0,13198	0,00148	0,38565	0,00346	7,01415	0,06999	0,899129	2124	19	2103	16	2113	9	99%			
43 5.s.080	153284,00	19994,00	0,30	0,12876	0,00162	0,37697	0,00336	6,68879	0,07428	0,802617	2081	22	2062	16	2071	10	99%			
44 5.s.081 45 5.s.088	31734.87	4016.39	0,25	0,13161	0.00313	0.38813	0.00543	7,05546	0.15954	0.617878	2133	41	2105	25	2110	20	100%			
46 5.s.089	93356,17	10326,01	0,35	0,10879	0,00152	0,31569	0,00319	4,73637	0,06226	0,768717	1779	25	1769	16	1774	11	99%			
47 5.s.090	114975,00	15459,00	0,42	0,13117	0,00159	0,38314	0,00354	6,92674	0,07603	0,841763	2114	21	2091	17	2102	10	99%			
48 5.s.091	99237,00	22899.00	0,16	0,13645	0,00208	0,40247	0,00387	7,56158	0,10425	0,697451	2183	26	2180	18	2180	12	99%			
50 5.s.093	131567,00	17410,00	0,36	0,12831	0,00163	0,37569	0,00367	6,64172	0,07891	0,822214	2075	22	2056	17	2065	10	99%			
51 5.s.094	78338,00	10538,00	0,28	0,13303	0,00156	0,38974	0,00346	7,14536	0,07379	0,859662	2138	20	2122	16	2130	9	99%			
52 5.s.095	168871,66	24310,23	0,21	0,1372	0,00167	0,40209	0,00388	7,60008	0,08604	0,852366	2192	21	2179	18	2185	10	99%			
54 5.s.096	70302.87	12821.22	0,46	0,1300	0.00239	0,40200	0.0036	13,12643	0,07406	0,51632	2689	21	2690	20	2689	J 11	100%			
55 5.s.098	112375,45	20991,48	0,50	0,18036	0,00246	0,50799	0,00524	12,63335	0,16323	0,798352	2656	22	2648	22	2653	12	100%			
56 5.s.099	95159,00	13024,00	0,21	0,13358	0,00189	0,38913	0,00399	7,16541	0,09571	0,767648	2146	25	2119	18	2132	12	99%			
57 5.S.100 58 5 c 101	56387,99	10397,02	0,65	0,18092	0,00212	0,50686	0,00479	12,63698	0,13482	0,885802	2661	19	2643	21	2653	10 9	99%			
59 5.s.102	108420,00	15209,00	0,32	0,13814	0,00186	0,40688	0,00403	7,74413	0,0975	0,786696	2204	23	2201	18	2202	11	100%			
60 5.s.112	57401,00	7653,00	0,38	0,13578	0,00248	0,39785	0,00413	7,43433	0,12476	0,618582	2174	31	2159	19	2165	15	99%			
61 5.s.113	61278,25	8282,54	0,23	0,13255	0,00176	0,38754	0,0037	7,07948	0,08582	0,787586	2132	23	2111	17	2122	11	99%			
63 5.s.114	108237.14	15002.78	0,23	0,13669	0,00154	0,33217	0,00351	7,54485	0.08434	0,826532	2186	20	2133	17	2140	10	99%			
64 5.s.116	152449,93	20523,51	0,43	0,13423	0,00179	0,39608	0,00361	7,33002	0,08769	0,761867	2154	23	2151	17	2153	11	100%			
65 5.s.044	51261,94	5679,57	0,41	0,10975	0,00141	0,24925	0,00223	3,77056	0,04261	0,791706	1795	23	1435	11	1587	9	80%			
67 5 e 060	39531,74	3809,43	1,13	0,10422	0,00139	0,22655	0,00205	3,25382	0,0385	0,764755	1/01	24	1316	11	1470	9	75%			
68 5.s.071	10495,00	1847,00	0,10	0,17213	0,00345	0,35803	0,00461	8,49187	0,15862	0,68933	2578	33	1973	22	2285	17	77%			
69 5.s.079	171182,00	25225,00	3,53	0,14041	0,00178	0,24513	0,00239	4,74705	0,05598	0,826785	2232	22	1413	12	1776	10	63%			
70 5.s.045	374764,22	44377,00	0,78	0,11733	0,00135	0,11289	0,001	1,82546	0,01845	0,876437	1916	20	690	6	1055	7	36%			

**Tabela 5 -** Dados isotópicos U-Pb nos zircões detríticos da amostra PT021. Razões U-Pb corrigidas por ²⁰⁴Pb. ²⁰⁶Pb* e ²⁰⁷Pb* é a contagem de cintilações por segundo (cps) corrigida pelo background.

**Tabela 6 -** Dados isotópicos U-Pb nos zircões detríticos da amostra PT038. Razões U-Pb corrigidas por ²⁰⁴Pb. ²⁰⁶Pb* e ²⁰⁷Pb* é a contagem de cintilações por segundo (cps) corrigida pelo background.

