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Abstract

This work is an essay that assesses some important tools in Classical and Quan-
tum information theory. The concept of qubit (quantum two level systems)
is introduced in a simple manner by using a few statistical optics concepts
(Stokes vectors and coherence matrices). Unlike most texts of Quantum infor-
mation in which the qubits of spin are often addressed, in this text the concept
of polarization qubit is developed. Shannon and Von Neumann entropy func-
tions are introduced formally and, therefore, some of the particularities of
classical and quantum information theory are highlighted and confronted.
The most important properties of these entropies are demonstrated with detail.
The concept of majorization is introduced for both cases: the quantum and the
classical ones. The Jaynes problem is discussed in the light of classical theory
of information (The Jaynes principle), in the quantum case, this problem
-which is still open- is approached in a simple and intuitive manner.

Keywords

qubit, polarization qubit, Jones vector, Jones matrix, Stokes parameters, coherence
matrix, Poincaré–Bloch sphere, convex set, Shannon entropy, conditional entropy,
joint entropy, mutual entropy, Von Neumann entropy, relative entropy, entropy
properties, entropy inequalities, Kullback-Leibler distance or divergence, majoration,
bistochastic matrices, Schrödinger mixture theorem, Jaynes principle, maxent problem,
classical information, quantum information.
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Resumo

Este trabalho é um ensaio sobre algumas ferramentas importantes para a
Informação Clássica e Quântica. O conceito de qubit (sistema de dois níveis
quântico) é introduzido de forma simples via óptica estatística (vetores de
Stokes e matrizes de coerência). Contrariando a abordagem da maioria dos
textos de informação Quântica, nos quais os qubits de spin são frequentemente
abordados, nesse texto o conceito de qubit é o de polarização. As noções de
entropia de Shannon e de Von Neumann são introduzidas formalmente e,
com isso, algumas das particularidades das teorias de informação clássica e
quântica são evidenciadas e confrontadas. As propriedades mais importantes
dessas entropias são detalhadamente demonstradas. O conceito de majoração
é introduzido e desenvolvido em ambos os casos: clássico e quântico. O
problema de Jaynes clássico é discutido sob a luz da Teoria de Informação
Clássica, (Princípio de Inferência de Jaynes) e, no caso quântico, esse problema
-que ainda permanece em aberto- é abordado de forma simples e intuitiva.

Palavras-chave

qubit, qubit de polarização, vetor de Jones, matriz de Jones, parâmetros de Stokes,
matriz de coerência, esfera de Poincaré–Bloch, conjuntos convexos, entropia de Shan-
non, entropia condicional, entropia conjunta, informação mútua, entropia de Von
Neumann, entropia relativa, propriedades da entropia, desigualdades para entropia,
distância ou divergência de Kullback-Leibler, majoração, matrizes biestocásticas, Teo-
rema da mistura de Schrödinger, princípio de Jaynes, problema maxent, infomação
clássica, informação quântica.
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CHAPTER 1
Introduction

This work is organized in seven chapters. Each chapter is systematically
organized to contain the many spectrums involved in this project. This
chapter, Introduction, briefly puts forward the objective and the scope of
study. In Chapter 2, we introduce the polarization qubit (a quantum two level
system). We start with the plane-wave solution of the Maxwell’s equation for
the electric field and observe that all information of the polarization state of a
photon can be described as a vector in C2, called Jones Vector. Any operation
in a laboratory can be represented by a matrix called Jones matrix. In a more
general situation, the complete description of the polarization state cannot
be done by the Jones formalism (by a Jones vector), because both phase and
amplitude can vary with time and these fluctuations impose some difficulties.
We can associate a set of Jones vectors with a probability vector and apply the
concepts of the classical optics with the help of the theory of the probability.
But instead, in order to introduce the density matrix formalism for one qubit,
we define the coherence matrix, which is an analogue of the density matrix
for two level systems.

We understand that we can easily measure time averages in a laboratory
and we take advantage of this fact in order to define the coherence matrix
by the Stokes parameters. These parameters are defined with an obvious
connexion with the Bloch vector representation for one qubit, established
with the help of the Pauli matrices. Therefore, the Stokes parameters can be
directly related with Bloch vector components. If we allow partial polarization,
we can construct a Poincaré sphere and its ball, which forms a complete
analogy with the Bloch sphere. Gathering all these coincidences, we finally
show an interesting way of constructing a qubit experimentally by using the
polarization state of a photon. In summary: if the qubit is fully polarized,
then we can use the Jones vector formalism, but if it is partially polarized we
will need to define a coherence matrix and this approach follows immediately
from the density matrix formalism. Lastly, we discuss some consequences
of changing the L1-norm by the Euclidean L2-norm. We try to advocate that
this new theory of probability based on the L2 norm is a toy-model of the
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Quantum Mechanics theory. The essential difference between the qubit and
the probabilistic bit is discussed in the light of this theory.

In Chapter 3, we define some mathematical background. As this content
might be infinite, we attempt to follow an intuitive ordering and also focus
our attention on an axiomatic standpoint. The careful reader can easily notice
that this mathematical background does not form a very important section,
but its existence is justified by the construction of a complete narrative. We
almost always try to give more intuitive and easy proofs for all theorems. We
begin this chapter with some concepts and definitions about metric spaces
and then we try to understand the Quantum Mechanics by using the rules
of the C∗ non-commutative algebra of its observables. We try to develop a
parallel between the quantum and the classical theories. We show that we can
understand both theories in an operational way, i.e., first creating an algebra
for its observables and later defining the states simply as linear functionals
belonging to this algebra.

In chapter 2, we understand in a primary way, some of the similarities
of the coherence matrix and the density matrix formalism. We are now then
prepared to define mixtures and convex sets more properly. These definitions
are important if we want to explore the convexity properties, because the set
of the density matrices is a convex set.

The density matrix formalism is formally introduced along with the pos-
tulates of Quantum Mechanics. We already discuss the formalism for one
particle (one qubit), then for more qubits we need to introduce some prop-
erties of the tensor product. The Hilbert-Schmidt’s space is also discussed
in a brief manner. Finally, we present a very short discussion about the en-
tanglement -which is the property of Quantum Mechanics. Thus we present
an introduction to a geometric interpretation for the entanglement. Despite
its importance in Quantum Theory of Information, we do not discuss the
entanglement very deeply. In this text, the entanglement is considered only as
one of the properties of a quantum multipartite system.

Chapters 4 and 5 are the core of this text. We establish an invisible parallel
between the Classical and the Quantum Information theories. These chapters
abide the following structure: we try to perceive the states as members of a
classical and a quantum space of probabilities respectively. The operations
allowed in each space are then presented. Some majorization properties
are discussed in order to understand the partial ordering in these spaces.
Finally, we define the entropy function (in the classical case it is the Shannon
entropy and in the quantum one the Von Neumann entropy) as a measure of
information and a measure of the degree of mixing.

In Chapter 4, we introduce the function I as a measure of information,
and we define the Shannon entropy as the average missing information, that
is, the average information required to specify an outcome when we know
its distribution of probabilities. Some important properties of the Shannon
entropy are demonstrated with detail. Finally, in Chapter 4, we define the
Markovian’s processes simply in order to prove some theorems easily. We
associate these processes with the bistochastic maps. Later this definition will
be useful in order to try to understand the second law of Thermodynamics
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for Markovian processes.
In Chapter 5, we present a brief discussion about the stochastic and bi-

stochastic maps (some quantum maps and operations) and about operator
ordering. The Von Neumann entropy is defined with rigor and we demon-
strate some of its properties. We observe, in both cases, the importance of the
relative entropy and we present some of its interesting geometrical properties.
In the quantum case, we discuss the mixture problem and the Schrödinger
mixture theorem. In both cases, we provide a short discussion on the second
law of thermodynamics and we try to exhibit its connexion with the Jaynes
principle of maximum entropy. In the classical case, we present other infer-
ence schemes. In the quantum one, we present the Jaynes problem in a short,
intuitive and easy approach. The reason of this choice of a brief discussion is
because this problem is still opened in the quantum case.
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CHAPTER 2
What is a Qubit?

2.1 Two Level Systems

The literature of Quantum Mechanics, Quantum Optics and Statistical Me-
chanics abounds with discussions about two level states and two level systems.
In Statistical Mechanics, for example, a two level system can be defined when
particles or states can access only two discrete levels with different energies
labeled by ε1 and ε2. Using the analogy with a classical bit, a quantum bit or
simply a qubit is also a two level system. These quantum two level systems
can be conceived with the spin state of a particle (an electron, for example) [1,
2], or with the polarization state of a photon [1, 3].

In Quantum Information theory, there exists thousands of theorems for
systems described by more than one qubit, but how can we create one qubit
in a laboratory? In this chapter, we try to answer this question first, by
constructing a two level system for pure states of polarization using the Jones
vector formalism (section 2.2), and later, in the section 2.3, we learn how to
proceed operations with these vectors in a laboratory. The analogy between
the pure states of polarization, which are completely described by their Jones
vector, and the quantum pure vectors is quite obvious and will be addressed.
Later, we consider the fact that the Jones vector can vary in time and we
develop the coherence matrix formalism (section 2.4) to cope with this problem.
As this formalism is completely analogous to the formalism of density matrix
for one qubit, with the help of these analogies, we can understand the partially
polarized states, which are identical entities to the quantum mixed states. In
section 2.5, we build the Poincaré–Bloch sphere, that is another consequence
of those analogies between the coherence matrix and the density matrix for
two level systems. Finally, in the Section 2.6, we try to elucidate what is the
essential difference between one qubit and a probabilistic classical bit.
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2.2. The Polarization Qubit

2.2 The Polarization Qubit

A good example for a mathematical analogy of a quantum two level system,
i.e., a qubit; is the polarization state of a photon, that is a description of the
orientation of the oscillations exhibited in transverse waves. We do not observe
this property in longitudinal waves because the direction of oscillation and
the direction of propagation are the same [4].

Let E(r, t) be a plane-wave solution for the electric field that travels along
the z axis (Eq. 2.1). We can always write the general solution of the wave
equation for the electric field (or of the Maxwell’s equations in vacuum and
without sources) as a linear combination of plane-waves of various frequencies
and polarizations, in a linear, homogeneous and time independent media [5]
and [6].

E(r, t) =

E0xei(kz−ωt+δx)

E0yei(kz−ωt+δy)

0

, (2.1)

Where δx and δy are phases, E0x = |E|cos θ, E0y = |E|sin θ, the angle of

polarization θ is given by θ = arctan(
E0y
E0x

) and |E|2= E2
0x + E2

0y. With the electric
field in hands, we can obtain the magnetic field easily by doing the following
cross product B(r, t) = ẑ×E(r,t)

c .
Since only measure light intensities, which are proportional to the squared

electric field, (I ∝ |E|2), the global phase (we define the phase eiδx in Eq. 2.2 as
the global phase), does not have any physical meaning and only the relative
phase ei(δy−δx) has importance, then we can write [4]:

E(r, t) = |E|

 cos θ

sin θei(δy−δx)

0

eiδx ei(kz−ωt). (2.2)

We can define completely the polarization state of a photon using this
monochromatic plane-wave solution (without sources) shown in Eqs. 2.1
and 2.2. Because the electric field wave is traveling in z direction (by defini-
tion), all the information of a polarization state of a photon can be written as
a vector in C2, in the xy plane. This vector (Eq. 2.3) is known as Jones vector1

[5]. Note that the oscillatory term ei(kz−ωt) is from now on omitted.

|E〉 =
(

E0xeiδx

E0yeiδy

)
. (2.3)

This general Jones vector shown in Eq. 2.3, i.e. |E〉, is elliptically polarized.
We say that a wave is linearly polarized at an angle θ i.e., |θ〉, if E0x = |E| cos θ,
E0y = |E| sin θ, and δx = δy = δ. If θ = 0 in Eq. 2.3, we have horizontal
polarization |H〉, and if θ = π

2 , then we will have vertical polarization |V〉,

|θ〉 =
(

cos θ
sin θ

)
, (2.4)

1Be the reader aware that we are going to use the Dirac notation everywhere in this disserta-
tion, not only for quantum states, then E(r) ≡ ~E(~r) ≡ |E(r)〉 ≡ |E〉.
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(Here we made |E|= 1). We will have circular polarization (|c〉) if θ = π
4 and if

δy = π
2 ± δx in Eq. 2.3:

|c〉 =
|E|√

2

(
1
±i

)
. (2.5)

The electric field vector in Eq. 2.5 describes a circle of radius equal to |E| in
a perpendicular plane to the z axis. This is a plane wave circularly polarized,
this vector indicates that E, from plane to plane, has a constant modulus while
its direction constantly rotates. Circular polarization may be referred to as
right-handed |c〉 = |R〉, or left-handed |c〉 = |L〉, depending on the direction in
which the vector E rotates. Unfortunately there are two historical conventions
still used in the literature.

2.3 Jones Matrices

As discussed in the last section, the complete information of the amplitude
and relative phase can be represented in a two dimensional complex vector
|E〉 called Jones vector. We represent an operation in a laboratory, such as
projections, wave plates, etc. by a 2× 2 complex matrix L called Jones matrix2,
see for example [5, 7]. This matrix is defined in Eq. 2.7.∣∣Ẽ〉 = L|E〉, (2.6)

L =
(

a b
c d

)
. (2.7)

Where a, b, c and d are complex numbers [7]. We can represent n operations
in a laboratory by a product of its Jones matrices, i.e.,

∣∣Ẽ〉 = Ln · · · L2L1|E〉.
A good example of a Jones matrix is a projector. Let us define the projectors
as a rank one and trace one Hermitian matrix |ψ〉〈ψ| ≡ Pψ that satisfies the
following property

Pn
ψ = Pψ, ∀n ∈ N . (2.8)

Using the basis {|H〉 = (1, 0)†, |V〉 = (0, 1)†}, the projectors PH and PV are:

PH =|H〉〈H| =
(

1 0
0 0

)
, (2.9)

PV =|V〉〈V| =
(

0 0
0 1

)
. (2.10)

These two projectors form a resolution of the identity operator3, granting first
that those projectors be normalized.

2These matrices can be projections, then they do not represent in general trace preserving
operations.

3In a two dimensional space, the summation over any two orthogonal projectors forms
a resolution of the identity operator, i.e., |+45◦〉〈+45◦| + |+135◦〉〈+135◦| = |R〉〈R| + |L〉〈L| =
|H〉〈H| + |V〉〈V| = I. The reader can confirm this fact by performing these summations with the
projectors given in the table of subsection 2.5.1
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2.4 Coherence Matrix Formalism

In a more general situation, the complete description of the polarization state
cannot be done by the Jones formalism because both phase and amplitude
vary with time and these fluctuations impose some difficulties. Then the
vector shown in Eq. 2.3 depends on time in a explicit manner, as shown in
Eq. 2.11. A convenient way to supplant this difficulty is by using the coherence
matrix formalism [7]. We could associate a set of Jones vectors with a probability
vector depending on time and apply the concepts of the classical optics with
the help of the probability theory. But in order to introduce later the density
matrix formalism for one qubit, we will define the coherence matrix, which
is an analogue of the density matrix for two level systems. In the Chapter
3, Section 3.4, the real difficulty of the “braket-vector formalism” is clarified
and we will introduce the “density matrix formalism” more rigorously. For
this Chapter purposes, it is sufficient to define the coherence matrix and the
density matrix and show the obvious analogies between these two entities.

|E(t)〉 =
(

E0x(t)eiδx(t)

E0y(t)eiδy(t)

)
. (2.11)

Let us define a positive semi-definite matrix J called coherence matrix:

J =
(
〈Ex(t)Ex(t)∗〉

〈
Ex(t)Ey(t)∗

〉〈
Ey(t)Ex(t)∗

〉 〈
Ey(t)Ey(t)∗

〉), (2.12)

Where 〈 〉 means time average. As the laboratory instruments can measure
these averages, then it is useful to define such matrix. The total intensity of the
field is given by the trace of the coherence matrix, i.e.; I0 = Tr(J) = |Ex|2 +

∣∣Ey
∣∣2.

As discussed above, the linear operations performed in a laboratory can be
mapped in a Jones matrix L defined in Eq. 2.6 and 2.7. Then using Eq. 2.6,
2.11 and 2.12 and the fact that (AB)† = B† A†, we can construct a rule of
transformation from the coherence matrix J to another one called J̃ with the
help of the Jones matrices (L), [7]:

J̃ =
∣∣∣Ẽ〉〈Ẽ†

∣∣∣ = L
∣∣∣E〉〈E†

∣∣∣L†, (2.13)

J̃ = LJL†. (2.14)

2.5 The Stokes Parameters and Poincaré-Bloch Spheres

2.5.1 The Stokes Parameters

The generic state of a qubit can be specified by a real vector, called Stokes
vector. The components of this four dimensional vector, the Stokes parameters,
have the advantage of directly corresponding to empirical quantities, such as
photon-counting rates [8]. These parameters will be useful later in order to
define the Poincaré–Bloch spheres. First let us define the Pauli matrices as 2× 2
Hermitian matrices σi with i = 1, 2, 3 (Eqs. 2.15, 2.16 and 2.17). The Pauli
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matrices4 have trace zero and eigenvalues equal to ±1. The identity matrix is
defined in Eq. 2.18.

σ1 = σx =
(

0 1
1 0

)
, (2.15)

σ2 = σy =
(

0 −i
i 0

)
, (2.16)

σ3 = σz =
(

1 0
0 −1

)
, (2.17)

σ0 = I =
(

1 0
0 1

)
. (2.18)

The Pauli matrices and the identity matrix form a complete basis for the
space of 2 × 2 Hermitian matrices. The coherence matrix can be written
in such basis if we redefine the Pauli matrices and the identity matrix as
Xi = σi

2 , ∀i = 0, 1, 2, 3 [9]. By using this definition5, we can expand the matrix
J as:

J =
3

∑
i=0

SiXi . (2.19)

The Si parameters in the “Pauli” Xi basis are called the Stokes parameters [8, 9].
The matrix J shown in Eq. 2.20 can be written explicitly as:

J =
1
2

(
S0 + S3 S1 − iS2
S1 + iS2 S0 − S3

)
. (2.20)

This matrix J must be positive semidefinite and Hermitian, and it is indeed.
The Pauli matrices form an orthonormal basis6 for the 2× 2 Hermitian matri-
ces. If we want to calculate the ith-Stokes parameter we just need to apply the
rule Si = Tr(JXi) or compare the Eq.s 2.12 and 2.19 [7–9]. By using the latter
rule we can calculate the Stokes parameters directly [6]:

S0 =
〈
|Ex|2 +

∣∣Ey
∣∣2〉, (2.21)

S1 =
〈

ExE∗y + E∗x Ey

〉
, (2.22)

S2 = i
〈

ExE∗y − E∗x Ey

〉
, (2.23)

S3 =
〈
|Ex|2 −

∣∣Ey
∣∣2〉. (2.24)

4The non-trivial products of the Pauli matrices are given by σiσj = δijσ0 + iεijkσk .
5In H. Pires dissertation, [9], we found another definition for these matrices: Xi = σi√

2
.

6With respect to the inner product Tr(σiσj).
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The physical interpretation of this parameters is shown below [6]:

S0 = 〈I0〉, (2.25)

S1 = 〈T+45◦ − T+135◦〉, (2.26)

S2 = 〈TR − TL〉, (2.27)

S3 = 〈TH − TV〉. (2.28)

Eq. 2.25 shows that the number S0 is the total average intensity I0 [9]. Eq.
2.26 relates the difference of the intensities at 45◦ and 135◦ polarizations
with S1, Eq. 2.27 determines the difference of the intensities at right and left
circular polarizations (R, L) with S2, and Eq. 2.28 assigns the difference of the
intensities at horizontal and vertical polarizations (H, V) with S3 [9].

2.5.2 The Poincaré–Bloch Spheres

It can be shown [7] that in the Stokes representation for the electric field, the
polarization degree P, which is a number 0 ≤ P ≤ 1, is given by Eq. 2.29. This
number says if the wave is partially or completely polarized.

P =

√
S2

1 + S2
2 + S2

3

S0
. (2.29)

If P = 1, we have a fully polarized wave or photon. In this case, Eq. 2.29 is an
equation of a sphere in the Stokes space (S1, S2, S3) with radius r = PS0 [3, 8].
The sphere which equation is shown in Eq. 2.30 is called the Poincaré sphere [3,
7].

S2
1 + S2

2 + S2
3 = (PS0)2. (2.30)

It is easy to see in Eq. 2.29 that for partially polarized states, i.e., 0 ≤ P < 1,
the radius of the Poincaré ball will be r = PS0. If we consider unpolarized
radiation, (P = 0), the radius of the ball will be r = 0, i.e., S2

1 + S2
2 + S2

3 = 0. Each
point in this sphere defines a state of polarization which can be completely
determined if we measure all parameters needed, or in other words, if we
perform a quantum state tomography. For a simple introduction of this subject,
see for example, [10] and for more involved projects see [11].

If we normalize the matrix J by its trace, (Tr(J) = S0), we can create a
matrix ρ that is an analogy of the density matrix for one qubit.

ρ =
J

Tr(J)
, (2.31)

ρ =
1
2

(
1 + S3

S0

S1−iS2
S0

S1+iS2
S0

1− S3
S0

)
. (2.32)

In the table below, (Table 2.1), we write the Jones vector |E〉, its coherence
matrix J and the Stokes vector S = (S0, S1, S2, S3) for some pure states of
polarization: (H, V, +45◦, +135◦, R, L). This table can be found in [7] and it
is not normalized just for aesthetic reasons.
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|E〉 J S

H
(

1
0

) (
1 0
0 0

) 
1
1
0
0


V

(
0
1

) (
0 0
0 1

) 
1
−1

0
0


+45◦

(
1
1

) (
1 1
1 1

) 
1
0
1
0


+135◦

(
1
−1

) (
1 −1
−1 1

) 
1
0
−1

0


R

(
1
−i

) (
1 i
−i 1

) 
1
0
0
1


L

(
1
i

) (
1 −i
i 1

) 
1
0
0
−1


Table 2.1: The Jones vector, its coherence matrix and the Stokes vector.

Let us define new parameters x = S1
S0

, y = S2
S0

and z = S3
S0

and a vector r defined
as r = (r1, r2, r3)† = (x, y, z)†. Then ρ = 1

2 (I + ∑i riσi). Thus, another way to
write this expansion is:

ρ =
1
2

(
1 + z x− iy
x + iy 1− z

)
, (2.33)

ρ =
I + r · σ

2
. (2.34)

Any arbitrary trace one 2× 2 Hermitian matrix can be parameterized as shown
in Eq. 2.34 [12]. The matrix ρ in this equation is exactly the definition of
the density matrix for one qubit [10]. The vector r = (x, y, z) is called Bloch
vector and its components are the coordinates of the Pauli matrices (σx , σy, σz)
space [10, 13]. This matrix is positive-semidefinite, (i.e., its eigenvalues are
non-negative), iff the parameters x, y, z satisfies the inequality given in Eq.
2.35

x2 + y2 + z2 ≤ 1 (2.35)

In the Poincaré sphere the coordinates are the Stokes parameters, which are
related to the Bloch sphere by the Pauli matrices coordinates. As the Poincaré
sphere is a sphere in the space of the coherence matrices, the Bloch sphere
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is also a sphere in the space of the density matrices, see Fig. 2.1. Using the
analogy with the Poincaré sphere shown in Eq. 2.30, we can define another
sphere and its ball with the equation given in Eq. 2.35. They are called
Bloch sphere and Bloch ball respectively and they correspond to the space of the
density matrices for one qubit, pure and mixed respectively7 [4].

The Fig. 2.1, is a representation of the Poincaré–Bloch sphere.

Figure 2.1: The Poincaré–Bloch Sphere.

If |r| = 1, then we have a pure state and it is a point in the Bloch sphere
[14]. This quantum pure state described by a trace one Hermitian matrix as
in Eqs. 2.33 or 2.34 is a complete analogy of a completely polarized state,
described by the matrix J shown in Eqs. 2.19 or 2.20 i.e., with P = 1.

If 0 ≤ |r| < 1 we have a mixed state which is a point inside the Bloch
sphere, or a point in the Bloch ball. This is also an analogy with a partial
polarized state, which is a point in the Poincaré ball with r = PS0 and
0 ≤ P < 1. For a completely unpolarized state, the matrix in Eq. 2.20 is a
multiple of the identity matrix, J = S0

2 I, but S0 = I0, then J = I0
I
2 . In the Bloch

ball, this state occurs when |r| = 0, and the matrix shown in Eqs. 2.33 and 2.34

is the trace one identity matrix ( I
2 ).

Theorem 2.1. A quantum state ρ is a pure state iff Tr(ρ2) = 1. For one qubit this
condition implies that |r| = 1.

7In higher dimension, i.e., (higher than the one qubit space studied here in this chapter
Dim = 2× 2), the geometry of the quantum states is much more complicated.
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Proof:8 The proof can be done in two ways: we can square the matrix ρ
and imply the trace condition Tr(ρ2) = 1 or we can expand the matrix ρ in
Pauli matrices and use their orthogonality properties. The first way gives us
the following equality Tr(ρ2) = 1

2 (1 + |r|2). Since the positivity of ρ implies that
0 ≤ |r| ≤ 1 (Eq. 2.35, then Tr(ρ2) = 1 iff |r| = 1. This also implies that a pure
qubit lies somewhere on the Bloch sphere, i.e., x2 + y2 + z2 = 1. �

Theorem 2.2. A polarization state described by a coherence matrix J is a pure state
(or it is fully polarized) iff Tr(J2) = S2

0. This condition implies that S2
1 + S2

2 + S2
3 = S2

0,
i.e., it lies on the Poincaré sphere.

Proof: The proof is trivial since we have already showed that ρ2 = 1
S2

0
J2. �

Remark: Note that we are not interested in the spherical representation of
the states in both spheres. We do not discuss about the angles which define
a state in each sphere: J(PS0, θS, φS) and ρ(|r|, θB, φB). The angle subtended
by a pair of directions in Hilbert space is half the corresponding angle in the
Poincaré sphere, which corresponds to the fact that the group SU(2) acting
on the vectors in the complex representation is the universal double covering
group of rotations SO(3) of vectors in real representation, see [8].

2.5.3 Experimental Determination of One Qubit

Let us consider the generic case of a state with an unknown preparation. Of
course we allow partial polarization. So the problem is: how can we determine
the density matrix ρ or equivalently determine the correspondent coherence
matrix J? We need to measure some observables. Measuring the vertical-
horizontal polarization is equivalent to measure an observable σz (Eq. 2.17).
Its eigenvectors are the pure states {|H〉, |V〉}, corresponding to eigenvalues
equal to ±1. Likewise a test for the ±45◦, corresponding to the pure states
{|±45◦〉}, is equivalent to measure the observable σx (Eq. 2.15), and a test
for left and right circular polarization that corresponds to the pure states
{|R〉, |L〉}, is equivalent to measure the observable σy (Eq. 2.15). These three
measurements, and the total intensity (it corresponds to the normalization
factor, i.e., the identity matrix), repeated many times on three disjoints sets of
a light beam yield the following set of averages: ri = 〈σi〉 = Tr(ρσi) = Tr(Jσi)
[15]. The observed values for the Bloch-Poincaré vector r allow us to write the
density matrix ρ = 1

2 (I + r · σ). Another approach for an experimental method
of determination of one qubit can be seen in [10], see chapter 8.

8The word proof have distinct meanings in this text. Some proofs are out of the scope of this
work because they are much difficult or too large or they use a very strict mathematics, (remember
that this is a physicist’s work, written for physicists). Sometimes we try to give simply an idea or
sketch of the proof and sometimes this word will means its mathematical strict meaning. The
distinctions between these meanings is obvious by the rigor adopted in each case.
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2.6 What is the Essential Difference Between one Qubit and
a Probabilistic Classical Bit?

Of course this discussion could be infinite. For example, if we have more
than one qubit, in the quantum case, we may have entanglement which is
a property that does not even exists in the classical counterpart. We do not
walk toward this line in this section. The idea here is trying to elucidate
the essential difference between one qubit and a probabilistic classical bit.
But why probabilistic bit? The answer is quite simple because the ordinary
deterministic classical bit is less interesting and it does not have any of the
following properties discussed below9.

2.6.1 “Negative Probabilities” - Interference

Quantum mechanics permits the
cancellation of possibilities.

Nick Herbert, Quantum Reality.

Let us suppose that an event having n different outcomes such that each
outcome can be associated with a probability pn of occurrence. We can
construct a vector of probabilities with this set of n probabilities. By the
classical theory of probability we know that this vector ~p = (p1, p2, · · · , pn)†

must be positive, and normalized i.e, 0 ≤ pi ≤ 1 and ∑i pi = 1. We can express
all these facts above by saying that the L1-norm of the probability vector is
equal to one, that is ‖~p‖1 = ∑i pi = 1. As there exists many other norms
defined in the metric spaces, (see Chapter 3 for a naive and brief discussion
about norms in metric spaces), we could use any other norm to measure the
length of this probability vector. If we try to use the Pythagorean norm, i.e.,
the L2-norm, we would need to take the square root of the sum of the squares

of the entries, or ‖~p‖2 =
√

∑i p2
i = 1 [16].

What are the consequences if we try to construct another theory of proba-
bility based on the L2-norm instead of the L1-norm? As S. Aaronson made
in [16], we try to convince you that quantum mechanics is what necessarily
results. We know that the building block of the classical information theory is
the bit, which can assume the value 0 or 1. In the classical probability theory,
we define a probabilistic classical bit when we associate a probability p of
occurrence of the value zero and a probability (1− p) of being one. If we
change the L1-norm by the L2-norm, and keep the focus on the real numbers10,
we will need numbers such as their square add to 1. The set of all binary
vectors ~p = (α, β)† such as |α|2 + |β|2 = α2 + β2 = 1 describes a circle of radius
equal to 1 [16].

Let us suppose then that we have a binary vector ~p = (α, β)† which is
described by this new theory of probability based on the L2-norm. We cannot

9This section was totally inspired in this wonderful lecture: [16].
10Are the complex numbers really needed in this “L2-norm theory of probability”? Yes.

