UNIVERSIDADE FEDERAL DE MINAS GERAIS

Escola de Engenharia Departamento de Engenharia de Estruturas

ANÁLISE DO COMPORTAMENTO E DA RESISTÊNCIA DE UM SISTEMA DE LAJES COM FÔRMA DE AÇO INCORPORADA

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Engenharia de Estruturas por Gianluca Brendolan

Março de 2007

AGRADECIMENTOS

Ao meu orientador, Prof. José Márcio Fonseca Calixto, pelo seu conhecimento e disponibilidade em sempre auxiliar-me quando necessário, pela motivação, pela paciência e por acreditar na realização deste trabalho.

À todos os professores do departamento de estruturas, que de alguma forma contribuíram nesta pesquisa.

Aos funcionários do LAEES, em especial ao Érick, Klérton e Geraldo, que contribuíram e muito na etapa dos ensaios, sempre dispostos a colaborar quando preciso.

Aos amigos de mestrado, pela companhia nos estudos, incentivo e amizade.

Aos meus pais, minhas irmãs, que me incentivaram e estiveram sempre ao meu lado nesse período.

À Josi, pela companhia, amizade, paciência e carinho.

À Deus, por ter me dado a vida com saúde.

ÍNDICE DE CAPÍTULOS

Capítulo 1 - Introdução	1
1.1 Considerações Iniciais	1
1.2 Justificativa do Estudo	4
1.3 Objetivos	5
1.4 Descrição Resumida dos Capítulos	6
Capítulo 2 - Revisão Bibliográfica	7
2.1 Introdução	7
2.2 Estudos Realizados no Exterior	9
2.3 Estudos Realizados no Brasil	12
Capítulo 3 - Caracterização e Fabricação dos Protótipos	16
3.1 Introdução	
3.2 Características gerais	
3.3 Materiais utilizados	
3.3.1 Fôrma de aço incorporada	
3.3.2 Concreto	19
3.4 Preparação dos protótipos	24
Capítulo 4 - Procedimentos de Ensaio e Instrumentação	26
4.1 Introdução	
4.2 Aparato de carga	
4.3 Instrumentação	
4.3.1 Carga Aplicada	
4.3.2 Deslizamento relativo de extremidade	30
4.3.3 Flecha no meio do vão	
4.3.4 Deformações na fôrma de aço	
4.4 Procedimento de montagem e dos ensaios	
Capítulo 5 - Apresentação e Análise dos Resultados	35
5.1 Introdução	
5.2 Apresentação e análise dos resultados	35
5.2.1 Protótipo das Séries A, B e C	
5.2.2 Protótipo das Séries E, F e G	
5.2.3 Protótipo da Série D	
5.2.4 Protótipo da Série H	53
5.3 Resumo dos principais resultados encontrados	58
Capítulo 6 - Verificação da Resistência ao Cisalhamento Longitudinal	59
6.1 Considerações iniciais	59
6.2 Método " <i>m</i> e <i>k</i> "	60
6.2.1 Protótipos com "steel-deck" de espessura de 0,80 mm	61
6.2.2 Protótipos com "steel-deck" de espessura de 1,25 mm	64
6.3 Método da interação parcial	67
6.3.1 Considerações iniciais	67

6.3.2 Ligação parcial ao cisalhamento	67
6.3.3 Determinação da resistência ao cisalhamento - τ_u	72
6.4 Análise comparativa entre as duas metodologias para determinação da	
resistência ao cisalhamento longitudinal	82
6.4.1 Protótipos com "steel-deck" de espessura de 0,80 mm	82
6.4.2 Protótipos com "steel-deck" de espessura de 1,25 mm	83
6.5 Resistência de cálculo ao cisalhamento longitudinal	84
6.5.1 Método "m e k"	84
6.5.2 Método da Interação Parcial	86
Capítulo 7 - Conclusões e Sugestões para Continuidade da Pesquisa	91
7.1 Introdução	91
7.2 Conclusões	91
7.3 Sugestões para continuidade da pesquisa	94

APÊNDICES

Apêndice A - Tabelas de Resultados	95
A.1 Introdução	95
A.2 Tabelas	96
Apêndice B - Apresentação Gráfica dos Resultados	113
B.1 Introdução	
B.2 Relação carga × flecha no meio do vão	
B.3 Relação carga × deslizamento relativo de extremidade	
B.4 Relação carga × deformação no "steel-deck"	
Apêndice C - Fotografias	138
Apêndice D - Momento de Plastificação – Steel Deck MF-50 Área Ef	etiva pelo
AISI 2001	142
D.1 Introdução	142
D.2 Steel Deck # 0,80 mm	142
D.3 Steel Deck # 1,25 mm	145

Capítulo 1 - Introdução

Figura 1.1 - Detalhe dos tipos de transmissão de esforço da fôrma para o concreto.......3

Capítulo 3 - Caracterização e Fabricação dos Protótipos

Figura 3.1 - Dimensões do Steel Deck MF-50 (dimensões em mm)	. 18
Figura 3.2 - Dimensões dos corpos-de-prova utilizados na caracterização do aço do	
perfil metálico (dimensões em mm)	. 19
Figura 3.3 - Teste de compressão no corpo de prova de concreto	.20
Figura 3.4 - Variação da resistência à compressão com o tempo	.21

Capítulo 4 - Procedimentos de Ensaio e Instrumentação

Figura 4.1 - Elevação	27
Figura 4.2 - Planta	27
Figura 4.3 - Esquema de aplicação de carga	28
Figura 4.4 - Detalhe da chapa de aço e da tira de borracha	28
Figura 4.5 - Detalhe do anel dinamométrico	30
Figura 4.6 - Detalhe do relógio comparador para medição do deslizamento relativo do	e
extremidade	31
Figura 4.7 - Detalhe do relógio comparador para medição da flecha no meio do vão	32
Figura 4.8 - Localização dos extensômetros elétricos na fôrma de aço	32
Figura 4.9 - Detalhe do posicionamento dos extensômetros elétricos	33

