

UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOLOGIA

DISSERTAÇÃO DE MESTRADO

REGISTROS DE EVENTOS TAFROGÊNICOS INTERCALADOS TECTONICAMENTE NO COMPLEXO POCRANE, SE MINAS GERAIS

AUTOR: Tobias Maia Rabelo Fonte Boa

ORIENTAÇÃO: Tiago Amâncio Novo

№ 175

BELO HORIZONTE DATA (01/08/2017)

REGISTROS DE EVENTOS TAFROGÊNICOS INTERCALADOS TECTONICAMENTE NO COMPLEXO POCRANE, SE MINAS GERAIS

Dissertação apresentada ao programa de Pós-graduação em Geologia do Instituto de Geociências da Universidade Federal de Minas Gerais como requisito para obtenção do título de mestre em Geologia

Área de Concentração: Geologia Regional Orientador: Prof. Tiago Amâncio Novo

Belo Horizonte Instituto de Geociências da UFMG Agosto de 2017

F682r 2017	Fonte-Boa, Tobias Maia Rabelo. Registros de eventos tafrogênicos intercalados tectonicamente no Complexo Pocrane, SE Minas Gerais [manuscrito] / Tobias Maia Rabelo Fonte Boa. – 2017. 95 f., enc. (principalmente color.)
	Orientador: Tiago Amâncio Novo. Dissertação (mestrado) – Universidade Federal de Minas Gerais, Instituto de Geociências, 2017. Área de concentração: Geologia Regional. Bibliografia: f. 55-62. Inclui anexos.
	 Rochas – Minas Gerais – Teses. 2. Tempo geológico – Teses. 3. Geologia estratigráfica – Teses. I. Novo, Tiago Amâncio. II. Universidade Federal de Minas Gerais. Instituto de Geociências. III. Título.
	CDU: 552(815.1)

PROGRAMA DE PÓS-GRADUAÇÃO EM GEOLOGIA

FOLHA DE APROVAÇÃO

REGISTROS DE EVENTOS TAFROGÊNICOS INTERCALADOS TECTONICAMENTE NO COMPLEXO POCRANE, SE MINAS GERAIS

TOBIAS MAIA RABELO FONTE BOA

Dissertação submetida à Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação em GEOLOGIA, como requisito para obtenção do grau de Mestre em GEOLOGIA, área de concentração GEOLOGIA REGIONAL.

Aprovada em 25 de maio de 2017, pela banca constituída pelos membros:

Prof(a). Tiago Amancio Novo - Orientador UFMG Prof(a). Maximiliano de Souza Martins UFOP rof(a). Lydia Maria Lobato UFMG

Prof(a). Fabricio de Andrade Caxito UFMG

Belo Horizonte, 25 de maio de 2017.

Às minhas avós, Ceci e Maria.

Agradecimentos

Aos meus pais, Aurélia e Edimilson (Priu), pelo apoio e confiança.

À minha maninha do coração, Clara, que mesmo distante é o meu espelho.

Ao Professor Tiago Novo, orientador deste trabalho, pela confiança, apoio e pelas inúmeras oportunidades oferecidas durante a realização deste trabalho.

Aos colegas do IGC, principalmente aos eternos colegas de graduação (galera de 2010) e da salinha da pós-graduação: Carolina, Christopher, Fernando, Lorena, Marcelo, Paula, Rafael e Sofia.

Aos professores Gláucia Queiroga e Antônio Carlos Pedrosa Soares pelo apoio geológico.

Ao pessoal do Titanic por tornar este momento final mais leve e agradável.

Aos companheiros de campo: Duda, Sofia, Petrus, Guilherme e Carolina Bueno e Paulo Zaeyen.

À CODEMIG e Laboratório de Inclusões Fluidas e Metalogênese do CDTN/CNEN pelo empréstimo dos aparelhos de geofísica.

À Eliane Voll e Adalene Moreira Silva pelas discussões geofísicas.

Ao Marco Antônio Couto e CPRM pelo apoio com no processamento dos dados geofísicos.

À PETROBRAS pela concessão da bolsa.

Ao Centro de Pesquisa Professor Manoel Teixeira da Costa - CPMTC - IGC - UGMG, pela infraestrutura cedida.

Autor desconhecido

RESUMO

No domínio interno do Orógeno Araçuaí ocorrem rochas de natureza variada que foram fortemente retrabalhadas durante o ciclo orogênico brasiliano. Nas proximidades dos municípios de Durandé e Pocrane, localizadas no extremo leste do estado de Minas Gerias, ocorrem rochas metamáficas, metassedimentares e metaultramáficas tectonicamente intercaladas nas rochas ortognaissicas do Complexo Pocrane. Os dados geocronológicos e litoquímicos de duas lentes anfibolíticas indicam dois eventos magmáticos maficos distintos. Um caliminiano com idade ígnea balizada em 1529 ± 37 Ma (U-Pb SHRIMP em zircão) com assinatura litoquímica de magmatismo intracontinental basáltico. O outro possui idade de cristalização de 1096 ± 20 Ma (U-Pb SHRIMP em zircão) e representa evento Esteniano com assinatura litoquímica de magmatismo de rifte continental. O evento caliminiano (ca. 1,5 Ga) é correlato com o estágio deposicional do Espinhaço II e cronocorrelato com os diques máficos dos domínios Espinhaço-Chapada Diamantina e Curaçá enquanto que o evento Esteniano é correlato com os estagio deposicional Espinhaço III. Apresentamos também dados U-Pb de 87 grãos de zircão detrítico do Quartzito Corrego Ubá. O seu espectro de idades mostra picos em 1176 \pm 21 Ma (35%), 1371 \pm 30 Ma (18%), 1536 \pm 22 Ma (19%), 1803 ± 36 Ma (17%) and 1977 ± 38 Ma (12%), sugerindo idade máxima de deposição Eteniana (ca. 1176 Ma), porém o zircão mais novo possui idade de 955 ± 66 Ma, que pode ser associada à bacia precursora do Orógeno Araçuaí-West Congo. Na região ocorrem pequenos corpos de rocha metaultramáfica encaixados em ortognaisses e metassedimentos que foram intrudidos por granitos. O levantamento geofísico realizado no Corpo Metaultramáfico Vista Alegre mostrou, ao invés de um único corpo contínuo e profundo, três porções distintas interpretadas como "mega boudins" alinhados segundo a foliação regional. A intrusão deste corpo está relacionada com intenso estiramento crustal e integra um dos vários episódios de magmatismo anorogenico de idade meso e neoproterozoica relatados no sudeste brasileiro. A análise microscópica indicou ao menos dois eventos metamórficos ocorridos depois da sua intrusão. O primeiro evento pode ser correlacionado com o estágio colisional e o segundo com o evento pós-colisional do Orógeno Araçuaí-Oeste Congo. Portanto os objetos de estudo deste trabalho representam indícios de eventos tafrogênicos que atestam as várias tentativas de fragmentação sem sucesso do paleocontinente São Francisco-Congo.

Palavras-chave: Eventos tafrogênicos, Complexo Pocrane, Orógeno Araçuaí-Oeste Congo

ABSTRACT

The internal domain of the Araçuaí-West Congo orogen comprises many varieties of rocks which were strong reworked during brasiliano orogenic cycle. In the vicinity of Pocrane and Durandé cities, western Minas Gerais, occurs metamafic, metasedimentary and metaultramafic rocks tectonically interlayered in the Rhyacian Pocrane complex. The geochronological and lithochemical study of two anphibolite lenses indicate two distinct magmatic events. The oldest, Calyminian event, with magmatic crystallization age at 1529 \pm 37 Ma (U-Pb SHRIMP) and lithochemical signature of basaltic magmatism related to continental intraplate settings. The other event has zircon magmatic crystallization age at 1096 ± 20 Ma (U-Pb SHRIMP) and represent a Stenian event with lithochemical signature similar to mature magmatism of continental rift setting. The Calymmian event (ca. 1.5 Ga) correlates to the Espinhaço II basin stage and mafic dikes of the northern Espinhaço -Chapada Diamantina and Curaçá domains, while the Stenian episode (ca. 1.1 Ga) correlates to the Espinhaço III basin stage. We also present U-Pb data for 87 detrital zircon grains from a quartzite lens, the Córrego Ubá quartzite. Its age spectrum shows main peaks at 1176 ± 21 Ma (35%), 1371 ± 30 Ma (18%), 1536 ± 22 Ma (19%), 1803 ± 36 Ma (17%) and 1977 ± 38 Ma (12%), suggesting a Stenian (ca. 1176 Ma) maximum depositional age (although only one zircon with low discordance shows an age of 955 ± 66 Ma) which can be associated with the Early Tonian precursor basin of Araçuaí-West Congo orogen. In the region occur several small northeast-trending bodies hosting by orthogneisse basement and metasedimentary package which are intruded by granites. The geophysical survey performed in the Vista Alegre meta-ultramafic body indicates three relative shallow meta-ultramafic portions, instead one deep continue body, interpreted as mega boudins aligned parallel to the regional foliation. These meta-ultramafic rocks are related to continuous crustal thinning, and integrates many others Meso and Neoproterozoic anorogenic magmatism events reported in southeast Brazil. The microscopic analyses show almost 2 distinct metamorphic events after emplacement. The first one seems to be related with collisional stage and the last one represents the thermal event during post-collisional event of the Araçuaí-Wets Congo orogen. Therefore, all the objects studied in this work testify the several unsuccessful fragmentation attempts that affected the long-lived São Francisco-Congo palaeocontinent.

Keywords: Taphrogenic events, Pocrane complex, Araçuaí-West Congo orogen

CONSIDERAÇÕES INICIAIS	8	8
------------------------	---	---

Capítulo 1 - <u>GUIA METODOLÓGICO DO LEVANTAMENTO GEOFÍSICO</u> <u>TERRESTRE</u>

1. INTRODUÇÃO	
2. PLANEJAMENTO	
3. AQUISIÇÃO DOS DADOS	
3.1. Levantamento magnetométrico	
3.2. Levantamento cintilométrico	
3.3. Eficiência do levantamento geofísico terrestre	16
3.4. Processamento preliminar	16
4 PROCESSAMENTO DOS DADOS	16
4.1. Dados magnetométricos	
4.1.1 Correção de Verioção Diurna	17
4.1.1 Colleção da Vallação Diulità	17
4.2. Processamento dos dados Cintilométricos	
4.3. Interpolação e geração dos "grids"	
Capítulo 2 – Artigo 1	
VISTA ALEGRE META-ULTRAMAFIC BODY: A KEY TOWAR	DS TECTONO-
METAMORPHIC EVOLUTION OF THE ARAÇUAÍ OROGEN HIG	H-GRADE CORE
3	
1. INTRODUCTION	
2. GEOLOGICAL SETTING: VAMUB DISTRICT	
2.1 Decomposit	22

2. GEOLOGICAL SETTING: VAMUB DISTRICT	
2.1 Basement	23
2.2 Metasedimentary cover	
2.3 Intrusives	23
2.4 Structural geology	23
3. VISTA ALEGRE META-ULTRAMAFIC BODY	
4. ANALYTICAL PROCEDURES	
4.1. Geophysical ground survey	
4.2. Microanalyses	
5. GEOPHYSICAL ASPECTS	
5.1. Geophysical aspects discussion	
6. MINERAL CHEMISTRY ASPECTS	
6.1. Petrography and mineral chemistry aspects discussion	
7. TECTONO-METAMORPHIC EVOLUTION OF VAMUB DISTRICT	
8. CONCLUSIONS	
9. ACKNOWLEDGMENTS	

Capítulo 3 – <u>Artigo 2</u>

RECORDS OF MESOPROTEROZOIC TAPHROGENIC EVENTS IN THE EASTERN BASEMENT OF THE ARAÇUAÍ OROGEN, SOUTHEAST BRAZIL

1. INTRODUCTION	
-----------------	--

2. GEOLOGICAL SETTING	
2.1. Pocrane Complex	
2.2. Córrego Ubá quartzite	40
2.3. Amphibolites lenses	41
3. AMPHIBOLITE LITHOCHEMISTRY	
3.1. Analytical procedures	42
3.2. Results	42
4. GEOCHRONOLOGY	
4.1. Material and Methods	43
4.2. U-Pb SHRIMP results for the amphibolite lenses (samples TN-08A and P2A)	44
4.3. Detrital zircon U–Pb data	46
5. DISCUSSIONS	47
6. CONCLUSION	
7. ACKNOWLEDGMENTS	53
CONSIDERAÇÕES FINAIS	54
ANEXOS	63

CONSIDERAÇÕES INICIAIS

O volume aqui apresentado consiste nos resultados dos trabalhos desenvolvidos durante o curso de mestrado do aluno Tobias M. R. Fonte Boa matriculado no programa de pós-graduação do Instituto de Geociências da Universidade Federal de Minas Gerais. Tais trabalhos foram realizados no período de março de 2015 a maio de 2017 com bolsa financiada pela Petrobras. Os trabalhos de campo e despesas laboratoriais foram custeados pelos contratos UFMG-Petrobrás (Programa PRH-PB238), UFMG-CODEMIG (Projeto Triângulo Mineiro), auxílio à pesquisa do CNPq (processo 470001/2011-9 "O Complexo Pocrane no contexto das unidades do embasamento do Orógeno Araçuaí: idade e caracterização"), CPRM-UFMG do PROGRAMA GEOLOGIA DO BRASIL e pelo Laboratório de Geotectônica do CPMTC-UFMG.

A principal motivação desta pesquisa surgiu do mapeamento geológico desenvolvido durante o trabalho final de graduação do aluno realizado na região de Durandé, extremo leste do estado de Minas Gerais (Fig. 1) (Deluca and Fonte Boa 2014). Uma das questões mais intrigantes foi a natureza das rochas metassedimentares que afloram na região.

Tais rochas foram fortemente retrabalhadas durante a orogenia brasiliana e muitas vezes são dispostas como lascas tectônicas justapostas às rochas do embasamento. Nos projetos de mapeamento regionais elas são majoritariamente classificadas como Grupo Andrelândia, que compreende sedimentos de margem passiva (Paciullo *et al.* 2000). Porém, geotectonicamente estão inseridas dentro do domínio interno do Orógeno Araçuaí onde predominam as rochas do arco magmático Rio Doce. Portanto seriam estas representantes de margem passiva ou ativa?

Outra questão levantada diz respeito aos corpos metaultramáficos que frequentemente aparecem inseridos nas unidades metassedimentares. Seriam estes corpos intrusivos ou pertenceriam a embasamento justaposto tectonicamente às rochas de Arco? Se intrusivos, qual seu significado?

Desta forma os trabalhos apresentados nesta dissertação tiveram como principal objetivo a caracterização e entendimento do significado geotectônico das rochas metaultramáficas, metamáficas e metassedimentares fortemente tectonizadas junto ao embasamento do Orógeno Araçuaí. A dissertação encontra-se estruturada na forma de 3 capítulos:

(1) Guia metodológico do levantamento geofísico terrestre,

(2) Artigo 1 - VISTA ALEGRE META-ULTRAMAFIC BODY: A KEY TOWARDS TECTONO-METAMORPHIC EVOLUTION OF THE ARAÇUAÍ OROGEN HIGH-GRADE CORE,

(3) Artigo 2 - RECORDS OF MESOPROTEROZOIC TAPHROGENIC EVENTS IN THE EASTERN BASEMENT OF THE ARAÇUAÍ OROGEN, SOUTHEAST BRAZIL.

Figura 1 – Localização dos trabalhos desenvolvidos durante o mestrado. VAMUB, corpo metaultramáfico Vista Alegre que é alvo de estudo dos capítulos 1 e 2; TN-8, P2A e P2D, localização das amostras estudadas e reportadas no Capítulo 3.

O capítulo 1 consiste no Guia metodológico do levantamento geofísico terrestre. Apesar de estarem apresentadas dentro do capítulo 2, as etapas de planejamento, aquisição e processamento dos dados do levantamento geofísico terrestre carecem de detalhamento que não cabe junto ao corpo do capítulo 2. Portanto, elas estão apresentadas a parte no capítulo 1.

O capítulo 2 aborda o principal tema desenvolvido durante o curso de mestrado: **as rochas metaultramáficas das proximidades do município de Durandé;** que resultou no artigo 1. Nele são apresentados e discutidos os dados de campo, aspectos geofísicos, petrográficos e de química mineral do Corpo Metaultramáfico Vista Alegre (**VAMUB** – Fig. 1). Esta etapa do trabalho teve o apoio imprescindível do Laboratório de Inclusões Fluidas e Metalogênese do CDTN/CNEN e da Companhia de Desenvolvimento Econômico de Minas Gerais (CODEMIG) que disponibilizaram os equipamentos de geofísica, além da importante parceria com o Serviço Geológico do Brasil (CPRM) que auxiliou no tratamento dos dados levantados. O resumo deste trabalho foi previamente apresentado no *Primer Simposio de Tectónica Sudamericana* realizado em novembro de 2016 na cidade de Santiago do Chile. A íntegra do artigo, "*Vista Alegre meta-ultramafic body, southeast Brazil: a geotectonic key towards orogenic evolution*", será submetida, em julho, em um volume especial do *Journal of South American Earth Sciences* dedicado aos trabalhos mais relevantes do simpósio.

O capítulo 3 trata do artigo que primeiramente foi desenvolvido durante a disciplina *"Estudos Supervisionados"* e teve o seu resumo apresentado no 48° Congresso Brasileiro de Geologia realizado em Porto Alegre, Rio Grande do Sul. Em julho a versão final do artigo, *"Records of Mesoproterozoic taphrogenic events in the eastern basement of the Araçuaí orogen, southeast Brazil",* foi aceito no periódico *Brazilian Journal of Geology*. Nele são apresentados e discutidos dados de geocronologia U-Pb (LA-ICP-MS e SHRIMP) e litoquimica realizados em lentes anfibolíticas (P2A e TN-8A/B) e intercalações quartziticas (P2D – Fig. 1) do Complexo Pocrane. Apesar de inéditos, os dados discutidos neste artigo foram cedidos de trabalhos anteriores com a colaboração do CNPq, CAPES, CODEMIG e CPRM.

Capítulo 1: <u>GUIA METODOLÓGICO DO LEVANTAMENTO GEOFÍSICO</u> <u>TERRESTRE</u>

1. INTRODUÇÃO

Este capítulo tem como objetivo apresentar de maneira detalhada a metodologia utilizada no levantamento geofísico terrestre que se encontra brevemente descrita no capítulo 2. A metodologia foi aplicada na região da Fazenda Vista Alegre onde ocorre o então denominado Corpo Metaultramáfico Vista Alegre (VAMUB – *Vista Alegre metaultramafic body*). Este localiza-se aproximadamente a 20 km, na direção norte, da sede municipal de Durandé, Minas Gerais, e é representado por blocos e matacões de esteatito dispersos nas encostas de morros, e próximos ao vale do Rio José Pedro (Fig. 1).

Figura 1 – Localização do corpo metaultramáfico Vista Alegre (VAMUB – Vista Alegre meta-ultramafic body).

Como também descrito no capítulo 2, o principal objetivo do levantamento foi auxiliar na delimitação do corpo meta-ultramáfico uma vez que ele não aflora. Esta fase de trabalho foi dividida em três etapas: *Planejamento*, *Aquisição* e *Processamento dos dados*.

2. PLANEJAMENTO

Previamente foi feita uma campanha de trabalho de campo para que fossem estipulados os alvos, objetivos e escala do levantamento. Após a avaliação da viabilidade e eficácia do levantamento perante os objetivos do trabalho, o conjunto de blocos e matacões próximos ao Rio José Pedro (212.474E, 7.777.740N, UTM24S, WGS84) foram determinados

como alvos mais promissores. A escala de trabalho estipulada foi de aproximadamente 1:5.000 numa área que abrangesse o maior numero de blocos possível.

Vários fatores foram avaliados para estipular a disposição das estações de coleta dos dados geofísicos (Fig. 1). Dentre eles estão as características geológicas, geomorfológicas e antrópicas como: disposição dos blocos metaultramáficos, *trend* estrutural, contatos geológicos, padrão de drenagem, alinhamento de serras, disposição da vegetação, cercas, postes, antenas, estradas e construções de uma forma geral. A partir dos dados coletados em campo e imagens de satélite, inferiu-se que, se o corpo fosse contínuo, possuiria dimensão aproximada de 100m x 800m alinhado segundo o *trend* geológico (NE).

Portanto, para o levantamento foi determinada uma malha de estações disposta na forma de perfis espaçados em 50m e incremento de 20m entre as estações dentro de cada perfil (Fig. 2). Por questões de simplificar a rotina do levantamento, os perfis foram alinhados à declinação magnética local (23° 19'W - NOOA, 2016), pois esta coincidia aproximadamente com a direção perpendicular às estruturas geológicas e alinhamento dos blocos de rocha metaultramáfica.

Os levantamentos magnetométrico e cintilométrico seriam realizados simultaneamente, porém com alternância de equipamento nas estações. Primeiro seria feita a coleta dos dados de posicionamento e leitura radiométrica e, logo após o deslocamento do cintilômetro, seriam feitas as leituras do campo magnético como ilustrado na Figura 2.

Figura 2 – Malha teórica da disposição das estações de coleta de dados geofísicos mostrando a relação entre as estruturas geológicas, declinação magnética e direção dos perfis; também é apresentada uma ilustração da rotina de coletas de dados geofísicos planejada para a etapa de levantamento.

3. AQUISIÇÃO DOS DADOS

O levantamento foi realizado durante cinco dias (15 – 19 de abril de 2016) e os dados de posicionamento foram coletados com a ajuda de GPS Garmin® modelo GPSMAP 64s com precisão de ~5m.

3.1. Levantamento magnetométrico

Para o levantamento magnetométrico foram utilizados dois magnetômetros GEM Systems GSM-19 (precessão de prótons) disponibilizados pela CODEMIG (Fig. 3D). Um dos aparelhos foi usado como estação móvel (Fig. 3A) e o outro como estação base (Fig. 3B) para correção da variação diurna.

Alguns dos cuidados tidos durante todo o levantamento foram a verificação do porte de algum material metálico pelos operadores, presença de cerca ou objeto metálico nos arredores (mínimo 15m de distância), consistência nas leituras (variação menor que 0,3 nT em repetidas leituras no mesmo ponto) ou algum tipo alteração dos valores causada pela eficiência do aparelho. Apesar da capacidade de armazenamento dos dados em memória

interna, todos eles foram anotados em uma planilha como prevenção para possíveis erros de armazenamento ou perda de banco de dados. Para o levantamento magnético foram seguidas duas rotinas, uma diária e uma rotina de leitura ponto a ponto.

Rotina diária:

- 1. Montagem dos equipamentos,
- 2. Ajustes dos parâmetros dos magnetômetros como: data, hora, intervalo de leitura, nome do arquivo a ser coletado,
- 3. Sincronização temporal dos magnetometros base e móvel,
- 4. Instalação da estação base (Fig. 3B),
- 5. Testes de leitura para verificação de ruído e possíveis erros de armazenagem,
- 6. Levantamento propriamente dito (Fig. 3A),
- 7. Desmonte e armazenagem dos equipamentos.

Rotina de leitura ponto à ponto:

- 1. Verificação da posição: coordenadas do GPS,
- 2. Posicionamento do equipamento em relação ao campo magnético terrestre local,
- 3. Leituras consecutivas e observação da consistência dos dados,
- 4. Anotação do valor de campo magnético total e posicionamento,
- 5. Deslocamento para a próxima estação.

Figura 3 – Imagens da etapa de levantamento. A) Estação móvel do levantamento magnetométrico; B) Estação base do levantamento magnetométrico; C) Levantamento Cintiloétrico D) Magnetômetro GSM-19 (precessão de prótons); E) Cintilômetro Système C.E.A SPP-2-NF.

Durante o levantamento a atividade solar foi monitorada através dos dados disponibilizados pela NOAA (National Oceanic And Atmospheric Administration). Geralmente ela é expressa na forma de um índice denominado índice K (K-index) que é uma representação logarítmica da amplitude da mudança magnética solar de maior intensidade em um intervalo de três horas. Os valores de K podem variar de 0 a 9. Valores abaixo de 4 são considerados moderados e indicam baixa atividade solar, os iguais a 4 indicam atividade solar normal e quando maiores que 4 os valores indicam atividade solar intensa. Como observado na Fig. 4, não foi observada nenhuma atividade solar anômala nos períodos do levantamento.

Fig. 4 - Diagrama mostrando a atividade solar (K-index) para as médias latitudes no intervalo entre os dias 10 e 27 de abril de 2016, as barras em cinza marcam os períodos de levantamento magnético terrestre realizados neste trabalho.

A estação base foi posicionada na área central do levantamento e foi programada para fazer leituras a cada 15 min. Todas as leituras, tanto da estação base quanto da estação móvel, foram realizadas há uma altura aproximada de 2 metros da superfície (Fig. 3A e 3B).

3.2. Levantamento cintilométrico

Para o levantamento cintilométrico foi utilizado um cintilômetro Système C.E.A SPP-2-NF disponibilizado pelo Laboratório de Inclusões Fluidas e Metalogênese do CDTN/CNEN (Fig 3E). As leituras foram obtidas o mais próximo possível do solo/rocha (Fig. 3C) e foi destinado para cada leitura ao menos dez segundos de observação para estipular o melhor valor que representasse a radiação no local. Devido à alta taxa de variação dos valores no tempo (~15 cps/s), buscou-se estipular um valor intermediário que melhor representasse a radiação em cada estação. Para o levantamento cintilométrico também foram seguidas duas rotina.

Rotina diária do levantamento cintilométrico:

- 1. Acionamento do equipamento,
- 2. Verificação do estado da bateria,
- 3. Regulagem do intervalo dos valores de leitura esperados,
- 4. Levantamento propriamente dito
- 5. Desligamento e armazenagem do equipamento,

Rotina de leitura ponto a ponto:

- 1. Posicionamento do equipamento em contato com o solo e/ou rocha,
- 2. Observação da taxa de variação dos valores cintilométricos no tempo,
- 3. Determinação do valor médio de contagem por segundo (cps),
- 4. Anotação dos valores de contagem radiométrica total por segundo e posicionamento,
- 5. Deslocamento para a próxima estação de leitura.

3.3. Eficiência do levantamento geofísico terrestre

As condições do terreno, tipo de equipamento, número de assistentes e condições climáticas são fatores que influenciaram muito na eficiência do levantamento e foram levados em consideração no planejamento logístico. A região do corpo metaultramáfico Vista Alegre possui terreno bastante acidentado o que dificulta no deslocamento. Contudo, a ausência de grandes corpos d'água e a vegetação, principalmente composta de campo de pastagem, facilitou bastante na rotina de levantamento. Como já foi dito anteriormente esta etapa foi realizada em 5 dias, porém o total de horas efetivas foi aproximadamente de 31 horas. Ao todo foram realizadas 380 estações de leitura o que leva a uma eficiência de aproximadamente uma estação a cada 5 minutos incluindo o deslocamento entre elas.

3.4. Processamento preliminar

Ao final de cada dia de trabalho os dados coletados eram compilados para a realização do processamento preliminar que consistiu em:

- Transferência das leituras dos magnetômetros, estação base e móvel, para o computador para processamento e correção da variação diurna. O *software* previamente utilizado foi o GEMLinkW 3.0 da Gem Systems Inc. disponibilizado junto ao magnetômetro.
- 2. Integração dos dados magnetométricos, cintilométricos e de posicionamento (GPS) em planilhas *.*xls*.
- 3. Plotagem prévia dos dados integrados em ambiente GIS para observação de possíveis erros durante o levantamento e planejamento dos próximos dias de trabalho.
- 4. Observação na consistência dos dados coletados para detecção de algum tipo de interferência externa como tempestades magnéticas ou erros de leitura e armazenagem.

4. PROCESSAMENTO DOS DADOS

Após o levantamento os dados foram organizados em planilhas para que pudessem ser sincronizados e processados. Foi empregado o *software* OASIS MONTAJ da empresa GEOSOFT, no qual as planilhas previamente organizadas são diretamente importadas e convertidas para formato de GDBs compatíveis com o programa.

4.1. Dados magnetométricos

Para atender aos objetivos propostos, os dados magnéticos coletados no campo passaram por rotina de correções como, correção da variação diurna e remoção do IGRF (International Geomagnetic Reference Field). Alguns procedimentos aplicados a dados magnéticos como correção topográfica não foram feitos, pois foram considerados como irrelevantes para os resultados finais.

4.1.1 Correção da Variação Diurna

Ainda na etapa de levantamento, na fase de pré-processamento, os dados magnéticos passaram pela correção da variação diurna realizada pelo *software* GEMLinkW 3.0. Porém a partir de uma prévia observação dos perfis magnetométricos foi possível identificar anomalias que não eram consistentes com os dados reais obtidos em campo. Tais anomalias foram atribuídas a erros de interpolação durante a etapa de correção diurna feita pelo *software*. Portanto os dados foram recorrigidos manualmente ponto a ponto segundo a premissa de que a correção do valor medido em uma determinada estação é feita pela soma ou subtração do valor da variação registrado pela estação base (Luiz and Silva 1995). O valor é somado se o campo magnético na estação base diminuiu em relação à um *datum* ou é subtraído se o valor aumenta. Ou seja, o fator correção é positivo se os valores medidos na estação base são menores que o *datum* e negativo quando maiores (Fig. 5).

Figura 5 – Diagrama mostrando a metodologia utilizada na correção da variação diurna dos dados magnéticos. 4.1.2 Remoção do IGRF

A remoção do Campo Geomagnético Internacional de Referência (IGRF) foi feita ponto a ponto a partir dos dados calculados pela NOAA. Os valores de IGRF para cada ponto foram obtidos pela 12^a geração (IGRF 12 – Thébault *et al.* 2015) à uma altitude de 500m para as datas de 15 a 19 de abril de 2016. O campo magnético anômalo (Bcma) para cada um dos

pontos amostrados foi obtido pela subtração, ao campo total (Bt), do valor do IGRF calculado para o ponto: $\mathbf{B}_{(TMA)} = \mathbf{B}_{(TOTAL)} - \mathbf{IGRF}$.

4.2. Processamento dos dados Cintilométricos

Devido ao tipo de equipamento e tempo destinado ao levantamento cintilométrico, não foi possível realizar nenhum tipo de correção aos dados. Portanto estes foram diretamente integrados nas planilhas finais do banco de dados.

4.3. Interpolação e geração dos "grids"

Para a geração dos *grids* foram utilizadas as rotinas do Oasis Montaj de *minimum curvature* (*RANGRID*). Este método foi utilizado para ambos os tipos de dados, magnetométricos e cintilométricos. Os mapas foram elaborados a partir de *grids* regulares, interpolados em malha quadrada, com células de dimensões de 12,5 m x 12,5 m que correspondem a ¹/₄ do espaçamento entre as linhas de perfil (50m).

Observações: Os resultados, discussões e conclusões desta etapa de trabalho estão apresentados no capítulo 2 deste volume.

VISTA ALEGRE META-ULTRAMAFIC BODY: A KEY TOWARDS TECTONO-METAMORPHIC EVOLUTION OF THE ARAÇUAÍ OROGEN HIGH-GRADE CORE

Tobias Maia Rabelo Fonte-Boa¹, Marco Antônio Couto Jr.², Tiago Amâncio Novo¹, Antônio Carlos Pedrosa-Soares^{1*}

¹Universidade Federal de Minas Gerais, Programa de Pós-graduação em Geologia, CPMTC-IGC, Campus Pampulha, Av. Antônio Carlos 6627, Belo Horizonte, 31270-901 MG, Brazil. E-mail: <u>tobiasfonteboa@gmail.com; tiagoanovo@gmail.com, pedrosa@pq.cnpq.br</u> ²Serviço Geológico do Brasil (CPRM), Av. Brasil 1731, 30140-002 Belo Horizonte, MG, Brazil. E-mail: <u>marco.couto@cprm.gov.br</u> *Eallow of the Brazilian Bagagrah Council (CNBg)

*Fellow of the Brazilian Research Council (CNPq)

ASBSTRACT

The Vista Alegre Meta-Ultramafic body is part of a cluster of meta-ultramafic occurrences located in the internal tectonic domain of the Araçuaí-West Congo orogen in southeast Brazil. They consist of several small northeast-trending bodies hosting by orthogneiss basement and metasedimentary package tectonized and intruded by granites during Brasiliano orogenic cycle. To improve the existent models of the tectono-metamorphic evolution of the Araçuaí Orogen high-grade metamorphic core we performed geophysical and detailed mineralogical study of the meta-ultramafic body and its host rocks. The magnetic response indicates three relative shallow portions instead one deep continue meta-ultramafic body. These portions are interpreted as mega boudins aligned parallel to the regional foliation. The petrographic and mineral chemistry studies indicate a high-grade progressive metamorphic path followed by a retrograde process. The metamorphic peak must have reached granulite facies condition related with collisional stage of the Araçuaí-West Congo orogen, and the posterior stabilization, in greenschist facies condition, represents a metamorphic retrogression related with the thermal event during post-collisional stage.

Keywords: Meta-ultramafic body; high-grade metamorphic core; Araçuaí orogen.

1. INTRODUCTION

The Vista Alegre Meta-Uultramafic body (VAMUB) is part of a cluster of meta-mafic/ ultramafic occurrences located in the Araçuaí-West Congo orogen high-grade metamorphic core (Fig. 1). These occurrences were defined by Angeli *et al.* (2001) as Ipanema Layered Mafic-Ultramafic Complex and was interpreted as part of an anorogenic magmatism related to extensional event occurred in paleocontinente São Francisco/Congo during Mesoproterozoic.

The high-grade core of the Araçuaí-West Congo orogen is a tectono-metamorphic domain which includes granites and gneiss complexes formed under amphibolite-granulite grade conditions during the Brasiliano orogeny (Cunningham *et al.* 1998, Alkmim *et al.* 2006). This orogeny was an important regional tectono-metamorphic event resulted of the collision between São Francisco and Congo craton during the Neoproterozoic. In the studied area it is mainly represented by the development of a system of NNE-trending dextral strike-slip shear zones and production of an enormous volume of pre-, sin- and post-collisional granitoids.

This paper will focus on investigating the small buried Vista Alegre meta-ultramafic body (VAMUB) and its host rock in order to characterize the regional tectono-metamorphic evolution. Here we report results of a geophysical and detailed mineralogical study with special regard to (i) magnetometric response of the meta-ultramafic body and its host rocks; and (ii) mineralogical nature and petrological significance of the essential and spinel phases. Thereby the intention here is to add new data and improve the existent models of the tectonometamorphic evolution of the Araçuaí Orogen high-grade metamorphic core.

Figure 1 – Simplified geological map of the Araçuaí West Congo orogen high-grade core.

2. GEOLOGICAL SETTING: VAMUB DISTRICT

The area selected for study is located 20 km north from the town of Durandé (Minas Gerais state, southeastern Brazil) more specifically in the Vista Alegre farm, next to the José Pedro River where occurs the Vista Alegre Meta-ultramafic Body (VAMUB). The local geology comprises a tectonic association of basement complex, metasedimentary cover including the meta-ultramafic bodies and granitoids (Fig. 2).

Figure 2 – A) Block Diagram showing the regional context of the study area; B) Geologic map of the study area, Durandé region, eastern Minas Gerais Satte. 1, Alluvial deposits; 2, Post-tectonic granitoid; 3, Sincollisional granitoid; 4, Vista Alegre meta-ultramafic body; 5, Quartzite; 6, Mica schist; 7, Basement - migmatitic orthogneisses; 8, foliation; 9, drainage; 10, synclinal; 11, samples used for microanalysis; 12, geophysical ground survey limit area.

2.1 Basement

The basement is basically composed of migmatised orthogneiss whit interlayered amphibolite lenses. Petrographic studies characterize fine- to medium-grained gneiss with granonematoblastic texture. The rock shows porphyroclasts of plagioclase as well as of orthopyroxene in a recrystallized matrix of quartz, plagioclase, clinopyroxene and \pm granet. Hornblende and biotite typically appear replacing pyroxene and garnet. Locally the rock exhibits augen gneissic structure, mylonitic foliation and quartz ribbons with chessboard subgrains.

2.2 Metasedimentary cover

The metasedimentary unit involves paragneiss, schist that grades into quartzite. These rocks are characterized by quartz, biotite, garnet, hornblende, plagioclase, k-feldspar, \pm kyanite and \pm sillimanite. The paragneiss exhibit porphyroblast of garnet, kyanite and sillimanite in medium- to a fine-grained granonematoblastic quartz-biotite rich foliated matrix with porphyroclasts of plagioclase. Quartz displays polygonised to interlobate textures.

2.3 Intrusives

There are two facies of granitoids: one facie exhibit tectonic foliation and other the tectonism is absence. The sin-collisional granitoid intrudes the basement complex and metasedimentary unit. It is characterized by medium-grained nematoblastic muscovite-biotite granite which is common the presence of garnet and porphyroclasts of k-feldspar. The post-collisional granitoid is coarse-grained and intrudes all units described before. It occurs as batholiths and next to the contact with foliated rocks it forms small sills parallel to foliation.

2.4 Structural geology

Regionally the basement and metasedimentary cover portray lenticular tectonic slices limited by mylonitic zones which the deformation decreases from border to the slices nuclei (Fig. 2A). The studied area is located in the internal portion of these slices were the basement and sedimentary cover configure folds with plunging axis in the NE-SW direction (Fig. 2) which is parallel to regional foliation (S_n). The foliated granitoids are emplaced in folds axial surface and form elongated bodies aligned parallel to regional foliation.

3. VISTA ALEGRE META-ULTRAMAFIC BODY

The Vista Alegre meta-ultramafic body manifests as colluvionar boulders and blocks disperse in the hillside next to the José Pedro River (Fig. 3A). The main lithotype of the

24

VAMUB is a light grayish yellow colored rock with some greenish spots (Fig. 3 B). It comprises chlorite-talc schist with olivine porphyroclasts and tremolite porphyroblasts. Its modal composition is characterized by 40%-60% of olivine, 35%-45% of talc, 10%-20% of tremolite and approximately 3% of chlorite. Opaque and carbonates occur as accessory minerals.

In thin section, the **Olivine** very often appears as porphyroclasts vastly replaced by talc and chlorite (Fig. 3C). **Talc** occurs as a strongly foliated matrix and also filling veins associated with chlorite and carbonate (Fig. 3E). **Chlorite** locally substitutes olivine edges and cores forming gulfs always associated with opaques (Fig. 3 D and 3F). There are two distinct **chlorite phases** based on its interference color. One chlorite phase (Chlorite1) has low pleochroism and anomalous brown interference color which show intra-crystalline deformation. The other chlorite phase (Chlorite2) exhibit berlin blue anomalous interference color and it has no sign of deformation process. When associated, the blue chlorite displays a crystalline rim which surrounds the brown chlorite (Fig. 3F). **Opaque minerals** occur disseminated through the rock or as poikiloblastc grains associated with chlorite and seldom with tremolite and olivine. Radial fibrous porphyroblasts of **tremolite** overprint all other mineral phases (Fig. 3C, 3E and 3F).

