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Resumo

Mudanca é uma constante em desenvolvimento de software. Assim como em qual-
quer sistema, bibliotecas também estao sujeitas a diversas mudancas, compelindo seus
clientes a atualizarem-se e, entao, aproveitarem as melhorias providas por suas APIs.
Entretanto, algumas dessas mudancas nao preservam compatibilidade, quebrando con-
tratos previamente estabelecidos. Este tipo de mudanca é referenciado como breaking
change. Assim, clientes podem enfrentar erros de compilagao ou mudancas comporta-
mentais ao atualizarem bibliotecas que possuem breaking changes. Diversas solugoes
tém sido propostas a fim de mitigar o impacto dessas mudancas em aplicagoes clientes;
poucos estudos focam nas motivagoes reais que as ocasionam. Dessa forma, pouco
se sabe a respeito do tamanho real desse problema, dos seus possiveis efeitos, e das
razoes especificas que motivam tais mudancas. Nesta dissertacao, propoe-se a fer-
ramenta APIDiff, cujo objetivo é comparar duas versoes de uma biblioteca Java e
identificar breaking e non-breaking changes entre elas. Essa ferramente é utilizada para
realizacao de dois estudos empiricos sobre breaking changes em APIs. No primeiro
estudo, objetiva-se analisar, quantitativamente, (i) a frequéncia dessas mudangas, (ii)
sua evolugao ao longo do tempo, (iii) o impacto nos clientes, e (iv) as caracteristicas de
bibliotecas com alta frequéncia de mudangas desse tipo. No segundo estudo, objetiva-se
entender, qualitativamente, (v) as razoes que levam desenvolvedores a introduzirem es-
sas mudangas, e (vi) a consciéncia dos mesmos sobre os seus efeitos. Foram analisadas
317 bibliotecas Java, 9K versoes e 260K clientes. Assim, observou-se que (i) 14.78%
das mudangas em API quebram compatibilidade, (ii) tal frequéncia cresce ao longo
dos seus ciclos de vida, (iii) 2.54% dos clientes sao afetados, (iv) sistemas com alta
frequéncia de breaking changes sdo maiores, mais populares e mais ativos, (v) desen-
volvedores de APIs normalmente introduzem tais mudancas com objetivos especificos,
e (vi) a maioria deles sdo conscientes dos seus efeitos. Por fim, sdo providas sugestoes

de ferramentas e estudos para auxiliar desenvolvedores de bibliotecas e seus clientes.

Palavras-chave: Compatibilidade, Evolu¢ao de software, Manutencao de software.
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Abstract

Change is a routine in software development. As any other system, libraries also
evolve over time. As a consequence, clients are compelled to update and, thus, benefit
from the available API improvements. However, some of these changes are backward
incompatible, breaking contracts previously established with client applications. As
a result, they may face compilation errors and behavioral changes when updating to
library versions enclosing breaking changes in their API elements (types, fields, and
methods). Several solutions have been proposed to mitigate the impact on clients; few
other studies focus on the real motivations driving these changes. However, we are still
unaware about the real size of this problem, the impact of these changes on clients, and
the specific reasons driving API developers to break such contracts. In this dissertation,
we propose an APIDiff tool, whose purpose is to compare two versions of a Java
library and identify breaking and non-breaking changes between them. Additionally,
we use this tool to perform two empirical studies on API breaking changes. In the first
study, our goal is to quantitatively assess (i) the frequency of breaking changes, (ii) their
behavior over time, (iii) the impact on clients, and (iv) the characteristics of libraries
with high frequency of breaking changes. In the second one, we aim to qualitatively
understand (v) the specific reasons why developers introduce breaking changes, and (vi)
their awareness about the risks associated to these changes. Our large-scale analysis on
317 real-world Java libraries, 9K releases, and 260K client applications shows that (i)
14.78% of the API changes break compatibility, (ii) their frequency increases over time,
(iii) 2.54% of API clients are impacted, (iv) systems with higher frequency of breaking
changes are larger, more popular, and more active, (v) library developers usually break
contracts with specific motivations, and (vi) most developers are aware of the risks of
breaking changes and, in some cases, adopt strategies to mitigate them. Therefore, we
provide insights for the development of tools and studies to support library and client

developers in their maintenance activities.

Palavras-chave: API breaking changes, Software evolution, Software maintenance.
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Chapter 1

Introduction

Software libraries promote the reuse of common functionalities by providing Appli-
cation Programming Interfaces (APIs) to client applications [Reddy, 2011; Robil-
lard et al., 2013|. In this context, APIs have become extremely popular (e.g., the
java.utils.ArrayList library has more than 140K clients' [Dyer et al., 2013,
2015]), with a huge number of systems developed on the top of them [Tourwé and
Mens, 2003]. Such phenomenon may be explained by the benefits that APIs provide

to their clients [Konstantopoulos et al., 2009; Moser and Nierstrasz, 1996], such as:

e Increase of software quality by providing well-adopted and tested components;

e Reduction of development time and budget by avoiding the effort of re-

implementing source code already available;

e Increase of software reliability by providing constant updates to improve non-

functional requirements, such as safety and performance.

As any other system, libraries are usually changing. While evolving, they are
subject of a variety of modifications, such as addition, removal, or modification of their
APT elements (types, fields, and methods) [Raemaekers et al., 2012]. In theory, these
changes should be backward compatible, preserving contracts with client applications.
However, previous studies indicate that this is not a common practice [Wu et al., 2010;
Robbes et al., 2012; Hora et al., 2015; Brito et al., 2016]. In this context, API changes
are classified into breaking changes and non-breaking changes |Dig and Johnson, 2006].
Breaking changes are those modifications that break backward compatibility with client

applications, possibly causing them to face compilation errors or behavioral changes

! According to JAVALLI a tool to measure popularity of Java libraries in Boa infrastructure, avail-
able at: http://java.labsoft.dcc.ufmg.br/javali

1
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after updating. On the other hand, non-breaking changes preserve compatibility and
do not cause negative effects when clients migrate between versions.

Listings 1.1 and 1.2 illustrate a real case of API breaking changes observed in
the version 5.2.0 of the HIBERNATE/HIBERNATE-ORM library (all modifications are
highlighted in red). First, we observe that the type Query<R> changed its super-
type from org.hibernate.BasicQueryContract to CommonQueryContract
and, thus, updated the implemented contracts of their methods. Additionally, a pack-
age refactoring was also performed in this library version. As a consequence, the
methods of the type Query<R> had their return types updated to the new package
signatures. For example, the method setBoolean modified its return type from
org.hibernate.query.Query<R> to Query<R>, breaking a contract previously
established with its clients. Therefore, a major issue was open on the library’s bug
tracker, and the library released a fiz version (5.2.1), restoring compatibility with

legacy code, as follows (see more details in Figure 1.1):

“The clients of the org.hibernate.Query can no longer use the API in “DSL
Style” as the builder methods no longer return the org.hibernate. Query contract,
but force updating to the new contract. We can restore the previous backwards

compatibility, which was lost during the refactoring work of version 5.2.0.”

public interface Query<R> extends TypedQuery<R>, org.hibernate.BasicQueryContract
{
default org.hibernate.query.Query<R> setBoolean (int position, boolean val) {
setParameter ( position, val, determineProperBooleanType( position, val,
BooleanType.INSTANCE ) );
return (org.hibernate.query.Query) this;

Listing 1.1. Fragment of type org.hibernate.Query on its version 5.0

public interface Query<R> extends TypedQuery<R>, CommonQueryContract {
default Query<R> setBoolean (int position, boolean val) {
setParameter ( position, val, determineProperBooleanType( position, val,
BooleanType.INSTANCE ) );
return this;

Listing 1.2. Fragment of type org.hibernate.Query on its version 5.2.0

There are several solutions proposed in the literature to mitigate the impact of
APT breaking changes on client applications (e.g., [Henkel and Diwan, 2005; Kingsum
and Notkin, 1996; Meng et al., 2012; Hora et al., 2014; Hora and Valente, 2015]). For



Hibernate ORM / HHH-10839
# Restore some lost backwards compatibility of the legacy org.hibernate.Query

Details
Type: £ Improvement Status:
Priority: A Major Resolution: Fixed
Affects Version/s: 5.2.0 Fix Version/s 521
Component/s: hibernate-core
Labels: None

Lastcommented by a  true
user?:

Description

The clients of org. hibernate. Query can no longer use the API in "DSL style” as the builder methods no longer return the org. hibernate.Query
contract but force upgrading to the new contract.

We can restore the previous backwards compatibility, which was lost during the refactoring work of version 5.2.0.

Figure 1.1. Issue opened on HIBERNATE/HIBERNATE-ORM library to restore compatibility.

example, by mining version history, some studies suggest how client applications should
be updated due to broken API elements (e.g., a public method removed from an old
library version). However, even though there are solutions to alleviate the impact of
library evolution, we are still unaware about the real number of clients affected by
API breaking changes, and unsure whether backward-incompatibility tends
to get better (or worse) over time. Additionally, few studies investigate the
real motivations driving such changes. For instance, Bogart et al. [2016] performed
a general-purpose case study with 28 developers to study how they plan, manage,
and negotiate breaking changes. However, they report developers general views and
conceptions on such changes, leaving a gap on the specific reasons that motivate

breaking changes in the wild. Therefore, there are still open questions, such as:

To what extent are clients affected by backward-incompatibility?

Is backward-incompatibility a problem only faced by newer (and possibly “unsta-

ble”) libraries or older (and “stable”) ones should also take special care?

Why API developers, who are supposed to be careful about compatibility, break
API contracts?

e When developers break API contracts, are they aware of the risks to client ap-

plications?

In this dissertation, we aim to investigate these questions, advancing the knowl-

edge on API breaking changes. We provide insights for the development of tools as
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well as studies to support library and client developers in their maintenance activities.
For that, we propose an API change catalog and implement a tool to compare versions
of Java libraries, assessing the cataloged changes. Additionally, we use this tool to per-
form two empirical studies in the context of 317 real-world Java libraries, 9K releases,
and 260K client applications. In the next section, we detail these studies, as well as

their main results and contributions.

1.1 Proposed Tool and Studies

In order to support our investigations on API breaking changes, we propose an API
change catalog based on the previous work of Dig and Johnson [2006]. Besides, we use
this proposed catalog to implement an APIDIFF tool, whose purpose is to identify both
breaking and non-breaking changes between two versions of a Java library (Chapter 3).
We use this tool to perform two empirical studies with the purpose of assessing (i) the
frequency and the impact of API breaking changes, and (ii) the reasons why developers
introduce such changes in their libraries. In both studies, Java was chosen to be
investigated due to the popularity of the language and their libraries. In this section,

we describe each of these studies, as follows:

Historical and Impact Analysis. In our first study, we investigate a set of questions
regarding API breaking changes. Our goal is twofold: to measure the amount of
breaking changes on real-world libraries and its impact on clients at a large-scale level.

Therefore, we propose the following research questions to support this study:

e RQ1. What is the frequency of API breaking changes? In this research
question, we analyze the frequency of API breaking changes in the two latest
releases of popular Java libraries. We observe that 28.99% of all API changes
break backward compatibility. On the median, this percentage hits 14.78% of

changes per library.

e RQ2. How do API breaking changes evolve over time? In this research
question, we investigate the behavior of API breaking changes along libraries life
cycle by analyzing the frequency of such changes during their first five years. We
conclude that the percentage of breaking changes tends to increase over time by

a rate of 20% when comparing their first and fifth years.

e RQ3. What is the impact of API breaking changes in client applica-

tions? In this research question, we analyze the impact of API breaking changes
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on client applications by estimating the number of possible clients of each modi-
fied API element. We observe that, on the median, only 2.54% of API clients are
potentially impacted by breaking changes.

e RQ4. What are the characteristics of libraries with high and low fre-
quency of breaking changes? In this research question, we analyze the charac-
teristics of libraries with high frequency of breaking changes. Finally, we conclude
that libraries with higher frequency of such changes are larger, more popular, and

more active.

In this first study, we analyze 317 real-world Java libraries, 9K releases, and 260K
client applications. Based on its results, we provide a set of lessons to better support
library and client developers in their maintenance tasks. Therefore, the contributions

of our historical and impact analysis are summarized as follows:

e We provide a large-scale study to better understand the extension and the impact

of API breaking changes;

e We provide lessons learned from our API analysis to support library/client de-

velopers in maintenance activities.