But Why? The reason is because the amplitudes in quantum mechanics are given by complex
numbers.
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assign directly the probability of performing an experiment and obtain a
result 0, for example. We need to define something like a probability amplitude,
given by α and β, in the binary case, such that the probability of obtaining
an outcome is just the square of its amplitude, i.e., p(0) = α2 and p(1) = β2,
with p(0) + p(1) = 1. If we try to use the old L1-norm to measure this vector
you will find that ‖~p‖1 = α + β 6= 1. But if we use the L2-norm we will find
‖~p‖2 =

√
α2 + β2 =

√
1 = 1.

Then why not forget the amplitudes α and β and describe the bit just by
its probabilities? The difference is in how the vector is transformed when we
perform an operation on it. Indeed, a bistochastic matrix is the most general
matrix that always maps a probability vector to another probability vector
[16], i.e., a bistochastic map preserves the L1-norm. But in the L2-norm, the
most general matrix that always maps a normalized vector in the L2-norm to
another normalized vector in the L2-norm is the unitary matrix. A unitary
matrix11 U is a Hermitian matrix such that U† = U−1, or U†U = I.

We know that the quantum bit, i.e., the qubit is the counterpart of the
classical bit. Let be {|0〉, |1〉} a basis for the two-dimensional Hilbert space.
Then any qubit can be written in such basis. The most general qubit can be
expressed as: |ψ〉 = α|0〉+ β|1〉, with α, β ∈ C , and |α|2 + |β|2 = 1. As discussed
in this chapter, the two labels “0” and “1” written in this qubit could represent
any orthogonal basis of the Hilbert space. It could represent, for example
vertical and horizontal polarization, that is |ψ〉 = α|H〉 + β|V〉.

Let us suppose that we have a qubit ket-vector given by |ψ〉 = (α, β)†,
measured in the L2 norm, i.e., α2 + β2 = 1, and let us also suppose, for the sake
of simplicity, that all the amplitude of probabilities are given by real numbers.
Then we will obtain another vector |ψ′〉 if we act a unitary matrix U in the
previous vector, as described in Eqs. 2.36 and 2.37.

|ψ′〉 = U|ψ〉, (2.36)

(
α′

β′

)
=
(

u11 u12
−eiθu∗12 eiθu∗11

)(
α
β

)
. (2.37)

Were u11 and u12 are complex numbers such that |u11|2+|u12|2= 1. The unitary
matrix U given in Eq. 2.37 is the general expression of a unitary matrix that
acts on C2, with det(U) = eiθ . It depends on four Real parameters: the phase
of u11 and u12, the phase θ and the relative magnitude between u11 and u12.

An Example

Now that we know that we can transform any qubit by applying a 2× 2
unitary matrix, let us consider, as an example, a quantum state initially in
the state |0〉, and the following unitary matrix U, written in the basis (Eq.
2.38), {|0〉, |1〉} = {|0〉 ≡ (1, 0)† and |1〉 ≡ (0, 1)†}. The task here is evolve

11See Chapter 3.
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this quantum pure state by acting twice this unitary U.

U =
1√
2

(
1 −1
1 1

)
. (2.38)

As shown in the Fig. 2.2, we apply this unitary transformation U twice in our
qubit, which is initially in the state |0〉, and try to interpret the result:

Figure 2.2: An example of one qubit unitary evolution.

As discussed before, let us suppose that our qubit is initially in the state
|ψ〉 = |0〉 = (1, 0)† (see Fig. 2.2). If we apply the unitary matrix U given by
Eq. 2.38 to |0〉, we will find the state 1√

2
[|0〉 + |1〉], in other words: U|0〉 =

1√
2

[|0〉 + |1〉], with probability of obtaining the system in the state |0〉 given

by p(0) =
∣∣∣ 1√

2

∣∣∣2 = 1
2 and with probability of seeing the system in the state |1〉

given by p(1) =
∣∣∣ 1√

2

∣∣∣2 = 1
2 , remember that in this new norm the amplitude of

probabilities does not sum to 1. For this reason, we need to define a vector
with the amplitude of probabilities and also define the probability as the
square of the absolute value of this amplitude. Thus, this vector can be now
defined as ~p = ( 1√

2
, 1√

2
), which gives us a state vector written as 1√

2
[|0〉 + |1〉].

But if we apply the matrix U once again we will obtain |1〉 with 100% of
certainty!

As we could think the first operation U as a coin tossing, after the first
operation we had two different paths to follow: the path “0” and “1”, each
one being equally likely. But if we apply a randomizing operation twice to
a random state, we will produce a deterministic outcome |1〉! This is the
so-called phenomenon of interference. The non-observed paths that lead to the
outcome zero “0” interfere destructively and cancel each other out. However,
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the two paths leading to the outcome |1〉, both possess positive amplitude,
and therefore, they interfere constructively [16].

This fact was also observed in Quantum Random Walk theory. The Quan-
tum Random walk was firstly discussed by Y. Aharonov, L. Davidovich and
N. Zagury in 1993 in [17]. In 2003 J. Kempe [18] used a Hadamard coin H,
(a unitary matrix), as defined in Section 5.3.3, and performed a quantum
random walk simulation obtaining the same result of path interference, which
can be seen in a clear asymmetry between left and right. The conclusion of
Kempe was: “A first thing to notice is that the quantum random walk induces
an asymmetric probability distribution on the positions, it is drifting to the
left. This asymmetry arises from the fact that the H coin (a unitary matrix)
treats the two directions |←〉 and |→〉 differently; it multiplies the phase by
−1 only in the case of |→〉. Intuitively this induces more cancellations for
paths going right-wards (destructive interference), whereas particles moving
to the left interfere constructively” [18]. Of course you never see this kind of
interference in the classical world. The reason is because in our classical world
the probabilities cannot be negative. This phenomenon of interference caused
by the cancellation between positive and negative amplitudes of probability
can be seen as the source of some of the quantum weirdness [16].
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CHAPTER 3

Mathematical
Background–The Space of

Density Matrices

In this chapter, we try to define some mathematical background. As this
content might be infinite, we attempt to follow an intuitive ordering and also
focus our attention on an axiomatic standpoint.

3.1 Some Important Facts About Metric Spaces

3.1.1 The Distance Function

In order to distinguish elements of a set, we require the concept of distance.
In metric spaces there exists our intuitive concept of distance. A metric space
is a pair (V , d), where V is a set and d is a distance function1, such that
d(?, ?) : V × V 7 −→ R+ [19]. This function d is called metric or distance
function. Let x, y, z ∈ V , in order to d be a distance function, or a metric, the
following properties must hold:

1. d(x, y) ≥ 0, ∀x, y ∈ V ,

2. d(x, y) = 0, iff x = y,

3. d(x, y) = d(y, x), and

4. d(x, y) ≤ d(x, z) + d(y, z), ∀x, y, z ∈ V .

Definition 3.1. Let x and y be two points of Rn. Then the Lp-distance is defined as:

dp(x, y) = (∑i|xi − yi|p)
1
p . If p→ ∞, d∞(x, y) = max{1≤i≤n}(|xi − yi|).

1The ? represents any mathematical entity or mathematical element. Then f (?) represents an
empty function such as f (?) = f (x), if x = ?.
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Definition 3.2. The distance between two points in the Euclidean space Rn is given
by the L2-distance: d2(x, y) = (∑i|xi − yi|2)

1
2 .

3.1.2 Norms

A norm is a function ‖?‖ : V 7 −→ R+ that associates each vector x ∈ V
to the real number ‖x‖, called the norm of x [19]. If a metric function d
defined on a vector space V satisfies the translational invariance property
d(x− u, y− u) = d(x, y) for any vector x, y, and u, and the scale invariance
property2 d(βx, βy) = |β|d(x, y), then we can define a norm on the set V as
‖x‖ ≡ d(x, 0). Every normed space becomes a metric space if we define the
metric d(x, y) ≡ ‖x− y‖. This metric is called induced by the norm [19]. If ‖?‖
is a norm, then for all x, y ∈ V and λ ∈ C, then all these following conditions
must hold:

1. ‖x‖ = 0, iff x = 0,

2. ‖λ · x‖ = |λ| · ‖x‖,

3. ‖x + y‖ ≤ ‖x‖ + ‖y‖.

Definition 3.3 (Sup-norm). ‖ f ‖ = supx∈X | f (x)|.

Definition 3.4 (Hilbert-Schmidt norm). ‖O‖HS ≡ ‖O‖2 =
√

∑n‖O|n〉‖
2, where

|n〉 is an orthonormal basis on H. Another way to write this norm is ‖O‖HS =√
Tr|O|2.

Definition 3.5. The trace-norm can be defined as ‖?‖1 : X 7 −→ ‖X‖1 ≡ Tr(|X|) =
Tr(
√

X†X) = ∑i xi, where the xi are the singular values of X.

Definition 3.6. A Hilbert-Schmidt operator is a bounded operator O, with finite
Hilbert-Schmidt norm (‖?‖2), on a separable3 Hilbert space H.

The trace-norm (‖X‖1), the Hilbert–Schmidt norm (‖X‖2) and the largest
singular value, defined as ‖X‖ ≡ max1≤i≤n{xi}, where the xi are the singular
values of X, are all equivalent on finite-dimensional H [12]. The inequalities
for these norms are [12]:

‖X‖ ≤ ‖X‖1,

‖X‖ ≤ ‖X‖2,

‖X‖2 ≤ ‖X‖1,

‖X‖1 ≤ n‖X‖,
‖X‖2 ≤

√
n‖X‖,

‖X‖2 ≤
√

n‖X‖1.

Then, the uniform, the trace and the Hilbert-Schmidt norms are all equivalent
on finite-dimensional H and thus define equivalent topologies with the same
converging sequences [12].

2These two properties are needed if we want to preserve our intuitive concept of distance.
3A separable Hilbert space is a Hilbert space such as there exists enumerable basis.
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3.1.3 Vector Spaces and Inner Products

For any ket vector |x〉 ∈ V , there exists an isomorphic space V∗ called the dual
space of V . The elements of the complex dual space are the linear functionals
f : C 7 −→ C. We can associate a linear functional “make the inner product
with |x〉”, to every ket vector |x〉. Then we can define a bra vector (〈x| ∈ V∗)
such that the functional f : C 7 −→ C will be f : |x〉 7 −→ 〈x|y〉 [20]. Let C be
a complex vector space equipped with an inner product. An inner product
in C is a function 〈?|?〉 : C × C 7 −→ C. If |x〉, |y〉 ∈ V and λ ∈ C, the inner
product has the following properties [19]:

1. (〈x| + 〈x′|)|y〉 = 〈x|y〉 + 〈x′|y〉,

2. 〈λ · x|y〉 = λ∗〈x|y〉, but 〈x|λ · y〉 = λ〈x|y〉,

3. 〈x|y〉 = 〈y|x〉∗,

4. 〈x|x〉 = 0 iff |x〉 = 0.

We can define a norm from the inner product, i.e., ‖x‖ ≡
√
〈x|x〉. The two

first properties of the norm function are easily satisfied for this norm. We also
have the Cauchy–Schwarz inequality: |〈x|y〉| ≤ ‖x‖‖y‖. [19].

Definition 3.7. If A and B are two Hilbert–Schmidt operators, then the Hilbert–
Schmidt inner product can be defined as 〈A|B〉HS ≡ Tr(A†B) = ∑n〈n|A†B|n〉.

3.2 The Algebra of the Classical and Quantum Observables

This section4 is an attempt in order to enlighten another point of view toward
the classical and quantum mechanics formalism. Instead of defining states,
we define the observables and the set of rules that they must obey. In this
“operational” theory, the states are functionals of the space in which we can
attribute probabilities [23]. The expected values of the observables define the
state of the system. Then in this section we try to understand in a simple way
the algebra of the quantum and classical observables.

Both quantum and classical systems are well described by the structure
of the C∗-algebra5 of the observables. From an operational point of view, a
physical system is fully described by its physical properties, i.e., by the set Θ of
the observables [21]. For any observable f ∈ Θ and λ ∈ R, one can define the
observable λ f , which is a re-scaling of the apparatus by λ [21].

A state ω of a physical system is characterized by the results of the
measurements of the observables in the sense that the average over the results
of measurements of an observable f , when the system is in a state ω, defines
the expectation value ω( f ). Thus the state is completely characterized by all its
expectations ω( f ), when f varies over the set Θ. Then we can say that ω is
a real functional on Θ [21]. This operational characterization of the states in
terms of its expectations of the observables requires that two states yielding

4I would like to thank M. Terra-Cunha, [20, 21] and also Bárbara et al. [22] for the idea
followed in this next section.

5Algebra is the branch of mathematics that studies the rules of operations and relations.
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3.2. The Algebra of the Classical and Quantum Observables

the same expectations must be identical, i.e., if ω1( f ) = ω2( f ) for all f ∈ Θ,
then ω1 = ω2, and on the other hand if f and g have the same expectations
ω( f ) = ω(g), for all states ω, then we cannot distinguish these observables,
that is, f = g [21].

3.2.1 Some C∗-Algebra Properties

A Banach-algebra (A) is a vector space and it is also a Banach space [22, 24]. A
Banach space is also a metric space, i.e., a space where there exists the concept
of distance.

Definition 3.8. Let f , g ∈ A. An involution is a map ∗ : A 7 −→ A and the
image of and element f by the involution map is f 7 −→ f ∗. The involution has the
following properties:

1. ( f + g)∗ = f ∗ + g∗.

2. ( f g)∗ = g∗ f ∗.

3. For every λ ∈ C , (λ f )∗ = λ̄ f ∗.

4. For every f ∈ A, ( f ∗)∗ = f .

A C∗-algebra is an algebra over the field of the complex numbers (C), where the
involution map can be defined. The space of bounded linear transformations
of a Hilbert space H is a C∗-algebra. Suppose that f , g ∈ C∗ then

1. ‖ f g‖ ≤ ‖ f ‖‖g‖.

2. ‖ f ∗‖ = ‖ f ‖.

3. ‖ f ‖2 = ‖ f f ∗‖ = ‖ f ∗ f ‖ = ‖ f ‖‖ f ∗‖.

4. There exists 1 such as 1 f = f 1 = f for every f and ‖1‖ = 1.

3.2.2 The Algebra of the Classical Observables

In a rigorous description of statistical mechanics [23], the observables are
functions f ∈ A in the phase-space and the states are functionals ω(?) defined
over the observables and we can assign probabilities with these functionals
[25].

The observables associated to a classical system generate an abelian6

algebra (A) of real, or more generally complex continuous functions f on the
phase space [21].

This algebra obeys the C∗ conditions: the identity is given by the function
f = 1, the product is given by ( f g)(x) = f (x)g(x), the involution map is given
by the complex conjugation f (x)∗ = f̄ (x). Finally, we also have the following
property ‖ f ∗ f ‖ = ‖ f ‖2. We can also assign a sup-norm (Def. 3.3) for each
f ∈ A and it can be shown (see [21]) that this algebra is a Banach space with

6An abelian algebra is an algebra in which the multiplication operation always obeys the
commutative law.
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respect to the norm topology (the sup-norm). Summarizing, the algebra of
the classical observables follows the following rules:

1. Observables are functions on the phase-state: f ∈ A.

2. Observables form a commutative (abelian) C∗-algebra, and they obey
the C∗ conditions, see Subsection 3.2.1.

3. States are linear functionals ω : A → C, with f 7 −→ ω( f ).

3.2.3 States of a Commutative Algebra

A state of a system is characterized by the measurements of the observables
in that state. The expectation value of the observable f on the state ω is given
by: ω( f ) = limn→∞〈 f 〉n. Since the expectation ω( f ) has the interpretation of
the average of the measurements of f in the given state ω, it follows that the
expectations are linear functionals, i.e., ω(λ1 f + λ2g) = λ1ω( f ) + λ2ω(g).

Definition 3.9 (States). A state is linear functional ω : A 7 −→ C, which has the
following properties [22]:

1. ω( f f ∗) ≥ 0, (positivity).

2. ω(1) = 1, (normalization).

The states must be normalized, this property is trivial since we can always
change ω → ω(1)−1ω [21]. The linear functional called expectation must be
positive in order to preserve the Cauchy-Schwarz inequality [21]:

Theorem 3.10. The positivity of the functional ω, i.e., ω( f f ∗) ≥ 0, for all f , implies
the validity of the Cauchy-Schwarz inequality.

Proof: Let f = x + λy where x, y ∈ A and λ ∈ C. We need to show that if
the condition 1. of Def. 3.9 holds, i.e., if ω( f f ∗) ≥ 0, then the Cauchy-Schwarz
is valid. Of course f f ∗ ≥ 0. So ω( f f ∗) ≥ 0 implies that |〈x|y〉| ≤ ‖x‖‖y‖, that
is, |ω(〈x|y〉)|2 ≤ ω(xx∗)ω(yy∗). Thus f ∈ C,

√
f f ∗ = ‖ f ‖ ≥ 0, ∀λ ∈ C,

ω( f f ∗) = ω(‖x + λy‖2) ≥ 0,

ω(‖x‖2) + ω(|λ|2‖y‖2) + ω(〈x|λy〉) + ω(〈λy|x〉) ≥ 0,

ω(‖x‖2) + |λ|2ω(‖y‖2) + λω(〈x|y〉) + λ∗ω(〈y|x〉) ≥ 0,(
1 λ∗

)(ω(‖x‖2) ω(〈x|y〉)
ω(〈y|x〉) ω(‖y‖2)

)(
1
λ

)
≥ 0,

(
1 λ∗

)
M
(

1
λ

)
≥ 0,

As the matrix M is a positive matrix, (M ≥ 0), i.e., 〈ψ|M|ψ〉 ≥ 0, ∀|ψ〉 ∈ H,
thus its determinant must be positive. det(M) ≥ 0 implies that |ω(〈x|y〉)|2 ≤
ω(‖x‖2)ω(‖y‖2), or |ω(〈x|y〉)|2 ≤ ω(xx∗)ω(yy∗) [26]. A more beautiful proof
for Theorem 3.10 can be done with the help of the positive maps and the
Jamiołkowski isomorphism (see [27]). For a sketch of the proof see Chapter 7.
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3.2.4 The Algebra of the Quantum Observables

The Quantum Mechanical systems are ruled by C∗ non-commutative algebra
of the observables. Classical systems are described by points in the phase-
space and by a commutative algebra over R and its trajectories in the phase
space are given by deterministic Hamiltonians [21].

However, in finite dimensional quantum mechanics, the matrices form
another vector space: the non-commutative Mn(C). This set is formed by the
n× n matrices with complex coefficients. This vector space has a natural inner
product, (Def. 3.7), which turns it into a Banach space [22]. A natural norm
for this space is the usual operator norm:

Definition 3.11 (Usual Operator Norm). ‖O‖ = sup
f :| f |=1

|O( f )|.

Hence, we can created a similar structure to the classical case and think
about the quantum observables as linear functionals that form an algebra, (the C∗

non-commutative algebra). They are the Hermitian matrices O ∈ Mn(C), and
the states are defined by positive functionals (the density matrices) over the
observables and we can also relate these positive functionals with probabilities
[23, 25, 28].

If we define the involution map as A∗ = A†, i.e., (A)∗ij = āji, we will
have a non-commutative C∗-algebra, (see for example [22]). The functional
ω(O†O) ≥ 0 implies the positivity of O∗O = O†O ≥ 0. Summarizing, the
algebra of the quantum observables follows:

1. Observables are operators O ∈ Mn(C).

2. Observables form a non-commutative C∗-algebra, (Mn(C)), and they
obey the C∗ conditions, see Subsection 3.2.1.

3. States are linear functionals ω : Mn(C)→ C, with O 7 −→ ω(O).

3.2.5 States of the Non-Commutative Algebras

Definition 3.12 (States). A state is linear functional ω : Mn(C) 7 −→ C, with
O 7 −→ ω(O), which has the following properties [22]:

1. ω(OO†) ≥ 0, (positivity).

2. ω(I) = 1, (normalization).

A representation of a linear functional ω is given by the trace one positive
Hermitian matrices ρ ∈ Mn(C). If we define the linear functional expectation
〈O〉ρ = 〈ρ|O〉 = Tr(ρO), we will assign the linear functional ω(?) = Tr(ρ?)
with a quantum state, i.e., with its density matrix. Of course ω(O) = Tr(ρO).
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3.3 Convex Sets

In a geometric description of Quantum Mechanics, it is natural that some
questions could arise on the restrictions required in those sets. As occurs in
statistical mechanics, we intend to define the convex mixtures of elements of
the set.

The set of the density matrices for pure and mixed states is a convex set. A
convex set is a set such that every convex mixture of its points belongs to the set.
However, this definition needs to be improved. We can always define convex
mixtures in a geometrical sense, by first defining a straight line between any
two points belonging to a convex set.

In this geometric point of view, a convex mixture of two quantum states is
defined by a point (another quantum state) in the straight line between these
two states.

Definition 3.13 (Straight Line). A straight line between two points x and y is a set
of points which z = ax + by and a + b = 1.

Definition 3.14 (Convex Set). A subset C of the Euclidean space En is a convex
set if for all pairs x, y ∈ C, the convex mixture defined by z = ax + by with a + b = 1
and a ≥ 0, b ≥ 0 also belongs to the set, i.e., if z ∈ C.

As an example of convex mixture, suppose for instance we have mx kg of
a coffee x and my kg of a coffee y, with fixed prices px and py respectively.
We can produce another coffee z as a mixture of these two products. Note
that subtraction of mass is forbidden here. The price of the coffee z is pz =
mx px+my py

mx+my
. This is evidently a convex mixture. Suppose that px < py, then of

course we always have px ≤ pz ≤ py. And if we define a ≡ mx/(mx + my) and
b ≡ my/(mx + my), then pz = apx + bpy with 0 ≤ a, b ≤ 1 and a + b = 1, this
equation is identical to the definition of a convex set given by Def. 3.14.

Definition 3.15 (Pure Point). A pure point of a convex set C is a point which
cannot be obtained by any mixture of points x, y ∈ C. The non-pure points are called
mixed.

Definition 3.16 (Quantum Pure State). A quantum pure state is a complex vector
|ψ〉 ∈ H, where H is n complex-dimensional Hilbert space.

Asher Peres in [15, 29] says that a quantum pure state is a state for which
there exists answers with probability p = 1 for a certain number of questions.

Consider a physical system described by a pure vector |ψ〉. Then there
exists a basis, namely {|i〉, i = 1, ..., d} that expands the subspace of H where
the vector |ψ〉 lives. This expansion can be written as |ψ〉 = ∑d

i=1 ci|i〉, with
∑d

i=1|ci|2 = 1.
A physical observable A is a Hermitian operator with matrix elements

given by Aij = 〈i|A|j〉 in this basis. The expected value of this observable in
the state |ψ〉 is given by 〈A〉ψ = 〈ψ|A|ψ〉. The complete set of the postulates of
Quantum Mechanics for the braket formalism can be found in any intermediate
book as [2] or [30].
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Definition 3.17. A convex hull is the smallest convex set that contains the set. The
convex hull of a finite set of points is called a convex polytope.

Definition 3.18. A p-simplex is a set of p + 1 points not confined to any (p− 1)-
dimensional subspace [31].

Theorem 3.19 (Minkowski). Any convex body is the convex hull of its pure points
[31].

Theorem 3.20 (Carathéodory). The rank of a point in a convex hull is the minimum
number r necessary to express this point as a convex combination of rank one pure
states.

x =
r≤n+1

∑
i=1

cixi , with ci ≥ 0 and
r

∑
i=1

ci = 1.

Any density matrix of rank n can not be written as a convex combination
of less than n pure states (projectors). The set of the diagonal density matrices,
which are diagonal in one chosen basis form a (n− 1)-dimensional convex
set known as simplex of eigenvalues that is a polytope centered by the trace
one maximally mixed state I. Then, our definition of rank must be improved.
When we are dealing with mixture of pure points in a simplex, the rank of the
point is given by Theorem 3.20. However these points consist of diagonalizable
matrices, then we will need to define another concept of rank, and it will be
done later.

Theorem 3.21 (Hahn-Banach separation theorem). Given a closed convex body C
and a point z in the exterior of this body, there exists a linear functional W that takes
non-negative values for all points of this convex body (W(x) ≥ 0, ∀x ∈ C), while
W(z) < 0.

Proof: The proof is out of the scope of this text. For our purposes here
it is sufficient to discuss the Fig. 3.21. This figure shows a closed convex set
(C) and a point z located outside the convex body. It is obvious that there are
linear functionals or hyperplanes (W1, W2, ...) which separate the point z of
the set C. A simple and beautiful proof can be seen in [32], (look for Theorem
1.11).

Figure 3.1: The Hanh-Bannach Hyperplane Separation Theorem
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3.4 The Density Matrix Formalism

The braket formalism has some disadvantages. It is fine when we are dealing
just with pure states, but if we do not possess the complete description or
complete information of a system, we claim for the concept of probabilities.
In Chapter 2, we described pure states of polarization using the Jones vector
formalism. We showed that all the information of a pure state of polarization is
contained in a Jones vector. But in order to describe partially polarized states,
i.e., when 0 ≤ P < 1, we needed to invoke the coherence matrix formalism. We
showed that both totally and partially polarized states can be described by this
latter formalism. Also in Chapter 2, we presented some of the clear analogies
between the coherence matrix J and the density matrix for one qubit ρ and
its representation in the Bloch-Poincaré ball and sphere. Now we are going to
build a formalism to describe, in a more appropriate way, the pure and mixed
quantum states for more than one qubit.

Suppose, for example, that we have a source (an oven in a Stern-Gerlach
experiment) which sends atoms of Silver described by vectors |n〉 with energy
equal to En, and with probability proportional to e

−En
KT , i.e., the state |1〉 has

energy E1 and with probability p1, so forth7. We could assign each state with
its probability by constructing the following set {pi , |i〉}, apply the postulates
of Quantum Mechanics for all i, and, later developing some statistics with
these data. But we have a much more appropriate formalism to work this
quantum ensemble. As discussed later the formalism that can operate with
pure states vectors and with statistical mixtures is the density matrix formalism.
Firstly we need to define precisely the density matrix for a quantum pure state
(Def. 3.22) and the density matrix for quantum convex statistical mixtures, i.e.,
for quantum mixed states8 (Def. 3.23).

Definition 3.22 (Density Matrix for Pure states). A density matrix for a quantum
pure state |ψ〉 is usually called ρψ or simply ρ and it is given by the following rule:
ρψ = |ψ〉〈ψ|.

Note that the density operator is a projector as defined by its properties in
the Eq. 2.8 and it is obviously a Hermitian operator (ρ† = ρ). It is a positive
semidefinite operator as it is shown in Section 3.4.1. This operator does not
depend on the global phase of the vector |ψ〉, because if we define another
vector |ψ′〉 ≡ eiθ |ψ〉, with θ ∈ R, then their density operators are the same,
i.e., ρψ′ = ρψ, since 〈ψ′| = e−iθ〈ψ|.

Suppose we have a Hermitian observable A. As seen before, the expected
value of this observable is 〈A〉 = 〈ψ|A|ψ〉. In the density operator formalism,
this expected value can be written as 〈A〉 = Tr(A|ψ〉〈ψ|) = Tr(Aρψ). The
proof is easy, just insert a closure relation ∑i|i〉〈i| = I inside the sandwich
〈A〉 = ∑i〈ψ|A|i〉〈i|ψ〉 = ∑i〈i|ψ〉〈ψ|A|i〉 = Tr(ρψ A).

7Of course the states here are not all orthogonal, since in a two dimensional space, given a
vector we can find just another orthogonal vector.

8You can find another good approach for this discussion in [20].

37



3.4. The Density Matrix Formalism

Definition 3.23 (Mixed Quantum State). A mixed quantum state is a convex

mixture of pure states |ψi〉〈ψi|, ρ =
d

∑
i=1

pi|ψi〉〈ψi|, with
d

∑
i=1

pi = 1 and pi ≥ 0 ∀i.

The statistical mixture of pure states {|1〉, |2〉, ..., |d〉} with probabilities
{p1, p2, ..., pd} can be written exactly as discussed before, just re-label the
operators |i〉〈i| as |ψi〉〈ψi|.

Theorem 3.24. The pure states are the pure points of the convex set of the density
matrices, i.e., this set is a convex set whose extreme points are the pure states.

Proof: It is obvious that all convex combinations of density matrices are
positive and trace one, then the set of the density matrices is obviously a
convex set. We need to show that the extreme points of this set, (the pure
points), are the pure states.

Suppose that a pure state |ψ〉〈ψ| ≡ Pψ can be written in a convex com-
bination of two other density matrices ρ and σ. So Pψ = λρ + (1 − λ)σ,
with 0 ≤ λ ≤ 1. Then if we multiply both sides by Pψ, we will have
PψPψ = λρPψ + (1− λ)σPψ. Tracing both sides, and using P2

ψ = Pψ, Tr(Pψ) = 1,
and Tr(ρPψ) ≡

〈
ρ
∣∣Pψ

〉
, we have 1 = λ

〈
ρ
∣∣Pψ

〉
+ (1− λ)

〈
σ
∣∣Pψ

〉
, by using the

Cauchy-Schwarz inequality, 0 ≤
∣∣〈ρ∣∣Pψ

〉∣∣2 ≤ 〈ρ|ρ〉〈Pψ

∣∣Pψ

〉
≤ 1, the two last

equalities in the middle holds iff ρ = cPψ, and σ = dPψ, where c, d ∈ C , and
|c|, |d| = 1. By using the trace conditions, we find that c = d = 1. Finally,〈
ρ
∣∣Pψ

〉
=
〈
σ
∣∣Pψ

〉
= 1, and this shows that it is impossible to make convex

combinations of two different states to form a pure state.
Of course we could impose, from the beginning, the purity of ρ and σ,

because a non-trivial convex mixture of interior points can not create points
in the boundary of the convex set. Then we can construct another proof for
Theorem 3.24 writing a state Pψ in its spectral decomposition. Since Pψ is
a hermitian operator, it can be diagonalized. Then Pψ = ∑n

i=1 λi|i〉〈i|, with
0 ≤ λi ≤ 1 and ∑i λi = 1. If we multiply both sides by Pψ, we will have
P2

ψ = ∑n
i, i′ λiλi′ |i〉〈i||i′〉〈i′|. We know that eigenvectors related to different

eigenvalues in a hermitian operator are orthogonal, then P2
ψ = ∑n

i, i′ λ
2
i |i〉〈i|.

