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Resumo

Construir análises sensíveis ao contexto escaláveis é um problema que vem sendo fre-

quentemente trabalhado pela comunidade de compiladores, com sucesso. Porém, a

implementação de otimizações sensíveis ao contexto continua sendo desafiadora. O

principal problema que desencoraja os compiladores de implementarem tais otimiza-

ções é o crescimento no tamanho do código. Com clonagem de funções ou inlining, duas

técnicas conhecidas para a implementação de especializações sensíveis ao contexto, o

tamanho do código pode crescer exponencialmente no pior caso. Ambas as técnicas são

baseadas em criar cópias especializadas do código para cada contexto. Contudo, as duas

técnicas precisam criar cópias de todas as funções no caminho de chamadas que leva a

cada otimização, ainda que isto envolva copiar funções que não serão otimizadas. Neste

trabalho, propomos uma solução para este problema. Utilizando uma combinação de

despacho dinâmico e uma máquina de estados para controlar as transições entre os

contextos dinamicamente, nosso método implementa otimizações completamente sen-

síveis ao contexto necessitando apenas copiar as funções que serão otimizadas, mas

não o caminho de chamadas até elas. Apresentamos nossa abordagem em Minilog,

uma linguagem mínima que possui todos os recursos necessários para aplicar o método

proposto, e provamos sua corretude. Implementamos nosso método na infraestrutura

de compiladores LLVM, utilizando-o para otimizar programas com propagação de con-

stantes completamente sensível a contexto. Nossos experimentos nos benchmarks do

LLVM Test Suite e do SPEC CPU2006 mostram que nosso método escala significati-

vamente melhor em termos de espaço que clonagem de funções, gerando binários em

média 2.7x menores, adicionando em média 8.5x menos bytes ao implementar a mesma

otimização. Os binários gerados utilizando nossa técnica tiveram tempo de execução

muito semelhante aos gerados com clonagem tradicional. Além disso, utilizando essa

classe de otimizações ainda pouco explorada, conseguimos speed-ups de até 20% em

alguns benchmarks quando comparados a LLVM -O3.

Keywords: Compiladores Otimizantes, Linguagens de Programação, Otimizações
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Abstract

The compilers community has dedicated much time and effort to make context-sensitive

analyses scalable, with great profit. However, the implementation of context-sensitive

optimizations remains a challenge. The main problem that discourages compilers from

making use of such optimizations is code size growth. With either function cloning or

inlining, two known techniques for context-sensitive specialization, the code can grow

exponentially in the worst case. Both techniques are based on creating copies of all func-

tions in the call path that leads to each optimization, even when that comprises copying

functions that are not optimized, in order to keep track of the calling context. In this

dissertation, we propose a solution for that problem. Using a combination of dynamic

dispatch and a state machine to dynamically control the transitions between calling

contexts, our method implements fully context-sensitive optimizations only needing to

copy optimized functions. We present our approach in Minilog, a minimal program-

ming language that contains the necessary constructs to apply the proposed method,

and prove its correctness. We have implemented our method in the LLVM compiler

infrastructure, and used it to optimize programs with fully context-sensitive constant

propagation. Our experiments in LLVM Test Suite and SPEC CPU2006 show our

method scales significantly better than function cloning in terms of space: it generates

binaries that are, on average, 2.7x smaller, adding 8.5x less bytes to implement the

same optimizations. In terms of speed, our binaries perform similarly to those gener-

ated using function cloning. By using this largely unexplored class of optimizations, we

have observed speed-ups of up to 20% in some benchmarks when compared to LLVM

-O3.

Palavras-chave: Optimizing Compilers, Programming Languages, Context-Sensitive

Optimizations, Constant Propagation.
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Chapter 1

Introduction

Context-sensitive compiler optimizations are known to be significantly more precise

in various scenarios when compared to their context-insensitive counterparts (Lattner

et al. [2007]; Whaley and Lam [2004]). Due to this observation, the academia and

the industry have devoted much time and energy to scale up context-sensitive analy-

ses (Arzt et al. [2014]; Das [2003]; Emami et al. [1994]; Fähndrich et al. [2000]; Feng

et al. [2014]; Ghiya and Hendren [1996]; Hind et al. [1999]; Might et al. [2010]; Mi-

lanova [2007]; Milanova et al. [2014]; Oh et al. [2014]; Wei and Ryder [2015]; Wilson

and Lam [1995]). Presently, state-of-the-art context-sensitive analyses can be used in

mainstream compilers, as demonstrated by Lattner et al. [2007], or by Li et al. [2013].

Nevertheless, even though we have today the technology to retrieve context-sensitive

information from large programs with speed and accuracy, making effective use of this

information with the goal of optimizing programs still seems an unsolved problem.

Applying the results of context-sensitive analyses is a challenge. The usual ap-

proach towards this end is to perform some optimization once the context-sensitive

analysis shows that some code transformation is safe for every possible context. This

modus operandi misses one important opportunity for code improvement: specializa-

tion. If the compiler proves that an optimization is safe for certain contexts and unsafe

for others, then it can apply the optimization selectively, in contexts where it is safe

to do so. This is accomplished via function inlining or cloning (Das [2003]; Hall [1991];

Metzger and Stroud [1993]; Petrashko et al. [2016]; Cooper et al. [1993]). Nevertheless,

due to code size expansion, compilers either do not resort to this kind of specialization

or apply it in a very limited way. One of the key challenges preventing specialization is

the fact that not only the optimized functions must be replicated, but whole paths of

procedures within the program’s call graph. Such paths lead from the function where

information first becomes available (thus enabling the optimization) to the function

1



2 Chapter 1. Introduction

that is effectively transformed. Every function called in between must be either cloned

or inlined, as we further explain in Section 1.1.

However, the fact that mainstream compilers avoid applying context-sensitive

specialization does not mean that such approach is not in demand. For instance, just-

in-time compilers often perform context-sensitive specializations. In this case, context-

sensitive information is readily available, because the runtime engine has access to

the heap state once it moves from interpretation to compilation. Examples of code

specialization in the JIT world include constant propagation (Santos et al. [2013]),

type speculation (Gal et al. [2009]; Hackett and Guo [2012]), method resolution (Hölzle

et al. [1991]) and operation specialization (Wang et al. [2014]). For JIT compilers, code

size explosion is not a problem: if a new version of a specialized function needs to be

produced, its old binary is usually trashed. Because the discarded function will never

be called again, there is no need to keep clones of non-specialized functions just to single

out its calling context. Similarly, static compilers perform specialization in restricted

scenarios. For instance, GCC, at the -O3 optimization level, creates specialized versions

of a function if it can infer that some of its parameters are constant in specific contexts,

and it considers the tradeoff between speedup and code size increase to be worthwhile1.

Similarly, specialization of generic functions is a well-known optimization for languages

with parametric polymorphism (Petrashko et al. [2016]). In this paper, we present a

technique that makes this sort of context-sensitive specialization practical in general

for static compilers.

We tackle the excessive code size growth problem in context-sensitive optimiza-

tions by using an implicit state machine to track the calling context, minimizing code

duplication. By using our method, the number of function clones that must be cre-

ated is exactly the number of optimization opportunities found by the context-sensitive

analysis, regardless of the length of the call paths that must be taken to reach opti-

mized functions. Notice that the size of our state machine is still directly proportional

to the number of contexts in the target program. Thus, it can be exponential in

the program size. However, even in this worst-case scenario, it is a data structure

that grows, not code, contrary to traditional context-sensitive code specialization, as

performed by Hall [1991] or Das [2003], for instance. The generated code then uses

dynamic dispatch to decide which version of a function must be called at runtime by

querying the state machine. The overhead of such calls and state machine updates

only impacts relevant paths in the call graph: regular function calls are performed in

paths that do not contain optimized functions. Furthermore, our approach naturally

1https://gcc.gnu.org/svn/gcc/tags/gcc_6_3_0_release/gcc/ipa-cp.c
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handles recursion, making it applicable in situations in which function inlining could

not be used to produce specialized code.

To validate our ideas, we have implemented a context-sensitive version of inter-

procedural constant propagation in LLVM (Lattner and Adve [2004]). Our implementa-

tion clones every function that is amenable to code specialization. Typical clone-based

optimizations, in contrast, clone every function in contexts leading to specialized pro-

cedures. We have tested our technique on 191 benchmarks, taken from the LLVM test

suite and SPEC CPU2006. The executables produced with our approach are practically

as fast as those produced with full cloning. Programs optimized with our approach,

which introduces some runtime overhead, took 1517.4s seconds to run in total, versus

1515.4s seconds taken by the programs transformed with full cloning. This small differ-

ence indicates that the overhead imposed by our state machine is minimal. On the other

hand, its benefit, in terms of code size reduction, is significant. Our approach greatly

outperforms traditional cloning-based specialization: we add 33.37MB to the binaries

of the benchmarks in total, whereas full cloning uses 281.94MB of additional space (8.5

times more) to implement the same optimizations. This difference is significant, given

that the optimized binaries generated by LLVM without our transformations amount

to 107.9MB – thus, cloning-based optimization more than doubled the total size of the

binaries, whereas our approach implemented the exact same optimizations with a size

overhead of 30.9%.

Section 1.1 begins the discussion with important definitions that will set the

ground for the presentation of our work. Section 1.2 contains a brief presentation

of the central idea in the dissertation: a technique to implement context-sensitive

optimizations which creates a number of function clones proportional to the number

of routines that can be optimized, instead of to the size of the context call tree.

1.1 Motivation and preliminary definitions

The vast majority of programming languages provide developers with the abstraction of

functions (or procedures, subroutines, methods, etc) as an execution unit. Functions can

call one another, and even call themselves when recursion is supported. The execution

of the program is often supported by a call stack. A central concept for our work is

the notion of the calling context of an activation of a function f . Basically, the calling

context is a snapshot of the call stack when execution is at function f . Definition 1.1

formalizes this notion. We assume we can refer to the instructions in a program using

some consistent numbering scheme, which is typically trivial to produce (e.g. line
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numbers if we disallow having two statements on the same line).

Definition 1.1 (Contexts). A Context C of a program P is a sequence of integers that

index call instructions in P . We denote C by the sequence C = C1 → C2 → · · · → Cn.

The empty context, in which execution begins, is denoted by C∅. The function invoked

by Cn (the last call instruction of C) is the active function of C.

If a dataflow analysis propagates information across the boundaries of func-

tions, then it is called interprocedural. Interprocedural analyses can be either context-

insensitive or context-sensitive. This dissertation focuses on the latter. For an informal

definition of these families of dataflow analyses, we quote Khedker et al.:

“If the information discovered by an interprocedural analysis for a function

could vary from one calling context of the function to another, then the analysis

is context-sensitive. A context-insensitive analysis does not distinguish between

different calling contexts and computes the same information for all calling con-

texts of a function.” (Khedker et al. [2009])

Context-sensitive analyses are more precise than their context-insensitive coun-

terparts; however, they are also more expensive. This cost is high because the amount

of static information necessary to track different calling contexts can be exponential

in the size of non-recursive programs ([Nielson et al., 1999, Sec. 2.5.4]). Moreover, in

face of recursion, general context-sensitive analysis is undecidable, as per Reps [2000].

If the problem of statically obtaining context-sensitive information is difficult,

the implementation of compiler optimizations that use this information seems to be

even harder. The compiler literature describes two main ways to enable context-aware

optimizations: inlining (copying the callee’s body to the call site) and cloning (creating

a separate copy of a function to be called only from some contexts). Many industrial

compilers, such as gcc, LLVM, Open64, Jikes and Mozilla’s IonMonkey implement in-

lining at higher optimization levels. Cloning is also found in mainstream products.

For instance, gcc may clone a function when doing constant propagation if it judges

such optimization will be worthwhile. Moreover, Scala clones generic functions that

are marked with the @specialized annotation. The difficulty of applying either inlin-

ing or cloning stems from two problems: compilation-time and code-size explosion.

The number of calling contexts in a program can be exponential on its size, and it

is possible that each such context can be specialized in a different way. As a result,

the unrestricted application of any of these techniques might result in an optimized

program that is exponentially larger than its original version. Example 1.1 illustrates
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void a_0() { printf("%d\n", 0); }
void a_1() { printf("%d\n", 1); }
void a_2() { printf("%d\n", 2); }
void a_3() { printf("%d\n", 3); }
void b_0() {
  a_0();
  a_1();
}
void b_1() {
  a_2();
  a_3();
}
void c_0() {
  b_0();
  b_1();
}
int main() { c_0(); }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

main

c_0()

b_0() b_1()

a_0() a_1() a_2() a_3()

$> 0 $> 1 $> 2 $> 3

void a(int x) {
  printf("%d\n", x);
} 
void b(int x) {
  a(2*x);
  a(2*x + 1);
} 
void c(int x) {
  b(2*x);
  b(2*x + 1);
}
int main() {
  c(0);
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

12:main

13:c(0)

9:b(0) 10:b(1)

5:a(0) 6:a(1) 5:a(2) 6:a(3)

$> 0 $> 1 $> 2 $> 3

(a) (b) (c) (d)

Figure 1.1. (a) Program before context-sensitive optimization. (b) Calling
context tree of the original program. (c) Program after context-sensitive constant
propagation. (d) CCT of the optimized program.

this shortcoming. The example mentions the Calling Context Tree (CCT), a graphic

representation of every possible calling context in a program (Ausiello et al. [2012]).

Example 1.1. Figure 1.1 (a) shows a C program containing four different invocations

of function a. Context-sensitive constant propagation lets us replace each instance of

a’s argument x, with a constant. The resulting program appears in Figure 1.1 (c), and

its calling context tree appears in Figure 1.1 (d). Notice that a context-insensitive

analysis would not be able to carry out this transformation, as the value of x in lines

5 and 6 of Figure 1.1 (a) varies during program execution.

To implement interprocedural context-sensitive constant propagation in the pro-

gram of Figure 1.1 (a), we had to produce a clone of each function, for each calling

context where that function can be invoked. This fact is unfortunate, because the

actual effect of the optimization, e.g., the replacement of a’s argument x by a constant,

can only be observed in function a itself. The other clones only exist to distinguish

one context from the other. Henceforth, we shall call the optimized function a leaf,

and the call sites leading to its invocation the path. This example takes us to one of

the key shortcomings of existing context-sensitive optimizations: the number of clones

necessary to implement unrestricted context-sensitive optimizations is proportional to

the number of calling contexts, not to the number of instances of functions actually

optimized.

