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Resumo

A recomendação de pontos de interesse (POIs, na sigla em inglês) em redes sociais
baseadas em localização tem sido objeto de intensa pesquisa, como mecanismo para
auxiliar usuários na descoberta de novos lugares para visitação em uma cidade. Tipica-
mente, todos os POIs na cidade alvo são considerados como candidatos para recomen-
dação, independentemente de quão distantes estão localizados do usuário alvo. Em
contraste, pesquisas recentes mostram que os usuários tendem a visitar POIs local-
izados em sua vizinhança a maior parte do tempo. A fim de explorar esse padrão de
localidade, investigamos o impacto de um mecanismo de poda baseado em localização
para a recomendação de POIs. Em particular, mostramos que ganhos de eficiência po-
dem ser obtidos durante as fases de aprendizado e de predição de recomendações sem
perdas significativas de eficácia. Por meio de uma análise segmentada, demonstramos
ainda o compromisso entre eficácia e eficiência para diferentes níveis de esparsidade
dos perfis de visitação de usuários e POIs, bem como para vizinhanças de várias den-
sidades.
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Abstract

Point-of-interest (POI) recommendation in location-based social networks has been
widely researched as a mechanism to help users discover new places to visit in a city.
Typically, all POIs in the target city are considered as candidates for recommenda-
tion, regardless of how far off they are from the target user. In contrast, related
research has shown that users tend to visit POIs in their vicinity most of the time.
To exploit such a locality pattern, we investigate the impact of location-based prun-
ing on POI recommendation. In particular, we show that efficiency improvements can
be attained both at learning as well as at prediction time without significant losses in
effectiveness. Through a breakdown analysis, we further demonstrate the effectiveness-
efficiency trade-offs incurred for different levels of user and POI visitation sparsity as
well as for neighborhoods of various densities.
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Chapter 1

Introduction

The rise of location-based social networks (LBSNs), such as Yelp1 and Foursquare2

has attracted much attention from industry and academia. For instance, Foursquare
contains more than 50 million active users around the world, and by July 2017 had
surpassed more than 12 billion check-ins2. People have been extensively using LBSNs
to achieve a better quality of life, especially in smart cities where every person and
device share information on the Web. In particular, users connect with friends, ex-
plore their current region and eventually check-in at a point-of-interest (POI) (e.g.,
eatery, entertainment, professional, public service venues) and leave reviews (sharing
their experience). A major role of LBSNs consists in learning user’s preferences to rec-
ommend personalized POIs that would improve their life while exploring a city. POI
recommendation not only helps users to visit new places, but also helps the LBSNs to
increase revenue by using intelligent location services and attracting potential visitors
to a POI [Yu and Chen, 2015].

The large volume of social data generated through LBSNs opens up numerous
challenges for providing a high-quality recommender system for citizens. While devel-
oping new algorithms for POI recommendation, many researchers have struggled with
the high sparsity of user information, the temporal patterns of user activities, and the
availability of data from multiple sources [Bao et al., 2015; Ye et al., 2013; Zhao et al.,
2016]. A key challenge in this domain is how to assess the effectiveness of a POI recom-
mender given the user’s context, such as his or her current location, time, companion,
and environmental conditions. Indeed, most previous works on POI recommendation
overlook the contextual information, providing for an arguably unrealistic evaluation
scenario [Yuan et al., 2013].

1http://www.yelp.com/about
2http://foursquare.com/about

1

http://www.yelp.com/about
http://foursquare.com/about
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Typically, in these studies, all POIs in the target city are considered as candidates
for recommendation, regardless of how far off they are from the target user. On the
other hand, related research has shown that users usually tend to visit POIs in their
vicinity [Ye et al., 2011; Noulas et al., 2011; Liu et al., 2014, 2013]. Considering all POIs
as plausible candidates may lead to increase potential noise in the recommendation and
a high computational cost to predict a score for POIs outside the user’s geographic
range. Moreover, ignoring the user’s location in the recommendation may trivially
favor geography-aware POI recommenders when geography should be a fundamental
user constraint.

In this dissertation, we investigate the geographical context of the user on POI
recommendation. Unlike previous works that consider every POI as a candidate, we
propose a task which leverages the user’s location to prune out-ranged POIs from the
recommendation. Akin to static pruning in search engines, the Nearby POI recommen-
dation performs a location-based pruning strategy to restrict the recommendations to
POIs in the user’s vicinity. To demonstrate the impact of the location-based pruning
on POI recommendation, we evaluate eight state-of-the-art recommender methods on
a new test collection for context-aware nearby POI recommendation.

In particular, the analyses demonstrate that location-based pruning improves the
efficiency of the methods at learning and prediction time without significant losses in
effectiveness. Preliminary results show that Rank-GeoFM [Li et al., 2015], the current
state-of-the-art for POI recommendation, benefits from the location-based pruning, re-
ducing training time by 22%. Moreover, a breakdown analysis further demonstrates the
impact on the effectiveness of all tested POI recommenders when pruning is performed
at prediction time for users and POIs for different levels of check-in data sparsity as
well as for neighborhoods of various densities.

1.1 Dissertation Statement

The statement of this dissertation is that the geography should be a fundamental user
constraint to POI recommendation. Besides providing for a more realistic assessment
of POI recommendation, we hypothesize that a location-based pruning of the avail-
able POIs can improve the efficiency of existing recommenders without significantly
degrading their effectiveness. In addition to better reflecting users check-in behavior,
factoring out geography during evaluation enables a clearer assessment of the role of
contextual factors other than geography on a user’s decision to check in at a POI.
This statement raises the following research questions, which will be answered in the
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upcoming chapters:

• RQ1: How does location-based pruning impact POI recommendation effective-
ness and efficiency?

• RQ2: How do different levels of data sparsity affect the effectiveness of POI
recommendation methods?

1.2 Contributions

This dissertation leads to the following contributions:

1. A large-scale test collection and evaluation methodology for context-aware nearby
POI recommendation.

In this dissertation, we collect users’ check-ins spread over one year from the entire
world. We describe the developed architecture for collecting and processing these
check-ins. In contrast to existing collections, we propose a geography-aware test
collection which includes several geography-constrained test cases, enriched with
temporal, social and weather contexts.

2. An effectiveness-efficiency analysis regarding the impact of location-based prun-
ing on POI recommendation.

As known from the literature, users tend to visit nearby POIs most of the
time [Liao et al., 2016; Ye et al., 2011; Liu et al., 2017]. To exploit such pattern,
we introduce the Nearby POI recommendation task which uses a location-based
pruning for POI recommendation. Also, we present preliminary results for a
variation of Rank-GeoFM (Nearby Rank-GeoFM) that shows efficiency improve-
ments both at training and at prediction time without losses in effectiveness.

3. A breakdown analysis comparing the performance of eight POI recommenders
through different levels of sparsity and neighborhood densities.

We compare several state-of-the-art POI recommenders for the Nearby POI rec-
ommendation task, pruning the test data. Through a breakdown analysis, we
evaluate the performance of the methods for different sparsity conditions (e.g.,
user and item cold-start, system cold-start) as well as the impact of having the
geographical context built into the task.
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To the best of our knowledge, this is the first work that proposes a static pruning
strategy and evaluates the impact of the location-based pruning for POI recommenda-
tion.

1.3 Organization
The remainder of this dissertation is structured as follows:

Chapter 2 gives an overview of recommender systems. The unique challenges of POI
recommendation compared with tradition recommendation is also addressed in
this chapter. We also discuss existing approaches and relevant results in order to
motivate our research questions.

Chapter 3 describes the construction of the Nearby POI collection. We discuss the
challenges involved in collecting this data, which is not directly made available
by LBSNs for safety reasons. Lastly, we present an analysis and characterization
of the produced collection as well as its limitations.

Chapter 4 presents the Nearby POI Recommendation task which restricts the user’s
POI exploration to his or her vicinity. Because people tend to visit nearby POIs
most of the time, we introduce a location-based pruning strategy to exploit such
locality pattern. In addition, this chapter describes the main characteristics of
the task in comparison to the traditional POI recommendation task.

Chapter 5 details the experimental framework employed to conduct our experiments.
Also, we review the problem definition as well as the statistics of the test cases
produced. The POI recommenders used in our experiments are presented in this
chapter.

Chapter 6 evaluates the performance of eight POI recommenders for the Nearby POI
Recommendation task. In particular, the chapter presents an analysis of the im-
pact of location-based pruning on POI recommendation and conduct a breakdown
analysis comparing the effectiveness-efficiency of the multiple recommenders for
different user-POI sparsity conditions.

Chapter 7 concludes this dissertation by presenting critical aspects and limitations.
Furthermore, we summarize the main contributions and directions for future
work.



Chapter 2

Related Work

This chapter introduces the theoretical background and the relevant concepts for this
dissertation. Section 2.1 gives an overview of the Recommender System describing
the task. Later, it explains the recommendation process and its different approaches.
Section 2.2 presents the POI Recommendation task and discusses several POI rec-
ommender systems divided into context-agnostic and context-aware approaches. Sec-
tion 2.3 reviews the static pruning in search engines which we employ a similar approach
for POI recommendation. Finally, based on the analysis of related work we verify the
research gap and determine our research question.

2.1 Recommender Systems

Recommender Systems (RSs) have been studied and developed since the 1990s. At the
beginning, recommender systems were described as systems for which "people provide
recommendations as inputs which the system then aggregates and directs to appropriate
recipients" [Resnick and Varian, 1997]. Nowadays the term has a broader connotation,
described by Burke [2002] as "any system that produces individualized recommendations
as output or has the effect of guiding the user in a personalized way to interesting or
useful objects in a large space of possible options."

Since last decade, recommender systems are changing the manner people find
products, information, and even a relationship. RSs are popular systems that leverage
various techniques to suggest items that users are likely to be interested [Yang et al.,
2013]. These suggestions relate to several decision-making processes, such as which
movies to watch, what music to listen or where to go [Ricci et al., 2010]. In addition,
studies are being carried out to analyzing patterns of users’ behaviors to find out what

5
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they might like from a collection of things they have never seen before, hence, get a
better recommendation.

A recommendation divides into two categories, personalized and non-personalized
recommender systems. As a rule, recommender systems focus on a particular type of
item, using personalized recommendation algorithms to boost its recommendations.
These algorithms give personalized recommendations by user or user group based on
their behaviors and uniqueness. In contrast, the non-personalized recommendations
aim to everyone, for instance, recommending a list of most popular items.

Recommendation Systems have been evolving over the last years, developing sev-
eral techniques to predict the most likely item for the user. According to the litera-
ture [Burke, 2002], these techniques divide into five different types of recommendation
as follows:

Collaborative Filtering

The Collaborative Filtering (CF) is considered the most popular and adopted recom-
mendation technique in RSs. This approach recommends items that other users with
similar tastes liked in the past. The similarity between users is calculated based on
their rated items before, i.e., users with similar taste rate items similarly [Ricci et al.,
2010].

Content-Based

Content-based RSs center on recommending items that are most similar to the ones
that the user liked in the past. Thus, the primary process consists of matching up
the attributes of a user profile in which preferences and interests are stored, with the
attributes of a content item, to recommend to the user new interesting items [Ricci
et al., 2010]. For instance, if a user has liked an Italian restaurant, the system can
learn to recommend others Italians restaurants or with similar attributes.

Knowledge-Based

Knowledge-Based RSs takes into consideration the knowledge about the items, such
features, and build the user’s preferences weighting most important features against
others. This recommendation algorithm suggests items based on user’s feedbacks, e.g.,
system navigation, searching, specific features filtering. For instance, the eBay1 im-
plements this approach recommending a set of items learned by the user’s features

1http://www.ebay.com

http://www.ebay.com
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preferences through the filtering product features, colors, price, etc. Burke [2000] de-
scribes knowledge-based recommender systems are strongly complementary to other
types of recommender systems, once its recommendations do not depend on a base of
user ratings.

Demographic-Based

A Demographic RSs provide the recommendation based on demographic information
of the user. In this RS, socio-demographic attributes are used, such as gender, age,
education, country. Therefore, grouping user preferences into demographic clusters can
improve the recommendation for different demographic niches [Ricci et al., 2010].

Hybrid

Hybrid RSs combine several techniques mentioned above to recommend items. It allows
the RS build a more robust system which eliminates the disadvantages of one system
with the advantages of another one [Gorakala and Usuelli, 2015]. For instance, content-
based systems can recommend new items that have no ratings, while collaborative
filtering systems are better with more items feedback.

2.2 POI Recommendation

POI recommendation is a branch of recommendation systems, which indicates that this
task can borrow many ideas from conventional recommender systems (e.g., movie rec-
ommendation) [Zhao et al., 2016]. For instance, we can apply conventional techniques
for POI recommendation such as collaborative filtering methods. POI recommenda-
tion systems seek to learn the users’ preferences on locations and provide to users a
new set of POIs that they are likely to be interested in but has never visited. This
task not only encourages users to visit new places but also helps the POI owners to
increase their revenues by finding and attracting potential visitors [Liu et al., 2013].
However, differing from traditional recommender systems, POI recommendations face
new challenges as follows:

Physical constraints. The user’s location plays a vital role for POI recommen-
dation in LBSNs. A user’s current location can be represented on different levels of
granularity, e.g., a state, city or neighborhood. We should use a fine granularity re-
garding the kind of recommendation we intend to provide, like using the city as user’s
location to suggest touristic places to check-in [Bao et al., 2015]. Another concern about
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the physical constraint is that user’s mobility preference is affected by geographical dis-
tance. Geographical influence is the most important characteristic that distinguishes
POI recommender systems from traditional recommender systems and heavily effects
user’s visitation behaviors [Yu and Chen, 2015]. Also, the distance property of POIs
implies that users are more likely to visit nearby POIs than distant ones [Ye et al.,
2011; Noulas et al., 2011; Liu et al., 2014, 2013; Bao et al., 2015; Liu et al., 2017].

