
OVERLAY CONSTRUCTION STRATEGIES FOR

PEER-TO-PEER LIVE STREAMING SYSTEMS

ELISEU CÉSAR. MIGUEL

OVERLAY CONSTRUCTION STRATEGIES FOR

PEER-TO-PEER LIVE STREAMING SYSTEMS

Tese apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da
Universidade Federal de Minas Gerais
como requisito parcial para a obtenção do
grau de Doutor em Ciência da Computação.

Orientador: Sérgio Vale Aguiar Campos
Coorientador: Ítalo Fernando Scotá Cunha

Belo Horizonte - Minas Gerais

17 de novembro de 2017

ELISEU CÉSAR. MIGUEL

OVERLAY CONSTRUCTION STRATEGIES FOR

PEER-TO-PEER LIVE STREAMING SYSTEMS

Thesis presented to the Graduate Program
in Computer Science of the Universidade
Federal de Minas Gerais - Departamento
de Ciência da Computação in partial
fulfillment of the requirements for the
degree of Doctor in Computer Science.

Advisor: Sérgio Vale Aguiar Campos
Co-Advisor: Ítalo Fernando Scotá Cunha

Belo Horizonte - Minas Gerais

November 17, 2017

© 2015, Eliseu César Miguel.

 Todos os direitos reservados

Ficha catalográfica elaborada pela Biblioteca do ICEx - UFMG

 Miguel, Eliseu César.

M636o Overlay construction strategies for peer-to-peer

 live streaming systems / Eliseu César Miguel. — Belo

 Horizonte, 2017.

 xx, 75 f.: il.; 29 cm.

 Tese (doutorado) - Universidade Federal de

 Minas Gerais – Departamento de Ciência da Computação.

 Orientador: Sérgio Vale Aguiar Campos

 Coorientador: Ítalo Fernando Scotá Cunha

 1. Computação - Teses. 2. Redes de computadores.

 3. Sistemas de transmissão de dados. I. Orientador.

 II. Coorientador. III. Título.

CDU 519.6*22(043)

Resumo

A transmissão de vídeo já representa o maior tráfego na Internet. Este tipo de
transmissão pode ser realizado em grande escala em redes de distribuição de conteúdo
(CDNs), que incorrem em custos significativos em sua construção e uso. A distribuição
de conteúdo de vídeo por meio de sistemas par-a-par, por outro lado, reduz a
dependência e o custo de CDNs.

Nas redes par-a-par, o conteúdo é compartilhado em uma sobreposição topológica
na rede física. Isso é fundamental para o desempenho da rede. Infelizmente, a
distribuição par-a-par é repleta de problemas de qualidade de experiência (QoE). Por
exemplo, a chegada simultânea de um grande número de pares, conhecida como flash
crowd, pode afetar a topologia da rede e interromper a transmissão de conteúdo. Além
disso, em cenários em que os usuários têm uma largura de banda de contribuição
limitada, os sistemas par-a-par precisam de mecanismos importantes para o incentivo
de contribuição de mídia entre os pares.

Os algoritmos atuais que constroem e mantêm a topologia sobreposta em sistemas
de transmissão par-a-par para mídia ao vivo geralmente enfrentam problemas de
latência na reprodução e descontinuidade de mídia. Quando os pares estabelecem
parcerias com um número elevado de vizinhos, pode ocorrer o aumento de troca
de mensagem de controle entre os pares, bem como a necessidade de uso de
técnicas sofisticadas de filtragem de vizinhanças de pares para garantir que a
mídia seja distribuída sem interrupção de fluxo. Mais que isso, os problemas são
particularmente desafiadores quando a porcentagem de free riders na rede é alta, um
caso frequentemente.

Para lidar com esses desafios e ao mesmo tempo mitigar os efeitos negativos do
comportamento egoísta de free riders, apresentamos a técnica chamada Classificação de
pares e restrição de parcerias, do inglês Peer Classification and Partnership Constraints
(2PC) que constrói e mantém a topologia sobreposta do sistema par-a-par baseada no
comportamento de configuração destes sistemas. 2PC estabelece o conceito de classes
de pares em que os pares são agrupados com base na contribuição da mídia que cada um

ix

oferece à rede. Essas contribuições são usadas para estabelecer restrições de parceria
entre as classes, o que chamamos de Restrições de Parceria do Peer, do inglês Peer
Partnership Constraints (PPC). Cada uma dessas classes configura seus pares com um
número limitado de parceiros para permitir que os pares enviem pacotes de dados em
ordem de chegada das solicitações e, assim, evitar a necessidade de qualquer técnica
sofisticada de filtragem de vizinhança, o que reduz significativamente a complexidade
do sistema. Além disso, as restrições de parcerias entre as classes de pares impedem
a competição entre free riders e pares cooperativos. Esta falta de concorrência de
parceria é fundamental para: (i) facilitar e acelerar o processo de ingresso de novos
pares no sistema par-a-par; e (ii) ajuda o 2PC a diminuir a latência da reprodução
e a descontinuidade da mídia, aproximando a classe dos pares que mais contribuem
ao servidor de mídia enquanto empurra os free riders para a borda da rede. Nossos
experimentos mostram que as redes que usam a estratégia do 2PC podem sustentar até
50% de free riders, o que não acontece sem o uso de 2PC, sem interferir nas parcerias
entre os pares cooperativos presentes no sistema.

2PC exige baixa complexidade de implementação e, além disso, incorre em baixo
acréscimo de sobrecarga de mensagens de controle trocada entre pares da rede’. Mais
importante, uma vez que nossa solução é baseada no comportamento de configuração
das redes par-a-par, nossa estratégia pode ser combinada com abordagens par-a-par
atuais que lidam com flash crowd e free riders para construir e manter topologias de
sistemas par-a-par com baixo custo e mais robustas.

x

Abstract

Video streaming now amounts to the majority of traffic on the Internet. Media
streaming relies on large-scale content distribution networks (CDNs), that incur
significant costs to build or use. Peer-to-peer distribution of video content reduces
reliance on CDNs and costs.

In peer-to-peer networks, peers share content in a topological overlay above the
physical network. This is fundamental to network’s performance. Unfortunately,
peer-to-peer distribution is fraught with quality of experience (QoE) problems. For
example, the simultaneous arrival of a large number of peers, known as flash crowd,
can affect network topology and disrupt content transmission. In addition, in scenarios
where users have limited bandwidth to contribute to the overlay, peer-to-peer systems
need important mechanisms for peer contribution incentive in order to deliver media
content for all peers.

Existing peer-to-peer live streaming algorithms for constructing and maintaining
network topology often face issues of high playback latency and media discontinuity
problems. When peers achieve a larger number of partners, both control message
overhead rises and sophisticated neighborhood filtering techniques are required to
deliver media without disrupting the flow. Problems are particularly challenging when
the percentage of free riders in the network is high, which is often the case.

In order to deal with these challenges while mitigating free rider negative effects,
we present the Peer Classification and Partnership Constraints (2PC) that constructs
and maintains the network topology focusing only on simple peer-to-peer network
configuration. The algorithm establishes the concept of peer classes in which peers
are grouped by their media contribution to the network. These contributions are
used to establish partnership criteria among classes, what we call Peer Partnership
Constraints (PPC). Each of these classes sets up its peers with a limited number of
out-partners in order to allow peers to send chunks in the request arrival order and
avoid any sophisticated neighborhood filtering technique, significantly reducing system
complexity. Moreover, constraints on peer classes prevent partnership competition

xi

between free riders and cooperative peers. This lack of partnership competition is
fundamental to: (i) facilitate and speed up the process of new peers joining the overlay;
and (ii) help 2PC improve playback latency and media discontinuity by bringing the
class of the most contributing peers closer to the media server while moving free riders to
the network edge (Silva et al., 2008; Liu, 2007). Our experiments show that 2PC ensures
that the network can sustain 50% of free riders without disturbing cooperative peer
partnerships on the overlay.

2PC requires low implementation complexity and in addition, incur on the low
overhead of exchange messages on the network. Most important, since we are basing
our solution on peer-to-peer configuration behavior, our strategies may be combined
with current peer-to-peer approaches which face flash crowd events and which handle
free rider peers.

Palavras-chave: Peer-To-Peer, Networks, Flash Crowd, Free Rider, Mesh Overlay
Topology, Overlay Construction.

xii

List of Figures

2.1 Mesh-based overlay topology . 12
2.2 Tree-based overlay topology . 13
2.3 Circular Buffer b(p) . 15
2.4 Results Analysis Example . 22

3.1 Baseline Technique to Join Newcomer Peers 26
3.2 Performance for Batch Joining . 27
3.3 Parallel Overlays Stages . 28
3.4 Parallel Overlays to Join Newcomer Peers 28
3.5 Performance of Parallel Overlays Joining 29
3.6 Free Rider Slice to Join Newcomer Peers 30
3.7 Performance of Free Rider Slice Joining . 31
3.8 Free Rider Slice to Joining Newcomer Peers (50% of Free Riders) 32
3.9 Performance of Free Rider Slice Joining (50% of Free Rider) 32

4.1 Performance of Classic and PPC for Balanced Overlays (ρ ≈ 1.0) 39
4.2 Performance of Classic and PPC for Conservative Overlays (ρ ≈ 1.5) . . . 40
4.3 Performance of Classic and PPC for Aggressive Overlays (ρ ≈ 0.5) 42
4.4 Performance of PPC for Aggressive Overlays (ρ ≈ 0.5) 43

5.1 Performance of 2PC . 48
5.2 Partnership Constraint Algorithm Class Inference. 49
5.3 Performance of Classic and 2PC. Join Phase [Warm Class] (ρ ≈ 1.0) 51
5.4 Performance of Classic and b-2PC. Join Phase [Suggested Class] (ρ ≈ 1.0) 52
5.5 2PC Class Inference. Join Phase [Warm Class] (ρ ≈ 1.0) 53
5.6 b-2PC Class Inference. Join Phase [Suggested Class] (ρ ≈ 1.0) 54
5.7 Performance of Classic and 2PC. Join Phase [Warm Class] (ρ ≈ 1.5) 55
5.8 Performance of Classic and b-2PC. Join Phase [Suggested Class] (ρ ≈ 1.5) 56
5.9 2PC Class Inference. Join Phase [Warm Class] (ρ ≈ 1.5) 57

xiii

5.10 b-2PC Class Inference. Join Phase [Suggested Class] (ρ ≈ 1.5) 58

xiv

List of Tables

3.1 Network Peer Configuration Classes . 24
3.2 Network Peers Configuration for 50% of Free Rider 31

4.1 Peer Classes and Output Partnership Configurations 37
4.2 Default Experiment Configuration (Nin(p) = 20, ρ ≈ 1.0) 38
4.3 Default Experiment Configuration (Nin(p) = 20, ρ ≈ 0.5) 41

5.1 2PC Experiment Configuration (Nin(p) = 20, ρ ≈ 1.0) 47
5.2 2PC Experiment Configuration (random upload bandwidths) 50

xv

List of Algorithms

1 Peer Classification algorithm . 46

xvii

Contents

Resumo ix

Abstract xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Our Major Peer-to-Peer Challenges . 4
1.2 Definition of the Problem . 6
1.3 Work Contributions . 7
1.4 Text Organization . 8

2 Peer-to-Peer System Definitions and Configurations 11
2.1 Peer-to-Peer Networks . 11
2.2 Flash Crowd on Peer-to-Peer Networks 15
2.3 Free Rider on Peer-to-Peer Networks 16
2.4 TVPP: A Peer-to-Peer Network Implementation 17

2.4.1 Media Streaming on TVPP . 17
2.4.2 Bootstrap Server Reports . 18
2.4.3 Peer Partnership Rules . 19
2.4.4 Overhead of Our Techniques Implementation 19

2.5 General Experimental Method . 19
2.6 Understanding the Result Charts . 21

3 Effects of Partnership Constraints 23
3.1 Introduction . 23
3.2 Experimental Method . 24

xix

3.3 Baseline: Batching Newcomer Peers . 25
3.4 Increasing the Robustness of the Peer-to-Peer Overlay by Instantiating

Parallel Overlays . 26
3.5 Naïve Model: Implementing Partial Partnership Constraints 29

4 Full Partnership Constraints in Static Environments 35
4.1 Introduction . 35
4.2 Peer Partnership Constraint . 36
4.3 PPC Configuration . 37
4.4 PPC Evaluation . 38

4.4.1 Balanced Overlays (ρ ≈ 1.0) . 38
4.4.2 Conservative Overlays (ρ ≈ 1.5) 40
4.4.3 Aggressive Overlay (ρ ≈ 0.5) . 41

5 Full Partnership Constraints in Dynamic Environments 45
5.1 Partnership Constraint Class Algorithm Concepts (2PC) 45
5.2 2PC Configuration . 47
5.3 Comparative Evaluation between 2PC and PCC 48
5.4 2PC Evaluation . 49

5.4.1 2PC and b-2PC Evaluation. (Nin(p) = 20 and ρ ≈ 1.0) 50
5.4.2 2PC and b-2PC Evaluation. (Nin(p) = 30 and ρ ≈ 1.5) 51

5.5 2PC Discussion . 52

6 Related Work 59
6.1 Flash Crowds . 60
6.2 Partnership Management, Overlay Construction and Selfish Behavior . 60

7 Conclusion and Future Works 65

Bibliography 67

xx

Chapter 1

Introduction

Video content sharing among Internet users has become very attractive, being the
dominant class of Internet data traffic (Cisco, 2014; ConsumerLab, 2014; Sandvine,
2014). According to Cisco, Internet video traffic will be more than 80% of total Internet
traffic in 2019 (Cisco, 2017).

Nowadays, we have robust technologies to support the transmission of voluminous
contents such as music, videos, and computer programs on the Internet. Peer-to-peer
(P2P) systems have become a popular technology for this purpose, mainly because it
supports a large number of users (peers) and requires a low operating cost compared to
other options, such as the traditional client-server based model and Content Delivery
Networks (CDN) (Ullah et al., 2013).

Live streaming is an important application of Internet content sharing. In 2009,
Obama’s inauguration reach the largest record of concurrent live viewership on a single
day, with 7 million of active simultaneous streams (GIGAOM, 2009b) supported by
peer-to-peer technology that has helped CDN networks. According to Turner, (...)
the resultant stresses on the various CDNs and the Internet in general would make it
extremely difficult if not impossible to serve such an unprecedented audience without
the use of peer-to-peer technologies. (GIGAOM, 2009a).

Peer-to-peer networks allow live streaming to large audiences without relying
entirely on (geographically-distributed) server upload bandwidth. In peer-to-peer
networks, peers redistribute received content to other peers to improve system
scalability and reduce infrastructure costs. Existing systems support thousands of
simultaneous users in multiple media distribution channels (PPlive, 2013; UUSee, 2013;
SopCast, 2013; PPS, 2017; TVU, 2017). Peers create partnerships in a decentralized
way, forming overlay topologies over the physical network for exchanging media content.

1

2 Chapter 1. Introduction

However, live streaming challenges are still present. Recently, Trump’s
inauguration broke live video streaming records, peaking at 8.7Tb/s at 12:04 ET
during the opening of President Trump’s speech (TechCrunch, 2017). Although recent
improvements in the Internet bandwidth, HD video quality transmission is increasing
among Internet users and, also, the traditional TV broadcast has been losing the
preference for online video streaming.

Also, many interesting challenges arise in overlay topology maintenance and
media distribution strategies on peer-to-peer live streaming. For example: (a) peer
churn, caused by peers joining and leaving the overlay, breaks partnerships and disrupts
media distribution (Zheng et al., 2011); (b) uncooperative peers, which do not or cannot
contribute with media redistribution (also known as free riders), increase resource
competition in the overlay (Meulpolder et al., 2012); and (c) flash crowd events, that
occur when a large number of peers join the peer-to-peer network in a short time
period, which can disrupt the stability of media transmission. Known approaches to
handle flash crowd events often involve sophisticated overlay maintenance (Payberah
et al., 2011; Lobb et al., 2009) or peers need to implement media request scheduling
strategies before sending the content to other peers (Wu et al., 2012; Silva et al., 2008).

Moreover, the delivery of media with low latency and low discontinuity demands
sophisticated strategies typically based on incentive mechanisms for maximizing peer
cooperation (Piatek et al., 2010). Basically, these strategies seek to establish promising
relationships among peers and at the same time to bring cooperative peers close to
the media server in order to construct a robust overlay topology (Payberah et al.,
2011; Lobb et al., 2009; Fortuna et al., 2010). However, in addition to the cost of
implementing incentive mechanisms, typical strategies for constructing and maintaining
the overlay topology are not centralized, which requires the unwanted exchange of
additional control messages among peers (Payberah et al., 2011; Lobb et al., 2009).

In a way to reach promising relationships among peers, typically peer-to-peer
systems do not impose a limit of partnerships that each peer can established. As
a consequence, peers may become unable to respond to all media requests (due to
limited upload bandwidth). In order to address such issue, complex neighborhood
filtering and chunk scheduling techniques are required to restrict and select a subset
of partners at each peer to improve media distribution. According to Lobb et al.
(2009), the larger the partnership gets at each peer, more complex it is to implement
and maintain chunk scheduling techniques on the peer-to-peer system. Consequently,
neighborhood filtering techniques are crucial to ensure the correct operation of
peer-to-peer live streaming.

3

But, what happens when peer-to-peer networks are configured without
sophisticated neighborhood filtering techniques? What peer-to-peer parameters are
important to determine the behavior? Is it possible to avoid the neighborhood filtering
techniques usage while keeping the media delivery for a large number of peers? Is
it possible to construct a robust overlay topology without using media contribution
incentive mechanisms?

In this thesis we investigate these questions in order to develop unsophisticated
techniques of peer-to-peer overlay construction. We are interested in achieving robust
overlays that support a large number of uncooperative peers and, at same time, that
preserves the network against the negative effects of uncooperative peers presence. The
strategies that we propose should be robust to permit a large fraction of uncooperative
peers in the network only by configuring peer partnership rules.

Our objectives are to face peer-to-peer challenges by developing simple strategies
with a focus on: (i) first, to provide media distribution among peers without
interruptions (low discontinuity); (ii) second, to balance peers’ upload bandwidth
utilization in order to provide broad media distribution; and (iii) last, to keep a
reduced difference on the media playback among peers (low media latency). Certainly,
peer churn, free riding behavior and flash crowd events negatively affect our objective
requirements.