			Radiogenic Ratios Ages (Ma)											a)			
ain Spot	²⁰⁶ Pb*	²⁰⁷ Pb*	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	r	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	Conc(%)
5.s.009	129233,00	13692,00	0,30	0,10412	0,00112	0,2986	0,00261	4,28571	0,04006	0,93511	1699	20	1684	13	1691	8	99%
5.s.010	239518,17	32553,24	0,24	0,1354	0,00143	0,39335	0,00354	7,34053	0,06918	0,95493	2169	18	2138	16	2154	8	99%
5.s.011	81367,00	14882,00	0,41	0,17909	0,00194	0,50585	0,0045	12,48678	0,11761	0,94449	2644	18	2639	19	2642	9	100%
5.s.013	184127,00	23471,00	0,10	0,12463	0,00139	0,36538	0,00308	6,27621	0,05895	0,89747	2024	20	2008	15	2015	8	99%
5.s.015	70889,84	9500,63	0,25	0,13193	0,00166	0,34629	0,00312	6,29684	0,06891	0,82329	2124	22	1917	15	2018	10	90%
-	in Spot 5.s.009 5.s.010 5.s.011 5.s.013 5.s.015	in Spot         206Pb*           5.s.009         129233,00           5.s.010         239518,17           5.s.011         81367,00           5.s.013         184127,00           5.s.015         70889,84	in Spot         206Pb*         207Pb*           5.s.009         129233.00         13692.00           5.s.010         239518,17         32553,24           5.s.011         81367.00         14882.00           5.s.013         184127,00         23471,00           5.s.015         70889,84         9500,63	in Spot         206Pb*         207Pb*         Th/U           5.s.009         129233.00         13692.00         0.30           5.s.010         239518.17         32553.24         0.24           5.s.011         81367.00         14882.00         0.41           5.s.013         184127.00         23471.00         0.10           5.s.015         70889.84         9500.63         0.25	in Spot         206Pb*         207Pb*         Th/U         207Pb/206Pb           5.s.009         129233,00         13692,00         0,30         0,10412           5.s.010         239518,17         32553,24         0,24         0,1354           5.s.011         81367,00         14882,00         0,41         0,17909           5.s.013         184127,00         23471,00         0,10         0,12463           5.s.015         70889,84         9500,63         0,25         0,13193	in Spot         206Pb*         207Pb*         Th/U         207Pb/206Pb         ±           5.s.009         129233,00         13692,00         0,30         0,10412         0,00112           5.s.010         239518,17         32553,24         0,24         0,1354         0,00143           5.s.011         81367,00         14882,00         0,41         0,17909         0,00194           5.s.015         70889,84         9500,63         0,25         0,13193         0,00166	in Spot         206Pb*         207Pb*         Th/U         207Pb/206Pb         ±         206Pb/238U           5.s.009         129233.00         13692.00         0.30         0.10412         0.00112         0.2986           5.s.010         239518.17         32553.24         0.24         0.1354         0.00143         0.39335           5.s.011         81367.00         14882.00         0.41         0.17909         0.00194         0.50585           5.s.013         184127.00         23471.00         0.10         0.12463         0.00139         0.36538           5.s.015         70889.84         9500.63         0.25         0.13193         0.00166         0.34629	in Spot         206 Pb*         207 Pb*         Th/U         207 Pb/206 Pb         ±         206 Pb/238 U         ±           5.s.009         129233,00         13692,00         0,30         0,10412         0,00112         0,2986         0,00261           5.s.010         239518,17         32553,24         0,24         0,1354         0,00143         0,39335         0,00354           5.s.011         81367,00         14882,00         0,41         0,17909         0,00194         0,50585         0,0045           5.s.013         184127,00         23471,00         0,10         0,12463         0,00139         0,36538         0,00308           5.s.015         70889,84         9500,63         0,25         0,13193         0,00166         0,34629         0,00312	in Spot         206Pb*         207Pb*         Th/U         207Pb/206Pb         ±         206Pb/238U         ±         207Pb/235U           5.s.009         129233.00         13692.00         0.30         0.10412         0.00112         0.2986         0.00261         4.28571           5.s.010         239518.17         32553.24         0.24         0.1354         0.00143         0.39335         0.00354         7.34053           5.s.011         81367.00         14882.00         0.41         0.17909         0.00194         0.50585         0.0045         12.48678           5.s.013         184127.00         23471.00         0.10         0.12463         0.00139         0.36538         0.00308         6.27621           5.s.015         70889.84         9500.63         0.25         0.13193         0.00166         0.34629         0.00312         6.29684	in Spot         206Pb*         207Pb*         Th/U         207Pb/206Pb         ±         206Pb/238U         ±         207Pb/235U         ±           5.s.009         129233.00         13692.00         0.30         0.10412         0.00112         0.2986         0.00261         4.28571         0.04006           5.s.010         239518.17         32553.24         0.24         0.1354         0.00143         0.39335         0.00354         7.34053         0.06918           5.s.011         81367.00         14882.00         0.41         0.17909         0.00194         0.50585         0.0045         12.48678         0.11761           5.s.013         184127.00         23471.00         0.10         0.12463         0.00139         0.36538         0.00308         6.27621         0.05895           5.s.015         70889.84         9500.63         0.25         0.13193         0.00166         0.34629         0.00312         6.29684         0.06891	in Spot         206Pb*         207Pb*         Th/U         207Pb/206Pb         ±         206Pb/238U         ±         207Pb/235U         ±         r           5.s.009         129233.00         13692.00         0.30         0.10412         0.00112         0.2986         0.00261         4.28571         0.04006         0.93511           5.s.010         239518,17         32553,24         0.24         0.1354         0.00143         0.39335         0.00354         7.34053         0.06918         0.95493           5.s.011         81367.00         14882,00         0.41         0.17909         0.00194         0.50585         0.0045         12.48678         0.11761         0.94449           5.s.013         184127.00         23471,00         0.10         0.12463         0.00139         0.36538         0.00308         6.27621         0.05895         0.89747           5.s.015         70889,84         9500,63         0.25         0.13193         0.00166         0.34629         0.00312         6.29684         0.06891         0.82329	in Spot         206Pb*         207Pb*         Th/U         207Pb/206Pb         ±         206Pb/238U         ±         207Pb/235U         ±         r         207Pb/206Pb           5.s.009         129233.00         13692.00         0.30         0.10412         0.00112         0.2986         0.00261         4.28571         0.04006         0.93511         1699           5.s.010         239518,17         32553,24         0.24         0.1354         0.00143         0.39335         0.00354         7.34053         0.06918         0.95493         2169           5.s.011         81367.00         14882.00         0.41         0.17909         0.00139         0.36538         0.00308         6.27621         0.05895         0.89747         2024           5.s.015         70889,84         9500,63         0.25         0.13193         0.00166         0.34629         0.00312         6.29684         0.06891         0.8229         2124	in Spot         206Pb*         207Pb/*         Th/U         207Pb/206Pb         ±         206Pb/238U         ±         207Pb/235U         ±         r         207Pb/206Pb         ±           5.s.009         129233.00         13692.00         0.30         0.10412         0.00112         0.2986         0.00261         4.28571         0.04006         0.93511         1699         20           5.s.010         239518.17         32553.24         0.24         0.1354         0.00143         0.39335         0.00354         7.34053         0.06918         0.95493         2169         18           5.s.011         81367.00         14882.00         0.41         0.17909         0.00194         0.50585         0.0045         12.48678         0.11761         0.94449         2644         18           5.s.013         184127.00         23471.00         0.10         0.12463         0.00139         0.36538         0.00308         6.27621         0.05895         0.89747         2024         20           5.s.015         70889.84         9500.63         0.25         0.13193         0.00166         0.34629         0.00312         6.29684         0.06891         0.82329         2124         22	in Spot         206Pb*         207Pb*         Th/U         207Pb/206Pb         ±         206Pb/238U         ±         207Pb/235U         ±         r         207Pb/206Pb         ±         206Pb/238U           5.s.009         129233.00         13692.00         0.30         0.10412         0.00112         0.2986         0.00261         4.28571         0.04006         0.93511         1699         20         1684           5.s.010         239518,17         32553,24         0.24         0.1354         0.00143         0.39335         0.00354         7.34053         0.06918         0.95493         2169         18         2138           5.s.011         81367.00         14882.00         0.41         0.17909         0.00194         0.50585         0.0045         12.48678         0.11761         0.94449         2644         18         2639           5.s.013         184127.00         23471.00         0.10         0.12463         0.00139         0.36538         0.00308         6.27621         0.05895         0.89747         2024         20         2008           5.s.015         70889.84         9500,63         0.25         0.13193         0.00166         0.34629         0.00312         6.29684         0.06891	in Spot         20 ⁶ Pb*         20 ⁷ Pb/ ²⁰⁶ Pb         ±         20 ⁶ Pb/ ²³⁸ U         ±         20 ⁷ Pb/ ²³⁵ U         ±         r         20 ⁷ Pb/ ²⁰⁶ Pb         ±         20 ⁶ Pb/ ²³⁸ U         ±           5.s.009         129233.00         13692.00         0.30         0.10412         0.00112         0.2986         0.00261         4.28571         0.04006         0.93511         1699         20         1684         13           5.s.010         239518.17         32553.24         0.24         0.1354         0.00143         0.39335         0.00354         7.34053         0.06918         0.95493         2169         18         2138         16           5.s.011         81367.00         14882.00         0.41         0.17909         0.00194         0.50585         0.0045         12.48678         0.11761         0.94449         2644         18         2639         19           5.s.013         184127.00         23471.00         0.10         0.12463         0.00139         0.36538         0.00308         6.27621         0.05895         0.89747         2024         20         2008         15           5.s.015         70889.84         9500.63         0.25         0.13193         0.00166         0.34629	in Spot         206Pb*         207Pb/s         Th/U         207Pb/206Pb         ±         206Pb/238U         ±         207Pb/235U         ±         r         206Pb/238U         ±         207Pb/235U         ±         206Pb/238U         ±         207Pb/235U         ±         r         206Pb/238U         ±         207Pb/235U         ±         206Pb/238U         ±         207Pb/235U         ±         r         206Pb/238U         ±         207Pb/235U         ±         207Pb/236U         ±         206Pb/238U         ±         207Pb/235U         ±         207Pb/236U         ±         206Pb/238U         ±         207Pb/235U         ±         2017Pb/236U         ±         2017Pb/236U<	in Spot         20 ⁶ Pb*         20 ⁷ Pb/ ²⁰⁶ Pb         ±         20 ⁶ Pb/ ²³⁸ U         ±         20 ⁷ Pb/ ²³⁵ U         ±         r         20 ⁷ Pb/ ²⁰⁶ Pb         ±         20 ⁶ Pb/ ²³⁸ U         ±         20 ⁷ Pb/ ²⁰⁶ Pb         ±         20 ⁶ Pb/ ²³⁸ U         ±         20 ⁷ Pb/ ²⁰⁶ Pb         ±         20 ⁶ Pb/ ²³⁸ U         ±         20 ⁷ Pb/ ²⁰⁶ Pb         ±         20 ⁶ Pb/ ²³⁸ U         ±         20 ⁷ Pb/ ²⁰⁶ Pb         ±         20 ⁶ Pb/ ²³⁸ U         ±         20 ⁷ Pb/ ²⁰⁶ Pb         ±         20 ⁶ Pb/ ²³⁸ U         ±         20 ⁷ Pb/ ²⁰⁵ Pb         ±         20 ⁶ Pb/ ²³⁸ U         ±         20 ⁷ Pb/ ²⁰⁵ Pb         ±         20 ⁶ Pb/ ²³⁸ U         ±         20 ⁶ Pb/ ²³⁵ U         ±         20 ⁶ Pb/ ²³⁸ U         ±         20 ⁶ Pb/ ²³⁵ U         ±         20 ⁶ Pb/ ²³⁸ U         ±         20 ⁶

Continua	ι.	