Data scarcity problem. POI recommendations suffer from much worse data
scarcity problem than other recommendation problems. In traditional recommender
systems, the user generally expressed their preferences by explicitly feedbacks (e.g.,
rating a movie or a product) whereas in the POI recommender systems the user’s
preferences are reflected by the frequency of check-ins (i.e., implicit feedbacks). A
problem of user’s preferences being reflected through implicit feedbacks is that a check-
in does not mean that the user liked the visited place. In addition, the sparsity of user-
location check-in is dramatically higher than of user-item rating matrix, for instance,
the sparsity of Netflix data for movie recommendation is 98.8% [Liu et al., 2017], while
the collection used in this dissertation is 99.9%.

Heterogeneous information. LBSNs consist of different kinds of information.
In addition to geographical information, also consist of venue descriptions, users’ social
relation and media information (e.g., tips, reviews, likes). The heterogeneous informa-
tion might be used to improve and construct different kinds of POI recommendation
systems. For example, a location shared by two users could be evidence of similarity,
social-ties, or it may simply be a very popular place. Moreover, the users’ visiting
preferences might be affected by their social ties [Liu et al., 2017]. In addition, the
users’ preference is time-dependent. Users’ check-ins pattern may behave differently
with respect to time, for instance, a user often checks in parks in the early morning
while other user likes bars and checks in late night. The same befalls POIs because
different places have different opening hours. Thus their check-ins patterns over time
will be different [Cheng et al., 2011].

In the last five years, the POI recommender systems have been receiving a lot of
attention from academia and industry. As a result, several POI recommender systems
have emerged using different approaches as well as leveraging context information to
improve the POI recommendation. Despite that, in general, POI recommender systems
have the following structure, a set of n users U = {u1, . . . , un}, and a set of m POIs
P = {l1, . . . , lm}. Each user uj has a set of visited POIs Puj ⊆ P . The check-
ins information are often transformed to a user-location check-in frequency matrix C,
which each user-location check-in is cup. The users’ check-in frequency reflect their
preferences through the places visited. However, as aforementioned, matrix C is very
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sparse due to the small amount of POIs that the users usually check-in.

2.2.1 POI Recommendation Techniques

Due to the lot attention that POI recommendations have been receiving in the last
years, an extensive number of studies around the POI recommenders have been de-
veloped. Therefore, for a better understanding, we divide these recommenders into
context-agnostic and context-aware POI recommendation.

Context-Agnostic POI Recommendation

Like traditional recommender systems, the context-agnostic POI recommenders only
take user-item matrix to produce POI recommendations. Therefore, adopting the POIs
as the items and the check-ins as ratings, several traditional recommender systems
can be used to learn the users’ preferences and produce POI recommendations. For
instance, traditional techniques like memory-based approaches (e.g., user-based and
item-based collaborative-filtering) were employed as POI recommendation algorithms
by Ye et al. [2011]. In a nutshell, the user-based collaborative filtering (CF) algorithm
assumes that similar users have similar tastes while the item-based CF assumes that
users are interested in similar items [Breese et al., 1998; Sarwar et al., 2001]. Thus,
user-based CF suggests POIs based on the taste of most similar neighbors and the
item-based CF suggests based on similar POIs that the user have visited.

In addition, model-based CF approaches such as matrix factorization (MF) algo-
rithms can be employed for POI recommendation. In contrast to memory-based CF
approach, this approach uses different kinds of algorithms to build a model and pre-
dicts the user’s ratings. MF decomposes the check-in matrix C ∈ RM×N into a user
matrix U ∈ RM×K and POI matrix P ∈ RN×K . M is the number of the users, N is the
number of POIs, and K ≪ min(M,N) are the latent factors. Thus, the user-POI score
is modeled as an inner product between the U and P matrices [Koren et al., 2009].

Hu et al. adapts the traditional MF algorithm for implicit feedback [Hu et al.,
2008]. Weighted regularized matrix factorization (WRMF) is a popular model-based
technique for one-class rating [Pan et al., 2008; Kang et al., 2016]. This method learns
from implicit feedback for item prediction and implements a weighting matrix to dif-
ferentiate rating activities and unobserved ones.

Rendle et al. proposed a Bayesian Personalized Ranking (BPR) for matrix fac-
torization [Rendle et al., 2009]. BPRMF uses a stochastic approach to sample negative
items for each user, and reduces the computation time significantly [Dasgupta, 2016].
As state-of-the-art collaborative filtering approach for implicit feedback, the BPRMF
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is widely employed as a baseline in several studies [Kang et al., 2016; Liu et al., 2017;
Guo et al., 2017]. In contrast with other CF recommenders that are rating prediction
oriented, BPRMF learns the ranking order through a pairwise classification. A varia-
tion of BPRMF is the weighted version WBPRMF. By weighting each POI pair with
randomly-generated values, the WBPRMF attempts to promote low scored POIs.

Context-Aware POI Recommendation

As described in Section 2.2, besides the geographical constraints, POI recommendation
task also consists of different kinds of information. Contextual information may detail
more about the user’s check-in behavior, for example, climate characteristic at the POI
check-in or whether a user is with a friend.

As shown by Yu and Chen [2015], studies are being conducted to analyze how
contextual information can improve a POI Recommendation. Gao et al. [2013] pro-
posed a novel recommendation framework based on temporal context, achieving a good
precision only considering when users have made check-ins (i.e., weekday/weekend, the
day of the week). Likewise, Bannur and Alonso [2014] did an extensive study to an-
alyze different temporal characteristics, and present how different seasons impact in
POI visitations through the United States.

Ye et al. [2011] proposed a model to incorporate three factors to collaborative
recommendation. USG models user preference (U), social influence from friends (S)
and geographical influence from POIs (G) for POI recommendation. User preference
adopts the traditional user-based collaborative filtering approach. Social influence is a
friend-based collaborative filtering which based on similar friends tastes produce POI
recommendations. Last, Geographical influence estimate the probability of the user
visits a POI based on his or her historical check-ins.

Noulas et al. [2012] examine POI discovery behavior in two LBSNs, and shows
that 60% to 80% of users’ visits are in POIs that were not visited in 30 previous days.
They proposed a model based on personalized random walk considering Collaborative
Filtering (CF) approaches, social filtering and spatial filtering.

Hu et al. [2014] considers five features and its influences to enhance recommenda-
tions. In particular, this work analyzes the neighborhood influences in POI recommen-
dation, which takes into account if the POI neighborhood and their popularity impacts
in a better recommendation.

Recently, throughout an extensive evaluation over several POI recommenders, Liu
et al. [2017] stated IRenMF, GeoMF and RankGeoMF as top-3 best models for POI
recommendation. Those three recommenders are based on implicit feedbacks models
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and exploit geographical information to POI recommendations.
Instance-Region Neighborhood Matrix Factorization (IRenMF) is based on

WMF. IRenMF exploit two levels of geographical neighborhood characteristics, (i)
nearest neighboring locations tend to share more similar user preferences (locations-
level influence); and (ii) POIs in the same geographical region may share similar user
preferences (region-level influence) Liu et al. [2014].

Like IRenMF, GeoMF also is a geographical WMF model. Lian et al. [2014]
incorporated the geographical context in GeoMF by modeling the influence propagation
of the users’ activity regions on geographical space. Moreover, because of the limitation
of WMF, it is not easy to generalize the method to other types of context information.

Li et al. [2015] developed a ranking-based geographical factorization method to
be very flexible to incorporate additional contexts. Rank-GeoFM makes a pairwise
comparison of POIs and measures incompatibilities between the inferred ranking and
the ranking produced by a factorization model. Additionally, Rank-GeoFM introduces
an extra matrix factorization to incorporate the geographical context for POI recom-
mendation. Despite those three approaches are equally good, Liu et al. [2017] described
Rank-GeoFM as the one which usually performs the best POI recommendations.

Following Liu et al. [2017], we evaluate several POI recommendation techniques
in this dissertation. We perform a breakdown analysis of eight state-of-the-art rec-
ommenders through different levels of sparsity and neighborhood densities. Also, we
obtain important findings of the performance of these algorithms throughout our anal-
ysis. In addition, we propose a new task and evaluation methodology by employing
the static pruning concept from the web search engines to the POI recommendation
problem.

2.3 Static Index Pruning in Web Search Engines

The query processing is a critical task in Information Retrieval (IR) since it is an on-
line step of search engines, where the user informs the query and expects to retrieve
relevant documents for that query. The main objective in query processing is to esti-
mate the relevance of a set of documents to a given query, rank these documents and
present a small set of most relevant documents to a user. Cambazoglu and Baeza-Yates
[2011] said that "a slow query processing system resembles a library with a long line of
impatient clients waiting at the front desk".

Therefore, in order to increase the query processing performance, Carmel et al.
[2001] introduced the concept of static index pruning, removing potentially less relevant
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entries from the index. In this study is proposed a term-based pruning as a strategy
to reduce the set of documents. Thus, by filtering the documents a priori helps to
reduce the computational cost of the second phase of query processing. In the second
phase, the documents selected in the first phase are ranked by a complex ranking
model [Cambazoglu and Baeza-Yates, 2011]. The final ranking is obtained sorting the
documents by their scores computed in the second phase.

Like static index pruning in search engines, in this dissertation, we propose a
static pruning for POI recommendation. In addition, we propose the location-based
strategy for static pruning, where we exploit the geographical influence of the POI
recommendation task to prune out-ranged POIs from the recommendation. We expect
that by pruning POIs outside the user’s geographic range reduces the computation cost
of predicting scores for all POIs in the target city without reducing the effectiveness of
POI recommenders.

2.4 Summary

This chapter introduced recommender systems and their foundations. Section 2.1 pre-
sented the definition of the term "Recommender Systems" and discussed its function-
ality and history. In Section 2.2, we approached the POI recommendation problem,
showing its relevance in LBSNs and for academic research. We discussed the new prop-
erties and challenges in POI recommendation, compared with traditional recommen-
dation problems. Also, we presented the techniques employed by POI recommenders.
In the vast majority, context-aware POI recommenders exploit the geographical influ-
ence to improve recommendations. The literature mentions a common human mobility
behavior through the check-ins, whereby the user-POI distance impacts the likelihood
a user will be interested in a POI [Bao et al., 2015]. In light of these findings, we
observe that geography should be piece of the POI recommendation task instead of
just a feature for POI recommenders. Thus, to guide this dissertation we raise two
general questions:

1. What if, to exploit such a locality pattern, we consider the geographical context
built into the POI recommendation task?

2. What if we restrict the recommenders to work with data in the user’s vicinity?

In Section 2.3, we described how we can apply the static index pruning from
search engines into POI recommendation. Moreover, this is the first work investigating
the static pruning impact for POI recommendation. In this chapter, we only targeted a
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scientific perspective on POI recommender systems and identified a research gap. The
next chapter describes the construction of the dataset that we use in this dissertation
and its challenges.





Chapter 3

Nearby Point-of-Interest Collection

This chapter presents a new test collection for context-aware nearby POI recommenda-
tion as well as the methodology to collect the data. Section 3.1 describes the framework
used for data collection and the challenges involved in creating the POI collection. In
Section 3.3 we characterize the nearby POI collection and present the contextual in-
formation available in the collection.

3.1 Check-ins Collection

To build the POI collection, we collected the users’ check-ins from Foursquare, nowa-
days one of the most popular LBSNs. In July 2017, Foursquare reported having a
community with more than 50 million people using it with an average of 9 million
check-ins a day, suppressing a total of over 12 billion check-ins1. However, once these
check-ins are not publicly available by Foursquare, the LBSN allows the users share
their check-ins via Twitter, where they are publicly available.

The Nearby POI Collection contains users’ check-ins spread over one year from
the entire world. The following section describes the framework and methodology to
collect the users’ check-ins from Twitter. Next, we introduce the Swarm (Foursquare’s
application for check-ins) and the filtering processes to guarantee congruence and con-
sistency of check-ins in collection.

3.1.1 Twitter

The Twitter is an online news and social networking service where users post and read
messages restricted to 140-characters, which are called tweets. This social network

1https://foursquare.com/about
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Figure 31: The collector’s architecture.

provides an API to access to the global stream of public tweets, where we can receive
messages filtered by specific locations or a set of terms. Unlike Foursquare that does
not allow to collect their check-ins dataset, on Twitter we were able to collect real-
time public tweets. Despite the Foursquare not publicly provide the users’ check-ins,
the users are able to share their check-ins as they please, e.g., social networks (e.g.,
Twitter, Facebook), through e-mail, etc. Therefore, we can collect these check-ins that
are shared from Foursquare to Twitter.

In order to build the POI collection, we collected real-time tweets related to
Foursquare check-ins a whole year. We retrieved an average of 500,000 daily check-
ins around the world using the Twitter Streaming API2 and filtering by the following
terms: foursquare com, 4sq com, swarm com, swarmapp com. These terms represent
the Foursquare and Swarm websites addresses, respectively and they are present in
every shared check-in through Twitter, linking the tweet to a check-in on Swarm website
(Figure 32).

In the Figure 31, we can observe the first box (1) the whole workflow to collect
the tweets divided into five steps. First, we receive the data streaming with tweets
(step 1) and process them (step 2). Next, we store all those received tweets in raw
format (step 3). Currently, we do not need the entire information provided by the raw
tweets3, thus, we remove unused information from tweets (step 4). Finally, we store
the final version of the tweet (step 5) and we summarize the description of all fields
in Appendix A1. Despite some tweets provide the place and coordinates information,
they only represent a macro-geographic location of tweet (e.g., city, state, country).