Finally, using the property: P2
ψ = Pψ, we will have λ2

i = λi, that is, λi = 0 or 1.
Using the fact that Tr(Pψ) = 1, we see that there exists only one λi = 1 and all
the other eigenvalues are equal to 0. �

3.4.1 The Postulates of Quantum Mechanics

The postulates in this section are a resumé of the postulates and they can be
found in [10].

1. States – We elevate the states to the category of the operators and
they are represented by their density matrices (trace one Hermitian
positive operators) in a space called Hilbert–Schmidt space (HHS ). These
operators can be used in order to describe probability distributions of
quantum states.
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• Tr(ρ) = 1. Suppose that ρ = ∑d
i pi|ψi〉〈ψi| and ∑d

i=1 pi = 1. (If
ρ is a pure state, just change the summation over i by a unique
term |i〉〈i|, because pi = 1 for some i). Then we will have Tr(ρ) =
∑d

i=1 piTr(|ψi〉〈ψi|) = ∑d
i=1 pi = 1. Remember that the projectors have

rank and trace equal to one.

• ρ ≥ 0. This means that all eigenvalues of ρ are non-negative, or in
other words, ρ is positive semidefinite. Suppose |φ〉 is an arbitrary
vector in Hilbert space H. Its “expected value” can be calculated as
〈φ|ρ|φ〉 = ∑d

i=1 pi〈φ|ψi〉〈ψi|φ〉 = ∑d
i=1 pi|〈φ|ψi〉|2 ≥ 0. As this is true

for any |φ〉 ∈ H, we can conclude that ρ ≥ 0.

2. Observables – The observables are Hermitian operators Ei ∈ HHS .

3. Measurement – A measurement operator is a positive operator Ei that
can be written as Ei = M†

i Mi for some operator Mi. This operator Ei is
an element of the positive operators set {E1, ..., En} and this set obeys
the closure relation ∑n

i=1 Ei = I.

When a measurement is made in a quantum state ρ, the ith-outcome
appears with probability pi = Tr(ρM†

i Mi). Suppose that we perform a
measurement described by the braket formalism. We know that the prob-
ability of obtaining an outcome m, given the state is represented by |ψi〉,
is described by p(m|i) = 〈ψi|M†

m Mm|ψi〉. This expression can be written
in the density matrix formalism as Tr(M†

m Mmρ). By using the proba-
bilities law we have p(m) = ∑d

i=1 p(m|i)pi = ∑d
i=1 piTr(M†

m Mm|ψi〉〈ψi|) =
Tr(M†

m Mmρ).

How could we write the density operator after performing a measure-
ment and obtaining the mth-outcome? If the initial state is given by a
pure vector |ψi〉, then the final state after obtaining the mth-outcome
will be

∣∣ψm
i
〉

= Mm |ψi〉√
〈ψi |M†

m Mm |ψi〉
. By the Bayes rule, (see Section 4.3.1),

p(i|m) = p(m, i)
p(m) = p(m|i)p(i)

p(m) . After the measurement which yields the result
m, we have an ensemble of states

∣∣ψm
i
〉

with probabilities p(i|m). Then
the density operator is given by:

ρm = ∑
i

p(i|m)|ψm
i 〉〈ψm

i |,

ρm = ∑
i

p(i|m)
Mm|ψi〉√

〈ψi|M†
m Mm|ψi〉

〈ψi|M†
m√

〈ψi|M†
m Mm|ψi〉

,

ρm =
d

∑
i=1

pi
Mm|ψi〉√

〈ψi|M†
m Mm|ψi〉

〈ψi|M†
m√

〈ψi|M†
m Mm|ψi〉

=
MmρM†

m
Tr(ρM†

m Mm)
.

4. Time Evolution – The time evolution of quantum systems is given by
a CP-map 9, i.e., a Completely Positive Map. Then the state ρ(t) is

9For a complete review of the CP-maps, see [27].
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3.5. The Space Of More Than One Qubit

given by ρ(t) = ∑i Ki(t)ρ(0)K†
i (t), where K are the Kraus operators. The

Schrödinger evolution is a special case of this evolution when the K
are unitary matrices U, and the state in time t, i.e., ρ(t) is given by
ρs(t) = U(t)ρ(0)U†(t). If the environment is not perfectly well known,
then ρs(t) = ∑i piUi(t)ρ(0)U†

i (t).

3.5 The Space Of More Than One Qubit

3.5.1 The Tensor Product

In order to describe more than one qubit, we need the concept of the tensor
product. When we create two photons in a laboratory, we need to know how
to write the global quantum state of these two photons, i.e., we need to know
how to compose physical systems (for example, two systems of two levels)
and we also need to define and to perform local operations in one part of these
systems.

Definition 3.25. Let there be A(m×n) and B(p×q) two matrices. Then the tensor
product of this two matrices, i.e., the matrix A ⊗ B can be defined by its matrix
elements: (A⊗ B)(m·p)×(n·q) [13].

Suppose we have a quantum harmonic oscillator A described in a Hilbert
L2

A space where the Hermite functions φn(x), ∀ n ∈ N form a complete basis.
Let us consider another quantum harmonic oscillator B oscillating in y-axis.
Then we need another Hilbert space L2

B and another set of Hermite functions
ψm(y), ∀ m ∈ N in order to describe this other degree of freedom. We also
need the concept of tensor product in order to construct a function which
describes these two degrees of freedom, i.e., the set {φn(x)ψm(y), ∀ n, m ∈ N}
forms a basis for the state of space of this two dimensional quantum harmonic
oscillator. Any squared-integrable function f (x, y) can be expanded in such
basis. In Dirac notation, this basis can be expressed as {|φn〉 ⊗ |ψm〉, ∀ n, m ∈
N}.

Let us return to the spaces HA and HB . Then we can define a third
Hilbert space HAB and a bilinear map T such as HAB = HA ⊗HB and all the
following rules apply (adapted from [30]).

1. T(HA,HB) generates HAB , i.e., any vector |ψ〉 ∈ HAB can be written
as a sum of the form T(|u〉, |v〉), that is a sum of vectors |u〉 ∈ HA and
|v〉 ∈ HB .

2. Consider a basis {|ui〉} ofHA and {
∣∣vj
〉
} ofHB . Then the set {T(|ui〉,

∣∣vj
〉
)}

forms a basis of HAB .

3. T(HA,HB) ≡ HA ⊗HB , and T(|u〉, |v〉) ≡ |u〉 ⊗ |v〉.

Of course all definitions and properties can be extended for more than two
parts. If each ith-degree of freedom is described by a particular Hilbert space
Hi, then any system involving n degrees of freedom can be described as
Hn = H1 ⊗H2 ⊗ · · · ⊗Hn. We can enumerate some properties of the tensor
product (Also adapted from [30]):
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3.6. The Hilbert–Schmidt Space

• dim(HAB) = dim(HA)dim(HB).

• Let |ψA〉 = |u〉 ⊗ |v〉 ∈ HAB and |ψB〉 = |u′〉 ⊗ |v′〉 ∈ HAB with
|u〉, |u′〉 ∈ HA and |v〉, |v′〉 ∈ HB . Then the inner product 〈ψA|ψB〉
of this two vectors can be defined in the space HAB as 〈ψA|ψB〉 =
〈u|u′〉A ⊗ 〈v|v′〉B = 〈u|u′〉A · 〈v|v′〉B.

• If an operator A acts in the space HA and B acts in the space HB , then
the operator A ⊗ B acts in HAB = HA ⊗HB . Any operator that can
be written in this form is a local operator. Any laboratory operation
described by a tensor product is a local operation.

• It is possible to act only in HA or only in HB of the product space
HA ⊗HB = HAB . Suppose that A acts in HA and B acts in HB . Let
us define two new operators A⊗ IB and IA ⊗ B acting on the product
space HAB . They are called extensions of A and B respectively.

If two systems do not have any correlation and if we use the tensor product and
the Born’s rule, we will get our classical concept of statistical independence for
composite systems. Suppose that a system is described by |ψ〉. If we measure
a physical property A, the only possible results are the eigenvalues of A. Let
us suppose that the eigenvalue a is related to the eigenvector |a〉. Then we will
obtain a result a with probability p(a) = |〈a|ψ〉|2. Analogously, if we measure
another physical property B in another system which is described by |φ〉 we
will obtain an outcome b with probability p(b) = |〈b|φ〉|2. Then p(a, b) can
be described by p(a, b) = p(a)p(b), since they are independent. Then it has
p(a, b) = p(a)p(b) = |〈a|ψ〉|2|〈b|φ〉|2 = |〈a| ⊗ 〈b||ψ〉 ⊗ |φ〉|2. This suggests that
we could consider the system in a state |ψ〉 ⊗ |φ〉 ∈ HAB ≡ HA ⊗HB , with
local measurements given by A⊗ IB and IA ⊗ B. It is clear that this rule of
composition preserves our intuitive concept of statistical independence when
the two systems are not related.

We already showed that we can capture our intuitive concept of statistical
independence by using the tensor product properties and the Born’s rule. It
is enough to suppose that nature constructs her composite systems adopting
the tensor product hypothesis. But the opposite was not considered here, i.e.,
we do not know if the statistical independence implies the tensor product
hypothesis. Coming from a philosophical point of view, we could construct
composite systems by making other assumptions such as the commutative
assumption [33]. Probably nature does not construct composite systems from
subsystems, rather, she presents us composite systems which we perceive
as made of subsystems [34]. However this is not the point here, we under-
stand that Quantum Mechanics Theory works well with the tensor product
assumption, thus for our purposes here, it is quit enough.

3.6 The Hilbert–Schmidt Space

As discussed in Section 3.2.1, our quantum states are density matrices on a
vector space that is also a non-commutative algebra. Let us define a n complex-
dimensional Hilbert space H. Then there exists a dual Hilbert space H∗
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3.7. A Simple Geometric Interpretation For The Entanglement

defined as the space of the linear functionals from H to the complex numbers
set. In finite-dimensional case, these two sets are isomorphic [31]. Let us
define the Hilbert–Schmidt space as the n2 dimensional space of the bounded
operators in Hilbert-Schmidt norm and it is defined as HHS ≡ H⊗H∗. An
interpretation for this space seems obvious when we write any operator as
O = c1, 1|1〉〈1| + c1, 2|1〉〈2| + c2, 1|2〉〈1| + · · ·. But how many terms does this
summation have? If we try to use Theorem 3.20, the rank of a point in a
convex set is the minimum number r ≤ n2 of pure points that are needed in
a convex set to express it in a convex combination. This number r, given by
this theorem, is a large upper bound, then we need to find another number
r, in order to express in a better way the rank of a density matrix. As every
Hermitian matrix can be diagonalized, then the usual definition of rank of a
matrix coincides with our purposes.

Definition 3.26. If ρ|ei〉 = λi|ei〉, with
r

∑
i=1

λi = 1 and ρ =
r

∑
i=1

λi|ei〉〈ei|, then the

rank(ρ) ≡ r ≤ N.

Remark: The Hilbert-Schmidt norms are not C∗ norms. An example of

this fact is that
∥∥X†X

∥∥
1 =

√
∑n

i=1 x2
i 6= ∑n

i=1 xi = ‖X‖2
1, and another example is∥∥X†X

∥∥
2 =

√
∑n

i=1 x4
i 6= ∑n

i=1 x2
i = ‖X‖2

2. Then equipped by the Hilbert-Schmidt
norm defined in Def. 3.4 and by the Hilbert-Schmidt inner product defined
in Def. 3.7, we can define another Hilbert space of operators acting on H
[31]. This is the Hilbert-Schmidt space formed by the finite dimensional
bounded operators. This inner product gives raise to an Euclidean distance,
the Hilbert-Schmidt distance defined by:

Definition 3.27 (The Hilbert-Schmidt Distance (D2
HS ) ). The Hilbert-Schmidt

Distance is a kind of Euclidean distance (D2
2(A, B)) and is defined as:

D2
HS = 1

2 Tr[(A− B)(A† − B†)] = D2
2(A, B).

3.7 A Simple Geometric Interpretation For The
Entanglement

The set of the quantum states (D) is a convex set, indeed, convex mixtures of
density operators are density operators. Then we can prepare convex mixtures
of pure states to generate mixed states as we mentioned in Def. 3.23. We also
know by Theorem 3.24 that we can not obtain pure states by performing a
mixture of other states in a convex mixture. We now define another convex
set, the set of separables (S), and a state is called entangled if it belongs to the
set D \ S.

Definition 3.28. A pure bipartite and separable quantum state is the tensor product
of two quantum pure states. ρ = ρA ⊗ ρB.
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We can write10 these bipartites pure and separable quantum states given
in Def.3.28 as ρ = |ψA〉〈ψA| ⊗ |φB〉〈φB| or ρ = |ψAφB〉〈ψAφB|. All convex
combinations of these separable states define a convex set (S) called the set of
separable states.

Definition 3.29. A mixed and separable bipartite quantum state is defined as a
convex combination of pure separable states ρ = ∑i λiρ

A
i ⊗ ρB

i with ∑i λi = 1 and
λi ≥ 0 ∀i.

Of course if λi = 1, for some i the state in Def. 3.29 becomes a pure and
separable bipartite state described by Def. 3.28. We know that the set of the
quantum states D is a convex set and the set of the separable states S is also a
convex set by definition. But this set (E) defined by E ≡ D \ S is not a convex
set11. It is obvious that E ∩ S = ∅ and E ∪ S = D. The Def. 3.28 and 3.29 can
be extended for more than two parts. A n-part pure separable state can be
written as a product of n pure states, ρ = ρA ⊗ · · · ⊗ ρn and a mixed separable
state can be written as ρ = ∑i λiρ

A
i ⊗ · · · ⊗ ρn

i .

Definition 3.30. Every state ρ ∈ E is an entangled state, i.e., if a state cannot be
written as a separable state, then it is an entangled state12.

One could think that the entire space HAB can be generated by separable
vectors |u〉 ⊗ |v〉 with |u〉 ∈ HA and |v〉 ∈ HB . But there exists vectors that
belong to HAB and that can not be written as a product state. In order to
prove this fact, it is sufficient to exhibit one example. Then it is appropriate to
introduce the Bell states, which are the simplest examples of entangled states
[10]. These states are defined in Eq. 3.1 and 3.2 and form a basis for the
2-qubit state space:

|Φ±〉 =
1√
2

(|00〉 ± |11〉), (3.1)

|Ψ±〉 =
1√
2

(|01〉 ± |10〉). (3.2)

It is obvious that |Φ±〉 and |Ψ±〉 can not be written as product states of two
particles [13], i.e.; (|00〉 ± |11〉) 6= (a|0〉 + b|1〉)⊗ (c|0〉 + d|1〉) and (|01〉 ± |10〉) 6=
(a′|0〉 + b′|1〉)⊗ (c′|0〉 + d′|1〉), then, |Φ±〉 6= |φA〉 ⊗ |φB〉 and |Ψ±〉 6= |ψA〉 ⊗
|ψB〉, but these Bell states are also states of HAB . Then we can say that the
four Bell states defined in 3.1 and 3.2 are entangled.

The natural question now is, “how many” states are entangled? In a more
precise language, we intend to understand if the majority of the quantum
states are separable or entangled. This discussion can be bounded by some
volume calculations as done in reference [31], but here we just want to present

10Physicists like to simplify notations. All these notations can be found in physics textbooks
|1〉 ⊗ |0〉 ≡ |1〉|0〉 ≡ |1, 0〉 ≡ |1 0〉.

11We can mix two elements ρ1 , ρ2 /∈ S, σ = λρ1 + (1− λ)ρ2, 0 ≤ λ ≤ 1 and have σ ∈ S. An
easy example is to write the trace one identity operator I4×4, which is separable, by the following
mixture I4×4 = 1

4 I2×2 ⊗ I2×2 = 1
2 ∑B|B〉〈B| where B represents all Bell states. The convexity of

this mixture can be seen when we write in the |i, j〉 basis.
12Obviously this definition is not operational.
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a brief explanation on this subject. For pure states, this answer is simple13: we
have seen in Chapter 2 that we need 2 real numbers to describe one pure qubit
in its Bloch sphere [20]. Then with the objective to describe two pure separable
qubits, only 4 real numbers are necessary. But with the purpose to describe
an element of HA ⊗HB , (both complex spaces with dimension 2 each), we
need 6 real numbers (2 complex numbers for each linear independent vector
= 8), but we need just 6 numbers because 1 number is due to the global phase
and 1 is due to the normalization [20, 31]. Since we need less dimensions to
describe the pure and separable states, they look like a line in the R3 space
and they form a thin set. However for mixed states, this is no longer true,
the separable set for mixed states is also a dense set, then it is necessary to
calculate the volume of these sets in order to quantify precisely their relative
size, (see for example [31, 35–37]).

13Private communication with M. T. Quintino.
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CHAPTER 4

Introduction to Classical
Information Theory

The most important questions of life are
indeed, for the most part, really only
problems of probability.

Pierre-Simon, marquis de Laplace–Théorie
Analytique des Probabilités, 1812.

4.1 Majorization and Partial Ordering

How do we compare two probability distribution vectors? What does it
mean to say that one probability distribution vector is more disordered than
another? To answer these kind of questions the concept of majorization was
developed [38]. As in Classical Information theory, we also often encounter
normalized vectors of non-negative numbers in Quantum Mechanics that can
be interpreted as probability distribution vectors. If we possess a quantum
state in hands, we can produce a probability distribution performing a set of
measurements. We can compare as well two probability distribution vectors
and two density matrices in a more elegant and efficient way and, for such
purposes, and many others, the theory of majorization was developed.

Suppose we have a n-dimensional vector ~x = (x1, x2, · · · , xn)t ∈ Rn
+, and

also suppose that ∑n
i=1 xi = 1. Then the set of all normalized vectors forms an

(n− 1)-dimensional simplex (∆n−1). We are interested here in transformations
that preserve both positivity and the L1-norm, (‖?‖1) of the vectors [31]. These
transformations are given by the stochastic matrices as we will see later.

Given a probability vector ~x ∈ Rn
+, its decreasing rearrangement is denoted

by1 ~x• = (x•1 , x•2 , · · · , x•n)t, that is, x•1 ≥ x•2 ≥ · · · ≥ x•n. A vector ~x is said to
1This strange, but beautiful “bullet” notation is due to [39].
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be majorized by ~y, in notation ~x ≺ ~y, if:

k

∑
j=1

x•j ≤
k

∑
j=1

y•j , k = 1, 2, · · · , (n− 1),

n

∑
j=1

x•j =
n

∑
j=1

y•j .

Definition 4.1 (Probability Simplex). A (n− 1)-dimensional probability simplex
can be defined as: ~x ∈ Rn

+ such that ~x �~0 and ‖~x‖1 = 1.

4.1.1 Stochastic and the Bistochastic Maps

We know that the passage of time tends to make things more uniform and
pureless. Thus, we need to understand the processes and their transformations
that are responsible for this natural occurrence that brings the systems into
the direction of the majorization arrow [31]. These maps are the stochastic
and bistochastic maps and they appear in several physical problems. They
are used in the theory of majorization (see [39]), and in characterization of
completely positive maps acting in the space of density matrices [40]. In
order to describe the discrete dynamics in the space of probabilities (or in the
probability simplex) we need to define such maps (Definition 4.2 and 4.3).

Definition 4.2. A stochastic matrix is a n-row rectangular matrix S whose matrix
elements obey [31]:

1. Sij ≥ 0, ∀ i, j.

2. ∑n
i=1 Sij = 1.

Definition 4.3. A bistochastic matrix (also called doubly stochastic) is a n-dimensional
stochastic matrix B obeying the additional condition:

3. ∑n
j=1 Bij = 1.

If the matrix U = uij, defined by its matrix elements is an unitary matrix,

then the matrix B, defined as B = (
∣∣uij
∣∣2) is bistochastic. The condition 1.

preserves the positivity of ~x, i.e., if ~x is a vector of Rn
+ i.e., if ~x ≥ 0, then B~x ≥ 0.

The condition 2. says that B preserves the norm ‖?‖1 ≡ tr(?) when B acts on
a positive vector ~x. Let us define the ~e vector as ~e = (1, 1, · · · , 1)t. The trace
of a vector ~x is defined as2 tr(~x) ≡ 〈~x|~e〉, then it is obvious to see that3 if B
is a bistochastic matrix, then B~e = ~e, (this condition means that bistochastic
matrices are unital). Then it is easy to understand the condition 3., or in other
words, it is easy to show that tr(B~x) = tr(~x), since tr(B~x) = 〈~x|B|~e〉 and using
the fact that the bistochastic matrices are unital, we have 〈~x|B|~e〉 = 〈~x|~e〉, then
tr(B~x) = tr(~x) [39].

2Roughly speaking, the trace function here is defined by the sum of the components of a
vector, a kind of scalar product using the Dirac notation, i.e., tr(?) = 〈?|~e〉.

3In Dirac notation B~e =~e can be written as: B|~e〉 = |~e〉.
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4.1.2 Some Results in Majorization Theory

Theorem 4.4 (Birkhoff’s Theorem). The set of n × n bistochastic matrices is a
convex polytope (Def. 3.17) whose pure points are the n! permutation matrices.

Proof: We already know that the bistochastic matrices are stochastic ma-
trices which obey the additional condition ∑n

j=1 Bij = 1. The permutation
matrices Πk are square and binary bistochastic matrices consisting of exactly
one entry 1 in each row and each column and 0’s elsewhere4. Let us suppose
that any bistochastic matrix B can be written in a convex combination of these
permutation matrices, i.e., B = ∑k λkΠk, with 0 ≤ λk ≤ 1 and ∑k λk = 1, then:

B = ∑
k

λkΠk ,

(B)ij
a= ∑

k
λk(Πk)ij,

n

∑
i=1

Bij =
n

∑
j=1

Bij
b= 1,

n

∑
i=1

(B)ij =
n

∑
i=1

∑
k

λk(Πk)ij,

n

∑
i=1

(B)ij
c= ∑

k
λk

n

∑
i=1

(Πk)ij
d= ∑

k
λk = 1,

n

∑
j=1

(B)ij
e= ∑

k
λk

n

∑
j=1

(Πk)ij
f
= ∑

k
λk = 1. �

We start the proof supposing that any bistochastic matrix can be written in
a convex combination of the permutation matrices. In a we exhibit the ij-th
matrix element of B. The equality b are the bistochastic conditions (4.2 and
4.3). In c and e we just impose these conditions and in d and f we use the fact
that the permutation matrices are also bistochastic matrices and the fact that
∑k λk = 1.

Then it is easy to see that any bistochastic matrix B can be written as a
convex combination of the permutation matrices. This convex combination
obeys all the three conditions imposed in 4.2 and 4.3. Of course we should
need to prove that the n× n permutation matrices are the pure points of this
polytope and that the number of pure points needed in order to construct
such convex mixture is (n− 1)2, by the Theorem 3.20, but this is completely
out of the scope of this text.

Definition 4.5 (Muirhead’s Condition). [26] The Muirhead’s condition states that
if ~x ∈ P(~y), which is a notation to express that there are nonnegative weights pi ≥ 0,
with ∑i pi = 1, then ~x = ∑i∈Pn piΠi~y, where the summation is performed over all
possible permutations.

Lemma 4.6. The Muirhead’s condition ~x ∈ P(~y) implies that there exists a bistochas-
tic matrix B such that ~x = B~y.

4It is a kind of binary sudoku, see http://xkcd.com/74/
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Proof: We already show that ∑i pi(Πi) is a representation of a bistochastic
matrix. Then we can say that the Muirhead’s condition ~x ∈ P(~y) implies that
there exists a bistochastic matrix B such that ~x = B~y.

Theorem 4.7 (HLP - Theorem5). [41] For all ~x and ~y in Rn
+, the following condi-

tions are equivalent:
i. ~x ≺ ~y.
ii. ~x = B~y. For some B bistochastic matrix.

Proof: Let us suppose that ~x• = (x•1 , x•2 , · · · , x•n)t, that is, x•1 ≥ x•2 ≥ · · · ≥
x•n [26]. Let us define also the sum of the first k elements of the t-th column of

B, i.e., ct =
k

∑
j=1

Bjt [26]. Then:

k

∑
j=1

xj =
n

∑
t=1

(
k

∑
j=1

Bjt)yt =
n

∑
t=1

ctyt.

By the bistochasticity of B, we have 0 ≤ ct ≤ 1 and ∑n
t=1 ct = k, because

∑n
t=1 ct = ∑n

t=1 ∑k
j=1 Bjt = ∑k

j=1(∑n
t=1 Bjt) = ∑k

j=1(1) = k. This strongly suggests
that the k difference functions ∆k defined below are non-positive functions:

∆k ≡ ∑k
j=1 xj −∑k

j=1 yj = ∑n
t=1 ctyt −∑k

j=1 yj ≤ 0.

A good and clever way to see that all functions ∆k are non-positive (due to
[26] or [42]) is to write the latter equation as:

∆k ≡
n

∑
t=1

ctyt −
k

∑
j=1

yj =
n

∑
j=1

cjyj −
n

∑
j=1

yj + yk × 0,

0 = (k−
n

∑
j=1

cj),

∆k =
n

∑
j=1

cjyj −
n

∑
j=1

yj + yk(k−
n

∑
j=1

cj),

∆k =
k

∑
j=1

(yk − yj)(1 + cj) +
n

∑
j=k+1

cj(yj − yk).

It is evident that ∆k ≤ 0, since for all 1 ≤ j ≤ k we have yj ≥ yk while for all
k < j ≤ n we have yj ≤ yk. It is trivial that ∆n = 0, so the relations ∆k ≤ 0 for
1 ≤ k ≤ n complete our check of the definition [26]. Therefore, if ~x = B~y, then
~x ≺ ~y [41, 42]. �

Corollary 4.8. A vector ~x ∈ Rn
+ is said majorized by a vector ~y ∈ Rn

+, i.e.,
~x ≺ ~y iff there exists a set of n permutation matrices n-dimensional {Πi}n

i=1 and a
probability distribution {pi}n

i=1 such that ~x = ∑n
i=1 piΠi~y [38].

5Hardy, Littlewood and Polya - 1934
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This implies that the vector ~x can be obtained from ~y by randomly permut-
ing the components of ~y, then averaging over the permutations [38].
Proof: This proof is simple because we have already showed that any bis-
tochastic matrix can be written in a convex combination of permutation
matrices (Theorem 4.4) and we have also showed in Lemma 4.6. Then the
matrix B̃ ≡ ∑n

i=1 piΠi is a bistochastic matrix. Hence by using Theorem 4.7,
we obtain the expected result, i.e., ~x = B̃~y, which implies that ~x ≺ ~y. �

Corollary 4.9. The Muirhead’s condition ~x ∈ P(~Y) implies ~x ≺ ~y.

Proof: The proof comes from the fact of the equivalence of i. and ii. of the
Theorem 4.7 and the other theorems of this section. The omitted parts can be
found in [39].

Theorem 4.10. Let be ~xn = ( 1
n , · · · , 1

n )t the maximally mixed vector and ~P =
(1, 0, · · · , 0)t the pure vector, then ~xn � ~x � ~P for all ~x ∈ Rn

+ [31].

Proof: Intuitively, the vector ~xn has the minimal differences between its
elements, so all other vectors ~x ∈ Rn majorize it. Let us observe the fact
that ~x ≺ ~y iff there exists a bistochastic matrix B such as ~x = B~y, and the
uniform distribution vector or the maximally mixed vector defined above stays
clearly invariant with respect to any bistochastic map. So we can say that the
bistochastic map describes a contraction6 of the probability simplex toward
the uniform distribution [43]. Then there will always exist a bistochastic
matrix B = B1B2 · · · Bk, (described here as a product of k bistochastic matrices),
which makes this contraction possible: ~xn = B~y, for any ~y ∈ Rn.

It is obvious that the pure vector, (~P) majorizes every vector ~x, or in other
words, ~x ≺ ~P for all vector ~x ∈ Rn. The proof is simple since any of the n pure
vector is constructed as a permutation of ~P, then if we rearrange the vectors
as usual, we will always have ∑k

i=1 x•i ≤ ∑k
i=1 P•i = 1 and ∑n

i=1 xi = ∑n
i=1 Pi = 1,

thus ∑k
i=1 x•i ≤ 1. Hence, ~xn ≺ ~x ≺ ~P, for all ~x ∈ Rn. �

Definition 4.11 (Schur convex function). The function f which preserves the
majorization order: if ~x ≺ ~y, then f (~x) ≺ f (~y) is called Schur convex [44], a function
f is Schur concave if (− f ) is Schur convex.

6Of course the identity matrix is a bistochastic matrix, but I~x = ~x. If B is a bistochastic matrix,
so any matrix I⊕ B is also a bistochastic matrix, however it preserves the subspace related to the
identity matrix.
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4.2 Shannon’s Entropy H(X)

You should call it entropy, for two reasons,
Von Neumann told him. In the first place
your uncertainty function has been used in
statistical mechanics under that name, so it
already has a name. In the second place,
nobody knows what entropy really is, so in a
debate you will always have the advantage.

Suggestion of J. Von Neumann to C.
Shannon on what to call information

-version according to John Avery.

Suppose we have a probability distribution vector given by ~p. We need
to define a function I : (0, 1] 7 −→ R+ that can measure the uncertainty of
a random variable and quantify information of some events [45]. In 1948,
Shannon modeled information as probabilistic events which can occur with
certain probabilities [10, 46, 47]. A remarkable feature of Shannon approach
is to ignore all the semantics and focuses on the statistical constraints that
restrict the transmission of a message, regardless of its content [48]. Suppose
we have a discrete random variable7 X such as p(x) = Pr(X = x). Shannon
showed that any function I that can measure information must have these
following properties:

1. The information of a probabilistic event must depend only on its proba-
bility, then I = I(p).

2. The function I : (0, 1] 7 −→ R+ must be a continuous function of p.

3. The function I must be additive, i.e., if two events are independent8

p(x, y) = p(x)p(y), then I(p(x, y)) = I(p(x)) + I(p(y)).