API Breaking Changes Motivations. Next, in our second study we perform a
qualitative investigation with library developers and real instances of API breaking
changes. Specifically, we aim to elicit from library developers a list of motivations
for API breaking changes, as well as verify their awareness on the impact on client

applications. To support this study, we investigate the following research questions:

e RQ5. Why do developers break API contracts? In this research ques-
tion, we analyze the reasons why developers introduce breaking changes in their
libraries. For this purpose, we survey the top contributors of these libraries.
We elicit a list of five main motivations, that are: LIBRARY SIMPLIFICATION,
REFACTORING, BUG Fi1X, DEPENDENCY CHANGES, and PROJECT POLICY.

e RQ6. Are developers aware of the impact of breaking changes on client
applications? In this research question, we investigate whether API developers
are aware about the risks of breaking changes for client applications. We observe
that most of them are conscious of such risks, and, in some cases, they also adopt

strategies to alleviate them (e.g., deprecation annotations).
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To answer these questions, we conducted a survey with the developers of popular
Java libraries with the higher frequency of breaking changes observed in our first anal-
ysis. Based on its results, we suggest a future study to strengthen our current findings
and also to support the development of tools to better assess the risks and impacts of
API breaking changes. Thus, the contributions of this second study are summarized

as follows:

e We provide a qualitative study to elicit the motivations of API breaking changes

and to understand developers concerns with their impact on client applications.

e We prospect a study based on firehouse interviews [Murphy-Hill et al., 2015| to

strengthen our current findings.

1.2 Publications

This dissertation generated the following publications and therefore contains material

from them:

e Xavier, L., Brito, A., Hora, A., and Valente, M. T. (2017). Historical and Im-
pact Analysis of API Breaking Changes: A Large Scale Study. In 2/th Interna-

tional Conference on Software Analysis, Evolution and Reengineering (SANER),
p. 138-147. (Qualis A2)

e Xavier, L., Hora, A., and Valente, M. T. (2017). Why do We Break APIs?
First Answers from Developers. In 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER), ERA Track, p. 392-396.

e Xavier, L., Brito, A., Hora, A., and Valente, M. T. (2016). Um Estudo em
Larga Escala sobre Estabilidade de APIs. In 4th Brazilian Workshop on Software
Visualization, Evolution and Maintenance (VEM), p. 1-8.

1.3 OQutline of the Dissertation

The remainder of this dissertation is organized as follows:

e Chapter 2 covers the main subjects related to this dissertation. We begin by
explaining the concepts of Application Programming Interfaces (APIs). Next,

we discuss library changes and backward compatibility. Finally, we conclude by
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presenting the API change catalog proposed by Dig and Johnson [2006]| that

motivated our own catalog.

Chapter 3 describes in details our first empirical study: a quantitative historical
and impact analysis of API breaking changes. For that, we begin by detailing our
API change change and the APIDIFF tool implemented to support our analysis.
Next, we present the methodology of this study, followed by the results obtained
for each proposed research question. Then we conclude the chapter by discussing

our findings and presenting threats to validity.

Chapter 4 details our second empirical study: a survey with the major con-
tributors of libraries with highest frequency of breaking changes found in the
study described in Chapter 3. We begin by detailing the design of this study.
Next, we provide answers to each research question, summarizing our results and

presenting threats to validity in the conclusion.

Chapter 5 discusses the state of the art by presenting related work in the sub-
jects of library evolution and breaking changes impact. We separate this chapter
into these two subjects, highlighting the limitations of such works and discussing

the contributions of our empirical studies.

Chapter 6 presents final considerations, including a summary of our contribu-

tions. Additionally, we provide a discussion on the prospected future work.






Chapter 2

Background

In this chapter, we discuss background subjects required to understand the work car-
ried out in this dissertation. We start by detailing API concepts (Section 2.1), and
their increasing usage nowadays. Next, we discuss library change and compatibility
(Section 2.2), detailing the notion of breaking change and non-breaking change, and
presenting an API change catalog previously proposed in the literature. Finally, we

conclude the chapter by presenting final remarks in Section 2.3.

2.1 Application Programming Interfaces

Libraries provide interfaces to software components created to be reused by multiple
client applications: the Application Programming Interfaces (APIs) [Reddy, 2011; Ro-
billard et al., 2013|, which are illustrated in Figure 2.1. They expose services meant
to be stable by using visibility modifiers. In Java, for instance, APIs use public and
protected modifiers. As a result, API elements (i.e., types, fields, and methods)
provide contracts on which clients (either external or internal) rely, accessing services

and avoiding re-work.

( Cient >
Sg;g;re Ll API
(Client

Figure 2.1. API acting as interface for client applications [Montandon, 2013].
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As an example, Listing 2.1 shows a fragment of a widely used Java API,
ArrayList. The class belongs to the java.utils package and provides services
for a data structure known as [list. In this example, the methods size, contains,
get, and add have a public modifier, being available for clients as API elements.
By contrast, the method rangeCheck and the fields elementData and size are
private, thus they are not API elements. Finally, the class ArrayList itself is
considered an API element once that it is public for external clients.

public class ArraylList<E> extends AbstractList<E> implements List<E>,

RandomAccess, Cloneable, Serializable {

private transient Object|[] elementData;
private int size;

public int size () {
return size;

}

public boolean isEmpty () {
return size == 0;

}

public boolean contains (Object o) {
return indexOf (o) >= 0;

}

public E get (int index) {
rangeCheck (index) ;
return elementData (index) ;

}

public boolean add(E e) {

e
=
~

ensureCapacity (size
elementData[size++] = e;
return true;

}

private void rangeCheck (int index) {
if (index > size || index < 0)

throw new IndexOutOfBoundsException (outOfBoundsMsg (index)) ;

Listing 2.1. Example of API elements in class java.util.ArrayList

In this context, the use of APIs in software development is increasing significantly
due to the advantages they bring in terms of quality and productivity [Konstantopoulos
et al., 2009; Moser and Nierstrasz, 1996]. By reusing API services, clients may benefit
from the quality of components developed by experts and tested by a number of other
applications. They may also save time and budget by avoiding the effort of developing
services already available. Furthermore, applications may take advantage from the
constant updates, when non-functional requirements are improved, such as safety and

performance.
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There are several examples of successful APIs, such as Java API, Android
API, and .NET Framework Class Library. Some of them are used by thousands of
clients worldwide. For example, Table 2.1 shows the top-10 most used Java APIs,
with their corresponding number of clients, in the context of a large-scale software
dataset! |[Dyer et al., 2013, 2015]. In this case, the number of clients ranges from 60K
(java.util.Iterator) to 143K (java.util.ArrayList).

Table 2.1. Top-10 most popular Java APIs.

Number of

Position Name Clients
1 java.util.ArrayList 143,454
2 java.io.IOException 136,058
3 java.util.List 134,053
4 java.util.HashMap 94,220
) java.io.File 88,703
6 java.util.Map 87,417
7 java.io.InputStream 68,000
8 java.util.Date 64,460
9 android.os.Bundle 63,434
10 java.util.Iterator 60,172

2.2 Library Change and Compatibility

As any other software system, during their life cycle, libraries are subjected to evo-
lutionary changes, such as addition, removal, or modification of their API elements.
Changes are usually necessary to fix critical bugs, improve performance, decrease tech-
nical debt, and release new features [Bogart et al., 2016]. Ideally, they should keep
backward compatibility, i.e., do not break contracts with client applications.

However, breaking contracts is a common practice: previous studies indicate
that APIs are usually backward incompatible [Wu et al., 2010; Robbes et al., 2012;
Hora et al., 2015; Brito et al., 2016]. Thus, migrating between versions requires extra
effort, once that clients will be forced to update their code and accommodate the
novelties. Actually, in most cases, clients remain hesitant to evolve and tend to delay
API migration, keeping obsolete, and sometimes, faulty code [McDonnell et al., 2013].

In this context, API changes are classified into breaking changes and non-breaking

changes |Dig and Johnson, 2006|, as follows:

! According to JAVALL, a tool to measure popularity of Java libraries in Boa, available at: http:
//Jjava.labsoft.dcc.ufmg.br/javali


http://java.labsoft.dcc.ufmg.br/javali
http://java.labsoft.dcc.ufmg.br/javali
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e Breaking changes. Changes that break backward compatibility through removal
or modification of API elements. As a consequence, clients may face compilation

errors or behavioral changes after updating.

e Non-breaking changes. Changes that preserve compatibility and usually involve
addition of new functionalities to the library. Thus, migrating between API

versions including only non-breaking changes does not cause side effects on clients.

Listing 2.2 shows a hypothetical evolution of the ArrayList class previously
presented in Listing 2.1. In this example, breaking changes are highlighted in red,
while non-breaking changes are in green. With the purpose of broadening the discussion
about API changes, we separately analyze the example in Sections 2.2.1 and 2.2.2.

public class ArraylList<E> extends AbstractList<E> implements List<E>,

RandomAccess, Cloneable, Serializable {

private transient Object|[] elementData;
private int size;

public int size () {
return size;
}
public boolean isEmpty () {
return size == 1;
}
public int contains (Object o) {
if indexOf (o) >= 0
return 1;
return 0O;
}
public E get (int index) {
rangeCheck (index) ;
return elementData (index) ;
}
public boolean add(E e) {

e
=
~

ensureCapacity (size

elementData[size++] e;
return true;
}
public void rangeCheck (int index) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException (outOfBoundsMsg (index)) ;
}
public E getLast () {

return get (size - 1);

Listing 2.2. Evolution of the ArrayList class presented in Listing 2.1
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2.2.1 Breaking Changes

By definition, breaking changes are all API modifications that break backward compat-
ibility, changing or modifying services previously available for clients. In Listing 2.2, we
observe two of them. The first one is the modification of the signature of the method
contains (Lines 12-16). In this case, the return type was modified from boolean
to int. Therefore, clients of this method will face compilation errors when updating
the version of this API; then, they will be forced to re-work on their code, handling
with the modification of the return type.

Most of the breaking changes are detected in compilation or linking time (i.e., af-
ter updating and re-compiling, the change will cause an error). However, some changes
are harder to identify and their possible effects may be more disturbing to clients,
once they may cause the application to behave differently at runtime. Therefore, the
functional behavior (i.e., the output for a set of inputs) will change and, unless the
client application has a good set of tests, the effects may be felt by its end-users. As
an example, the second breaking change observed in Listing 2.2 is the modification of
a conditional expression of the method isEmpty (Line 10). In this case, the value
of the field size is compared to be equal to 1, rather than 0 in the previous version.
After migrating, clients of this method will not face any compilation error to build
their applications; instead, due to the modification of its behavior, some bugs may
arise afterwards, compromising both system quality and reliability. However, in this
dissertation we do not focus on this kind of breaking change (i.e., we focus only on

those that cause compilation errors after clients migration).

2.2.2 Non-breaking Changes

Non-breaking changes are defined to be all API modifications whose purpose is to add
new services for clients, without compromising those previously available. Listing 2.2
presents two examples of non-breaking changes. The first one is the addition of the
method getLast (Lines 30-32). As a new service added to the API, after migrating
between versions, clients may take advantage of this new method to improve their code
or to add new features. Therefore, in this case they do not face neither compilation
nor behavioral issues.

The second non-breaking change is the modification of the visibility modifier of
the method rangeCheck (from private to public). In this case, the visibility
gain represents an additional service, since the method becomes available for external
use. Thus, clients of this new version will also be able to access and reuse this new

API element in their applications.
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Moreover, changes in deprecated elements are also classified as non-breaking
changes, once that clients have been previously alerted about the risks of using them.
Deprecation annotation is one of the recommended mechanisms to mitigate the impact
of breaking changes in client applications [Dig and Johnson, 2006]. In theory, before
performing such changes, developers should annotate their API elements as deprecated
and guide their clients through replacement messages. Therefore, deprecated elements
are kept in the API while clients migrate and adapt their code to remove references to
such elements.

Listing 2.3 exemplifies the use of deprecation in the method contains. Instead
of simply changing its return type, a recommended approach is to keep the old method
with both deprecated annotation and replacement messages containing guidelines to
the adoption of the new method version (Lines 2-8). In the future, when the deprecated
method is definitely removed, clients will be warned, but theoretically most of them
will have already migrated to the new version. Therefore, both the addition of the
method includes (Lines 9-13), and the removal of contains (in a future version)
will be considered non-breaking changes.

public class ArraylList<E> extends AbstractList<E> implements List<E>,

RandomAccess, Cloneable, Serializable {
VA
* @deprecated Use {@link #includes (Object)} instead.
*/
@Deprecated
public boolean contains (Object o) {

return indexOf (o) >= 0;
}
public int includes (Object o) {

if indexOf (o) >= 0

return 1;
return 0O;

Listing 2.3. Deprecation to mitigate the impact of the changes in method contains

2.2.3 Change Catalog

In a previous work, Dig and Johnson [2006] elicited a catalog of API modifica-
tions, based on refactoring operations. They manually investigated the release notes
and change logs of five known Java libraries, and elicited a catalog of 20 break-
ing changes and 4 non-breaking changes. The proposed breaking operations are:
MoOVED METHOD, MOVED FIELD, DELETED METHOD, CHANGED ARGUMENT
TyPE, CHANGED RETURN TYPE, REPLACED METHOD CALL, RENAMED METHOD,
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NEw HOOK METHOD, EXTRA ARGUMENT, DELETED CLASS, EXTRACTED IN-
TERFACE, RENAMED FIELD, RENAMED CLASS, METHOD OBJECT, PUSH DOWN
METHOD, MOVED CLASS, PULLED UP METHOD, RENAMED PACKAGE, SPLIT PACK-
AGE, SPLIT CLASS. The non-breaking changes are: NEW METHOD CONTRACT, IM-
PLEMENT NEW INTERFACE, CHANGED EVENT ORDER, NEW ENUM CONSTANT.
In this dissertation, we define and implement an API change catalog based on the
one previously proposed by Dig and Johnson. However, since refactoring is not in the
scope of this work, we used the Java Specification Language to analyze possible mod-
ifications on the syntax of the studied API elements (types, fields, and methods). As
result, we propose a catalog of 12 breaking changes, focused on modifications that may
cause compilation errors to client applications (i.e., behavioral breaking changes are
not included), and 9 non-breaking changes. This catalog, as well as the corresponding

tool implemented to analyze it, are described in Section 3.2.