Capítulo 5 - Apresentação e Análise dos Resultados

Figura 5.1 - Perfil das fissuras nos protótipos
Figura 5.2 - Curva carga × flecha no meio do vão do protótipo 2 da série A37
Figura 5.3 - Curva carga × desliz. relativo de extremidade do protótipo 2 da série A 39
Figura 5.4 - Deslizamento relativo no final do ensaio do protótipo 2 da série A 40
Figura 5.5 - Relação carga × deformação no "steel-deck" do protótipo 2 da série A 42
Figura 5.6 - Curva carga × flecha no meio do vão do protótipo da série G
Figura 5.7 - Curva carga × deslizamento relativo de extremidade do protótipo da série G
Figura 5.8 - Curva carga × deformação no "steel-deck" no protótipo da série G 47
Figura 5.9 - Curva carga × flecha no meio do vão do protótipo 8 da série D
Figura 5.10 - Fissura sob linha de carga durante o ensaio do protótipo série D
Figura 5.11 - Curva carga × desliz. relativo de extremidade do protótipo 8 da série D. 50
Figura 5.12 - Curva carga × deformação no steel deck do protótipo 8 da série D 52
Figura 5.13 - Curva carga × flecha no meio do vão do protótipo 16 da série H53
Figura 5.14 - Curva carga × desliz. relativo de extremidade do protótipo 16 da série H55
Figura 5.15 - Curva carga × deformação no "steel-deck" do protótipo 16 da série H 56

Capítulo 6 - Verificação da Resistência ao Cisalhamento Longitudinal

Figura 6.	1 - Resistência última nominal ao cisalhamento longitudinal - t = 0,80 mm 63
Figura 6.	2 - Resistência última nominal ao cisalhamento longitudinal - # 1,25 mm 66
Figura 6.	3 - Distribuição de tensões normais na seção transversal do módulo típico 68
Figura 6.4	4 - Momento \times L _x

Apêndice B - Apresentação Gráfica dos Resultados

Figura B.1 - Relação carga × flecha no meio do vão - Série A - Protótipo 1	113
Figura B.2 - Relação carga × flecha no meio do vão - Série A - Protótipo 2	114
Figura B.3 - Relação carga × flecha no meio do vão - Série A - Protótipo 3	114
Figura B.4 - Relação carga × flecha no meio do vão - Série B - Protótipo 4	115
Figura B.5 - Relação carga × flecha no meio do vão - Série C - Protótipo 5	115
Figura B.6 - Relação carga × flecha no meio do vão - Série D - Protótipo 6	116
Figura B.7 - Relação carga × flecha no meio do vão - Série D - Protótipo 7	116
Figura B.8 - Relação carga × flecha no meio do vão - Série D - Protótipo 8	117
Figura B.9 - Relação carga × flecha no meio do vão - Série E - Protótipo 9	117
Figura B.10 - Relação carga × flecha no meio do vão - Série E - Protótipo 10	118
Figura B.11 - Relação carga × flecha no meio do vão - Série E - Protótipo 11	118
Figura B.12 - Relação carga × flecha no meio do vão - Série F - Protótipo 12	119
Figura B.13 - Relação carga × flecha no meio do vão - Série G - Protótipo 13	119
Figura B.14 - Relação carga × flecha no meio do vão - Série H - Protótipo 14	120
Figura B.15 - Relação carga × flecha no meio do vão - Série H - Protótipo 15	120
Figura B.16 - Relação carga × flecha no meio do vão - Série H - Protótipo 16	121
Figura B.17 - Relação carga × desliz. relativo de extremidade - Série A - Protótipo 1	122
Figura B.18 - Relação carga × desliz. relativo de extremidade - Série A - Protótipo 2	122
Figura B.19 - Relação carga × desliz. relativo de extremidade - Série A - Protótipo 3	123
Figura B.20 - Relação carga × desliz. relativo de extremidade - Série B - Protótipo 4	123
Figura B.21 - Relação carga × desliz. relativo de extremidade - Série C - Protótipo 5	124
Figura B.22 - Relação carga × desliz. relativo de extremidade - Série D - Protótipo 6	124
Figura B.23 - Relação carga × desliz. relativo de extremidade - Série D - Protótipo 7	125
Figura B.24 - Relação carga × desliz. relativo de extremidade - Série D - Protótipo 8	125
Figura B.25 - Relação carga × desliz. relativo de extremidade - Série E - Protótipo 9	126
Figura B.26 - Relação carga × desliz. relativo de extremidade - Série E - Protótipo 10	
	126
Figura B.27 - Relação carga × desliz. relativo de extremidade - Série E - Protótipo II	
	127
Figura B.28 - Relação carga × desliz. relativo de extremidade - Serie F - Prototipo 12	107
$\Gamma_{i} = D_{i} O_{i} D_{i} I_{i} \sigma_{i} \sigma_$	127
Figura B.29 - Relação carga × desiiz. relativo de extremidade - Serie G - Prototipo 13	100
Eigene D 20 Dele 2 come y deelig geleting de contenuide de Cérie II. Destéting 1/	128
Figura B.30 - Relação carga × desiiz. relativo de extremidade - Serie H - Prototipo 14	170
Figure D 21 Deleção correct y degliz relativo de extremidada. Séria II. Drotétino 15	120
Figura B.ST - Kelação calga × desilz. Telativo de extremidade - Selle H - Piototipo 13	, 120
Figura B 32 Palação carga × desliz relativo de extremidade Sária H. Drotótino 16	129
rigura D.52 - Kelação carga ~ desnz. relativo de extremitade - Sene II - Frotoupo re	, 120
Figura B 33 - Relação carga × deformação no "steel-deck" - Série A - Protótino 1	130
Figura B 34 - Relação carga × deformação no "steel-deck" - Série A - Protótino 2	130
Figura B.35 - Relação carga × deformação no "steel-deck" - Série A - Protótipo 3	131
Figura B.36 - Relação carga × deformação no "steel-deck" - Série B - Protótipo 4	131
Figura B.37 - Relação carga × deformação no "steel-deck" - Série C - Protótipo 5	132
Figura B.38 - Relação carga × deformação no "steel-deck" - Série D - Protótipo 7	132
Figura B.39 - Relação carga × deformação no "steel-deck" - Série D - Protótipo 8	133
Figura B.40 - Relação carga × deformação no "steel-deck" - Série D - Protótipo 9	133
, , , , , , , , , , , , , , , , , , ,	