Shannon also showed in [47] that these three conditions above imply that
I(p(x)) = − log p(x) and this function is unique up to an affine transformation
(see [46]). Shannon’s entropy, thus, appears as the average missing information,
that is, the average information required to specify the outcome X when
a customer or receiver receives the distribution p(X) [48]. It equivalently
measures the amount of uncertainty represented by a probability distribution
[49]. In our context here, it amounts to the minimal number of bits that
should be transmitted to specify the variable X, but this concept needs to
be wiredrawn with the data compression and coding theorems, see [10, 50].
For us, this definition is sufficient since we do not work with classical and
quantum channel capacities.

Definition 4.12. The expectation value of the random variable g(X) if X occurs with
probability p(x) is defined by Ep(x)(g(X)) ≡ ∑ g(x)p(x).

7The following notation will be used everywhere in this text: P(x) = Pr(X = x), P(y) = P(Y =
y), P(x, y) = Pr(X = x & Y = y) = Pr(X = x ∩ Y = y), P(x|y) = Pr(X = x|Y = y).

8If two events are statistically independent, then p(x, y) = p(x)p(y), i.e., Pr(∩n
i=1 Ai) =

∏n
i=1 Pr(Ai).
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Definition 4.13. The Shannon’s entropy of X is the expected value of the random
variable g(X) = I(p(x)) = log( 1

p(x) ), where X occurs with probability p(x). Thus

H(X) ≡ Ep(x)(log( 1
p(x) )), or in other words9, H(X) = −∑ p(x) log(p(x)).

Shannon’s entropy H(X) quantifies how much information is needed, i.e.,
how many bits are required on the average, to encode n bits of information
[50]. It is a measure of the uncertainty of the random variable that is; it is
a measure of the amount of information needed, on the average, in order
to describe a random variable [45]. Suppose we have a binary alphabet
X = {x; p(x)} = {0, 1; p(0) = (1− p), p(1) = p}. If n is large enough, then
by using the law of large numbers [45, 51], the typical strings will have
approximately n(1− p) letters 0 and np letters 1. The number of distinct
strings is of the order of the Newton’s binomial coefficient [50]:

number ≈
(

n
np

)
,

By using Stirling’s approximation [52], we have:

log
(

n
np

)
= log

n!
np! (n− np)!

≈

≈ n log n− n− [np log np− np + n(1− p) log n(1− p)− n(1− p)] =

= n[−p log p− (1− p) log(1− p)] ≡ nH(X).

Then the number of typical strings is about 2nH(X) [50].

4.3 Some Properties of Shannon’s Entropy

Lemma 4.14 (The entropy is non-negative). H(X) ≥ 0.

Proof. Since10 0 ≤ p(x) ≤ 1, then H(X) = ∑x∈X p(x) log( 1
p(x) ) ≥ 0. �

Theorem 4.15. Let Π be a permutation matrix. Then the Shannon’s entropy remains
invariant under the map X̃ = ΠX, i.e., H(X̃) = H(X) under permutations.

Proof: The proof is quite simple. When we perform a permutation over
the probability vector, the following function −∑i pi log pi must remain the
same. This function H(X) is not a feature of the random variable itself, but it
is a intrinsic characteristic of the set of its probability values [45]. Of course if
we re-label the indices we will find the same function for the two probability
vectors. Therefore let us define a permutation matrix Π{(i+1), i} which, for the
sake of simplicity, just changes the position of the i-th therm of X by the (i + 1)-
th therm of X, i.e., it changes the order of pi by the p(i+1). It is obvious that
H(Π{(i+1), i}X) = ∑i−1

k=1 pk log pk + p(i+1) log p(i+1) + pi log pi + ∑n
k=i+2 pk log pk =

H(X) = ∑k pk log pk. �

9Remember that log( 1
p(x) ) = − log(p(x)).

10We use the following definition: 0 log 0 = 0, for the sake of continuity, i.e., lim
x→0

x log x = 0.
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Theorem 4.16 (Maxent Theorem - Principle of Maximum Entropy). For a
normalized random variable with n possible values, the Shannon’s entropy H(X) ≤
log n. The equality occurs iff when p(x) = 1

n , ∀x.

The theorem 4.16 follows easily from the concavity of the function entropy
and from our intuition that the uncertainty is maximum when all events
are equally probable [53]. But there are more rigorous ways of proving this
theorem. H(X) is a concave function, so it has a point of maximum. Then
we could maximize it and get the proof. A more elegant way to prove this
theorem is using the Jensen’s inequality (Theorem 4.17).

Theorem 4.17 (Jensen’s inequality). Let X be a random variable and f is a strictly
convex function, then f (E(X)) ≤ E( f (X)). If f is a strictly concave function,
then f (E(X)) ≥ E( f (X)). In more variables, let us suppose that X = {xi} is a
random set, and let ∑i ai = 1, with ai ≥ 0 ∀i, and let f be a strictly convex
function, then f (∑i aixi) ≤ ∑i ai f (xi), and if f is a strictly concave function, then
f (∑i aixi) ≥ ∑i ai f (xi).

Proof: We prove this inequality just for the binary case. The general proof
is constructed by induction and the reader can find it in [45]. But it is easy to
see that it works geometrically because generalizes the assertion that a secant
line of a convex function lies above its graph. We need to answer first what is
a convex and a concave function11, see Def. 4.18 and 4.19 below:

Definition 4.18 (Convex function). A continuous function f is strictly convex over
(a, b) if for every x1, x2 ∈ (a, b) and ∀λ ∈ [0, 1], f (λx1 + (1− λ)x2) ≤ λ f (x1) +
(1−λ) f (x2). In other words, f (the linear combination of ?) ≤ linear combination of
f (?).

Definition 4.19 (Concave function). A function f is said to be strictly concave if
(− f ) is a convex function. Then f (the linear combination of ?) ≥ linear combination
of f (?).

Let us come back to the proof of the Jensen’s inequality for the binary
case12. Let x ∈ {x1, x2} and p(x1) = p, and p(x2) = 1− p. Let us suppose
that f is a strictly convex function. We need to prove that if f is a convex
function, then f (E(X)) ≤ E( f (X)). Well, for any function f the expected value
is defined as E( f (X)) = ∑x p(x) f (x) = p f (x1) + (1− p) f (x2). And the left side
of the inequality is given by f (E(X)) = f (∑x p(x)x) = f (px1 + (1− p)x2). By
setting p = λ ∈ [0, 1] and by using the definition of a convex function (Def.
4.18), we get the proof of the Jensen’s inequality: Proof - convex case:

f (λx1 + (1− λ)x2) ≤ λ f (x1) + (1− λ) f (x2), Def. 4.18,

( f is a convex function and setting p = λ),

f (E(X)) = f (px1 + (1− p)x2) ≤ p f (x1) + (1− p) f (x2) = E( f (X)),

f (E(X)) ≤ E( f (X)). �

11A good mnemonic rule is: “A function is convex if its graphic looks like a letter V, (of
conVex), and a function is concave if its graph looks like a CAVE, (of conCAVE)”.

12The general proof is also performed by induction.
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On the other hand, the proof of Jensen’s inequality for concave functions is
identical. Then if f is a concave function we will have: Proof - concave case:

f (λx1 + (1− λ)x2) ≥ λ f (x1) + (1− λ) f (x2), Def. 4.19,

( f is a concave function and setting p = λ),

f (E(X)) = f (px1 + (1− p)x2) ≥ p f (x1) + (1− p) f (x2) = E( f (X)),

f (E(X)) ≥ E( f (X)). �

We can prove the Theorem 4.16 in a more elegant fashion by using the Jensen’s
inequality (Theorem 4.17) in the concave version because f = log(?), in this
case, it is a concave function:

Let H(X) = −∑n
x=1 p(x) log(p(x)),

E( f (X)) ≤ f (E(X))

H(X) = ∑n
x=1 p(x) log

(
1

p(x)

)
H(X) ≤ log

(
∑n

x=1 p(x) 1
p(x)

)
H(X) ≤ log n. �

4.3.1 The Bayes’ Rule

Let us understand the Bayes’ Rule with the help of the Venn’s diagrams. In
a universe Ω with all possible outcomes, we are interested in a subset A of
Ω. We know that the probability of obtaining the outcome A is: P(A) = |A||Ω| ,
where the |?| denotes, for example, the area occupied in the chosen set. Then,
obviously, P(Ω) = |Ω||Ω| = 1, because it is equivalent to the total area.

Figure 4.1: A two-set Venn’s diagram involving A, B, A ∩ B and the universe
Ω.

Let us consider another event in the space Ω, the probability P(B) = |B|
|Ω| .

We have treated these two events independently, but of course these two
events can be dependent (A ∩ B = ∅), see Fig 4.1. The probability of both
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events occurrence, i.e., P(A ∩ B), can be calculated by using the same idea:
P(A, B) ≡ P(A ∩ B) ≡ P(A&B) = |A, B|

|Ω| .
Now, the question is: given that we are inside the area B, what is the

probability that we are in the region A ∩ B? We need to calculate the area of
A if we make B = ΩB our new universe (see Fig. 4.2). This is usually called a
conditional probability P(A|B) and we read: the probability of A given B [14].

Then using the new universe definition we have13 P(A|B) = |A∩B|
|B| = |A, B|

|B| .
But we can divide both the numerator and the denominator by the total area

|Ω|, and substitute the previous relations defined above, P(A|B) =
|A, B|
|Ω|
|B|
Ω

. Then

P(A|B) = P(A, B)
P(B) .

Figure 4.2: A two-set Venn’s diagram involving B, B− A and the universe Ω.

Of course this reasoning would be the same if we consider our new
universe, the set A. Then it is obvious that P(B|A) = P(A, B)

P(A) . If we put these
two last equations together, we will have the Bayes’ rule:

Definition 4.20 (Bayes’ Rule). P(A|B)P(B) = P(A, B) = P(B|A)P(A).

P(A, B) = P(A)P(B|A),

P(A, B) = P(B)P(A|B).

4.3.2 Markov Chains and Bistochastic Maps

The objective followed in this subsection14 is to discuss briefly some properties
of the Markov chains to use further in order to simplify some proofs of a few
theorems and also to introduce the entropy increasing theorem and some of
its relationships with the Second Law of Thermodynamics.

We also intend to understand the stochastic maps that act on the probability
vectors in the classical probability space. Later this concept will be useful when

13From now on we are going to use the notation A ∩ B ≡ A, B.
14This spirit is also followed in [10].
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we try to understand the quantum states as quantum probability distribution
entities of the quantum probability space. If we want to model noise in
quantum systems, we should study first the classical noise [10].

The simplest example of a stochastic process is one where each random
variable is conditionally independent of all other preceding variables and
depends only those which precede them, i.e., given the present time, the
future is independent of the past [45]. Such a process is said to be Markov.
Physically, the assumption of Markovianity corresponds to assuming that
the environment causing the noise in a gate X acts independently of the
environment causing the noise in gate Y, (if we model a physical process as
stochastic process consisting on two gates: X → Y [10]).

We will assume that all the Markov chains studied here are time invariant
since the following conditional probability p(xn|xn−1) does not depend on n
[45].

Definition 4.21 (Markov chain). A discrete stochastic process is a Markov Chain for
n = 1, 2, · · ·, if Pr(Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1|· · · |X1 = x1) = Pr(Xn+1 =
xn+1|Xn = xn). In this case, the joint probability is defined as p(x1, x2, · · · , xn) =
p(x1)p(x2|x1)p(x3|x2) · · · p(xn|xn−1). Two good notations for a finite Markov Chain
are:

• X1 → X2 → · · · → Xn−1 → Xn.

• {Xi}.

If {Xi} is a Markov chain, thus, Xn is defined as its state at time n. A
time-invariant Markov chain is defined and characterized by its initial state
and a probability transition matrix S = (S)ij, ∀i, j ∈ {1, 2, · · · , m}, where
Sij = Pr(Xn+1 = j|Xn = i) [45]. Suppose that we want to know the probability
vector on time n + 1, then p(xn+1) = ∑xn S{xn ,xn+1}p(xn). Thus the output
probabilities are related to the input probabilities by a linear process mapped
in the probability transition matrix. This feature of linearity is echoed in the
description of quantum noise, with density matrices replacing probability
distributions [10]. If the state at time n + 1 is the same of the state at time n,
then it is called a stationary distribution. Suppose that µ = Sµ, then µ is a
stationary distribution.

Theorem 4.22. The transition matrix of a Markov Chain is stochastic.

Proof: Since the probability of transitioning from state i to some state must
be 1, we have that this matrix is a stochastic matrix, Sij = Pr(Xn+1 = j|Xn = i),
then ∑j Sij = ∑j Pr(Xn+1 = j|Xn = i) = 1. �

Theorem 4.23. Let p(x0), · · · , p(xn) be a sequence where p(xn+1) = Bp(xn), where
B is a matrix. If p(xn→∞)→ µ = ( 1

n , · · · , 1
n ), then B is a bistochastic matrix.

Proof: Since p(xn+1) = Bp(xn) the following holds ∀j = 1, · · · , n:

p(xn+1)(j) =
n

∑
i=1

Bij p(xn)(i),

p(xn+1)(j) =
1
n

n

∑
i=1

Bij =
1
n

.
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The last reduction stems from the fact that each column sums to 1. As the
value at each j-th index becomes 1

n , this distribution is obviously a stationary
distribution. The Fundamental Limit Theorem of Markov Chains, (see [54]),
states that there is a unique stationary distribution for any probability transi-
tion matrix, therefore, the uniform distribution ( 1

n , · · · , 1
n ), must be the unique

stationary distribution for all bistochastic (or doubly stochastic matrices15),
and any initial p(x0) must converge to µ = ( 1

n , · · · , 1
n ) [55].

We need to define more quantities before discussing some important theo-
rems on stochastic maps and its relationships with the Markovian processes.
The important issues are the relations of the bistochastic maps, the decreasing
of the classical relative entropy and the entropy increasing theorem. But we
need to study first what each concept means with detail.

4.3.3 Conditional Entropy H(X|Y)

If the considered probability vector is given by p(x, y), then the conditional
entropy is H(X|Y) ≡ −Ep(x, y)(log(p(x|y))).

Definition 4.24 (Conditional Entropy). H(X|Y) = − ∑
y∈Y

∑
x∈X

p(x, y) log p(x|y).

Definition 4.25 (Conditional Entropy). H(X|Y) = − ∑
y∈Y

p(y) ∑
x∈X

p(x|y) log p(x|y).

The Def. 4.25 shows the positivity of H(X|Y), because it is a convex
combination of another entropy, therefore H(X|Y) ≥ 0, see [45, 53].

Theorem 4.26 (Chain Rule). H(X, Y) = H(X) + H(Y|X).

Proof: Starting with p(x, y) = p(x)p(y|x), taking the logarithm of both
sides and later taking the expectation of both sides and remembering that
(∑x∈X ∑y∈Y p(x, y) = ∑x∈X p(x)), we get the proof.

p(x, y) = p(x)p(y|x),

log p(x, y) = log p(x) + log p(y|x),

−Ep(x, y)(log p(x, y)) = − Ep(x, y)(log p(x)) + (−Ep(x, y)(log p(y|x)),

− ∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) = − ∑
x∈X

∑
y∈Y

p(x, y) log p(x)− ∑
x∈X

∑
y∈Y

p(x, y) log p(y|x),

H(X, Y) = H(X) + H(Y|X). �

Remark: It is easy to see that in general H(X|Y) 6= H(Y|X), but we will see
later that H(X)− H(X|Y) = H(Y)− H(Y|X). For a numerical example for this
theorem, see [45].

15Again we need to exclude some obvious cases, as the identity matrix and I⊕ B and so on.
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4.3.4 The Joint Entropy H(X, Y)

The definition of entropy of more than one variable is straightforward. This
fact occurs because this new vector (X, Y) can be considered as a single
random variable [45]. Let be a pair of discrete random variables (X, Y) with
a joint probability distribution given by p(x, y). Then the Joint entropy is
defined by H(X, Y) ≡ −Ep(x, y)(log p(x, y)), or in other words:

Definition 4.27 (Joint Entropy). H(X, Y) = − ∑
x∈X

∑
y∈Y

p(x, y) log p(x, y).

The information content of a joint distribution cannot be larger than the
sum of the information contents of the individual distributions. We can state
this phrase precisely with the help of the following theorem:

Theorem 4.28 (The Shannon’s Entropy is sub-additive). H(X, Y) ≤ H(X) +
H(Y). The equality holds iff X and Y are statistical independent variables.

Proof: We divide the proof in two cases. Let us prove first the equality
(Case 1). When two variables are statistically independent, then p(x, y) =
p(x)p(y). If we take the logarithm and the expectation of both sides, we obtain
the proof of the equality. In the Case 2, we suppose that X is not independent
of Y.

Case 1: X and Y are independent random variables:

p(x, y) = p(x)p(y),

log p(x, y) = log p(x) + log p(y),

−Ep(x, y)(log p(x, y)) = −Ep(x, y)(log p(x)) + (−Ep(x, y)(log p(y)),

− ∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) = − ∑
x∈X

∑
y∈Y

p(x, y) log p(x)− ∑
x∈X

∑
y∈Y

p(x, y) log p(y),

H(X, Y) = H(X) + H(Y). �

Case 2: X is not independent of Y. The Shannon’s Entropy is sub-additive:
H(X, Y) ≤ H(X) + H(Y), because X and Y are not independent random vari-
ables. First observe that p(x) = ∑y p(x, y) and p(y) = ∑x p(x, y), then: Proof:

H(X) + H(Y) = −
(

∑
x∈X

p(x) log p(x) + ∑
y∈Y

p(y) log p(y)

)
,

H(X) + H(Y) = −
(

∑
x∈X

∑
y∈Y

p(x, y) log p(x) + ∑
x∈X

∑
y∈Y

p(x, y) log p(y)

)
,

H(X) + H(Y) = −
(

∑
x∈X

∑
y∈Y

p(x, y) log(p(x)p(y)

)
,

On the other hand, H(X, Y) = −∑x∈X ∑y∈Y p(x, y) log p(x, y). Combining
these two last equations (and using the Jensen’s inequality, Theorem 4.17 in
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the inequality a, we obtain:

H(X, Y)− H(X)− H(Y) = ∑
x

∑
y

p(x, y)
(

log
(

1
p(x, y)

)
+ log(p(x)p(y))

)
,

= ∑
x

∑
y

p(x, y) log
(

p(x)p(y)
p(x, y)

)
a
≤ log

(
∑
x

∑
y

p(x, y)p(x)p(y)
p(x, y)

)
,

H(X, Y)− H(X)− H(Y) ≤ log

(
∑
x

p(x) ∑
y

p(y)

)
= 0,

H(X, Y)− H(X)− H(Y) ≤ 0,

H(X, Y) ≤ H(X) + H(Y). �

Corollary 4.29 (Conditioning reduces entropy). H(X|Y) ≤ H(X) and the equal-
ity holds iff X and Y are independent.

Proof: We have already shown that H(X, Y) ≤ H(X) + H(Y), (Theorem
4.28), with equality iff the variables are independent. By using Theorem
4.26, we have H(X, Y) = H(Y) + H(X|Y) ≤ H(X) + H(Y). Thus the corollary
follows immediately, that is H(X|Y) ≤ H(X), and the equality holds iff the
two variables are independent. � Another way to understand this theorem is
to remember this definition: H(X|Y = y) = ∑y∈Y p(y)H(X|Y = y) ≤ H(X). Of
course learning the variable Y cannot reduce our knowledge of the variable
X, in fact the opposite occurs: learning another variable can only increase our
prior knowledge of some other variable, then conditioning can only reduce
the entropy.

This Corollary could be proved in a more simple manner with the defini-
tion of mutual information in hands, in terms of relative entropy, (Subsection
4.3.5), and this proof would follow these steps: First, we prove that the mu-
tual information is non-negative, by using the non-negativity of the relative
entropy then, by using one of the definitions of mutual information that we
obtain the proof.

More Than One Variable

Theorem 4.30. For more than one variable, the Joint Entropy of the set {X1, X2, · · · , Xn}

is H(x1, x2, · · · , xn) =
n

∑
i=1

H(xi|xi−1, · · · , xn).

Proof: Observe that p(x1, x2, · · · , xn) =
n

∏
i=1

p(xi|xi−1, · · · , x1), taking the

logarithm of both sides and then taking the expectation −Ep(x1 , x2 , ···, xn) of
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both sides of this equation, we have:

p(x1, x2, · · · , xn) =
n

∏
i=1

p(xi|xi−1, · · · , x1),

H(x1, x2, · · · , xn) = H(x1) + H(x2|x1) + H(x3|x2, x1) + · · · + H(xn|xn−1, · · · , x1),

H(x1, x2, · · · , xn) =
n

∑
i=1

H(xi|xi−1, · · · , xn). �

4.3.5 Shannon’s Mutual Information function I(X, Y)

The Shannon’s mutual information function quantifies the amount of in-
formation contained in a random variable about another random variable
[53].

Definition 4.31. I(X, Y) = ∑
x∈X

∑
y∈Y

p(x, y) log(
p(x, y)

p(x)p(y)
).

Obviously the mutual information is a symmetric function of the two
variables. We find out as much about the variable X by learning Y as well
as learning Y through X [50]. When the two distributions are independent,
I(X, Y) = 0. In the case where X and Y are the source and the output
of a communication channel, the quantity I(X, Y) measures the amount of
information going through the channel. This amount cannot exceed the
information of the source or that of the output [53]. Therefore, I(X, Y) ≤ H(X)
and I(X, Y) ≤ H(Y). In terms of the conditional entropy and the classical
relative entropy, we can define the mutual information as:

I(X, Y) ≡ H(X)− H(X|Y),

I(X, Y) ≡ H(Y)− H(Y|X),

I(X, Y) ≡ H(X) + H(Y)− H(X, Y).

The mutual information cannot be negative. This property means physi-
cally that learning X can never reduce our knowledge of Y and vice versa [50].
It is easy to see because H(X|Y) ≤ H(X), so I(X, Y) ≡ H(X)− H(X|Y) ≥ 0.
This is also true for I(X, Y) ≡ H(Y)− H(Y|X) ≥ 0 because H(Y|X) ≤ H(Y).

4.3.6 Shannon’s Entropy and Venn’s Diagrams

In the following figure, (Fig. 4.3, [10]), we display a pictorial representation
of the Shannon entropies H(X) and H(Y), the Joint Entropies H(X, Y) and
H(Y, X). Also we have the Conditional entropies H(X|Y) and H(Y|X) and the
Mutual Information I(X, Y) [10, 50]:
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Figure 4.3: Shannon’s entropy and Venn’s diagrams.

4.4 The Classical Relative Entropy D(P||Q)

In information theory, we often need to measure and quantify differences
between two probability distributions P and Q. The classical relative entropy
function was introduced to quantify the divergence between a so called true
distribution P and another distribution Q that, in general, is an approximation,
an estimate or a model of P. Then it is a measure of the inefficiency of
assuming the distribution Q instead using P [45]. However, we see that
despite the classical relative entropy provide us this intuitive concept of
relative distance between two probability vectors, it is not a metric function16.
This function D(P||Q) is often called the Kullback–Leibler divergence function, or
distance function or classical relative entropy.

Definition 4.32 (Classical Relative Entropy). D(P||Q) = Ep(x)(log
p(x)
q(x)

),

D(P||Q) = ∑
x∈X

p(x) log
p(x)
q(x)

.

Theorem 4.33. Let P and Q be two n-dimensional probability distributions, then17

D(P||Q) ≥ 0.

Proof: We are going to use the following inequality for the logarithm
function: ln x ≤ x− 1, and the equality holds iff x = 1 [56]. Let us call x = q(x)

p(x) .
Then:

− ∑
x∈X

p(x) log
q(x)
p(x)

≥ − ∑
x∈X

p(x)
(

q(x)
p(x)
− 1
)

,

− ∑
x∈X

p(x) log
q(x)
p(x)

≥ − ∑
x∈X

q(x) + 1,

16It is obvious that a huge problem happens when we are trying to compare two probability
distributions and one is defined by Q = {1, 0, · · · , 0}. Another consideration is that D(P||Q) is
often not equal to D(Q||P), then the relative entropy is usually not symmetric. These are some of
the reasons why the relative entropy can not be considered as a metric function.

17The Gibb’s inequality is a special case of this theorem. Since D(P||Q) ≥ 0, then
∑

x∈X
p(x) log p(x) ≥ ∑

x∈X
p(x) log q(x).
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∑
x∈X

p(x) log
p(x)
q(x)

≥ −1 + 1,

D(P||Q) ≥ 0. �

It is easy to see that the equality in the theorem 4.33 holds iff x = 1, i.e., if
x = q(x)

p(x) = 1, which implies that p(x) = q(x) for all x, or in other words: P = Q

[10]. Then D(P||Q) is always non-negative18.
We could define the mutual information as I(X, Y) ≡ D(p(x, y)||p(x)p(y)).

We have already shown that D(p(x, y)||p(x)p(y)) ≥ 0, and the equality holds
iff X and Y are statistical independent, i.e., p(x, y) = p(x)p(y), thus the mutual
information is also a non-negative quantity.

The following Theorem will be useful later in Section 4.5, when we try to
understand the Second Law of Thermodynamics for Markovian processes.

Theorem 4.34 (The Chain Rule for the Relative Entropy). D(P(x, y)||Q(x, y)) =
D(p(x)||q(x)) + D(p(y|x)||q(y|x)).

Proof:

D(P(x, y)||Q(x, y)) = ∑
x

∑
y

p(x, y) log
(

p(x, y)
q(x, y)

)
,

D(P(x, y)||Q(x, y)) = ∑
x

∑
y

p(x, y) log
(

p(x)p(y|x)
q(x)q(y|x)

)
,

D(P(x, y)||Q(x, y)) = ∑
x

∑
y

[
p(x, y) log

(
p(x)
q(x)

)
+ p(x, y) log

(
p(y|x)
q(y|x)

)]
,

D(P(x, y)||Q(x, y)) = D(p(x)||q(x)) + D(p(y|x)||q(y|x)). �

4.4.1 The Classical Relative Entropy Means Something

Theorem 4.35 (Sanov’s Theorem - Binary Case). Let an experiment be described
by the following probability distribution Q = {q, (1− q)}, and let it be repeated
N times. Let E ⊂ S be a set of probability distributions, such is the closure of its
interior, and let S be a probability simplex. Then, for large N , the probability P of the
following frequency distribution P = { m

N , (1− m
N )} belonging to E, is obtained by

P(E) ≈ e−ND(P∗ ||Q), where P∗ is the distribution in E, which has the smallest value
of D(P||Q), i.e., P∗ = argmin{P∈E}D(P||Q) [31].

The proof needs some strong results of the large deviation theory19 and it
is beyond of the scope of this introductory text. But the reader can find these
results, including the proof of the law of large numbers, in the Chapter 11 of
[45]. But following the simple exercise discussed in [31], we can understand the
essence of the Theorem 4.35 and try to figure its proof. In fact, we consider just

18A more elegant (and easier) way to proof the theorem 4.33 is to apply the Jensen’s inequality
for concave functions, with x = q(x)

p(x) , and with f = log(?), (Theorem. 4.17). Then, Ep(x)( f ( q(x)
p(x) )) =

−D(P||Q) ≤ f (Ep(x)(
q(x)
p(x) )) = log(∑(p(x) q(x)

p(x) )), then −D(P||Q) ≤ log 1 = 0 ⇒ D(P||Q) ≥ 0. �
19The theory of large deviations concerns the asymptotic behaviour of sequences of probability

distributions, see [45].
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the binary case of this theorem simply for this reason. The set of frequencies
P = { m

N , (1− m
N )} is a matter of counting how many strings of outcomes exist

with each given frequency [31]. We know how to calculate the probability
P( m
N ) by using the Binomial theorem and the Stirling’s approximation for

large N :

P( m
N ) = (Nm)qm(1− q)N−m,

ln(P( m
N )) ≈ −N{ m

N [ln( m
N )− ln(q)] + (1− m

N )[ln(1− m
N )− ln(1− q)]},

P ≈ e−ND(P||Q),

Sanov’s Theorem: P(E) ≈ e−ND(P∗ ||Q).

Figure 4.4: An example of Sanov’s Theorem: the probability simplex with the
probability distributions P∗ and Q.

Of course D(P∗||Q) can be a positive number in the convex set E, (which is,
in this case, a triangle, see Fig. 4.4, [45]). If D(P∗||Q) > 0, then the only way to
increase the probability is increasing the number of attempts N . In this figure,
we can see a pictorial representation of the optimal value P∗ attained in the
convex set E. The distance between P∗ and Q, in this case, is non-zero. But
the presented case in the binary exemplification of the Theorem 4.35 is too
simple. As soon as the number of attempts increases, the P∗ → Q, by using

the weak formulation of the law of large numbers, that is
∣∣∣m(N )
N − q

∣∣∣ → 0,
when N → ∞, then when N is large enough20 the probability is near to 1.

Theorem 4.36 (The Minimum Relative Entropy Theorem). Let P be a normal-
ized distribution and let Q = { 1

n} be a normalized homogeneous distribution. Then
the principle of maxent with the normalization as the unique constraint (4.16), is
equivalent to the minimization of the classical relative entropy of P relative to the homo-
geneous distribution, i.e., maxX{H(X), ∑ p(x) = 1} is identical to minX{D(P||Q),
∑ p(x) = ∑ q(x) = ∑ 1

n = 1}.
20The magic here is the exponential convergence of the sequences granted by the theory of

large deviations.
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Proof: The relative entropy is a convex function. Then it has a point of
minimum, then δ[D(P||Q)] = 0 and δ2[D(P||Q)] > 0.