We have developed an easy solution in order to restrict the partnerships among
peers in the network, called peer partnership constraints. Peer partnership constraints
are an important contribution of this thesis as a simple mechanism that allows the
network to take advantage of the cooperative peers. Furthermore, the peer partnership
constraints are a base of our mechanism to construct dynamically a robust peer-to-peer
overlay topology.

Initially, we impose partnership restriction only between free rider and
cooperative peers. Later, we extend this concept to all peers. We group peers by
classes that define peers setup and partnership constraints of peers among existing
classes. Our evaluation shows the proposed peer partnership constraints are sufficient
to ensure the quality of peer-to-peer services without the complexity of neighborhood
filtering techniques or the complexity of overlay construction mechanisms.

Our systems have been evaluated by imposing increasingly peer-to-peer
constraints resources to attest its effectiveness. We have combined peer upload
bandwidth constraint with a larger fraction of free rider peers in a way to obtain a
severe peer-to-peer environment. In addition, we have applied the flash crowd events
in order to evaluate the robustness of our overlay topologies.

4 Chapter 1. Introduction

As results, we show that our techniques provide stability of media distribution on
the peer-to-peer systems for a larger fraction of free rider peers even facing the stresses
of flash crowd events. We allow cooperative peers to answer its partners by sending
the media in FIFO order without any sophisticated neighborhood filtering technique.
This reduces CPU consumption, since the system implementation is simplified. In
addition to avoid sophisticated neighborhood filtering techniques, application of peer
partnership constraint constructs naturally a more robust overlay, placing peers closer
to the media server or on the overlay’s edge considering peer media contribution.
Finally, we believe that our solution may be combined with known other techniques in
order to reach more robust peer-to-peer systems.

In short, the main contribution of this thesis is a simple way to manage restrictions
of partnerships between peers, Peer Partnership Constraints (PPC) presented in
Chapter 4. Among peer-to-peer configuration parameters, the maximum number of
partners that a peer can establish is the most important to implement PPC. Using
PPC, we have shown that it is possible to construct a robust peer-to-peer overlay
without neither sophisticated neighborhood filtering nor complexity contribution
incentive mechanisms.

Next, Section 1.1 describes with more details our major peer-to-peer challenges.
Section 1.2 presents the proposed work and goal, while Section 1.3 presents the thesis
contributions. Finally, Section 1.4 presents the thesis organization.

1.1 Our Major Peer-to-Peer Challenges

Peer-to-peer networks are highly scalable structures (Piatek et al., 2009; Ullah et al.,
2013). Live streaming, the focus of our work, is a way of content delivery that
has become very attractive to Internet users and supported by peer-to-peer systems.
According to Xiao and Ye (2008), peer-to-peer systems have proved to be robust for
live streaming purpose by enabling large numbers of users simultaneously watching
multiple video channels. However, even though peer-to-peer networks are robust, the
configuration of these systems for live streaming is difficult since the content must be
distributed in a short time to ensure the uninterrupted visualization by users. Failure to
receive portions of media content, for example, may cause media playback interruptions
since media viewing occurs at the time of content distribution (Locher et al., 2007).

Over time, several issues have emerged on peer-to-peer live streaming and we are
interested on these challenges, that include:

1.1. Our Major Peer-to-Peer Challenges 5

1. Free riding behavior: In certain situations, some users may avoid sharing
received content. These peers, known in the literature as free riders, hinder
the content propagation among peers, since it decreases the content distribution
opportunities. Many research have made efforts to understand and to curb this
behavior (Pianese et al., 2006; Wang, Wenjie and Xiong, Yongqiang and Zhang,
Qian and Jamin, Sugih, 2006; Locher et al., 2009; Piatek et al., 2010; Adar
and Huberman, 2000; Moltchanov, 2011; Karakaya et al., 2009; Krishnan et al.,
2004). However, there are situations where upload bandwidth constraint of peers
imposes the free riding behavior of them, as occurs with mobile device users. In
such cases curbing free rider peers is not desirable;

2. Peer churn: According to Cui et al. (2007), in this thesis we define peer churn
as the action of a peer dynamically join or leave the streaming. Peer-to-peer
systems must support high peer churn during the transmission. Peer churn is
a factor that may degrade the quality of live streaming media (Zheng et al.,
2011). On one hand, with the departure of some peers, new partnerships must
be established to maintain data flow for peers joined on the network. On the
other hand, the arrival of peers increases both the partnership request and the
data competition until newcomer peers start sharing the received media. Several
papers offer techniques for minimizing the problems caused by peer churn (Tran
et al., 2003; Castro et al., 2003; Locher et al., 2009).

3. Flash crowd events: Flash crowd is a sample of event that happens suddenly.
When an event of broad user interest is transmitted, such as a final of football
world cup, a larger number of users may appear simultaneously requesting to
join the network. The simultaneous new partnerships request may compromise
the quality of service in the network. In this case, there are several techniques
to control the joining rate dealing with the large number of newcomers peers
without discouraging them to join the network (Liu et al., 2009; Chen et al.,
2011; Li et al., 2008a; Liu et al., 2012).

Among our challenges, we consider free riding behavior the most important.
Since typically upload bandwidth of mobile systems is reduced, these users become
low cooperatives on peer-to-peer systems (i.e. free rider peers or peers of low media
contribution). So, the growing number of mobile fraction users motivates to find
solutions in order to improve the peer-to-peer live streaming stability to support a
large number of uncooperative peers.

6 Chapter 1. Introduction

1.2 Definition of the Problem

In this section, we informally describe some peer-to-peer concepts in order to present
our problem. Chapter 2 formally defines all concepts presented in this section.

Bootstrap server is a special server in peer-to-peer systems that allows peers
to join the network. Peers contact the bootstrap server and receive from him a list
of active peers in the network. With a list of active peers, a newcomer peer can
establish its partnerships with other and starts the media sharing. If a peer receives
the media with no discontinuity (or low discontinuity), we consider that peer is stable.
However, high discontinuity may force a peer to leave the network in order to contact
the bootstrap serve again and redo the join phase (i.e a non-stable peer). Consequently,
if a large fraction of peers is stable, we consider the peer-to-peer network as stable, too.
So, peer-to-peer systems stability is preserved on the streaming when the delivery of
media content occurs with low discontinuity to a large fraction of peers in the network.

Preserving the peer-to-peer stability is a challenge mainly when the network
constraints are severe (e.g. low surplus bandwidth upload). In this case, peers need
to establish promising partnerships to preserve its stability and, also, peer-to-peer
overlays need to be robust in a way to offer much media offers. There are some
solutions in order to (i) incentive peer contribution, (ii) to help peers to find promising
partnerships and (iii) to construct robust network topology overlay in order to preserve
peer-to-peer network stability. However, despite these solutions, it is necessary to face
the complexity of these approaches in order to apply them on existing peer-to-peer
systems.

In this thesis, we propose to provide network stability on media delivery without
the usage of sophisticated neighborhood techniques or complex peer partnership
filtering. Instead, we try to understand the effects of peer-to-peer network parameters
(e.g. number of peers partnerships and sets of peer partnership control) in order to
define a robust peer-to-peer configuration that ensures network stability. Our solution
is important to reduce complexity present in current sophisticated neighborhood
techniques (both for in-partner or out-partner selection), as well as to decrease the
overhead of control message exchanges between peers needed to the overlay.

Our problem consists of constructing robust overlay topologies that support severe
resource constraints such as large number of uncooperative peers and flash crowd
events. We are interested in discovering a way to establish partnerships between
peers that avoids peer resource competition and, at same time, that ensure promising
partnership to each peer considering peer’s contribution behavior.

1.3. Work Contributions 7

We investigate the effects of splitting the list of partners in two separate lists
based on the peers contribution to the network. With two distinct sets of partners,
each peer can handle cooperative and uncooperative peers in different structures.
Our overlay control includes the number of cooperative and uncooperative partners
over each peer eliminating the resource competition between them. The partnership
separation is the main idea of our solution peer partnership constraint and, in addition,
the most important contribution of this work.

The goal: Propose and develop dynamic mechanisms to improve the stability
of live streaming systems even under resource constraints, such as limited upload
bandwidth and selfish peer behavior.

In our study, we have configured severe peer-to-peer constraints composed by a
large fraction of uncooperative peers and cooperative peers with low upload bandwidth.
Our configuration was severe enough to prevent media transmission without advanced
techniques in the presence of flash crowd events, even considering current techniques
to handle flash crowds.

So, we have applied peer partnership constraint between peers considering the
peer’s chunk contribution capacity. As a result, peer partnership constraints avoid
resource competition between peers with different contribution behavior. Naturally,
peer partnership constraints are the key to the construction and maintenance of the
desired overlay topology, where high upload bandwidth peers are kept near the network
media server, while free rider peers are pushed to the topologies edge.

In addition, we believe that our solution can be combined with existing solutions
without interference in order to offer more improvement on peer-to-peer systems
stability.

1.3 Work Contributions

This section describes the most important contributions of this work:

1. We show that it is possible to mitigate the negative effects of free rider peers
during the flash crowd event by imposing partnership constraints between
cooperative and free rider peers. Furthermore, we show that these restrictions
allow both cooperative and free rider peers join simultaneously to the network
without disrupting the live transmission.

8 Chapter 1. Introduction

2. We present parallel overlays technique for handling flash crowd events. Even
with resources constraints, a large fraction of free rider peers is able to join the
network without resource competition with cooperative peers. Although parallel
overlays are hard to configure and its concepts are not deeply studied yet, we
believe that parallel overlays can be successfully applied to solve other issues of
peer-to-peer systems. So, we consider parallel overlays technique as an important
contribution.

3. We propose Free Rider Slice and Peer partnership constraints (PPC) as two
new peer-to-peer overlay construction mechanisms to speed up peer joining on
resource-constrained overlays during flash crowd events while preserving quality
of experience (QoE) for peers already in the overlay. These are low complexity
approaches that construct robust overlay able to support a large fraction of free
rider peers (50% in our experiments) for networks with severe upload bandwidth
constraints.

4. We present the Partnership Class and Constraint Algorithm (2PC), a new
approach for constructing and maintaining the overlay topology. 2PC is a solution
with low complexity and low message overhead since its concepts are based on
partnerships setup of peer-to-peer systems without sophisticated neighborhood
filtering technique. So, 2PC can be combined with current overlay construction
solutions in order to provide more robustness for peer-to-peer systems.

1.4 Text Organization

The rest of this thesis is organized as following:
Chapter 2, Peer-to-Peer System Definitions and Configurations, defines formally

the concepts of peer-to-peer systems. We describe with more details both flash crowd
events and free riding behavior and, in addition, our peer-to-peer implementation
TVPP, used on our system executions. Finally, we define the default configurations
for all experimentations and explain how our results of experiments are presented and
interpreted.

In the Chapter 3, Effects of Partnership Constraints, we evaluate baseline
experiments in order to compare with the results of our proposed solutions. Thus,
in this chapter we confirm that the effects of restrict partnerships between free riders
and cooperative peers are positive, based on results from two new techniques that we
have proposed, Parallel Overlay and Free rider slice. Parts of the content of this chapter
was published in (Miguel et al., 2016).

1.4. Text Organization 9

Chapter 4, Full Partnership Constraints in Static Environments, presents the
Peer Partnership Constraint (PPC), a specialization of Free Rider Slice that imposes
partnership constraint all peer classes. PPC provide a simple solution that allows
that each peer to handle its partners without the need of sophisticated neighborhood
filtering technique. PPC constructs robust overlay topologies to facing flash crowd
events. Parts of the content of this chapter was published in (Miguel et al., 2017).

Chapter 5, Full Partnership Constraints in Dynamic Environments, presents the
Partnership Constraint Class Algorithm Concepts (2PC), an algorithm to constructs
and maintains the overlay topology based on PPC. 2PC is a dynamic and centralized
solution with low complexity and no overhead of control message between peers. In
our experiments, peer-to-peer systems using 2PC have demonstrated more stability
and robustness with low cost of implementation if compared to systems without 2PC.

Chapter 6, presents the most important works that have incentivated our
investigation and, finally, Chapter 7 concludes and presents future works.

Chapter 2

Peer-to-Peer System Definitions
and Configurations

There are several technologies and strategies for the implementation of Peer-to-Peer
networks (Lua et al., 2005b; Liu et al., 2008b; WikiBooks, 2017). The choice of the
strategy to be used for building a peer-to-peer network depends on the network purpose,
such as sharing stored content or streaming live media, for example. Moreover, aspects
related to overlay topology construction and maintenance leads to large differences
between implementations.

In this chapter, only important aspects of peer-to-peer network systems to live
streaming are treated. Section 2.1 presents the peer-to-peer network systems definitions
adopted in this work. In the following Sections 2.2 and 2.3 we define the flash crowd
events and free riding behavior concepts applied in this work. We emphasize the readers
that both flash crowd events and free riding behavior are mechanisms used such that to
impose peer-to-peer network constraints in our experiments. Our peer-to-peer system
environment for network experimentations, TVPP, is presented in Section 2.4, while
Section 2.5 presents our generic peer-to-peer systems setup for our experimentations.
Finally, Section 2.6 explains our readers how to understand our charts in this work.

2.1 Peer-to-Peer Networks

Let T be a peer-to-peer network for live media streaming that employs a mesh-based
overlay topology. Let B be the bootstrap server, a server that allow peers to join in
the T (described below). Let P = {S, p1, p2, .., pn} be the set of peers in T where S is
a media server (described below) and pi is a common peer. Let R→ P × P be the set
of relationships among peers in P . Each peer p ∈ P seeks to receive the distributed

11

12 Chapter 2. Peer-to-Peer System Definitions and Configurations

content and it is expected that each p shares the received content with other peers that
have established a relationship in R with it.

The media server S is a special peer that encodes the video, splits the video into
chunks (a chunk can contain multiple frames), and starts the transmission. During the
media transmission, is expected that each peer p receives all media chunks distributed
by S in enough time to watch the live media.

T does not require an explicit authorization or messages sent to other peers from
a peer p ∈ P before p disconnects from T . Any peer can disconnect at any time.
However, to join the peer-to-peer network T , a newcomer peer p′ must know other
peers in the T in order to establish its first partnerships. T has a special server B
(bootstrap server) to allow peers join. An important function of B is to manage the
active peers p ∈ P . In this way, B receives the join request from the newcomer p′ and
sends to p′ a list L(p′) ⊆ P of active peers in T . In addition, B updates P as P ∪{p′}.

Each peer p ∈ P manages a set of neighbor peers V(p) that contains all peers p
knows. p updates V(p) constantly removing inactive peers (i.e peers that have left T)
and inserting new peers according to periodically received L(p) from B.

The overlay topology of T is determined by the set of all relationships (i.e.
partnerships between peers) in R on the physical network. A peer-to-peer network
can define a tree-structured overlay topology. In this case, B determines the elements
of R forming an acyclic graph whose root is S. However, if each peer pi ∈ P is free to
establish its own partnerships in R, the peer-to-peer system creates an overlay topology
known as mesh.

Figure 2.1 shows mesh-based overlay topology peer-to-peer network.

Media
Server S

Joined Peers

Bootstrap
Server B

Figure 2.1: Mesh-based overlay topology

Mesh-based peer-to-peer overlay differs from tree-based overlay topology

2.1. Peer-to-Peer Networks 13

peer-to-peer networks. In this second case, there must be network management
algorithm to position each peer in the overlay topology (Magharei and Rejaie, 2007).
This type of topology is more sensitive to peer churn, since it requires a topological
restructuring based on a criteria to maintain the structure in the presence of peer
dynamism, while mesh-based topologies suffer from the overhead of message to
maintain data exchange between peers (Liu et al., 2008a; Venkataraman et al., 2006).
In addition, hybrid-based topology that combine concepts of both mesh-based and
tree-based topologies is known in the literature (Huang et al., 2007).

Figure 2.1 shows tree-based overlay topology peer-to-peer network.

Midia
Server S

Joined Peers

Bootstrap
Server B

Figure 2.2: Tree-based overlay topology

In order to manage its partnerships, each peer p ∈ P has a set of partners
N (p) for exchanging video chunks. To get more control over partnerships, N (p) is
split between two subsets of partner peers: Nin(p) containing in-partners (partners
that provide chunks to p) and Nout(p) containing out-partners (partners that receive
video chunks from p). In this case, N (p) = [Nin(p) ∪ Nout(p)] and N (p) ⊆ V(p). The
maximum number of in-partners is denoted by Nin(p). Similarly, the maximum number
of out-partners is denoted by Nout(p). For the media server S, Nin(p) = ∅.

A relationship (p, p′) ∈ R where p ∈ Nout(p
′) requires other partnership

(p′, p) ∈ R where p′ ∈ Nin(p). Successfully established partnerships determine N (p).
When p detects that one of its partners p′ ∈ N (p) has been silent (control message
absence or chunk not received) for longer than a predefined time period, p removes p′

from N (p). Peer p periodically contacts the bootstrap server to obtain a new list L(p)

of potential partners to replace the lost partnership.

Metrics definition: Let t(i) be a time instant and let ck(i) be a media chunk
delivered by server S at t(i).

14 Chapter 2. Peer-to-Peer System Definitions and Configurations

Metric 1 Latency Metric: We define network latency (in seconds) as:

Network Latency(t(i)) =

∑
(p∈P)(t(p) − t(i))
|+P |

Where:

• t(p) is the time in which chunk ck(i) is received by p.

• |+P | is the number of active peers in P that have reported its performance logs.

Metric 2 Discontinuity Metric: In an interval of time [t(i), t(i+x)], server S
generates the chunks [ck(i), .., ck(i+x)]. Let Nck([t(i), t(i+x)]) be the number of chunks
generated by S in [t(i), t(i+x)]. Let be Rck(p)([t(i), t(i+x)]) the number of chunks that a
peer p received in [t(i), t(i+x)] at the playback time of p. We define discontinuity metric
of peer-to-peer network (in percentage) at [t(i), t(i+x)] as:

Network Discontinuity([t(i), t(i+x)]) = 1−

∑
(p∈P)

Rck(p)([t(i), t(i+x)])

Nck([t(i), t(i+x)])

|+P |
We calculate both latency and discontinuity metrics throughout the experiments

at an interval of every 500 media chunks generated.