Figura B	.41 - Relação	carga × def	ormação no	"steel-deck"	- Série E	- Protótipo	10134
Figura B	.42 - Relação	carga × def	ormação no	"steel-deck"	- Série E	- Protótipo	11134
Figura B	.43 - Relação	carga × def	ormação no	"steel-deck"	- Série E	- Protótipo	12135
Figura B	.44 - Relação	carga × def	ormação no	"steel-deck"	- Série F	- Protótipo	13135
Figura B	.45 - Relação	carga × def	ormação no	"steel-deck"	- Série G	- Protótipo	14136
Figura B	.46 - Relação	carga × def	ormação no	"steel-deck"	- Série H	- Protótipo	15136
Figura B	.47 - Relação	$\operatorname{carga} \times \operatorname{def}$	ormação no	"steel-deck"	- Série H	- Protótipo	16137

Apêndice C - Fotografias

Figura C.1 - Detalhe da tela soldada	
Figura C.2 - Concretagem dos protótipos	
Figura C.3 - Pórtico para aplicação de carga na laje mista	
Figura C.4 - Sistema de aquisição de dados	
Figura C.5 - Localização dos extensômetros no centro do vão do "steel-deck"	
Figura C.6 - Detalhe do extensômetro	
Figura C.7 - Máquina universal servocontrolada para ensaios dos corpos de pro	ova de
concreto	
Figura C.8 - Fissuras no protótipo durante a realização do ensaio	

ÍNDICE DE TABELAS

Capítulo 3 - Caracterização e Fabricação dos Protótipos	
Tabela 3.1 - Caracterização dos protótipos	. 17
Tabela 3.2 - Propriedades físicas do Steel Deck MF-50	. 18
Tabela 3.3 - Propriedades mecânicas da chapa MF-50	. 19
Tabela 3.4 - Resistência à compressão do concreto nas datas de ensaio dos protótipos	22
Tabela 3.5 - Resistência à compressão do concreto nas datas de ensaio dos protótipos	
(continuação)	. 23
Capítulo 5 - Apresentação e Análise dos Resultados	
Tabela 5.1 - Quadro de cargas correspondentes às flechas máximas de serviço obtidas	3
nos ensaios dos protótipos das séries A, B e C	. 38
Tabela 5.2 - Quadro de cargas correspondentes aos deslizamentos de serviço obtidos	
nos ensaios dos protótipos das séries A, B e C	.41
Tabela 5.3 - Quadro de cargas correspondentes às flechas máximas de serviço obtidos	5
nos ensaios dos protótipos das séries E, F e G	. 44
Tabela 5.4 - Quadro de cargas correspondentes aos deslizamentos de serviço obtidos	
nos ensaios dos protótipos das séries E, F e G	. 46
Tabela 5.5 - Quadro de cargas correspondentes às flechas máximas de serviço obtidos	5
nos ensaios dos protótipos da série D	. 50
Tabela 5.6 - Quadro de cargas correspondentes aos deslizamentos de serviço obtidos	
nos ensaios dos protótipos da série D	. 51
Tabela 5.7 - Quadro de cargas correspondentes às flechas máximas de serviço obtidos	5
nos ensaios dos protótipos da série H	. 54
Tabela 5.8 - Quadro de cargas correspondentes aos deslizamentos de serviço obtidos	
nos ensaios dos protótipos da série H	. 56
Tabela 5.9 - Quadro resumo dos principais resultados encontrados nos ensaios dos	
protótipos	. 58

Capítulo 6 - Verificação da Resistência ao Cisalhamento Longitudinal Tabela 6 1 - Dados experimentais e resultados dos ensaios das séries A, B, C e D.

Cupitulo 0	v er meugus un resistencia as ersamamento Longitaamar
Tabela 6.1 - Da	ados experimentais e resultados dos ensaios das séries A, B, C e D 62
Tabela 6.2 - Re	esultado da análise de regressão linear dos protótipos das séries A, B, C e
D	
Tabela 6.3 - Da	ados experimentais e resultados dos ensaios das séries E, F, G e H65
Tabela 6.4 - Re	esultado da análise de regressão linear dos protótipos
Tabela 6.5 - Da	ados geométricos e resultados dos ensaios dos protótipos das séries A, B,
C e D	
Tabela 6.6 - Pa	râmetros necessários à determinação da resistência ao cisalhamento
longitudir	nal das séries A, B, C e D76
Tabela 6.7 - Te	ensão resistente de cisalhamento τ_u dos protótipos das séries A, B, C e D
Tabela 6.8 - Re	esultado da análise comparativa para validação de τ_{um} para os
protótipos	das séries A, B, C e D
Tabela 6.9 - Da	ados geométricos e resultados dos ensaios dos protótipos das séries E, F,
G e H	

80
;
81
82
nto
83
nto
84
85
86
89

Capítulo 7 - Conclusões e Sugestões para Continuidade da Pesquisa

Tabela 7.1 - Valores nominais para os parâmetros "m e	2 k"
Tabela 7.2 - Valores da tensão resistente τ ao cisalhamo	ento longitudinal de93

Apêndice A - Tabelas de Resultados

Tabela A.1 - Resultados obtidos para o protótipo 1 – Série A	96
Tabela A.2 - Resultados obtidos para o protótipo 2 – Série A	97
Tabela A.3 - Resultados obtidos para o protótipo 3 – Série A	98
Tabela A.4 - Resultados obtidos para o protótipo 4 – Série B	99
Tabela A.5 - Resultados obtidos para o protótipo 5 – Série C	100
Tabela A.6 - Resultados obtidos para o protótipo 6 – Série D	101
Tabela A.7 - Resultados obtidos para o protótipo 7 – Série D	102
Tabela A.8 - Resultados obtidos para o protótipo 8 - Série D	103
Tabela A.9 - Resultados obtidos para o protótipo 9 – Série E	104
Tabela A.10 - Resultados obtidos para o protótipo 10 - Série E	106
Tabela A.11 - Resultados obtidos para o protótipo 11 - Série E	107
Tabela A.12 - Resultados obtidos para o protótipo 12 - Série F	108
Tabela A.13 - Resultados obtidos para o protótipo 13 - Série G	109
Tabela A.14 - Resultados obtidos para o protótipo 14 - Série H	110
Tabela A.15 - Resultados obtidos para o protótipo 15 - Série H	111
Tabela A.16 - Resultados obtidos para o protótipo 16 - Série H	112