δ[D(P||Q)] = 0,

δ[D(P||Q)] = δ[ ∑
x∈X

p(x) log(p(x))] + δ[ln n ∑
x∈X

p(x)],

δ[D(P||Q)] = −δ[H(X)],

δ2[D(P||Q)] > 0⇒ δ2[H(X)] < 0. �

Then it is true that:

max{p(x)∈X}{H(X), ∑ p(x) = 1} is equivalent to

min{p(x)∈X}{D(P||Q), ∑ p(x) = ∑ 1
n = 1}.

Remark: The uniqueness of the solution of both theorems (maximizing the
entropy 4.16) and (minimizing the relative entropy between the given distribu-
tion and the one which has the maximum entropy 4.36) is guaranteed because
they are equivalent convex optimization problems over a closed compact set
and thus they yield a unique solution [57].

When there exists more constraints than the normalization one, we can use
the maxent principles by adding some proper constraints. But the Minimum
Relative Entropy Theorem can not easily be used, because this principle
assumes that there is one true probability distribution or model.

When there exists constraints, the only guarantee is that the probabilities
are treated equally, without any bias, thus this claims a maximization of
the entropy in a constrained set. But, of course, it does not imply that all
probabilities will be equal to 1

n . In fact, when we have constraints this solution
is not, in general, compatible with the constraints21.

The strength of the principle of minimum relative-entropy is precariously
dependent on the knowledge of the true probability distribution, and it pro-
vides any mathematical meaning to communicate the amount of faith we have
in it [57]. In Section 4.6, this issue is addressed properly.

4.4.2 A Geometrical Significance of The Classical Relative Entropy

We already know that the classical relative entropy D(P||Q) cannot be con-
sidered as a metric function. It has some properties that a good candidate of
metric function must have, but it is not symmetric. We have already proved
that the classical relative entropy is a non-negative quantity 4.33. In fact

D(P||Q) ≥ D2
2(P, Q), where D2

2(P, Q) ≡ 1
2

n

∑
i=1

(pi − qi)2 [31].

Theorem 4.37. D(P||Q) ≥ D2
2(P, Q).

21Special thanks to all folks from InfoQuant (|IQ〉) for all those lovely discussions about this
fact.
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Proof: (Due to [31]). Every smooth function obeys: f (x) = f (y) + (x −
y) f ′(y) + 1

2 (x − y)2 f ′′(ξ), with ξ ∈ (x, y) [31]. Setting22 f (x) = −x ln x, with
f ′′(ξ) ≤ −1, when 0 ≤ ξ ≤ 1, and with a rearrangement of terms we prove
the theorem:

f (x) = f (y) + (x− y) f ′(y) + 1
2 (x− y)2 f ′′(ξ),

−x log x = −y log y− (x− y)(log y + 1) + 1
2 (x− y)2 f ′′(ξ),

−x log x = −x log y− (x− y) + D2(x, y) f ′′(ξ),

−x log x + x log y = −(x− y) + D2(x, y) f ′′(ξ),

−D(x||y) = −(x− y) + D2(x, y) f ′′(ξ),

D(x||y) a= (y− x)− D2(x, y) f ′′(ξ),

D(x||y)
b
≥ c + D2(x, y),

D(x||y) ≥ D2
2(x, y).

In a, we put max{0≤ξ≤1} f ′′(ξ) = −1 and in b, we defined (y− x) = c > 0.

Theorem 4.38 (Pythagorean Theorem). [45] Let E ⊂ S be a convex set, where
S is the probability simplex. Let P ∈ E be a distribution and let Q /∈ E be another
distribution. If P∗ ∈ E is the distribution that achieves the minimum distance to Q;
that is, D(P∗||Q) = min{P∈E}D(P||Q). Then D(P||Q) ≥ D(P||P∗) + D(P∗||Q), for
all P ∈ E.

Proof: (Also due to [45]). Consider a distribution P ∈ E. Let Pλ =
λP + (1− λ)P∗. Of course Pλ → P∗ when λ → 0. As E ⊂ S is a convex set
and Pλ is constructed as a convex mixture, all Pλ ∈ E ∀λ. Since D(P∗||Q)
is the minimum of D(Pλ||Q) along the path Pλ → P∗, the derivative of
d

dλ (Dλ(Pλ||Q))|λ=0≥ 0. Then:

d
dλ

(Dλ(Pλ||Q))|λ=0= ∑
x

[
(P(x)− P∗(x)) ln

(
P∗(x)
Q(x)

)
+ (P(x)− P∗(x))

]
≥ 0.

Using the fact that ∑x P(x) = ∑x P∗(x) = 1,

∑
x

[
(P(x)− P∗(x)) ln

(
P∗(x)
Q(x)

)]
≥ 0,

∑
x

[
P(x) ln

(
P∗(x)
Q(x)

)
− P∗(x) ln

(
P∗(x)
Q(x)

)]
≥ 0,

∑
x

[
P(x) ln

(
P(x)P∗(x)
Q(x)P(x)

)
− P∗(x) ln

(
P∗(x)
Q(x)

)]
≥ 0,

∑
x

[
P(x) ln

(
P(x)
Q(x)

)
− P(x) ln

(
P(x)
P∗(x)

)
− P∗(x) ln

(
P∗(x)
Q(x)

)]
≥ 0,

D(P||Q)− D(P||P∗)− D(P∗||Q) ≥ 0,

D(P||Q) ≥ D(P||P∗) + D(P∗||Q). �

22From now on, we will use ln instead of log in the definition of D(P||Q), and we will
completely omit the factor of conversion.
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Figure 4.5: The Pythagorean theorem.

The Pythagorean theorem (4.38) shows an interesting property of D(?||?).
It shows that the classical relative entropy behaves like the square of the
Euclidean distance.

Note that it is easier to understand this theorem by consulting the Figure
4.5, [45]. We have three triangles here: The convex subset E of the probability
simplex S, which is, in this case, a triangle, the simplex S itself is a triangle
and we can make a drawing of a triangle with vertices P, P∗, Q. Fixed a point
P ∈ E, then we have another distribution P∗ ∈ E, in such a way it achieves
the minimum distance to the distribution Q. These distances, obviously, form
a triangle.

Using a certain type of triangle inequality and the fact that D(?||?) ∼ d2,
where d2 is the Euclidean distance between the two distributions (distance
between two n-dimensional vectors in Rn

+), and by using Theorem 4.38, we
can write d2(P, Q) ≥ d2(P, P∗) + d2(P∗, Q). Then the angle α ≡ 6 (PP∗, P∗Q)
must always be an obtuse angle.

4.4.3 The Convergence in Relative Entropy

We prove now a useful theorem which shows that convergence in relative
entropy (D(P||Q)) implies convergence in the L1 norm (‖?‖1) [45].

Definition 4.39 (L1 norm). [45] The L1 distance between two distributions P1 and
P2 is given by: ‖P1 − P2‖1 = ∑a∈X |P1(a)− P2(a)|.

Lemma 4.40. Let P1 and P2 be two probability distributions and let A be the set on
which P1(x) > P2(x), and let us suppose that B ⊆ X. Then:

maxB⊆X{P1(B)− P2(B)} = P1(A)− P2(A) =
‖P1 − P2‖1

2
.
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Proof: (Due to [45]).

‖P1 − P2‖1 = ∑
x∈X
|P1(x)− P2(x)|,

= ∑
x∈A

(P1(x)− P2(x)) + ∑
x∈Ac

(P2(x)− P1(x)),

= P1(A)− P2(A) + P2(Ac)− P1(Ac),

= P1(A)− P2(A) + (1− P2(A))− (1− P1(A)),

= 2(P1(A)− P2(A)),
‖P1 − P2‖1

2
= P1(A)− P2(A),

maxB⊆X{P1(B)− P2(B)} = P1(A)− P2(A) =
‖P1 − P2‖1

2
. �

Theorem 4.41. The convergence in relative entropy implies convergence in the L1
norm.

Proof: (Also due to [45]). Consider two binary23 probability distributions
P1 = {p, (1− p)} and P2 = {q, (1− q)}, and, without loss of generality, let us
suppose that p ≥ q. We need to show that:

D(P1||P2)
a
≥ 4

2
(p− q)2,

p log
p
q

+ (1− p) log
(1− p)
(1− q)

b
≥ 4

2
(p− q)2,

g(p, q)
c≡ p log

p
q

+ (1− p) log
(1− p)
(1− q)

− 4
2

(p− q)2 ≥ 0,

dg(p, q)
dq

= − p
q

+
(1− p)
(1− q)

− 4
2

2(q− p),

dg(p, q)
dq

=
(q− p)
q(1− q)

− 4(q− p) ≤ 0,

D(P1||P2) ≥ 4
2

(P1(A)− P2(A))2,

D(P1||P2)
d
≥ 1

2
‖P1 − P2‖2

1. �

In a, we forget wittingly the conversion factor ln 2 needed, in order to easily
perform the derivative. The strange factor 4

2 is used in step e. In b, we just
substitute the binary distributions. In c, we define a function g(p, q) ≥ 0, for
q ≤ p. Since q(1− q) ≤ 1

4 , 1
q(1−q) ≥ 4. The inequality d is obtained squaring

the result given in the Lemma 4.40. It shows that the convergence in relative
entropy implies convergence in the L1 norm.

23The proof is given just for the binary case.
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4.5 The Second Law of Thermodynamics for Markovian
Processes

Only entropy comes easy.

Anton Chekhov–Russian playwright and
master of the modern short story, 1860-1904.

The entropy of an isolated system, in the micro-canonical ensemble, is
defined as the logarithm of the number of the micro-states occupied, or in other
words, S = kB ln Ω where the kB is the Boltzmann constant, presented here
just for dimensional reasons. This definition agrees with our intuition that, in
an isolated system at thermal equilibrium, all micro-states are equally likely.
The basic idea of Classical Statistical Mechanics is that every microscopic
state possible occurs in practice because all measured properties are actually
averages from all micro-states [28].

But why does entropy increase? This question is difficult to be answered
for complex systems and for non-equilibrium systems. But for systems in quasi-
equilibrium, we can construct a model consisting of a Markov chain in which
the transitions obey all the physical laws governing the system [45]. Implicit
in this assumption is the notion of an overall state of the system and the fact
that if we know the present state of the system, its future is independent of
the past. In such a system, we can find some different interpretations of the
second law. It may come as a shock to find that the entropy, for these kind of
processes, does not always increase. But relative entropy always decreases [45].

The assumption of Markovianity may appear to be a little bit strong, and
it might be for some systems in Classical Statistical Mechanics. In fact, the
Markovianity assumption can be stated if a system reaches the thermodynamic
equilibrium. In Classical Information Theory, the systems are described
by probability vectors, and in Quantum Mechanics, they are described by
their density matrices each one representing, respectively, their classical and
quantum distribution of probabilities. In Chapter 5, we will study the quantum
systems and we will try to understand their evolution in the space of the
density matrices as an analogy to the evolution of the classical probability
vectors inside the probability simplex.

We showed that if a distribution evolves in the probability simplex by
a bistochastic map, it is equivalent to understand this process as a Markov
chain. We also presented in Theorem 4.23 that the stationary distribution
for bistochastic evolution is the uniform vector. We shall find, somewhat
surprisingly, that the second law is only true for Markov processes in which
the equilibrium distribution is the uniform over the finite state space [58].
The next theorems will try to capture the essence of the Second Law of
Thermodynamics, for Markovian processes.

Theorem 4.42. For Markovian processes, the relative entropy D(Pn||Pn′ ) decreases
when n increases, i.e., D(p(xn)||p′ (xn)) ≥ D(p(xn+1)||p′ (xn+1)).

Proof: (Due to [45]). Suppose that Pn and P
′
n denotes probability distribu-

tions at time n and let Pn+1 and P
′
n+1 be the corresponding distributions at time
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n + 1. Thus, P(xn, xn+1) = p(xn)r(xn+1|xn) and P
′
(xn, xn+1) = p

′
(xn)r(xn+1|xn),

where r(?|?) is the probability transition function for the Markov chain. We
know by the Bayes’ Rule, that p(xn, xn+1) = p(xn)p(xn|xn+1), or p′(xn, xn+1) =
p′(xn+1)p′(xn+1|xn), then using the Theorem 4.34, (the chain rule for relative
entropy, we have):

D(p(xn, xn+1)||p′ (xn, xn+1)) = D(p(xn)||p′ (xn)) + D(p(xn+1|xn)||p′ (xn+1|xn)),

D(p(xn, xn+1)||p′ (xn, xn+1)) = D(p(xn+1)||p′ (xn+1)) + D(p(xn|xn+1)||p′ (xn|xn+1)).

But D(p(xn+1|xn)||p′ (xn+1|xn)) = 0, because p(xn+1|xn) = p
′
(xn+1|xn) = r(xn+1|xn).

Thus by using the non-negativity of D, we prove the fact that relative entropy
decreases when n increases: D(p(xn)||p′ (xn)) ≥ D(p(xn+1)||p′ (xn+1)). �

Theorem 4.43. If the relative entropy between a distribution Pn and a stationary
uniform distribution (µ ≡ 1

n ) decreases with n, i.e., D(Pn||µ) ≥ D(Pn+1||µ) ≥ · · ·
≥ · · · ≥ 0, then we have a Markovian process.

Proof: [45] This Theorem is obvious since we have already proved in The-
orem 4.23 that Pn → µ for Markovian processes, i.e., the uniform distribution
is the stationary vector when the probability transition matrix is a bistochastic
matrix. This sequence is a monotonically, non-increasing and nonnegative
sequence and it must therefore have a limit. Then we can say that the limit
is zero, because we know that D(?||?) ≥ 0, so D(Pn||µ) ≥ D(Pn+1||µ) for all n
and D(Pn||µ)→ 0 when n→ ∞. �

Theorem 4.44. Entropy increases in Markovian processes if the stationary distribu-
tion is uniform.

Proof: The decrease in relative entropy does not implicate in a increase
of entropy, in general. A simple counterexample is provided by any Markov
chain with a non-uniform stationary distribution [45]. But, if the stationary
distribution is the uniform distribution, then the entropy increases. This is
our case because these type of processes are given by bistochastic matrices
and we have already discussed in Theorem 4.23 that the uniform distribution
is the stationary vector when the probability transition matrix is a bistochastic
matrix. Let us define µ ≡ 1

n , then:

D(Pn||µ) = log n− H(Pn),

We can easily perceive that a monotonic decrease in the amount of D implies
a monotonic increase in the entropy. This is the explanation that lies closer
to statistical thermodynamics, where all the micro-states are equally likely
[45]. And since the minimum of D(Pn||µ) is zero, the maximum value for the
entropy is log n. �

Theorem 4.45. Suppose that we have a Markovian process such that ~̃p = B~p where
B is a bistochastic matrix. Then H(~̃p) > H(~p).
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Proof: Since ~̃p = B~p, by Theorem 4.7, we can say that ~̃p ≺ ~p. We already
know that the Shannon’s entropy is a Schur concave function, then it inverts
the majorization ordering: H(~̃p) > H(~p). We could prove this theorem by
exhibiting the j-th element of the ~̃p vector in terms of the bistochastic transition
matrix and later perform some calculations with the definition of entropy. �

4.6 The Jaynes Principle and the maxent Principles

4.6.1 The Principle of Insufficient Reason and The Jaynes
Principle

The problem of finding a probability distribution by the knowledge of a subset
of its moments, i.e., the problem of determination of the remaining probabili-
ties in cases where little information is reachable, is as old as the theory of
probability. The Laplace’s principle of insufficient reason was the first attempt in
that sense [49]. It states that, in the discrete case, if n probabilities are indis-
tinguishable and if you do not have any further information, the least biased
distribution, which infers the minimum correlation between the unknown
variables assigns all the n events equally likely [57]. The concept of entropy
supplants the arbitrariness of Laplace’s principle, and it presents a reasonable
way to modify it when there are constraints and symmetries in the considered
system [57, 59]. The statistical inference based on Shannon’s information the-
ory, in which the entropy function is a measure of our ignorance, claims that
the most unbiased representation of a state is a probability distribution which
has the maximum value possible of the entropy (the problem maxent) subject
the constraints given by the information known apriori [49]. This principle
is known in Classical Statistical Mechanics as the Jaynes principle and it is a
generalization of Laplace’s principle [49, 60]. In the following sections, we
will justify these maxent principles.

4.6.2 The maxent Principles

The maxent Principle

The maximum-entropy principle [49, 60] is at the heart of statistical mechanics
and thermodynamics. It allows one to select a probability distribution that is
optimally unbiased, while considering the knowledge that is available for the
system [59]. This principle states that the best probability distribution is that i)
is compatible with our state of knowledge, ii) maximizes the entropy function
under the constraints given by i). Since the entropy is a measure of the lacking
information about a system, any set of probabilities that does not maximize
the entropy contains additional unknown assumptions. Thus, it does not
correspond to an unbiased choice [59]. We showed in Theorem 4.16 that if all
probabilities are equally likely for a system with n possible outcomes, then
the maximum principle follows immediately. More precisely, if we only have
the normalization constraint, i.e., with the constraint ∑x P(x) = ∑x

1
n = 1, we
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can say:

argmin{x∈X}{D(P(X)|| 1
n

)} = argmax{x∈X}{H(P(X))}. (4.1)

In other words, the distribution that lies closer to the uniform distribution
can be also achieved by maximizing the entropy. To make this problem more
likely and interesting, we can add some other linear constraints. In Classical
Statistical Mechanics, we maximize the entropy with further restrictions and
constraints beyond the normalization. Thus, the maxent principle can be used
to solve these constrained problems.

But what do these constraints mean physically? The n-dimensional state of
knowledge about an experiment can be described by a set of mean values of
some physical quantities, namely 〈A1〉, 〈A2〉, · · · , 〈An〉, for example, we may
have n linear constraints for these mean values like24 〈E〉 = E0, ⇒ ∑i piEi = E0.
Recalling that in Section 3.2, we have discussed that we can understand
completely a physical system first describing an algebra for the observables
and the state of the physical system is fully represented by expectations of all
observables over the space. These linear constraints might be the energy, the
temperature of a fluid, the average number of particles, or the distribution of
velocities of the particles in movement, etc.

Laplace’s principle of insufficient reason assumes uniformity when we do
not have enough information. But clearly this is not the point here anymore.
Because of this amount of information given by these linear constraints, the
uniform distribution is not the solution for the optimization problem given by
the Eq. 4.1. With this fact in mind, we can define the maxent problem as an
optimization problem as done in Eq. 4.2

max{pi∈X}{H({pi}), s.t. ∑
i

pi = 1, ∑
i

piEi = E0}. (4.2)

We can construct a Lagrangian function to solve this optimization problem
referred to the Eq. 4.2, [61]. This functional is constructed with the help of the
Lagrange multipliers, thus:

The maxent problem:

L = −∑
i

pi ln pi + λ

(
∑

i
pi − 1

)
+ β

(
∑

i
piEi − E0

)
. (4.3)

As the entropy25 function H is a continuous function of pi, the solution for
the problem 4.3, stated in form of a lagrangian function, is given by:

∂L
∂pi

= 0, ∀i ∈ X, (4.4)

∂L
∂λ

= 0, (4.5)

∂L
∂β

= 0. (4.6)

24We will change notations here to simplify the calculations, then x → i in order to ensure
that we are working with discrete problems, but of course this formalism can be extended to
continuous basis.

25The factor kB - the Boltzmann constant - is set equal to 1.
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Performing these derivatives defined in Eqs. 4.4, 4.5 and 4.6, we find:

− ln pi − 1 + λ + βEi = 0, ∀i ∈ X, (4.7)

∑
i

pi − 1 = 0, (4.8)

∑
i

piEi − E0 = 0. (4.9)

Solving these equations 4.7, 4.8 and 4.9, we obtain the probability distribution
that fulfill these equations:

pi = e(1−λ)e(−βEi). (4.10)

The Lagrange multiplier λ exists just for normalization reasons, and it is
settled in order for the probability distribution to be normalized, i.e., ∑i pi = 1.
Thus we finally get the equilibrium distribution:

The solution of the maxent problem:

P∗ ≡ {pi}n
i=1, such that pi =

e−βEi

Z
. (4.11)

Where Z ≡ ∑i e−βEi is the partition function. This function plays an important
role in Mechanical Statistics, see, for example, [28, 52]. The functional26 L
can be re-written by substituting the solution, i.e., the equilibrium probability
distribution pi (Eq. 4.11), and having in mind that ln pi = − ln Z− βEi:

L = −∑
i

pi[− ln Z− βEi]− β[∑
i

piEi − E0],

L = ∑
i

pi ln Z + β ∑
i

piEi ,

L = ln Z + βE0.

The dependence on the Lagrange multiplier λ vanishes because the corre-
sponding constraint is fulfilled [59]. Then the equation ∂L

∂β = 0 implies that

E0 = − ∂ ln Z
∂β in equilibrium. And as said before, when all constraints are

fulfilled, we have L = H, then H = ln Z + βE0.

Physical Meaning of the Lagrange Multipliers

Let us consider a system27 composed by two isolated and independent sub-
systems 1 and 2. When the two subsystems are brought into contact, the
values of the energy may change individually. But as these two subsystems
are isolated, the total energy must remain constant, Etot = E1 + E2 = const. The
total entropy28 of the system is additive. Let us define a slack variable or a

26This functional L is identical to the entropy function because, when all constraints are
fulfilled, the constraints will vanish.

27This subsection is totally inspired by [59].
28Here we use the notation S for entropy instead H because of the connection with Thermody-

namics, but, in this text, we prefer to write H for the Shannon-Gibbs entropy and S for the Von
Neumann entropy.
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free parameter λ, which is adjusted via transitions between states in order to
maximize the entropy, hence λ ≡ E1 − E2, then E1 = Etot

2 + λ
2 and E2 = Etot

2 −
λ
2

, S(Etot, λ) = S1(E1) + S2(E2) = S1( Etot
2 + λ

2 ) + S2( Etot
2 −

λ
2 ). Then, by using the

maxent principle, we have:

∂

∂λ
S(Etot, λ) = 0,

∂

∂λ
S(Etot, λ) =

1
2

dS1

dE1
− 1

2
dS2

dE2
= 0,

dS1

dE1
=

dS2

dE2
.

Hence the energy moves back and forth between the two subsystems until the
system reaches a point, where the increase of the entropy of one system is
identical to the loss of entropy of the other [59].

Now we must show that the derivative of the entropy is related to a
Lagrange multiplier. We start from this equation S = H = ln Z + βE0, then:

∂S
∂E0

=
d

dβ
ln Z(β)

dβ

dE0
+

dβ

dE0
E0 + β,

∂S
∂E0

=
[

d
dβ

ln Z(β) + E0

]
dβ

dE0
+ β.

We know that E0 = − d
dβ ln Z(β), then [ d

dβ ln Z(β) + E0] = 0, hence, we will find

the expected result: ∂S
∂E0

= β.

Theorem 4.46. Let Q = {qi}n
i=1 be a probability distribution that satisfies all the

constraints of the problem maxent (Eq. 4.3), and let P∗ = {pi}n
i=1 be the solution of

the same problem (Eq. 4.11). Then H(Q) ≤ H(P∗), and the equality holds iff Q = P∗.

Proof: Let Q be a distribution that satisfies all the constraints of the maxent
problem, ∑i pi = ∑i qi = 1 and ∑i piEi = ∑i qiEi = E0, then:

H(Q) = −∑
i

qi ln qi ,

H(Q) = −∑
i

qi ln
(

qi pi
pi

)
,

H(Q) = −∑
i

qi ln
(

qi
pi

)
−∑

i
qi ln pi ,

H(Q) = −D(Q||P∗)−∑
i

qi ln pi ,

H(Q)
a
≤ −∑

i
qi ln pi ,

H(Q)
b
≤ −∑

i
qi ln

(
e−βEi

Z

)
,

H(Q) ≤ −∑
i

qi(−βEi − ln Z),
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H(Q) ≤ β ∑
i

qiEi + ∑
i

qi ln Z,

H(Q)
c
≤ βE0 + ln Z = H(P∗),

H(Q) ≤ H(P∗). �

The inequality a is due to the positivity of D. In b, we only substituted the
value of the equilibrium distribution P∗ = {pi} given in Eq. 4.11 and in c, we
use the fact that Q also satisfies all the constraints of the problem.

Corollary 4.47. H(P∗) is the global maximum point of the maxent problem.

Proof: This proof is straightforward since we have already shown that the
maxent problem is a concave problem over a compact and convex set. We
have shown that H(Q) ≤ H(P∗), for all distributions Q which satisfies the
constraints, and we also know that the concave problems must have only one
point of maximum, then the global maximum point is reached when Q = P∗

with H(Q) = H(P∗).

4.6.3 The minRelativeEntropy Principle

This problem (minimize the relative entropy), is a convex problem over a
convex set and it has a global minimum. The Theorem 4.36 relates the
unconstrained maxent problem with also the unconstrained minRelativeEntropy
problem, but it is not the case here. We do not have any reason to adopt
the uniform distribution as the stationary distribution. Let the stationary
distribution be called P0. If our process is described by a Markovian process,
this distribution P0 might be equal to the uniform distribution. Analogously,
we can follow the same steps for the maxent problem, then:

min{pi∈X}{D(P||P0), s.t. ∑
i

pi = 1, ∑
i

piEi = E0}. (4.12)

We can construct a Lagrangian function to solve the problem 4.12. This
function is constructed also with the help of the Lagrange multipliers, then:

The minRelativeEntropy problem:

L = ∑
i

pi ln
(

pi
p0i

)
+ λ

(
∑

i
pi − 1

)
+ β

(
∑

i
piEi − E0

)
. (4.13)

We find the solution for the problem 4.13 doing the same derivatives given by
4.4, 4.5 and 4.6, then find another equilibrium distribution:

The solution of the minRelativeEntropy problem:

pi = p0i
e−βEi

Z
, (4.14)

Z = ∑
i

p0ie−βEi . (4.15)
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4.7 Some Other Classical Statistical Inference Schemes

As a rule, probable inference is more like
measuring smoke than counting children...

Richard Cox

In the following subsections, we will give some examples of some classical
statistical estimation schemes.

4.7.1 The Classical Maximum Likelihood Principle

Firstly, R. A Fisher published an interesting prototype of a numerical proce-
dure in 1912 in [62], and, ten years later, the maximum likelihood principle
was introduced formally by him in this article: [63], which considers Fisher’s
changing justifications for the method, the concepts he developed around it
(including likelihood) and all approaches he discarded including, for example,
inverse of probability [64].

Consider a family of probability distributions on Rn indexed by a vector ~x,
with densities px(?). When considered as a function of ~x = (x1, x2, · · · , xn)t

for some vector ~y, the function px(~y) is called the likelihood function (L) [61].
It is convenient to work with its logarithm log(L), the log-likelihood function.
Since logarithm is a strictly monotonic and increasing function of ~y, it is
obvious that maximizing L is the same of maximizing the functional logL.

Definition 4.48 (The Likelihood function). L = p~x(~y).

Definition 4.49 (The Log-Likelihood function). logL = log p~x(~y).

There are often constraints on the values of the vector ~x which can represent
prior knowledge about ~x, or the domain of the likelihood function. Now,
consider the problem of estimating the value of the ~x based on observing one
sample y from the distribution [61]. A commonly used method in order to
estimate ~x is called Maximum Likelihood (ML) estimation and it is shown in
Eq. 4.16 [61].

~xML = argmax{~x∈C}{logL = log p~x(~y)}. (4.16)

The Eq. 4.16 says that we need to choose, as our estimate, a value of the
parameter that maximizes the log-likelihood function for the value of ~y that
we observed [61]. Therefore the problem of finding a maximum likelihood
estimate of the vector ~x can be stated as:

max{logL = log p~x(~y)}. (4.17)

~x ∈ C. (4.18)

where C is the restriction set, nearly always a convex set. This constraint gives
the prior information on the parameter vector ~x, or in other words ~x ∈ C. The
maximum likelihood estimation problem Eq. 4.17 is a convex optimization
problem if the log-likelihood function L is concave for each value of yi, and
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the set C can be described by a set of linear equality and convex inequality
constraints, a situation which occurs in many estimation problems.

Let us reproduce a good example given by Fisher, in 1922, in this article:
[63]. “A certain proportion, p of an infinite population is supposed to be
a certain kind e.g., successes, the remainder are then failures. A sample of
size equal to n is taken and found to contain a number x of successes and y
failures, then x + y = n. The chance of obtaining such a sample is [63]”:

n!
x! y!

px(1− p)y.

Applying the method of maximum likelihood, we have:

logL = log
(

n!
x! y!

)
+ x log p + y log(1− p),

Whence, by differentiating with respect to the parameter p, and obtaining the
maximum value of the log-likelihood function and substituting x + y = n, we
find the expected solution:

x
p

=
y

1− p
,

p =
x
n

.

4.7.2 The Classical Maximum Likelihood Principle and the
Parametric Model

Suppose there is a set x1, x2, · · · , xn of n independent and identically dis-
tributed observations, (IID) coming from an unknown distribution p0. But
it is supposed that this unknown distribution belongs to a certain family of
distributions, called parametric model {p(?|θ), θ ∈ C}, so that p0 = p(?|θ0).
The true value of the parameter θ0 is assumed as unknown. We would like to
use the Maximum Likelihood inference scheme in order to reach a value, as
close as possible, to the true value of θ0. Regarding to use of the Maximum
Likelihood method, we must first specify the joint density function for the
observed data. For an IID sample, this function is given by Eq. 4.19 [61].

p(x1, x2, · · · , xn|θ) = p(x1|θ)p(x2|θ) · · · p(xn|θ). (4.19)

The vector ~x = (x1, x2, · · · , xn) is considered to be a fixed parameter and θ
is the variable allowed to vary freely. Then we can construct a Likelihood
function:

L(θ|x1, x2, · · · , xn) =
n

∏
j=1

p(xj|θ). (4.20)

And the Log-likelihood can be defined as:

logL(θ|x1, x2, · · · , xn) =
n

∑
j=1

log p(xj|θ). (4.21)
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Therefore we need to solve the following optimization problem:

max{θ∈Θ}{logL(θ|x1, x2, · · · , xn) =
n

∑
j=1

log p(xj|θ).},

~x ∈ C,

θ ∈ Θ.

For solving this problem and other similar problems based on ML estimate,
see [61].