							Radiog	enic Ra	tios					Age	s (Ma	a)		
Gra	ain Spot	²⁰⁶ Pb*	²⁰⁷ Pb*	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	r	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	Conc(%)
6	5.s.017	443731,82	95442,60	0,39	0,21261	0,00217	0,57286	0,0051	16,78673	0,152	0,98321	2926	16	2920	21	2923	9	100%
/	5.s.024	163148,00	32889,00	0,49	0,19511	0,00205	0,54002	0,00464	14,52253	0,12982	0,96119	2/86	1/	2/84	19	2785	8	100%
9	5.5.029	232048.00	30563.00	0.16	0,17764	0.00192	0.38828	0.00346	7 04541	0.06643	0,93626	2033	19	2449	16	2001	9	95%
10	5.s.034	195404.07	25200,16	0,32	0,12809	0,00153	0,37119	0,00327	6,55117	0,06775	0,85185	2072	21	2035	15	2053	9	98%
11	5.s.035	91080,94	9850,63	0,21	0,10633	0,00136	0,30494	0,003	4,46789	0,05291	0,83075	1737	23	1716	15	1725	10	99%
12	5.s.042	155346,00	20606,00	0,35	0,13486	0,00165	0,35839	0,00332	6,66077	0,07288	0,84664	2162	21	1975	16	2067	10	91%
13	5.s.043	513159,00	69633,00	0,23	0,13664	0,00146	0,36435	0,00322	6,8614	0,06466	0,93781	2185	18	2003	15	2094	8	92%
14	5.S.044	225994,54	30004,84	0,29	0,13473	0,00165	0,391	0,00361	7,25989	0,07973	0,84070	2161	21	2127	1/	2144	10	98%
16	5.s.045	104427.56	13725.97	0.25	0,13362	0.00142	0.38529	0.00332	6.88565	0.06657	0.89129	2093	20	2101	15	2097	9	100%
17	5.s.049	68245,00	8819,00	0,32	0,12725	0,00149	0,37204	0,00327	6,52487	0,06624	0,86578	2060	21	2039	15	2049	9	99%
18	5.s.051	97628,51	10468,91	0,51	0,10653	0,00129	0,30237	0,00268	4,4389	0,04712	0,83496	1741	22	1703	13	1720	9	98%
19	5.s.057	298502,00	55105,00	0,73	0,18034	0,0023	0,50592	0,00513	12,5632	0,15085	0,84448	2656	21	2639	22	2648	11	99%
20	5.s.061	528985,00	103219,00	0,26	0,19139	0,0023	0,52877	0,00517	13,93977	0,15727	0,86663	2754	20	2736	22	2746	11	99%
21	5.S.062	80400.00	10262.00	0,17	0,13512	0,00157	0,36942	0,0034	6,67657	0.06819	0,86038	2166	20	2027	16	2096	9	94%
22	5 s 075	175649.80	23497 17	0.29	0,12734	0.00149	0.35167	0.00318	6 5342	0.0647	0,03313	2162	19	1943	15	2050	9	90%
24	5.s.076	91622,00	12366,00	0,30	0,13511	0,00177	0,35602	0,00331	6,62838	0,07755	0,79466	2165	23	1963	16	2063	10	91%
25	5.s.083	233609,98	32173,37	0,44	0,13621	0,00165	0,37242	0,00362	6,98806	0,07898	0,86003	2180	21	2041	17	2110	10	94%
26	5.s.093	1943385,56	262586,46	32,14	0,13568	0,00143	0,39562	0,00354	7,39738	0,06995	0,94627	2173	18	2149	16	2161	8	99%
27	5.s.094	247814,00	26303,00	0,49	0,10318	0,0013	0,29125	0,00284	4,1399	0,04876	0,82790	1682	23	1648	14	1662	10	98%
28	5.s.097	123589,00	1/660,00	0,40	0,13525	0,00185	0,36651	0,00379	6,83088	0,08809	0,80187	2167	24	2013	18	2090	11	93%
29	5.s.090	310915-00	62468.00	0,22	0,13364	0.00151	0,35641	0,00311	0,57431	0,06437	0,09120	2149	18	2602	20	2056	9	91%
31	5 s 109	109138 86	11440 69	0.48	0 10601	0.00129	0,30026	0.00284	4 38614	0.04913	0.84442	1732	22	1693	14	1710	9	98%
32	5.s.115	67839,26	8735,81	0,22	0,13579	0,00203	0,39644	0,00392	7,42057	0,1015	0,72290	2174	26	2153	18	2164	12	99%
33	5.s.106	327019,88	61057,23	0,50	0,19236	0,00246	0,43547	0,00396	11,54572	0,13272	0,79108	2762	21	2330	18	2568	11	84%
34	5.s.047	46250,00	6049,00	0,46	0,13073	0,00161	0,30105	0,00284	5,42422	0,06014	0,85085	2108	21	1697	14	1889	10	80%
35	5.s.016	385691,00	49863,00	0,25	0,13162	0,00153	0,30226	0,00272	5,48345	0,05655	0,87259	2120	20	1703	13	1898	9	80%
30	5.S.U92	144946,00	18933,00	1,18	0,13154	0,00207	0,28333	0,00292	5,13429	0,07494	0,70609	2119	10	1608	15	1842	12	76%
38	5.s.005	293045 12	38536.96	0.28	0,13073	0.00143	0,20010	0.00248	4 83373	0,04856	0,92009	2088	18	1532	12	1791	7	76%
39	5.s.025	165960,00	21915,00	0,72	0,13115	0,00161	0,26698	0,0023	4,82672	0,05068	0,82047	2113	21	1526	12	1790	9	72%
40	5.s.063	404243,71	52050,31	0,30	0,12859	0,00134	0,25673	0,00223	4,54975	0,04114	0,96062	2079	18	1473	11	1740	8	71%
41	5.s.065	277238,85	35148,09	0,29	0,12791	0,00134	0,24871	0,00214	4,38441	0,03974	0,94930	2069	18	1432	11	1709	7	69%
42	5.s.099	225903,99	28333,38	0,25	0,12827	0,00141	0,24811	0,00219	4,38608	0,04247	0,91158	2074	19	1429	11	1710	8	69%
43	5.5.032	177554,00	23091,00	0,21	0,1285	0,00135	0,24111	0,00206	4,2699	0,03812	0,95701	2078	18	1393	11	1688	10	67%
44	5 s 074	386146 12	48814 34	0,30	0,13000	0.00172	0,24414	0.00215	4,00658	0.03758	0,76505	2033	18	1337	11	1636	8	65%
46	5.s.060	308777,00	38920,00	0,35	0,12589	0,00134	0,22584	0,00193	3,91798	0,03571	0,93762	2041	19	1313	10	1617	7	64%
47	5.s.028	259019,23	32645,23	0,56	0,1257	0,0013	0,22384	0,00189	3,87763	0,034	0,96297	2039	18	1302	10	1609	7	64%
48	5.s.112	52228,00	6547,00	0,46	0,12501	0,00173	0,22136	0,00222	3,81314	0,04902	0,78012	2029	24	1289	12	1596	10	64%
49	5.s.048	148766,65	17765,24	0,63	0,12236	0,00167	0,20842	0,00198	3,51376	0,04314	0,77378	1991	24	1220	11	1530	10	61%
50	5.S.U84	381418,09	4/262,66	0,34	0,12485	0,00131	0,21316	0.00186	3,66//8	0,03359	0,95280	2027	18	1246	10	1504	2	61%
52	5.s.058	303422.00	55841.00	0.45	0,12245	0.00132	0.31099	0.00265	7.80114	0.0734	0.90565	2672	18	1746	13	2208	8	65%
53	5.s.026	328531,31	41219,78	0,31	0,1242	0,00128	0,19849	0,0017	3,39779	0,02994	0,97197	2017	18	1167	9	1504	7	58%
54	5.s.082	271528,28	47138,17	0,39	0,17186	0,00199	0,28325	0,00271	6,70699	0,07209	0,89013	2576	19	1608	14	2074	10	62%
55	5.s.027	206688,35	40307,88	0,35	0,18879	0,00199	0,3045	0,00261	7,92466	0,07094	0,95751	2732	17	1714	13	2223	8	63%
56	5.s.095	207391,75	38534,81	0,57	0,1882	0,00221	0,28285	0,00243	7,33646	0,07415	0,85001	2726	19	1606	12	2153	9	59%
57	5.S.U/9	359854,00	16365,00	0,30	0,21003	0,00227	0,27929	0,00259	8,08362 11 11002	0,07992	0,93798	2906	1/	1588	13	2240	9	55% 56%
59	5.s.096	650120.57	101569 84	0.12	0.15822	0.00171	0.20296	0.0018	4.42523	0.04239	0.92584	2437	18	1191	10	1717	8	49%
60	5.s.059	268001,60	42081,34	0,28	0,15596	0,00168	0,19215	0,00161	4,12994	0,03755	0,92155	2412	18	1133	9	1660	7	47%
61	5.s.030	289912,81	38777,34	0,40	0,1315	0,00149	0,14986	0,00125	2,71592	0,02584	0,87670	2118	20	900	7	1333	7	43%
62	5.s.114	512921,90	61969,53	0,49	0,12446	0,0014	0,12042	0,00109	2,06536	0,02096	0,89193	2021	20	733	6	1137	7	36%
63	5.s.111	65155,86	7962,90	0,59	0,12427	0,00163	0,115	0,00102	1,96979	0,02267	0,77067	2018	23	702	6	1105	8	35%
66	5.S.U66	104975,00	20826,00	0,26	0,12592	0,00186	0,11392	0,00103	3 7125	0,02589	0,69050	2042	20	026 030	0	1574	9	38%
00	5.5.000	+10000,70	10510,24	0,05	0,10072	0,002	0,10002	0,00100	3,1133	0,04000	0,00000	2040	20	530	3	1314	3	5070

**Tabela 7** - Dados isotópicos U-Pb nos zircões detríticos da amostra PT039. Razões U-Pb corrigidas por ²⁰⁴Pb. ²⁰⁶Pb* e ²⁰⁷Pb* é a contagem de cintilações por segundo (cps) corrigida pelo background.

							Razões F	Radiogë	nicas					Idade	es (M	a)		
Gi	rain Spot	²⁰⁶ Pb*	²⁰⁷ Pb*	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	r	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	Conc(%)
1	5.s.007	74418,98	7841,33	0,38	0,10318	0,00119	0,29336	0,00239	4,1719	0,03962	1,16569	1682	21	1658	12	1669	8	99%
2	5.s.008	45214,00	4662,00	0,27	0,09978	0,00263	0,28089	0,00375	3,86395	0,09519	1,84529	1620	48	1596	19	1606	20	99%
3	5.s.010	123617,00	13049,00	0,32	0,10298	0,00144	0,2914	0,00269	4,13684	0,05123	1,34151	1679	26	1649	13	1662	10	98%
4	5.s.011	50980,38	5445,26	0,25	0,10463	0,00142	0,29945	0,00265	4,31867	0,05056	1,32293	1708	25	1689	13	1697	10	99%
5	5.s.012	38511,00	4154,00	0,28	0,10437	0,00199	0,29666	0,00318	4,26645	0,07389	1,61566	1703	35	1675	16	1687	14	98%
6	5.s.013	54319,06	5868,50	1,08	0,10246	0,00138	0,28839	0,00256	4,07251	0,04773	1,32029	1669	25	1634	13	1649	10	98%
7	5.s.014	74450,00	7908,00	0,30	0,10245	0,00144	0,29006	0,00266	4,09362	0,05041	1,34281	1669	26	1642	13	1653	10	98%
8	5.s.021	59730,28	6266,66	0,33	0,10386	0,00196	0,29389	0,00309	4,20671	0,07197	1,62718	1694	34	1661	15	1675	14	98%
9	5.s.022	62190,00	6423,00	0,35	0,0997	0,0017	0,28481	0,00278	3,91192	0,0596	1,56087	1618	31	1616	14	1616	12	100%
10	5.s.024	44553,00	4687,00	0,29	0,10332	0,00168	0,29293	0,00288	4,17112	0,06096	1,48650	1685	30	1656	14	1668	12	98%
11	5.s.025	51493,00	5474,00	0,31	0,10406	0,0015	0,29404	0,00269	4,21715	0,0533	1,38154	1698	26	1662	13	1677	10	98%
12	5.s.026	30891,00	3221,00	0,33	0,10217	0,00155	0,28964	0,00263	4,07768	0,05386	1,45464	1664	28	1640	13	1650	11	99%
13	5.s.031	66528,00	9070,00	0,30	0,13328	0,00143	0,37032	0,00295	6,80317	0,05846	1,07870	2142	19	2031	14	2086	8	95%