Apêndice D - Momento de Plastificação

RESUMO

O objetivo deste trabalho é analisar o comportamento e a resistência de um sistema de laje mista com fôrma de aço incorporada, empregando o "steel-deck" MF-50 fabricado pela METFORM S. A., durante todas as fases do carregamento após a cura do concreto. Para isto foi realizado um programa de ensaios de laboratório a fim de se identificar e avaliar os vários parâmetros que influenciam as características globais de resistência deste sistema de laje mista. Esse programa consistiu de ensaios em 16 protótipos fabricados em escala natural com diferentes alturas de laje, vãos e espessuras da fôrma de aço incorporada. As lajes foram testadas na condição de simplesmente apoiadas seguindo as recomendações de normas internacionais. As análises dos resultados dos ensaios foram feitas considerando-se as curvas: carga \times deslizamento relativo de extremidade, carga \times flecha no meio do vão e carga \times deformação no aço, que possibilitou conhecer o comportamento do sistema misto e definir precisamente o seu modo de colapso: cisalhamento longitudinal. Expressões analíticas para o cálculo da capacidade última das lajes para este modo de colapso foram determinadas através do método semi-empírico "m e k" e do método da interação parcial.

ABSTRACT

The objective of this thesis is to analyze the behavior and strength of composite slabs with ribbed decking built with steel deck MF-50, manufactured by METFORM S. A., after concrete has been cured. A series of tests was conducted to identify and evaluate the parameters that affect this composite slab performance. The experimental program consisted of tests in 16 full scale slabs built with different height and span as well as deck thickness. The slabs were single span and were tested according international design codes for composite slabs. The analysis of the test results is based on load × end-slip load × midspan deflection and load × midspan deck strains relationships. A single mode of failure was obtained in all tests: shear bond. Based on these test results, the slabs design strength for this failure mode was determined according to the "m e k" method and partial interaction method.

Capítulo 1

Introdução

1.1 Considerações Iniciais

Por volta de 1930, os engenheiros e projetistas norte-americanos perceberam que muitas vantagens poderiam ser obtidas integrando as propriedades estruturais da chapa de aço com o concreto. Este tipo de estrutura, que trabalha com os dois materiais, recebe o nome de estrutura mista, e pode ser uma viga ou um pilar [GOMES (2001)].

No caso de lajes, a chapa de aço e o concreto trabalhavam inicialmente em separado, sem que houvesse uma ação composta entre eles. Neste caso, diz-se que o piso não é composto. Os perfis de chapas metálicas funcionam como fôrma permanente; porém, a laje de concreto era armada para, depois de curada, ser capaz de suportar todo o peso próprio e as cargas a ela impostas. Na prática, esse tipo de piso freqüentemente oferece algum grau de ação composta, sendo entretanto, de difícil avaliação. Essa ação composta produzida não prejudicava a eficiência estrutural da laje, sendo que se a fôrma de aço fosse removida, sem causar danos ao concreto, não reduziria também a resistência da laje. A fôrma normalmente era deixada por conveniência, por razões estéticas ou por economia.

Começaram a surgir na década de 1940, os chamados sistemas de lajes mistas com fôrma de aço incorporada, onde a fôrma de aço deve ser capaz de transmitir cisalhamento horizontal na interface com o concreto, passando a funcionar como armadura positiva, tal como nas lajes convencionais. Em caso de vãos contínuos, uma armadura adicional pode ser colocada na laje para resistir aos momentos negativos. A aplicação de telas soldadas na laje também pode ser providenciada para resistir às tensões de retração e temperatura, ou então para fornecer continuidade sobre os apoios intermediários [GOMES (2001)].

Com o avanço da tecnologia, começaram a ser fabricados os perfis conformados a frio ("steel-deck"), uma das formas mais avançadas de se fabricar a laje mista. No caso mais específico desse tipo de laje, que é o tema desta pesquisa, a fôrma de aço é incorporada ao sistema de sustentação das cargas, funcionando, antes da cura do concreto, como suporte das ações permanentes e sobrecargas de construção e, depois da cura, como parte ou toda armadura de tração da laje.

Caso não exista uma vinculação mecânica entre a chapa de aço e o concreto, a ação composta não é considerada efetiva [GOMES (2001)]. A transmissão de esforços entre os materiais, conforme mostra a figura 1.1, pode ser feita das seguintes formas:

 1 – ligações mecânicas fornecidas por saliências ou reentrâncias (mossas) na alma e/ou no flange do perfil da chapa;

2 – ligações por atrito, em perfis de chapas modelados numa fôrma reentrante;

3 – ancoragens de extremidade fornecidas por conectores tipo "stud bolt", ou por outro tipo de ligação local entre o concreto e a chapa metálica, mas somente em combinação com 1 ou 2;

4 – ancoragem de extremidade obtida pela deformação das nervuras na extremidade da chapa, somente em combinação com 2.

Figura 1.1 - Detalhe dos tipos de transmissão de esforço da fôrma para o concreto

As lajes com fôrma de aço incorporada, juntamente com as vigas mistas, constituem um dos sistemas de piso mais utilizados, e vêm ganhando cada vez mais popularidade em nosso país.

Dentre as vantagens do sistema com lajes mistas, destacam-se as seguintes:

- a chapa de aço é leve, sendo facilmente manuseada e instalada, permitindo, portanto, maior rapidez construtiva (retorno financeiro do empreendimento);
- dispensa de escoramento;
- redução de desperdício de material;
- facilidade de passagem de dutos e de fixação de forros;
- redução ou mesmo eliminação da armadura de tração na região de momentos positivos;
- maior segurança do trabalho, por funcionar como plataforma de serviço e de proteção aos operários que trabalham nos andares inferiores;
- praticidade de execução, uma vez que a fôrma fica incorporada ao sistema, não havendo a etapa de desforma;
- sistema estrutural leve, que resulta em uma economia substancial no custo da fundação;

- após a instalação, a fôrma atua como um diafragma de cisalhamento efetivo no plano horizontal, conforme BAEHRE et al (1993) *apud* MELO (1999);
- taxa de resistência ao fogo de 120 minutos facilmente alcançada [MELO (1999)].