2.3 Final Remarks

In this chapter, we presented the central topics related to this dissertation, detailing the
concepts of Application Programing Interfaces (APIs), discussing its usage, and going
deeper through their evolutionary changes. More specifically, we discussed breaking
changes and non-breaking changes, detailing their effects to client applications. Finally,
we presented the API change catalog proposed by Dig and Johnson [2006], detailing
their operations and briefly discussing the catalog proposed in this dissertation.

In the next chapters, we will adopt these definitions with the purpose of analyzing
(i) the frequency of API breaking changes; (ii) the behavior ot these changes over time;
(iii) the impact on client applications; (iv) the characteristics of libraries with high and
low frequency of breaking changes; (v) the reasons why developers break API contracts;

and (vi) whether developers are aware of the risks of such changes.






Chapter 3

Historical and Impact Analysis

In this chapter, we present the first study of this dissertation: a historical and impact
analysis of API breaking changes. The purpose is to investigate the real impact of
such changes and its behavior along libraries life cycle. For that, in Sections 3.1, 3.2,
and 3.3, we present the research questions that guide this study, the proposed API
change catalog, and the APIDIFF tool implemented to support their investigation,
respectively. The design of our experiments is detailed in Section 3.4, and the results
are presented in Section 3.5. Moreover, we discuss our results and present a summary
of this study in Section 3.6. Threats to validity are discussed in Section 3.7. Finally,

we conclude with final remarks in Section 3.8.

3.1 Research Questions

With the purpose of quantitatively investigating the frequency and impact of backward
incompatibility, we perform a historical and impact analysis of API breaking changes.
We analyze (i) the frequency of API breaking changes, (ii) the behavior of these changes
over time, (iii) the impact on client applications, and (iv) the characteristics of libraries
with high frequency of such changes. Therefore, our main goal is to investigate the

following research questions:
e R(Q1. What is the frequency of API breaking changes?
e RQ2. How do API breaking changes evolve over time?
e RQS3. What is the impact of API breaking changes in client applications?

e RQ)4. What are the characteristics of libraries with high and low frequency of
breaking changes?

17
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3.2 API Change Catalog

In this dissertation, we use the definitions of breaking changes and non-breaking changes
presented in Section 2.2 to define a catalog of API modifications. For this catalog, we
consider only breaking changes that may cause compilation errors to client applications
(i.e., behavioral changes are not included). In the total, 21 modifications are cataloged
(12 breaking, and 9 non-breaking changes). In this section, we present these changes in
context of the studied API elements (i.e., types, fields, and methods).

Table 3.1. Catalog of changes for types (classes, interfaces, and enums).

Change Classification Description

REMOVAL Breaking Removal of public or protected types that
were not previously deprecated

VISIBILITY LOSS Breaking Visibility change (from public or protected
to private) of types that were not previously
deprecated

SUPERTYPE Breaking Inheritance change of public or protected

CHANGE types that were not previously deprecated

ADDITION Non-Breaking  Addition of new public or protected types
in a new version

VISIBILITY Non-Breaking  Visibility change from private to public or

GAIN protected

DEPRECATED Non-Breaking ~ Modifications (e.g., removal or visibility loss) in

OPERATIONS public or protected deprecated types

Table 3.1 presents the catalog of changes for types (i.e., classes, interfaces, and
enums). In this case, breaking changes include removal of a type, change on its visi-
bility modifier (e.g., from public or protected to private), and change in the
type’s supertype. By contrast, non-breaking changes include addition of new elements
and change on visibility modifiers (e.g., from private to public or protected).
Finally, changes in deprecated elements (e.g., removal of deprecated methods) are also
classified as non-breaking changes.

For fields, Table 3.2 details the breaking changes and non-breaking changes cat-
aloged. Besides the trivial ones, also listed for types in Table 3.1 (i.e., REMOVAL and
VISIBILITY LOsS), breaking changes in fields include, for example, modifications in
the field’s type or default value. Additionally, all non-breaking changes cataloged for
fields are similar to the ones listed for types, involving operations in deprecated fields,

visibility gain, and addition of new ones.
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Table 3.2. Catalog of changes for fields.

Change

Classification

Description

REMOVAL

Breaking

Removal of public or protected fields that
were not previously deprecated

VISIBILITY LOSS Breaking Visibility change (from public or protected
to private) of fields that were not previously
deprecated

TypPE CHANGE  Breaking Change of the type of public or protected
fields that were not deprecated

DEFAULT VALUE Breaking Addition, removal, and modification of

CHANGE the default initializer value of public or
protected fields that were not deprecated

ADDITION Non-Breaking  Addition of new public or protected fields
in a new version

VISIBILITY Non-Breaking  Visibility change from private to public or

GAIN protected

DEPRECATED Non-Breaking ~ Changes (e.g., type or default value change) in

OPERATIONS public or protected deprecated fields

Table 3.3. Catalog of changes for methods.
Change Classification Description
REMOVAL Breaking Removal of public or protected methods

VISIBILITY LOSS

RETURN TYPE
CHANGE
PARAMETER
LisT CHANGE

EXCEPTIONS
CHANGE

ADDITION

VISIBILITY
GAIN
DEPRECATED
OPERATIONS

Breaking

Breaking

Breaking

Breaking

Non-Breaking
Non-Breaking

Non-Breaking

that were not previously deprecated

Visibility change (from public or protected
to private) of methods that were not previ-
ously deprecated

Modification of the type returned by public or
protected methods that were not deprecated
Parameters addition, removal, and type mod-
ifications of public or protected methods
that were not deprecated

Addition, removal, and type change of excep-
tions thrown by public or protected meth-
ods that were not previously deprecated
Addition of new public or protected meth-
ods in a new version

Visibility change from private to public or
protected

Modifications (e.g., removal or visibility loss) in
public or protected deprecated methods
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Finally, Table 3.3 details the catalog of changes for methods. Breaking changes in
methods include some of the changes listed before, such as REMOVAL and VISIBILITY
Loss; but also embrace other related to their formal signature, such as modification
of the method’s return type, changes in the parameters list (i.e., addition, removal,
and type change), and modifications on thrown exceptions (i.e., addition, removal, and
type change). Non-breaking changes, by contrast, include all modifications previously
discussed for types and fields (i.e., ADDITION, VISIBILITY GAIN, and DEPRECATED
OPERATIONS).

3.3 APIDiff Tool

In order to support our investigation on the frequency of API breaking changes, we
define and implement an APIDIFF tool whose purpose is to identify breaking and non-
breaking changes between two versions of a Java library. In this section, we present
this tool by providing an overview of its approach (Section 3.3.1), and detailing its
architecture (Section 3.3.2).

3.3.1 Overview

To identify and classify API changes between two versions of a Java library, our APID-
IFF tool evaluates each of the changes detailed in our API change catalog (see Sec-
tion 3.2). For example, breaking changes in types include removal of a type, change on
its visibility modifier (e.g., from public to protected), and change in the type’s
supertype. Breaking changes in fields include, for example, changes in the field’s type
or default value. Breaking changes in methods include, for example, changes in their
signatures. By contrast, non-breaking changes include addition of new elements and
change on visibility modifiers (e.g., from private to public or protected). Fur-
thermore, changes in deprecated elements (e.g., deprecated method removal) are clas-
sified as mon-breaking changes by our APIDIFF tool, because developers in this case
have been previously alerted about the risks of using deprecated entities.

To accomplish that, our tool implements a parser based on the Eclipse JDT
library. We focus on public and protected API elements (types, fields, and methods)
once that they represent the external contract between libraries and clients. It takes as

input the path of both versions (named version 1 and 2), via the following command:

java —Jjar APIDiff.jar [path_version_1] [path_version_2]
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Next, to compute the frequency of changes, the tool acts as illustrated in Fig-
ure 3.1. First, it parses both library versions to find all .java files to be analyzed by
the JDT Library (Steps 1 and 2). The library constructs the Abstract Syntax Trees
(ASTs) for each version (Step 3). Then, with both ASTs, the tool starts the analysis
by checking all API elements on version 1, verifying whether any of the cataloged API
changes occurs in version 2 (Step 4). Next, it analyzes the API elements on version 2
with the purpose of verifying additions and new deprecations to report as non-breaking
changes (Step 5). Finally, the tool reports all detected changes in a .zls file (Step 6)
containing each modified element, its enclosing type, and the change description as

presented in Section 3.2.

|l| | ;p — &A—IL} Type Diff
Version |

JDT Library Version | Field Diff L’- é
| 9 5 XLS File
— — m—p Method Diff
Version 2
3
Tpm_ Version 2 Bulgul

Figure 3.1. APIDIFF tool approach overview.

To illustrate the usage of the tool, Listings 3.1 and 3.2 present a hypothet-
ical scenario of evolution of a famous Java library for the map data structure:
java.utils.HashMap. Suppose that between versions 1 and 2 the class has its
supertype changed (from AbstractMap to AbstractHashMap), a new argument
added to the paramenter list of the method clear, and a deprecated annotation
added to the same method. In this example, breaking changes are highlighted in red,
and non-breaking changes in green. As a result, the analysis of our APIDIFF tool
would detect two breaking changes (SUPERTYPE CHANGE and PARAMENTER LIST
CHANGE), and one non-breaking change (DEPRECATED OPERATIONS). Figure 3.2
presents the output of the tool.
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1 public class HashMap<k, V> extends 1 public class HashMap<k, V> extends
AbstractMap<K, V>{ AbstractHashMap<K, V>{
2 2 @Deprecated
3 public void clear () { 3 public void clear (boolean flag) {
4 S/ 4 /Yoo
5 } 5 }
6 } 6 }
Listing 3.1. Version 1 of HashMap. Listing 3.2. Version 2 of HashMap.
Library Class AP Element Change Ty pe Change
HashNap java.utils HashMap HashMap Breaking Change SUPERTYFE CHANGE
HashNap java.utils HashMap clear() Breaking Change PARAMETER LIST CHANGE
HashNap java.utils . HashMap clear() Mon-Breaking Change DEFRECATED OPERATIONS

Figure 3.2. APIDIFF tool output for Listings 3.1 and 3.2.

3.3.2 Architecture

Our tool is mainly implemented over the JDT Eclipse Library, which is responsible for
parsing all .java files and creating the ASTs of both analyzed versions. Besides that,
each modification in our API change catalog is analyzed by comparing the ASTs in the
corresponding element diff (e.g., type modifications are investigated in the TypeDiff
class). The results are stored in a HashMap structure at the class Finder and, at
the end, saved in a .zls file by the class APIDIFF. Figure 3.3 presents the UML class

diagram of the tool. The responsibility of each class is also briefly described as follows:

APIDiff Finder
O
APl¥ersion TypeDiff FieldDiff MethodDiff
Utils BindingExcepiion

Figure 3.3. UML class diagram of our APIDIFF tool.
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e APIDiff: Main class, responsible for receiving the input, storing the ASTs

(APIVersions), and interacting with the Finder class;
e APIVersion: Abstraction of the AST for an API Version;
e Finder: Stores the changes observed in each API element finder;
e TypeDiff: Analyzes the changes in all public and protected types;
e FieldDiff: Analyzes the modifications in all public and protected fields;
e MethodDiff: Analyzes the changes in all public and protected methods;
e Utils: Provides auxiliary utility functions;

e BindingException: Deals with exceptions caused by binding issues during
the AST construction.

3.4 Study Design

To answer the proposed research questions, we conducted a large-scale experiment with
the most relevant libraries hosted on GitHub. In this section, we present the design of
this study, detailing our dataset in Section 3.4.1, and discussing the methodologies we
adopted for each research question (Sections 3.4.2, 3.4.3, and 3.4.4).