This shortcoming has motivated a long string of research to make the implementa-

tion of fully (unrestricted) context-sensitive optimizations a viable endeavor. Table 1.1
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Approach CS analysis? CS optimization? Clones needed

Classical optimizations No No -
Li et al. [2013] Yes No -
Full inlining Yes Yes One per calling context
Hall [1991] Yes Yes One per node in optimization path
This work Yes Yes One per optimized context

Table 1.1. Previous work in perspective, considering whether the analysis and
the optimization are context-sensitive (CS).

provides some perspective on previous attempts, contrasting them with this work. The

table distinguishes the static analysis that enables an optimization from the optimiza-

tion itself. The last four techniques rely on fully context-sensitive (CS) static analyses

to discover optimization opportunities. However, to avoid cloning too many functions,

they resort to different strategies. Li et al. [2013] uses context-sensitive information

to optimize functions context-insensitively. There is a large benefit in precision when

context is taken into consideration even in this scenario, as the authors show. We

shall say, in this case, that the static analysis is context-sensitive, but the optimization

is context-insensitive (CI). Such approach seems to be very popular, as we can infer

from the Related Work Section of Sridharan and Bodík [2006]. This is in contrast

with full inlining, which is the epitome of the context-sensitive optimization. However,

full inlining is not practical, due to code-size explosion. To deal with this problem,

Hall [1991] only clones paths that are bound to different static facts inferred by the

context-sensitive analysis. If every path leads to a different version of a leaf, then this

approach degenerates to full inlining. Finally, as we clarify in Section 1.2, our approach

only clones leaves. We might transform functions in the calling path; nevertheless, we

always end up with a single implementation of them.

1.2 State Machines to the Rescue

To circumvent the code-size explosion problem, we implement context-sensitive opti-

mizations via a combination of a state machine and dynamic dispatch. The guarantee

that this arrangement provides is stated in Definition 1.2, and illustrated in Exam-

ple 1.2.

Definition 1.2 (Guarantee). Let A be a context-sensitive analysis, and O be a context-

sensitive optimization. If P is a program, then, for every function F ∈ P , we let A(F,C)

be the facts that A infers about F at context C. We say that F is a leaf if A(F,C)

is non-trivial. Non-trivial static facts about a context C allow O to specialize F in

C, i.e., O(F,C) 6== F . Hence, leaf functions are amenable to optimization in some
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void* transition(int next) {
    switch(state) {
        case 2: {
            switch(next) {
                case 3:
                    state = 4;
                    return &a_0;
                case 4:
                    state = 5;
                    return &a_1;
                case -1:
                    state = 1;
                    return NULL;
                default: error();
            }
            ...
        }
    }
}

void a_0(int x) { printf(“%d\n”, 0); }
void a_1(int x) { printf(“%d\n”, 1); }
void a_2(int x) { printf(“%d\n”, 2); }
void a_3(int x) { printf(“%d\n”, 3); }
void b(int x) {
  { auto p = transition(3); p(x);
  transition(-1); }
  { auto p = transition(4); p(x);
  transition(-1); }
}
void c(int x) {
  { auto p = transition(7); b(x);
  transition(-1); }
  { auto p = transition(8); b(x);
  transition(-1); }
}
int main() {
  { auto p = transition(11); c(x);
    transition(-1);}
} (a) (b) (c)
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Figure 1.2. (a) Program after context-sensitive optimization. (b) State machine
that tracks context changes. (c) The transition function, which implements state
switching and selects which version of an optimized function to call.

contexts. To implement O, we shall produce one clone of F for each A(F,C) that yields

non-trivial static facts. We shall not create clones for contexts for which A provides

only trivial facts.

Example 1.2. Figure 1.2 (a) shows an optimized version of the program earlier seen

in Figure 1.1. The context-sensitive optimization is constant propagation. The calling

context tree has four leaves – the four different activations of function a – each one

receiving a different constant as argument. The program in Figure 1.2 (a) contains calls

to a function transition, which is in charge of controlling a state machine that tracks

calling contexts. Such state machine is shown in Figure 1.2 (b). At each state switch,

transition might return a pointer to the next function to be invoked. An example of

the code that performs this action appears in Figure 1.2 (c). We are showing the

implementation of state S2, that decides, among two optimized versions of function a,

(a_0 and a_1), which one should be invoked next.

The state machine lets us distinguish, at run-time, the different contexts that we

have analyzed statically. Before invoking a function f , we switch the program state,

passing appropriate selectors to the state machine. A new state change happens also

when f returns. Notice that function invocation is the sole event that determines a

change in context. When necessary to invoke a function g that we have been able to

optimize, the current state lets us determine which version of g should be called. To

implement this selection, we represent g as a pointer, whose target is defined by the

state machine. In other words, we are creating a virtual table that contains entries for
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every function that could be optimized due to context-sensitive information produced

statically. Introducing indirect function calls makes it harder for other analyses to

reason about call targets; however, in our implementation, we run our algorithm late

in the compiler’s pipeline of transformations, so that optimizations that depend on

such information have already taken place.

In Figure 1.2 (a) we have four clones of function a, the only routine that could

be transformed by our initial example of optimization: constant propagation. The

other functions, which do not present optimization opportunities, remain unchanged.

By implementing context-sensitive optimizations with a state machine, we ensure that

the number of clones is upper bounded by the number of disjoint code transformations

that can be performed. As we show in Section 4, in practice this number is much

smaller than the number of possible contexts that a static analysis must recognize.

However, we are not reducing the worst case bound on the number of clones: it is still

exponential in the program size. To see how this worst case emerges, it suffices to

consider a calling context tree in which every leaf represents a function amenable to a

different code transformation.

Chapter 2 puts our work in context with a review of previous related research

found in the literature, especially on the topics of context-sensitive analyses and code

specialization techniques. Chapter 3 provides a formal description of our approach,

including the semantics of MiniLog, a programming language with a minimum set of

constructs necessary to implement our method. It also contains correctness proofs,

showing that our state machines are equivalent to full code specialization. We have

implemented MiniLog in Prolog, so that one can validate our formal notation in an

actual interpreter. Chapter 4 describes the implementation of our technique in LLVM,

together with its empirical evaluation. To the best of our knowledge, our tool brings in

the first implementation of a fully context-sensitive code specialization strategy that

does not resort to code replication to track calling contexts. We have chosen constant

propagation as our example of context-sensitive code specialization because it is easy

to implement, and extensive: it is hard to think about a static optimization that gives

origin to a larger number of specialized functions. Finally, Chapter 5 concludes with

final remarks and directions for future work. This dissertation is concerned about the

following hypothesis:

Our research thesis: It is possible to make context-sensitive optimizations

practical by minimizing the code duplication currently necessary to imple-

ment them.



Chapter 2

Literature Review

This work touches three important subjects within compilers research: (a) the im-

plementation of context-sensitive analyses, (b) the specialization of program code

(context-sensitive or insensitive) and (c) the representation and tracking of calling con-

texts. Most of the previous works we found concern the use of context-sensitive anal-

yses in context-insensitive optimizations. In Section 2.1, we look in depth at context-

sensitive analyses, which brings into perspective different forms of representing calling

contexts and of making context-sensitivity scale to large programs. We also note that

not all such analyses can produce the information necessary for implementing the kind

of optimization we use in our work. Having gone through analyses, in Section 2.2 we

the specialization of program code for different calling contexts. Finally, our method

depends on a representation of calling contexts and the maintenance of the current

calling context during run-time. We have employed a DFA for this task. We compare

this choice with previous techniques in Section 2.3.

Even though these are well-known topics, being even discussed in general compiler

textbooks, we believe that our contribution is unique when compared to previous art.

To the best of our knowledge, there are no implementations of fully context-sensitive

optimizations; at least, not if we consider optimizations that can be widely applied – as

constant propagation, for instance. Nevertheless, mainstream compilers and research

artifacts do use context-sensitive information towards program improvement. To this

end, they often rely on some compromise between precision and applicability. In this

chapter, we discuss some of these compromises.

9
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2.1 Context-Sensitive Analyses

This dissertation provides a new method for implementing context-sensitive optimiza-

tions. Our method is analysis-agnostic: it assumes that context-sensitive analyses have

run and decided which optimizations should be applied in which calling contexts. This

section sheds more light on how such analyses have been developed in the literature.

It also helps put our method into perspective, since the input we assume in our algo-

rithm (optimizations for specific calling contexts) does not match the output of many

of the proposed analyses, which produce summaries for the information gathered about

functions when all calling contexts are aggregated. Rather, we expect the analyses to

produce specializations for specific calling contexts.

A vast body of previous work is concerned with answering queries related to the

program states that are possible in a certain procedure, either in a specific calling con-

text (context-sensitive analysis) or in any of them (context-insensitive). One important

classical example is the problem of pointer analysis, which is still the subject of much

of the current research in compilers. Pointer analysis consists of statically determining

which heap objects can a pointer variable point to in run-time. Particularly important

is being able to tell whether it is possible for two pointers to alias – i.e. to point to the

same object in run-time. Such information is important because some optimizations

can only be applied when the compiler can prove that pointers do not alias. Examples

of such optimizations are automatic parallelization and some cases of common sub-

expression elimination and partial redundancy elimination. The work of Alves et al.

[2015] showcases the practical usefulness of that information as an enabler of various

compiler optimizations.

One of the most basic representations of contexts used in context-sensitive anal-

yses and optimizations was introduced by Emami et al. [1994]. The authors propose

the use of the invocation graph, which they define as a graph where nodes are calling

contexts and edges represent function calls that take the program from one calling

context to another. They also statically determine which procedures each function

pointer can point to, in order to obtain a more precise invocation graph. Invocation

graphs allow the analysis to completely avoid summarizing information related to a

procedure among its various calling contexts. Indeed, the proposed analysis is very

precise. It computes points-to sets for each variable (a set of objects to which each

pointer can point to at run-time). The best possible size for a points-to set is 1, i.e.

the analysis statically discovers the only object that a pointer may reference. When

considering all benchmarks, the proposed analysis computed points-to sets that have

an average size of 1.13 – quite close to one. Such precision comes at a cost: the size of
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the invocation graph can be exponential in the depth of the call graph. Thus, in order

to scale to large programs, context-sensitive analyses usually resort to some sort of

summarization, without falling back to being interprocedural but context-insensitive

(i.e. not differentiating calling contexts at all). Emami et al. manage to run their

analysis on programs of up to 3,000 lines of C code.

A widely cited example of context-sensitive summarization was proposed by Wil-

son and Lam [1995]. This work uses interprocedural transfer functions for computing

points-to sets. However, for a given procedure, the proposed transfer functions do not

combine information coming from all calling contexts. Rather, the authors introduce

the notion of partial transfer functions (PTFs), that merge information from all con-

texts that have the same points-to sets for their parameters. The use of PTFs relies

on the fact that points-to sets tend to repeat between most contexts in pointer anal-

ysis problems. Therefore, while the number of different contexts can be very large,

it happens in practice that many contexts are associated with the same information

by the analysis. Thus, it can scale by not needing to compute information for every

distinct context, but only for every distinct realizable parameter points-to sets. This

approach was shown to scale better than that of Emami et al. [1994], as Wilson and

Lam [1995] runs their implementation on C programs with tens of thousands of lines

of code, having on the order of 108 distinct contexts.

One disadvantage of both cited approaches is that they need to explicitly repre-

sent either each context (Emami et al. [1994]) or each class of contexts with the same

points-to information (Wilson and Lam [1995]). While this can initially seem as an

unavoidable burden of context-sensitive analyses, the scalability of points-to analysis

was taken to a new level by representing contexts in a remarkable way. Whaley and

Lam [2004] show how to represent context-sensitive points-to analysis using Datalog,

a logic programming language very similar to Prolog. They develop Datalog programs

that take input relations describing simple context-insensitive static facts (such as “v

is assigned a newly allocated heap object”, and “v is passed as parameter p of func-

tion f ”). The program uses logic programming rules to deduce points-to sets in a

context-sensitive way using these facts. An example of such Datalog rule in simple

English would be: “If v has points-to set S1 in context C1 and v is passed to parameter

p from function f called from C1, then the points-to set of parameter p in context

C2 = C1 → f includes the points-to set of variable v in context C1”. The main al-

gorithm consists of processing such rules iteratively until no new information can be

derived. The advantage of this approach is that Datalog programs can be translated

to operations from relational algebra, which operate on entire relations, not individ-

ual tuples. Moreover, relational algebra operations can be efficiently translated into
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operations on Binary Decision Diagrams (BDDs), a compact data structure for rep-

resenting binary functions. The authors use both facts in order to compute points-to

sets for all distinct contexts (ignoring recursion) without explicitly even listing all of

them, but instead by operating on BDDs. After that, queries for explicit contexts can

be answered efficiently. BDDs implicitly use the commonalities in the representation

of contexts for manipulating large numbers of them at once, instead of individually.

This approach has made fully context-sensitive points-to analysis possible on programs

significantly larger than previous works, as the authors successfully run their imple-

mentation, named bddbddb on Java programs with up to 1014 distinct contexts, with

their analyses running in less than a minute for large benchmarks. Zhu and Calman

[2004] and Lhoták and Hendren [2006] are two other works that explore the usage of

BDDs for representing calling contexts.

The works of Emami et al. [1994], Wilson and Lam [1995] and Whaley and Lam

[2004] are examples of inclusion-based points-to analyses. This is one general method of

handling context-sensitive information, in which each context-sensitive entity (pointer

and heap object, in the case of points-to analyses) has its own associated information

set, and relations among entities in different contexts are derived from the program

and the call graph. While very precise, it is still hard to scale such analyses to the

requirements of industrial compilers. Even bddbddb can take almost one minute for

large benchmarks, which is suitable from a research perspective but still more than

what compilers such as GCC or LLVM are willing to tolerate. An alternative to

inclusion-based analyses are the unification-based approaches. These analyses collapse

different contexts into one single information set when it makes sense for the particular

application they are used for. For example, in pointer analyses, the common practice

for unification-based algorithms is to derive that the points-to sets of variables a and

b are equal when an assignment such as “a = b” is found in the program. Thus,

henceforth it would treat a and b as the same variable (i.e. it would unify a and b),

and any new object either a or b are discovered to point to would figure in the points-to

set associated with both variables. In contrast, an inclusion-based analysis would only

derive the fact that the points-to set of b is a subset of the points-to set of a (since

a can receive any value that comes from b, but the same is not true since b is not

assigned the value of a). Inclusion-based analyses are thus more precise, but also more

expensive.