As principais desvantagens são:

- necessidade de utilização de forros suspensos em alguns casos, por razões estéticas;
- maior quantidade de vigas secundárias, caso não se utilize o sistema escorado e/ou fôrmas de grande altura, devido à limitação dos vãos antes da cura do concreto.

1.2 Justificativa do Estudo

Vários estudos sobre lajes mistas já foram realizados pelo Departamento de Engenharia de Estruturas da EE/UFMG, em parceria com a METFORM, fabricante da fôrma de aço incorporada. Essa parceria vem ocorrendo desde 1996, compreendendo quatro fases. Na primeira etapa, o estudo visou a aplicação de laje mista em construções metálicas, com e sem a presença de conectores de extremidade [MELO (1999)]. A segunda fase analisou o emprego de lajes mistas em estruturas convencionais de concreto armado [SILVA (1999)]. O trabalho realizado por CAMPOS (2001), na terceira etapa, teve como meta quantificar o efeito da continuidade sobre os apoios intermediários no comportamento e na resistência da laje mista. Na quarta e última fase, a utilização de concreto estrutural leve foi o objetivo do estudo [GOMES (2001)].

Vale ressaltar que todas essas pesquisas citadas foram realizadas com o "steel-deck" MF-75. Com a crescente otimização e utilização do aço na construção civil, a METFORM desenvolveu recentemente a fôrma de aço incorporada MF-50, objeto deste trabalho. Pela própria nomenclatura do produto, percebe-se a principal diferença entre eles: o MF-75 é o "steel-deck" com 75mm de altura, enquanto o MF-50 apresenta 50mm de altura.

A otimização do material aço, neste caso, é verificada de duas formas. Primeiramente, as larguras úteis das fôrmas são distintas: o MF-75, por ter uma altura maior em relação ao MF-50, possui uma largura útil menor, 820mm, contra 915mm do MF-50. Essa diferença é devida ao fato de ambas as fôrmas serem produzidas a partir de bobinas de aço de mesma largura, ou seja, a fôrma de menor altura, possui uma maior largura. Portanto, com uma menor altura, será necessário uma quantidade menor de aço para se cobrir uma determinada área. Outro motivo para o desenvolvimento desse novo perfil é que, em vários projetos, o vão a ser vencido pelo MF-75 é menor que o usual, fazendo com que o "steel-deck" fique superdimensionado, gerando conseqüentemente, um maior custo para a construção. Com o MF-50 isso não irá ocorrer: por ter uma altura menor, ele é adequado para vãos menores (por ter menor inércia), proporcionando um melhor dimensionamento e aproveitamento do material aço nestes casos.

Com base nestes fatos e num mercado da construção civil em constante crescimento e disposto a absorver novos produtos, o estudo das particularidades deste novo perfil de fôrma de aço incorporada se faz necessário.

1.3 Objetivos

Esta pesquisa tem por finalidade analisar o comportamento e a resistência do sistema de lajes mistas fabricado com o "steel-deck" MF-50 durante todas as fases do carregamento após a cura do concreto. Para tal, um programa de ensaios de laboratório foi realizado a fim de se identificar e avaliar os vários parâmetros que influenciam o comportamento e resistência desse sistema de laje. Protótipos com diferentes combinações de comprimento, altura total da laje e espessura da fôrma de aço foram construídos e testados, seguindo os critérios do EUROCODE 4 (2004) e do CANANDIAN SHEET STEEL BUILDING INSTITUTE – CSSBI (2002).

1.4 Descrição Resumida dos Capítulos

O capítulo 2 apresenta uma breve revisão bibliográfica dos trabalhos mais relevantes utilizados para a compreensão do comportamento estrutural do sistema de lajes mistas. No capítulo 3, é apresentado o programa de ensaios de laboratório realizado para identificar e avaliar os vários parâmetros que têm maior influência na resistência estrutural do sistema misto, além de detalhar e caracterizar os protótipos, seus materiais constituintes e sua execução. A instrumentação e os procedimentos utilizados durante os ensaios são apresentados no capítulo 4.

A análise dos resultados dos ensaios é feita no capítulo 5. O capítulo 6 apresenta a determinação dos parâmetros para o cálculo da resistência última das lajes, sendo que as conclusões e sugestões para pesquisas futuras compõem o capítulo 7.

Capítulo 2

Revisão Bibliográfica

2.1 Introdução

O estudo do comportamento estrutural do sistema de laje mista é feito por ensaios em laboratório em escala real [SCHUSTER (1984)]. Descobertos os estados limites mais relevantes, são desenvolvidos modelos matemáticos para representá-los chegando a modelos matemáticos que prevêem o comportamento do conjunto com relativa precisão, até o seu colapso. São desenvolvidas equações que recebem fatores de majoração de carga e coeficientes de minoração de resistência adequados, e devem ter seu campo de aplicação claramente definido, sendo incorporadas pelas diversas normas e especificações técnicas, como por exemplo: CANADIAN SHEET STEEL BUILDING INSTITUTE – CSSBI (2002), EUROCODE 4 (2004), AMERICAN SOCIETY OF CIVIL ENGINEERS – ASCE (1992), STEEL DECK INSTITUTE – SDI (1995), e o ANEXO C da NBR 14323 (1999) - DIMENSIONAMENTO DE ESTRUTURAS DE AÇO DE EDIFÍCIOS EM SITUAÇÃO DE INCÊNDIO.

Em geral, os protótipos são ensaiados em vãos simplesmente apoiados. Os tipos de colapso são classificados em: colapso por flexão, colapso por cisalhamento vertical e colapso por cisalhamento longitudinal ("shear bond"), sendo esse último o modo de ruína mais predominante.

O colapso do sistema da laje mista na flexão é caracteristicamente similar em natureza ao das vigas de concreto armado convencionais, diferindo somente na fôrma de aço que fornece a armadura positiva. De acordo com o EUROCODE 4 (2004), a resistência ao momento fletor, M_{pRd} , de qualquer seção transversal deve ser determinada pela teoria plástica, mas com a resistência de cálculo ao escoamento do elemento de aço tomada como f_{yp}/γ_{ap} (f_{yp} é a resistência nominal de escoamento à tração da fôrma de aço e γ_{ap} é o fator de minoração de resistência do aço da fôrma). Em momentos fletores negativos, a contribuição da fôrma de aço deve somente ser levada em consideração quando a chapa for contínua.