3.4.1 Selecting Java Libraries

We analyzed the most popular Java libraries hosted on GitHub (collected in August,
2016). First, we selected the top 1,000 repositories ordered by number of stars. Then,
we manually classified them into library (554 repositories, 55.40%) and non-library
(446 repositories, 44.60%). Finally, from the library group, we discarded the ones
in the first quartile of number of releases and age, in order to filter out irrelevant

projects [Kalliamvakou et al., 2014], as follows:

e Number of releases. We selected libraries with two or more releases (i.e., first
quartile equals to 1). We applied this criteria to focus on active libraries and to

ensure at least one pair of releases to be compared in each library.

e Age. We selected systems with more than 515 days from the first commit (i.e.,
first quartile equals to 515 days). We use this criteria to assess libraries with a

relevant evolution and to ensure historical data to our analysis.
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Figure 3.4. Repositories distributions by releases, age, stars, and files.

Based on this filtering criteria, the final selection has $17 libraries, including
well-known ones such as FACEBOOK/REACTNATIVE, GOOGLE/GUAVA, and JUNIT-
TEAM/JUNIT4. To better characterize these libraries, Figure 3.4 presents the dis-
tribution of number of releases and age (in years) as well as number of stars and files.
We provide violin plots for all 1,000 initial repositories, for the 554 repositories catego-
rized as library, and for the 317 studied libraries. Violin plots are useful for presenting
the distribution of data because besides embedding a box plot, they also show the
probability density of the data at different values.

Considering the studied libraries, we have the following results. For number of
releases, the first quartile, median, and third quartile are 6, 15, and 29 releases. The

top-3 repositories with more releases are: PROCESSING /PROCESSING (453 releases),
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DRUID-I0/DRUID (387), and H20AI/H20-2 (324). For age, the quartiles are 2.2, 3.4,
and 5.2 years. The top-3 older repositories are: JAVA-NATIVE-ACCESS/JNA (18 years),
JUNIT-TEAM /JUNIT4 (15.8), and PROCESSING/PROCESSING (15.2). For number of
stars, the first quartile, median, and third quartile are 1,216, 1,792 and 3,215 stars.
The top-3 systems with more stars are: FACEBOOK /REACT-NATIVE (36,856 stars), RE-
ACTIVEX /RXJAVA (16,493), and SQUARE/OKHTTP (13,910). For number of files, the
quartiles are 1,298, 6,676, and 25,335 files. The top-3 larger repositories are: PROCESS-
ING /PROCESSING (1,625,224 files), APEREO/CAS (1,277,502), and LIBGDX/LIBGDX
(964,580). Finally, we observe that the studied libraries are statistically significant
different for number of releases, age, and number of stars (p-value < 0.05 for Mann-
Whitney test), when compared to all repositories and also to the libraries repository.

However, they are not statistically different for number of files.

3.4.2 Extracting APl Breaking Changes (RQ1 and RQ2)

To measure the frequency of API breaking changes, we use the APIDIFF tool presented
in Section 3.3. Let R, be the last release and R; the first one of a given library. To
answer RQ1 (What is the frequency of API breaking changes?), we computed the diff
between releases R,, and R,,_1, i.e., diff(R,,R,_1). Figure 3.5 illustrates this approach.
In this case, we use the two latest versions to estimate the current state of each studied

library, despite of the evolution of their release history.

\
1
R1 R2 R3 |‘ 1
I |
| |
| |
| |
\ /
| |
| —>
First August
Commit 2016

Figure 3.5. diff approach to answer RQ1.

Moreover, to answer RQ2 (How do API breaking changes evolve over time?), we
compared all subsequent releases (from R; to R,) of a library, i.e., diff(R;,R;_1) for
1 = 2,...,n. To better understand this data, we summarized the breaking changes

over time by calculating the mean of the amount of their occurrences per year. For
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that, we grouped the changes observed in the libraries first five years, and compared

results on each period. Figure 3.6 details this methodology.
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Figure 3.6. diff approach to answer RQ2.

3.4.3 Measuring API Breaking Changes Impact (RQ3)

To support answering RQS (What is the impact of API breaking changes in client
applications?), we calculated the impact of the breaking changes identified in RQ1
on client systems. Using an ultra-large dataset of Java systems [Dyer et al., 2013,
2015], we counted the ones that feature an import statement to the detected breaking
changes. For types, we perform a direct analysis by looking for their qualified names.
For methods and fields, on the other hand, we assess the imports of their enclosing
type. In other words, if a breaking change is detected in a method m of a class C, we
count as potentially impacted all clients that import C. This approach at least retrieves

the worst case scenario of the potential impact measure.

Listings 3.3 and 3.4 illustrate this decision. Consider the hypothetical change
scenario between versions 1 and 2 of the class ArrayList: the return type of the
method contains was modified from boolean to int. In this case, to calculate the
possible impact of this change, we would consider the total of clients that import the
class ArrayList in their projects. Thus, we would estimate that 143,454 clients (see
Table 2.1 in Chapter 2) are possibly impacted by this change. A similar result would

happen if class ArrayList were removed or renamed.
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public class ArrayList({ 7 public class ArraylList {
8 public int contains (Object o) {
public boolean contains (Object o) { 9 if indexOf (o) >= 0
return indexOf (o) >= 0; 10 return 1;
} 11 return 0;
12 }
} 13}
Listing 3.3. Version 1 of ArrayList. Listing 3.4. Version 2 of ArrayList.

We used the JAVALI (Java Libraries and Interfaces)' tool with the purpose of
calculating the number of imports of a given API and, as a result, collecting client
systems information. The tool aims to measure the popularity of Java libraries by
processing a dataset with more than 260K Java systems, 16M files, and 131M APIs. To
collect this data, JAVALI uses a Domain-Specific Language (DSL) and infrastructure
that aims to ease mining software at a ultra-scale level: the BOA language [Dyer et al.,
2013, 2015]. This DSL leverages distributed computing techniques to execute queries
about open-source projects mined from software repositories. In the JAVALI case, the
BoA language was used to query projects hosted on GitHub, analyzing information
about import statements. We use this information to measure the possible impact of

breaking changes in types with at least one import statement.

3.4.4 Comparing Libraries with High and Low Frequency of
Breaking Changes (RQ4)

In order to distinguish libraries with low and high rates of API breaking changes, we
classified the studied libraries in two groups (fop and bottom) to answer RQ4 (What
are the characteristics of libraries with high and low frequency of breaking changes?).
We then collected a set of project metrics (such as activity, size, etc) to compare both
groups. The goal is to verify whether these metrics have an impact on the number of

API breaking changes. This process is summarized in the following three steps:

1. Defining metrics likely to impact breaking changes. To analyze libraries with
high and low rate of breaking changes, we define five dimensions related to open-source
development and social coding: popularity, size, community, activity, and maturity.
For each, we define specific metrics to measure and characterize the studied libraries.
These metrics were also used in a previous study about the adoption of replacement
messages in API deprecation [Brito et al., 2016]. Each dimension and the corresponding

metrics are described in Table 3.4.

"http://java.labsoft.dcc.ufmg.br/javali
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Table 3.4. Metrics likely to impact breaking changes, divided in five dimensions.

Dimension Description Metrics

b t
Represents how popular a number of stars

Popularity library is on GitHub number of watchers
number of forks
Size Characterizes the library number of files
volume of artifacts number of API elements
. Represents the library number of contributorﬁ
Community B average files per contributor
average API elements per contributor
Characterizes the activity number of commits
Activity level of a library number of releases
development team average days per release
Maturity Represents the age of a li- number of years
brary

2. Selecting Top and Bottom libraries. We consider two groups of libraries: the
ones with low rate of breaking changes, labeled as top libraries, and a second group,

labeled as bottom libraries, with higher rates of breaking changes.

We first identified the active libraries, i.e., the ones with at least one API change
(either breaking or non-breaking), resulting in 235 libraries. Then, we sorted these
235 libraries, in ascending order, by the percentage of API breaking changes. Finally,
we ended up with two groups: top-25% (i.e., libraries with the lowest percentage of
breaking changes) and bottom-25% (i.e., libraries with the highest percentage); each
group with 58 libraries. Figure 3.7 shows the distribution of breaking changes in both
groups. As expected, the median percentage of changes is low (0%) for top libraries
and very high (73.75%) for bottom ones. Table 3.5 shows the name of five top and five
bottom libraries. All top libraries in this table have no breaking changes; by contrast,

in the bottom libraries, all detected API changes are classified as breaking changes.

3. Eztracting metrics and comparing libraries. We extracted the metrics in Ta-
ble 3.4 for both top and bottom libraries and then compared the obtained values. First,
we analyze the statistical significance of the difference between both groups by applying
the Mann-Whitney test at p-value = 0.05. To show the effect size of the difference be-
tween them, we compute Cliff’s Delta (or d). Following guidelines previously adopted
in the literature [Grissom and Kim, 2005; Tian et al., 2015; Linares-Vasquez et al.,
2013|, we interpret the effect size values as small for 0.147 < d < 0.33, medium for
0.33 < d < 0.474, and large for d > 0.474.
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Figure 3.7. Breaking changes distribution in top-25% and bottom-25% libraries.
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Table 3.5. Example of Top and Bottom libraries ordered by number of breaking changes.

. Breaking

Group Library Changes
CHRISBANES / ACTIONBAR-PULLTOREFRESH 0 (0%)
GOOGLEMAPS /ANDROID-MAPS-UTILS 0 (0%)

Top FACEBOOK / CONCEAL 0 (0%)
CHRISJENX /CALLIGRAPHY 0 (0%)
MIKEPENZ/ ABOUTLIBRARIES 0 (0%)
KYMJS/KJFRAMEFORANDROID 4 (100%)
GRAILS/GRAILS-CORE 5 (100%)

Bottom MONGODB/MONGO-HADOOP 5 (100%)
LIAOHUQIU /CUBE-SDK 19 (100%)

ZEROMQ /JEROMQ 23 (100%)

3.5 Results

In this section, we answer and analyze the results of the proposed research questions.

RQ1: What is the frequency of API breaking changes?

We analyze the frequency of changes for types, fields, and methods between the two
latest releases, i.e., diff(R,,R,_1), of the 317 studied libraries. We identified at least
one change in 235 libraries (74.13%). From this total, 198 libraries (62.46%) have at
least one breaking change, while 218 (92.77%) have at least one non-breaking change.

Table 3.6 presents the number of changes per API element (i.e., types, fields, and meth-
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ods). Considering all elements, 501,645 changes were identified, from which 27.99% are
breaking changes and 72.01% are non-breaking changes. Methods are the API elements
with more changes, including breaking changes. Considering the 140,460 breaking
changes, 27.81% are in methods.

Table 3.6. Number of API breaking and non-breaking changes.

Element Total Breaking Change Non-Breaking Change

Types 61,897 11,712 (18.92%) 50,185 (81.08%)
Fields 66,953 25,044 (37.41%) 41,909 (62.59%)
Methods 372,795 103,704 (27.81%) 269,091 (72.19%)
All 501,645 140,460 (27.99%) 361,185 (72.01%)

To understand the stability of the studied libraries, Figure 3.8 presents the dis-
tribution of absolute and relative breaking changes (i.e., the percentage of breaking
change per API modification). A logarithmic scale is applied to absolute plots so we

can better visualize outlier libraries.
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Figure 3.8. Distribution of API changes for all elements, types, fields, and methods. (a)
Absolute number of all changes, (b) absolute number of breaking changes, and (c) relative
number of breaking changes.

Absolute analysis. Figure 3.8(a) shows the absolute distribution of the number of
changes (breaking and non-breaking) per library. Considering all API elements, the
first quartile is 0, the median is 22, and the third quartile is 285 changes. On the
median, types and fields have two changes while methods have 17. The third quartile
for types, fields, and methods is 29, 27, and 206 changes, respectively.

Figure 3.8(b) details the previous analysis by exploring the absolute distribution
of breaking changes per library. Considering all API elements, the first quartile is 0,
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the median is 4, and the third quartile is 75. In absolute terms, we note that types
and fields present similar distributions (median equal to 0). However, outlier values are
very different: we observe a library with 11,816 breaking changes for fields, and another
one with 1,392 breaking changes for types. We manually analyzed both cases. The first
one happened in the Android library MANUELPEINADO/FADINGACTIONBAR, when

the project structure faced a major change, as described in the commit message:
“Changed project structure so that all subprojects are in the same root.”

The second one happened in the graph library NEO4J/NEO4J, when several
changes were inserted to improve its design. One example is found in the pull request

(PR) that removed the type SchemaRuleContent:

“This PR makes sure that all types of schema rules are properly checked and

simplifies duplicates checking by removal of SchemaRuleContent.”

Figures 3.9, and 3.10 present the screenshot of these repositories, detailing both

commit message and pull request, respectively.

