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Resumo

Desde o começo da década de 70, quando as primeiras Imagens de Sensoriamento
Remoto (ISRs) tornaram-se disponíveis a partir de satélites civis, o mapeamento au-
tomático de cobertura terrestre tem sido um tema central de pesquisa no campo devido
à sua importância socio-econômica: tais mapas são uma das principais fontes de infor-
mação para estudos que embasam a criação de políticas públicas em atividades como
o planejamento urbano e o monitoramento ambiental, por exemplo. O processo para
gerar os mapas a partir das imagens é frequentemente modelado como um problema de
classificação supervisionada, onde algumas amostras de cada classe alvo anotadas pelo
usuário na imagem são usadas para treinar um classificador, que é utilizado para anotar
as amostras restantes. Na medida em que a resolução espacial dos sensores usados para
adquirir as imagens tornou-se mais fina, o paradigma de anotar e classificar pixels que
foi dominante desde as primeiras abordagens deu espaço para o baseado em regiões,
uma vez que cada objeto significativo contido em ISRs agora é composto de vários pix-
els. No entanto, descritores de baixo nível como cor e forma não são suficientes para
produzir uma representação discriminativa para as amostras que representam objetos
que compartilham aparência visual semelhante. Em tais situações, agregar informações
da cena como um todo ou de objetos vizinhos pode ser útil para ajudar a distinguí-los.
No intuito de explorar essa abordagem que está apenas começando a ser usada para
o paradigma baseado em regiões, foram propostos três métodos para codificar o con-
texto de superpixels neste trabalho: o primeiro método modela cada vizinhança local
composta de um superpixel e seus vizinhos como um Grafo de Adjacência de Regiões
(GAR) e combina representações de baixo nível extraídas dos vértices e arestas em um
único vetor de características que codifica tanto a aparência visual quanto o contexto
do superpixel; o segundo codifica o contexto semântico de uma vizinhança local ao
redor do superpixel contando a co-ocorrência de palavras visuais dentro dele e de seus
vizinhos; e o último método proposto explora ConvNets para calcular características
contextuais profundas a partir de estruturas de imagem com forma irregular, como é
o caso dos superpixels. Confirmando estudos anteriores que mostraram que codificar
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contexto seja de pixels ou regiões é uma abordagem promissora, todos os três métodos
propostos foram capazes de melhorar os mapas gerados ao incorporar contexto nas
representações usadas para alimentar o classificador.

Palavras-chave: Sensoriamento Remoto, Mapas de Cobertura Terrestre, Classificação
baseada em Regiões, Descritor Contextual.
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Abstract

Since the early 1970’s, when the first Remote Sensing Images (RSIs) became available
from civilian satellites, automatic land-cover mapping has been a central research topic
in the field due to its socioeconomic importance: such maps are one of the main sources
of information for studies that support the creation of public policies in activities like
urban planning and environmental monitoring, for instance. The process to generate
the maps from the images is often modeled as a supervised classification problem, where
few samples of each target class annotated by the user on the image are used to train
a classifier, which is used to annotate the remaining samples. In so far as the spatial
resolution of the sensors used to acquire RSIs got finer, the paradigm of annotating
and classifying pixels that has been dominant since the initial approaches gave room to
the region-based one, once each meaningful object depicted on RSIs is now composed
of many pixels. Nevertheless, low-level descriptors like color and shape are not enough
to produce a discriminative representation for the samples that represent objects that
share similar visual appearance. In such situations, aggregating information from the
scene as a whole or neighboring objects may be helpful to distinguish between them. In
order to exploit this approach which is only beginning to be used for the region-based
paradigm, three methods to encode the context of superpixels are proposed in this
work: the first method models each local neighborhood composed of a superpixel and
its neighbors as a Region Adjacency Graph (RAG) and combines low-level representa-
tions extracted from vertices and edges into just one feature vector that encodes both
the visual appearance and the context of the superpixel; the second one encodes the
semantic context from the local neighborhood around the superpixel by counting co-
occurrences of visual words within it and its neighbors; and the last proposed method
exploits ConvNets to compute deep contextual features from irregular-shaped image
structures, as is the case of superpixels. Confirming previous studies which have shown
that encoding context of either pixels or regions is a promising approach, all three
proposed methods were able to improve the generated maps by incorporating context
in the representations used to feed the classifier.
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Palavras-chave: Remote Sensing, Land-cover maps, Region-based Classification,
Contextual Descriptor.
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Chapter 1

Introduction

The intensive Brazilian urbanization and industrialization that have happened since the
50’s led to the concentration of the population in some privileged regions, which have
attracted people for their great job spots offering and better living conditions. In fact,
throughout the 20th century the urbanization process resulted in many benefits, such as
child mortality drop, life expectancy raise, fertility and illiteracy rates drop and increase
in sanitation conditions and household waste collection. Despite all the advantages,
urbanization also has its drawbacks like the compromise of environmental areas (such
as stream borders, dunes and woods), favelas and illegal occupations growth, floodings
due to the soil sealing, slopes collapse resulting in deaths and the compromise of water
resources due to sewage pollution. In addition, as a result of the economic slowdown
experienced after the 70’s, the unemployment rate has raised and many public policies
were withdrawn, resulting in the violence increasing [Vasconcelos et al., 2007]. The
conclusion of Vasconcelos et al. [2007] is that urban planning is essential to solve such
problems, provided that the projects are kept by the new governmental authorities,
adapted to the local reality and there is popular participation.

A concrete example of the problems caused by the lack of urban planning is Betim,
a city of the state of Minas Gerais, in Brazil. In the 1970’s, when the automaker FIAT
went to Betim, politicians started a market campaign that announced that Betim was
the city that most generated jobs in Brazil. By that time, many people mainly from the
northeastern region migrated to Betim. Without the technical requirements for the job
opportunities, most of them remained unemployed and did not even have the money
to return to their home cities. The politicians had not drawn up any policy capable of
welcoming these people. As consequences, the city grew in a disorganized way, several
favelas appeared and Betim is now the most violent city in the state. Another example
that may be mentioned is the Tancredo Neves international airport, which was built
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2 Chapter 1. Introduction

on calcareous rocks. Observing remote sensing images, it is possible to see cave ceilings
sinking in the region around the airport.

According to Duarte [2009], urbanism concerns about the physical-territorial as-
pect of cities, whereas urban planning is a more comprehensive term which also includes
social and economical issues and methodologies from sociology, economy, geography,
engineering, law and administration, in order to deploy policies and prohibitions that
aim at improving the quality of life of the city dwellers. To accomplish such goals, de-
tailed data is required to provide the information needed to make decisions. Currently,
land cover/use thematic maps are one of the main sources of information used in this
context [Hu et al., 2016].

Despite the similarity between the terms land cover and land use can be mislead-
ing, there is a clear distinction between them: the former denotes a physical description
of the Earth surface, whereas the last one refers to the socioeconomic aspect of how
human beings are using the land [Hu et al., 2016]. In this sense, a land cover thematic
map is the geographical distribution of the materials covering the surface of a specif
area depicted in a map.

Besides the ground survey, such maps are usually generated by means of a semi-
automatic process carried out by experts aided by some Geographic Information System
(GIS). Despite the high accuracy of the maps generated in this way, it is an expensive
and time-consuming process [Wulder et al., 2004; Ippoliti et al., 2012]. Concerning
urban scenarios, for instance, the dimensions of cities and the variety of shapes and
materials found on them are great obstacles [Santana et al., 2017]. In this context,
the automatic creation of land cover thematic maps arises as a feasible alternative
which have been studied ever since the first multispectral imagery became available
from civilian satellites in the 1970’s. It is often modeled as a supervised classification
process where the user annotates few samples (pixels, regions, superpixels, etc.) from
which features are computed and used to feed a classifier during the training stage.
At the completion of the training, the classifier should then be able to annotate the
remaining samples [Wilkinson, 2005; Vargas et al., 2015] and, by mapping each class
label into a color, a land-cover map can be built. An overview of the process is depicted
in Figure 1.1.

Many approaches have been proposed in order to generate more accurate maps
from satellite or aerial images. Typically, the pixel-based approach has been a dominant
paradigm in the remote sensing field since its very beginning [Blaschke et al., 2014]. It
performs a "hard" classification assigning just one land cover class to the pixel-based
on features computed from it. Notwithstanding, a pixel could contain the spectral
signature of more than one material (spectral mixture). There were many attempts
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Figure 1.1: Overview of the process to automatically generate land cover maps: the im-
age is segmented into n1 regions from which d-dimensional feature vectors are extracted
by using a descriptor ε; the vectors along with the labels of the regions annotated by
the user are used to feed the training algorithm that fits a model; the resulting classi-
fier is then used to annotate the remaining samples, which were extracted in the same
way as the training ones; finally, the classification results are used to generate the land
cover map.

to overcome such problem by developing methods that aimed to classify several land
cover classes within a pixel (and, therefore, they were named sub-pixel classification)
mainly through spectral unmixing [Blaschke et al., 2000]. This focus in pixel-based
approaches for a long time is understandable as long as the pixel resolutions were
relatively coarse, i.e., the the size of target objects were smaller or similar to the
spatial resolution of the sensors and, therefore, each pixel used to depict at most a
single target. Nevertheless, as the spatial resolution gets finer, single target objects
are now represented by several pixels and, therefore, such approaches do not make
sense anymore and neglect a lot of information that only can be extracted from a
set of pixels, like texture or shape [Hay and Castilla, 2008]. Furthermore, while the
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problem of mixed pixels decreases, a new problem emerges: a pixel initially contained
the spectral properties of several materials covering the Earth’s surface and, thus,
resulted in similar representations for all samples in each class and, consequently, low
intra-class variance; once the pixel now contains the spectral properties of a single
target, the intra-class variance increases, making the classification based on isolated
pixels unsuitable. Additionally, the number of pixels required to cover the same area
and, consequently, the volume of data needed to be stored and processed in analysis
tasks, increases drastically making such tasks extremely time-consuming. [Blaschke
et al., 2014]. For these reasons, the pixel-based approach has severely been criticized
since the beginning of 2000’s [Fisher, 1997; Blaschke and Strobl, 2001; Yu et al., 2006].

Along with the increasing in the spatial resolution of remotely sensed data, new
approaches emerged as alternatives to the traditional pixel-based methods. They were
based mainly on image texture and contextual information from pixels. Although these
two terms are often taken as synonyms, there is a subtle distinction between them: the
former can be defined as the "relationships between grey levels in neighboring pixels
which contribute to the overall appearance of the image" [Marceau et al., 1990, p.
514] while the second one refers to the description of a kind of association between
neighboring pixel values [Blaschke et al., 2014]. From the previous definition, we may
observe that texture is much more related to a visually perceptible concept which is
independent of color, just the differences or similarities in the brightness of neighboring
pixels is enough to create such visual pattern called texture. On the other hand, the
context of a pixel presupposes the existence of a latent association that causes them
to occur according to the observed pattern.

However, this difference between the concepts is much more semantic than prag-
matic, since some texture descriptors can indeed encode contextual information. It is
the case of Gray Level Co-occurrence Matrix (GLCM) [Haralick et al., 1973], one of the
most widely used texture descriptors, that counts co-occurrences of pixels when they
are adjacent. It turns out that counting co-occurrences is the main way of encoding
semantic context [Galleguillos and Belongie, 2010]. Thus, whether GLCM is encoding
texture or context will depend on the semantic meaning of the image elements (pixels,
regions, superpixels, etc.) and, therefore, on the scale of the image. To clarify, let us
take an example: in a vehicle detection task, when the images under consideration are
Very High Resolution (VHR) images of 10 cm, a car would be depicted by many pixels
and, therefore, GLCM would encode the car texture; on the other hand, if the images
were of 5 m of resolution, just a pixel would represent the same car and GLCM would
encode its context. But the most important point here is that the use of texture as
well as contextual information from pixels has improved classification results [Marceau
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et al., 1990; Tso and Mather, 1999; Stuckens et al., 2000].
Around the year 2000, a paradigm shift from the traditional pixel-based approach

to the region-based perspective has begun. The emerging research area was named
Object-based Image Analysis (OBIA) and, more recently, Geographic Object-based Im-
age Analysis (GEOBIA) to make it clear that this sub-discipline of the Geographic In-
formation Science (GIScience) derives its analysis from remotely sensed imagery, which
depict the Earth’s surface [Blaschke et al., 2014]. To understand this new paradigm,
the concept of object must be determined. According to [Blaschke et al., 2014, p. 180],
"image-objects represent ’meaningful’ entities or scene components that are distin-
guishable in an image (e.g., a house, tree or vehicle in a 1:3000 scale colour airphoto)".
From this definition, it is clear that whether a target on the surface is an object in a
specific Remote Sensing Image (RSI) depends on the spatial resolution of the sensor
used to image it. Another issue concerning GEOBIA is that it depends on a previ-
ous segmentation step to delineate the objects contained in the image [Blaschke et al.,
2000; Blaschke, 2010; Blaschke et al., 2014]. In the current scenario, where VHR im-
ages are becoming more and more common and the spatial resolution of sensors keeps
increasing, more objects of interest regarding a specific analysis task will be composed
of many pixels in RSIs. Furthermore, the region-based approach reduces drastically
the number of elements to be processed since groups instead of individual pixels will
be handled and also allows one to exploit visual cues of the objects (e.g., texture and
shape) that were neglected by the previous paradigm.

Although the usage of contextual information is very usual in the pixel-based
paradigm, as can be noticed by the large number of references in the literature [Marceau
et al., 1990; Binaghi et al., 1997; Tso and Mather, 1999; Stuckens et al., 2000; Mel-
gani and Serpico, 2002; Fauvel et al., 2012; Moser et al., 2013], only very recently it
begun to be exploited in the region-based approach [Santana et al., 2016]. To the best
of our knowledge, just the work of Vargas et al. [2015] besides this dissertation have
exploited contextual information from regions in the remote sensing field, even though
it is a promising approach which is more widely used in the computer vision field [Gal-
leguillos and Belongie, 2010; Parikh et al., 2012; Mostajabi et al., 2015]. The usage of
contextual information from objects is of great relevance since low-level visual features
(e.g., color, texture and shape) are limited to capture the differences in the appear-
ance of distinct objects depicted in images where some modifying factors, like noise
and impaired lighting conditions, are present or when the objects are visually similar.
In such conditions, the feature vector generated for the objects is similar, though the
objects might be from distinct classes, what reduces the class separability. In this case,
the coherent arrangement of the objects or the visual cues of the neighboring objects
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might help to improve the class separability [Galleguillos and Belongie, 2010; Parikh
et al., 2012; Santana et al., 2016, 2017].

Thus, the major contributions of this dissertation are twofold:

• Analysis of the implications of the definitions of semantic, spatial and scale con-
text to encode them for objects in RSIs in practice;

• Proposal, development and validation of three methods to encode context in RSIs:

1. Star, which encodes both the visual appearance and contextual information
of superpixels by modeling each local neighborhood around them as a Region
Adjacency Graph (RAG) and, then, combining feature vectors extracted
from vertices and edges into one representation;

2. VWCM, that encodes semantic context by counting co-occurrences of code-
words both only inside the superpixel and co-occurrences between the it and
each of its neighbors;

3. MCL, that exploits ConvNets to compute deep contextual features from
many context levels surrounding superpixels by keeping the mapping be-
tween the pixels within each of them and the feature maps across the net-
work.

Some of the achieved results were published in the conference proceedings of
CIARP 2016 (21st Iberoamerican Congress on Pattern Recognition) and IGARSS’17
(2017 IEEE International Geoscience and Remote Sensing Symposium). It is worth to
mention that preliminary results of this work were presented at the Workshop of Works
in Progress (WIP) within the 29th SIBGRAPI - Conference on Graphics, Patterns and
Images, where the work was awarded a honorable mention. A more comprehensive
description of the contributions of this work with new results is in progress and will
be submitted to the IEEE Transactions on Geoscience and Remote Sensing (TGRS)
journal.