Each peer p has a buffer area b(p) to store received chunks. b is a circular
structure that stores only recent chunks. Playback quality is reached with low (or
none) discontinuity in media, (i.e. the playback interruption in peer p is caused by the
unavailability of some of the required chunks in b(p)). To avoid media discontinuity,
each peer attempts to receive chunks in advance. Thus, we call window of interest of p
the region of the b(p) that should be filled relative to the current point of the playback.

When discontinuity stops the video playback for a long time, a peer p should be
forced to leave T and ask to join again. We call this peer behavior as peer join reboot.
Different from commercial live streaming where users can provoke its peer join reboot,
in our experimentations the phase of peer join reboot is determined according to how
much the window of chunk interest of a peer is empty after its playback was stopped.

Figure 2.3 shows a circular buffer of a peer p with its window of interest. In this
figure, t(i) represents the playback time.

Let t(i) be a time instant. At t(i), a peer p is joined in the overlay if p’s playback
does not motivate the peer join reboot of p. We consider that a live streaming network
T is robust at t(i) if a large fraction of its peers p is joined. In this case, a robust
peer-to-peer overlay support a desired media transmission.

2.2. Flash Crowd on Peer-to-Peer Networks 15

window of interest

window of interest

window of interest

t(i)

t(i+1)

t(i+2)

Figure 2.3: Circular Buffer b(p)

For authors Traverso et al. (2012), about 5% is a satisfactory average of
discontinuity on peer-to-peer live streaming networks. As opposed to determine how
large should be the fraction of joined peer in order to define the robustness of the
system, in our experiments we consider a peer-to-peer system robust when the system
discontinuity is up to 5%.

We do not have included the latency metric in the robust overlay concept since
high latency does not impose the peer join reboot and, consequently, does not affect
the media transmission. However, we cite that Traverso et al. (2012) consider that 7
seconds is a satisfactory average reference of peer-to-peer latency metric.

2.2 Flash Crowd on Peer-to-Peer Networks

We define Lnc ∈ B (bootstrap server) as the list of newcomer peers that have asked to
join the peer-to-peer network and are waiting for the peer joining phase. Ordinarily,
peer joining phase happens immediately after the newcomer peer joining request.
However joining phase can take longer when occurs a flash crowd.

Flash crowd in peer-to-peer live streaming can be a sudden or an expected event.
According to Chung and Lin (2011), flash crowd occurs when thousands of peers join a
popular P2P IPTV channel in a short time, which can be expected. According to Chen
et al. (2014), flash crowd is a sudden arrival of numerous peers at a system. When
a flash crowd occurs, the sudden arrival of numerous peers may starve the upload
capacity of the system, hurt its quality of service, and even cause system collapse. In
this work, we consider flash crowd as an expected event with a defined time occurrence.

16 Chapter 2. Peer-to-Peer System Definitions and Configurations

Our results, however, do not require knowing the flash crowd moment in advance.
In this work, we define the flash crowd event as the situation in T when

|Lnc| � |P | such that become a network stability threat. It is not our objective
to study flash crowd events. Instead, we have applied flash crowd events in order to
evaluate our strategies of overlay topology construction. We need, in this case, to
provide enough large fraction of peers to provoke an effective flash crowd event (i.e
enough to collapse the peer-to-peer system).

However, for more information, Chen et al. (2014) provides a comprehensive
study on the performance of peer-to-peer live streaming systems under flash crowds,
including the mathematical model of the relationship between flash crowd size and
system recovery time.

2.3 Free Rider on Peer-to-Peer Networks

Despite the significant research effort dedicated to the development of mechanisms to
discourage uncooperativeness, it is common the presence of uncooperative peers in the
peer-to-peer network systems without disrupting the media transmission.

Oliveira et al. (2013b) categorize peers using their cooperation level C, i.e.,
the ratio of a peer’s average upload rate relative to the video bitrate throughout
the experiment. Authors categorize peers as free riders if C = 0, uncooperative if
0 < C ≤ 1, cooperative if 1 < C ≤ 5, and altruistic if C > 5. Free riding behavior is
the opposite of the cooperative peer category.

Further, Oliveira et al. (2013b) define two types of free rider, namely conscious
and oblivious. Conscious free riders inform their partners that they are unwilling or
unable to upload data. This behavior may be coded in the software or chosen by
users. As a consequence, no peer ever wastes time and bandwidth sending requests
to conscious free riders. On the other hand, oblivious free riders do not inform their
partners that they are unwilling or unable to upload data. This behavior may happen
if the software does not make provisions for free riders or due to malicious intent.
Oblivious free riders request chunks as normal and advertise the chunks they have,
but never upload data (i.e., never answer requests). Oblivious free riders may receive
requests and degrade system performance, as their partners will have to retransmit
chunk requests after waiting for answers that never arrive.

Although oblivious free riders degrade system performance more than conscious
free riders, a simple mechanism was proposed in order to mitigate the negative
consequences of the oblivious free riders. This mechanism is called Simple Unanswered

2.4. TVPP: A Peer-to-Peer Network Implementation 17

Request Eliminator (SURE), a modification to the chunk request scheduler that
avoids wasting time and bandwidth by listing the peers that have no good chunk
answer history. Using the SURE, experiments with oblivious free riders showed results
quantitatively similar to experiments with conscious free riders. SURE works because
peers may identify uncooperative peers with few interactions.

Since it is easy to configure a mobile peer-to-peer user on commercial systems
to be a conscious free rider (and we are interested in providing a robust network that
supports a larger number of free riders), we configure our experiments considering
three categories of peers: conscious free riders (as mobile users); cooperative peers;
and altruist peers. Moreover, we enable the SURE mechanism in all network systems.

2.4 TVPP: A Peer-to-Peer Network

Implementation

TVPP (Oliveira et al., 2013a) is an open source system for peer-to-peer live streaming
network execution. The TVPP topology is a mesh overlay that provides peer message
exchanges through peer partnerships relations. As some TVPP advantages, we cite:
(i) C++ implementation; (ii) easy parameters setup; (iii) similar to peer-to-peer
commercial networks. Since TVPP encoding is object-oriented and implemented in
a common programming language, it can be compiled for different operating systems
and allows easy integration of new code modules.

TVPP implements the bootstrap server B, the media server S and client peers.
B is a network access centralized server, and it manages active peers in the network.
Media server S and client peers differ each other only by parameter configuration on
client code. In the experiments, we defined a single S and a single B. TVPP defines
message exchange rules among client peers and between client peers and B in order
to ensure the live media streaming. Physical network peers exchange message on an
overlay topology defined by the relationship among them.

2.4.1 Media Streaming on TVPP

The media generation is provided by VLC (VLC, 2013). VLC includes a easy-to-use
streaming feature that can stream music and videos over a local network or the
Internet. So, server S reads the media from the VLC streaming location, splits it
into chunks, identifies each chunk with the current chunk ID (i.e. chunk identifier)

18 Chapter 2. Peer-to-Peer System Definitions and Configurations

and distributes the chunks to its partnership peers. A peer P uses the chunk ID
information to sort the media chunks in the b(p) (i.e. p’ chunk buffer). Further, server
S informs the current chunk ID to server B which distributes it for all newcomer peers
in the joining phases. The current chunk ID exchange permits that a newcomer peer
p defines its window of interest (to fill b(p)) before starting the media requests.

TVPP is implemented supported by client-oriented pull protocol (Cigno et al.,
2008). Periodically, peer p exchanges its buffer map (i.e. the chunk ID map of available
chunks in b(p)) with Nout(p) to inform them what chunks p has available. Each peer p
periodically checks which chunks it needs, identifies which partners Nin(p) can provide
missing chunks, and sends chunks requests accordingly. TVPP allows each peer p
be configured to schedule requests depending on chunk availability (e.g., rarest chunk
first), or they may schedule depending on playback time, (e.g., earliest deadline first).
The rarest first policy tries to replicate a chunk as soon as possible while the earliest
deadline policy tries to make playback smoother, among other.

In the scope of this work, we schedule chunk requests using the earliest deadline
first policy together with the Simple Unanswered Request Eliminator (SURE) (Oliveira
et al., 2013b). SURE makes peers prefer to request chunks to in-partners with
less unanswered (timed-out) requests, balancing load, and reducing the number of
unanswered requests. SURE favors requests to peers that have good answering history.
A peer considers that a request has timed out if it is not answered within a determined
period of time (500 milliseconds in our experiments). Finally, cooperative peers
immediately serve received requests in order of arrival.

2.4.2 Bootstrap Server Reports

Peers send monitoring reports to server B every ten seconds. Reports currently include
the number of chunks generated (only reported by the video server), sent, received, and
the ones that missed their playback deadline; the number of requests sent, answered,
and retried; the average forwarding path length, retry count, and time of arrival of
received chunks; neighborhood size; and the number of duplicate chunks received.

Sent monitoring reports by the peers allows B to keep P updated with only
active peers and each active peer receives an updated L(p) from B. Server B organizes
peer reports into two files: peer performance; and overlay topology. The first one is
important to compute the performance metrics like chunk latency and chunk playback
deadline miss rate. The last file is used in order to understand the overlay topology
organization throughout the experiment execution time.

2.5. General Experimental Method 19

2.4.3 Peer Partnership Rules

Peers randomly choose in-partners from peer lists received from the bootstrap server
B to connect to. To guarantee a new peer n is able to join the overlay, an existing
peer p is able to accept an incoming partnership request even when Nout(p) is full. In
this case, p disconnects a random out-partner q ∈ Nout(p) with less out-partnerships
than the new peer n, i.e., Nout(q) < Nout(n). Afterwards, peer p remains unable to
disconnect more out-partners to accept incoming partnership requests during the next
τ = 60s to prevent overlay instability.

2.4.4 Overhead of Our Techniques Implementation

In this section, we describe the overhead of message imposed on basic TVPP in order
to support our proposed techniques. Subsequent chapters present our techniques with
detail.

Parallel Overlay, presented in Chapter 3 includes one new control TCP/IP
messages on TVPP, called auxiliary source setup. The new message is needed to allow
server B to setup some peers in the overlay as temporary auxiliary source servers,
described in Section 3.4. The messages of auxiliary source setup are used only one
time in order to prepare the peer-to-peer overlay to support the flash crowd event.
In our experiments, server B has sent only 6 message of auxiliary source setup, which
implies a non significant additional overhead. Auxiliary source setup message transmits
8 bytes of information and this message extends the basic Message Class on TVPP,
that contains 6 bytes.

Both Free Rider Slice, Chapter 3, and Peer Partnership Constraint (PPC),
Chapter 4, techniques work on basic TVPP and without additional control message.

Finally, Partnership Constraint Class Algorithm Concepts (2PC), Chapter 5, has
no additional message. However, the message of system control exchanged between
peers includes two new fields, raising the basic TVPP message in 4 bytes. These 4
bytes are needed in 2PC because each peer p ∈ P has to share Nout(p) with its partners
in order to allow disconnect behavior in the system, described above in Section 2.4.3.

2.5 General Experimental Method

We have run experiments on PlanetLab (PlanetLab, 2013) using TVPP. We use
as many PlanetLab nodes as possible in our experiments (around 110, with slight
variations between experiments). Peers in the overlay are subject to CPU and

20 Chapter 2. Peer-to-Peer System Definitions and Configurations

bandwidth restrictions in the underlying PlanetLab node.
In order to limit the upload bandwidth to more realistic scenarios, we also apply

a bandwidth limit, defined for each experiment. The bootstrap server B runs on our
university’s network (UFMG - Universidade Federal de Minas Gerais, Brazil) and is
not subject to bandwidth limitations (and has spare CPU capacity). The video server
S streams a 420kb/s video. Each chunk is a MTU-sized packet, which gives around 40
chunks per second.

The experiment is composed of five runs, and we show average results over all
runs. Experiment times are different among experiment sections. So, the reader can
see the total time of each experiment on local Experimental Method section in each
chapter and on presented charts. Each experiment consists of two phases, before and
after the flash crowd event. During the first phase, we run a single TVPP client on
each PlanetLab node (i.e., around 110 peers). On the second phase, we launch ten
additional peers on each PlanetLab node to emulate a flash crowd event. To preserve
packet loss and delay in a realistic scenario we do not allow peers’ communication
within the same PlanetLab’s node.

Upload bandwidth distribution: In this thesis, first, we consider, a known
upload bandwidth distribution for peers, and later a random upload bandwidth
distribution, described in Chapter 5. Such as (Lobb et al., 2009) and (Traverso et al.,
2015), we define four distinct upload bandwidth distribution, that configure peers as:
Hot; Warm; Cold; and Free Rider peers. Both authors (Lobb et al., 2009) and (Traverso
et al., 2015) have configured a fraction of 10% of its Hot peers with a higher upload
bandwidth (5.0Mb/s). Similarly, we have setup 4.0Mb/s of upload bandwidth for Hot
peers within the range of [9-11]%.

In order to configure Free Rider peers, we use 0.0Mb/s of upload bandwidth and
a large fraction of them (starting in 40%). Our fraction of Free Rider peers differ from
the fractions of 10% and 0% defined in (Lobb et al., 2009) and (Traverso et al., 2015),
respectively. In our systems, we setup the upload bandwidth for Warm and Cold
peers, so that to provide the peer-to-peer systems with an upload bandwidth average
equivalent to 1.13Mb/s, presented by Traverso et al. (2015) in their experiments.

Maximum number of in-partners and out-partners (Nin and Nout):
According to Traverso et al. (2015), the goal of configuring Nin(p) is to guarantee
that a peer p ∈ P has enough in-partners to sustain the stream download with high
probability in face of peer-to-peer challenges. Glive (Payberah et al., 2011) configure
peers’ in-partners Nin = 8 and Liu et al. (2012) suggest the value 20 for the number

2.6. Understanding the Result Charts 21

of partners, but they do not explicitly separate their set of partner into in-partners
and out-partners such as in this thesis. So, we configure Nin not less than 10 partners,
being that in the majority of our experiments Nin = 20.

As described before in Section 2.1, a relationship (p, p′) ∈ R where p ∈ Nout(p
′)

requires other partnership (p′, p) ∈ R where p′ ∈ Nin(p). So, in our default
configurations, we define the maximum number of out-partner Nout in a way to balance
the

∑
(p∈P) Nin(p) and

∑
(p∈P) Nout(p).

2.6 Understanding the Result Charts

Figures from this section are used only in order to explain how we present and
understand our experiment results. In this section, Exp01 and Exp02 are only a
examples of experiments and we use both in order to explain the real experiments
behavior.

As described before, our experiments are composed of five runs, and we show
averaged results over all runs. However, not all charts display average information.
For example, Figure 2.4(a) shows peers joining in the network. The purple (upper)
points show the number of incoming peers, i.e., that are trying to join the overlay. The
green (lower) and the red (lower) points show the number of peers that successfully
joined the overlay, i.e., stables peers, on experiments Exp01 and Exp02, respectively.
In this case, we compute the number of incoming and joined peers in non-overlapping
10 seconds time intervals (x axis). Each chart aggregates results for five experiment
runs, i.e., for every 10 seconds-period in the x axis, we show five numbers of incoming
peers and five numbers of joined peers.

We are looking for peer-to-peer network configurations that preserve a large
number of joined peers in the network during the whole experiment time. Figure 2.4(a)
presents a situation where the overlay preserves only a low fraction of joined peers for
the duration of the experiment (Exp01) and, on the other hand, an opposite situation
(Exp02). For example, at time 850 seconds of the experiment the number of joined
peers ranged between 450 and 650 depending on which of the five experiments is
observed. In comparison, for Exp02 the number of joined peers is stable at this time.

Thus, we consider that real experiments that provide results similar to the results
of Exp01 (Figure 2.4(a)) come from unstable networks and, consequently, these network
configurations are undesired or unacceptable. On the other hand, experiments that
provide results similar to the results of Exp02 come from stable networks and these
network configurations are our target, Figure 2.4(a), too.

22 Chapter 2. Peer-to-Peer System Definitions and Configurations

 0

 200

 400

 600

 800

 1000

 1200

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y

Time (s)

Incoming
Exp01
Exp02

(a) Network

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00

A
v
e

ra
g

e
 d

is
c
o

n
ti
n

u
it
y
 (

%
)

Time (s)

Exp01 (
−
σ=3.8805, σ

∆
=18.4641)

Exp02 (
−
σ=0.5061, σ

∆
= 1.8695)

(b) Discontinuity

 0

 10

 20

 30

 40

 50

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

s
)

Time (s)

Exp01 (
−
σ=5.1650, σ

∆
=19.2242)

Exp02 (
−
σ=0.6643, σ

∆
= 1.9298)

(c) Latency

Figure 2.4: Results Analysis Example

Figures 2.4(b) and 2.4(c) show the average of both discontinuity and latency
metrics for Exp01 and Exp02. For a desired peer-to-peer setup, we want to reach
up to 5% of discontinuity average and 7 seconds of latency average. Thus, besides
the network configuration for Exp01 does not preserve stable the joined peers, both
discontinuity and latency metrics for Exp01 are over our acceptable threshold. On the
other hand, Exp02 kept our imposed threshold, as shown in the charts.

We calculate both the average and the standard deviation for each metric every
10 seconds for the values obtained in each of the five experiments at that point in time.
The average computed at each time is shown in the chart line. Each discontinuity
and latency charts also present: (i) σ that is the value of the average of the standard
deviation for the metric throughout the experiments; and (ii) σ∆ that is the value of
the maximum standard deviation during the experiments.

Chapter 3

Effects of Partnership Constraints

3.1 Introduction

In this chapter we present and evaluate an overlay maintenance strategy for integrating
new peers into the overlay during challenging scenarios. In particular, we evaluate the
performance of a resource-constrained overlay during a flash crowd event. We first
present results for an existing mechanism to handle flash crowds introduced by Liu
et al. (2012) in order to establish a baseline (Section 3.3). We then propose a new
overlay maintenance strategy to join new peers in the overlay during flash crowd events,
the parallel overlays technique (Section 3.4).