### Continua...

							Razões F	Radiogê	nicas					ldad	es (M	a)		
Grain S	Spot	²⁰⁶ Pb*	²⁰⁷ Pb*	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	r	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	Conc(%)
14 5.s.	032	36828,21	3388,49	0,31	0,1044	0,00177	0,29651	0,00295	4,26678	0,06479	1,52625	1704	31	1674	15	1687	12	98%
15 5.s.	033	59223,60	6137,25	0,28	0,10198	0,0016	0,28808	0,00282	4,04853	0,0571	1,44080	1660	29	1632	14	1644	11	98%
10 5.S. 17 5 c	034	34930.00	3744.00	0,35	0,10322	0.00128	0,29205	0,00239	4,15458	0,04283	1,25974	1083	23	1652	12	1605	0 10	98%
18 5 5	036	95626.00	10129.00	0.33	0 10415	0.00134	0 29458	0.00244	4 22699	0.04798	1 34287	1699	25	1664	12	1679	9	98%
19 5.s.	037	55673.00	6004.00	0.30	0.10549	0.00148	0.30129	0.00278	4,38045	0.05396	1.33504	1723	25	1698	14	1709	10	99%
20 5.s.	038	86287,00	9052,00	0,36	0,10254	0,00144	0,28797	0,00263	4,06945	0,05039	1,35581	1671	26	1631	13	1648	10	98%
21 5.s.	039	77340,00	8101,00	0,30	0,10209	0,00143	0,28867	0,00266	4,06107	0,05023	1,34228	1662	26	1635	13	1647	10	98%
22 5.s.	040	51769,00	5537,00	0,26	0,10409	0,00154	0,29287	0,00279	4,20102	0,05556	1,38828	1698	27	1656	14	1674	11	98%
23 5.s.	049	54688,00	5894,00	0,31	0,10506	0,00169	0,29121	0,00291	4,21545	0,06133	1,45594	1715	29	1648	15	1677	12	96%
24 5.s.	050	53986,56	5468,86	0,42	0,10223	0,00146	0,28939	0,00254	4,07696	0,05025	1,40427	1665	26	1639	13	1650	10	98%
25 5.S. 26 5 c	053	62642.00	21904,03	0.26	0,13012	0.00138	0,35196	0,00272	6,31272	0,05248	1,07573	2100	19	1944	13	2020	0	93%
20 5.5.	054	62043,00 55205.83	5340.61	0,20	0,10406	0,00123	0,23447	0,00240	3.94683	0,04222	1,10030	1640	30	1612	14	1623	12	98%
28 5 s	056	62385.55	6592.26	0.31	0 10316	0.00129	0.28937	0.00204	4 11425	0.04416	1 24237	1682	23	1638	12	1657	9	97%
29 5.s.	061	59169.00	6283.00	0.30	0,10359	0.00129	0.2943	0.00254	4.20132	0.04474	1.23386	1689	23	1663	13	1674	9	98%
30 5.s.	062	69039,76	7197,01	0,32	0,10253	0,00114	0,28856	0,0023	4,07806	0,03661	1,12630	1670	20	1634	12	1650	7	98%
31 5.s.	063	77592,00	10513,00	0,17	0,13196	0,00141	0,37636	0,003	6,84537	0,05853	1,07266	2124	19	2059	14	2092	8	97%
32 5.s.	064	182748,58	36904,41	0,17	0,19718	0,00204	0,52511	0,00409	14,27259	0,11587	1,04231	2803	17	2721	17	2768	8	97%
33 5.s.	065	38198,41	3860,92	0,29	0,10305	0,00143	0,29173	0,00254	4,14347	0,04955	1,37349	1680	25	1650	13	1663	10	98%
34 5.s.	068	97688,00	10028,00	0,31	0,10028	0,00126	0,2831	0,00235	3,9124	0,04143	1,27569	1629	23	1607	12	1616	9	99%
35 5.S.	069	79084,00	8380,00	0,43	0,10342	0,00151	0,29483	0,00273	4,20272	0,0542	1,39277	1686	27	1666	14	1675	11	99%
30 5.5.	076	60051.00	29649,00	0,15	0,21211	0.00116	0,00700	0,00424	15,7096	0,13325	1,07490	2922	21	1627	10	2009	0	95%
38 5 c	077	63725.00	6820.00	0.46	0,10176	0,00116	0,20500	0,00235	4,05400	0,03733	1,15205	1700	20	1625	12	1645	7	96%
39 5 s	078	274185.00	55913.00	0.24	0 19842	0.00202	0.54735	0.00428	14 96881	0 12028	1 02761	2813	17	2814	18	2813	8	100%
40 5.s.	079	14658.97	1320.12	0.33	0,10859	0.00195	0.31704	0.0033	4,74464	0.07726	1.56441	1776	32	1775	16	1775	14	100%
41 5.s.	080	50715,96	10377,81	0,28	0,19898	0,00244	0,54823	0,00482	15,03363	0,15559	1,17715	2818	20	2818	20	2817	10	100%
42 5.s.	081	39838,00	4133,00	0,23	0,10076	0,00173	0,28422	0,00285	3,94792	0,06117	1,54518	1638	31	1613	14	1624	13	98%
43 5.s.	082	49676,00	5291,00	0,30	0,10375	0,00171	0,2976	0,00298	4,25505	0,06361	1,49292	1692	30	1679	15	1685	12	99%
44 5.s.	083	30457,66	2953,16	0,28	0,10565	0,00172	0,27196	0,00266	3,95997	0,05781	1,49257	1726	30	1551	13	1626	12	90%
45 5.s.	084	86668,49	1/496,81	0,21	0,19/48	0,00255	0,54452	0,00486	14,81444	0,16391	1,23965	2805	21	2802	20	2803	11	100%
40 5.S.	089	22020 21	3925 73	0.37	0,10319	0,0013	0,29556	0,00246	4,20312	0,04508	1,20001	1662	23	1609	12	1675	9	99%
41 J.S. 18 5 c	091	61796 34	6234 73	0.3/	0,10137	0,00145	0,20521	0,00231	1 07337	0,04073	1,33132	1661	20	1610	12	16/19	8	99%
49 5 s	092	37505.00	3961.00	0.25	0 10277	0.0013	0 29128	0.00252	4 12547	0.04498	1,15070	1675	23	1648	13	1659	9	98%
50 5.s.	093	59556.00	6270.00	0.27	0.10235	0.00123	0.29145	0.00247	4.11103	0.04204	1.20664	1667	22	1649	12	1657	8	99%
51 5.s.	094	53433,62	5599,47	0,31	0,10226	0,00169	0,29229	0,00292	4,11856	0,06179	1,50177	1666	30	1653	15	1658	12	99%
52 5.s.	095	47016,00	4915,00	0,30	0,10268	0,00202	0,29404	0,00321	4,16125	0,07542	1,66021	1673	36	1662	16	1666	15	99%
53 5.s.	096	26304,00	2775,00	0,27	0,1014	0,00278	0,28592	0,00401	3,99487	0,10286	1,83588	1650	50	1621	20	1633	21	98%
54 5.s.	098	30149,09	2802,26	0,27	0,10118	0,00128	0,28771	0,00246	4,01217	0,04372	1,27444	1646	23	1630	12	1637	9	99%
55 5.s.	103	/2098,88	7704,47	0,54	0,10457	0,00118	0,27308	0,00225	3,93529	0,03697	1,14020	1707	21	1556	11	1621	8	91%
50 5.S.	104	10342,94	16220.00	0,37	0,10186	0.00137	0,29033	0,00247	4,07501	0,04693	1,35368	1658	25	1643	12	1649	9	99%
57 5.S.	100	53896.00	576/ 00	0,40	0,10207	0.00114	0,29392	0.00233	4,10743	0,0376	1,13013	1692	20	1663	12	1676	8	99%
59 5.8	108	140649.00	29212 31	0.14	0 2018	0.00299	0.5487	0.00531	15 25444	0.20325	1 37681	2841	24	2820	22	2831	13	99%
60 5.8	110	158136.20	21490.28	0.25	0,13115	0.00153	0.38563	0.0031	6.96919	0.0672	1,19949	2113	20	2103	14	2108	9	99%
61 5.s.	111	58161,55	6025,87	0,33	0,10424	0,00133	0,29634	0,00258	4,25658	0,04723	1,27446	1701	23	1673	13	1685	9	98%
62 5.s.	114	468750,46	123903,12	0,22	0,25627	0,00264	0,64882	0,00516	22,91334	0,19076	1,04682	3224	16	3224	20	3223	8	100%
63 5.s.	115	61655,00	6535,00	0,37	0,10182	0,00147	0,28963	0,00257	4,06315	0,05164	1,43230	1658	27	1640	13	1647	10	99%
64 5.s.	097	84929,06	9169,48	0,96	0,10635	0,00133	0,23709	0,00205	3,47429	0,03752	0,80065	1738	23	1372	11	1521	9	79%
65 5.s.	112	68736,00	7551,00	0,43	0,10637	0,00119	0,23394	0,0019	3,42916	0,03173	0,87774	1738	20	1355	10	1511	7	78%
66 5.s.	105	227715,00	46430,00	0,21	0,19764	0,00205	0,4228	0,00334	11,51584	0,0957	0,95059	2807	17	2273	15	2566	8	81%
67 5.s.	067	50645,00	5633,00	0,59	0,10836	0,00148	0,21618	0,00185	3,22833	0,03754	0,73594	1772	25	1262	10	1464	9	71%
00 5.S.	112	32032,84	5167,72	0,27	0,15907	0.00257	0,31552	0,00261	0,91/81	0,06474	0,88391	2446	19	1/68	13	2101	0 22	12%
70 5 e	109	43599.00	4666.00	0,55	0,11230	0,00357	0,10405	0.00204	2,00255	0.02685	0.64045	1697	30	784	10	1064	10	46%
71 5.s.	051	383435,37	78357,58	1,39	0,20171	0,00219	0,24594	0,0012	6,83699	0,06041	0,91576	2840	18	1418	10	2091	8	50%

**Tabela 8** - Dados isotópicos U-Pb nos zircões detríticos da amostra PT040. Razões U-Pb corrigidas por ²⁰⁴Pb. ²⁰⁶Pb* e ²⁰⁷Pb* é a contagem de cintilações por segundo (cps) corrigida pelo background.

