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Resumo

Floresta Aleatória (FA) é uma das estratégias mais bem-sucedidas para tarefas de
classificação automática. Motivado por seu grande sucesso, recém-propostos métodos
baseados em FA têm alavancado a ideia central da RF de agregar um grande con-
junto de árvores de decisão com baixa correlação, que é inerentemente paralelizável e
provê capacidade excepcional de generalização. Nesse contexto, esse trabalho provê
várias novas contribuições para essa linha de pesquisa. Primeiramente, nós propo-
mos uma nova estratégia baseada em FA (BERT) que aplica a técnica de boosting em
árvores extremamente aleatórias com bagging. Segundo, nós demonstramos empirica-
mente que essa nova estratégia, assim como os recém-propostos classificadores BROOF
e LazyNN_RF complementam uns aos outros, motivando-nos a empilhá-los a fim de
produzir um método ainda mais eficaz. Até onde sabemos, esse é a primeira estratégia
que efetivamente combina as três principais estratégias de comitê de classificadores:
empilhamento, bagging (a base da FA) e boosting. Por último, nós exploramos as in-
stâncias out-of-bag (OOB) para empilhar, eficientemente e sem viés, métodos baseados
em bagging, desse modo diminuindo consideravelmente o custoso processo de treino do
procedimento de empilhamento. Nossos experimentos cobrindo dois domínios ruidosos
e com alta dimensionalidade - classificação de tópicos e sentimentos - provê forte ev-
idência em favor dos benefícios de nossas soluções baseadas em FA. Nós mostramos que
o BERT está dentre os classificadores de mais alta efetividade na vasta maioria dos ca-
sos analisados, mantendo os benefícios únicos da FA (interpretabilidade, paralelização,
fácil parametrização, capacidade de lidar com dados heterogêneos e valores faltantes).

Palavras-chave: Empilhamento, Floresta Aleatória, Árvores Extremamente
Aleatórias, Boosting, Classificação, Aprendizado Supervisionado, Aprendizado de
Máquina.
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Abstract

Random Forests (RF) are one of the most successful strategies for automated classifi-
cation tasks. Motivated by the RF success, recently proposed RF-based classification
approaches leverage the central RF idea of aggregating a large number of low-correlated
trees, which are inherently parallelizable and provide exceptional generalization capa-
bilities. In this context, this work brings several new contributions to this line of re-
search. First, we propose a new RF-based strategy (BERT) that applies the boosting
technique in bags of extremely randomized trees. Second, we empirically demonstrate
that this new strategy, as well as the recently proposed BROOF and LazyNN_RF clas-
sifiers do complement each other, motivating us to stack them to produce an even more
effective classifier. Up to our knowledge, this is the first strategy to effectively combine
the three main ensemble strategies: stacking, bagging (the cornerstone of RFs) and
boosting. Finally, we exploit the efficient and unbiased stacking strategy based on out-
of-bag (OOB) samples to considerably speedup the very costly training process of the
stacking procedure. Our experiments in several datasets covering two high-dimensional
and noisy domains of topic and sentiment classification provide strong evidence in favor
of the benefits of our RF-based solutions. We show that BERT is among the top per-
formers in the vast majority of analyzed cases, while retaining the unique benefits of RF
classifiers (explainability, parallelization, easiness of parameterization, heterogeneous
data and missing value handling).

Keywords: Stacking, Random Forest, Extremely Randomized Trees, Boosting, Clas-
sification, Supervised Learning, Machine Learning.
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Chapter 1

Introduction

In this chapter, we discuss the main motivations and arguments that support this
dissertation. We also briefly describe our work and explicitly state our contributions.

1.1 Problem Statement

Since the advent of the Web, the amount of data available has grown unprecedentedly.
Thus, organizing and extracting useful information from this enormous quantity of data
has become an important (if not vital) task for industry and society. By using machine
learning techniques to automatically associate documents with classes, Automatic Text
Classification (ATC) provides means to organize information which allows better com-
prehension and interpretation of the data [Baeza-Yates and Ribeiro-Neto, 1999]. Many
important applications, such as topic categorization, sentiment analysis, spam filter-
ing, language identification, recommender systems, among others, can be effectively
and efficiently solved by automatic textual classifiers. Despite the wide applicability of
ATC, text classification brings its own challenges, such as high dimensionality and
the presence of noise [Khan et al., 2010]. Properly handling these issues is of great
importance to guarantee high classification effectiveness. This is the central topic of
this work.

Several machine learning techniques aimed at tackling the challenging ATC prob-
lem have been proposed. In particular, ensembles of classifiers have been shown to excel
in this situation [Salles et al., 2015; Danesh et al., 2007; Dong and Han, 2004], enjoying
high effectiveness in this domain. Random Forests (RF) are one of the most successful
classifier ensembles in a wide variety of classification tasks [Fernández-Delgado et al.,
2014]. Despite being a classifier with great generalization power, it has been shown
that RF models may suffer from overfitting issues [Segal, 2004], having its effective-
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2 Chapter 1. Introduction

ness degraded in the presence of many irrelevant or noisy attributes—a characteristic
of textual classification tasks. More precisely, it has been shown that RF classifiers
whose decision trees are grown to their maximum depth are deemed to perform poorly
in presence of noisy attributes. Optimistically speaking, these attributes are consid-
erably correlated to one another or are weakly related to the outcome [Salles et al.,
2017]. Particularly, when the number of attributes is large, but the fraction of relevant
ones is small, random forest models tend to perform poorly. This has to do with the
unnecessary variance incurred by the model, as discussed in [Hastie et al., 2009]: the
bagged decision trees become plagued by irrelevant or noisy attributes, which intro-
duces unnecessary model complexity (e.g., irrelevant classification paths). Recently,
novel RF-based models were proposed to mitigate the overfitting issue faced by RF in
presence of many noisy or irrelevant attributes by exploiting very distinct strategies,
namely, a lazy RF version called LazyNN_RF [Salles et al., 2017], and a boosted RF
strategy named BROOF [Salles et al., 2015]. Both methods learn classification mod-
els focusing on specific sub-regions of the input space, hoping to filter out irrelevant
attributes and data—the primary factors that contribute to RF’s tendency to overfit.

The LazyNN_RF is a lazy learner that utilizes the k nearest training instances to
the test example as a projected training set, which is given to a Random Forest classifier
for training. Subsequently, the trained RF classifier is used to predict the test example
class. Salles et al. [2017] showed that projecting the training set of RF classifier to
the neighborhood of test data can mitigate the overfitting problem suffered by random
forests when dealing with data with many irrelevant or noisy attributes, and provides
more generalization power to the RF classifier. The BROOF is a method based on
the well known and successful technique called boosting. It focuses on hard-to-classify
regions of the input space, by means of the combination of boosting technique and
the exploitation of the out-of-bag (OOB) error, promptly generated by RF classifier
at training time. Salles et al. [2015] showed that restricting the influence of training
data to the hard-to-classify sub-regions of the input space, by means of a smooth
combination of random forests and boosting, can mitigate the overfitting issue and
leverage classification effectiveness on new unseen data.

1.2 Our Proposal

In this work, we advance the state-of-the-art in text classification by proposing a novel
derivation of the RF classifier. More specifically, we propose a new boosted version
of the RF classifier, based on some ideas explored by the BROOF classifier: the so-
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called Boosted Extremely Randomized Trees (BERT) classifier. While BROOF is
able to mitigate the overfitting issue faced by RF classifier when applied to high-
dimensional noisy data, by avoiding the generation of overly complex trees, it offers
limited capability of bias reduction (through the so-called selective out-of-bag based
weight update strategy) as shown by Salles et al. [2017]. Thus, bias may still pose
as an important factor to contribute to the error rate. To tackle this potential issue,
we here propose to introduce another source of randomization in the boosted strategy
proposed by Salles et al. [2015] in order to achieve a better bias-variance tradeoff, by
building tree in a more extreme fashion as proposed by Geurts et al. [2006]. This
novel strategy has the following motivations: (i) we expect to avoid overly complex
models (and thus mitigate overfitting) through the application of the BROOF-like
strategies; (ii) to provide more control over the learner’s bias through the additional
randomization offered by building extremely randomized trees [Geurts et al., 2006];
and, finally, (iii) to exploit the fact that the extremely randomized trees have shown
to be more robust to noise than the RF classifier.

Moreover, motivated by the fact that distinct learning methods may complement
each other, uncovering specific structures that underlie the input/output relationship
of the data at hand, in this work we also propose to exploit the complementary charac-
teristics of the recently proposed RF-based approaches and ours, by stacking them in
order to learn an even more effective meta-classifier. As we shall see later, their level
of disagreement is high, which motivates our idea. Up to our knowledge, this is the
first attempt to combine the three main ensemble strategies: bagging, boosting and
stacking.

Finally, when stacking classifiers, one usually relies on k fold cross-validation pro-
cedures to estimate the a posteriori class probabilities for each example, to serve as
input for the meta-classifier. Based on these predicted a posteriori class distribution
estimates, the meta-classifier induces a relationship between these predictions and the
true class. However, such estimation strategy may be very costly and sometimes in-
effective, since it depends on learning k different models to estimate the probability
distributions that serve as input for the stacking procedure. In order to cope with this
problem, we here propose to exploit the efficient and unbiased out-of-bag (OOB) error
estimate, an out-of-the-box estimate naturally produced by the bootstrap procedure
used in each RF-based learner. Thus, we avoid additional computation efforts to learn
a stacked classifier.

The main research questions answered in this dissertation are:

• RQ1: Can we further improve the generalization capabilities of BROOF algo-
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rithm when applied to high-dimensional data by means of additional source of
randomness?

• RQ2 Can we effectively and efficiently combine Random Forests based methods,
such as LazyNN_RF, BROOF and BERT, in order to leverage their predictive
performance in high-dimensional data with many noise/irrelevant attributes?

1.3 Main Contributions

In summary, the main contributions of this work are:

1. The proposal of a novel RF-based classifier, named BERT, that is able to out-
perform state-of-the-art classifiers;

2. The proposal of a new stacking classifier that exploits the complementary char-
acteristics of BROOF, LazyNN_RF and BERT that is able to outperform all
analyzed classification algorithms, including a stacking of traditional methods,
often by large margins;

3. The proposal of a new estimation strategy based on the use of OOB for gen-
erating the input for the stacked meta-classifier that substantially reduces the
computational effort/runtime of the stacking strategy while retaining its predic-
tive power;

4. A parallel version of LazyNN_RF algorithm which exploits the massively parallel
power of Graphical Processing Units (GPUs);

5. Extensive experimentation with 15 datasets in two domains – topic categoriza-
tion and sentiment analysis; – against several baselines including traditional
classifiers (to compare with BERT), several stacking combinations (to compare
with the stacking of Forests) and several state-of-the-art stackers (to compare
with our OOB-based approach).

1.4 Publications

The contributions obtained with the development of this master’s dissertation were
published by means of publication in national and international conferences and pro-
ceedings. Next, it is presented a complete list of the published papers:
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• Raphael Campos, Sérgio Canuto, Thiago Salles, Clebson C. A. de Sá and Marcos
André Gonçalves. 2017. Stacking Bagged and Boosted Forests for Effective
Automated Classification. In Proceedings of SIGIR ’17, Shinjuku, Tokyo,Japan,
August 07-11, 2017, 10 pages - [Campos et al., 2017].

• Campos, R. R. and Gonçalves, M. A. (2016). Bert: Melhorando classicação de
texto com árvores extremamente aleatórias, bagging e boosting. In 31st of the
Brazilian Symposium on Databases - [Campos and Gonçalves, 2016] (Honorable
Mention for Best Short Paper).

• R R. Campos, M A. Gonçalves and T. Salles (2016). Quando a Amazônia Encon-
tra a Mata Atlântica: Empilhamento de Florestas para Classificação Efetiva de
Texto. 4th Symposium on Knowledge Discovery, Mining and Learning - [Campos
et al., 2016].

1.5 Outline

The remainder of this work is described as follows:

• In Chapter 2, we review and highlight some relevant learning algorithms found
in literature which are the base of our work.

• In Chapter 3, we detail the experimental workload used in our analysis. We
provide a description of the six reference datasets regarding topic categorization
and the ten reference datasets regarding sentiment analysis. Then, we briefly
describe the text classification algorithms and the metrics used to compare their
effectiveness.

• In Chapter 4, we detail a lazy version of Random Forest classifier proposed by
[Salles et al., 2017], and propose to scale the algorithm performance by taking
advantage of the massively parallel power of Graphical Processing Units (GPUs)
through the GTkNN algorithm [Canuto et al., 2015].

• In Chapter 5, we detail our proposed BERT classifier, a boosted version of bagged
extremely randomized trees, providing its motivations, learning strategy details,
and extensive experimental evaluation.

• In Chapter 6, we detail our proposed method to efficiently stack RF-based meth-
ods as well as its experimental evaluation and analysis.
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• Finally, in Chapter 7, we conclude the our work, pointing out some possible
directions for further investigation.



Chapter 2

Background

For the sake of this dissertation, we devote this chapter to recall important concepts
and highlight algorithms which are the base of our work.

2.1 Supervised Learning

Automatic data classification is key to solve effectively a broad variety of practical
problems, being of great value for industry and society, mainly when a traditional
(purely specified by well defined algorithmic steps) solution is not viable. Automatic
classifiers have become fundamental to enhance and support several distinct tasks,
such as automatic text classification, organizing digital libraries, automatically tagging
topics, filtering spam on email systems, identifying the writing style of textual data,
supporting diagnosis in health care systems, recognizing handwriting input, recognizing
objects in images, analysing micro-arrays, to name few. In all such cases, it is difficult
to conceive a set of rules to effectively solve the problem under consideration without
looking into previously observed data related to it. Furthermore, such set of rules
generally does not cover all possible cases, limiting its discriminative power. Hence, a
rule-based system more precise requires, due to the adaptive behavior of the data, that
one continuously expresses more rules, which may rapidly leads to an overwhelm of
exceptions. Worse still, such set of rules may not capture latent relationships and may
change as time goes by, harming the predictive power of such systems. Evidently, such
problems require more sophisticated solutions, capable of recognizing patterns from
observed data to adequately categorize the unobserved one, which is what supervised
learning methods do [Salles et al., 2017].