Using parallel overlays technique, even with resources constraints, a large fraction
of free riders are able to join the network without resource competition with cooperating
peers. This is possible because parallel overlays were set to not allow partnership
formation between free rider peers that arrive during the flash crowd and cooperative
peers that joined the network before the flash crowd event. Parallel overlays technique
creates new overlay topologies to contain newcomer free riders without permitting them
to initiate partnership with any peers from the master overlay. This mechanism shows
been enough for limiting the risks offered by free riders exhausting network’s resources.

In addition, we present the free rider slice (Section 3.5) as a simple way to restrict
partnerships between free riders and cooperative peers without the need to implement
parallel overlays. We show that it is possible to mitigate free rider negative effects
during a flash crowd event by only setting restrictions to partnerships between free
riders and cooperative peers using either free rider slice or parallel overlays technique.
However, free rider slice is better than parallel overlays since free rider slice offers an
easy implementation, faster peer joining, and works keeping only an existing mesh
overlay.

23

24 Chapter 3. Effects of Partnership Constraints

The idea of constraining the use of network resources to increase the performance
of admitted users is not novel (Adar and Huberman, 2000; Ma et al., 2006). Admission
control, for instance, constrains the entrance of peers so as to guarantee service
levels to those peers that effectively use the network. The constraints imposed on
the connections presented in this work are a soft version of admission control, as
they restrict the number of connections established by existing peers. In essence,
such restrictions are imposed to prevent problems such as the tragedy of the
commons (Hardin, 1968), wherein peers that don’t contribute to the system degrade
the performance of the whole population.

In order to study the flash crowd in this chapter, we define: (i) master network,
the mesh overlay topology composed by the set of peers that joined on peer-to-peer
network before the flash crowd’s event; and (ii) whole network, the peer-to-peer
network composed by the set of all active peers. Thus, before the flash crowd, master
network and whole network are the same.

3.2 Experimental Method

Our experiments in this chapter were performed in 1350 seconds. The first 70 seconds
initialize bootstrap and media servers. Then we construct a master network with a
group of around 110 peers to support a flash crowd event of around one thousand of
new peers, that happens at 350 seconds after each experiment beginning. In a total,
we run around 1100 peer instances (i.e. 11 instances in each PlanetLab’s node). We
allocate peers to the four classes shown in Table 3.1 at random with a probability given
by the proportion column. As described in Section 2.3, Chapter 2, since Nout(p) = 0

for each p ∈ Free rider Class, it ensure that all free riders are conscious.

Table 3.1: Network Peer Configuration Classes

Peer Upload
Class (Mb/s) Proportion Nin(p) Nout(p)

Hot peers 4.0 11% 10 23
Warm peers 2.5 22% 10 20
Cold peers 1.5 27% 10 09
Free rider 0.0 40% 10 00

3.3. Baseline: Batching Newcomer Peers 25

3.3 Baseline: Batching Newcomer Peers

The authors Liu et al. (2012) present the most important solution to handle flash crowd
event on mesh-based overlay for live streaming, becoming our baseline technique. To
evaluate the behavior of our overlay configurations we implemented a simplified version
of a technique to join newcomer peers during flash crowd events by Liu et al. (2012).
This technique holds newcomer peers in a queue to pace the joining process. In each
iteration i, the system evaluates the overlay’s resources and determines a subset Ri

of all newcomer peers that are to join the overlay in iteration i. The technique also
determines the duration wi of iteration i, which allows the overlay to integrate peers in
Ri and stabilize prior to the next iteration. Iterations occur until all newcomer peers
join the overlay. We fix wi = 100seconds for all iterations, and consider three scenarios
where 50%, 25%, and 18% of newcomer peers join the overlay in each iteration (leading
to 2, 4, and 6 iterations, respectively).

Figure 3.1 shows results for the baseline technique. The blue (upper) points show
the number of incoming peers, i.e., that are trying to join the overlay. The green
(lower) points show the number of peers that successfully joined the overlay, defined
as peers that are receiving at least 95% of all distributed video chunks prior to their
chunk playback deadlines. We compute the number of incoming and joined peers in
non-overlapping 10 seconds time intervals (x axis). Each graph aggregates results
for five experiment runs, i.e., for every 10 seconds-period in the x axis, we show five
numbers of incoming peers and five numbers of joined peers. A successful transmission
will have the number of joined peers (green points) in a stable line close to the number
of incoming peers (blue points).

We observe that some experiments have very low numbers of joined peers. This
performance instability illustrates the negative effect of the flash crowd event on the
peer-to-peer overlay: as a large number of peers are added to the overlay in a short
period, partnerships are broken and chunk distribution is disrupted, ultimately leading
to overlay collapse. However, we note batching newcomer peers gives time for the
peer-to-peer overlay to stabilize and reduces the impact of the flash crowd.

Figure 3.2 shows the discontinuity and latency averaged across all 5 experiment
runs shown in Figure 3.1(d), which had the best results. We show results for all peers
in the network (blue line), and only for peers that joined the overlay prior to the flash
crowd event, referred to as the master overlay (orange line). Figure 3.2 only includes
peers that have successfully joined the overlay and are reproducing the video in the
overlay, i.e., included in the green points in Figure 3.1(d).

We observe in both Figure 3.2(a) and Figure 3.2(b) that the overlay was robust

26 Chapter 3. Effects of Partnership Constraints

 0

 200

 400

 600

 800

 1000

 1200

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y

Time (s)

Incoming
Joined

(a) No batching

 0

 200

 400

 600

 800

 1000

 1200

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y

Time (s)

Incoming
Joined

(b) 50% batches

 0

 200

 400

 600

 800

 1000

 1200

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y

Time (s)

Incoming
Joined

(c) 25% batches

 0

 200

 400

 600

 800

 1000

 1200

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y

Time (s)

Incoming
Joined

(d) 18% batches

Figure 3.1: Baseline Technique to Join Newcomer Peers

until around 1000 seconds. After 1000 seconds chunk distribution was compromised
and average discontinuity and latency increase. We also observe that peers that joined
the overlay prior to the flash crowd event are impacted similar to peers joining the
overlay during the flash crowd.

3.4 Increasing the Robustness of the Peer-to-Peer

Overlay by Instantiating Parallel Overlays

Chung & Lin proposed to control the joining process during flash crowd events for a
tree-based peer-to-peer live streaming system (Chung and Lin, 2011). They propose
newcomer peers first join a subtree that branches off from the existing master tree.
This protects partnerships in the master tree and prevents performance degradation
for peers that have already joined the overlay.

3.4. Increasing the Robustness of the Peer-to-Peer Overlay by
Instantiating Parallel Overlays 27

 0

 2

 4

 6

 8

 10

 12

 14

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

A
v
e

ra
g

e
 d

is
c
o

n
ti
n

u
it
y
 (

%
)

Time (s)

Whole Network (
−
σ=0.4106, σ

∆
=1.1421)

Master Network (
−
σ=0.6736, σ

∆
=1.6511)

(a) Playback Quality

 0

 2

 4

 6

 8

 10

 12

 14

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

s
)

Time (s)

Whole Network (
−
σ=0.3975, σ

∆
=1.1544)

Master Network (
−
σ=0.4103, σ

∆
=1.1544)

(b) Distribution Latency

Figure 3.2: Performance for Batch Joining

We next present an adaptation of this idea to mesh-based peer-to-peer overlays.
The main feature of our solution is that it requires no modification to most peer-to-peer
peers; it is mostly controlled by the bootstrap server and incurs negligible no additional
CPU or communication overhead.

Let master overlay be the peer-to-peer mesh overlay receiving media from the
source S. At any point in time, the bootstrap server B selects a subset of peers Saux

in the master overlay. Each p ∈ Saux becomes an especial auxiliary source. Auxiliary
sources receive media chunks from peers in the master overlay, but do not contribute
back any chunks to the master overlay. This stage is called auxiliary source isolation.

Auxiliary source isolation prepares network for newcomer peer, including flash
crowd events. When a newcomer peer n arrives, the bootstrap server only sends to n
peer lists containing auxiliary sources and other newcomer peers (that have previously
connected to auxiliary sources). This effectively establishes isolated parallel overlays
for newcomer peers, as new partnerships are established only among peers in the same
parallel overlay and their auxiliary source. As parallel overlays are disjoint with the
master overlay, the distribution efficiency in the master overlay is not affected. This
stage is called parallel overlay construction.

After a parallel overlay is built and partnerships have stabilized, the bootstrap
servers proceeds to the parallel overlay merge stage. In this stage, the bootstrap server
starts advertising peers in the master overlay to cooperative peers in the merging
parallel overlay. As peers in the parallel overlay establish partnerships with peers
in the master overlay, they become part of the master overlay. We find that new
partnerships established during the merging stage do not disrupt the master overlay
as peers already have a filled buffer and can immediately contribute to the overlay and

28 Chapter 3. Effects of Partnership Constraints

participate in chunk distribution after establishing new partnerships.
Figure 3.3 illustrates the stages of our solution. In the auxiliary source isolation

stage, the master overlay is robust and the video source distributes chunks into the
overlay. The bootstrap server selects auxiliary sources and isolate them from the
overlay. In the parallel overlay construction stage, newcomer peers establish disjoint
parallel overlays and do not communicate with peers in the master overlay. Finally,
in the parallel overlay merge stage, peers in the parallel overlay establish partnerships
with peers in the master overlay.

Master Overlay Auxiliary Source
 Isolation

Parallel Overlay
 Construction

Media server

Cooperative Peer

Free Rider

Auxiliary Source

Parallel Overlay Merge

Figure 3.3: Parallel Overlays Stages

We run experiments and select six hot peers as auxiliary sources. Newcomer peers
were uniformly split across auxiliary sources for constructing balanced parallel overlays.
The bootstrap server waits 200 seconds for parallel overlays to stabilize, then starts
merging one parallel overlay every 100 seconds. From the beginning of the experiment,
the flash crowd event happens after 350 seconds, the first merge happens after 550
seconds, the second merge happens after 650 seconds, and so on, until the last merge
happens after 1050 seconds.

 0

 200

 400

 600

 800

 1000

 1200

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y

Time (s)

Incoming
Joined

(a) Overlay Size (all peers)

 0

 200

 400

 600

 800

 1000

 1200

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y

Time (s)

Joined (Free Riders)
Joined (Cooperative)

(b) Overlay Size (by class)

Figure 3.4: Parallel Overlays to Join Newcomer Peers

3.5. Naïve Model: Implementing Partial Partnership Constraints 29

Figure 3.4 is similar to Figures 3.1. Figure 3.4(a) shows that, for the same pattern
of incoming peers (blue points) as in Figure 3.1, parallel overlays can steadily and
consistently distribute media to an increasing number of peers (positive trend in green
points), at a pace similar to that of the 18%-batch baseline (Figure 3.1(d)) but without
disruption to the master overlay. Figure 3.4(b) shows separated joined common peers
and joined free rider. We observe balance in joining rate for all peer classes. The small
joining gap between cooperative peers (i.e. Hot/Warm/Cold classes) and Free riders
is explained because free riders are 40% versus 60% from common peers.

 0

 2

 4

 6

 8

 10

 12

 14

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

A
v
e

ra
g

e
 d

is
c
o

n
ti
n
u

it
y
 (

%
)

Time (s)

Whole Network (
−
σ=1.6984, σ

∆
=6.3799)

Master Network (
−
σ=0.7243, σ

∆
=1.9304)

(a) Playback Quality

 0

 2

 4

 6

 8

 10

 12

 14

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

A
v
e

ra
g

e
 l
a

te
n
c
y
 (

s
)

Time (s)

Whole Network (
−
σ=1.2815, σ

∆
=4.0455)

Master Network (
−
σ=0.5147, σ

∆
=2.8673)

(b) Distribution Latency

Figure 3.5: Performance of Parallel Overlays Joining

Figure 3.5 is similar to Figure 3.2. Figures 3.5(a) and 3.5(b) show that
performance degradation is concentrated on parallel overlays. Even though latency
and discontinuity slowly increase as the master overlay grows, this increase is small
and steady.

3.5 Naïve Model: Implementing Partial Partnership

Constraints

Based on results from parallel overlays in Section 3.4, we conclude that isolating
peers unable to contribute from peers in the master overlay lead to more stable
overlay distribution efficiency. Furthermore, parallel overlays make the bootstrap
server significantly more complex (e.g., to choose the number and identities of auxiliary
sources).

In this section, we employ our findings to devise a simple mechanism to increase
the stability and efficiency of peer-to-peer overlays in general. Our idea is to decrease

30 Chapter 3. Effects of Partnership Constraints

competition among free rider and cooperative peers imposing a simple partnership
constraint on peers. Therefore, by considering a peer’s classification, we define which
partnerships are allowed and which partnerships are prohibited.

We limit peers to establish out-partnerships with other peers that have similar
upload bandwidth. In particular, peers from the hot class (high upload bandwidth)
are allowed to accept only hot, warm, and cold peers as out-partners. Peers from the
warm class (average upload bandwidth) are allowed to accept any peer as out-partners.
Finally, peers from the cold class (low upload bandwidth) are allowed to establish
out-partnerships with free rider peers.

Figure 3.6(a) shows overlay efficiency when we restrict peer partnerships (without
using parallel overlays), and Figure 3.6(b) is similar to Figure 3.6(a), but shows the
number of joined peers for free riders and all cooperative peers classes combined. We
assign classes to peers using the proportions in Table 3.1. We observe fast joins and
robust overlay efficiency on all experiment runs. Apart from partnership restrictions, all
peers are treated identically. Our partnership constraints pull cooperative peers close
to the source and push free riders to the edge of the overlay. This overlay topology is
desired, as it ensures peers with more upload capacity receive video chunks early and
have more time to redistribute chunks to other peers in the overlay.

 0

 200

 400

 600

 800

 1000

 1200

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y

Time (s)

Incoming
Joined

(a) Overlay Size (all peers)

 0

 200

 400

 600

 800

 1000

 1200

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y

Time (s)

Joined (Free Riders)
Joined (Cooperative)

(b) Overlay Size (by class)

Figure 3.6: Free Rider Slice to Join Newcomer Peers

Figure 3.7(a) and 3.7(b) report improved distribution efficiency. We observe both
discontinuity and chunk distribution latency remain stable and with low values for the
whole overlay, including the master overlay. In particular, all peers achieve performance
similar to that of the master overlay when using parallel overlays (Figure 3.5). We
note that partnership constraints yield average discontinuity below 5% throughout the
experiment, which previous work consider a target threshold for discontinuity (Traverso

3.5. Naïve Model: Implementing Partial Partnership Constraints 31

et al., 2012).

 0

 2

 4

 6

 8

 10

 12

 14

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

A
v
e

ra
g

e
 d

is
c
o

n
ti
n

u
it
y
 (

%
)

Time (s)

Whole Network (
−
σ=0.4559, σ

∆
=1.2612)

Master Network (
−
σ=1.0757, σ

∆
=3.7953)

(a) Playback Quality

 0

 2

 4

 6

 8

 10

 12

 14

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

s
)

Time (s)

Whole Network (
−
σ=0.5284, σ

∆
=1.8295)

Master Network (
−
σ=0.5774, σ

∆
=1.8295)

(b) Distribution Latency

Figure 3.7: Performance of Free Rider Slice Joining

Imposing more network resource constraints: Motivated by the performance of
partnership constraints, we consider a more resource constrained peer population to test
the limits of our technique. We keep the same peer configurations shown in Table 3.1,
but change peer proportions to 50% of free riders (+10%), 24% of cold peers (−3%),
17% of warm peers (−5%), and 9% of hot peers (−2%), shown in Table 3.2.

Table 3.2: Network Peers Configuration for 50% of Free Rider

Peer Upload
Class (Mb/s) Proportion Nin(p) Nout(p)

Hot peers 4.0 09% 10 23
Warm peers 2.5 17% 10 20
Cold peers 1.5 24% 10 09
Free rider 0.0 50% 10 00

Figure 3.8(a) shows that overlay distribution efficiency remained stable
throughout the experiment. Figure 3.8(b) (such as the Figure 3.6(b)) is similar to
Figure 3.8(a), but shows the number of joined peers by class. We observe that
partnership constraints guarantee higher stability among cooperative peers, which may
serve as an incentive for peer contribution.

Figure 3.9 shows discontinuity metric and distribution latency. The smooth
decline in the number of joined free riders in Figure 3.8(b) impacts the discontinuity

32 Chapter 3. Effects of Partnership Constraints

metric (Figures 3.9(a)). However, distribution latency line is constant after the flash
crowd event, i.e., there is negligible impact on latency.

 0

 200

 400

 600

 800

 1000

 1200

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y

Time (s)

Incoming
Joined

(a) Overlay Size (all peers)

 0

 200

 400

 600

 800

 1000

 1200

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y
Time (s)

Joined (Free Riders)
Joined (Cooperative)

(b) Overlay Size (by class)

Figure 3.8: Free Rider Slice to Joining Newcomer Peers (50% of Free Riders)

 0

 2

 4

 6

 8

 10

 12

 14

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

A
v
e

ra
g

e
 D

is
c
o

n
ti
n

u
it
y
 (

%
)

Time (s)

Free Riders (
−
σ=1.1830, σ

∆
=2.3660)

Cooperatives (
−
σ=0.6209, σ

∆
=1.8922)

(a) Playback Quality

 0

 2

 4

 6

 8

 10

 12

 14

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

s
)

Time (s)

Free Riders (
−
σ=1.8806, σ

∆
=2.5702)

Cooperatives (
−
σ=0.4881, σ

∆
=1.4150)

(b) Distribution Latency

Figure 3.9: Performance of Free Rider Slice Joining (50% of Free Rider)

It is important to remember that our baseline technique failed to construct
overlay when facing 40 % of free riders (Figure 3.1). It means that we define a severe
peer-to-peer resource constraint. Thus, acceptable results from free rider slice when
facing 50% of free riders make us realize that the partnership constraints between
peers permit to construct a robust peer-to-peer overlay and should be more deeply
investigated.

All models which we present in the next chapters are derived from free rider slice
technique. Thus, we consider three weaknesses of free rider slice which we propose to
solve: (i) peers from the hot class were configured such that to avoid relationship with

3.5. Naïve Model: Implementing Partial Partnership Constraints 33

(only) free riders. Thus, peers with low upload bandwidth (from cold class) are allowed
near the media server; (ii) since peers from the cold class should accept partnership
only with free riders, the network may waste upload bandwidth when facing a small
fraction of free riders; and (iii) since no partnership constraint is defined for peers from
the warm class, free riders may experience a high level of instability. As explained in
Section 2.4, Chapter 2, because cooperative peers have priority on new partnership
connections, a peer p from warm class, even with a full set of out-partnership (i.e.
|Nout(p)| = Nout(p)), prefers randomly disconnect a free rider out-partner to accept a
new partnership requisition from a cooperative peer.