ManuelPeinado / FadingActionBar @ Watch | 148 destar | 2838 | YFork 769
<> Code Issues 71 Pull requests 14 Projects 0 Pulse Graphs
Changed project structure so that all subprojects are in the same roo... e s

~t, otherwise AS chokes

¥ master (£1)

g ManuelPeinado committed on 11 Apr 2014 1 parent Badeebc  commit a4f289d5adeEC96BFE77cadd@RE99Fead7133cEl
Showing 166 changed files with 9 additions and 9 deletions. Unified | Split

2] extras/actionbarcompat/AndroidManifest.xml = extras-actionbarcompat/AndroidManifest.xml View v

File renamed without changes.

Figure 3.9. Commit message in the library MANUELPEINADO /FADINGACTIONBAR report-
ing the breaking changes observed.

Relative analysis. Figure 3.8(c) presents the distribution of the relative number of
breaking changes per library. For all API elements, the first quartile is 0%, the median
is 14.78%, and the third quartile is 43.35%. Moreover, we found 17 libraries (5.35%)
with 100% of breaking changes, such as NETFLIX/ASTYANAX, NATHANMARZ/STORM,
and GRAILS/GRAILS-CORE. But in all these cases, the absolute number of changes is
also small (at most 23 changes in NETFLIX/ASTYANAX).
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neodj / neodj @ Watch | 335 W Star | 3,639 YFork 1087

Code Issues 389 11 Pull requests 25 Projects 0 Wiki Pulse Graphs

Fixed consistency checking of schema store

[SLL TN MishaDemianenko merged 2 commits into necsj:2.3 from lutovich:2.3-fix-cc-of-schema-store on 6 Aug 2015

(4 Conversation 10 -0 Commits 2 Files changed 7 +610 -411 EmEE

:! lutovich commented on 4 Aug 2015 Contributor Reviewers

No reviews
This PR makes sure that all types of schema rules are properly checked

and simplifies duplicates checking by remaoval of SchemaRuleContent. Assignees

f_ MishaDemianenko

< 1 lutovich added m labels on 4 Aug 2015

Figure 3.10. Pull request message in the library NEO4J/NEO4J exemplifying the breaking
changes observed.

Summary: From the 501,645 analyzed API changes, we observe a relevant rate of
breaking changes (27.99%). On the median, 14.78% of the API changes in a library

break contracts with clients; the higher ratio of breaking changes occurs on methods.

RQ2: How do API breaking changes evolve over time?

To answer this second research question, we verify all releases (from Ry to R,,) of the
317 studied libraries. The goal is to analyze the frequency of breaking changes over
time and, thus, to investigate the impact of software evolution on library stability. To
accomplish that, we verify 9,329 releases and summarize the frequency of breaking
changes per year. Because the third quartile of the studied libraries age is 5.2 years,
we decided to analyze at most five years of their evolution. In addition, due to our
selection criteria discussed in Section 3.4.1, the studied libraries have at least one year.

Figure 3.11 presents the relative distribution of the means of breaking changes per
library and per year. Those with no versions released in a given year were discarded.
For each library, we calculate the mean number of breaking changes in each year, by
considering only the releases in the year. In this way, we generate distributions per
library and per year. In the first year of existence, 232 libraries released public versions.
The first quartile of the means is 16.65%; the median, 29.02%; and the third quartile,
42.74%.

For breaking changes in releases during the second year, the first quartile is
15.32%, the median is 31.46%, and the third quartile is 47.72%. From the total, 212

libraries registered at least one release during their second year. From the first to the
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Figure 3.11. Distribution of API breaking changes per year. The distribution values are the
mean rate of changes in a year, considering the releases produced in this year.

second year, we observe a light increase of 2.44% in the median value. However, the
Mann-Whitney test reveals no statistical significant difference between both groups.

In the third year, 149 libraries were analyzed. The first quartile, the median, and
the third quartile are, respectively: 14.73%, 37.12%, and 50.75%. Comparing to the
previous years, the median is slightly higher, increasing 5.66% and 8.10% when com-
pared to the second and first years, respectively. Despite of that, the Mann-Whitney
test does not show a statistical significant difference between the three years.

In our dataset, 106 libraries have version released during their fourth year. The
quartile values are 25.33%, 45.16%, and 59.76%, respectively. The frequency of break-
ing changes increases by 8.04%, 13.70%, and 16.14% when compared to the third,
second, and first years, respectively. In this case, the Mann-Whitney test reveals that
this group is statistically significant different from the three previous ones.

Finally, in the fifth year, 83 libraries have released versions. The first quartile is
30.53%, the median is 49.14%, and the third quartile is 62.80%. From the fifth to the

fourth years, we do not observe statistical significant difference.

Therefore, the historical analysis of the breaking changes frequency reveal that
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they increase by 20% in five years (median values). This may be explained by the fact
that as time passes, libraries tend to provide API elements that are harder to manage

and more likely to change.

As an illustrative example, Figure 3.12 plots the curve of breaking changes fre-
quency for three of the studied libraries: GOOGLEMAPS/ANDROID-MAPS-UTILS, DROP-
WIZARD/METRICS, and ROBOGUICE/ROBOGUICE. For the first, we plot the evolution
along its four years of existence, once that the library has less than five years. Dur-
ing this time, we observe a small increase of breaking changes (from 3.91% to 8.70%),
against the tendency observed in the dataset. For the others, we register values for
their first five years: in the first case, the curve for ROBOGUICE/ROBOGUICE grows
in a variation of more than 60% of breaking changes (from 37.88% to 99.30%); in the
second (DROPWIZARD/METRICS), we observe that the frequency ranges from an initial
growth (from 21.02% to 42.10%), to a subsequent decrease to 38.51%, increasing again
in the fourth and fifth years. In both cases, the percentage of increase comparing the

first and fifth years represents a variation higher than the median of 20%.

100-
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Figure 3.12. Breaking changes evolution for three libraries: GOOGLEMAPS/ANDROID-MAPS-
UTILS, DROPWIZARD/METRICS and ROBOGUICE/ROBOGUICE.

Summary: The frequency of breaking changes increases over time. Comparing the
first to the fifth year, this number increases by 20% (from 29.02% to 49.14%). This

may occur because as libraries evolve, they become larger and more likely to change.



3.5. RESULTS 35

RQ3: What is the impact of API breaking changes in client

applications?

In this third research question, we investigate the impact of the breaking changes re-
ported in RQ1 on client applications. For that, we analyze both the types with breaking
changes and the types declaring fields and methods with breaking changes. The goal
is to assess the potential impact of breaking changes by analyzing import statements
in client systems. As detailed in Section 3.4.3, our dataset of client applications has
around 260K Java systems.

Considering all APT elements, 140,460 breaking changes were detected (see Ta-
ble 3.6), referring to 16,291 types. From such types, 1,290 (7.91%) potentially impacted
at least one client application, i.e., clients with at least one import to these types in
our dataset. For the remaining types with breaking changes, we did not find clients
in the JAVALI/BOA dataset; therefore, they were discarded. Figure 3.13 presents the
distribution of absolute and relative number of impacted clients per library/type. A

logarithmic scale is applied to absolute plots to ensure outliers visualization.
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Figure 3.13. Impact of API breaking changes in client applications: (a) number of clients
of APIs with breaking changes, (b) number of clients impacted by each type with a breaking
change, and (c) relative number of clients impacted by each type with a breaking change.

Figure 3.13(a) presents the absolute distribution of the number of impacted clients
per library. The first quartile is equal to 75 clients; the median, 349; and the third quar-
tile is 2,245 clients. In this context, the top-3 libraries with more impacted clients are
JUNIT-TEAM /JUNIT4, with 54,217 clients; SPRING-PROJECTS/SPRING-FRAMEWORK,
with 23,793 clients; and GOOGLE/GUAVA, with 12,524 clients.

Figure 3.13(b) shows the absolute distribution of the number of clients impacted
per type with breaking change. The first quartile, the median, and the third quartile
are 10, 26 and 90.75 clients, respectively. Despite the low numbers registered by the
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quartiles, the top-3 types with more impacted clients belong to well-known libraries:
org.junit.Assert (imported on 10,857 clients), junit.framework.Assert
(imported on 10,535 clients), and org.bukkit.plugin. java.JavaPlugin (im-
ported on 8,005 clients).

Finally, Figure 3.13(c) details the relative distribution of the impacted clients, i.e.,
number of clients impacted by a breaking change in a given API divided by the total
number of clients of this API. The first quartile is 1%, the median is 2.54%, and the
third quartile is 13.10%. The top-3 types with higher rates of breaking change impact
are: *.streaming.video.VideoQuality, from FYHERTZ/LIBSTREAMING, with
100%; *.chronicle.Excerpt, from PETER-LAWREY /JAVACHRONICLE, also with
100%; and *.scene2d.ui.Label, from LIBGDX/LIBGDX, with 99.64%. However,
in all these three cases, the number of clients of each type is low (at most 280 clients
in LIBGDX/LIBGDX).

Therefore, the impact of breaking changes in terms of impacted clients tends to
be low (2.54%, on the median). This may indicate that (i) library developers are careful
before inserting breaking changes on heavily-used types, or (ii) the changed types are
for internal usage only (i.e., APIs not created for external clients, but for the system
itself) [Hora et al., 2016; Businge et al., 2013]. However, we also notice many outliers
(123 types) with more than 32.03% of clients impact. Table 3.7 lists the breaking

changes with the highest impact on clients.

Table 3.7. Top-10 breaking changes with the highest impact on clients.

Type Impact
*.streaming.video.VideoQuality 100.00%
x.chronicle.Excerpt 100.00%
com.badlogic.gdx.scenes.scene2d.ui.Label  99.64%
android.content.res.AssetManager 97.87%
* .mustachejava.DefaultMustacheFactory 96.47%
android.telephony.TelephonyManager 95.86%
com.android.volley.RequestQueue 93.52%
org.bukkit.plugin. java.JavaPlugin 93.45%
org.pegdown.PegDownProcessor 91.67%
android.widget .AbsListView 90.51%

Summary: 2.54% of the client applications are potentially impacted by breaking
changes, on the median. One possible explanation is that developers may be careful
to break widely-used types ot that most APIs elements may not be widely used by

client application.
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RQ4: What are the characteristics of libraries with high and low

frequency of breaking changes?

To analyze libraries with high and low percentage of breaking changes, we compare top
and bottom libraries as described in Section 3.4.4. The purpose is to verify whether
library popularity, size, community, activity, and maturity impact the frequency of
breaking changes.

Table 3.8 details the metrics related to each characteristic and the respective p-
values and d coefficients obtained for top and bottom libraries. Metrics in bold have
p-value < 0.05, and d > 0.147, i.e., they are statistically significant different with at
least a small effect size in top and bottom libraries. As can be observed in the table, the
selected top and bottom libraries are statistically significant different in 6 out of the 12
metrics. The effect size is small in three metrics (number of watchers, number of API
elements, and number of releases), and medium in other three (number of watchers,
number of contributors, and average API elements per contributor). Next, we analyze

each group:

Table 3.8. Metrics and their respective p-values and d on top and bottom libraries. Bold
means p-value < 0.05 (statistically significant different) and d > 0.147 (at least a small effect
size). Direction: “1” = top libraries have significantly higher value on this metric. “]” =
bottom libraries have significantly higher value on this metric.

Dimension Metric p-value d-value Size Direction
number of stars 0.490 0.272 small 1
Popularity = number of watchers 0.016 0.377 medium 1
number of forks 0.679 0.247 small 1
Size number of files 0.010 0.017 negligible )
number of API elements < 0.001 0.149 small 1
number of contributors 0.014 0.330 medium 1
Community average files per contributor 0.454 0.192 small 1
average API elements per contributor < 0.001 0.335 medium 1
number of commits < 0.001 0.219 small 1
Activity number of releases 0.001 0.251 small 1
average days per release 0.003 0.088 negligible T
Maturity age (in number of days) 0.350 0.215 small +

e Popularity. Libraries with higher measures for number of watchers are on the
bottom group, i.e., they have higher values of breaking changes. Thus, our results
suggests that popular libraries (at least, in number of watchers) are more likely
to break compatibility. This contradicts our initial conjecture, once we believed
that popular libraries would be more careful before inserting breaking changes.

In fact, based on these results, we hypothesize that popular libraries have more
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pressure to evolve, including the need to make design decisions that lead to

breaking changes.

Size. Libraries with higher measures for number of API elements are also on
the bottom group. Indeed, libraries with more API elements tend to be harder

to maintain and evolve, increasing the probability of breaking changes.

Community. Libraries with higher measures for number of contributors and av-
erage API elements per contributors also appear on the bottom group. Thus, our
results suggest that libraries with more contributors tend to have more breaking

changes than the others.

Activity. Libraries with higher measures for number of commits and number
of releases are on the bottom group. Thus, our results suggest that more code

changes are more likely to break compatibility.

Maturity. Finally, we detected that there is no statistical significant difference

between top and bottom libraries with respect to their age (in number of days).