The remainder of the text is organized as follows: Chapter 2 brings a literature
review presenting related works and key concepts; Chapter 3 presents the three methods
proposed; the settings and protocols used to validate the methods are described in
Chapter 4; Chapter 5 presents the achieved results and brings a brief discussion about
them; finally, Chapter 6 presents the conclusions and future works.



Chapter 2

Literature Review and Background

Since the 1970’s, when the first multispectral imagery became available from civilian
satellites, land-cover mapping has been a research topic that attracted much interest
due to its socioeconomic importance. A land-cover map is a type of thematic map,
which may be defined as a map that depicts the geographical distribution of some data
on a specific theme or subject area, according to the [Intergovernmental Committee on
Surveying and Mapping, 2017], that is a committee of the ANZLIC – the Australian
and New Zealand Spatial Information Council. As opposed to general reference maps
whose purpose is to show only physical features in order to summarize an area and help
the reader’s orientation, thematic maps use such features as a geographical reference
to the data. Specifically in the case of the land-cover thematic maps, the phenomenon
being mapped is the type of material covering the Earth surface.

The manual process to compose thematic maps from remotely sensed images in-
volves the interpretation of the data which is done by an expert. Besides the dependence
on the understanding of a person, land-cover mapping is very time-consuming when
carried out in this way because of factors like the great number of spectral bands to an-
alyze, the large area of study or the existence of many multi-temporal images [Meneses
and de Almeida, 2012].

Therefore, the automatic generation of thematic maps arises as a feasible option.
It is usually modeled as a supervised classification problem, where the user annotates
few samples (may be pixels, regions, superpixels or image patches) from each of the
target classes and the classifier learns patterns extracted from those samples via one
or more kinds of descriptors. Then, the classifier is expected to able to annotate the
remaining samples that were left without any labeling [Wilkinson, 2005; Vargas et al.,
2015]. Finally, in order to build a thematic digital map, which is a digital image
representing the geographical distribution of the phenomenon being mapped over the

7
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area of study, a different color is assigned to each target class and then all pixels within
the area corresponding to a non-labeled sample are painted according to the class
predicted by the classifier for that sample.

The process to automatically generate land-cover maps can be divided into the
following steps: data acquisition, data preparation, image segmentation (it is optional
depending on whether a pixel-based or a region-based approach is used), feature ex-
traction, model training, label prediction and map composition.

The first step is the detection and storage of the electromagnetic radiation re-
flected or emitted by objects or phenomena on the Earth surface. The sensors used
may either only register the radiation (called passive sensors) or emit the radiation
and register it after its interaction with one or more targets (named active sensors).
In this sense, image acquisition is in the core of the definition of Remote Sensing as
a science, according to Meneses and de Almeida [2012]: "Remote Sensing is a science
which aims the development of the acquisition of images from the Earth surface by
means of the detection and quantitative measurement of the answers of the interaction
of electromagnetic radiation with terrestrial materials". Once distinct types of sen-
sors are sensitive to electromagnetic radiation of different wavelengths, it is common
to use a data-fusion approach in order to leverage their ability to highlight specific
materials [de Andrade et al., 2015; Mou et al., 2017].

Nevertheless, remotely sensed imagery usually contain noise and errors due to the
atmospheric interference and imaging geometry. This is the reason why the second step
is needed: pre-processing techniques are applied in order to soften noise and correct
radiometric and geometric distortions [Meneses and de Almeida, 2012].

Third step consists in employing some algorithm to delineate objects in the image
by grouping their pixels so that the entire image is composed of many disjoint regions.
Segmentation is required when the image analysis approach chosen is based on regions
or objects. Once the word object may have distinct meanings depending on the context
where it is used, it is necessary to clarify which one we are referring to:

Definition 1. An object is any meaningful and distinguishable entity depicted in an
image.

Notice from Definition 1 that what is distinguishable and therefore what is an object
in each RSI depends on the spatial resolution of the image. Therefore, it is also
important to define what is the spatial resolution. Combining the definitions proposed
by Gonzalez and Woods [2006] to Meneses and de Almeida [2012], it may be defined
as:
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Definition 2. The spatial resolution is the linear measurement of the distance imaged
on the ground per pictorial element (pixel) of the image.

The next step aims at producing a representation for image samples that describes
them in terms of some kind of visual cue, such as color [Pass et al., 1996; Stehling
et al., 2002], texture [Haralick et al., 1973; Unser, 1986; Huang and Liu, 2007] and
shape [Dalal and Triggs, 2005], or even a combination of them. These representations
are regarded as low-level, once they are based on computations over the own pixels.
More complex representations also encode the context of the objects depicted in the
images [Vargas et al., 2015; Santana et al., 2016, 2017] or apply some transformations
over the low-level representations in order to generate a higher-order one, named mid-
level representation [Sivic and Zisserman, 2003; Perronnin and Dance, 2007; Jégou
et al., 2010]. Thereby, all the mentioned representations depend somehow on the low-
level ones, which in turn are computed through image descriptors. Torres and Falcão
[2006] defined a descriptor as:

Definition 3. An image descriptor is a tuple (fD, δD), where:

• fD : I → <n is a function which maps an image I to a point vI (also known as
feature vector) in the space <n;

• δD : <n×<n → < is a similarity function which computes the similarity between
two images Ia and Ib as a function of the distance between their corresponding
feature vectors vIa and vIb

Definition 4. A feature vector vI of an image I is a point in the space <n : vI =

(v1, v2, v3, . . . , vn), where n is the dimension of the vector and usually v1, v2, v3, . . . , vn ∈
<.

It is important to notice that, even though Definition 3 and Definition 4 are in
terms of image descriptors, which are presumably a single feature vector for each image,
descriptors can also be computed from image regions, patches or superpixels.

dos Santos et al. [2010] evaluated several color and texture descriptors for RSIs
classification. Four of them were chosen among the best ones, being two color descrip-
tors and two texture descriptors:

• Border/Interior Pixel Classification (BIC) is a color descriptor that works on a
RGB color space uniformly quantized in 64 colors. Then, each pixel is classified
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as either border or interior: if the pixel has the same color as its 4-neighbors, it
is regarded as interior; when the pixel is at the border of the image or at least
one of its 4-neighbors has a different color, it is classified as border. After pixel
classification, two histograms are computed: one considering only border pixels
and one taking into account only the interior ones [Stehling et al., 2002];

• Color Coherence Vectors (CCV) is also a color descriptor that works on a quan-
tized color space, but only after blurring the image. After color quantization,
connected components are computed considering pixels of the same color among
the 8-neighbors. As a consequence, the image is segmented. Then, each pixel is
classified as either coherent or incoherent: a pixel is coherent when it belongs to
a connected component composed of at least τ pixels (τ is usually set to 300);
otherwise it is incoherent. The final representation is the concatenation of two
color histograms: one computed considering only the coherent pixels and the
other regarding only the incoherent ones [Pass et al., 1996];

• Quantized Compound Change Histogram (QCCH) is a texture descriptor which
describes the distribution of the rate of change around each pixel. The rate of
change is determined for each direction (horizontal, vertical, diagonal and anti-
diagonal) considering the 8-neighbors of the pixel. It is the absolute difference
between the average gray tone of the 8-neighbors of the previous and next pixel
regarding the target pixel in a given direction. The mean of the four rates of
change is named compound rate of change. After computing the compound
rate of change for each pixel, a non-uniform quantization is applied to map the
resulting value into 40 integers. Finally, a histogram is composed by counting
the number of pixel with each quantized compound rate of change [Huang and
Liu, 2007];

• Unser also describes textural features from the image. It was developed as an
alternative to the traditional gray-level co-occurrences matrix aiming at reducing
its memory usage while maintaining almost the same accuracy. It begins by
computing a histogram of sums and a histogram of differences considering pairs
of pixels with a specific displacement. For each displacement formed by the
combination of a radial distance and four angles (specifically, we used the distance
1.5 and angles 0◦, 45◦, 90◦and 135◦), a pair of histograms is computed (sums
and differences). From each pair of histograms, 8 types of characteristics are
extracted: mean, contrast, correlation, energy, entropy, homogeneity, maximal
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probability and standard deviation. This results in a 32-dimensional feature
vector [Unser, 1986]

Besides using the aforementioned descriptors to represent superpixels, the feature
vectors built by them were used to compose a mid-level representation. A mid-level
representation may be defined as global features built from a composition of low-level
ones [?]. They are a bridge between the low-level representations and the high-level
ones [Peirce, 2015]. Among the various approaches available to compute mid-level
representations, the most known is the traditional Bag of Visual Words (BoVW) [Sivic
and Zisserman, 2003]. It is inspired on the method for text retrieval called Bag of Words
(BoW), which represents each document as a vector of word frequencies. Likewise,
BoVW represents an image as a vector of "visual words" frequencies. The method
begins by extracting low-level features from the image by means of either sparse or dense
sampling (the original paper proposes to detect key points before extracting features,
even though dense sampling may also be employed). Then, vector quantization is
performed in order to group feature vectors into clusters which are the "visual words".
Next, a visual word is assigned to each key point or dense grid cell according to its
similarity to the feature vector extracted from it. Finally, the frequencies that the
visual words appear in the image (or region) are counted in a histogram, which now is
taken as the image representation.

Model training and label prediction are two closely related steps. According
to Alpaydin [2014], the purpose of machine learning is to solve problems based on
example data or previous experiences. The problems are solved by using a statistical
model defined in terms of some parameters. Learning is the process of running an
algorithm to optimize the parameters of the model according to the example data
available (also known as training data or training samples). Once the model is trained,
it may be used to make predictions or inferences.

The learning process may be either supervised or unsupervised, depending on
whether the output corresponding to each input example of the training data is avail-
able (supervised) or not (unsupervised). More specifically, in this work we are interested
in supervised classification, which consists in predicting to which of a set of categories
(or classes) a new sample belongs based on samples whose category is already known.
There are several classifiers that fall into this group:

• Gaussian Naive Bayes [Alpaydin, 2014], which assumes that the distribution of
the samples of each category is Gaussian and then uses the Bayes’ theorem to
compute the likelihood of a sample belongs to each category, choosing the cate-
gory with higher probability;
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• Support Vector Machines (SVM) [Cortes and Vapnik, 1995], that aims at finding
the hyper-plane (or set of hyper-planes when the problem involves multi-class
classification) that separates two classes with the largest margin, which is the
distance between the hyper-plane to the closest feature vectors (called support
vectors);

• Decision Trees [Breiman et al., 1984], which are non-parametric models that
learns a set of decision rules using a tree structure where each internal node
contains a decision based on the value of a non-empty set (may be a unitary
set) of features, each branch is a decision made and the leaf nodes contain the
predictions;

• k-Nearest Neighbors (kNN) [Cover and Hart, 1967], which is a lazy classifier (i.e.,
requires no training) that makes a prediction using the majority vote of the labels
from the k neighbors from the training examples which are closest to the new
observation;

• Multilayer Perceptron (MLP) [Hopfield, 1982], that is bio-inspired classifier which
is actually an artificial neural network composed of layers of units called neurons.
Each neuron receives some weighted inputs, sums them up and generates an
activation using a specific function. The neurons of a layer are connected to
those of the next one in order to send the value of the activation. The activations
are forwarded across the network until the last layer, which output the prediction.

Many others examples of classifiers might be mentioned here, but these are very
representative once there are many variations of them which are widely used nowadays.
In this work specifically, we used SVM with Radial-basis Function (RBF) kernel in some
experiments in order to handle non-linearly separable data, and eXtreme Gradient
Boosting (XGBoost) [Chen and Guestrin, 2016] which is based on decision trees.

The label prediction step is to use the classifier after training in order to make
predictions. In automatic land-cover mapping problem, the classifier is used to predict
which is the material covering the Earth surface at the ground extension corresponding
to each given feature vector computed from the RSI. Once the predictions were made
by the classifier and one knows which pixels a feature vector was extracted from, it is
possible to create a thematic land-cover map by painting those pixels with the color
assigned to the class predicted by the classifier. This is the last step of the pipeline to
automatically create land-cover maps.

Once this work is focused on the contextual description of superpixels from RSIs,
context encoding is further explained in the following section.
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2.1 Context Features

According to Galleguillos and Belongie [2010], contextual knowledge is any information
which was not produced by the appearance of the own object, but by nearby image
data or metadata related to the image, such as tags or image annotations. The authors
divide existing approaches for contextual description into three categories: semantic,
scale and spatial, each of them being regarded as either local or global context. Each
category is specified in the following:

Definition 5. The semantic context of an object O is the likelihood of O is in a given
image I with a set of objects S.

Definition 6. Spatial context of an object O is the orientation and localization of O
relative to each other object in image I.

Definition 7. Scale context of an object O is the size of O relative to all other objects
in an given image I.

Definitions 5, 6 and 7 have some implications. The first one concerning the
semantic context is that it requires the previous identification of all objects in an
image. On the other hand, in order to take scale context of an object into account
it is necessary to identify at least one other object in the image and also employ
some algorithm to obtain information of distance and depth between them. Another
implication is that spatial and scale context implicitly include semantic context, once
they depend on the identification of other objects, what constitutes a co-occurrence
relation.

Such implications are not so strict in RSIs. Once the images are remotely sensed,
information about the type and altitude of the sensor used is often readily available.
Additionally, in so far as the distance between objects is nearly insignificant when
compared to the distance from the sensor to the sensed targets, scale context becomes
less sensitive to depth differences. Another important aspect that distinguishes context
encoding in RSIs is the perspective from which the objects are imaged: once the
position of the sensor with relation to the objects sensed has small variations across
different RSIs and the perspective is always from top, the rotation of objects does not
affect their context as much as in regular images taken on the ground.

For human beings, Definitions 5, 6 and 7 are very intuitive. Our previous visual
experiences affect what objects we expect to found in a given scene, where we expect
to see them within the scene and the size we expect them to have in order to judge that
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(a) Semantic context (b) Spatial context

(c) Scale context

Figure 2.1: Objects out of context. Images from SUN09 Dataset [Choi et al., 2010].

scene as coherent. Previous studies had proven that this knowledge accumulated from
the many past visual experiences unconsciously take part in the process performed
by the brain to identify objects [Palmer, 1975; Bar, 2004]. It is easy to notice this
statement when looking at images like those in Figure 2.1, which shows objects out of
context.

However, take advantage of context to identify objects is not such a trivial task
for machines, once it involves a higher level of abstraction related to the identification
of each object in an image, the own scene depicted and semantic, spatial and scale
relations among them.

It is also important to highlight that context is considered from either a local
or global image level [Galleguillos and Belongie, 2010]. Global context captures the
interaction between the scene and objects and plays an essential role imposing a con-
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straint on which objects should be expected to be in the image. On the other hand,
local context consider areas surrounding the target object and therefore focuses on the
interactions between pixels, regions/patches or objects. It supports the description of
the objects, mainly those which can not be easily identified by visual cues [Mostajabi
et al., 2015].

The first available methods used to be based on fixed and predefined inference
rules and constraints that the objects (or parts of them) should satisfy in order to
regard the scene arrangement as coherent. These rules and constraints were hand
coded by experts [Hanson and Riseman, 1978; Strat and Fischler, 1991; Fischler and
Elschlager, 1973]. Such rules determined which contextual relations were consistent
and which were not. The main weaknesses of those early approaches was that they
were constrained to a specific domain for which the rules were created and that they
were not able to handle the uncertainty that is inherent to the real world.

More effective approaches emerged by introducing machine learning tech-
niques Rabinovich et al. [2007]; Torralba [2003]; Shotton et al. [2009]. The contextual
relations that used to be hand coded are now learned from features extracted from
groups of either pixels [Parikh et al., 2008; Shotton et al., 2009] or regions [Galleguillos
et al., 2008; Zhang and Saligrama, 2017].

A recent trend consists on combining different kinds of context to improve the
classification Mottaghi et al. [2014], which is nevertheless computationally inefficient
and, therefore, less used so far.