2https://dev.twitter.com/docs
3https://dev.twitter.com/overview/api/tweets

https://dev.twitter.com/docs
https://dev.twitter.com/overview/api/tweets
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(a) Twitter (b) Swarm

Figure 32: The Foursquare shared check-in on Twitter.

Therefore, to obtain the tweet checked POI we need to perform one more collection
from swarm url field. In the following section, we describe the location-based social
network Swarm and the process to collect the user’s check-in.

3.1.2 Swarm

The Swarm is a mobile app that allows users to check-in to a given location, make plans
with friends and see who is nearby. The application supports attach photos or stickers
to check-ins and allows broadcasting of check-ins to other networks including Facebook
and Twitter. Raised from the Foursquare, Swarm was a piece of the social network
Foursquare at the beginning, which in May of 2014 became a stand-alone application.
Currently, the location and check-in data collected in Swarm are used to improve user’s
recommendation in Foursquare. Like Foursquare, Swarm does not provide the users’
check-ins data, however, if the check-in is shared and public, we can obtain the url to
access the check-in information website (Figure 32b).

In the previous section, we performed a collection through Twitter obtaining the
required swarm url to collect the checked POIs. Since the collected tweets (of check-
ins) does not have the POI information but have a Swarm URL, was necessary retrieve
these Swarm pages to get the content of check-in. However, we collected an average
of 500,000 check-ins per day on Twitter, thus, performing all these URL request on
Swarm’s servers could take a long time. To reduce the request time for those check-ins,
we perform a filtering of the tweets as presented in the second box (2nd box) of the
check-in collection workflow in Figure 31. The check-in filtering (step 2) discards all
non-geolocated tweets. By filtering these check-ins, (i) drastically reduces the amount
of tweets and (ii) it allows to retrieve the check-ins by city, which reduces the amount
of requests we need to make on Swarm.



18 Chapter 3. Nearby Point-of-Interest Collection

We choose three cities three large cities in the Americas to start our POI collec-
tion. We choose the New York City (NYC) due to its great cultural diversity as well
as being a world-known city. Like NYC, Rio de Janeiro is a well-known city around
the world, also is one of the most touristic cities in Brazil. Lastly, Belo Horizonte is
the capital of the state of Minas Gerais in Brazil, the eighteenth largest city in the
Americas, and also the city where this research is carried out. Thus, to download the
user’s check-ins (step 3), we select geolocated tweets in these cities and request their
swarm urls. The swarm page has a JSON data (in source code) with the check-ins
description, i.e., information about the user, the checked POI, badges earned, device
used in check-in, timestamp, etc.

(a) New York (b) Belo Horizonte

(c) Rio de Janeiro

Figure 33: Check-ins coverage at the target cities.

Once the Swarm check-ins are collected, we perform several procedures (step 4)
to sanitize and verify the congruence and consistency of the data. Through this data
processing, we can detect and correct invalid events that may occur during the data
acquisition process. For instance, users can share their check-ins at any moment. Thus,
we may find check-ins before the collection date. Also, the tweet may be geolocated in
a city (New York City, USA) and the swarm check-in in another city or even a different
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country (Rio de Janeiro, Brazil). Thus, to remove these noisy check-ins, we consider
only check-ins up to 60 km from the downtown area of the target city and that were
checked in the period of the collection. As observed in Figure 33, we obtain a high
coverage of the geographic perimeter of collected cities.

3.2 Context-Aware Enrichment

A person can estimate an uncountable amount of variables to decide whether she or
he will go [Ferreira et al., 2015]. The combination of these variables create unique
characteristics that define the likelihood of a person visiting a place. For example,
one of those variables might indicate whether the place is suitable for kids (social); or
provide information on whether the place is good at night (temporal). These variables
are defined as contextual information about the user’s preferences, the POI, environ-
ment, friendship, etc. As mentioned earlier, POI recommenders leverage contextual
information to improve the POI recommendation. Thus, to provide such contextual
information for POI recommenders, we performed an enrichment of the Nearby POI
collection adding four different contexts: (1) temporal context; (2) climate informa-
tion; (3) social influence; and (4) the user-location before the check-in. The following
sections will give an overview of these contexts and the importance of them for POI
recommendation.

Table 31: The contextual features available in Nearby POI collection

type feature

geography user location nearby POIs

temporal
daytime season
time weekday
is weekend

climatic

temperature summary
apparent temperature cloud cover
icon humidity
precipitation probability

3.2.1 Temporal Context

The temporal influence is a fundamental feature for POI recommenders since it enables
several discoveries of the users’ patterns through the time of check-ins. The users’
check-ins preferences tend to vary at different time slots as observed in existing studies
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related to POI recommendation [Cho et al., 2011; Yuan et al., 2013, 2014]. To illustrate,
a user may prefer going to a restaurant at the evening and bars late at night, and then
POI recommenders can prioritize recommendations for bars rather than restaurants at
night.

Table 31 describes the temporal context available in the collection as five features
as follows: check-in time, daytime (i.e., morning, evening, afternoon, night), season,
weekday and if it is a weekend or not. By adding descriptive information about the
check-in time in our collection, we facilitate to use the temporal context in the POI
recommendation task.

3.2.2 Climatic Context

The climatic context has a strong influence on POI recommendation, for instance, if
the climatic conditions are not appropriate for visiting outdoor attractions then the
POI recommenders can exploit this information and suggest other places to visiting
[Meehan et al., 2013]. Also, the climatic conditions can affect the distance that users
are willing to travel to visit a place. However, few studies have been conducted using
climate as a context for POI recommendation [Meehan et al., 2013; Trattner et al.,
2016].

To encourage the exploration of this important context, we included the climate
information for each user’s check-in in our collection, facilitating the use of the climatic
context in more studies. We collected the weather information such as temperature,
humidity, and cloud coverage through Dark Sky API4 (Table 31). The full list of
climate features provided in the collection is detailed in Appendix A2.

3.2.3 Social Context

In the physical world, the discovery of a new place usually comes from word-of-mouth.
In fact, social influence helps not only for a POI recommendation but identifying
patterns and citizens’ behaviors. An analysis of social groups and citizens’ activities
can contribute to the development of the society as a whole. For instance, citizens’
behaviors help to anticipate an intense traffic in a particular neighborhood (e.g., Waze);
citizens traveling a long distance for to school may mean the need for a closer school.
Following this idea, a collection providing more social data is necessary, i.e., social
relationships, citizens’ profile, activities.

4https://darksky.net/dev/

https://darksky.net/dev/
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Toward support future studies using social influence, our collection provides 4,273
social interactions, which represents a relationship between people who checked-in at
the same place in a 1-hour interval at maximum. Also, 462,641 tips (New York City and
Belo Horizonte) contributes as an electronic-of-mouth recommendation, that through
tips and reviews people can express his or her feelings and suggestions [Moraes et al.,
2013].

3.2.4 Geographical Context

The users’ location plays as a central feature of the POI recommendation [Zheng,
2012]. Despite that, this feature is not available in the public test collections for POI
recommendation. Due to limitations, the users’ geographic information at the moment
of the recommendation is not provided by the LBSNs. Since the users’ location is
missing from the POI collections, most of the POI recommenders overlook to this
important feature.

Currently, to cope with the leak of the users’ location, POI recommenders con-
siders users’ location as the users’ home. The home location can be estimated using
the users’ check-ins history [Cheng et al., 2011]. This approach assumes that the user
requests a recommendation always at home, as well as considers any POI as a candidate
to be recommended.

Unlike the home location approach, we cope this problem assuming that most
users’ requests a POI recommendation nearby to him or her [Ye et al., 2011; Yuan
et al., 2013]. Analyzing the CDF of the check-ins distance in our collection, Figure 34
shows that 60% of the check-ins in New York City are within 5 kilometers from the
users’ home5, and more than 80% of the check-ins are within 10km from the user’s
location. Since most of the check-ins are near the user, our analysis is in agreement
with previous studies stating that the user acts in geographically constrained areas and
chooses to visit nearby POIs [Zhao et al., 2016].

In light of these findings, we build a collection that each check-in has a given user
location, and the location is defined randomly at a distance d from the visited POI.
Furthermore, since most POIs are out-ranged and are not plausible candidates to be
recommended, we provide the Nearby POIs in the collection. It is a set of 10 or more
candidate POIs, ordered by the POI distance from the user location named as users’
neighborhood (Table 31).

5In this analysis, the users’ home is defined by the centroid from the users’ check-ins history
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Figure 34: Distribution check-ins by distance in the New York City.

3.3 Dataset Characterization

The context-aware Nearby POI test collection is based on the check-ins collected from
the Foursquare as mentioned in Section 3.1. The test collection covers check-ins from
New York City (US), Belo Horizonte (BR) and Rio de Janeiro (BR) between Aug. 2015
to Jul. 2016. Table 32 summarizes the statistics of the Nearby POI collection.

Table 32: Nearby POI Collection

city # users # POIs # check-ins # social links

New York (US) 26,357 46,663 515,861 3856
Belo Horizonte (BR) 4,850 33,245 389,605 417
Rio de Janeiro (BR) 18,394 38,552 481,164 -

In the nearby POI collection each check-in basically consists of the following
attributes: user, user’s location, time of check-in, the set of candidate POIs near the
user’s location, and the target POI. Also, we provide additional features such as the
POI categories (Table 33) in an auxiliary structure to complement the check-in data.
The full list of available features is detailed in Appendix A3. In addition, as reference
for comparison, we describe the most popular collections for POI recommendation in
Appendix A4.

Table 33: List of POI categories

Arts & Entertainment Outdoors & Recreation Food Travel
College & Education Professional Shops Other

Event Residence Nightlife
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3.3.1 Considerations

Although a large amount of data produced by users in the LBSNs, we faced several
limitations during of the collection process to obtain the user’s check-ins from the
Foursquare. First, the Twitter Streaming API (in the free version) limits to collect
only 1% of total volume of produced tweets. Thus, this limitation restricts us from
collecting all Foursquare check-ins shared through Twitter. Despite that, we retrieved
an average of 6% of Foursquare check-ins (≈ 500k check-ins per day) comparing with
the 9 million of daily check-ins reported by Foursquare. Second, LBSNs mainly consist
of young people who frequently use social networking services [Yang et al., 2015].
Hence, citizens’ behavior may be biased because of the users of LBSNs. Finally, we
also faced a limitation of the representativeness of check-ins due to fewer users share
their check-ins on Twitter [Long et al., 2013].

Another consideration is that, despite we have presented three cities in this col-
lection, we will use in this dissertation only the New York City collection. As afore-
mentioned in Section 3.1.2, we choose the New York City due to its great cultural
diversity as well as being a world-known city. Likewise, we consider only the temporal
and geographical context in the analysis of this work. We provide the other two cities
as well as social and climatic contextual information as an extra of this collection.
Nonetheless, we intend to use those additional data in future research.

3.4 Summary
In this chapter, we described our framework to collect and build the context-aware
Nearby POI collection as well as the difficulties that we faced creating the collection.
In Section 3.3, we characterized the collection and described four additional contexts
available in the collection. Also, we highlighted the limitations of our collection. This
chapter addressed the first contribution of this dissertation, a geography-aware test
collection which includes several geography-constrained test cases, enriched with tem-
poral, social and weather contexts.
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Nearby POI Recommendation

POI recommendation is an important service to LBSNs, helping in the suggestion of
new places that the users are likely to be interested in visiting. The vast majority
of studies about POI recommendation consider three main sources of information to
build and evaluate a POI recommender: (i) the user; (ii) the venues visited by the
user; and (iii) the set of candidate venues for recommendation. Using this information,
the recommender suggests a new POI p ∈ P to a user u ∈ U by learning the users’
preferences from the POIs that they have visited (Pu ⊆ P).

In order to evaluate the accuracy of the recommendations, these studies employ
an evaluation framework which (i) implements a traditional cross-validation not en-
suring a chronological order the check-ins; (ii) allows to target multiple relevant places
during the evaluation phase; and (iii) requires the scoring of all POIs in the dataset.
Arguably, this traditional evaluation methodology does not model realistic POI rec-
ommender scenarios as it overlooks important features such as users’ location and
geographical context of a venue [Yuan et al., 2013]. The user’s location plays an im-
portant role in LBSNs since the recommenders typically start suggesting POIs for the
user’s visitation from his or her location. Disregarding the user’s location at the time
of the recommendation, the traditional evaluation framework uses the entire collection
of POIs P as candidates, which may result in noisy recommendations. Also, the score
prediction for the whole set of POIs results in an unnecessarily high computational
cost, since most POIs would be outside the geographic range the user would be willing
to visit, thus, not being plausible candidates. To cope with these limitations, we pro-
pose the Nearby POI recommendation task, where the geographical context is used to
restrict the recommendation to nearby POIs.

In contrast with the traditional evaluation frameworks that consider any POI as
a candidate, the Nearby POI recommendation task benefits from the users’ location
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to prune out-ranged POIs, removing noisy POIs of the recommendation. The Nearby
POI recommendation employs Tobler’s First Law of Geography which states that "Ev-
erything is related to everything else, but near things are more related than distant
things" [Tobler, 1970]. Tobler’s First Law of Geography implies that users prefer to
visit nearby locations rather than distant ones [Yu and Chen, 2015]. Thus, considering
the importance of the geographical context in the POI recommendation, the Nearby
POI recommendation task explores the user’s neighborhood, i.e., POIs surrounding the
user’s location.

The following sections discuss two core properties of the Nearby POI recommen-
dation task. Section 4.1 discusses the user’s location definition and its uses for the task.
Section 4.2 describes the neighborhood and the potential benefits of using a nearby set
of candidate POIs. Last, Section 4.3 shows a contrast between the characteristics of
the Nearby and Traditional POI recommendation tasks.