Figure 3: Microscopic features of Vista Alegre meta-ultramafic body: A) Occurrence of meta-ultramafic blocks and boulders in VAMUB; B) Macroscopic feature showing the olivine crystals in a talc-rich matrix; C) Microscopic map representing the microscopic features of the VAMUB; D) Photomicrography showing a gulf of chlorite grain displaying undulatory extinction; E) Photomicrography showing the strongly foliated matrix of talc overprinted by tremolite porphyroblasts; E) Photomicrography showing zoned chlorite grains associated with Cr-spinel grains.

4. ANALYTICAL PROCEDURES

4.1. Geophysical ground survey

The survey was composed of lines spaced by 50 m, with 20 m between stations. A total of 380 stations arranged in 19 profiles were executed. The azimuth is parallel to the local magnetic declination (23°19'W - NOAA 2016) because it is approximately coincident with the perpendicular direction to the geological structures. The survey was conducted during five days (15 to 19, April 2016). The stations positions were measured with the Garmin® GPSMAP 64s GPS (precision ~5 m). The magnetic data was measured with two GEM Systems GSM-19 magnetometers (proton precession), one for the line acquisition and the other for the base station for diurnal variation correction. These equipments were provided by CODEMIG for this work. The solar activity was monitored with the NOAA data, which any kind of noise or interference was observed. The base station was positioned in the central part of the survey area and programmed to make measurements with 15 min time interval. All measurements (base and mobile stations) were conducted with 2 m height in reference to the ground and manually recorded. The QA/QC and basic data processing were conducted in the Geosoft Oasis Montaj software. For the magnetic data, the diurnal and IGRF (International Geomagnetic Reference Field) corrections were applied. The IGRF correction was executed with the 2016 Geosoft Oasis Montaj database. Next, Total Magnetic Anomaly (TMA) (Fig. 4A), derivatives (x, y and z directions) and Analytical Signal Amplitude (ASA) maps (Fig. 4B) were gridded using the Minimum Curvature available in Geosoft Oasis Montaj, with regular grids, square mesh and $12.5 \times 12.5 \text{ cm}$ cell size (1/4 of line spacing).

4.2. Microanalyses

The microanalyses were performed with an electron microprobe JEOL JXA-8230 at the Microanalysis Laboratory of the Universidade Federal de Ouro Preto. The electron beam was set at 15 kV, 20 nA, 2-5 μ m and the common matrix ZAF corrections were applied. Counting times on the peaks/background were 10/5 s for all elements (Na, Si, Al, Mg, Fe, Cr, Ti, Ca, Ni, K, Mn). The standars of the major element set-up are present in table 1 and 2. Olivine, Cr-spinel, talc, amphibole and chlorite were analyzed along transgranular profiles. The mineral formulas were calculated based on 4 oxygens for olivine and cr-spinel, 22 for talc, 23 for amphibole and 28 for chlorite crystals. The total iron content obtained by the microprobe was considered as FeO, except for oxide analysis which was measured as Fe₂O₃. The Fe₂O₃ and FeO contents in spine grains were obtained by two steps. First, the total Fe₂O₃ contents were transformed in FeO by multiplication for 0,8998. Second, the cationic proportion was estimated according to Dropp (1987). Chemical maps and backscattered electron (BSE) image of cr-spinel were also obtained by the microprobe in order to illustrate the mineral zonation. Operating conditions were 15-kV acceleration, 20-nA beam current, and 20-ms dwell time per spot (stage mode). All the elements considered here (Al, Fe, Cr) were analyzed by wavelength dispersion spectroscopy (WDS). Maps show quantitative element distributions.

Table 1 - Overview of the major element set-up for olivine, talc, chlorite and tremolite analysis.

Elements	Crystal	Standard
Na ₂ O	TAPH	Anorthoclase
F	TAPH	CaF2
SiO_2	TAP	Quartz
Al_2O_3	TAP	Corundum
MgO	TAP	Olivine
TiO ₂	LIFH	Ilmenite
FeO	LIFH	Magnetite
CaO	PETJ	Cr-Augite
NiO	LIF	Glass_Rhyolitic_Corning_Glass_IR-X
Cr_2O_3	LIF	Chromite
K_2O	PETL	MIcrocline
MnO	LIFL	Ilmenite

Table 2 - Overview of the major element set-up for spinel analysis.

Elements	Crystal	Standard
Na ₂ O	TAPH	Anorthoclase
SiO_2	TAP	Quartz
Al_2O_3	TAP	Corundum
MgO	TAP	Olivine
TiO ₂	LIFH	Ilmenite
Fe ₂ O ₃	LIFH	Magnetite
CaO	PETJ	Cr-Augite
NiO	LIF	Glass_Rhyolitic_Corning_Glass_IR-X
Cr_2O_3	LIF	Chromite
MnO	LIFL	Ilmenite

5. GEOPHYSICAL ASPECTS

The geophysical maps are presented in figure 4. The ASA map presents a large magnetic anomaly in the central part of the area and many smaller circular anomalies in the vicinity (Fig. 4B). These features could be associated with portions of the Vista Alegre meta-

ultramafic body (VAMUB). Seeking to better understand this relation, further data processing was conducted. For the magnetic data, the Radial Average Power Spectrum (RAPS) and the Magnetization Vector Inversion (MVI) techniques were applied.

Figure 4 – Geophysical maps: A) Total Magnetic Anomaly (TMA) map; B) Analytical Signal Amplitude (ASA) map.

The RAPS is presented in figure 5. With this technique, the wavenumber (or frequency) content of the magnetic data can be associated with the depth values intervals of the magnetic sources (Spector and Grant 1970). The Nyquist wavenumber is presented in the figure, which corresponds to 25 cycles/km. This value separates the data from the aliased measurements. The shallow magnetic sources present average top depths about 25 m and the deeper sources about 40 m.

Figure 5 - Radial Average Power Spectrum (RAPS) from magnetic data.

The MVI technique was conducted with the VOXI package for the Geosoft Oasis Montaj and the algorithm is described in Ellis (2015). This algorithm solves the inverse magnetic problem considering the total magnetization vector properties (intensity and direction). The results are composed by the 3D magnetic susceptibility distribution of the underground and the magnetization vector for each cell of the discretized magnetic model. The results provide the geometrical information about the magnetic sources. This geometrical information could be translated to structural information of the lithologies associated with the magnetic sources. Figure 6 presents the MVI results for the area. The magnetic anomaly in the central part of the area is related to a large magnetic body (magnetic susceptibility > 0.003 SI), with dimensions about 230 m depth and 270 m to NE direction.

Figure 6 – Diagrams of Magnetization Vector Inversion (MVI).

5.1. Geophysical aspects discussion

Generally, the mineral content of the meta-ultramafic rocks are associated with high magnetic susceptibility materials, which magnetite concentration is an important aspect to be associated with the effectiveness of the magnetic method when applied to differentiate this lithology. In the studied area, the host rocks are mainly composed by granites, schist and quartzite, which present minerals with relatively low magnetic susceptibility when compared to ultramafic minerals. Therefore, ASA anomalies could be a good indicator to the location of contact zones with the meta-ultramafic rocks. However, because of the irregular geometries of these anomalies, the interpretation only with this products are limited and frequently qualitative (Telford *et al.* 1990).

This is where the geophysical modeling becomes an important interpretation tool. The MVI technique was applied seeking to solve the geometry and structural information of the meta-ultramafic body in the area. Unlike expected the results indicated that the VAMUB are composed by three shallow portions instead a deep continue one. The portions are aligned to the regional foliation and could have a few hundreds of meters of top depth and lateral extension ~230 m. The shallow magnetic anomalies (~ 25 m) determined by the RAPS analysis could be associated with the meta-ultramafic colluvionar blocks. This material is in the slope and valleys of the hill, which agrees with the shallow magnetic anomalies locations.

6. MINERAL CHEMISTRY ASPECTS

Six samples were collected from Vista Alegre meta-ultramafic body for petrographic analysis, of which two were selected for microanalysis. The porphyroclasts of **olivine** exhibit homogeneous MgO (47,04 - 48,28%) and FeO_(11,29 - 12,34%) content, with variable NiO (0,42 - 0,13%) and low MnO (down to 0,06%). Based on the Mg/(Fe²⁺+Mg) content it is classified as **chrysolite** with high forsterite compound (Fo₈₇₋₈₈). Some crystals show cores with relatively high Fo compound (range < 1%) and minor NiO content. The **talc** have a homogeneous chemical composition and substantially compounds the foliated matrix. The results of the granoblastic **chlorite** crystals microanalyses corroborate the different crystalline phases observed in thin sections by distinct interference color. The zoned chlorite shows cores relatively enriched in Al, Fe and Cr and depleted in Mg and Si content (Fig. 7G, 7H and 7I). The chemical compositions of these cores are very similar to the deformed grains thus it might denote two distinct crystalline phases. The Radial fibrous porphyroblasts of amphibole has mainly **tremolite** composition (Leake *et al.* 1997) with subordinate magnesiohornblende. Despite this chemical variation, the texture and crystal relations indicate that it represent only one mineral phase. The opaque minerals are characterized by high contents of Cr_2O_3 (49,88 - 58,37%), FeO (28,7 - 29,56%) and Fe₂O₃ (8,48 - 21,46%); and very low of Al₂O₃ (4,24 - 0,64%) and MgO (1,65 - 2,42%). In the oxide end-member diagram (Stevens, 1944) they plot in the **Cr-spinel** field and form a trend towards chromite vertex (Fig. 7). The compositional maps and backscattered electron (BSE) images show an interesting subtle chemical zonation. The rims are relatively depleted in Al and Fe, and enriched in Cr (Fig. 7). The Cr-number (Cr# = Cr/(Cr+Al)) = [0,89 - 0,98], Fe# = Fe²⁺/(Mg+ Fe²⁺) = [0,78 - 0,86] and Mg# (Mg/(Mg+Fe²⁺)) = [0,12 - 0,22] made it possible to classified them as **ferrichromite** or "ferritchromite".

Figure 7 - A) Spinel compositions from the VAMUB based on the trivalent cations Fe^{3+} -Cr-Al. Compositional fields from different metamorphic facies after Evans and Frost (1975) and De Freitas Suita and Streider (1996); B) Spinel compositions plotted in oxide end-member diagram (Stevens 1944) and Stability limits af spinels defined for chromite and magnetite. Modified after (Sack and Ghiorso 1991; Barnes 2000); C) Microscopic
map representing the mineralogical association involved in spinel metamorphic transformation; D) Chromium compositional map from region limited in C; E) Alumium compositional map from region limited in C; F) Iron compositional map from region limited in C. G) Photomicrography showing zoned chlorite grains; H) Backscattered electron image of the same chlorites grains showed in E; I) Compositional profiles of the analyzed points in the zoned chlorite grain marked in F.

6.1. Petrography and mineral chemistry aspects discussion

There are no petrographic evidences of the VAMUB igneous photolith. All igneous evidences, as cumulatic texture or chromitite layers, seem to be obliterated by metamorphic, metasomatic/hydrothermal and deformational processes. Therefore olivine porphyroclasts and zoned relicts of spinel were interpreted as high grade metamorphic phases which remain a progressive metamorphic peak until high-amphibolite-granulite facies condition. Representing a posterior process, the lepdoblastic talc-rich matrix, granoblastic chlorites (1 and 2) and tremolite porphyroblasts indicate a subsequent metamorphic retrogression until low amphibolite-green schist facies condition. In this retrograde step the presence of talc englobing the olivine relicts are evidence of a vast but incomplete hydration suffered by olivine. Concomitantly, chlorite was formed by metamorphic reaction between olivine and/or talc and Al from spinel. Prior studies have noted that, generally, during metamorphism spinel tends to lose Al content relative to Cr to form chlorite or amphibole, increasing the Cr# (Barnes and Roeder 2001). The new spinel formed by this retrogressive metamorphic reaction is known as ferrichromite. It is a type of chromite alteration found in many ultramafic rocks commonly associated with Mg-chlorite (Bliss and McLean 1975, Evans and Frost 1975, Barra et al. 1998). Strong evidence of it can be observed in the chemical zonation of Cr-spinel grains illustrated by the Figure 7. It is clear that Al content decreases and the Cr content increases from the core to the margin. The fact of Cr-spinel compositions display a trend directing to chromite or Cr vertex is another evidence for metamorphic reaction (Fig. 7B). Compared with the Cr-Al-Fe³⁺ compositions of spinel from different metamorphic facies (Fig. 7A), as well as with spinel stability limits (Fig. 7B), the cr-spinels from VAMUB plot in the field of upper greenschist facies conduction, at temperatures ranging from 500 to 550°C. Porphyroblasts of tremolite and rims of second generation of chlorite (Chlorite 2) overprints all the precursor phases which presumably correspond to the final retrogressive metamorphic path when temperature operated without deformation.

The presence of carbonates in hydrated ultramafic rocks is very common. Its origin is very controversial but is often associated with CO_2 bearing fluids percolation (Schandl and Naldrett 1992; Hansen *et al.* 2005). Carbonate is restricted to high permeability zones, as fractures and veins, and seems to be present during all VAMUB alteration stages as

hydrothermal products. Interestingly, the most significant chemical difference from the other mineral groups is the presence of Calcium in the undeformed porfiroblasts. Thus, the presence of carbonate from previously alteration could be related with the source of Ca to form tremolite.

Figure 8 – Diagram representing the petrological evolution of VAMUB. A) High-grade metamorphic peak; B) Metamorphic retrogression with solid-stade deformation; C) Final metamorphic retrogression stage without deformation.

7. TECTONO-METAMORPHIC EVOLUTION OF VAMUB DISTRICT

The petrographic and mineral chemistry studies of the meta-ultramafic rock indicate a high-grade progressive metamorphic path followed by a retrograde process. The metamorphic peak must have reached granulite facies condition. Indications of similar metamorphic evolution are found in basement and metasedimentary cover, previous described in section 3. In the basement, the high-grade conditions are represented by mineral paragenese: orthopyroxene, quartz, plagioclase and \pm garnet. In the metasedimentary cover it is represented by plagioclase, quartz, garnet, \pm silimanite and \pm kyanite.

The metamorphic retrogression is found as mineral paragenese of low amphibolitegreen schist facies condition. It affected the basement, metasedimentary cover and foliated granidoid facie. It is mainly found as oriented biotite and hornblende which replace orthopyroxene and garnet.

The tectonism seems to be present in all metamorphic paths. The ultramafic portions defined in the magnetic survey corroborates with the strong deformational process which forms big boudins parallel to the regional foliation. It is supports by mylonitic foliation, quartz ribbons with chessboard subgrains mostly observed in basement and metassedimentary cover and granonematoblastic and lepdoblastic texture of its substituted mineral phases.

8. CONCLUSIONS

This paper has investigated a small buried meta-ultramafic body and its host-rock from geophisical, petrografic and mineral chemistry aspects. The Vista Alegre meta-ultramafic body is intrusive in basement and metasedimentary cover. The magnetic data indicates three relative shallow body portions instead one deep continue body. This spatial configuration is result of tectonic process which forms big "boudins" parallel to the regional foliation. The petrographic and mineral chemistry studies characterize a metamorphic path which represents the tectonic evolution of the Araçuaí-West Congo orogen high-grade core. The rocks of the VAMUB district passed through progressive metamorphic event which reaches granulite grade and posterior stabilization in greenschist facies condition by metamorphic retrogression. Angeli et al. (2001) and Costa et al. (1998) reported the same metamorphic path for nearby rocks. Geophysical and microscopic data showed a strong tectonism associated with the metamorphic evolution. The petrological and field relationships with the foliated granitoid corroborate the idea of orogenic correlated process during collisional stage of the AWCO (Pedrosa-Soares et al. 2011, Melo et al. 2017). Furthermore, due to the geological context, the undeformed granite has strong correlation with the late orogenic plutonism during the AWCO post-collisional stage (Campos et al. 2004).

9. ACKNOWLEDGMENTS

The authors are grateful to the Brazilian research and development agencies (CDTN/CNEN, CODEMIG, CPRM, Petrobras) for financial support; to technical staffs of the DEGEO/EM Microanalysis Laboratory of the Universidade Federal de Ouro Preto for the microanalysis.

Capítulo 3 – <u>Artigo 2</u> RECORDS OF MESOPROTEROZOIC TAPHROGENIC EVENTS IN THE EASTERN BASEMENT OF THE ARAÇUAÍ OROGEN, SOUTHEAST BRAZIL

Tobias Maia Rabelo Fonte-Boa¹, Tiago Amâncio Novo¹, Antônio Carlos Pedrosa-Soares^{1*}, Ivo Dussin^{2*}

¹Universidade Federal de Minas Gerais, Programa de Pós-graduação em Geologia, CPMTC-IGC, Campus Pampulha, Av. Antônio Carlos 6627, Belo Horizonte, 31270-901 MG, Brazil. E-mail: <u>tobiasfonteboa@gmail.com, tiagoanovo@gmail.com,</u> pedrosa@pq.cnpq.br ²Universidade Estadual do Rio de Janeiro, Faculdade de Geologia, Rua São Francisco Xavier 524, Rio de Janeiro, 20550-900 RJ, Brazil. E-mail: <u>ivodusin@yahoo.com.br</u>

*Fellow of the Brazilian Research Council (CNPq)

ABSTRACT

The history of palaeocontinents alternates long fragmentation to drift periods with relatively short agglutination intervals. One of the products of a Rhyacian-Orosirian orogeny was a palaeocontinent that brought together the basement of the Araçuaí-West Congo orogen (AWCO) with regions now located in the São Francisco and Congo cratons. From ca. 2 Ga to ca. 0.7 Ga, this large region of the São Francisco-Congo palaeocontinent was spared of orogenic events, but underwent at least five taphrogenic events recorded by anorogenic magmatism and/or sedimentation. The taphrogenic events are well documented in the AWCO proximal portions and neighboring cratonic regions, but lack evidence in the AWCO highgrade core. Our studies on amphibolites intercalated in the Rhyacian Pocrane complex, basement of the Rio Doce magmatic arc, allowed to the recognition of two Mesoproterozoic taphrogenic episodes. The oldest, a Calymmian episode, is recorded by amphibolites with a zircon magmatic crystallization age at 1529 ± 37 Ma (U-Pb SHRIMP), and lithochemical signature of basaltic magmatism related to continental intraplate settings. Another set of amphibolite bodies records the youngest taphrogenic episode, a Stenian event, with a zircon magmatic crystallization age at 1096 ± 20 Ma (U-Pb SHRIMP), and lithochemical signature similar to mature magmatism of continental rift setting. The Calymmian episode (ca. 1.5 Ga) correlates to the Espinhaço II basin stage and mafic dikes of the northern Espinhaco -Chapada Diamantina and Curaçá domains, while the Stenian episode (ca. 1.1 Ga) correlates to the Espinhaço III basin stage. We also present U-Pb data for 87 detrital zircon grains from a quartzite lens intercalated in the Pocrane complex, the Córrego Ubá quartzite. Its age spectrum shows main peaks at 1176 ± 21 Ma (35%), 1371 ± 30 Ma (18%), 1536 ± 22 Ma (19%), 1803 ± 36 Ma (17%) and 1977 ± 38 Ma (12%), suggesting a Stenian (ca. 1176 Ma) maximum depositional age (although only one zircon with low discordance shows an age of 955 ± 66 Ma). Comparing with data from the western sector of the Araçuaí orogen and São Francisco craton, it is noteworthy that no igneous zircon from the three samples yielded an age older than early Orosirian (~2.05 Ga), showing age spectra essentially limited in the range of ca. 1 - 2 Ga; i.e., younger than the Late Rhyacian orogeny that amalgamated the basement, and older than the main anorogenic event (930-870 Ma) associated with the Early Tonian precursor basin of AWCO. All together, these continental taphrogenic events testify the several unsuccessful fragmentation attempts that affected the long-lived São Francisco-Congo palaeocontinent, which remained preserved from a complete break-up associated with ocean spreading from the Early Orosirian to the Atlantic opening in Cretaceous time.

Keywords: Taphrogenic Events; São Francisco-Congo palaeocontinent; Araçuaí-West Congo orogen

1. INTRODUCTION

The history of palaeocontinents includes short compressive orogenic processes, intercalated with large taphrogenic phases marked by fragmentation and drift (Nance *et al.* 1988, Murphy and Nance 1992, Rogers and Santosh 2004). In this context, a new-formed continent becomes a refractory cap that hinders heat release from the Earth's mantle. The heat transmission is associated magmas, that tends to settle beneath rift systems. The reconstruction of the rifting events is easily detected and characterized when it comes from undeformed domains. However, reconstruction becomes much more complex in orogenetic reworked cores, where rocks associated with taphrogenic events are intensely deformed. A fundamental tool for the analysis of tectonized magmatism and/or sedimentation is U-Pb dating on zircon grains. Besides the magmatic and metamorphic age, the analyses of the zircon age spectra of sedimentary deposits may reflect the tectonic setting of the basin, providing important hints for tectonic and palaeogeographic interpretations (Cawood *et al.* 2012).

The study area, located in the Araçuaí orogen, southeastern Brazil (Fig. 1), records a series of events related to the amalgamation of the São Francisco-Congo palaeocontinent in the Rhyacian-Orosirian boundary (Noce *et al.* 2007), as well as the evolution of the Araçuaí orogen in Neoproterozoic time (Pedrosa-Soares *et al.* 2001, 2008; Alkmim *et al.* 2006). It lacks evidence that the region had experienced orogenic events from the Orosirian to the Ediacaran. Conversely, during that long period the region between the São Francisco and Congo cratons records at least five major taphrogenic events that ultimately led to the development of the precursor basin system of the Araçuaí orogen (Pedrosa-Soares and Alkmim 2011, Chemale *et al.* 2012, Guadagnim *et al.* 2015, Tupinambá *et al.* 2007). Although these anorogenic events are well documented in the proximal zone of the Araçuaí orogen and in the São Francisco craton, no solid evidence from them were previously found in the high-grade core of the Araçuaí orogen.

This paper focuses on metamafic rocks (amphibolites) and the Córrego Ubá quartzite, spatially associated with the Rhyacian Pocrane complex, located in the high-grade core of the Araçuaí orogen (Fig. 1). Our field, petrographic, lithochemical and geochronological (zircon U-Pb SHRIMP and LA-ICP-MS) studies provide evidence of two distinct Mesoproterozoic taphrogenic events on the Rhyacian basement of the Araçuaí orogen high-grade core. Based on a thorough compilation of the literature, we correlate these data with the main unsuccessful

taphrogenic events that affected the São Francisco-Congo palaeocontinent before the evolution of the Araçuaí orogen.

2. GEOLOGICAL SETTING

The Neoproterozoic Araçuaí orogen together with its counterpart located in Africa, the West Congo belt, evolved during the Brasiliano cycle, one of the tectonic cycles that led to West Gondwana amalgamation.

The focused area covers part of the basement of the high-grade core of the Araçuaí orogen (Fig. 1), where the Ediacaran Rio Doce magmatic arc is an outstanding feature and metamorphic peaks ranges from the amphibolite to granulite facies (Novo *et al.* 2010; Tedeschi *et al.* 2015; Gonçalves *et al.* 2015).

The basement includes gneissic-migmatitic complexes in the amphibolite (e.g., the Pocrane complex; Novo 2013) to granulite facies (e.g., the Juiz de Fora complex; Noce *et al.* 2007). Those complexes formed in response to convergence related to an orogenic Rhyacian-Orosirian event that amalgamated the São Francisco-Congo palaeocontinent (Noce *et al.* 2007; Heilbron *et al.* 2010; Silva *et al.* 2016). After the basement consolidation, the region seems to have experienced a long period without any event of compressive nature (Pedrosa-Soares *et at.* 2001, 2008, 2011; Pedrosa-Soares and Alkmim 2011), until the onset of the Brasiliano orogeny in the Early Ediacaran (Novo *et al.* 2010; Pedrosa-Soares *et al.* 2011; Tedeschi *et al.* 2015).

Figure 1: Tectonic situation of the São Francisco Craton and the neighbor orogens. Ages shown in the map are from: 1) Silveira et al. 2013; 2) Danderfer et al. 2009; 3) Evans et al. 2015; 4) Lobato et al. 2015; 5) Evans et al. 2015; 6) Menezes et al. 2012; 7) Silva et al. 2002; 8) Gonçalves-Dias et al. 2016; 9) Kuchenbecker et al. 2015b; 10) Souza 2016; 11) Castro et al. 2015; 12) Dussin 2016; 13) Kuchenbecker et al. 2015a; 14) Chemale et al. 2012; 15) Peixoto et al. 2015; 16) Dussin & Chemale 2012; 17) Silveira 2016; 18) Rolim et al. 2016; 19) Barrote 2016; 20) This Work; 21) This Work; 22) This Work; 23) Angeli et al. 2004;24) Chaves 2001;

2.1. Pocrane Complex

The Pocrane Complex is mainly composed of TTG orthogneiss with migmatitic portions. *Stricto sensu* amphibolite lenses (Fig. 2) usually occur interlayered in this gneiss (Silva *et al.* 1987; Novo 2013), as sills or tectonic slices. Previously reports on these metamafic rocks (Paes 1999, Silva *et al.* 2002) points out the variability of its genesis. In the avalible geological maps (Tuller 2000; Féboli and Paes 2000; Oliveira 2000) lenses and layers of ultramafic and metasedimentary rocks (e.g. calcissilicatic rock, mica schist, paragneiss, quartzites, marble and paraconglomerate) were described as intercalations in the Pocrane complex orthogneiss. The structural pattern of the metasedimentary layers, delineats a large fold with a plunging axis in the NNE-SSW direction and hinge concavity facing SSW. At first, the avalible geological data suggests that the lithological set (orthogneiss, metamafic and metasedimentary layers) should be a bundle of interpolations of igneous and sedimentary origins, simultaneously folded as a deformed and metamorphosed volcano-sedimentary

sequence. However, the new data present in this paper refuses this theory (of one single volcano-sedimentary association), showing that at least part of the metamafic rocks and the sedimentary strata is younger than the orthogneiss.

Figure 2 - Geological map of the Pocrane Complex and the Córrego Ubá Cross Section showing the field aspects of the Córrego Ubá quartzite and amphibolite lenses. Yellow star marks the sample site location.

2.2. Córrego Ubá quartzite

The Córrego Ubá quartzite occurs as a tectonic slice interlayered in the Pocrane Complex gneiss (Ubá Creek Cross Section in Fig. 2). It is a fine-grained and recrystallized quartzite, that shows three foliation sets, which the main one (S_n) is marked by biotite and muscovite, north-south trend and moderate deep to east. Near tectonic contacts the foliation develops a mylonitic texture. The biotite enrichment confers a strongly folded and crenulated gneiss banding that marks S_{n+1} . A brittle deformation crosscut all the previous structures materializing S_{n+2} . The quartzite is mainly composed by quartz with granoblastic polygonal texture and accessory biotite, muscovite, plagioclase, titanite and zircon.

2.3. Amphibolites lenses

The amphibolites we focus outcrop as thick lenses (Fig. 2) with low lateral continuity (not more than six meters) interlayered with the Pocrane Complex gneiss. They show finegrained and compact aspect, but foliation is visible with a magnifying glass and in thin section, or in partially weathered outcrops. The amphibolite consists of hornblende, plagioclase, biotite, quartz, chlorite, apatite, titanite, zircon and opaque minerals (Fig. 3). Biotite and chlorite are formed by hornblende alteration. Biotite may be more abundant than hornblende. The foliation (Sn) of amphibolites is anastomosed, developed from a progressive deformational phase. Sometimes late ductile shear zones obliterate the foliation. Amphibole crystals and biotite palettes materialize the foliation, and the stretched amphibole crystals commonly form ocellar porphyroclasts, showing pressure shadows and recrystallization tails. Quartz and plagioclase occur as stretched crystals, parallel to the foliation, and may display dynamic recrystallization with subgrains individualization.

Figure 3: Amphibolite microscopic aspects: Sn and Sn+1 foliation outlined by hornblende and biotite, which envelops hornblende porphyroclast.

3. AMPHIBOLITE LITHOCHEMISTRY

3.1. Analytical procedures

The whole-rock lithochemical analyses were conducted on three samples from distinct amphibolite lenses: TN-8A, TN-8B and P2A (Fig. 2). Sample powders were analyzed by Geosol Laboratories in Belo Horizonte/Brazil. Major and trace element contents were determined using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OS/MS) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS), respectively. Detection limits are 0.01% for oxides and 0.1 ppm for most trace elements, reaching values up to 0.01 ppm for Heavy Rare Earth Elements (HREE), such as Tb, Tm and Lu. The lithochemical analyses are available in the Supplementary data file labeled as Lithochemical_Data.

3.2. Results

Whole-rock chemical analyses were performed for major and trace elements of three samples of amphibolite lenses. Although the data are not sufficient for a statistical analysis, the analytical results provide a preliminary approach.

Classification diagrams for the magmatic protoliths of amphibolites indicate tholeiitic gabbro and sub-alkaline compositions, (Fig. 4A, 4B). The Rare Earth Elements (REE) patterns distribution show that samples TN8A and TN8B are markedly different from sample P2A (Fig. 4C). Sample P2A is low fractionated and very little depleted in LREE [(La/Yb)N=0.63], meanwhile Samples TN8A and B are, on the whole, enriched in REE [(La/Yb)N=2.91–7.39]; they show remarkable fractionation, with enrichment of LREE in relation to HREE.

Figure 4: Classification of amphibolite samples in the diagrams: A) TAS (Wilson, 1989 and Xinhua et al. 2000) and alkaline and sub-alkaline diagram (Irvine and Baragar 1971, In Rollinson 1993; B) AFM diagram (Jensen, 1976); C) Chondrite-normalized REE patterns (Taylor and Mclennan 1985) in comparison to some general

patterns - Normalized to Morb-N (Hofmann 1988), Continental Crust and Superior Crust (Weaver and Tarney 1984) and Ocean Island Basalt (OIB; Sun, 1982);

The lithochemistry presented here reflects the differences amphibolites under study. Despite their field and petrographic similarities, their ages are different, as shown below.

4. GEOCHRONOLOGY

Two samples of amphibolites lenses were prepared and analyzed for U–Pb isotopes in the CPGeo, São Paulo University, Brazil, by using the Sensitive High Resolution Ion Microprobe (SHRIMP IIe) equipment. One sample from Córrego Ubá quartzite were prepared and analyzed for U–Pb isotopes by using the Laser Ablasion Multicollector Inductively Coupled Plasma Mass Spectrometry (LAMC-ICP-MS) equipment in the CPGeo, São Paulo University, Brazil.

4.1. Material and Methods

About 20 to 40 kg of each rock sample, as for quartzite and amphibolite, were prepared for analyses in laboratories of the São Paulo University, Brazil. Zircon grains were separated using conventional methods (crushing, grinding, gravimetric and magnetic-Frantz isodynamic separator) and handpicked under binocular microscope. For geochronological analysis of the magmatic rocks and their metamorphic equivalents, we selected zircon crystals from the least magnetic fractions. After mounted in epoxy disks and polished to expose grain centers, backscattered electron (BSE) and cathodoluminescence (CL) images revealed morphological features and internal structures of zircon grains. No analytical spot was performed on grain areas with inclusions, fractures and/or metamict features. Temora (417 Ma; Black et al. 2003) standard zircon was used in SHRIMP and M127 (Klotzli et al. 2009) and Plešovice (Sláma et al. 2008) standard zircons were used in LA-MC-ICP-MS analytical routines. In this study, the spot size in SHRIMP analyzes had 30 µm and 25 µm in LA-MCICP-MS. Data reduction used the SQUID software (Ludwig, 2003) for the SHRIMP data, and Glitter software (Van Achterbergh et al. 2001), and the Excel sheet developed by Ludwig (2003) for the LA-MC-ICPMS data. Data evaluation for each spot took into account the common Pb contents, errors of isotopic ratios, percentages of discordance and Th/U ratios. From the selected spots, only those with discordance lesser than 10% were used to age calculations and plotted in histograms and Concordia diagrams. The Concordia diagram and histograms were obtained with the software Isoplot/Ex (Ludwig, 2003).

Only zircon crystals from the least magnetic fractions were selected from samples P2A and TN-08A (amphibolite lenses that occur interlayered in the Pocrane Complex orthogneiss). For the Córrego Ubá quartzite a number up to 120 detrital grains were randomly picked. Grains were mounted in epoxy disks and polished to expose their centers. Morphological features and internal structures of zircon grains were revealed by backscattered electron (BSE) and cathodoluminescence (CL) images. U–Pb (SHRIMP and LA-MC-ICP-MS) analysis were performed on zircon crystals recovered from the amphibolite lenses (samples P2A and TN-08) in order to obtain igneous crystallization and metamorphic ages. Analysis on detrital zircon grains from sample P2D (Córrego Ubá quartzite) were performed by using U–Pb (LA-MC-ICP-MS) in order to determine maximum depositional ages and sedimentary provenance. The new U-Pb analyses are available in the Supplementary data file labeled as U_Pb_data.

4.2. U–Pb SHRIMP results for the amphibolite lenses (samples TN-08A and P2A)

Two amphibolite lenses were collected for geochronological U-Pb analyses: TN-8A (UTM24S: 206564E/7856556S WGS84) and P2A (UTM24S: 219363E/7841825S WGS84) (Fig. 2).

Sample TN-08A: amphibolite occurring as a decimeter-thick lens, interposed in the Pocrane Complex orthogneiss. It features as a fine-grained and massive rock, being composed of hornblende and plagioclase, quartz, biotite, apatite, titanite and zircon as accessory minerals. Amphibole and biotite mark the regional foliation (Sn). Twenty four zircon grains from sample TN8A were analyzed by U-Pb SHRIMP. Cathodoluminescence images show two different families of zircon grains (Fig. 5). The first one was formed by 2:1 and 3:1 ratio crystals, with preserved igneous features (e.g., 6.1 and 3.1 grains). The second family shows a prismatic proportion of 2:1 grains, with incipient to advanced metamict processes (e.g., 4.1 and 11.1 grains). Grains of the two families present a thin metamorphic overgrowth with high luminescence, which could not be dated due to the small length of its metamorphic edge. Fifteen spots with better analytical consistency result in an upper intercept age of 1529 ± 37 Ma (MSWD = 0.25), interpreted as igneous crystallization age of TN-8A amphibolite igneous protolith (Fig. 5C). The amphibolite metamorphic age was calculated using the data from five spots with good analytical consistency, which resulted in a concordant age of 627 ± 20 Ma (MSWD = 1.6; Fig. 5A). The magmatic crystallization age and metamorphic age presented here for the TN-8A amphibolite are equal (considering the analytical errors) to the values obtained in another amphibolite lens in the nearby area (Bananal site) by Silva et al. (2002).

Figure 5: Ages of sample TN-08A and P-2A; A) Crystallization age of amphibolite magmatic protolith (TN-08A), given by the upper intercept Wetherill diagram, and cathodoluminescence images of analyzed grains; B) All zircons concordia diagram of sample TN-08A; C) Metamorphic concordant age and cathodoluminescence images of analyzed grains (spot size = $30 \ \mu m$) from sample TN-08A; D) Concordia age for igneous crystallization of P2A amphibolite protolith, and cathodoluminescence images of analyzed grain (spot size = $30 \ \mu m$).

Sample P2A: meter thick boudin of amphibolite interleaved in the Pocrane Complex orthogneiss. It features a fine-grained and massive rock, but with quite a distinct foliation. It consists of amphibole, plagioclase and quartz; apatite, titanite and zircon are accessory minerals. For the P2A sample, eight zircon grains were analyzed with U-Pb SHRIMP. Cathodoluminescence images show zircon grains composed of equidimensional prisms, with a high luminescence metamorphic overgrowth, which cannot be analyzed due to their small size (Fig. 5D). The U and Th contents of the analyzed spots are compatible with magmatic rocks. Four measures with good analytical consistency were selected for the construction of the Wetherill diagram, which provides the concordant age of 1096 ± 20 Ma (MSWD = 3), considering the time of igneous crystallization of the amphibolite protolith (Fig. 5D). The sample also features four inherited zircon grains, which indicate Rhyacian, Statherian and

Calymmian inheritance. The Rhyacian heritage relates to the Pocrane Complex, host rock of the P2A amphibolite. Statherian heritage relates to magmatism associated with the Juiz de Fora Complex (Duarte *et al.* 2003 Heilbron *et al.* 2010). Calymmian heritage relates to the mafic magmatism represented by amphibolites co-genetic to sample TN-8 (this paper) and Bananal (Silva *et al.* 2002).

4.3. Detrital zircon U–Pb data

The 90 analyzed grains from sample P2D (219.592E/7.841.790N, UTM24S WGS84) – Córrego Ubá quartzite – are prismatic, short to elongated, generally showing rounded terminations and a maximum length of 300 μ m. Some grains are pyramidal with a rounded core (Fig. 6). After data reduction, 87 spots could be used for age calculations. Representing 35% of analyzed zircon grains, the statistic peak around 1176 ± 21 Ma encompasses the youngest grains of the sample (Fig. 7), which represents a younger component of the source, thus constraining the maximum depositional age of the Córrego Ubá quatzite. Furthermore, the youngest concordant grain dated show an age of 995 ± 66 Ma. This youngest and most important population includes rounded grains and some euhedral to subhedral crystals with well-rounded shapes (examples shown in Fig. 6). Other significant sources of the P2A quartzite are indicated by age peaks at 1371 ± 30 Ma (18%) and 1536 ± 22 Ma (19%). Minor Paleoproterozoic ages point to sources around 1803 Ma and 1977 Ma (Fig. 8). It worth mention the complete absence of Ediacaran to Ordovician sources and the lack of ages older than Orosirian period.

Figure 6: Cathodoluminescence (CL) images of representative zircon grains from the Córrego Ubá quartzite (sample P2D).

5. DISCUSSIONS

The history of the continental drift alternates long fragmentation periods with short agglutination intervals (Nance *et al.* 1988 Murphy and Nance 1992). Hence, one of the products of Rhyacian-Orosirian Orogeny would have been a paleocontinent that brought together inherited parts of the São Francisco and Congo cratons and the Araçuaí-West Congo Orogen basement (Atlantica paleocontinent; Rogers 1996, Rogers and Santosh 2004). Afterward, over a period of about 1.5 Ga (interval between the Rhyacian and Ediacaran orogenies), this paleocontinent region was spared of orogenic events with compressive nature. However, on the other hand, it experienced several tafrogenic episodes revealed by magmatism and sedimentation periods (Pedrosa-Soares and Alkmim 2011). The new data presented in this study characterize the Córrego Ubá Quartzite and amphibolite lenses as evidence of taphrogenic events tectonically interlayered in the Pocrane complex. These signs improve the knowledge about the Calymmian and Stenian episodes as unsuccessful fragmentation attempts of São Francisco-Congo paleocontinent now described in the metamorphic, highly deformed orogenic core.