The main drawback of the methods presented so far is the requirement of previous
identification of other objects in the image, once most of them are based on graphical
models, like Markov Random Fields (MRFs) or Conditional Random Fields (CRFs),
which demand a lot of labeled data to be trained. Such constraint reduces the number
of methods that could be applied to land-cover automatic mapping, once if the users
had to annotate most of the objects in the image, manual mapping would become a
feasible option due to the higher accuracy of the maps generated.

A way to overcome this deficiency is through feature engineering, which consists
in building a representation for image objects/regions that implicitly encodes their
context. This approach must somehow include co-occurrences, scale or spatial rela-
tionships between descriptors of image elements without labeling them. An example
can be found in the work of Lim et al. [2009] that represents the scene as a tree of re-
gions where the leaves are described as a combination of features from their ancestors.
This resulting descriptor encodes context in a top-down fashion.

To the best of our knowledge, the only approach of this type in remote sensing
was proposed by Vargas et al. [2015] to create thematic maps. In that work, each
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superpixel of the image is described through a histogram of visual elements, using the
method Bag of Visual Words (BoVW). Then, contextual information is aggregated by
concatenating the superpixel description with a combination of the histograms of its
neighbors to generate a new contextual descriptor. Even though this method represents
each local neighborhood as a Region Adjacency Graph (RAG) where each vertex is a
superpixel and edges model the adjacency relations between them, no description for
the edges is included in the final representation.



Chapter 3

Encoding Context

In this chapter we describe the methods proposed in order to aggregate contextual in-
formation into the representation generated for image superpixels. The first method is
called Star (Section 3.1), once it models each local neighborhood surrounding a super-
pixel as a Region Adjacency Graph (RAG) in star topology and, then, extracts feature
vectors from vertices and edges, which are combined into one final representation that
encodes both visual appearance and context. Section 3.2 presents the second one, which
is referred to as Visual Words Co-occurrences Matrix (VWCM) once it is based on the
widely known Gray-level Co-occurrences Matrix (GLCM) because it encodes semantic
context by counting co-occurrences of codewords both only inside the superpixel and
co-occurrences between it and each of its neighbors, what is similar to the count of
co-occurrences of gray levels to compute texture features. The last proposed method
exploits ConvNets to compute deep contextual features from superpixels by keeping
the mapping between the pixels within each of them and the feature maps across the
network, as described in Section 3.3. This method uses many layers of the ConvNet
to compute features at different levels of context around the superpixel, from local to
global so that we called it Many Context Levels (MCL).

3.1 Star Descriptor

Unlike the most methods found in the literature, the Star descriptor builds a represen-
tation for image segments that implicitly encodes co-occurrences (semantic context)
and spatial relations (spatial context) without the need of labeling the segments. The
pipeline to generate the Star descriptor is summarized in Figure 3.1 and further ex-
plained in the following.

17
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3.1.1 Region Adjacency Graph

Given an image segmented into N superpixels, the local neighborhood of each super-
pixel si, i = 1, . . . , N , is regarded as a graph Gi(V,E) in star topology (see Figure 3.1)
where V are the superpixels and the edges in E represent the adjacency relations
between si and the remaining superpixels. Formally, two superpixels sx and sy are
adjacent if and only if at least one pixel of sx is 4-connected to a pixel of sy. In addi-
tion, the target superpixel si is the central vertex (or root), each of its n neighboring
superpixels nsj, j = 1, . . . , n, are the leaves and there is an edge ek, k = 1, . . . , n

linking the mass centers of si and every nsj. Such a graph modeling provides a clear
understanding of the proposed descriptor in terms of the level of context taken into
account and the types of context exploited: local spatial relations and co-occurrences
between the visual features extracted from si and its neighborhood.

3.1.2 Vertex Descriptor

A visual feature descriptor is computed within every superpixel in a given local neigh-
borhood modeled as a star graph Gi(V,E). More formally, a feature vector - referred
to as target vertex descriptor (TV Di) - is extracted from the target superpixel si. Like-
wise, a neighbor vertex descriptor NVDj is built for each neighboring superpixel nsj,

Si

ED1

EDn

NVD1

NVDn

TVDi

Final Representation
for Superpixel Si

FTVDi

FNVDi

FEDi

Ope

Opv

Image Segmented 
into Superpixels

Star Graph 
G(V,E)

Figure 3.1: Process to generate the Star contextual descriptor for a superpixel si.
Given a segmented image, the local neighborhood of si is modeled as a Region Adja-
cency Graph (RAG) Gi(V,E) in star topology where si is the central vertex (or the
root), the adjacent superpixels are the leaves and edges link the mass centers of them
to si. A feature descriptor is extracted from si and from each of its n neighbors.
Every edge is then taken as the diagonal of a rectangle (reddish region) from which
another descriptor is computed. The n resultant edge descriptors are combined into
one of the same dimensionality through some operation Ope. Likewise, the n neighbor
vertex descriptors are used to build only one through Opv. Finally, the final contex-
tual descriptor for si is composed by concatenating its own vertex descriptor, the final
neighborhood vertex descriptor and the final edge descriptor, in this order and after
individually normalizing each of them.
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j = 1, . . . , n, as can be seen in Figure 3.1. Notice that the same algorithm is used for
both TV Di and every NVDj.

Although the only restriction to choose the vertex descriptor is that it must
represent every superpixel as a fixed-size numerical vector, we propose to use two
types: global feature descriptors and BoVW for mid level representation. In the former
approach, a global descriptor is extracted from each superpixel taking it as it were a
whole image. To account for size differences among them, the resultant feature vector
is normalized. The second representation was proposed by Vargas et al. Vargas et al.
[2015]: dense grid sampling is applied and a feature descriptor is computed from each
5x5 local patch around the selected pixels; the extracted feature vectors are used to
conform the codebook using the k-means clustering algorithm; hard assignment is used
to assign the closest visual word to each pixel of the grid; a histogram is then computed
for every superpixel by taking into account the central grid pixels within it; finally, each
histogram is normalized dividing it by the number of grid pixels inside its respective
superpixel.

3.1.3 Edge Descriptor

The edge descriptor proposed by Silva et al. [2013] was used to better capture the visual
patterns found across the frontiers of two adjacent superpixels since it extracts features
around the edge. More precisely, given a local neighborhood represented as a star graph
Gi(V,E), the k -th edge descriptor EDk is computed by extracting a feature descriptor
(although the authors used only texture descriptors, we propose to experiment also
color descriptors and deep features) within the rectangle formed by taking ek as its
diagonal (as exemplified by the reddish area nearby the edge in Figure 3.1). This
process is repeated for each of the n edges in E.

3.1.4 Composition Operations

As soon as the vertex and edge descriptors were extracted, they are combined into just
one vertex and one edge descriptor through some operation. This step is applied to
tackle with two issues: due to the large number of feature vectors extracted from each
RAG, the computational cost to train a classifier with them would be prohibitively
high and the variability in the number of leaves of the graphs would result in a feature
vector of non-fixed size if a simple concatenation would be done.

More specifically, an operation Opv is applied to summarize the n NV Ds, result-
ing in one final neighbor vertex descriptor FNV Di. Similarly, the n EDs are combined



20 Chapter 3. Encoding Context

into just one final edge descriptor FEDi through an operation Ope. The final target
vertex descriptor FTV Di is the TV Di itself. Because vertex and edge descriptors lie
in different feature spaces, FTV Di, FNV Di and FEDi are individually normalized
using L2 norm and then concatenated to compose the final representation for si which
has 2 ∗ |vertexdescriptor|+ |edgedescriptor| dimensions.

The only constraint imposed to Opv and Ope is that they must summarize n
p-dimensional vectors into one of same dimensionality. Concretely, we propose to use
three operations commonly found in BoVW pooling step: sum, average and max pool-
ing. These operations are formally defined as follows: let Dj be the j -th p-dimensional
feature vector in a sequence 〈D1, . . . , Dn〉, whose components are dm, m ∈ {1, . . . , p}
as stated in Eq. 3.1; the m-th component of Dj can be summarized through either
sum, average or max pooling, which are respectively showed in Eq. 3.2, 3.3 and 3.4.

Dj = {dm}m∈{1,...,p} (3.1)

dm =
n∑

j=1

dj,m (3.2)

dm =
1

n

n∑
j=1

dj,m (3.3)

dm = max
j∈{1,...,n}

dj,m (3.4)

Of course, such operations are invariant to rotation and translation since they
result in the loss of some spatial information, e.g., the relative position of superpixels.
Nevertheless, they are quite simple and perform very fast.

3.2 Visual Words Co-occurrence Matrix

Counting co-occurrences of elements is the main way to encode semantic context, which
is related to the likelihood of a specific element be found in a scene either alone or along
with other elements. However, since in Remote Sensing Images (RSIs) the scene is usu-
ally just an image mosaic containing possibly all elements under consideration for a
specific classification problem, their co-occurrences would not encode much informa-
tion. On one hand, we could delimit a small area to count co-occurrences so that
we are still able to represent an element by encoding its context, but the resulting
representation would be sparse due to the small number of elements considered. On
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Figure 3.2: Pipeline to represent a superpixel si by co-occurrences of visual words
within its neighborhood. Firstly, grid sampling is applied to the image so that feature
descriptors are computed, which are then clustered and the cluster centroids are stacked
to compose a codebook. A visual word from the codebook is then assigned to each
descriptor from the grid. Next, the image is segmented into superpixels and the result-
ing segmentation is superimposed with the grid in order to define which visual words
lye inside each superpixel. The internal and the neighbors co-occurrence matrices are
computed from si and its n adjacent superpixels. Finally, the matrices are vectorized,
separately normalized and concatenated to compose the final representation for si.

the other hand, larger areas would result in very similar representations for adjacent
elements due to the intersection of their contextual areas.

Aiming at tackling with such problems, we propose to represent a superpixel by
counting co-occurrences of visual words inside it and its neighbors instead of counting
the superpixels themselves. By counting visual words we overcome the sparsity problem
while we are still able to generate discriminative representations by using just adjacent
superpixels.

An overview of the proposed approach, which is called Visual Words Co-occurence
Matrix (VWCM) in honor of the traditional Gray Level Co-occurrence Matrix (GLCM),
can be seen in Figure 3.2.

3.2.1 Feature Extraction

The approach starts by defining a grid composed of cells of q × q pixels from which
feature descriptors are extracted.
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3.2.2 Codebook Composition

After performing the grid sampling, all descriptors computed are clustered into p clus-
ters using the k-means algorithm. The cluster centroids are then stacked to compose
the codebook which is used to look up which visual words is activated by each descrip-
tor from the grid. The choice of the number of clusters p is critical, since a large value
is going to generate a p× p co-occurrence matrices that are sparse while a small value
would cause all the matrices to have nearly the same visual words and be therefore
indistinguishable.

3.2.3 Segmentation

As soon as the coodebook is built, the image is segmented into N superpixels and
the next steps are applied taking each superpixel si, i = 1, . . . , N , along with all the n
adjacent ones (notice that the definition of superpixel adjacency stated in Subsec. 3.1.1
is used here).

3.2.3.1 Counting Co-occurrence Visual Words

Given a codebook containing p visual words, two p × p matrices of co-occurrences
are then computed for each superpixel si: the internal co-occurrence matrix and the
neighbors co-occurrence matrix. The former one counts only co-occurrences of visual
words that lye within si and therefore is symmetrical since the co-occurrence relation
regardless the relative spatial position is inherently symmetrical. In the second one,
the rows stand for the visual words inside si and the columns represent the ones within
the adjacent superpixel nsj, j = 1, . . . , n, currently under consideration. It is worth
to mention that the neighbors co-occurrence matrix is cumulative for all n adjacent
superpixels. Notice that it is essential to define when a visual word is inside a superpixel
in order to count the co-occurrences properly: an arbitrary visual word vl lies within
a superpixel sx if and only if the central pixel of the grid cell cl from which vl was
extracted lies within sx when the grid and the segmentation are superimposed.

3.2.4 Vectorization

Once the matrices for si are computed they are vectorized so that si can be represented
only by vectors. The symmetrical internal co-occurrence matrix results in a p(p+1)/2-
dimensional vector because the diagonal elements are kept while the neighbors co-
occurrence matrix becomes a p2-dimensional vectors due to the non-symmetrical nature
of the relation.
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Figure 3.3: The MCL representation to exploit all contextual levels ranging from the
superpixel itself to an entire image patch containing it. Given a target superpixel si, its
final representation is the concatenation of the `2-normalized features extracted from
si, a small rectangular contextual area surrounding si and a large contextual area.

3.2.5 Concatenation

The final representation for si is the concatenation of the `2-normalized vectors. Notice
that the vectors are normalized separately.

3.3 Many Context Levels Representation

Most methods in the literature exploit either only a single level of context or a combi-
nation of local and global cues, which are claimed to be the most relevant ones since
they determine what can be found in a scene (global) or the objects that interact with
the target one. The main objective of the Many Context Levels (MCL) representation
is to exploit a range of contextual levels, from the superpixel itself to an entire im-
age patch containing it (which is regarded as global context once our entire dataset is
sometimes just an image that is a mosaic composed of many patches).

A general overview of the proposed representation is shown in Figure 3.3. Given
a superpixel si, we separately extract features concerning three contextual areas de-
fined by different groups of pixels: (1) inside the region; (2) a small contextual area
surrounding si; and (3) a larger contextual area. Small and larger contextual areas
are limited by boxes centered in si and consider both internal and external pixels from
the superpixel. The final representation is the concatenation of the `2-normalized fea-
tures extracted from all contextual levels. In spite of the simplicity of the proposed
composition of contextual features, its strength lies on the exploitation of intermediate
contextual levels, which are left out by the most methods.

Notice that the MCL is just an structure to compose non-contextual descriptors
into a contextual one. For this reason, it provides flexibility on choosing the descriptor
used to generate the feature vectors which are taken as input. There is only one
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constraint: the vectors output by the descriptor are to be fixed-size. Thereby, one
could virtually choose any descriptor to extract features from the contextual regions,
since most of them produce a fixed-size vector. For this work, the Convolutional neural
networks (ConvNets) were chosen because of the impressive results they are achieving
in a wide range of pattern recognition tasks and because the codification of context
besides the use of graphical models is being more exploited recently.

3.3.1 Deep Features Extraction from Superpixels

An essential characteristic of the ConvNets that makes them suitable to encode con-
text is that each layer is able to learn filters that enhance different visual semantic
levels [Mostajabi et al., 2015]. The first convolutional layers emphasize low-level prop-
erties, such as borders, color, texture, patterns and other properties from a small set
of pixels, which may represent parts of roofs, streets, cars, and small objects. The
last layers are able to incorporate entire objects and spatial relationships among them.
Thus, ConvNets in their very nature are able to encode semantic context.

Nevertheless, an existing challenge concerning the feature extraction from
arbitrary-shaped regions is that the main algorithms are designed for rectangular or
squared image patches [dos Santos et al., 2012]. ConvNets also require square im-
ages/patches as input due to their characteristic architecture based on convolutions.

In order to overcome the aforementioned issue, the approach proposed by Mosta-
jabi et al. [2015] for computer vision applications was applied in this work. For creating
a feature representation for a given region si, a square box around it is initially de-
fined, which can be seen as an image patch I. The next step is to use a pre-trained
ConvNet to create feature maps in different layers. Regardless of the ConvNet chosen,
a convolutional layer with k filters produces k feature maps stacked so that there is
a k -dimensional feature vector associated with each point of the feature maps stack
along the width and height dimensions. The major novelty introduced by the authors
is that such maps are average pooled over the superpixel or region si, generating just
one k -dimensional feature vector to represent si.