Unification-based context-sensitivity, on the other hand, has been shown to scale

to large programs under the time and memory constraints industrial compilers have

to meet. One of the most notable examples (for being included in LLVM) is the work
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of Lattner et al. [2007]. The authors present a context and field-sensitive1 unification-

based pointer analysis that was able to scale to very large programs, such as the

Linux kernel, in under 3 seconds – a fraction of the time GCC takes to compile this

program (with 355K lines of code). Their algorithm is based on first building a local

graph for each function that represents intraprocedural points-to relations. Then, two

interprocedural passes take place in sequence. First, a bottom-up pass takes the graphs

from callers and merges them into callees. Then, a top-down pass merges the graphs

from callees into callers. The analysis is then done, having as a result still one graph for

each procedure, but one that takes into account the full depth of calls that are made

from the function onwards. While their approach (called Data Structure Analysis)

is highly scalable, note that the term context-sensitive has different implications in

Lattner et al. [2007] when compared to Emami et al. [1994] or Whaley and Lam [2004].

Data Structure Analysis is not able to answer queries as precisely as bddbddb. In

particular, it cannot reason about arbitrary calling contexts. Rather, for one given

function, it will unify the points-to information from all calling paths that reach that

function, combine that with information from each callee and to the local points-to

relations, generating a procedure-level summary. However, context is still taken into

consideration since each call site causes the graphs of caller and callee to be merged

in a different way. This approach has shown to be precise when compared to other

context-insensitive pointer analyses. The authors do not compare to context-sensitive

alternatives, likely because an LLVM implementation of them is not available.

Unification and inclusion are not the only class of approaches for context-

sensitivity found in the literature. A third approach is based on graph reachability,

first presented by Reps et al. [1995]. Rather than pre-computing points-to sets for each

variable, queries are answered precisely and on-the-fly in polynomial time. Basically,

graph reachability-based algorithms label the edges of the call graph with call site iden-

tifiers. When given a query such as “is the value of pointer a ever assigned to b?”, the

algorithm will find a path on the labeled call graph from “a” to “b” that has matching

“call” and “return” labels. For example, if function f calls function g in a given line L

of the program, the call graph will have an edge from f to g with label L. A valid path

from a to b that answers the given query must then traverse the edge labeled L twice:

one for the call, and one for the corresponding return. A naïve algorithm that does

not consider such constraint could possibly find a path that traverses that edge only

once (for the call), then traverses an edge to another function h that is called from g,

and then directly returns to f through an f − −h edge. Such path, however, would

1A field-sensitive analysis differentiates between different fields of the same structure or object.
Thus, if an object has two pointer fields, they may have distinct points-to sets associated with them.
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be impossible in an actual program execution , since calls and returns to not match.

On the other hand, a proper algorithm restricts its search to paths that belong to a

certain context-free language (CFL) that matches call and returns labels. Thus, such

analyses are usually known as CFL-based.

Using a lossless reduction to a graph reachability problem, Reps [2000] goes fur-

ther to show that in general, data dependence analysis is undecidable. That means it is

impossible to have a 100% precise, deterministic algorithm that is able to tell whether

the value of one program variable depends, directly or indirectly, on the value of an-

other variable. While some approaches claim to have an exact and efficient algorithm

for data dependence testing, they all refer to the context of a single procedure, when

considered out of context Maydan et al. [1991]. Thus, they are not context-sensitive,

and the undecidability result of Reps [2000] does not apply to them.

Li et al. [2013] is an example of a recent application of a CFL-based algorithm to

pointer analysis. The authors propose a context- and field-sensitive modeling based on

the Value Flow Graph (VFG), a data structure they introduce. The VFG relates local

and global variables, as well as structure fields, using assignment statements found

in the program. Besides these intraprocedural relations, interprocedural edges from

formal parameters and actual parameters are derived from function call sites. Their

algorithm clones the VFGs for different contexts when the information at each context

may be computed differently. On the other hand, when it can prove the information in

two contexts will always be the same, they will share their VFGs. Their approach is as

precise as inlining all function calls. Key to their scalability is a heuristic they use to

limit the number of clones created: their set a hard limit on how many clones per calling

context can be generated. With this cap, their implementation scales to all SPEC

CPU2006 benchmarks; however, without it, it cannot run on the largest benchmarks.

Even with this limit, this CFL-based approach is significantly more precise than Data

Structure Analysis (up to 20x in some cases). Still, it takes a few minutes to run

and/or uses more than 1GB of memory in the largest programs in CPU2006, which is

considered unsuitable for adoption by traditional industrial compilers.

All these analyses can be used to provide information for later optimizations. In

many cases, context-sensitivity is used to improve the precision of the information that

context-insensitive optimizations have access to. For example, the points-to analysis of

Lattner et al. [2007] ends up computing a single unified graph for each function. This

graph summarizes information taken from all calling contexts that reach that function.

However, because it is constructed taking callers and callees into consideration, it is

significantly more precise than what an equivalent graph constructed using only locally

available information would provide. Also, it is more powerful than interprocedural
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context-insensitive analyses since call paths are taken into account, even though in

a limited way because unification takes place. However, because the output of such

analysis is function-level information, even if the analysis in Lattner et al. [2007] is

context-sensitive, it is not suitable for (or aimed at) implementing a context-sensitive

optimization. In this dissertation, we present a method for implementing context-

sensitive optimizations of a form that assumes that different calling contexts should

be optimized differently. It is obviously not necessary that all distinct contexts are

optimized in order to use the method we present in Chapter 3, since the number of

contexts can be exponential in program size and that would mean we cannot inherently

scale to even moderate-sized programs. However, our method assumes that distinct

contexts have different information associated with them, raising the possibility of

specializing the function for some contexts based on facts discovered by the analyses.

Thus, some of the presented analyses are suitable to feed our method, and some are

not.

In particular, we first represent contexts and optimized contexts with a structure

that is similar to Emami’s Invocation Graph (Emami et al. [1994]). The Optimization

Tree we define in Chapter 3 is a subgraph of the Invocation Graph. We then use a

finite state machine to represent transitions between calling contexts, similar to Reps

[1997, 2000].

As a last note on terminology, many analyses use the term heap cloning, or

just cloning to refer to the fact that heap objects from different calling contexts have

different information sets associated with them. For example, in Lattner et al. [2007]

and Li et al. [2013], if two local variables are assigned the return value of two invocations

of some function f , and f returns the result of calling malloc() (i.e. a newly allocated

memory region), such variables will be pointed to two different heap objects, since the

algorithms differentiate between where function f was called in the code. Thus, these

analyses are said to clone the representation of the object returned by f when f is

reached from different paths. However, that is different from cloning in the realm of

code specialization, which we discuss next, in which the term refers to the creation

of copies of a procedure’s code that may be specialized differently, and that will be

present in the final generated binary.

2.2 Specialization of program code

One way of enabling aggressive compiler optimizations is to specialize program code

for specific cases. Function cloning is a well-known way to enable code specializa-
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tion. Compiler textbooks, namely Kennedy’s [Kennedy and Allen, 2002, pp.594] and

Grune’s [Grune et al., 2012, pp.325], contain brief descriptions of this technique. We

recognize three different ways to use function cloning towards the production of spe-

cialized code: static, dynamic and hybrid. These approaches depend on how clones are

produced, and when particular versions are chosen. This might happen, for instance,

if the compiler discovers some information that holds in a specific calling context (e.g.

some function parameter is constant known at compile time) but not in all others; then,

it can produce a special version of the active function to be called only in that calling

context (e.g. a clone in which the parameter has been replaced by its known constant

value). This is what we call static specialization and discuss in Section 2.2.1. Another

possibility is that the compiler generates specialized code that is optimized under a

given assumption, and then checks for that assumption during run-time before running

into the specialized code. We call this hybrid specialization, since it involves run-time

decisions and static code generation. We review hybrid techniques in Section 2.2.2.

Finally, just-in-time compilers perform code specialization during running time, after

observing the program’s behavior. We review such approach, dynamic specialization,

in Section 2.2.3.

2.2.1 Static Specialization

Static code specialization is the oldest and most well-known technique, among the three

categories that we have listed. Two techniques have been employed to specialize code in

order to take advantage of information available only in some calling contexts: inlining

and cloning. Both methods are based on creating specialized copies of a function’s

code. Inlining consists of replacing a function call by a copy of the body of the called

function. After inlining has been performed, the compiler can specialize the inlined

procedure using locally-available facts. Very similarly, cloning involves the creation of

a copy of a function that is only called in contexts that share certain interprocedural

information. For example, if a given function f takes two integer parameters x and y,

and in many call sites the constant value 1 is passed as the value of x, the compiler

may create a clone of f where that parameter is replaced by a constant, and further

optimizations (such as constant propagation) can then take place. The advantage of

cloning over inlining is that different calling contexts can call the same clone when the

information available in them is equivalent for the purposes of optimization. Inlining,

on the other hand, will always create a distinct copy of the code for each call site in

which the procedure is inlined. On its positive side, inlining removes the function call

overhead, while cloning does not.
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The most extensive discussion about inlining and clone-based optimizations that

we are aware of can be found in Mary Hall’s Ph.D. dissertation (Hall [1991]). Hall

shows that unrestricted inlining and cloning are usually detrimental to program per-

formance, even when they enable many optimization opportunities. One key factor is

that programs tend to get significantly larger when aggressive cloning and/or inlining

are used, which in turn worsens the locality of reference of the binary, and instruc-

tion cache misses can hurt performance significantly. Based on this observation, Hall

developed an interprocedural constant propagation algorithm that performs cloning

only when the target calling context is likely to have a large pay-off optimization from

the parameters to be turned into constants. She managed to get significant perfor-

mance improvements while minimizing code size growth. Because of interactions with

constant propagation, which we have also observed in our experiments, cloning and

inlining decreased the final binary size in some benchmarks in cases in which they

allowed aggressive dead code elimination.

Nowadays, compilers seldom use cloning, while restricted versions of inlining are

common, especially combined with cheap heuristics (Cavazos and O’Boyle [2005]).

Cloning is the default choice to produce specialized versions of functions that use

parametric polymorphism. Stucki and Ureche [2013] have shown that performance

improvements of up to 30x are possible when generic functions are specialized to par-

ticular types. Other examples along similar direction include Dragos and Odersky

[2009], Sallenave and Ducournau [2012], and Petrashko et al. [2016].

2.2.2 Hybrid Specialization

Hybrid specialization combines static and dynamic information to customize program

parts to certain inputs or certain events. For instance, Samadi et al. [2012] and Tian

et al. [2011] generate programs containing distinct routines to handle different kinds

of inputs. Run-time checks are then employed to select which version of a procedure

should be called before its invocation. Another example of hybrid specialization based

on cloning concerns the line of work known as Run-time Pointer Disambiguation (Alves

et al. [2015]; Sperle Campos et al. [2016]; Rus et al. [2002]). This technique consists of

producing run-time checks that, if satisfied, are enough to prove the absence of aliasing

between pointers. Such guards might lead to specialized versions of functions, which

have been compiled under the assumption that pointer arguments cannot alias. These

optimized functions can be often amenable to vectorization and enable opportunities for

classical optimizations such as common sub-expression elimination, which can benefit

from aliasing information. The authors achieve performance gains of up to 8.7% on
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top of LLVM -O3 on the Polybench benchmark suite.

The methods presented in this dissertation fall into the hybrid category. We

statically generate a state machine with information about which optimizations can be

applied in relevant calling contexts. This state machine is then updated and queried

during program executed. Thus, we also combine static and dynamic information. We

do so with a novel purpose: we have not found any previous work which uses context

tracking in order to select program optimizations during run-time.

2.2.3 Fully Dynamic Function Specialization

All the code specialization techniques seen previously are static: information is collected

statically by the compiler, and then used to produce customized versions of functions.

When the selection of statically-generated function versions is performed differentiates

static and hybrid approaches. On the other end of the spectrum, fully dynamic code

specialization is the norm in just-in-time compilers (JITs) (Gal et al. [2009]; Hölzle

et al. [1991]; Hackett and Guo [2012]; Santos et al. [2013]). For instance, Santos et

al. (Santos et al. [2013]) have proposed to generate specialized routines based on the

run-time value of the arguments passed to JavaScript functions. Since compilation

happens during run-time, the JIT can observe the actual values of parameters that

are frequently passed to functions and specialize based on this information, which is

unavailable at compile time.

Dynamic specialization is key in achieving good performance in dynamically-

typed languages, since the fact that types are not known statically hinders most tra-

ditional compiler optimizations. One example is the work of Ahn et al. [2014]. The

authors propose to compile JavaScript functions to machine code assuming the param-

eters have the types they observed in the first calls to the function, if variations in such

types do not happen. The generated binary code includes run-time checks that assert

the run-time types match the types assumed during compilation; if such checks fail,

execution falls back to the interpreter, otherwise the specialized function is executed.

This technique enabled an average performance gain of 36% on a benchmark suite

formed of real Web sites, on top of Chrome’s V8 compiler (which today implements

this optimization).

2.3 Calling Context Representation and Tracking

The methods for implementing context-sensitive optimizations we introduce in Chap-

ter 3 depend on a statically computed finite machine for representing calling contexts
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and transitions caused by function calls. This DFA is then updated at run-time to

keep track of which calling context is currently active at any given moment. Queries

to the state machine decide which version of a specialized function must be called in

the current context. In this section, we compare this approach to other methods found

in the literature.

Context-sensitive specialization has traditionally been performed using either

function cloning or inlining (Hall [1991]). Both approaches share two key charac-

teristics. First, copies of the code are used to keep track of calling contexts: the code is

modified such that a given section is only executed in one calling context. This makes

context-tracking totally implicit at running time, incurring no overhead. However, the

code size may grow exponentially. Hall [1991] shows that one must be careful when us-

ing either method with the goal of optimizing programs, since the benefit of producing

a specialized function may not pay off given the running time cost of growing binary

size and hurting spatial locality.