The Calymmian distensive event marks one of the oldest taphrogenic episodes ever recorded in the region of Araçuaí-West Congo Orogen (the oldest is the Statherian event). Despite being regarded as part of the Espinhaço-Chapada Diamantina System (Danderfer et al. 2009; Babinski et al. 1994, 2012; Chemale-Júnior et al. 2012; Silveira et al. 2013; Guadagnin et al. 2016), there is only one reference to this event in the Araçuaí Orogen metamorphic core (U-Pb age by Silva et al. 2002). The new data from this paper displays a tholeiitic composition amphibolite with crystallization age at 1529 ± 37 Ma. Its REE pattern is similar to the basic magmatism related to continental rifting or continental plateau basalt. These features suggest that this amphibolite sample represents basic magmatism related to continental rift during the Calymmian times. Reports of this approximately 1.5 Ga distensive event are common in São Francisco-Congo Craton region (Medium Espinhaço from Chemale et al. 2012 and Event 2 from Pedrosa-Soares and Alkmim 2011) as well as around the globe (Bingen et al. 2005; Bingen et al. 2008; Zhao et al. 2004; Ernst et al. 2000; Ernst et al. 2008; Wingate et al. 2009). The discovery of ca. 1.5 Ga intrusion in the reworked Araçuaí Orogen terrain is a major step to a more complete barcode record in the São Francisco-Congo Paleocontinent, which can be used in future paleo-continental reconstructions.

The Stenian episode is well portrayed in several studies and thereby records a wide extension event (Tack *et al.* 2001; Tupinambá *et al.* 2007; Vicat and Pouclet 1995; Silveira *et al.* 2013). The sample P2A amphibolite from this work presents crystallization age of 1096 ± 20 Ma and a tholeiitic gabbro composition. REE pattern correlated with advanced stage of magmatism relating to a continental rift, which confirms the tectonic environment discriminant graphics, with plots in the continental intraplate basalt fields. These features suggest that the P2A amphibolite represents basic magmatism related to a Stenian continental rift. Castro *et al.* (2015) portrait similar U-Pb ages for amphibolites lenses that occurs in the neighborhood region. Angeli *et al.* (2004) described ultramafic rocks associated with this rift system, supporting the idea of continuous crustal thinning in the region during Stenian times. Therefore, considering this mafic-ultramafic sequence, intrusive into the continental crust, the geodynamic setting should be related to specific stages in the evolution of the São Francisco-Congo Craton.

The Córrego Ubá quartzite represents the basin formed during the abovementioned Stenian event, partially preserved in the Araçuaí-West Congo orogen metamorphic core. The U-Pb geochronology study of the Córrego Ubá quartzite provide important hints for its geotectonic and palaeogeographic interpretations. The results indicate that great part of the sedimentary supply should have come from secondary sources, located both in the São Francisco and Congo cratonic counterparts. The oldest intervals reveals contribution from Rhyacian to Stenian sources and the absence of pre 2.05 Ga zircon grains discard São Francisco and Congo cratons basement complexes. Also requires a younger source with no inheritance, which may correspond mainly to Juiz de Fora and Pocrane basement complexes from Araçuaí-West Congo orogen (Novo, 2013; Teixeira *et al.* 2000, Silva *et al.* 2002, Barbosa and Sabaté 2004, Noce *et al.* 2007). Correspondingly, the source of this interval could also be associated to rift related granites (e.g. Borrachudos Suite). The Statherian to Cambrian peaks indicate reworked sources from the Bomba Formation and Middle Espinhaço Supergroup (Danderfer *et al.* 2009, Pedrosa-Soares and Alkmim 2011, Chemale *et al.* 2012, Guadagnin *et al.* 2016). Statistical analyses point out a maximum age of deposition for the psamitic sediment limited by 1176 \pm 21 Ma. However, the youngest concordant grain dated show an age of 995 \pm 66 Ma, suggesting at the Tonian-Stenian limit.

Figure 8 shows a comparison of the detrital zircon age spectra of the Córrego Ubá quartzite with plausible primary and secondary sources from the São Francisco-Congo craton neighboring areas. Regardless of the lack of data from the Upper Espinhaço (0,9 to 1,2 Ga; Chemale *et al.* 2012), those units show significant similitude with Córrego Ubá quartzite spectra. Despite some differences, like the relative abundance of Archean zircon grains in the continental rift stages units of the Upper Espinhaço, the Córrego Ubá quartzite age spectra features great similarity to the age spectra of those units (Fig. 7 and 8A). The Córrego Ubá quartzite has no Cryogenian or Ediacaran zircons, but, instead, shows patterns that are more similar to a rift arrangement. The Córrego Ubá quartzite is then not correlative with other sedimentary successions of the Araçuaí orogen metamorphic core (*e.g.* Rio Doce Group and Nova Venécia Complex - Vieira 2007, Gradim *et al.* 2014). However, instead, probably represents a chronostratigraphic equivalent of the Upper Espinhaço Basin (Chemale *et al.* 2012), an extension of the passive margin sediments that formed in an intraplate setting.

Surprisingly, comparing with data from the western sector of the Araçuaí orogen and São Francisco craton, it is noteworthy that no igneous zircon from the three samples yielded an age older than early Orosirian (~2.05 Ga) showing age spectra essentially limited in the range of ca. 1 - 2 Ga; *i.e.*, younger than the Late Rhyacian orogeny that amalgamated the basement, and older than the main anorogenic event (930-870 Ma) associated with the Early Tonian precursor basin of AWCO. Therefore, it is possible to suggest that the Córrego Ubá

quartzite could represent a restrict basin, confined in a juvenile basement like the Pocrane and Juiz de Fora complexes.

During early Mesoproterozoic to late Neoproterozoic the development of a continental rift sequence and the continued thinning of the lithosphere eventually led to plate separation and creation of a true oceanic crust (Santo Antônio do Grama Suit; Queiroga *et al.* 2006, 2007, Fig. 8B), extending to ca. 660 Ma. This basin evolved from a continental rift system surrounded by the São Francisco-Congo Paleocontinent, to an inland-sea basin (a gulf) partially floored by ocean crust (Pedrosa-Soares et al. 2011; Alkmim et al. 2006; Queiroga et al. 2007; Peixoto et al. 2015). In the Ediacaran Period, the pre-collisional Rio Doce magmatic arc marked the onset of a subduction-related convergent stage followed by regional deformation and metamorphism in the collisional stage, that provide intense tectonism, basin inversion and obduction of oceanic crust slices (Queiroga *et al.* 2006, 2007; Tupinamba *et al.* 2007, Fig. 8C and 8D).

(Ma) Figure 7 - Ages of main extensional events in the São Francisco-Congo craton and Araçuaí and West Congo orogen . References: 1) Kuchenbecker et al. 2015a; 2) Gonçalves-Dias et al. 2011; 3) Gonçalves-Dias et al. 2016; 4) This work; 5) Chemale et al. 2012; Mantiqueira, Juiz de Fora and Pocrane complexes data from Silva et al. 2016.

From a global tectonic standpoint, the Córrego Ubá quartzite and the mafic intrusives of the Pocrane complex might be correlated to the extensional processes that led to the fragmentation of a supercontinent (Atlantica). It also could marks the dismembering of the São Francisco-Congo paleocontinent, which was later amalgamated with other blocks in the Gondwana Supercontinent during the Brasiliano/Pan-African Orogeny (Tedeschi *et al.* 2015; Gonçalves *et al.* 2015; Pedrosa-Soares *et al.* 1998, 2007; Alkmim *et al.* 2006, 2007; Brito Neves *et al.* 2001; Tack *et al.* 2001; Vicat and Pouclet 1995).

Figure 8: Tectonic model for the Mesoproterozoic-Neoproterozoic taphrogenic events and Ediacaran orogenic event in the Rio Doce Arc region, Araçuaí Orogen. (1) João Pinto Formation (Rio Doce Group), Novo 2013; (2) Palmital do Sul Formation (Rio Doce Group), Novo 2013; (3) Macaúbas Group, Kuchenbecker et al. 2015b; (4) Jequitinhonha Complex, Gonçalves-Dias et al. 2011; (5) Jequitinhonha Complex, Gonçalves-Dias et al. 2016; (6) This Work; (7) São João da Chapada Formation, Chemale et al. 2012; (8) Bandeirinhas Formation, Chemale et al. 2012.

6. CONCLUSION

The mafic intrusions from southeastern Brazil characterize important regional geological events in the São Francisco-Congo craton and its surrounding Neoproterozoic

mobile belts. The amphibolite lenses are interpreted as mafic intrusions, related to the Calymmian and Stenian rifting stages. They might also correlate to the extensional events that led to the break-up and dispersion of a Paleoproterozoic supercontinent, and thus relate to the mafic dike swarms and other intusions throughout the São Francisco-Congo paleocontinent and surrounding areas (Fig. 1, 7 and 8A). The intrusions infer continued lithospheric thinning with associated volcanism. The amphibolite lenses thus provide a benchmark for the onset of the Calymmian and Stenian continental rifting in this area, and set an important marker for the registration of Atlantica breakup and dispersion processes in South America.

The Córrego Ubá quartzite show detrital zircon U-Pb age spectra indicating sources limited in the range of ca. 1 - 2 Ga, with complete absence of Cryogenian-Ediacaran peak, excluding sources related to the Brasiliano cycle. Therefore, it cannot be associated to other metasediments units of the Araçuaí orogen metamorphic core, like Rio Doce Group. Additionally the detrital zircon age spectra of the Córrego Ubá quartzite display great similarity to continental rift related units. Thus, it represents one of the several unsuccessful fragmentation attempts of São Francisco-Congo paleocontinent, deposited in a restrict basin, probably during Stenian times. It can be associated with the Tonian extensional tectonism at the São Francisco-Congo Craton area. This is the first time that such kind of basin is described in Araçuaí-West Congo orogen reworked metamorphic core.

All together, these continental taphrogenic events testify the several unsuccessful fragmentation attempts that affected the long-lived São Francisco-Congo palaeocontinent, which remained preserved from a complete break-up associated with ocean spreading from the Early Orosirian to the Atlantic opening in Cretaceous time.

7. ACKNOWLEDGMENTS

The authors are grateful to the Brazilian research and development agencies (CNPq, CAPES, CODEMIG, CPRM, Petrobras) for financial support; to technical staffs of the geochronological laboratories of São Paulo University, for isotopic analyses.

CONSIDERAÇÕES FINAIS

Localizada no domínio interno do Orógeno Araçuaí, a região estudada abrange rochas de natureza distinta que foram retrabalhadas durante a orogenia brasiliana. Dentre elas estão rochas metamáficas, metaultramáficas, metassedimentares e granitoides diversos que geralmente aparecem como lascas tectônicas intercaladas com o embasamento gnáissico. O principal objetivo deste trabalho foi a caracterização e a interpretação geotectônica destas rochas nas proximidades dos municípios de Pocrane e Durandé.

Os estudos mostraram que, apesar de serem genericamente denominados, ora de Grupo Andrelândia ora de Grupo Rio Doce, existe uma complexidade geológica muito grande na natureza e continuidade espacial dos pacotes e unidades metassedimentares. Como apresentado no Capítulo 3, os dados geocronológicos de níveis quartzíticos intercaladas no Complexo Pocrane apontam para sedimentos de uma bacia continental do tipo rifte peculiarmente restrita. Esta pertenceria aos vários ciclos de bacia do tipo rifte do paleocontinente São Francisco-Congo ocorridos entre os períodos Estateriano e Toniano. Estes são bastante descritos nas porções mais externas do Orógeno Araçuaí, como por exemplo, Supergrupo Espinhaço. Porém esta é a primeira vez que este sistema de bacias é documentado nos seus domínios internos do Orógeno Araçuaí.

As lentes anfibolíticas também documentadas no Capítulo 3 representam intrusões máficas ligadas aos eventos magmatismo anorogênico do paleocontinente São Francisco-Congo. Os dados apontam dois eventos ígneos distintos, um de idade caliminiana que é cronocorrelato com os diques máfico do Sistema Espinhaço-Cahpada Diamantina; o outro retrata o magmatismo máfico Esteniano. Por mais que não se tenha feito estudos geocronológicos no corpo metaultramafico Vista Alegre (ver Capítulo 2), este também representa um dos eventos extensionais ocorridos no paleocontinente São Francisco-Congo.

Juntas, as rochas estudadas neste trabalho atestam os vários eventos tafrogênicos ocorridos no paleocontinente São Francisco-Congo como representado no bloco diagrama abaixo. No ponto de vista geotectônico global estas rochas representam os processos que levariam a fragmentação de um supercontinente (*e.g.* Atlântica, Columbia).

REFERÊNCIAS

- Alkmim F.F., Marshak S., Pedrosa-Soares A.C., Peres G.G., Cruz S.C.P., Whittington A. 2006. Kinematic evolution of the Araçuaí–West Congo orogen in Brazil and Africa: Nutcracker tectonics during the Neoproterozoic assembly of Gondwana. *Precambrian Research*, 149:43-63.
- Alkmim F.F., Pedrosa-Soares A.C., Noce C.M., Cruz S.C.P. 2007. Sobre a Evolução Tectônica do Orógeno Araçuaí-Congo Ocidental. *Geonomos*, 15:25-43.
- Angeli N., Fleer M.E., Thibault Y., Candia M.A.F. 2001. Metamorphism and PGE-Au content of chromitite from the Ipanema mafic/ultramafic Complex, Minas Gerais, Brazil. *Mineralogy and Petrology*, **71**:173-194.
- Angeli N., Penha C., Knauer L.G., Ito G.M. 2011. The Rio Mata Cavalo group: the gold mineralization and its origin. *Geociências*, 30:301-310.
- Angeli N., Teixeira W., Heaman L., Fleet M. E., Moore M., Sato K.. 2004. Geochronology of the Ipanema Layered Mafic-Ultramafic Complex, Minas Gerais, Brazil: evidence of extension at the Meso-Neoproterozoic time boundary. *International Geology Review*, 46(8):730-744.
- Arai S. 1994a. Characterization of spinel peridotites by olivineespinel compositional relationships; review and interpretation. *Chemical Geology*, 113:191-204.
- Arai S. 1994b. Compositional variation of olivine chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites. *Journal of Volcanology and Geothermal Research*, **59**:279-293.
- Babinski M., Pedreira A., Brito-Neves B.B., Van Schmus W.R. 1999. Contribuição à geocronologia da Chapada Diamantina. In: SBG, 7º Simpósio Nacacional Estudos Tectônicos, Anais, p. 118-120.
- Babinski M., Pedrosa-Soares A.C., Trindade R.I.F., Martins M., Noce C.M., Liu D. 2012. Neoproterozoic glacial deposits from the Araçuaí orogen, Brazil: Age, provenance and correlations with the São Francisco craton and West Congo belt. Gondwana Research, 21:451-465.
- Babinski M., Van Schmus W.R., Chemale Jr. F., Brito Neves B.B., Rocha A.J.D. 1993. Idade isocrônica Pb/Pb em rochas carbonáticas da Formação Caboclo, em Morro do Chapéu, BA. 2º Simpósio sobre o Cráton do São Francisco, Salvador, *Anais*, p. 160–163.
- Barbosa J.S.F. and Sabaté P. 2004. Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: geodynamic features. *Precambrian Res.*, **133**:1-27.
- Barnes S. and Roeder P., 2001. The range of spinel composition in terrestrial mafic and ultramafic rocks. *Journal of Petrology*, **42**(12):2279-2302.
- Barnes S.J. 2000. Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. J. Petrol., 41:387–409.
- Barra F., Rabbia O.M., Alfaro G., Miller H., Höfer C., Kraus S. 1998. Serpentinitas y cromititas de La Cabaña, Cordillera de la Costa, Chile central. *Revista Geológica de Chile*, **25**(1):29-44.
- Barrote V.R., 2016. A sequencia Portadora de Formações ferríferas de Guanhães, Minas Gerias, Brasil. MS Dissertation, Instituto de Geociências, Universidade Federal de Minas Gerais, Belo Horizonte, 103 p.
- Battilani G.A., Vasconcelos P.M., Gomes N.S., Guerra W.J. 2005. Geochronological data of dykes and sills intruding Proterozoic sequences of the Tombador Formation, Bahia — Brazil. 3° Simpósio do Cráton do São Francisco, Salvador, *Short Papers*, v. 1, p. 139–142.
- Bingen B., Andersson J., Söderlund U., Möller C., 2008. The Mesoproterozoic in the Nordic countries. *Episodes*, **31**(1):1-6.
- Bingen B., Skar O., Marker M., Sigmond E.M.O., Nordgulen O., Ragnhildstveit J., Mansfeld J., Tucker R.D., Liégeois J.P. 2005. Timing of continental building in the Sveconorwegian orogen, SW Scandinavia. *Norwegian Journal of Geology*, 85:87–116.
- Black L.P., Kamo, S.L., Allen C.M., Aleinikoff J.N., Davis D.W., Korsch R.J., Foudoulis C. 2003. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. *Chem. Geol.*, **200**:155-170.
- Bliss N. and MacLean W. 1975. The paragenesis of zoned chromite from central Manitoba. *Geochimica et Cosmochimica Acta*, **39**:973-990.
- Bouligand C., Cautant O., Glen J.M.G. 2016. Sub-surface structure of La Soufrière of Guadeloupe lava dome deduced from a ground-based magnetic survey. *Journal of Volcanology and Geothermal Research*, 321:171-181.
- Brito Neves B.B., Sato K. 2001. Marcos cronogeológicos da evolução do embasamento pré-Ordoviciano da Plataforma Sul-Americana-avaliação para o final do ano 2000. Estudos Geológicos-Série B Estudos e Pesquisas, Recife-UFPE, 11:1-25.
- Cabanis B., Lecolle M. 1989. The La/10-Y/15-Nb/8 diagram; a tool for distinguishing volcanic series and discovering crustal mixing and/or contamination. *Comptes Rendus de l'Academie des Sciences*, **309**:2023-2029.

- Campanha G.A.C, Basei M.S., Faleiros F.M., Nutman A.P. 2016. The Mesoproterozoic to early Neoproterozoic passive margin Lajeado Group and Apiaí Gabbro, Southeastern Brazil. *Geoscience Frontiers*, 7:683-694.
- Campos C.M., Mendes J.C., Ludka I.P., Medeiros S.R., Moura J.C., Wallfass C. 2004. A review of the Brasiliano magmatism in southern Espírito Santo, Brazil, with emphasis on postcollisional magmatism. *Journal of the Virtual Explorer*, 17: 1-35.
- Carvalho, A. de S. 1981. *Geologia e gênese das mineralizações de quartzo no Espinhaço Meridional, MG. –* MS Dissertation, UnB, Brasília, 52 p.
- Castro M., Queiroga G., Martins M., Pedrosa-Soares A.C., Dussin I., Alkmim F. 2015. A Formação Capelinha e seu magmatismo: registro de uma das primeiras tentativas de quebra do Paleocontinente São Francisco-Congo no Orógeno Araçuaí. XV Simpósio Nacional de Estudos Tectônicos - IX International Symposium on Tectonics.
- Cawood P.A., Hawkesworth C.J., Dhuime B. 2012. Detrital zircon record and tec-tonic setting. *Geology*, **40**(10):875–878.
- Caxito F.A., Dantas E.L., Stevenson R., Uhlein A. 2014. Detrital zircon (U–Pb) and Sm–Nd isotope studies of the provenance and tectonic setting of basins related to collisional orogens: The case of the Rio Preto fold belt on the northwest São Francisco Craton margin, NE Brazil. *Gondwana Research*, 26:741-754.
- Chaves A.O. 2001. Enxames de diques máficos do setor sul do Cráton do São Francisco (MG, Brasil). PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 153 p.
- Chemale Jr. F., Dussin I., Alkmim F., Martins M.S., Queiroga G., Armstrong R., Santos M. 2012. Unravelling a Proterozoic basin history through detrital zircon geochronology: The case of the Espinhaço Supergroup, Minas Gerais, Brazil. *Gondwana Research*, 22:200-206.
- Cordani U.G., Coutinho J.M.V., Nutman A.P. 2002. Geochronological constrains on the evolution of the Embu Complex, São Paulo, Brasil. *Journal of South American Earth Sciences*, **14**:903-910.
- Cordani U.G., Iyer S.S., Taylor P.N., Kawashita K., Sato K., McReath I. 1992. Pb-Pb, Rb-Sr, and K-Ar systematic of the Lagoa Real uranium province (south-central Bahia, Brazil) and the espinhaço Cycle (ca. 1.5-1.0 Ga). *Journal of South American earth Sciences*, **1**:33-46.
- Correa Gomes L.C. and Oliveira E.P. 2000. Radiating 1.0 Ga mafic dyke swarms of eastern Brazil and western Africa: evidence of post-assembly extension in the Rodinia supercontinent? *Gondwana Research*, **3**(3):325–332.
- Danderfer A., Waele B., Pedreira A.J., Nalini H. A. 2009. New geochronological constraints on the geological evolution of Espinhaço basin within the São Francisco Craton Brazil. *Precambrian Research*, **170**:116-128.
- Danderfer A., Lana C.C., Nalini Júnior H.A., Costa A.F.O. 2015. Constraints on the Sthatherian evolution of the intraplate rifting in a Paleo-Mesoproterozoic paleocontinent: New stratigraphic and geochronology record from the eastern São Francisco craton. *Gondwana Research*, 28:668-688.
- De Freitas Suita M.T. and Strieder A.J. 1996. Cr-spinels from Brazilian mafic–ultramafic complexes: Metamorphic modifications. Int. Geol. Rev., 38:245–267.
- Deluca and Fonte-Boa 2014. Mapeamento Geológico da Região de Santana do Manhuaçu, MG. Trabalho de Conclusão de Curso, Instituto de Geociências, Universidade Federal de Minas Gerais, 71 p.
- Dias P.H.A., Noce C.M., Pedrosa-Soares A.C., Seer H.J., Dussin I.A., Valeriano C.M., Kuchenbecker M. 2011. O Grupo Ibiá (Faixa Brasília Meridional): evidências isitópicas Sm-Nd e U-Pb de bacia collisional tipo flysch. *Geonomos*, 19(2):90-99.
- Droop G.T.R. 1987. A general equation for estimating Fe³⁺ in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. *Min. Mag.*, **51**:431-435.
- Drüppel K., Littmann S., Romer R.L., Okrusch M. 2007. Petrology and isotopic geochemistry of the Mesoproterozoic anorthosite and related rocks of the Kunene Intrusive Complex, NW Namibia. *Precambrian Research*, 156:1–31.
- Duarte B.P., Heilbron M., Valladares C., Nogueira J.R., Tupinambá M., Eirado L.G., Almeida J.C., Almeida G.C. 2003. *Geologia das Folhas Juiz de Fora e Chiador*. In: A.C. Pedrosa Soares, C.M. Noce, R. Trouw, M. Heilbron (coord.). Projeto Sul de Minas, Belo Horizonte, COMIG/SEME, v. 1, cap. 6, p. 153-258.
- Duffles P., Trouw R.A.J., Mendes J.C., Gerdes A., Vinagre R. 2016. U–Pb age of detrital zircon from the Embu sequence, Ribeira belt, Se Brazil. *Precambrian Research*, **278**:69-86.
- Dussin I.A. and Chemale F. Jr. 2012. Geologia Estrutural e Estratigrafia do Sistema Espinhaço-Chapada Diamantina e sua aplicação nas Bacias Mezocenozóicas da Margem Passiva Brasileira, 1, Belo Horizonte, Particular, 218 p.
- Dussin, I.A. 2016. Geocronologia U-Pb e Lu-Hf, em zircão detrítico, aplicada a uma bacia proterozoica. exemplo: evolução sedimentar e tectônica da bacia espinhaço – setor meridional-MG. Thesis. Universidade Estadual do Rio de Janeiro, 117p.

- Ellis R. 2015. Quantitative Analysis of MVI, ASEG-PESA 2015 24th International Geophysical Conference and Exhibition, Perth, Australia.
- Ernest R.E., Buchan K.L., Hamilton M.A., Okrugin A.V., Tomshin M.D. 2000. Integrated paleomagnetism and U–Pb geochronology of mafic dikes of the Eastern Anabar Shield Region, Siberia: implications for the Mesoproterozoic paleolatitude of Siberia and comparison with Laurentia. *Journal of Geology*, 108:381– 401.
- Ernest R.E., Pereira E., Hamilton M.A., Pisarevsky S.A., Rodrigues J., Tassinari C.C.G., Teixeira W., Van-Dunem V. 2013. Mesoproterozoic intraplate magmatic 'barcode' record of the Angola portion of the Congo Craton: Newly dated magmatic events at 1505 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions. *Precambrian Research*, 230:103-118.
- Ernest R.E., Wingate M.T.D., Buchan K.L., Li Z.X. 2008. Global record of 1600–700 Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. *Precambrian Research*, **160**:159–178.
- Evans B. and Frost B. 1975. Chrome spinel in progressive metamorphism: a preliminary analysis. *Geochimica et Cosmochimica Acta*, **39**:379-414.
- Evans D.A.D., Trindade R.I.F., Catelani E.L., D'agrella-Filho M.S., Heaman L.M., Oliveira E.P., Soderlund U., Ernest R.E., Smirnov A.V., Salminen J.M. 2015 Return to Rodinia? Moderate to high palaeolatitude of the Sõ Frnacisco/Congo craton at 920 Ma. In: Supercontinent Cycles Through Earth History Geological Society, London, Sepecial Publications, 424 p.
- Falci, A. 2016. Proveniência sedimentar e ambientes tectônicos do Grupo Araxá em sua área tipo baseado em dados U-Pb de zircões detríticos, Sm-Nd e ⁸⁷Sr/⁸⁶Sr Implicações para a evolução da porção meridional do Orógeno Brasília durante o Neoproterozóico. MS Dissertation, Instituto de Geociências, Universidade Federal de Minas Gerais, Belo Horizonte 112 p.
- Féboli and Paes 2000. Projeto Leste-MG. Folha Itanhomi (SE.24-Y-C-I), Belo Horizonte, SEME/COMIG/CPRM, escala 1:100.000.
- Fernandez-Alonso M., Cutten H., De Waele B., Tack L., Tahon A., Baudet D., Barrit S.D. 2012. The Mesoproterozoic Karagwe–Ankole Belt (formerly the NE Kibara Belt): the result of prolonged extensional intracratonic basin development punctuated by two short-lived far-field compressional events. *Precambrian Research*, 216–219:63–86.
- Ferrario A.; Garuti G. 1988. Platinum-group minerals in chromite-rich horizons of the Niquelandia Complex (Central Goias, Brazil). In Geo-Platinum 87; Prichard, H.M., Potts, P.J., Bowels, J.F.W., Cribb, S.J., Eds.; Springer: Berlin, Germany, pp. 261–272.
- Fogaça A.C.C., Almeida Abreu P.A., Schorscher H.D. 1984. Estratigrafia da seqüência supracrustal arqueana na porção mediana central da Serra do Espinhaço, MG. 33. Congr. Bras. Geol., *Anais*, v. 6, p. 2652-2667.
- Frreira Filho C.F., Pimentel M.M., Araujo S.M., Laux J.H. 2010. Layered intrusions and volcanic sequences in Central Brazil: Geological and geochronological constraints for Mesoproterozoic (1.25 Ga) and Neoproterozoic (0.79 Ga) igneous associations. *Precambrian Research*, 183:617-634.
- Gonçalves L., Alkmim F., Pedrosa-Soares A.C., Dussin I.A., Valeriano C.M., Lana C., Tedeschi M.F., 2015. Granites of the intracontinental termination of a magmatic arc: an example from the Ediacaran Araçuaí Orogen, Southeastern Brazil. *Gondwana Res.*, 36:439–458.
- Gonçalves-Dias T., Caxito F., Pedrosa-Soares A., Stevenson R., Dussin D., Silva L.C., Alkmim F., Pimentel M., 2016. Age, provenance and tectonic setting of the high-grade Jequitinhonha Complex, Araçuaí Orogen, eastern Brazil. *Brazilian Journal of Geology*, **46**(2):199-219.
- Gonçalves-Dias T., Pedrosa-Soares A.C., Dussin I.A., Alkmim F.F., Caxito F.A., Silva L.C., Noce C.M. 2011. Idade máxima de sedimentação e proveniência do Complexo Jequitinhonha na áreatipo (Orógeno Araçuaí): primeiros dados U–Pb (LA-ICP-MS) de grãos detríticos de zircão. *Geonomos*, 19(2):121-130.
- Gradin C., Roncato J., Pedrosa-Soares A.C., Cordani U., Dussin I., Alkmim F., Queriroga G., Jacobsohn T., Silva L.C., Babinski M. 2014. The hot back-arc zone of the Araçuaí orogen, Eastern Brazil: from sedimentation to granite generation. *Braz. J. Geol.*, 44:155e180.
- Guadagnin F. and Chemale Jr. F. 2015. Detrital zircon record of the Paleoproterozoic to Mesoproterozoic cratonic basins in the São Francisco Craton. *Journal of South American Earth Sciences*, **60**:104-116.
- Guadagnin F., Chemale Jr. F., Magalhães J., Santana A., Dussin I., Takehara L. 2015. Age constraints on crystaltuff from the Espinhaço supergroup - insight into the Paleoproterozoic to Mesoproterozoic intracratonic basin cycles of the Congo-São Francisco Craton. *Gondwana Res.*, 27:363-376.
- Guimarães I.P., Van Schmus W.R., Brito Neves B.B., Bittar S.M., Silva Filho A.F., Armstrong R. 2012. U Pb zircon ages of orthogneisses and supracrustal rocks of the Cariris Velhos belt: onset of Neoproterozoic rifting in the Borborema Province, NE Brazil. *Precambrian Res.*, 192-195:52-77.
- Guimarães J.T., Teixeira L.R., Silva M.G., Martins A.A.M., Filho E.L.A., Loureiro H.S.C. Arcanjo, J.B., Souza J.D., Neves J.P., Mascarenhas J.F., Melo R.C., Bento, R.V. 2005. Datações U–Pb em rochas magmáticas intrusivas no Complexo Paramirim e no Rifte Espinhaço: uma contribuição ao estudo da evolução

geocronológica da Chapada Diamantina. 3º Simpósio sobre o Cráton do São Francisco, *Short Papers*, Salvador, pp. 159–161.

- Hansen L.D., Dipple G.M., Gordon T.M., Kellett D.A. 2005. Carbonated Serpentinite (Listwanite) at Atlin, British Columbia: A geological analogue to carbon dioxide sequestration. *The Canadian Mineralogist*, 43:225-239.
- Hartmann L. and Chemale F. 2003. Mid amphibolite facies metamorphism of harzburgites in the Neoproterozoic Cerro Mantiqueiras Ophiolite, southernmost Brazil. Anais da Academia Brasileira de Ciencias, 75(1):109-128.
- Heaman L. 1991. U-Pb dating of giant radiating dyke swarms: potential for global correlation of mafic events. In: Intern. Symp. on mafic dykes, São Paulo, *Ext. Abst.*, p. 7-9.
- Heilbron M. and Machado N. 2003. Timing of terrane accretion in the Neoproterozoic-Eopaleozoic Ribeira orogeny (SE Brazil). Precambrian Res., 125(1-2):87-112.
- Heilbron M., Duarte B., Valeriano C., Simonetti A., Machado N., Nogueira J. 2010. Evolution of reworked Paleoproterozoic basement rocks within the Ribeira belt (Neoproterozoic), SE-Brazil, based on U Pb geochronology: Implications for paleogeographic reconstructions of the São Francisco-Congo paleocontinent. *Precambrian Research*, **178**:136-148.
- Henrique-Pinto R., Janasi V.A., Vasconcellos A.C.B.C., Sawyer E.W., Barnes, S.-J., Basei M.A.S., Tassinari C.C.G. 2015. Zircon provenance in meta-sandstones of the São Roque Domain: implications for the Proterozoic evolution of the Ribeira Belt, SE, Brazil. *Precambr. Res.*, 256:271–288.

Hofmann A.W. 1988. Earth Planet. Sci. Lett., 90:297-314.

- Irvine T. 1965. Chromian spinel as a petrogenetic indicator. Part 1. Theory. *Canadian Journal of Earth Sciences*, 2:648-671.
- Irvine T. 1967. Chromian spinel as a petrogenetic indicator. Part 2. Petrologic applications. *Canadian Journal of Earth Sciences*, **4**:71-103.
- Jardim de Sá E.F., McReath I., Brito Neves B.B., Bartels R.L. 1976. Novos dados geocronológicos sobre o Craton São Francisco no Estado da Bahia. Anais, 29º Congresso Brasileiro de Geologia, Ouro Preto, *Anais*, v. 4, p. 185-204.
- Jensen L.S. 1976. A new cation plot for classifying subalkalic volcanic rocks. Ontario Div. Mines. Misc. Pap. 66.
- José, G.L. e Costa, Silva, L.M.C. 1995. *Geofísica de Prospecção*, Ed. Universidade Federal do Pará, Belém, 311p.
- Klötzli U., Klötzli E., Günes Z., Košler J. 2009. Accuracy of Laser Ablation U-Pb Zircon Dating: Results from a Test Using Five Different Reference Zircons. Geostandards And *Geoanalytical Research*, 33:5–15.
- Kokonyangi J., Armstrong R.A., Kampunzu A.B., Yoshida M., Okudaira T. 2004. U–Pb zircon geochronology and petrology of granitoids from Mitwaba (Katanga, Congo): implications for the evolution of the Mesoproterozoic Kibaran belt. *Precambrian Research*, **132**:79–106.
- Kokonyangi J.W., Kampunzu A.B., Armstrong R., Yoshida M., Okudaira M., Arima M. and Ngulube, D.A. 2006. The Mesoproterozoic Kibaride belt (Katanga, SE D.R. Congo). Journal of African Earth Sciences, 46(1-2):1-35.
- Kuchenbecker M., Pedrosa-Soares A.C., Babinski M., Fanning M. 2015b. Detrital zircon age patterns and provenance assessment for pre-glacial to post-glacial successions of the Neoproterozoic Macaúbas Group, Araçuaí orogen, Brazil. *Precambrian Research*, 266:12-26.
- Kuchenbecker M., Reis H.L.S., Silva. L.C., Costa R.D., Fragoso D.G.C., Knauer L.G., Dussin I.A., Pedrosa-Soares A.C. 2015a. Age constraints for deposition and sedimentary provenance of Espinhaço Supergroup and Bambuí group in eastern São Francisco craton, *Geonomos*, 23(2):14-28.
- Leake B. E., Schumacher J. C., Smith D. C., Ungaretti L., Whittaker E. J. W. Youzhi G. 1997. Nomenclature of amphiboles. *European Journal of Mineralogy*, **9**:623-651.
- Lobato L.M., Pimentel M.M., Cruz S.C.P., Machado N., Noce C.M., Alkmim F.F. 2015. U-Pb geochronology of the Lagoa Real uranium district, Brazil: Implications for the age of the uranium mineralization. *Journal of South American Earth Sciences*, 58:129-140.
- Lopes T.C. 2012. O Supergrupo Espinhaço na Serra do Cabral, Minas Gerais: contribuição ao estudo de proveniência sedimentar. MS Dissertation, Instituto de Geociências, Universidade Federal de Minas Gerias, Belo Horizonte, 115 p.
- Ludwig K.R. 2003. Using Isoplot/Ex, Version 3.00, a Geochronological Tool Kit for Microsoft Excel. Berkeley Geochronology Center. Special Publication, v. 1, p.43.
- Machado N., Schrank, A., Abreu, F.R., Knauer, L.G., Almeida-Abreu, P.A., 1989. Resultados preliminares da geocronolgia U/Pb na Serra do Espinhaço Meridional. 5º Simp. Geol. Minas Gerais, Belo Horizonte, *Anais*, 171-174 p.