More formally, supervised learning entails learning a mapping between a set of
input variables and an output variable and applying this mapping to predict the out-

7



8 Chapter 2. Background

puts for unseen data [Cord et al., 2008]. Given a set of N examples of the form
{(X1, y1), ..., (XN , yN)}, known as training set, where Xi denotes the vector represen-
tation of the i-th instance and yi ∈ Y is a categorical attribute indicating the class of
the i-th instance. The main objective of a supervised learning algorithm is to learn
an approximation of the unknown class a posteriori probability distribution P (yi|Xi),
which underlies the relationship between data points and their associated classes, based
on the observed data. There exist two main approaches to achieve that, one based on
the direct estimation of P (yi|Xi), and another based on the indirect estimation of
P (yi|Xi). The former approach, so called discriminative classifier, learns a direct map
f : Rn → Y, from the observed inputs Xi to the output class yi, by minimizing an
effectiveness metric (e.g., error rate), without making any assumption regarding the
probability density function for each class. On the other hand, the latter, which is
known as generative classifiers, learns the joint distribution P (Xi, yi), of the inputs Xi

and the class yi, and thus make their predictions by using Bayes rules to estimates the
posterior distribution P (yi|Xi).

Finally, one can group supervised learners into two main categories, according
to the way they yield the prediction model, namely, eager and lazy learners. Eager
learners build a single model, given the entire training set, which is used to classify
all unseen data presented to the classifier. In contrast, lazy learning methods simply
store the training set and, thus, postpone the generation of the model until it is given
a test example. Given a test instance x, they select training examples whose patterns
are considered more appropriate to discriminate x’s class, according to some distance
or similarity function.

2.2 Decision Trees

Decision trees (DTs) are non-parametric supervised learning methods, very popular
in a wide range of classification and regression tasks. The general idea of tree-based
methods is to recursively partition the input space into a set of hyper-rectangles, in
each of which is fitted a simple model, such as a constant. They are conceptually
simple yet powerful [Hastie et al., 2009]. Their popularity is mainly due to its unique
characteristics: (i) easy explainability and interpretability, since trees can be easily
visualised; (ii) requires small effort on data preparation, tree-based methods usually
do not require data normalisation and can handle missing values, and both categorical
and numerical features; (iii) logarithmic time complexity to predict data; (iv) capable
of handling multi-output problems.
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There are several popular algorithms to build tree-based learning models, namely
CART [Breiman and Olshen, 1984], ID3 [Quinlan, 1986] and C4.5 [Quinlan, 1996]. In
this work, we focus on CART algorithm, since several freely available implementation
of it can be found in machine learning libraries such as the well known scikit-learn
library [Pedregosa et al., 2011] written in python, rpart [Therneau et al., 2015] library
in R, and Weka in Java [Hall et al., 2009].

Algorithm 1 Decision Tree pseudo-code
1: function Train(Dtrain = {(Xi, yi)|Ni=1})
2: nroot ← Node(Dtrain)
3: hi ← BuildTree(nroot,F) . F is the feature set
4: end function
5: function BuildTree(node, F)
6: if not StoppingCriterion(node) then
7: fmax ← argf max InformationGain(F)
8: cutpoint← FindCutPoint(fmax, node)
9: node.left← BuildTree(Node({(Xi, yi)|Xfmax

i ≤ cutpoint}),F)
10: node.right← BuildTree(Node({(Xi, yi)|Xfmax

i > cutpoint}),F)
11: end ifreturn node
12: end function

Classification and regression tree (CART) recursively splits the input space by
making orthogonal divisions considering an univariate splitting criteria of impurity
[Breiman and Olshen, 1984]. Finding the best binary partition in terms of some im-
purity measure, such as Gini Index, Entropy or misclassication error, may be com-
putationally infeasible. Hence, a greedy algorithm is usually performed in order to
choose the best attribute to split and its cut-point, shown in the Algorithm 1 (lines
7-8). Afterwards, the data is divided into two disjointed regions accordingly to the
obtained split variable and point. This process is repeated recursively on all resulting
regions until a stop criterion is reached (i.e., tree depth, the total number of leaves) or
all the leaves are pure, which implies in a tree grown to its maximum depth. A fully
grown decision tree may overfit the data, thus degrading its predictive performance on
new unseen data, which can be mitigate by pruning it, setting the minimum number
of samples required at a leaf node or setting the maximum depth of the tree in order
reduce the model complexity. Other drawbacks faced by decision trees are: (i) insta-
bility (high variance), small variations in the data may result in a very distinct tree
being generated; and (ii) overly-biased trees in presence of heavily imbalance classes.
All these issues (including overfitting) can be mitigate by training multiple trees in an
ensemble learner, as we shall discuss in the subsequent section. For further information
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on the subject, we refer the interested reader to [Breiman and Olshen, 1984; Quinlan,
1986, 1996; Louppe, 2014]

2.3 Ensemble Methods

Build a single model that covers the entire instance space may not be optimal since it
may not be able to capture all nuances of the data. In fact, different models/algorithms
may cover distinct regions and aspects of the input space complementing one another
predictions [Kuncheva and Whitaker, 2003].

Boosting and Random Forests, two well-known and successful learning algo-
rithms, are based on the idea of building a strong model by means of combining mul-
tiple decision trees, each of which is built by somehow disturbing the training set, and
subsequently, averaging the predictions in order to come up with a final decision.

In the subsequent subsections we dive into these methods, discuss how they fix
the aforementioned drawbacks of decision trees and outline their unique features.

2.3.1 Random Forests

Proposed by Breiman [2001], the Random Forests (RF) classifier has been one of
the most successful classifiers in an enormous variety of automatic classification tasks
[Fernández-Delgado et al., 2014] comparable, and sometimes superior, to Support Vec-
tor Machine (SVM). A fundamental aspect that guarantees the high effectiveness of RF
classifier is the large set of low-correlated trees composing the forest, which is obtained
by disturbing the data with series of random procedures, such as bagging of the training
set and random attribute selection drawn from a randomly chosen subset of features.
It also important to build trees with prediction capabilities better than random guess-
ing, which is typically achieved by growing them to their maximum depth (low bias).
By considering the average of several decorrelated trees as the model prediction, it
can be shown that the RF classifier reduces variance while keeping its bias unchanged
[Breiman, 2001]. It typically brigs up more stable models with higher generalization
capabilities.

More specifically, each of decision tree is grown as follows: Firstly, the bagging
(bootstrap aggregating) procedure is performed (line 3). Introduced by Breiman
[1996], bagging is an ensemble method which aims to control variance by creating
several versions of the classifier and average them. It is specially suitable for estima-
tors that has high-variance and low-bias (e.g., decision trees grown to its maximum
depth). Thus, given a training set Dtrain, the bootstrap procedure yields M training
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Algorithm 2 Random Forest pseudo-code
1: function Train(Dtrain = {(Xi, yi)|Ni=1}, M)
2: for each m ∈ {1, ..,M} do
3: Dm

train ← Bootstrap(Dtrain) . Dm
train ∈ Dtrain

4: Fm ← RandomSubspace(F) . F is the feature set
5: nroot ← Node(Dm

train)
6: hm ← BuildTree(nroot,Fm) . Algorithm 1
7: end for
8: end function
9: function Classify(X, hm|Mm=1)

10: return argc max
∑M

m=1 hm(X)
11: end function

sets Di
train|Mi=1 by sampling with replacement from the original data. Second, each of

theM trees hi|Mi=1 is trained considering these newly created training sets and a feature
subset Fi sampled from the original feature set F without replacement (line 4), where
|Fi| << |F|. Finally, the final prediction is given by majority voting hi, 1 ≤ i ≤ M

(line 10). The Algorithm 2 summarizes the whole process.

In addition to its high generalization capability in several application domains, the
Random Forests classifiers also has some interesting characteristics which may be very
useful in determined situations. One of such interesting characteristics is the so-called
Out-of-Bag estimate error. When building ensemble models based on bootstrapped
samples, such as Bagging or Random Forests, it is possible to use the left-out samples
Dm
oob = Dtrain \Dm

train to estimate important statistics, such as the generalization error.
More precisely, since each tree in the Random Forests is trained with bootstrapped
samples, approximately e−1 ≈ 37% of the original training set is left aside (out-of-
bag) [Hastie et al., 2009] and may be used as an independent validation set in order to
estimate its individual prediction [Wolpert and Macready, 1999]. The RF’s Out-of-Bag
error estimate is formally defined by:

ErrOOB =
1

N

∑
(xi,yi)∈Dtrain

L(argc max
M∑
m=1

hm(xi)I[xi ∈ Dm
oob], yi), (2.1)

where I denotes an indicator function that returns 1 when the m-th tree did
not use xi as training instance, 0 otherwise, and L is a given loss function with
the predicted class ŷi and the actual one yi as parameters. Hence, the Random
Forests’ out-of-bag prediction estimate ŷoobi at (xi, yi) is obtained by the majority
vote of the prediction estimation of the trees which did not use (xi, yi) for train-
ing (argc max

∑M
m=1 hm(xi)I[xi ∈ Dm

oob]). Thus, the RF’s Out-of-Bag error estimate
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ErrOOB is defined by the average loss over all training examples, using ŷoobi as the pre-
diction in order to estimate the loss for a given (xi, yi). The out-of-bag error estimate is
an unbiased estimate of the generalization error of the ensemble model, providing statis-
tics comparable, and sometimes more accurate, to K-fold cross-validation [Wolpert and
Macready, 1999].

Another RF’s interesting feature is the variable importances. In several tasks it
is important to identify the input variable that are the most discriminative in order
to have a deeper comprehension of the problem under consideration. Random forests
provide means for assessing the importance of an input variable, and consequently
boost the interpretability of the ensemble model [Louppe, 2014]. There are other
characteristics, such as proximity measures, missing data handling, which also have
useful applications. However, since they are not closely related to this dissertation, we
refer the reader to [Breiman, 2001; Hastie et al., 2009; Louppe, 2014].

2.3.2 Boosting

Boosting is a sequential meta-algorithm which trains several “weak learners” (that is,
classifiers capable of yielding predictions slightly better than random guessing) in order
to generate a more precise model. For each iteration i of the boosting procedure, let
∆i be a probability distribution over the training set of size N . In the first iteration
i = 1, all instances have equal probability ∆1(j) = 1

N
, ∀j|Nj=1. For each successive

steps, the instances weights are revised and the learning algorithm is retrained on the
weighted observations. At iteration i > 1, each example xj in the training set, which
were misclassified, has its weight incremented so that, in the succeeding iteration, an
updated distribution ∆i+1 is considered, which emphasizes the misclassified instances
(e.g, the hardest to classify ones). Each successive “weak learner” learns by focusing
on those hard-to-classify regions of the input space. Thus as specialized classifiers are
built upon these hard-to-classify regions, the bias tends to minimize.

The classical boosting algorithm, called AdaBoost [Freund and Schapire, 1997],
is summarized in the Algorithm 3. The current model hm is induced on the weighted
observations (line 4). At line 5, weighted error rate is computed. Subsequently, the
weight αm is calculated at line 6 and the weights of each of the instances are updated
for the following iteration (7). Instances incorrectly classified by hm have their weights
scaled by a factor eαm , increasing their relative influence for inducing the succeeding
learner hm+1. The ensemble prediction is assessed by means of weighted majority vote
(line 11).

Despite being able to leverage dramatically the effectiveness of tree-base methods,
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Algorithm 3 AdaBoost Pseudo Code
1: function Train(Dtrain = {(Xi, yi)|Ni=1}, M)
2: w1 ← 1

|Dtrain|
3: for each m ∈ {1, ..,M} do
4: hm ← C(Dtrain, wm)

5: errm ←
∑|Dtrain|
i=1 wimI[yi 6=ŷi]∑|Dtrain|

i=1 wim

6: αm ← log(1−errm
errm

)

7: wim+1 ←
wime

αmI[yi 6=ŷi]

Z , where Z is a normalizing constant
8: end for
9: end function

10: function Classify(X, (αm, hm)|Mm=1)
11: return argc max

∑M
m=1 αmhm(X)

12: end function

and considered one of the most successful and powerful learning algorithms, boosting
may have its predictive performance hampered when in presence of noisy data since
later iterations may over-emphasize instances which are noise (hence yielding extremely
ineffective classifiers)[Freund and Schapire, 1996]. This specially pertinent to Boosting
since its probability update rule tends to lead the “weak-learners” to hard-to-classify
regions that may be plagued by noise instances, leading to sub-optimal decision bound-
aries. We revisit this subject in Chapter 5. For further information on Boosting, we
refer the interested reader to [Freund and Schapire, 1996, 1997; Hastie et al., 2009;
Salles et al., 2015, 2017]





Chapter 3

Experimental Workload

In this chapter, we present the experimental workload used in our analysis. We cover
two important text classification domains, namely, topic categorization and sentiment
analysis. While the former deals with the task of assigning a label to textual documents
in an automatic fashion, the later deals with the task of predicting the sentiment under-
lying a textual passage. We provide a description of the six reference datasets regarding
topic categorization and the ten reference datasets regarding sentiment analysis in Sec-
tion 3.1. Then, we briefly describe the analyzed text classification algorithms in Section
3.2. Finally, in Section 3.3 we describe the metrics used to compare the effectiveness
of the baselines.

3.1 Datasets

One of the challenges when categorizing textual data into topics is that textual doc-
uments are usually represented by a great amount of features (high dimensionality)
and most of them could be irrelevant or noisy [Khan et al., 2010]. However, despite
being a challenging application domain, it is of great importance nowadays, due to its
wide applicability and demand. Here, we considered both scientific and news articles,
organized in the following datasets:

4 Universities (4UNI), a.k.a, WebKB contains Web pages collected from Com-
puter Science departments of four universities by the Carnegie Mellon University
(CMU) text learning group1. There is a total of 8, 277 web pages, classified in 7

categories (such as student, faculty, course and project web pages).

1http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
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20 Newsgroups (20NG) contains 18, 805 newsgroup documents, partitioned almost
evenly across 20 different newsgroups categories2. 20ng has become a popular
dataset for experiments in text applications of machine learning techniques, such
as text classification and text clustering.

ACM-DL (ACM) a subset of the ACM Digital Library with 24, 897 documents con-
taining articles related to Computer Science. We considered only the first level
of the taxonomy adopted by ACM, whereas each document is assigned to one of
11 classes.

Reuters (REUT90) is a classical text dataset, composed by news articles collected
and annotated by Carnegie Group, Inc. and Reuters, Ltd. We consider here a
set of 13, 327 articles, classified into 90 categories.

Spambase (SPAM) is a collection of spam e-mails collected by Hewlett-Packard
Labs. It contains 1, 813 e-mails labeled as spam and 2, 788 non-spam personal
e-mails.