Clients of context-sensitive information also include dynamic bug detection anal-

yses. Tools such as data race or memory leak detectors commonly need to associate

heap objects with calling contexts. For instance, when a staleness-based memory leak

detector marks an object as stale (i.e. it has not been accessed for long), it usually

presents to the developer the calling context in which the object was allocated. In order

to accomplish this, the tool needs to dynamically maintain a data structure which rep-

resents calling contexts. A traditional choice has been the Calling Context Tree (CCT),

in which nodes represent contexts and a callee context is a child of its caller (Sarim-

bekov et al. [2011]; Spivey [2004]). On every function call and return, updates to CCT

nodes are performed. A representation that has been shown to outperform the Calling

Context Tree is the Calling Context Uptree (CCU), in which node updates are un-

needed (Huang and Bond [2013]). In CCU, the edges go from the callee to the caller;

thus, the caller’s node is not updated when a function is called. These techniques,

however, are too expensive to be used for the implementation of context-sensitive op-

timizations. They require memory allocations every time a function is called, and

even the CCU incurs an overhead ranging from 28 to 67% on instrumented programs.

However, it is also employed in a class of problems which has more requirements than

context-sensitive specialization. For instance, since it cannot predict when the client

analysis will request calling contexts, it must track all context transitions. In our case,

since we know beforehand which contexts are optimized, we can restrict tracking only

to those calling contexts which can eventually reach an optimized context, adding no

overhead to the execution outside that scope.

Another important class of clients of calling context information is profiling tools,
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since full calling contexts are more useful than static source code locations. Ball and

Larus [1996] proposed a scheme for numbering paths inside a function such that it is

efficient to keep track of which control-flow path a function executed with minimal

instrumentation. Bond and McKinley [2007] builds on the same idea to attribute

numbers to calling contexts, maintaining dynamic context information with only a 3%

overhead on average. These approaches are, however, probabilistic. For instance, in

Bond’s numbering scheme, there may be collisions in the computed context number

during run-time in such a way that the calling context becomes ambiguous if we only

consider the current context’s number. In profiling, that issue is irrelevant as long

as the probability of collisions does not impact the quality of the sampling. When

implementing optimizations, however, any error is intolerable: optimizations cannot

afford to change the program’s semantics independently of how infrequently they do

so.



Chapter 3

Implementation of

Context-Sensitive Optimizations

This chapter explains our method for implementing context-sensitive optimizations.

In Section 3.1 we introduce MiniLog, a core programming language that gives us the

necessary syntax and semantics to explain our ideas. We have implemented MiniLog

in Prolog, and have used this implementation to design the algorithms that we present

here. Our code transformation engine is parameterized by a context-sensitive optimiza-

tion, a notion formally defined in Section 3.2. Given such an optimization, Algorithm 2

converts a program Porig into an optimized program Pmin . This new program relies

on a finite state machine to decide which functions are called at each invocation site.

The generation of this DFA is the subject of Section 3.5. Section 3.6 states a few

properties of our approach, including its correctness guarantees. Section 3.7 describes

an alternative, equivalent program transformation algorithm that uses the same un-

derlying DFA, but implements it differently, using slightly more space but generating

faster code. Finally, Section 3.8 provides details of our implementation in LLVM.

3.1 MiniLog: Syntax and Semantics

Figure 3.2 describes the syntax of MiniLog. MiniLog has statically-scoped local vari-

ables, simple arithmetic and boolean expressions, first-class functions, and conditionals.

The only type is integer. The only control flow syntax consists of if-then-else blocks.

Iteration is achieved through recursive calls. Notice that the need for recursion, com-

bined with static scoping, requires us special syntax to implement recursive functions,

similarly to the fun keyword of ML, or the letrec keyword of Scheme. We shall omit

this special syntax from our presentation, in order to keep MiniLog’s definition simple.

21
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function(a, x,
  print(x);
);

function(b, x,
  call(a, 2*x);
  call(a, 2*x + 1);
);

function(c, x,
  call(b, 2*x);
  call(b, input);
);

call(c, 0);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) 15 (b)

S∅

S1

S2

S3 S4

15

11

76

-1

-1

-1-1

C∅

15:C1

11:C2 12:C5

6:C3 7:C4

$> 0 $> 1

6:C6 7:C7

$> ? $> ? (b)

Figure 3.1. (a) Modified version of program seen in Figure 1.1. The unknown
variable input, in line 12, prevents constant propagation from optimizing the whole
context tree. (b) Calling Context Tree of the program. We have highlighted
the Optimization Tree (see Definition 3.3). (c) State Machine produced for this
example. Each context in the optimization tree creates a new state.

Nevertheless, we emphasize that MiniLog’s actual implementation, as well as all the

developments in the rest of our work, handle recursive functions. In Section 3.2 we

shall return to some of this syntax, the forward declaration, which is necessary for the

implementation of our state machines.

Example 3.1. Figure 3.1 (a) shows our original example, introduced in Figure 1.1

(b), implemented in MiniLog. The expression 2*x+1 (originally in line 12 of Figure 1.1

(b)) was replaced by input, to prevent constant propagation. This modification will let

us explain how we combine optimized and non-optimized program parts. Notice that

Figure 3.2 does not define the syntax of logic and arithmetic expressions, for the sake

of space. Nevertheless, we shall assume that such expressions exist, and shall use them

freely, as we do in lines 6, 7, and 11 of Figure 3.1 (a).

Figure 3.3 presents the operational semantics of MiniLog. The state of a MiniLog

program is given by an environment (Env: V 7→ N) and a store (Sto: N 7→ N). The

environment maps names to integer numbers representing memory addresses. The

store maps these addresses to values. We opted to separate environment from store to

be able to emulate pointers in MiniLog. The result of evaluating a program, under some

environment and store, is a triple formed by a new environment, a new store, and an

output. The output is a list of integers, which are produced during the execution of a

program. We represent lists using Prolog’s syntax, e.g., [3, 1, 4]. The output list is the

only visible outcome produced by the execution of a program. Thus, two programs, P1

and P2 are said to be equivalent if, given the same pair environment/store, they always

produce the same output.
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Values:
V ∈ {. . . ,−1, 0, 1, 2, . . .}

exp(V )

Names:
A ∈ (a . . . zA . . . Z)∗

name(A)

Variables:
name(A)

exp(A)

Instructions:
instruction(I)

program(I; )

Programs:
instruction(I) program(P )

program(I;P )

Output:
exp(E)

instruction(print(E))

Arithmetics:
exp(E1) exp(E2)

exp(E1 ⊕ E2),⊕ ∈ {+,−,×, etc}

Allocation:
name(A) exp(E)

instruction(set(A,E))

Invocation:
name(Name) name(Arg) exp(Ret)

instruction(call(Name,Arg,Ret))

Assignment:
name(A) exp(E)

instruction(def(A,E))

Function:
name(Name) name(Arg) program(Body)

instruction(function(Name,Arg,Body))

Return:
exp(E)

instruction(return(E))

Conditional:
exp(E) program(P1) program(P2)

instruction(ifelse(E,P1, P2))

Figure 3.2. The Syntax of MiniLog.
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[chain]:

〈P1, Env, Sto〉 →
(

Env′, Sto′,O1

)

〈

P2, Env
′, Sto′

〉

→
(

Env′′, Sto′′,O2

)

O = append(O1,O2)

〈P1;P2, Env, Sto〉 →
(

Env′′, Sto′′,O
)

[def]:
E(E, Env, Sto) = V (Env′, Sto′) = DefV ar(N,V, Env, Sto)

〈def(N,E), Env, Sto〉 →
(

Env′, Sto′, []
)

[set]:
E(E, Env, Sto) = V Sto′ = SetV ar(N,V, Env, Sto)

〈set(N,E), Env, Sto〉 →
(

Env, Sto′, []
)

[print]:
E(E, Env, Sto) = V

〈print(E), Env, Sto〉 → (Env, Sto, [V ])

[if-true]:
B(C, Env, Sto) = true 〈PT , Env, Sto〉 →

(

Env′, Sto′,O
)

〈ifelse(C,PT , PE), Env, Sto〉 →
(

Env, Sto′,O
)

[if-false]:
B(C, Env, Sto) = false 〈PE , Env, Sto〉 →

(

Env′, Sto′,O
)

〈ifelse(C,PT , PE), Env, Sto〉 →
(

Env, Sto′,O
)

[function]:
〈def(F,Aformal, B), Env, Sto〉 →

(

Env′, Sto′, []
)

〈function(F,Aformal, B), Env, Sto〉 →
(

Env′, Sto′, []
)

[call]:

E(N, Env, Sto) = (Aformal, Body, Env′)
〈

def(Aformal, Aactual), Env
′, Sto

〉

→
(

Env′′, Sto′′, []
)

〈

Body, Env′′, Sto′′
〉

→
(

Env′′′, Sto′′′,O
)

〈call(N,Aactual), Env, Sto〉 →
(

Env, Sto′′′,O
)

Figure 3.3. MiniLog Operational Semantics.

This semantics uses the auxiliary functions shown in Figure 3.4. We use E(E, S)

to denote the evaluation of expression E under scope S. Arithmetic expressions in

MiniLog allow addition (e.g. add(x, y) = x + y) and negation (e.g. neg(x) = −x) of

integer constants and variables, and evaluate to an integer. Boolean expressions also

operate on integers, following the common convention of considering 0 as the only false

value, and all other values as true. Boolean expressions consist of equality compar-

isons (e.g. eq(x, y) = 1 if and only if x = y, 0 otherwise) and logical conjunction (e.g.

and(x, y) = x ∧ y). Other common operations can be composed out of these two.

Given MiniLog’s syntax, Definition 3.1 revisits the concept of Context-Sensitive

Optimization. According to this definition, if a compiler implements a context-sensitive

optimization O, then whenever context c becomes active during the execution of the

program, the body of the active function is O(c). Put it in another way, a context-

sensitive optimization maps program contexts to clones of specialized functions. Ex-
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Next(Env) =

{

1 if Env = []
1 +Next(Env′) if Env = [(N,L), Env′]

DefV ar(N,V, Env, Sto) = (Env′, Sto′)
where

Env′ = [(N,Next(Env)) , Env]
Sto′ = [(Next(Env), V ) , Sto]

Location(N, Env) =

{

L if Env = [(N,L) , Env′]
Location(N, Env′) if Env = [(N ′, L) , Env′] , N 6= N ′

SetV ar(N,V, Env, Sto) = (Env, Sto′) [(Location(N, Env), V ) , Sto]

Figure 3.4. Functions used to define scope-related operations in MiniLog’s se-
mantics.

ample 3.2 illustrates these observations.

Definition 3.1 (Context-Sensitive Optimization in MiniLog). A context-sensitive op-

timization O : Context 7→ P is a partial function that maps an optimizable context to

the optimized body of the function that should run in that context. In this definition,

we let program(P ) be a syntactically valid MiniLog program.

Example 3.2. Figure 3.1 (b) shows the calling context tree of the program that ap-

pears in Figure 3.1 (a). We have two contexts which are amenable to be optimized by

constant propagation: C0 = c∅ → c1 → c2 → c3, and C1 = c∅ → c1 → c2 → c4. In the

first context, C0, we can replace the call of function a by a statement that prints the

constant 0. In C1, we can do the same, but for the constant 1. Thus, we have that

O(C0) = function(a_0, x, print(0);), and that O(C1) = function(a_1, x, print(1);).

3.2 Optimization Trees

In this section, we present our main contribution: a method for generating minimal

code that implements a given context-sensitive optimization (Definition 3.1). We use

MiniLog for our presentation. We assume the instructions in a program P are numbered,

in such a way that every instruction has a unique number, and we refer to the i-th

instruction in P as Pi. Also, for this section, we assume that there is a single static path

of call sites that reaches each optimized context. This class of contexts is formalized

in Definition 3.2.
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Definition 3.2 (Complete contexts). A context C is a complete context of a MiniLog

program P if its first call instruction not contained in the body of any function

declaration1.

Example 3.3. The context formed by the calls at lines 15, 11, 6, reached during the

execution of the program in Figure 3.1 is complete, as its first call instruction (at line

15) lays outside the scope of any other function.

We can widen this definition, allowing contexts to denote only a suffix of the

required sequence of calls needed to activate a function. In Section 3.8, we discuss

how we have adapted the presented solution to accommodate contexts which are not

complete (partial contexts) in an efficient manner. However, for the sake of simplicity,

our next developments assume only complete contexts.

Now we move on to define Optimization Trees. This data structure shall be

necessary to guide the algorithm that implements our context-sensitive optimizations.

Definition 3.3 (Optimization Trees). Let O be a context-sensitive optimization for

a program P , and D(O) be the domain of O, i.e., the contexts for which some opti-

mization applies. An optimization tree T (O) is a graphic interpretation of D(O). Each

vertex of this tree represents a distinct context. Edges correspond to call instructions.

The root of the tree is the empty context C∅, where execution begins.

The Optimization Tree is a subgraph of the Calling Context Tree, and its nodes

are all contexts that are either optimized by O or that lie on a path to an optimized

context. Example 3.4 sheds some light on this definition.

Example 3.4. We have highlighted, in Figure 3.1 (b), the optimization tree that exists

embedded in the calling context tree of the program in Figure 3.1 (a).

The nodes of an Optimization Tree are all contexts which are relevant to the

application of the optimization. Because not only the optimized contexts (those in

D(O)), but also all their prefixes are in T (O), a call instruction in the original program

P may only cause the calling context to change inside T (O) or to leave T (O). However,

once the current context is not in T (O), no sequence of further call instructions can

bring the program back to a context in T (O) – return operations, on the other hand,

can. Theorem 3.1 summarizes this result.

1This definition refers to MiniLog specifically. In languages where the entry-point is the main

function, as in C or Java, a complete context would be a context where the first call instruction is in
function main.
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Theorem 3.1. Let P be a MiniLog program. Let C → C ′ be a transition between two

calling contexts that may happen when the execution of P reaches a call instruction

Pi. For all possible C and C ′, exactly one of the following three cases is true:

1. Both C and C ′ are nodes of T (O);

2. C is a node of T (O), and C ′ is not;

3. Neither C nor C ′ are nodes of T (O).

Proof. We proceed by contradiction. Suppose that the execution of P may

transition from a calling context C to some other context C ′ such that C is not

a node of T (O) but C ′ is. If such transition is possible, context C ′ must consist

of exactly C with one appended call instruction: Pi. Thus, C must be a prefix

of C ′. By hypothesis, C ′ is a node of T (O), and by the construction of T (O) so

must be C, which is a contradiction. Therefore, such case is impossible.