- Matteini M., Dantas E.L., Pimentel M.M., Alvarenga C.J.S., Dardenne M.A. 2012. U–Pb and Hf isotope study on detrital zircons from the Paranoá Group, Brasília Belt Brazil: Constraints on depositional age at Mesoproterozoic – Neoproterozoic transition and tectono-magmatic events in the São Francisco craton. *Precambrian Research*, 206-207:18-181.
- McCafferty, A.E. and Van Gosen, B.S. 2009. Airborne gamma-ray and magnetic anomaly signatures of serpentinite in relation to soil geochemistry, northern California. *Applied Geochemistry*, **24**:1524-1537.
- Melo, M.G., Stevens, G., Lana, C., Pedrosa-Soares, A.C., Frei, D., Alkmin, F.F., Alkmin, L.A. 2017. Two cryptic anatectic events within a syn-collisional granitoid from the Araçuaí orogen (southeastern Brazil): Evidence from the polymetamorphic Carlos Chagas batholith. *Lithos*, 277:51-71.
- Menezes R.C.L., Conceição H., Rosa M.L.S., Macambira M.J.B., Galarza M.A., Rios D.C. 2012. Geoquímica e geocronologia de granitos anorogênicos tonianos (ca. 914-899 Ma) da Faixa Araçuaí no sul do estado da Bahia. *Geonomos*, 20(1):1-13.
- Murphy J.B., Nance R.D. 1992. Mountain belts and the supercontinent cycle. Scientific American, 266(4):84-91.
- Mussalam, K.; Jung, D.; Burgath, K. 1981. Textural features and chemical characteristics of chromitites in ultramafic rocks, Chalchidiki Complex (Northeastern Greece). TMPM 1981, 29, 75–101.
- Nance R.D., Worsley T., Moody J.B. 1988. The supercontinent cycle. Scientific American, 259(1):72-79.
- Nascimento R.S. 2005. Domínio Canindé, Faixa Sergipana, Nordeste do Brasil: Um estudo geoquímico e istópico de uma sequência de rifte continental neoproterozoica. PhD Thesis, Instituto de Geociências, Universidade de Campinas, São Paulo.
- Neves S.P., Bruguier O., Silva J.M.R.S., Mariano G., Filho A.F.S., Teixeira C.M.L. 2015. From extension to shortening: Dating the onset of the Brasiliano Orogeny in eastern Borborema Province (NE Brazil). *Journal of Siuth American Earth Sciences*, 58:238-256.
- Noce C.M., Pedrosa-Soares A.C., Silva L.C., Armstrong R., Piuzana D., 2007. Evolution of polyciclic basement complexes in the Araçuaí orogen, based on U–Pb SHRIMP data: Implications for Brazil–Africa links in Paleoproterozoic time. *Precambrian Research*, **159**:60–78.
- Novo T. 2013. Caracterização do Complexo Pocrane, magmatismo básico mesoproterozóico e unidades neoproterozóicas do sistema Araçuaí–Ribeira, com ênfase em geocronologia U-Pb (SHRIMP e LA–ICP– MS). PhD Thesis, Instituto de Geociências, Universidade Federal de Minas Gerais, Belo Horizonte, 193p.
- Novo T., Pedrosa-Soares A.C., Noce C.M., Alkmim F.F., Dussin I. 2010. Rochas charnockíticas do sudeste de Minas Gerais: a raiz granulítica do arco Magmático do Orógeno Araçuaí. *Revista Brasileira de Geociências*, 40(4):573-592.
- Oliveira M.J.R. 2000. Projeto Leste-MG. Folha Conselheiro Pena (SE.24-Y-C-II), Belo Horizonte, SEME/COMIG/CPRM, escala 1:100.000.
- Paciullo F.V.P., Ribeiro A., Andreis R.R., Trouw R.A.J. 2000. The Andrelândia basin, a Neoproterozoic intraplate continental margin, southern Brasília. *Rev.Bras.Geoc.*, **30**:200-202.
- Paes V. 1999. Geologia e geoquimica de rochas metamaficas e meta-ultramaficas da regiio de Alvarenga-MG e suas implicações geotectônicas. MS Dissertation, Instituto de Geociências, Universidade Federal de Minas Gerais, Belo Horizonte, 173p.
- Parenti Couto J.G., Teixeira W., Cordani U.G. 1983. Considerações sobre as principais épocas de fraturamento do Craton do São Francisco, com base em datações K–Ar em rochas básicas, II Simpósio Geologia MG, Belo Horizonte, Anais, p. 38–49.
- Pearce J.A. and Cann J.R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. *Earth Planetary Sci. Lett.*, 19:290-300.
- Pearce T.H., Gorman B.E., Birkett T.C. 1977. The realtionship between major elemento chemistry and tectonic environment of basic and intermediate volcanic rock. *Earth and Planetary Science Letters*, **36**:121-132.
- Pedrosa-Soares A.C. and Alkmim F.F. 2011. How many rifting events preceded the development of the Araçuaí-West Congo orogen? *Geonomos*, **19**(2):244-251.
- Pedrosa-Soares A.C., Alkmim F.F., Tack L., Noce C.M., Babinski M., Silva L.C., Martins-Neto M.A. 2008. Similarities and differences between the Brazilian and African counterparts of Neoproterozoic Araçuaí-West Congo orogen. In: Pankhrust R., Trouw R., Brito-Neves B B., Wit M. (eds). The Gondwana Peleocontinent in the South Atlantic Region. *Geological Society of London, Special Publications*, 294:153-172.
- Pedrosa-Soares A.C., Babinski M., Noce C., Martins M., Queiroga G., Vilela F., 2011a. The Neoproterozoic Macaúbas Group (Araçuaí orogen, SE Brazil) with emphasis on the diamictite formations. In: Arnaud, E., Halverson, G.P., Shields-Zhou, G. (Eds.), *The Geological Record of Neoproterozoic Glaciations*. Geological Society, London, Memoirs, 36, pp. 523–534.
- Pedrosa-Soares A.C., De Campos C.P., Noce C., Silva L.C., Novo T., Roncato R., Medeiros S., Castañeda C., Queiroga G., Dantas E., Dussin I., Alkmim F., 2011b. Late Neoproterozoic–Cambrian granitic

magmatism in the Araçuaí orogen (Brazil), the Eastern Brazilian Pegmatite Province and related mineral resources. Geological Society, London, *Special Publications*, **350**: 25–51.

- Pedrosa-Soares A.C., Noce C.M., Alkmim F.F., Silva L.C., Babinski M., Cordani U. Castañeda C. 2007. Orógeno Araçuaí: Síntese do Conhecimento 30 anos após Almeida 1977. *Geonomos*, **15**(1):1-16.
- Pedrosa-Soares A.C., Noce C.M., Wiedemann C.M., Pinto C.P. 2001. The Araçuaí–West Congo orogen in Brazil: An overview of a confined orogen formed during Gondwanland assembly. *Precambrian Research*, 110:307-323.
- Pedrosa-Soares A.C., Vidal P., Leonardos O.H., Brito-Neves B.B. 1998. Neoproterozoic oceanic remnants in eastern Brazil: Further evidence and refutation of an exclusively ensialic evolution for the Araçuaí-West Congo Orogen. *Geology*, 26(6):519-522.
- Pedrosa-Soares, A.C., Campos, C.P., Noce, C., Silva, L.C., Novo, T., Roncato, J., Medeiros, S., Castañeda, C., Queiroga, G., Dantas, E., Dussin, I., Alkmim, F.F., 2011. Late Neoproterozoic-Cambrian granitic magmatism in the Araçuaí orogen (Brazil), the Eastern Brazilian Pegmatite Province and related mineral resources. In: Sial A.N., Bettencourt J.S., De Campos C.P., Ferreira V.P. (eds). Granite-Related Ore Deposits. Geological Society, London, Special Publications, 350:25-51.
- Peixoto E.N., Pedrosa-Soares A.C., Alkmim F.F., Dussin I.A. 2015. A suture-related accretionary wedge formed in the Neoproterozoic Araçuaí orogen (SE Brazil) during Western Gondwanaland assembly. *Gondwana Res.*, 27:878–896.
- Pimentel M.M., Ferreira Filho C.F., Armele A. 2006. Neoproterozoic age of the Niquelândia complex, Central Brazil: further ID-TIMS and Sm–Nd isotopic evidence. *J. South Am. Earth Sci.*, **21**:228–238.
- Pimentel M.M., Heaman L., Fuck R.A. 1991. U–Pb zircon and sphene geochronology of late Proterozoic volcanic arc rock units from southwestern Goiás, Central Brazil. J. South Am. Earth Sci., 4:329–339.
- Pimentel, M.M., Fuck, R.A., Gioia, S.M.C.L., 2000. The Neoproterozoic Goiás Magmatic arc, Central Brazil: A review and new Sm-Nd isotopic data. *Revista Brasileira de Geociências*, 30(1):35-39.
- Pinese J.P.P. 1997. Geologia, geoquímica isotópica e aspectos dos diques máficos pré-cambrianos da região de Lavras (MG), porção sul do Cráton do São Francisco. PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 178 p.
- Pires F.R.M. 1983. Greenstones as a parto of Minas Supergroup in the Quadrilátero Ferrífero, Minas Gerais, Brazil. *Revista Brasileira de Geociências*, **13**(2):106-112.
- Piuzana D., Pimentel M.M., Fuck R.A., Armstrong R. 2003. Neoproterozoic granulitefacies metamorphism and coeval granitic magmatism in the Brasilia Belt, CentralBrazil: regional implications of new SHRIMP U– Pb and Sm-Nd data. *Precambrian Res.*, 125(3-4):245–273.
- Queiroga G.N., Pedrosa-Soares A.C., Noce C.M., Alkmim F.F., Pimentel M.M., Dantas E., Martins M., Castañeda C., Suita M.T.F., Prichard H. 2007. Age of the Ribeirão da Folha ophiolite, Araçuaí Orogen: The U-Pb zircon dating of a plagiogranite. *Geonomos*, 15:61-65.
- Queiroga G.N., Pedrosa-Soares A.C., Quemeneur J., Castañeda C. 2006. A Unidade metasedimentar do ofiolito de Ribeirão da Folha, Orógeno Araçuaí, Minas Gerais: petrografia, geotermobarometria e calcografia. *Geonomos*, 14:25-35.
- Renne P.R., Onstott T.C., D'Agrella-Filho M.S., Pacca I.G., Teixeira W. 1990.⁴⁰Ar/³⁹Ar dating of 1.0–1.1 Ga magnetizations from the São Francisco and Kala-hari Cratons: tectonic implications for Pan-African and Brasiliano mobile belts. *Earth Planet. Sci. Lett.*, **101**:349–366.
- Rodrigues J.B. 2008. Proveniencia de sedimentos dos grupos Canastra, Ibiá, Vazante e Bambuí Um estudo de Zircões detríticos e Idades Modelo Sm-Nd. PhD Thesis, Universidade de Brasília, 129 p.
- Rodrigues J.B., Pimentel M.M., Buhn B., Matteini M., Dardenne M.A. Alvarenga C.J.S., Armstrong R.A. 2012. Provenance of the Vazante Group: new U–Pb,Sm–Nd, Lu–Hf isotopic data and implications for the tectonic evolution of the Neoproterozoic Brasília Belt. *Gondwana Res.*, 21(2–3):439–450.
- Rodrigues J.B., Pimentel M.M., Dardenne M.A., Armstrong R.A. 2010. Age, provenance and tectonic setting of the Canastra and Ibiá Groups (Brasília Belt, Brazil): Implications for the age of a Neoproterozoic glacial event in central Brazil. *Journal of South American Earth Sciences*, 29:512-521.
- Rogers J.J.W. 1996. A history of continents in the past three billion years. Journal of Geology 104(1):91–107.
- Rogers J.W., Santosh M. 2004. Continents and Supercontinents. Oxford University Press, 289 p.
- Rolim V.K., Rosière C.A., Santos J.O.S., Mcnaughton N.J. 2016. The Orosirian-Statherian banded iron formation-bearing sequences of Southern border of the Espinhaço Range, Southeast Brazil. *Journal of South American Earth Sciences*, 65:43-66.
- Rollinson H.R. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, 352 pp.
- Saad A.H. 1969. Magnetic properties of ultramafic rocks from Red Mountain, California. *Geophysics*, **34**:974-987.
- Sack R.O. and Ghiorso M.S. 1991. Chromian spinels as petrogenetic indicators: Thermodynamic and petrological applications. *Am. Mineral.*, **76**:827–847.

- Santos M.N., Chemale Jr.F., Dussin I.A., Martins M., Assis T.A.R., Jelinek A.R., Guadagnin F., Armstrong R. 2013. Sedimentological and paleoenvironmental constraints of the Statherian and Stenian Espinhaço rift system, Brazil. Sedimentary Geology, 290:47-59.
- Salgado S.S., Ferreira-Filho C.F., Caxito F.A., Uhlein A., Dantas E.L., Stevenson R. 2016. The Ni-Cu-PGE mineralized Brejo Seco mafic-ultramafic layered intrusion, Riacho do Pontal Orogen: Onset of Tonian (ca. 900 Ma) continental rifting in Northeast Brazil. *Journal of South American Earth Sciences*, 70:324-339.
- Schandl E.S. and Naldrett A.J. 1992. CO2 metasomatism of serpentinites, south of Timmins, Ontario. Can. Mineral., 30:93-108.
- Silva J.M.R, Lima M.I.C., Veronese V.F., Ribeiro Junior R.N., Siga-Júnior O. 1987. Geologia, Folha SE.24 Rio Doce. Rio de Janeiro, IBGE, Projeto Radambrasil, Levantamento de Recursos Naturais, v. 34.
- Silva L.C., Armstrong R., Noce C.M., Carneiro M., Pimentel M.M., Pedrosa-Soares A.C., Leite C., Vieira V.S., Silva M., Paes V., Cardoso Filho J. 2002. Reavaliação da evolução geológica em terrenos pré-cambrianos brasileiros com base em novos dados U-Pb SHRIMP, parte II: Orógeno Araçuaí, Cinturão Móvel Mineiro e Cráton São Francisco Meridional. *Revista Brasileira de Geociências* 32:513-528.
- Silva L.C., Pedrosa-Soares A.C., Armstrong R., Pinto C.P., Magalhães J.T.R., Pinheiro M.A.P., Santos G.G. 2016. Disclosing the Paleoarchean to Ediacaran history of the Sao Francisco craton basement: The Porteirinha domain (northern Araçuaí orogen, Brazil). *Journal of South American Earth Sciences*, 68:50-67.
- Silveira E.M., Söderlund U., Oliveira E.P., Ernst R.E., Menezes Leal A.B. 2013. First precise U–Pb baddeleyite ages of 1500 Ma mafic dykes from the São Francisco Craton, Brazil, and tectonic implications. *Lithos*, 174:144-156.
- Silveira V.D. 2016. Geologia e Geocronologia de zircões detríticos da região de Serro, Serra do Espinhaço Meridional, Minas Gerais, Brasil. MS Dissertation, Instituto de Geociências, Universidade Federal de Minas Gerais, Belo Horizonte, 112 p.
- Sláma J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M.N., Whitehouse M.J. 2008. Plešovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis. *Chemical Geology.*, 249:1-35.
- Souza M.E.S. 2016. Caracterização Litoestrutural e Geocronológica dos Xistos Verdes e Metagabros do Grupo Macaúbas na Faixa Terra Branca - Planalto de Minas, Minas Gerais. MS Dissertation, Departamento de Geologia, Universidade Federal de Ouro Preto, Ouro Preto, 151 p.
- Spector A. and Grant F.S. 1970. Statistical models for interpreting aeromagnetic data. *Geophysics*, **35**(2):293-302.
- Stevens R.E. 1944. Composition of some chromites of the western hemisphere. *The American Mineralogist*, **29**:1-34.
- Tack L., Wingate M.T.D., De Waele B., Meert J., Belousova E., Griffin B., Tahon A., Fernandez-Alonso, M., 2010. The 1375 Ma Kibaran event in Central Africa: prominent emplacement of bimodal magmatism under extensional regime. *Precambrian Research*, 180:63–84.
- Tack L., Wingate M.T.D., Liégeois J.P., Fernandez-Alonso M., Deblond A. 2001. Early Neoproterozoic magmatism (1000-910 Ma) of the Zadinian and Mayumbian groups (Bas-Congo): Onset of Rodinian rifting at the western edge of the Congo craton. *Precambrian Research*, 110:277-306.
- Távora F.I., Cordani U.G., Kawashita K. 1967. Determinac, ões de idade potássioargônio em rochas da região central da Bahia. In: 21º Congresso Brasileiro de Geologia, Sociedade Brasileira de Geologia, Curitiba, *Anais*, p. 214–224.
- Taylor S.R. and McLennan S.M. 1985. *The Continental Crust: Its Composition and Evolution*. Blackwell, Scientific Publication, Carlton, 312 p.
- Tedeschi M., Novo T., Pedrosa-Soares A.C., Dussin I., Tassinari C., Silva L.C., Gonçalves L., Alkmim F.F., Lana C., Figueiredo C., Dantas E., Medeiros S., De Campos C., Corrales F., Heilbron M. 2015. The Ediacaran Rio Doce magmatic arc revisited (Araçuaí-Ribeira orogenic system, SE Brazil). *Journal of* South American Earth Sciences, 68:167-186.
- Teixeira W., Sabaté P., Barbosa J.S.F., Noce C.M., Carneiro M.A. 2000. Archean and Paleoproterozoic Tectonic evolution of the São Francisco Craton, Brazil. In: Cordani U.G., Milani E.J., Thomas Filho A., Campos D.A. (eds.). Tectonic Evolution of the South America. 31° International Geological Congress, Rio de Janeiro, Brazil, p. 101-137.
- Telford W.M., Geldart L.P. and Sheriff R.E. 1990. *Applied geophysics*, 2nd edition, Cambridge University Press, Cambridge, 792p.
- Thébault E., Finlay C.C., Beggan C.D., Alken P., Aubert J., Barrois O., Bertrand f., Bondar T., Boness A., Brocco L., Canet E., Chambodut A., Chulliat A., Coïsson P., Civet F., Du A., Fournier A., Fratter I., Gillet N., Hamilton B., Hamoudi M., Hulot G., Jager T., Korte M., Kuang W., Lalanne X., Langlais B., Léger

J., Lesur V., Lowes F.J., Macmillan S., Mandea M., Manoj C., Maus S., Olsen N., Petrov V., Ridley V., Rother M., J Sabaka T.J., Saturnino D., Schachtschneider R., Siro O., Tangborn A., Thomson A., Tøffner-Clausen L., Vigneron P., Wardinski I., Tatiana Zvereva T. 2015. International Geomagnetic Reference Field: the twelfth generation. *Earth Planets and Space*, **67**:79-98.

- Tuller, M. 2000. Projeto Leste-MG. Folha Ipanema (SE.24-Y-C-IV), Belo Horizonte, SEME/COMIG/CPRM, escala 1:100.000.
- Tupinambá M., Machado N., Heilbron M., Ragatky C.D. 2007. Meso-neoproterozoic lithospheric extensional events in the São Francisco Craton and its surrounding south American and African metamorphic belts: a compilation of U-Pb ages. *Revista Brasileira de Geociências*, **37**:87-91.
- Valeriano C.M., Machado N., Simonetti A., Valladares C.S., Seer H.J., Simões L.S.A. 2004. U–Pb geochronology of the southern Brasília belt (SE-Brazil): sedimentary provenance, Neoproterozoic orogeny and assembly of West Gondwana. *Precambrian Research*, 130:27-55.
- Valladares C.S., Machado N., Heilbron M., Gauthier G. 2004. Ages of Detrital Zirconfrom Siliciclastic Successions South of the São Francisco Craton Brazil: implica-tions for the evolution of proterozoic basins. *Gondwana Res.*, 7(4):913–921.
- Van Achterbergh, E., Ryan, C.G., Jackson, S.E., Griffin, W., 2001. Data reduction software for LA-ICP-MS. In: Sylvester, P. (Ed.), Laser Ablation ICPMS in the Earth Science. *Mineralogical Association of Canada*, 29:239–243.
- Vance J. and Dungan M. 1977. Formation of peridotites by deserpentinization in the Darrington and Sultan areas, Cascade Mountains, Washington. *Geological Society of America* **88**:1497-1508.
- Vicat J.P. and Pouclet A. 1995. Nature du magmatisme lie a une extension prePanafricaine: les dolerites des bassins de Comba et de Sembe-Ouesso (Congo). *Geol. Soc. Bull. Fr.* **166**:355-364.
- Vicat J.P. and Pouclet A. 2000. Palaeo- and Neoproterozoic granitoids and rhyolites from the West Congolian Belt (Gabon, Congo, Cabinda, north Angola): chernical composition and geotectonic implications. *Journal of African Earth Sciences*, 31:597-617.
- Vieira V.S. 2007. Significado do Grupo Rio Doce no Contexto do Orógeno Araçuaí. Ph.D. thesis, Universidade Federal de Minas Gerais, Belo Horizonte, 177 p.
- Weaver B.L. and Tarney J. 1984. Empirical approach to estimating the composition of the continental crust. *Nature*, **310**:575-577.
- Wilson M. 1989. Igneous Petrogenesis. Unwin Hyman, London, 470p.
- Wingate M.T.D., Pisarevsky S.A., Gladkochub D.P., Donskaya T.V., Konstantinov K.M., Mazukabzov A.M., Stanevich A.M. 2009. Geochronology and paleomagnetism of mafic igneous rocks in the Olenek Uplift, northern Siberia: Implications for Mesoproterozoic supercontinents and paleogeography. *Precambrian Research*, **170**:256–266.
- Xinhua Z., Yin A. and Ryerson F.J. 2000. The Zedong Window: A record of superposed Tertiary convergence in southeastern Tibet. *Journal of Geophysical Research*, **105**:19.211–19.230.
- Zhao G., Sun M., Wilde S.A., Li S. 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. *Earth-Science Reviews*, **67**:91–123.

ANEXOS

Ν	Perfil	Х	Y	Data	Hora	B (nT)	R (cps)	Bt (1)	Bt (2)	IGRF	Btma (1)	Btma (2)
3	16	212596	7777599	15/04/2016	08:55:22	23519,8	95	23512,62	23512,51	23540,0	-27,38	-27,49
4	16	212593	7777630	15/04/2016	09:10:27	23510,8	80	23494,64	23503,59	23540,0	-45,36	-36,41
6	16	212586	7777650	15/04/2016	09:16:47	23509.9	85	23493.82	23502.69	23540.0	-46.18	-37.31
7	16	212576	7777667	15/04/2016	09:20:47	23504,1	80	23482,22	23496,35	23540,0	-57,78	-43,65
8	16	212573	7777683	15/04/2016	09:23:17	23507.2	85	23487.30	23499.06	23540.0	-52.70	-40.94
9	16	212565	7777706	15/04/2016	09:26:07	23508.7	90	23490.32	23500.18	23540.1	-49.78	-39.92
10	16	212554	7777726	15/04/2016	09:28:52	23509.5	90	23492.08	23500.68	23540.1	-48.02	-39.42
11	16	212548	7777744	15/04/2016	09.31.17	23511.6	90	23504 22	23502 71	23540 1	-35.88	-37 39
12	16	212537	7777761	15/04/2016	09.34.02	23513.4	75	23498 76	23504 68	23540 1	-41 34	-35 42
14	16	212522	7777786	15/04/2016	09.46.07	23506 5	60	23485.98	23498 44	23540 1	-54 12	-41 66
15	16	212514	7777809	15/04/2016	09.52.47	23502,3	40	23476 66	23493 23	23540 1	-63 44	-46.87
16	16	212495	7777834	15/04/2016	10.15.52	23502,3	35	23518 40	23515.02	23540 1	-21 70	-25.08
17	16	212496	7777852	15/04/2016	10.41.47	23531 1	65	23525 24	23513,02	23540 1	-14.86	-26.84
18	16	212490	7777872	15/04/2016	10.41.47	23530.8	75	23524 50	23513,20	23540,1	-15 60	-27.89
19	16	212494	7777891	15/04/2016	10:45:37	23530,0	65	23524,50	23502,21	23540,1	-21 78	-31 13
20	16	212400	7777913	15/04/2016	10:43:57	23526,2	75	23515,86	23500,57	23540,1	-74 74	-32.83
20	16	212401	7777927	15/04/2016	10:47:52	23520,5	80	23515,00	23507,27	23540,1	-77 87	-32,05
21	16	212471	7777030	15/04/2016	10.49.27	23520,1	80	23517,20	23506,05	23540,1	_22,02	_33 12
22	16	212403	7777957	15/04/2010	11.03.07	23529,4	80	23516.60	23506,58	23540,1	-22,40	-33 51
24	16	212440	7777982	15/04/2016	11.03.07	23525,5	80	23510,00	23500,00	23540,1	-29.30	-36 79
25	16	212437	7778000	15/04/2016	11.12.17	23520,5	85	23516,60	23505,51	23540,1	-23 50	-3/ 58
25	15	212422	7778006	15/04/2010	11.10.17	23525,0	85	23510,00	23503,32	23540,1	-23,50	-35 33
20	15	212373	7778000	15/04/2010	11.32.47	23531,9	80	23500,00	23504,77	23540,1	-31,22	-35,33
27	15	212303	777052	15/04/2010	11.33.32	23532,2	80	23317,40	23504,98	23540,1	-22,02	-32.86
20	15	212333	777933	15/04/2010	11.42.12	23534,7	75	23522,30	23507,24	23540,1	-17,72	-32,80
21	15	212407	777930	15/04/2010	11.44.42	23333,9	73 00	25524,00	23306,40	23340,1	-13,24	-51,70
24	15	212417	7777000	15/04/2010	11.49.07	23330,2	80	25525,44	23306,19	23340,1	-14,00	22.26
25	15	212420	777900	15/04/2010	11.54.57	23330,3	60	23323,00	23507,84	23540,1	12 22	-32,20 21.0E
26	15	212427	1111099	15/04/2010	12.02.07	25557,4	00	23520,00	23506,20	25540,1	-15,22	-51,65
20	15	212440	777045	15/04/2016	12.05.07	23333,0	90	23516,50	23504,15	25540,1	-21,54	-55,95
20	15	212451	777045	15/04/2010	12.00.22	23339,7		25550,40	25509,71	23540,1	-9,04	-50,59
20	15	212455	7777020	15/04/2010	12.10.52	25541,5	55	25554,04	25571,04	23540,0	-5,90	-20,00
11	11	212404	7777467	16/04/2010	00.16.17	23343,0	55 0E	23337,20	23313,10	23340,0	-2,74	-20,04
41	11	212400	7777457	16/04/2016	00.10.47	23490	95	23400,00	23465,04	23539,7	-79,0Z	-54,00
42	11	212387	7777479	16/04/2016	08:20:47	23490,1	95	23438,14	23485,00	23539,7	-81,50	-54,64
43	11	212375	7777614	16/04/2016	08:23:17	23490,8	95	23445,54	23479,75	23539,7	-94,10	-59,95
44	11	212368	7777514	16/04/2016	08:25:02	23492,6	95	23448,18	23481,57	23539,7	-91,52	-58,13
40	11	212364	7777531	16/04/2016	08:27:57	23504	90	23468,92	23492,93	23539,7	-70,78	-46,77
47	11	212350	777750	16/04/2016	08:30:07	23534,2	85	23536,36	23523,06	23539,7	-3,34	-16,64
48	11	212347	7777509	16/04/2016	08:32:42	23555,5	75	235/9,94	23543,85	23539,8	40,14	4,05
49	11	212336	7777590	16/04/2016	08:35:37	23557,1	90	23582,10	23544,81	23539,8	42,30	5,01
50	11	212329	7777610	16/04/2016	08:37:52	23532,1	80	23532,22	23519,40	23539,8	-7,58	-20,40
51	11	212321	7777625	16/04/2016	08:40:37	23548,7	/5	23564,30	23535,33	23539,8	24,50	-4,47
52	11	212308	////641	16/04/2016	08:43:07	23529,5	80	23525,92	23515,62	23539,8	-13,88	-24,18
53	11	212304	////65/	16/04/2016	08:46:07	23524	80	23514,04	23509,92	23539,8	-25,76	-29,88
54	11	212300	////6/6	16/04/2016	08:48:42	23524,4	85	23514,86	23510,79	23539,8	-24,94	-29,01
55	11	212294	////699	16/04/2016	08:50:22	23523,4	/5	23512,88	23510,08	23539,8	-26,92	-29,72
56	11	212290	////18	16/04/2016	08:52:22	23520,6	/0	23508,10	23507,56	23539,8	-31,70	-32,24
57	11	212275	////39	16/04/2016	08:53:47	23521,9	/5	23510,84	23509,17	23539,8	-28,96	-30,63
58	11	212272	///757	16/04/2016	08:55:42	23520,1	/0	23507,24	23507,79	23539,8	-32,56	-32,01
59	11	212262	//77775	16/04/2016	08:58:47	23517,9	65	23503,86	23506,04	23539,8	-35,94	-33,76
60	11	212255	//77793	16/04/2016	09:00:57	23511,8	65	23491,60	23500,08	23539,9	-48,30	-39,82
62	11	212245	7777823	16/04/2016	09:09:57	23513,2	60	23495,32	23501,25	23539,9	-44,58	-38,65
63	11	212242	7777838	16/04/2016	09:13:47	23516,8	60	23502,58	23504,79	23539,9	-37,32	-35,11
64	12	212273	7777862	16/04/2016	09:21:42	23518,9	60	23503,78	23504,43	23539,9	-36,12	-35,47
65	12	212291	7777849	16/04/2016	09:25:07	23519,6	65	23504,26	23503,91	23539,9	-35,64	-35,99

Ν	Perfil	Х	Y	Data	Hora	B (nT)	R (cps)	Bt (1)	Bt (2)	IGRF	Btma (1)	Btma (2)
66	12	212294	7777829	16/04/2016	09:27:22	23524,3	60	23512,56	23507,71	23539,9	-27,34	-32,19
67	12	212298	7777809	16/04/2016	09:29:32	23519.6	60	23502.10	23502.19	23539.9	-37.80	-37.71
68	12	212302	7777787	16/04/2016	09:31:37	23521.7	70	23506.42	23503.84	23539.9	-33.48	-36.06
69	12	212311	777772	16/04/2016	09:34:52	23528	65	23519.08	23509.71	23539.9	-20.82	-30,19
70	12	212324	7777748	16/04/2016	09.36.32	23529 5	70	23520.90	23510.85	23539.9	-19 00	-29.06
71	12	212331	7777732	16/04/2016	09.38.17	23530	75	23522.08	23511 17	23539.9	-17 82	-28 73
72	12	212331	7777719	16/04/2016	09.30.17	23538	75	23538.02	23512,17	23539,5	-1 78	-21.09
72	12	212330	7777698	16/04/2016	09.40.57	23533 7	75	23538,02	23510,71	23535,0	_11 32	-25.66
7/	12	212340	777678	16/04/2016	10.16.17	23535,7	75	23526,40	23514,14	23535,8	16 56	-13.68
74	12	212355	7777650	16/04/2010	10.10.17	23545,2	20 20	23550,50	23520,12	23539,0	10,50	0.72
75	12	212336	7777641	16/04/2010	10.17.47	25545,1	80	23559,10	23330,08	23333,0	15,50	-9,72
70	12	212300	7777620	16/04/2016	10.19.42	25547	80	23554,94	23526,00	23539,0	70.50	-11,74
77	12	212372	7777029	16/04/2016	10:21:27	23579,2	80	23619,30	23500,37	23539,8	112.20	20,57
78	12	212383	7777507	16/04/2016	10:25:22	23595,0	80	23652,10	23576,90	23539,8	21.02	37,10
/9	12	212392	////589	16/04/2016	10:27:07	23528,4	75	23517,88	23509,88	23539,8	-21,92	-29,92
80	12	212402	////5/1	16/04/2016	10:30:27	23494,2	75	23453,48	23475,83	23539,8	-86,32	-63,97
81	12	212407	////553	16/04/2016	10:32:57	23490,7	/5	23443,34	23472,46	23539,8	-96,46	-67,34
82	12	212414	7777532	16/04/2016	10:35:17	23495,6	75	23453,24	23477,60	23539,8	-86,56	-62,20
83	12	212423	7777516	16/04/2016	10:37:12	23499,8	80	23461,64	23481,95	23539,8	-78,16	-57,85
84	12	212428	7777498	16/04/2016	10:39:32	23508,5	75	23478,92	23490,73	23539,8	-60,88	-49,07
85	12	212429	7777484	16/04/2016	10:41:02	23509,1	75	23480,24	23491,57	23539,8	-59,56	-48,23
86	13	212491	7777498	16/04/2016	10:50:52	23519	105	23500,92	23501,42	23539,8	-38,88	-38,38
87	13	212484	7777514	16/04/2016	10:53:02	23514,7	100	23492,46	23497,14	23539,8	-47,34	-42,67
88	13	212473	7777529	16/04/2016	10:55:42	23507,3	80	23477,68	23489,62	23539,8	-62,12	-50,18
89	13	212464	7777548	16/04/2016	10:58:07	23500,9	80	23464,86	23483,11	23539,8	-74,94	-56,69
90	13	212466	7777561	16/04/2016	11:01:37	23498,3	75	23459,52	23480,26	23539,8	-80,28	-59,54
91	13	212437	7777581	16/04/2016	11:05:07	23507,1	100	23477,14	23488,83	23539,9	-62,76	-51,08
92	13	212440	7777610	16/04/2016	11:13:22	23551,6	80	23566,16	23532,78	23539,9	26,26	-7,12
93	13	212430	7777626	16/04/2016	11:16:12	23537,6	75	23545,16	23518,75	23539,9	5,26	-21,15
94	13	212425	7777643	16/04/2016	11:18:57	23570,6	75	23603,10	23551,92	23539,9	63,20	12,02
95	13	212416	7777661	16/04/2016	11:20:32	23547,2	80	23556,40	23528,69	23539,9	16,50	-11,21
96	13	212402	7777682	16/04/2016	11:25:52	23537	75	23536,02	23518,89	23539,9	-3,88	-21,01
97	13	212400	7777701	16/04/2016	11:27:12	23543,6	75	23549,16	23525,56	23539,9	9,26	-14,34
98	13	212392	7777721	16/04/2016	14:07:52	23520,7	70	23523,32	23521,96	23539,9	-16,58	-17,94
99	13	212380	7777739	16/04/2016	14:09:32	23524,1	70	23530,12	23525,29	23539,9	-9,78	-14,62
100	13	212377	7777752	16/04/2016	14:11:27	23522.5	75	23527.00	23523.64	23539.9	-12.90	-16.27
101	13	212367	7777773	16/04/2016	14:14:12	23514.6	60	23511.22	23515.63	23539.9	-28.68	-24.27
103	13	212359	7777788	16/04/2016	14:17:27	23512.1	50	23505.28	23513.82	23539.9	-34.62	-26.08
104	13	212348	7777805	16/04/2016	14.22.37	23507 7	60	23498 38	23510.86	23539.9	-41 52	-29.04
105	13	212338	7777829	16/04/2016	14.24.42	23508.4	80	23499 72	23512 13	23540.0	-40.28	-27.87
106	13	212330	7777846	16/04/2016	14.27.27	23498.8	70	23481 56	23503 35	23540.0	-58 44	-36.66
107	13	212337	7777864	16/04/2016	14.29.07	23499.6	55	23484 14	23504,66	23540,0	-55.86	-35 34
109	13	212333	7777883	16/04/2016	1/1.20.57	23455,0	55	23486 92	23506,00	23540,0	-53.08	-3/ 01
100	12	212310	7777005	16/04/2016	1/1.22.07	23500,5	60	23400,52	23500,00	23540,0	-10 70	_21 70
110	12	212300	777505	16/04/2016	1/.2/./7	23302,2	60	23430,30	23506.21	23540,0	-52.00	-33.64
111	12	212297	7777020	16/04/2010	14.34.47	23499,9	75	23480,78	23500,50	23540,0	-55,22	22 02
112	1/	212209	7777061	16/04/2010	14.37.42	23430,9	75	23404,/0	23300,08	23340,0	-55,22	-55,52
113	14	212343	1111901	16/04/2010	14.49.3/	23490,2	75	23481,48	23200,20	25540,0	-38,52	-55,/4
114	14	212350	1111943	16/04/2010	14:51:27	23497,2	70	23484,34	23507,40	25540,0	-35,00	-52,00
115	14	212355	7777005	10/04/2016	14:53:12	23495,3	/5	23480,54	23505,85	23540,0	-59,46	-34,15
116	14	212358	7777000	16/04/2016	14:54:37	23494,3	60	234/8,52	23505,10	23540,0	-61,48	-34,90
11/	14	212368	////882	16/04/2016	14:56:42	23498,9	60	23488,76	23510,13	23540,0	-51,24	-29,87
118	14	212377	///864	16/04/2016	15:00:57	23492,9	65	23477,70	23505,11	23540,0	-62,30	-34,89
119	14	212378	///7841	16/04/2016	15:04:17	23496	/5	23484,94	23508,98	23540,0	-55,06	-31,02
120	14	212389	7777829	16/04/2016	15:09:27	23494,5	70	23483,08	23508,92	23540,0	-56,92	-31,08
121	14	212390	7777815	16/04/2016	15:14:17	23495	60	23485,06	23510,68	23540,0	-54,94	-29,32
122	14	212420	7777796	16/04/2016	15:22:42	23501	60	23498,92	23518,70	23540,0	-41,08	-21,30