4.1 User’s Location

The user’s location is an important feature of the POI recommendation in LBSNs.
Likewise, the users’ location is at the core of the Nearby POI recommendation task,
since it is essential to establish the set of candidate POIs for recommendation. As intro-
duced in the Section 3.2.4, LBSNs only provide the check-ins location. Consequently,
the available test collections for POI recommendation do not provide the user’s location
at the moment of recommendation. Despite this, previous studies addressed this issue
with three different strategies: (i) ignoring the user’s location; (ii) assuming the user is
at home (the location of which must be inferred); and (iii) assuming the users’ location
is the last POI that they visited, which is particularly exploited for recommending
sequences of POIs.

The strategy of overlooking the user’s location cannot be used by the Nearby POI
recommendation since it requires the user’s location to build the user’s neighborhood.
If we just ignore the user’s locations, we retain the same problem of the traditional
POI recommendation task, which considers every POI in the dataset as a candidate.
The next strategy - inferring user’s home - assumes that users always get a POI
recommendation from their homes. In the same way, the POI recommenders need to
consider the entire POI collection as candidates since the users at some point will visit
places far from their homes. Another concern about inferring the user’s home from his
or her historical check-ins is that his/her home could be mislocalized. Arguably, the
sequential POI recommendation strategy is the one that makes the most sense among
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the others, using the last known user-location for a recommendation. However, we
discard this strategy because it implies that the interval between the user’s check-ins
needs to be in a small time window. Thus, this strategy does not fit entirely for a
real-world scenario, where there are a large number of users with few check-ins and
users who have very sparse check-ins.

Section 3.2.4 introduced a POI collection containing user’s location for each check-
in that the users did. To simulate the users location in our proposed evaluation method-
ology, we randomly place the user in the vicinity of the venue where he or she actually
checked-in. To estimate the user’s location we define the maximum distance r that the
user can be from the visited POI, then choose a random position within that distance r.
Once the user is near the visited POI, this eliminates the need of considering the entire
POI collection as plausible candidates. The advantage of this strategy is that we can
prune all out-ranged POIs, thus, not being plausible candidates [Ye et al., 2011; Yuan
et al., 2013; Yu and Chen, 2015]. Also, employing this strategy, we no longer need to
infer the user’s home through his or her check-ins or use the sequential check-ins strat-
egy. Moreover, this strategy allows parameterizing our evaluation by using different
maximum distances r. In the extreme, with r →∞, the Nearby POI recommendation
task is equivalent to the Traditional POI recommendation task. While we experiment
with fixed r values in our evaluation in Section 6, customized values could be used to
reflect users with different willingness to travel long distances, as well as neighborhoods
with different densities. We leave this investigation for the future.

4.2 User’s Neighborhood

User’s neighborhood plays a prominent role Nearby POI recommendation task, as
it allows pruning the number of candidate POIs for the recommendation. A user’s
neighborhood is an area that the user is willing to explore. For instance, an area might
be a street in a city, a borough, neighborhood, or even the whole town. Still, the larger
the area to explore, the greater the number of POIs within it. However, in order to
reduce the number of POIs, we apply Tobler’s First Law of Geography which suggests
that the probability for a user to visit a venue is closely related to the distance the user
needs to travel to reach the venue [Liao et al., 2016]. Thus, we assume in the Nearby
POI recommendation task, that people will visit POIs in a restricted area near to his
or her location, determined as discussed in Section 4.1.

Therefore, a "neighborhood" is the vicinity of the user restricted by a radius d

from his or her location. Thus, the set of the candidate POIs will include any POI
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Figure 41: The number of candidate POIs per recommendation task. (a) The tradi-
tional task considers every place in the city as a possible candidate. Each point denotes
a POI. The colors express different POI categories. (b) The Nearby task explores only
the users’ neighborhood, from the users’ location. The major circles represent the
size of the neighborhood and the minor circles are the candidate POIs; the marker on
the circle’s center is the user’s location and other the relevant POI. The colors mean
different check-ins.

(a) Traditional POI recommendation task (b) Nearby POI recommendation task

located within the neighborhood range. Note that for the POI recommender to be
able to recommend the relevant POI, this POI must be within the neighborhood.
Thus, d ≥ r, where r is the distance from the user to the relevant POI (Section 4.1).
To illustrate, Figure 41 shows a contrast between the set of candidate POIs of the
Traditional and Nearby POI recommendation tasks. Figure 41a presents a unique
user check-in and the set of candidate POIs which are the colored circles on the map.
Figure 41b shows five different check-ins and their candidates POIs by color. Each
check-in has a major circle that is the user’s neighborhood; a light marker in the center
of the neighborhood represents the user’s location; the other marker with the same
color of the neighborhood represents the relevant POI; the minor circles within the
neighborhood are the candidate POIs. Besides the difference of the number of candidate
POIs in the two tasks, we can observe in Figure 41b that although the neighborhoods
are the same radius d, the number of POIs within each neighborhood may vary due to
its density, which arguably adds to the realism of the task by producing test cases of
varying difficulty. In Section 6.2.2, we will analyze how different POI recommenders
perform across test cases of different densities.
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4.3 Overview

To highlight the main differences of the Nearby POI Recommendation task from the
traditional POI recommendation task, we characterize the tasks in the following four
components: (i) the travel distance; (ii) the user’s location; (iii) the set of candidate
POIs; (iv) the context-awareness.

The travel distance component defines how far a place can be from the user for a
recommendation. While traditional POI recommendation evaluation do not limit the
distance of the recommendation, the Nearby POI recommendation task has a distance
limitation a priori which can be parameterized. Thus, traditional POI recommenders
explore the whole city, and the Nearby POI recommendation explores only a restricted
area for a recommendation. Note that in the Nearby POI recommendation we can set
the distance limitation to reach the entire city as well.

User’s location, typically determined via global positioning system (GPS) coor-
dinates or alternative geolocation approaches, is at the core of LBSNs as a reference
point for POI recommendations [Zheng, 2012; Yuan et al., 2013]. To address the miss-
ing user’s location in check-in datasets, traditional approaches infer users’ homes from
their previous check-ins or even do not exploit the user’s location. Nearby POI rec-
ommendation task introduces a new strategy to cope with the user’s location problem,
randomly choosing a user’s location near - i.e., at a parameterized distance - the vis-
ited POI. As the Nearby task considers that the user will visit nearby POIs, the POI
recommenders can learn the user’s distance preference and configure this range per
user.

Another essential component of the POI recommendation task is the set of POIs
that will be recommended. As the traditional POI recommendation approaches allow
users to explore the whole city, there will be no constraints on the set of POIs. Hence,
all places in the city will be considered potential candidates for the recommendation.
On the other hand, the Nearby POI recommendation task has a distance constraint that
limits the potential candidates to those in the user’s neighborhood. Reducing the set of
candidate POIs has the potential to alleviate the high computational cost of predicting
scores for a large number of POIs, as well as training effective POI recommendation
models.

Last, context-awareness has been shown to produce better POI recommenda-
tions [Trattner et al., 2016; Gao et al., 2013]. For instance, Li et al. [2015] present
that leveraging information about the characteristics of the geographical surroundings
of a venue improves recommendation. Because the geographic context is inherently
important to POI recommendation, we argue that it is more realistically handled as
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a constraint rather than as a ranking criterion. Indeed, unlike the Traditional POI
recommendation task, Nearby POI recommendation enforces a geographic constraint
by construction. As a result, we can better assess the effectiveness of alternative rec-
ommenders and even alternative contexts (e.g., time, climate, companion) regardless
of geography.

4.4 Summary
In this chapter, we introduced the Nearby POI recommendation task. We discussed the
differences between the Nearby POI and Traditional POI recommendation tasks. Also,
we proposed a new strategy to cope with the problem of missing user’s location data
for evaluating POI recommenders and compared it with traditional approaches from
the literature. Later, we presented the concept of user neighborhood as an important
characteristic of our proposed task, as it allows reducing the recommendable POIs to
the user’s neighborhood. Finally, we contrast the key features of both tasks.



Chapter 5

Experimental Setup

In this chapter, we describe the evaluation setup, baselines, and additional information
of the dataset used for the analyses in Chapter 6. In particular, our experiments seek
to model a more realistic scenario for POI recommenders paying attention to user’s
location and the geographical context of the venues. As introduced in Chapter 1, we
aim to answer the following research questions of this dissertation:

• RQ1: How does location-based pruning impact POI recommendation effective-
ness and efficiency?

• RQ2: How do different levels of data sparsity affect the effectiveness of POI
recommendation methods?

In the remainder of this chapter, Section 5.1 formalizes the POI recommenda-
tion problem. Section 5.2 details the test collections, whereas Section 5.3 shows the
evaluation framework used in our experiments. Lastly, Section 5.4 overviews the POI
recommenders used for our experimental analyses.

5.1 Problem Definition
As discussed in Chapter 4, we model the POI recommendation task to a ranking
problem which has a set of candidates to be ranked. In particular, each test case is
denoted by a tuple <u, lu, t,Clu , v>, where u is a target user, lu is the user’s location
(randomly defined) at time t, Clu is a set of candidate POIs in the vicinity of u (i.e.,
within a distance d from lu), and v ∈ Clu is a relevant POI (i.e., the POI where the
user last checked in). In contrast with the traditional POI recommendation that may
allow many relevant items for a single test case, we have only a single relevant venue
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for each test case. For this reason, our task is interpreted as a ranking problem since
the objective is to rank the relevant POI v ahead of all other POIs in Clu . Table 51
summarizes the previous notations.

Table 51: List of notations

U the set of users u1, u2, · · · , um
V the set of POIs v1, v2, · · · , vn
t the date timestamp that u checked in at v
r the maximum distance that u can be from v
lu the user’s location in the range r from v
d the maximum range distance of the user’s vicinity d ≥ r
Clu the set of POIs Clu ⊆ V at a maximum distance d from lu

5.2 Dataset

We conduct the analyses on the Nearby POI collection described in Chapter 3. To
evaluate the performance of the algorithms we use a sample of the New York City
check-ins as our test collection. First, we exclude users with fewer than 10 check-ins
from the test collection. Next, we also remove from the test collection every POI that
received less than 10 check-ins. To perform a consistent evaluation, we sorted the
check-ins chronologically and standardized the number of check-ins to 10,000 check-ins
per month. The test collection statistics are summarized in Table 52

Table 52: Datasets

# user # POI # check-ins # training # validation # test sparsity

New York 7,703 8,812 110,000 30,0001 5,0001 5,0001 0.9997
São Paulo† 6,226 16,530 88,000 24,0001 4,0001 4,0001 0.9994
Singapore‡ 2,321 5,596 120,884 102,2212 - 18,6712 0.9906

1This statistic is measured by time window. 3 months for training, 1 month for validation and 1 month for test.
2The training and test statistics was not divided into time windows.
† Yang et al. [2015, 2016]
‡ Yuan et al. [2013, 2014]

We also evaluate and present the general results for two additional public col-
lections - i.e., São Paulo and Singapore cities - in order to verify and discard any
possibility of bias from our collection. However, a breakdown analyses and further
experiments will be conducted exclusively in the New York collection. For the New
York City collection we perform three tests, (i) using the user’s neighborhood range
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constraint as 500 meters, (ii) user’s neighborhood with a maximum of 1 kilometer and
(iii) without restriction of the user’s neighborhood range.

5.3 Evaluation Methodology

Our evaluation methodology aims to represent and simulate a realistic POI recom-
mendation scenario. To this end, we perform an evaluation distributing the collection
temporally. Our test collection divides into 8 time-windows for entire a year. Each
time-window contains a period of 5 months of check-ins.

6 118 9 107 121 2 3 4 5

TRAINING VAL. TEST

#1

1 118 9 107 122 3 4 5 6

TRAINING VAL. TEST

#2

1 63 4 52 7 11 128 9 10

TRAINING VAL. TEST

#8

Figure 51: Test collection divided into 8-time windows. 5-boxes compose a time-
window, and each box is a one-month check-in. The first three months inside the
brackets, in the color blue, are the data for training. The next two boxes are validation
(yellow) and test data (green), respectively. Above the time-window has a #<number>
that represents the time-window tag.

Figure 51 shows the time windows inside brackets, consisting of 5 months of
check-ins. Each time window has the three first months (blue) of data for training, the
next month (yellow) for validation and the last one (green) for the test. The validation
and test data are further filtered to retain only target users’ check-ins which have
never been visited before, i.e., a new POI for the user, reducing the total number of
validation and test cases per month from the original number of 10,000 (the resulting
numbers are described in Table 52). Thus, each evaluated fold may contain new users,
new places and new recommendations, providing for realistic test cases encompassing
non-cold-start as well as user, item, and system (i.e., user+item) cold-start situations.
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Evaluation Metrics

To analyze the accuracy of the methods in the Nearby POI Recommendation task, we
use the Mean Reciprocal Rank (MRR) metric. The Reciprocal Rank (RR) calculates
the reciprocal of the rank position at which the target relevant POI was ranked. In
turn, MRR measures the average of the RR results across all test cases, such that:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(5.1)

where ranki is the position of the relevant POI in the ranking, and Q denotes the set
of test cases.

5.4 POI Recommenders

To evaluate the experiments of our proposed task and answer the research questions
presented in this chapter, we analyze the behavior of eight methods for POI recom-
mendation. Next sections describe these methods divided into non-personalized and
personalized recommender systems.

5.4.1 Non-Personalized Recommender Systems

Non-personalized recommender systems use general information to compute the rec-
ommendations for the users. In non-personalized recommendation, all users receive the
same recommendations, regardless of their preferences.