Chapter 4

Full Partnership Constraints in
Static Environments

4.1 Introduction

Chapter 3 discusses the initial idea on the partnership restriction between free riders
and cooperative peers. Also, our naïve model free rider slice presents weaknesses
that may compromise the peer-to-peer network stability. Based on free rider slice, we
propose a new peer-to-peer overlay construction mechanism to speed up peer joining
on resource-constrained overlays during flash crowd events while preserving quality of
experience (QoE) for peers already in the overlay. Our technique, peer partnership
constraints (PPC), groups peers into classes by considering each peer’s contribution
to media redistribution (upload bandwidth) and defines partnership constraints (more
severe than imposed by free rider slice) for all peer classes.

PPC improves overlay distribution efficiency by bringing peers in classes with
higher media redistribution scores closer to the server, as proposed in previous
work (Payberah et al., 2011; Piatek et al., 2010; Lobb et al., 2009). However,
unlike other works, PPC achieves this with simple mechanisms that do not increase
communication overhead or implementation complexity. To alleviate the impact of
uncooperativeness, PPC puts free rider peers in a special class that is pushed to the
edge of the distribution overlay.

PPC speeds up peer joining rate during flash crowds by reducing competition for
partnerships in the overlay. As each peer class can only establish partnerships with a
few select peer classes, peers can promptly find peers to establish partnerships with.
Moreover, as free rider peers join the overlay at its edge, they do not disrupt media

35

36 Chapter 4. Full Partnership Constraints in Static Environments

distribution for peers already in the overlay.
We present the technique, called Peer Partnership Constraints (PPC), in

Section 4.2 and discuss its configuration in Section 4.3. We evaluate it in Section 4.4 and
show PPC builds peer-to-peer overlays that are robust to flash crowds and efficiently
distributes media even in the presence of a significant fraction of free riders.

4.2 Peer Partnership Constraint

One limitation of existing peer-to-peer systems is that peers share their out-partner
slots Nout(p) with both cooperative peers and free riders. When a peer p shares
out-partner slots between cooperative and free rider peers, the peer-to-peer overlay
requires a mechanism to identify and push free riders to the edge of the overlay.
Moreover, both free riders and cooperative peers compete for the same overlay
resources. This is undesirable in general, but particularly serious during flash crowds,
when a large number of free riders and cooperative peers try to join the overlay
simultaneously.

To prevent competition between free riders and cooperative peers, we split each
peer p’s out-partners Nout(p) into two sets: N high

out (p), which contain out-partners with
high upload bandwidth; and N low

out (p), which contains out-partners with low upload
bandwidth and free riders. Thus, a peer p accepts new cooperative peers in N high

out (p)

and new free-riding peers inN low
out (p). Nout(p) = N low

out (p)∪N high
out (p). The split ofNout(p)

into N low
out (p) and N high

out (p) allows for more fine-grained peer partnership constraints;
it allows not only to specify which partnerships are allowed, but how many of each
partnership type are allowed.

Given the split of Nout(p), the bootstrap server can allow free riders to join the
overlay immediately even during during flash crowd events without incurring the risk
of compromising overlay stability and efficiency. This is possible because the overlay is
able to throttle the rate at which free riders and peers with low upload bandwidth join
the overlay as a function of N low

out (p) partnership slots available on cooperative peers
p that have already joined the overlay. When peers with high upload bandwidth try
to join the overlay, N high

out (p) slots are available regardless of the number of free riders
trying to join the overlay. PPC employs the same out-partner disconnection strategy
described in Section 2.4, Chapter 2: a peer p with full N high

out (p) (limited by Nhigh
out (p))

will disconnect one of its current cooperative out-partners in favor of a newcomer
cooperative peer with higher upload bandwidth. The same occurs with N low

out (p) set.
As more cooperative peers join the overlay, they contribute additional N high

out (p) and

4.3. PPC Configuration 37

N low
out (p) slots and allow the overlay to grow further.

We need to split Nout(p) into N high
out (p) and N low

out (p) in a way that optimizes
overlay efficiency. Based on previous work showing that pulling peers with high upload
capacity close to the source improves overlay distribution efficiency (Lobb et al., 2009;
Payberah et al., 2011; Piatek et al., 2010), we set N high

out (p) proportional to a peer’s
available upload bandwidth and N low

out (p) inversely proportional to a peer’s available
upload bandwidth. This groups peers with high upload bandwidth together and pulls
them close to the source, while pushing free riders and peers with low upload bandwidth
to the edge of the overlay. For each free rider f , Nout(f) = ∅ by definition.

4.3 PPC Configuration

PPC may be configured with any number of classes and with different sizes for N high
out (p)

and N low
out (p) within each class. This allows PPC to be tailored to specific peer

populations or application requirements. In this work, we consider the four classes
of peers and set sizes in Table 4.1. The contribution column indicates whether a peer
uses out-partnership slots in N high

out (p) or N low
out (p), defined by the maximum numbers

Nhigh
out (p) and N low

out (p), respectively.

Table 4.1: Peer Classes and Output Partnership Configurations

Peer Set Sizes
Classes Nhigh

out (p) N low
out (p) Contribution Description

Hot peers > 0 = 0 High High upload bandwidth
Warm peers > 0 > 0 High Average upload bandwidth
Cold peers = 0 > 0 Low Low upload bandwidth
Free riders = 0 = 0 Low Free riders

The hot class contains peers that have the highest potential for contributing to
the overlay; hot peers only establish partnerships with peers from the hot and warm
classes. The warm class contains peers with average potential for contributing to the
overlay; warm peers can establish partnerships with peers from any class. The cold
class contains peers with low potential for contributing to the overlay; cold peers can
only establish partnerships with other cold peers and free riders. Free riders do not
contribute to the overlay and have no out-partners.

38 Chapter 4. Full Partnership Constraints in Static Environments

Table 4.2: Default Experiment Configuration (Nin(p) = 20, ρ ≈ 1.0)

Construction Strategy Set Sizes
Peer Upload PPC PPC-u Classic
Class (Mbps) Proportion Nhigh

out (p) N low
out (p) Nhigh

out (p) N low
out (p) Nout(p)

Hot 4.0 9% 46 0 26 20 46
Warm 2.5 17% 18 22 20 20 40
Cold 1.5 24% 0 38 18 20 38
Free rider 0.0 50% 0 0 0 0 0

4.4 PPC Evaluation

Table 4.2 shows the default configuration for our experiments. We consider four classes
of peers with different upload bandwidths. We set the fraction of free riders to 50% of all
peers to emulate a resource-constrained scenarios and stress the overlay. We distribute
the remaining peers in the other three classes according to the proportion column. We
configure the number of in- and out-partnerships so that the overlay is balanced, with
ρ =

∑
pNin(p)/

∑
pNout(p) ≈ 1.0 by default, but also evaluate conservative (ρ ≈ 1.5)

and aggressive overlays (ρ ≈ 0.5). Results with the same aggregate upload bandwidth
and lower fractions of free riders yield qualitatively better results (not shown), as the
overlay has more uniformly-distributed upload bandwidth.

We compare PPC with two overlay construction strategies:

• Classic: Usual traditional strategy where peers have a single set of out-partners
and there are not partnership constraints.

• PPC-unconstrained: A simplified version of PPC where out-partners are
split into N high

out (p) and N low
out (p), but partnerships are not constrained. In other

words, peers from all classes can establish partnerships with peers in any other
class. The difference between Classic and PPC-unconstrained quantifies the
impact of splitting Nout(p) and isolating free riders from cooperative peers.
The difference between PPC-unconstrained and PPC quantifies the impact of
partnership constraints.

4.4.1 Balanced Overlays (ρ ≈ 1.0)

In this experiment we consider a balanced overlay where the total number of
in-partnerships is the same as the total number of out-partnerships, as shown in
Table 4.2. Figure 4.1 shows results averaged over the five runs. Figure 4.1(a) shows

4.4. PPC Evaluation 39

the average number of incoming peers (blue points) as well as the average number
of peers that successfully joined the overlay. The Classic construction strategy joins
approximately 800 peers in the overlay with severe fluctuation on the number of joined
peers. Both PPC-u and PPC support a steady 950 peers in the overlay, with negligible
fluctuation.

 0

 200

 400

 600

 800

 1000

 1200

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y

Time (s)

Incoming
Classic
PPC−u

PPC

(a) Overlay Size

 0

 5

 10

 15

 20

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00

A
v
e

ra
g

e
 d

is
c
o

n
ti
n

u
it
y
 (

%
)

Time (s)

Classic (
−
σ=3.8805, σ

∆
=18.4641)

PPC−u (
−
σ=0.5061, σ

∆
= 1.8695)

PPC (
−
σ=0.6194, σ

∆
= 0.8017)

(b) Playback Quality

 0

 5

 10

 15

 20

 25

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

s
)

Time (s)

Classic (
−
σ=5.1650, σ

∆
=19.2242)

PPC−u (
−
σ=0.6643, σ

∆
= 1.9298)

PPC (
−
σ=0.5249, σ

∆
= 2.3021)

(c) Distribution Latency

Figure 4.1: Performance of Classic and PPC for Balanced Overlays (ρ ≈ 1.0)

Figure 4.1(b) shows the average discontinuity over all peers. We observe that
PPC-u and PPC provide a discontinuity below 4% throughout the experiment, while
Classic presents degraded performance after the flash crowd. Figure 4.1(c) shows the
average chunk distribution latency for all peers in the overlay. Again, we observe PPC-u
and PPC provide stable and reasonably low distribution latency, while Classic fails to
distribute chunks in a timely fashion.

These results show that, while PPC-u and PPC achieve efficient and stable media
distribution, the Classic overlay construction strategy leads to a disrupted overlay that
fails at effective media distribution: fewer peers can reproduce the media, and the ones

40 Chapter 4. Full Partnership Constraints in Static Environments

that can do so with degraded quality of experience. The main reason for this is the
competition between cooperative and uncooperative peers for out-partnerships, which
disrupts the peer-to-peer overlay after the flash crowd event.

4.4.2 Conservative Overlays (ρ ≈ 1.5)

In this experiment we consider a conservative overlay where we increase the total
number of in-partnerships by 50%, setting Nin(p) = 30, p ∈ P . We keep all other
parameters unchanged.

Figure 4.2(a) shows that all strategies reach approximately 950 joined peers, but
the Classic strategy experiences some fluctuations. Since peers that have joined the
overlay prioritize newcomer peers with higher upload bandwidth, peers with the largest
potential for contributing to the overlay tend to successfully establish in-partnerships
and join the overlay, which ultimately increases aggregate upload bandwidth in the
overlay and improves stability for all strategies.

 0

 200

 400

 600

 800

 1000

 1200

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y

Time (s)

Incoming
Classic
PPC−u

PPC

(a) Overlay Size

 0

 5

 10

 15

 20

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00

A
v
e

ra
g

e
 d

is
c
o

n
ti
n

u
it
y
 (

%
)

Time (s)

Classic (
−
σ=0.7181, σ

∆
=1.6751)

PPC−u (
−
σ=0.4632, σ

∆
=1.1772)

PPC (
−
σ=0.4181, σ

∆
=0.9496)

(b) Playback Quality

 0

 5

 10

 15

 20

 25

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

s
)

Time (s)

Classic (
−
σ=0.6110, σ

∆
=2.9360)

PPC−u (
−
σ=0.5089, σ

∆
=2.0694)

 PPC (
−
σ=0.4054, σ

∆
=1.5783)

(c) Distribution Latency

Figure 4.2: Performance of Classic and PPC for Conservative Overlays (ρ ≈ 1.5)

4.4. PPC Evaluation 41

Figure 4.2(b) shows the average discontinuity. We observe all strategies provide
discontinuity below the acceptable threshold of 4%, but PPC presents the lowest
discontinuity among evaluated strategies. Figure 4.2(c) shows the average latency, with
similar results. Overall, we find a conservative overlay (ρ ≈ 1.5) that pulls cooperative
peers close to the source leads to more improved robustness to flash crowd events.

4.4.3 Aggressive Overlay (ρ ≈ 0.5)

In this experiment we consider an aggressive overlay where we double the total number
of out-partnerships in the overlay while keeping Nin(p) = 20, p ∈ P . Results for
50% of free riders, used in the previous sections, present very poor performance (not
shown). Below, we consider an alternative configuration with more upload bandwidth,
where the peer population has only 40% of free riders. The configuration is shown in
Table 4.3.

Table 4.3: Default Experiment Configuration (Nin(p) = 20, ρ ≈ 0.5)

Construction Strategy Set Sizes
Peer Upload PPC PPC-u Classic
Class (Mbps) Proportion Nhigh

out (p) N low
out (p) Nhigh

out (p) N low
out (p) Nout(p)

Hot 4.0 11% 92 0 52 40 92
Warm 2.5 22% 36 44 40 40 80
Cold 1.5 27% 0 76 36 40 76
Free rider 0.0 40% 0 0 0 0 0

Figure 4.3(a) shows that both Classic and PPC-u build overlays that support less
peers and are significantly more unstable. PPC builds a robust overlay that supports
the same amount of peers as in the other configurations. In other words, PPC is
less affected by peer populations, which makes peer-to-peer systems more robust to
changing network conditions. As expected, Figs. 4.3(b) and 4.3(c) show that only
PPC is able to keep low discontinuity and latency, while PPC-u and Classic result in
very low quality of experience.

Finally, we show that PPC is able to support a higher fraction of free riders
than PPC-u and Classic. Figure 4.4 shows results for PPC and aggressive overlays
with 40% (same results as in Figure 4.3), as well as results for aggressive overlays
(out-partnerships as in Table 4.3) with 50% of free riders, 24% of cold peers, 17% of
warm peers, and 9% of hot peers. We observe that, even with 50% of free riders and
decreased upload bandwidth, PPC still manages to support the same number of peers
and maintain reasonable quality of experience, strengthening our point that PPC

42 Chapter 4. Full Partnership Constraints in Static Environments

 0

 200

 400

 600

 800

 1000

 1200

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y

Time (s)

Incoming
Classic
PPC−u

PPC

(a) Overlay Size

 0

 5

 10

 15

 20

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00

A
v
e

ra
g

e
 d

is
c
o

n
ti
n

u
it
y
 (

%
)

Time (s)

Classic (
−
σ=5.4862, σ

∆
=24.2369)

PPC−u (
−
σ=4.4968, σ

∆
=18.7123)

PPC (
−
σ=0.5324, σ

∆
= 0.8786)

(b) Playback Quality

 0

 5

 10

 15

 20

 25

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

s
)

Time (s)

Classic (
−
σ=4.9143, σ

∆
=23.3610)

PPC−u (
−
σ=4.8562, σ

∆
=21.7576)

PPC (
−
σ=0.5328, σ

∆
= 1.7888)

(c) Distribution Latency

Figure 4.3: Performance of Classic and PPC for Aggressive Overlays (ρ ≈ 0.5)

builds more robust and effective overlays compared to PPC-u and Classic.

The success of both PPC-unconstrained and PPC on static scenario encourage
us to propose a dynamic solution that combines them. In a real systems, before a peer
p join in the network, it is impossible to determine the potential of p’s contribution.
Thus, we propose to join newcomer peers in a warm class of PPC-unconstrained and,
quickly, to consider peer chunk contribution behavior in order to classify dynamically
each peer in the network in a way to construct an overlay topology based on PPC. In
the next chapter we present our suggested model, that dispenses any prior information
concerning peers’ upload bandwidth since peers joined in the network with standard
class setup and are reclassified after they start to report its chunk contribution.

4.4. PPC Evaluation 43

 0

 200

 400

 600

 800

 1000

 1200

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y

Time (s)

 Incoming
 PPC F−40%
 PPC F−50%

(a) Overlay Size

 0

 5

 10

 15

 20

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00

A
v
e

ra
g

e
 d

is
c
o

n
ti
n

u
it
y
 (

%
)

Time (s)

PPC F−40% (
−
σ=0.5324, σ

∆
=0.9279)

PPC F−50% (
−
σ=0.5549, σ

∆
=0.9469)

(b) Playback Quality

 0

 5

 10

 15

 20

 25

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

s
)

Time (s)

PPC F−40% (
−
σ=0.5328, σ

∆
=1.7888)

PPC F−50% (
−
σ=0.5191, σ

∆
=2.7547)

(c) Distribution Latency

Figure 4.4: Performance of PPC for Aggressive Overlays (ρ ≈ 0.5)

Chapter 5

Full Partnership Constraints in
Dynamic Environments

Chapter 4 presented Peer Partnership Constraints (PPC) and evaluated it under a
static scenario, where a peer’s class was fixed and known in advance. On real systems,
however, it is impossible to know in advance how much a peer can contribute to the
overlay. Even in cases where a peer knows and reports its available upload bandwidth
(e.g., as configured in the client), the ability to contribute to chunk distribution
may vary due to ISP broadband oversubscription, congestion in transit networks,
high latency, or suboptimal partnerships. In practice, peer-to-peer systems need to
estimate peer contribution dynamically (Guerraoui et al., 2010; Piatek et al., 2010).
In this section, we present our Peer Classification and Partnership Constraints (2PC)
algorithm, which classifies peers dynamically at run time and constrains partnerships
to build robust peer-to-peer overlays.

5.1 Partnership Constraint Class Algorithm

Concepts (2PC)

To provide all peers with the ability to contribute to the overlay, 2PC does not constrain
partnerships prior to peer classification. After a peer joins the overlay, 2PC monitors
how much it contributes to the overlay.1 A peer can be promoted to a hotter class if its
contribution is higher than that of its current class, or can be demoted to a colder class
if its contribution is lower that of its current class. As a special case, free riders can be
immediately classified into their own class upon joining the overlay if they report their
behavior to the bootstrap server.