MEDLINE (MED) a subset of the MedLine dataset, with 861, 454 documents clas-
sified into 7 distinct classes related to Medicine. This dataset was obtained from
Rocha et al. [2008]. In that work the authors considered the first level of the
taxonomy so that each document article is classified under only one category,
avoiding dealing with multilabel cases.

UniRCV1 The Reuters Corpus Volume 1 (RCV1) is a dataset with 804, 427 English
language news stories. We considered the complete topics taxonomy comprised
of 103 classes. However, the original RCV1 is a multi-label dataset with the
multi-label cases needing special treatment, such as score thresholding, etc. (see
[Lewis et al., 2004] for details). As our current focus is on unilabel tasks, to
allow a fair comparison among the other datasets (which are also unilabel) and
all baselines (which also focus on unilabel tasks), we decided to remove the docu-
ments assigned to more than one class from RCV1, deriving a new dataset which
we call UniRCV1. This collection has 101 classes and about 20% less documents.
Nevertheless, as we shall see, the effectiveness levels obtained by our method and
the best baselines are still compatible with those of the original multi-label RCV1

The details regarding each topic categorization dataset (size, number of features
and class distribution) can be found in Table 3.1.

2http://qwone.com/~jason/20Newsgroups/
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Class Distribution
Dataset Size # Features # Classes Mean Minor Class 1st Quartile Median 3rd Quartile Major Class
SPAM 4601 57 2 230 1813 1815 1818 1820 2788
4UNI 8274 40195 7 1182 137 343 929 1382 3757
20NG 18766 61050 20 938 627 952 978 988 998
ACM 24897 59990 11 2263 63 761 2041 3278 6562

REUT90 13327 19590 90 148 2 8 29 91 3964
MED 861454 268783 7 123065 1843 36196 44089 143568 455994

UniRCV1 652909 46120 101 6464 3 401 1646 6725 62943

Table 3.1: Text Categorization: Statistics Summary for each Dataset

Regarding sentiment analysis, we use a collection of ten publicly available senti-
ment benchmarks of message that alludes to how much a user-generated content express
a positive or negative sentiment about a subjects. We consider messages from several
domains, such as reviews, posts on social networks, user comments and snippets of
opinion news.

Amazon consists of a set of product reviews form amazon.com.

BBC a set of messages from comments in the BBC and Runners World forum from
SentiStrength research [Thelwall et al., 2012].

Debate consists of tweets about the 2008 U.S. Presidential debate.

Digg user provided comments on web content aggregated in digg.com.

MySpace a set of messages crawled from the Myspace network, used in SentiStrength
research.

NYT includes sentence-level snippets from a set of New York Times opinion editorials.

Tweets a set of tweets from VADER work [Hutto and Gilbert, 2014] which were
crawled from Twitter’s public timeline (with varied times and days of posting).

Twitter this dataset consists of human labeled messages used in the SentiStrength
research.

Yelp consists of a set of business and services reviews from the greater Phoenix, AZ
metropolitan area.

Youtube a set of user provided comments on video content.

The details regarding each sentiment analysis dataset (size, number of features
and class distribution) can be found in Table 3.2.

In all cases, we performed a traditional preprocessing task that consists of re-
moving stopwords (using the standard SMART list) and applying a simple feature
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Class Distribution
Dataset Size # Features # Classes Mean Minor Class 1st Quartile Median 3rd Quartile Major Class
Amazon 3610 3678 2 1800 1482 1644 1805 1966 2128

BBC 752 5655 2 376 99 238 376 514 653
Debate 1979 3363 2 990 730 860 990 1119 1249
Digg 782 4015 2 391 210 300 391 482 572
NYT 4946 8756 2 2473 2204 2338 2473 2608 2742

Myspace 834 2639 2 417 132 274 417 560 702
Tweets 4196 7346 2 2098 1299 1698 2098 2498 2897
Twitter 2289 7777 2 1145 949 1047 1144 1242 1340
Yelp 5000 19398 2 2500 2500 2500 2500 2500 2500

Youtube 2432 6275 2 1216 767 992 1216 1440 1665

Table 3.2: Sentiment Analysis: Statistics Summary for each Dataset

selection procedure, removing terms with low “document frequency (DF)”3. Regarding
term weighting, we tested TF, TFIDF and L2 normalization schemes, choosing the
best strategy for each classification approach. Particularly, we use TF for all classifiers
based on RF and Naive Bayes, and TFIDF with L2 normalization for both SVM and
kNN.

3.2 Baselines

Next we provide a brief description of the learning methods used as baselines for our
analysis.

Support Vector Machine (SVM) searches for the optimal hyperplane that
splits the positive from the negative class, by maximizing the margin between the
closest points from either class. SVM is inherently a binary classifier which implies
in adopting approaches, such as one-versus-one or one-versus-all, in order to adapt
binary SVM for multi-class classification tasks. Linear SVM is specially popular for
text classification problems, since it is robust to high-dimensional data, being a top
performer in such scenarios.

Naive Bayes (NB) is a generative learning strategy that applies the Bayes’s
theorem with the strong assumption that features are independent. Despite this as-
sumption is rather optimistic and generally not true, NB classifiers usually outperform
more sophisticated approaches in practice. Its feature independence assumption may
be specially appropriate when applied to high-dimensional data since each distribution
can be independently estimated as a one dimensional distribution. We adopt here
the Multinomial Naïve Bayes approach, since it is well-accepted for text classification
tasks.

k-Nearest Neighbors (kNN) is, perhaps, the most well-known and broadly

3We removed all terms that occur in less than six documents (i.e., DF<6).
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used lazy algorithm. In this method, the majority class of the training instances
composing the neighborhood of the test instance x is used to assess its class label. The
neighborhood of the new unseen data x is defined by the set of k instances closest to
x in the input space, where closeness implies a metric, such as Euclidean distance or
cosine similarity. The rationale here is that, based on the contiguity hypothesis, we
expect a test instance x to have the same classification as the training instances located
in the neighborhood of x. The free parameter here is the number of neighbors, k.

Random Forests (RF) is an ensemble of low-correlated decision trees con-
structed by series of random procedures, such as bagging of the training set and ran-
dom attribute selection drawn from a randomly chosen subset of features. These large
set of trees with reduced correlation are one of the key aspects that guarantee the high
effectiveness of RF classifier [Breiman, 2001]. Another fundamental aspect is the neces-
sity of building trees with prediction capabilities better than random guessing, which
is typically achieved by growing them to their maximum depth. By considering the
average of several decorrelated trees as the model prediction, it can be shown that the
RF classifier reduces variance while keeping its bias unchanged, which typically brings
up better models, with higher generalization power [Salles et al., 2017]. The RF’s free
parameters are the number of sampled features and the number of composing trees.

Lazy Nearest Neighbor Random Forest (Lazy) attempts to mitigate the
overfitting issue observed when RF is applied to problems with many noisy attributes,
by restricting the training set to be composed by observations in the input space that
exhibit higher similarity with the test instance. The projection of training set by means
of k-nearest neighbor contributes to a more robust and precise classifier [Salles et al.,
2017]. Such a localized training set, composed of instances which are similar to the test
instance, filters out potentially noise/irrelevant data and reduces the impact of noisy
features in the classification model. Moreover, such a projected space allows the model
to remove unnecessary bias through a smaller and more localized training set, while
also reducing the variance by means of the traditional RF’s model averaging procedure
[Salles et al., 2017].

Extremely Randomized Trees (Extra-Trees) are an ensemble of trees similar
to the RF however, they have two key differences: (i) Extra-Trees do not apply the
bagging procedure to construct a set of the training samples for each tree. Hence,
the same input training set is used to train all trees; (ii) Extra-Trees pick a node split
very extremely (both a variable index and variable splitting value are chosen randomly),
whereas Random Forest finds the best split (optimal one by variable index and variable
splitting value) among random subset of variables. They have same free parameters as
RF.
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BROOF combines boosting and bagging by exploiting RF as “weak learners” in a
boosting framework. The boosting update rule in BROOF uses the out-of-bag (OOB)
samples, promptly generated by the RF classifier at training time, as an unbiased error
estimate to drive the boosting iterations and “smoothly” reweights just the OOB in-
stances. Salles et al. [2015] show by an extensively experimental workload (contrasted
to up to ten state-of-the-art classifiers, covering almost 500 results) that restricting
the influence of training data to the hard-to-classify sub-regions of the input space, by
means of a smooth combination of random forests and boosting, can mitigate the over-
fitting issue observed when learning decision trees composing the ensemble classifier,
thus leveraging classification effectiveness on new unseen data.

We use the scikit-learn implementation4 of linear SVM, k-Nearest Neighbors
(kNN), Multinomial Naïve Bayes (NB), Random Forests (RF) and Extremely Random-
ized Trees (Extra-Trees). We use our own implementation of the RF-based methods,
namely, BROOF, the lazy version of the RF classifier (LAZY) and the lazy version of
extra-trees (LXT), since there is no freely available implementation for these classifiers.

The free parameters of these classifiers include the cost C (for SVM), neighbor-
hood size k (for KNN and LAZY) and the number of features considered in the split
of a node on the RF-based approaches. These free parameters were set using 5-fold
cross-validation within the training set. For the RF-based approaches, each tree is
grown without pruning, as suggested by Hastie et al. [2009], and since the results
obtained with 200, 300 and 500 trees are statistically tied (with 95% confidence), we
adopted 200 trees due to the lower cost. Concerning the BROOF classifier, we use
8 weak learners, setting the maximum number of iterations to 200, as suggested by
Salles et al. [2015]. We use the same parameters for the proposed BERT method.

We would like to point out that some of the results obtained in some datasets may
differ from the ones reported in other works for the same datasets. Such discrepancies
may be due to several factors such as differences in dataset preparation5, the use
of different splits of the datasets (e.g., some datasets have “default splits” such as
REUT and 20NG6) We would like to stress that we ran all alternatives under the same
conditions in all datasets, using the best traditional feature weighting scheme, using
standardized and well-accepted cross-validation procedures that optimize parameters
for each of alternatives, and applying the proper statistical tools for the analysis of the
results.

4Available in http://scikit-learn.org/
5For instance, some works do exploit complex feature weighting schemes or feature selection mech-

anisms that do favor some algorithms in detriment to others.
6We believe that running experiments only in the default splits is not the best experimental

procedure as it does not allow a proper statistical treatment of the results.
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3.3 Evaluation Metrics

The explored classifiers were compared using two standard information retrieval mea-
sures: micro averaged F1 (MicroF1) and macro averaged F1 (MacroF1) [Lewis, 1995].
Let C = {c1, c2, ..., ck} be the set of class of a given collection. For each class ci, we
can define the following values:

• True positives for ci (TPi): the number of test documents that the true class is
ci and that were classified as ci

• True negatives for ci (TNi): the number of test documents that the true class is
not ci and that were not classified as ci

• False positives for ci (FPi): the number of test documents that the true class is
not ci and that were classified as ci

• False positives for ci (FNi): the number of test documents that the true class is
ci and that were not classified as ci

Recall and precision can be assessed per class or globally. The recall r(ci) for a
given class ci is defined as r(ci) = TPi

TPi+FNi
, which means the fraction of test documents

of class ci that were correctly classified. The precision p(ci) for a given class ci is given
as p(ci) = TPi

TPi+FPi
, which means the fraction of documents correctly classified from all

documents attributed to the class ci. The global recall and precision are respectively
defined as r(C) =

∑k
i=1 TPi∑k

i=1(TPi+FNi)
and p(C) =

∑k
i=1 TPi∑k

i=1(TPi+TNi)
. The F1 measure combines

the recall and precision metric by means of their harmonic mean. While the MicroF1

measures the classification effectiveness overall decisions (i.e., the pooled contingency
tables of all classes), which is defined as:

MicroF1 = 2
p(C)r(C)

p(C)r(C)
(3.1)

The MacroF1 measures the classification effectiveness for each individual class and
averages them, as follows:

MicroF1 =

∑k
i=1 2p(ci)r(ci)

p(ci)r(ci)

k
(3.2)

MicroF1 tends to be dominated by the classifier’s performance on more frequent classes
and the MacroF1 is more influenced by the performance on rare ones.

To compare the average results of our 5-fold cross-validation experiments, we
assess their statistical significance by applying a paired t-test with 95% confidence and
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Bonferroni correction to account for multiple comparisons. This test assures that the
best results, marked in bold, are statistically superior to others (up to the chosen
confidence level).



Chapter 4

Lazy Random Forests

In this chapter, we detail the lazy version of Random Forest proposed by Salles et al.
[2017], the so-called Lazy Nearest Neighbor Random Forest (LazyNN_RF) Classifier,
which aims at mitigating the overfitting issue faced by RF in high-dimensional data
with many irrelevant or noise attributes, by means of exploiting the neighborhood of
test data in order to filter out noise data and, hopefully, learn a more accurate model.
Despite being very successful at leveraging the RF generalization capabilities in such
challenging scenarios, the LazyNN_RF has a high computational cost at test time due
to its lazy nature, which may be prohibitive in real-world tasks. Thus, in order to
stack the LazyNN_RF with other RF-based methods (such as BERT and BROOF),
we need to compute it faster. We propose to exploit the massively parallel power of
Graphical Processing Units (GPUs) and the highly parallelizable characteristic of the
kNN algorithm. In order to do so, the algorithm GTkNN proposed by Canuto et al.
[2015] will be adopted as a component of the proposed algorithm.

4.1 LazyNN_RF

Lazy learners have their own singular characteristics. Firstly, they are more “localized”
than eager learners, since they postpone training until the test sample is given they
are able to capture the nuances of the neighborhood of the test data, thus, yielding
highly effective prediction models. In addition, they do not assume that training and
test data follow the same distribution. Consequently, they are less restrict than eager
approaches in terms of data distribution assumptions being able to easily adapt to
evolving datasets, without the need for periodical training [Salles et al., 2017].

k-Nearest Neighbor (kNN) classifier is, perhaps, the most well-known and broadly
used lazy algorithm. In this method, the majority class of the training instances

23
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composing the neighborhood of the test instance x is used to assess its class label. The
neighborhood of the new unseen data x is defined by the set of k instances closest to
x in the input space, where closeness implies a metric, such as Euclidean distance or
cosine similarity. The rationale here is that, based on the contiguity hypothesis, we
expect a test instance x to have the same classification as the training instances located
in the neighborhood of x [Manning et al., 2008].