O cisalhamento vertical segundo o AMERICAN IRON AND STEEL INSTITUTE – (AISI, 2001) será crítico somente em alguns casos especiais, como em lajes de grandes espessuras com vãos curtos e carregamentos de grande magnitude ou nos casos em que são encontradas cargas concentradas elevadas próximas aos apoios. Já o efeito da punção ocorre, por exemplo, quando são transmitidas elevadas cargas diretamente da laje aos pilares de apoio das mesmas ou no caso de pilares que nascem sobre a laje (mais comum).

O último modo de ruptura relacionado, o colapso por cisalhamento longitudinal, é caracterizado pela formação de uma fissura de tração em diagonal no concreto (sob ou próximo às linhas de carga), seguido por uma falha na ligação entre as mossas da fôrma de aço e o concreto. Com conseqüência, ocorre a perda da ação composta do conjunto perfil de aço e laje de concreto provocando um deslizamento horizontal relativo entre esses dois elementos.

Com relação ao estado limite de utilização ou de serviço, todos os critérios de projeto especificam que o valor da flecha deve ser controlado. O valor limite desta flecha é, em geral, uma fração do vão teórico da laje na direção das nervuras. O EUROCODE 4 (2004) explicita também uma outra verificação para o estado limite de utilização em lajes sem ancoragem de extremidade: valor limite para o deslizamento horizontal relativo entre a fôrma de aço incorporada e o concreto. Este deslizamento não deve exceder 0,5 mm para as cargas de serviço.

Nos EUA, os projetos de lajes mistas são baseados nas especificações do STEEL DECK INSTITUTE (SDI) e da AMERICAN SOCIETY OF CIVIL ENGINNIEERS (ASCE); no Canadá as especificações do CANADIAN SHEET STEEL BUILDING INSTITUTE (CSSBI), baseadas principalmente nos trabalhos de Schuster, fornecem os critérios necessários para o dimensionamento. Atualmente na Europa, o EUROCODE 4 é a norma empregada no dimensionamento tanto da fôrma de aço isolada quanto da laje mista. No Brasil, o critério de cálculo desse sistema de laje mista se encontra no Anexo C da NBR 14323.

Este capítulo apresenta uma revisão dos trabalhos mais importantes relacionados ao sistema de laje mista. Esta revisão tem como objetivo apresentar a seqüência do desenvolvimento dos estudos realizados, de modo a fornecer um melhor entendimento do comportamento estrutural desse sistema de laje mista. A seguir serão apresentados uma revisão da literatura internacional e os estudos realizados no Brasil sobre as lajes mistas.

2.2 Estudos Realizados no Exterior

A primeira publicação significativa sobre o tema de lajes mistas foi feita por FRIBERG em 1954 [MELO (1999)]. O seu trabalho não só forneceu uma visão geral do comportamento do perfil testado como também apresentou uma comparação de custos entre as lajes mistas e as lajes convencionais.

Outro pesquisador que contribuiu com o desenvolvimento da pesquisa foi BRYL (1967), [MELO (1999)]. Através de ensaios, Bryl mostrou que chapas de aço lisas tinham muito menor capacidade de carga em comparação com as chapas que apresentavam reentrâncias (mossas). As lajes fabricadas com essas chapas lisas rompiam bruscamente durante o ensaio, ao passo que as lajes construídas com perfis tendo reentrâncias se deformavam bastante até o colapso, e conseqüentemente resistiam a um carregamento maior.

Até por volta dos anos 70, cada fabricante desenvolvia o seu tipo de fôrma de aço incorporada. As características de cada fôrma eram desenvolvidas por meio de testes e pesquisas independentes, de forma que os órgãos competentes, de posse dos resultados

dessas pesquisas, aprovavam, ou não, a sua utilização. Em alguns casos, testes adicionais eram requisitados aos fabricantes dos perfis, o que encarecia o processo e dificultava o seu uso. Reconhecendo esse fato e a necessidade de uma normalização técnica, o AMERICAN IRON AND STEEL INSTITUTE (AISI), iniciou, em 1967, um projeto de pesquisa, na Iowa State University, sob a direção de EKBERG e SCHUSTER (1976) *apud* MELO (1999)], onde foi dada uma ênfase particular na formulação de um critério de resistência última. Desde então, várias pesquisas foram realizadas. Nestes ensaios um único modo de ruína foi observado nos protótipos: ruptura por cisalhamento longitudinal. Com base neste modo de ruína e nos resultados dos ensaios, Ekberg e Schuster estabeleceram uma expressão para o cálculo da capacidade resistente ao cisalhamento longitudinal, conhecida hoje como o método "m e k". Essa formulação originou as expressões contidas no CSSBI (2002) e EUROCODE 4 (2004). A equação em questão é:

$$V_{us} = b.d_{ef} \cdot \left(m \cdot \frac{1}{L'} + k\right)$$
(2.1)

onde:

 V_{us} é a resistência nominal ao esforço cortante, em kN/m; b é a largura da laje, em m; d_{ef} é a altura efetiva da laje, em mm; L' é o vão de cisalhamento, em mm; e m e k são parâmetros determinados a partir de resultados dos ensaios.

A metodologia consiste em reescrever a equação acima na forma:

$$Y = m \cdot X + k \tag{2.2}$$

onde:

$$X = \frac{1}{L}$$
 (2.3)

e

Y

$$= \frac{V_{ut}}{b.d_{ef}}$$
(2.4)

Na equação 2.4, o termo V_{ut} é o cisalhamento transversal último total obtido nos ensaios por metro de largura de laje. Com os valores de X e Y faz-se uma regressão linear empregando o método dos mínimos quadrados, obtendo, desse modo, os parâmetros *m* e *k*.

O valor do vão de cisalhamento L´ para projeto, segundo o EUROCODE 4 (2004), deve ser igual a:

- L/4 para carregamento uniformemente distribuído em todo o vão;
- a distância entre a carga concentrada e o apoio mais próximo, para duas cargas iguais e simetricamente dispostas; e
- uma avaliação baseada nos resultados dos testes deve ser feita para outros arranjos de carregamento, tais como a combinação de cargas distribuídas com cargas concentradas assimétricas.