Since the pooling step outputs a single vector for the whole superpixel, it allows
the MCL method to make use of deep features which are intrinsically rich in semantic
context, further improving MCL that already aggregates spatial context. Therefore, the
final representation generated by the MCL encodes both semantic and spatial context
for each superpixel si. However, due to the pooling process and strides larger than one
that may be used for the convolutions, the first layers usually produce feature maps of
lower resolution compared to the original image patch I. Since I and the segmentation
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Figure 3.4: Example of the approach proposed by Mostajabi et al. [2015] to extract
deep features from the superpixel si. It consists in keeping a mapping between each
pixel inside si and the corresponding points of the feature maps as the image I is
forwarded across the network. This way, after each convolutional layer is possible to
generate just one k-dimensional feature vector by average pooling the k feature maps
over si. Every time that the resolution of the feature maps is reduced by the stride in
pooling and convolutional layers, an upsampling is employed in order to restore their
original size and consequently keep the mapping.

which delineated si remain with the same initial resolution, the mapping between each
pixel of I (and consequently the pixels within si) and each point of the stack of feature
maps output by each layer is lost as I is forwarded across the network. Thus, bilinear
interpolation is necessary to rescale the feature maps and allow for feature extraction
from the original patch I, as showed in Figure 3.4.

We have validated the proposed approach by using the well-known
AlexNet [Krizhevsky et al., 2012]. Figure 3.5 illustrates the proposed strategy for
deep contextual feature extraction by using this ConvNet.
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Figure 3.5: The proposed approach for deep contextual feature extraction with
AlexNet. Given a superpixel si, an image patch I is created centering the super-
pixel and used as input for the AlexNet. The features are computed considering three
levels of context (or three layers): φ1(si), φ5(sb) and φfc2(I).

The first level φ1(si) is responsible for encoding the features of the superpixel si
itself. These features are extracted from the first convolutional layer of the ConvNet
and are mainly responsible for capturing color, texture, patterns and other properties
from a small set of pixels, which may represent parts of roofs, streets, cars, and small
objects. The second level φ5(sb) computes features from a small context that should
bring more information about the region sb around the superpixel giving cues about its
neighborhood and helping in its classification. Intuitively, the features computed at this
level tend to be more complex and contain more information, since they may represent
whole buildings, streets, cars as well as the interactions among these. Specifically, the
features are extracted from the fifth convolutional layer considering a small context with
respect to the superpixel. The contextual area is delimited by a fixed-size bounding
box surrounding si. The final level of context φfc2(I) represents the entire input image
patch I. These features encode an even larger area that represents the whole scene of
the input image patch I, including the relationships between buildings, cars, streets,
etc. Features from this layer are useful for global support of local labeling decisions,
e.g., lots of green in an image supports labeling a tree or a park. In other words,
this layer may help to determine the presence of categories in the scene, i.e., it is
responsible for imposing a constraint in the label space by eliminating classes which
have no elements within the image patch I. In the proposed method, features are
extracted from the last fully connected layer. The last level of context φfc2(I) only
returns features values and not feature maps. At the end of the process, the extracted
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feature vectors φ1(si), φ5(sb) and φfc2(I) are concatenated for the final representation
of the superpixel si.

Notice that although the first, fifth and last layers were chosen, it is not required
that those specific layers be selected to make the feature extraction work properly.





Chapter 4

Experimental Analysis

In the first section we present the experimentation protocol used to assess the proposed
methods, which includes a description of the datasets, metrics used, statistical valida-
tion and training protocol. Section 4.2 brings the descriptions of the experiments per-
formed to evaluate the methods on the grss_dfc_2014 dataset and the results achieved,
while Section 4.3 shows the same informations for the ISPRS Potsdam one.

4.1 Experimental Protocol

4.1.1 Datasets

Two imbalanced multi-class datasets which are publicly available were selected for
evaluating the effectiveness of the proposed methods: the grss_dfc_2014 and ISPRS
Potsdam (ISPRS stands for International Society for Photogrammetry and Remote
Sensing). Both datasets were chosen mainly due to the fact that they are widely used
throughout the literature.

4.1.1.1 grss_dfc_2014

The first dataset was released for the IEEE GRSS Data Fusion Contest (DFC) in
2014. It consists of two different sets of imagery data: 1) a long-wave infrared (LWIR,
thermal infrared) hyperspectral image composed of 84 channels with nearly 1 m spatial
resolution; and 2) a Very High Resolution (VHR) color image with 3769×4386 pixels
in the visible spectrum, composed of many RGB sub-images with spatial resolution
of 20 cm and associated with distinct flight-lines. Notice in Figure 4.1 that the color
images acquired in distinct flight-lines are spatially disjoint, resulting in blank areas.

29
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(a) RGB subset for training (b) Ground truth annotation for training

(c) Whole RGB imagery for test (d) Ground truth annotation for test

Figure 4.1: Images from grss_dfc_2014 used in the experiments.

All imagery were acquired and provided by Telops Inc. using sensors mounted
on an airborne platform which overflew an urban area near Thetford Mines in Québec,
Canada, on May 21st, 2013. Both sets of data were radiometrically and geometrically
corrected posteriorly.

The ground truth was annotated into seven classes: road, tree, red roof, grey
roof, concrete roof, vegetation and bare soil. The color used to annotate the pixels of
each class can be seen in Figure 4.2 and the distribution of the number of pixels per
class is showed in Table 4.1, from which it is clear the level of imbalance among classes.
Additionally, there is an unclassified class which is used to annotate the remainder of
the image that was not annotated as belonging to any of the seven thematic classes
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Table 4.1: Class distribution in terms of pixels for grss_dfc_2014 dataset.

Images/Classes Road Trees Red Grey Concrete Vegetation Bare
Roof Roof Roof Soil

Training Image 19,79% 4,88% 8,20% 9,42% 17,22% 32,62% 7,87%
Test Image 55,73% 6,94% 9,42% 9,84% 7,55% 7,14% 3,39%
Entire Dataset 45,62% 6,36% 9,07% 9,72% 10,27% 14,30% 4,65%

as well as blank pixels. It is worth to mention that pixels annotated with this class
are not taken into account during the training of the classifiers and neither to compute
the metrics described in Subsection 4.1.5 for the grss_dfc_2014. Since the dataset
was originally released for a contest, a specific subset containing just one flight-line is
provided for training, resulting in an image with 2830×3989 pixels.

Class 6 - Bare soil

Class 5 - Vegetation

Class 4 - Concrete roof

Class 3 - Grey roof

Class 2 - Red roof

Class 1 - Trees

Class 0 - Road

Unclassified

Figure 4.2: Colors and classes in which grss_dfc_2014 dataset was annotated.

Even though the contest aimed at encouraging the development of multisensor
fusion, it is out of the scope of this work and, thereby, only the visible imagery of
grss_dfc_2014 is going to be used in order to assess the proposed methods. Figure 4.1
shows the visible images used in the experiments and their respective ground truth
annotation.

4.1.1.2 ISPRS Potsdam

The ISPRS Potsdam consists of 38 VHR true orthophoto (TOP) image patches of
6000×6000 pixels and corresponding digital surface models (DSMs) obtained through
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dense image matching. Both types of data were acquired using a ground sampling
distance of 5 cm over Potsdam, Germany by BSF Swissphoto, that made the data
available for the Semantic Labeling Contest of the ISPRS.

Again, even though DSMs may be useful to improve classification results, the
scope of this work is on visible images and, therefore only the VHR images were used,
which are TIFF images with the following channel compositions: R-G-B, IR-R-G and
R-G-B-IR. Since only usual low-level descriptors designed to work on RGB images are
used for the experiments, only the composition R-G-B were tested.

Class 5 - lutter/backgro

Class 4 - Car

Class 3 - Tree

Class 2 - Low vegetation

Class 1 - Building

Class 0 - Impervious su

Border

Figure 4.3: Colors and classes in which ISPRS Potsdam dataset was annotated.

The ground truth is provided for just 24 image patches and is annotated
into 6 classes: impervious surfaces, building, low vegetation, tree, car and clut-
ter/background. The colors used to annotate each class are presented in Figure 4.3
and the imbalance of the dataset can be seen from the class distribution in Table 4.2.
It is worth to mention that the evaluation protocol specified for the dataset requires
the annotation of the class clutter/background, which includes everything that looks
different from the remaining objects (e.g. water bodies, containers, tennis courts and
swimming pools). Since the intra-class variance of this class is very high, it impairs the
classifier training and reduces the class separability. Additionally, because the dataset
resolution is about four times higher than the grss_dfc_2014 one, the appearance of
the objects is more heterogeneous and, consequently, the intra-class variance is also
high for the other classes. All those factor together make this dataset very challenging.

Also regarding the evaluation of the classification results, it is important to high-
light that there is a small border of black pixels surrounding each object annotated in
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Table 4.2: Class distribution in terms of pixels for ISPRS Potsdam dataset.

Patches/Classes Impervious Building Low Tree Car Clutter/
Surfaces Vegetation Background

3_12 29,27% 25,53% 20,40% 21,33% 1,44% 2,03%
4_12 33,19% 35,16% 19,79% 7,45% 2,07% 2,33%
5_12 30,78% 50,61% 8,58% 5,78% 2,49% 1,76%
7_11 47,33% 29,55% 11,83% 8,07% 1,77% 1,45%
7_12 53,63% 31,80% 7,53% 4,00% 1,89% 1,16%
Entire Dataset 38,92% 34,55% 13,58% 9,27% 1,93% 1,75%

the ground truth. Such black pixels are not taken into account to compute the metrics
presented in Subsection 4.1.5.

In our experiments, due to the large amount of descriptors extracted from each
image, it would be infeasible to use all images to train many classifiers in a reasonable
time, so that we randomly selected a smaller subset of 5 from the 24 annotated images
to perform the experiments: 3_12, 4_12, 5_12, 7_11 and 7_12, showed in Figure 4.4.

4.1.2 Segmentation

All images were segmented into superpixels using SLICO, an adaptive version of the
Simple Linear Iterative Clustering (SLIC) algorithm [Achanta et al., 2012]. SLIC is a
good option since it performed better than several state-of-the-art superpixel methods
according to the boundary recall and under-segmentation error metrics. Neverthe-
less, SLICO besides having a good adherence to the object boundaries also adaptively
sets the compactness parameter, resulting in smooth regular-sized superpixels in both
smooth and highly textured regions of the image. Such characteristics make SLICO an
even better choice for this work, even though it does not guarantee the connectivity of
any individual superpixel.

The grss_dfc_2014 training image was segmented initially into roughly 25000
superpixels, while the test image was divided into around 37500 superpixels of nearly
the same size of the training ones (this number was chosen because the test image
is about 50% bigger than the training one). All five ISPRS Potsdam images were
segmented into around 30000 superpixels. These values were obtained empirically by
trying to fit most of the object within one or more superpixels. Since the later dataset
has a finer spatial resolution, less superpixels with bigger size are required to delineate
objects.

Later on, these values were changed in steps of 5000 and 7500 for the
grss_dfc_2014 training and test images, respectively, in order to assess the impact
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(a) Patch 3_12 (b) Patch 4_12 (c) Patch 5_12

(d) Patch 7_11 (e) Patch 7_12

(f) Ground Truth for Patch
3_12

(g) Ground Truth for Patch
4_12

(h) Ground Truth for Patch
5_12

(i) Ground Truth for Patch 7_11 (j) Ground Truth for Patch 7_12

Figure 4.4: Image patches from ISPRS Potsdam used in the experiments.
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of the segmentation scale chosen on the classification results. The number of superpix-
els was not modified for the second dataset, once it takes much longer to train a model
with a specific configuration on it due to the huge volume of training data as compared
to the first dataset. Thus, evaluating how the changes on the segmentation affects the
classification results on ISPRS Potsdam dataset is a time-consuming process.

Aiming at providing more data about the resulting segmentation, some mea-
surements were made on the superpixels: the area, width and height of the smallest
rectangle that encloses it and the number of pixels within the superpixel. More pre-
cisely, denoting the segmentation image (i.e., the image containing the label of each
pixel that determines to which superpixel it belongs) as a set of n disjoint superpix-
els S = {Si |

⋃n
i=1 Si = S and

⋂n
i=1 Si = ∅}, where each superpixel Si is itself a set

Si = {(x, y) | (x, y, t) ∈ I and f(x, y, t) = i}, where (x, y, t) is a pixel from the original
image I, x and y are the coordinates of the pixel on the horizontal and vertical axis,
respectively, t is the tone of the pixel and f(x, y, t) is the function that maps a pixel
to a superpixel based on some criteria, the measurements for a specific superpixel Si

can be defined as:

width(Si) = max
{(x,y)∈Si}

(x)− min
{(x,y)∈Si}

(x) (4.1)

height(Si) = max
{(x,y)∈Si}

(y)− min
{(x,y)∈Si}

(y) (4.2)

area(Si) = width(Si)× height(Si) (4.3)

num. pixels(Si) = |Si| (4.4)

The results of the measurements described in Equations 4.1, 4.2, 4.3 and 4.4 are
reported in Tables 4.3 and 4.4 for the grss_dfc_2014 dataset and in Table 4.5 for the
ISPRS Potsdam dataset.

4.1.3 Classifier and Training Protocol

We used the features extracted to train a Support Vector Machine (SVM) classifier,
which is known for handling high-dimensional data. A Radial-Basis Function (RBF)
kernel is used to train the SVM on the grss_dfc_2014 dataset because the background
samples are not considered for training the classifier, resulting in few samples (around
2000). Nevertheless, the same is not true for the ISPRS dataset which requires back-
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Table 4.3: Measurements of the size of superpixels in the training image of
grss_dfc_2014.

Measure
(in pixels)

Num.
Superpixels Min. Max. Avg.

Area
(Width x Height)

20000 13 × 27 = 351 53 × 38 = 2014 629.32
25000 12 × 24 = 288 68 × 29 = 1972 474.68
30000 14 × 14 = 196 45 × 35 = 1575 384.17

Width
20000 13 53 24.83
25000 11 68 21.56
30000 12 45 19.42

Height
20000 17 47 24.98
25000 13 50 21.68
30000 13 43 19.49

Num. Pixels
20000 282 1238 577.02
25000 227 888 441.09
30000 188 727 361.61

Table 4.4: Measurements of the size of superpixels in the test image of grss_dfc_2014.

Measure
(in pixels)

Num.
Superpixels Min. Max. Avg.

Area
(Width x Height)

30000 22 × 14 = 308 60 × 41 = 2460 698.58
37500 28 × 10 = 280 44 × 53 = 2332 577.62
45000 13 × 16 = 208 48 × 73 = 3504 465.87

Width
30000 12 74 26.20
37500 10 63 23.83
45000 10 53 21.38

Height
30000 12 58 26.31
37500 10 53 23.92
45000 9 73 21.49

Num. Pixels
30000 275 1336 530.94
37500 220 990 443.95
45000 183 1125 362.98

ground annotation, resulting in around 120000 training samples. Once the training
process using RBF kernel is quadratic in the number of samples (O(n2)), its usage for
the latter dataset would be extremely time-consuming so that we choose just a linear
kernel and normalized the features to unit mean and zero variance in order to speed
up convergence.

Additionally, experiments were performed using an improved version of Gradient
Boosting Machine (GBM) called eXtreme Gradient Boosting (XGBoost), which is an
end-to-end system to train an ensemble of trees [Chen and Guestrin, 2016]. Its main
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Table 4.5: Measurements of the size of superpixels in the ISPRS Potsdam dataset
segmented in 30000 superpixels.

Measure (in pixels) Image Min. Max. Avg.

Area (Width x Height)

3_12 12 x 61 = 732 99 x 61 = 6039 1643.22
4_12 13 x 46 = 598 76 x 112 = 8512 1629.31
5_12 26 x 26 = 676 57 x 121 = 6897 1637.58
7_11 27 x 27 = 729 45 x 110 = 4950 1610.06
7_12 33 x 22 = 726 104 x 50 = 5200 1626.96

Width

3_12 12 127 40.70
4_12 12 143 40.39
5_12 16 126 40.51
7_11 17 91 40.11
7_12 18 104 40.59

Height

3_12 16 99 40.30
4_12 12 120 40.28
5_12 19 121 40.37
7_11 18 110 40.09
7_12 20 82 39.99

Num. Pixels

3_12 601 2555 1232.75
4_12 602 3903 1236.01
5_12 601 2665 1234.23
7_11 605 2758 1233.38
7_12 604 2819 1233.00

advantages include scalability, invariance to feature normalization and robustness to
redundant features, since it selects the feature which brings more gain to the model
in each step of tree growing. Such characteristics are making XGBoost very popular:
it is used by big companies like Google and most of the winning solutions of Kaggle
competitions are based on XGBoost.