Linear Measurements with IID Noise

We consider a linear measurement model given by:

yi = at
i x + εi , ∀i = 1, · · · , m.

where ~x ∈ Rn is a vector of parameters to be estimated, yi ∈ R are the
measured quantities and the εi are the IID noise or error [61]. The likelihood
function is then:

Definition 4.50 (The Likelihood function). L =
m

∏
i=1

p(yi − at
i~x).

And the log-likelihood function is:

Definition 4.51 (The Log-Likelihood function). logL =
m

∑
i=1

log p(yi − at
i~x).

The ML estimate is any optimal point for the optimization problem:

max{logL =
m

∑
i=1

log p(yi − at
i~x)}, (4.22)

~x ∈ C. (4.23)

Maximum a posteriori probability estimation - MAP

Maximum a posteriori probability (MAP) estimation can be considered as a
Bayesian version of the maximum likelihood estimation, with a prior prob-
ability density on the underlying parameter ~x [61]. We assume that ~x (the
vector to be estimated) and ~y (the observation) are random variables with a
joint probability density given by p(x, y). The prior density of x is given by:

px(x) = ∑
y

p(x, y).

This density represents our prior information on which values of the vector x
might be, before we observe the vector ~y. Similarly, the prior density of y is
given by [61]:

py(y) = ∑
x

p(x, y).
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This density represents the prior information on which measurements or
observations of vector ~y will be. The conditional density function of ~y, given
~x, is given by:

p(y|x) =
p(x, y)
px(x)

.

In the MAP estimation method, p(y|x) plays the role of the parameter depen-
dent density px in the maximum likelihood estimation setup. The conditional
density of ~x, given ~y, is given by:

p(x|y) =
p(x, y)
py(y)

= p(y|x)
px(x)
py(y)

.

In the MAP estimation method, our estimate of ~x, given the observation ~y, is
given by:

~xMAP = argmax{{xi}∈C}{LMAP = p(x, y)}, (4.24)

~xMAP = argmax{{xi}∈C}{LMAP = p(y|x)px(x)}. (4.25)

Then, we take, as estimate of ~x, the value that maximizes the conditional
density of ~x, given the observed value of ~y [61]. The only difference between
this estimate and the maximum likelihood estimate is the second term, px(x),
appearing here. This term can be interpreted as taking our prior knowledge
of ~x into account [61]. Taking logarithms:

~xMAP = argmax{{xi}∈C}{logLMAP = log p(y|x) + log px(x)}. (4.26)

The first term is essentially the same as the log-likelihood function; the second
term penalizes choices of ~x that are unlikely, according to the prior density
[61]. The only difference between the ML estimate and the MAP estimate is
the presence of an extra term in the optimization problem, associated with
the prior density of ~x. [61].
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CHAPTER 5

Introduction to Quantum
Information Theory

Anything you can do in classical physics, we
can do better in quantum physics.

Daniel Kleppner

We will try to establish an invisible parallel with the Classical Information
theory, developed in the Chapter 4. Then it would be nice the reader had in
mind all previously studied sections.

5.1 Operator Majorization and Partial Ordering

The connection of the Theorem 4.8 with the Quantum Mechanics theory is due
to the notion of the majorization of operators. We can define n-dimensional
operators, such as ρ ≺ σ, if we define vectors λ(ρ) ≺ λ(σ) whose components
are the eigenvalues of the operators arranged in decreasing order [38]. The
Uhlmann’s theorem is the operator analogue to the Theorem 4.8. It allows
us to quantify the randomness of a hermitian operator (eventually a density
matrix).

Theorem 5.1 (Uhlmann’s Theorem). Let ρ and σ be two hermitian matrices. Then
ρ ≺ σ iff there exists unitary matrices Ui and a probability distribution ~p = {pi}

such that ρ =
n

∑
i=1

piUiσU†
i .

Proof: (Just the commutative case). The general proof for this theorem is
out of the scope of this text. It is obvious that Theorem 5.1 is the operator
analogue to Theorem 4.8, even if the matrices do not commute. However, for
the commutative case, this fact is easy to be shown, since there already exists
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a basis where these two theorems are the same. We can always diagonalize a
hermitian matrix, and we can always find a basis where the two commutative
matrices are diagonal. Then we can define diagonal vectors and, by using
Theorem 4.8, we can see that diag(~λ(ρ)) = ∑n

i=1 piΠidiag(~λ(σ)) or in other
words, there exists a bistochastic matrix B such as diag(~λ(ρ)) = B diag(~λ(σ))
which implies that diag(~λ(ρ)) ≺ diag(~λ(σ)). �

5.2 Some Other Results in Operator Majorization Theory

5.2.1 Stochastic and Bistochastic Maps

Lemma 5.2 (Quantum HLP Lemma). There exists a completely positive bistochastic
map transforming ρ into σ iff ρ ≺ σ.

Proof: (Given by [31], just the only if ). Let us introduce unitaries U and V
such that diag(~λ(σ)) = UσU† and diag(~λ(ρ)) = VρV†. Given a bistochastic map
such that Φ(ρ) = σ, we can always construct another bistochastic map Ψ such
that Ψ(?) = U{Φ[V†(?)V]}U†. We know that by hypothesis Ψ[diag(~λ(ρ))] =
diag(~λ(σ)). Let us define a matrix by its matrix elements as Bij ≡ Tr(PiΨPj),
where the Pi are projectors and B is a bistochastic matrix. Finally λi(σ) =
Tr[Pidiag(~λ(ρ))] = Tr[PiΨ(∑j Pjλj(ρ))] = Tr[∑j(PiΨPj)λj(ρ))] = ∑j Bijλj(ρ). An
appeal to the classical Theorem HLP (Theorem 4.7) concludes the proof [31].

Theorem 5.3 (Schur-Horn Theorem). Let ρ be a hermitian matrix,~λ its spectrum,
and ~p its diagonal elements in a given basis. Then ~p ≺ ~λ.

Proof: (Given by [31]) Let us suppose that the unitary U diagonalizes the
matrix, then pi = (ρ)ii = ∑jk UijλjδjkU†

ki = ∑j
∣∣Uij

∣∣2λj. These two vectors are
linked by an unistochastic matrix, hence a bistochastic matrix, then ~p = B~λ or
~p ≺ ~λ.

Corollary 5.4. If ~p ≺ ~λ, then there exists a hermitian matrix with spectrum~λ whose
diagonal elements are given by the entries of ~p in a given basis.

Proof: The proof is the reverse of the proof of the Theorem 5.3, and this
matrix is given by B.

Pre-order in the Space of Bistochastic Matrices

We showed in Theorem 4.4 that the set of the n-dimensional bistochastic
matrices is the convex hull of the set of n! permutation matrices of order
n [31]. To settle which bistochastic matrix have stronger mixing properties,
one may introduces a relation (pre-ordering) in the space of bistochastic
matrices [44]. Let B1 and B2 be two bistochastic matrices. Then we have the
following property: B1 ≺ B2 iff there exists1 another bistochastic matrix B
such that B1 = BB2 [44]. We need to distinguish some bistochastic matrices:
the Waerden matrix B∗ which has all its n2 elements equal to 1

n and the
permutation matrices Π. For any arbitrary bistochastic matrix B we have

1The proof will not be discussed here and it can be seen in [65].
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B∗ = BB∗ and B = (BΠ−1)Π, and hence B∗ ≺ B ≺ Π [44]. The relation B1 ≺ B2
implies that B1~x ≺ B2~x, for any ~x ∈ Rn

+ [44].

Theorem 5.5. If P and P−1 (its inverse) are both bistochastic matrices, then P and
P−1 are permutation matrices.

Proof: Hypothesis: PP−1 = I, and both matrices are bistochastic. Then
P~x ≺ ~x for all ~x ∈ Rn

+, but ~x = (P−1P)~x, then ~x ≺ P~x, for all ~x ∈ Rn
+. Hence

~x ≺ P~x ≺ ~x for all ~x ∈ Rn
+. This fact allows us to say that P is a permutation

matrix, because it majorizes a vector, but it is always majorized by the same
vector, (and this happened because both matrices are bistochastic and one is
the inverse of the another). Then it is obvious that this matrix P just changes
the position of the elements of the vectors. We could do the same thing using
P−1 instead of P, then both matrices are permutation matrices. �

Other Interesting Results

Theorem 5.6 (Ky Fan’s Principle). For any hermitian matrix A, the sum of the k
largest eigenvalues of A is the maximum value of Tr(AP), where the maximum is
taken over all k-dimensional projectors P, or: ∑k

i=1 λj(A) = maxdim(P)=k{Tr(AP)}.

Proof: Let us define the projector P as the projector onto the k dimensional
subspace spanned by the k eigenvectors of A associated with the k largest
eigenvalues. Then Tr(AP) = ∑k

i=1 λk(A). We just need to prove that Tr(AP) ≤
∑k

i=1 λk(A) for any k dimensional projector P. Let {|ei〉}n
i=1 be an orthonormal

basis P = ∑k
i=1|ei〉〈ei| [38]. And let {| fi〉}n

i=1 be a set such that A| fi〉 = λi| fi〉.
Then ~a = 〈ei|A|ei〉 = ∑n

i=k|uik|2λk, where the numbers |uik|2 = 〈ei| fk〉〈 fk|ei〉.
The matrix defined by its matrix elements (uik) is bistochastic. Then~a ≺ ~λ(A).
Thus ∑k

i=1 ai = ∑k
i=1〈ei|A|ei〉 ≤ ∑k

i=1 λi(A) [38]. �

Corollary 5.7. The Ky Fan’s principle implies that for hermitian matrices A and B,
~λ(A + B) ≺ ~λ(A) +~λ(B).

Proof: To prove this corollary, choose the k dimensional projector as
P = ∑k

i=1 λi(A + B) = Tr[(A + B)P] = Tr(AP) + Tr(BP) ≤ ∑k
i=1 λi(A) + ∑k

i=1 λi(B)
[38].

Theorem 5.8. Let ρ be a density matrix, ~p = {pj} a probability distribution and ρj

density matrices such that ρ = ∑i piρi. Then~λ(ρ) ≺ ∑i pi~λ(ρi).

Proof: The proof follows immediately from the Corollary 5.7 [38]. �

5.3 Quantum Maps and Quantum Operations

5.3.1 Positive and Completely Positive Maps

Let us suppose that we want to describe the evolution of the quantum systems,
so the quantum operation formalism2 is the correct tool for describing various

2This section is just informative and we will not spend a lot of time on this issue. A wonderful
approach of this theme can be seen in [27].
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processes, including stochastic changes to quantum states, in a similar manner
of the stochastic and bistochastic processes which are described by the Markov
chains in the classical world of probabilities [10]. Just as in the classical case,
where the state is described by a vector of probabilities, we shall describe the
quantum states in terms of the density operator ρ. We can also describe a
classical system by its density operator (see [23, 25]). So, the classical states
are transformed by this rule: ~p′ = S~p, and the quantum states are transformed
as:

ρ′ = E (ρ). (5.1)

All unitary transformations can be written as E (ρ) = UρU†, and measurements
can also be written as E (ρ) = MmρM†

m, using the notation given by the Eq. 5.1.
There exists two separate ways of understanding quantum operations, (both
ways are equivalent) [10]:

1. Environmental representation.

2. Kraus evolution.

1. Environmental Representation

The environmental representation is the natural way to describe the dynamics
of a quantum open system. The system is divided in two parts, or subsystems:
the principal subsystem and the environment, which together form a closed
quantum system [10, 31]. The principal subsystem is allowed to freely interact
with the environment. Let us assume that the composite system is a product
state: ρ = ρS ⊗ ρE. Then we apply a global unitary USE ∈ HS ⊗HE in the
system, (it describes the interaction of the two subsystems) and then we
perform a partial trace3 on the environment. This operation allows us to
eliminate the environment and keep the only subsystem that interests us. This
process is analogue to the classical process of separation of a subsystem from
a system.

Then E (ρ) = TrE[USE(ρS ⊗ ρE)U†
SE] = ρ′S. That is, the whole process can

be described as E (ρ) = ρ′S: ρ→ (ρS ⊗ ρE), then (ρS ⊗ ρE)→ USE(ρS ⊗ ρE)U†
SE,

and then TrE[USE(ρS ⊗ ρE)U†
SE] = ρ′S.

We initially assume that the two subsystems can be written in a product
state. But of course this is not true in general, because if two quantum systems
are interacting, some correlation may appear. However this assumption,
generally, is quite reasonable. This method has a great disadvantage: it is
difficult to specify the d2 global unitary that acts on the system [10].

2. Kraus Evolution

A linear map Φ is completely positive iff it can be written in its standard Kraus
form [31]. Then a completely positive map Φ :Mn 7 −→ Mn can always be

3The partial trace is defined as TrA(ρAB) = ρB = [Tr(?)A ⊗ IB(ρAB)], if {|k〉}dim(A)
i=1 , is a basis

for the space of the subsystem A, hence ρB = [∑k |k〉〈k| ⊗ I](ρAB). Thus, summing the terms
properly, ρB = ∑k[(〈k| ⊗ I)ρAB(|k〉 ⊗ I)]. Therefore, ρB = ∑K〈k|ρAB|k〉.
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represented as:

ρ→ ρ′ =
r≤n2

∑
i=1

diχiρχ†
i =

r

∑
i=1

AiρA†
i ,

where Tr(A†
i Aj) =

√
didj

〈
χi
∣∣χj
〉

= diδij,

if the map is trace-preserving, then:
r

∑
i=1

A†
i Ai = In,⇒

r

∑
i=1

di = n.

A connection with the environmental representation can be observed if we
start the map by coupling an environmental ancilla |ν〉〈ν|, described as a pure
state, then: ρ′ = TrE[USE(ρS ⊗ ρE)U†

SE], or ρ′ = TrE[USE(ρS ⊗ |ν〉〈ν|)U†
SE] =

∑k
µ=1[〈µ|USE|ν〉ρS

〈
ν
∣∣U†

SE

∣∣µ〉] = ∑k
µ=1 AµρS A†

µ, obeying the completeness rela-

tion: ∑k
µ=1[

〈
µ
∣∣U†

SE

∣∣ν〉〈ν|USE|µ〉] =
〈
ν
∣∣U†

SEUSE
∣∣ν〉 = In [31].

As an example let us start with the initial state of the environment as a
maximally mixed state ρE = I

n [31]. The unitaries may be treated as vectors
in a bigger space, the composite space HHSA ⊗HHS B Hilbert-Schmidt space,
and they are represented as U = ∑n2

i=1
√

λi
∣∣Ãi
〉
⊗
∣∣Ã′ i〉 [31]. The procedure of

partial tracing leads us to a Kraus form with n2 terms:

ρ→ ρ′ = TrE[USE(ρS ⊗
I

n
)U†

SE],

= TrE[
n2

∑
i=1

n2

∑
j=1

√
λiλj(ÃiρÃj

†)⊗ (
I

n
Ã′i Ã

′
j
†
)],

ρ′ = 1
n

n2

∑
i=1

n2

∑
j=1

λi(ÃiρÃi
†),

the standard Kraus form is obtained if we define: Ai ≡
√

λi
n Ãi :

ρ′ =
n2

∑
i=1

n2

∑
j=1

(AiρA†
i ).

5.3.2 The Measurement Postulate and The POVM’s

Selective Measurements

Let us define the space of all measurements outcomes consisting of k mea-
surement operators Mi, with k possible outcomes, in which satisfies the
completeness relation: ∑r

i=1 M†
i Mi = In [31]. As mentioned in Chapter 3,

the quantum measurement performed on the initial state ρ produces the i-th
outcome with probability pi and it changes the initial state ρ into ρi:

ρ→ ρi = MiρM†
i

Tr(MiρM†
i )

,

with probability: pi = Tr(MiρM†
i ).

All probabilities are positive and sum to 1. This measurement process is called
selective measurement. If we do not post-select the state based on the k-th
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outcome of the measurement, the initial state is transformed into a convex
combination of all possible outcomes.

Projective Measurements

In a projective measurement process, the measurement operators are orthog-
onal projectors, so Mi = Pi = P†

i = M†
i , with PiPj = Piδij [31]. A projective

measurement is defined by an observable, i.e., a hermitian operator with
spectral decomposition O = ∑n

i=1 λiPi, (let us suppose that all eigenvalues are
non-degenerate). Using this decomposition, we obtain a set of orthogonal
measurements operators, which forms a resolution of the identity operator
(the eigenprojectors related to different eigenvalues in a hermitian operator
are all orthogonal). All the possible outcomes are labeled by the eigenvalues of
O. If we do not post-select the state, it will be transformed into the following
convex mixture:

ρ→ ρ′ = ∑n
i=1 PiρPi , (5.2)

[ρ′, O] = 0. (5.3)

The i-th outcome (the i-th eigenvalue of O), labeled as λi occurs with proba-
bility pi, and the initial state is transformed into:

ρ→ ρi = PiρPi
Tr(PiρPi)

,

with probability: pi = Tr(PiρPi) = Tr(ρPi).

As we have already discussed in Chapter 3, the expectation value of the
observable is given by this rule: 〈O〉 = Tr(Oρ).

The POVM’s

Definition 5.9 (Positive Operator Value Measures – POVM). A POVM is
defined as any partition of the identity operator into a set of k positive operators Ei
that satisfies: ∑k

i=1 Ei = I, with Ei = E†
i and Ei ≥ 0 for all i = 1, · · · , k.

As we may choose Ei = Mi M†
i , we can write POVM’s in order to obtain

selective and projective measurements. But they do not determine uniquely
the measurement operators Mi, except in the special case of projective mea-
surements [31]. A set with n2 POVM’s is called informationally complete if
its statistics determine uniquely a density matrix. A POVM is said to be pure
if each operator Ei is rank one. A set of k pure states defines a pure POVM iff
the maximally mixed state ρ∗ = I

n can be decomposed as ρ∗ = ∑k
i=1 pi|ψi〉〈ψi|,

with 0 ≤ pi ≤ 1 and ∑i pi = 1. For any set of POVM, just define the density
matrices as ρi ≡ Ei

Tr(Ei)
and mix them in a convex mixture with weights defined

as pi = Tr( Ei
n ), such that: ∑k

i=1 piρi = ∑k
i=1

Ei
n = I

n = ρ∗.

5.3.3 Unitary Transformations

Theorem 5.10 (Kadison’s Theorem). Let there be a map Φ :Mn 7 −→ Mn which
is one-to-one and onto, and which preserves the convex structure in the sense that
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Φ(∑i piρi) = ∑i piΦ(ρi), must be the form Φ(ρ) = UρU†, where U is a unitary
matrix [31].

The proof of the Theorem 5.10 is obviously out of the scope of this intro-
ductory text. In infinitesimal form, a unitary transformation takes the form:

ρ̇ =
1
ih̄

[H, ρ]. (5.4)

Where H is a hermitian operator, a hamiltonian, for example. The Eq. 5.4
is the analogue, in quantum mechanics, of the Liouville equation4 and it
describes the time evolution of a quantum mixed state. The procedure, often
used to formulate some quantum analogies of classical systems, involves a
description of classical systems by using the Hamiltonian mechanics. Classical
variables are then interpreted as quantum operators, while Poisson brackets
are replaced by quantum commutators, divided by ih̄.

We know that the solution of Schrödinger’s equation assuming a time-
independent Hamiltonian is given by |ψ(t)〉 = U(t)|ψ(0)〉 = e

−iHt
h̄ |ψ(0)〉. The

link between the Eq. 5.4 and the Theorem 5.10 can be noticed if we perform
the solution of the differential equation involved [14]:

dρ = − i
h̄ [H, ρ]dt,

where [H, ρ] = [H, ?](ρ).

Thus, the solution of Eq. 5.4 is:

ρ(t) = e−
it
h̄ [H, ?]ρ(0),

ρ(t) =
∞

∑
n=0

(− it
h̄

)n [H, ?]n

n!
ρ(0),

ρ(t) = ρ(0)− it
h̄

[H, ρ(0)] +
1
2

(
−it
h̄

)2[H, [H, ρ(0)]] + · · · ,

ρ(t) = (I− it
h̄

H +
t2

2h̄2 H2 − · · ·)ρ(0)(I +
it
h̄

H − t2

2h̄2 H2 + · · ·),

ρ(t) =

[
∞

∑
n=0

(−iHt
h̄ )n

n!

]
ρ(0)

[
∞

∑
n=0

( iHt
h̄ )n

n!

]
,

ρ(t) = e
−iHt

h̄ ρ(0)e
iHt

h̄ ,

ρ(t) = U(t)ρ(0)U(t)†.

Some Examples of One Qubit Quantum Gates

Let H2×2 be the one qubit space generated by the orthonormal basis {|0〉, |1〉}.
Let us give some examples of unitary operators U : H2×2 7 −→ H2×2 [14]:

• X = |0〉〈1| + |1〉〈0|,

4When it is applied to the expectation value of an observable O, the corresponding equation

(Eq. 5.4) is given by the Ehrenfest’s theorem [2], and takes the form d
dt 〈O〉 = 〈[O, H]〉

ih +
〈

dO
dt

〉
.

Obviously if the observable commutes with the Hamiltonian and it does not depend on time
explicitly, then it is a constant of movement.
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• Y = −i|0〉〈1| + i|1〉〈0|,

• Z = |0〉〈0| − |1〉〈1|,

• H = |+x〉〈0| + |−x〉〈1|, with |±x〉 = 1√
2
[|0〉 ± |1〉],

• Phase: Θ = |0〉〈0| + eiθ |1〉〈1|.

5.4 The Von Neumann Entropy S(X)

Traditionally5 entropy is derived from phenomenological and thermodynamic
considerations based on the second law of thermodynamics. It relates the be-
havior of a macroscopic system in equilibrium or close to equilibrium. This
interpretation, based on the second law, may frequently lead to obscure and
very speculative or even mystical ideas6 [66]. An accurate definition of entropy
is only achievable in the realm of quantum mechanics, whereas in classical
mechanics framework, entropy can only be introduced in a somewhat limited
and artificial manner [66]. Confessedly entropy plays an important role among
the physical quantities, although its nature is admittedly purely probabilistic.
Therefore, a satisfactory and non-speculative interpretation for this quantity
is only found in the quantum mechanics theory, that assigns it a measure of
the amount of chaos within a quantum mixed state [66].

Entropy is quite different from most physical quantities. In quantum
mechanics, we have a C∗ non-commutative algebra for the observables and
the states are defined by its expectation values in all observables. These states
are described (as discussed in Chap 3) by density matrices ρ, i.e., they are trace
one positive hermitian operators and its expectation values are defined as
〈O〉 = Tr(Oρ). But entropy is not an observable, which means that there is not
a hermitian operator, whose expected value in any state would be its entropy
[66]. It is a function of a hermitian operator. Then if we want to define the
entropy of a quantum state, we need first to understand what is a function of
an operator:

Definition 5.11 (Operator Function). Let A be a hermitian operator. Then A =
UΛU†, for some unitary matrix U and Λ = diag(~λ(A)), is the diagonal matrix
containing the eigenvalues of A. For any function f : R 7 −→ R, we can define
f (A) = U diag[ f (~λ(A))] U†.

Theorem 5.12 (Klein’s Inequality). If a function f is a convex function and A and
B are hermitian operators, then Tr[ f (A)− f (B)] ≥ Tr[(A− B) f ′(B)], with equality
iff A = B [31].

Proof: As A and B are hermitian operators, they can be diagonalized. Let
us suppose that A|ei〉 = ai|ei〉 and B| fi〉 = bi| fi〉 such that

〈
ei
∣∣ f j
〉

= cij [31].

5This section was totally inspired by the wonderful work of A. Wehrl ([66]).
6The heat death of the universe is a good example of these ideas.
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Then:

∑
i
〈ei| f (A)− f (B)− (A− B) f ′(B)|ei〉,

∑
i
〈ei| f (ai)|ei〉〈ei| − f (bj)

∣∣ f j
〉〈

f j
∣∣− (aj − bj) f ′(bj)

∣∣ f j
〉〈

f j
∣∣|ei〉,

= f (ai)−∑
j

∣∣cij
∣∣2[ f (bj)− (ai − bj) f ′(bj)],

a= ∑
j

∣∣cij
∣∣2[ f (ai)− f (bj)− (ai − bj) f ′(bj)]

b
≥ 0. �

The equality a holds because the summation is over j. The inequality b is
because every differentiable convex function obeys f (y)− f (x) ≥ (y− x) f ′(x).

Corollary 5.13 (Klein’s Inequality - Special case). This corollary is a special case
of the Theorem 5.12. If a function f is a convex function and A and B are hermitian
operators, then: Tr[A(log A− log B)] ≥ Tr(A− B).

Proof: Let us suppose, by hypothesis, that the inequality is true. Define a
convex function f as: f (?) = (?) log(?), with f ′(?) = [log(?) + 1]. After minor
calculations, we find the result of the Theorem 5.12:

Tr[A(log A− log B)] ≥ Tr(A− B),

Tr(A log A)− Tr(A log B) ≥ Tr(A− B),

Tr(A log A)− Tr(A log B)− Tr(B log B)
a
≥ Tr(A− B)− Tr(B log B),

Tr[A log A− B log B] ≥ Tr(A− B) + Tr(A log B)− Tr(B log B),

Tr[A log A− B log B] ≥ Tr(A− B) + Tr[(A− B)(log B)],

Tr[A log A− B log B] ≥ Tr[(A− B)(log B + I)],

But f (?) = (?) log(?), and f ′(?) = [log(?) + 1], then:

Tr[ f (A)− f (B)] ≥ Tr[(A− B) f ′(B)]. �

In a, we just add the factor [−Tr(B log B)] in both sides of the inequality and,
everywhere, we use the linearity of the trace function.

Theorem 5.14 (Peierl’s Inequality). If a function f is a strictly convex function
and A is a hermitian operator, then Tr[ f (A)] ≥ ∑i f (〈 fi|A| fi〉), where {| fi〉} is
a complete set of orthonormal vectors and the equality holds iff | fi〉 = |ei〉, where
A|ei〉 = ai|ei〉 [31].

Proof: The function f is a convex function. Just observe that for any vector
| fi〉 we have: 〈 fi|A| fi〉 = ∑j

∣∣〈 f j
∣∣ei
〉∣∣2 f (ai) ≥ f (∑j

∣∣〈ei
∣∣ f j
〉∣∣2aj) = f (〈 fi|A| fi〉).

Summing over i gives the result: Tr[ f (A)] = ∑i〈 fi|A| fi〉 = ∑i ∑j
∣∣〈 f j

∣∣ei
〉∣∣2 f (ai)

≥ ∑i f (∑j
∣∣〈ei
∣∣ f j
〉∣∣2aj) = ∑i f (〈 fi|A| fi〉). � Now, that we defined a function of

an operator, we are prepared to define the Von Neumann entropy. It is given
by:

Definition 5.15 (Von Neumann Entropy). If a state is described by a trace one
positive hermitian density matrix ρ, then its entropy is defined as S(ρ) = −Tr(ρ log ρ).
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If ρ is diagonal, then S(ρ) = ∑n
i=1 λi log λi, i.e., if the density matrix is

diagonal, then the Von Neumann entropy is equal to the Shannon entropy of
the vector formed by its eigenvalues. This is a positive quantity (S(ρ) ≥ 0), as
we will see later, and it is equal to 0 iff the state is a pure state, (see Theorem
5.18).

Wilde, in [67], says: “Why should the entropy of a pure quantum state
vanish? It seems that there is quantum uncertainty inherent in the state itself
and that a measure of quantum uncertainty should capture this fact. This last
observation only makes sense if we do not know anything about the state that
is prepared.” Of course that if we prepared a pure state, we know exactly
which measurements we need to perform in order to always obtain a certain
result.

Let us suppose now that we have prepared the following pure state |ψ〉〈ψ|.
We know that we can always prepare an experimental device to detect this
pure state by doing the following measurements: {|ψ〉〈ψ|, I− |ψ〉〈ψ|}. As
we know exactly how this state was prepared, we should not expect to learn
anything from this measurement, because its outcome was known in advance.
Therefore, of course, we can always perform a quantum measurement in order
to verify which quantum state was prepared [67].

A statistical quantum operator can be seen as a description of a mixture of
pure states. These pure states are given statistical operators (with rank one)
and are represented by rays of a Hilbert space [53]. In 1927 Von Neumann
associated an entropy function to a quantum operator and this discussion
was also later extended in his book [53]. Let us assume that the density ρ
is the mixture of orthogonal densities ρ1 and ρ2. In some textbooks, see for
example [68], we can find Eqs. 5.5, 5.6 and 5.7 meaning the entropy of a two
gases mixture. The total entropy of this mixture is equal to the sum of the two
entropies and a well-defined entropy of the mixture [53].

ρ = pρ1 + (1− p)ρ2, (5.5)

pS(ρ1) + (1− p)S(ρ2) = S(ρ)− p log p− (1− p) log(1− p), (5.6)

pS(ρ1) + (1− p)S(ρ2) = S(ρ) + H(p, (1− p)). (5.7)

From this two component mixture we can generalize:

ρ = ∑
i

ρi = ∑
i

λi|ψi〉〈ψi|, (5.8)

S(ρ) = ∑
i

λiS(|ψi〉〈ψi|)−∑
i

λi log λi . (5.9)

Where the λi, (0 ≤ λi ≤ 1 and ∑i λi = 1), are the parameters of this convex
mixture that they can always be interpreted as probabilities. Eq. 5.9 is the so-
called Schatten decomposition of the mixed quantum state given by Eq. 5.8, and
it reduces the determination of the (thermodynamic) entropy of a mixed state
to the determination of the entropy of pure states [53, 69]. This decomposition
is not unique, as we will see in the Theorem 5.32.

The argument presented by Von Neumann does not require the operator
ρ to be a mixture of pure states [69]. We just need in all those equations
above is the following property ρ = pρ1 + (1− p)ρ2, in such a way that the
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mixed states given by ρ1 and ρ2 are disjoint in the thermodynamic sense, in
a two component gas mixture, for example, when there exists a completely
permeable wall for all the molecules of a ρ1-gas and isolated for the molecules
of a ρ2-gas [69]. Particularly, if these states ρ1 and ρ2 are disjoint, then this
fact should be evidenced by a certain type of filter. The filter, that evidences
the disjointedness of ρ1 and ρ2, can be expressed mathematically by the
orthogonality of the eigenvectors of the two density matrices [53, 69].