							Razões F	Radiogê	nicas					Idad	es (M	la)		
Gi	rain Spot	²⁰⁶ Pb*	²⁰⁷ Pb*	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	r	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	Conc(%)
1	5.s.010	91252,57	16949,09	0,62	0,18237	0,00192	0,51044	0,00456	12,82996	0,11867	0,96584	2675	17	2659	19	2667	9	99%
2	5.s.011	44271,00	6016,00	0,38	0,13404	0,00202	0,39224	0,00408	7,2483	0,0997	0,75622	2152	26	2133	19	2143	12	99%
3	5.s.013	100793,94	13814,96	0,30	0,1343	0,00169	0,39336	0,00361	7,28482	0,08071	0,82834	2155	22	2138	17	2147	10	99%
4	5.s.015	138888,00	18589,00	0,28	0,1318	0,00144	0,38749	0,00339	7,04266	0,06688	0,92125	2122	19	2111	16	2117	8	99%
5	5.s.016	108992,00	15148,00	0,19	0,13569	0,00177	0,40002	0,00408	7,48075	0,09139	0,83488	2173	23	2169	19	2171	11	100%
6	5.s.018	126949,00	16806,00	0,17	0,12992	0,00157	0,38595	0,00345	6,9131	0,073	0,84652	2097	21	2104	16	2100	9	100%
7	5.s.028	147233,88	19210,33	0,23	0,12976	0,00163	0,38196	0,00351	6,83236	0,07613	0,82472	2095	22	2085	16	2090	10	100%
8	5.s.029	219291,00	29986,00	0,31	0,13319	0,00193	0,39313	0,00398	7,21199	0,09622	0,75882	2140	25	2137	18	2138	12	100%
9	5.s.030	240862,00	43760,00	1,26	0,17893	0,00194	0,50497	0,00434	12,45766	0,11549	0,92708	2643	18	2635	19	2640	9	100%
10	5.s.033	108977,00	14367,00	0,14	0,12933	0,00159	0,38083	0,00344	6,79102	0,07326	0,83733	2089	21	2080	16	2085	10	100%
11	5.s.034	154504,00	20608,00	0,18	0,13172	0,00164	0,38426	0,00344	6,97655	0,07602	0,82157	2121	22	2096	16	2108	10	99%
12	5.s.035	103615,00	14036,00	0,23	0,1335	0,00155	0,38848	0,00346	7,1509	0,07267	0,87642	2145	20	2116	16	2130	9	99%
13	5.s.036	47074,29	6057,23	0,33	0,13027	0,00156	0,36242	0,00332	6,50958	0,06926	0,86099	2102	21	1994	16	2047	9	95%
14	5.s.037	81644,54	10653,53	0,35	0,1293	0,00151	0,37887	0,0034	6,75548	0,06899	0,87874	2088	20	2071	16	2080	9	99%
15	5.s.038	118620,00	15862,00	0,23	0,13178	0,00141	0,38382	0,00343	6,97074	0,06599	0,94399	2122	19	2094	16	2108	8	99%
16	5.s.044	52552,00	6846,00	0,01	0,12787	0,00215	0,37297	0,00412	6,57429	0,10254	0,70824	2069	29	2043	19	2056	14	99%
17	5.s.045	50883.00	5464.00	0.67	0.10575	0.00184	0.30475	0.00323	4.44201	0.071	0.66310	1727	32	1715	16	1720	13	99%

						Razões F	Radiogê	nicas					ldad	es (N	la)		
Grain Spot	²⁰⁶ Pb*	²⁰⁷ Pb*	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	r	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	Conc(%)
18 5.s.047	159069,00	20669,00	0,35	0,12794	0,00137	0,38166	0,00334	6,73098	0,06262	0,94067	2070	19	2084	16	2077	8	101%
19 5.s.048	83474,79	10847,67	0,42	0,12709	0,00171	0,37281	0,00351	6,53137	0,07828	0,78555	2058	24	2043	16	2050	11	99%
20 5.s.049	63559,00	11312,00	1,00	0,17548	0,00206	0,49655	0,00456	12,0148	0,12424	0,88809	2611	19	2599	20	2606	10	100%
21 5.s.051	144109,00	19257,00	0,22	0,1319	0,00177	0,38791	0,00362	7,0498	0,08412	0,78209	2123	23	2113	17	2118	11	100%
22 5.s.052	91896,00	12130,00	0,52	0,13014	0,00141	0,35376	0,00316	6,34555	0,06081	0,93212	2100	19	1953	15	2025	8	93%
23 5.s.053	197956,00	27031,00	0,19	0,13321	0,00147	0,393	0,00366	7,21367	0,07272	0,92383	2141	19	2137	17	2138	9	100%
24 5.s.055	274317,20	36764,06	0,33	0,13063	0,00164	0,38418	0,00378	6,91386	0,08108	0,83900	2106	22	2096	18	2100	10	99%
25 5.s.057	81738,00	10840,00	0,25	0,13086	0,00159	0,38265	0,00345	6,90478	0,07356	0,84630	2110	21	2089	16	2099	9	99%
26 5.s.064	76992,34	10320,22	0,31	0,1332	0,00149	0,39114	0,00351	7,18224	0,071	0,90777	2141	19	2128	16	2134	9	99%
27 5.s.066	152/07,00	19537,00	0,32	0,12556	0,00155	0,36918	0,00328	6,39244	0,06924	0,82025	2037	22	2026	15	2031	10	99%
28 5.s.067	70933,59	9736,57	0,29	0,1357	0,00194	0,3973	0,00403	7,42941	0,0977	0,77134	21/3	25	2157	19	2165	12	99%
29 5.s.068	184453,05	24386,05	0,29	0,13144	0,001/1	0,38524	0,00354	6,98119	0,0807	0,79493	2117	23	2101	16	2109	10	99%
30 5.5.070	118393,00	12853,00	0,50	0,1071	0,00126	0,31246	0,00275	4,61423	0,04741	0,85658	1/51	21	1/53	14	1/52	9	100%
31 5.5.072	96668,25	12432,74	0,27	0,12824	0,00159	0,37566	0,0030	6,64298	0,07563	0,04124	2074	22	2057	1/	2065	10	99%
32 5.8.073	106509,00	14030,00	0,49	0,12971	0,00166	0,35609	0,00322	0,30051	0,0/1/4	0,00274	2094	10	1964	15	2020		94%
33 5.5.074	93955,00	12536,00	0,55	0,13147	0,00144	0,30490	0,00340	0,97603	0.07162	0,92001	2110	20	2099	10	2100	9	99%
34 5.5.000	194049.00	24647.00	0,24	0,13200	0,00154	0,30770	0,00342	7,05235	0,07103	0,07324	2133	20	2115	10	2123		0.0%
36 5 0.02	104340,00	24047,00	0,24	0,13105	0,00140	0,30007	0,00350	7,00740	0,00031	0,03273	2120	10	2105	10	2112	9	0.0%
37 5 0 0 0 0	97945-00	16116.00	0,23	0,13302	0,00140	0,5552	0,00352	12 62909	0,07105	0,91332	2143	10	2130	21	2143	10	00%
38 5 c 088	115310 38	1/1975 10	0,50	0,1007	0.00211	0,30740	0,00403	6 36249	0,15555	0,03112	2000	10	1040	15	2000		93%
30 5.5.000	12/010 00	26806.00	0,50	0,13002	0,00144	0,55275	0,00314	15 27817	0,00202	0,31300	2103	24	2824	25	2021	13	92%
40 5 s 090	132106.00	17780.00	0.18	0.13345	0,00230	0,34371	0,00353	7 1/891	0.07103	0,11455	2041	19	2024	16	2033	9	99%
40 5.3.050 41 5 c 093	180258.00	24439.00	0.26	0,13/36	0,00140	0,30004	0.00332	7,14031	0.0701	0,97130	2156	19	21//3	16	21/9	9	99%
42 5 s 094	32372.00	3347.00	0.36	0,10249	0.00138	0.29128	0.00273	4 11561	0.05042	0,32217	1670	25	1648	14	1657	10	99%
43 5 s 100	44961.00	4644.00	0.33	0 10238	0.00128	0 28997	0.00267	4 09237	0.04626	0.81457	1668	23	1640	13	1653	9	98%
44 5 s 101	88717.00	11976.00	0.20	0 13327	0.00176	0.38905	0.00356	7 14806	0.08361	0 78230	2141	23	2118	17	2130	10	99%
45 5.s.102	36797.00	6777.00	0.80	0.18213	0.00247	0.49723	0.00488	12,48619	0.15223	0.80499	2672	22	2602	21	2642	11	97%
46 5.s.103	162369.08	34774.35	0.19	0.21242	0.00237	0.57439	0.00507	16.82016	0.16416	0.90441	2924	18	2926	21	2925	9	100%
47 5 s 027	92959 00	12177 00	0.80	0 12845	0.00161	0.30189	0.00275	5 34666	0.05883	0 82788	2077	22	1701	14	1876	9	82%
48 5 s 091	199264 58	25907 16	0.78	0 12827	0.00157	0 29429	0.00258	5 20516	0.05573	0.81882	2074	21	1663	13	1854	9	80%
49 5.s.056	189553.37	36402.29	0.96	0,18938	0.00198	0.40291	0.00355	10.51754	0.09631	0.96220	2737	17	2182	16	2482	8	80%
50 5.s.050	97446.04	12690.96	0.80	0.128	0.00145	0.26124	0.00231	4,61081	0.0456	0.89410	2071	20	1496	12	1751	8	72%
51 5.s.065	219036,72	28590,45	0,69	0,1285	0,0015	0,25939	0,00246	4,59326	0,0497	0,87649	2078	20	1487	13	1748	9	72%
52 5.s.025	183003,62	32255,23	0,69	0,17337	0,00183	0,34682	0,00302	8,29077	0,07528	0,95900	2590	17	1919	14	2263	8	74%
53 5.s.092	225028,86	28263,10	1,56	0,12465	0,00134	0,22613	0,002	3,88548	0,0369	0,93130	2024	19	1314	11	1611	8	65%
54 5.s.017	105258,40	22129,52	0,56	0,20639	0,00215	0,36529	0,00324	10,3908	0,09479	0,97229	2877	17	2007	15	2470	8	70%
55 5.s.058	448457,26	82583,18	0,83	0,18179	0,0019	0,32839	0,00283	8,23017	0,07421	0,95575	2669	17	1831	14	2257	8	69%
56 5.s.084	249854,41	31262,16	0,46	0,12408	0,00132	0,21673	0,00192	3,70708	0,03473	0,94560	2016	19	1265	10	1573	7	63%
57 5.s.087	120286,00	14948,00	1,30	0,12194	0,00138	0,20466	0,00189	3,43957	0,03539	0,89754	1985	20	1200	10	1514	8	60%
58 5.s.054	321681,00	54483,00	1,34	0,16701	0,00175	0,28583	0,00247	6,5807	0,05951	0,95559	2528	17	1621	12	2057	8	64%
59 5.s.009	40827,00	7103,00	0,91	0,17056	0,00194	0,28503	0,00261	6,70051	0,06728	0,91195	2563	19	1617	13	2073	9	63%
60 5.s.031	151536,00	26260,00	0,64	0,17064	0,00195	0,28093	0,00246	6,60992	0,06478	0,89350	2564	19	1596	12	2061	9	62%
61 5.s.024	94836,00	11760,00	1,04	0,12197	0,00136	0,19074	0,00168	3,20787	0,03117	0,90646	1985	20	1125	9	1459	8	57%
62 5.s.071	131292,00	15640,00	0,96	0,11771	0,0013	0,17195	0,00151	2,79002	0,02685	0,91251	1922	20	1023	8	1353	7	53%
63 5.s.081	187848,00	22623,00	1,35	0,11808	0,00135	0,16537	0,00154	2,69117	0,02822	0,88807	1927	20	987	9	1326	8	51%

**Tabela 9 -** Dados isotópicos U-Pb nos zircões detríticos da amostra PT047. Razões U-Pb corrigidas por ²⁰⁴Pb. ²⁰⁶Pb* e ²⁰⁷Pb* é a contagem de cintilações por segundo (cps) corrigida pelo background.