Ν	Perfil	Х	Y	Data	Hora	B (nT)	R (cps)	Bt (1)	Bt (2)	IGRF	Btma (1)	Btma (2)
142	14	212420	7777774	17/04/2016	08:27:22	23544,7	65	23549,48	23524,48	23540,0	9,48	-15,52
143	14	212427	7777753	17/04/2016	08:32:37	23538.6	75	23543.18	23518.72	23540.0	3.18	-21.28
144	14	212439	7777735	17/04/2016	08:40:02	23552.4	75	23565.86	23532.72	23540.0	25.86	-7.28
145	14	212445	7777718	17/04/2016	08:44:37	23537.7	75	23536.48	23518.13	23540.0	-3.52	-21.87
146	14	212456	7777692	17/04/2016	08.48.57	23512.8	75	23486.66	23493 48	23539.9	-53 24	-46 42
147	14	212464	7777675	17/04/2016	08:51:57	23518.6	80	23498 28	23499 48	23539.9	-41 62	-40 42
148	14	212469	7777664	17/04/2016	08.54.07	23510,0	85	23515 24	23508 10	23539,5	-24 66	-31 80
149	14	212400	7777652	17/04/2016	08.57.22	23526.9	85	23513,24	23508,10	23539,5	-25 12	-31.85
150	1/	212472	7777625	17/04/2010	00.07.22	23520,5	95	23214,70	23300,03	23535,5	_1/1 32	_10 79
151	1/	212402	7777603	17/04/2010	09.01.12	23517,0	95	23433,30	23455,11	23535,5	-51 02	-45.65
152	14	212405	7777580	17/04/2010	00.04.07	23513	90	23407,50	23434,23	23535,5	-18 50	-43,03
152	14	212457	777572	17/04/2010	00.00.22	23514,7	05	23451,40	23455,80	23535,5	-48.00	_/12 80
153	14	212504	777575	17/04/2010	09.11.12	23514,5	100	23491,82	23490,01	23539,9	-40,00	27.02
154	15	212501	7777502	17/04/2010	09.22.32	23323,3	100	23307,08	23502,07	23540,0	-52,52	-57,95
155	15	212554	7777600	17/04/2016	09.24.22	23521,0	105	23305,32	23300,34	23540,0	-30,40	-59,40
150	15	212550	7777009	17/04/2016	09:20:12	23518,4	100	23490,82	23490,70	23540,0	-43,18	-43,30
157	15	212543	7777640	17/04/2016	09:27:52	23519,4	105	23497,78	23497,34	23540,0	-42,22	-42,00
158	15	212534	7777648	17/04/2016	09:29:12	23522,3	110	23503,54	23499,88	23540,0	-30,40	-40,12
159	15	212528	////666	17/04/2016	09:30:42	23520,7	115	23492,30	23497,98	23540,0	-47,70	-42,02
160	15	212513	////683	17/04/2016	09:32:17	23520,2	110	23498,46	23497,37	23540,0	-41,54	-42,63
161	15	212507	/////04	17/04/2016	09:33:42	23524,3	110	23506,68	23501,38	23540,0	-33,32	-38,62
162	15	212492	/////21	1//04/2016	09:36:07	23528,5	90	23515,04	23505,30	23540,0	-24,96	-34,70
163	15	212482	7777745	17/04/2016	09:38:42	23527,1	60	23512,10	23503,54	23540,0	-27,90	-36,46
164	15	212474	7777762	17/04/2016	09:40:22	23533,7	50	23524,40	23509,99	23540,0	-15,60	-30,01
165	17	212669	7777575	17/04/2016	10:03:07	23530,8	75	23518,54	23506,51	23540,0	-21,46	-33,49
166	17	212662	7777592	17/04/2016	10:04:22	23528,8	90	23514,60	23504,23	23540,0	-25,40	-35,77
167	17	212656	7777607	17/04/2016	10:06:07	23524,4	85	23504,84	23499,48	23540,1	-35,26	-40,62
168	17	212650	7777631	17/04/2016	10:08:52	23523,8	75	23503,50	23498,27	23540,1	-36,60	-41,83
169	17	212642	7777646	17/04/2016	10:11:17	23521,9	75	23498,86	23495,95	23540,1	-41,24	-44,15
170	17	212634	7777663	17/04/2016	10:13:37	23526,4	80	23507,84	23499,96	23540,1	-32,26	-40,14
171	17	212627	7777685	17/04/2016	10:17:57	23529,4	85	23512,70	23502,35	23540,1	-27,40	-37,75
174	17	212603	7777750	17/04/2016	10:28:27	23526,2	90	23505,38	23498,39	23540,1	-34,72	-41,71
175	17	212598	777777	17/04/2016	10:35:42	23522,8	60	23498,58	23494,53	23540,1	-41,52	-45,57
177	17	212570	7777822	17/04/2016	10:52:17	23535,4	125	23522,80	23507,54	23540,1	-17,30	-32,56
178	17	212561	7777836	17/04/2016	10:55:07	23537	75	23526,98	23509,52	23540,1	-13,12	-30,58
179	17	212550	7777851	17/04/2016	10:56:57	23543,8	60	23540,64	23516,56	23540,2	0,44	-23,64
180	17	212542	7777872	17/04/2016	11:00:42	23543,5	80	23543,96	23516,68	23540,2	3,76	-23,52
181	17	212535	7777900	17/04/2016	11:05:27	23536,6	70	23527,16	23510,05	23540,2	-13,04	-30,15
182	17	212528	7777918	17/04/2016	11:10:02	23533,6	80	23521,20	23507,37	23540,2	-19,00	-32,83
183	17	212517	7777928	17/04/2016	11:13:32	23531,9	80	23517,82	23505,87	23540,2	-22,38	-34,33
184	18	212724	7777574	18/04/2016	07:55:07	23520,9	80	23523,82	23523,12	23540,1	-16,28	-16,98
185	18	212717	7777595	18/04/2016	07:59:12	23514,3	75	23511,56	23516,78	23540,1	-28,54	-23,32
186	18	212712	7777611	18/04/2016	08:01:22	23507,2	80	23496,44	23509,76	23540,1	-43,66	-30,34
187	18	212700	7777628	18/04/2016	08:03:02	23509,2	70	23497,44	23511,74	23540,1	-42,66	-28,36
188	18	212688	7777646	18/04/2016	08:05:12	23504,3	80	23484,60	23506,80	23540,1	-55,50	-33,30
189	18	212677	7777666	18/04/2016	08:06:32	23512,2	80	23498,32	23514,64	23540,1	-41,78	-25,46
190	18	212671	7777685	18/04/2016	08:09:02	23509,3	85	23501,66	23511,78	23540,1	-38,44	-28,32
191	18	212659	7777702	18/04/2016	08:11:57	23508,7	80	23500,38	23511,11	23540,1	-39,72	-28,99
192	18	212655	7777723	18/04/2016	08:14:37	23505,3	85	23493,52	23507,65	23540,1	-46,58	-32,45
193	18	212640	777775	18/04/2016	08:39:42	23503,4	65	23489,80	23506,21	23540,2	-50,40	-33,99
194	18	212624	7777792	18/04/2016	08:43:22	23501,7	65	23486,32	23504,72	23540,2	-53,88	-35,48
195	18	212615	7777815	18/04/2016	08:53:07	23499,5	80	23484,06	23503,75	23540,2	-56,14	-36,45
196	18	212610	7777838	18/04/2016	08:56:47	23504,5	80	23494,00	23509,20	23540,2	-46,20	-31,00
197	18	212598	7777856	18/04/2016	09:00:27	23508,1	90	23497,24	23513,20	23540,2	-42,96	-27,00
199	19	212662	7777853	18/04/2016	09:08:32	23507.1	75	23499.10	23511.02	23540.3	-41,20	-29,28
200	19	212669	7777833	18/04/2016	09:14:12	23505,7	75	23496,32	23508,85	23540,2	-43,88	-31,35

Ν	Perfil	Х	Y	Data	Hora	B (nT)	R (cps)	Bt (1)	Bt (2)	IGRF	Btma (1)	Btma (2)
203	19	212675	7777819	18/04/2016	09:17:47	23505,8	80	23495,54	23509,18	23540,2	-44,66	-31,02
204	19	212680	7777799	18/04/2016	09:21:32	23507,9	55	23499,86	23511,83	23540,2	-40,34	-28,37
206	19	212683	7777786	18/04/2016	09:25:47	23501.6	65	23488.18	23505.95	23540.2	-52.02	-34.25
207	19	212701	7777761	18/04/2016	09:33:57	23503.2	80	23491.30	23507.75	23540.2	-48.90	-32.45
208	19	212710	7777743	18/04/2016	09:36:32	23504.1	70	23493.14	23508.53	23540.2	-47.06	-31.67
209	19	212718	7777723	18/04/2016	09:40:02	23505.6	60	23496.22	23509.84	23540.2	-43.98	-30.36
210	19	212726	7777703	18/04/2016	09.42.12	23508 1	65	23501 22	23512 21	23540.2	-38.98	-27 99
211	19	212720	7777688	18/04/2016	09.44.17	23514.9	75	23514 70	23518.81	23540.2	-25 50	-21 39
212	19	212736	7777671	18/04/2016	09:44:17	23510.5	70	23505.08	23510,01	23540,2	-35 12	-25.83
212	10	212730	77776/18	18/04/2016	09.40.32	23510,5	60	23303,00	23508 76	23540,2	-16 11	_31 //
215	10	212744	7777620	18/04/2010	00.40.37	23505	60	23454,00	23506,70	23540,2	-20.24	_22.25
215	10	212752	7777606	18/04/2010	09.55.27	23513,5	55	23510,90	23510,85	23540,2	-29,24	20,41
210	19	212730		18/04/2010	10.20.12	23310,3	75	23310,90	23319,09	23340,1	-25,14	-20,41
217	10	212393	7777032	18/04/2010	10.30.12	23306,9	75	23498,80	23313,49	23340,2	41,54	-20,71
219	10	212502	777906	18/04/2016	10.30.17	25507,5	65 75	23300,00	23511,65	25540,2	-40,20	-20,55
220	10	212583	777919	18/04/2016	10:43:37	23500	75	23496,96	23510,19	23540,2	-43,24	-30,01
221	19	212600	7777062	18/04/2016	10:53:07	23499,6	60	23485,20	23505,30	23540,3	-55,10	-35,00
222	19	212612	7777045	18/04/2016	10:55:47	23505,2	70	23497,30	23511,35	23540,3	-43,00	-28,95
223	19	212621	7777945	18/04/2016	10:59:37	23504,1	75	23495,18	23511,02	23540,3	-45,12	-29,28
224	19	212624	////916	18/04/2016	11:05:07	23502,5	65	23496,08	23509,55	23540,3	-44,22	-30,75
225	19	212629	////902	18/04/2016	11:07:07	23504,4	/0	23500,86	23511,44	23540,3	-39,44	-28,86
228	6	212180	7777324	18/04/2016	14:38:02	23491,6	85	23481,26	23510,05	23539,4	-58,14	-29,35
229	6	212175	7777344	18/04/2016	14:39:37	23490,1	80	23478,14	23508,56	23539,4	-61,26	-30,84
230	6	212166	7777360	18/04/2016	14:41:32	23484,9	80	23467,70	23503,43	23539,4	-71,70	-35,97
231	6	212156	7777376	18/04/2016	14:44:02	23490,4	75	23478,78	23509,10	23539,4	-60,62	-30,30
232	6	212146	7777397	18/04/2016	14:46:12	23488,8	75	23473,56	23507,51	23539,4	-65,84	-31,89
233	6	212140	7777418	18/04/2016	14:47:32	23487,9	70	23468,74	23506,57	23539,5	-70,76	-32,93
234	6	212130	7777438	18/04/2016	14:48:52	23486,9	80	23472,74	23505,52	23539,5	-66,76	-33,98
235	6	212121	7777455	18/04/2016	14:51:22	23488,3	80	23475,60	23506,91	23539,5	-63,90	-32,60
236	6	212114	7777478	18/04/2016	14:54:32	23474,2	60	23447,38	23492,70	23539,5	-92,12	-46,80
237	6	212106	7777490	18/04/2016	14:56:42	23470,1	60	23439,12	23488,51	23539,5	-100,38	-50,99
238	6	212103	7777510	18/04/2016	14:58:32	23498,3	70	23495,64	23516,73	23539,5	-43,86	-22,77
239	6	212097	7777531	18/04/2016	15:01:22	23490,2	65	23476,42	23508,54	23539,5	-63,08	-30,96
240	6	212089	7777549	18/04/2016	15:02:42	23488,7	60	23470,30	23506,96	23539,5	-69,20	-32,54
241	6	212077	7777561	18/04/2016	15:04:17	23488	60	23475,06	23506,29	23539,5	-64,44	-33,21
242	6	212072	7777582	18/04/2016	15:06:27	23487,2	60	23473,48	23505,44	23539,5	-66,02	-34,06
243	6	212062	7777601	18/04/2016	15:08:07	23487,7	55	23474,48	23505,90	23539,5	-65,02	-33,60
244	6	212055	7777619	18/04/2016	15:09:37	23488,1	50	23475,22	23506,24	23539,5	-64,28	-33,26
245	6	212048	7777635	18/04/2016	15:10:52	23487,1	50	23473,24	23505,20	23539,5	-66,26	-34,30
246	6	212038	7777653	18/04/2016	15:13:02	23486,9	50	23472,80	23504,93	23539,5	-66,70	-34,57
247	6	212036	7777670	18/04/2016	15:14:32	23485,9	50	23470,84	23503,91	23539,6	-68,76	-35,69
248	7	212080	7777690	18/04/2016	15:18:42	23486,2	55	23471,36	23504,04	23539,6	-68,24	-35,56
249	7	212085	7777673	18/04/2016	15:20:37	23486,8	50	23472,52	23504,52	23539,6	-67,08	-35,08
250	7	212090	7777658	18/04/2016	15:23:12	23487,7	50	23474,40	23505,36	23539,6	-65,20	-34,24
251	7	212098	7777638	18/04/2016	15:24:42	23487,6	60	23474,22	23505,21	23539,6	-65,38	-34,39
252	7	212108	7777616	18/04/2016	15:26:17	23489,2	55	23477,46	23506,78	23539,6	-62,14	-32,82
253	7	212116	7777600	18/04/2016	15:27:47	23489,1	55	23477,12	23506,55	23539,6	-62,48	-33,05
254	7	212122	7777582	18/04/2016	15:29:32	23492,7	55	23484,32	23510,08	23539,6	-55,28	-29,52
255	7	212129	7777570	18/04/2016	15:30:52	23493,3	55	23479,52	23510,61	23539,6	-60,08	-28,99
256	7	212138	7777546	18/04/2016	15:33:07	23487,8	55	23473,54	23504,95	23539,5	-65,96	-34,55
257	7	212144	7777526	18/04/2016	15:35:02	23489,3	55	23476,62	23506,36	23539,5	-62,88	-33,14
258	7	212152	7777510	18/04/2016	15:37:32	23486	60	23470,04	23502,91	23539,5	-69,46	-36,59
259	7	212161	7777491	18/04/2016	15:40:22	23490,9	60	23479,88	23507,63	23539,5	-59,62	-31,87
260	7	212169	7777475	18/04/2016	15:42:42	23489,6	75	23477,20	23506,11	23539,5	-62,30	-33,39
261	7	212188	7777453	18/04/2016	15:44:42	23485	75	23467.00	23501.36	23539.5	-72,50	-38,14
262	7	212187	7777434	18/04/2016	15:47:32	23487,2	70	23471,36	23503,60	, 23539,5	-68,14	-35,90