3.3 Cloning-based Code Generation

Given a context-sensitive optimization O and its corresponding Optimization Tree

T (O) to be applied to a program P , one classical method for generating a program

P ′ that implements O is solely based on creating specialized function clones for each

context in T (O) (Hall [1991]). We start in top-level function calls (those not contained

in the body of any function). Each such call that corresponds to an edge in T (O)

leaving the root either leads to an optimized context or is contained in a path that

leads to one. If the call directly leads to an optimized context, then we declare the

specialized function given by O for that context and change the call target so that the

optimized procedure is called. Otherwise, we declare a clone of the target function and

proceed recursively transforming the body of the newly created clone.

Algorithm 1 formalizes this method, which we call Full Cloning. We use this

classical technique as a baseline in our experiments in Chapter 4. It iterates over

all optimized contexts, i.e. those in D(O). For each such context, it then goes over

the calls that lead to that context. When a call reaches an optimized context, it

replaces the target of the call by the optimized function. This happens in the end of

optimization paths. When the next context in the path is not optimized, it checks

whether a clone has already been created for the next context. If so, then the path

has already been modified up to the current call. Otherwise, the algorithm creates a

proper clone and modifies the function call leading to the next context to call the clone

instead. Example 3.5 shows an example of the output of Full Cloning.
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Data: Program P , Context-sensitive optimization O

Result: Optimized program OptP

OptP ← P ;

/* Map from context to specialized clone (initially empty). */

ContextToClone← new Map Context 7→ Function;

/* Iterate over optimized contexts. */

forall Context ∈ D(O) do

/* Iterate over edges in the context’s call path. */

CurrentContext← 〈〉;
for i ∈ 1...|Context| do

NextContext← Concat(CurrentContext, Context[i]);
/* If NextContext is optimized, declare the optimized

function and replace the call target. */

if NextContext ∈ D(O) then

Target← O(NextContext);
TargetName← ContextName(NextContext);
OptP ←
InsertFunctionDeclaration(OptP, TargetName, Target);
TransitionCall ← GetCall(OptP, CurrentContext→
NextContext);
OptP ←
ReplaceCallTarget(OptP, TransitionCall, TargetName);

end

else

/* Otherwise, replace the call target by a clone.

First, ensure a proper clone has been created. */

if NextContext 6∈ ContextToClone then

Clone← CloneFunction(ActiveFunction(NextContext);
ContextToClone[NextContext]← Clone;

TargetName← ContextName(NextContext);
OptP ←
InsertFunctionDeclaration(OptP, TargetName,Clone);

end

TargetName← ContextName(NextContext);
TransitionCall ← GetCall(OptP, CurrentContext→
NextContext);
OptP ←
ReplaceCallTarget(OptP, TransitionCall, TargetName);

end

CurrentContext← NextContext;

end

end

Algorithm 1: The classical Full Cloning method for implementing a context-

sensitive optimization.
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Example 3.5. Figure 3.5 shows an example of the application of Full Cloning. In this

case, the Optimization Tree in Figure 3.1(b) is applied to the program in Figure 3.1(a).

Note that the original function c is never called in this program. In our actual imple-

mentation, LLVM gets rid of this procedure from the output binary when performing

global dead code elimination. The original function b, on the other hand, is actually

called from c_0, since the second call in b is not part of the optimization tree.

This example also shows the main issue with Full Cloning which our DFA-based

code generation method tackles. In Figure 3.5, functions b and b_c0 are not funda-

mentally different: they only call different versions of function a. Strictly speaking, b

is not optimized in any way. However, Full Cloning needs both copies of b in order to

differentiate between the calling paths that lead to optimized versions of a and those

that do not. In longer paths, Full Cloning creates a copy of all functions in the path

so that the end of path leads to an optimization.

3.4 DFA-based Code Generation

The cases in Theorem 3.1 are the basis of our method to track calling contexts at run-

time. We keep track of the contexts that form the Optimization Tree of a given context-

sensitive optimization O. For each optimization tree, we produce a state machine,

and generate function clones. Notice that one optimization tree can represent the

combination of several different compiler optimizations, such as constant propagation,

type specialization, pointer disambiguation, etc. In other words, we shall produce one

state machine per program – not one state machine per program optimization.

Code generation is based on a Deterministic Finite Automaton (DFA) derived

from T (O). In this section, we show how to transform the program assuming that we

have the state machine. Section 3.5 shows how to build the DFA. Here, we present

what we call the outline implementation of DFA-based context tracking. In Section 3.7,

we present the inline implementation, borrowing the same ideas. The difference is that

the outline implementation inserts calls to a transition function in the program, that

is assumed to implement DFA transitions (in Section 3.5 we show how to implement

transition). The inline implementation does not rely on any additional function calls,

adding code to handle the DFA inline in relevant functions of the program.

Algorithm 2 transforms an input program P to apply a context-sensitive opti-

mization O, optimizing program P in-place. It has the following phases:

1. Declares the transition function, which queries and updates the implicit state

machine. Section 3.5 shows how to build the DFA and implement transition.
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1 function ( a , x ,
2 print ( x ) ;
3 ) ;
4

5 function (a_b0_c0 , x ,
6 print (0 ) ;
7 ) ;
8

9 function (a_b1_c0 , x ,
10 print (1 ) ;
11 ) ;
12

13 function (b , x ,
14 ca l l ( a , 2∗x ) ;
15 ca l l ( a , 2∗x + 1) ;
16 ) ;
17

18 function (b_c0 , x ,
19 ca l l (a_b0_c0 , 2∗x ) ;
20 ca l l (a_b1_c0 , 2∗x + 1) ;
21 ) ;
22

23 function ( c , x ,
24 ca l l (b , 2∗x ) ;
25 ca l l (b , input ) ;
26 ) ;
27

28 function (c_0 , x ,
29 ca l l (b_c0 , 2∗x ) ;
30 ca l l (b , input ) ;
31 ) ;
32

33 ca l l (c_0 , 0) ;

Figure 3.5. Program from Figure 3.1 optimized with Full Cloning.
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For now, the following assumptions on transition are made:

• transition takes one parameter: the input to the current state of the DFA.

It can be either an identifier of a call instruction, or −1 (for signaling the

return operation).

• Its output is a reference to the function that should be called in the state

after the transition, and it is stored in the global variable sm_function. De-

pending on the current state (calling context), the returned function might

or might not be optimized.

2. Declares the optimized functions given in O, naming them after the context they

should be called in.

3. Declares one copy of each function that appears in at least one context in the

Optimization Tree. This avoids invoking the state machine within the body of

functions that do not belong into the optimization tree. At most one copy of each

function is made, even if it appears several times in T (O). The names of these

copies are the names of the original functions added to the “ctx_tr_” prefix.

4. Modifies function calls that correspond to edges in T (O) to update the state

machine before and after calling the target function. To be modified, a function

call must correspond to an edge in the Optimization Tree. Moreover, it must be

either a top-level instruction (i.e. outside of all functions), or contained in one of

the context-tracking functions created in phase 3. Modified calls are replaced by

a sequence of 3 function calls: one to move the state machine to the next state

and retrieve the function to be called, one to call the target function, and one to

return the state machine to the previous state.

The main advantage of using Algorithm 2 to apply an optimization is that the

number of copies of functions made is exactly the number of distinct functions that

appear in the Optimization Tree. Should Full Cloning or inlining be used, a function’s

body would be copied once for each of its occurrences in the Optimization Tree. In

this way, we minimize code duplication, using a data structure to track the calling

context, instead of context-specific copies of code (on which both cloning and inlining

are based).

Example 3.6. Figure 3.6 shows the code that Algorithm 2 produces for the program

in Figure 3.1 (a), using the optimization tree in Figure 3.6 (b). The state machine

produced in this case appears in Figure 3.6 (c). We have produced two clones of

function a, called a_0 and a_1, one for each optimized context.
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Data: Program P , Context-sensitive optimization O

Result: Optimized program OptP

/* (1) Declare DFA ‘transition’ function. */

OptP ← DeclareTransitionFunction(P,O) ;

/* (2) Declare optimized functions. */

forall Context ∈ D(O) do

OptP ← InsertFunctionDeclaration(OptP, ContextName(C), O(C));
end

/* (3 - Optional) Create 1 ‘context-tracking’ clone for every

path function in T (O). */ OptTree← T (O) ;

forall Node ∈ OptTree do

CtxTrackingFuncName = “ctx_tr_′′ +Node.Function.Name;

if not IsDeclared(OptP, CtxSensitiveName) then
OptP ←
InsertFunctionDeclaration(P,CtxTrackingFuncName,Node.Function.Body);

end

end

/* (4) Modify relevant function calls to track calling context.

*/

forall instruction Pi ∈ OptP do
if IsOptTreeEdge(OptTree, i) and

(IsTopLevelInstruction(P, i) or IsInCtxTrackingFunction(P, i)) then
OptP ← Replace(OptP, Pi,[

call(transition, i),
call(sm_function, CallArg(Pi)),
call(transition,−1)
]);

end

end

Algorithm 2: Code generation procedure that populates the program with calls

to the DFA that tracks contexts.

Avoiding the overhead on non-optimized functions Our state machine lets us

clone only leaf functions, i.e., code that can actually be specialized. However, in this

case, it would be necessary to surround with state transitions every function invoca-

tion. This would impose an unnecessary overhead upon the parts of the program that

were not optimized. To avoid this overhead, we produce one, and only one, clone of

every path function that is in the optimized tree. This clone, which bears the prefix

ctx_sens_, contains the machinery to switch states in our DFA. Such functions are

produced by step (3) of Algorithm 2. We refer to these functions as auxiliary path

clones.
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def(state, 0);
def(sm_function, 0);
function(transition,
         [next,
          forward(a_0),
          forward(a_3),
          forward(a),
          forward(b),
          forward(ctx_sens_b),
          forward(c),
          forward(ctx_sens_c)
         ],
  ifelse(next = 15 && state = 0,
         set(state, 1);
         set(sm_function, c);
         , % else
         ifelse(next = -1 && state = 1,
            set(state, 0);
            , % else
            ifelse (...);
        )
  );
);

(1) Declare FSM 'transition'   
     function:

(2) Declare optimized functions

function(a_0, x, print(0));
function(a_1, x, print(1));

function(ctx_sens_b, x,
  call(transition, 3);
  call(sm_function, 2*x);
  call(transition, -1);

  call(transition, 4);
  call(sm_function, 2*x + 1);
  call(transition, -1);
);

function(ctx_sens_c, x,
  call(transition, 7);
  call(sm_function, 2*x);
  call(transition, -1);

  call(b, input);
);

call(transition, 11);
call(sm_function, 0);
call(transition, -1);

(3) Create context tracking 
      copies of functions that
      are in the opt. tree:

(4) Modify relevant functions, 
     e.g., insert calls to the 
     transition state machine
     around invocations of
     optimized function

function(a, x, print(x));
function(b, x,
  call(a, 2*x);
  call(a, 2*x + 1);
);
function(c, x,
  call(b, 2*x);
  call(b, input);
);

Functions originally part 
of the program

Forward declarations are a minilog feature. They allow 
recursive calls, and, in C/C++/LLVM IR, they are used 
to build a compilable version of the optimized program.

Unknown 
value hinders 
constant prop. 
at this call site.

Non-optimized 
function calls 
are not touched.

Figure 3.6. Code produced by Algorithm 2, to implement constant propagation
on the program seen in Figure 3.1 (a).

Example 3.7. Figure 3.6 contains two auxiliary path clones: ctx_sens_b and

ctx_sens_c. We also kept the original versions of functions b and c. The original,

untouched, functions are used in contexts C1 → C5 → C6 and C1 → C5 → C7 (see

Figure 3.1), which could not be optimized by constant propagation. Notice that, inde-

pendent on the optimization tree, we would not produce more versions of ctx_sens_b

and ctx_sens_c.

3.5 Construction of the Finite State Machine

The cases in Theorem 3.1 are our basis for building an DFA derived from T (O). Al-

gorithm 3 builds the DFA needed by Algorithm 2. In phase 1, every node of T (O)

becomes a state in the DFA. Phase 2 covers transitions that fall into Case 1 of The-

orem 3.1. Call instructions that correspond to edges in T (O) become transitions in

the DFA, and their identifier in the program matches the corresponding transition’s

label in the DFA. Moreover, the DFA has transitions that correspond to returning from

function calls, which always have the same sentinel label, −1, regardless of the con-

text. Case 3 of Theorem 3.1 is handled implicitly. Algorithms 2 and 3 are completely

oblivious to transitions between contexts not in T (O); hence, they are processed as in
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the original program.

Calls that force the program flow to leave the Optimization Tree (Case 2 in

Theorem 3.1) may be further divided into two classes. Some call instructions never

cause transitions inside T (O), i.e. no edge in T (O) corresponds to them. We shall

name these calls context-insensitive. They are context-insensitive with regards to the

optimization described by T (O). Such calls are not modified by Algorithm 2; thus, the

context-insensitive version of the callee is invoked. In other words, context-insensitive

functions cannot provoke transitions in the DFA. Therefore, when a context-insensitive

function returns, the DFA will be in the state reached by the last caller in T (O). The

second category of functions that might cause the program to leave T (O) are called

context-semisensitive. They may cause the program to leave T (O) in some contexts,

but transition inside T (O) in others. Such calls require special care. Example 3.8

illustrates this concept.

Example 3.8. Figure 3.7 (a) shows the program earlier seen in Figure 1.1, written in

MiniLog. Contrary to the MiniLog program in Figure 3.1, every invocation of function a,

in this new version, could be fully optimized by constant propagation. However, for the

sake of the example, we assume that only contexts C∅ → C2 → C3 and C∅ → C5 → C7

are optimized. The optimization tree appears in Figure 3.7 (b). This assumption gives

us the opportunity to show how we navigate in and out of the optimization tree during

the execution of the program. In Figure 3.7 (a), the call in line 6 is an example of

a context-semisensitive invocation. When the program is in context C2, the call from

line 6 leads it to context C3, which is optimized. However, in context C5, the same call

leads the program flow to context C6, which is not part of the optimization tree. In

the state machine, seen in Figure 3.7 (c), this unoptimized context is represented as

state R5. Once this unoptimized invocation of b returns, the transition key −1 moves

the active state back to state S5.