As an illustrative example, Table 3.9 details a comparison between a top and a

bottom library. The top library is DAIMAJIA / ANIMATIONEASINGFUNCTIONS, with no

breaking change at all (among 17,550 changes). On the other hand, the bottom one is

ZEROMQ/JEROMQ, with 100% of API changes classified as breaking change (among 23

changes). Indeed, it is clear the difference between both libraries regarding the metrics

we found a statistically significant result.

Table 3.9. Comparison between a top and bottom library, respectively: DAIMAJIA /ANIMA-
TIONEASINGFUNCTIONS and ZEROMQ/JEROMQ.

Top Bottom

Metric Library Library
number of watchers 94 142
number API elements 139 3,139
number of contributors 3 40
avg API elements per contributor 46.33 78.48
number of commits 22 528

number of releases 2 8
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Summary: Bottom libraries are statistically significantly different from top ones in
6 out of 12 metrics. Libraries with more contributors and more API elements per
contributor have more breaking changes, with medium effect size. Also, the number
of API elements, the number of commits, and the number of releases affect breaking

changes, with small effect. Maturity, though, has no effect on breaking changes.

3.6 Summary and Findings

Based on our historical large-scale study on 317 real-world Java libraries, their 9K
releases, and 260K client applications, we derive the following findings and implications

into API breaking changes impact and evolution:

1. Libraries often break backward compatibility. We show that 27.99%
of all API changes break backward compatibility. On the median, the percentage
of breaking changes per library hits 14.78%. In this context, we observe that API
breaking changes are recurrent and occur in a relevant percentage. This may occur
due to several reasons, for example, (i) unawareness of breaking change risks, (ii)
development by naive or less experienced programmers, or (iii) need to restructure the
library and, consequently, change the API elements. Therefore, we point out the need
for further investigation on reasons developers break contracts with client applications.

In the next chapter, we provide an analysis on this subject.

2. Breaking changes frequency increases over time. Our study shows that
the percentage of breaking changes tends to increase over time by a rate of 20% when
comparing their first and fifth years (from 29.02% to 49.14%). This result shows that
as time passes, libraries do not become more reliable and stable, as expected. Thus,
we suggest the adoption of historical analysis to measure library stability, warning API
developers about the increase of breaking changes on their libraries. This analysis
would also provide useful information for client developers when reasoning whether to

depend or not on a library.

3. Most breaking changes do not have a massive impact on clients.
Despite the high number of verified breaking changes, we observe that, on the median,
only 2.54% of clients are potentially impacted. This low percentage may indicate that
(i) library developers pay especial attention on the usage of types before breaking
contracts or (ii) the changed types are for internal usage, i.e., not intended to be used
by client applications. However, the ratio of impacted clients increases to 13% in a
quarter of the studied libraries. Moreover, the analysis of outlier values shows that

this impact can be very large, reaching 100% of clients in some cases. Based on that,
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an impact analysis tool can be helpful for library developers to support their decisions

before changing highly used APIs.

4. Development and social coding measures are associated with API
breaking changes. We show that libraries with higher frequency of breaking changes
have specific project characteristics. We found statistically significant higher values
for the following metrics: number of watchers, number of API elements, number of
contributors, average API elements per contributor, number of commits, and number
of releases. Thus, libraries with higher frequency of breaking changes are larger, more
popular, and more active. Moreover, notice that the relative measure on the workload
of API elements per contributor is also associated with high frequency of breaking
changes: the more API elements a contributor has to maintain, the more unstable is
likely to be the library. Thus, we suggest the usage of relative development metrics
(such as average API elements per contributor) as a proxy that developers should use

to assess the “health” of their libraries.

3.7 Threats to Validity

3.7.1 Construct Validity

Construct validity is related to whether the measurements in the study reflect real-

world situations.

Classification of Repositories. One possible threat of our study is that repositories
may have been incorrectly classified into library and non-library. Non-library systems
in our studied dataset may bias the results obtained. However, an especial attention
was dedicated to this manual classification through the analysis of each repository web

page and documentation.

Historical Analysis. In our historical analysis, we consider the first five years of each
studied library which represents the third quartile of their age (5.2 years). Therefore,
this value can be considered a representative threshold, although not covering the entire

life cycle of the studied libraries.

Impact Analysis. To calculate the impact of breaking changes, we count the number
of client applications that feature an import statement to types that hold a breaking
change. A known threat of this decision relates to the impact of breaking changes in
fields and methods, since an import to their enclosing type does not implies in real

usage. However, this measure at least represents the worst case scenario.
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3.7.2 Internal Validity

Internal validity is related to uncontrolled aspects that may affect the experimental

results.

Parser Implementation. A possible threat is the possibility of errors in the imple-
mentation of our APIDIFF tool, which identifies breaking and non-breaking changes in
Java API elements. However, to mitigate this threat, the implementation of APIDIFF
is largely based on a well-known Eclipse library: JDT.

Findings Validation. We paid special attention to the appropriate use of statistical
tests (i.e., Mann-Whitney test and Cliff’s Delta effect size), specially when reporting
the results in R()4. This reduces the possibility that these results are due to chance.

Association and Causation. In R()/, we examined whether there are metrics cor-
related with high and low frequency of breaking changes. However, it is important to

acknowledge that correlation does not imply causation |[Couto et al., 2014].

3.7.3 External Validity

External validity is related to the possibility to generalize our results. We focused
on 317 popular Java libraries hosted in GitHub, the most used code repository nowa-
days. Therefore, they are credible and representative case studies, with source code
easily accessible. In addition, our client applications dataset has more than 260K
Java systems. Despite these observations, our findings—as usual in empirical Software
Engineering—cannot be generalized to other libraries, specifically those implemented
in other programming languages. Moreover, we only consider syntactical breaking
changes, which result in compilation errors. Behavioral API changes are outside the

scope of this dissertation.

3.8 Final Remarks

In this chapter, we presented the first study of this dissertation, performed in the
context of 317 real world Java libraries, 9K releases, and 260K clients. Four research
questions were investigated in order to support library /client developers in maintenance
activities. Specifically, we applied historical and impact analysis to assess: (i) the
frequency of breaking changes, (ii) the behavior of these changes over time, (iii) the
impact on client applications, and (iv) the characteristics of libraries with high and low

frequency of breaking changes.
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Therefore, based on our results we could observe that: (i) libraries often break
backward compatibility (at a percentage of 27.99% of all API changes), (ii) breaking
changes frequency increase over time (at an increasing rate of 20%), (iii) most breaking
changes do not have a massive impact on clients (only 2.54% of clients are potentially
impacted, on the median), and (iv) development and social coding measures are asso-
ciated with API breaking changes (in relation to size, popularity, and activity).

In the next chapter, we present a qualitative analysis with developers that aims
to better investigate the reasons of API breaking changes in practice. Based on the
results observed in this first study, we selected a subset of libraries to survey their
developers and, as a consequence, (i) we elicit a list of reasons that motivate them to

introduce breaking changes, and (ii) we verify whether they are aware of their risks.



Chapter 4

APl Breaking Changes Motivations

In this chapter, we present the second study of this dissertation: a survey with API
developers, whose purpose is to investigate the reasons why breaking changes are in-
troduced, and the awareness of developers about their risks for client applications.
In Section 4.1, we begin by detailing each research questions investigated. Next, we
present the methodology of our survey and the obtained results in Sections 4.2 and 4.3,
respectively. In Section 4.4, we discuss our results and present a summary of this study.
In Section 4.5, we list the threats to validity, and discuss the strategies adopted to mit-

igate them. Finally, we conclude the chapter with some final remarks in Section 4.6.

4.1 Research Questions

In order to investigate the specific reasons that drive API developers to introduce
breaking changes in their libraries, we perform a qualitative study with such developers
and real instances of API breaking changes. For that, we selected the libraries with
the highest amount of breaking changes in our quantitative study (see Chapter 3),
and contacted their contributors to understand the reason of such changes. Therefore,
we investigate (i) the reasons why developers implement breaking changes, and (ii)
whether they are aware about the risks of these changes. Specifically, our main goal
is to elicit a list of motivations for API breaking changes based on library developers
answers, and to verify whether they are aware of the impact on client applications. To

guide this investigation, we propose the following research questions:

e RQ5. Why do developers break API contracts?

e RQ6. Are developers aware of the impact of breaking changes on client applica-

tions?
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4.2 Study Design

In this section, we describe the methodology of our survey by summarizing its four
main steps: selecting surveyed developers (Section 4.2.1), contacting developers (Sec-

tion 4.2.2), filtering responses (Section 4.2.3), and analyzing data (Section 4.2.4).

4.2.1 Selecting Surveyed Developers

First, we selected the repositories with more than 50 breaking changes collected in our
previous study, described in Chapter 3. Out of the 317 libraries, 90 (28.39%) filled this
selection criteria. Then, we accessed each repository with the purpose of retrieving the
email address of their major contributor (i.e., the developer with the highest amount

of commits in the repository according to GitHub statistics, as shown in Figure 4.1).

L junit-team / junit4 @Watch~ 626 | sStar 585  YFork 2279
Code Issues 113 Pull requests 17 Projects 0 Wiki Pulse i Graphs

Commits Code frequency Punch card Network Members Dependents

Dec 3, 2000 — Apr 7, 2017 Contibuions: Comts

Contributions to master, excluding merge commits

S48 stefanbirkner " ™ dsaff 2

110 commits / 5,380 ++ / 5,954 - W 101 commits | 5,887 ++ / 4,475 --

Figure 4.1. Major contributor of JUNIT-TEAM /JUNIT4.

From the 90 selected libraries, 49 (54.44%) of their major contributors shared their
email on GitHub profile. Therefore, our initial dataset consists of the corresponding 49
libraries, including well-known and worldwide used projects, such as BITCOINJ/BIT-

COINJ, JAVASLANG /JAVASLANG, and JUNIT-TEAM /JUNIT4.
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4.2.2 Contacting Developers

For each selected library, we sent an email to its corresponding major contributor
(between November 12 and 25 2016). Figure 4.2 presents the sent email, as well as
the proposed questions. In each email, we presented the number of collected breaking
changes and an external link describing each of them (i.e., the filtered output of our
APIDIFF tool, containing each modified element, its enclosing type, and the breaking
changes description as presented in Section 3.2). Figure 4.3 illustrates a fragment of
this list for the OBLAC/JODD library. Moreover, we proposed three questions with the
goal of (i) verifying whether developers are aware about the listed breaking changes;
(ii) investigating their reasons for implementing breaking changes; and (iii) verifying
whether they are aware about the risks of breaking changes to client applications.
Specifically, the first question was used as a filtering criteria (i.e., developers who said

not being aware of the breaking changes had their emails discarded).

Dear [developer name/,

I figured out that you are a magjor contributor of [REP/PROJECT/, from which
we found [n] API breaking changes, for instance, in classes A and B (further
details here [link]).

I kindly ask you to answer the following questions to support our research:

1. Are you aware about these API breaking changes?

2. Could you describe why were these API breaking changes introduced?

3. Are you aware about the risks of breaking backward compatibility with your
clients?

Figure 4.2. Email sent to the major contributors of the studied libraries

API| Breaking Changes

Library Class APl Element Entity Breaking Change
jodd jodd. csselly.selector. PseudoF unction. HAS TYPE HAS SUPERTYFE CHAGE
jodd jodd. csselly. selector. PseudoF unction. NOT TYPE NOT SUPERTYPE CHAGE
jodd jodd. db.oom.tst.User FIELD name VISIBILITY LOSS
jodd jodd. db.oom.tst.Foo FIELD number TYPE CHANGE

jodd jodd. db.oom.tst.Boy FIELD id TYPE CHAMNGE

jodd jodd. db.oom tst. Boy FIELD girld TYPE CHAMGE

jodd jodd.lagarto. dom. Text METHOD setTextContent REMOWVAL

jodd jodd.lagarto. dom. Text METHOD getTextContent REMOWVAL

jodd jodd.lagarto. dom. Text METHOD appendTextContent REMOWVAL

jodd jodd. csselly. selector. PseudoF unction. HAS METHOD match REMOWAL

jodd jodd. csselly. selector. PseudoF unction. NOT METHOD match REMOWAL

Figure 4.3. Fragment of the breaking change list sent to OBLAC/JODD developer.
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4.2.3 Filtering Responses

We received 14 answers, which represents a response rate of 28.6%. From these answers,
6 were considered unclear or invalid (e.g., responses reporting that the developer is no
longer engaged with the project). The following answer from a former developer of
LMAX-EXCHANGE/DISRUPTOR illustrates it:

“I am no longer involved with the Disruptor and do not engage on the topic.”

Additionally, the developer of AVAST /ANDROID-STYLED-DIALOGS library stated
that he was not aware of the breaking changes reported (first question). Thus, we
executed our APIDIFF tool a second time and manually analyzed the results with
the purpose of verifying false positives. As a result, we confirmed the existence of all
breaking changes reported. As the developer stated he was not aware of them, his

answer (illustrated in the following fragment) was also discarded.