The popularity approach is based on recommending the top-N most popular
items to users. Popularity-based recommendations are widespread as they are easy to
compute and is offer a reasonable recommendation alternative to new users [Ye et al.,
2013]. Another reason to employ such an approach is that users often wish to know
about the most popular items [Burke, 2002]. In this work, we use the Most Popular
(MP) approach based on the number of check-ins a POI has. Thus, the most visited
places are prioritized in the recommendations. Note that most popular POIs may vary
according to the neighborhood (i.e., the set of candidate POIs).

Geographic approach is also employed in this work as a non-personalized rec-
ommender system. Like the MP method, the POI suggestions are ordered by a single
attribute of the place which is not personalized by user. The geographic approach
provides a recommendation sorting the POIs by the distance, ranking at the top the
places near the user. In addition, this approach serves as input for all recommenders in
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this work. Hence, we expect the Geographic approach to have the worst performance
among the tested algorithms.

5.4.2 Personalized Recommender Systems

Personalized recommendation considers user’s previous history of interactions with the
available items when generating predictions [Khatwani and Chandak, 2016]. To con-
duct our experiments, we evaluate six well-known collaborative filtering recommenders
from the literature and separate these recommenders into memory-based and model-
based techniques. The memory-based approach uses the data (e.g., ratings, clicks, likes)
to establish correlations between either users or items, in order to suggest an item that
a user has never seen before. This technique relies heavily on simple similarity measures
to match similar users or similar items. On the other hand, the model-based approach
uses machine learning algorithms to predict how much a user will like an item. Through
this approach, the algorithms can build models from the training collection that can
predict the user’s rating for a new item added to the system.

UserKNN and ItemKNN are neighborhood-based collaborative filtering (CF)
techniques which are typical memory-based approaches for recommender systems. The
neighborhood CF finds the top-k similar neighbors ranked by a correlation metric
(e.g., Cosine, Pearson, Spearman, etc) and recommend these items. UserKNN is a
user-based CF which looks for similar users (neighbors) and suggests what they like.
Likewise, ItemKNN computes similarity to suggest items similar to those that the user
likes [Sarwar et al., 2001].

Weighted regularized matrix factorization (WRMF) is a popular model-based
technique for one-class rating [Pan et al., 2008; Hu et al., 2008]. This method learns
from implicit feedback for item prediction and implements a weighting matrix to dif-
ferentiate rating activities and unobserved ones [Kang et al., 2016].

BPRMF is the most popular ranking-based matrix factorization with Bayesian
personalized ranking (BPR). BPRMF is a state-of-the-art collaborative filtering ap-
proach for implicit feedback [Rendle et al., 2009] and is also widely employed as a
baseline in several studies from the literature [Kang et al., 2016; Liu et al., 2017]. In
contrast with other CF recommenders that are rating prediction oriented, BPRMF
learns the ranking order through a pairwise classification. Another method employed
in this study is WBPRMF which extends BPRMF and weights each POI pair with
randomly-generated values.

Rank-GeoFM is a state-of-the-art ranking-based matrix factorization method
for POI Recommendation [Liu et al., 2017]. Like BPRMF, Rank-GeoFM makes a pair-
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wise comparison of POIs and measures incompatibilities between the inferred ranking
and the ranking produced by a factorization model [Li et al., 2015]. Furthermore,
Rank-GeoFM is a context-aware POI recommender which incorporates the influence
of the geographical context for POI recommendation. In particular, such algorithm
learns the traditional users’ preference rankings for POIs and models the geographical
influence of neighboring POIs. To compute the recommendation score, Rank-GeoFM
uses two latent matrices, the user preference matrix U(1) and U(2) to represent users’
geographical preferences. Thus, the recommendation score is computed as follows:

yul = u(1)
u · l

⊤(1)
ℓ + u(2)

u ·
∑

ℓ∗∈Nk(ℓ)

wℓℓ∗l
⊤(1)
ℓ∗ (5.2)

where the first term denotes the user-preference score, while the second term models
the geographical influence score that a user likes a POI because of its neighbors. Nk(ℓ)

is the k-nearest neighbors of the POI ℓ and wℓℓ∗ refers to a distance-based weight
between the POIs ℓ and ℓ∗.

5.4.3 Parameter Settings

We tune the parameters for each model via grid-search using our evaluation method-
ology discussed in Section 5.3. To find the optimal values that maximize the MRR in
training data we use the first 5 months of the test collection (i.e., time-window #1).
All experiments were performed in a PowerEdge R710 Intel(R) Xeon(R) CPU X5680
@ 3.33GHz 24-CORES with 64GB RAM using Ubuntu Server 12.04 LTS 64 bits.

5.5 Summary
In this chapter, we described the experimental setup that supports our investigations in
Chapter 6. In Section 5.1, we recalled the definition of the Nearby POI recommendation
task. Section 5.2 provided details of the test collection used in the analyses described
in Chapter 6. In Section 5.3, we gave details of the evaluation framework which is
intended to simulate a realistic POI recommendation scenario used by LBSNs. Last,
Section 5.4 gave an overview of the POI recommenders employed for the experiments
in Chapter 6.
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Experimental Evaluation

In this chapter, we evaluate the performance of several state-of-the-art methods for
the Nearby POI recommendation task we proposed in Chapter 5. Section 6.1 presents
the effects of location-based pruning on POI recommendation on test cases. In Sec-
tion 6.2, we perform a breakdown analyses of the results, comparing the effective-
ness of the algorithms for different sparsity conditions. Also, we further analyze the
impact of various neighborhood densities in the Nearby POI recommendation task.
Finally, Section 6.3 describes the Nearby Rank-GeoFM customization and contrast
the effectiveness-efficiency impact of pruning vs. not pruning the candidate POIs on
training data.

6.1 Pruned Test

The Nearby POI Recommendation task introduced the concept of user’s neighborhood
in Chapter 4. The user’s neighborhood is an area near the user’s location which the
user is willing to explore. In short, the Nearby POI recommendation task restricts the
set of candidate POIs to the user’s vicinity rather than considering POIs in the whole
city as possible candidates. Thus, akin to static pruning in search engines [Carmel
et al., 2001], the nearby exploration uses the user’s location to prune the number of
candidate POIs for the recommendation. In particular, this section aims to answer a
specific question related to RQ1: "What is the global impact of pruning test
cases?". To address this question, we analyze the effectiveness and the efficiency of
the recommenders when they are restricted to make predictions only for POIs in the
user’s vicinity. In particular, we investigate the following hypotheses:

H1. The relative effectiveness of the recommenders changes due to the addition of
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geographic context to the task, with geography-agnostic recommenders closing
the gap to geography-aware recommenders.

H2. The efficiency of the recommenders improves since pruning the POIs reduces
unnecessary computation scores.

To analyze the consequences of pruning the set of candidate POIs in the test
cases, we compare the accuracy results of a fixed set of POI recommenders under the
traditional recommendation task as well as the Nearby POI recommendation task. We
also perform a further analysis of the impact of employing different target radiuses for
users’ vicinity. Table 61 presents the accuracy of the recommenders on the test cases.
The second column (#) of the table shows the position of each recommender relative
to the others according to the MRR metric on the traditional task. The third column
(traditional) shows the MRR accuracy of the recommenders considering the entire city
as the users’ vicinity to recommendation. The next columns represent the accuracy of
the recommenders by restricting candidate POIs to the users neighborhood, using a
range of 1 kilometer and 500 meters respectively.

Table 61: A performance comparison pruning the test cases with different neighborhood
ranges in the New York City collection. # is the relative position of the method by the
MRR metric. Neighborhood and user’s location divides into 500 meters, 1 kilometer
and traditional which does not use restriction of distance.

Mean Reciprocal Rank

method # traditional 1 km 500 m

MP 1 0.0845 0.1202 0.2365
BPRMF 2 0.0825 0.1126 0.2228
WRMF 3 0.0254 0.0604▼1 0.1341
Rank-GeoFM 4 0.0182 0.0440▼2 0.1066
UserCF 5 0.0169 0.0559 0.1259
WBPRMF 6 0.0157 0.0652▲3 0.1552
ItemCF 7 0.0025 0.0323 0.0889
Geographic 8 - 0.0331 0.0806

From Table 61, the Geographic method has the worst accuracy in general. As the
base ranking for the other algorithms, we expected that Geographic recommendations
would perform worse than the other algorithms. Also, the missing MRR result for
traditional evaluation is due to the lack of users location information in this task,
which is required to produce a distance-based ranking. Despite producing random
recommendations (i.e., considering a random user location to ranking near candidate
POIs first), Geographic method serves as a sanity check for the other approaches.
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Item CF performs poorly when compared to other collaborative filtering methods,
such as User CF. Employing solely the number of venues check-ins in the item similarity
computation does not guarantee a good performance of the method. In contrast,
using the users’ feedback fits better for the POI recommendation. UserCF secured the
fifth position in all results. Such results suggest that people have a predictable taste
for places, visiting places that people similar to them have visited. In addition, the
effectiveness of the neighborhood-based CF does not seem to be affected by different
range sizes of user’s vicinity.

On the other hand, WBPRMF had a significant improvement in pruned scenarios.
Pruning the set of candidates by the user’s vicinity promotes WBPRMF up to the third
position in the rank.

Despite Rank-GeoFM being considered the state-of-the-art recommender for POI
recommendation, it achieves only the fourth position in the traditional task. Worse
still, by adding the geographical context to the task affects the Rank-GeoFM accuracy,
dropping to sixth position. We speculate that the geographic authority of the Rank-
GeoFM is reduced by considering only nearby POIs as candidates.

The WRMF demonstrated a better result than the other CFs recommenders
such as WBPRMF and the KNNs. Although, WRMF also seems to be jeopardized
in Nearby POI recommendation task, losing the third position to WBPRMF. This
slight accuracy improvement of the WBPRMF over WRMF suggest that a probabilistic
Bayesian Personalized Ranking (BPR) loss could be better suited for coping with POI
recommendations. Despite the good results, both WBPRMF and WRMF showed a
much lower performance compared to BPRMF, suggesting that a weighting of the
check-ins frequency, in general, is not well suited for POI recommendation.

The BPRMF accuracy outperforms all the evaluated recommenders but Most
Popular (MP). The non-personalized MP outperforms all evaluated recommenders re-
gardless of the task. Therefore, we observe that the venue’s popularity is the most
significant feature that indicates whether a place is a good recommendation. In sum-
mary, suggesting that people tend to visit nearby popular venues. Furthermore, we
believe that the poor accuracy of personalized approaches is due to the high sparse
interactions as personalized approaches suffer from learning the users’ preferences and
underperforming on these conditions.

Results in Table 61 show that the relative effectiveness of the recommenders
changes slightly as we constrain the set of candidate POIs to those in the users vicin-
ity. Assuming geography by construction seems to improve context-agnostic recom-
menders such as WBPRMF, whereas the context-aware Rank-GeoFM recommender
dropped some positions in the ranking order. Regarding the prediction efficiency of
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these algorithms, the Nearby POI recommendation task reduces the computational
cost by pruning the candidate POIs and scoring k rather than all n available POIs,
with k ≪ n. In light of these findings, the results agree with our expectation, thus
supporting H1 and H2. In addition, in Section 6.2 we conduct a breakdown analysis
to understand the impact of different sparsity levels on the recommenders.

6.2 Breakdown Analyses

To further our understanding of the results presented in Section 6.1, we conduct a
breakdown analysis using the New York City collection. In Section 6.2.1 we perform a
breakdown analysis of the results, comparing the performance of the algorithms in dif-
ferent sparsity conditions. Section 6.2.2 analyzes how the contextual information (e.g.,
neighborhood areas and geographic data) impacts the Nearby POI recommendation
task.

6.2.1 Check-in Sparsity

The scarcity of data is particularly severe in POI recommendation. Indeed, most users
check in to very few places. In particular, our analyses aim to answer RQ2 by analyzing
what test cases are impacted the most from the following sparsity perspectives: (i) item
sparsity; (ii) user sparsity; (iii) user and item sparsity (i.e., system cold-start); and
(iv) non-cold-start cases. Table 62 shows the accuracy of the algorithms split by the
four result categories, as well as the total results.

Table 62: A performance comparison of different algorithms for the Nearby POI Rec-
ommendation task in the New York City collection using 500 meters as neighborhood
range. Results are divided in five categories, i.e., three cold-start scenarios, a non
cold-start, and the overall result (see Appendix C2 and C3 for the other collections).

Mean Reciprocal Rank

(100%) (10,6%) (28,5%) (3%) (57,8%)
total item cs user cs cs non-cs

MP 0.2365 0.0292 0.3626 0.0255 0.2235
BPRMF 0.2228 0.0329 0.3542 0.0266 0.2033
Rank-GeoFM 0.1066 0.0641 0.1197 0.0652 0.1101
WBPRMF 0.1552 0.0665 0.1876 0.0777 0.1596
WRMF 0.1341 0.0306 0.0776 0.0993 0.1828
UserCF 0.1259 0.0733 0.0776 0.0993 0.1607
ItemCF 0.0889 0.0680 0.0776 0.0993 0.0978
Geographic 0.0806 0.1095 0.0776 0.0993 0.0758



6.2. Breakdown Analyses 41

Section 6.2.1.1 presents the difficulties that POI recommenders face when recom-
mending with lack of feedback data. Section 6.2.1.2 studies user sparsity, analyzing
the behavior of the algorithms through different users’ check-ins history size. Sec-
tion 6.2.1.3 discusses the problem in a system cold-start scenario, i.e., when we have
no historical data about the user or the venue. Section 6.2.1.4 examines how the algo-
rithms perform in non-cold-start scenarios, i.e., when previous information of the user
and the venue is known.