Going back to Example 3.8, to handle the transition between C5 to C6, we create

one special state R5 which has a single transition, returning to S5. Such state is called

a return-only state. When a transition to a return-only state happens, the context-

insensitive version of the target function is called. While that function runs, the DFA

sits in the return-only state. When the call returns, because the caller is a context-

sensitive function, it will feed the current state the −1 sentinel input. This transition

key causes the DFA to return to the last state visited while the program was within

the optimization tree. This scheme, implemented in Phase 3 of Algorithm 3, completes

our coverage of all possible transition types in Theorem 3.1.
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(b) (c)

function(a, x,
  print(x);
);

function(b, x,
  call(a, 2*x);
  call(a, 2*x + 1);
);

function(c, x,
  call(b, 2*x);
  call(b, 2*x + 1);
);

call(c, 0);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

C∅

15:C1

11:C2 12:C5

6:C3 7:C4 6:C6 7:C7

$> 0 $> 1 $> 2 $> 3

S∅

S1

S2 S5

R2 S3 S7 R5

15

1211

67 67

-1

-1 -1

-1-1-1
-1

(a)

Figure 3.7. (a) Example of program that can be fully optimized with constant
propagation. (b) Optimization Tree that we obtain, assuming that only the two
highlighted contexts are optimized. (c) The DFA derived from the Optimization
Tree. In the DFA, a return-only state corresponding to state Ci is labeled Ri.
These states are created by step (3) of Algorithm 3.

The transition function used by Algorithm 2 is implemented in MiniLog as

a sequence of ifelse statements, that test all (CurrentState, Input) pairs. In our

LLVM implementation, transition is implemented using switch statements, which

run in O(1) Korobeynikov [2007]. First, a switch statement identifies the current state.

Then, another nested switch statement acts upon the transition key. All state and

transition identifiers are mapped beforehand to contiguous integer ranges to speed-up

this implementation. The function returned by transition depends on the type of

the target state. If the state of the DFA after the transition is a node of T (O), then

either the optimized function (given by O, in Definition 3.1) or the context-sensitive

version of the callee is returned. If a return-only state is reached, then transition

returns the original (context-insensitive) version of the callee.

3.6 Properties of DFA-based Code Generation

Given a context-sensitive optimization O to be applied onto a program P , we use Algo-

rithm 3 to generate the DFA that supports the application of O, and use Algorithm 2 to

transform the original source code. This transformation gives us an optimized program

that implements O. Our algorithm creates one clone for each leaf function, and at most

one clone for any path function. Path functions are cloned only once, regardless of how

many times they appear in the optimization tree. We emphasize that the creation

of this clone is optional – we do it to avoid imposing on non-optimized functions the

burden of changing the DFA. Property 3.2 puts a bound on the number of clones that
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we produce for a given optimization tree.

Property 3.2. Algorithm 2 creates one clone per leaf function in T (O). Optionally, it

creates one auxiliary path function to implement all the occurrences of path functions

that have the same name.

Proof: Algorithm 2 creates one clone for every element in D(O), the domain

of the context-sensitive optimization. This event happens in step (2) of the algo-

rithm. Because each function in D(O) can be specialized in a different way, all

these clones are necessary. Optionally, Algorithm 2 creates at most one auxiliary

path function for each path function in T (O), i.e., a function that leads to spe-

cialized code, but that does not belong into D(O). Thus, each non-specialized

function might have up to two clones in the final program, independent on how

many times it is called in the code.

The generated transition function will contain a representation of the entire

Optimization Tree; hence, the DFA’s size can be exponential. However, the DFA is

equivalent to a perfect hash-table. Thus, contrary to unrestricted cloning, or unre-

stricted inlining, it is a data structure (which represents the state machine), not code

that grows. As Chapter 4 shows, tracking contexts using this method lets us have

a context-sensitive optimization that scales to programs having up to 1016 contexts.

Property 3.3 summarizes this fact.

Property 3.3. Algorithm 3 produces a DFA with at most 2 states per node in T (O)

Proof: In step (2), Algorithm 3 creates one state for every node in T (O). In step

(3), Algorithm 3 might create one return-only state for each node in T (O).

We prove that the combination of Algorithms 2 and 3 produces correct programs

via bisimulation. To this end, we let P ′ = CS (P,O) be the result of applying this

code transformation onto a MiniLog program P , given a context-sensitive optimization

O. Theorem 3.4 shows that the transformation is correct. Supporting Lemmas 3.1,

3.2 and 3.3 prepare the ground for that theorem. The first of these lemmas shows

that there exists an isomorphism between the calling context trees of the original and

transformed programs.

Lemma 3.1 (CCT Isomorphism). Let P be a MiniLog program, O be a Context-

Sensitive Optimization, and P ′ = CS (P,O). Function f is invoked at context Ci in

program P , if, and only if, there exists context C ′
i, such that, function O(f, Ci) is

invoked at context Ci in program P ′.
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Proof: By induction on the call string corresponding to Ci. The call string is

a sequence of function calls that represent the state of the invocation stack at

any given point of the program’s execution. Consider call string of length K. If

K = 0, the lemma holds trivially, as we have a Calling Context Tree with only

one node. If K > 0, then we let Ck be a context whose call string has K elements,

and Ck−1 the context from which Ck has been reached. We let fp be the function

active at Ck−1. By induction, the lemma is true for Ck−1. There are four cases

to consider, when analyzing Ck:

1. Ck−1 /∈ T (O) and Ck /∈ T (O): in this case, O(fp, Ck−1) = fp, O(f, Ck) = f ,

and P and P ′ experiment the same transition.

2. Ck−1 /∈ T (O) and Ck ∈ T (O): by Theorem 3.1, this case is impossible.

3. Ck−1 ∈ T (O) and Ck /∈ T (O): transition moves the DFA from a state s to

a return-only state sr, returning the original, context-insensitive version of

f . The return-only state sr is unique. So, the same call will be performed

in P and P ′. The call transition(-1) will bring the DFA back to s.

4. Ck−1 ∈ T (O) and Ck ∈ T (O): one transition in the DFA happens. Function

transition is invoked in P ′ in a state sCk−1
that corresponds uniquely to

Ck−1. Because each context in T (O) directly maps to one state in the DFA,

necessity and sufficiency hold. Upon function return, P returns to Ck−1,

and the DFA returns to sCk−1
, due to the semantics of transition(-1).

For stating and proving Lemmas 3.2 and 3.3, we use the notion of a projection,

which Definition 3.4 describes. Projections are necessary for correctness proofs, because

the state of the original program is a subset of the state of the optimized program.

Definition 3.4 (Projection). Let F1 and F2 be two functions. We say that F1 <: F2

if, and only if, for any x in the domain of F1, F1(x) = F2(x).

Lemma 3.2 (Step in the Original Program). Let program(P) be a MiniLog program,

and CS (P,O) = P ′. If 〈P, Env, Sto〉 → (Env′, Sto′), then there exists an environment

Env′′, and a store Sto′′, such that 〈P ′, Env, Sto〉 → (Env′′, Sto′′), where Env′ <: Env′′,

and Sto′ <: Sto′′.

Proof (sketch): Every instruction in P exists also in P ′, with the exact same ar-

guments, except for function calls. Function calls in P and P ′ might invoke differ-

ent targets, if the one in P ′ belongs into T (O): in P we have call(f, x), and in the

latter call(sm_function, x). From Lemma 3.1, we know that these calls lead to

corresponding contexts, e.g., C and C ′, and we know that sm_function = O(f, C).

The proof follows from two assumptions: (i) the context-sensitive optimization
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yields a semantically equivalent version of F , which is assigned to sm_function;

(ii) the extra instrumentation produced by C(P,O) does not write in variables

originally present in P .

Lemma 3.3 (Step in the Transformed Program). Let program(P) be a MiniLog pro-

gram, and CS (P,O) = P ′. If 〈P ′, Env, Sto〉 → (Env′, Sto′), then there exists an

environment Env′′, and a store Sto′′, such that 〈P, Env, Sto〉 → (Env′′, Sto′′), where

Env′′ <: Env′, and Sto′′ <: Sto′.

Proof (sketch): This proof is similar to the one seen in Lemma 3.2; however,

it must deal with a caveat: P ′ contains instructions that find no correspondent

in P . These instructions consist on invocations of the transition function, and the

operations present in the body of transition. None of these operations interfere

with variables defined in either Env′′ or Sto′′. Therefore, they preserve the in-

variant Env′′ <: Env′, and Sto′′ <: Sto′. If P ′ steps via one of those instructions,

then it suffices to apply the empty step onto P .

Theorem 3.4 (Correctness). The transformation CS preserves the semantics of

MiniLog programs.

Proof: The theorem follows as a corollary of Lemma 3.2 and Lemma 3.3.

3.7 Inline DFA Implementation

In this section, we show an alternative form of implementing an Optimization Tree

using a dynamically updated DFA, which we call the inline implementation of DFA-

based code generation.

Algorithm 2 assumes the existence of a function called transition that is respon-

sible for changing the states of the DFA upon function calls and returning a reference

to the implementation that should be invoked in the current calling context. This

incurs the cost of two procedure calls for each transition the DFA performs. Moreover,

based on the implementation of transition described in Section 3.5, each invocation

of this function runs over two switch statements: one for checking which state the

DFA is currently at (a global variable), and one for checking which transition should

be made based on the identifier of the current call site (the single parameter passed to

transition).

We can, however, bring the cost per transition down to a single switch statement

instead of two, and avoid the function calls altogether. Suppose we inlined the huge
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transition function everywhere it is called in the optimized program with a parameter

different than −1, i.e. once in all call sites that may trigger a DFA transition. Now,

consider one such call site CS, in the body of some function f . The second (nested)

switch statement in the body of transition checks which call site we are at. However,

since we inlined the implementation of transition in the call site CS, we do not need

such check, since this in this call site the switch statement will always select CS.

Thus, we can simply remove this switch and replace it by the body of its “CS” case.

We now have a single switch statement which tests for the DFA state. It considers the

possibility of the DFA being in each of its states. Here comes the key observation that

makes this approach practical: given that the call site CS is located in function f , we

know that not all states are possible. Rather, only the DFA states in which function

f is active are possible, which is usually a very small subset of all states. Thus, we

can remove all other states from the switch statement. We are still left with the call

to transition(-1). We can avoid this one by simply noting that it will always bring

the DFA to the state it was at when the execution reached function f . Therefore, in

the beginning of f we can save the current DFA state in a local variable st. Then,

all calls to transition(-1) can be replaced by a statement assigning the global state

back to the state saved in st. This inline implementation usually needs more space

than the outline one, since the set of states in which a given function is active is

repeated in all call sites in that function that trigger DFA transitions. In contrast,

in the outline implementation from Section3.4, every such call site brings a constant

additional overhead (of calling transition).

Example 3.9. Figure 3.8 shows function b from Figure 3.7 optimized with the inline

DFA implementation described in this section. The applied Optimization Tree is also

the one from Figure 3.7. Given the contexts shown in Figure 3.1, we know that if the

program is currently at b, there are only two possible states: S2 and S5. Thus, for

each of the two transitions, we only need to check which state we are at in order to

know the next state and the function to be called.

3.8 From MiniLog to LLVM’s Intermediate

Representation

We have implemented the ideas discussed in this section in LLVM. This implementation

is very similar to the one we have described in Algorithms 2 and 3; however, to make it

practical, we have adopted two extensions, which we describe below. The first extension
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1 function (b , x ,
2 def ( st , __global_dfa_state ) ;
3 # Or i g i n a l l y c a l l ( a , 2∗x ) ;
4 i f e l s e ( s t == 2 ,
5 [
6 set ( __global_dfa_state , 3) ;
7 ca l l (a_0 , 2∗x ) ;
8 set ( __global_dfa_state , s t ) ;
9 ] ,

10 [
11 ca l l ( a , 2∗x ) ;
12 ] ) ;
13

14 # Or i g i n a l l y c a l l ( a , 2∗x + 1) ;
15 i f e l s e ( s t == 5 ,
16 [
17 set ( __global_dfa_state , 7) ;
18 ca l l (a_3 , 2∗x + 1) ;
19 set ( __global_dfa_state , s t ) ;
20 ] ,
21 [
22 ca l l ( a , 2∗x + 1) ;
23 ] ) ;
24

25 ) ;

Figure 3.8. Function b from Figure 3.7 optimized with inline DFA.

allows us to support context-sensitive optimizations described by partial contexts. The

second extension allows us to support exception handling in functions that use this

feature.

Supporting partial contexts. Algorithms 2 and 3 assume that the root of an opti-

mization tree is always the entry point of the program. However, an analysis might

discover optimization opportunities starting in any function. For example, if some

function f calls some function g with constant parameters, and these same values are

forwarded from g to h, then h is optimizable every time it is reached from f . The path

from the main function to f is not relevant in this case. Although we can represent

this optimization in a single Optimization Tree by exhaustively listing all contexts in

which f is called, that is undesirable, since f might be active in an exponential number

of distinct contexts. In order to support describing such optimization efficiently, we

can easily extend our method to handle Optimization Forests instead of Optimization

Trees. An Optimization Forest associates an Optimization Tree with a collection of
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root functions. Whenever control flow reaches a root function, context-tracking begins

relative to that function. Instead of having a single global DFA state, we shall have a

stack of states. The state on the top corresponds to the currently active Optimization

Tree and context-tracking DFA. Root functions are modified to push the initial state

of their corresponding DFA to the stack upon invocation. When the function returns,

the state is popped, returning to whatever Optimization Tree was active before (if

any). Function transition will always operate on the top of the stack. In this way,

context-tracking overhead only takes place when a root function is in the call stack.

Otherwise, parts of the original program will be executed.