It is important to highlight that the hyper-parameter optimization for both clas-
sifiers was done via grid search along with 5-fold Cross-validation. The ranges used
to optimize each hyper-parameter is shown on Table 4.6. Once performing grid search
using just one grid for XGBoost would be infeasible due to large number of hyper-
parameters (indeed one would have to build 4 × 3 × 5 × 3 × 3 × 5 × 5 = 2700 entire
models besides the last one which is built using 5-fold Cross-validation in each of the
5000 iterations), 5 grids were used: Max Tree Depth and Min Child Weight ; Min Loss
Reduction γ; Random Subsampling and Features Random Subsampling ; Regularizer λ;
Max Delta Step. After optimizing these hyper-parameters, they were used to build a
model in 5000 iterations. A 5-fold Cross-validation is applied to assess the accuracy of
the model during its training, which is stopped when there is no loss reduction above a
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threshold ε and, thereby, the best number of iterations is determined. Unless otherwise
stated throughout Sections 4.2 and 4.3, this process is employed in all experiments.

Table 4.6: Hyperparameters optimized in SVM and XGBoost.

Classifier Hyperparameter Range

Num. of
Values
from
Range

Increment

SVM Soft-margin (C) 1× 10−4 to 1× 101 6 Log.
SVM Kernel Gamma (γ) 1× 10−2 to 1× 105 8 Log.
XGBoost Max Tree Depth 2 to 8 4 Linear

XGBoost Min Child Weight
to Split 1 to 5 3 Linear

XGBoost
Min Loss
Reduction
to Split (γ)

{0} ∪ {1× 10−2 to 1× 101} 5 Log.

XGBoost Random
Subsamplig 0.7 to 0.9 3 Linear

XGBoost Features Random
Subsampling 0.7 to 0.9 3 Linear

XGBoost Regularizer (λ) {1× 10−5}∪
{1× 10−2 to 1× 101} 5 Log.

XGBoost Max Delta Step 0 to 8 5 Linear
XGBoost Num of Iterations 1 to 5000 5000 Linear

Since the first dataset was originally released for a contest, a specific training
subset is provided to train a classifier that should then be able to annotate the test
samples in order to generate a map which is evaluated.

For the Potsdam ISPRS, we performed a validation protocol similar to the 5-
fold cross-validation, except that each set is composed exclusively of samples from just
one of the images. The validation was done in this way because we need to annotate
samples from an unique test image in order to build an entire map to be assessed at
the end of process.

4.1.4 Statistical Validation

Once the grss_dfc_2014 dataset provides a specific training subset which is meant
to be completely used to train the classifier, there is no randomness to evaluate the
statistic significance of the results. Thus, after generating the land cover map based
on the predictions of the classifier, each of the metrics described on Subsection 4.1.5 is
pixel-wisely calculated and reported.
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For the ISPRS Potsdam dataset, the sample mean is calculated for all metrics
from Subsection 4.1.5 which are in turn computed individually and pixel-wisely for
each of the five maps generated. Then, the sample standard deviation is calculated for
each metric and used to compute the confidence intervals. Once the entire sample is
composed of just five measurements, the confidence intervals are calculated using the
Student’s t-distribution with 4 d.f. and 95% of confidence due to its suitability for
small samples.

4.1.5 Metrics

The results achieved are reported in terms of overall accuracy (Ovr. Acc.), average
accuracy (Avg. Acc.) and Cohen’s Kappa Index (κ), which are computed over a
confusion matrix built from the classification results.

A confusion matrix M is a square table that presents in a organized way four
distinct types of counts for each class Ct (t = 1, . . . , T ) considered in the domain of the
classification task: the number of samples that were correctly recognized as belonging
to a class Ct (true positives - TP); the number of samples correctly recognized as not
belonging to Ct (true negatives - TN ); the number of samples which actually belong
to Ct but were incorrectly classified into another class Cu, u 6= t (false negatives - FN );
and the number of samples from other classes which were assigned to Ct (false positives
- FP). Such counts, shown in Table 4.7 are essential to evaluate the correctness of the
classification result as many metrics are computed from them [Sokolova and Lapalme,
2009].

Table 4.7: Example of a multi-class confusion matrix M.

Predicted
Classes C1 C2 · · · CT

Actual

C1 m1,1 m1,2 · · · m1,T

C2 m2,1 m2,2 · · · m2,T
...

...
... . . . ...

CT mT,1 mT,1 · · · mT,T

Given the generic confusion matrix M shown in Table 4.7, the four counts afore-
mentioned can be obtained for the class t via the following sums:

TPt = mt,t (4.5)
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FNt =
∑

u6=t, u=1,...,T

mt,u (4.6)

FPt =
∑

u6=t, u=1,...,T

mu,t (4.7)

TNt =
∑

u,v=1,...,T

mu,v − TPt − FNt − FPt (4.8)

From the counts expressed by Equations 4.5, 4.6, 4.7 and 4.8, one can com-
pute many metrics in order to assess distinct aspects of the classification performed,
including those which were chosen for this work.

The overall accuracy is a general and widely used metric that gives the overall
effectiveness of a classifier by measuring the inter-rater agreement regardless class im-
balance or chance of random agreement, i.e., it evaluates the agreement between the
labels only correctly predicted by the classifier and the ground truth annotations with
relation to all predictions made without taking into account any class information or
the likelihood of agreeing at random. The overall accuracy is expressed as:

OverallAccuracy =
TP + TN

TP + FN + FP + TN
(4.9)

Notice that as the overall accuracy does not considers class information, Equa-
tion 4.9 is not expressed using class indices and, thus, it is simply the sum of the main
diagonal of the confusion matrix M over the sum of all entries of M [Sokolova and
Lapalme, 2009].

However, in a scenario where there is a strong imbalance among the number of
samples of each class, the overall accuracy is not very informative. This is because even
if the classifier only predicts correctly the samples from one class and that is the larger
class, Equation 4.9 will indicate a good overall effectiveness while the classifier learned
just how to identify one class, what is almost nothing for a classification problem.

For this reason, average accuracy was also used in this work. The average accuracy
is the sum of accuracies calculated individually for each of the T classes divided by the
number of classes:

AverageAccuracy =

∑T
t=1

TPt+TNt

TPt+FNt+FPt+TNt

T
(4.10)

Although the average accuracy can cope with the class imbalance, it does not
take into account the likelihood of the prediction of the classifier is made at random,
i.e., not based on any latent process that maps the input features to the class label.
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Therefore, Cohen’s Kappa index (represented by the Greek letter κ and also known as
Kappa statistic or just Kappa index) is taken as reference to compare the effectiveness
of the methods, since it is a statistic that measures the level of agreement between the
predictions of the classifier and the ground truth annotations taking into account the
likelihood that they agree by chance [Cohen, 1960]. Kappa statistic can be calculated
as:

κ̂ =
pa − pe
1− pe

(4.11)

where

pa =

∑T
t=1mt,t

l
(4.12)

pe =
T∑
t=1

∑T
u=1mt,u

l
×

∑T
u=1mu,t

l
(4.13)

and l is the total number of ratings or predictions. As any correlation measure, kappa
ranges from -1 to 1. A possible understanding on how good the value of the Kappa
statistic is can be seen in Table 4.8, which was proposed by Landis and Koch [1977].
The most relevant and widely accepted thresholds are that 0 represents a random
classification, between 0.6 and 0.8 is a good result and above 0.8 stands for an almost
perfect classification.

Table 4.8: Possible reference for Kappa statistic proposed by Landis and Koch [1977].

Value of Kappa Statistic Strength of Agreement
-1.00 ≤ κ < 0.00 Poor
0.00 ≤ κ ≤ 0.20 Slight
0.20 < κ ≤ 0.40 Fair
0.40 < κ ≤ 0.60 Moderate
0.60 < κ ≤ 0.80 Substantial
0.80 < κ ≤ 1.00 Almost Perfect

4.1.6 Baselines

We have chosen Vargas et al. [2015] descriptor as the baseline, which is a representation
for superpixels that encode context and is based on BIC color descriptor. In that work,
each superpixel of the image is described by a histogram of visual elements, using
the mid-level representation generated by the Bag of Visual Words (BoVW). Then,
contextual information is aggregated by concatenating the superpixel description with
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a combination of the histograms of its neighbors. It appears in Sections 4.2 and 4.3
under the name Vargas.

Additionally, low-level descriptors computed over the superpixels are used as a
baseline which appears in Sections 4.2 and 4.3 under the name No-ctxt.

4.2 Results on grss_dfc_2014 Dataset

In this section, the experiments carried out and the results achieved on the
grss_dfc_2014 dataset by each of the three proposed methods are presented. A brief
discussion follows the description of all experiments.

4.2.1 Results of the Experiments with the Star Descriptor

Initially, we have performed experiments to find the best configuration of Star and the
baselines. Two global color descriptors were selected according to dos Santos et al.
[2010] using a trade-off criteria between dimensionality (and therefore efficiency) and
accuracy: Border/Interior Pixel Classification (BIC) and Color Coherence Vectors
(CCV). Although any kind of characteristic could be used instead of color, it usually
achieves better accuracy in Remote Sensing [dos Santos et al., 2010]. Both global low-
level and mid-level representations were evaluated. For the mid-level representation,
the number of visual words in the codebook and the size of the cell used for grid
sampling were initially fixed at 128 and 5x5, respectively.

Since Star also requires an edge descriptor, besides the color descriptors we se-
lected two texture descriptors because they are able to capture sharp tone changes
which are typical of objects’ borders [Silva et al., 2013] as well as providing com-
plementary information: Quantized Compound Change Histogram (QCCH) and the
descriptor proposed by Unser [1986], which we called just Unser.

All three composition operations were evaluated along with both global low-
level and mid-level representations. The best configurations with respect to the edge
composition operation for Star, vertex composition operation for Vargas and vertex
descriptor for No-ctxt are presented in Tables 4.9, 4.10, 4.11 and 4.12.

The first thing to notice is the best configurations of each method. Star performed
better using BIC, QCCH, max and sum pooling as vertex descriptor, edge descriptor,
vertex composition operation and edge composition operation, respectively, for low-
level representation and XGBoost, achieving up to 0.747 in Kappa statistic which
could be regarded as substantial according to the reference presented in Table 4.8.
The good effectiveness was repeated also for mid-level representation and both SVM
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Table 4.9: Best configurations of Star and baselines using SVM with RBF kernel and
mid-level representation.

Method Vertex Edge Vertex Edge Ovr. Acc. Avg. Acc. KappaDesc. Desc. Comp. Op. Comp. Op.

Star

BIC

BIC
Avg Max 73,22% 92,35% 0,632
Max Max 73,57% 92,45% 0,635
Sum Max 73,22% 92,35% 0,632

CCV
Avg Max 73,62% 92,46% 0,637
Max Max 74,07% 92,59% 0,642
Sum Max 73,62% 92,46% 0,637

Unser
Avg Sum 74,51% 92,72% 0,645
Max Max 75,49% 93,00% 0,658
Sum Sum 74,51% 92,72% 0,645

QCCH
Avg Sum 78,98% 93,99% 0,703
Max Sum 80,86% 94,53% 0,727
Sum Sum 78,98% 93,99% 0,703

CCV

BIC
Avg Max 68,62% 91,03% 0,574
Max Max 71,42% 91,83% 0,606
Sum Max 68,62% 91,03% 0,574

CCV
Avg Max 69,18% 91,19% 0,581
Max Sum 71,48% 91,85% 0,607
Sum Max 69,18% 91,19% 0,581

Unser
Avg Sum 72,02% 92,01% 0,614
Max Sum 72,52% 92,15% 0,618
Sum Sum 72,02% 92,01% 0,614

QCCH
Avg Sum 75,58% 93,02% 0,657
Max Sum 75,78% 93,08% 0,661
Sum Sum 75,58% 93,02% 0,657

Vargas BIC - Max - 75,36% 92,96% 0,660
CCV - Max - 72,99% 92,28% 0,624

No-ctxt BIC - - - 71,47% 91,85% 0,609
CCV - - - 66,61% 90,46% 0,544

and XGBoost. The only exception was the combination of low-level representation
and SVM that achieved better results with Unser as edge descriptor instead of QCCH.
The best configuration of Vargas includes BIC and sum pooling as vertex descriptor
and composition operation combined with low-level representation and SVM, achieving
up to 0.702 in Kappa. In general, all configurations of Vargas using BIC performed
better and sum pooling produced better results along with low-level representations
while max pooling fitted better to the mid-level ones. The best result of No-ctxt was
0.641 of Kappa, produced by using BIC, low-level representation and XGBoost. BIC
was also the best descriptor for No-ctxt, that achieved better results using low-level
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Table 4.10: Best configurations of Star and baselines using SVM with RBF kernel and
low-level descriptors.

Method Vertex Edge Vertex Edge Ovr. Acc. Avg. Acc. KappaDesc. Desc. Comp. Op. Comp. Op.

Star

BIC

BIC
Avg Max 76,90% 93,40% 0,677
Max Max 77,88% 93,68% 0,686
Sum Max 76,90% 93,40% 0,677

CCV
Avg Sum 73,61% 92,46% 0,634
Max Sum 74,11% 92,60% 0,640
Sum Sum 73,61% 92,46% 0,634

Unser
Avg Sum 80,11% 94,32% 0,714
Max Sum 80,59% 94,45% 0,722
Sum Sum 80,11% 94,32% 0,714

QCCH
Avg Sum 75,71% 93,06% 0,655
Max Sum 74,89% 92,82% 0,643
Sum Sum 75,71% 93,06% 0,655

CCV

BIC
Avg Max 67,34% 90,67% 0,552
Max Sum 71,55% 91,87% 0,604
Sum Max 67,34% 90,67% 0,552

CCV
Avg Max 68,82% 91,09% 0,573
Max Max 71,66% 91,90% 0,609
Sum Max 68,82% 91,09% 0,573

Unser
Avg Max 74,81% 92,80% 0,648
Max Sum 75,00% 92,86% 0,647
Sum Max 74,81% 92,80% 0,648

QCCH
Avg Sum 78,50% 93,86% 0,696
Max Sum 77,77% 93,65% 0,687
Sum Sum 78,50% 93,86% 0,696

Vargas BIC - Sum - 78,83% 93,95% 0,702
CCV - Max - 75,16% 92,90% 0,645

No-ctxt BIC - - - 73,49% 92,43% 0,631
CCV - - - 68,99% 91,14% 0,573

representations.

Comparing the four tables ( 4.9, 4.10, 4.11 and 4.12), one can easily notice that
BIC was the best vertex descriptor, what complies with the results presented by dos
Santos et al. [2010] that compared BIC to several other color descriptors. The same
authors showed that texture descriptors are not as effective as the color-based ones in
RSIs classification and that is the reason to use them only as edge and not as vertex
descriptors. Nevertheless, one can see from the aforementioned tables that texture
descriptors are able to leverage the discriminative power of the color ones by providing
complementary information: when used as edge descriptors, QCCH was better in 75%
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Table 4.11: Best configurations of Star and baselines using XGBoost and mid-level
representation.

Method Vertex Edge Vertex Edge Ovr. Acc. Avg. Acc. KappaDesc. Desc. Comp. Op. Comp. Op.