45

46 Chapter 5. Full Partnership Constraints in Dynamic Environments

Algorithm 1 Peer Classification algorithm

1: function Reclassify(peers)
2: additions[c] ← 0 for each class c
3: active ← remove-new-peers(peers)
4: sorted ← sort-by-decreasing-contribution(active)
5: for peer p ∈ sorted do
6: tc ← targetClass(p)
7: if tc is-hotter-than class(p) then
8: c ← promote(p)
9: if (c 6= warm) ∧ (additions[c] ≥ Γ(c) ∨ population(c) ≥ U(c)) then
10: {Cannot move p into c, revert promotion.}
11: demote(p)
12: continue
13: end if
14: additions[c] ← additions[c] + 1
15: else if tc is-colder-than class(p) then
16: {Same as above, but swapping demote and promote.}
17: end if
18: end for
19: end function

Let t(i) be a time instant. Peer chunk contribution (i.e. peer contribution to
the overlay) refer to the number of chunks that a peer p has sent to its out-partners
in [t(i), t(i+1)] interval. We compute only sent chunks from an out-partner requests.
As described in Section 2.4.2, Chapter 2, a joined peer p sends monitoring reports to
server B every ten seconds containing, among others, its chunk contribution. Then, B
sorts peers by its contribution.

Peer promotion or demotion might involve disconnecting existing partners. To
minimize disruption to the overlay, 2PC only promotes or demotes peers one class at
a time (e.g., from hot to warm, or from warm to cold). In this case, out-partners that
contribute the least are disconnected first. Peer reclassification occurs periodically,
once every µ seconds.

The peer routing for peer classification is shown in Algorithm 1. To give the
system enough time to compute a peer’s contribution with acceptable accuracy, 2PC
only performs reclassification after a peer has been in the system for at least one
complete reclassification period (line 3). In each period, the bootstrap server sorts
peers by decreasing order of contribution to chunk distribution (line 4). The bootstrap

1Contribution can either be reported by the peer, or cryptographic signatures can be used to track
contributions in a verifiable manner Piatek et al. (2010).

5.2. 2PC Configuration 47

servers then iterate on all peers, classifying their contribution in the current period (line
6), and checking whether the peer needs to be promoted or demoted (lines 7 and 15).
To avoid degenerate overlays due to peer misclassification or skewed peer populations,
2PC limits the fraction of peers promoted and demoted into class c to a threshold Γ(c)

(line 9). Systems with many peer classes can have lower thresholds for Γ to spread
peers across all classes.

Finally, the population in each class c is limited by a population limit U(c) (line 9).
It is important determine ρ ≥ 1.0 in the network (i.e.;

∑
pNin(p)/

∑
pNout(p) ≥ 1.0)

such that to avoid aggressive overlay configuration, as discussed in the Chapter 4. Note
that since peers from warm class provide both N high

out (p) and N low
out (p) partnership sets,

the overlay starts with a non aggressive configuration (i.e., the value of ρ is in the range
between balanced and conservative overlay configurations, depending on the free rider
fraction). Thus, we do not have imposed limit population for warm class and free rider
class.

5.2 2PC Configuration

We evaluate 2PC in a peer population similar to that used to evaluate PPC in
Chapter 4, shown in Table 5.1. In addition, for all 2PC experiments, we have configured
Γ(c) = 5% (i.e., 5% of all cooperative peers) for all class c, and µ = 120 seconds (i.e.,
2PC iteration time). We consider the same four classes, and configure 2PC to add all
new peers into the warm class. The warm class have weak out-partnership constraints:
warm peers can establish out-partnerships with peers of any class. Temporarily
classifying newcomer peers as warm enable them to freely establish out-partnerships
while 2PC classifies them into their correct classes. As a result, we place no limit on
what fraction of peers can be placed into the warm class.

Table 5.1: 2PC Experiment Configuration (Nin(p) = 20, ρ ≈ 1.0)

Peer Upload Class Population Set Sizes
Class (Mbps) Proportion Limit U Nhigh

out (p) N low
out (p)

Hot 4.0 9% 15% 46 0
Warm 2.5 17% - 18 22
Cold 1.5 24% 40% 0 38
Free rider 0.0 50% - 0 0

Normally, a fraction below 10% of peers in the peer-to-peer live streaming are
responsible for the high contributions of media delivery (Sacha et al., 2006; Oliveira,

48 Chapter 5. Full Partnership Constraints in Dynamic Environments

 0

 200

 400

 600

 800

 1000

 1200

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y

Time (s)

Incoming
Joined

(a) Overlay Size

 0

 5

 10

 15

 20

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

A
v
e

ra
g

e
 d

is
c
o

n
ti
n

u
it
y
 (

%
)

Time (s)

2PC (
−
σ=0.9656, σ

∆
=2.7031)

(b) Playback Quality

 0

 5

 10

 15

 20

 25

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

s
)

Time (s)

2PC (
−
σ=1.4985, σ

∆
=6.4572)

(c) Distribution Latency

Figure 5.1: Performance of 2PC

2010). Then, we configure U = 15% for Hot Class, that represents 7.5% of all peers in
the network, and we configure U = 40% (20% of all peers) for Cold Class in order to
prepare the network to handle at least a fraction of 50% of free riders peers, Table 5.1.

5.3 Comparative Evaluation between 2PC and PCC

We evaluate 2PC, with the same peer classes configuration from Table 4.2, in order to
compare performance of 2PC to the performance of plain PCC. Figure 5.1(a) shows
that 2PC allows peers to join the overlay, while keeping the overlay robust during all
experiments. Figures 5.1(b) and 5.1(c) show that average discontinuity and average
chunk distribution latency also remain stable, with a slight increasing shortly after
the flash crowd event. However, we observe that the overlay quickly recovers (results
with identical configuration without 2PC are discussed in Figure 4.1, Section 4.4.1,
Chapter 4).

5.4. 2PC Evaluation 49

 0

 100

 200

 300

 400

 500

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 c
la

s
s
e

s

Time (s)

 Cold
Warm

 Hot

(a) Class Size Over Time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 c
o

ld
 c

la
s
s

Time (s)

1.5 Mb/s
2.5 Mb/s
4.0 Mb/s

(b) Population of the Cold Class

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 h
o

t
c
la

s
s

Time (s)

1.5 Mb/s
2.5 Mb/s
4.0 Mb/s

(c) Population of the Hot Class

Figure 5.2: Partnership Constraint Algorithm Class Inference.

We also evaluate the classification algorithm. Figure 5.2 shows the number of
peers in different classes over time. The flash crowd event starts after 400 seconds,
and all peers quickly join the overlay in the warm class. The classification routine
systematically promotes and demotes peers to hot/cold classes each iteration in order
to adjust the overlay topology. In order to check whether 2PC is correctly promoting
and demoting peers, we must take a look at Figures 5.2(b) and 5.2(c). These figures
show the size of the cold and hot classes over time for different peer upload bandwidths.
We observe that 2PC concentrates peers with 1.5Mbps bandwidth in the cold class,
and peers with 4Mbps upload bandwidth in the hot class, as expected.

5.4 2PC Evaluation

The previous section assumed peer upload bandwidths were fixed at 1.5, 2.5, or 4Mbps
depending on each peer’s true class. In this section, we evaluate 2PC in a scenario

50 Chapter 5. Full Partnership Constraints in Dynamic Environments

Table 5.2: 2PC Experiment Configuration (random upload bandwidths)

Set Sizes
Peer Upload Class Population 2PC and b-2PC Classic
Class (Mbps) Limit U Nhigh

out (p) N low
out (p) Nout(p)

Hot 3.0 - 3.5 15% 46 0 46
Warm 2.0 - 2.5 - 18 22 40
Cold 1.0 - 1.5 40% 0 38 38
Free rider 0.0 - 0 0 0

where 50% of peers are free riders and the remaining 50% have upload bandwidth
uniformly sampled between 1.0Mbps–3.5Mbps combined with ρ ≈ 1.0 and ρ ≈ 1.5.

We propose, in addition, the bandwidth-aware-2PC (b-2PC) as a variation of 2PC
algorithm. In this case, we implement a functionality of 2PC in which the bootstrap
server asks the peer’s upload bandwidth (in peer join phase) in order to classify all
peer according to the suggested peer class configuration. In our experiments, we are
interested in evidencing whether prior knowledge of peer’s upload bandwidth improves
the 2PC algorithm performance.

Table 5.2 indicates the out-partnerships set sizes for each dynamically computed
peer class. We compare both 2PC and b-2PC against the classic approach, which does
not isolate out-partnerships nor employs partnership constraints.

5.4.1 2PC and b-2PC Evaluation. (Nin(p) = 20 and ρ ≈ 1.0)

Figure 5.3 shows the averaged results for the Classic and 2PC strategies. We observe
that 2PC joins a significant fraction of peers while maintaining low discontinuity and
latency. The classic approach, however, cannot serve all peers and the peers that receive
service often do so with poor quality of experience. Figure 5.4 compare Classic and
b-2PC strategies and the conclusions are the same of the Classic and 2PC (Figure 5.3).

Figure 5.5 and Figure 5.6 show that both 2PC and b-2PC successfully classifies
peers with more bandwidth into the hot class, and vice versa. Comparing Figure 5.5(a)
and Figure 5.6(a) we see peer join considering the warm class (i.e. 2PC) or considering
peer’s upload bandwidth (i.e. b-2PC) when occurs the flash crowd event. At 1700
seconds (near the ending of the experiments), the distribution of peer per class are the
same in 2PC and b-2PC strategies.

When compared with static scenario for PPC in Section 4.4.1, Chapter 4, we
conclude that results of both dynamic scenarios 2PC and b-2PC are similar to results
from PPC.

5.4. 2PC Evaluation 51

 0

 200

 400

 600

 800

 1000

 1200

 0
 5

00

 1
00

0

 1
50

0

 2
00

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y

Time (s)

Incoming
Classic

2PC

(a) Overlay Size

 0

 5

 10

 15

 20

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

A
v
e

ra
g

e
 d

is
c
o

n
ti
n

u
it
y
 (

%
)

Time (s)

Classic (
−
σ=1.8893, σ

∆
=6.6702)

2PC (
−
σ=0.5458, σ

∆
=0.9481)

(b) Playback Quality

 0

 5

 10

 15

 20

 25

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

s
)

Time (s)

Classic (
−
σ=4.4820, σ

∆
=27.9736)

2PC (
−
σ=0.5364, σ

∆
= 3.3796)

(c) Distribution Latency

Figure 5.3: Performance of Classic and 2PC. Join Phase [Warm Class] (ρ ≈ 1.0)

5.4.2 2PC and b-2PC Evaluation. (Nin(p) = 30 and ρ ≈ 1.5)

In this section, we raise Nin parameter of peers from 20 to 30 in order to establish
ρ ≈ 1.5. Besides this, all configuration were the same as before for Section 5.4.1. We
are interested in understanding whether 2PC and b-2PC can preserve the results of
static PPC strategy with ρ ≈ 1.5 presented in Section 4.4.2, Chapter 4.

We have to consider that high value of Nin parameter can promote competition
in partnership between peers. It happens because a peer p wants to fill in its Nout(p).
Thereby, peers that offer less chunk contribution are candidate to lose partnership
for peers that offer high chunk contribution in the network. We remember that
lower chunk contribution peers are important since they support free ride peers. So,
instability caused by these peers’ disconnections may cause network instability in the
whole network, considering 50% of free rider peers.

Figure 5.7 shows result for 2PC and Figure 5.8 shows results for b-2PC strategies.
Although discontinuity and latency metrics for b-2PC (Figure 5.8(b) and Figure 5.8(c))

52 Chapter 5. Full Partnership Constraints in Dynamic Environments

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y

Time (s)

Incoming
Classic
b−2PC

(a) Overlay Size

 0

 5

 10

 15

 20

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

A
v
e

ra
g

e
 d

is
c
o

n
ti
n

u
it
y
 (

%
)

Time (s)

Classic (
−
σ=2.5802, σ

∆
=12.9529)

b−2PC (
−
σ=0.5940, σ

∆
= 1.0051)

(b) Playback Quality

 0

 5

 10

 15

 20

 25

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

s
)

Time (s)

Classic (
−
σ=2.3009, σ

∆
=8.7928)

b−2PC (
−
σ=0.4892, σ

∆
=3.1907)

(c) Distribution Latency

Figure 5.4: Performance of Classic and b-2PC. Join Phase [Suggested Class] (ρ ≈ 1.0)

are relatively below the same metrics for 2PC (Figure 5.7(b) and Figure 5.7(c)),
performance of b-2PC metrics are not significantly, since both strategies present
acceptable levels of its metrics. The Classic strategy does not ensure the network
robustness on facing the high resource constraints imposed.

As before, there is no significant difference on results of 2PC and b-2PC, as shown
on Figures 5.9 and 5.10. Comparing results across this section and the last one, 2PC
and b-2PC present the same results on different scenarios.

5.5 2PC Discussion

Figures comparing Classic and 2PC strategies (such as Figures 5.3 and 5.7) and
Figures comparing Classic and b-2PC strategies (such as Figures 5.4 and 5.8) show
an important consideration about Classic strategies. In the first case, both 2PC and
Classic strategies join all peers in the same class (i.e. warm class) while in the second

5.5. 2PC Discussion 53

 0

 100

 200

 300

 400

 500

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 c
la

s
s
e

s

Time (s)

 Cold
Warm

 Hot

(a) Size of Class Over Time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 c
o

ld
 c

la
s
s

Time (s)

1.0−2.0 Mbps
2.0−2.5 Mbps
2.5−3.5 Mbps

(b) Population of the Cold Class

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 h
o

t
c
la

s
s

Time (s)

1.0−2.0 Mbps
2.0−2.5 Mbps
2.5−3.5 Mbps

(c) Population of the Hot Class

Figure 5.5: 2PC Class Inference. Join Phase [Warm Class] (ρ ≈ 1.0)

case, both b-2PC and Classic strategies join each peer in a suggested class. Thus,
comparing Classic strategies, in the second case, Classic strategy employs the same
out-partner disconnection strategy described in Section 2.4, Chapter 2, which cannot
occurs in the first case. However, even with a more dynamic topology organization, all
results for classic strategies are the same.

As occurred in the both Sections 5.4.1 and 5.4.2, when we compare 2PC strategies
with the static scenarios for PPC in Section 4.4.2, Chapter 4, we conclude that results
of both dynamic scenarios 2PC and b-2PC are similar to results from PPC. Thus, since
results of PPC-u (a variation of PPC) for ρ ≈ 0.5 were unaccepted (Section 4.4.3), we
do not experiment 2PC algorithm for ρ ≈ 0.5 configuration.

54 Chapter 5. Full Partnership Constraints in Dynamic Environments

 0

 100

 200

 300

 400

 500

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 c
la

s
s
e

s

Time (s)

 Cold
Warm

 Hot

(a) Class Size Over Time.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 c
o

ld
 c

la
s
s

Time (s)

1.0−2.0 Mbps
2.0−2.5 Mbps
2.5−3.5 Mbps

(b) Cold Class Population

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 h
o

t
c
la

s
s

Time (s)

1.0−2.0 Mbps
2.0−2.5 Mbps
2.5−3.5 Mbps

(c) Hot Class Population

Figure 5.6: b-2PC Class Inference. Join Phase [Suggested Class] (ρ ≈ 1.0)

5.5. 2PC Discussion 55

 0

 200

 400

 600

 800

 1000

 1200

 0
 5

00

 1
00

0

 1
50

0

 2
00

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y

Time (s)

Incoming
Classic

2PC

(a) Overlay Size.

 0

 5

 10

 15

 20

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

A
v
e

ra
g

e
 d

is
c
o

n
ti
n

u
it
y
 (

%
)

Time (s)

Classic (
−
σ=4.9221, σ

∆
=18.0269)

2PC (
−
σ=0.5261, σ

∆
= 0.6922)

(b) Playback Quality.

 0

 5

 10

 15

 20

 25

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

s
)

Time (s)

Classic (
−
σ=5.7060, σ

∆
=22.0891)

2PC (
−
σ=0.5667, σ

∆
= 2.5709)

(c) Distribution Latency.

Figure 5.7: Performance of Classic and 2PC. Join Phase [Warm Class] (ρ ≈ 1.5)

56 Chapter 5. Full Partnership Constraints in Dynamic Environments

 0

 200

 400

 600

 800

 1000

 1200

 0
 5

00

 1
00

0

 1
50

0

 2
00

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 o
v
e

rl
a

y

Time (s)

Incoming
Classic
b−2PC

(a) Overlay Size.

 0

 5

 10

 15

 20

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

A
v
e

ra
g

e
 d

is
c
o

n
ti
n

u
it
y
 (

%
)

Time (s)

Classic (
−
σ=3.6478, σ

∆
=19.5574)

b−2PC (
−
σ=0.5986, σ

∆
= 1.2917)

(b) Playback Quality.

 0

 5

 10

 15

 20

 25

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

s
)

Time (s)

Classic (
−
σ=4.5025, σ

∆
=21.1412)

b−2PC (
−
σ=0.5166, σ

∆
= 3.0313)

(c) Distribution Latency.

Figure 5.8: Performance of Classic and b-2PC. Join Phase [Suggested Class] (ρ ≈ 1.5)

5.5. 2PC Discussion 57

 0

 100

 200

 300

 400

 500

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 c
la

s
s
e

s

Time (s)

 Cold
Warm

 Hot

(a) Size of Class Over Time.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 c
o

ld
 c

la
s
s

Time (s)

1.0−2.0 Mbps
2.0−2.5 Mbps
2.5−3.5 Mbps

(b) Cold Class Population.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 h
o

t
c
la

s
s

Time (s)

1.0−2.0 Mbps
2.0−2.5 Mbps
2.5−3.5 Mbps

(c) Hot Class Population.

Figure 5.9: 2PC Class Inference. Join Phase [Warm Class] (ρ ≈ 1.5)

58 Chapter 5. Full Partnership Constraints in Dynamic Environments

 0

 100

 200

 300

 400

 500

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 c
la

s
s
e

s

Time (s)

Cold
 Warm

Hot

(a) Class Size Over Time.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 c
o

ld
 c

la
s
s

Time (s)

1.0−2.0 Mbps
2.0−2.5 Mbps
2.5−3.5 Mbps

(b) Cold Class Population

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

N
u

m
b

e
r

o
f

p
e

e
rs

 i
n

 h
o

t
c
la

s
s

Time (s)

1.0−2.0 Mbps
2.0−2.5 Mbps
2.5−3.5 Mbps

(c) Hot Class Population

Figure 5.10: b-2PC Class Inference. Join Phase [Suggested Class] (ρ ≈ 1.5)

Chapter 6

Related Work

Although large content providers such as Twitch, Google, Facebook, and Netflix
have achieved great success using the classic client-server content distribution
model (Tanenbaum and Steen, 2006), these companies deploy extensive content
distribution infrastructure to support high upload bandwidth requirements for content
distribution (see, e.g., (Jain et al., 2013; Schlinker et al., 2017; Yap et al., 2017; Adhikari
et al., 2012)).