“I'm not aware about breaking changes recently. The library is very stable,

doesn’t change often.”

Therefore, 7 answers were considered for analysis in this study. Table 4.1 de-
scribes the libraries whose responses were analyzed, as well as basic information about
them (i.e., number of stars and total of breaking changes). The number of stars
ranges from 857 (BITCOINJ/BITCOINJ) to 1,568 (MOGOBD/MONGO-JAVA-DRIVER),
showing they are popular libraries. The number of breaking changes ranges from 53
(OBLAC/JODD) to 3,117 (MOGOBD/MONGO-JAVA-DRIVER).

Table 4.1. Libraries with valid answers

. Breaking
Library Stars Changes

D1 MONGODB/MONGO-JAVA-DRIVER 1,568 3,117
D2 OBLAC/JODD 1,445 53
D3 ZIELONY/CARBON 1,380 358
D4 SQUARE/ASSERTJ-ANDROID 1,354 2,218
D5 JAVASLANG/JAVASLANG 1,108 663
D6 DAVIDEAS/FLEXIBLEADAPTER 975 157

D7 BITCOINJ/BITCOINJ 857 1,940
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4.2.4 Analyzing Data

After collecting and filtering all emails, we analyzed the responses in order to investi-
gate the proposed research questions. To answer RQ5 (Why do developers break API
contracts?), we followed a thematic analysis, which is a technique whose goal is to
identify themes (or codes) within a set of documents [Cruzes and Dyba, 2011|. Thus,
each response to the second question in the survey email was manually analyzed and
a list of reasons that may explain why developers break API contracts was cataloged.
The advisor and co-advisor of this dissertation reviewed the analysis and confirmed
the proposed codes. Finally, to answer RQ6 (Are developers aware of the impact of
breaking changes on client applications?), we analyzed responses to the third question,
and, as a result, we identified insights on how developers deal with the impact of API

breaking changes.

4.3 Results

In this section, we present the results obtained in our survey. We separate the section
in each research question investigated, answering to them and providing further details

observed in our analysis.

RQ5. Why do developers break APl contracts?

We identified five main reasons that suggests the motivations that drive API developers
to introduce breaking changes in their libraries, as well as their recurrent explanations
for such changes. Table 4.2 describes these reasons, providing a brief description, and

detailing the number of occurrences for each of them.

Table 4.2. Reasons why developers break API contracts

Theme Description Occur.

LIBRARY SIMPLIFICATION Redesign to make APIs easier for clients 3

REFACTORING Remodularization to improve quality code 2

Buc Fix Resolution of issues 2

DEPENDENCY CHANGES  Switch of libraries on which the library 1
depend on

ProOJECT PoLicy Maintenance policy of the project 1

Next, we discuss each theme, detailing fragments of the obtaining answers, and

analyzing the changes that motivated them.
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LIBRARY SIMPLIFICATION. The most frequent reason for breaking API contracts is
related to LIBRARY SIMPLIFICATION (3 instances). In this case, the change is mainly
motivated by the need of making APIs easier to use (e.g., developer-friendly code);
and also by the remotion of redundant (and more complex) elements. Developers D6,

D2, and D3 mentioned this motivation:

“Useless item. If a problem can be solved using another simple method, the

library can be simplified by removing the redundant solution.” [D6|

“The change leads to better and more developer-friendly code (for example, to
more fluent code). For example, we recently had one important API change
in BeanUtil, where we moved from utility class with static methods to a bean
class. Software is living and changing thing, and we constantly are looking
Jodd to be more efficient for developers.” [D2]

“A problem was solved in a different way. This is the case of addStateAnima-
tor and removeState Animator methods. These methods were removed because
StateAnimator was rewritten and the functionality was refactored. Another

ezamples are RadioButton and CheckBoz classes.” [D3]

REFACTORING. Differently from LIBRARY SIMPLIFICATION theme, whose intents
are related to improving the library for external clients, the second most frequent
motivation relates to REFACTORING (2 instances). In this case, developers pointed
the need of internally improving the code of their APIs (e.g., by moving elements
between packages), and also the modification on the way that problems are solved. D6
illustrates this motivation, detailing a refactoring on his library with the purpose of

better organizing package signatures:

“The classes/methods/fields are not removed all, they are just refactored to a
better package signature (many months ago/last year) when the library was
know a little but not famous as now... When possible they are initially depre-

cated and then removed completely.” |D6]

In addition, developer D3 explains that a REFACTORING was applied to change
the way a problem was solved, moving functionalities to classes that could provide the

same services in a more general way. More specifically:



4.3. RESULTS 49

“A problem was solved in a more general way. For example car-
bon.widget. SVGView was a class used for displaying .svg files. With an in-
troduction of VectorDrawable that functionality was moved to ImageView and
there was no need for a separate SVGView class. StateAnimator, FloatingAc-

tionButton and RippleDrawable are another examples of such change.” [D3|

Other studies also indicate REFACTORING as a reason for breaking changes. For
example, Dig and Johnson |[Dig and Johnson, 2006| found that 80% of the breaking

changes are due to refactoring (more details in Chapter 5).

BuG Fix. The third most commented reason that motivates API breaking changes
is related to BUG FIX (2 instances). In this case, developers are guided by the need of
solving some issue in their libraries and, as a consequence, end up breaking contracts
with client applications. Developers D3 and D2 discuss this motivation, as illustrated

in the following fragments:

“Bugfiz. For example some of the items shouldn’t be accessible and were made
private.” D3]

“Our approach is that we are going to make such changes if there is an issue

that has to be fized, [...]” |D2]

In a recent study, performed with the purpose of analyzing the relationship be-
tween project policies and API breaking changes, Bogart et al. [2016] also cite BuG

FIX as a possible reason of such changes (more details in Chapter 5).

DEPENDENCY CHANGES. In addition, developer D4 discussed another motivation
related to changing the library dependencies: DEPENDENCY CHANGES. According to
him, the breaking changes reported were caused by the need of changing one library

that they depend on and was not being maintained anymore:

“We switched the assertion library on which the library was based since FEST

library was no longer being developed and Assert] was a maintained and up-
dated fork.” [D4]

ProJect PoLicy. Finally, developer D6 comments that introducing breaking
changes is a deliberated maintenance practice in their project. In this case, we an-
alyzed their repository and found that they treat them by documenting all changes

and keeping a well defined release versioning. The following fragment illustrates it:

“It’s a deliberate policy. bitcoinj has never done a 1.0 release that would have
posted API stability.” [D7]
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RQ6. Are developers aware of the impact of breaking changes

on client applications?

To verify whether developers are aware about the risks of breaking APIs, we analyze the
answers to the third question proposed in our initial email. Out of the seven responses,
in five instances developers affirmed being aware of the risks. In the two remaining,
we identified unclear or vague answers. Thus, all developers who gave valid responses
recognized being aware of the impact and costs of breaking changes. In some cases,
they also discussed alternatives to mitigate them.

A first and natural alternative to decrease the impact of breaking changes is to use
deprecation annotations and replacement messages [Brito et al., 2016; Robbes et al.,
2012]. Both developers D3 and D2 cited this strategy. However, developer D2 discusses

the lack of human resources to maintain deprecated methods.

“I always try to mark things I would like to remove as deprecated, give replace-

ments and document changes to make transitions easy.” D3]

“Once one client asked to use @Deprecated on old methods, but we simply dont

have enough resources to maintain all deprecated methods.” |D2]

In addition, both developers justified their breaking changes by highlighting the
small number of clients of their libraries. Our previous study (Chapter 3) confirms this
fact. The library maintained by D3 has no client affected by the collected breaking
changes, while only one class of D2’s library impacts 7 clients (which represents 9% of

the total). The following comments illustrates their statements:

“Carbon is not a commercial, production-quality library, so I’'m not as con-
cerned about potential problems as Google is with their libraries. I'm just

working on my ideas and I'm giving my solutions to the public.” [D3|

“Yes. But we are not Spring yet. [...] Being a small-to-middle library has it’s
benefits.” [D2]

Finally, developer D4 illustrated an interesting strategy to mitigate the risks of
breaking changes. With the purpose of rebuilding the library due to DEPENDENCY
CHANGE reasons, and reusing most of the initial code, the decision was to create a new
library in the Maven Central Repository.! Thus, clients interested in migrating had to
switch libraries (and update their code to the new API contracts). This is illustrated

in the following comment:

'https://maven.apache.org
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“From the consumer perspective it’s a totally different library, not just a new
versiton of an existing one that has a new API. In order to upgrade, consumers
would have to change their build to point at the new coordinates. If all they
were doing was looking for a new version of the old coordinates they would
never see it. Additionally, because it’s separate coordinates you can even have
both versions installed side-by-side and do incremental migration. We decided
to keep the same repository despite essentially creating a new library because
they solve the same problem, we could re-use 90% of the code, and there never

would be releases made of the old version once we switched.” [D4]

4.4 Summary and Findings

In this section, we summarize the results and answer the investigated research ques-

tions.

RQ5. Why do developers break API contracts? We elicit a list of five spe-
cific reasons pointed by developers as motivation for API breaking changes: LIBRARY
SIMPLIFICATION, REFACTORING, BUG Fi1X, DEPENDENCY CHANGES, and PROJECT
Poricy. Some of them were recurrent between respondents. For instance, LIBRARY
SIMPLIFICATION was discussed in three out of seven analyzed answers. This may re-
veal that developers are more concerned about the usability of their APIs, despite the

possible costs caused by breaking changes.

RQ6. Are developers aware of the itmpact of breaking changes on client
applications? Our study shows that all developers are aware of the risks attached
to breaking contracts with clients. However, in most of the cases, they highlighted the
adoption of alternatives to mitigate them. This result suggests that developers have
conscious about the costs for client applications but rather than planning changes and

deprecating elements, they prefer adopting strategies to alleviate their side-effects.

4.5 Threats to Validity

The results presented in this study provide initial insights on the reasons why developers
break APIs and whether they are aware of the consequences for client applications.
Despite a response rate of 28.6%, only seven answers were considered for analysis,
which impacts the generalization of our results. However, the studied libraries are
representative especially due to their popularity (i.e., at least 857 stars), and high

number of breaking changes (i.e., more than 50 ones). Another threat is related to the
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manual inspection of the answers to provide the reasons for breaking changes. Although
this activity has been done with special attention and support of both advisor and co-
advisor, its subjective nature may bias the presented results. Finally, against our belief,

the trustworthiness of the responses may also be a threat to be reported.

4.6 Final Remarks

In this chapter, we presented the second study of this dissertation: a survey with
the major contributors of popular libraries hosted on GitHub about real instances
of API breaking changes collected in their repositories. Two research questions were
investigated in order to elicit a list of reasons that motivate such changes, and to verify
their consciousness on the risks for client applications. Specifically, we performed a
qualitative study in order to investigate: (i) the reasons why developers implement
breaking changes, and (ii) whether they are aware about the risks of these changes.
As a result, we proposed a list of five reasons that motivate developers to break
API contracts, including: LIBRARY SIMPLIFICATION, REFACTORING, BuG FiX, DE-
PENDENCY CHANGES, and PROJECT POLICY. Moreover, we showed that developers
are usually aware of the impact on clients and, in some cases, adopt strategies to alle-
viate them. In the next chapter, we discuss the state of the art, presenting the related

work, and highlighting their major limitations which motivated this dissertation.
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Related Work

API evolution and stability have been largely studied in the literature. Many ap-
proaches were proposed to support this activity and reduce its costs for client appli-
cations. In this chapter, we present related work, providing the state of the art, and
discussing their major limitations which motivated this dissertation. To accomplish
that, we separate these studies into two related subjects: Library Evolution (Sec-
tion 5.1), and Breaking Changes Impact (Section 5.2). Then, we conclude the chapter
with final remarks (Section 5.3).

5.1 Library Evolution

Library evolution and backward compatibility is a major concern for both library de-
velopers and client applications. There are several studies that focus on this area,
analyzing library changes and measuring their frequency during their life cycle. As
an initial effort to understand and measure this phenomenon, Dig and Johnson [2006]
studied a dataset of five known Java libraries, observing their changes and classifying
them according to their possible effect on client applications: breaking changes and
non-breaking changes (see the definitions in Section 2.2). Besides, with the purpose of
identifying the reasons of breaking changes, they elicited a catalog of 24 corresponding
breaking operations (e.g., Moved Method, Deleted Method, and Extra Argument), and
manually verified them in the change logs and release notes of their libraries dataset.
As a result, the authors found that 80% of all API changes are refactorings. In this dis-
sertation, we applied this classification of changes and we also identified REFACTORING
as a motivation for breaking API contracts. However, we also discovered other four
reasons for breaking changes: LIBRARY SIMPLIFICATION, BUG FIX, DEPENDENCY
CHANGES, and PROJECT PoLICY. Indeed, the most common reason identified in our
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study (LIBRARY SIMPLIFICATION) is not discussed by Dig and Johnson. Additionally,
we performed a larger study, with a higher number of libraries, taking into consideration
the real impact of these changes on client applications.