6.2.1.1 Item Sparsity

POI recommenders are strongly affected by data sparsity. In this section, we analyze
how the methods behave in different levels of item sparsity. The hypothesis we want
to verify is that:

H3. Collaborative recommenders are severely harmed by item sparsity, more so for
non-personalized recommenders.
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Figure 61: Relevant item frequency normalized by a set of candidate POIs. Higher
values represent that relevant venue is most popular among the neighborhood.

In a nutshell, both non-personalized (e.g. Most Popular) as well as personalized
(memory and model-based) collaborative filtering recommenders are significantly jeop-
ardized in the absence of feedback data. Since the core of both approaches is composed
of feedback signals, scarcity of the item data impacts reducing directly the accuracy of
these methods. Figure 61 supports hypothesis H3 by showing the low accuracy of these
methods when the venue is very sparse, in the left bottom corner. In Figure 61a, the
x-axis indicates check-ins frequency of the relevant venue normalized by the frequency
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of the most popular venue in the neighborhood (e.g., x = 1.0 indicates test cases where
the relevant venue is the most popular in its neighborhood). Higher frequency indicates
that the relevant item is more popular among its neighbors. The bars below the x-axis
represent a distribution of the test data throughout the frequencies. Considering that
the evaluated approaches do not handle item cold-start scenario, Figure 61b shows
the progress of each algorithm in a magnified view of relevant items for extremely low
check-ins frequency.

From Figure 61b, we first observe that some approaches are more sensitive to
the number of venue check-ins. Memory-based approaches, such as ItemKNN and
UserKNN, outperform the random approach when the feedback frequency reaches 0.02
and 0.04 respectively, which indicates that these algorithms can learn and improve the
accuracy with very few check-ins for the relevant venue. More feedback is needed to
make the WRMF and WBPRMF better than random approach, 0.06 and 0.07 respec-
tively. Despite the fact that MP and BPRMF are the best approaches overall, they
require more feedback to achieve a better recommendation, which makes them unsuit-
able for high item sparsity cases. In particular, these approaches require a minimum
relative popularity of 0.08 of the target venue compared to other venues to outperform
a random approach. Surprisingly Rank-GeoFM was the approach most affected by
extreme item sparsity, achieving a better result than a random approach only after the
relevant item reaches a relative popularity of 0.12.

Rank-GeoFM has the worst performance among all POI recommenders for test
cases where the relevant POIs relative check-in frequency is lower than 0.14. In turn,
it delivers the top performance for test cases with relevant POI frequency greater than
0.3. This might be caused by the loss function of Rank-GeoFM, which learns to rank
positive examples higher than negative examples [Liu et al., 2017]. Thus, the more
sparse the data is, the worse Rank-GeoFM learning will be, that is lower accuracy. In
addition, experiments in the Singapore and São Paulo collections showed that despite
the good performance of the Rank-GeoFM in general, its accuracy has improved only
after the POI received at least 20 check-ins (Appendix C4 and C5).

We also observe that BPRMF obtains lower accuracy for high item sparsity than
WBPRMF, and gets better only when the relevant item has a relative frequency above
0.18. To better understand the benefits of frequency weighting for matrix factorization,
we compare the reciprocal rank (RR) of the test cases between WBPRMF and BPRMF.
Figure 62 compares the difference between the RR of each test case, i.e., ∆RR =

Ascore − Bscore, where A is the WBPRMF Reciprocal Rank score and the B is the
BPRMF Reciprocal Rank score. Figure 62a presents the ∆RR of all tests cases which
shows that BPRMF has superior accuracy overall. Despite that, Figure 62b indicates
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that in high sparsity scenarios WBPRMF seems to be more effective by sampling items
with probability proportional to their popularity. Therefore, when the relevant item
has a relative frequency lower than 0.16, the WBPRMF is the best choice over BPRMF.

(a) ρ >= 0 (b) ρ < 0.18

Figure 62: Difference between the reciprocal rank of WBPRMF and BPRMF. ρ is the
popularity of the relevant POI normalized by its set of candidates. The higher value,
the more popular the relevant POI is in its neighborhood.

6.2.1.2 User Sparsity

Another important aspect that influences the accuracy of a POI recommender is the
user visitation history. Check-ins represent the preferences of users, hence, scarcity
of users’ check-ins can cause a lower accuracy for all methods. To analyze the user
sparsity impact over POI recommenders, we investigate how reliable and accurate these
recommenders are through different users’ history size. Like the previous analysis, we
propose the following hypotheses:

H4. New users tend to visit popular POIs, whereas experienced users visit POIs of
varying popularity.

To test hypothesis H4, we conduct an evaluation analyzing the number of check-
ins per user. In this analysis, we split test cases according to the users history size
in a range of 0 to 1000. We consider a cold-start users those with no previous check-
ins; highly-sparse users those with less than 10 check-ins in training, and expert users
those with more than 10 check-ins. If our hypothesis is supported, methods that
leverage popularity should outperform other methods when users have up to 10 check-
ins. According to Figure 63, users with fewer check-ins are more likely to visit popular
POIs. Indeed, MP has the best accuracy for cold-start and highly-sparse users, but its
advantage compared to other methods decreases as as more expert users are considered.
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Figure 63: Accuracy of methods for users with different numbers of check-ins. Memory-
based methods are represented by a line with no marker; Model-based methods are a
dotted line; and Non-personalized methods are indicated by a line with markers.

In agreement with the previous analysis, we can observe a well-known problem
from the collaborative filtering approaches that suffer from lack of user data. Due to
the cold-start problem, collaborative filtering methods would fail to recommend venues,
since they feedback to compute item similarities between the users. Figure 64a shows
the win-loss comparing of pairs of algorithms, where the value in each cell represents the
percentage of winning test cases by the row-algorithm over column-algorithm. The red
color indicates that the row-algorithm scores higher than column-algorithm, otherwise
blue ones indicate a lower score. Moreover, Figure 64b shows a comparison between
the accuracy of the algorithms, but the cell label is the ∆MRR of the row-column
algorithms. We can notice that both matrices have in the lower right corner a square
of gray cells filled with zeros, which represent methods that could not improve or even
recommend any different POI from the initial rank - i.e., Geographic approach. Aside
Bayesian methods, the personalized algorithms that depend merely on users’ feedback
cannot deal with users cold-start problem.

The user cold-start analysis bring us two more interesting facts about the accu-
racy of collaborative recommenders. From Figure 63, we observe that (a) personalized
algorithms do not vary significantly in terms of accuracy in non-cold-start scenarios.
Despite the increasing size of user history, the accuracy hardly changes. Some meth-
ods are sensitive only after 100 check-ins and may experience changes in accuracy as
demonstrated by UserKNN and WBPRMF. The second finding is that (b) the ac-
curacy of the popularity-based approaches decreases with increasing number of user
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feedbacks. At the same 100 users’ check-ins, the Most Popular method has an MRR
55% lower than in user cold-start scenario, and 36% lower compared to users with only
one check-in. However, the MP approach is indifferent to the user sparsity. Thus, we
assume that the loss of accuracy is due to the users’ behavior and not the algorithm
itself. Further supporting hypothesis H4, this suggests that inexperienced users prefer
popular places, while expert users prefer to explore the long tail of unvisited places.
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Figure 64: Win-loss comparison between approaches when the user is cold-start. The
red color indicates that the row-algorithm scores higher than column-algorithm, oth-
erwise blue ones indicate a lower score. In Figure 64a, the value in each cell is the
row-algorithm percentage of winning test cases over the column-algorithm. The cell
value in Figure 64b is the difference between the MRRs of the row and columns algo-
rithms.

In summary, we point out three main observations with user sparsity analysis.
First, our hypothesis H4 is supported by Figure 63, showing that the Most Popular
algorithm outperforms personalized approaches. Second, personalized algorithms are
ineffective in cold-start scenarios, as they are unable to change the original ranking.
Third, personalized algorithms are indifferent when the user is not cold-start. Last, the
popularity-based approaches accuracy decrease with additional user feedback, which
suggest that expert users might prefer unpopular places or visit new places instead of
places they already knew.

6.2.1.3 System Cold-Start

After investigating the user and item cold-start scenarios individually, we further an-
alyze considering the influence of system cold-start (i.e., no knowledge about the user
and the item to be recommended). As the previous analysis showed in Section 6.2.1.2,
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collaborative POI recommenders underperform with limited prior information about
users and POIs. In this section we aim to verify the following hypothesis:

H5. The overall popularity of the set of candidates negatively affects collaborative
POI recommenders in the absence of prior information about the target user and
the relevant POI.

Although our system cold-start scenarios represent only 3% of our test cases,
this analysis may give an insight of the behavior of the POI recommenders and how
accurately they perform in a region with limited data or for new systems.

Usually, three strategies can be applied to minimize the cold-start problem. First,
Content-based filtering uses the metadata and complementary information about the
POI (e.g., category, reviews, price range, etc.) to create recommendations. While the
strategy is focused in the item cold-start scenario, a second strategy aims to recom-
mend popular POIs to a cold-start user (known as popularity based approach). The
third strategy consists in adopting a hybrid recommender, which can combine multi-
ple strategies, by combining and leveraging the strengths of previous strategies. Since
content-based and hybrid recommenders are outside the scope of our investigation, we
direct our focus to the popularity-based strategy.
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Figure 65: The standard deviation of the set of candidates popularity in system cold-
start scenario.

Figure 65 measures how the popularity of the candidate POIs affects the accuracy
of the methods. Bear in mind that in this analysis we aim to recommend a POI that
has no check-in feedback in training to a user that also has no check-in either. The
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x-axis is the standard deviation of the candidate’s popularity, and the y-axis is the
MRR metric. The standard deviation helps analyze the distribution of popularity in
the set of candidates and verify whether there is disparity between them. First, we
noticed that all methods a lower accuracy than the random recommendation produced
by the Geographic approach, which confirms that none of them is able to cope with
the system cold-start problem. Second, accuracy decreases with increasing popularity
of the set of candidates. Although the relevant POI is a cold-start item, the evaluated
methods recommend POIs using the information learned from its check-ins, promoting
candidates that have some historical data instead of cold-start POIs, which leads to
a worse recommendation. This evidence supports hypothesis H5 by showing that the
candidates’ popularity intensifies the system cold-start problem since the algorithms
promote popular candidates instead of those unvisited (yet relevant) POIs. Lastly,
while the accuracy of the observed methods decreases as candidates popularity devi-
ation increases from 0 to 1, the MRR of Rank-GeoFM improves in 49%. This might
be caused by the geographical influence, where the Rank-GeoFM estimates a users
interest in a POI based on its neighbors.

6.2.1.4 Non-Cold-Start

Non-cold-start test cases represent almost 58% of our test collection, which means that
both the user and the relevant POI have some feedback. In Table 62 we note even
though it is considered the state-of-the-art for POI Recommendation, Rank-GeoFM
achieves a poor performance compared to others methods. On the other hand, Most
Popular and BPRMF outperform all other methods by at least 10%. To further inves-
tigate this observation, we formulate the following hypothesis:

H6. Since the POI popularity is not global, the most popular place in the neighbor-
hood becomes the best POI to recommend.

In order to examine hypothesis H6, we analyze some characteristics of the non-
cold-start test cases as: the number of candidates per test case; and (b) the distribution
of the item popularity, considering that the popularity distribution of POIs allows
one to verify the existence of a concentration of popular POIs in our non-cold-start
test cases. A small number of POIs in the set of candidates might contribute to a
higher MRR accuracy of the algorithms. Although all methods benefit from a smaller
candidate set, this analysis also will serve to exclude the chance of bias.

Figure 66 shows a distribution of the size of candidate sets containing an average
of 188 candidates per test case. In the left corner of the distribution, we note a



48 Chapter 6. Experimental Evaluation

100 0 100 200 300 400 500 600
# candidate set size

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Figure 66: Distribution of the number of candidates per test case (only non-cold-start
test cases).

peak near the value of 10 POIs per candidate set. To reduce the influence of smaller
candidate sets, we restrict our analysis to candidate sets with at least 50 POIs. Thus,
we remove 4,748 (20%) non-cold-start test cases. Even with this new constraint, the
Most Popular approach remains the best method in this scenario.
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Figure 67: Distribution of the relevant item popularity with non-cold-start test cases.
Item popularity is normalized and represent the relative popularity of the POI in the
set of candidates.

In Figure 67 we inspect the distribution of the popularity of the relevant item.
In the right side we observe a peak, which means a huge number of test cases with
the relevant POI being very popular. Due to this evidence, our first thought is that
popularity-based methods are unduly promoted. However, removing popular POIs and
considering only test cases where the relevant items relative popularity is lower than
0.8 which represents 16,630 (72%) of the non-cold-start test cases, MP still outperforms
all methods. Figure 68 shows that the MP is the best algorithm even when the relevant
POI has a relative popularity lower than 0.5.
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Figure 68: Relevant item frequency normalized by a set of candidates. Only non-cold-
start test cases.

Despite popularity-based algorithms being demonstrably effective in several
points, the distribution of check-ins is not entirely from popular items. Observing
Figures 67 and 68, both left corners show that a substantial concentration of test cases
with unpopular relevant POIs. More specifically there are 16,628 test cases where the
relevant POI has a relative popularity below 0.3. Moreover, analyzing only these 72%
of non-cold-start test cases, we find that either Most Popular or the other evaluated
algorithms are not able to provide good recommendations of POIs with low frequency
of check-ins. In light of these findings, the good accuracy of the Most Popular approach
is due to 20% of test cases with highly popular relevant POIs. Despite the promising
results of the Most Popular method, our mixed findings could not support hypothesis
H6, and additional analysis is required.