Based upon the fact that traditional Random Forests face some drawbacks, spe-
cially when applied to high-dimensional and noisy classification problems, such as tex-
tual classification, Salles et al. [2017] proposed the so-called LazyNN_RF algorithm
which mitigates the overfitting issue observed when RF is applied to problems with
many noisy attributes, by restricting the training set to be composed by observations
in the input space that exhibit higher similarity with the test instance, thus being good
positive examples (in highly homogeneous regions of the input space) or near-positive
negative examples (which lay down on hard-to-classify regions). The projection of
training set by means of k-nearest neighbor contributes to a more robust and precise
classifier.

Such a localized training set, composed of instances which are similar to the test
instance, filters out potentially noise/irrelevant data and reduces the impact of noisy
features in the classification model. Moreover, such a projected space allows the model
to remove unnecessary bias through a smaller and more localized training set, while
also reducing the variance by means of the traditional RF’s model averaging procedure.

Nevertheless, LazyNN_RF shares some issues with other lazy methods when
compared to eager ones, the most concerning being its computational cost. As briefly
mentioned, all computations to learn the model are postponed to classification time,
incurring a potentially high computational cost for each test instance. On the other
hand, eager learners incur in computational cost only once as they attempt to generalize
the observations before receiving test data. Therefore, it is fundamentally important
to tackle this issue in order to apply this family of methods in large-scale datasets.

4.2 GTkNN

There exist efficient and exact algorithms to compute the k-Nearest Neighbors for small
dimensionality, one of such is kd-trees. However, such methods are not suitable for
solving this problem efficiently in high dimensional data. In such challenging scenario,
it is usually employed approximate nearest neighbor search algorithms (i.e., ball-trees,
locally sensitive hashing). Nevertheless, the impact of such approximation must be
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considered.
In order to avoid the potentially side-effects of approximate algorithms, we turn

our attention to algorithms that take advantage of the unique characteristics of textual
data, such as high sparsity, in order to resolve such problem optimally and efficiently.
Supported by Zipf’s law, which states that in a textual corpus, few terms are common,
while many of them are rather rare, Canuto et al. [2015] proposed a highly efficient
and exact algorithm for computing the k-Nearest Neighbors, known as GTkNN, which
exploits the Zipf’s law by means of combining inverted indexing and the massively
parallel power of the Graphical Processing Units (GPUs).

The inverted index serves two purposes. First, it allows the proposed solution to
save a lot of memory since the inverted index corresponds to a sparse representation
of the data. Second, in the search time, the index is used to quickly find the instances
sharing features with the test instance. Thus, restricting the calculation of this distance
to smaller amount of instances. In the distance calculation step, a smart load balancing
is applied among the GPU threads in order to maintain full occupancy of the GPU
cores (increasing the parallelism). Finally, in the sorting phase, a efficient GPU-based
partial sorting algorithm, called bitonic sort, is performed in order to avoid sorting all
computed distances.

This highly parallel algorithm allows us to generate the projected training set for
the LazyNN_RF procedure for large-scale real-world datasets in viable time. We, thus,
can step towards our objective which is combining LazyNN_RF and other RF-based
algorithms in order to further leverage their generalization power.

In the following section, we show the improvement achieved in runtime perfor-
mance by adopting the GTkNN algorithm as component of the LazyNN_RF.

4.3 Experimental Evaluation

In order to evaluate the performance of the proposed method in high-dimensional
data, we consider six real-world textual datasets, namely, 20 Newsgroups (20NG),
Four Universities (4UNI), Reuters 90 (REUT90), ACM Digital Library (ACM), MED-
LINE (MED) and RCV1 datasets (one can find a more detailed description in Section
3.1). For all datasets, we performed a traditional preprocessing task: we removed
stopwords, using the standard SMART list, and applied a simple feature selection by
removing terms with low “document frequency (DF)”1. Regarding term weighting, we
used TFIDF for all classifiers. All datasets are single-label. In particular, in the case

1We removed all terms that occur in less than six documents (i.e., DF<6).
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of RCV1, the original dataset is multi-label with the multi-label cases needing spe-
cial treatment, such as score thresholding, etc. As our current focus is on single-label
tasks, to allow a fair comparison among the other datasets (which are also single-label)
and all baselines (which also focus on single-label tasks), we decided to transform all
multi-label cases into single-label ones. In order to do this fairly, we randomly selected,
among all documents with more than one label, a single label to be attached to that
document. This procedure was applied in about 20% of the documents of RCV1 which
happened to be multi-label.

All experiments were run on a Intel R© Xeon, running at 2.2GHz, with 16Gb RAM.
The GPU experiments were run on a Nvidia GeForce GTX TITAN Black, with 6Gb
RAM.

In order to consider the costs of all data transfers in our efficiency experiments, we
report the wall times on a dedicated machine so as to rule out external factors, like high
load caused by other processes. To compare the average results of our cross-validation
experiments, we assess the statistical significance of our results with a paired t-test
with 95% confidence and Bonferroni correction to account for multiple tests. This test
assures that the best results, marked in bold, are statistically superior to others.

We compare the computation time to automatic classify text using four differ-
ent algorithms: (1) gpuLazyNN_RF, our GPU-based implementation of LazyNN_RF
(based on GTkNN algorithm); (2) cpuLazyNN_RF, a parallel C++ implementation
of LazyNN_RF kindly made available for us by the author of [Salles et al., 2017]; (3)
Scikit RandomForestClassifier(RF) , one of the most optimized RF implementation
free available 2; and (4) GTkNN , a GPU-based implementation of kNN for text classi-
fication3. For the aforementioned experiment, the regularization parameter was chosen
by using 5-fold cross-validation in the training set for RF. For the size of the neighbor-
hood used for all kNN-based classifiers, we adopted k = 30 in all experiments, since it
was empirically demonstrated as the best parameter for text classification [Hao Chen,
1999; Joachims, 1998; Yang, 1999]. In addition, we also fixed the maximum number of
trees to 200 for LazyNN_RF as in [Salles et al., 2017].

We would like to stress that we ran all alternatives under the same conditions in
all datasets, using the best traditional feature weighting scheme, using standardized
and well-accepted cross-validation procedures that optimize parameters for each of
alternatives, and applying the proper statistical tools for the analysis of the results.

2http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html

3http://sourceforge.net/projects/gtknn/
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4.3.1 Runtime Analysis

Since lazy learners tend to be computational costly - as previously discussed - we focus
our analysis on the performance issue. In table 4.1 we report the time (i.e, overall time
to classify all test instances) spent to learn and classify 20% of each dataset in average
(considering the remaining 80% as the training set - 5 fold cross validation). All RF-
based algorithms presented in table 4.1 construct their trees in parallel (it was used 8
cores to build the trees in parallel). Recall that gpuLazyNN_RF utilizes GTkNN as
a component and, thus, both use GPUs parallel power to accelerate their execution.
Moreover, the algorithm cpuLazyNN_RF also executes its kNN part in parallel. It can
be noticed that GTkNN runs much faster than gpuLazyNN_RF, what was expected
since GTkNN is a sub-routine of gpuLazyNN_RF, thefore serves as lower bound.

Runtime (seconds)
Dataset RandomForest(RF) cpuLazyNN_RF gpuLazyNN_RF GTkNN
4UNI 147.97 ± 8.34 567 ± 20.00 85.48 ± 0.31 3.58
20NG 140.89 ± 1.27 1112 ± 27.00 100.66 ± 7.29 9.10
ACM 1030.25 ± 271.20 432.00 ± 31.00 118.18 ± 8.27 5.77
MED 75142.52 ± 293.12 13809.00 ± 206.00 5604.30 ± 170.96 990.00
RCV1 19685* 10542.89 ± 307.35 2764.46 ± 221.31 1130.00

Table 4.1: Runtime Analysis.(*) Value reported in [Salles et al., 2017].

As one can note, the GPU-based approach of LazyNN_RF outperformed its coun-
terparts RF and cpuLazyNN_RF in all datasets, table 4.1. In MEDLINE, the largest
dataset, for instance, the GPU approach reduced the LazyNN_RF’s execution time
from 3.84 hours to 1.55 hours, which is an impressive result. The most striking result
is that gpuLazyNN_RF is in fact even faster than the traditional RF in all datasets.
In [Salles et al., 2017] the author hypothesize that LazyNN_RF’s runtime is directly
related to both the training set size and how well the KNN projection is restricted to
pure regions of data. Recall that, we fixed the neighborhood size to 30 examples. At
this point, the KNN projection plays a key role to reduce runtime, by restricting the
candidate features for splitting to those observed in the examples in the neighborhood
of the test data. More importantly, if such a projection is (near-) pure, then tree
generation becomes trivial. This explains why the approaches cpuLazyNN_RF and
gpuLazyNN_RF become faster, compared to RF, for datasets with more documents
and attributes such as MEDLINE and RCV1. Nevertheless, it can be noticed that
the negative influence of the kNN over the algorithm performance has vanished, when
using the GTkNN as sub-routine of gpuLazyNN_RF.

With those promising results, we can step towards our main objective which is
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to combine LazyNN_RF and other RF-based approaches in order to further leverage
their effectiveness on new unseen data.



Chapter 5

BERT Classifier

In this chapter, we detail BERT, a boosted version of the RF classifier that aims
at taking the advantages of BROOF while avoiding its potential bias tendency. As
we detail in the following, BERT introduces an additional source of randomization
to reduce bias, while, at the same time, exploiting the advantages of the boosting
strategy, in order to achieve superior generalization. We start our discussion with a
brief overview of the BROOF strategy. Then, we describe the key building block for
the BERT strategy, namely, the Extremely Randomized Trees. Finally, we describe
BERT.

5.1 BROOF

Proposed by Salles et al. [2015], the BROOF classifier combines boosting and bagging
by exploiting RF as “weak learners” in a boosting framework. Boosting is a sequen-
tial meta-algorithm which trains several “weak learners” (that is, classifiers capable of
yielding predictions better than random guessing) in order to generate a more pre-
cise model. For each iteration i of the boosting algorithm, let ∆i be a probability
distribution over the training set of size M . When i = 0, ∆0(j) = 1

M
, ∀j|Mj=1. At

iteration i > 0, for all examples in the training set xj, if xj is misclassified, its weight
is incremented so that, in the succeeding iteration, an updated distribution ∆i+1 is
considered, which emphasizes the misclassified instances (e.g, the hardest to classify
ones). In contrast to AdaBoost Freund and Schapire [1997], the update rule in BROOF
uses the out-of-bag (OOB) samples, promptly generated by the RF classifier at training
time, as an unbiased error estimate to drive the boosting iterations and to “smoothly”
reweights just the OOB instances. Salles et al. [2015] show by an extensively experi-
mental workload that restricting the influence of training data to the hard-to-classify

29
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sub-regions of the input space, by means of a smooth combination of random forests
and boosting, can mitigate the overfitting issue observed when learning decision trees
composing the ensemble classifier, thus leveraging classification effectiveness on new
unseen data. Also, the selective weight update strategy slows down boosting’s ten-
dency to focus on just a few hard-to-classify samples, thus offering some bias reduction
capabilities. These ideias were even extended and generalized to the realm of learning-
to-rank (L2R) tasks [de Sá et al., 2016]. However, although BROOF was shown to
provide competitive results in text classification tasks, this can be mainly attributed
to variance reduction, since its limited bias reduction capability [Salles et al., 2017]
may not be enough to fully mitigate its tendency to overly emphasize hard-to-classify
examples, mainly in noisy environments. This has to do with the underlying boosting
strategy adopted by BROOF and may compromise classification effectiveness. We here
propose to tackle the potentially high bias faced by BROOF by means of an additional
source of randomization, through the use of the so-called extremely randomized trees,
described in the following.

5.2 Extremely Randomized Trees

Extremely Randomized Trees (a.k.a., Extra-Trees) [Geurts et al., 2006] is an ensemble
of trees. Unlike RFs, Extra-Trees do not bootstrap the training data when learning its
composing trees. Instead, it uses the entire training set for doing so, relying on another
more aggressive source of randomization to learn decorrelated trees by combining ran-
dom cut-point choice and random attribute selection drawn from a randomly chosen
subset of features while building the trees, thus guaranteeing reduced tree correlation
in the ensemble. Furthermore, Geurts [2002] shows that cut-point variance seems to be
responsible for a significant part of the generalization error of decision trees, thus, from
a bias-variance tradeoff perspective, Extra-Trees can be seen as a manner to trans-
fer cut-point variance (through additional randomness while finding the split) to the
one due to random effects in the training set, which is reducible by averaging[Louppe,
2014].

Algorithm 4 Extra-Tree cut-point selection pseudo-code
1: function FindCutPoint(fj, node)
2: minj ← min({xi,j|(Xi, yi) ∈ node})
3: maxj ← max({xi,j|(Xi, yi) ∈ node})
4: Draw a cut-point v uniformly from [minj,maxj[
5: end function
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The Extra-Trees classifier has some benefits when compared to RF classifiers.
Besides yielding better classification effectiveness, it has been shown that Extra-Trees
is robust to noise data and outliers. Moreover, extra-trees carries over many common
features from Random Forest, such as variable importances and proximity measure.
Another interesting feature of Extra-Trees is the ability of learning models in an un-
supervised fashion. When the size of the subset of randomly chosen features is set
to 1 and the cut-point is selected in a random fashion, the structere of the tree can
be learned independently of the output variable Y. However, in noisy scenarios this
way of growing trees can incur in highly biased models, thus, degrading Extra-Trees
predictive performance.

In this work, we take advantage of BROOF-like techniques and Extra-Trees, by
proposing what we call BERT, a smooth combination of both, as detailed next.

5.3 Boosted Extremely Randomized Trees

Recall that boosting algorithms tend to overly emphasize hard-to-classify examples,
mainly when applied to noisy data. Therefore, the undesired bias towards these hard-
to-classify examples is minimized by BROOF by updating only the probabilities ∆i

related to out-of-bag samples as proposed by Salles et al. [2015], hoping to decrease
the misclassification rate when the “weak learner” is focused on hard-to-classify regions.
Hence, by using a “weak learner” more robust to noisy data than Random Forests such
as Extra-Trees [Geurts et al., 2006], it is expected to achieve better performance when
focused on hard-to-classify regions, thus, producing a model with higher generalization
power. In fact, as we shall see, BERT is among the top performer classifiers in all
tested datasets, outperforming the original BROOF in several cases.