In a recent work, Bogart et al. [2016] performed a general-purpose case study to
understand how, when, and by whom changes are applied in three important software
ecosystems: Eclipse,! R/CRAN,? and Node.js/npm.> They contacted 28 experienced
developers, and conducted semistructured recorded interviews in phone calls that lasted
30-60 minutes. The authors structured their questions in a way that the respondents
discussed their roles as library developers and third-party clients. As a result, they re-
port the differences in practices, polices, and tools applied when performing or avoiding
breaking changes. They conclude that in Eclipse, developers usually do not break APIs;
in R/CRAN and Node.js/npm, they adopt strategies to deal with breaking changes:
in the first, they reach out affected clients with documentation, and in the second,
they simply increase the major version number. Additionally, the authors also argue
that community values take an important role in this process, helping both clients
and developers to understand and solve conflicts about design decisions and breaking
changes. Although this is also a qualitative study, we observe that the conclusions
stated by the authors do not reflect developers explanations about concrete breaking
changes. Instead, they reflect general perceptions and views about breaking changes
in the considered software ecosystems. By contrast, we based our analysis on a real
set of breaking changes collected in a larger dataset of libraries, considering developers
considerations about them.

There are also studies in the context of API deprecation. Raemackers et al. [2014]
investigated deprecation annotations usage when studying the frequency of breaking
changes on major, minor, and patch API versions. The authors observe that meth-
ods are commonly deleted without applying deprecation annotations, and also that
methods with such annotations are never deleted. In a recent study, Brito et al. [2016]
measured the usage of deprecation messages at a large-scale level. They point that 64%
of the studied API elements (types, fields, and methods) are deprecated with replace-
ment messages, and that this percentage does not increase over time. As a conclusion,
the authors provide insights for the design of a tool to support client developers by
recommending missing deprecation messages.

To support client applications migrating between library versions, some tools and

techniques are proposed in the literature. For example, Kim et al. [2007] present a solu-

'https://eclipse.org
’https://cran.r-project.org
Shttps://www.npmjs.com
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tion to automatically infer rules from structural changes, computed from modifications
on method signatures. Kim and Notkin [2009] propose LSDIFF, a tool to compute
differences between two library versions. Nguyen et al. [2010] propose LIBSYNC, a tool
that uses graph-based techniques to support developers migrating between library ver-
sions. Henkel and Diwan [2005] present CATCHUP, an approach to capture and replay
refactoring. Hora and Valente [2015] present APIWAVE, an approach to keep track of
APIT evolution by mining import statement changes.

Finally, Dagenais and Robillard [2008] present an approach that recommends APIT
replacements based on library changes. In contrast, Schifer et al. [2008] propose to
mine API usage change rules based on client changes. In the same context, Wu et al.
[2010] present an approach to infer evolution rules based on call dependency as well
as on text similarity analyses. Meng et al. [2012] propose a history-based matching
approach to support library evolution. In all these works the authors are concerned in
providing ways to help clients to deal with breaking changes. However, in none they
investigate the real extension of this problem. In this dissertation, we advanced the
knowledge on library evolution by providing two empirical studies on API breaking
changes, and discussing their results to provide insights on tools and techniques that

may support library developers and clients on these evolutionary activities.

5.2 Breaking Changes Impact

Besides analyzing the evolution of libraries, and measuring the frequency of occurrence
of breaking and non-breaking changes, there are many studies that also take into
consideration the impact of such changes on client applications. In fact, they go deeper
in their analysis by observing the usage of API elements (i.e., the more used an element
is, the more critical would it be a modification that breaks its contract).

In this context, Raemaekers et al. [2012] evaluated the stability of frequently
used APIs in terms of four defined metrics based on method removals, implementation
change, the ratio of changes in old methods to changes in new ones, and the percentage
of new methods. Therefore, the authors defined the following metrics: WRM (number
of removed methods weighted by usage frequency and age), CEM (changes observed
in existing methods), RCNO (percentage of changes in new to old methods), and
PNM (ratio of new methods observed). Next, the authors extracted their metrics by
performing a historical analysis of stability and impact on 140 clients of the Apache
Commons Library. They focused on the clients history, observing the usage frequency

and updates in their Maven build files. As a result, they discuss three major scenarios
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on which the metrics would be useful for software developers and project managers: (i)
deciding about depending on a certain library, (ii) deciding whether to encapsulate or
not the dependencies on a project, and (iii) determining the state of maintenance of a
library. However, the real size of the phenomenon, and the impact of such instability
on client applications were questions left open. In this work, we study the evolution of
a larger set of libraries and compute the impact of breaking changes in an ultra-large
dataset of client applications. Additionally, we identify a set of characteristics related

to development and social coding that are associated with API breaking changes.

Another important work was performed by Jezek et al. [2015] in the context of
analyzing binary compatibility of OSGi-based systems.* Nowadays, these are represen-
tative systems due to the increasing necessity of high availability (“24/7 systems”) and
the consequent necessity of features to swap libraries and components at runtime. In
this process, some incompatibilities may arise due to subtle differences between Java
compilers and the Java Virtual Machine-JVM (i.e., some API changes that may be
backward compatible according to the rules used by the compiler, but incompatible
from the JVM'’s point of view). Therefore, the authors defined a set of specific changes
that may lead to unexpected runtime behavior during “hot upgrades”, dividing them
in three main groups: (i) binary and source code incompatible changes; (ii) binary
incompatible and source code compatible changes; and (iii) constant inlining. To eval-
uate these changes, and advance the understanding about API evolution, they used a
dataset of 109 Java programs and 564 program versions obtained in the Qualita Cor-
pus [Tempero et al., 2010]. As a result, the authors observed that API instability is
a common phenomenon, and also that only in a few cases it affects clients. However,
the study bases their conclusions on a small and specific set of libraries and client
applications, focusing on the analysis of particular changes in this kind of systems. In
this work, besides the larger dataset of libraries and client applications, we focus on
source code compatibility, analyzing syntactic changes on API code (which represents

the majority of breaking change scenarios).

In the Android context, McDonnell et al. [2013| investigate API stability and
adoption. The authors state that Android APIs evolve faster than client migration.
Linares-Vasquez et al. [2014] analyze how the number of questions in Stack Overflow
increases when APIs are changed. They show that Android developers are more active

when they face API modifications.
Finally, Robbes et al. [2012] investigate the impact of deprecation in a Smalltalk

ecosystem. They find that some API deprecation have large impact on client applica-

http://www.osgi.org
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tions and that deprecation messages usually have low quality. In a recent work, Sawant
et al. [2016] perform a partial replication of this study in Smalltalk, but analyzing Java
APIs hosted on GitHub. They compare and contrast the results of both studies, pro-
viding insights on update practices and similarities in reaction behavior between both
languages. Still in the Smalltalk ecosystem, Hora et al. [2015] study the impact of
API replacement and improvement messages. The results show that a large amount of

clients are affected by API changes but most of them do not react.

5.3 Final Remarks

In this chapter, we discussed the state of the art in the subjects related to this disser-
tation: Library Evolution and Breaking Changes Impact. We briefly analyzed some of
these related work, and highlighted their limitations, which motivated the development
of our studies. To the best of our knowledge, this dissertation is the largest empirical
study investigating API breaking changes and their impact on client applications. It
also reveals development and social coding characteristics that impact on the frequency
of breaking changes. Moreover, this is the first study investigating the motivations be-
hind API breaking changes based on the actual explanations of developers on specific
breaking changes they have recently applied.

In the next chapter, we present our conclusions, discussing the major contribu-
tions of this dissertation and analyzing the implications of our results. In addition, we

also prospect future work on API breaking changes.






Chapter 6

Conclusion

In this chapter we present our conclusions for this master dissertation. First, we begin
by providing a summary of our two empirical studies and their results, as well as
discussing our main contributions (Section 6.1). Then, we conclude by prospecting

future work on API breaking changes (Section 6.2).

6.1 Summary and Contributions

In this dissertation, we investigated API breaking changes at a large-scale level. To
accomplish that, we proposed and implemented an APIDIFF tool, which purpose is
to analyze two versions of a Java library and identify both breaking and non-breaking
changes between them. A catalog of 21 modifications was defined and implemented,
including 12 breaking and 9 non-breaking changes. We used this tool to empirically
study (i) the frequency and the impact of API breaking changes, and (ii) the motiva-
tions that drive API developers to introduce such changes in their libraries. In this

section, we summarize each study, highlighting their respective contributions.

Historical and Impact Analysis. In our first study, we measured the amount of
breaking changes on real-world libraries and its impact on client applications. For that,
we conducted a large-scale study with the top 317 Java libraries, their 9K releases,
and 260K possible clients. We selected popular and mature GitHub repositories by
filtering characteristics such as number of stars, number of releases, and age. Four
research questions were investigated to support the analysis on (i) the frequency of
API breaking changes, (ii) the behavior of these changes over time, (iii) the impact on
client applications, and (iv) the characteristics of libraries with high frequency of such

changes. Therefore, the lessons learned from our results are:
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e Libraries often break backward compatibility. We found that 27.99% of
all API changes break backward compatibility. On the median, 14.78% of the

changes, per library, are breaking changes.

e Breaking changes frequency increase over time. Comparing the first and
fifth years of the studied libraries, the percentage of breaking changes increases
20% (from 29.02% to 49.14%).

e Most breaking changes do not have a massive timpact on clients. Despite
the high number of breaking changes verified, only 2.54% of clients are potentially

impacted (on the median). However, this ratio reaches 100% for outlier values.

e Development and social coding measures are associated with API
breaking changes. We found that libraries with high frequency of breaking

changes are larger, more popular, and more active.

API Breaking Changes Motivations. In our second investigation, we surveyed
the major contributors of libraries with more than 50 breaking changes observed in our
first study. The goal was to (i) elicit the reasons why developers implement breaking
changes, and (ii) check whether they are aware about the risks of these changes. From
the initial dataset of 317 libraries, 90 registered more than 50 breaking changes, from
which we retrieved 49 developers contact. Then, we sent an email for each of them,
and received 14 answers (response rate of 28%). Seven were selected for analysis. From

this study, we learned that:

e Library developers break contracts with specific motivations. We elicited
a list of five reasons that motivate developers to break API contracts: Li-
BRARY SIMPLIFICATION, REFACTORING, BUG FiX, DEPENDENCY CHANGES,
and PROJECT PoOLICY;

e Most developers are aware of the risks of such changes. We found that
developers are usually aware of the impact on clients and, in some cases, adopt

strategies to alleviate them.

6.2 Future Work

Based on the previous results, we observe the opportunity of developing techniques to

assist both API developers and clients to deal with breaking changes, mitigating their
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impact. In addition, we also prospect some future work to strengthen the knowledge

on the motivations of API breaking changes. Therefore, we suggest:

1. Plotting historical curves to analyze library stability. First, we suggest
the development of tools that may apply the techniques used in our quantitative study,
improving API evolution and generating important feedback in real-world scenarios. In
this context, historical analysis (i.e., information retrieved from releases history) may
be adopted to measure library stability and pressure developers to avoid compatibility
faults. For example, a historical curve may be plotted with the rates of breaking
changes along libraries life cycle, revealing how stable they are, and highlighting for
developers the necessity of taking especial attention (see Figure 3.12 for an example of
three important libraries curves). Also, this analysis would provide useful information

for client developers when reasoning whether to depend or not on a library.

2. Using tmpact analysis to reason about performing A PI breaking changes.
We also observe that techniques applying impact analysis may be helpful for library
developers, supporting their decisions before changing highly used APIs. In this case,
we may use information provided by JAVALI to calculate the impact of breaking
changes in specific API elements. Therefore, before performing a breaking change,
developers would be able to analyze the extent of their impact (i.e., the amount of

affected clients), and then decide whether to perform it or not.

3. Applying firehouse interviews to enlarge our list of API breaking
changes motivations. Finally, we suggest an in-depth study based on firehouse
interviews |Murphy-Hill et al., 2015] with the contributors of popular Java libraries
hosted on GitHub. The idea is to replicate a methodology used in a previous study
about refactoring motivations [Silva et al., 2016]. During several months, we would
monitor a large dataset of libraries, fetching commits from each remote repository to
a local copy. Next, we would use our APIDIFF tool to iterate through each commit
and identify changes that break compatibility. Finally, an email would be sent to the

author of the commit asking two main questions:
e Could you describe why did you perform the listed breaking changes?
e Are you aware of the possible impact of them in case they are released to clients?

In this case, our goal is to contact API developers as soon as they introduce a
breaking change, while the modification is still fresh. In this way, we would receive
more answers, which is important to increase confidence on the initial list of reasons

for breaking changes elicited in this dissertation.
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