							Razões F	Radiogê	nicas					Idad	es (M	a)		
Gr	ain Spot	²⁰⁶ Pb*	²⁰⁷ Pb*	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	r	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	Conc(%)
1	5.s.005	267010,00	29621,00	0,22	0,11104	0,00118	0,14697	0,00129	2,2493	0,02101	0,93969	1817	19	884	7	1197	7	49%
2	5.s.007	209809,75	15492,99	0,94	0,07479	0,00082	0,05481	0,00048	0,56499	0,00545	0,90787	1063	22	344	3	455	4	32%
3	5.s.008	267246,91	25813,14	0,96	0,09729	0,00111	0,07808	0,00072	1,04697	0,01089	0,88654	1573	21	485	4	727	5	31%
4	5.s.009	218010,00	19512,00	1,20	0,08879	0,00176	0,03727	0,00042	0,45459	0,00849	0,60340	1400	38	236	3	381	6	17%
5	5.s.010	354142,46	28417,91	0,10	0,08119	0,00087	0,09339	0,00081	1,04498	0,00977	0,92768	1226	21	576	5	726	5	47%
6	5.s.011	283900,35	25868,35	0,18	0,09283	0,00099	0,07777	0,00068	0,99502	0,00933	0,93250	1484	20	483	4	701	5	33%
7	5.s.012	279388,45	22434,34	0,46	0,08244	0,00089	0,08007	0,0007	0,90978	0,00859	0,92592	1256	21	497	4	657	5	40%
8	5.s.013	339247,98	29638,92	0,32	0,08779	0,00094	0,09375	0,00082	1,13427	0,01062	0,93419	1378	20	578	5	770	5	42%
9	5.s.014	343746,24	23221,87	0,09	0,06848	0,00075	0,08115	0,0007	0,76579	0,00724	0,91239	883	22	503	4	577	4	57%
10	5.s.015	230526,21	17385,42	0,29	0,07895	0,00086	0,06905	0,00061	0,75134	0,00722	0,91932	1171	21	430	4	569	4	37%
11	5.s.016	270969,91	21448,87	1,55	0,08379	0,00096	0,07964	0,0007	0,91984	0,00921	0,87785	1288	22	494	4	662	5	38%
12	5.s.017	250290,80	23124,44	0,17	0,09219	0,001	0,08732	0,00076	1,10954	0,01053	0,91710	1471	21	540	5	758	5	37%
13	5.s.018	97214,59	5188,86	0,02	0,05527	0,00069	0,09787	0,00086	0,74547	0,00841	0,77890	423	28	602	5	566	5	142%
14	5.s.020	201198,87	15228,00	0,88	0,07643	0,00084	0,06407	0,00056	0,67485	0,00656	0,89916	1106	22	400	3	524	4	36%
15	5.s.021	181044,32	12868,99	0,65	0,07418	0,00082	0,0516	0,00045	0,52751	0,00515	0,89328	1046	22	324	3	430	3	31%
16	5.s.022	190648,13	16836,32	0,21	0,09164	0,00102	0,05901	0,00052	0,74532	0,00733	0,89602	1460	21	370	3	566	4	25%
17	5.s.023	223909,84	17321,34	0,35	0,07802	0,00086	0,07157	0,00063	0,76952	0,00745	0,90923	1147	22	446	4	580	4	39%
18	5.s.024	91650,00	7998,00	2,73	0,08809	0,00103	0,04193	0,00037	0,50901	0,00525	0,85555	1384	22	265	2	418	4	19%
19	5.s.025	198243,91	14674,18	0,18	0,07653	0,00085	0,06065	0,00053	0,63968	0,00626	0,89296	1109	22	380	3	502	4	34%
20	5.s.026	257945,39	18159,46	0,23	0,07166	0,00079	0,0782	0,00068	0,77224	0,00752	0,89297	976	22	485	4	581	4	50%
21	5.s.027	437349,00	45431,00	0,15	0,10501	0,00114	0,15448	0,00135	2,23551	0,02121	0,92108	1714	20	926	8	1192	7	54%
22	5.s.028	246802,10	19842,39	0,04	0,08182	0,00091	0,05818	0,00051	0,65603	0,00638	0,90136	1241	22	365	3	512	4	29%
23	5.s.029	365533,61	24144,41	0,49	0,06706	0,00074	0,08459	0,00074	0,78173	0,00756	0,90458	840	23	524	4	587	4	62%
24	5.s.030	372841,88	29513,87	0,10	0,08177	0,0009	0,10025	0,00087	1,12961	0,01087	0,90185	1240	21	616	5	768	5	50%
25	5.s.031	315999,09	20938,55	0,69	0,06754	0,00075	0,07256	0,00063	0,67538	0,00658	0,89118	854	23	452	4	524	4	53%
26	5.s.032	283272,75	21328,80	0,06	0,07709	0,00086	0,05413	0,00047	0,575	0,00562	0,88836	1124	22	340	3	461	4	30%
27	5.s.035	297000,57	23625,77	0,78	0,08256	0,00093	0,0706	0,00062	0,80317	0,00804	0,87728	1259	22	440	4	599	5	35%
28	5.s.036	165172,00	12356,00	1,44	0,07577	0,00092	0,04305	0,00037	0,44949	0,00475	0,81331	1089	24	272	2	377	3	25%
29	5.s.037	430187,57	45617,36	0,07	0,10912	0,00123	0,17243	0,00152	2,59276	0,02592	0,88178	1785	20	1026	8	1299	7	57%
30	5.s.038	553704,50	39103,25	0,07	0,07352	0,00084	0,08366	0,00075	0,84762	0,00869	0,87443	1028	23	518	4	623	5	50%

Continua...

							Razões F	Radiogê	nicas					Idad	es (M	a)		
Gra	ain Spot	²⁰⁶ Pb*	²⁰⁷ Pb*	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	r	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	Conc(%)
31	5.s.039	477500,98	30699,51	0,49	0,06625	0,00076	0,10206	0,0009	0,93176	0,00944	0,87040	814	24	627	5	669	5	77%
32	5.s.040	342618,94	40741,26	0,14	0,12414	0,00138	0,14553	0,00127	2,48966	0,02436	0,89190	2017	20	876	7	1269	7	43%
33	5.s.041	431337,00	38333,00	0,09	0,0904	0,00102	0,10254	0,00089	1,27727	0,0126	0,87985	1434	21	629	5	836	6	44%
34	5.s.042	371094,00	44137,00	1,98	0,07269	0,00237	0,07035	0,00109	0,70327	0,0223	0,48863	1005	65	438	7	541	13	44%
35	5.s.044	219551,00	15238,00	58,31	0,07219	0,00141	0,07343	0,00074	0,72983	0,01335	0,55093	991	39	457	4	557	8	46%
36	5.s.045	475000,72	34004,45	0,39	0,07339	0,00083	0,0851	0,00074	0,86062	0,00857	0,87324	1025	23	527	4	631	5	51%
37	5.s.046	333888,00	26147,00	0,32	0,08035	0,00106	0,03912	0,00037	0,43317	0,00525	0,78037	1206	26	247	2	365	4	21%
38	5.s.048	93254,00	5747,00	0,02	0,06293	0,0008	0,09829	0,00087	0,85232	0,00969	0,77855	706	27	604	5	626	5	86%
39	5.s.049	352656,38	31262,74	0,08	0,09254	0,00121	0,04965	0,00046	0,63291	0,00758	0,77359	1478	25	312	3	498	5	21%
40	5.s.050	274992,40	25342,34	0,09	0,09646	0,00114	0,11925	0,00106	1,58495	0,01673	0,84211	1557	22	726	6	964	7	47%
41	5.s.051	168263,93	13245,77	0,94	0,08289	0,00099	0,05298	0,00047	0,60516	0,00638	0,84146	1267	23	333	3	481	4	26%
42	5.s.052	371659,47	29523,62	0,18	0,08362	0,00097	0,08065	0,00071	0,92922	0,00949	0,86200	1284	22	500	4	667	5	39%
43	5.s.053	264909,88	31039,62	0,20	0,12326	0,00147	0,14624	0,00131	2,48386	0,02656	0,83773	2004	21	880	7	1267	8	44%
44	5.s.054	316898,90	27890,47	0,03	0,09226	0,00108	0,09608	0,00084	1,22135	0,01257	0,84948	1473	22	591	5	810	6	40%
45	5.s.055	309467,24	22164,11	0,39	0,07537	0,00089	0,08177	0,00072	0,84918	0,00883	0,84679	1078	23	507	4	624	5	47%
46	5.s.056	270370,00	33934,00	0,47	0,12941	0,00177	0,29255	0,00279	5,21653	0,0661	0,75263	2090	24	1654	14	1855	11	79%
47	5.s.057	308531,25	24448,11	0,13	0,08387	0,00099	0,07025	0,00062	0,81172	0,00847	0,84580	1290	23	438	4	603	5	34%
48	5.s.058	373080,40	28810,79	0,18	0,07982	0,00094	0,09751	0,00085	1,07236	0,01119	0,83537	1193	23	600	5	740	5	50%
49	5.s.059	305837,76	24455,97	0,13	0,08261	0,001	0,07593	0,00066	0,86424	0,00924	0,81300	1260	23	472	4	632	5	37%
50	5.s.060	284980,42	22263,87	0,31	0,08154	0,00099	0,06623	0,00059	0,74408	0,00806	0,82240	1234	24	413	4	565	5	33%
51	5.s.061	104059,00	5662,00	0,02	0,05597	0,00075	0,09742	0,00087	0,7513	0,00907	0,73974	451	29	599	5	569	5	133%
52	5.s.062	104185,00	6307,00	0,02	0,06217	0,00081	0,09784	0,00087	0,83797	0,00982	0,75879	680	28	602	5	618	5	88%

Tabela 10 - Dados isotópicos U-Pb nos zircões detríticos da amostra PT049. Razões U-Pb corrigidas por 204	Pb.
206Pb* e 207Pb* é a contagem de cintilações por segundo (cps) corrigida pelo background.	