Supporting exception handling. To explain how we track calling contexts using

a DFA, we have used a call to function transition with a sentinel parameter −1 to

indicate function return. However, the same approach would not work in a language

that supports exceptions. To handle exceptions with the outline implementation of the

DFA, we have adopted a slightly different approach. Like the inline implementation

(Section 3.7), we save the current state of the DFA in a local variable at the beginning

of every context-sensitive function (i.e. those that update the DFA). Thus, the call

to transition(−1) is avoided by simply copying back the locally saved state to the

global DFA state. The same can be done to correct the DFA state whenever an

exception is being handled (e.g. in a catch block in C++ or Java). Our actual

LLVM implementation processes returns using this method, since it has also proven

profitable in terms of minimizing the overhead involved in updating the state machine.

This modification can work along with Optimization Forests by inserting a catch-all

block in the end of every root function, which ensures the state is popped even if an

exception is thrown.
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Data: Context-sensitive optimization O

Result: Automaton DFA

DFA← new Finite State Machine;

/* (1) Create states for nodes in T (O). */

OptTree← T (O) ;

forall Node ∈ OptTree.Nodes do

DFA.addState(Node.Label);
end

/* Map from Function to set of edges that cause at least one

transition inside T (O), */ /* in any context the function is

active in */

TransitionSet = empty map : Function 7→ Set < Edge, label >;

/* (2) Create transitions for calls/returns inside T (O) (Case 1

of Thm. 3.1). */

forall Node ∈ OptTree.Nodes do

forall Edge ∈ Node.EdgesToChildren do
DFA.addTransition(Node.Label, Edge.Destination.Label, Edge.CallInstLabel);

DFA.addTransition(Edge.Destination.Label, Node.Label,−1);
TransitionSet[Node.ActiveFun]←
TransitionSet[Node.ActiveFun] ∪ {Edge.CallInstLabel};

end

end

/* (3) Create return-only states & transitions that leave T (O)
(Case 2 of Thm. 3.1). */

forall Node ∈ OptTree.Node do

/* List transitions that Node.ActiveFun might have in other

nodes, */

/* but not at the current node. If there are any, we need a

return-only state. */

MissingTransitions← TransitionSet[Node.ActiveFun] \
{E.CallInstLabel : E ∈ Node.EdgesToChildren};

if MissingTransitions 6= ∅ then

ReturnOnlyStateLabel← concatenate(“R”, Node.Label);
DFA.addState(ReturnOnlyStateLabel);
DFA.addTransition(ReturnOnlyStateLabel, Node.Label,−1);
forall MissingLabel ∈MissingTransitions do

DFA.addTransition(Node.Label, ReturnOnlyStateLabel,MissingLabel);

end

end

end

Algorithm 3: Algorithm for building a Finite State Machine which tracks contexts

that are relevant to a given context-sensitive optimization.



Chapter 4

Experimental Evaluation

In this chapter, we evaluate our context-sensitive code generation method when ap-

plied in a practical scenario. We have implemented both the inline and outline versions

of method in LLVM 3.9.1. To evaluate our ideas experimentally, we need a concrete

optimization, since our contributions are optimization-agnostic. To that end, we have

implemented a fully context-sensitive version of constant propagation. The algorithm

propagates constants inside functions and, whenever a parameter of a call instruc-

tion is discovered to be constant, propagation continues in the target function in a

context-specific scenario. This information – discovered statically – is arranged in an

Optimization Tree, which is then passed to our code generator. We do not optimize

functions when the only change that constant propagation enables is to replace call

arguments by constants. Rather, propagation continues in child contexts without the

caller being modified.

We compare our methods against a clone-based context-sensitive code generator.

In this baseline, each node of the Optimization Tree is implemented by a function clone.

Every function in the optimization tree is replicated once per occurrence in the tree.

Unoptimized functions are not touched; hence, this approach is similar to previous

art (Li et al. [2013]). We compare both methods in terms of generated code size and

running time, aiming to answer the following research questions:

1. Are the DFA-based code generation methods competitive in terms of final code

size, when compared to traditional function cloning?

2. Is the run-time overhead introduced by the DFA small enough for it to be com-

petitive with cloning, which has no run-time overhead?

43
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Benchmark Functions Instructions Contexts
Opt.

Contexts

Opt. Tree

Nodes

DFA

States

mcf 19 2,256 106 14 23 46
gobmk 2,366 124,098 > 1016 3,752 14,998 29,996
hmmer 196 33,185 28,880 2,396 3,904 7,808
libquantum 56 3,862 236,833 359 740 1,480
gcc 3,784 610,935 > 1016 5,701 14,543 29,086
h264ref 405 145,757 4,441 642 1,185 2,370
astar 60 7,474 1,339 139 220 440
bzip2 43 21,904 2,905 245 316 632
perlbench 1,392 245,265 > 1016 1,668 15,000 30,000
sjeng 100 21,982 1,388,357 955 14,437 28,874
omnetpp 1,552 78,176 6 0 0 0
lbm 15 2,240 102 8 10 20
povray 1,306 194,386 39 0 0 0
namd 89 62,722 139 0 0 0
milc 157 16,066 11,400 1,143 1,707 3,414
sphinx3 194 29,482 24,630 2,303 14,897 29,794
soplex 690 76,157 99 0 0 0

Table 4.1. Benchmarks in SPEC CPU2006. Opt. Contexts shows the number
of contexts that could be optimized, out of 15,000 samples. This number is also
the quantity of clones created by our approach. Opt. Tree Nodes gives us the
number of nodes in the optimization tree. This number is the quantity of clones
created by typical clone-based specialization.

4.1 Benchmarks

We tested our implementation on 191 benchmarks integrated in the LLVM Test Suite,

which includes several well-known benchmarks such as MiBench, Stanford, Shootout

and Polybench. We have augmented this suite with SPEC CPU2006 Henning [2006];

thus, obtaining 18 real-world benchmarks such as gcc, bzip2 and perl1. All tests were

ran on an Intel Xeon CPU E5-2620 0 @ 2.00GHz CPU, with 16 GB of DDR3 RAM.

Table 4.1 shows statistics about the SPEC CPU2006 benchmarks. Some benchmarks

have considerably large code (as gcc, with 2.673 functions). We have also counted

the number of static contexts in these programs using a simple dynamic programming

algorithm on the call graph. This count ignores recursive functions (otherwise, the

number of statically known contexts is theoretically infinite). Some programs have a

very large number of contexts (over 1016 in a few cases).

Context Pruning. To handle such large search spaces, our context-sensitive con-

stant propagation limits its search to a fixed number of contexts. In our experiments,

we limited the number of analyzed contexts to 15,000. Table 4.1 also shows how many

1SPEC CPU2006 has 13 other benchmarks not integrated into the CMake-based setup of the
LLVM Test Suite, which we use. The use of the old Makefile-based setup, which comprises those
benchmarks, is discouraged by current documentation.
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contexts were effectively optimized in each SPEC benchmark, and the number of nodes

in the Optimization Tree that is later passed to code generation methods. The algo-

rithm starts at the main function, propagating constants as deep as possible in the

Context Call Tree. Once information in a context does not allow any further propaga-

tion, it returns and explores other nodes of the CCT. We could combine the algorithm

with heuristics to prioritize contexts which are more likely to be profitable to optimize,

e.g. by guiding the search using static profiling information. However, since the focus

of this dissertation is not on the optimization itself, we did not do so. The algorithm

naïvely analyzes the first contexts it reaches by following calls in the order they appear

in the program. In total, this process takes about 4 hours to go over the 209 available

programs. This time is mostly spent in the context-sensitive implementation of con-

stant propagation. Code generation, i.e., construction of clones and the state machine,

takes negligible time. Nevertheless, this simple optimization can yield speedups on

large programs in SPEC CPU2006 when comparing to LLVM in the -O3 optimization

level, as our experiments show.

Indirect Calls. Neither the counting algorithm nor the optimization tries to discover

the targets of indirect function calls. Therefore, our implementation does not optimize

dynamically invoked functions. In SPEC CPU2006, this especially affects xlancbmk

and omnetpp. Because dynamic dispatch is used very early in the execution of these

benchmarks, their CCT could not be accurately constructed at compile-time. Thus, the

numbers in Table 4.1 reflect only the subtree of the CCT that can be processed ignoring

indirect calls. We emphasize that this shortcoming in our implementation is not a

limitation of our technique. Indirect calls affect every context-sensitive optimization,

and there are techniques to deal with them Dean et al. [1995]; Milanova et al. [2004];

Shivers [1988].

4.2 Generated code size

Figure 4.1 compares the size of binaries produced by the outline implementation of the

DFA-based code generation and by full cloning. On the horizontal axis, we have the 128

benchmarks in which actual optimizations took place (i.e. context-sensitive constant

propagation has changed the code at all). The vertical axis shows the difference between

the binary size generated between cloning and the outline DFA-based method (the

former minus the latter). Thus, when the y-value of a benchmark is above zero, the

DFA-based method generated smaller code for the benchmark (difference was positive).

When it is negative, then cloning generated a smaller binary. The vertical dashed line
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marks the first benchmark in which cloning was worse. Note that it is far to the right:

only in 31 of all 128 benchmarks has the DFA-based method generated a smaller binary.

However, as it is evident from the graph, the gains far outweigh the losses: while in

smaller cases cloning is slightly more space efficient, in larger cases it explodes. The

larger the benchmark, the more likely it is that the DFA-based method will save space.

Figure 4.2 shows similar results comparing inline implementation of the DFA against

cloning. The inline DFA is less compact: the binaries generated with this method are

larger than those generated with cloning on 102 benchmarks. Nevertheless, the largest

differences all favor the DFA, like in the outline implementation.

When summing over all benchmarks, the binaries produced by full cloning are

2.76 times larger than the binaries that we generate with our outline state machines,

and 3.61 times larger than the original binaries. If we only consider the bytes added to

the original binary (i.e. optimized binary size minus binary size generated by LLVM

-O3), the difference is even larger: while our method adds 33.37MB in total to all

executables, cloning adds 281.94MB in order to implement the same optimization, i.e.

it adds 8.5x more bytes. The largest relative difference between the two approaches was

observed in Fhourstones-3.1: full cloning produced an executable more than 100x larger

than our technique. However, sometimes our DFAs yield larger binaries. The largest

discrepancy was observed in FreeBench/mason, where we have generated a binary 11x

larger than full cloning. This situation is possible if the target program has a flat

call graph, with few path functions. Under these circumstances, DFA and full cloning

will produce roughly the same number of versions; however, we must account for the

additional space taken by the state machine. Nevertheless, this experiment allows us to

give our first research question a positive answer: results show the DFA-based method

is able to implement context-sensitive optimizations more efficiently than traditional

function cloning.

4.3 Performance of Generated Code

Figure 4.3 compares the running times of the executables produced by the outline

DFA-based approach and full cloning. Numbers are the average of five executions. As

in Figure 4.1 (a), all the benchmarks have been compiled with LLVM -O3. The figure

makes it visually apparent that both the approaches yield programs that have similar

run-times. In total, the binaries produced by LLVM -O3 took 1510.5s to run, versus

1515.48s from cloning, 1517.48s from the inline DFA and 1521.26s from the outline

DFA-based method. On average, binaries produced with full cloning are only 0.4%
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Figure 4.1. Size comparison (bytes) between the outline implementation of
our approach (DFA) and full cloning (FC). The horizontal axis shows the 128
benchmarks in which we found optimization opportunities with context-sensitive
constant propagation. The Y-axis shows the difference in bytes between the binary
generated by FC and DFA (FC minus DFA). The vertical line shows the first
benchmark in which DFA was better (positive y-value): cloning is better on 97
benchmarks, while outline DFA is better in 31.
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Figure 4.2. Size comparison (bytes) between the inline implementation of our
approach (DFA) and full cloning (FC). The axes have the same meaning as in
Figure 4.1 Cloning is better on 102 benchmarks, while inline DFA is better in 26.

faster than the binaries produced with the outline state machines (0.1% faster if we

compare against the inline DFA). Once we analyze individual benchmarks, a few larger

differences surface. For instance, McCat/05-eks yields binaries that are 43% faster with

our outline approach than with full cloning. On the other hand, in Halide/blur we find

the opposite behavior: full cloning leads to code that is 32% faster. These are, however,

benchmarks which run for less than half a second, and thus the absolute differences

are small. On the benchmarks which take at least one second to run, we did not

observe any difference greater than 2%. In spite of these individual discrepancies, the

experiment lets us conclude that the overhead of our state-machines and the dynamic

dispatch of specialized code is negligible when compared to more traditional cloning-

based approaches. The inline DFA was slightly faster than the outline implementation.

However, the overhead introduced by both approaches was negligible in practice, giving

a positive answer to our second research question.
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Figure 4.3. Comparison of the running time between the binaries generated by
our approach (DFA) and full cloning (FC). The X axis shows the running time of
the DFA binary in seconds; the Y axis shows the same for the cloning binary.

Figure 4.4 shows the ratio between the running time of the binaries output by

outline DFA-based code generation and those generated by LLVM -O3 without our

optimization. Values greater than 1 in the Y axis represent speed-ups, while values

lesser than 1 occur for benchmarks in which our context-sensitive constant propagation

made the program slower. Only the 128 benchmarks in which we found optimization

opportunities are shown. Out of these, our approach generates speed-ups of over 2%

in 15 benchmarks, and slowdowns of at least 2% in 18 programs. For two programs in

FreeBench, mason and fourinarow, the speed-up we observed was slightly above 25%.

The two benchmarks are cases in which function cloning generates a binary that is

expressively smaller. As we explain in Section 4.5, this is due to its better interaction

with dead code elimination. However, even if most of the optimized contexts are actu-

ally unreachable, there are important opportunities for context-sensitive optimizations

in these programs that are not captured by LLVM -O3.
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Figure 4.4. Speed-ups obtained by context-sensitive constant propagation im-
plemented with the outline DFA method on top of LLVM -O3 without our opti-
mization. The vertical line shows the first program for which its average running
time was smaller when optimized by our pass. This happened in 55 programs
(43% of the 128 benchmarks in which we found optimization opportunities).