Compared to client-server content distribution, peer-to-peer content distribution
allows media streaming without reliance on the content provider’s upload bandwidth.
In peer-to-peer systems, peers establish partnerships in a distributed way (e.g.,
peer-to-peer mesh-based), or a centralized way (e.g., peer-to-peer tree-based) and form
an overlay over the physical network to exchange content pieces. In addition, some
peer-to-peer services such as media generate and peer joining are, usually, provided by
centralized servers.

In this work, we have invested in a centralized approach to propose techniques
such that avoid the overload of peer-to-peer control messages and moreover, considering
that the extra costs to support few peer-to-peer centralized functionality are
significantly smaller when compared to servers investment by several companies that
employ the client-server approach.

We describe, in this chapter, issues of peer-to-peer systems related to the goals
of this work, such as partnership management, chunk scheduling, overlay construction
and maintaining, selfish behavior of peers, and flash crowd events. Media contribution
incentive mechanisms and neighborhood filtering are several times combined in order
to construct and maintain robust overlays.

59

60 Chapter 6. Related Work

6.1 Flash Crowds

According to Chen et al. (2014), when a flash crowd occurs, the sudden arrival of
numerous peers may starve the upload capacity of the system, hurt its quality of service,
and even cause system collapse. To mitigate flash crowd effects without applying
advanced flash crowd handle techniques, streaming systems such as COOLSTREAMING

or PPLIVE rely on a large number of dedicated servers or the use of CDNs Wu et al.
(2012); Liu et al. (2012). Dedicated servers and CDNs increase the systems cost and
do not ensure that an unforeseen flash crowd’s event can be absorbed.

Several studies have proposed understanding and resolving the flash crowd event
in live peer-to-peer (Chen et al., 2011; Chung and Lin, 2011; Jia et al., 2016; Li
et al., 2008a). The majority of the research about the impact of flash crowds on
peer-to-peer streaming systems do not focus on changing the overlay construction
mechanisms (Liu et al., 2012, 2009). For example, Liu et al. propose a technique
that increases overall peer join rate and distribution efficiency under flash crowds by
batching joins to preserve network stability (Liu et al., 2009); Liu et al, in other work,
keeping the batch joining technique, show that one important overlay constraint is the
number of partnerships a peer maintains, but without investigating how to maintain
the partnerships (Liu et al., 2012);

On the other hand, TOPT (Rückert et al., 2015) focus on preparing the system
with a hybrid overlay to mitigate flash crowd negative effects. In order to determine
whether a number of new peers represents a flash crowd event (and whether to apply a
strategy to absorb the negative effects of the flash crowd), (Chen et al., 2014) provides a
comprehensive study on the performance of peer-to-peer live streaming systems under
flash crowds, including the mathematical model of the relationship between flash crowd
size and system recovery time. Solutions proposed in this work are not a flash crowd
handling technique, and are complementary to the techniques above. However, our
experiments show that 2PC constructs robust overlay topologies that are effective at
absorbing flash crowd events.

6.2 Partnership Management, Overlay

Construction and Selfish Behavior

There are several approaches in order to construct peer-to-peer overlays (Lua et al.,
2005a; WaysiAlTuhafi, 2013), but the widely used are tree-based (Castro et al., 2003;
Mol et al., 2006; Payberah et al., 2010a,b) and mesh-based overlays (Li et al., 2008b;

6.2. Partnership Management, Overlay Construction and Selfish
Behavior 61

Frey et al., 2010; Fortuna et al., 2010).
According to Magharei and Rejaie (2007), based-tree topologies establish

partnerships between peers such that form a tree structures and use push-based content
delivery. In this case, based-tree topology is more sensitive to peer churn, motivating
solutions that construct robust tree topologies to face peer churn, e.g., (Tran et al.,
2003; Castro et al., 2003). On the other hand, mesh-based overlay is more robust
with respect to peer churn and usually implements pull-based content delivery. Unlike
tree-based peer-to-peer systems, peers in mesh overlays often need some strategies that
allow them to choose promising partnerships. In this work, we adopted pull-based mesh
overlay.

A large body of work has been dedicated to building and evaluating algorithms
and mechanisms for efficient peer-to-peer live streaming. Neighborhood filtering
strategies for overlay construction are important to achieve media distribution efficiency
and the literature presents several such strategies Payberah et al. (2011); Lobb
et al. (2009); Ren et al. (2008); Li et al. (2008b); Liao et al. (2006); Magharei and
Rejaie (2009); Silva et al. (2008); Wu et al. (2012). Contributions cover techniques
to optimize peer-to-peer overlay topologies (Simoni et al., 2014; Payberah et al.,
2012; Fortuna et al., 2010; Felber and Biersack, 2005), schedule chunk requests and
transmissions (Vlavianos et al., 2006; Bonald et al., 2008; Liu, 2007; Silva et al., 2008;
Picconi and Massoulié, 2008; Massoulie et al., 2007; Fortuna et al., 2010; Zhao et al.,
2009), and topologies according to overlay and network conditions (Wichtlhuber et al.,
2014). Supported by these strategies, low upload bandwidth peers can manage a large
number of partners without cracking the video transmission.

Traverso et al. (2015) compares several neighborhood filtering strategies
ranging from randomized approaches to very sophisticated strategies considering
peer bandwidth and peer physical location. However, in most of these works, e.g.,
(Traverso et al., 2015) and (Lobb et al., 2009), as peers do not restrict the composition
of the list of output partnerships (out-partners), i.e., the set of partner peers to which
each peer redistributes media. According to Zhong et al. (2010), a large number
of partners increases the overhead of control message exchanges between peers. In
addition, in realistic scenarios where the upload bandwidth of peers is restricted,
such strategies require peers to answer requests and forward content to a subset of
its out-partners. On the other hand, GLive (Payberah et al., 2011), a distributed
market-based solution that builds a mesh overlay for peer-to-peer live streaming,
imposes fixed peer’s partnership limits. GLibe employs the gossip-generated Gradient
overlay network (Sacha et al., 2010, 2006) to enable peers to sample neighbors with
similar upload bandwidth (that define its market model) in order to organize a desired

62 Chapter 6. Related Work

mesh overlay topology. Differently from such approaches, in this work we propose a
centralized overlay construction algorithm based on random neighborhood filtering,
allowing peers to forward content to all partners.

Additionally, many overlay construction strategies propose pushing free riders to
the edge of the overlay to improve distribution efficiency. Ullah et al. (2013) propose
an autonomous management framework that (i) enables peers to learn user behavior
and organize themselves to improve streaming quality, and (ii) controls the topology of
push-based systems through a stabilization process that continuously pushes unstable
peers towards the leaves of the tree. This strategy is complementary and could be
used in conjunction with our approach to push free riders to the edge of the overlay.
Incentive mechanisms that aim to improve peer contribution identify and punish selfish
behavior while improving quality of service for cooperative peers (Cohen, 2003; Piatek
et al., 2010; Guerraoui et al., 2010; Locher et al., 2009; Gonçalves et al., 2014; Tan and
Jarvis, 2008; Meulpolder et al., 2009; Mol et al., 2006).

A well-known incentive mechanism used in peer-to-peer file sharing is BitTorrent’s
tit-for-tat (Cohen, 2003). Unfortunately, tit-for-tat is inadequate for live streaming.
Tit-for-tat forces balanced pairwise data exchanges, which are too restrictive to enable
live streaming (Piatek et al., 2010). Some works have attempted to use tit-for-tat as
a feature, where uncooperative peers experience degraded quality of service, even at
overprovisioned scenarios (Locher et al., 2009). As examples of incentive mechanism for
live streaming, Contracts (Piatek et al., 2010) identifies uncooperative peers auditing
cryptographic receipts of chunk transfers while LiFTinG (Guerraoui et al., 2010)
identifies uncooperative and malicious peers based on their partnerships.

Similar to our work, Oliveira et al. evaluate and show that peer-to-peer live
streaming can support a large number of free riders (Oliveira et al., 2013b). However,
they impose no bandwidth constraints and consider contributing peers have surplus
bandwidth. Further, Oliveira et al. (2013b) define two types of free rider: conscious ;
and oblivious. Conscious free riders inform their partners that they are unwilling or
unable to upload data. As a consequence, no peer ever wastes time and bandwidth
sending requests to them. On the other hand, oblivious free riders do not inform their
partners that they are unwilling or unable to upload data. This behavior may happen
if the software does not make provisions for free riders or due to malicious intent.
Oblivious free riders request chunks as normal and advertise the chunks they have, but
never upload data (i.e., never answer requests), which degrades the system performance.
Oblivious free riders negative effects can be mitigate by a simple mechanism called
Simple Unanswered Request Eliminator (SURE), a modification to the chunk request

6.2. Partnership Management, Overlay Construction and Selfish
Behavior 63

scheduler that avoids wasting time and bandwidth by listing the peers that have no
good chunk answer history. Using the SURE, experiments with oblivious free riders
showed results quantitatively similar to experiments with conscious free riders.

In this thesis, we configure all free riders as conscious and SURE is active on
all experiments. Different from several works that propose contribution incentive, we
developed a strategy in a way to handle a large fraction of free riders by establishing
simple partnership constraints among peers that eliminate resource competitions
between free riders and cooperative peers. Thus, we show that a peer-to-peer system
can support a large fraction of free riders while imposing bandwidth constraints.

We set up strategies such as: random neighborhood filtering; first in first out for
chunk scheduling when sending chunks; and SURE in order to avoid silent peers when
requesting chunks. Although several works have proposed sophisticated neighborhood
filtering and different chunk scheduling, we consider that our proposed solutions are
complementary of current works and may be combined with them in order to achieve
peer-to-peer systems more robust with low complexity.

Chapter 7

Conclusion and Future Works

Peer-to-peer live streaming systems, and their algorithms for constructing and
maintaining the network overlay, often face issues of high playback latency and buffer
underflows. In particular, as peers establish more partnerships to increase opportunity
for exchanging media, the overhead of control messages increases and sophisticated
neighborhood filtering techniques are required to maintain media distribution efficiency.

In this work, we study whether imposing partnership constraint between peers
can improve peer-to-peer performance and stability without the need of sophisticated
neighborhood filtering techniques, without increasing extra overhead of control
messages and without imposing sophisticated peer cooperation incentive.

We present, first, the Parallel Overlay Technique. Parallel overlay allows
constructing new overlay topologies where free riders peers are contained when a
flash crowd event occurs. Thus, newcomer free riders are unable to start partnerships
with cooperative peers near the server media. Parallel overlay technique shows an
improvement of peer-to-peer stability promoted by free riders isolation. In addition
to the complexity of implementation, concepts of parallel network are not deeply
understood in order to make this technique a commercial alternative, but we believe
that parallel overlay can be successfully applied to solve other issues related to the
peer-to-peer systems.

In order to understand the effects of splitting cooperative peers and free riders into
distinct classes of peers, we propose Free Rider Slice, as a simple strategy to impose
constraint of peer partnerships, and its specialization Peer Partnership Constraints
(PPC). Free rider slice and PPC work by grouping peers with similar contributions
into classes and define constraints for which classes can establish partnerships with
each other class, but free rider slices differ from PPC, since PPC applies partnership
constraints on all classes.

65

66 Chapter 7. Conclusion and Future Works

We evaluated PPC with a significant fraction of free riders, limited upload
bandwidth, and different overlay characteristics. We have not imposed a sophisticated
contribution incentive mechanism nor a neighborhood filtering technique. Free Rider
Slice and PPC limit the number of allowed partnerships for peers, which allow
cooperative peers to respond to their partner by sending media in FIFO order according
to its upload bandwidth. Our results show that PPC builds robust and effective
overlays that support more peers and achieve higher quality of experience compared
to traditional overlay construction strategy.

Both Free Rider Slice and PPC are static solutions, where peers are classified
once during peer join phase (i.e. a peer asks to join the media transmission and it is
classified by the bootstrap server only at this moment, and nevermore). Thus, based on
PPC strategy, we present the Peer Classification and Partnership Constraint algorithm
(2PC), a simple strategy for constructing and maintaining a peer-to-peer mesh overlay
network. Using PPC strategy, 2PC classifies peers on established classes in order
to eliminate competition between more cooperative and less cooperative peers. 2PC
dynamically reclassifies peers according to their contributions to chunk distribution.
2PC also employs partnership constraints to force the overlay into a robust and efficient
topology. The resulting peer-to-peer overlay can simultaneously join a large number
of cooperative and free-riding peers without disrupting chunk distribution even during
flash crowd events.

Although 2PC is not specific for handling flash crowds, however 2PC constructs
robust overlay topologies that present high performance even during these challenging
events. Our evaluation also considered significant fraction of free riders and limited
available upload bandwidth. Moreover, 2PC is simple to implement and can be
combined with many other techniques already proposed for managing peer-to-peer
overlays.

As future work, we enumerate the following: (i) we propose to study the behavior
of Parallel Overlay Technique, establishing criteria in order to choose its auxiliary
sources without compromising the system. In addition, it is need to understand other
behaviors of this technique, such as the number of auxiliary sources and the time
of system execution between its stages; (ii) we suggest to study, about 2PC, how to
dynamically compute the number of classes and out-partnership set sizes to further
improve performance; and (iii) we propose to combine 2PC with other peer-to-peer
techniques in order to achieve more performance of peer-to-peer system with low
complexity.

Bibliography

Adar, E. and Huberman, B. (2000). Free Riding on Gnutella. First Monday, 5(10-2).

Adhikari, V. K., Guo, Y., Hao, F., Varvello, M., Hilt, V., Steiner, M., and Zhang, Z. L.
(2012). Unreeling Netflix: Understanding and improving multi-CDN movie delivery.
In Proceedings of IEEE INFOCOM (2012), pages 1620–1628. ISSN 0743-166X.

Bonald, T., Massoulié, L., Mathieu, F., Perino, D., and Twigg, A. (2008). Epidemic
live streaming: optimal performance trade-offs. In SIGMETRICS ’08 - ACM
SIGMETRICS international conference on Measurement and modeling of computer
systems - 2008, pages 325–336, Annapolis, United States. ACM.

Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A., and Singh,
A. (2003). SplitStream: High-Bandwidth Multicast in Cooperative Environments.
In Proceedings of the Symposium on Operating Systems Principles, pages 298–313.
ACM.

Chen, Y., Zhang, B., and Chen, C. (2011). Modeling and Performance Analysis of P2P
Live Streaming Systems under Flash Crowds. In Proceedings of the International
Conference on Communications, pages 1–5. IEEE.

Chen, Y., Zhang, B., Chen, C., and Chiu, D. M. (2014). Performance Modeling
and Evaluation of Peer-to-Peer Live Streaming Systems Under Flash Crowds.
IEEE/ACM Transactions on Networking, 22(4):1106–1120.

Chung, T. Y. and Lin, O. (2011). A Batch Join Scheme for Flash Crowd Reduction
in IPTV Systems. In Parallel and Distributed Systems (ICPADS), 2011 IEEE 17th
International Conference on, pages 823–828. IEEE.

Cigno, R. L., Russo, A., and Carra, D. (2008). On some fundamental properties of P2P
push/pull protocols. In 2008 Second International Conference on Communications
and Electronics, pages 67–73. ISSN .

67

68 Bibliography

Cisco (2014). Forecast and Methodology, 2013–2018 - Cisco Visual Networking Index.
Technical report.

Cisco (2017). Cisco Visual Networking Index:Forecast and Methodology, 2016–2021.
Technical report.

Cohen, B. (2003). Incentives Build Robustness in BitTorrent. In Workshop on
Economics of Peer-to-Peer Systems.

ConsumerLab, E. (2014). Changing Consumer Needs are Creating a New Media
Landscape - TV and Media 2014. Technical report.

Cui, Y., Dai, L., and Xue, Y. (2007). Optimizing P2P Streaming Throughput Under
Peer Churning. In Proceedings of the Global Telecommunications Conference, pages
231–235. IEEE.

Felber, P. and Biersack, E. (2005). Cooperative Content Distribution: Scalability
through Self-Organization. In Self-star Properties in Complex Information Systems
(2005), pages 343–357. Springer.

Fortuna, R., Leonardi, E., Mellia, M., Meo, M., and Traverso, S. (2010). QoE in Pull
based P2P-TV Systems: Overlay Topology Design Tradeoffs. In Proceedings of IEEE
P2P (2010), pages 1–10. IEEE.

Frey, D., Guerraoui, R., Kermarrec, A. M., and Monod, M. (2010). Boosting Gossip
for Live Streaming. In 2010 IEEE Tenth International Conference on Peer-to-Peer
Computing (P2P), pages 1–10. ISSN 2161-3559.

GIGAOM (2009a). CNN: Inauguration P2P Stream a Success, Despite Backlash. The
industry leader in emerging technology research. https://gigaom.com/2009/02/
07/cnn-inauguration-p2p-stream-a-success-despite-backlash/. Accessed
Octuber 05, 2017.

GIGAOM (2009b). The Obama Inauguration Live Stream Stats. The
industry leader in emerging technology research. https://gigaom.com/2009/01/
20/the-obama-inauguration-live-stream-stats/. Accessed Octuber 05, 2017.

Gonçalves, G., Cunha, I., Vieira, A., and Almeida, J. (2014). Predicting the Level
of Cooperation in a Peer-to-Peer Live Streaming Application. Multimedia Systems,
pages 1–20.

https://gigaom.com/2009/02/07/cnn-inauguration-p2p-stream-a-success-despite-backlash/
https://gigaom.com/2009/02/07/cnn-inauguration-p2p-stream-a-success-despite-backlash/
https://gigaom.com/2009/01/20/the-obama-inauguration-live-stream-stats/
https://gigaom.com/2009/01/20/the-obama-inauguration-live-stream-stats/

Bibliography 69

Guerraoui, R., Huguenin, K., Kermarrec, A.-M., Monod, M., and Prusty, S.
(2010). LiFTinG: Lightweight Freerider-Tracking in Gossip. In ACM/IFIP/USENIX
International Conference on Middleware.