O método "m e k" não é baseado em nenhum modelo analítico. Assim quando as dimensões dos elementos, os materiais ou o modo de carregamento diferem daqueles usados nos ensaios, hipóteses conservadoras devem ser feitas. Além disso, o método também não permite a consideração explícita das ancoragens de extremidade ou o uso de armaduras longitudinais de reforço. Para que se considerem esses aspectos, o EUROCODE 4 (2004) propõe o método da interação parcial como alternativa ao método "m e k". Esse método é analítico e portanto permite que se considerem as contribuições explícitas das ancoragens de extremidade e o uso de armaduras de reforço, como alternativa para aumentar a resistência ao cisalhamento longitudinal do sistema.

2.3 Estudos Realizados no Brasil

No Brasil, a NBR 8800 (1986) foi a primeira norma a tratar de sistemas mistos, abordando vigas mistas, sem no entanto fazer referência a pilares, lajes ou ligações mistas. Atualmente, o Anexo C da NBR 14323 (1999) trata do dimensionamento das lajes mistas, tanto em temperatura ambiente como em situação de incêndio.

Como citado no primeiro capítulo, várias pesquisas foram realizadas na Universidade Federal de Minas Gerais – UFMG em parceria com a METFORM S.A., empresa fabricante da fôrma de aço incorporada. Todas essas pesquisas envolveram o "steeldeck" MF-75. Na primeira etapa, lajes mistas aplicadas a edifícios metálicos, com diferentes combinações de altura total, vão de cisalhamento e espessura de fôrma de aço, foram construídas e testadas em laboratório por MELO (1999). As dimensões dos protótipos foram variadas de modo a cobrir satisfatoriamente a faixa de parâmetros que afetam o comportamento e a resistência dessas lajes. O concreto utilizado era de densidade usual com resistência característica à compressão de 20 MPa. Os resultados destes ensaios revelaram um único modo de ruína: colapso por cisalhamento longitudinal. Com base nestes resultados parâmetros "m e k" foram determinados com os quais é feito o dimensionamento dessas lajes.

O sucesso da utilização dessas lajes mistas em edifícios metálicos gerou a segunda etapa da pesquisa: o emprego do sistema de lajes mistas em estruturas usuais de concreto armado. Esse estudo foi realizado por SILVA (1999), onde foi analisado tanto o aspecto construtivo quanto o comportamento e a resistência dessas lajes neste sistema construtivo. Os ensaios revelaram que os sistemas de lajes mistas aplicadas em estruturas convencionais de concreto armado têm comportamento equivalente aos aplicados em estruturas metálicas sem conectores de extremidade, atingindo da mesma maneira o colapso por cisalhamento longitudinal. Quanto à resistência, foram obtidos resultados praticamente iguais para esse sistema comprando-se ao sistema pesquisado por MELO (1999), comprovando a viabilidade estrutural da aplicação das lajes mistas a estruturas prediais de concreto armado.

A terceira etapa da pesquisa foi realizada por CAMPOS (2001), onde foi avaliado o efeito da continuidade no comportamento e na resistência de lajes mistas. A análise dos resultados revelou um aumento significativo na capacidade portante da laje em relação aos protótipos simplesmente apoiados.

A última fase da pesquisa foi realizada por GOMES (também em 2001). Nesta etapa empregou-se, nas lajes mistas, concreto estrutural leve ao invés de concreto convencional. Os resultados obtidos foram bastante similares ao apresentado pelas lajes mistas feitas com concreto convencional.

Ainda em 2001, SOUZA NETO avaliou o comportamento e a resistência de lajes mistas aço-concreto, também utilizando o "steel-deck" MF-75, contendo ancoragem de extremidade. A ancoragem de extremidade foi fornecida por meio de conectores de cisalhamento do tipo "stud-bolt". Análises comparativas de comportamento são feitas com relação aos resultados de ensaios de lajes mistas não ancoradas na extremidade. Estas análises revelam o ganho significativo de rigidez e resistência das lajes com ancoragem de extremidade. A influência do atrito na região dos apoios foi também analisada e alguns métodos propostos para sua consideração são apresentados e comparados aos resultados dos ensaios.

Uma extensa linha de pesquisa sobre lajes mistas vem sendo desenvolvida na Pontifícia Universidade Católica do Rio de Janeiro (PUC - Rio) desde 2001. As investigações se iniciaram com o trabalho de TAKEY (2001) que desenvolveu um estudo de um novo sistema de laje mista constituída de perfis metálicos de chapa dobrada e isopor, seqüencialmente dispostos lado a lado, e preenchidos com concreto. Os resultados obtidos indicaram que os custos do novo sistema de laje são equivalentes aos outros métodos de construção de lajes, mas que outras características como o tempo e as perdas economizadas na fase construtiva viabilizam a utilização do novo sistema. O trabalho constou de três fases principais: primeiramente uma otimização do estudo dos perfis de chapa dobrada foi conduzida analisando as suas características estáticas e dinâmicas para o sistema de laje. Variáveis como peso, altura, espessura, tensão de escoamento, vão máximo, carga suportada por vão e por espessura da chapa metálica, momento máximo, capacidade de carga, minimização dos custos de fabricação e possibilidades de uso de vãos múltiplos foram validados. Quando a seção do perfil metálico estava definida e otimizada, foi estabelecido um estudo consistindo de cinco testes em escala real. O propósito principal dos testes foi obter os estados limites último da seção do perfil adotado associado ao sistema de laje para validação do sistema estrutural. Os testes avaliaram a real aderência entre concreto e perfil metálico e sua influência no estado limite último de flexão, cisalhamento e deslizamento. A fase final compreendeu a comparação dos resultados experimentais com as normas de aço para averiguar a validade dos resultados do sistema de laje mista.