Our implementation of context-sensitive constant propagation carelessly special-

izes code for new contexts whenever the gathered information allows it to do so. Hall

[1991] has shown that unrestricted use of context-sensitive information usually does not

lead to improvements, due to the performance penalty that comes when binary size

grows, because of the lost cache-friendliness. Indeed, as we mentioned before, when we

add the running time of all benchmarks, none of the implementations of our optimiza-

tion achieves speed-ups. However, we wanted to demonstrate that (i) it is possible to

carry out clone-based code specialization in large code bases with minimal overhead,

and (ii) there are opportunities for doing so with performance gains. We have chosen

constant propagation to perform this demonstration because it is difficult to conceive

any optimization that could be more extensively applied than it.
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Benchmark B. (BL) T. (BL) B. (DFA) T. (DFA) B. (IDFA) T. (IDFA) B. (FC) T. (FC)

lbm 18.16KB 33.17s 18.16KB 33.12s 22.17KB 33.24s 18.16KB 33.35s
mcf 18.18KB 17.85s 18.18KB 17.73s 26.18KB 17.96s 18.18KB 17.70s
libquantum 34.19KB 1.56s 98.19KB 1.51s 110.19KB 1.48s 74.19KB 1.50s
astar 38.38KB 94.45s 54.38KB 96.05s 78.38KB 96.31s 42.38KB 93.83s
bzip2 86.19KB 49.80s 110.19KB 49.99s 166.19KB 50.07s 134.19KB 50.18s
milc 98.70KB 15.27s 254.73KB 15.27s 290.73KB 15.36s 162.73KB 15.23s
sjeng 126.41KB 123.07s 2.84MB 124.13s 638.41KB 124.36s 178.41KB 124.21s
hmmer 168.73KB 53.73s 492.73KB 53.95s 604.73KB 53.78s 292.73KB 54.18s
namd 234.43KB 12.14s 234.43KB 12.15s 234.43KB 12.15s 234.43KB 12.17s
soplex 326.66KB 5.32s 326.66KB 5.34s 326.66KB 5.36s 326.66KB 5.33s
omnetpp 563.47KB 53.40s 563.47KB 55.30s 563.47KB 53.46s 563.47KB 53.36s
h264ref 623.62KB 75.85s 739.62KB 75.87s 751.62KB 75.41s 691.62KB 76.02s
povray 1.06MB 6.98s 1.06MB 6.89s 1.06MB 6.89s 1.06MB 6.95s
perlbench 1.18MB 20.99s 1.81MB 21.78s 2.59MB 21.08s 1.18MB 21.21s
xalancbmk 3.20MB 54.28s 3.20MB 55.37s 3.21MB 54.72s 3.20MB 54.75s
gobmk 3.29MB 101.94s 4.07MB 101.89s 4.23MB 102.04s 7.98MB 102.48s
gcc 3.42MB 0.93s 4.62MB 0.93s 4.62MB 0.93s 15.43MB 0.94s
sphinx3 77.78MB 7.57s 78.49MB 7.63s 78.47MB 7.55s 80.70MB 7.65s

Table 4.2. Results obtained on SPEC CPU2006 with baseline LLVM without our
optimization (BL), and with context-sensitive constant propagation implemented
with the outline DFA (DFA), inline DFA (IDFA) and full cloning (FC). Running
times are the average of 5 runs. Each of the benchmarks have had their binary
size measured (columns starting with “B.”), as well as their running time (columns
starting with “T.”) for each technique.

4.4 Results on real-world programs

Table 4.2 shows results obtained on the CPU2006 benchmarks listed in Table 4.1.

Benchmarks are sorted by their original binary size (generated by LLVM -O3). In 8 of

the benchmarks (astar, libquantum, xalancbmk, perlbench, sjeng, milc, h264ref,

hmmer) the outline DFA method generated a larger binary than cloning. Some cases are

the result of better interaction between cloning and dead code elimination, when large

portions of the optimizations computed by our context-sensitive constant propagation

are on dead paths. This is the case in perlbench, for instance, where almost all of our

optimizations are removed from the FC binary (many are also removed from the outline

DFA binary). This kind of case will be better explored in the case study in Section 4.5.1.

The other cases in which cloning performed better were, however, restricted to smaller

benchmarks, in which absolute differences were mostly small (from 4KB in xalancbmk

to 204KB in hmmer). On the other hand, the DFA outperforms cloning in 4 benchmarks

(gobmk, gcc, bzip2 and sphinx3). The 3 largest benchmarks in CPU2006 are all

included in this set. In them, the DFA techniques are highly profitable in terms of

binary size. For instance, the executable generated by any of the DFA-based methods
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is more than 3 times smaller than the output of full cloning in gcc, where the DFA

saves almost 11MB. These benchmarks amount to the total space saving observed:

when we sum all binary sizes from CPU2006, we see that the outline DFA adds 3 times

less bytes to the original executable size in order to implement the same optimizations

as cloning.

4.5 Case studies

In this section, we analyze the results of applying constant propagation on some specific

benchmarks to help shed some light on how do cloning and our DFA-based method,

with its two alternative implementations, behave in practice. These benchmarks were

chosen based on the results obtained in them. We chose programs in order to illustrate

each kind of outcome we have observed: when the DFA-based method was superior to

cloning, when cloning was more profitable, and when each DFA implementation were

better than each other.

4.5.1 TSVC and Four-in-a-row: when cloning enables dead

code elimination

TSVC. The TSVC benchmarks2 are a family of programs that consist of the same

source code compiled with different values for global constants that control the behavior

of the program. The functions/loops in TSVC are taken from a David Callahan’s test

suite for vectorizing compilers Callahan et al. [1988]. The results of all computations

are not used - rather, “There is a dummy function called in each loop to make all

computations appear required” (quoted from a comment in the source code). When

applying context-sensitive constant propagation, generating explicit function clones

makes it possible for the compiler to later realize the dummy function calls do not have

any side effects, and they do not generate a result either. Thus, around 70% of the

code is removed from the binary by later LLVM passes. The same happens with the

outline implementation of the DFA-based method. These two algorithms, thus, make

the output binary smaller in this benchmark.

TSVC is the only benchmark in which applying any of the tested methods caused

the output binary size to decrease. On the other hand, applying the inline DFA-based

method does not have the same outcome: the binary size increases by 10% – a more

usual result. TSVC shows a case in which context-sensitive optimizations can decrease

2In the LLVM test suite, TSVC benchmarks can be found under MultiSource/Benchmarks/TSVC
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code size by enabling more aggressive dead code elimination. That case seems artificial,

however, as real world applications are unlikely to have large portions of the code that

never execute even though there are static paths that reach them (in case there are no

such paths, traditional approaches would already eliminate the code from the binary,

without needing context-sensitive information). This is validated by the fact that none

of the other benchmarks trigger this result.

Four in a row. Another case in which cloning enables better dead code elimination

is in FreeBench’s “Four in a row” benchmark, a program that implements an AI for the

game with the same name. The AI uses the Minimax search algorithm with alpha-beta

pruning. Minimax is a recursive algorithm in which one player tries to maximize its

own score given the possible game states that it can reach in one move, while the second

player tries to minimize the first player’s score. The state tree is evaluated recursively

using these two strategies, so that to decide each player’s next move.

In this benchmark, our context-sensitive constant propagation algorithm dives

deep in optimizing static paths that aren’t reachable during execution. This does not

happen because there is dead code in the original program; rather, such paths depend

on a sequence of values for the parameters in the recursive calls that is not realizable.

When the optimization is implemented with cloning, LLVM can easily see in a later

stage that some function calls never occur, and then eliminate most of the optimized

functions that would only be reached through those calls. On the other hand, the

calls to “transition” or the switch statement in inline DFA hide this fact under another

layer, making LLVM unable to do the same. In both cases, all the eliminated code is

contained in optimized functions. Thus, unlike in TSVC, the binary still grows when

the optimization is applied. But because most of the optimized code is dead, the binary

generated with cloning is much smaller. The outline DFA method adds 528KB to the

final binary. The inline DFA method implements the same optimization with 557KB

of additional code. On the other hand, cloning only adds 4KB to the final binary size,

since most of the generated intermediate code is discarded as dead.

This same behavior happens in a few other benchmarks. In general, clone-based

optimizations interact better with other compiler optimizations because of the direct

calls. When using the DFA-based methods, the compiler must deal with function

pointers, which are harder to analyze.

4.5.2 When cloning is more space-efficient

The advantage of the DFA-based over cloning-based method consists of needing at

most a single clone per function for tracking contexts regardless of how many times
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each function appears in the Optimization Tree. Such advantage, however, vanishes

when few unoptimized functions appear multiple times in the Optimization Tree. When

a function appears only once in the tree, both cloning and the DFA-based method will

generate one clone of it. In addition to that, the DFA-based method will generate

code, either in the transition function (outline implementation) or in the function

itself (inline implementation) in order to track contexts – an additional overhead. In

this case, cloning is usually more space-efficient. This is the case in SPECCPU2006’s

473.astar benchmark, a “path-finding library for 2D maps, including the well known

A* algorithm.” 3. Our context-sensitive constant propagation optimization builds

an Optimization Tree of 220 nodes for this program. Out of those, 139 (≈ 63%)

are optimized nodes - clones that can be avoided neither by cloning nor by DFA-

based methods. Out of the remaining nodes, more than 80% consist of functions that

appear only once in the tree. Therefore, the context-tracking DFA does not yield a

significant reduction of the number of clones needed to implement the optimization.

In this benchmark, the binary generated without our optimization has 39KB. DFA-

based methods add 16KB (+41%) and 40KB (+104%) to that in the outline and

inline implementations, respectively. On the other hand, cloning implements the same

optimization adding just 4KB (+10%) to the binary. The same happens in many

other benchmarks. However, was not observed in the largest benchmarks. When

the Optimization Tree was larger, we were more likely to observe a larger fraction of

repeated functions, making the DFA-based method more attractive.

4.5.3 When context-tracking with the DFA makes sense

In contrast to Section 4.5.2, on large Optimization Trees consisting of relatively few

unique functions, encoding contexts using the DFA becomes more advantageous. This

happens to be the case in most of the large benchmarks we experimented with, espe-

cially in SPEC. For example, in 403.gcc, which consists of version 3.2 of the GNU C

Compiler in a setup adapter for benchmarking, the original binary had 3.4MB. The

applied optimization tree had 14,543 nodes, of which only about 39% consisted of op-

timized nodes – function copies that cannot be avoided. The binary optimized with

cloning had 15.4MB – a 350% growth. Conversely, both the inline and outline DFA

yielded a 4.6MB optimized binary (only 35% added to its size, meaning it needed 10

times less extra space). The prevalence of this case in the largest benchmarks adds up

to the total result. The sum of the sizes of all original binaries was 107.9MB, compared

to 141.27MB with the outline DFA method (+30.9%), 144.5MB with the inline DFA

3https://www.spec.org/cpu2006/CINT2006/
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method (+33.9%), and 389.9MB with cloning (+261.2%). Even with this discrepancy,

the outline DFA method was more space-efficient than cloning only in 31 out of the 95

benchmarks that were effectively optimized. However, because the DFA tends to be

more compact in larger cases, the total result favors using it over cloning: it uses only

33.4MB of additional code in all binaries, around 8.5x less than cloning – which added

281.9MB.

While the inline DFA was slightly less space efficient than the outline implemen-

tation when summing the binary sizes of all benchmarks (144.5MB vs 141.3MB), the

result is different when we restrict ourselves to the SPEC CPU2006 benchmarks (which

are larger, real-world programs). Originally, the SPEC binaries generated by LLVM

-O3 have a total size of 92.2MB. The binaries output by the inline DFA implementation

add up to 97.9 (+6.15%), whereas the outline implementation generates slightly larger

binaries (98.9, +7.27%). While the two results were close, they indicate that the inline

DFA implementation tends to be at least as, or even more efficient than the outline

implementation in large real-world programs.
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Conclusion

In this dissertation, we attempted to make context-sensitive optimizations more practi-

cal by reducing the code size penalty previously necessary to implement them. Previous

approaches, namely cloning and inlining, when used in their classical form, need to copy

the code of the full optimization paths in order to specialize a procedure for a given

calling context. We proposed a method that mitigates this issue, requiring only a sin-

gle clone of a function even if it appears multiple times in disjoint optimization paths.

Instead of using clones to keep track of the calling context, we use an implicit state

machine that is built statically and updated at run-time.

Our LLVM implementation was able to achieve significant gains over function

cloning in terms of the additional space in the binary needed to implement context-

sensitive constant propagation in 209 benchmarks. In SPEC CPU2006, a benchmark

suite consisting of large real-world programs, our method needs 3 times less additional

space than function cloning. If we consider all benchmarks, that number goes up to

8.5. On the other hand, the running time of the programs was practically unaffected:

we maintain most of the gains of using classical clone-based specialization.

Making context-sensitive optimizations practical requires effort in two fronts:

(i) efficiently deciding which calling contexts should be optimized and in which way,

and (ii) generating compact code that implements the chosen specializations. We have

advanced the second front. However, we have noted that the first one remains largely

unexplored by previous work. Hall [1991] was the last work we are aware of to make

extensive use of cloning-based context-sensitive specialization. Since then, context-

sensitive analyses have become efficient enough to be used in industrial compilers (Lat-

tner et al. [2007]). However, to the best of our knowledge, there are very few, if any,

recent efforts to utilize the information generated by such analyses in context-sensitive

optimizations. We have demonstrated the effectiveness of DFA-based code generation

57
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using a very naïve version of context-sensitive constant propagation. Contrary to what

is suggested by Hall [1991], for example, our algorithm did not try to predict whether

specializing a context would be profitable. Rather, it chose to propagate constants

whenever it found opportunities to do so, until reaching a fixed limit of optimized

contexts. Even though our implementation revealed optimization opportunities in the

benchmarks we used, we believe there is vast room for improvement on the optimization

itself.

Moreover, while we used constant propagation in our experiments, many other

important optimizations could benefit from context-sensitive specialization. Notable

examples include automatic parallelization, which is heavily dependent on pointer alias-

ing information. Currently, if in one calling context the pointer parameters of a func-

tion may alias, this optimization is hindered for all contexts. By using context-sensitive

specialization, many more optimization opportunities could potentially be exploited.

Because few previous works propose optimizations that fit the framework we

presented, we believe the mainstream adoption of our method is, in the short term,

unlikely. DFA-based code generation still needs to be used to implement more ag-

gressive optimizations, such as automatic parallelization, in order to gather attention.

Developing those optimizations may prove to be a harder problem than the generation

of compact code itself. Nevertheless, we believe the evidence we have gathered with

experiments in real-world programs supports our research hypothesis: the implemen-

tation of context-sensitive code specialization is now more practical to perform with

reasonable increases in binary size.
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