Theorem 5.16. Let ρ1 and ρ2 be two density matrices and 0 ≤ p ≤ 1. The following
inequality holds: pS(ρ1) + (1− p)S(ρ2) ≤ S(pρ1 + (1− p)ρ2).

Proof: This is true since pS(ρ1) + (1− p)S(ρ2) = S(pρ1 + (1− p)ρ2) + H(p, (1−
p)), and H is a positive quantity. � Another interesting way to define the Von
Neumann entropy is to define first the Shannon entropy of a density matrix
relative to any POVM {Ei}i: H(ρ) ≡ H(~p), where pi = Tr(Eiρ). To make this
definition independent of the chosen POVM, we need to minimize over all
POVM’s:

Definition 5.17 (Von Neumann Entropy). The entropy of Von Neumann can be
defined as: S(ρ) = minEi∈POVM{H(~p), s.t. pi = Tr(Eiρ)}.

This definition has an important special case, (Theorem 5.3).

5.5 Some Properties of the Von Neumann Entropy

Theorem 5.18 (Positivity of S(ρ)). The Von Neumann Entropy S(ρ) ≥ 0, and the
equality holds iff ρ is a pure state.

Proof: Let ρ be a density matrix. It is a hermitian positive and trace
one operator. Then it can be always be diagonalized. The positivity of S(ρ)
follows immediately from the positivity of the Shannon entropy, since the
Von Neumann is defined as the Shannon entropy of the eigenvalues of ρ and
ρ ≥ 0. If ρ is a pure state, it has only one eigenvalue equal to 1 and all the
other are equal to 0. As we defined 0 log 0→ 0, by continuity reasons, then
S(ρ) = 0 iff ρ is a pure state. �

Theorem 5.19 (Global Unitary Invariance). S(UρU†) = S(ρ).

Proof: It follows by observing that UρU† = U ∑i λi|ei〉〈ei|U† = ∑i λi|ui〉〈ui|,
where U|ei〉 = |ui〉. This property follows because the entropy is a function of
the eigenvalues of ρ. �

5.5.1 Sub-additivity Theorems

Theorem 5.20 (Additivity of S(ρ)). Let us suppose we have ρ1 ∈ H1 and ρ2 ∈
H2 · · · ρn ∈ Hn. Then the entropy of ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn ∈ H1 ⊗ · · · ⊗ Hn is
S(ρ1⊗ ρ2⊗ · · · ⊗ ρn) = S(ρ1) + · · · + S(ρn), in case of n copies of ρ, S(ρ⊗n) = nS(ρ).

Proof: The proof is simple. Let |i〉 be the eigenvector of the i-th matrix
with eigenvalue λi with i = 1, · · · , n. Then |1〉 ⊗ · · · ⊗ |n〉, is the eigenvector

88



5.5. Some Properties of the Von Neumann Entropy

of ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn, with eigenvalue ∏n
i=1 λi. Then S(ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn) =

−∑i ∏n
i=1 λi log(∏n

i=1 λi) = −∑i(λ1 · · · λi · · · λn) ∑n
i=1 log(λi). Hence we have

the following result: S(ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn) = S(ρ1) + · · · + S(ρ2). � Of course,
if we have a product7 of n density matrices ρ, then S(ρ⊗1 ρ⊗2 · · · ⊗n−1 ρ) =
S(ρ⊗n) = nS(ρ). This theorem states that the information of the total system
described by ρ1⊗ ρ2⊗ · · · ⊗ ρn = ρ⊗n, is equal to the sum of the information of
its constituents, given that the total system can be written in a tensor product
[66]. See Subsection 3.5.1 for more discussions about some properties of the
tensor product and for other discussions over the tensor product assumption.

One relevant class of quantum inequalities identifies subsystems as a
compound system, whose Hilbert space is given by a tensor product of the
Hilbert spaces for the subsystems (H12 = H1 ⊗H2) [70]. Let us suppose that
the state of a composite system is given by the following density matrix ρ12.
Therefore, the states of subsystems 1 and 2 will be given by their reduced
density matrices, e.g., ρ1 = Tr2(ρ12) = I1 ⊗ Tr2(ρ12), which can be obtained by
taking the partial trace of ρ12 [70].

Theorem 5.21 (Sub-additivity of S(ρ)). S(ρ12) ≤ S(ρ1) + S(ρ2) = S(ρ1 ⊗ ρ2).

Proof: Using the Corollary 5.13 and defining ρ12 = A, and B = ρ1 ⊗ ρ2 ≡
(ρ1 ⊗ I2)(I1 ⊗ ρ2), we will have [70]:

Tr[A(log A− log B)] = Tr12{ρ12[log(ρ12)− log(ρ1 ⊗ ρ2)]} =

= Tr12{ρ12[log(ρ12)]} − Tr12{ρ12[log(ρ1 ⊗ I2)]} − Tr12{ρ12[log(I1 ⊗ ρ2)]} =

= Tr12[ρ12 log(ρ12)]− Tr1[ρ1 log(ρ1)]− Tr2[ρ2 log(ρ2)] =

= −S(ρ12) + S(ρ1) + S(ρ2) ≥ Tr(A− B) = Tr(ρ12 − ρ1 ⊗ ρ2) a= 0,

Finally: S(ρ12) ≤ S(ρ1) + S(ρ2) = S(ρ1 ⊗ ρ2). �

The equality holds iff A = B, or: ρ12 = ρ1 ⊗ ρ2 = (ρ1 ⊗ I2)(I1 ⊗ ρ2). �

Where in a, we use the property that Tr(A⊗ B) = Tr(A)Tr(B), see for example
[13].

Theorem 5.22 (Strong Sub-additivity of S(ρ)). If the composite state ρ123 is
normalized, then S(ρ123) ≤ S(ρ12) + S(ρ23).

Proof: Using the Corollary 5.13 and substituting ρ123 = A and B =
elog ρ12+log ρ23 , we will have [70]:

Tr[A(log A− log B)] = Tr(ρ123 log ρ123)− Tr[ρ123(log ρ12)]− Tr[ρ123(log ρ23)] =

= S(ρ123)− S(ρ12)− S(ρ23) ≥ Tr(A− B) = Tr
[
ρ123 − e(log ρ12+log ρ23)

]
,

S(ρ123)− S(ρ12)− S(ρ23) ≥ 1− Tr123

[
e(log ρ12+log ρ23)

]
,

S(ρ123)− S(ρ12)− S(ρ23) ≥ 1− Tr2(ρ2)2,

S(ρ123)− S(ρ12)− S(ρ23)
a
≥ 1− Tr2(ρ2) = 0. �

7The reader should not be tempted to think that this number n is large. In this text ρ⊗n ≈ ρ⊗8.
This is a good notation for 1, 2, · · · , 8 qubits. The reason why this number cannot be large is due
to some obvious experimental reasons.
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Where in a, we use the fact that Tr(ρ)2 ≤ Tr(ρ), for any ρ [70]. The equality
holds iff A = B, then ρ123 = elog ρ12+log ρ23 , or if ρ123 = ρ12 ⊗ ρ23. �

Theorem 5.23 (Concavity of S(ρ)). The entropy satisfies the following inequality:
S(∑i piρi) ≥ ∑i piS(ρi), with 0 ≤ pi ≤ 1 and ∑i pi = 1. This inequality implies
that Von Neumann entropy needs to be a concave function.

Proof: (Due to [10]). The intuition is that the ∑i piρi expresses the state of a
quantum system which is in the state ρi with probability pi and the uncertainty
of the mixture of states should be higher than the average of the states ρi,
since the state ∑i piρi represents our ignorance of the quantum state [10]. Let
us define the state ρAB = ∑i ρi ⊗ |i〉〈i|. Then, we have S(ρA) = S(∑i piρi), and
S(ρB) = S(∑i pi|i〉〈i|) = H(pi). Thus, S(ρAB) = H(pi) + ∑i piS(ρi). Applying the
Theorem 5.21 i.e., S(ρAB) ≤ S(ρA) + S(ρB), we have ∑i piS(ρi) ≤ S(∑i piρi) [10].
The concavity of the entropy follows immediately from the Jensen inequality
(Theorem 4.17). �

Theorem 5.24 (Concavity of S(ρ)). If ρ = pσ + (1− p)ω, then S(ρ) = S(pσ + (1−
p)ω) ≥ pS(σ) + (1− p)S(ω).

Proof: If ρ = pσ + (1 − p)ω, then by using Corollary 5.13 twice with
A = σ, ω and B = ρ, we will have:

0 = Tr(A− B) ≤ Tr[A(log A− log B)],

Tr[A(log B)] ≤ Tr[A(log A)],

pTr[σ(log ρ)]
a
≤ pTr[σ(log σ)],

(1− p)Tr[ω(log ρ)]
b
≤ (1− p)Tr[ω(log ω)],

−S(ρ) = Tr(ρ log ρ) = pTr(σ log ρ) + (1− p)Tr(ω log ρ)
c
≤

c
≤ pTr(σ log σ) + (1− p)Tr(ω log ω) = −pS(σ)− (1− p)S(ω),

S(ρ)
d
≥ pS(σ) + (1− p)S(ω). �

The left-hand of the inequality c, is the sum of the left-hand of the inequalities
a and b. Analogously, we have the same for the right-hand of the inequality c.
A sign reversion (d) gives us the result. Then it is easy to understand that Von
Neumann entropy is a concave function: S(E(ρ)) ≥ E(S(ρ)).

But why is concavity considered to be important? We already know that
entropy is a measure of lack of information. Hence, if two densities are
put together in an ensemble (in a convex combination ∑i piρi), one loses the
information that tells from which density a special sample comes from, and
therefore entropy increases [66].

5.5.2 Other Properties of the Von Neumann Entropy

Proposition 5.25. There exists a set of unitary matrices {Uk} and a vector of
probabilities ~p, such that for any hermitian matrix ρ, with Tr(ρ) = 1 we always have
∑k pkUkρU†

k = I
n .

Proof: This proof is straightforward.
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The Maximal Value for the Von Neumann Entropy

The quantum determinism postulate asserts that a quantum system prepared
in a pure state remains pure when it evolves in a perfectly controlled environ-
ment [15]. Suppose that we have prepared a pure quantum state ρ, then the
Von Neumann entropy of ρ must be invariant under unitary evolutions, and
this is true since S(ρ) = −Tr(ρ log ρ) remains invariant under unitary evolution
in a perfectly known isolated system, because ρ̃ = UρU† in such evolutions,
and S(ρ̃) = −Tr[UρU† log(UρU†)] = S(ρ), because of the cyclic property of the
trace function.

If the environment is partially known, we must replace the global unitary
U by an ensemble of unitary matrices Uk with respective probabilities pk. Then
the evolution can be described by ρ̃ = ∑k pkUkρU†

k . Then S(ρ̃) = −Tr(ρ̃ log ρ̃) ≥
S(ρ) = −Tr(ρ log ρ) [15]. This result will be discussed properly in the following
theorem, (Theorem 5.26).

Theorem 5.26 (Maximal value for S(ρ)). S(ρ) ≤ log n. For any state ρ.

Proof: Since we know by the Prop. 5.25 that, for any density matrix ρ,
there exists a vector of probabilities and a set of unitary matrices {U} such
that: ∑k pkUkρU†

k = I
n , and by using Theorem 5.23, (the Jensen inequality for

concave functions, see Theorem 4.17), we have that ∑k pkS(UkρU†
k ) a= S(ρ) ≤

S(∑k pkUkρkU†
k ) = S( I

n ) = log n. Because globally unitary evolutions do not
change the entropy, due to the cyclic property of the trace function (equality
a). �

Another Proof: Another proof can be obtained if we remember that the
quantum relative function D is always a positive function, that is D ≥ 0, (see
Section 5.9). Therefore, D(ρ|| In ) ≥ 0. This implies that D(ρ|| In ) = log n− S(ρ) ≥
0, hence S(ρ) ≤ log n. �

Theorem 5.27. Let ρ and σ be two density matrices, and let us suppose that ρ ≺ σ.
Then S(ρ) ≤ S(σ).

Proof: By using Uhlmann’s theorem, (Theorem 5.1), there exists a set of
unitary matrices {U} and a probability vector ~p, such that ρ = ∑i piUiσU†

i . By
using the concavity of S, we have S(ρ) ≤ ∑i piS(UiσU†

i ) = S(σ). �
Thus, if a probability distribution or a density matrix is more disordered

than another in the sense of majorization, then they are also according to
the Shannon and Von Neumann entropies [38]. We already know that any
function that also preserves the majorization are called Schur convex (or
concave), see Def. 4.11.

5.6 Some Interpretations of the Expression for the Entropy

In 1877, Boltzmann established the connection between the variable of state
entropy and the disorder of a physical system in his famous formula S =
k log W, where W means the number8 of micro-states which have the same

8In German the W means the thermodynamische Wahrscheinlichkeit – thermodynamic probabil-
ity.
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macroscopic properties [66]. This quantity requires a better interpretation in
classical mechanics, but, in quantum mechanics, this number is a well-defined
quantity: the number of micro-states may be interpreted as the number of pure
states with some prescribed expectation values [66]. This lack of interpretation
for the entropy in classical mechanics does not occur in quantum theory
because of its probabilistic nature.

Let us suppose now that we have a rank r density matrix ρ written in its
eigenstates {|ei}〉. Then ρ = ∑r

i=1 λi|ei〉〈ei|, where λi, is the probability to find
the state in the pure state {|ei〉}, with ∑i λi = 1, and 0 ≤ λi ≤ 1, ∀i. If we
perform n measurements (n large) of identical copies of ρ, the system will
be found in the state |e1〉, λ1n times, in the state |e2〉, λ2n times so forth, and
of course this numbers must be integers [66]. The matrix ρ does not contain
information about the ordering of the states {|e1〉, |e2〉, · · · , |er〉}. There exists
Wn = n!

(λ1n)!(λ2n)!···(λrn)! possibilities for this. But for n large, we know that by

using the Stirling formula, 1
n log( n!

(λ1n)!(λ2n)!···(λrn)! ) converges to S [66].
This number of micro-states, in quantum information theory, can be inter-

preted in the following manner: let us consider n copies of ρ, representing
a total Hilbert space HHS ⊗HHS ⊗ · · · ⊗ HHS , where HHS represents the
space for the original system [66]. In this new system, there are micro-states of
the form |e1〉 ⊗ |e2〉 ⊗ · · · ⊗ |er〉, and all the micro-states have the same weight,
because |e1〉 occurs λ1n times, and |e2〉 occurs λ2n times so forth [66]. The en-
tropy is log Wn, with Wn = n!

(λ1n)!(λ2n)!···(λrn)! , then 1
n log Wn → S, when n→ ∞,

see for example [66, 69]. This limit can be calculated easily, remembering
that limn→∞

1
n (log Wn) = limn→∞( 1

n log n!
(λ1n)!(λ2n)!···(λrn)! ), by using Stirling’s

approximation log n!≈ n log n− n, and keeping the most important terms, we
have 1

n [n log n−∑n
i=1(λin) log(λin)] = 1

n [∑n
i=1(λin) log n−∑n

i=1(λin) log(λin)] =
−∑n

i=1 λi log λi = S(ρ).
In information theory, entropy is a measure of our ignorance towards a

system described as a density matrix. The formal correspondence between
the Shannon entropy and the S(ρ) = −∑i λi log λi is obvious, but we need to
derive some theorems first to understand it. Later this correspondence will be
fully understood with the help of the mixture theorem (Theorem 5.32).

If we try to adapt the classical concepts to the quantum ones, we will find
that the perfect analogy does not exist. Accordingly to the usual dictionary,
we would have to replace [66]:

• A subset of the phase space by a projection.

• A measure of a set by a trace (measure of the corresponding projection).

• A density distribution (as discussed in [25]) by a density matrix.

5.7 States with Maximum Von Neumann Entropy

If the energy of the system is fixed, we know that the state in the micro-
canonical ensemble is the equilibrium state. This is always argued on philo-
sophical grounds [28, 52, 66], and it is a direct application of the Laplace’s
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principle of insufficient reason for physical systems. This is only possible be-
cause the equilibrium states enjoy some remarkable stability properties which
can be characterized as follows: small perturbations in equilibrium systems
can change the state of the system only locally, but not globally. This, of
course, cannot be obtained in a time invariant, but not within an equilibrium
system, because an arbitrarily small perturbation may be sufficient to produce
a transition to a totally different state [66].

Let us state the following problem: Given a fixed Hamiltonian H with
〈E〉 = Tr(ρH). What is the density matrix ρ with the maximum value of S(ρ)?
The answer is well-known, and it is given by Theorem 5.29.

Definition 5.28 (The Gibbs Quantum State). σG =
e−βH

Z
, with Z = Tr(e−βH).

Where β is chosen such that Tr(σG(β)H) = 〈E〉.

Theorem 5.29. If σG is the Gibbs quantum state, then S(σG) ≥ S(ρ) for any ρ that
satisfies the constraint 〈E〉 = Tr(ρH) = Tr(σG H).

Proof: We are interested in computing sup{ρ∈Mn(C)}{S(ρ), s.t. Tr(ρH) =
〈E〉 ≡ E, with ρ ≥ 0, Tr(ρ) = 1} [71]. Let us suppose that Tr(ρH) ≤ E and
Tr(σG H) = E (the inequality a is due this assumption). Then, by using the
inequality given by the Corollary 5.13 (in inequality b), we obtain:

Tr[ρ(log σG)] = −βTr(ρH)− log[Tr(e−βH)],

Tr[σG(log σG)] = −βTr(σG H)− log[Tr(e−βH)],

−Tr[ρ(log σG)]
a
≤ −Tr[σG(log σG)],

S(ρ) = −Tr[ρ(log ρ)]
b
≤ −Tr[ρ(log σG)]

a
≤ −Tr[σG(log σG)] = S(σG),

S(σG) = sup{ρ∈Mn(C)}{S(ρ), s.t. Tr(ρH) = E, with ρ ≥ 0, Tr(ρ) = 1}. �

5.8 The Set of Mixed States

We have already shown in Chapter 3 that the space of the n2 dimensional
density matricesMn is a convex set. This set is the intersection of the space
of the hermitian matrices with a hyperplane parallel to the linear subspace
of traceless operators. The pure states are projections onto one-dimensional
subspaces in the Hilbert space H [31].

We can define two different ways to write some mixed states. The Eq.
5.30 is an exponential representation of a density matrix. The next equation
represents a SU(n) expansion. For one qubit, we have already showed in
Chapter 2, that the Pauli matrices form a basis and they are members of
SU(2), then the expansion presented in Eq. 5.31 looks like a generalized Bloch
representation. Hence, we will define two formulas for writing expansions for
a quantum state:

Definition 5.30 (Exponential Coordinates). ρ =
e−βH

Tr(e−βH)
.
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Definition 5.31 (SU(n) basis). ρ =
I

n
+

n2−1

∑
i=1

riσi.

As we showed in the Chapter 2, the maximally mixed state I∗ = I
n occurs

when the Bloch’s vector |~r| = 0 (Def. 5.31). For one qubit, this matrix, which is
the trace one identity matrix, also corresponds to the unpolarized radiation.

A convex combination of density matrices lies inside the line formed by
these matrices. Then, by using Def. 3.27 and Def. 5.31, we can show that the
Hilbert-Schmidt distance is a kind of an euclidean distance9 [31]:

D2(ρ, ρ̃) =

√
1
2

Tr{∑
i, j

[(ri − r̃j)σiσj]2]},

D2(ρ, ρ̃) =
√

∑
i

(ri − r̃i)2.

5.8.1 The Schrödinger Mixture Theorem - 1936

Let us consider a measurable physical quantity represented by a hermitian
operator O. If the system is prepared in the following state ρ = ∑i pi|ψi〉〈ψi|,
we have already seen that the expectation value of the observable O, is given
by 〈O〉 = Tr(Oρ). The probability po, that a measurement of O yields a
particular eigenvalue λo, is also expressible as an expectation value. If we
define first the projector Πo, which projects into the subspace related to the
chosen eigenvalue, then we can say that po = Tr(ρΠo).

Now, suppose that a quantum state is prepared in a pure state given
by |ψi〉. Then the expected value of this physical quantity is given by
〈O〉i = 〈ψi|O|ψi〉. Averaging over the probability distribution, we have
〈O〉 = ∑i pi〈O〉i = Tr(Oρ).

Let us make a break for a moment with the usage of the Dirac notation in
order to motivate the Schrödinger mixture theorem. A quantum system ψi can
be written in terms of a complete orthonormal set of functions uk. Then ψi =
∑k akiuk, and the normalization condition implies that ∑k|aki|2 = 1 [60]. Let
us come back to the expectation value calculated before: 〈O〉i = ∑kn akia∗niOnk,
where Onk = 〈un,Ouk〉 are the matrix elements in the basis uk and the density
matrix is ρkn = ∑i piakia∗ni. This matrix can also be interpreted as an expected
value over the probability distribution {pi}, then ρkn = E(akia∗ni){pi} [60].

If we observe this expectation value ρkn = E(akia∗ni){pi}, we can suppose that
an infinite number of different arrays exists, representing different mixtures
of pure states, all leading to the same density matrix [60]. The most general
discrete array which leads to a given density matrix ρ corresponds to:

ρ = AA†. (5.10)

Where A is a possible non-square matrix. An array is defined by its matrix ele-
ments Aki =

√
piaki, with ∑k|Aki|2 = pi. To find another array that corresponds

to the same density matrix, just insert a unitary matrix U [60]:

ρ = (AU)(U−1 A†). (5.11)

9Here we used the following property: Tr(σiσj) = 2δij [31].
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The Eq. 5.11 has the form ρ = BB†, with B = AU, since U is a unitary matrix
[60]. Supposing that we have a set of n unitary matrices {Ui}n

i=1, then if the
following matrix products U1U†

1 = · · · = UnU†
n = I are representations of the

identity matrix, it is easy to perceive that we can represent a density matrix as
ρ = AA† = AIA† = AU1U†

1 A† = · · · = AUnU†
n A†, because the identity matrix

can always be written as a product of any unitary matrix Ui by its inverse,
i.e., its complex conjugate matrix (U†

i ). Then the number of products can be
infinite, thus a density matrix can be written in an infinite number of ways.
Note that the internal dimension k of the matrix products ρn×n = (Ai)nk(A†

i )kn
can also change, but the external dimension n cannot, in order to preserve
the n× n dimension of the density matrix ρn×n = ∑k Ank A†

kn. This result is
known as the Schrödinger mixture theorem (Theorem 5.32), and it is proved
now with the help of the Dirac notation.

Theorem 5.32 (The Schrödinger Mixture Theorem). A density matrix having
the diagonal form ρ = ∑r

i=1 λi|ei〉〈ei| can be written in a statistical mixture of M
operators, i.e., ρ = ∑M

i=1 pi|ψi〉〈ψi|, iff there exists a unitary matrix U, (dim(U) =
M2), such that: |ψi〉 = 1√

pi
∑r

j Uij
√

λi|ei〉 [31].

Proof: (Due to [31]) First observe that the matrix U does not act on the
Hilbert-Schmidt space, because we can have M > r. But only the first r
columns are needed here. The remaining M− r columns are just added in
order to build a unitary matrix. To prove the theorem, just define the first r
columns of U as:

Uij ≡
√

pi
λj

〈
ej
∣∣ψi
〉
⇒

r

∑
j=1

Uij

√
λj
∣∣ej
〉

=
√

pi|ψi〉. (5.12)

Proposition 5.33. The matrix U defined in Eq. 5.12 is unitary.

Proof: A unitary matrix is a complex matrix U satisfying the condition:
UU† = U†U = I. Note that this condition implies that a matrix U is unitary
iff it has an inverse which is equal to its conjugate transpose, i.e., U−1U =
I = U†U, then U−1 = U†. Let I be the identity matrix defined by its matrix
elements (I)ij = δij. Then, using the definition of the matrix elements of U,

Uij ≡
√

pi
λj

〈
ej
∣∣ψi
〉

and using the fact that its inverse is equal to U†, we get the

proof:

(I)ij = (U†U)ij =
M

∑
k=1

U†
ikUkj,

= (U†U)ij =
M

∑
k=1

(U∗)kiUkj,

a=
M

∑
k=1

pk√
λiλj

〈ψk|ei〉
〈
ej
∣∣ψk
〉
,

= 1√
λiλj

〈
ej
∣∣ψk
〉 M

∑
k=1

pk〈ψk|ei〉,
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b= 1√
λiλj

〈
ej
∣∣ρ∣∣ei

〉
,

c= 1√
λiλj

〈
ej
∣∣(∑r

i=1 λi|ei〉〈ei|)
∣∣ei
〉
,

d= λi√
λiλj

〈
ej
∣∣ei
〉
,

(I)ij = δij. �

In a, we use the definition of U, in b, we use the expansion of ρ in the basis
{|ψi〉}, and in c, d we use the fact that the eigenstates |ei〉 are normalized, that
is 〈ei|ei〉 = 1, and eigenvectors related to different eigenvalues in a hermitian
matrix are always orthogonal, i.e.,

〈
ej
∣∣ei
〉

= δij. Now we are prepared to
demonstrate the Theorem 5.32:

ρ =
M

∑
i=1

pi|ψi〉〈ψi|,

=
M

∑
i=1

√
pi|ψi〉

√
pi〈ψi|,

=
M

∑
i=1

pi

r

∑
j=1

1
√

pi
Uij

√
λj
∣∣ej
〉 1
√

pi
U∗ji
√

λj
〈
ej
∣∣,

=
r

∑
j=1

(
M

∑
i=1

UijU∗ij)
√

λjλj
∣∣ej
〉〈

ej
∣∣,

ρ =
r

∑
j=1

λj
∣∣ej
〉〈

ej
∣∣. �

Hence if ρ = ∑r
i=1 λi|ei〉〈ei|, and if we define an unitary matrix such as Uij ≡√

pi
λj

〈
ej
∣∣λi
〉

and |ψi〉 = 1√
pi

∑r
j Uij
√

λi|ei〉, we can write ρ as the following

mixture: ρ = ∑M
i=1 pi|ψi〉〈ψi|. What have we proved here? The theorem 5.32

says that we can write a quantum state as a convex mixture of operators in an
infinite number of ways, i.e., we can define a density matrix ρ performing a
preparation of an infinite number of operator ensembles, each one described
by the operators weighted by a probability distribution {~p = {pi}, |ψi〉〈ψi|}.

We already know that the entropy of a mixture Hmix(~p) can be defined as the
Shannon entropy of the probability distribution ~p of the mixture (see Section
4.2, Def. 4.13), where the pi = tr(|ψi〉〈ψi|ρ) and the set {|ψi〉〈ψi|}M

i=1 are M
operators that over-span the d2-dimensional Hilbert-Schmidt space where the
density matrix lives. Given all these operators |ψi〉〈ψi| ≥ 0, we can ensure
that all probabilities pi ≥ 0. If ρ is written in its eigenstates, as discussed in
Section 5.4, the Von Neumann entropy can be defined as the Shannon entropy
of the matrix eigenvalues λi, i.e., S(ρ) = −tr(ρlnρ) = −∑r

i=1 λiln(λi). Then, we
can state a Corollary for the Theorem 5.32:

Corollary 5.34. Hmix(~p) ≡ −
M

∑
i=1

pi log(pi) ≥ −
r

∑
i=1

λi log(λi) ≡ S(ρ), and the

equality holds iff M = r, i.e., if the mixture is the eigen-mixture.
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Proof: A quantum state ρ can be represented by a mixture of pure states10

in many different ways. The most general representation of this density
matrix ρ is ρ = ∑M

i=1 pi|ψi〉〈ψi|, as we have shown with the aid of Theorem 5.32.
These various states |ψi〉〈ψi| might not be mutually orthogonal since we have
only one way to expand a known density matrix with rank r with exactly r
terms in the matrix eigenstates: ρ = ∑r

i=1 λi|ei〉〈ei|, where the ~λ = {λi} are the
eigenvalues of ρ, and the {|ei〉}, its eigenvectors. First we need to show that
this matrix (B) is bistochastic, and it relates the eigenvalue vector ~λ to the
probability vector ~p = {pi}. We can see this fact if we multiply the equation
5.12 by ∑r

l=1
√

λl〈el |U†
lk =
√

pk〈ψk|:

pi =
r

∑
j=1

∣∣Uij
∣∣2λj, (5.13)

~p = B~λ. (5.14)

Then, by using Def. 4.3, we show that the matrix B = (
∣∣Uij

∣∣2) is a bistochastic
matrix and ~p = B~λ. Using the Theorem HLP (Theorem 4.7), we can say that
the vector ~p is majorized by the eigenvalue vector ~λ. In other words, ~p ≺ ~λ
[31]. We have already shown that ~p ≺ ~λ. Both entropy functions Hmix and S
are Schur concave functions (see Def. 4.11 and Theorem 4.45). If ~x ≺ ~y and
f (?) is a Schur concave function, then f (~x) ≥ f (~y). This proves the Corollary
[31]. So, it is reasonable to say that Hmix ≥ S(ρ) and the equality holds only
when the projectors are the eigenstates of ρ, i.e., M = r. � We do not need a
rigorous proof for the Corollary 5.34 to understand that it is true. A good way
to see this fact is to try to make a valid mixture of infinite terms of |ψi〉〈ψi|,
i.e., to make M → ∞, since ∑∞

i=1 pi = 1. This artificial mixture tells to us that
Hmix → ∞ is clearly bigger than S(ρ), that is limited by construction.

Theorem 5.35 (Entropy of Preparation). If we prepare a state in the follow-
ing ensemble: {|ψi〉, P = {pi}}n

i=1, so that the density matrix is given by ρ =
∑i pi|ψi〉〈ψi|, then H(P) ≥ S(ρ).