Star

BIC

BIC
Avg Max 75,78% 93,08% 0,661
Max Max 76,12% 93,18% 0,665
Sum Max 75,78% 93,08% 0,661

CCV
Avg Max 74,87% 92,82% 0,651
Max Max 74,92% 92,83% 0,650
Sum Max 74,87% 92,82% 0,651

Unser
Avg Max 79,66% 94,19% 0,708
Max Sum 80,09% 94,31% 0,713
Sum Max 79,66% 94,19% 0,708

QCCH
Avg Sum 80,62% 94,46% 0,722
Max Sum 80,82% 94,52% 0,722
Sum Sum 80,62% 94,46% 0,722

CCV

BIC
Avg Sum 74,23% 92,64% 0,641
Max Sum 75,04% 92,87% 0,650
Sum Sum 74,23% 92,64% 0,641

CCV
Avg Max 72,88% 92,25% 0,623
Max Max 75,12% 92,89% 0,650
Sum Max 72,88% 92,25% 0,623

Unser
Avg Sum 77,01% 93,43% 0,671
Max Sum 78,35% 93,81% 0,688
Sum Sum 77,01% 93,43% 0,671

QCCH
Avg Sum 75,82% 93,09% 0,658
Max Max 77,22% 93,49% 0,673
Sum Sum 75,82% 93,09% 0,658

Vargas BIC - Max - 73,88% 92,54% 0,632
CCV - Max - 71,05% 91,73% 0,591

No-ctxt BIC - - - 71,73% 91,92% 0,608
CCV - - - 69,09% 91,17% 0,568

of the times while Unser produced higher Kappa statistics in the other 25%. With
respect to the vertex composition operation, max pooling is often the best option (about
80% of the times), even though sum pooling sometimes outputs higher accuracies
mainly for low-level representations. For the edge composition operation, there is
a balance between max and sum pooling with respect to the type of representation
(mid/low-level), but color descriptors are prone to yield better results when combined
via max pooling while the texture gives good maps using sum pooling.

Although not exploited by Vargas et al. [2015], using color descriptors extracted
globally from each superpixel may be useful to generate even better land cover maps. In
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Table 4.12: Best configurations of Star and baselines using XGBoost and low-level
descriptors.

Method Vertex Edge Vertex Edge Ovr. Acc. Avg. Acc. KappaDesc. Desc. Comp. Op. Comp. Op.

Star

BIC

BIC
Avg Max 75,36% 92,96% 0,654
Max Max 77,48% 93,56% 0,680
Sum Max 75,36% 92,96% 0,654

CCV
Avg Max 75,24% 92,93% 0,653
Max Max 75,82% 93,09% 0,661
Sum Max 75,24% 92,93% 0,653

Unser
Avg Sum 82,08% 94,88% 0,738
Max Sum 82,02% 94,86% 0,737
Sum Sum 82,08% 94,88% 0,738

QCCH
Avg Sum 82,53% 95,01% 0,744
Max Sum 82,67% 95,05% 0,747
Sum Sum 82,53% 95,01% 0,744

CCV

BIC
Avg Max 75,98% 93,14% 0,660
Max Max 75,95% 93,13% 0,660
Sum Max 75,98% 93,14% 0,660

CCV
Avg Sum 72,54% 92,15% 0,619
Max Max 73,62% 92,46% 0,632
Sum Sum 72,54% 92,15% 0,619

Unser
Avg Max 81,79% 94,80% 0,733
Max Max 81,96% 94,85% 0,735
Sum Max 81,79% 94,80% 0,733

QCCH
Avg Sum 81,61% 94,75% 0,734
Max Max 82,34% 94,95% 0,741
Sum Sum 81,61% 94,75% 0,734

Vargas BIC - Sum - 76,44% 93,27% 0,667
CCV - Max - 76,07% 93,16% 0,658

No-ctxt BIC - - - 74,37% 92,68% 0,641
CCV - - - 71,12% 91,75% 0,599

the experiments reported in Tables 4.9, 4.10, 4.11 and 4.12, such approach often output
higher values for each metric used in assessment, except some specific cases. That is
true mainly for the XGBoost classifier and for the baselines taken into account. Also
concerning the classifier, XGBoost performed better than SVM with RBF kernel most
of the times and the main reason is that XGBoost performs a kind of feature selection
during the tree growing process, when the training algorithm selects the feature that
produces more gain to the model to grow the tree in each step of the current iteration.
Moreover, once each level of the trees is a split over a specific feature, every tree
grown represents a decision based on a relationship among many features. This allows
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for selecting the best features or sets of them from a vector that contains a lot of
redundancy and noise.

Also concerning these four tables, it is important to notice that the sum and aver-
age pooling produced the same results when used as both vertex and edge composition
operations. This is due to their similar nature: they are distinct only by a scale factor.
Once XGBoost is invariant to scale transformations and SVM with RBF kernel also
may be invariant under some specific constraints [Abe, 2003], the results were exactly
the same. Therefore, we have chosen the sum rather than the average pooling as a best
result once it saves the division operation while producing exactly the same accuracy.
Nevertheless, it is worth to highlight that it is not true for all classifier nor all kernel
used with SVM.

Another important aspect to find out the best settings for Star is to determine
the best number of visual words in the codebook used to generate the mid-level repre-
sentation for the vertices. Even though it is often assumed that the more the number
of visual words is, the higher will be the accuracy achieved, it is not true in this case.
It turns out that a large codebook will reduce the likelihood of two or more of the same
visual word being within the same superpixel once it is a small area as compared to
the entire image. Consequently, sparse histograms which are very similar to each other
will be generated and therefore low accuracy is expected for both classifiers.

To evaluate the behavior of the methods when the size of the codebook changes,
the best configurations of Star, Vargas and No-ctxt in Tables 4.9 and 4.11 were used
to generate maps using 64, 256 and 512 visual words besides the 128 initial ones.
The experiments carried out confirmed the hypothesis stated above and the results
are presented in Figures 4.5 (namely, Star using BIC and max pooling for the vertex
descriptor and QCCH and sum pooling for the edge one, Vargas using BIC and max
pooling and No-ctxt using BIC) and 4.6 (namely, Star using BIC, max pooling, QCCH
and sum pooling, Vargas using BIC and sum pooling and No-ctxt with BIC). From
the charts one can see that the best number of visual words is 128 for all methods
using both classifiers, except No-ctxt with XGBoost that was slightly better with a
codebook composed of 256 visual words. These numbers are much smaller than the
size of codebooks traditionally found in literature, often above 500 visual words.

Once a region-based approach is employed on this work, it is essential to as-
sess the impact of varying the number of superpixels on the results. It is even more
important to do this analysis due to the nature of superpixels which are much more
homogeneous in shape and size than traditional regions, what results in some objects
being well delineated by just one superpixel while others are represented by many of
them, depending on the scale of the objects depicted on the image. To do such analysis,
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Figure 4.5: Impact of changing the number of visual words for the mid-level represen-
tations with SVM.

Figure 4.6: Impact of changing the number of visual words for the mid-level represen-
tations with XGBoost.
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the best configurations for Star, Vargas and No-ctxt from Table 4.10 and the chart on
Figure 4.5 and the best configurations from Table 4.12 and Figure 4.6 were used to
generate maps now using also 30000 and 45000 as the parameter number of superpixels
for SLICO. Namely, the configurations used with SVM were the Star using mid-level
representation, BIC with max pooling for vertex descriptor and QCCH with sum pool-
ing for the edge one, Vargas using low-level representation with BIC and sum pooling
and No-ctxt using low-level representation with BIC. For XGBoost, the configurations
were also Star with BIC, max pooling, QCCH and sum pooling, Vargas with BIC and
sum pooling and No-ctxt with BIC, but all of them using mid-level representation.

It is expected that small numbers as the parameter result in large superpixels
often containing more than one object while large values will generate very small su-
perpixels and, thus, most of the objects will be oversegmented. The former case implies
that the low-level descriptors chosen will capture visual cues from a mixture of objects
what can be considered a kind of noise that impairs the classifier. On the other hand,
the second case will result in superpixels with little information to be extracted by the
descriptors and, therefore, poor representations. Thus, an intermediate value is sup-
posed to yield the best results. The results of the experiments are shown in Figures 4.7
and 4.8.

Figure 4.7: Impact of changing the number of superpixels used to segment the test
image in the results of the best configurations of the methods with SVM.
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Figure 4.8: Impact of changing the number of superpixels used to segment the test
image in the results of the best configurations of the methods with XGBoost.

From these charts it is possible to see that Star performed better with the number
of superpixels of SLICO set to 45000 for the test image, even though the difference from
37500 superpixels is very small (indeed the difference is an improvement of just 0.002
and 0.001 in terms of Kappa using SVM and XGBoost, respectively). All the baselines
achieved their top results using either 30000 or 37500 for the parameter, showing that
the usage of an edge descriptor makes Star more robust to variations like those on the
segmentation.

After evaluating many aspects of the proposed method and the baselines, a ques-
tion may be raised: Does the usage of context benefit all kinds of objects in RSIs?
One may wonder that the answer is obviously no, because even though every single
object exists in a context, the upper perspective of RSIs is not favorable to capture the
context of all objects. For instance, although a tree in the middle of a dense forest is in
a context, its visual appearance is very similar to all trees next to it, even taking their
context into account. Thereby, in order to address this question, the results for the
best configurations found in the charts from Figures 4.7 (namely: Star using mid-level
representation, BIC, max pooling, QCCH, sum pooling and 45000 superpixels; Vargas
using low-level representation, BIC, sum pooling and 37500 superpixels; No-ctxt us-
ing low-level representation, BIC and 37500 superpixels) and 4.8 (namely: Star using
low-level representation, BIC, max pooling, QCCH, sum pooling and 45000 superpix-
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els; Vargas using low-level representation, BIC, sum pooling and 30000 superpixels;
No-ctxt using low-level representation, BIC and 30000 superpixels) were calculated for
each class individually and reported on Tables 4.13 and 4.14, respectively.

Table 4.13: Per class analysis in terms of Kappa of best results using SVM.

Method Overall
Kappa

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Road Trees Red Grey Concrete Veget. Bare
Roof Roof Roof Soil

Star 0,729 0,738 0,837 0,817 0,573 0,668 0,758 0,819
Vargas 0,702 0,717 0,724 0,888 0,727 0,483 0,596 0,927
No-ctxt 0,631 0,677 0,734 0,729 0,561 0,472 0,571 0,693

Table 4.14: Per class analysis in terms of Kappa of best results using XGBoost.

Method Overall
Kappa

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Road Trees Red Grey Concrete Veget. Bare
Roof Roof Roof Soil

Star 0,751 0,801 0,826 0,809 0,649 0,662 0,657 0,795
Vargas 0,672 0,718 0,755 0,856 0,644 0,437 0,490 0,846
No-ctxt 0,660 0,713 0,741 0,777 0,539 0,515 0,590 0,731

Looking at the results presented on these tables, it is easy to see that the usage
of context improves classification results for most of the classes, except few specific
situations: taking the results from the contextual methods using either SVM or XG-
Boost that achieved Kappa statistic worse than No-ctxt or improvements smaller than
1.00% (relative), we have the results of Vargas on classes Road, Trees, Concrete Roof
and Vegetation. One possible reason for this decreasing in the results is that such
classes may be hardly distinguished by color or even context. Trees and Vegetation
often share similar color and the same context in urban scenes: some vegetation, other
trees, a roof and a sidewalk. Classes like Road and Concrete Roof may be mistaken for
each other due to a radiometric correction side effect that can be seen in Figure 4.9.
In such situations, the edge descriptor of Star was helpful to confer robustness in the
classification. Nevertheless, it is essential to highlight that the edge descriptor is not
very beneficial for all classes: for Red Roof, Grey Roof and Bare Soil, which easily
distinguished even by just color, Vargas achieved higher values for Kappa statistic,
though Star also achieved results better than No-ctxt.
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(a) Road (left) and Concrete Roof (right)

(b) Trees (left) and Vegetation (right)

Figure 4.9: Classes that may be mistaken for each other when using just color and
context.

4.2.2 Results of the Experiments with the Visual Words

Co-occurrence Matrix

The purpose of the initial experiments on VWCM is to find its best configuration with
respect to the parameters that may be adjusted. Likewise the initial experiment of
Star, the same global color and texture descriptors were selected from the work of
dos Santos et al. [2010]: BIC, CCV, Unser and QCCH. In order to find out which
one is the best descriptor to generate the visual words that will be counted, the other
parameters were fixed: the grid sampling is performed using cells of 5×5 pixels and the
codebook is composed of 16 visual words. Although using just 16 visual words may
seem insufficient, it is important to remember that the final VWCM descriptor using a
codebook of p visual words is going to be p(p + 1)/2-dimensional, or 136-dimensional
in this case. Moreover, the more the size of the codebook increases the more sparse
the co-occurrences matrix is going to be as well as the VWCM descriptors, given
that the area considered to count the co-occurrences remains the same. Additionally,
a concatenation of VWCM with the BIC descriptor extracted from each superpixel
was evaluated. The results using SVM with RBF kernel and XGBoost classifiers are
reported in Table 4.15.
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Table 4.15: Finding the best combination of descriptors for VWCM using cells of 5× 5
pixels and codebooks of 16 visual words.

Classifier Descriptors
Used

Region
Descriptor

Descriptor
to Count

Co-occurrences
Ovr. Acc. Avg. Acc. Kappa

SVM-RBF Both BIC BIC 68,58% 91,02% 0,568
SVM-RBF Both BIC CCV 67,44% 90,70% 0,553
SVM-RBF Both BIC Unser 67,31% 90,66% 0,547
SVM-RBF Both BIC QCCH 46,66% 84,76% 0,264
SVM-RBF Co-occur. - BIC 68,58% 91,02% 0,568
SVM-RBF Co-occur. - CCV 66,96% 90,56% 0,547
SVM-RBF Co-occur. - Unser 64,07% 89,73% 0,504
SVM-RBF Co-occur. - QCCH 46,48% 84,71% 0,262
XGBoost Both BIC BIC 75,31% 92,94% 0,652
XGBoost Both BIC CCV 74,36% 92,67% 0,640
XGBoost Both BIC Unser 78,77% 93,93% 0,696
XGBoost Both BIC QCCH 78,89% 93,97% 0,701
XGBoost Co-occur. - BIC 70,73% 91,64% 0,594
XGBoost Co-occur. - CCV 66,78% 90,51% 0,540
XGBoost Co-occur. - Unser 61,55% 89,01% 0,478
XGBoost Co-occur. - QCCH 46,74% 84,78% 0,278

The first point to highlight from Table 4.15 is the top result achieved for each
classifier: VWCM using QCCH to compute the visual words and concatenated with
BIC descriptor for XGBoost and VWCM using BIC to compose the codebook but
without concatenating the region descriptor for the SVM classifier. Although concate-
nating the BIC descriptor computed from the superpixel itself has improved all other
results except that of the own BIC also being used to compute visual words and using
SVM as classifier, the version without concatenation was chosen as the best because
it is 128-dimensions smaller and, therefore, faster to extract and also makes the model
training faster.

Comparing the same settings classified by SVM with RBF kernel to those clas-
sified by XGBoost, only two of eight, i.e., 25% of them achieved higher values for
the metrics using SVM. These results ratify the effectiveness of XGBoost to leverage
features by selecting the best ones to grow trees.

Since the best combinations of descriptors were selected, it is essential to assess
the behavior of the proposed method with relation to the other parameters. Thus, the
two top settings from Table 4.15 were used to generate new land-cover maps, but now
varying the size of the cells used for grid sampling. Each cell measures q × q pixels,
and q assumed the values 3, 5, 7, and 9 for this experiment. The results can be seen
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in Figure 4.10.

Figure 4.10: Looking for the best size of cells used for grid sampling.