6.2.2 Neighborhood Density

Context-awareness is well-known for boosting the accuracy of recommender systems.
In this analysis, we examine how contextual features related to the density of POIs
in each neighborhood affect the accuracy of the POI recommenders and the previous
analyses. Our interest in this study is due to the Nearby POI Recommendation task,
which considers geography for constraining recommendations to a single neighborhood.
The Nearby POI Recommendation task defines the concept of neighborhood as an area
near the user’s location. This area is bounded by a radius r from the user’s location.
Thus, the neighborhood definition leads us to the follow questions: (i) What happens to
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the recommendation if we consider different range size?; and as the area density might
vary between neighborhoods with the same radiuses, (ii) How do POI recommenders
behave with different density of the neighborhoods?. To address these questions, we
pose the following three new hypothesis:

H7. Dense neighborhoods represent more POIs as candidates to the recommendation
which increases the noise that POI recommenders must deal with it;

H8. Dense neighborhoods inhibit the recommendation of cold-start items;

H9. Cold-start items are more likely to be recommended when they have high scoring
neighbors.
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Figure 69: Distribution of the rank size using user’s location in a range of 500 meters
and 1 kilometer from the relevant POI.

In order to answer the first question, we conduct an additional experiment vary-
ing the neighborhood boundary. Figure 69 shows a distribution of the candidate set
size using radiuses of 500 meters and 1 kilometer to generate the neighborhood. We can
observe that increasing the exploratory area of the user - i.e., the radius of the neigh-
borhood - more places will be available in the set of candidates hence more challenging
it will be to suggest the relevant item. The average of candidate set size increased
from 188 to 1335 candidate POIs just by changing the neighborhood radius from 500
meters to 1 kilometer. Observing Figure 610, we note a disparity in the accuracy of
the algorithms using more POIs as candidates. In particular, increasing the radius to
create the neighborhood may increase the difficulty for POI recommenders to suggest
the relevant item at the top of the list. Therefore, using a dynamic range to build
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Figure 610: The accuracy of the algorithms using 500 meters and 1 kilometer in the
radius size of the neighborhood.

neighborhoods might be beneficial when having different user behaviors, for instance,
users who are willing to go further to visit a place.

While the previous analysis explored the neighborhood density by varying its ra-
dius to build the set of candidate POIs, we now assess the impact of density for a fixed
radius of 500 meters. Figure 611 shows that the higher the number of candidates, the
lower the accuracy of all recommenders. As we claimed in hypothesis H7, increasing
the number of candidate POIs contributes to adding more noise to the recommenda-
tion, consequently hindering the accuracy of POI recommenders. Moreover, looking at
Figures 611a and 611b, we see that high density makes it difficult to recommend POIs
in general and exacerbate the problem to cold-start items, hence, supporting H8.

In addition to the global density of a neighborhood, another important aspect
that might impact the effectiveness of POI recommenders is the influence that the
immediate vicinity of each candidate POI exerts on the POI. As mentioned earlier,
Rank-GeoFM models a score that measures a user’s likelihood of liking a POI because
of its immediate neighbors. To cope with this geographical influence, we introduce
the POI neighborhood score, which is the sum of the popularity of its K nearest POIs.
In this fashion, we simulate Rank-GeoFM’s geographical score to investigate the im-
portance of popularity of neighboring items for the accuracy of POI recommenders.
In particular, our hypothesis H9 aims to test whether a relevant POI having popular
neighbors contributes to achieving a better recommendation when the POI is cold-
start. Figure 612 shows the methods accuracy only for item cold-start test cases,
where the x-axis is the neighborhood score of the relevant POI. Like Rank-GeoFM,
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Figure 611: The accuracy of the algorithms using the neighborhood densities. A radius
r = 500 was used to build the set of candidate POIs.

our neighborhood score was calculated using the K = 100 nearest POIs. We note
that neighborhood score attenuates the item cold-start problem, however, the problem
remains since the algorithms are still worse than a random method. Notwithstanding
the fact that a random approach is the best method in our study for item cold-start
problem, there is an accuracy improvement of the algorithms when popular neighbors
surround a cold-start POI, thus, it supports our hypothesis H9.
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Figure 612: The accuracy of the algorithms by the neighborhood score in item cold-
start scenario. The neighborhood score is the sum of the popularity of the k closest
POIs of the target POI. k = 100.



6.3. Pruned Training 53

6.3 Pruned Training
Location-based pruning on POI recommendation is an interesting approach that im-
proves the efficiency of the algorithms as well as models a more realistic scenario for
POI recommendation. In addition to the experiments conducted in Section 6.1, in this
section we compare the effectiveness-efficiency impact of the Nearby POI recommen-
dation task during training. To this end, we introduce the Nearby Rank-GeoFM, a
variation of the Rank-GeoFM algorithm which leverages the location-based pruning on
the training step (details in Appendix B).

As aforementioned, Rank-GeoFM is the state-of-the-art recommender for POI
recommendation. It makes a pairwise comparison of POIs measuring incompatibil-
ity between the expected ranking and the ranking produced by a factorization model.
Rank-GeoFM iterates through all the user-POI check-ins and updates the latent factors
until the model converges. In each iteration, the method performs a pairwise compar-
ison, sampling one POI from the POIs V until it finds an incorrectly-ranked POI to
update the latent factors.

Likewise, Nearby Rank-GeoFM also iterates through all the user-POI check-ins,
learning the latent factors of the model. However, Nearby Rank-GeoFM performs
the sampling from the set of candidate POIs Clu ⊂ V instead of the entire set V .
This customization adds the location-based pruning characteristic of the Nearby POI
Recommendation task, thus considering only near POIs from the user’s location during
the training of the algorithm. In accordance with our Nearby POI Recommendation
task, this implementation restricts the state-of-the-art recommender to work using data
in the user’s vicinity.

In this section, we analyze RQ1 regarding the impact of pruning the training
data. To this end, we pose the following hypotheses:

H10. The effectiveness of the Nearby Rank-GeoFM remains the same. Pruning the
training reduces noise of out-ranged POIs.

H11. The efficiency of the Nearby Rank-GeoFM will be improved proportionally to
the pruning size.

We conduct two analyses to check the hypotheses above. The first analysis at-
tempts to validate H10, by comparing the effectiveness of the Rank-GeoFM method
and its pruned variation. To compare the methods, we evaluate the training of both al-
gorithms under the same conditions using the New York City collection with 500m and
1 km. The effectiveness results for both methods are presented in Table 63. Results
show that despite Rank-GeoFM’s pruning, the effectiveness of the methods remains
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unchanged1. These results indicate that the location-based pruning contributes to
removing out-ranged POIs from the training and does not affect the learned latent fac-
tors. Although these preliminary results support hypothesis H10, we believe further
analyses with other recommenders are needed to strengthen this assertion.

Table 63: A effectiveness comparison pruning the training process of the Rank-GeoFM.
Nearby Rank-GeoFM is the modified algorithm to pruned the training considering only
the nearby POIs as candidates. MRR is measured in two different neighborhood and
user’s locations ranges: 1 kilometer and 500 meters.

Mean Reciprocal Rank

method 1 km 500 m

Rank-GeoFM 0.0440 0.1066
Nearby Rank-GeoFM 0.0432 0.1063

The second analysis is related to the efficiency of the methods. In particular,
we investigate whether employing the location-based pruning to the training collection
drives the Nearby Rank-GeoFM to faster learning. To test hypothesis H11, we examine
the elapsed time for each iteration of the methods. A single iteration is composed by
D iterations where D is the amount of user-POI check-ins in the training data. We set
both methods to iterate 1000 times through all the user-POIs check-ins (1000 × D).
The total time elapsed for the training of Rank-GeoFM was 7h 32min whereas the
pruned versions using 1km and 500 meters took 6h 29min and 3h 47min respectively.
Therefore, Nearby POI Rank-GeoFM reduces the training time by 50% as shown in
Table 64.

Table 64: A comparison of iteration time by pruning training data of the Rank-GeoFM
in New York City collection.

method total min. iter. max. avg.

Rank-GeoFM 7h 32min 21.20s 38.70s 27.20s
Nearby Rank-GeoFM (1 km) 6h 29min 21.07s 30.31s 23.39s
Nearby Rank-GeoFM (500 m) 3h 47min 11.56s 21.33s 13.66s

The Nearby Rank-GeoFM adaptation responsible for improving the method’s
efficiency is implemented in lines 6∼8 of Algorithm 1. Pruning the training data
assures that the pairwise comparisons performed by Rank-GeoFM drops from k < |V|
to k < |Clu| ≪ |V|, where k denotes the number of sampling trials before obtaining an

1The tiny difference in the MRR accuracy of the methods may be due to the random initialization
of Rank-GeoFM matrices.
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incorrectly-ranked POI to update the latent factors. Figure 613 shows that the Rank-
GeoFM iterations take longer when the training reaches a stable phase, in contrast,
the Nearby Rank-GeoFM iterations remain stable since the number of samplings to
find a ranking incompatibility will not rise over time. Supporting hypothesis H11,
this preliminary analysis of pruning the training data showed an improvement in the
efficiency of Nearby Rank-GeoFM and demonstrated a faster learning compared to non-
pruned Rank-GeoFM. However, further studies are needed to analyze other methods
and collections.

Figure 613: Time comparison between the Rank-GeoFM and Nearby Rank-GeoFM
over 1000 iterations. Axis-x shows the time elapsed in seconds to complete the iteration.

6.4 Summary

In Chapter 4 we proposed the Nearby POI recommendation task having the geograph-
ical context built into the POI recommendation task. Chapter 5 detailed the experi-
mental setup modeling a more realistic scenario for POI recommenders by using the
user’s location and geographical context of the venues to evaluate the performance of
the POI recommenders. In this chapter, we evaluated the performance of eight POI
recommenders using our proposed Nearby POI recommendation task. We conducted
several experiments analyzing the impact of the location-based pruning strategy both
in training as well as at prediction time.
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In Section 6.1 we presented the impact of location-based pruning for POI rec-
ommendation on test cases. To answer the first research question, we evaluated the
POI recommenders comparing the results of the traditional recommendation task (not
pruning test cases) and the Nearby POI recommendation task (pruning test cases).
This analysis showed that by adding geographic context to the task can impact on
the effectiveness of some POI recommenders. Moreover, adopting a location-based
pruning reduces the computational cost, hence, improving the efficiency of the POI
recommenders.

In Section 6.2 we performed a breakdown analysis comparing the effectiveness
of the POI recommenders for different sparsity conditions. First, in Section 6.2.1.1
we analyzed the POI recommenders accuracy over the item-sparsity. We showed how
collaborative filtering recommenders are severely harmed by the scarcity of POI check-
ins. Also, we observed that the poor accuracy of Rank-GeoFM is due to the extreme
data sparsity of the collection. We also presented an analysis showing in which item
sparsity condition the POI recommender starts to give better recommendations.

In Section 6.2.1.2 we assessed the methods regarding user sparsity conditions.
In this section we noted that personalized algorithms which depend merely on users’
feedback (e.g., UserKNN, ItemKNN and WRMF) cannot deal with users cold-start
problem. In contrast, we observed that popularity-based methods performed better
recommending POIs to users with few check-ins. Furthermore, we found that expe-
rienced users visit POIs of varying popularity whereas new users tend visit popular
POIs.

In Section 6.2.1.3, we analyzed the accuracy of the methods on a system cold-
start scenario. We showed that all methods accuracy were lower compared to a random
recommendation produced by the Geographic approach. Hence, none of the POI rec-
ommenders evaluated in this dissertation are able to cope with the system cold-start
problem. In addition, we demonstrated that the candidates’ popularity intensifies the
system cold-start problem.

In Section 6.2.1.4 we conducted experiments analyzing the accuracy of the POI
recommenders for an active user (i.e., who have already checked any POI). We per-
formed an extensive analysis throughout the check-ins in order to find out why the
non-personalized MP performed better in this scenario. We believed that since the
POI popularity is no longer global (i.e., considering all POIs in the target city as can-
didates for POI recommendation), the most popular POIs in the neighborhoods would
be better recommendations. However, removing test cases where the target POI is very
popular, we found that either MP or other evaluated recommenders could not provide
good recommendations. Therefore, the good accuracy of the MP is due to test cases
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with highly popular relevant POIs.
Section 6.2.2 examined the impact of how the neighborhood (i.e., the set of can-

didate POIs) affects the accuracy of the POI recommenders. We compare two different
range sizes (i.e., 500m and 1km) to build the neighborhoods. We showed that the
higher the number of candidates in the neighborhood, the lower the accuracy of all
recommenders. Also, we discussed how higher density jeopardizes the recommendation
of cold-start items. Lastly, we analyzed the user’s likelihood of liking a POI because
of its immediate neighbors, and we note that neighborhood score attenuates the item
cold-start problem.

In addition, in Section 6.3 we suggested an adaptation of the Rank-GeoFM
method regarding the use of location-based pruning in learning the users’ preferences in
training. The results showed an improvement in the efficiency of our proposed Nearby
Rank-GeoFM adaptation without significant losses in effectiveness.





Chapter 7

Conclusions and Future Work

POI recommendations received extensive research attention in the last few years, and
many approaches have been proposed. In most of these studies, the developed POI
recommenders exploit the geographical influence to learn the user’s preferences. In-
deed, researchers have a common agreement that geography information is a key fea-
ture of POI recommendation. In addition, researchers have argued about impact of
the geography for user’s mobility and showed that users usually tend to visit POIs
in their vicinity [Bao et al., 2015]. However, previous studies overlook this informa-
tion by considering all POIs in the target city as candidates for recommendation. In
this dissertation, we proposed the Nearby POI recommendation task which leverages a
location-based pruning strategy to restrict the recommendations to POIs in the user’s
vicinity. We showed that adding geography into POI recommendation can improve
the efficiency of POI recommenders (by removing the cost of prediction for out-ranged
POIs) without losses in their effectiveness. Moreover, we presented a breakdown anal-
ysis evaluating eight state-of-the-art recommender methods through different levels of
check-in data sparsity as well as for neighborhoods of various densities.