BERT combines boosting, bagging and Extra-Trees, by exploiting the following
BROOF-like strategies: (i) to use the out-of-bag (OOB) error estimate as a less biased
error estimation to drive the boosting algorithm; and (ii) to only update the weights of
the out-of-bag instances during the boosting iterations. In order to smoothly combine
these ideas to the Extremely Randomized Trees framework, we propose to introduce
the bagging procedure into its training procedure, in order to allow proper OOB error
estimation. During the Bootstrap procedure employed to generate sub-training sets
in order to train each tree in the ensemble, each tree is trained with approximated
1− 1

ε
≈ 63% of the original training set[Hastie et al., 2009]. Similarly to cross-validation

procedure, the examples left out (Out-of-Bag) of the trees training can be used to
estimate an unbiased expected error rate. Hastie et al. [2009] showed that the OOB



32 Chapter 5. BERT Classifier

error is less biased than the training one, which is frequently adopted to weight the
weak-learners votes in boosting methods.

We argue that exploring these strategies through this novel classification frame-
work brigs two benefits: it enables us to minimize variance (mitigating the overfitting
problem faced by the trees composing the ensemble) and also provide us means to
minimize bias, through the additional randomization source, leveraging the framework
ability to avoid being stuck on a few hard-to-classify examples.

Algorithm 5 BERT Pseudo Code
1: function Train(Dtrain = {(Xi, yi)|Ni=1}, M , ntrees)
2: L← ∅ ;
3: w1 ← 1

|Dtrain|
4: for each m ∈ {1, ..,M} do
5: (hXTm , (x, y, ŷ)oobi )← BaggedExtraTrees(Dtrain, ntrees, wm)

6: OOBw
err ←

∑
i∈O w

i
mI[y 6=ŷ]∑

i∈O w
i
m

, where O = (x, y, ŷ)oobi

7: αm ← log(1−OOB
w
err

OOBwerr
)

8: wim+1 ←
wimε

αmI[y 6=ŷ]

Z , where Z is a normalizing constant
9: L← L ∪ {(hXTm , αm)}

10: end for
11: return L
12: end function

We summarize the proposed method in Algorithm 5. Given a training set Dtrain,
the number of boosting iterations M and the number of trees built per iteration ntrees.
Initially, all training instances have equal probability mass w1 = 1

|Dtrain| . For each iter-
ation m ∈ M an Extra-Trees (with bagging) classifier is learned considering instances
weight wm in the sampling step of the bagging procedure as a probability distribution.
The weights drive the ensemble towards hard to classify regions of the input space.
Thus, if the ensemble focus on such regions, its capability of accurately covering such
complex regions increases[Salles et al., 2015]. We do so by re-weighting the out-of-bag
instances which were misclassified by hExtraTreesm . Let tj ∈ hExtraTreesm be an Extra-Tree
of the ensemble learned in the m-th iteration, the predicted class ŷ for the i-th OOB
instance x can be computed as follows: ŷ = argc max

∑ntrees
j=1 tj(x)I[x ∈ oobj], where

I is an indicator function and oobj is the set of out-of-bag instances of the j-th tree.
Thus, the weighted out-of-bag error estimation OOBw

err can be obtained as shown in
the line 6 and used to update the weights of each OOB instance (lines 7-8).
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5.4 Experimental Evaluation

We now report and discuss the conducted experimentally evaluation regarding the
proposed BERT classifier considering a set of datasets regarding topic categorization
and sentiment analysis. We first detail the explored datasets and the experimental
setup. Then, we discuss the obtained experimental results, comparing our proposal to
the other explored state-of-the-art classifiers.

5.4.1 Experimental Setup and Parameterization

5.4.1.1 Datasets

In order to evaluate the BERT classifier considering the textual classification domain,
we consider five real-world topic categorization data sets as well as ten sentiment analy-
sis ones, related to computer science articles (ACM), news (REUT), web pages (4UNI),
medicine (MEDLINE), items reviews (Amazon), posts on social networks (Twitter, De-
bate), user comments (Youtube) and snippets of opinion news (NYT). One can find
more detail on the datasest in Chapter 3. In all cases, we performed a traditional
preprocessing task that consists of removing stopwords (using the standard SMART
list) and applying a simple feature selection procedure, removing terms with low “doc-
ument frequency (DF)”1. Regarding term weighting, we tested TF, TF-IDF and L2
normalization schemes, choosing the best strategy for each classification approach.
Particularly, we use TF for all classifiers based on RF and Naive Bayes, and TF-IDF
with L2 normalization for both SVM and kNN.

The explored classifiers were compared using two standard information retrieval
measures: micro averaged F1 (MicroF1) and macro averaged F1 (MacroF1). While
the MicroF1 measures the classification effectiveness overall decisions (i.e., the pooled
contingency tables of all classes), the MacroF1 measures the classification effectiveness
for each individual class and averages them (see more in section 3.3). To compare the
average results of our 5-fold cross-validation experiments, we assess their statistical
significance by applying a paired two-tailed t-test with 95% confidence and Bonferroni
correction to account for multiple comparisons. This test assures that the best results,
marked in bold, are statistically superior to others (up to the chosen confidence level).

We evaluate ten distinct learning algorithms (a more detailed overview can be
found in section 3.2). We use the scikit-learn implementation2 of linear SVM, k-
Nearest Neighbors (kNN), Multinomial Naïve Bayes (NB), Random Forests (RF) and

1We removed all terms that occur in less than six documents (i.e., DF<6).
2Available in http://scikit-learn.org/
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Extremely Randomized Trees (Extra-Trees). We use our own implementation of the
RF-based methods, namely, BROOF, the lazy version of the RF classifier (LAZY) and
the lazy version of extra-trees (LXT), since there is no freely available implementation
for these classifiers.

The free parameters of these classifiers include the cost C (for SVM), neighbor-
hood size k (for KNN and LAZY) and the number of features considered in the split of
a node on the RF-based approaches. These free parameters were set using 5-fold cross-
validation within the training set. For the RF-based approaches, each tree is grown
without pruning, as suggested in Hastie et al. [2009], and since the results obtained
with 200, 300 and 500 trees are statistically tied (with 95% confidence), we adopted 200
trees due to the lower cost. Concerning the BROOF classifier, we use 8 weak learners,
setting the maximum number of iterations to 200, as suggested in Salles et al. [2015].
We use the same parameters for the proposed BERT method.

We would like to point out that some of the results obtained in some datasets may
differ from the ones reported in other works for the same datasets. Such discrepancies
may be due to several factors such as differences in dataset preparation3, the use of dif-
ferent splits of the datasets (e.g., some datasets have “default splits” such as REUT and
20NG4). We would like to stress that we ran all alternatives under the same conditions
in all datasets, using the best traditional feature weighting scheme, using standardized
and well-accepted cross-validation procedures that optimize parameters for each of al-
ternatives, and applying the proper statistical tools for the analysis of the results. Our
datasets are available (for result replication and testing of new configurations) under
request.

5.4.2 Results and Discussions

We now turn our attention to the obtained results regarding the described classifiers.
We start by considering the effectiveness of each classifier in the topic categorization
task (see Table 5.1). In this case, BERT presents statistically tied results with SVM
on most datasets despite their fundamentally different classification paradigms. While
BERT and other RF-based approaches are based on extracting specific association rules
that relate different features, SVM measures the complexity of hypotheses based on
the margin with which they separate the data, which is independent of the number of
features. This characteristic makes the SVM as one of the best-known classification

3For instance, some works do exploit complex feature weighting schemes or feature selection mech-
anisms that do favor some algorithms in detriment to others.

4We believe that running experiments only in the default splits is not the best experimental
procedure as it does not allow a proper statistical treatment of the results.
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20NG 4UNI ACM

BERT microF1 89.45 ± 0.46 84.61 ± 0.98 74.8 ± 0.59
macroF1 89.13 ± 0.58 73.61 ± 1.85 62.1 ± 0.99

SVM microF1 90.06 ± 0.43 83.48 ± 1.08 75.4 ± 0.66
macroF1 89.93 ± 0.43 73.39 ± 2.17 63.84 ± 0.55

BROOF microF1 87.96 ± 0.24 84.41 ± 1.07 73.35 ± 0.79
macroF1 87.44 ± 0.28 73.23 ± 1.10 60.76 ± 0.82

LAZY microF1 87.96 ± 0.37 82.34 ± 0.61 74.02 ± 0.79
macroF1 87.39 ± 0.37 68.33 ± 1.6 59.46 ± 1.35

NB microF1 88.99 ± 0.54 62.63 ± 1.7 73.54 ± 0.71
macroF1 88.68 ± 0.55 51.38 ± 3.19 58.03 ± 0.85

KNN microF1 87.53 ± 0.69 75.63 ± 0.94 70.99 ± 0.96
macroF1 87.22 ± 0.66 60.34 ± 1.36 55.85 ± 0.97

Extra-Trees microF1 87.03 ± 0.41 82.87 ± 1.00 73.08 ± 0.55
macroF1 86.65 ± 0.56 68.54 ± 2.60 58.71 ± 0.89

LXT microF1 88.39 ± 0.51 81.24 ± 0.71 69.63 ± 0.91
macroF1 88.05 ± 0.44 66.89 ± 1.23 57.33 ± 1.48

RF microF1 83.64 ± 0.29 81.52 ± 1 71.05 ± 0.31
macroF1 83.08 ± 0.35 65.44 ± 1.91 56.56 ± 0.45

(a) Datasets: 20NG, 4UNI and ACM

REUT90 SPAM MED

BERT microF1 67.33 ± 0.72 96.11 ± 0.52 83.68 ± 0.32
macroF1 89.13 ± 0.58 95.93 ± 0.55 74.25 ± 0.37

SVM microF1 68.19 ± 1.15 92.55 ± 0.8 86.19 ± 0.05
macroF1 31.95 ± 2.59 92.12 ± 0.87 78.46 ± 0.42

BROOF microF1 66.79 ± 0.97 96.09 ± 0.84 83.05 ± 0.05
macroF1 28.48 ± 2.17 95.9 ± 0.88 73.25 ± 0.42

LAZY microF1 66.3 ± 1.07 92.91 ± 0.68 84.88 ± 0.08
macroF1 26.61 ± 2.12 92.54 ± 0.71 72.90 ± 0.08

NB microF1 65.32 ± 1.13 79.27 ± 0.81 82.92 ± 0.14
macroF1 27.86 ± 0.79 78.18 ± 0.83 63.8 ± 0.43

KNN microF1 68.07 ± 1.07 83.31 ± 0.98 82.16 ± 0.08
macroF1 29.93 ± 2.48 82.91 ± 0.93 68.00 ± 0.34

Extra-Trees microF1 64.87 ± 0.81 95.74 ± 0.55 82.49 ± 0.07
macroF1 26.18 ± 2.55 95.52 ± 0.58 71.15 ± 0.31

LXT microF1 65.92 ± 0.82 92.42 ± 0.78 83.84 ± 0.11
macroF1 26.71 ± 2.53 92.05 ± 0.82 71.02 ± 0.23

RF microF1 63.92 ± 0.81 95.46 ± 0.74 81.61 ± 0.05
macroF1 24.36 ± 1.98 95.22 ± 0.79 70.41 ± 0.36

(b) Datasets: REUT90, SPAM and MED

Table 5.1: Topic categorization - Obtained results for base classifiers.

strategies to exploit discriminative evidence from high dimensional and sparse textual
data. Even considering the specificities of each feature, BERT is capable of combining
small pieces of evidence to build a general model with the same generalization power
of SVM in scenarios which SVM traditionally works the best.

Despite the fact that SVM and BERT obtain statistically tied results in most
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datasets, BERT shows significantly superior results to SVM in the SPAM dataset. For
this particular dataset, the BERT capability of identifying specific non-trivial relation-
ships between individual words to the spam category grants superior effectiveness for
BERT. On the other hand, the same SVM mechanism that captures good general pat-
terns limits such classifier in finding specific pieces of evidence that relate individual
features in more complex ways.

BERT is also superior to other RF-based approaches in most datasets, which
provides evidence towards the benefits of the proposed strategy in mitigating the RF
overfitting problem. Specifically, BERT presented significant improvements over RF
on all datasets, with gains up to 7% and 30% on MicroF1 and MacroF1, respectively.

Other strategies designed to overcome the RF limitations also presented inferior
results to BERT. The LAZY method is always inferior to BERT in terms of MacroF1,
indicating that LAZY has a hard time on discriminating minor classes. We argue that
by trying to find discriminative patterns based on the neighborhood of documents,
LAZY can bias its model towards the larger classes, since their documents are most
likely to appear in the neighborhood of an arbitrary test document. Another strategy
aimed at improving RFs is the BROOF classifier. Our experimental results show that
the proposed combination of boosting with extremly randomized trees can achieve bet-
ter results than combining boosting with the original RFs. Although very competitive
to BERT, BROOF is no match to our proposal in both the 20NG and ACM datasets.

Other classifiers, such as NB and KNN follow a completely different approach
than SVM and the aforementioned RF-based methods. The simplicity of both strate-
gies sometimes is not enough to provide effective classification from complex data dis-
tributions. However, when there is sufficiently discriminative evidence from individual
words or similarity between documents, KNN and NB can achieve reasonable results,
as the ones obained on news categorization datasets using these methods. However,
even achieving some interesting results, NB and KNN can be substantially inferior to
BERT, as noticed in 4UNI and ACM.

Now we turn our attention to the classification results of the sentiment analysis
task, presented in Table 5.2. The experimental results show that, overall, BERT out-
performs or ties most of its results with the best classification method for each dataset.
Specifically, BERT and BROOF achieved the best (and statistically tied) results in al-
most all datasets, which provides additional evidence towards the benefits of reducing
the overfitting issues of RF-based methods using boosting. In the sentiment analysis
context, both methods take advantage of being able to identify the presence of individ-
ual words that are highly correlated to a positive or negative sentiment. Their general-
ization capabilities of identifying noisy or irrelevant information provide improvements
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over the original RF, with 14% and 5% on MacroF1 and MicroF1, respectively.