Ν	Perfil	Х	Y	Data	Hora	B (nT)	R (cps)	Bt (1)	Bt (2)	IGRF	Btma (1)	Btma (2)	
263	7	212193	7777417	18/04/2016	15:50:57	23490,1	55	23477,24	23506,60	23539,5	-62,26	-32,90	
264	7	212203	7777398	18/04/2016	16:01:02	23488.6	60	23478.12	23505.29	23539.5	-61.38	-34.21	
265	7	212213	7777381	18/04/2016	16:02:27	23488.6	70	23474.26	23505.41	23539.5	-65.24	-34.09	
266	7	212220	7777367	18/04/2016	16:04:12	23490.5	75	23478.00	23507.34	23539.5	-61.50	-32.16	
267	8	212264	7777381	18/04/2016	16:07:02	23490.1	75	23477.28	23507.11	23539.5	-62.22	-32.39	
268	8	212258	7777398	18/04/2016	16.08.32	23489.4	75	23475 86	23506 49	23539 5	-63 64	-33.01	
269	8	212250	7777415	18/04/2016	16.10.17	23405,4	75	23478.02	23507,45	23539,5	-61.48	-31.86	
270	8	212230	7777434	18/04/2016	16.11.37	23430,3	70	23475 32	23506 35	23539.6	-64 28	-33 25	
270	8	212230	7777/50	18/04/2016	16.13.27	23405,2	60	23468.02	23500,35	23530,0	-71 58	-36.85	
271	Q	212232	7777450	18/04/2010	16.15.27	23403,5	60	23460,02	23502,75	23535,0	-75 /19	-37.76	
272	0	212223	7777471	18/04/2010	16.13.37	23464,0		23404,12	23501,84	23339,0	-73,40	-57,70	
275	0	212217	7777607	18/04/2016	10.17.12	23469,2	55	23406,44	23500,44	25559,0	-71,10	-55,10	
274	8	212208	7777507	18/04/2016	10:19:22	23492,0	60 F0	23483,20	23509,75	23539,0	-50,40	-29,85	
275	8	212198	7777542	18/04/2016	10:21:42	23490,5	50	23479,08	23507,58	23539,0	-00,52	-32,02	
276	8	212193	7777543	18/04/2016	16:23:07	23488,4	50	23474,80	23505,41	23539,6	-64,80	-34,19	
2//	8	212184	7777564	18/04/2016	16:24:22	23492,9	60	23483,76	23509,86	23539,6	-55,84	-29,74	
278	8	212179	////581	18/04/2016	16:26:32	23489,8	55	23477,60	23506,69	23539,6	-62,00	-32,91	
279	8	2121/2	////603	18/04/2016	16:28:02	23489,5	60	23477,08	23506,36	23539,6	-62,52	-33,24	
280	8	212161	7777617	18/04/2016	16:29:07	23491	55	23480,02	23507,80	23539,6	-59,58	-31,80	
281	8	212154	7777638	18/04/2016	16:30:22	23490,2	55	23470,34	23506,80	23539,6	-69,26	-32,80	
282	8	212147	7777658	18/04/2016	16:31:37	23489,8	65	23476,66	23506,14	23539,6	-62,94	-33,46	
283	8	212136	7777675	18/04/2016	16:32:52	23488,1	50	23473,12	23504,09	23539,6	-66,48	-35,51	
284	8	212132	7777689	18/04/2016	16:34:17	23489,5	50	23475,94	23505,23	23539,7	-63,76	-34,47	
285	8	212122	7777708	18/04/2016	16:35:37	23490,1	50	23476,20	23505,53	23539,7	-63,50	-34,17	
286	9	212163	7777748	18/04/2016	16:40:37	23491,8	50	23478,56	23505,93	23539,7	-61,14	-33,77	
287	9	212170	7777734	18/04/2016	16:42:32	23492,4	45	23479,84	23506,21	23539,7	-59,86	-33,49	
288	9	212178	7777714	18/04/2016	16:43:57	23494	50	23481,98	23507,48	23539,7	-57,72	-32,22	
289	9	212187	7777696	18/04/2016	16:45:02	23493,1	55	23479,52	23506,37	23539,7	-60,18	-33,33	
290	9	212194	7777677	18/04/2016	16:46:12	23494,3	55	23482,68	23507,43	23539,7	-57,02	-32,27	
291	9	212201	7777659	18/04/2016	16:47:07	23497,5	50	23489,06	23510,53	23539,7	-50,64	-29,17	
292	9	212209	7777640	18/04/2016	16:48:12	23498,4	55	23490,82	23511,33	23539,7	-48,88	-28,37	
293	9	212216	7777623	18/04/2016	16:49:07	23497,5	55	23489,06	23510,32	23539,7	-50,64	-29,38	
294	9	212223	7777604	18/04/2016	16:50:02	23493,9	60	23481,70	23506,54	23539,7	-58,00	-33,16	
295	9	212232	7777587	18/04/2016	16:53:07	23488.2	60	23470.38	23500.53	23539.7	-69.32	-39.17	
296	9	212237	7777567	18/04/2016	16:54:17	23492	50	23477.04	23504.23	23539.7	-62.66	-35.47	
297	9	212247	7777548	18/04/2016	16:55:22	23495	55	23482.92	23507.04	23539.6	-56.68	-32.56	
298	9	212250	7777530	18/04/2016	16.56.47	23494.6	60	23482 12	23506 49	23539.6	-57 48	-33 11	
298	1	211948	7777234	19/04/2016	08.37.17	23512.6	65	23511 22	23515 30	23539 1	-27.88	-33.80	
299	1	211942	7777247	19/04/2016	08.39.17	23517.7	55	23522,22	23520 37	23539 1	-16.62	-28 73	
300	1	211042	7777247	19/04/2016	08.41.27	23515.6	45	23522,48	23518 14	23539,1	-18.96	-30.96	
300	1	211031	7777202	19/04/2016	00.41.27	23313,0	65	23320,14	23310,14	23535,1	-87.26	-65 77	
301	1	211010	7777203	19/04/2016	00.44.32	23401	70	23561.00	235/11 68	23535,2	21 80	-7 52	
302	1	211010	7777230	19/04/2010	08.40.32	23535	70	23501,00	23541,00	23535,2	-5.92	-21.03	
204	1	211905	777317	19/04/2010	00.40.37	23525,1	70	23535,28	23528,17	23539,2	20.02	221,03	
20F	1 2	211901	7777205	19/04/2010	00.51.07	23313,0	70	23510,18	23517,02	23339,2	-29,02	-52,10	
205	2	211955	1111595	19/04/2016	00.55.22	25515,1	70	23510,18	23517,19	25559,5	-29,12	-52,11	
300	2	211940	777777	19/04/2016	08:57:22	23515,3	75	23514,60	23519,73	23539,2	-24,00	-29,47	
307	2	211951	////353	19/04/2016	08:59:02	23514,9	75	23513,82	23519,61	23539,2	-25,38	-29,59	
308	2	211958	1111331	19/04/2016	09:00:37	23513,8	70	23508,58	23518,60	23539,2	-30,62	-30,60	
309	2	211965	777720	19/04/2016	09:02:12	23515,2	/0	23515,34	23519,98	23539,2	-23,86	-29,22	
310	2	211969	////300	19/04/2016	09:04:07	23509,4	60	23503,76	23513,91	23539,2	-35,44	-35,29	
311	2	211978	///7281	19/04/2016	09:06:07	23511,6	60	23508,22	23516,00	23539,2	-30,98	-33,20	
312	2	211989	//77265	19/04/2016	09:07:47	23514,9	45	23514,76	23519,15	23539,2	-24,44	-30,06	
313	2	211998	7777248	19/04/2016	09:09:42	23513,5	60	23512,00	23517,62	23539,2	-27,20	-31,58	
314	3	212042	7777271	19/04/2016	09:14:52	23516,3	75	23516,60	23520,06	23539,2	-22,60	-29,14	
315	3	212030	7777283	19/04/2016	09:18:42	23514,1	60	23512,18	23517,69	23539,2	-27,02	-31,51	
316	3	212026	7777306	19/04/2016	09:20:57	23512	70	23508,04	23515,56	23539,3	-31,26	-33,74	
317 3 212018 7777320 19/04/2016 09/25:7 2353,74.2 2353,74.2 2353,74.2 2353,33 -1,68 -1,14 319 3 211998 7777358 19/04/2016 09/25:7 2351,15 2351,13.2 2351,32 2353,33 -2,16.8 -3,09 301 3 211990 7777378 19/04/2016 09/31.2 2351,51 75 2351,14.2 2351,32 2351,33 -9,14.2 -21,99 312 3 211970 7777409 19/04/2016 09/31.2 2351,62 75 2351,52 2351,84 2351,84 2351,84 2353,84 -22,96 -31,17 326 4 21001 7777349 19/04/2016 09/41/20 2351,68 75 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,83 2	Ν	Perfil	Х	Y	Data	Hora	B (nT)	R (cps)	Bt (1)	Bt (2)	IGRF	Btma (1)	Btma (2)
---	-----	--------	--------	---------	------------	----------	---------	-----------	----------	----------	---------	----------------	----------
38 3 212010 7777341 19/04/2016 09/28/7 23514,4 2517,87 23513,94 2517,87 23533,3 -26,26 -31,43 30 3 211980 777738 19/04/2016 09/31,37 23514,14 23513,22 23513,33 -21,39 3,117 321 3 211987 7777494 19/04/2016 09/31,37 23516,70 23516,12 23517,41 23539,3 -31,40 -31,17 323 4 120016 7777441 19/04/2016 09/31,27 23516,47 72 23516,42 23517,84 23519,44 23539,3 -21,40 -31,40 -31,17 324 4 210047 7777341 19/04/2016 09/41:02 23516,45 23517,28 23519,40 23539,4 -21,86 -32,12 2351,66 23517,28 23519,60 23513,92 2351,82 2351,82 23518,92 2351,32 2351,82 2351,82 2351,82 2351,82 2351,82 2351,82 23518,22 23518,22 23518,22	317	3	212018	7777320	19/04/2016	09:22:37	23526,7	70	23537,42	23530,18	23539,3	-1,88	-19,12
19 3 211998 7777363 19/04/2016 09.8247 23514,1 23517,32 23518,32 23518,33 -27,18 -3108 301 3 211990 7777378 19/04/2016 09.3127 23511,17 75 23501,18 23518,31 23539,3 -31,12 -21,99 312 3 111907 7777431 19/04/2016 09.3124 23518,4 75 23507,40 23518,41 23539,4 25,18 -3539,4 -25,18 -31,04 -31,12 23518,41 23518,41 23518,41 23518,44 23518,42 23518,44 23518,42 23518,44 23518,44 23518,44 23518,40 23518,44 23518,04 23518,42 23518,40 23518,44 23518,04 23518,44 23518,04 23518,44 23518,04 23518,44 23518,04 23518,44 23518,04 23518,44 23518,04 23518,34 23518,44 23518,04 23518,34 23518,44 23518,04 23518,44 23518,24 23518,24 23518,24 23518,24 23518,24<	318	3	212010	7777344	19/04/2016	09:26:57	23514.5	75	23513.04	23517.87	23539.3	-26.26	-31.43
120 3 11990 777738 190/4/2016 093137 22514 22515, 2 2516 308 321 3 11970 777740 190/4/2016 093137 22514 77 23503 312 32533 31,40 31,17 323 4 12016 777746 190/4/2016 093137 23514 70 23501,80 23531,41 23539,3 31,40 31,17 323 4 120027 777741 190/4/2016 094102 23516,4 72 23510,44 23539,4 18,66 32,17,28 23519,4 23519,4 23519,3 21,44 32,33 22,12 29,7 325 4 210047 7777361 190/4/2016 094502 2351,5 82 2351,94 23519,25 2351,36 23518,27 2353,3 21,44 2302 24,44 2006 277733 190/4/2016 10042,2 2351,44 23519,26 23518,27 23513,96 23518,27 2353,3 21,44 2302,49 <td>319</td> <td>3</td> <td>211998</td> <td>7777363</td> <td>19/04/2016</td> <td>09:28:47</td> <td>23514.1</td> <td>80</td> <td>23512.12</td> <td>23517.35</td> <td>23539.3</td> <td>-27.18</td> <td>-31.95</td>	319	3	211998	7777363	19/04/2016	09:28:47	23514.1	80	23512.12	23517.35	23539.3	-27.18	-31.95
121 3 211982 7777393 19/04/2016 09/3137 255/41 75 2350/190 2351/31 235393 -9.12 -9.12 322 3 212016 7777434 19/04/2016 09/3847 23516 70 23507,90 23517,81 235393 -25,88 -31,17 323 4 212016 7777444 19/04/2016 09/422 23516,88 75 23517,82 23517,84 23539,4 -15,57 23539,3 -25,18 -31,24 23539,3 -25,18 -31,24 23539,3 -25,18 -31,24 23539,3 -21,46 -73,35 32,36 -30,25 -31,23 -32,35 <t< td=""><td>320</td><td>3</td><td>211990</td><td>7777378</td><td>19/04/2016</td><td>09:30:12</td><td>23515.1</td><td>75</td><td>23514.14</td><td>23518.32</td><td>23539.3</td><td>-25.16</td><td>-30.98</td></t<>	320	3	211990	7777378	19/04/2016	09:30:12	23515.1	75	23514.14	23518.32	23539.3	-25.16	-30.98
322 3 211970 7777400 19/04/2016 09:38:32 23514,8 70 23507,90 23518,12 23539,3 -31,40 -31,17 323 4 21202 7777444 19/04/2016 09:38:32 23514,4 75 2351,42 23519,42 23539,4 -22,88 -31,56 325 4 212004 777741 19/04/2016 09:4507 2351,42 23511,45 23519,44 23539,3 -23,86 -02,52 326 4 212004 7777341 19/04/2016 09:4702 2351,68 80 2351,94 23519,89 23539,3 -23,46 -02,32 329 4 212067 7777321 19/04/2016 09:4722 2351,67 75 2351,36 2351,36 23539,3 -24,44 -29,97 330 4 212066 7777281 19/04/2016 10:0:0:17 2351,7 2351,66 2351,73 23539,3 -24,44 -29,97 333 4 212066 77777281	321	3	211982	7777393	19/04/2016	09:31:37	23524.1	75	23530.18	23527.31	23539.3	-9.12	-21.99
323 4 212016 7777454 19/04/2016 0938:32 23514,8 75 2351,82 23517,84 23537,4 23539,4 25,88 -31,56 324 4 21002 7777401 19/04/2016 094232 2351,68 75 2350,44 23531,42 23539,44 23539,4 15,26 23539,3 -25,18 31,24 326 4 212041 7777340 19/04/2016 094232 23515,48 23515,94 23539,33 -21,46 -29,32 3233,33 -21,46 -29,32 3231,36 2351,36 2351,36 2351,36 23531,36 2353,33 -21,46 -29,21 334 212067 777731 19/04/2016 10.0242 2351,57 75 2351,46 2351,38 2351,46 2353,33 -23,44 -29,92 334 212066 77777341 19/04/2016 10.0242 2351,88 2351,46 2351,22 23533,3 -24,44 -29,97 334 4 212066 7777741 19/04/2016 10.024	322	3	211970	7777409	19/04/2016	09.33.47	23515	70	23507 90	23518 13	23539.3	-31 40	-31 17
324 4 212022 7777431 19/04/2016 09/41:02 23518,4 75 2350,84 23511,45 23539,4 18,56 27,95 325 4 212003 7777401 19/04/2016 09/4702 23516,6 80 23517,24 23519,46 23339,3 -23,26 30,25 327 4 212004 777736 19/04/2016 09/4702 2515,6 85 23517,84 23519,88 23539,3 -23,36 -30,25 328 4 212067 7777375 19/04/2016 09/5227 23517,57 75 23513,48 23500,99 23539,3 -25,44 -31,03 33 4 212066 7777726 19/04/2016 10/02/42 23517,47 75 23513,49 23501,68 23511,36 23539,3 -25,44 -31,03 34 212066 7777266 19/04/2016 10/02/42 23513,80 23511,40 23539,3 -26,44 -31,07 35 212129 7777728 19/04/201	323	4	212016	7777454	19/04/2016	09.38.32	23514.8	75	23513 52	23517 84	23539.4	-25.88	-31 56
325 4 21203 7777410 19/04/2016 09:42:32 23516,6 80 23517,28 23519,64 2359,4 -22,12 -29,76 326 4 212047 777736 19/04/2016 09:45:07 23516,8 23519,05 23539,3 -23,18 -31,24 327 4 212067 777736 19/04/2016 09:45:07 23515,75 23513,72 23539,3 -21,64 -29,32 324 4 212067 7777314 19/04/2016 09:50:17 23517,5 75 23513,47 23539,3 -25,40 -27,94 334 4 212089 7777278 19/04/2016 10:02:42 23517,3 07 23514,86 2351,23 23539,3 -24,64 -25,90 336 5 212129 777728 19/04/2016 10:12:17 23518,8 023514,92 23539,4 -20,40 -26,59 335 5 212109 7777381 19/04/2016 10:21:17 23518,4 23518,56 2350,	324	4	212010	7777431	19/04/2016	09.41.02	23518.4	75	23520,82	23521,61	23539.4	-18 56	-27.95
bit c	325	Δ	212022	7777410	19/04/2016	09.41.02	23516.6	80	23520,04	23519 64	23539,4	-22 12	-29.76
317 4 212047 777736 19/04/2016 09/4702 23516 85 23513,24 23513,94 23513,94 23539,3 23,36 30,25 328 4 212067 7777341 19/04/2016 09/84/2 23515,75 75 23513,72 23539,3 23,36 30,25 330 4 212067 7777341 19/04/2016 10/02/42 23517,5 75 23517,73 23539,3 23,46 -29,27 334 4 212087 7777286 19/04/2016 10/04/21 23517,47 23514,36 23519,33 23,464 -31,57 335 5 212127 7777286 19/04/2016 10/04/21 23517,48 23510,46 23512,42 23539,4 -20,66 -26,57 336 5 212107 7777286 19/04/2016 10:2147 23518,8 0 23510,42 23520,41 23539,4 -20,46 -26,59 337 5 212104 777738 19/04/2016 10:2147	325	4	212033	777730/	19/04/2010	09.42.92	23510,0	85	23517,20	23519,04	23535,4	-25 18	-31 24
17 4 21206 777759 19/04/201 09.48.42 23516,9 80 23517,44 23519,98 2359,93 2259,93 21,46 29,32 329 4 212067 7777311 19/04/2016 09.52:7 23515,7 75 23513,96 23520,90 23593,3 22,96 -27,92 33 4 212086 7777261 19/04/2016 10.02:17 23515,4 70 23510,66 23517,32 2359,3 -24,64 -29,91 33 4 212086 7777261 19/04/2016 10.02:17 23515,4 70 23510,46 23517,32 2359,3 -24,64 -29,97 335 5 212127 7777304 19/04/2016 10.12:17 23518,4 70 23510,47 23520,41 23539,4 -20,04 -26,56 336 5 212106 777734 19/04/2016 10:12:17 23518,4 70 23510,47 23520,41 23539,4 -20,04 -26,56 339 <t< td=""><td>227</td><td>4</td><td>212041</td><td>777334</td><td>10/04/2010</td><td>00.40.07</td><td>23515,1</td><td>85</td><td>23514,12</td><td>23510,00</td><td>23535,5</td><td>-23,10</td><td>-30.25</td></t<>	227	4	212041	777334	10/04/2010	00.40.07	23515,1	85	23514,12	23510,00	23535,5	-23,10	-30.25
318 4 212007 777734 19/04/2016 095:02:1 2351,34 23513,34 23533,3 213,44 23533,3 213,44 23533,3 225,44 31,03 330 4 212005 7777326 19/04/2016 100:02:42 23515,7 23513,73 23533,3 25,34 427,94 333 4 212085 7777266 19/04/2016 10:02:42 23517,38 2351,66 23517,73 23539,3 -24,64 -29,97 334 4 212086 7777266 19/04/2016 10:04:17 23513,8 0 2351,66 23517,73 23539,3 -24,64 -28,98 335 5 21213 7777323 19/04/2016 10:14:17 23518,8 23518,50 2352,44 23539,4 -20,64 -28,59 339 5 212104 7777342 19/04/2016 10:24:22 23518,6 2350,26 2352,44 2353,4 -20,14 -28,04 341 5 212007 777734 19/04/	220	4	212040	7777250	10/04/2010	09.47.02	22516 0	<u>80</u>	23515,54	23519,05	23339,3	23,30	-30,23
333 4 212007 777321 19/04/2016 093.0.71 2331,30 2353,30 2353,30 2353,30 2353,30 2353,30 2353,30 2353,30 221,90 292,21 332 4 212086 777728 19/04/2016 10:00:17 23515,47 75 23513,90 2352,10 2353,33 24,44 29,97 334 4 212066 7777266 19/04/2016 10:01:17 23513,80 23516,66 23517,73 23539,3 -24,64 -31,57 335 5 21219 7777304 19/04/2016 10:14:27 23518,80 23516,40 23517,40 2352,94 -20,64 -28,59 336 5 212106 7777360 19/04/2016 10:21:37 23515,12 23518,76 23520,45 23539,4 -20,64 -28,59 340 5 212004 7777396 19/04/2016 10:24:2 2351,75 2351,72 2352,84 24,28 -30,84 41 5 212004 7	220	4	212000	777533	19/04/2010	09.40.42	23310,9	75	25517,04	23313,30	23339,3	-21,40	-29,52
330 4 2120/s 777726 19/04/2016 10:02:42 2331,74 2331,74 2331,74 2333,3 25,40 27,94 333 4 212086 7777276 19/04/2016 10:02:42 2351,5 75 2351,36 23521,36 2353,33 235,44 2353,3 25,44 2351,3 2353,33 235,44 2351,33 2353,33 235,44 2351,33 2353,33 235,44 2351,33 2353,33 235,44 2351,33 2353,33 235,44 2351,33 2351,34 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,84 2351,85 2351,4 2351,4 2351,84 2351,84 2351,84 2351,84 2351,84 2351,85 2351,4 2351,85 2351,4 2351,85 2351,4 2351,4 2351,85 2351,84 2351,85 2351,84 24,28 30,84 345 34	229	4	212007	7777341	19/04/2010	09.30.17	25515	75	23515,90	23510,27	23333,3	-23,34	-51,05
332 4 212006 777.729 19/04/2016 10.00.17 2311,5 75 2351,50 2351,50 2351,50 2351,50 2351,50 2351,50 2351,50 2351,50 2351,50 2351,50 2351,50 2351,50 2351,50 2351,50 2351,50 2351,51 2350,50 2351,51 2350,30 24,44 29,97 334 4 21206 777726 19/04/2016 10.12:17 23518 80 23518,50 2352,61 23539,4 -20,46 -26,56 337 5 212116 7777342 19/04/2016 10.21:37 23518,70 23518,76 23520,61 23539,4 -20,46 -26,56 338 5 212100 7777380 19/04/2016 10.21:37 23518,70 23518,72 23520,61 2359,4 -21,04 -28,90 340 5 212004 777749 19/04/2016 10.21:37 23515,61 23515,61 2359,4 -24,86 43,85 345 212004 7777419	222	4	212075	7777206	19/04/2016	10.00.17	25510,7	75	23517,54	23520,09	23239,5	-21,90	-29,21
333 4 212066 777/278 19/04/2016 10/02/42 23513,4 70 23514,80 23514,30 23533,3 224,44 -43,97 335 5 212137 7777266 19/04/2016 10:09:42 23511,83 80 23516,68 23521,22 23539,3 -22,64 -88,08 336 5 212123 7777324 19/04/2016 10:12:17 23518,80 23516,50 23522,61 23539,4 -20,46 -26,56 338 5 212106 7777374 19/04/2016 10:12:17 23518,50 23520,81 23539,4 -20,40 -20,41 -20,44 -20,44 -20,44 -20,44 -20,44 -20,44 -20,44 -20,44 -20,44 -20,44 -20,44 -20,44 -20,44 <td>332</td> <td>4</td> <td>212089</td> <td>7777290</td> <td>19/04/2016</td> <td>10:00:17</td> <td>23517,5</td> <td>75</td> <td>23513,90</td> <td>23521,30</td> <td>23539,3</td> <td>-25,40</td> <td>-27,94</td>	332	4	212089	7777290	19/04/2016	10:00:17	23517,5	75	23513,90	23521,30	23539,3	-25,40	-27,94
334 4 212056 777726 19/04/2016 10/04/17 23313,6 80 23510,66 23511,72 23539,3 -26,64 -31,57 335 5 211213 7777320 19/04/2016 10:12:17 23518,80 23518,94 23522,81 23539,3 -22,64 -26,56 337 5 212123 7777320 19/04/2016 10:14:27 23518,50 23520,81 23539,4 -20,04 -26,56 338 5 212100 7777381 19/04/2016 10:21:27 23518,50 23520,81 23539,4 -21,04 -29,01 344 5 212004 7777396 19/04/2016 10:22:42 23518,1 75 23518,62 23539,4 -21,04 -28,76 344 5 212084 7777431 19/04/2016 10:23:22 23513,61 23518,62 23539,4 -21,44 -28,76 345 5 212061 7777431 19/04/2016 10:31:22 2351,67 23515,62 23539,4	333	4	212086	7777278	19/04/2016	10:02:42	23515,4	70	23514,80	23519,33	23539,3	-24,44	-29,97
335 5 21213 777728 19/04/2016 10:09:42 2351,58 2352,122 2353,39 22,046 236,65 337 5 212129 7777321 19/04/2016 10:14:27 23518,80 23518,94 2352,84 23539,4 -20,064 -26,56 338 5 212104 77773730 19/04/2016 10:20:02 23517,4 75 23518,36 23520,81 23539,4 -20,064 -28,59 340 5 212004 7777378 19/04/2016 10:22:42 23518,16 23520,42 23539,4 -20,04 -28,66 341 5 212007 7777431 19/04/2016 10:24:22 2351,6 70 23510,26 23539,4 -20,14 -28,66 343 5 212008 7777431 19/04/2016 10:34:22 2352,46 2352,46 23539,4 -10,24 -24,55 344 5 212064 7777451 19/04/2016 10:34:22 2352,46 2352,46 23539,4 <	334	4	212096	7777266	19/04/2016	10:04:17	23513,8	80	23510,66	23517,73	23539,3	-28,64	-31,57
336 5 212123 777/344 19/04/2016 10112/17 23519 80 23518,36 23522,84 23523,44 220,80 -20,66 -26,59 338 5 212105 7777342 19/04/2016 101:812 23517,4 75 23518,36 23520,39 23539,4 -20,64 -28,59 339 5 212100 7777378 19/04/2016 10:2121 23518,56 23518,26 23520,39 23539,4 -20,64 -28,59 341 5 212004 7777361 19/04/2016 10:24:42 23518,16 72 23512,26 23520,46 23539,4 -20,14 -28,76 342 5 212081 7777451 19/04/2016 10:31:02 2352,59 60 23513,72 23524,54 23539,4 -20,14 -24,86 -24,86 345 5 212063 7777451 19/04/2016 10:31:02 2352,80 23512,46 23514,51 23539,4 -26,62 -33,18 345 5 212064 7777561 19/04/2016 10:38:17 23515,65 23517,65	335	5	212137	7777204	19/04/2016	10:09:42	23517,3	80	23516,68	23521,22	23539,3	-22,62	-28,08
33 5 21212 7777342 19/04/2016 10:14:2/ 23518,70 23518,76 23522,61 23539,4 -20,90 -26,79 338 5 212116 7777342 19/04/2016 10:20:02 23518,76 23520,81 23539,4 -20,64 -28,59 334 5 212004 777736 19/04/2016 10:21:37 23518,76 23520,62 23539,4 -21,04 -28,59 344 5 212087 777743 19/04/2016 10:24:42 23518,17 23523,76 23539,4 -20,44 -28,76 343 5 212087 7777451 19/04/2016 10:31:02 2352,9 60 2353,72 23539,4 -20,44 -24,85 344 5 212064 7777451 19/04/2016 10:36:22 2351,5 23518,17 23539,4 -16,60 -28,03 344 5 212048 7777561 19/04/2016 10:36:22 2351,5 23518,17 23539,4 -24,44 -31,23	336	5	212129	////304	19/04/2016	10:12:17	23519	80	23518,94	23522,84	23539,4	-20,46	-26,56
338 5 212116 777740 19/04/2016 10:18:12 23517,4 75 23518,36 23520,81 23539,4 -20,64 -28,59 340 5 212100 7777360 19/04/2016 10:21:37 23515,66 70 23518,36 23520,42 23539,4 -24,28 -30,84 341 5 212087 7777749 19/04/2016 10:21:22 23513,6 70 23512,62 23523,42 23539,4 -12,48 -24,86 343 5 212087 7777491 19/04/2016 10:31:02 23523,6 60 23532,16 23539,4 -24,44 -33,78 344 5 212054 777742 19/04/2016 10:31:02 2352,36 65 2352,16 23539,4 -10,60 -24,85 344 5 212048 7777528 19/04/2016 10:34:2 2351,76 23512,78 2353,4 -26,62 -33,18 344 5 212032 7777528 19/04/2016 10:39:42	337	5	212123	////323	19/04/2016	10:14:27	23518,8	80	23518,50	23522,61	23539,4	-20,90	-26,79
339 5 212104 7777360 19/04/2016 10:20:02 23517,2 65 23518,18 23515,12 23539,4 -21,04 -29,01 340 5 212009 777738 19/04/2016 10:24:42 23518,1 75 23519,26 23539,4 -20,14 -28,76 342 5 212081 7777434 19/04/2016 10:24:42 23513,6 70 23519,26 23539,4 -20,14 -28,76 343 5 212081 7777434 19/04/2016 10:31:02 2352,9 60 23531,72 23539,4 -20,14 -28,03 344 5 212054 7777451 19/04/2016 10:36:22 23517,5 60 23518,17 23539,4 -16,60 -28,03 344 5 212039 7777561 19/04/2016 10:38:17 23517,50 23518,17 23539,4 -24,86 -33,18 345 5 212039 7777561 19/04/2016 10:36:22 23517,50 23518,17	338	5	212116	7777342	19/04/2016	10:18:12	23517,4	75	23518,76	23520,81	23539,4	-20,64	-28,59
340 5 212100 7777378 19/04/2016 10:21:37 23515,6 70 23519,26 23539,4 -24,28 -30,84 341 5 212084 7777396 19/04/2016 10:24:42 23512,2 75 23527,42 23524,54 23539,4 -24,86 343 5 212087 7777451 19/04/2016 10:29:22 23513,6 70 23510,26 23524,52 23539,4 -29,14 -33,78 344 5 212067 7777451 19/04/2016 10:31:22 23523,6 65 23529,16 23524,85 23539,4 -10,24 -24,85 345 5 212054 7777491 19/04/2016 10:36:22 2351,75 6352,82,8 2351,81,7 2351,4 -23,83 44 -24,83 347 5 212032 7777542 19/04/2016 10:36:12 2351,75 63518,17 2351,44 -23,53,5 -14,88 -27,69 348 5 212032 7777561 19/04/2016 10:36:12 2351,76 2351,76 2351,75 2351,76 2351,76	339	5	212104	7777360	19/04/2016	10:20:02	23517,2	65	23518,36	23520,39	23539,4	-21,04	-29,01
341 5 21208 777736 19/04/2016 10:24:42 23518,1 75 23520,24 23520,44 23539,4 -20,14 -28,76 342 5 212087 7777419 19/04/2016 10:26:42 23527,50 23527,42 23539,4 -21,18 -33,78 344 5 212062 7777472 19/04/2016 10:31:02 23529,6 60 23531,72 23521,8 23539,4 -5,68 -21,85 345 5 212064 7777471 19/04/2016 10:34:52 23520,4 65 23521,80 2351,81 2353,4 -6,60 -28,03 346 5 212034 7777561 19/04/2016 10:38:12 2351,8 60 2351,76 2351,81 2353,95 -14,88 -27,69 350 5 212023 777751 19/04/2016 10:41:07 2351,76 2351,76 2351,76 2353,95 -14,88 -27,69 351 5 212023 777754 19/04/2016 10:41:07 2351,76 2351,76 2351,78 2351,78 2351,85 2351,8	340	5	212100	7777378	19/04/2016	10:21:37	23515,6	70	23515,12	23518,56	23539,4	-24,28	-30,84
342 5 212087 7777419 19/04/2016 10:26:42 23522,2 75 2357,42 23524,54 23539,4 -11,98 -24,86 343 5 212081 7777431 19/04/2016 10:31:02 23523,6 60 23533,72 23527,55 23539,4 -5,68 -21,85 344 5 212062 7777471 19/04/2016 10:33:22 2352,6 65 23522,80 23518,17 23539,4 -16,60 -28,03 347 5 212048 7777526 19/04/2016 10:38:17 2351,96 23518,17 23539,4 -26,62 -33,18 349 5 212032 7777528 19/04/2016 10:38:17 2351,96 23517,05 2351,55 533,55 -23,80 -31,83 349 5 212032 7777579 19/04/2016 10:54:17 23517,05 23517,55 2353,55 -23,80 -31,83 351 5 212014 777759 19/04/2016 10:54:17 23517	341	5	212094	7777396	19/04/2016	10:24:42	23518,1	75	23519,26	23520,64	23539,4	-20,14	-28,76
343 5 212081 7777434 19/04/2016 10:29:22 23513,6 70 23510,26 23513,62 23539,4 -29,14 -33,78 344 5 212067 7777451 19/04/2016 10:31:02 23523,9 60 23533,72 23524,85 23539,4 -10,24 -24,55 346 5 212054 7777491 19/04/2016 10:34:52 2352,46 65 23512,86 23539,4 -10,60 -28,03 347 5 212048 7777528 19/04/2016 10:38:12 23515,9 65 23512,78 23539,4 -24,62 -33,18 349 5 212032 7777542 19/04/2016 10:38:12 2351,79 65 2351,78 23539,4 -24,62 -33,18 350 5 212032 7777542 19/04/2016 10:43:47 2351,85 70 2351,78 23539,6 -24,82 31,78 351 5 212047 7777474 19/04/2016 10:05:12 2351,86 2351,78 23539,6 -24,24 31,78 355 <	342	5	212087	7777419	19/04/2016	10:26:42	23522,2	75	23527,42	23524,54	23539,4	-11,98	-24,86
344 5 212073 7777451 19/04/2016 10:31:02 23523,9 600 2353,72 23527,55 2359,44 -5,68 -21,85 345 5 212062 7777471 19/04/2016 10:33:22 23523,6 65 23521,80 23524,85 2353,9,4 -10,24 -24,55 347 5 212048 7777506 19/04/2016 10:36:22 2351,5 60 2351,78 2351,28 2353,4 -26,62 -33,18 348 5 21203 7777542 19/04/2016 10:43:47 23517,8 65 2351,70 2351,76 2353,72 2353,75 2359,6 -24,88 -27,69 350 5 212014 777757 19/04/2016 10:43:47 23517,9 2351,70 2351,80 2353,95 -24,88 -44,25 354 9 212266 7777474 19/04/2016 10:59:7 23518,9 2351,87 2351,87 2351,87 2353,46 -24,89 -24,80 -23,73 <tr< td=""><td>343</td><td>5</td><td>212081</td><td>7777434</td><td>19/04/2016</td><td>10:29:22</td><td>23513,6</td><td>70</td><td>23510,26</td><td>23515,62</td><td>23539,4</td><td>-29,14</td><td>-33,78</td></tr<>	343	5	212081	7777434	19/04/2016	10:29:22	23513,6	70	23510,26	23515,62	23539,4	-29,14	-33,78
345 5 212062 7777472 19/04/2016 10:34:22 23523,6 65 23524,85 23539,4 -10,24 -24,55 346 5 212048 7777506 19/04/2016 10:34:52 23517,5 60 23517,56 23517,82 23517,82 23517,82 23517,82 23517,82 23517,82 23517,82 23517,82 23517,82 23517,85 23517,85 23517,85 23517,85 23539,5 -24,80 -31,83 349 5 212032 7777541 19/04/2016 10:41:07 23517,9 65 23517,70 23517,85 23539,5 -22,42 -31,70 351 5 212047 7777579 19/04/2016 10:43:47 23515,70 23517,70 23517,80 23539,6 -22,42 -31,70 352 9 212266 7777474 19/04/2016 11:05:7 23515,70 2351,74 23516,87 23539,6 -22,08 -32,73 355 9 212286 7777456 19/04/2016	344	5	212073	7777451	19/04/2016	10:31:02	23525,9	60	23533,72	23527,55	23539,4	-5 <i>,</i> 68	-21,85
346 5 212054 7777491 19/04/2016 10:34:52 2352,4 65 2352,80 2351,38 23539,4 -16,60 -28,03 347 5 212048 7777506 19/04/2016 10:36:22 23517,5 60 23512,78 23516,22 23539,4 -26,62 -33,18 349 5 212032 7777524 19/04/2016 10:34:47 23517,9 65 23517,05 23539,5 -24,80 -31,85 351 5 212014 7777579 19/04/2016 10:55:12 23517,9 90 23493,72 2350,5 23539,6 -24,42 -31,70 352 9 212266 777759 19/04/2016 10:55:12 23517,80 2351,43 23539,6 -45,88 -44,25 354 9 212286 777749 19/04/2016 11:04:07 2351,8 2351,75 2351,43 23539,6 -45,88 -46,80 355 9 212286 7777419 19/04/2016 11:05:17	345	5	212062	7777472	19/04/2016	10:33:22	23523,6	65	23529,16	23524,85	23539,4	-10,24	-24,55
347 5 212048 7777506 19/04/2016 10:36:22 23517,5 60 23515,96 23518,17 23539,4 -23,44 -31,23 348 5 212039 7777528 19/04/2016 10:38:17 23517,9 65 23512,78 23516,22 23539,4 -26,62 -33,18 349 5 212023 7777542 19/04/2016 10:41:07 23517,9 65 23517,0 23517,55 23539,5 -23,40 -31,85 350 5 212014 777759 19/04/2016 10:41:07 23517,8 23517,80 23539,5 -22,42 -31,70 352 9 212266 777759 19/04/2016 10:55:12 23507,4 90 23493,72 2350,53 23539,6 -22,42 -31,70 355 9 212286 7777474 19/04/2016 11:04:07 2351,88 2351,52 2351,64 23539,6 -22,00 -33,03 356 9 212207 7777401 19/04/2016 11:05:47 2352,42 90 2351,57 23539,6 -32,44 -36,0	346	5	212054	7777491	19/04/2016	10:34:52	23520,4	65	23522,80	23521,38	23539,4	-16,60	-28,03
348 5 212039 7777528 19/04/2016 10:38:17 23515,9 65 23512,78 23516,22 23539,4 -26,62 -33,18 349 5 212032 7777542 19/04/2016 10:39:42 23521,8 60 23524,62 23521,81 23539,5 -23,80 -23,69 350 5 212014 7777561 19/04/2016 10:41:07 23517,9 23517,80 23517,80 23539,5 -22,42 -31,70 351 5 212046 7777509 19/04/2016 10:55:12 23507,4 90 23493,72 2350,53 23539,6 -45,88 -44,25 354 9 212286 777747 19/04/2016 11:01:57 23519,8 85 23517,52 23516,87 23539,6 -22,08 -32,73 356 9 212295 777749 19/04/2016 11:09:17 23520,2 85 2351,42 23519,4 23539,6 -22,08 -33,03 358 9 212307 777740 19/04/2016 11:13:02 23527,2 90 23514,57 23539,6	347	5	212048	7777506	19/04/2016	10:36:22	23517,5	60	23515,96	23518,17	23539,4	-23,44	-31,23
3495212032777754219/04/201610:39:4223521,86023524,6223521,8123539,5-14,88-27,693505212023777756119/04/201610:41:0723517,96523517,0023517,6523539,5-23,80-31,85351521204777757919/04/201610:43:4723518,57023517,802357,8023539,5-22,42-31,703529212266777747419/04/201610:59:572351,97523510,862351,4323539,6-28,74-36,17355921228677774319/04/201611:01:5723519,88523517,5223516,8723539,6-22,08-32,73356921229577774919/04/201611:04:07235248523517,4023516,5723539,6-22,00-33,03358921230777774019/04/201611:09:1723524,2902351,322352,8023539,6-30,42-30,043591021234477774719/04/201611:13:022352,42902350,1323510,1723539,6-30,42-35,033611021233777774719/04/201611:16:522351,1802350,162351,1223539,7-32,54-39,533621021233177774719/04/201611:16:522351,18023498,802350,3123539,7-44,52-45,99<	348	5	212039	7777528	19/04/2016	10:38:17	23515,9	65	23512,78	23516,22	23539,4	-26,62	-33,18
3505212023777756119/04/201610:41:0723517,96523517,5023517,6523539,5-23,80-31,853515212014777757919/04/201610:43:4723518,57023517,0823517,8023539,5-22,42-31,703529212266777747419/04/201610:55:1223507,49023493,7223505,3523539,6-28,74-36,173559212286777745619/04/201611:01:5723519,88523517,5223516,8723539,6-22,08-32,733569212295777743919/04/201611:01:07235248523517,4023516,5723539,6-22,00-33,033589212307777740019/04/201611:09:1723527,29023521,322352,8023539,6-30,42-30,4636010212344777743719/04/201611:16:223510,18523507,1623517,1223539,7-30,24-39,5336110212347777743719/04/201611:16:223511,18523507,1623517,1223539,6-30,42-30,4636010212347777743719/04/201611:16:3223510,19023495,182350,7123539,7-30,24-39,5336110212347777743719/04/201611:16:3223510,19023495,182350,1223539,7-44,52-45,99<	349	5	212032	7777542	19/04/2016	10:39:42	23521,8	60	23524,62	23521,81	23539,5	-14,88	-27,69
3515212014777757919/04/201610:43:4723518,57023517,0823517,8023539,5-22,42-31,703529212266777750919/04/201610:55:1223507,49023493,7223503,5523539,6-45,88-44,253549212278777747419/04/201610:59:5723519,8852351,862351,3423539,6-22,08-32,733559212285777743919/04/201611:01:572352,4852352,592352,6823539,6-22,00-33,03356921230777740919/04/201611:09:172352,2852351,4023514,5723539,6-22,20-33,03358921230777774019/04/201611:09:172352,29023531,322352,8023539,6-15,24-30,463601021234477774719/04/201611:15:172352,1852350,182351,1723539,7-44,52-35,033611021233777747419/04/201611:16:522351,1802350,182350,1723539,7-44,52-45,993631021233777774719/04/201611:18:222351,4802360,712353,7-44,52-45,993641021233777774719/04/201611:21:322351,4802350,522353,7-44,52-45,9936510212308 <td< td=""><td>350</td><td>5</td><td>212023</td><td>7777561</td><td>19/04/2016</td><td>10:41:07</td><td>23517,9</td><td>65</td><td>23515,70</td><td>23517,65</td><td>23539,5</td><td>-23,80</td><td>-31,85</td></td<>	350	5	212023	7777561	19/04/2016	10:41:07	23517,9	65	23515,70	23517,65	23539,5	-23,80	-31,85
3529212266777750919/04/201610:55:1223507,49023493,7223505,3523539,6-45,88-44,253549212278777747419/04/201610:59:5723515,97523510,8623513,4323539,6-28,74-36,173559212286777745619/04/201611:01:5723519,88523517,5223516,8723539,6-22,08-32,733569212303777741919/04/201611:00:17235248523517,4023516,5723539,6-22,00-33,033589212307777740019/04/201611:09:1723524,29023524,3623519,1423539,6-15,24-30,4635910212344777743719/04/201611:15:1723520,18523509,1823514,5723539,6-30,42-35,0336110212337777743719/04/201611:16:5223516,18023507,1623510,1723539,7-32,54-39,533621021233177774319/04/201611:18:3223510,19023495,1823503,7123539,7-44,52-45,993631021233777743319/04/201611:23:2723512,48023498,8023505,2323539,7-44,52-45,9936310212308777751219/04/201611:23:2723512,48023498,8023505,2323539,7-40,90-44	351	5	212014	7777579	19/04/2016	10:43:47	23518,5	70	23517,08	23517,80	23539,5	-22,42	-31,70
3549212278777747419/04/201610:59:5723515,97523510,8623513,4323539,6-28,74-36,173559212286777745619/04/201611:01:5723519,88523517,5223510,8723539,6-22,08-32,733569212295777743919/04/201611:04:07235248523525,9623520,6823539,6-22,00-33,033589212307777740019/04/201611:09:1723527,29023531,3223529,2023539,6-8,28-26,803591021234477774719/04/201611:15:1723520,18523509,1823514,5723539,6-30,42-35,033611021234777774719/04/201611:15:1723520,18523509,1823510,1723539,7-44,52-39,533611021233777774719/04/201611:18:2223510,19023495,1823503,7123539,7-44,52-45,993631021232377774919/04/201611:23:222351,48023504,2823539,7-40,90-44,4736410212316777751219/04/201611:23:222357,97523528,7823520,0323539,7-10,92-29,673651021230877775019/04/201611:23:222353,38023547,1223529,797,42-21,1136710<	352	9	212266	7777509	19/04/2016	10:55:12	23507,4	90	23493,72	23505,35	23539,6	-45,88	-44,25
3559212286777745619/04/201611:01:5723519,88523517,522351,68723539,6-22,08-32,733569212295777743919/04/201611:04:07235248523525,9623520,6823539,6-22,00-33,033589212307777740019/04/201611:09:1723527,29023531,3223522,8023539,6-8,28-26,803591021235477774719/04/201611:13:0223524,29023524,3623519,1423539,6-15,24-30,463601021234477774719/04/201611:15:1723520,18523509,1823514,5723539,6-32,54-39,533611021233777774719/04/201611:16:5223510,18023507,1623510,1723539,7-32,54-39,533621021233177774719/04/201611:18:3223510,19023495,882350,3723539,7-44,52-45,993631021233177774319/04/201611:21:322351,4802349,8802350,2323539,7-44,52-45,9936410212316777751219/04/201611:23:222357,9752351,682351,3523539,7-40,90-44,473641021230877775019/04/201611:23:222357,9752352,782352,0323539,7-10,92-29,67 <td>354</td> <td>9</td> <td>212278</td> <td>7777474</td> <td>19/04/2016</td> <td>10:59:57</td> <td>23515,9</td> <td>75</td> <td>23510,86</td> <td>23513,43</td> <td>23539,6</td> <td>-28,74</td> <td>-36,17</td>	354	9	212278	7777474	19/04/2016	10:59:57	23515,9	75	23510,86	23513,43	23539,6	-28,74	-36,17
3569212295777743919/04/201611:04:0723524852352,9623520,6823539,6-13,64-28,923579212303777741919/04/201611:05:4723520,28523517,4023516,5723539,6-22,20-33,033589212307777740019/04/201611:09:1723527,29023531,322352,8023539,6-8,28-26,803591021234477774719/04/201611:13:0223524,29023524,3623519,1423539,6-30,42-35,033611021233777745719/04/201611:15:1723520,18523509,1823510,1723539,7-32,54-39,533621021233177774719/04/201611:18:3223510,19023495,182350,7123539,7-44,52-45,9936310212323777749319/04/201611:21:322351,48023498,802350,232353,7-40,90-44,473641021230877753019/04/201611:23:072352,7752351,682351,282353,7-26,02-36,883651021230177775019/04/201611:24:322357,3652354,742352,612353,77,42-21,113671021229377756619/04/201611:26:522353,7802354,742352,6152353,77,42-21,11365	355	9	212286	7777456	19/04/2016	11:01:57	23519,8	85	23517,52	23516,87	23539,6	-22,08	-32,73
3579212303777741919/04/201611:05:4723520,28523517,4023516,5723539,6-22,20-33,033589212307777740019/04/201611:09:1723527,29023531,322352,8023539,6-8,28-26,8035910212354777741719/04/201611:13:0223524,29023524,3623519,1423539,6-15,24-30,4636010212344777743719/04/201611:15:1723520,18523509,1823510,1723539,7-32,54-35,033611021233177774719/04/201611:16:5223510,19023495,182350,112353,7-32,54-39,533621021233177774319/04/201611:18:322351,48023495,182350,7123539,7-44,52-45,993631021232377774319/04/201611:21:322351,48023498,802350,232353,7-40,90-44,473641021230177775019/04/201611:23:072352,7752351,682351,282353,7-10,92-29,673661021230177775019/04/201611:26:522353,1802354,242352,612353,77,42-21,113671021229377776619/04/201611:26:522353,3802352,5682351,732353,7-44,92-32,33	356	9	212295	7777439	19/04/2016	11:04:07	23524	85	23525,96	23520,68	23539,6	-13,64	-28,92
3589212307777740019/04/201611:09:1723527,29023531,322352,8023539,6-8,28-26,8035910212354777741719/04/201611:13:0223524,29023524,3623519,1423539,6-15,24-30,4636010212344777743719/04/201611:15:1723520,18523509,1823514,5723539,6-30,42-35,0336110212337777745719/04/201611:16:5223510,19023495,182350,7123539,7-44,52-45,9936310212323777749319/04/201611:21:3223512,48023498,8023505,232353,7-40,90-44,4736410212308777751219/04/201611:23:0723520,37523513,6823512,832353,7-26,02-36,8836510212308777750319/04/201611:24:3223527,97523528,7823520,032353,7-10,92-29,673661021230177775019/04/201611:26:5223537,18023547,1223528,592353,77,42-21,1136710212293777766619/04/201611:35:723527,8652352,6423517,372353,7-14,02-32,3336910212246777754419/04/201611:35:723527,3652352,7223515,972353,7-14,02-32,33	357	9	212303	7777419	19/04/2016	11:05:47	23520,2	85	23517,40	23516,57	23539,6	-22,20	-33,03
35910212354777741719/04/201611:13:0223524,29023524,3623519,1423539,6-15,24-30,4636010212344777743719/04/201611:15:1723520,18523509,1823514,5723539,6-30,42-35,0336110212337777745719/04/201611:16:5223516,18023507,1623510,1723539,7-32,54-39,5336210212331777747419/04/201611:18:3223510,19023495,1823503,7123539,7-44,52-45,9936310212323777749319/04/201611:21:3223512,48023498,8023505,2323539,7-40,90-44,4736410212316777751219/04/201611:22:0723520,37523513,6823512,8323539,7-26,02-36,883651021230877755019/04/201611:24:322357,97523528,7823520,0323539,7-10,92-29,673661021220377756619/04/201611:29:522353,38023542,5423526,1523539,77,42-21,113671021228677775419/04/201611:33:572352,736523526,7623517,3723539,7-14,02-32,333691021227977760619/04/201611:38:522352,98023523,7223515,9723539,7-15,98-33	358	9	212307	7777400	19/04/2016	11:09:17	23527,2	90	23531,32	23522,80	23539,6	-8,28	-26,80
36010212344777743719/04/201611:15:1723520,18523509,1823514,5723539,6-30,42-35,0336110212337777745719/04/201611:16:5223516,18023507,1623510,1723539,7-32,54-39,5336210212331777747419/04/201611:18:3223510,19023495,1823503,7123539,7-44,52-45,9936310212323777749319/04/201611:21:3223512,48023498,8023505,2323539,7-40,90-44,4736410212306777751219/04/201611:23:0723520,37523513,6823512,8323539,7-26,02-36,883651021230177775019/04/201611:24:3223527,97523528,7823520,0323539,7-10,92-29,673661021220177775019/04/201611:26:522353,18023547,1223528,5923539,77,42-21,1136710212293777756619/04/201611:33:5723527,36523526,4223526,1523539,7-14,02-32,333691021227977760619/04/201611:38:5223526,98023523,722351,9723539,7-14,02-32,3337110212259777764219/04/201611:42:3223540,77523550,4823529,1823539,7-11,08-	359	10	212354	7777417	19/04/2016	11:13:02	23524,2	90	23524,36	23519,14	23539,6	-15,24	-30,46
36110212337777745719/04/201611:16:5223516,18023507,1623510,1723539,7-32,54-39,5336210212331777747419/04/201611:18:3223510,19023495,1823503,7123539,7-44,52-45,9936310212323777749319/04/201611:21:3223512,48023498,8023505,2323539,7-40,90-44,4736410212316777751219/04/201611:23:0723520,37523513,6823512,8323539,7-26,02-36,8836510212301777753019/04/201611:24:3223527,97523528,7823520,0323539,7-10,92-29,6736610212301777756019/04/201611:26:5223537,18023542,5423526,1523539,77,42-21,113671021229377776619/04/201611:29:5223535,38023542,5423526,1523539,7-44,02-32,3336810212286777758419/04/201611:33:5723527,36523523,7223517,3723539,7-14,02-32,333691021229777760619/04/201611:38:5223526,98023523,7223515,9723539,7-14,02-32,3337110212259777764219/04/201611:41:2723529,88023528,6223518,4923539,7-11,08 <t< td=""><td>360</td><td>10</td><td>212344</td><td>7777437</td><td>19/04/2016</td><td>11:15:17</td><td>23520,1</td><td>85</td><td>23509,18</td><td>23514,57</td><td>23539,6</td><td>-30,42</td><td>-35,03</td></t<>	360	10	212344	7777437	19/04/2016	11:15:17	23520,1	85	23509,18	23514,57	23539,6	-30,42	-35,03
36210212331777747419/04/201611:18:3223510,19023495,1823503,7123539,7-44,52-45,9936310212323777749319/04/201611:21:3223512,48023498,8023505,2323539,7-40,90-44,4736410212316777751219/04/201611:23:0723520,37523513,6823512,8323539,7-26,02-36,8836510212308777753019/04/201611:24:3223527,97523528,7823520,0323539,7-10,92-29,673661021230177775019/04/201611:26:5223537,18023547,1223528,5923539,77,42-21,1136710212293777756619/04/201611:29:5223535,38023542,5423526,1523539,77,42-23,5536810212293777766619/04/201611:33:5723527,36523525,6823517,3723539,7-14,02-32,3336910212299777760619/04/201611:38:5223526,98023523,7223518,4923539,7-11,08-31,2137110212259777764219/04/201611:41:2723529,88023528,6223518,4923539,7-11,08-31,2137210212253777765919/04/201611:42:3223540,77523550,4823529,1823539,710,78	361	10	212337	7777457	19/04/2016	11:16:52	23516,1	80	23507,16	23510,17	23539,7	-32,54	-39,53
36310212323777749319/04/201611:21:3223512,48023498,8023505,2323539,7-40,90-44,4736410212316777751219/04/201611:23:0723520,37523513,6823512,8323539,7-26,02-36,8836510212308777753019/04/201611:24:3223527,97523528,7823520,0323539,7-10,92-29,6736610212301777755019/04/201611:26:5223537,18023547,1223528,5923539,77,42-21,1136710212293777756619/04/201611:29:5223535,38023542,5423526,1523539,72,84-23,5536810212286777758419/04/201611:33:5723526,98023523,7223517,3723539,7-14,02-32,333691021227977766619/04/201611:38:5223526,98023523,7223518,4923539,7-11,08-31,2137110212259777764219/04/201611:41:2723529,88023528,6223518,4923539,7-10,08-31,2137210212253777767819/04/201611:42:3223540,77523550,4823529,1823539,710,78-20,5237310212246777767819/04/201611:43:4723536,86523542,5823525,0523539,72,88-2	362	10	212331	7777474	19/04/2016	11:18:32	23510,1	90	23495,18	23503,71	23539,7	-44,52	-45,99
36410212316777751219/04/201611:23:0723520,37523513,6823512,8323539,7-26,02-36,8836510212308777753019/04/201611:24:3223527,97523528,7823520,0323539,7-10,92-29,6736610212301777755019/04/201611:26:5223537,18023547,1223528,5923539,77,42-21,1136710212293777756619/04/201611:29:5223535,38023542,5423526,1523539,72,84-23,5536810212286777758419/04/201611:33:5723526,98023523,7223515,9723539,7-14,02-32,333691021227977760619/04/201611:38:5223526,98023523,7223515,9723539,7-14,02-32,3337110212259777764219/04/201611:41:2723529,88023528,6223518,4923539,7-11,08-31,2137210212253777765919/04/201611:42:3223540,77523550,4823529,1823539,710,78-20,5237310212246777767819/04/201611:43:4723536,86523542,5823525,0523539,72,88-24,6537310212246777767819/04/201611:43:4723536,86523542,5823525,0523539,72,88-24,	363	10	212323	7777493	19/04/2016	11:21:32	23512,4	80	23498,80	23505,23	23539,7	-40,90	-44,47
36510212308777753019/04/201611:24:3223527,97523528,7823520,0323539,7-10,92-29,6736610212301777755019/04/201611:26:5223537,18023547,1223528,5923539,77,42-21,1136710212293777756619/04/201611:29:5223535,38023542,5423526,1523539,72,84-23,5536810212286777758419/04/201611:33:5723527,36523525,6823517,3723539,7-14,02-32,3336910212279777760619/04/201611:38:5223526,98023523,7223515,9723539,7-15,98-33,7337110212259777764219/04/201611:41:2723529,88023528,6223518,4923539,7-11,08-31,2137210212253777767819/04/201611:42:3223540,77523550,4823529,1823539,710,78-20,5237310212246777767819/04/201611:43:4723536,86523542,5823525,0523539,72,88-24,6537310212246777767819/04/201611:43:4723536,86523542,5823525,0523539,72,88-24,6537410212246777767819/04/201611:43:4723536,86523542,5823525,0523539,72,88-24,6	364	10	212316	7777512	19/04/2016	11:23:07	23520.3	75	23513.68	23512.83	23539.7	-26.02	-36.88
366 10 212301 7777550 19/04/2016 11:26:52 23537,1 80 23547,12 23528,59 23539,7 7,42 -21,11 367 10 212293 7777566 19/04/2016 11:29:52 23535,3 80 23547,12 23528,59 23539,7 7,42 -21,11 367 10 212293 7777566 19/04/2016 11:29:52 23535,3 80 23542,54 23526,15 23539,7 2,84 -23,55 368 10 212286 7777584 19/04/2016 11:33:57 23527,3 65 23523,72 23517,37 23539,7 -14,02 -32,33 369 10 212259 7777606 19/04/2016 11:41:27 23529,8 80 23523,72 23518,49 23539,7 -15,98 -33,73 371 10 212253 7777642 19/04/2016 11:41:27 23520,8 23529,18 23539,7 -11,08 -31,21 372 10 212253 7777678	365	10	212308	7777530	19/04/2016	11:24:32	23527.9	75	23528.78	23520.03	23539.7	-10.92	-29.67
367 10 212293 7777566 19/04/2016 11:29:52 23535,3 80 23542,54 23526,15 23539,7 2,84 -23,55 368 10 212286 7777566 19/04/2016 11:33:57 23527,3 65 23525,68 23517,37 23539,7 -14,02 -32,33 369 10 212279 7777606 19/04/2016 11:38:52 23526,9 80 23523,72 23515,97 23539,7 -14,02 -32,33 369 10 212259 7777642 19/04/2016 11:41:27 23529,8 80 23528,62 23518,49 23539,7 -11,08 -31,21 372 10 212253 7777659 19/04/2016 11:42:32 23540,7 75 23550,48 23529,18 23539,7 10,78 -20,52 373 10 212246 7777678 19/04/2016 11:43:47 23536,8 65 23542,58 23525,05 23539,7 2,88 -24,65 374 10	366	10	212301	7777550	19/04/2016	11:26:52	23537.1	80	23547.12	23528.59	23539.7	7.42	-21.11
368 10 212286 7777584 19/04/2016 11:33:57 23527,3 65 23525,68 23517,37 23539,7 -14,02 -32,33 369 10 212279 7777606 19/04/2016 11:38:52 23526,9 80 23523,72 23515,97 23539,7 -14,02 -32,33 371 10 212259 7777642 19/04/2016 11:41:27 23529,8 80 23528,62 23518,49 23539,7 -11,08 -31,21 372 10 212253 7777659 19/04/2016 11:43:47 23536,8 65 23520,48 23529,18 23539,7 -11,08 -31,21 373 10 212246 7777678 19/04/2016 11:43:47 23536,8 65 23542,58 23525,05 23539,7 2,88 -20,52 373 10 212246 7777678 19/04/2016 11:45:02 23524,2 23525,05 23539,7 2,88 -24,65	367	10	212293	7777566	19/04/2016	11:29:52	23535.3	80	23542.54	23526.15	23539.7	2.84	-23.55
369 10 212279 7777606 19/04/2016 11:38:52 23526,9 80 23523,72 23515,97 23539,7 -15,98 -33,73 371 10 212259 7777642 19/04/2016 11:41:27 23529,8 80 23528,62 23518,49 23539,7 -11,08 -31,21 372 10 212253 7777659 19/04/2016 11:42:32 23540,7 75 23550,48 23529,18 23539,7 10,78 -20,52 373 10 212246 7777678 19/04/2016 11:43:47 23536,8 65 23542,58 23525,05 23539,7 2,88 -24,65 374 10 212246 7777678 19/04/2016 11:45:02 23524,2 70 23525,05 23539,7 2,88 -24,65	368	10	212286	7777584	19/04/2016	11:33:57	23527.3	65	23525.68	23517.37	23539.7	-14.02	-32.33
371 10 212259 7777642 19/04/2016 11:41:27 23529,8 80 23528,62 23518,49 23539,7 -11,08 -31,21 372 10 212253 7777659 19/04/2016 11:42:32 23540,7 75 23550,48 23529,18 23539,7 10,78 -20,52 373 10 212246 7777678 19/04/2016 11:43:47 23536,8 65 23542,58 23525,05 23539,7 2,88 -24,65 374 10 212240 7777678 19/04/2016 11:45:02 23524,2 70 23526,40 23529,0 23529,0 240 23529,0 240 23529,0 240 23529,0 240 23529,0 240 23529,0 240 23529,0 240 23529,0 240 23529,0 240 23529,0 240 23529,0 23529,0 23529,0 23529,0 240,0 23529,0 23529,0 23529,0 240,0 240,0 240,0 240,0 240,0 240,0	369	10	212279	7777606	19/04/2016	11:38:52	23526.9	80	23523.72	23515.97	23539.7	-15.98	-33.73
372 10 212253 7777659 19/04/2016 11:42:32 23540,7 75 23550,48 23529,18 23539,7 10,78 -20,52 373 10 212246 7777678 19/04/2016 11:43:47 23536,8 65 23542,58 23525,05 23539,7 2,88 -24,65 374 10 212240 7777678 19/04/2016 11:45:02 23524,2 70 23526,40 23529,0 <td>371</td> <td>10</td> <td>212259</td> <td>7777642</td> <td>19/04/2016</td> <td>11:41.27</td> <td>23529 R</td> <td>80</td> <td>23528 62</td> <td>23518 49</td> <td>23539 7</td> <td>-11.08</td> <td>-31.21</td>	371	10	212259	7777642	19/04/2016	11:41.27	23529 R	80	23528 62	23518 49	23539 7	-11.08	-31.21
373 10 212246 7777678 19/04/2016 11:43:47 23536,8 65 23542,58 23525,05 23539,7 2,88 -24,65 374 10 212246 7777678 19/04/2016 11:45:02 23524,2 70 23526,40 23525,05 23539,7 2,88 -24,65	372	10	212253	7777659	19/04/2016	11:42:32	23540 7	75	23550 48	23529 18	23539 7	10.78	-20.52
	373	10	212246	7777678	19/04/2016	11:43:47	23536.8	65	23542 58	23525.05	23539 7	2.88	-24 65
13/4 10 212239 ////09/ 19/04/2010 11:45:02 23534.7 70 73536.40 73577.70 73539.8 -3.40 -77.60	374	10	212239	7777697	19/04/2016	11:45:02	23534.2	70	23536.40	23522.20	23539.8	-3,40	-27.60

Ν	Perfil	Х	Y	Data	Hora	B (nT)	R (cps)	Bt (1)	Bt (2)	IGRF	Btma (1)	Btma (2)
375	10	212230	7777717	19/04/2016	11:46:17	23532,4	55	23533,88	23520,39	23539,8	-5 <i>,</i> 92	-29,42
376	10	212225	7777733	19/04/2016	11:47:52	23531,5	60	23531,92	23519,30	23539,8	-7,88	-30,50
377	10	212217	7777752	19/04/2016	11:49:22	23532,1	60	23533,26	23519,96	23539,8	-6 <i>,</i> 54	-29,84
378	10	212210	777772	19/04/2016	11:50:42	23532,1	55	23533,20	23519,75	23539,8	-6,60	-30,05
379	10	212204	7777790	19/04/2016	11:53:07	23530,8	50	23530,60	23518,29	23539,8	-9,20	-31,51
380	10	212202	7777804	19/04/2016	11:54:37	23528,6	60	23526,24	23516,00	23539,8	-13,56	-33,80
		LEGENDA	l l									
		N = estaç	ão de colet	a dados								
		X = coode	enada UTM	WGS84 zona 2	4S							
		Y = coode	enada UTM	WGS84 zona 2	4S							
		B (nT) = v	alor de can	npo magnético	medido							
		R (cps) = v	valor raiom	étrico								
		Bt(1) = va	lor de cam	po magnético d	orrigido pe	lo GEMLir	kW 3.0					
		Bt(2) = va	lor de cam	po magnético d	orrigido ma	anualment	te					
		IGRF = Int	ternational	Geomagnetic I	Reference F	ield						
		Btma(1) =	= campo an	omalo [Bt(1) - I	GRF]							
		Btma(2) =	= campo an	omalo [Bt(2) - I	GRF]							