In the remainder of this chapter, Section 7.1 revisits the main contributions of
this work, and we summarize the conclusions drawn from the investigations conducted
in this dissertation. Section 7.2 presents several ideas for future research, directly
stemming from the results of this dissertation.

7.1 Summary of Contributions

We summarize the main contributions of this dissertation as follows.
A large scale test collection for context-aware nearby POI recommen-

dation. In Chapter 3, we presented a test collection for POI recommendation which
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includes check-ins from Foursquare, spread over one year in three large cities in the
Americas. The collection was enriched with temporal, weather, social and geographical
contexts. In contrast to existing collections, we assess the effectiveness of a POI rec-
ommender at ranking candidate POIs constrained by the user’s location. Thus, several
geography-constrained test cases were included in the collection.

We propose to build geography into POI recommendation. In Chapter 4,
we formalized the nearby POI recommendation task to exploit the geographic context
given the user’s location. The task aims to explore the fact that users tend to visit
nearby places through a location-based pruning for POI recommendation. Section 4.1
explained the strategy employed to simulate the user’s location based on the assumption
that the user is near the target POI. Section 4.2 described the location-based pruning
strategy to construct the users’ neighborhoods and thus build geography into POI
recommendation. Furthermore, in Chapter 6 we performed an evaluation of several
state-of-the-art recommenders using the location-based pruning strategy. Our results
showed that efficiency improvements can be attained both at learning as well as at
prediction time without significant losses in effectiveness.

A deeper breakdown analyses of several POI recommenders. In Chap-
ter 6, we compared 8 state-of-the-art POI recommenders on our test collection for
context-aware nearby POI recommendation. Through a breakdown analysis, we fur-
ther demonstrated the effectiveness-efficiency trade-offs incurred for different levels of
user-POI sparsity as well as for neighborhoods of various densities.

Our findings suggest that inexperienced users prefer popular places whereas ex-
pert users seek for new places thus exploring more the long-tail. Also, the evaluated
methods suffer from the item cold-start problem and are not able to promote new POIs
for the user. Another observation is that by restricting candidate POIs to the users
neighborhood, non-personalized popularity-based methods will promote local popular
places.

Finally, as we believe that geography should be a fundamental user constraint in
the POI recommendation, the nearby POI recommendation decoupled geography from
other effects on POI recommendation. Our proposed evaluation methodology dimin-
ishes any trivial favoring that might exist for geography-aware POI recommenders, as
demonstrated by Rank-GeoFM being penalized in comparison other methods.
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7.2 Directions for Future Research
In this section, we discuss possible directions for future research stemming from the
research of this dissertation.

In Chapter 4, we introduced the nearby POI recommendation as a task builds
geography into POI recommendation. While we focused on a static pruning technique,
with a fixed radius for all users, a promising direction is to build POI recommenders
using dynamic pruning to find optimal radius per user or location. Another approach
to consider is the construction of adaptive neighborhoods by distance, POI categories
and different densities.

Despite the fact that we conducted a breakdown analysis of POI recommenders
in Chapter 6, we believe that an additional analysis involving more context-aware POI
recommenders is necessary. Also, a breakdown analysis considering other collections
would collaborate with a better understanding of the algorithms independent of geog-
raphy.

Another direction is analyzing the impact of diversity in POI recommendation. To
be our best knowledge, the diversity of POI recommendations has seen limited research
thus far [Chen et al., 2015; Han and Yamana, 2017]. We conducted initial experiments
employing the xQuAD framework [Santos et al., 2010] to promote diversity on POI
recommendations. We obtained promising results increasing the coverage of different
categories for POI recommendation without losses in accuracy.

Finally, the proposed evaluation methodology enables further analyses such as a
clearer assessment of the role of contextual factors other than geography on a user’s
decision to check in at a POI. In addition, an analysis using additional pruning radiuses
could lead to interesting findings.
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Nearby POI Collection

Table A1: The list of fields on a tweet

field description

tweet id identifier for tweet
text tweet text

swarm url swarm check-in url
place indicates where tweet is associated

coordinates geographic location of tweet
language language of the tweet

created UTC time when tweet was created
timestamp timestamp when tweet was created

user id identifier for user
screen_name alias that this user identifies themselves @something

user The name of the user
user verified indicates that the user has a verified account

Table A2: The list of climate features

feature description

temperature the air temperature in degrees Celsius
apparent temperature "feels like" temperature in degrees Celsius

precipitation probability between 0 and 1

icon a machine-readable text summary
(e.g., clear-day, cloudy, fog, partly-cloudy-night)

summary a human-readable text summary
(e.g., snow, heavy rain and breeze, mostly cloudy, etc.)

cloud cover the percentage of sky occluded by clouds
humidity the relative humidity
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Table A3: The full list of available features in Nearby POI collection

type feature

user identifier gender

POI
identifier sub-categories
name tags
main category

check-in

identifier utc time
user check-in timestamp
user’s coordinates set of candidate POIs
POI weekday
temperature is weekend
apparent temperature season
temperature icon daytime
precipitation probability summary of the temperature
cloud cover humidity

tips identifier text
lang timestamp

social user identifier friend identifier
POI check-in time
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Table A4: Most commonly collections for POI Recommendation. The following marks indicate that the collection 4 possesses
such information.

period location # users # POIs # check-ins # tips # reviews cat
ego

ry
tem

po
ral

geo
gra

ph
ica

l

weat
he

r
soc

ial

Foursquare 1 † Aug. 2010 to Jul. 2011 Singapore 2,321 5,596 194,108 - - 4 4

Foursquare 2 ‡ Dec. 2009 to Jun. 2013 California 4,163 121,142 483,813 - - 4 4

Foursquare 3 ⋆ Apr. 2012 to Sep. 2013 415 cities (77 countries) 266,909 3,680,126 33,278,683 - - 4 4 4

Gowalla † Feb. 2009 to Oct. 2010 California and Nevada 10,162 24,250 456,988 - - 4 4 4

Nearby POI Aug. 2015 to Jul. 2016 3 cities (2 countries) 49,601 118,46 1,386,63 462,641 - 4 4 4 4 4

† Yuan et al. [2013, 2014]
‡ Li et al. [2016]
⋆ Yang et al. [2015, 2016]





Appendix B

Nearby Rank-GeoFM

The Nearby Rank-GeoFM is a variation of the ranking based geographical factor-
ization method (Rank-GeoFM). Like Rank-GeoFM, Nearby Rank-GeoFM learns the
ranking models based on a pairwise comparison between the POIs, measuring the in-
compatibility between the generated rankings. To determine the optimal values for
latent matrices, the Rank-GeoFM needs to iterate through all the user-POI check-ins,
updating the latent factors until model converges. Also, for each user-POI, the Rank-
GeoFM makes a pairwise comparison, sampling a POI ℓ′ from the POIs V until finds
an incorrectly-ranked POI to update the latent factors. On the other hand, to fulfill
the Nearby POI recommendation task concept, we need to change the Rank-GeoFM
sampling method to consider only the near POIs from the user’s location. Nearby
Rank-GeoFM incorporates the pruning characteristic in the training step just chang-
ing the sample ℓ′ from the entire set of POIs V to the Clu . In Algorithm 1 we can
observe this change in lines 6∼8. In addition, we provide the set of candidate POIs
Clu from the user’s vicinity combined to the user-POI check-in (line 3).

B.1 Complexity Analysis

Based on Algorithm 1, the complexity of making a pairwise comparison is O(rDs̄),
where r is the number of iterations until convergence, D is the number of check-
ins for training (i.e., non-zero entries in the user-POI check-in matrix) and s̄ is the
average of the number of trials until finding an incompatible example. For each pairwise
comparison, Rank-GeoFM computes the recommendation score using Equation 5.2.
Hence, the complexity of computing a recommendation score is O(Kk), where K is
the number of dimensions of the latent space, and k is the number of neighbor POIs.
Thus, the training complexity of Rank-GeoFM is O(rDs̄Kk). Furthermore, for most
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iterations, Rank-GeoFM updates the latent matrices with a cost of O(Kk). In addition
to the training step, the recommendation step only considers Equation 5.2 complexity
O(Kk). The main difference of the complexity of Nearby Rank-GeoFM is reducing the
number of trials s̄ to find an incompatible example. Since the Nearby Rank-GeoFM
explores a smaller set of candidate POIs, the sampling s̄ will be smaller.

Algorithm 1 Nearby Rank-GeoFM
input: check-ins training data D
output: model parameters Θ =

{
U(1),L(1),U(2)

}
1: Initialize Θ with Normal distribution N (0, 0.01)
2: repeat
3: for (u, ℓ,Clu) ∈ D do
4: n← 0
5: compute score yuℓ
6: repeat ▷ sampling through the candidates C
7: sample a POI ℓ′ ∈ (C ⊂ L)
8: compute score yuℓ′
9: n← n+ 1

10: until ranking incompatibility == 1 or n > |C|
11: if ranking incompatibility == 1 then
12: update latent factors
13: end if
14: end for
15: until convergence
16: return Θ =

{
U(1),L(1),U(2)

}
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Additional Results

Table C1: The Nearby POI recommendation task in different collections.
New York City Singapore São Paulo

MP 0.2365 0.3153 0.3321
BPRMF 0.2228 0.3109 0.2747
WBPRMF 0.1552 0.1863 0.2293
WRMF 0.1341 0.3068 0.2350
Rank-GeoFM 0.1066 0.3280 0.1783
UserKNN 0.1259 0.2749 0.2283
ItemKNN 0.0889 0.2324 0.1915
Geographic 0.0806 0.0887 0.2037

Table C2: The effectiveness of recommenders for Nearby POI Recommendation task
in the Singapore collection.

Mean Reciprocal Rank

(100%) (0,5%) (0%) (0%) (99,5%)
total item cs user cs cs non-cs

MP 0.3153 0.0213 - - 0.3170
BPRMF 0.3109 0.0214 - - 0.3125
Rank-GeoFM 0.3280 0.0280 - - 0.3297
WBPRMF 0.1863 0.0574 - - 0.1870
WRMF 0.3068 0.0231 - - 0.3084
UserCF 0.2749 0.0351 - - 0.2763
ItemCF 0.2324 0.0360 - - 0.2335
Geographic 0.0886 0.0733 - - 0.0887
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Table C3: The effectiveness of recommenders for Nearby POI Recommendation task
in the São Paulo collection.

Mean Reciprocal Rank

(100%) (21,4%) (18,9%) (9,1%) (50,6%)
total item cs user cs cs non-cs

MP 0.3321 0.0544 0.4840 0.0544 0.4392
BPRMF 0.2747 0.0557 0.2956 0.0997 0.4077
Rank-GeoFM 0.2293 0.1049 0.1974 0.1159 0.2137
WBPRMF 0.2350 0.1100 0.2511 0.1137 0.2937
WRMF 0.1783 0.0696 0.2564 0.1090 0.3228
UserCF 0.2283 0.1199 0.2564 0.1090 0.2875
ItemCF 0.1915 0.1099 0.2564 0.1090 0.2186
Geographic 0.2037 0.1295 0.2564 0.1090 0.2343

Table C4: A performance comparison using items with different numbers of check-ins
in the Singapore collection.

≤ 0 ≤ 1 ≤ 2 ≤ 5 ≤ 10 ≤ 20 ≤ 50 ≤ 100 ∞

MP 0.0213 0.0229 0.0250 0.0304 0.0415 0.0589 0.1045 0.1577 0.3153
BPRMF 0.0214 0.0239 0.0275 0.0339 0.0442 0.0607 0.1032 0.1544 0.3109
Rank-GeoFM 0.0280 0.0291 0.0301 0.0386 0.0549 0.0833 0.1368 0.1848 0.3280
WBPRMF 0.0574 0.0563 0.0524 0.0647 0.0798 0.0967 0.1179 0.1365 0.1863
WRMF 0.0231 0.0271 0.0314 0.0418 0.0508 0.0682 0.1108 0.1593 0.3068
UserKNN 0.0351 0.0383 0.0429 0.0552 0.0630 0.0741 0.1004 0.1380 0.2749
ItemKNN 0.0360 0.0858 0.1109 0.0963 0.0852 0.0814 0.0906 0.1150 0.2324
Geographic 0.0733 0.0808 0.0936 0.0956 0.0984 0.0957 0.0936 0.0947 0.0886

Table C5: A performance comparison using items with different numbers of check-ins
in the São Paulo collection.

≤ 0 ≤ 1 ≤ 2 ≤ 5 ≤ 10 ≤ 20 ≤ 50 ≤ 100 ∞

MP 0.0549 0.0713 0.0877 0.1388 0.1769 0.2152 0.2779 0.3162 0.3321
BPRMF 0.1080 0.1026 0.1003 0.1040 0.1098 0.1257 0.1545 0.1731 0.1783
Rank-GeoFM 0.0692 0.0835 0.0976 0.1292 0.1551 0.1825 0.2306 0.2603 0.2747
WBPRMF 0.1083 0.1107 0.1101 0.1175 0.1329 0.1590 0.1984 0.2193 0.2293
WRMF 0.0792 0.0944 0.1023 0.1224 0.1392 0.1632 0.2025 0.2257 0.2350
UserKNN 0.1153 0.1305 0.1366 0.1493 0.1591 0.1712 0.1995 0.2170 0.2283
ItemKNN 0.1082 0.1254 0.1324 0.1445 0.1524 0.1624 0.1785 0.1863 0.1915
Geographic 0.1223 0.1361 0.1397 0.1497 0.1569 0.1661 0.1864 0.1973 0.2037
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