AMAZON BBC DEBATE DIGG MYSPACE

BERT microF1 75.76 86.04 79.38 75.7 86.46
macroF1 74.16 53.78 77.24 63.03 67.35

BROOF microF1 74.52 86.17 79.23 76.34 86.57
macroF1 73.02 55.04 77.07 65.56 67.93

NB microF1 74.68 86.84 76 76.09 85.5
macroF1 73.32 46.48 73.7 64.38 60.39

XT microF1 73.88 86.58 79.33 76.85 85.64
macroF1 72.1 52.35 76.93 60.84 65.24

SVM microF1 74.24 86.43 78.58 75.58 86.23
macroF1 72.84 50.34 76.2 60.96 67.94

RF microF1 73.8 86.84 78.53 75.31 85.74
macroF1 71.76 52.4 75.79 57.04 60.7

LXT microF1 72.22 87.11 78.07 74.93 85.26
macroF1 69.24 49.36 74.98 56.91 55.64

LAZY microF1 72.3 87.37 76.35 76.21 85.14
macroF1 69 50.19 72.89 58.9 55.55

KNN microF1 69.86 86.44 74.03 74.8 85.49
macroF1 67.64 46.36 72.25 52.77 56.07

(a) Datasets: AMAZON, BBC, DEBATE, DIGG and MYSPACE

NYT TWEETS TWITTER YELP YOUTUBE

BERT microF1 68.14 88.3 76.15 94.26 79.85
macroF1 67.01 85.49 74.71 94.26 76.47

BROOF microF1 68.01 88.11 75.01 93.58 79.69
macroF1 66.85 85.36 73.73 93.58 76.18

NB microF1 67.1 86.82 74.88 90.44 83.43
macroF1 66.06 84.4 73.89 90.44 80.3

XT microF1 67.43 86.46 75.19 91.74 79.65
macroF1 66.03 83 73.26 91.73 76.22

SVM microF1 66.34 86.87 74.53 92.94 82.24
macroF1 65.48 84.1 73.15 92.94 77.99

RF microF1 67.43 84.63 73.83 90.76 79.89
macroF1 65.41 79.54 71.21 90.75 76.29

LXT microF1 64.41 82.36 71.91 90.82 77.22
macroF1 61.5 75.35 68.51 90.82 67.56

LAZY microF1 64.64 80.86 70.86 90.18 76.48
macroF1 61.61 73.53 67.49 90.17 66.4

KNN microF1 60.61 77.34 67.02 74.5 75.74
macroF1 54.92 68.14 64.08 73.83 67.27

(b) Datasets: NYT, TWEETS, TWITTER, YELP and YOUTUBE

Table 5.2: Sentiment analysis - Obtained results for base classifiers.

In the sentiment analysis scenario, SVM is not always among the best approaches,
since it does not have the ability to discriminate the fine-grained discriminative evidence
present in individual words and non-linear relationships between words. Moreover,
there is no clear winner between SVM and the simple NB classifier. In this scenario,
NB has the advantage of learning how each word relates to a positive or negative
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sentiment, and they combine these pieces of evidence to determine the sentiment of a
text document. However, unlike RF-based methods, there is no mechanism to identify
noise or irrelevant words, which may affect its effectiveness results.

KNN, LAZY, and LXT are usually associated with the worse results for the
sentiment analysis task. Instead of focusing on individual words, these methods exploit
the distribution of training examples among neighbors of a test example. This analysis
of the neighborhood can be a potential source of noise since similar text documents
can be associated with different sentiment labels.

Overall, according to the reported experimental results, the BERT classifier is
the only approach consistently among the best results in both topic categorization and
sentiment analysis. These results provide empirical evidence towards the benefits of
improving the generalization power of random forests by using elaborated strategies to
reduce overfitting.

Finally, for both sentiment analysis and topic classification, BERT is one of the
most effective classification methods that combines discriminative pieces of evidence
derived from exploring the complex sub-regions of the input space. Other classification
approaches provide completely different strategies to exploit discriminative patterns,
which motivates us to stack these different classification approaches to combine the
potentially complemental information captured by each of them (see Chapter 6).

5.4.3 Effects of Extra-Trees as weak-learner

An important aspect to be further analyzed is the influence of the additional random-
ization enjoyed by BERT through the use of Extra-Trees (instead of traditional RFs,
as done in BROOF). To this end, we analyze the effect of gradually increasing the
randomness in the training process over MicroF1 and MacroF1. Here, the number of
iterations and trees were fixed to 200 and 8, respectively.

Figure 5.2 shows the obtained results, where the x-axis represents the proportion
of Extra-Trees composing the ensemble (0% means the absence of Extra-Trees, which
degenerates to BROOF, and 100% represents the BERT classifier, composed entirely
by Extra-Trees). There is a clear growth tendency in MicroF1 and MacroF1 as we
increase the proportion of Extra-Trees composing the ensemble. Thus, the additional
randomization procedure employed in BERT plays an important role in improving the
BROOF algorithm.
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(a) 20NG

(b) ACM

Figure 5.2: Effect of Extra-Trees as weak-learner.





Chapter 6

Stacking RF-Based Learners

Ensembles of classifiers are an extensively studied machine learning technique [Rokach,
2009]. Among several learning methods used in practice, ensembles are one of the
most effective in several applications and can be divided into two groups: ensembles
of homogeneous and heterogeneous classifiers. The former relies on learning many
versions of the same classification technique, each one built by somehow disturbing
the training set. Then, usually one averages the predictions in order to come up with
final decisions with higher generalization capabilities. The latter combines a set of
distinct learning methods trained with the same training set and then produces the
final decisions according to the predictions made by these classifiers.

Regarding the text classification realm, Dong and Han [2004] use what they
call Moderated Asymmetric Naïve Bayes (MANB) as a base learner in their homoge-
neous ensemble configuration. Several homogeneous ensemble methods are contrasted,
such as k-fold partitioning, bagging and boosting, as well as a heterogeneous ensem-
ble method which combines SVM and NB learning algorithms. Salles et al. [2015]
combine two well-known homogeneous ensemble techniques, bagging and boosting, by
exploiting Random Forests (RF) as “weak learners” in the boosting framework. The
combination is achieved by means of “smoothly” updating the weights of only the out-
of-bag instances. This combination mitigates the overfitting issue faced by RF models
in textual classification tasks and leverages its generalization power. Recently, Onan
et al. [2016] empirically evaluate the effectiveness of ensemble learning methods on
textual documents represented by keywords. They apply different keyword extraction
strategies on the dataset. The authors evaluate five different homogeneous ensemble
methods that use four different base classifiers. In [Bi et al., 2007; Pui et al., 2006;
Danesh et al., 2007], ensembles of heterogeneous classifiers are proposed, by combin-
ing classical text classification methods (e.g., SVM, kNN, NB and Rocchio). In all

41
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analyzed cases, significant improvements were observed when compared to the tradi-
tional classifiers. Furthermore, a combination of several distinct polarity classifiers
for Twitter sentiment analysis is proposed by Kanakaraj and Guddeti [2015]. Unlike
these works, we here aim at combining homogeneous and heterogeneous classifiers by
stacking different RF-based methods in an original manner.

There are two common techniques to combine predictions of distinct classifiers,
namely, fixed combining methods and trainable combining methods [Nguyen et al.,
2016]. An advantage of applying fixed methods for ensemble systems is that there are
no need to train a meta-classifier since they do not take into consideration the the meta-
level training set when combining the learners. Thus, they are less time-consuming than
their counterparts. Many fixed combining methods can be found in literature, such as
Sum, Product, Vote, and Average [Bauer and Kohavi, 1999; Kuncheva, 2002].

On the other hand, trainable combining methods work on meta-level data, in
order to learn how to combine the base learners’ outputs. Although exploiting metal-
level data to extract knowledge usually leverages classification effectiveness, it comes
at the price of additional computational effort [Nguyen et al., 2016].

6.1 Stacking

Perhaps, the most relevant studies about trainable combining methods are based on
Stacking (a.k.a. Blending), which was originally conceived as “Stacked Generalization”
by Wolpert Wolpert [1992]. In this case, a meta-level training set Dmeta is generated
by applying a cross-validation procedure, in which the original training set Dtrain is
divided into K equally sized disjoint sets Dk

fold,∀k = 1, ..., K. Each base-level classifier
is learned by considering Dtrain \ Dk

fold as training set and reserving Dk
fold for testing.

Formally, for all base learning algorithms Li and ∀k = 1, ..., K : hki = li(Dtrain \Dk
fold).

Subsequently, each learned classifier hki produces a estimation for the posterior prob-
ability pki (cm|xj) that an observation xj belongs to a class cm; ∀xj ∈ Dk

fold : hki (xj) =

pki (C|xj) = (pki (c1|xj), pki (c2|xj), ..., pki (cM |xj)). The obtained meta-level training set
Dmeta is thus:

p1(y1|x1) . . . p1(yM |x1) . . . pK(y1|x1) . . . pK(yM |x1)
p1(y1|x2) . . . p1(yM |x2) . . . pK(y1|x2) . . . pK(yM |x2)

... . . . ... . . . ... . . . ...
p1(y1|xN) . . . p1(yM |xN) . . . pK(y1|xN) . . . pK(yM |xN)


Finally, a combining classifier is trained on the meta-level training set and used

to produce the final prediction.
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Several methods have been designed to exploit label information in the meta-
level training set. In one strategy, the predictions of classifiers are grouped according
to the given classes and then a template associated with each label is built. Three
methods using that strategy are Multiple Response Linear Regression (MLR) [Ting
and Witten, 1997], Decision Template (DT) [Kuncheva et al., 2001] and the recently
proposed VIG [Nguyen et al., 2016]. MLR assumes that each classifier weights dif-
ferently each class. In this case, the combining algorithm is based on the M linear
combinations of the posterior class probabilities and the associated class weights. The
predicted class is then decided by selecting the maximum value among these combina-
tions. The Decision Template strategy [Kuncheva et al., 2001] groups the meta-level
training set according to the classes of each instance. Then, Decision Templates are
built by averaging the meta-level instances observed in each class (forming centroids).
Subsequently, the predicted class is decided by selecting the class label of the Decision
Template that is more similar to the meta-data unlabeled observation. To this end,
the authors propose eleven similarity functions based on fuzzy logic. Due to its simple
computation, this method has low computational cost in both training and testing.
Merz [1999] proposed a combination of Stacking, Correspondence Analysis (CA) and
K-Nearest Neighbor (KNN), in the form of a single learning algorithm called SCANN.
The goal of such algorithm is to find the underlying relationship between the learning
observations and the predictions of the base classifiers, by applying CA to an indicator
matrix formed by the learned meta-level instances and their corresponding true labels.
Then, a kNN procedure is employed to classify the unseen data in the new scaled space.
Recently, Nguyen et al. [2016] proposed a combining classifier based on the variational
inference which is based on the assumption that instances belonging to a given class of
the meta-level training set are drawn from a multivariate Gaussian distribution. Thus,
M distributions are estimated by using Bayesian variational inference on the instances
belonging to each class. The predicted class for a new unseen observation is given by
selecting the label associated with maximum posterior probabilities computed by the
M multivariate Gaussian models. All aforementioned methods are used as baselines in
our stacking experiments.

Moreover, all those methods rely on the meta-level training sets obtained by
costly procedures, such as cross-validation while combining bagging-based methods. In
contrast, we here propose to take advantage of the out-of-bag (OOB) samples, naturally
available by the bagging procedure, to yield an unbiased meta-level training set. This
allows our solution to stack bagging-based methods with any other learning method
without additional computational cost while using any combining methodology. In
fact, some works attempt to improve the bagging procedure by utilizing stacking to
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combine the base classifiers [Ting and Witten, 1997; Wolpert and Macready, 1996].
For instance, Ting and Witten [1997] propose a variant of bagging, where stacking
rather than uniform majority voting is used to achieve the combination. The meta-level
training set is obtained by the predictions of the each base learner over the original
training set, which can lead the meta-classifier to overfit. In contrast to Ting and
Witten [1997], Wolpert and Macready [1996] propose a linear combination in which the
coefficients are estimated by the OOB error, thus generating a less biased combination.
Those methods differ from ours since here we construct the meta-level data for bagging-
based methods in a distinct manner, while also treating them as black-boxes when
combining them with any other learning method.

6.2 Degree of Disagreement among Classifiers

Based upon the results reported in Section 5.4, one aspect should be clear by now: the
analyzed RF-based classifiers do excel in both the explored text classification tasks.
One question that naturally arises is: can we explore these methods somehow in order
to learn an even more effective classifier? This is what we pursue in this section.

In order to combine RF-based classifiers, these classifiers should exhibit some
degree of complementarity. In fact, each RF based classifier explore different learning
strategies to come up with more effective predictions. However, it is still important
to assess whether these distinct strategies do produce complementary information that
could be explored to leverage classification effectiveness. To this end, we quantify
such complementarity degree by means of the Degree of Disagreement [Skalak, 1996;
Kuncheva and Whitaker, 2003] observed for a pair of classifiers. Let hi and hj be two
classifiers, applied to examples from a validation set Dvalid (e.g., a fold). Also, let D00

be the examples misclassified by both hi and hj (n00 = |D00|), D01 be the examples
correctly classified just by hi ((n01 = |D01|)) and D10 be the examples correctly classified
just by hj ((n10 = |D10|)). Finally, let D11 be the examples correctly classified by both
learners ((n11 = |D11|)). The Degree of Disagreement Disi,j between hi and hj is given
by:

Disi,j =
n01 + n10

n00 + n01 + n10 + n11

(6.1)

This is a symmetric statistic that captures to what extent two classifiers disagree
in terms of prediction. Classifiers with low disagreement degree tend to have similar
behavior in terms of correctly or incorrectly classifying unseen examples and thus have
low complementarity. In order to offer a more appropriate measure of disagreement
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degree between classifiers, however, one should also take into account their prediction
capabilities. That way we guarantee a proper comparison between their behavior. For
this purpose, we propose a normalized degree of disagreement metric. Recall that, in
order to have minimal degree of disagreement, we must have D01 = ∅ or D10 = ∅.
Also, we have that hi accuracy can be expressed as Ri = n01+n11∑

a,b∈0,1 na,b
, with Rj expressed

analogously. It is straightforward to show that Dismin
i,j = Ri + Rj − 2 min(Ri, Rj)

(appendix A.1). Similarly, we maximize the degree of disagreement when n00 and n11

tend to 0. In that case, with some algebraic manipulation (see in appendix A.1), one
can show that Dismax

i,j = min(Ri + Rj, 2 − Ri − Rj) . With such derivations in place,
the normalized degree of disagreement metric is defined as

Disnorm
i,j =

Disi,j −Dismin
i,j

Dismax
i,j −Dismin

i,j

. (6.2)

The Degree of Disagreement values computed for the exemplified cases can be
found on Table 6.1. This gives us some evidence that the explored learning methods,
such as BROOF, LazyNN_RF and BERT do have some complementary information
that can potentially be explored in order to come up with more effective learners.
This is the main motivation to what we propose here: a novel strategy to stack RF
based classifiers that, besides producing highly effective meta-learners, it also enjoys
a significantly reduced runtime, guaranteeing its applicability on large classification
problems.