						Razões	Radiog	ênicas					Idad	es (M	la)		
Spot	²⁰⁶ Pb*	²⁰⁷ Pb*	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	r	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	Conc(%)
1 5.s011	51259,45	6896,07	0,25	0,13369	0,00151	0,38772	0,00345	7,14405	0,07045	0,90233	2147	20	2112	16	2130	9	98%
2 5.s013	159197,00	22017,00	0,57	0,14027	0,00209	0,40949	0,00388	7,92621	0,10495	0,71560	2231	26	2213	18	2223	12	99%
3 5.s014	141422,00	19407,00	0,37	0,13659	0,00177	0,40149	0,00393	7,55602	0,08964	0,82510	2184	22	2176	18	2180	11	100%
4 5.s015	42766,00	5613,00	0,72	0,13085	0,00152	0,38383	0,00344	6,92205	0,07053	0,87959	2109	20	2094	16	2102	9	99%
5 5.s016	49585,00	6622,00	0,22	0,13286	0,00157	0,38975	0,00359	7,13662	0,07494	0,87718	2136	21	2122	17	2129	9	99%
6 5.s017	46582,00	6069,00	0,37	0,13126	0,00212	0,38098	0,00394	6,89233	0,10067	0,70804	2115	28	2081	18	2098	13	98%
7 5.s018	186832,82	36245,17	0,40	0,19507	0,00231	0,53905	0,00471	14,49217	0,14649	0,86441	2785	19	2780	20	2783	10	100%
8 5.s019	101988,29	12274,34	0,30	0,12251	0,00148	0,35854	0,00327	6,05417	0,06467	0,85381	1993	21	1975	15	1984	9	99%
9 5.s026	186920,05	25475,36	0,23	0,13591	0,00143	0,39343	0,00338	7,36992	0,06651	0,95197	2176	18	2139	16	2157	8	98%
10 5.s027	119272,00	15644,00	0,31	0,13062	0,00144	0,35671	0,00311	6,42166	0,06121	0,91468	2106	19	1967	15	2035	8	93%
11 5.s028	52631,00	6961,00	0,21	0,13181	0,00151	0,38169	0,00342	6,93419	0,06946	0,89449	2122	20	2084	16	2103	9	98%
12 5.s029	114438,37	15316,23	0,30	0,13344	0,00146	0,38799	0,00343	7,13562	0,06828	0,92387	2144	19	2114	16	2129	9	99%
13 5.s030	213829,08	35739,64	0,48	0,16692	0,00206	0,475	0,00458	10,92478	0,12371	0,85149	2527	21	2506	20	2517	11	99%
14 5.s032	153178,84	20184,60	0,47	0,13128	0,00161	0,38178	0,00345	6,90705	0,07479	0,83456	2115	21	2085	16	2100	10	99%
15 5.s033	355450,00	64629,00	0,43	0,1813	0,00192	0,5076	0,00428	12,68377	0,1133	0,94393	2665	17	2646	18	2657	8	99%
16 5.s034	147092,99	19512,74	0,30	0,12962	0,0016	0,3755	0,00365	6,70594	0,0764	0,85320	2093	22	2055	17	2073	10	98%
17 5.s040	129584,00	17273,00	0,23	0,13285	0,00143	0,38662	0,00336	7,07935	0,06597	0,93261	2136	19	2107	16	2122	8	99%
18 5.s041	108866,00	14634,00	0,25	0,13388	0,00147	0,38847	0,00343	7,16795	0,06893	0,91817	2149	19	2116	16	2133	9	98%
19 5.s042	119780,87	15861,79	0,21	0,13468	0,00169	0,3928	0,00363	7,29192	0,0815	0,82684	2160	22	2136	17	2148	10	99%
20 5.s043	165450,36	26761,88	0,54	0,16097	0,0018	0,46525	0,00399	10,32244	0,09855	0,89828	2466	19	2463	18	2464	9	100%
21 5.s045	86761,00	18586,00	0,40	0,21449	0,00268	0,57628	0,00558	17,0361	0,19278	0,85568	2940	20	2934	23	2937	11	100%
22 5.s046	140244,00	18957,00	0,24	0,13303	0,0016	0,38657	0,00369	7,08749	0,07857	0,86106	2138	21	2107	17	2123	10	99%
23 5.s047	58815,00	7755,00	0,15	0,13082	0,00192	0,38347	0,00399	6,9128	0,09428	0,76291	2109	26	2093	19	2100	12	99%
24 5.s048	117444,54	15751,87	0,23	0,13645	0,00159	0,39799	0,00357	7,48434	0,07698	0,87211	2183	20	2160	16	2171	9	99%
25 5.s049	32801,00	4211,00	0,26	0,12913	0,00221	0,37666	0,00415	6,7017	0,10628	0,69476	2086	30	2061	19	2073	14	99%
26 5.s055	44551,00	5905,00	0,17	0,13282	0,00224	0,38857	0,00433	7,11202	0,11204	0,70736	2136	29	2116	20	2126	14	99%
27 5.s056	89516,17	11777,72	0,34	0,13125	0,00145	0,3814	0,00336	6,89973	0,06665	0,91199	2115	19	2083	16	2099	9	98%
28 5.s057	174780,00	23030,00	0,21	0,13238	0,00161	0,38334	0,00347	6,99476	0,07566	0,83686	2130	21	2092	16	2111	10	98%
29 5.s058	109215,00	14725,00	0,23	0,13463	0,00155	0,3882	0,00339	7,20339	0,07172	0,87708	2159	20	2115	16	2137	9	98%
30 5.s059	128020,40	16760,05	0,30	0,13207	0,00153	0,38219	0,00349	6,95735	0,07248	0,87654	2126	20	2087	16	2106	9	98%
31 5.s060	111849,00	15180,00	0,60	0,13449	0,00158	0,39076	0,00341	7,24359	0,07389	0,85549	2157	20	2126	16	2142	9	99%
32 5.s061	93056,96	17220,65	0,81	0,18435	0,00201	0,51299	0,00455	13,03472	0,12451	0,92854	2692	18	2669	19	2682	9	99%
33 5.s062	121809.83	16217.66	0.47	0.13109	0.00168	0.36474	0.0036	6.58843	0.07901	0.82304	2113	22	2005	17	2058	11	95%
34 5.s063	265115.84	48721.18	0.34	0,1831	0.00203	0.51374	0.00439	12,96501	0.12295	0.90108	2681	18	2673	19	2677	9	100%
35 5.s065	101198.85	13569.59	0.37	0.13387	0.00195	0.38954	0.00393	7,18706	0.09705	0.74713	2149	25	2121	18	2135	12	99%
36 5.s071	130695.07	17522.32	0.33	0.13618	0.00166	0.39335	0.00366	7.38361	0.0816	0.84194	2179	21	2138	17	2159	10	98%
37 5.s072	246329.00	46001.00	0.37	0.18577	0.002	0.5189	0.00454	13,28656	0.12504	0.92968	2705	18	2695	19	2700	9	100%
38 5.s073	79812.00	10996.00	0.17	0.13549	0.00174	0.39637	0.00359	7,40223	0.08398	0.79833	2170	22	2152	17	2161	10	99%
39 5.s075	91139.00	12043.00	0.26	0.13208	0.00175	0.38651	0.00377	7.03682	0.08596	0.79847	2126	23	2107	18	2116	11	99%
40 5 s076	206808.00	27395.00	0.39	0 13178	0 00144	0.38334	0 00337	6 96288	0 06668	0 91799	2122	19	2092	16	2107	9	99%
41 5 s077	195754 00	25458 00	0.28	0 13122	0 00158	0.38256	0.00343	6 91904	0 07411	0 83707	2114	21	2088	16	2101	10	99%
42 5 s078	65234 51	8807.03	0.23	0 13513	0.00162	0.39468	0.00352	7 3511	0.07735	0.84760	2166	21	2145	16	2155	9	99%
43 5 \$079	87869.00	11668.00	0.17	0 13287	0.00177	0 38584	0.00358	7 06407	0.0842	0 77843	2136	23	2104	17	2120	11	98%
44 5 \$080	136789.00	18194.00	0.45	0 13161	0.00145	0 38305	0.00339	6 94855	0.06743	0 91198	2120	19	2091	16	2105	9	99%
45 5 s081	124255.01	16596.05	0.18	0 13353	0.00152	0 38979	0.00348	7 17399	0 07236	0 88514	2145	20	2122	16	2133	9	99%
46 5 \$089	53431.08	6833.68	0.36	0 13214	0.00516	0 35511	0.00686	6 48789	0 24434	0.51294	2127	67	1959	33	2044	33	92%
47 5 \$090	40992.00	5739.00	0.29	0 13653	0.00201	0.39613	0.00387	7 45339	0.09921	0 73396	2184	25	2151	18	2167	12	99%
48 5 \$091	78209.52	10618 81	0.23	0 13638	0.00158	0 39845	0.00357	7 48961	0.07696	0.87194	2182	20	2162	16	2172	9	99%
49 5 5094	161685 19	32855.90	0.41	0 20232	0.00227	0.55218	0.00489	15 39824	0 15244	0.89454	2845	18	2834	20	2840	9	100%
50 5 s095	208502.00	28742.00	0.1/	0.13796	0.00198	0,00210	0.00405	7 77235	0 10/33	0 72930	2202	25	2209	18	2205	12	100%
00 0.0000	200302,00	20142,00	v, 14	0,10100	0,00100	0,4000	0,004	1,11200	0,10433	0,12000	LLVL	20	2203	10	LLVJ	14	10070