One may observe from the chart in Figure 4.10 that the two best configurations
have opposite behaviors: as the size of the cells of the grid increases, VWCM with BIC
and SVM achieves a higher Kappa statistic while VCWM with QCCH, concatenated
with BIC and using XGBoost has the same metric decreased. Of course, such reduction
in effectiveness is not due to the BIC descriptor concatenated with VWCM, since it is
not affected by the variation on the cell size. The decreasing is more likely explained
by the nature of the low-level descriptor used. On one hand, QCCH is a histogram
of changes computed for each pixel and its 8-neighbors. On the other hand, BIC and
CCV are histograms computed taking into account each pixel and Unser is a set of
measurements over two histograms (sum and difference) computed concerning each
pair of pixels separated by a specific displacement. Therefore, for such a small area
like a grid cell of at most 9×9 pixels which is likely to be homogeneous, there is a great
probability that QCCH only adds another count in the same bin of the histogram for
three main reasons: (1) the pixels are right next to each other and the area over which
the change is computed is large (3 × 3 pixels) if compared to the area of the cell (at
most 9 × 9 pixels), (2) there is intersection on the neighborhoods of adjacent pixels
and (3) the 256 possible values for the change are quantized into just 40 bins. These
reasons and the other results achieved by VWCM using QCCH shows that it is not a



4.2. Results on grss_dfc_2014 Dataset 55

good choice for low-level descriptor to VWCM.
The next parameter to be evaluated is the number of visual words in the codebook.

To assess the impact of varying this parameter, the best configurations (VWCM with
QCCH using cells of 3 × 3 pixels and concatenated with BIC, and VWCM with BIC
using cells of 9×9) were taken from the previous experiment and used to generate new
maps using 8, 32 and 64 visual words, besides the initial 16. The results are reported
in Figure 4.11.

Figure 4.11: Impact of changing the number of visual words in the codebook of VWCM.

Similarly to the experiments using Star, it was expected that an intermediate
number of visual words would yield the best value for the Kappa statistics. For VWCM
computed from QCCH, concatenated with BIC and using XGBoost, this number was
16. For the other configuration it is a higher value. Nevertheless, once the dimension-
ality of the final descriptor grows quadratically on the number of visual words in the
codebook and, consequently, the time to compute them and train the classifier becomes
prohibitive, we did not used more than 64 visual words. Indeed using 128 visual words
would result in descriptor of 128(129)/2 = 8256 dimensions.

Another important aspect to evaluate is the impact of the number and, conse-
quently, the size of superpixels on the quality of the maps generated at the end of
the process. In order to carry out such evaluation, the best configurations found in
the previous experiment (VWCM with QCCH using 16 visual words and concatenated
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with BIC and VWCM with BIC using 64 visual words) were used but now setting
the number of superpixels in which the test image is segmented to 30000 and 45000,
besides the initial 37500. The results are depicted on the chart in Figure 4.12.

Figure 4.12: Impact of changing the number of superpixels used to segment the test
image in the results of the best configurations of VWCM.

Similarly to the analysis done for the expected behavior of Star on varying the
number of superpixels on Subsection 4.2.1, it was expected that VWCM achieves the
top results using an intermediate value for this parameter. Indeed both configurations
reached the highest value of Kappa statistics when the number of superpixels was set
to 37500.

Once VWCM is based on GLCM, which has often been replaced since the 1970’s
by fourteen textural features (or a subset of them) computed from the matrix in order to
make feature extraction and model training faster (widely known as Haralick features,
proposed by Haralick et al. [1973]), an essential question raises: Could the same features
be successfully applied to VWCM? To answer this question, a new experiment was
performed replacing the vectorized representation of VWCM by thirteen of the fourteen
Haralick features computed from the matrix of VWCM. The last feature (maximum
correlation coefficient) was left out because it is often considered to be unstable. This
comparison is presented in Table 4.16.

From those results it is possible to notice that using the Haralick features resulted
in a large decrease in the results when combined with SVM. Although the 13 features
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Table 4.16: Comparison of the vectorized representation to haralick features for the
best settings of VWCM.

Classi-
fier

Desc.
Used

Region
Desc.

Desc. to
Count
Co-occ.

Cell
Size

Code-
book
Size

Use
Haralick
Feats.?

Ovr.
Acc.

Avg.
Acc. Kappa

SVM Co-occ. - BIC 9 64 No 72,38% 92,11% 0,616
SVM Co-occ. - BIC 9 64 Yes 28,35% 79,53% 0,095
XGB Both BIC QCCH 3 16 No 79,90% 94,26% 0,713
XGB Both BIC QCCH 3 16 Yes 78,78% 93,94% 0,698

are not as discriminative as the entire matrix, XGBoost was able to compensate for this
loss. Therefore, it is worth to replace the matrix representation when combined with a
better classifier, once the training time is substantially reduced by using 13-dimensional
feature vectors instead of 136 (when the codebook has only 16 codewords).

Finally, the results of the best settings of VWCM are reported class by class in
Table 4.17 along with the baseline No-ctxt using BIC with low-level representation for
comparison. Contrasting the results of VWCM with SVM to those of No-ctxt also
with SVM, it is possible to find out that only for classes Vegetation and Bare Soil the
first method achieved improvements over the baseline. On the other hand, the same
comparison between VWCM concatenated with BIC and No-ctxt both using XGBoost,
results on VWCM being much better for classes that are not easily distinguished only
by color descriptors. Indeed, the relative improvement of Kappa statistic for the classes
Trees, Concrete Roof and Vegetation was 21, 24%, 28, 04% and 19, 62%, respectively.
Only class Road, which is very similar in terms of color to the class Concrete Roof,
achieved a small improvement (2, 82%). Nevertheless, for the classes Red Roof and
Grey Roof, there was a relative loss of 2, 17% and 0, 46%. Taking into account that
the BIC concatenated to VWCM is the same representation which is referred to as
No-ctxt with BIC, one may conclude that using semantic context encoded by VWCM
is beneficial when combined with a visual descriptor, but it is not enough to replace it.

4.2.3 Results of the Experiments with Many Context Levels

Descriptor

The first experiment with MCL is an analysis of the contribution of the layers to the
final result. To assess the importance of features from different layers, we trained
the classifiers using all possible concatenations of the three layers of MCL. We also
evaluated the same three layers (first, fifth and last fully connected) from the method
proposed by Mostajabi et al. [2015] using AlexNet in order to have a baseline for



58 Chapter 4. Experimental Analysis

Table 4.17: Analysis of the best settings of VWCM detailed per class and reported in
terms of Kappa.

Method Overall
Kappa

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Road Trees Red
Roof

Grey
Roof

Concrete
Roof Veget. Bare

Soil
VWCM

+
SVM

0,616 0,6570 0,7031 0,727 0,5058 0,4502 0,6094 0,7474

Visual
+

VWCM
+

XGB

0,713 0,7328 0,8989 0,7602 0,5367 0,659 0,7055 0,7844

No-ctxt
Global
BIC
+

SVM

0,631 0,677 0,734 0,729 0,561 0,472 0,571 0,693

No-ctxt
Global
BIC
+

XGB

0,660 0,713 0,741 0,777 0,539 0,515 0,590 0,731

comparison. The method is referred to as Zoom-out throughout this subsection. The
results achieved are reported in Tables 4.18 and 4.19

Table 4.18: Layer importance analysis in grss_dfc_2014 dataset using SVM.

Layers Method Ovr. Acc. Avg. Acc. Kappa

Conv1 MCL 78,43% 93,84% 0,700
Zoom-out 3 layers 78,43% 93,84% 0,700

Conv5 MCL 69,08% 91,17% 0,569
Zoom-out 3 layers 77,33% 93,52% 0,674

Conv7 MCL 60,65% 88,76% 0,449
Zoom-out 3 layers 60,65% 88,76% 0,449

Conv1 + Conv5 MCL 81,71% 94,77% 0,741
Zoom-out 3 layers 84,29% 95,51% 0,775

Conv1 + Conv7 MCL 85,48% 95,85% 0,792
Zoom-out 3 layers 85,48% 95,85% 0,792

Conv5 + Conv7 MCL 66,59% 90,45% 0,532
Zoom-out 3 layers 79,19% 94,05% 0,698

Conv1 + Conv5 + Conv7 MCL 84,69% 95,63% 0,781
Zoom-out 3 layers 85,96% 95,99% 0,798
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Table 4.19: Layer importance analysis in grss_dfc_2014 dataset using XGBoost.

Layers Method Ovr. Acc. Avg. Acc. Kappa

Conv1 MCL 81,12% 94,61% 0,734
Zoom-out 3 layers 81,12% 94,61% 0,734

Conv5 MCL 67,73% 90,78% 0,546
Zoom-out 3 layers 74,10% 92,60% 0,639

Conv7 MCL 62,11% 89,18% 0,460
Zoom-out 3 layers 62,11% 89,18% 0,460

Conv1 + Conv5 MCL 84,88% 95,68% 0,783
Zoom-out 3 layers 86,42% 96,12% 0,803

Conv1 + Conv7 MCL 84,94% 95,70% 0,784
Zoom-out 3 layers 84,94% 95,70% 0,784

Conv5 + Conv7 MCL 71,44% 91,84% 0,591
Zoom-out 3 layers 79,06% 94,02% 0,694

Conv1 + Conv5 + Conv7 MCL 85,78% 95,94% 0,794
Zoom-out 3 layers 85,77% 95,93% 0,795

When the layers are evaluated individually, the same behavior is observed for
both classifiers and methods: the first layer has the greatest impact on the results and,
as the image patches are forwarded across the network, the features generated become
less discriminative. This is the opposite to what was expected, once the abstraction or
semantic level increases from initial to final layers. Actually, using just the first layer
we would be able to generate a good map, whose Kappa statistic may be regarded as
substantial.

It is worth to notice that the results for combinations that do not include the
layer Conv5 (the fifth one) are equal for both methods, once the Conv1 is the layer
responsible for extracting features from the superpixel itself and Conv7 from the entire
image patch and, thus, are the same for MCL and Zoom-out.

Observing the combinations using two layers, it is possible to notice a tendency
that the composition of the first and last layers is the best one, followed by Conv1 with
Conv5 and then by Conv5 with Conv7. Such behavior is expected, once Conv1 and
Conv7 are complementary in terms of abstraction level (low and high, respectively)
and contextual area (local and global, respectively).

With respect to the top values for Kappa statistics, there is no clear observable
pattern: MCL performed better using just Conv1 and Conv7 with SVM and using all
three layers with XGBoost while Zoom-out achieved the best results using all three
layers with SVM and using Conv1 and Conv5 with XGBoost. It is also important to
mention that Zoom-out using Conv1 and Conv5 with XGBoost is the only setting that
is considered almost perfect according to the reference from Table 4.8.
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The next aspect to assess is the impact of the segmentation on the maps gener-
ated. In order to do so, both methods using the three layers and additionally Zoom-out
using all layers (what resulted in feature vectors of 96+256+384+384+256+4096+

4096 = 9568 dimensions) were used to create new maps after setting the number of
superpixels parameter of SLICO to 30000 and 45000 besides the initial 37500 ones for
the test image. The results are presented in Figures 4.13 and 4.14.

Figure 4.13: Impact of changing the number of regions used to segment the test image
in the results of MCL and baselines with SVM.

Likewise Star and VWCM, the Kappa statistics is expected to reach the top
value after increasing the number of regions and then starts to drop. Observing the
results, one can easily see that only Zoom-out using all layers with SVM decreased the
results when the number of superpixels was increased. All other settings achieved the
top results using 45000 superpixels. Even though the optimal value for the parameter
might be larger, no values beyond 45000 were tried due to efficiency issues. It is worth
to highlight that using this number of superpixels, MCL and Zoom-out with 3 layers
achieved 0.812 and 0.818 with SVM, respectively, and Zoom-out with all layers and
XGBoost has reached 0.841 of Kappa statistics. All these values are regarded as almost
perfect according to Table 4.8.

After assessing all these aspects of MCL, it is important to detail the best results
by class in order to evaluate how the method behaves for different materials covering
the Earth surface. Tables 4.20 and 4.21 show the results of MCL, Zoom-out (using three
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Figure 4.14: Impact of changing the number of regions used to segment the test image
in the results of MCL and baselines with XGBoost.

and all layers) and the baseline No-ctxt for both SVM and XGBoost after employing
SLICO with the parameter related to the number of superpixels set to 45000, which
was in general the best configuration.

Table 4.20: Analysis of the results of MCL with SVM detailed per class and reported
in terms of Kappa.

Method Overall
Kappa

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Road Trees Red
Roof

Grey
Roof

Concrete
Roof Veget. Bare

Soil
MCL 0,812 0,816 0,864 0,898 0,767 0,688 0,837 0,876

Zoom-out
3 layers 0,818 0,818 0,879 0,918 0,786 0,655 0,864 0,886

Zoom-out
all layers 0,834 0,832 0,949 0,937 0,808 0,644 0,890 0,862

No-ctxt
Global
BIC
+

SVM

0,631 0,677 0,734 0,729 0,561 0,472 0,571 0,693

Comparing the results of MCL and Zoom-out to those of the baseline, one can see
that the most benefited classes were Grey Roof, Concrete Roof and Vegetation, where
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Table 4.21: Analysis of the results of MCL with XGBoost detailed per class and re-
ported in terms of Kappa.

Method Overall
Kappa

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Road Trees Red
Roof

Grey
Roof

Concrete
Roof Veget. Bare

Soil
MCL 0,799 0,822 0,860 0,917 0,731 0,653 0,787 0,835

Zoom-out
3 layers 0,803 0,819 0,868 0,925 0,739 0,649 0,816 0,837

Zoom-out
all layers 0,841 0,850 0,894 0,950 0,769 0,700 0,869 0,914

No-ctxt
Global
BIC
+

XGB

0,660 0,713 0,741 0,777 0,539 0,515 0,590 0,731

the two last classes has colors quite similar to Trees and Road classes, respectively.
The relative improvement of MCL over the baseline using SVM was of 36, 64%, 45, 83%
and 46, 67% for the three classes, respectively, while Zoom-out with just three layers
achieved 40, 03%, 38, 84% and 51, 40%, respectively. On the other hand, when using
XGBoost the increasing on the values of Kappa statistics was much smaller because
XGBoost is capable of selecting the best features and thus leverage feature vectors
that are less discriminative or even containing redundancy or noise, like those of No-
ctxt. Once MCL and Zoom-out are features learned from data, which are usually much
more discriminative, the work of XGBoost on selecting the best ones is softened. This
becomes clear when one compares the results of MCL, Zoom-out and No-ctxt using
XGBoost to those using SVM: No-ctxt performed much better with the former classifier
while MCL and Zoom-out using three layers achieved top results with SVM, indicating
that No-ctxt was benefited by the feature selection of XGBoost. In fact, the relative
improvements of MCL over the baseline with XGBoost for the same three classes were
35, 57%, 26, 87% and 33, 44%, respectively, and Zoom-out using three layers achieved
37, 05%, 26, 10% and 38, 36%, respectively.

4.2.4 Comparison of the Proposed Methods

To sum up the experiments carried out so far, this subsection is dedicated to compare
the proposed methods and the baselines. Table 4.22 presents the best results of each
proposed method and the baselines and Figure 4.15 shows the respective generated
maps.
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Table 4.22: Comparison among the best results of each proposed method and baselines.

Method Number of
Superpixels Classifier Ovr. Acc. Avg. Acc. Kappa

No-ctxt
Global
BIC

30000 XGB 75,97% 93,13% 0,660

Vargas
Global
BIC

Sum pooling

37500 SVM 78,83% 93,95% 0,702

Star
Global
BIC

Max pooling
QCCH

Sum pooling

45000 XGB 82,86% 95,10% 0,751

Region
+

VWCM
QCCH
3x3 cells

16 codewords

37500 XGB 79,90% 94,26% 0,713

Zoom-out
3 layers 45000 SVM 87,44% 96,41% 0,818

Zoom-out
all layers 45000 XGB 89,17% 96,91% 0,841

MCL 45000 SVM 86,99% 96,28% 0,812

A first thing to notice is that average accuracy is always greater than overall
accuracy, not only in Table 4.22 but also in all the experiments of this section. This is
due to the low effectiveness of the methods on classes with large number of samples,
mainly the class Roads which represents 19, 79% and 55, 73% of the training and test
samples, respectively. In spite of the fact that all methods achieved reasonable results
when taking just this class into account (indeed the average Kappa statistic of the
results presented in Tables 4.13, 4.14, 4.17, 4.20 and 4.21 is 0,765), when even just
about 10% of the samples of this class are misclassified it causes a huge impact on the
overall accuracy, once 55, 73% of the training samples belong to this class.