Proof: By Theorem 5.32, the equality holds iff all |ψi〉 are mutually or-
thogonal. This Theorem states that the distinguishable is lost when we mix
non-orthogonal states, then we cannot recover the information on which state
it was prepared [50]. �

Theorem 5.36 (Entropy of Measurement). Suppose that the system is in the state
ρ and we measure the observable O = ∑i oi|oi〉〈oi|. By the quantum mechanics
postulates, the outcome oi occurs with probability equal to p(oi) = Tr(Oρ). Then the
Shannon entropy of the ensemble of measurement outcomes Mi = {oi , p(oi)} satisfies
H(M) ≥ S(ρ) [50].

Proof: H(M) = −∑i oi log oi ≥ −Tr(ρ log ρ) = −∑i λi log λi = S(ρ). This
is true according to Theorem 5.32 and the equality holds iff [O, ρ] = 0. �
Physically, it says that the randomness of the measurement results is always
minimized if we elect to measure observables that commute with ρ [50].

10Pure states are rank one and trace one positive projectors (Pi ≡ |ψi〉〈ψi |), such as Pn
i = Pi .

See Definitions 2.8 and 3.22 and Theorem 3.24.
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5.9. The Quantum Relative Entropy D(P||Q)

5.9 The Quantum Relative Entropy D(P||Q)

In Chapter 4, we have seen that the classical relative entropy D(P||Q) played a
key role as a measure of how different two probability distributions are from
each other [31]. We need to define an analogue quantity for the quantum case:
the quantum relative entropy D(ρ||σ). It plays a similar role in the quantum
information theory [31].

Definition 5.37 (Quantum Relative Entropy). For any pair of density matrices ρ
and σ, the quantum relative entropy is defined as: D(ρ||σ) = Tr[ρ(log ρ− log σ)].

5.9.1 Some Properties of the Quantum Relative Entropy D(P||Q)

Theorem 5.38 (Positivity of D). D(ρ||σ) ≥ 0 for any ρ and σ. The equality holds
iff ρ = σ.

Proof: By Corollary 5.13 with A = ρ and B = σ. The equality holds iff
A = B⇒ ρ = σ, then Tr(A log A− A log B) = Tr(ρ log ρ− ρ log σ) ≡ D(ρ||σ) ≥
Tr(A− B) = Tr(ρ− σ) = 0. We could prove this fact by using the following
inequality S(ρ||σ) ≥ 1

2 Tr(ρ−σ)2 = D2
2(ρ, σ) ≥ 0. This inequality is an analogue

to the classical inequality proved in Theorem 4.37. � Let us suppose that
we have one qubit and we want to calculate the quantum relative entropy
between a pure state ρ and a mixed state defined as σ = ερ + (1− ε)ρ⊥. Then
D(ρ||σ) = Tr[ρ(log ρ− log σ)] = − log ε. Then lim

ε→0
D(ρ||σ) = +∞.

Theorem 5.39 (Global Unitary Invariance). D(ρ1||ρ2) = D(Uρ1U†||Uρ2U†).

Proof: The proof is simple by using the cyclic property of the trace function.
Then D(Uρ1U†||Uρ2U†) = Tr[Uρ1U†(log Uρ1U†− log Uρ2U†)] = D(ρ1||ρ2). �

Theorem 5.40 (Concavity of D(ρ||σ)). D(ρ||σ) is a convex function.

Proof: The proof is out of the scope of this text and the reader can find it
in [71]. If ρ and σ commute, they can be diagonalized simultaneously by some
unitary matrix U. This problem becomes identical to the classical relative
entropy problem and it was proved in Theorem 4.36. �

Theorem 5.41 (Additivity Property). D(ρ1⊗ ρ2||σ1⊗σ2) = D(ρ1||σ1) + D(ρ2||σ2).

Proof: Applying the above additivity relation inductively, it is possible to
conclude that D(ρ⊗n||σ⊗n) = nD(ρ||σ). �

Theorem 5.42 (Monotonicity Under Partial Trace). D[TrB(ρAB)||TrB(σAB)] ≤
D(ρAB||σAB).

Proof: (Due to [10], for another proof, see for example [70]). In Proposition
5.25, we showed that there exists unitary matrices given by Uj on the space HB

and a vector of probability ~p such that: TrB(ρAB) = ρA ⊗ I
n = ∑j pjUjρABU†

j ,
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with ρA ∈ HA, U ∈ HB and ρA ⊗ I
n ∈ HAB for all ρAB [10]. Therefore, by

using this proposition we will have:

D[(ρA ⊗ I
n )||(σA ⊗ I

n )]
a
≤ ∑j pjD[(UjρABU†

j )||(UjσABU†
j )],

D[(ρA ⊗ I
n )||(σA ⊗ I

n )]
b
≤ ∑j pjD[(ρAB)||(σAB)] = D(ρAB||σAB),

D[TrB(ρAB)||TrB(σAB)] = D[(ρA ⊗ I
n )||(σA ⊗ I

n )] ≤ D(ρAB||σAB). �

The inequality a holds by the concavity of the quantum relative entropy
(Theorem 5.40). The inequality b holds because the entropy is invariant under
global unitaries, Theorem 5.39.

Theorem 5.43 (Monotonicity of Quantum Relative Entropy). The quantum
relative entropy between two states ρ and σ can only decrease if we apply the same
noisy map E to each state [67].

Proof: A noise map acting in (?) is a map such that: E (?) = TrE[U(?)⊗E(?)⊗
|E〉〈E|U†

(?)⊗E], see subsection 5.3. Where |E〉 is the environment and U(?)⊗E =
UG is a global unitary [67]:

D(ρ||σ) a= D(ρ||σ) + 0,

D(ρ||σ) b= D(ρ||σ) + D[(|E〉〈E|)||(|E〉〈E|)],
D(ρ||σ) c= D[(ρ⊗ |E〉〈E|)||(σ⊗ |E〉〈E|)],

D(ρ||σ) d= D[UG(ρ⊗ |E〉〈E|)U†
G||UG(σ⊗ |E〉〈E|)U†

G],

D(ρ||σ)
e
≥ D[E (ρ)||E (σ)]. �

In the equality a, we just sum 0. In equality b, we write 0 = D[(|E〉〈E|)||(|E〉〈E|)].
The equality c follows from additivity of quantum relative entropy over the
tensor product states [67]. The equality d follows because D is invariant under
global unitaries (Theorem 5.39). The inequality e is the monotonicity under
partial trace, (Theorem 5.42). It follows easily from the given simpler form
of monotonicity: D(ρAB||σAB) ≥ D(ρA||σA). This last inequality is intuitive,
since when we trace a part of the system, it becomes less distinguishable.

Theorem 5.44 (The Convergence in Quantum Relative entropy). The conver-
gence in quantum relative entropy implies convergence in the trace norm ‖?‖1.

For one qubit states ρ and σ that are diagonal in the same basis, i.e.,
ρ = p|0〉〈0| + (1− p)|1〉〈1| and σ = q|0〉〈0| + (1− q)|1〉〈1|, the proof is identical
to those proofs in the Subsection 4.4.3, (Lemma 4.40 and Theorem 4.41). For a
more interesting version of this theorem, let us consider the projector P onto
the positive eigenstate of ρ− σ, and let I− P be the projector onto the negative
eigenstate [67]. We must first demonstrate that 2Tr[P(ρ − σ)] = ‖ρ− σ‖1,
however this proof is identical to the classical case, (see [67]). Let us define
p = Tr(Pρ) and q = Tr(Pσ). Let M be a quantum operation that performs this
projective measurement, so that: M(ρ) = Tr(Pρ)|0〉〈0| + Tr[(I− P)ρ]|1〉〈1| and
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M(σ) = Tr(Pσ)|0〉〈0| + Tr[(I− P)σ]|1〉〈1|. Thus, we just need to follow these
steps:

D(ρ||σ)
a
≥ D(M(ρ)||M(σ)),

≥ 4
2

(p− q)2,

=
4
2

[2(Tr(Pρ)− Tr(Pσ))]2,

=
1
2
{2[TrP(ρ− σ)]}2,

D(ρ||σ) ≥ 1
2
‖ρ− σ‖2

1. �

The inequality a is due to Theorem 5.43.

Theorem 5.45 (Monotonicity Under CP-maps). For any completely positive map
Φ(?), we have: D(Φ(ρ)||Φ(σ)) ≤ D(ρ||σ).

Proof: The proof of this theorem is completely out of the scope of this
introductory text.

Theorem 5.46. Let ρ1 and ρ2 be density matrices with diagonal {pi}n
i=1 and {qi}n

i=1
respectively. Then D(ρ1||ρ2) ≥ ∑i pi(log pi − log qi).

Proof: Let Φ(?) be the map which annuls the off-diagonal entries of these
density matrices [53]. Then, by using Theorem 5.45, we prove the theorem:
D(ρ1||ρ2) ≥ D[Φ(ρ1)||Φ(ρ2)] = D(P||Q) = ∑i pi(log pi − log qi). �.

Theorem 5.47. Let ρ1 and ρ2 be density matrices with diagonal {pi}n
i=1 and {qi}n

i=1
respectively. The Von Neumann entropy of the subsystem 1 is majorized by the
Shannon entropy of the diagonal entries: S(ρ1) ≤ H(P).

Proof: Choosing ρ2 = I
n in Theorem 5.46, we have D(ρ1|| In ) = log n −

S(ρ1) ≥ − log 1
n + ∑i pi log pi, that is −S(ρ1) ≥ ∑i pi log pi, then S(ρ1) ≤ H(P)

[53]. �

5.10 Measurements and Entropy

It is not a surprise that the behavior of the entropy after performing a quantum
measurement depends on which type of measurement we performed in a
quantum system. We have the two following theorems to elucidate this issue:

Theorem 5.48 (Projective Measurements Increase Entropy). Let us suppose that
{Pi}n

i=1 is a complete set of orthogonal projectors and let us also suppose that the state
ρ, after performing the measurement is given by ρ′ such that ρ′ = ∑n

i=1 PiρPi. Then
S(ρ′) ≥ S(ρ) and the equality holds iff ρ′ = ρ [10].
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Proof: Let us apply the Corollary 5.13:

0 ≤ D(ρ||ρ′) = −S(ρ)− Tr(ρ log ρ′),

0 ≤ −S(ρ)− Tr[I(ρ log ρ′)],

0
a
≤ −S(ρ)− Tr[∑

i
Pi(ρ log ρ′)],

0
b
≤ −S(ρ)− Tr[∑

i
Piρ log ρ′Pi],

0
c
≤ −S(ρ)− Tr[∑

i
PiρPi log ρ′],

0 ≤ −S(ρ)− Tr[ρ′ log ρ′],

0 ≤ −S(ρ) + S(ρ′),

S(ρ) ≤ S(ρ′). �

Where in a we just put I = ∑n
i=1 Pi. In b, we use the relations P2 = P and

the cyclic property of the trace function. In c, we use the fact that [Pi , ρ′] =
[Pi , log ρ′] = 0, because Piρ

′ = PiρPi = ρ′Pi [10].

Theorem 5.49 (Generalizated Measurements Can Reduce Entropy). Let us
suppose that one qubit is measured using the following measurements operators
M1 = |0〉〈0| and M2 = |0〉〈1|, and also that the state after the measurement is

unknown and it is described by ρ′ =
∑2

i=1 MiρM†
i

Tr(∑2
i=1 MiρM†

i )
, then S(ρ′) ≤ S(ρ) [10].

Proof: Write a diagonal qubit in the basis 0, 1: ρ = λ00|0〉〈0| + λ11|1〉〈1|.
Then S(ρ) = −λ00 log λ00− λ11 log λ11 > 0 λ00, λ11 6= 0. But ρ′ = ∑2

i=1 MiρM†
i

Tr(∑2
i=1 MiρM†

i )

= |0〉〈0|ρ|0〉〈0| + |0〉〈1|ρ|1〉〈0| Then (λ00 + λ11)|0〉〈0|. After normalization ρ′ =
|0〉〈0| Then S(ρ′) = 0 < S(ρ).

5.11 The Second Law of Thermodynamics - A Naive
Introduction

Let us consider a quantum open system11, i.e., a quantum system with contact
with some environment. We would like to observe the evolution of the
quantum subsystem without paying attention to the environment. Let us
also suppose that the subsystem (A) and the environment (E) are initially
uncorrelated [50]. By the additivity property, we have:

ρAE = ρA ⊗ ρE,

S(ρAE) = S(ρA) + S(ρE).

11This subsection is totally inspired in [50].
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We already know that the evolution of quantum open systems are described
by global unitaries UAE, then:

ρAE ⇒ UAEρAEU†
AE,

S(UAEρAEU†
AE) a= (ρAE).

The equality a follows because of the unitary invariance of S. Finally, it allows
us to apply the sub-additivity property of UAEρAEU†

AE:

S(ρAE) = S(ρA) + S(ρE) = S(UAEρAEU†
AE)

b
≤ S(UAEρAU†

AE) + S(UAEρEU†
AE).

The inequality b follows from the sub-additivity of the composite system. The
equality holds iff the subsystem A and the environment E remain uncorrelated.
If we define the total entropy as Stot ≡ S(UAEρAU†

AE) + S(UAEρEU†
AE), then it

cannot reduce. The naive assumption made in order to derive this law was
that the subsystem and the environment were initially uncorrelated [50]. If the
environment forgets quickly all the previous interactions with the system, then,
these system–environment interactions can always be modeled as markovian
processes. Hence, under this assumption, the Stot will increase monotonically
until attain its maximum value [50].

5.12 A Glimpse of the Quantum Entanglement

Despite the essential importance of the entanglement in quantum theory of
information, this issue is not the focus of this text. We have already defined
the entanglement in Chapter 3. Entanglement is a very useful resource for
many interesting applications in physics such as quantum teleportation, quantum
cryptography etc.

5.12.1 Pure States of a Bipartite System

Let us consider a pure state of a bipartite system. There exists cases where the
reduced state of a pure state is not pure, (e.g., the Bell states), then the reduced
state has a non-null entropy. The question if a pure state |ψ〉 ∈ H1 ⊗ H2
is separable is quite easy to answer: it is enough to take the partial trace
ρ1 = Tr2(|ψ〉〈ψ|) and check if Tr(ρ2

1) = 1. If it is, then the state ρ1 is pure,
hence the state |ψ〉〈ψ| is separable. Conversely, the state |ψ〉〈ψ| is entangled
[31]. We can define the Schmidt vector ~λ, (see Schmidt Theorem in [31],
Chapter 9, Section 9.2, Eq. 9.8, or in [72]), that is a k-dimensional vector,
with k ≤ n = dim(H1 ⊗H2). The entanglement entropy is defined as the Von
Neumann entropy of the reduced state, which is equal, by definition, to the
Shannon’s entropy H of the Schmidt vector (given by ~λ).

Definition 5.50 (Entanglement Entropy). Let ρ1 be the reduced state, then the
Entanglement entropy is: E(|ψ〉) = S(ρ1) = H(~λ) = −∑k

i=1 λi log λi.
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For separable states E(|ψ〉) = 0 and for maximally entangled states E(|ψ〉) =
log n [31].

Theorem 5.51 (Nielsen’s Majorization Theorem). A given state |ψ〉 may be
transformed into the state |φ〉 by deterministic LOCC operations iff, the corresponding
vectors of the Schmidt coefficients satisfy the following majorization relation: ~λψ ≺
~λφ.

Proof: The proof is out of the scope of this text. But we can observe that,
if we have this relation for the Schmidt coefficients, ~λψ ≺ ~λφ, then for every
Schur-convex function, we will have H(~λψ) ≥ H(~λφ). By using Theorem 5.50,
we can conclude that E(|ψ〉) ≥ E(|φ〉). Understanding entanglement as a
resource, it is natural to think that a state can be transformed into another by
means of LOCC iff it is more entangled than the latter.

5.12.2 Mixed States and Entanglement

Theorem 5.52 (Majorization Criterion). If a state ρAB is separable, then the reduced
states ρA and ρB satisfy the majorization relations: ρ ≺ ρA and ρ ≺ ρB [31].

It is well known that separable states are more disordered globally than
locally. In order to prove this criterion, it is sufficient to exhibit a bistochastic
matrix B, such as ~λ = B~λA.

Proof: Following the solution of the problem 15.4 of [31]: Let ρ be a
separable state ρ = ∑j λj

∣∣ψj
〉〈

ψj
∣∣, written in its decomposition into pure

product states. Then ρ = ∑i pi
∣∣φA

i
〉〈

φA
i

∣∣⊗ ∣∣φB
i
〉〈

φB
i

∣∣. Let us write the reduced
state ρA = TrB(ρ) = ∑i pi

∣∣φA
i
〉〈

φA
i

∣∣. The reduced state can be written in
its eigenbasis, i.e., ρA = ∑k pk|k〉〈k|. We need to apply the Schrödinger
mixture theorem (Theorem 5.32) twice. For this, we need to define two

unitary matrices V and U such that:
√

pi
∣∣φA

i
〉

= ∑k Vik

√
λA

k |k〉 and
√

λj
∣∣ψj
〉

=

∑i Uji
√

pi
∣∣φA

i
〉∣∣φB

i
〉
. If we multiply the result by its adjoint and using the

orthogonality of k, i.e., 〈k′|k〉 = δkk′ , we will obtain λj = ∑k BjkλA
k . This matrix

B is bistochastic. Then using the Theorem 4.7, we acquire the proof.

5.13 The Jaynes Principle in Quantum Mechanics

5.13.1 The Quantum Jaynes State

We already seen that the expectation value of an operator Fk, when the system
is in a state given by ρ, is given by the rule: 〈Fk〉 = Tr(Fkρ). When, instead
of the density operator, a complete set of expected values is given, then we
can define a set C defined by all density matrices that fulfill the conditions:
C = {ρ, s.t. Tr(ρ) = 1, Tr(ρFk) = 〈Fk〉, k = 1, · · · , n} [73, 74]. We should
choose a state in an unbiased manner. Accordingly the Jaynes principle of the
maximum entropy, the chosen state is the state that has the largest entropy
still compatible with the expectations data collected from the experiments.
Then ρJ = max{ρ∈C}{S(ρ)}. We have to maximize ρ subject to the constraints
imposed by the knowledge of the expectations measured. We showed in
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Theorem 5.29, that the state, which maximizes the Von Neumann entropy and
simultaneously fulfills the constraint given by an expectation, is the Gibbs
state σG = e−H

Z , where Tr(HσG) = 〈E〉, and Z = Tr(e−H). When we have more
constraints (given by the set C), it is easy to see that the state will be given by:

Definition 5.53 (Quantum Jaynes State). The Quantum Jaynes State ρJ is defined

as ρJ =
e−∑n

k=1 λk Fk

Z
, with Z = Tr(e−∑n

k=1 λk Fk ).

Where the λk are Lagrange multipliers. As usual in Statistical Mechanics,
we can calculate the expectations by performing derivatives of the partition
function:

〈Fk〉 = − ∂

∂λk
ln Z. (5.15)

The vector of Lagrange multipliers can be determined, in principle, by the
set C, after performing the derivatives in the partition function Z given in Eq.
5.15. If we substitute the state ρJ into the entropy formula, we will get: S(ρJ) =
ln Z + ∑k λkFk. Using this last equation, we can see that dS(ρJ) = ∑k λkdFk.

Then λk = ∂S(ρJ )
∂Fk

.

5.13.2 The Problem

The Jaynes inference scheme was studied by Buzek et al. in 1997, when
they reconstructed the quantum states of 1, 2 and 3 spins from partial data
[75]. A lot of similar work can be found in: [76, 77] and others. The Jaynes
principle allows us to interpret the statistical mechanics as a special case
of non-parametric statistical inference based on the entropic criterion [78].
This principle is the most unbiased inference scheme, since we maximize
our uncertainty under the given constraints. However, is the Jaynes principle
universal? In 1999, the Horodeccy gave a counterexample of fake entanglement
production using the Jaynes principle in an estimate of a state based on partial
information [78], and they stated the following question: What information
about entanglement should be concluded, based on a given experimental
mean values of an incomplete set of observables 〈Fk〉 = fk? They wanted to
know if the entanglement is finally needed as a resource, then they should
consider the worst case scenario, that is, should minimize entanglement under
experimental constraints [79]. Put differently, the experimental values for the
entanglement should be written in the form of:

E( f1, · · · , fn) = in f{i:〈Fi〉ρ= fi , ∀i=[1, n]}{E(ρ)}. (5.16)

Such minimization of entanglement was performed for a given mean of a
Bell observable on unknown 2-qubit state [78]. Surprisingly, there were many
states which achieved the minimum. Then, to reach the global minimum of the
problem, the authors proposed another method of maximum entropy, based
on Jaynes principle [78]. They demonstrated that the Jaynes principle, when
applied to composite systems, may eventually return to states of maximum
entropy compatible with the set of incomplete data which may be entangled,
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even if the data comes from a separable state [78]. They suggested then
that this principle should be replaced by another principle, ruled by the
minimization of entanglement.

5.13.3 The Counterexample

Horodeccy considered a Bell-CHSH observable B written in the Bell basis
(see Def. 3.1 and Def. 3.2). Then B =

√
2(X ⊗ X + Z⊗ Z) = 2

√
2(|Φ+〉〈Φ+| −

|Ψ−〉〈Ψ−|), with mean value given by 0 ≤ 〈B〉 ≡ b ≤ 2
√

2. Then they
applied the Jaynes inference scheme to this data (considering 〈B〉 = b as only
constraint) and they obtained a quantum Jaynes state which was diagonal in
the Bell basis and it was given by ρJ .

A simple criterion of separability of Bell diagonal states is: a Bell diagonal
state is separable iff, all its eigenvalues do not exceed 1

2 [78]. Using this
criterion, they showed that Jaynes principle produces fake entanglement: the
Jaynes state ρJ produced by the maximization of the entropy is inseparable,
for a certain interval of values of 〈B〉 = b, and they could exhibit a separable
state σ compatible with the constraint given by this mean value [78].

We could think that the difference of these two inference schemes is due
to the non-locality of the observable measured. But they could also exhibit a
set of data which could be obtained by observers who communicate only by
means of a classical channel and that still lead us toward a wrong inference
scheme. Hence, if the observables exhibit some sort of correlation, Jaynes
principle can fail even in the classical world.

5.13.4 An Inference Scheme: Minimization of Entanglement

The inference scheme depends on the context and, maybe, there is no way to
obtain full knowledge from partial knowledge. Based on the counterexample,
Horodeccy proposed an inference scheme that produces a separable state if
there exists a separable state which is compatible with the constraints. Of
course that an inference scheme, that does not produce fake entanglement, is
a procedure that contains in one of its steps a minimization of entanglement
[78]. The scheme can be stated as follows:

1. Preparation of a state ρB dephased in the Bell basis and compatible with
the constraints.

2. This state ρB have the properties: E(ρB) ≤ E(ρ) and S(ρB) ≥ S(ρ).

3. Minimization of the entanglement.

4. Maximization of the Von Neumann entropy.

5. Verification if there exists a quantum separable state that is compatible
with the given data.

In order to build a convex problem, Horodeccy noted that all Bell constraints12

are linear, so they build a convex set with the states with minimal entangle-

12A Bell constraint is defined by ρ → ρB = ∑3
i=0 PiρPi . We have already showed that this

expansion cannot reduce entropy, see Theorem 5.48.
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ment subject to the Bell constraints, because the entropy is a strictly convex
function. If we maximize the entropy over a convex function we will obtain
a unique state. The representative state, for the Bell constraints, is diagonal
independently on the entanglement measure. Therefore, after the minimiza-
tion of the entanglement in our favorite measure, we have to maximize the
Von Neumann entropy and we ought to check if there exists a separable
compatible with the data. [78].

5.13.5 The Solution

The example that Horodeccy gave us was very clever, but they could not state a
general scheme of inference in order to completely solve the problem. Another
point to consider is that they could write a convex cone with the diagonal
Bell basis, by writing the state in a diagonal basis, however for more general
density matrices expansions this is a much more difficult problem. They knew
from the beginning that the choice of the Bell basis, (after performing the Bell
dephasing step) would provide two wonderful properties: the entropy would
not decrease and the entanglement would not increase. A general method of
inference scheme should give us the correct convex set where to minimize the
entanglement and to maximize the Von Neumann entropy.

However, an interesting question was also made by Horodeccy: “If the
Jaynes state is inseparable, then the data certainly does not come from any
separable state. This involves an interesting problem as well: for which type
of constraints does the Jaynes scheme fail?” To our knowledge, this problem
remains unsolved.

5.14 The Quantum Maximum Likelihood Principle

The statistical nature of the quantum processes is revealed in the laboratory.
When an experimentalist performs repeatedly an experiment on the ensemble
of identically prepared systems, he cannot control deterministically their result
due to the unavoidable fluctuations [73]. The knowledge of the density matrix
of a quantum system makes possible the prediction of any statistical result
of any measurement performed in the system [73]. The determination of
the quantum system represents an inverse problem. The inverse problem of
determining the quantum state is called quantum tomography, see, for example
[11]. This method is known, in mathematical statistics, as the Maximum
Likelihood method and it was proposed by R. Fisher in the 1920’s. This
quantum version is identical to the classical version studied in the Section
4.7.1 and 4.7.2.

Let us consider one qubit of polarization. Assume that it is given a finite
n number of copies, each in the same, but unknown quantum state which
is described by the following density matrix ρ [73]. Let us consider that
n photons, prepared in the same state, have been observed in m different
outputs of the measurement apparatus. For one qubit of polarization, these
outputs could be the vertical, horizontal, +45◦, etc. Each output

∣∣yj
〉〈

yj
∣∣, with

j = 1, · · · , m, has been registered nj times with ∑j nj = n [73]. Let us also
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5.14. The Quantum Maximum Likelihood Principle

suppose for the sake of simplicity that this measurement is complete, i.e.,
H = ∑j

∣∣yj
〉〈

yj
∣∣ = I. The probabilities of occurrence of various outcomes is

given by the rule:
pj =

〈
yj
∣∣ρ∣∣yj

〉
. (5.17)

If the probabilities pj are well-known, the problem of finding the quantum
state is just a matrix inversion problem [73]. However, since only a finite
number n of systems were measured, then there is no way to find out those
real probabilities. We have in hands only the respective frequencies f j such as
f j =

〈
yj
∣∣ρ∣∣yj

〉
[73]. We assume that all the photons are always detected in one

of the m output channels and this is repeated n times. Then we can construct
the following likelihood function:

L(ρ) =
n!

∏j nj!
∏

j

〈
yj
∣∣ρ∣∣yj

〉nj . (5.18)

Where nj = n f j. Note that Eq. 5.18 is identical to the classical formulation for
the Maximum Likelihood (Section 4.7.2), where the probabilities are calculated
by the Born’s rule.

logL(ρ) = log
n!

∏j nj!
∏

j

〈
yj
∣∣ρ∣∣yj

〉nj . (5.19)

Finding the maximum of this function (Eq. 5.19) is non-trivial and generally
involves iterative methods [73, 80]. It can be shown that we need to solve the
following optimization problem:

max{ρ∈C}{p(j|ρ)},
s.t. Tr(ρ) = 1,

ρ � 0.

Where the p(j|ρ) is the probability of getting the j-th outcome, given the
parameter ρ. The constraints defined in the optimization problem, given by
the Eq. 5.20, are known as linear matrix inequalities [81]. When the objective
function p(j|ρ) is linear, we have a semi-definite programming problem (SDP)
[61]. Although we have efficient interior point methods for semidefinite
programming, the reformulation of the problem given by Eq. 5.20 into a linear
SDP form requires the introduction of auxiliary variables and constraints,
that increase the dimension and therefore the difficulty of the optimization
problem [81].
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CHAPTER 6

Conclusions

We sincerely hope that this invisible parallel weaved between the Classical
and Quantum Information theories has become clear. Other parallels could
be evidenced if we kept following the idea developed in [31]. For instance:
the issue here could follow an interesting path of the construction of a metric
function for the classical space (the Fisher-Rao metric, see [31, 82]), and also
for the quantum counterpart. But we focused the attention in the elements, not
in the geometry of these spaces. We tried to understand a vector of probability
and a quantum state as members of a classical and a quantum space of
probabilities. The operations allowed in each space were then presented. In
the classical case, these operations were personified by the stochastic and the
bistochastic matrices. In the quantum one, we presented a brief discussion
about the quantum maps and the quantum operations. We discussed some
majorization properties in order to understand the partial ordering of these
spaces. Finally, we defined the entropy function (Shannon’s entropy for the
classical world and the Von Neumann entropy in the quantum realm) as a
measure of information and a measure of the degree of mixing. Some important
properties of the Shannon entropy and of the Von Neumann were carefully
demonstrated. The importance of the relative entropy was evidenced in both
cases and some of its interesting geometrical significance were highlighted.
In the quantum case, we discussed the mixture problem and the Schrödinger
mixture theorem. In both cases, we displayed a short discussion on the
second law of thermodynamics and we showed its connections with the
Jaynes principle of maximum entropy. In the classical case we presented other
inference schemes. In the quantum world we presented the Jaynes problem
superficially in a short, intuitive and easy approach. This choice was justified
due to the fact that this problem is still open in the quantum case.
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CHAPTER 7

Appendix

Positive functionals ω are special cases of positive maps Φ. A linear map
Φ is said to be positive if f ≥ 0 implies that Φ( f ) ≥ 0. Let us consider the
following matrix | f g〉 = ( f ∗, g∗)†. The matrix | f g〉〈 f g| is given by:

| f g〉〈 f g| =
(

f f ∗ f g∗

g f ∗ gg∗

)
, (7.1)

Since ω(·) is a positive linear functional, the linear map given by Φ(| f g〉〈 f g|) =
(I⊗ω)(| f g〉〈 f g|) is positive. Then:

(I⊗ω)(| f g〉〈 f g|) =
(

ω( f f ∗) ω( f g∗)
ω(g f ∗) ω(gg∗)

)
≥ 0. (7.2)

Hence the Cauchy-Schwarz inequality follows imediately when we imply
the positivity of the determinant det[(I⊗ω)(| f g〉〈 f g|)] ≥ 0, thus |ω( f g∗)|2 ≤
ω( f f ∗)ω(gg∗) [21].
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