Hardin, G. (1968). The Tragedy of the Commons. Science, 162(3859):1243–1248.

Huang, Q., Jin, H., Liu, K., Liao, X., and Tu, X. (2007). Anysee2: an auto load
balance P2P live streaming system with hybrid architecture. In Proceedings of the
International Conference on Scalable Information Systems, pages 1–2. ICST.

Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S.,
Wanderer, J., Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stuart, S., and Vahdat, A.
(2013). B4: Experience with a Globally-deployed Software Defined Wan. SIGCOMM
Comput. Commun. Rev., 43(4):3–14. ISSN 0146-4833.

Jia, S., Zhang, R., Ma, Y., Zhong, L., and Xu, C. (2016). Modeling and optimization of
bandwidth supply performance for cloud-assisted video systems under flash crowd.
China Communications, 13(9):151–162.

Karakaya, M., Korpeoglu, I., and Ulusoy, O. (2009). Free Riding in Peer-to-Peer
Networks. IEEE Internet Computing, 13(2):92–98.

Krishnan, R., Smith, M., Tang, Z., and Telang, R. (2004). The Impact of Free-Riding
on Peer-to-Peer Networks. In Annual Hawaii International Conference on System
Sciences.

Li, B., Keung, G., Xie, S., Liu, F., Sun, Y., and Yin, H. (2008a). An Empirical Study
of Flash Crowd Dynamics in a P2P-Based Live Video Streaming System. In Global
Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE, pages 1–5.
ISSN 1930-529X.

Li, B., Xie, S., Qu, Y., Keung, G. Y., Lin, C., Liu, J., and Zhang, X. (2008b). Inside
the New Coolstreaming: Principles, Measurements and Performance Implications.
In IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.
ISSN 0743-166X.

Liao, X., Jin, H., Liu, Y., Ni, L. M., and Deng, D. (2006). Anysee: Peer-to-peer
live streaming. In Proceedings IEEE INFOCOM 2006. 25TH IEEE International
Conference on Computer Communications, pages 1–10. ISSN 0743-166X.

70 Bibliography

Liu, F., Li, B., Zhong, L., Li, B., Jin, H., and Liao, X. (2012). Flash Crowd in
P2P Live Streaming Systems: Fundamental Characteristics and Design Implications.
Transactions on Parallel and Distributed Systems, 23(7):1227–1239.

Liu, F., Li, B., Zhong, L., Li, B., and Niu, D. (2009). How P2P Live Streaming
Systems Scale over Time Under a Flash Crowd? In Proceedings of the International
Conference on Peer-to-peer Systems, pages 5–5. USENIX.

Liu, J., Rao, S., Li, B., and Zhang, H. (2008a). Opportunities and Challenges of
Peer-to-Peer Internet Video Broadcast. Proceedings of the IEEE, 96(1):11–24.

Liu, Y. (2007). On the Minimum Delay Peer-to-peer Video Streaming: How Realtime
Can It Be? In Proceedings of the 15th ACM International Conference on Multimedia,
MM ’07, pages 127–136, New York, NY, USA. ACM.

Liu, Y., Guo, Y., and Liang, C. (2008b). A Survey on Peer-to-Peer Video Streaming
Systems. Peer-to-Peer Networking and Applications, 1(1):18–28.

Lobb, R. J., Couto da Silva, A. P., Leonardi, E., Mellia, M., and Meo, M. (2009).
Adaptive Overlay Topology for Mesh-based P2P-TV Systems. In Proceedings of the
18th International Workshop on Network and Operating Systems Support for Digital
Audio and Video, NOSSDAV ’09, pages 31–36, New York, NY, USA. ACM.

Locher, T., Meier, R., Schmid, S., and Wattenhofer, R. (2007). Push-to-Pull
Peer-to-Peer Live Streaming, pages 388–402. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Locher, T., Meier, R., Wattenhofer, R., and Schmid, S. (2009). Robust Live Media
Streaming in Swarms. In Proceedings of the International Workshop on Network and
Operating Systems Support for Digital Audio and Video, pages 121–126. ACM.

Lua, E. K., Crowcroft, J., Pias, M., Sharma, R., and Lim, S. (2005a). A Survey and
Comparison of Peer-to-peer Overlay Network Schemes. Commun. Surveys Tuts.,
7(2):72–93. ISSN 1553-877X.

Lua, K., Crowcroft, J., Pias, M., Sharma, R., and Lim, S. (2005b). A Survey and
Comparison of Peer-to-Peer Overlay Network Schemes. Communications Surveys
Tutorials, 7(2):72–93.

Ma, R. T. B., Lee, S. C. M., Lui, J. C. S., and Yau, D. K. Y. (2006). Incentive and
Service Differentiation in P2P Networks: A Game Theoretic Approach. IEEE/ACM
Transactions on Networking, 14(5):978–991. ISSN 1063-6692.

Bibliography 71

Magharei, N. and Rejaie, R. (2007). Mesh or Multiple-Tree: A Comparative Study of
Live P2P Streaming Approaches. In Proceedings of the International Conference on
Computer Communications, pages 1424–1432. IEEE.

Magharei, N. and Rejaie, R. (2009). PRIME: Peer-to-peer Receiver-driven Mesh-based
Streaming. IEEE/ACM Trans. Netw., 17(4):1052–1065. ISSN 1063-6692.

Massoulie, L., Twigg, A., Gkantsidis, C., and Rodriguez, P. (2007). Randomized
Decentralized Broadcasting Algorithms. In IEEE INFOCOM 2007 - 26th IEEE
International Conference on Computer Communications, pages 1073–1081.

Meulpolder, M., Meester, L., and Epema, D. (2012). The Problem of Upload
Competition in Peer-to-Peer Systems With Incentive Mechanisms. Concurrency and
Computation: Practice and Experience, 25(7):899–917.

Meulpolder, M., Pouwelse, J., Epema, D., and Sips, H. (2009). BarterCast: A Practical
Approach to Prevent Lazy Freeriding in P2P Networks.

Miguel, E. C., Carvalho, F. C., Morgan, B., Junior, M. C., Cunha, Í., and Campos,
S. V. (2016). Join Rate Improvements in P2P Live Streaming Based on Topological
Aspects During Flash Crowds. In SBRC 2017.

Miguel, E. C., Cunha, Í., Silva, C. M., Carvalho, F., and Campos, S. (2017).
Resource-constrained P2P Streaming Overlay Construction for Efficient Joining
Under Flash Crowds. In 22nd IEEE Symposium on Computers and Communication
(ISCC 2017) (ISCC 2017), Heraklion, Greece.

Mol, J. J. D., Epema, D. H. J., and Sips, H. J. (2006). The orchard algorithm:
P2p multicasting without free-riding. In Sixth IEEE International Conference on
Peer-to-Peer Computing (P2P’06), pages 275–282. ISSN 2161-3559.

Moltchanov, D. (2011). Service Quality in P2P Streaming Systems. Computer Science
Review, 5(4):319 – 340.

Oliveira, J., Viana, R., Vieira, A. B., Rocha, M., and Campos, S. (2013a). TVPP: A
Research Oriented P2P Live Streaming System. In Salão de Ferramentas. Anais do
Simpósio Brasileiro de Redes de Computadores.

Oliveira, J. a., Cunha, Í., Miguel, E. C., Rocha, M. V., Vieira, A. B., and Campos,
S. V. (2013b). Can Peer-to-Peer Live Streaming Systems Coexist With Free Riders?
In IEEE P2P 2013 Proceedings, pages 1–5. IEEE.

72 Bibliography

Oliveira, J. F. D. A. (2010). Super Nós em Sistema P2P de Distribuição de Mídia ao
Vivo. Master’s thesis, Universidade Federal de Minas Gerais.

Payberah, A., Dowling, J., Rahimian, F., and H., S. (2012). Distributed Optimization
of P2P Live Streaming Overlays. Special Issue on Extreme Distributed Systems:
From Large Scale to Complexity, 94(8):621–647.

Payberah, A. H., Dowling, J., and Haridi, S. (2011). GLive: The Gradient Overlay as
a Market Maker for Mesh-Based P2P Live Streaming. In Parallel and Distributed
Computing (ISPDC), 2011 10th International Symposium on, pages 153–162.

Payberah, A. H., Dowling, J., Rahimian, F., and Haridi, S. (2010a). gradienTv:
Market-Based P2P Live Media Streaming on the Gradient Overlay, pages 212–225.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Payberah, A. H., Rahimian, F., Haridi, S., and Dowling, J. (2010b). Sepidar:
Incentivized Market-Based P2P Live-Streaming on the Gradient Overlay Network.
In 2010 IEEE International Symposium on Multimedia, pages 1–8.

Pianese, F., Keller, J., and Biersack, E. W. (2006). PULSE, a Flexible P2P Live
Streaming System. In Proceedings of the Global Internet Symposium in conjunction
with International Conference on Computer Communications. IEEE.

Piatek, M., Krishnamurthy, A., Venkataramani, A., Yang, R., Zhang, D., and Jaffe,
A. (2010). Contracts: Practical Contribution Incentives for P2P Live Streaming.
In Proceedings of the 7th USENIX Conference on Networked Systems Design and
Implementation, NSDI’10, pages 6–6, Berkeley, CA, USA. USENIX Association.

Piatek, M., Madhyastha, H. V., John, J. P., Krishnamurthy, A., and Anderson, T.
(2009). Pitfalls for ISP-friendly P2P Design. In Proceedings of the Workshop on Hot
Topics in Networks. ACM.

Picconi, F. and Massoulié, L. (2008). Is There a Future for Mesh-Based live Video
Streaming? In 2008 Eighth International Conference on Peer-to-Peer Computing,
pages 289–298.

PlanetLab (2013). An Open Platform for Developing, Deploying, and Accessing
Planetary-Scale Services.
http://www.planet-lab.org/. Accessed June 2, 2013.

PPlive (2013). PPlive. http://www.pplive.com. Accessed June 2, 2013.

Bibliography 73

PPS (2017). PPStreaming. http://www.pps.tv/. Accessed September 3, 2017.

Ren, D., Li, Y. T., and Chan, S. H. (2008). On Reducing Mesh Delay for Peer-to-Peer
Live Streaming. In IEEE INFOCOM 2008 - The 27th Conference on Computer
Communications.

Rückert, J., Richerzhagen, B., Lidanski, E., Steinmetz, R., and Hausheer, D. (2015).
TOPT: Supporting Flash Frowd Events in Hybrid Overlay-Based Live Streaming.
In 2015 IFIP Networking Conference (IFIP Networking), pages 1–9.

Sacha, J., Biskupski, B., Dahlem, D., Cunningham, R., Meier, R., Dowling, J., and
Haahr, M. (2010). Decentralising a service-oriented architecture. Peer-to-Peer
Networking and Applications, 3(4):323–350.

Sacha, J., Dowling, J., Cunningham, R., and Meier, R. (2006). Discovery of Stable
Peers in a Self-organising Peer-to-peer Gradient Topology. In Proceedings of the 6th
IFIP WG 6.1 International Conference on Distributed Applications and Interoperable
Systems, DAIS’06, pages 70–83, Berlin, Heidelberg. Springer-Verlag.

Sandvine (2014). Fall 2014 Global Internet Phenomena Report. Technical report.

Schlinker, B., Kim, H., Cui, T., Katz-Bassett, E., Madhyastha, H. V., Cunha, I., Quinn,
J., Hasan, S., Lapukhov, P., and Zeng, H. (2017). Engineering Egress with Edge
Fabric: Steering Oceans of Content to the World. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication (2017), SIGCOMM ’17,
pages 418–431, New York, NY, USA. ACM.

Silva, A. P., , Leonardi, E., Mellia, M., and Meo, M. (2008). A Bandwidth-Aware
Scheduling Strategy for P2P-TV Systems. In 2008 Eighth International Conference
on Peer-to-Peer Computing, pages 279–288. ISSN 2161-3559.

Simoni, G., Roverso, R., and Montresor, A. (2014). RankSlicing: A Decentralized
Protocol for Supernode Selection. In Proceedings of IEEE P2P (2014).

SopCast (2013). SopCast. http://www.sopcast.com. Accessed June 2, 2013.

Tan, G. and Jarvis, S. A. (2008). A Payment-Based Incentive and Service
Differentiation Scheme for Peer-to-Peer Streaming Broadcast. IEEE Transactions
on Parallel and Distributed Systems, 19(7):940–953.

Tanenbaum, A. S. and Steen, M. V. (2006). Distributed Systems: Principles and
Paradigms (2Nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA. ISBN
0132392275.

74 Bibliography

TechCrunch (2017). Trump’s Inauguration Broke Live Video Streaming
Records. TC:TechCrunch. https://techcrunch.com/2017/01/23/

trumps-inauguration-broke-live-video-streaming-records/. Accessed
Octuber 05, 2017.

Tran, D., Hua, K., and Do, T. (2003). ZIGZAG: An Efficient Peer-to-Peer Scheme for
Media Streaming. In Proceedings of the Annual Joint Conference of the Computer
and Communications, volume 2, pages 1283–1292. IEEE.

Traverso, S., Abeni, L., Birke, R., Kiraly, C., Leonardi, E., Cigno, R. L., and Mellia, M.
(2012). Experimental comparison of neighborhood filtering strategies in unstructured
P2P-TV systems. In 2012 IEEE 12th International Conference on Peer-to-Peer
Computing (P2P), pages 13–24. ISSN 2161-3559.

Traverso, S., Abeni, L., Birke, R., Kiraly, C., Leonardi, E., Lo Cigno, R., and
Mellia, M. (2015). Neighborhood Filtering Strategies for Overlay Construction in
P2P-TV Systems: Design and Experimental Comparison. IEEE/ACM Transactions
on Networking (TON), 23(3):741–754.

TVU (2017). TVU. http://www.tvunetworks.com/. Accessed September 3, 2017.

Ullah, I., Doyen, G., and Gaïti, D. (2013). Towards User-Aware Peer-to-Peer Live Video
Streaming Systems. In 2013 IFIP/IEEE International Symposium on Integrated
Network Management (IM 2013), pages 920–926. IEEE.

UUSee (2013). UUSee Inc. http://www.uusee.com/. Accessed June 2, 2013.

Venkataraman, V., Yoshida, K., and Francis, P. (2006). Chunkyspread: Heterogeneous
Unstructured Tree-Based Peer-to-Peer Multicast. In Proceedings of the International
Conference, pages 2–11. IEEE.

Vlavianos, A., Iliofotou, M., and Faloutsos, M. (2006). BiToS: Enhancing BitTorrent
for Supporting Streaming Applications. In Proceedings IEEE INFOCOM 2006. 25TH
IEEE International Conference on Computer Communications, pages 1–6.

VLC (2013). VideoLAN ORGANIZATION.
http://www.videolan.org/vlc/. Accessed June 2, 2013.

Wang, Wenjie and Xiong, Yongqiang and Zhang, Qian and Jamin, Sugih (2006).
Ripple-Stream: Safeguarding P2P Streaming Against Dos Attacks. In Proceedings
of the International Conference on Multimedia and Expo, pages 1417–1420. IEEE.

https://techcrunch.com/2017/01/23/trumps-inauguration-broke-live-video-streaming-records/
https://techcrunch.com/2017/01/23/trumps-inauguration-broke-live-video-streaming-records/

Bibliography 75

WaysiAlTuhafi, A. (2013). A Review on Peer-to-Peer Live Video Streaming Topology.
International Journal of Computer Applications, 68(5):6–14.

Wichtlhuber, M., Richerzhagen, B., Rückert, J., and Hausheer, D. (2014). TRANSIT:
Supporting Transitions in Peer-to-Peer Live Video Streaming. In 2014 IFIP
Networking Conference, pages 1–9.

WikiBooks (2017). The World of Peer-to-Peer (P2P)/Building a P2P System.
WikiBooks: Open books for an open world. https://en.wikibooks.org/

wiki/The_World_of_Peer-to-Peer_(P2P)/Building_a_P2P_System. Accessed
September 15, 2017.

Wu, H., Liu, J., Jiang, H., Sun, Y., Li, J., and Li, Z. (2012). Bandwidth-Aware
Peer Selection for P2P Live Streaming Systems under Flash Crowds. In
Performance Computing and Communications Conference (IPCCC), 2012 IEEE
31st International, pages 360–367. ISSN 1097-2641.

Xiao, Z. and Ye, F. (2008). New Insights on Internet Streaming and IPTV. In
Proceedings of the International Conference on Content-based Image and video
Retrieval, pages 645–654. ACM.

Yap, K., Motiwala, M., Rahe, J., Padgett, S., Holliman, M., Baldus, G., Hines, M.,
Kim, T., Narayanan, A., Jain, A., Lin, V., Rice, C., Rogan, B., Singh, A., Tanaka,
B., Verma, M., Sood, P., Tariq, M., Tierney, M., Trumic, D., Valancius, V., Ying, C.,
Kallahalla, M., Koley, B., and Vahdat, A. (2017). Taking the Edge off with Espresso:
Scale, Reliability and Programmability for Global Internet Peering. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communication (2017),
SIGCOMM ’17, pages 432–445.

Zhao, B., Lui, J., and Chiu, D. (2009). Exploring the Optimal Chunk Selection Policy
for Data-Driven P2P Streaming Systems. In Proceedings of IEEE P2P (2009).

Zheng, Q., Long, Y., Qin, T., and Yang, L. (2011). Lifetime Characteristics
Measurement of a P2P Streaming System: Focusing on Snapshots of the Overlay. In
9th World Congress on Intelligent Control and Automation (WCICA), 2011, pages
805–810.

Zhong, L., Dai, J., Li, B., Li, B., and Jin, H. (2010). Are a Few Neighboring Peers
Good Enough? In 2010 IEEE Global Telecommunications Conference GLOBECOM
2010, pages 1–5.

https://en.wikibooks.org/wiki/The_World_of_Peer-to-Peer_(P2P)/Building_a_P2P_System
https://en.wikibooks.org/wiki/The_World_of_Peer-to-Peer_(P2P)/Building_a_P2P_System