Another important aspect is that all the top results of the methods using context
are better than the baseline without it, confirming that context really improves classi-
fication. Moreover, one can see from Tables 4.22 that data-driven features were much
more effective than the handcrafted ones, even when extracted using a pre-trained
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(a) No-ctxt (b) Vargas (c) Star

(d) Zoom-out all layers (e) Zoom-out 3 layers (f) MCL

(g) VWCM (h) Ground Truth

Figure 4.15: Maps generated using the best configurations of each method.

ConvNet without fine-tuning: Kappa index of all methods that use ConvNets is re-
garded as almost perfect according to the reference on Table 4.8 while the handcrafted



4.2. Results on grss_dfc_2014 Dataset 65

contextual descriptors is only substantial.
After extensively assessing the proposed methods, two questions are still to be

answered:

1. Were the good results due to the discriminative features or a combination of them
with better classifiers? and

2. How much does the segmentation limit the results? Or equivalently, how much
error does SLICO introduce to the classification process?

In order to answer the first question, we carried out a experiment using the
configurations of each method listed in Table 4.22 with a lazy classifier: k-Nearest
Neighbors (kNN). To determine the best number of neighbors for kNN (the best k),
a 5-fold Cross-validation was performed varying k from 1 to 15 in steps of 2. Once
kNN does not require any training, instead assigns a class to a sample according to its
distance to the others, it is possible to compare which method generates representations
that result in the best class separability, i.e., samples belonging to the same class are
close to each other and far from samples of other classes. The results of this experiment
are reported in Table 4.23.

Observing Table 4.23, the first thing that becomes clear is that QCCH is not a
good descriptor alone. If one compares the values of Kappa statistics achieved by the
methods with kNN to those with other classifiers, the specific configurations of Star
and VWCM used in this experiment had a relative decreasing of 41, 34% and 66, 26%,
respectively. Once the descriptor proposed by Vargas et al. [2015] is also composed of
a vertex descriptor using BIC and did not suffer such large loss, one may infer that
these results ratify the conclusions of the experiment of VWCM in Subsection 4.2.2 that
showed that QCCH is not a good descriptor for small areas of the image. Therefore, the
reasonable results for Star and VWCM reported in Table 4.22 may be attributed to the
combination with BIC to describe the superpixel itself and XGBoost as classifier, which
is able to leverage feature vectors containing noise and redundancy. Nevertheless, these
results do not mean that all setting of Star and VWCM are so sensitive to the classifier
chosen. MCL is also worse if compared to the other data-driven representations, having
a relative decreasing of 8, 35%, while Zoom-out using three and all layers had only
7, 99% and 5, 73% of loss, respectively.

Another result essential to highlight was achieved by the baseline Vargas: using
kNN caused a reduction of only 1, 57% in its effectiveness (in terms of Kappa index),
being more robust to the choice of classifier than all data-driven representations. De-
spite the method had not achieved greater values of Kappa statistics, it is a good
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Table 4.23: Comparison among the best results of each proposed method and baselines
using kNN classifier.

Method Number of Superpixels Classifier Ovr. Acc. Avg. Acc. Kappa
No-ctxt
Global
BIC

30000 kNN 71,22% 91,78% 0,599

Vargas
Global
BIC

Sum pooling

37500 kNN 78,05% 93,73% 0,691

Star
Global
BIC

Max pooling
QCCH

Sum pooling

45000 kNN 59,20% 88,34% 0,441

Region
+

VWCM
QCCH
3x3 cells

16 codewords

37500 kNN 42,49% 83,57% 0,241

Zoom-out
3 layers 45000 kNN 82,74% 95,07% 0,753

Zoom-out
all layers 45000 kNN 85,81% 95,95% 0,793

MCL 45000 kNN 82,26% 94,93% 0,744

choice once it generates a very discriminative representation that is able to generate
good land-cover maps even using weak classifiers. No-ctxt was reasonable, having a
drop of only 9, 21%.

The second question is of great relevance due to the difference between the clas-
sification and evaluation processes: the feature vectors used to train the classifier and
to which a label is assigned to are computed from superpixels, and the map is built by
painting all the pixels inside each superpixel with the color corresponding to the class
assigned by the classifier to its respective feature vector. On the other hand, all the
metrics used to assess the effectiveness of the proposed method (described in Subsec-
tion 4.1.5) are pixel-wisely computed. If the segmentation were perfect and therefore
there were pixels from just one class inside each superpixel, there would be no problem
at assigning only one predicted class to the superpixel and at the same time using
its pixels to compute the metrics. In such situation, all the pixels inside a superpixel
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would belong to the same actual class and, thus, all of them would count either only
as hits or misses. But as the segmentation generated by SLICO is not perfect, when
a predicted class is assigned to all the pixels of a superpixel, some of them are cor-
rectly classified while other are misclassified just because they were included during
the segmentation process inside a superpixel they should not belong to. Thereby, it is
essential to measure this amount of error introduced by the segmentation.

Aiming at answering this question, we simulated a perfect classification taking
the ground truth annotation of the test image as if it were a prediction of the classes
used to build the map. Once the ground truth annotation is the reference to which the
constructed map is compared to, there is not a better prediction than the ground truth.
Therefore, the process to simulate the perfect classification begins by superimposing
the segmentation generated by SLICO to the image corresponding to the ground truth
annotation of the test image. Secondly, a majority vote is performed in order to decide
which class is going to be assigned to each superpixel: each pixel votes for its respective
actual class according to the ground truth and black pixels are ignored. By assigning
to each superpixel the most voted class taking into account only the pixels within it, we
are introducing the smallest possible error due to the segmentation, once the number
of hits by counting the pixels correctly classified is maximized. Then a map is built
in the same manner as the classification process: using the predictions made by the
majority vote, the color corresponding to the class assigned to a specific superpixel
is used to paint all pixels inside it. Finally, all metrics described in Subsection 4.1.5
are calculated comparing the generated map to the ground truth annotations and the
results are presented in Table 4.24. We refer to the values achieved for each metric in a
given segmentation scale as theoretical maximum values, once they are the maximum
values that one might achieve for such metrics using the given segmentation in a perfect
classification.

Table 4.24: Theoretical maximum values for each metric on grss_dfc_2014 dataset.

Number of
Superpixels Ovr. Acc. Avg. Acc. Kappa

30000 99,9795% 99,9942% 0.999687
37500 99,9848% 99,9957% 0.999768
45000 99,9879% 99,9966% 0.999816

Of course, there is no single segmentation scale that is capable of delineating all
meaningful object on the RSI, once superpixel methods are prone to generate regions
more homogeneous in shape and size than traditional segmentation methods and the
objects within the image are in a wide range of sizes. This means that some small ob-
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jects will be within superpixels that cover other objects or part of them, some will fit
almost perfectly inside an entire superpixel and others will be oversegmented. Never-
theless, this is not only a problem of segmentation, but also of spatial resolution of the
RSI: it is widely known in remote sensing that it is not suitable to use a sensor whose
resolution is relatively coarse to distinguish smaller objects. Therefore, each RSI with
a different resolution is better to address a classification problem whose set of classes
contain objects that are not smaller than a specific size. In this sense, the choice for
SLICO and the segmentation scales applied were successful, once they allowed for an
almost perfect (as shown in Table 4.24) map generation that the features and classifiers
used were not able to achieve.

4.3 Results on ISPRS Potsdam Dataset

Once the ISPRS Potsdam dataset has much more training data than the grss_dfc_2014
one (about 120000 against nearly 3000, respectively), it is not feasible to carry out many
experiments to find out the best configurations of each method that fit better on the
data. Thereby, only a few settings of each method which achieved top results were
used. For this experiment, the XGBoost classifier was trained without grid search for
MCL and Zoom-out with 3 layers once the high dimensionality of the feature vectors
generated (4448 dimensions) combined with the large number of hyper-parameters of
XGBoost to optimize would make this experiment infeasible. The results achieved so
far are presented in Table 4.25.

Analyzing Table 4.25, it is possible to notice some differences on the behavior of
the methods with relation to the grss_dfc_2014 dataset. For instance, the method
MCL performed slightly better than Zoom-out with 3 layers on the ISPRS Potsdam
dataset than on the previous one, even though the method is not significantly better
from the statistical perspective. Such situation has not happened on the former dataset.
Also important to mention is the fact that though the VWCM method achieved a
Kappa statistic that can be regarded only as moderate according to the reference in
Table 4.8, this dataset is much more challenging than the grss_dfc_2014 one due to
the higher intra-class variance and the requirement for classifying the background class.
Another aspect that must be highlighted is that No-ctxt achieved better results than
Vargas and Star. Nevertheless, it is important to notice that not all top settings for
Vargas, Star and VWCM were examined yet. Thereby, it is still possible that the
results of Star and Vargas with XGBoost and VWCM using QCCH are better.
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Table 4.25: Comparison of the proposed methods on ISPRS Potsdam dataset.

Method Number of
Superpixels Classifier Ovr. Acc. Kappa

No-ctxt
Global
BIC

30000 XGB 65,65% ± 4,99% 0,496 ± 0,060

Vargas
Global
BIC

Max pooling

30000 SVM
Linear 50,10% ± 5,80% 0,275 ± 0,053

Star
Global
BIC

Max pooling
Unser

Avg pooling

30000 SVM
Linear 42,10% ± 6,40% 0,181 ± 0,049

Region
+

VWCM
BIC

3x3 cells
16 codewords

30000 XGB 70,39% ± 4,61% 0,563 ± 0,062

Zoom-out
3 layers 30000 XGB 81,40% ± 3,2% 0,726 ± 0,042

MCL 30000 XGB 81,55% ± 3,1% 0,728 ± 0,041

4.4 Time Complexity Analysis

In order to compare the proposed methods, it is of great relevance comparing their
computational efficiency. To do so, we have analyzed the time complexity of each of
the three methods for extracting contextual features from RSIs. The time complexity
function and order may provide an efficiency estimate that is independent of the im-
plementation due to the abstraction of the underlying machine. Such characteristics
are suitable for a theoretical analysis that focus on the algorithm itself, providing a
fair comparison once many methods are leveraged by implementation tricks.

Once all the proposed methods are region-based, it is interesting to analyze how
each of them behaves as the number of superpixels increases. Thereby, the time com-
plexity is in function of the number of superpixels N .

Thinking of how Star works, one may divide its analysis in three steps: feature
extraction, vertex descriptor composition and edge descriptor composition. Observing
the first step, it is important to notice that the method is independent of the underlying
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low or mid-level representation chosen. Therefore, we are going to abstract how this
underlying descriptor works and begin the analysis assuming that a feature vector is
already assigned to each of the N superpixels, taking a constant time c1 for each of
them. In order to model the time complexity for the vertex composition step, two
aspects that we have to highlight are that it depends on the number of neighbors of
each superpixel and depends on how the composition operation works. Considering that
the N superpixels have an average number of neighbors V , and the vertex composition
operation takes a constant time c2 to combine two feature vectors, we have that the
complexity for this step is c2 ∗ (V − 1) ∗ N = c2 ∗ (V N − N). The same assumptions
are true for the edge descriptor composition step: assuming a constant time c3 for the
edge composition operation, the complexity of this step is c3 ∗ (V N − N). Bringing
together the three steps, the time complexity function for the Star descriptor may be
defined as:

f(N) = c1N + c2(V N −N) + c3(V N −N)

= c1N + c2V N − c2N + c3V N − c3N (4.14)

= (c2 + c3)V N + (c1 − c2 − c3)N

Omitting the constants, we may say that the time complexity order for the Star
descriptor is O(V ∗N). Nevertheless, in practice we have that V << N (V is usually
a number from 6 to 8 while N is greater than 20000) and the constants (mainly c1) are
not so insignificant.

Likewise, the analysis of the VWCM method may be separated into two steps:
assignment and co-occurrences counting. Once the codebook composition is an offline
process, it is not going to be considered in the time complexity. Thus, we are going to
begin the analysis of the assignment step assuming that we already have a codebook
of K visual words. The assignment step depends on the number of visual words inside
each superpixel. Denoting the average number of codewords within the superpixels as
C, we have that the complexity of this step is K ∗C ∗N because all codewords must be
tested in order to choose which one is going to be assigned to a superpixel. Thinking
of the second step, one may realize that the analysis may be further divided into two
parts: internal and within neighborhood co-occurrences counting. Once the internal
co-occurrence relationship is symmetric, the number of other codewords to which each
visual word inside a superpixel is compared follows an arithmetic progression with a
common difference of -1 and the first term being C − 1. Thus, the complexity may be
defined as (C2−C)N/2. On the other hand, the relationship of co-occurrence between
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neighbors is not symmetric and therefore the complexity of this part becomes C2∗V ∗N
because every codeword of a superpixel is compared to all visual words inside each of
the V neighbors. Joining the two steps, the complexity of VWCM may be defined as:

f(N) = KCN +
(C2 − C)N

2
+ C2V N (4.15)

In terms of complexity order, one may say that VWCM is O(C2∗V ∗N). However,
it is important to mention that the number of visual words in the codebook has a strong
influence on the overall efficiency of the method.

Once the ConvNet training is an offline process, we are going to left it out of
the analysis, assuming that we already have a trained network. The efficiency of MCL
basically depends on the ConvNet architecture chosen and the type of interpolation
used for upsampling the patches. It is essential to notice that the number of operations
performed is fixed for a given architecture, i.e., changes from one architecture to another
but is the same for all patches forwarded in the same ConvNet. Therefore, we may
abstract all the operations performed by a given ConvNet (including the upsampling)
and denote it by the constant c4. Thereby, the complexity function of the MCL method
may be defined as:

f(N) = c4N (4.16)

Besides having the best time complexity order (O(N)), MCL benefits from the
practical aspect of being trained on General Purpose Graphical Processing Units (GPG-
PUs). Considering its efficiency and accuracy, one may conclude that MCL is the best
option among the methods evaluated in this work from both the practical and theo-
retical viewpoint.





Chapter 5

Conclusions and Future Work

This work has dealt with the problem of creating discriminative representations for
superpixels of RSIs by encoding not only the visual appearance of objects, but also
their context. In order to address the problem, three new methods to encode context
were proposed and extensively evaluated: Star, which makes use of a RAG to represent
the spatial relationship between a superpixel and its neighbors and then combines
feature vectors computed from vertices and edges into just one representation that
encodes both the visual appearance and the context of the superpixel; VWCM, which
was inspired by the traditional GLCM, encodes the semantic context from the local
neighborhood of a superpixel by counting co-occurrences of codewords only inside it
and co-occurrences between the superpixel and each of its neighbors; and the last
proposed method (MCL) exploits ConvNets to compute deep contextual features from
superpixels by keeping the mapping between the pixels within each of them and the
feature maps across the network.

The experiments revealed some interesting points. One of them is that low-level
representations achieved better results than using BoVW with Star, what is totally
opposite to the expected behavior. Another important aspect is that the top results
were reached using as few visual words as 128 for Star and 16 for VWCM. Concerning
the MCL, it was possible to notice that data-driven features performed better than the
handcrafted ones, though the difference was not large. Taking Table 4.8 as a reference,
the top results for all the proposed methods would be classified as substantial. A
key finding with respect to the chosen superpixels method was that SLICO and the
parameters used allowed for an almost perfect segmentation, introducing very small
error.

Currently, more experiments are in progress on the ISPRS Potsdam dataset in
order to assess the behavior of the proposed methods when mapping a larger area using
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images with higher resolution than the previous dataset, what increases the intra-class
variance due to the heterogeneity in the appearance of objects. We also plan to evaluate
MCL using other ConvNets, like VGG, as an end-to-end solution instead of employing
other classifiers to generate the maps.
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