						Anfibólio					
Comment	16-c5-Anf1	16-c5-Anf2	16-c5-Anf3	16-c5-Anf4	16-c5-Anf5	16-c5-Anf6	16-c5-Anf7	16-c5-Anf8	16-c5-Anf9	16-c5-Anf10	16-c5-Anf11
Na2O	0,22	0,52	0,47	0,63	0,71	0,61	0,91	0,70	0,55	0,66	0,26
F	0,00	0,12	0,09	0,08	0,06	0,06	0,13	0,11	0,11	0,11	0,06
SiO2	57,28	56,08	56,30	55,43	55,06	54,99	53,82	54,82	55,81	54,99	53,22
Al2O3	0,91	2,51	2,20	2,94	3,48	3,16	4,51	3,10	2,84	3,25	2,84
MgO	24,13	22,79	23,05	22,38	22,39	22,51	21,83	22,41	22,87	22,73	24,01
TiO2	0,01	0,05	0,05	0,06	0,11	0,09	0,04	0,07	0,06	0,06	0,05
FeO	3,78	2,27	2,28	2,35	2,46	2,33	2,58	2,40	2,22	2,41	2,28
CaO	10,00	12,44	12,41	12,43	12,35	12,29	12,31	12,46	12,07	12,25	10,90
NiO	0,08	0,07	0,07	0,00	0,13	0,07	0,10	0,10	0,06	0,10	0,05
Cr2O3	0,36	0,62	0,54	0,69	0,58	0,42	0,63	0,60	0,31	0,70	0,50
K2O	0,05	0,12	0,10	0,11	0,13	0,14	0,12	0,11	0,17	0,16	0,11
MnO	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,02	0,03	0,00	0,00
Total	96,82	97,53	97,54	97,05	97,44	96,64	96,92	96,84	97,04	97,36	94,23
Na	0,06	0,14	0,13	0,17	0,19	0,16	0,24	0,19	0,15	0,18	0,07
F	7.00	7 74	7 7 4	7.67	7.00	7.64	7.40	7.62	7 70	7.60	7.50
SI	7,90	/,/1	7,74	/,6/	7,60	7,64	7,49	7,62	7,70	7,60	7,56
AI	0,15	0,41	0,36	0,48	0,57	0,52	0,74	0,51	0,46	0,53	0,47
Mg	4,96	4,67	4,72	4,61	4,61	4,66	4,53	4,64	4,70	4,68	5,09
-	0,00	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01
Fe	0,44	0,26	0,26	0,27	0,28	0,27	0,30	0,28	0,26	0,28	0,27
Са	1,48	1,83	1,83	1,84	1,83	1,83	1,83	1,85	1,78	1,81	1,66
Ni	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Cr	0,04	0,07	0,06	0,08	0,06	0,05	0,07	0,07	0,03	0,08	0,06
К	0,01	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,03	0,03	0,02
Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

						Anfibólio					
Comment	16-c5-Anf12	16-c5-Anf13	16-c5-Anf14	16-c5-Anf15	16-c5-Anf16	16-c5-Anf17	16-c5-Anf18	16-c1-Anf1	16-c1-Anf2	16-c1-Anf3	16-c1-Anf4
Na2O	0,42	0,36	0,20	0,55	0,64	0,34	0,14	0,49	0,73	0,62	0,32
F	0,04	0,09	0,07	0,04	0,02	0,03	0,02	0,05	0,10	0,00	0,09
SiO2	56,83	57,26	55,41	55,30	55,31	57,95	57,20	56,52	55,31	55,78	57,68
Al2O3	2,01	1,78	1,01	2,95	2,92	1,44	0,76	2,42	3,33	2,93	1,52
MgO	23,26	23,23	22,60	23,09	22,82	23,54	23,26	23,13	22,67	22,54	23,65
TiO2	0,05	0,09	0,03	0,08	0,05	0,00	0,04	0,03	0,05	0,06	0,02
FeO	2,15	2,11	1,96	2,49	2,35	2,04	1,99	2,26	2,44	2,34	1,99
CaO	12,61	12,50	12,42	12,16	12,34	12,52	12,57	12,40	12,33	12,38	12,58
NiO	0,01	0,10	0,10	0,13	0,11	0,10	0,10	0,06	0,15	0,11	0,15
Cr2O3	0,41	0,45	0,40	0,23	0,41	0,15	0,39	0,62	0,62	0,68	0,36
K2O	0,16	0,11	0,09	0,20	0,26	0,07	0,12	0,10	0,08	0,10	0,03
MnO	0,00	0,00	0,00	0,00	0,00	0,03	0,00	0,02	0,00	0,00	0,00
Total	97,94	98,04	94,25	97,21	97,21	98,19	96,57	98,07	97,76	97,54	98,35
No	0.11	0.10	0.05	0.15	0.17	0.00	0.04	0.12	0.10	0 17	0.00
F	0,11	0,10	0,05	0,15	0,17	0,09	0,04	0,13	0,19	0,17	0,09
Si	7,77	7,81	7,86	7,64	7,64	7,87	7,91	7,72	7,61	7,67	7,83
Al	0,32	0,29	0,17	0,48	0,48	0,23	0,12	0,39	0,54	0,48	0,24
Mg	4,74	4,72	4,78	4,75	4,70	4,77	4,79	4,71	4,65	4,62	4,79
Ti	0,01	0,01	0,00	0,01	0,01	0,00	0,00	0,00	0,00	0,01	0,00
Fe	0,25	0,24	0,23	0,29	0,27	0,23	0,23	0,26	0,28	0,27	0,23
Ca	1,85	1,83	1,89	1,80	1,83	1,82	1,86	1,81	1,82	1,82	1,83
Ni	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,01	0,02
Cr	0,04	0,05	0,04	0,03	0,04	0,02	0,04	0,07	0,07	0,07	0,04
К	0,03	0,02	0,02	0,04	0,05	0,01	0,02	0,02	0,01	0,02	0,01
Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

						Anfibólio	0					
Comment	16-c1-Anf5	16-c1-Anf6	16-c1-Anf7	16-c1-Anf8	16-c1-Anf9	16-c1-Anf10	16-c1-Anf11	16-c1-Anf12	16-c1-Anf13	16-c1-Anf14	16-c1-Anf15	
Na2O	0,40	0,67	0,28	0,48	0,74	1,12	0,91	0,90	0,90	0,28	0,21	
F	0,01	0,05	0,10	0,10	0,05	0,07	0,10	0,10	0,09	0,03	0,07	
SiO2	57,04	55,96	56,25	56,61	55,56	53,11	54,26	54,45	53,34	57,81	57,51	
Al2O3	1,68	3,29	1,66	2,45	3,65	5,92	4,62	4,89	4,71	1,44	1,19	
MgO	23,38	22,82	24,18	23,04	22,93	22,11	22,09	22,20	21,59	23,63	23,68	
TiO2	0,02	0,07	0,00	0,06	0,02	0,06	0,07	0,07	0,08	0,00	0,02	
FeO	2,20	2,39	2,27	2,34	2,23	2,72	2,53	2,20	2,58	1,93	2,19	
CaO	12,40	12,22	11,98	12,35	12,38	12,32	12,41	12,54	12,16	12,61	12,25	
NiO	0,06	0,13	0,10	0,11	0,12	0,11	0,12	0,08	0,07	0,09	0,10	
Cr2O3	0,36	0,15	0,34	0,12	0,23	0,23	0,25	0,46	0,34	0,30	0,27	
K2O	0,08	0,13	0,09	0,16	0,11	0,23	0,20	0,21	0,24	0,06	0,05	
MnO	0,02	0,00	0,02	0,00	0,03	0,01	0,00	0,00	0,00	0,00	0,00	
Total	97,65	97,86	97,22	97,77	98,01	97,97	97,51	98,05	96,06	98,16	97,51	
Na	0 11	0 18	0.08	0 13	0.20	0 30	0.24	0.24	0.25	0.07	0.05	
F	0,11	0,10	0,00	0,15	0,20	0,50	0,24	0,24	0,25	0,07	0,05	
Si	7,81	7,66	7,75	7,75	7,60	7,32	7,49	7,47	7,48	7,86	7,87	
Al	0,27	0,53	0,27	0,40	0,59	0,96	0,75	0,79	0,78	0,23	0,19	
Mg	4,77	4,66	4,96	4,70	4,68	4,55	4,55	4,54	4,51	4,79	4,83	
Ti	0,00	0,01	0,00	0,01	0,00	0,01	0,01	0,01	0,01	0,00	0,00	
Fe	0,25	0,27	0,26	0,27	0,26	0,31	0,29	0,25	0,30	0,22	0,25	
Са	1,82	1,79	1,77	1,81	1,81	1,82	1,84	1,84	1,83	1,84	1,80	
Ni	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	
Cr	0,04	0,02	0,04	0,01	0,02	0,03	0,03	0,05	0,04	0,03	0,03	
К	0,01	0,02	0,01	0,03	0,02	0,04	0,04	0,04	0,04	0,01	0,01	
Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	

						Anfibólio					
Comment	16-c1-Anf16	16-c1-Anf17	16-c8-Anf1	16-c8-Anf2	16-c8-Anf3	16-c8-Anf4	16-c8-Anf5	16-c8-Anf6	16-c8-Anf8	16-c8-Anf9	16-c8-Anf10
Na2O	0,26	0,24	0,05	0,00	0,90	0,37	0,43	0,59	0,72	0,42	0,32
F	0,04	0,04	0,01	0,00	0,05	0,06	0,06	0,06	0,10	0,03	0,07
SiO2	57,95	56 <i>,</i> 35	59,03	51,14	54,38	55,60	56,68	56,11	54,76	53,33	52,08
Al2O3	1,34	1,16	0,02	0,04	4,38	2,01	2,02	2,75	3,63	2,14	1,41
MgO	23,51	23,15	28,60	24,03	22,32	22,45	23,22	22,96	22,31	21,50	20,46
TiO2	0,02	0,04	0,01	0,02	0,06	0,04	0,00	0,04	0,03	0,04	0,01
FeO	2,09	2,12	8,92	8,42	2,27	2,29	2,22	2,50	2,35	2,40	2,36
CaO	12,31	12,09	0,49	5,84	12,21	12,01	12,44	12,36	12,32	11,67	11,74
NiO	0,15	0,11	0,08	0,07	0,15	0,16	0,04	0,11	0,09	0,13	0,04
Cr2O3	0,36	0,35	0,01	0,01	0,76	0,71	0,38	0,52	0,66	0,61	0,33
К2О	0,04	0,09	0,00	0,01	0,13	0,12	0,08	0,10	0,12	0,12	0,13
MnO	0,00	0,03	0,02	0,03	0,00	0,00	0,02	0,01	0,03	0,00	0,02
Total	98,05	95,73	97,22	89,61	97,59	95,80	97,56	98,08	97,07	92,36	88,93
Na	0,07	0,06	0,01	0,00	0,24	0,10	0,11	0,16	0,19	0,12	0,09
F											
Si	7,88	7,86	8,04	7,76	7,50	7,78	7,77	7,68	7,58	7,75	7,85
Al	0,21	0,19	0,00	0,01	0,71	0,33	0,33	0,44	0,59	0,37	0,25
Mg	4,77	4,81	5,81	5,43	4,59	4,68	4,75	4,69	4,61	4,65	4,60
Ti	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00
Fe	0,24	0,25	1,02	1,07	0,26	0,27	0,25	0,29	0,27	0,29	0,30
Са	1,79	1,81	0,07	0,95	1,80	1,80	1,83	1,81	1,83	1,82	1,90
Ni	0,02	0,01	0,01	0,01	0,02	0,02	0,00	0,01	0,01	0,01	0,01
Cr	0,04	0,04	0,00	0,00	0,08	0,08	0,04	0,06	0,07	0,07	0,04
К	0,01	0,02	0,00	0,00	0,02	0,02	0,01	0,02	0,02	0,02	0,03
Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

					Anf	ibólio					
Comment	16-c8-Anf11	16-c8-Anf12	16-c8-Anf13	16-c8-Anf14	16-c8-Anf15	16-c8-Anf16	7-c1-Anf1	7-c1-Anf2	7-c1-Anf3	7-cX-Anf1	7-cX-Anf2
Na2O	0,66	0,78	0,23	0,47	0,70	0,21	0,35	1,20	0,76	0,51	0,24
F	0,10	0,05	0,04	0,11	0,07	0,02	0,10	0,12	0,08	0,09	0,06
SiO2	53,84	52 <i>,</i> 53	58,52	56,45	55,52	55,93	55,81	52,17	53 <i>,</i> 97	56,33	57,82
Al2O3	3,73	3,72	0,94	2,61	3,24	1,52	1,94	6,60	4,01	2,37	1,08
MgO	22,91	21,86	25,18	23,16	22,51	23,31	24,08	21,45	22,77	22,76	23,41
TiO2	0,06	0,06	0,00	0,04	0,07	0,00	0,00	0,09	0,05	0,07	0,00
FeO	2,33	2,98	3,59	2,55	2,45	2,25	2,36	2,79	2,65	2,29	2,06
CaO	11,74	11,35	9,25	12,48	12,42	11,98	11,85	12,30	12,13	12,25	12,54
NiO	0,08	0,15	0,13	0,12	0,04	0,06	0,10	0,08	0,07	0,07	0,10
Cr2O3	0,55	0,21	0,32	0,10	0,76	0,59	0,26	0,33	0,34	0,64	0,33
K2O	0,20	0,22	0,07	0,13	0,11	0,10	0,18	0,30	0,24	0,10	0,18
MnO	0,01	0,00	0,03	0,00	0,03	0,00	0,00	0,03	0,01	0,04	0,00
Total	96,16	93,88	98,26	98,17	97,86	95,96	96,99	97,38	97,05	97,49	97,79
Na	0.18	0.22	0.06	0.12	0.19	0.06	0.09	0.32	0.20	0.14	0.06
F	,		,	,	,	,	,	,	,	,	,
Si	7,53	7,54	7,92	7,71	7,63	7,79	7,71	7,25	7,49	7,74	7,90
Al	0,62	0,63	0,15	0,42	0,52	0,25	0,32	1,08	0,66	0,38	0,17
Mg	4,77	4,68	5,08	4,72	4,61	4,84	4,96	4,44	4,71	4,66	4,77
Ti	0,01	0,01	0,00	0,00	0,01	0,00	0,00	0,01	0,01	0,01	0,00
Fe	0,27	0,36	0,41	0,29	0,28	0,26	0,27	0,32	0,31	0,26	0,24
Са	1,76	1,75	1,34	1,83	1,83	1,79	1,75	1,83	1,80	1,80	1,83
Ni	0,01	0,02	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,01
Cr	0,06	0,02	0,03	0,01	0,08	0,06	0,03	0,04	0,04	0,07	0,04
К	0,04	0,04	0,01	0,02	0,02	0,02	0,03	0,05	0,04	0,02	0,03
Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

	Anfibólio												
Comment	7-cX-Anf3	7-cX-Anf4	7-cX-Anf5	7-cX-Anf6	7-cX-Anf7	7-cX-Anf8	7-cX-Anf9	7-cX-Anf10	7-cX-Anf11	7-cX-Anf12	7-cX-Anf13	7-cX-Anf14	
Na2O	0,94	0,52	0,46	0,26	0,32	0,74	0,62	0,50	0,27	0,67	0,63	1,18	
F	0,06	0,05	0,12	0,09	0,08	0,17	0,11	0,01	0,10	0,09	0,08	0,11	
SiO2	54,12	56,57	56,67	56,47	55,03	55,11	54,08	57,07	57,32	55 <i>,</i> 38	55,61	52,50	
Al2O3	4,64	2,46	2,32	1,60	2,64	3,68	3,78	2,18	1,29	3,69	3,24	6,13	
MgO	22,18	22,94	23,31	23,53	24,05	22,55	23,36	23,48	23,73	22,52	22,90	21,59	
TiO2	0,08	0,05	0,05	0,05	0,00	0,08	0,04	0,05	0,02	0,02	0,06	0,03	
FeO	2,60	2,32	2,29	2,22	2,43	2,53	2,38	2,27	2,23	2,57	2,50	2,67	
CaO	12,53	12,45	12,64	12,26	11,20	12,38	11,70	12,65	12,37	12,41	12,36	12,31	
NiO	0,10	0,08	0,03	0,10	0,09	0,14	0,06	0,04	0,11	0,10	0,15	0,12	
Cr2O3	0,38	0,33	0,37	0,41	0,72	0,68	0,74	0,20	0,19	0,50	0,55	0,54	
K2O	0,49	0,23	0,22	0,15	0,12	0,11	0,09	0,13	0,14	0,25	0,19	0,24	
MnO	0,04	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,01	0,03	0,00	0,00	
Total	98,14	97,97	98,42	97,09	96,65	98,08	96,92	98,56	97,73	98,19	98,22	97,37	
Na	0,25	0,14	0,12	0,07	0,09	0,20	0,17	0,13	0,07	0,18	0,17	0,32	
F	,						·	·					
Si	7,45	7,74	7,72	7,79	7,63	7,57	7,50	7,75	7,84	7,59	7,61	7,29	
Al	0,75	0,40	0,37	0,26	0,43	0,59	0,62	0,35	0,21	0,60	0,52	1,00	
Mg	4,55	4,68	4,74	4,84	4,97	4,62	4,83	4,75	4,84	4,60	4,67	4,47	
Ti	0,01	0,01	0,00	0,01	0,00	0,01	0,00	0,00	0,00	0,00	0,01	0,00	
Fe	0,30	0,27	0,26	0,26	0,28	0,29	0,28	0,26	0,26	0,29	0,29	0,31	
Ca	1,85	1,82	1,85	1,81	1,66	1,82	1,74	1,84	1,81	1,82	1,81	1,83	
Ni	0,01	0,01	0,00	0,01	0,01	0,02	0,01	0,00	0,01	0,01	0,02	0,01	
Cr	0,04	0,04	0,04	0,04	0,08	0,07	0,08	0,02	0,02	0,05	0,06	0,06	
К	0,09	0,04	0,04	0,03	0,02	0,02	0,02	0,02	0,02	0,04	0,03	0,04	
Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	

					Anfibólio								
Comment	7-cX-Anf15	7-cX-Anf16	7-cX-Anf17	7-cX-Anf18	7-cX-Anf19	7-cX-Anf20	7-cX-Anf21	7-cX-Anf22	7-c3-Anf1	7-c3-Anf2	7-c3-Anf3	7-c3-Anf4	
Na2O	1,00	1,14	1,14	1,20	0,82	0,94	0,53	0,45	0,30	0,46	1,09	1,09	
F	0,09	0,06	0,09	0,12	0,10	0,09	0,06	0,09	0,05	0,07	0,03	0,11	
SiO2	48,64	53,05	53,14	53,01	52,37	54,07	56,37	56,48	54,72	56,36	54,11	53,12	
Al2O3	4,88	6,03	6,15	6,03	5,21	4,90	2,70	2,51	2,64	2,12	5,42	5,74	
MgO	23,36	21,77	21,76	21,39	23,13	22,28	23,33	23,34	24,29	22,73	21,82	21,52	
TiO2	0,01	0,05	0,07	0,05	0,13	0,04	0,04	0,06	0,09	0,01	0,07	0,08	
FeO	2,58	2,72	2,74	2,77	2,69	2,62	2,23	2,31	2,18	2,27	2,53	2,79	
CaO	9,92	12,50	12,45	12,45	11,61	12,30	12,59	12,54	11,23	12,61	12,48	12,33	
NiO	0,16	0,13	0,09	0,12	0,11	0,09	0,10	0,12	0,08	0,11	0,14	0,11	
Cr2O3	0,38	0,41	0,35	0,35	0,27	0,19	0,31	0,67	0,48	0,29	0,08	0,41	
K2O	0,24	0,27	0,26	0,38	0,28	0,23	0,11	0,13	0,19	0,18	0,22	0,27	
MnO	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,03	0,02	0,00	0,00	0,00	
Total	91,21	98,09	98,20	97,81	96,67	97,71	98,33	98,68	96,25	97,17	97,97	97,52	
Na	0,29	0,30	0,30	0,32	0,22	0,25	0,14	0,12	0,08	0,12	0,29	0,29	
F													
Si	7,21	7,31	7,32	7,34	7,31	7,46	7,68	7,68	7,61	7,77	7,44	7,36	
Al	0,85	0,98	1,00	0,98	0,86	0,80	0,43	0,40	0,43	0,34	0,88	0,94	
Mg	5,16	4,47	4,46	4,41	4,82	4,58	4,74	4,73	5,04	4,67	4,47	4,45	
Ti	0,00	0,01	0,01	0,01	0,01	0,00	0,00	0,01	0,01	0,00	0,01	0,01	
Fe	0,32	0,31	0,32	0,32	0,31	0,30	0,25	0,26	0,25	0,26	0,29	0,32	
Са	1,57	1,85	1,84	1,85	1,74	1,82	1,84	1,83	1,67	1,86	1,84	1,83	
Ni	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,01	
Cr	0,04	0,04	0,04	0,04	0,03	0,02	0,03	0,07	0,05	0,03	0,01	0,05	
К	0,04	0,05	0,05	0,07	0,05	0,04	0,02	0,02	0,03	0,03	0,04	0,05	
Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	

				Anfibóli	0							
Comment	7-c3-Anf5	7-c3-Anf6	7-c3-Anf7	7-c3-Anf8	7-c3-Anf9	7-c3-Anf10	16-c7-Clo1	16-c7-Clo2	16-c7-Clo3	16-c7-Clo4	16-c7-Clo5	16-c7-Clo6
Na2O	0,71	0,70	0,89	0,49	0,36	0,90	0,68	0,77	0,53	0,46	0,66	0,18
F	0,11	0,10	0,08	0,06	0,06	0,02	0,10	0,10	0,02	0,10	0,06	0,06
SiO2	54,75	55,10	54,54	55,90	56,55	54,01	55,47	55,00	55,85	55,61	55,77	57,91
Al2O3	3,78	3,48	4,68	2,41	1,84	4,41	3,34	3,59	2,81	2,57	3,30	1,05
MgO	22,39	22,38	22,74	22,75	23,80	22,28	22,71	22,57	22,54	22,91	22,67	23,68
TiO2	0,03	0,07	0,05	0,03	0,03	0,07	0,05	0,04	0,05	0,06	0,06	0,07
FeO	2,44	2,45	2,58	2,33	2,26	2,41	2,45	2,47	2,28	2,28	2,34	2,01
CaO	12,57	12,30	12,24	12,22	12,39	12,28	12,30	12,28	12,36	12,31	12,52	12,66
NiO	0,07	0,08	0,04	0,11	0,05	0,16	0,07	0,05	0,08	0,11	0,02	0,05
Cr2O3	0,34	0,69	0,31	0,55	0,53	0,70	0,71	0,72	0,72	0,62	0,73	0,42
K2O	0,20	0,07	0,18	0,12	0,11	0,08	0,09	0,09	0,09	0,23	0,18	0,11
MnO	0,01	0,00	0,00	0,02	0,00	0,01	0,05	0,02	0,01	0,00	0,02	0,00
Total	97,34	97,38	98,29	96,97	97,96	97,31	97,97	97,66	97,34	97,21	98,30	98,18
Ne	0.10	0.10	0.24	0.12	0.10	0.24	0.10	0.21	0.14	0.10	0.10	0.05
Na F	0,19	0,19	0,24	0,13	0,10	0,24	0,18	0,21	0,14	0,12	0,18	0,05
Si	7,57	7,60	7,47	7,73	7,74	7,48	7,61	7,58	7,69	7,68	7,62	7,88
Al	0,62	0,57	0,75	0,39	0,30	0,72	0,54	0,58	0,46	0,42	0,53	0,17
Mg	4,61	4,60	4,64	4,69	4,85	4,60	4,65	4,63	4,63	4,72	4,62	4,80
Ti	0,00	0,01	0,00	0,00	0,00	0,01	0,01	0,00	0,00	0,01	0,01	0,01
Fe	0,28	0,28	0,30	0,27	0,26	0,28	0,28	0,28	0,26	0,26	0,27	0,23
Са	1,86	1,82	1,80	1,81	1,82	1,82	1,81	1,81	1,82	1,82	1,83	1,84
Ni	0,01	0,01	0,00	0,01	0,01	0,02	0,01	0,01	0,01	0,01	0,00	0,01
Cr	0,04	0,08	0,03	0,06	0,06	0,08	0,08	0,08	0,08	0,07	0,08	0,05
К	0,04	0,01	0,03	0,02	0,02	0,01	0,02	0,02	0,02	0,04	0,03	0,02
Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00

	Anfibólio							
Comment	16-c7-Clo7	16-c7-Clo8	16-c7-Clo9					
Na2O	0,70	0,66	0,98					
F	0,09	0,10	0,07					
SiO2	55,15	55,51	54,12					
Al2O3	3,46	3,29	4,56					
MgO	22,50	22,55	21,97					
TiO2	0,04	0,03	0,08					
FeO	2,50	2,40	2,63					
CaO	12,18	12,35	12,28					
NiO	0,08	0,14	0,12					
Cr2O3	0,56	0,53	0,73					
К2О	0,10	0,10	0,09					
MnO	0,01	0,04	0,00					
Total	97,34	97,65	97,60					
Na	0,19	0,18	0,26					
F								
Si	7,61	7,64	7,48					
Al	0,56	0,53	0,74					
Mg	4,63	4,62	4,52					
Ti	0,00	0,00	0,01					
Fe	0,29	0,28	0,30					
Са	1,80	1,82	1,82					
Ni	0,01	0,02	0,01					
Cr	0,06	0,06	0,08					
К	0,02	0,02	0,02					
Mn	0,00	0,00	0,00					

							Clotita						
Comment	16-c4-Clo11	6-c4-Clo2 1	6-c4-Clo3 1	6-c4-Clo4 1	6-c4-Clo6 1	6-cY-Clo1 1	6-cY-Clo2 1	6-cY-Clo3 1	6-cY-Clo4 1	5-cY-Clo5 1	6-cY-Clo6 1	6-cY-Clo7 1	6-cY-Clo8
Na2O	0,01	0,02	0,00	0,03	0,04	0,01	0,00	0,01	0,05	0,00	0,00	0,00	0,01
F	0,07	0,10	0,07	0,10	0,11	0,11	0,12	0,03	0,08	0,03	0,16	0,13	0,11
SiO2	32,58	32,31	32,00	30,03	29,70	42,72	33,01	30,83	30,67	30,89	42,47	43,82	43,19
Al2O3	13,68	13,27	13,70	17,35	17,81	1,93	12,83	16,28	15,70	16,73	2,67	1,68	2,02
MgO	33,11	33,21	32,73	31,32	30,87	37,30	33,66	31,83	31,25	32,17	37,88	38,22	37,99
TiO2	0,02	0,01	0,05	0,05	0,13	0,02	0,04	0,08	0,05	0,10	0,00	0,05	0,01
FeO	3,67	3,48	3,70	4,35	4,25	3,52	3,25	4,43	4,18	4,51	3,75	3,54	3,36
CaO	0,00	0,00	0,01	0,06	0,08	0,09	0,00	0,04	0,06	0,00	0,02	0,00	0,00
NiO	0,19	0,17	0,14	0,14	0,12	0,07	0,18	0,22	0,16	0,23	0,15	0,07	0,14
Cr2O3	2,47	2,90	2,56	2,69	2,59	0,24	2,89	1,20	1,25	1,26	0,52	0,06	0,31
K2O	0,02	0,02	0,02	0,04	0,04	0,02	0,02	0,02	0,05	0,02	0,02	0,01	0,02
MnO	0,02	0,00	0,02	0,03	0,01	0,01	0,06	0,01	0,00	0,00	0,00	0,01	0,00
Total	85,79	85,43	84,98	86,15	85,70	85,98	86,01	84,95	83,46	85,93	87,57	87,54	87,10
Na	0,00	0,01	0,00	0,01	0,01	0,00	0,00	0,00	0,02	0,00	0,00	0,00	0,00
F	0,07	0,10	0,07	0,10	0,11	0,11	0,12	0,03	0,08	0,03	0,16	0,13	0,11
Si	6,37	6,35	6,32	5,90	5,85	8,18	6,43	6,11	6,18	6,05	8,02	8,23	8,15
Al	3,15	3,07	3,19	4,02	4,14	0,43	2,94	3,80	3,72	3,87	0,59	0,37	0,45
Mg	9,65	9,73	9,64	9,17	9,07	10,64	9,77	9,40	9,38	9,40	10,66	10,70	10,69
Ti	0,00	0,00	0,01	0,01	0,02	0,00	0,01	0,01	0,01	0,01	0,00	0,01	0,00
Fe	0,27	0,26	0,28	0,32	0,32	0,25	0,24	0,33	0,32	0,33	0,27	0,25	0,24
Са	0,00	0,00	0,00	0,01	0,02	0,02	0,00	0,01	0,01	0,00	0,00	0,00	0,00
Ni	0,03	0,03	0,02	0,02	0,02	0,01	0,03	0,03	0,03	0,04	0,02	0,01	0,02
Cr	0,38	0,45	0,40	0,42	0,40	0,04	0,45	0,19	0,20	0,20	0,08	0,01	0,05
К	0,00	0,01	0,01	0,01	0,01	0,00	0,01	0,00	0,01	0,00	0,01	0,00	0,01
Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00

							Clorita						
Comment	16-cY-Clo9 1	.6-cY-Clo1 7-	-c1-Clo1	7-c1-Clo2	7-c1-Clo3	7-c1-Clo4	7-c1-Clo5	7-c2-Clo2	7-c2-Clo3	7-c2-Clo4	7-c2-Clo5	7-c2-Clo6	7-c2-Clo7
Na2O	0,04	0,00	0,06	0,04	0,05	0,05	0,03	0,01	0,00	0,02	0,03	0,00	0,02
F	0,08	0,13	0,09	0,10	0,12	0,09	0,07	0,14	0,18	0,13	0,13	0,12	0,14
SiO2	35,50	41,36	32,31	32,79	32,70	32,52	32,79	41,34	42,65	32,16	31,92	31,88	32,37
Al2O3	8,03	2,55	12,49	12,80	12,37	12,49	12,52	3,29	2,63	13,84	14,40	14,81	14,49
MgO	33,81	36,07	33,15	33,57	33,52	33,27	33,08	36,93	37,46	33,03	32,60	32,80	33,07
TiO2	0,01	0,01	0,01	0,05	0,04	0,05	0,02	0,03	0,03	0,02	0,04	0,07	0,06
FeO	3,19	3,52	3,34	3,43	3,53	3,29	3,37	3,79	3,73	3,65	3,69	3,81	3,60
CaO	0,03	0,06	0,02	0,00	0,01	0,00	0,00	0,00	0,02	0,02	0,02	0,03	0,04
NiO	0,19	0,11	0,18	0,12	0,21	0,13	0,18	0,19	0,14	0,18	0,19	0,23	0,25
Cr2O3	2,08	0,59	3,42	3,25	3,27	3,20	3,42	1,39	0,65	2,78	2,39	2,55	2,18
К2О	0,06	0,03	0,08	0,07	0,02	0,08	0,12	0,01	0,02	0,03	0,02	0,02	0,02
MnO	0,03	0,02	0,00	0,02	0,02	0,02	0,00	0,00	0,01	0,00	0,03	0,06	0,04
Total	83,00	84,38	85,12	86,19	85,81	85,15	85,57	87,07	87,44	85,80	85,40	86,33	86,22
Na	0,01	0,00	0,02	0,01	0,02	0,02	0,01	0,00	0,00	0,01	0,01	0,00	0,01
F	0,08	0,13	0,09	0,10	0,12	0,09	0,07	0,14	0,18	0,13	0,13	0,12	0,14
Si	7,12	8,09	6,38	6,39	6,41	6,41	6,44	7,88	8,06	6,30	6,27	6,21	6,29
Al	1,90	0,59	2,91	2,94	2,86	2,90	2,90	0,74	0,59	3,20	3,34	3,40	3,32
Mg	10,11	10,51	9,76	9,75	9,80	9,78	9,68	10,50	10,55	9 <i>,</i> 65	9,55	9,53	9,59
Ti	0,00	0,00	0,00	0,01	0,01	0,01	0,00	0,00	0,00	0,00	0,01	0,01	0,01
Fe	0,24	0,26	0,25	0,25	0,26	0,24	0,25	0,27	0,26	0,27	0,27	0,28	0,26
Са	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01
Ni	0,03	0,02	0,03	0,02	0,03	0,02	0,03	0,03	0,02	0,03	0,03	0,04	0,04
Cr	0,33	0,09	0,53	0,50	0,51	0,50	0,53	0,21	0,10	0,43	0,37	0,39	0,34
К	0,01	0,01	0,02	0,02	0,01	0,02	0,03	0,00	0,00	0,01	0,01	0,01	0,00
Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01

						E	spinélio						
Comment	16-c4-Cro116	6-c4-Cro21	6-c4-Cro31	6-c4-Cro41	6-c4-Cro51	6-c4-Cro£1	6-c4-Cro71	6-c4-Cro81	6-c4-Cro91	6-c4-Cro11	6-c4-Cro17-	-c1-Cro2	7-c1-Cro3
TiO2	0,61	0,77	0,88	0,53	0,63	0,44	1,59	0,55	0,44	0,31	0,34	0,34	0,43
Al2O3	3,74	1,50	1,97	4,24	1,93	1,22	0,72	3,12	1,21	0,64	0,81	0,84	1,32
Cr2O3	49,88	51,14	50,37	50,80	54,86	57,13	42,07	52,50	55,02	57,76	56,69	58,37	55,32
FeO	39,29	42,01	42,15	38,93	38,09	36,82	48,87	38,34	37,80	36,37	36,02	36,65	37,72
MgO	2,16	1,97	1,84	2,42	2,01	1,82	1,65	2,08	1,81	1,67	1,79	1,81	1,98
MnO	0,29	0,30	0,32	0,30	0,34	0,34	0,21	0,34	0,31	0,39	0,36	0,36	0,32
NiO	0,14	0,07	0,11	0,05	0,06	0,04	0,20	0,07	0,05	0,01	0,03	0,10	0,06
Total	96,12	97,76	97,63	97,27	97,91	97,81	95,30	97,00	96,64	97,15	96,03	98,47	97,16
Ті	0,02	0,02	0,03	0,02	0,02	0,01	0,05	0,02	0,01	0,01	0,01	0,01	0,01
Al	0,17	0,07	0,09	0,19	0,09	0,06	0,03	0,14	0,06	0,03	0,04	0,04	0,06
Cr	1,53	1,57	1,55	1,53	1,66	1,73	1,37	1,59	1,69	1,77	1,75	1,76	1,69
Fe+2	1,28	1,37	1,37	1,24	1,22	1,18	1,68	1,23	1,23	1,18	1,18	1,17	1,22
Mg	0,13	0,11	0,11	0,14	0,11	0,10	0,10	0,12	0,11	0,10	0,10	0,10	0,11
Mn	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Ni	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00

Comment 7-c1-Cro4 7-c1-Cro5 7-c1-Cro6 7-c1-Cro7 7-c1-Cro8 7-c1-Cro9

TiO2	0,44	0,61	0,42	0,47	0,39	0,36
Al2O3	1,53	1,42	1,22	1,28	1,27	0,94
Cr2O3	56,72	53,82	56,72	56,92	57,67	57,59
FeO	36,61	38,11	37,22	36,46	36,33	36,38
MgO	2,00	2,23	1,90	2,06	2,05	1,80
MnO	0,31	0,32	0,29	0,32	0,25	0,42
NiO	0,05	0,09	0,05	0,11	0,08	0,06
Total	97,64	96,61	97,82	97,61	98,05	97,55
Ti	0,01	0,02	0,01	0,01	0,01	0,01
Al	0,07	0,07	0,06	0,06	0,06	0,04
Cr	1,72	1,66	1,72	1,72	1,74	1,75
Fe+2	1,17	1,24	1,19	1,17	1,16	1,17
Mg	0,11	0,13	0,11	0,12	0,12	0,10
Mn	0,01	0,01	0,01	0,01	0,01	0,01
Ni	0,00	0,00	0,00	0,00	0,00	0,00

						Oli	vina					
Comment	16-c6-Oli1	16-c6-Oli2	16-c6-Oli3	16-c6-Oli4	16-c6-Oli5	16-c6-Oli6	16-c5-Oli1	16-c5-Oli2	16-c5-Oli3	16-c4-Oli1	16-c4-Oli2	16-c4-Oli3
SiO2	40,82	40,71	40,82	40,58	41,07	40,55	40,44	40,88	40,65	40,89	40,65	40,62
MgO	47,11	47,08	47,40	47,11	47,65	47,17	47,52	47,80	47,40	47,47	47,07	47,04
FeO	12,25	11,93	12,15	12,20	12,34	12,12	11,90	11,72	12,05	12,21	12,04	12,10
CaO	0,00	0,02	0,00	0,00	0,00	0,01	0,00	0,01	0,00	0,00	0,04	0,00
NiO	0,36	0,42	0,39	0,22	0,31	0,31	0,39	0,28	0,29	0,29	0,34	0,33
MnO	0,02	0,01	0,04	0,00	0,01	0,01	0,00	0,00	0,02	0,00	0,03	0,00
Total	100,63	100,25	100,92	100,18	101,41	100,19	100,27	100,77	100,45	100,90	100,36	100,21
Si	1,01	1,01	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Mg	1,73	1,73	1,74	1,74	1,74	1,74	1,75	1,75	1,74	1,74	1,73	1,73
Fe	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,24	0,25	0,25	0,25	0,25
Са	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Ni	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Comment	16-c4-Oli4	16-c4-Oli5	16-c4-Oli6	16-c1-Oli1	16-c1-Oli2	16-c1-Oli3	7-c2-Oli1	7-c2-Oli2	7-c2-Oli3	7-c2-Oli4	7-c2-Oli5	7-c2-Oli6
SiO2	42,30	40,17	41,38	40,87	40,61	40,53	40,96	40,42	40,73	40,44	40,50	40,66
MgO	49,55	47,12	45,74	47,53	47,14	47,74	47,35	47,64	47,84	48,19	47,46	48,01
FeO	12,15	12,27	10,42	12,24	12,20	12,17	12,23	12,08	11,97	12,00	11,94	12,19
CaO	0,03	0,00	0,00	0,02	0,00	0,00	0,00	0,02	0,00	0,01	0,00	0,00
NiO	0,38	0,36	0,31	0,33	0,35	0,38	0,31	0,32	0,37	0,42	0,38	0,34
MnO	0,00	0,00	0,07	0,01	0,01	0,00	0,04	0,00	0,00	0,00	0,00	0,01
Total	104,51	100,04	98,80	101,04	100,36	100,88	101,01	100,55	100,96	101,09	100,32	101,27
Si	1,00	1,00	1,03	1,00	1,00	1,00	1,00	1,00	1,00	0,99	1,00	1,00
Mg	1,75	1,74	1,71	1,74	1,74	1,75	1,73	1,75	1,75	1,76	1,75	1,75
Fe	0,24	0,25	0,22	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25
Са	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Ni	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