Disnorm
i,j BROOF LAZY SVM NB KNN

BERT 0.12 0.29 0.30 0.32 0.33
BROOF - 0.29 0.32 0.32 0.33
LAZY - - 0.31 0.32 0.19
SVM - - - 0.27 0.30
NB - - - - 0.33

(a) 4UNI

Disnorm
i,j BROOF LAZY SVM NB KNN

BERT 0.07 0.18 0.23 0.32 0.25
BROOF - 0.20 0.23 0.35 0.29
LAZY - - 0.25 0.32 0.23
SVM - - - 0.29 0.25
NB - - - - 0.29

(b) ACM

Disnorm
i,j BROOF LAZY SVM NB KNN

BERT 0.03 0.10 0.09 0.19 0.23
BROOF - 0.11 0.08 0.19 0.22
LAZY - - 0.07 0.18 0.18
SVM - - - 0.15 0.20
NB - - - - 0.23

(c) REUT90

Disnorm
i,j BROOF LAZY SVM NB KNN

BERT 0.15 0.23 0.28 0.39 0.35
BROOF - 0.26 0.24 0.41 0.42
LAZY - - 0.29 0.43 0.38
SVM - - - 0.37 0.36
NB - - - - 0.39

(d) 20NG

Table 6.1: Normalized Degree of Disagreement
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6.3 Proposed Stacking Strategy for Bagged Models

We now introduce an efficient way of stacking bagging-based classifiers. Recall that
when stacking classifiers, one usually relies on k fold cross-validation procedures to
estimate the a posteriori class probabilities for each example, to serve as input for the
meta-classifier [Wolpert, 1992; Ting and Witten, 1997; Kuncheva et al., 2001; Nguyen
et al., 2016]. Based on these predicted a posteriori class distribution estimates, the
meta-classifier induces a relationship between these predictions and the true class.
However, such estimation strategy may be very costly and sometimes ineffective, since
it depends on learning k different models to estimate the probability distributions that
serve as input for the stacking procedure. In order to cope with this problem, we
rely on the out-of-bag samples produced by the bootstrap technique performed by
bagging-based classifiers, such as Random Forests, in order to estimate the a posteriori
probability distributions for the training samples, thus producing the meta attributes
to be fed to the stacked classifier. Since this information is promptly generated at
training time by bagged classifiers, our proposed meta learner can thus be built with
negligible additional computational effort.

In details, recall that the bootstrap procedure (random sampling with replace-
ment) generates samples Dboot comprising of approximately 1−e−1 ≈ 63% of the original
training set Dtrain, with the remaining 36% samples being the so-called out-of-bag sam-
ples [Hastie et al., 2009]. In the bagging training process, this procedure is repeated in
order to produce several distinct training sets Dj

boot for building the ensemble composing
trees hj. Thus, we here propose to use Dj

oob = Dtrain \ Dj
boot to estimate the ensemble

class probability distribution at a point x ∈ Dtrain to be used as meta attributes to
train a stacked classifier. This comes at a very low cost, since the meta attributes can
be efficiently computed during the training stage of bagged learners, without the needs
to perform costly estimation strategies, such as cross-validation. Therefore, let M be
the number of bootstrap iterations, Dj

boot|Mj=1 be the bootstrap samples and hj|Mj=1 the
classifiers trained with the corresponding bootstrap samples. We compute the ensem-
ble OOB probability distribution estimates poob(C|x) for each instance x ∈ Dtrain as
follows:

poob(C|x) =

∑M
j=1 p

hj(C|x)I[x ∈ Dj
oob]∑M

j=1 I[x ∈ Dj
oob]

, (6.3)

where I denotes an indicator function that returns 1 when them-th classifier did not use
x as training instance, 0 otherwise, and phj(C|x) is the class a posteriori distribution
estimated by hj. In other words, the OOB a posterori class probability distribution
poob(C|x) is assessed by averaging the class probability distributions phj(C|x), estimated
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by each individual tree that was built without using x as training sample.
Thus, in order to make the performance gain more tangible, let N = |Dtrain|

and Costrfcv−stack(N) be the cost of stacking only one RF by means of K-fold cross-
validation. This cost can be expressed as the sum of the cost of training a RF in the
entire dataset, training it K times on a slightly reduced dataset and testing it K times,
which is showed by the following equation: Costrfcv−stack(N) = Costrftrain(N) + K ×
Costrftrain( (K−1)

K
N) + K × Costrftest(NK ). The first term of the equation is the inherent

cost of training an ensemble since we have to train the base learner at least once.
However, the last two terms are related to the meta-attributes generation which may
be costly depending on the size of the K. In our proposed approach, we can eliminate
the last two terms once we are able to estimate the meta-attributes while training
the decision trees composing the RF with negligible additional cost since the cost of
estimating phj(C|x) is Θ(log(0.63N)) for decision trees [Louppe, 2014]. Therefore, we
have that Costrfoob−stack(N) ≈ Costrftrain(N). In general terms, we can speedup the
stacking process up to K times.

Moreover, the estimated a posteriori probability poob(C|x) can be naturally used
in the traditional stacking framework as meta-features, alongside with the meta-
features obtained by traditional means (shown in table bellow), in order to train any
meta-learner as discussed in the Section 6.1. By doing so, one can stack bagged-based
models efficiently either with bagged and non-bagged ones, thus, making feasible the
applicability of such stacking systems in real world problems.

poobrf (C|x1) . . . poobbert(C|x1) . . . pcvsvm(C|x1) . . . pcvknn(C|x1)
poobrf (C|x2) . . . poobbert(C|x2) . . . pcvsvm(C|x2) . . . pcvknn(C|x2)

... . . . ... . . . ... . . . ...
poobrf (C|xN) . . . poobbert(C|xN) . . . pcvsvm(C|xN) . . . pcvknn(C|xN)


Table 6.2: Example of meta-training set generated by mixed approaches. For instance,
the first two columns were generated by our OOB approach and the last ones by K-fold
cross validation.

6.4 Experimental Evaluation

We now report our experimental evaluation of the proposed stacking model. To this
end, we consider all the previously explored datasets regarding topic categorization
and sentiment analysis (see Section 5.4.1). We contrast the proposed RF-based stacked
classifier against traditional stacking of classical state-of-the-art methods in text cate-
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gorization (e.g. SVM, kNN, Naïve Bayes). Then, we analyze our proposal in terms of
runtime.

6.4.1 Results and Discussion

As we detail in the following, stacking RF-based classifiers brings substantial improve-
ments in classification effectiveness over traditional methods and their combinations in
both analyzed text classification tasks. The proposed RF-based stacking is even able to
produce as good results as the combination of all evaluated classifiers in most analyzed
datasets, at a much lower runtime, guaranteeing its applicability in text classification
tasks.

20NG 4UNI ACM

Allstack
micF1 92.21 ± 0.44 86.85 ± 1.17 79.02 ± 0.72
macF1 92.01 ± 0.42 79.43 ± 2.23 66.25 ± 1.01

BROOF+LAZY+BERT+LXT micF1 90.63 ± 0.57 86.79 ± 0.86 77.83 ± 0.80
macF1 90.4 ± 0.57 79.63 ± 1.91 63.42 ± 0.92

SVM+NB+KNN micF1 90.65 ± 0.45 84.95 ± 1.15 77.78 ± 0.73
macF1 90.42 ± 0.44 75.86 ± 1.48 65.08 ± 1.71

SVM+BERT micF1 90.85 ± 0.50 86.65 ± 1.05 77.25 ± 0.60
macF1 90.68 ± 0.50 80.13 ± 2.49 66.29 ± 0.97

BERT micF1 89.45 ± 0.46 84.61 ± 0.98 74.8 ± 0.59
macF1 89.13 ± 0.58 73.61 ± 1.85 62.1 ± 0.99

SVM micF1 90.06 ± 0.43 83.48 ± 1.08 75.4 ± 0.66
macF1 89.93 ± 0.43 73.39 ± 2.17 63.84 ± 0.55

(a) Datasets: 20NG, 4UNI and ACM

REUT90 SPAM MED

Allstack
micF1 80.76 ± 1.24 96.06 ± 0.78 88.76 ± 0.11
macF1 39.28 ± 1.14 95.87 ± 0.82 81.62 ± 0.34

BROOF+LAZY+BERT+LXT micF1 80 ± 1.60 96.13 ± 0.86 87.10 ± 0.07
macF1 38.66 ± 2.85 95.94 ± 0.90 79.36 ± 0.59

SVM+NB+KNN micF1 78.53 ± 1.09 93.67 ± 0.34 87.96 ± 0.05
macF1 37.10 ± 1.41 93.37 ± 0.34 80.33 ± 0.57

SVM+BERT micF1 78.43 ± 1.33 95.91 ± 0.79 87.65 ± 0.03
macF1 36.8 ± 2.45 95.72 ± 0.82 80.55 ± 0.52

BERT micF1 67.33 ± 0.72 96.11 ± 0.52 83.68 ± 0.32
macF1 29.24 ± 1.40 95.93 ± 0.55 74.25 ± 0.37

SVM micF1 68.19 ± 1.15 92.55 ± 0.8 86.19 ± 0.05
macF1 31.95 ± 2.59 92.12 ± 0.87 78.46 ± 0.42

(b) Datasets: REUT90, SPAM and MED

Table 6.3: Topic categorization - Obtained results for stacking and top-performer base
classifiers.
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AMAZON BBC DEBATE DIGG MYSPACE

Allstack
micF1 75.6 86.84 80.14 76.47 86.1
macF1 74.44 51.56 77.86 65.8 68.27

BROOF+LAZY+BERT+LXT micF1 75.6 86.84 79.89 75.96 86.94
macF1 74.44 50.03 77.41 62.71 68.88

SVM+NB+KNN micF1 75.37 86.7 78.83 77.5 86.09
macF1 74.14 46.44 76.71 64.84 65.98

SVM+BERT micF1 75.96 86.7 79.99 76.46 86.11
macF1 74.85 47.34 77.88 63.05 67.14

BERT micF1 75.76 86.04 79.38 75.7 86.46
macF1 74.16 53.78 77.24 63.03 67.35

NB micF1 74.68 86.84 76 76.09 85.5
macF1 73.32 46.48 73.7 64.38 60.39

(a) Datasets: AMAZON, BBC, DEBATE, DIGG and MYSPACE

NYT TWEETS TWITTER YELP YOUTUBE

Allstack
micF1 68.1 89.16 75.71 94.82 83.93
macF1 67.35 87.08 74.83 94.82 81.11

BROOF+LAZY+BERT+LXT micF1 67.79 89.01 76.23 94.22 81.5
macF1 66.87 86.63 75.26 94.22 77.63

SVM+NB+KNN micF1 67.41 88.35 75.32 93.84 84.13
macF1 66.53 86.07 74.24 93.84 81.05

SVM+BERT micF1 67.73 88.25 75.89 94.64 81.42
macF1 66.92 85.81 74.79 94.64 77.85

BERT micF1 68.14 88.3 76.15 94.26 79.85
macF1 67.01 85.49 74.71 94.26 76.47

NB micF1 67.1 86.82 74.88 90.44 83.43
macF1 66.06 84.4 73.89 90.44 80.3

(b) Datasets: NYT, TWEETS, TWITTER, YELP and YOUTUBE

Table 6.4: Sentiment analysis - Obtained results for stacking and top-performer base
classifiers.

The results regarding the topic categorization task can be found in Table 6.3.
First, note that the combination of RF-based approaches BERT +BROOF +LXT +

LAZY achieves better results over the two best base classifiers (BERT and SVM)
in most datasets, with substantial gains of up to 17% and 21% in MacroF1 and
MicroF1, respectively. In fact, stacking RF-based approaches clearly produces superior
results when compared to the top-notch SVM and BERT classifiers. The combination
BERT + BROOF + LXT + LAZY is also superior to the combination of classifiers
SVM +NB+KNN in 4UNI and SPAM. These results provide evidence to our claim
that stacking RF-based methods for text classification is a strong alternative to the
stacking of traditional text classification approaches, since besides effective they are
highly parallelizable, easily parameterized and efficiently combined by our OOB stack-
ing proposal.

Furthermore, stacking RF-based methods also performs as well as the combina-
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tion of all classification approaches (i.e., Allstack) in all but 20NG and MED datasets.
This indicates that traditional classification methods may provide supplementary dis-
criminative information for RF-based methods, which is the expected since they follow
completely different classification paradigms.

Considering the sentiment analysis datasets, one can observe that most of the re-
sults regarding stacking different classifiers are statistically tied, as shown in Table 6.4.
Moreover, BERT is not substantially improved when stacked with other classifiers. In
fact, BERT ties with BROOF +LAZY +BERT +LXT in all datasets. Also, BERT
also ties with Allstack in all datasets but one, YOUTUBE (in fact, due to the presence
of the NB classifier in the Allstack ensemble). These results show that, despite the
potential benefits of stacking various methods, the proposed BERT classifier remains
as one of the top performers when detecting the sentiment of textual documents, being
a strong candidate for consideration.

6.4.2 Effectiveness vs. diversity tradeoff

In the following, we perform an analysis of the Pareto’s frontier of the generated en-
sembles. With this, we want to confirm that the RF-based methods are important
to generate ensembles of classifiers with high generalization power and complementar-
ity/diversity.

Figure 6.1 exhibits a scatter plot for several datasets, in which each point repre-
sents a stacking ensemble out of the possible ensembles generated by the combination
of the nine base classifiers (number of classifiers composing the ensemble varies from
2 to 9). The x-axis represents the diversity metric Double-Fault, which was chosen be-
cause it is the pairwise metric that best represents the relationship between accuracy
and diversity of an ensemble system [Kuncheva and Whitaker, 2003]. The metric was
originally used by Giancinto and Roli [2001] to form a pairwise diversity matrix for a
classifier pool and subsequently to select classifiers that are least related. The metric
estimates the likelihood of both classifiers incorrectly classifying the same sample (the
smaller the value of the metric, the higher the diversity/complementarity). The y-axis
is the effectiveness metric MacroF1. For those points, we calculate the Pareto’s frontier
which maximizes the effectiveness metric and minimizes the Double-Fault metric (max-
imizes diversity), which are desirable characteristics of any ensemble method (highly
diverse and effective). The ensembles in the frontier showed in Figures 6.1 (a), (b),
and (c) are the following:

• (LXT,NB), (LAZY,NB), (SVM,KNN), (LXT, SVM,NB),

(LAZY, SVM,NB), (LXT, SVM,NB,KNN),
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Figure 6.1: MacroF1 vs. Double-Fault - each point represents a stacking out of all
possible combination of the 9 base classifiers. The line connecting the highlighted
points is the Pareto’s frontier.