							Razões	Radiog	ênicas					Idade	es (M	a)		
Γ	Spot	²⁰⁶ Pb*	²⁰⁷ Pb*	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	r	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	Conc(%)
51	5.s096	171982,29	21901,15	1,03	0,1265	0,00203	0,37239	0,00384	6,49502	0,09871	0,67850	2050	28	2041	18	2045	13	100%
52	5.s097	48332,00	6714,00	0,15	0,13706	0,00292	0,39925	0,00478	7,53645	0,15085	0,59814	2190	37	2166	22	2177	18	99%
53	5.s098	128689,00	23396,00	0,34	0,18119	0,00206	0,50307	0,00447	12,5636	0,12659	0,88185	2664	19	2627	19	2648	9	99%
54	5.s099	353273,59	73023,25	0,44	0,20623	0,0024	0,52083	0,00478	14,80923	0,15753	0,86278	2876	19	2703	20	2803	10	94%
55	5.s.093	72400,10	9558,65	0,28	0,13471	0,00179	0,34552	0,00333	6,41701	0,07841	0,78874	2160	23	1913	16	2035	11	89%
56	5.s.031	136397,00	20230,00	0,46	0,14701	0,00157	0,34085	0,00301	6,90643	0,06445	0,94631	2311	18	1891	14	2100	8	82%
57	5.s.066	299402,05	56470,64	0,50	0,19053	0,00224	0,42161	0,00376	11,07315	0,11524	0,85693	2747	19	2268	17	2529	10	83%
58	5.s.044	111267,00	15919,00	0,82	0,14229	0,00178	0,30831	0,00295	6,04611	0,06905	0,83781	2255	21	1732	15	1983	10	77%
59	5.s.083	149409,88	21685,31	0,38	0,14281	0,00173	0,30662	0,00268	6,03524	0,06386	0,82604	2262	21	1724	13	1981	9	76%
60	5.s.082	91021,97	13061,59	0,38	0,14369	0,00163	0,2989	0,00265	5,91973	0,05909	0,88819	2272	19	1686	13	1964	9	74%
61	5.s.010	244440,21	59187,33	0,44	0,23748	0,00251	0,43394	0,00392	14,20121	0,13333	0,96217	3103	17	2323	18	2763	9	75%
62	5.s.092	64188,00	8319,00	0,24	0,12923	0,00156	0,24815	0,00225	4,42005	0,04765	0,84107	2088	21	1429	12	1716	9	68%
63	5.s.100	304342,00	58459,00	0,57	0,19058	0,00257	0,34087	0,00335	8,95675	0,11454	0,76851	2747	22	1891	16	2334	12	69%
64	5.s.074	276128,72	42115,77	0,10	0,15417	0,00174	0,25449	0,00227	5,40825	0,05434	0,88775	2393	19	1462	12	1886	9	61%
65	5.s.064	111238.00	17919.00	1.06	0.16206	0.00275	0.23322	0.00242	5.20708	0.08049	0.67128	2477	28	1351	13	1854	13	55%

**Tabela 11 -** Dados isotópicos U-Pb nos zircões detríticos da amostra PT053. Razões U-Pb corrigidas por ²⁰⁴Pb. ²⁰⁶Pb* e ²⁰⁷Pb* é a contagem de cintilações por segundo (cps) corrigida pelo background.

					Razões Radiogênicas							Idades (Ma)						
Spot		²⁰⁶ Pb*	²⁰⁷ Pb*	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	r	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	Conc(%)
1	5.s012	205647,00	68890,00	0,61	0,32651	0,00425	0,75857	0,00777	34,08192	0,40667	0,858435	3601	20	3639	28	3612	12	101%
2	5.s010	111626,43	19538,43	0,23	0,17398	0,0024	0,48629	0,00495	11,6461	0,14641	0,809692	2596	23	2555	21	2576	12	98%
3	5.s024	109060,00	15320,00	0,26	0,13727	0,00252	0,39407	0,00459	7,43304	0,12659	0,683922	2193	32	2142	21	2165	15	98%
4	5.s025	95700,00	21867,00	0,11	0,21455	0,00244	0,56736	0,00548	16,80383	0,17332	0,936443	2940	18	2897	23	2924	10	99%
5	5.s029	133321,00	17788,00	0,20	0,13103	0,00137	0,38025	0,00331	6,86565	0,06246	0,956838	2112	18	2078	15	2094	8	98%
6	5.s031	236133,30	32289,45	0,26	0,13338	0,00155	0,38622	0,00361	7,1006	0,07485	0,886698	2143	20	2105	17	2124	9	98%
7	5.s032	135326,00	15765,70	0,44	0,09792	0,00157	0,27724	0,00293	3,77632	0,05616	0,710646	1585	30	1577	15	1588	12	100%
8	5.s046	413900,00	59347,00	0,24	0,14087	0,0017	0,4053	0,00372	7,86366	0,08526	0,846537	2238	21	2193	17	2216	10	98%
9	5.s048	218411,37	31487,49	0,30	0,14174	0,00199	0,407	0,00381	7,95168	0,10004	0,744073	2249	24	2201	17	2226	11	98%
10	5.s051	238001,00	42261,00	0,28	0,17488	0,00192	0,49057	0,00446	11,82236	0,11613	0,925537	2605	18	2573	19	2590	9	99%
11	5.s053	208263,00	29269,00	0,28	0,13299	0,00167	0,38667	0,00372	7,10351	0,08211	0,832299	2138	22	2107	17	2125	10	99%
12	5.s057	230210,57	31085,79	0,32	0,13588	0,00228	0,39106	0,00397	7,31839	0,11313	0,656727	2175	29	2128	18	2151	14	98%
13	5.s061	164853,00	24127,00	0,36	0,1435	0,00263	0,40975	0,0045	8,09812	0,13758	0,646431	2270	31	2214	21	2242	15	98%
14	5.s062	51277,00	6296,00	0,25	0,11781	0,00263	0,3404	0,00418	5,52498	0,11534	0,588217	1923	39	1889	20	1905	18	98%
15	5.s064	108448,00	15382,00	0,20	0,1381	0,00166	0,40189	0,0038	7,65294	0,08366	0,864942	2204	21	2178	17	2191	10	99%
16	5.s071	248572,33	34113,15	0,24	0,13401	0,00142	0,38543	0,00337	7,11901	0,0659	0,944536	2151	18	2102	16	2126	8	98%
17	5.s077	135727,33	20072,30	0,17	0,14317	0,00233	0,41164	0,00412	8,12472	0,1219	0,66709	2266	28	2222	19	2245	14	98%
18	5.s081	153959,00	29388,00	0,28	0,1901	0,00265	0,52143	0,00522	13,65919	0,17622	0,775969	2743	23	2705	22	2726	12	99%
19	5.s082	142605,28	19306,66	1,16	0,12809	0,00182	0,37259	0,00376	6,6034	0,0878	0,758979	2072	25	2042	18	2060	12	99%
20	5.s083	404627,67	53808,06	33,00	0,12607	0,0018	0,36437	0,00335	6,32844	0,08177	0,711549	2044	25	2003	16	2022	11	98%
21	5.s084	200856,00	28059,00	0,26	0,13621	0,0017	0,39291	0,00366	7,37491	0,08365	0,821256	2180	22	2136	17	2158	10	98%
22	5.s085	64902,47	9595,41	0,20	0,14511	0,00336	0,41956	0,00571	8,39032	0,18607	0,613683	2289	39	2259	26	2274	20	99%
23	5.s087	59483,81	9436,98	0,25	0,15735	0,00205	0,44566	0,00416	9,66348	0,11262	0,800954	2427	22	2376	19	2403	11	98%
24	5.s089	263688,85	61929,27	0,26	0,22213	0,00479	0,58405	0,00644	17,90908	0,35842	0,550956	2996	34	2965	26	2985	19	99%
25	5.s090	154345,58	20438,60	0,28	0,1293	0,00167	0,37488	0,00351	6,67996	0,07825	0,79929	2088	22	2052	16	2070	10	98%
26	5.s097	63213,16	8693,78	0,19	0,13576	0,00162	0,38882	0,00358	7,27525	0,07816	0,857034	2174	21	2117	17	2146	10	97%
27	5.s101	198878,65	27560,34	0,51	0,13325	0,00178	0,3849	0,00351	7,06953	0,0849	0,75935	2141	23	2099	16	2120	11	98%
28	5.s.014	199248,15	40108,34	0,16	0,19954	0,00231	0,45315	0,00398	12,45413	0,12358	0,885128	2822	19	2409	18	2639	9	85%
29	5.s.066	330883,00	47187,00	0,18	0,14017	0,00151	0,31081	0,00272	6,00402	0,05675	0,92587	2229	19	1745	13	1976	8	78%
30	5.s.086	219466,92	40113,98	0,57	0,18027	0,0023	0,38712	0,00366	9,61586	0,1123	0,80955	2655	21	2110	17	2399	11	79%
31	5.s.047	276481,00	46700,00	0,31	0,1656	0,00175	0,34654	0,00309	7,90887	0,07401	0,95286	2514	18	1918	15	2221	8	76%
32	5.s.052	57854,00	10385,00	0,83	0,17934	0,00274	0,33648	0,00362	8,30987	0,11634	0,768448	2647	25	1870	17	2265	13	71%
33	5.s.098	14859,45	2797,63	3,93	0,18868	0,00278	0,31431	0,00336	8,17683	0,11071	0,789549	2731	24	1762	17	2251	12	65%
34	5.s.045	226672,00	64919,00	0,37	0,2813	0,00304	0,40409	0,00368	15,66695	0,1512	0,943631	3370	17	2188	17	2857	9	65%
35	5.s.078	167072,78	26194,05	0,57	0,154	0,00164	0,24313	0,00214	5,1609	0,04831	0,940294	2391	18	1403	11	1846	8	59%
36	5.s.027	129811,54	20787,08	0,96	0,1589	0,00184	0,24273	0,00213	5,31449	0,05305	0,879088	2444	20	1401	11	1871	9	57%
37	5.s.049	399548,20	202775,34	0,08	0,43909	0,00447	0,44716	0,00387	27,05868	0,2384	0,98231	4049	15	2383	17	3386	9	59%
38	5.s.072	624982,25	102230,61	0,20	0,16347	0,00183	0,1981	0,0018	4,46404	0,04525	0,896391	2492	19	1165	10	1724	8	47%
39	5.s.013	355940,86	239216,70	0,12	0,54142	0,00561	0,45702	0,00385	34,09697	0,29682	0,967717	4358	15	2426	17	3613	9	56%
40	5 s 102	177436 78	35765 74	0.30	0 19605	0.0022	0 23145	0 00204	6 25439	0.06188	0 890856	2794	18	1342	11	2012	9	48%