							Olivina						
Comment	7-c2-Oli7	7-c2-Oli8	7-c3-Oli1	7-c3-Oli2	7-c3-Oli3	7-c3-Oli4	7-c3-Oli5	7-c3-Oli6	7-c3-Oli7	7-c3-Oli8	7-c3-Oli9	7-c3-Oli10	7-c4-Oli1
SiO2	40,97	40,79	40,57	40,79	40,42	40,78	40,97	40,99	40,69	40,27	40,73	40,70	40,79
MgO	47,92	48,02	47,78	47,75	47,20	47,58	47,67	47,55	47,89	47,12	47,32	47,65	47,88
FeO	12,20	11,99	11,96	12,00	11,78	11,99	11,99	11,81	11,69	11,29	11,94	11,93	12,04
CaO	0,04	0,00	0,00	0,00	0,02	0,00	0,00	0,02	0,00	0,03	0,00	0,00	0,00
NiO	0,31	0,26	0,35	0,32	0,31	0,30	0,41	0,36	0,40	0,39	0,36	0,35	0,27
MnO	0,00	0,00	0,04	0,00	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,00	0,01
Total	101,50	101,10	100,76	100,93	99,90	100,73	101,12	100,82	100,71	99,44	100,42	100,68	101,03
Si	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,01	1,00	1,00	1,00	1,00	1,00
Mg	1,74	1,75	1,75	1,75	1,74	1,74	1,74	1,74	1,75	1,75	1,74	1,75	1,75
Fe	0,25	0,25	0,25	0,25	0,24	0,25	0,25	0,24	0,24	0,24	0,25	0,25	0,25
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Ni	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Comment	7-c4-Oli2	7-c4-Oli3	7-c4-Oli4	7-c4-Oli5	7-c4-Oli6	7-c4-Oli7	7-c4-Oli8	7-c4-Oli9	7-c4-Oli10	7-c4-Oli11			
SiO2	40,75	40,67	40,81	40,59	41,02	40,89	40,53	40,57	40,45	40,69			
MgO	47,92	48,28	48,13	48,09	48,05	48,17	47,81	47,93	47,61	48,08			
FeO	11,87	11,61	11,54	11,64	11,45	11,75	11,70	11,68	12,05	12,13			
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00			
NiO	0,30	0,27	0,23	0,13	0,16	0,16	0,17	0,26	0,25	0,30			
MnO	0,02	0,00	0,03	0,00	0,01	0,01	0,00	0,00	0,04	0,00			
Total	100,93	100,93	100,84	100,50	100,76	101,03	100,23	100,51	100,46	101,26			
Si	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00			
Mg	1,75	1,76	1,76	1,76	1,75	1,76	1,76	1,76	1,75	1,75			
Fe	0,24	0,24	0,24	0,24	0,23	0,24	0,24	0,24	0,25	0,25			
Са	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
Ni	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,01			
Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			

							Talco						
Comment	16-c8-Tal1	16-c8-Tal2	16-c8-Tal1	16-c8-Tal2	16-c8-Tal3	16-c8-Tal4	7-c1-Tal5	7-c1-Tal6	7-cX-Tal1	7-cX-Tal2	7-cX-Tal3	7-cX-Tal4	7-cX-Tal5
Na2O	0,038	0,006	0,066	0,071	0,081	0,072	0,112	0,053	0,077	0,096	0,106	0,061	0,042
F	0,077	0,062	0,009	0,111	0,08	0,092	0,011	0,111	0,066	0,084	0,074	0,106	0,072
SiO2	63,387	63,565	59,42	59,095	57,365	55,886	61,449	62,825	62,649	62,625	62,333	62,624	62,75
Al2O3	0,13	0,17	0,302	0,153	0,165	0,577	0,153	0,074	0,254	0,284	0,314	0,134	0,162
MgO	31,194	31,262	28,945	28,602	28,372	31,055	29,976	30,379	30,497	30,832	30,551	30,449	30,441
TiO2	0,026	0,031	0,025	0,009	0,034	0,036	0,02	0,013	0,036	0	0,006	0	0,031
FeO	1,347	1,345	1,279	1,143	1,658	1,984	1,277	1,286	1,273	1,339	1,302	1,308	1,354
CaO	0,047	0,033	0,266	0,194	0,314	0,269	0,057	0,007	0,017	0,014	0,014	0,008	0,011
NiO	0,125	0,164	0,248	0,187	0,266	0,166	0,16	0,193	0,245	0,217	0,222	0,173	0,154
Cr2O3	0,108	0,09	0,149	0	0,001	0,204	0,112	0,095	0,126	0,164	0,153	0,053	0,077
K2O	0,032	0,047	0,083	0,059	0,061	0,074	0,104	0,026	0,104	0,027	0,105	0,048	0,039
MnO	0	0	0	0,003	0	0 <i>,</i> 005	0	0	0,025	0,03	0,003	0	0
Total	96,479	96,749	90,788	89,58	88,363	90,381	93,426	95,015	95,341	95,677	95,152	94,919	95,103
Na	0,009295	0,001463	0,017185	0,018693	0,021776	0,019114	0,028291	0,01315	0,019066	0,023706	0,026316	0,015157	0,010415
F	0,077	0,062	0,009	0,111	0,08	0,092	0,011	0,111	0,066	0,084	0,074	0,106	0,072
Si	7,996578	7,995722	7,979685	8,024743	7,954223	7,652126	8,005736	8,039705	8,000646	7,975914	7,981567	8,025462	8,025446
Al	0,019329	0,025203	0,047799	0,024487	0,026964	0,093113	0,023493	0,011161	0,03823	0,042629	0,047387	0,020239	0,024419
Mg	5,866561	5,862258	5,794757	5,790091	5,864747	6,338977	5,821953	5,795483	5,805994	5,853869	5,83182	5,817158	5,80394
Ti	0,002468	0,002934	0,002526	0,000919	0,003547	0,003708	0,00196	0,001252	0,003459	0	0,000578	0	0,002983
Fe	0,063937	0,063656	0,064625	0,058399	0,086499	0,102211	0,062597	0,061919	0,061167	0,064164	0,062728	0,063069	0,065156
Са	0,006353	0,004448	0,038274	0,028226	0,04665	0,039464	0,007957	0,00096	0,002326	0,00191	0,001921	0,001098	0,001507
Ni	0,012685	0,016595	0,026791	0,020427	0,02967	0,018284	0,016768	0,019868	0,025169	0,022232	0,022867	0,017834	0,015844
Cr	0,010772	0,008951	0,01582	0	0,00011	0,022084	0,011537	0,009612	0,012722	0,016514	0,015489	0,00537	0,007786
К	0,00515	0,007542	0,01422	0,010221	0,01079	0,012926	0,017285	0,004245	0,016943	0,004387	0,017152	0,007847	0,006363
Mn	0	0	0	0,000345	0	0,00058	0	0	0,002704	0,003236	0,000325	0	0

			Та	lco		
Comment	7-c4-Tal1	7-c4-Tal2	7-c4-Tal3	7-c4-Tal4	7-c4-Tal5	7-c4-Tal6
Na2O	0,039	0,072	0,035	0,065	0,059	0,048
F	0,108	0,141	0,065	0,021	0,042	0,088
SiO2	63,24	63,023	63,209	62,381	62,588	62,25
Al2O3	0,054	0,118	0,112	0,055	0,117	0,088
MgO	30,918	30,241	30,963	30,447	30,49	30,184
TiO2	0,013	0,02	0	0,036	0,02	0,04
FeO	1,246	1,715	1,256	1,227	1,18	1,182
CaO	0,001	0,018	0	0,011	0,031	0
NiO	0,191	0,203	0,215	0,24	0,132	0,204
Cr2O3	0,008	0	0,044	0,024	0,042	0,026
K2O	0,025	0,021	0,048	0,048	0,094	0,047
MnO	0,035	0,016	0	0	0	0
Total	95,833	95,529	95,92	94,546	94,777	94,12
Na	0,009594	0,017825	0,008603	0,016205	0,014664	0,012013
F	0,108	0,141	0,065	0,021	0,042	0,088
Si	8,023398	8,047445	8,013277	8,021345	8,023325	8,035599
Al	0,008075	0,017758	0,016734	0,008335	0,017677	0,013388
Mg	5,847718	5,756568	5,85171	5,836439	5,826789	5,808503
Ti	0,001241	0,001921	0	0,003483	0,001929	0,003885
Fe	0,059479	0,082395	0,05991	0,059363	0,056914	0,057408
Ca	0,000136	0,002463	0	0,001516	0,004258	0
Ni	0,019493	0,020851	0,021926	0,024825	0,013612	0,021183
Cr	0,000802	0	0,00441	0,00244	0,004257	0,002654
К	0,004046	0,003421	0,007763	0,007874	0,015373	0,00774
Mn	0,003761	0,00173	0	0	0	0

Lythochemical analysis of amphibolite samples (major elements in % weight; trace in ppm).

SAMPLE	P2A	TN-8A	TN-8B
SiO ₂	51,57	47,43	47,97
TiO ₂	0,99	1,71	2,81
Al ₂ O ₃	16,04	16,6	15,61
Fe ₂ O ₃	11,8	14,31	15,43
MnO	0,13	0,2	0,17
MgO	6,06	5,83	6,59
CaO	11,64	10,02	7,91
Na ₂ O	0,67	2,01	1,37
K ₂ O	0,18	0,67	0,7
P_2O_5	0,06	0,35	0,41
LOI	0,6	0,6	0,7
Sum	99,82	99,78	99,75
Ni	162	78	72
Rb	1,3	10,3	24,2
Ba	17	124	207
Sc	41	34	30
Th	0,2	1	2
U	< 0.1	1,2	0,6
Nb	1,5	13,3	23,2
Та	0,1	0,7	1,3
La	2,5	12,4	24,4
Ce	6	30,9	53,2
Pr	1,11	4,43	7,45
Sr	208,2	302,4	204,2
Nd	6,6	21	33,4
Zr	44,6	136,8	180,2
Hf	1,9	3,1	4,1
Sm	2,26	4,9	7,32
Eu	0,81	1,64	1,98
Gd	3,47	5,32	6,65
Tb	0,57	0,9	0,85
Dy	4,39	5,2	5,07
Y	24,2	31,2	24,6
Но	0,87	1,07	0,9
Er	2,27	3,74	2,34
Tm	0,34	0,46	0,35
Yb	2,66	2,86	2,23
Lu	0,32	0,48	0,31
Со	45,8	48,4	47,7

Grain	U	Th		²⁰⁶ Pb*	²⁰⁶ Pb ^c				Isotope ratio	s					Age (N	(la)			%
Spot	(ppm)	(ppm)	Th/U	(ppm)	%	²⁰⁷ Pb*/ ²³⁵ U	± (%)	²⁰⁶ Pb*/ ²³⁸ U	± (%)	ρ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	± (%)	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁷ Pb/ ²⁰⁶ Pb	±	Disc.
TN8A-1.1	311,84	298,96	0,99	73,88	-0,0086	3,664760	4,27	0,275558	4,19	0,98	0,096457	0,79	1573	58	1564	67	1557	15	-1
TN8A-2.1	187,77	131,55	0,72	45,30	-0,2316	3,708945	4,40	0,280520	4,24	0,96	0,095893	1,16	1598	60	1573	69	1546	22	-3
TN8A-3.1	141,40	95,90	0,70	34,36	-0,0072	3,760617	4,38	0,281979	4,19	0,96	0,096727	1,26	1605	59	1584	69	1562	24	-2
TN8A-4.1	306,02	202,74	0,68	73,20	-0,4101	3,580865	4,28	0,277981	4,17	0,97	0,093429	0,95	1581	58	1545	66	1497	18	-5
TN8A-5.1	467,76	1,35	0,00	40,62	-0,0322	0,827344	4,38	0,100982	4,17	0,95	0,059421	1,33	620	25	612	27	583	29	-6
TN8A-6.1	151,86	102,70	0,70	36,66	-0,2249	3,726523	4,41	0,280803	4,25	0,96	0,096251	1,20	1599	60	1577	70	1553	23	-3
TN8A-7.1	76,46	44,10	0,60	17,78	0,2812	3,484211	4,84	0,269189	4,23	0,87	0,093878	2,34	1537	58	1524	74	1506	45	-2
TN8A-8.1	144,31	96,45	0,69	34,70	-0,0124	3,749917	4,34	0,279594	4,19	0,96	0,097274	1,14	1593	59	1582	69	1572	21	-1
TN8A-9.1	196,10	194,53	1,02	47,67	-0,3124	3,754612	4,27	0,282864	4,18	0,98	0,096269	0,90	1610	59	1583	68	1553	17	-3
TN8A-10.1	272,65	199,83	0,76	65,45	-0,1560	3,721154	4,24	0,279313	4,17	0,98	0,096624	0,79	1592	59	1576	67	1560	15	-2
TN8A-11.1	50,10	23,62	0,49	11,33	0,63	3,39221	4,99	0,26157	4,26	0,85	0,09406	2,56790	1498	57	1503	75	1509	49	1
TN8A-12.1	206,46	112,13	0,56	43,44	0,5436	3,121166	4,32	0,244524	4,18	0,97	0,092575	1,08	1410	53	1438	62	1479	21	5
TN8D-1.1	548,21	448,01	0,84	67,59	1,8169	1,603705	4,27	0,143272	4,17	0,98	0,081182	0,95	863	34	972	42	1226	19	42
TN8D-2.1	77,94	43,89	0,58	13,96	1,2807	2,503567	5,11	0,207471	4,23	0,83	0,087517	2,86	1215	47	1273	65	1372	55	13
TN8D-3.1	162,19	63,81	0,41	26,47	1,6614	2,274242	4,70	0,189178	4,26	0,91	0,087187	1,98	1117	44	1204	57	1365	38	22
TN8D-4.1	620,59	39,31	0,07	59,00	0,4587	0,998464	4,33	0,110626	4,17	0,96	0,065460	1,19	676	27	703	30	789	25	17
TN8D-5.1	160,76	112,13	0,72	32,73	0,8827	3,005246	4,41	0,236278	4,21	0,95	0,092247	1,32	1370	52	1409	62	1472	25	8
TN8D-6.1	506,01	1,86	0,00	44,23	-0,0626	0,842672	4,31	0,101740	4,17	0,97	0,060071	1,09	625	25	621	27	606	23	-3
TN8D-7.1	362,74	1,46	0,00	31,69	-0,0157	0,843290	4,47	0,101644	4,25	0,95	0,060172	1,40	624	25	621	28	610	30	-2
TN8D-8.1	186,45	84,73	0,47	31,48	1,29	2,33792	4,69	0,19594	4,32	0,92	0,08654	1,81647	1153	46	1224	57	1350	35	17
TN8D-9.1	621,94	558,55	0,93	52,36	1,34	0,87336	4,67	0,09728	4,17	0,89	0,06511	2,07101	598	24	637	30	778	44	30
TN8D-10.1	25,08	1,54	0,06	4,49	7,23	3,56472	22,45	0,20465	4,58	0,20	0,12625	21,94877	1200	50	1542	346	2048	388	71
TN8D-11.1	18,55	2,51	0,14	4,16	9,30	4,83960	9,31	0,25100	4,57	0,49	0,13960	8,02231	1444	59	1792	167	2225	140	54
TN8F-1.1	302,42	657,91	2,25	52,81	1,57	2,46146	4,58	0,20213	4,19	0,91	0,08832	1,83445	1187	45	1261	58	1389	36	17
TN8F-2.1	177,56	98,25	0,57	35,46	1,0354	2,924457	4,53	0,231524	4,29	0,95	0,091610	1,45	1345	52	1388	63	1459	28	9
TN8F-3.1	529,73	380,28	0,74	97,55	0,7078	2,559554	4,39	0,214007	4,25	0,97	0,086743	1,10	1253	48	1289	57	1355	21	8
TN8F-4.1	143,32	6,85	0,05	13,03	0,4030	0,888704	5,25	0,105366	4,22	0,80	0,061174	3,11	646	26	646	34	645	67	0

Analytical data of zircons of TN-8 sample. In bold unused data to obtain igneous crystallization age. In italics data used for obtaining metamorphic age.

TN8F-5.1	209,02	63,51	0,31	31,70	1,98	1,89346	5,36	0,17394	4,22	0,79	0,07895	3,21751	1034	40	1079	58	1171	65	13
TN8F-6.1	290,01	208,07	0,74	63,81	0,5098	3,232072	4,47	0,254697	4,18	0,94	0,092038	1,56	1466	55	1465	66	1468	30	0
TN8F-7.1	238,21	206,67	0,90	57,24	-0,1774	3,656743	4,34	0,279063	4,19	0,97	0,095039	1,13	1590	59	1562	68	1529	21	-4
TN8F-8.1	488,38	298,59	0,63	65,69	1,78	1,72222	4,46	0,15566	4,18	0,94	0,08024	1,52855	933	36	1017	45	1203	31	29
TN8F-9.1	223,23	105,34	0,49	42,76	1,4558	2,725791	4,60	0,221063	4,19	0,91	0,089426	1,85	1290	49	1336	61	1413	36	10
TN8F-10.1	288,92	4,01	0,01	26,64	-0,0036	0,890757	4,63	0,107163	4,20	0,91	0,060286	1,95	656	26	647	30	614	42	-6
TN8F-11.1	264,16	172,16	0,67	60,07	0,3426	3,402661	4,37	0,263522	4,18	0,96	0,093650	1,23	1511	56	1505	66	1501	24	0
TN8F-12.1	207,82	121,13	0,60	42,10	0,9777	2,949275	4,67	0,234595	4,25	0,91	0,091178	1,93	1361	52	1395	65	1450	37	7

Analytical data of zircons of P2A sample. In bold unused data to obtain age. In italics inherited zircon grains not used to obtain age.

				206	206			Isot	ope rati	os					Age (M	a)			%
Grain Spot	U (ppm)	Th (ppm)	Th/U	²⁰⁰ Pb* (ppm)	²⁰⁰ Pb ^c %	²⁰⁷ Pb*/ ²³⁵ U	± (%)	²⁰⁶ Pb*/ ²³⁸ U	± (%)	ρ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	± (%)	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁷ Pb/ ²⁰⁶ Pb	±	Disc.
P2A-1.1	221,22	158,85	0,74	65,02	-0,22	5,34610	4,32	0,34170	4,22	0,98	0,11347	0,93035	1895	69	1876	81	1856	17	-2
P2A-2.1	106,48	76,75	0,74	23,26	-0,52	3,05851	4,55	0,25415	4,22	0,93	0,08728	1,69845	1460	55	1422	65	1367	33	-6
P2A-3.1	173,47	136,72	0,81	30,36	0,41	2,23945	4,91	0,20289	4,48	0,91	0,08006	1,99145	1191	49	1193	59	1198	40	1
P2A-4.1	104,04	77,02	0,76	34,14	-0,28	6,51932	4,48	0,38054	4,22	0,94	0,12426	1,47259	2079	75	2049	92	2018	26	-3
P2A-5.1	266,74	139,11	0,54	44,24	0,10	2,02899	4,48	0,19255	4,20	0,94	0,07643	1,56851	1135	44	1125	50	1106	31	-3
P2A-6.1	881,15	190,44	0,22	141,54	-0,01	1,94484	4,26	0,18679	4,19	0,98	0,07552	0,76156	1104	42	1097	47	1082	15	-2
P2A-7.1	502,78	6,91	0,01	94,20	-0,25	2,43981	4,29	0,21810	4,17	0,97	0,08113	1,01237	1272	48	1254	54	1225	20	-4
P2A-8.1	503,11	161,98	0,33	82,07	-0,21	1,96305	4,28	0,18982	4,18	0,97	0,07501	0,95280	1120	43	1103	47	1069	19	-5
P2A-9.1	895,33	196,42	0,23	79,17	2,37	1,03006	4,72	0,10204	4,17	0,88	0,07321	2,19816	626	25	719	34	1020	45	63
P2A-10.1	295,59	130,71	0,46	59,97	1,13	3,08244	4,33	0,23570	4,18	0,97	0,09485	1,12154	1364	51	1428	62	1525	21	12
P2A-11.1	90,02	85,19	0,98	25,22	-0,06	4,75423	4,61	0,32410	4,23	0,92	0,10640	1,80285	1810	67	1777	82	1738	33	-4
P2A-12.1	332,68	104,97	0,33	76,55	-0,01	3,44097	4,34	0,26724	4,18	0,96	0,09339	1,15986	1527	57	1514	66	1496	22	-2

Spot			Ratios							Age	(Ma)			%				Th	U	Pb	327771 /2
number	²⁰⁷ Pb*/ ²³⁵ U	±	²⁰⁶ Pb*/ ²³⁸ U	±	Rho 1	²⁰⁷ Pb*/ ²⁰⁶ P b*	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁷ Pb/ ²⁰⁶ Pb	±	Disc.	f 206	Age (Ma)	±	ppm	ppm	ppm	³² Th/2 ³⁸ U
P-2D 1	2,31603	3,25	0,20552	3,06	0,94	0,08173	1,09	1205	37	1217	40	1239	14	3	0,0007	1229	36	216,5	515,4	181,8	0,42
P-2D 2	3,43865	4,85	0,26001	4,75	0,98	0,09592	1,02	1490	71	1513	73	1546	16	4	0,0004	1542	36	57,6	221,5	78,7	0,26
P-2D 3	2,76864	3,61	0,22588	2,85	0,79	0,08890	2,22	1313	37	1347	49	1402	31	6	0,0015	1542	36	22,2	77,3	24,5	0,29
P-2D 4	2,30292	3,39	0,20503	3,01	0,89	0,08146	1,56	1202	36	1213	41	1233	19	2	0,0014	1219	45	706,2	545,9	188,9	1,30
P-2D 5	2,55544	2,92	0,21891	2,19	0,75	0,08467	1,92	1276	28	1288	38	1308	25	2	0,0016	1286	42	127,2	129,5	47,7	0,99
P-2D 6	2,08715	4,02	0,19146	3,55	0,88	0,07906	1,88	1129	40	1145	46	1174	22	4	0,0023	1151	53	24,5	75,9	20,3	0,32
P-2D 7	2,11280	4,44	0,19261	4,03	0,91	0,07956	1,87	1135	46	1153	51	1186	22	4	0,0010	1164	56	34,6	118,4	31,0	0,29
P-2D 8	3,06795	2,62	0,24416	2,33	0,89	0,09113	1,21	1408	33	1425	37	1449	18	3	0,0004	1434	36	52,5	300,6	99,9	0,18
P-2D 9	2,92996	2,74	0,24031	2,36	0,86	0,08843	1,39	1388	33	1390	38	1392	19	0	0,0010	1390	40	220,5	252,0	90,2	0,88
P-2D 10	4,93173	8,04	0,30726	7,93	0,99	0,11641	1,29	1727	137	1808	145	1902	24	9	0,0016	1897	42	218,7	236,5	127,6	0,93
P-2D 11	3,47993	3,61	0,26191	3,42	0,95	0,09636	1,13	1500	51	1523	55	1555	18	4	0,0010	1545	38	29,2	149,8	52,6	0,20
P-2D 12	2,25394	4,86	0,20007	4,59	0,94	0,08171	1,60	1176	54	1198	58	1238	20	5	0,0012	1221	53	62,3	111,7	34,9	0,56
P-2D 13	3,22505	13,95	0,26193	3,10	0,22	0,08930	13,6	1500	47	1463	204	1411	2	-6	0,0004	1497	82	44,4	349,6	118,7	0,13
P-2D 14	2,65987	5,48	0,22405	5,31	0,97	0,08610	1,33	1303	69	1317	72	1340	18	3	0,0009	1335	47	130,2	479,7	142,9	0,27
P-2D 15	2,25035	3,49	0,20340	2,91	0,83	0,08024	1,92	1194	35	1197	42	1203	23	1	0,0015	1197	49	33,2	96,0	26,7	0,35
P-2D 16	1,83042	3,04	0,17566	2,29	0,75	0,07557	1,99	1043	24	1056	32	1084	22	4	0,0025	1052	39	156,0	382,1	92,8	0,41
P-2D 17	2,50104	4,35	0,21877	3,78	0,87	0,08292	2,17	1275	48	1272	55	1267	27	-1	0,0060	1271	61	53,1	87,3	27,9	0,61
P-2D 18	3,48319	2,28	0,26517	1,90	0,83	0,09527	1,27	1516	29	1523	35	1533	19	1	0,0007	1525	35	67,8	170,8	63,0	0,40
P-2D 19	1,93246	5,23	0,18328	4,89	0,93	0,07647	1,87	1085	53	1092	57	1107	21	2	0,0024	1099	59	47,2	96,0	26,7	0,50
P-2D 20	2,33403	4,80	0,20906	4,26	0,89	0,08097	2,21	1224	52	1223	59	1221	27	0	0,0026	1222	64	36,6	69,1	20,6	0,53
P-2D 21	2,70704	6,37	0,22734	5,64	0,89	0,08636	2,95	1321	75	1330	85	1346	40	2	0,0032	1336	87	35,9	36,1	16,2	1,00
P-2D 22	5,93130	3,06	0,34740	2,75	0,90	0,12383	1,35	1922	53	1966	60	2012	27	4	0,0002	1993	42	85,6	269,1	163,1	0,32
P-2D 23	2,39589	2,43	0,21139	2,03	0,84	0,08220	1,34	1236	25	1241	30	1250	17	1	0,0007	1242	35	52,5	139,6	49,1	0,38
P-2D 24	3,60256	3,99	0,27019	3,82	0,96	0,09670	1,16	1542	59	1550	62	1561	18	1	0,0005	1559	40	51,1	158,2	71,6	0,33
P-2D 25	5,82112	3,11	0,34723	2,91	0,94	0,12159	1,09	1921	56	1950	61	1980	22	3	0,0010	1972	36	74,6	124,3	80,6	0,60
P-2D 26	4,89706	5,00	0,33021	4,78	0,96	0,10756	1,45	1839	88	1802	90	1758	26	-5	0,0007	1768	52	29,1	72,6	39,9	0,40

Analytical data of zircons of P2D sample. In bold unused data to obtain the age spectra.

P-2D 27	2,71883	3,21	0,22982	2,86	0,89	0,08580	1,45	1334	38	1334	43	1334	19	0	0,0020	1334	44	63,5	59,8	26,6	1,07
P-2D 28	2,92064	2,75	0,24103	2,31	0,84	0,08788	1,50	1392	32	1387	38	1380	21	-1	0,0012	1386	41	31,5	90,3	35,0	0,35
P-2D 29	5,02582	3,44	0,32843	3,09	0,90	0,11098	1,51	1831	57	1824	63	1816	27	-1	0,0018	1819	48	24,4	34,9	20,3	0,70
P-2D 30	3,35308	3,63	0,26043	3,36	0,92	0,09338	1,39	1492	50	1494	54	1496	21	0	0,0015	1495	45	28,4	72,0	33,5	0,40
P-2D 31	3,44272	3,12	0,26249	2,68	0,86	0,09512	1,60	1503	40	1514	47	1530	24	2	0,0011	1519	46	38,2	96,9	38,2	0,40
P-2D 32	3,68852	2,94	0,27554	2,67	0,91	0,09709	1,24	1569	42	1569	46	1569	19	0	0,0004	1569	40	74,2	223,1	91,8	0,33
P-2D 33	2,36693	2,86	0,21052	2,42	0,85	0,08154	1,53	1232	30	1233	35	1235	19	0	0,0009	1233	40	68,2	138,1	44,2	0,50
P-2D 34	5,17233	9,43	0,33668	7,77	0,82	0,11142	5,34	1871	145	1848	174	1823	97	-3	0,0017	1841	150	23,9	15,0	9,6	1,60
P-2D 35	2,71920	3,12	0,23030	2,84	0,91	0,08563	1,30	1336	38	1334	42	1330	17	0	0,0009	1332	41	18,5	125,4	38,9	0,15
P-2D 36	2.66804	5.99	0.22778	5.38	0.90	0.08495	2.64	1323	71	1320	79	1314	35	-1	0.0021	1318	80	36.6	33.6	13.9	1.10
P-2D 37	6.57853	2.34	0.37650	2.11	0.90	0.12673	1.01	2060	43	2056	48	2053	21	0	0.0003	2054	32	190.9	230.5	145.5	0.83
P-2D 38	3,06030	4,58	0,25014	4,45	0,97	0,08873	1,12	1439	64	1423	65	1398	16	-3	0,0004	1404	41	163,0	318,9	120,4	0,51
P-2D 39	2,90497	3,65	0,23974	3,26	0,89	0,08788	1,63	1385	45	1383	50	1380	22	0	0,0012	1382	50	29,9	79,4	27,4	0,38
P-2D 40	4,65571	3,66	0,31241	3,37	0,92	0,10808	1,44	1753	59	1759	64	1767	25	1	0,0008	1764	47	50,1	92,8	46,0	0,54
P-2D 41	5,31420	2,96	0,33565	2,60	0,88	0,11483	1,42	1866	49	1871	55	1877	27	1	0,0005	1874	44	97,8	99,0	64,5	1,00
P-2D 42	4 74930	5 78	0 31140	4 67	0.81	0 1 1 0 6 1	3 42	1748	82	1776	103	1810	62	3	0.0029	1783	94	31.6	38.2	22.2	0.83
P-2D 43	4.89538	5,78	0.32067	4.74	0.82	0.11072	3,31	1793	85	1801	103	1811	60	1	0.0025	1804	94	44.8	31.9	21.0	1.41
P-2D 44	2.54094	5.83	0.22224	5.03	0.86	0.08292	2.96	1294	65	1284	75	1267	37	-2	0.0031	1280	82	12.1	58.8	14.5	0.21
P-2D 45	2,14995	2.66	0.19942	2.13	0.80	0.07819	1.59	1172	25	1165	31	1152	18	-2	0.0004	1165	37	139.5	310.2	103.2	0.45
P-2D 46	2,30179	2,80	0,20507	2,28	0,81	0,08141	1,63	1203	27	1213	34	1231	20	2	0,0006	1213	40	43,8	141,3	46,9	0,31
P-2D 47	5,45998	3,30	0,34329	2,88	0,87	0,11535	1,61	1902	55	1894	63	1885	30	-1	0,0013	1890	50	54,3	68,6	43,4	0,80
P-2D 48	2 15679	4 24	0 19839	3 39	0.80	0.07885	2 55	1167	40	1167	50	1168	30	0	0.0018	1167	59	63.9	77 4	28.5	0.83
P-2D 49	1.95465	5.41	0.18475	4.87	0.90	0.07673	2,33	1093	53	1100	59	1114	26	2	0.0020	1104	68	75.5	59.8	22,2	1.27
P-2D 50	1.68812	3.68	0.16981	3.28	0.89	0.07210	1.69	1011	33	1004	37	989	17	-2	0.0010	1001	46	82.6	244.5	65.6	0.34
P-2D 51	4,45100	5,64	0,30822	5,48	0,97	0,10474	1,33	1732	95	1722	97	1710	23	-1	0,0011	1712	48	66,2	104,3	64,8	0,64
P-2D 52	2,37013	5,83	0,21107	5,43	0,93	0,08144	2,13	1235	67	1234	72	1232	26	0	0,0014	1233	69	26,5	68,7	26,9	0,39
P-2D 53	6,56498	3,43	0,37498	2,91	0,85	0,12698	1,82	2053	60	2055	70	2057	37	0	0,0007	2055	55	60,4	48,9	42,6	1,24
P-2D 54	5,93850	4,12	0,35527	3,91	0,95	0,12123	1,31	1960	77	1967	81	1974	26	1	0,0004	1973	44	55,3	189,4	116,9	0,29
P-2D 55	2,16693	3,95	0,20065	3,69	0,93	0,07833	1,43	1179	43	1170	46	1155	17	-2	0,0003	1163	46	22,3	267,3	89,5	0,08
P-2D 56	4,64295	3,75	0,31261	3,29	0,88	0,10772	1,79	1754	58	1757	66	1761	31	0	0,0008	1759	55	15,4	47,9	28,2	0,32
P-2D 57	3,58230	3,25	0,27256	3,00	0,92	0,09532	1,26	1554	47	1546	50	1534	19	-1	0,0004	1539	41	33,4	118,3	57,8	0,28

P-2D 58	5,84630	4,20	0,35228	3,77	0,90	0,12036	1,85	1945	73	1953	82	1962	36	1	0,0012	1958	59	96,9	115,4	80,0	0,85
P-2D 59	2,14794	5,41	0,20342	4,83	0,89	0,07658	2,45	1194	58	1164	63	1110	27	-8	0,0020	1149	71	27,7	53,6	18,9	0,52
P-2D 60	3,57354	4,37	0,27076	4,06	0,93	0,09572	1,61	1545	63	1544	67	1542	25	0	0,0007	1543	53	30,5	114,0	58,8	0,27
P-2D 61	4,82954	2,59	0,32030	2,30	0,89	0,10936	1,20	1791	41	1790	46	1789	21	0	0,0007	1789	37	178,0	83,0	70,3	2,16
P-2D 62	4,93288	6,31	0,31771	4,87	0,77	0,11261	4,02	1779	87	1808	114	1842	74	3	0,0013	1811	110	6,1	9,5	5,7	0,64
P-2D 63	4,67546	4,03	0,31262	3,56	0,88	0,10847	1,87	1754	62	1763	71	1774	33	1	0,0012	1768	58	82,1	56,3	41,0	1,47
P-2D 64	2,62481	4,75	0,22364	4,42	0,93	0,08512	1,75	1301	57	1308	62	1318	23	1	0,0022	1313	57	102,3	73,9	33,9	1,39
P-2D 65	1,93294	5,29	0,18483	4,58	0,86	0,07585	2,66	1093	50	1093	58	1091	29	0	0,0022	1092	70	31,0	55,3	19,2	0,56
P-2D 66	2,13990	5,82	0,19724	4,81	0,83	0,07869	3,27	1160	56	1162	68	1164	38	0	0,0031	1162	80	14,2	44,4	15,5	0,32
P-2D 67	2,34276	3,93	0,20840	3,36	0,86	0,08153	2,03	1220	41	1225	48	1234	25	1	0,0013	1227	55	36,8	73,8	28,8	0,50
P-2D 68	3,58297	1,87	0,27016	1,55	0,83	0,09619	1,05	1542	24	1546	29	1551	16	1	0,0004	1547	29	72,0	262,1	125,1	0,28
P-2D 69	6,19497	5,70	0,36503	4,93	0,86	0,12309	2,86	2006	99	2004	114	2001	57	0	0,0014	2003	87	17,3	11,6	9,8	1,51
P-2D 70	2,36512	5,90	0,21095	5,34	0,90	0,08132	2,52	1234	66	1232	73	1229	31	0	0,0008	1231	76	18,1	43,7	17,8	0,42
P-2D 71	2,69138	4,69	0,23106	4,37	0,93	0,08448	1,71	1340	59	1326	62	1304	22	-3	0,0007	1314	57	51,4	132,1	50,9	0,39
P-2D 72	2,13668	10,33	0,19568	4	0,98	0,07919	1,97	1152	117	1161	120	1177	23	2	0,0038	1174	72	122,1	233,3	61,6	0,53
P-2D 73	2,35119	5,55	0,20865	4,42	0,80	0,08173	3,36	1222	54	1228	68	1239	42	1	0,0020	1228	79	19,5	27,3	9,6	0,72
P-2D 74	3,71360	3,99	0,28159	3,78	0,95	0,09565	1,28	1599	60	1574	63	1541	20	-4	0,0004	1551	45	55,7	255,0	100,8	0,22
P-2D 75	4,84178	3,29	0,31871	2,71	0,83	0,11018	1,86	1783	48	1792	59	1802	33	1	0,0012	1795	53	38,4	45,7	25,1	0,85
P-2D 76	3,43238	2,62	0,26435	2,15	0,82	0,09417	1,50	1512	32	1512	40	1512	23	0	0,0009	1512	41	72,1	123,3	53,0	0,59
P-2D 77	5,58509	3,17	0,33729	3,03	0,96	0,12009	0,92	1874	57	1914	61	1958	18	4	0,0004	1950	31	243,5	179,6	114,9	1,37
P-2D 78	5,40112	4,55	0,35032	3,84	0,84	0,11182	2,44	1936	74	1885	86	1829	45	-6	0,0023	1864	73	25,7	35,8	17,3	0,72
P-2D 79	3,72752	2,82	0,27784	2,37	0,84	0,09730	1,52	1580	37	1577	44	1573	24	0	0,0013	1576	43	33,1	76,5	32,6	0,44
P-2D 80	4,61513	2,80	0,31280	2,27	0,81	0,10701	1,64	1754	40	1752	49	1749	29	0	0,0015	1751	46	89,0	70,0	40,4	1,28
P-2D 81	2,35619	5,17	0,21206	4,87	0,94	0,08058	1,73	1240	60	1229	64	1211	21	-2	0,0007	1219	58	201,6	320,2	107,2	0,63
P-2D 82	2,96770	5,74	0,23279	5,36	0,93	0,09246	2,06	1349	72	1399	80	1477	30	9	0,0025	1445	65	10,8	56,3	22,4	0,19
P-2D 83	3,22163	8,61	0,25483	8,51	0,99	0,09169	1,31	1463	125	1462	126	1461	19	0	0,0030	1461	49	129,8	299,1	94,1	0,44
P-2D 84	3,06025	2,57	0,24445	2,15	0,84	0,09079	1,41	1410	30	1423	37	1442	20	2	0,0018	1426	38	89,7	268,7	96,6	0,34
P-2D 85	1,97675	2,91	0,18671	2,38	0,82	0,07678	1,68	1104	26	1108	32	1116	19	1	0,0010	1108	39	21,2	140,0	40,1	0,15
P-2D 86	1,64161	6,69	0,16398	6,39	0,95	0,07261	2,00	979	63	986	66	1003	20	2	0,0016	995	66	144,8	255,1	63,9	0,57
P-2D 87	2,81051	7,46	0,23047	7,16	0,96	0,08845	2,12	1337	96	1358	101	1392	29	4	0,0012	1383	72	37,5	73,1	28,9	0,52
P-2D 88	5,81363	5,04	0,36215	4,46	0,88	0,11643	2,36	1992	89	1948	98	1902	45	-5	0,0030	1924	75	178,3	211,0	106,9	0,85

P-2D 89	5,22634	3,14	0,32724	2,83	0,90	0,11583	1,37	1825	52	1857	58	1893	26	4	0,0007	1878	43	62,3	96,9	58,5	0,65
P-2D 90	1,94655	15,75	0,18310	14,4	0,91	0,07710	6,47	1084	156	1097	173	1124	73	4	0,0024	1106	190	7,1	24,7	7,9	0,29