(LXT, SVM,NB,KNN,XT ), (LAZY,BERT,LXT, SVM,NB,KNN),

(LAZY,LXT, SVM,NB,KNN,FA)

• (BERT, SVM), (BERT,LXT, SVM), (BROOF,BERT, SVM,KNN), (BERT, SVM,NB)

• (SVM,NB), (LAZY, SVM,NB), (BERT, SVM,NB),

(LAZY,BERT, SVM,NB), (LAZY,BERT,LXT, SVM,NB),

(LAZY,BERT, SVM,NB,KNN), (BROOF,LAZY, SVM,NB,KNN),

(BERT,LXT, SVM,NB,AEA), (BROOF,BERT,LXT, SVM,NB,KNN)

• (SVM,NB), (BERT, SVM,NB), (BROOF, SVM),

(BROOF,LAZY, SVM,NB), (BROOF,BERT, SVM,NB),

(BERT,LXT, SVM,NB), (BERT, SVM,NB,AEA),

(BROOF,BERT,LXT, SVM,NB), (BROOF,BERT,LXT, SVM),

(BROOF,BERT, SVM,NB,FA,AEA),

(BROOF,LAZY,BERT, SVM,KNN,FA,AEA)

One can notice that as we go from left to right on the Pareto’s frontier both,
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effectiveness and diversity1 decreases. This implies that not necessarily a highly diverse
combination will result in more accurate classifiers, but that there is a tradeoff between
effectiveness and diversity of the base classifiers of the ensemble. By analyzing the
Pareto’s frontier, one can clearly notice that the RF extensions play an important role
in providing a balance between diversity and generalization power in the most effective
ensembles. It is also possible to note that the loss in diversity brought by the insertion
of more similar methods into the ensemble (e.g., RF-based ones) is compensated by the
high generalization power of those methods. These results along with the effectiveness
analysis corroborate our hypothesis: by using RF-based algorithms in multi-classifier
systems, it is possible to achieve higher effectiveness.

6.4.3 Computational Time and Effectiveness to Stack

Bagging-based Methods

Table 6.5 shows the average time to combine all nine base learning algorithms us-
ing ours and the baseline stacking approaches, which generate the meta-level data by
means of 5-fold cross-validation. We also contrast our proposed method with a fixed
combining method (simple voting), which is the fastest possible combining strategy
since it does not require training. As can be seen in Table 6.5, the stacking using our
strategy based on Out-of-Bag (OOB) samples combined with RF as meta-level learner
shows significant speedups in relation to all other stacking strategies, without degrad-
ing its predictive performance. Specifically, in the MEDLINE dataset, the stacking
approaches using cross-validation were not able to handle the dataset in a suitable
time. Moreover, one can notice that our approach is competitive regarding execution
time when compared to a simple voting algorithm while excelling in effectiveness.

20NG 4UNI ACM REUT90 MEDLINE
OOB-RF 7244 2413 6762 13163 458013
RF 20479 7358 17194 29256 -
MLR 21455 7334 17170 29131 -
DT 20448 7327 17163 27124 -
SCANN 21651 7330 17166 29007 -
VIG 20620 7499 17335 30296 -
Voting 2921 1046 2451 4017 375297

Table 6.5: Avg. time in seconds to combine (training + testing time) all 9 base learning
algorithms with different stacking strategies. In the cases that a method was not able
to handle a dataset, we marked the corresponding table cell with ‘-’.

1In this Section, we will use the terms diversity and complementarity interchangeably.
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Table 6.6 shows the effectiveness of different combination strategies, such as MLR,
DT, SCANN and the recently proposed VIG in the largest datasets2. The results of
these strategies are never superior to the use of RF as a meta-level combiner. Despite
not being designed as a meta-level combiner, RF is capable of achieving the best
effectiveness results due to its capabilities of automatically identifying discriminative
patterns on the relationship among classifier results. Moreover, the proposed usage
of OOB can provide the same discriminative evidence as the output of the RF-based
methods obtained by means of cross-validation, which eliminates the need for costly
procedures to stack RF-based methods.

20NG 4UNI ACM REUT90 MED

OOB-RF microF1 92.24 86.87 78.99 80.25 88.76
macroF1 92.04 79.35 65.75 40.8 81.62

RF microF1 92.21 86.85 79.02 80.76 -
macroF1 92.01 79.43 66.25 39.28 -

MLR microF1 91.36 85.34 77.99 76.33 -
macroF1 91.14 76.62 68.26 35.64

DT microF1 91.44 83.82 77.53 68.19 -
macroF1 91.23 76.11 65.07 32.43 -

VOTING microF1 91.55 84.27 77.7 66.71 86.91
macroF1 91.29 72.2 64.31 28.89 77.41

SCANN microF1 90.87 85.31 76.84 71.14 -
macroF1 90.55 73.88 63.08 29.25 -

VIG microF1 90.13 82.14 75.11 19.4 -
macroF1 89.65 74.33 65.49 3.17 -

Table 6.6: Obtained results for different stacking strategies. In the cases that a method
was not able to handle a dataset, we marked the corresponding table cell with ‘-’.

2This excludes the small SPAM dataset.





Chapter 7

Conclusions and Future Work

In this work, we propose a boosted version of the extremely randomized trees classi-
fier, named BERT, in order to leverage the learner’s capability to minimize bias while
maintaining high predictive power by properly reducing variance. As our experimental
analysis reveal, our proposal enjoys top-notch classification effectiveness, being among
the top performers in the vast majority of cases covering two challenging text classifi-
cation tasks, namely, topic categorization and sentiment analysis. We also propose to
stack the explored RF-based classifiers in order to exploit the complementarity observed
among those classifiers. Unlike traditional stacking, that makes use of cross-validation
procedures to learn the meta-features to be fed to the stacking procedure, we here
rely on the out-of-bag samples obtained through bootstrapping the training set when
learning the forests. More specifically, the out-of-bag samples are used to estimate the
a posteriori class distributions used by the stacking procedure to learn the underlying
input/output relationships. We show that such novel stacking approach is not only
able to provide state-of-the-art classification effectiveness, but also at a significantly
lower runtime.

7.1 Main Contributions

We advance the state-of-the-art in text classification by proposing a novel derivation
of the RF classifier. More specifically, we propose a new boosted version of the RF
classifier, based on some ideas explored by the BROOF classifier: the so-called Boosted
Extremely Randomized Trees (BERT) classifier. While BROOF is able to mitigate the
overfitting issue faced by RF classifier when applied to high-dimensional noisy data,
by avoiding the generation of overly complex trees, it offers limited capability of bias
reduction (through the so-called selective out-of-bag based weight update strategy)
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as shown by Salles et al. [2017]. Thus, bias may still pose as an important factor
to contribute to the error rate. To tackle this potential issue, we here propose to
introduce another source of randomization in the boosted strategy proposed by Salles
et al. [2015]in order to achieve a better bias-variance tradeoff, by building tree in a
more extreme fashion as proposed by Geurts et al. [2006]. This novel strategy has the
following motivations: (i) we expect to avoid overly complex models (and thus mitigate
overfitting) through the application of the BROOF-like strategies; (ii) to provide more
control over the learner’s bias through the additional randomization offered by building
extremely randomized trees [Geurts et al., 2006]; and, finally, (iii) to exploit the fact
that the extremely randomized trees have shown to be more robust to noise than the RF
classifier. Our proposed classifier outperforms the analyzed state-of-the-art classifiers,
including SVM, kNN, Naïve Bayes, BROOF, and LazyNN_RF.

Moreover, motivated by the fact that distinct learning methods may complement
each other [Kuncheva and Whitaker, 2003], uncovering specific structures that underlie
the input/output relationship of the data at hand, in this work we also propose to ex-
ploit the complementary characteristics of the recently proposed RF-based approaches
and ours, by stacking them in order to learn an even more effective meta-classifier.
Their level of disagreement is high, which motivates our idea. Up to our knowledge,
this is the first attempt to combine the three main ensemble strategies: bagging, boost-
ing and stacking.

Finally, when stacking classifiers, one usually relies on k fold cross-validation pro-
cedures to estimate the a posteriori class probabilities for each example, to serve as
input for the meta-classifier [Wolpert, 1992; Ting and Witten, 1997; Kuncheva et al.,
2001; Nguyen et al., 2016]. Based on these predicted a posteriori class distribution
estimates, the meta-classifier induces a relationship between these predictions and the
true class. However, such estimation strategy may be very costly and sometimes in-
effective, since it depends on learning k different models to estimate the probability
distributions that serve as input for the stacking procedure. In order to cope with
this problem, we show that we avoid additional computation efforts to learn a stacked
classifier by exploiting the efficient and unbiased out-of-bag (OOB) error estimate, an
out-of-the-box estimate naturally produced by the bootstrap procedure used in each
RF-based learner.
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7.2 Future Work

Clearly, there is still room for improvements. Regarding the BERT strategy, we plan
to investigate the benefit of out-of-bag error estimate applied to a more sophisticated
early stop strategy in order to avoid unnecessary boosting iterations, which may lead
the model to overfitting. In the context of runtime performance, BERT, as well as
BROOF, are costly to train since they inherent the burden of boosting (sequential,
hardly parallelizable) and Random Forests (extremely deep trees in high-dimensional
space with many noise/irrelevant attributes). Hence, tackling these issues is paramount
to the applicability of these methods. In order to take fully advantage from paralleliz-
able potential of the Random Forests (Extra-Trees) built at each iteration of BROOF
(BERT), it is worth to invest in alternative parallel formulations for the tree building
process as the one proposed by Jansson et al. [2014]. Focusing on high-dimensional
data with many noise/irrelevant attributes, an alternative to avoid extremely deep
trees(caused by repeatedly selecting irrelevant attributes while splitting the nodes)
may be achieved by means of weighted sampling for selecting the subset of candidate
features. The weight of the candidates features are assessed, for example, by means of
chi-square test [Xu et al., 2012]. This approach may considerably speedup the process
of building the trees in high-dimensional data leading to more compact trees since the
weighted sampling increases the likelihood of selecting more discriminative features at
each split.

Regarding the bagging-based stacking strategy, we plan to investigate if non-
bagging strategies, such as the traditional kNN, Naïve Bayes and SVM classifier, could
benefit from the bootstrap procedure in order to come up with a uniform stacking
strategy that generalizes to any other classifier. Also, in the same vein of exploring the
out-of-bag samples to estimate the a posteriori class distributions in our stacking ap-
proach, we could explore the out-of-bag error estimates in order to select the candidate
features for decision nodes in order to improve both effectiveness and efficiency of the
RF based classifiers, such as BERT, BROOF, LazyNN_RF, LXT and the traditional
RF.
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Appendix A

A.1 Normalized Degree of Disagreement

Theorem A.1.1. Let Ri and Rj be the accuracy rates of any two classifiers hi and
hj. The minimal degree of disagreement that any two classifiers may have, given their
accuracy rates, is defined by Dismini,j = Ri +Rj − 2 min(Ri, Rj).

Proof. Let N10, N01, N00 and N11 be, respectively, the rate of instances correctly clas-
sified by hi and misclassified by hj, the rate of instances correctly classified by hj and
misclassified by hi, the rate of instances misclassified by both and the rate of instances
correctly classified by both. In order to have minimal degree of disagreement, we must
have N01 = 0 or N10 = 0. Also, we have that hi and hj accuracy can be expressed as
Ri = N10 +N11 and Rj = N01 +N11.

Thus, if N10 = 0 we have that N11 = Ri and Ri ≤ Rj since N11 ≤ N01 +

N11 ∀ N01 ≥ 0. Analogously, if N01 = 0 we have that N11 = Rj and Rj ≤ Ri since
N11 ≤ N10 +N11 ∀ N10 ≥ 0.

Therefore, we have that

N11 = min(Ri, Rj) (A.1)

Knowing that Disi,j = N10 + N01, we can rewrite it in function of the accuracy
rates so that we have that Disi,j = Ri +Rj − 2×N11.

When the degree of disagreement is minimal, N11 is defined by the equation A.1,
hence:

Dismini,j = Ri +Rj − 2 min(Ri, Rj) (A.2)
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Theorem A.1.2. Let Ri and Rj be the accuracy rates of any two classifiers hi and
hj. The maximal degree of disagreement that any two classifiers may have, given their
accuracy rates, is defined by Dismax

i,j = min(Ri +Rj, 2−Ri −Rj).

Proof. Let N10, N01, N00 and N11 be, respectively, the rate of instances correctly clas-
sified by hi and misclassified by hj, the rate of instances correctly classified by hj and
misclassified by hi, the rate of instances misclassified by both and the rate of instances
correctly classified by both. We maximize the degree of disagreement when N00 and N11

tend to 0. Also, we have that hi and hj accuracy can be expressed as Ri = N10 +N11

and Rj = N01 +N11.
Thus, if N00 ≥ 0 and N11 = 0 then 1−N00 = Ri+Rj. Since 1−N00 ≤ 1 ∀ N00 ≥ 0

we have that

N11 = 0 and Ri +Rj ≤ 1 (A.3)

Analogously, if N11 ≥ 0 and N00 = 0 then 1 + N11 = Ri + Rj. Since 1 + N11 ≥
1 ∀ N11 ≥ 0 we have that

N11 = Ri +Rj − 1 and Ri +Rj ≥ 1 (A.4)

Knowing that Disi,j = N10 + N01, we can rewrite it in function of the accuracy
rates so that we have that Disi,j = Ri +Rj − 2×N11.

When the degree of disagreement is maximal, N11 is defined by the equation A.3
or A.4 given their conditions, hence:

Dismaxi,j =

Ri +Rj if Ri +Rj ≤ 1

2−Ri −Rj otherwise
(A.5)

We have that Ri+Rj ≤ 2−Ri−Rj when Ri+Rj ≤ 1. Conversely, 2−Ri−Rj ≤
Ri +Rj when Ri +Rj ≥ 1. Therefore, we can rewrite the equation A.5 in a single one:

Dismaxi,j = min(Ri +Rj, 2−Ri −Rj) (A.6)