Em continuidade ao trabalho de Takey, VIEIRA (2003) avaliou um outro sistema de laje mista. Neste caso a laje é constituída de perfis "C" enrijecidos e preenchidos com concreto estrutural. Foram realizados oito testes nos quais apenas uma bandeja foi utilizada (somente um perfil "C" na laje mista) e dois testes nos quais foram utilizadas três bandejas. As lajes mistas compostas de apenas uma bandeja não precisaram de fôrma de contenção lateral e nem de escoras. Para as lajes mistas compostas de três bandejas, apesar de a estrutura ser auto-sustentável e não necessitar de escoras, fez-se necessário o uso de uma fôrma de contenção lateral para o concreto, pelo fato da laje mista ter uma capa de 50 milímetros. Os resultados dos ensaios revelaram a viabilidade estrutural deste tipo de laje mista. Boa correlação entre os resultados do ensaio com modelos teóricos também foi encontrada.

Também em 2003, BELTRÃO (2003) desenvolveu um estudo sobre lajes mistas empregando perfis metálicos de chapa dobrada com corrugações na alma e preenchidos com concreto estrutural. Procurou-se nos ensaios de laboratório determinar a resistência última da estrutura, possíveis modos de ruína, deflexões, deformações e aderência através do ensaio tipo "push out". Os resultados mostraram que este sistema construtivo foi bastante coerente em relação aos estados limites últimos da seção do perfil com corrugações na alma, sendo inclusive mais eficiente em relação a lajes lisa com conectores espaçados a cada 200 mm. Os testes "push out" avaliaram a real aderência entre concreto e perfil metálico com corrugações na alma e sua influência na força

cisalhante na interface do concreto com o perfil; os resultados foram bastante coerentes com valores encontrados na literatura.

Com a intenção de se desenvolver um novo perfil metálico que apresentasse uma boa aderência mecânica entre o concreto e o aço e com características de comportamento dúctil, Viana (2005) avaliou, também na PUC-Rio, várias formas para seção transversal ideal do perfil metálico. Variáveis como peso, altura, espessura, tensão de escoamento, vão máximo, e capacidade de suporte de carga foram consideradas. Após definição e otimização da seção do perfil metálico, foi efetuado um estudo experimental composto de uma série de ensaios. Foram executados dois ensaios de arrancamento (pull-out), nove ensaios de flexão do perfil metálico e um ensaio em escala real da laje mista. Os ensaios tipo pull-out foram executados para estabelecer a carga última de deslizamento na interface aço/concreto. Os ensaios dos perfis metálicos serviram para verificar a rigidez dos mesmos durante a fase de concretagem. Procurou-se com o ensaio em escala real determinar a resistência última da estrutura, o modo de ruína, as deflexões e as deformações. A fase final compreendeu a comparação dos resultados experimentais com os dos trabalhos desenvolvidos por Takey e Beltrão, bem como com resultados teóricos para validação de resultados do sistema proposto de laje mista.

Capítulo 3

Caracterização e fabricação dos protótipos

3.1 Introdução

Este capítulo apresenta a especificação dos protótipos analisados, compreendendo suas principais características físicas e geométricas, bem como dos materiais utilizados na sua fabricação com seus respectivos ensaios de caracterização. Uma descrição do processo de execução e de preparação dos ensaios também é apresentada.

3.2 Características gerais

Para pesquisar o comportamento e a resistência das lajes mistas construídas sobre o "steel-deck" MF-50, protótipos com diferentes alturas totais, espessuras nominais da fôrma incorporada, vão total e vão de cisalhamento foram fabricados e testados em laboratório, seguindo os critérios do CSSBI (2002) e do EUROCODE 4 (2004).

As dimensões dos protótipos (comprimento de vãos, vão de cisalhamento, altura total da laje) foram variadas a fim de cobrir adequadamente o conjunto de parâmetros que afetam o comportamento e a resistência deste tipo de laje mista.

Com relação às espessuras da fôrma de aço incorporada, somente foram empregadas formas com espessura de 0,80mm e de 1,25mm. O comportamento da laje fabricada com fôrma de espessura igual a 0,95mm poderá ser estimado por interpolação dos resultados obtidos com as duas espessuras ensaiadas.

A tabela 3.1 fornece as características geométricas de cada protótipo: espessura nominal da fôrma de aço, altura total da laje, vão total e vão de cisalhamento.

Série	Número do protótipo	Espessura nominal do "steel-deck", t ,	Altura total da laje	Vão total da laje	Vão de Cisalhamento
		(mm)	(mm)	(mm)	(mm)
Α	$ \begin{array}{c} 1\\ 2\\ 3 \end{array} $	0,80	100	1800	450
В	4	0,80	120	1800	600
С	5	0,80	140	1800	600
D	6 7 8	0,80	160	3600	900
E	9 10 11	1,25	100	1800	450
F	12	1,25	120	1800	600
G	13	1,25	140	1800	600
Н	14 15 16	1,25	160	3600	900

Tabela 3.1 - Caracterização dos protótipos

3.3 Materiais utilizados

3.3.1 Fôrma de aço incorporada

O "steel-deck" MF-50 da METFORM é um perfil de aço formado a frio de seção transversal trapezoidal com mossas, cuja geometria auxilia no processo de travamento mecânico fundamental para o comportamento composto da laje mista. O perfil é fabricado com aço galvanizado NBR ZAR-280 (revestimento igual a 275 gZn/m²) e comercialmente encontrado nas espessuras nominais de 0,80mm, 0,95mm e 1,25mm.

Foram empregados apenas os perfis com espessura nominal de 0,80mm e 1,25mm. A tabela 3.2 fornece as propriedades físicas e geométricas dos perfis, enquanto a figura 3.1 ilustra sua seção transversal típica.

Esp. Nominal (mm)	Peso (kg/m ²)	Módulo de Resistência* (mm ³)	Momento de Inércia* (mm ⁴)	Área de Aço* (mm ²)	Centro de Gravidade** (mm)
0,80	8,39	14.599	449.419	997	26,13
1,25	13,11	27.791	786.502	1.587	26,36
* - Os valores indicados das propriedades são por metro de largura do perfil					
** - Distância medida em relação à extremidade inferior do perfil					

Tabela 3.2 - Propriedades físicas do Steel Deck MF-50

Figura 3.1 - Dimensões do Steel Deck MF-50 (dimensões em mm)

As propriedades mecânicas do aço empregado na fabricação das fôrmas foram obtidas a partir de ensaios de tração realizados em corpos-de-prova retirados da bobina da qual o "steel-deck" foi conformado a frio. Estes ensaios foram realizados de acordo com as prescrições da norma NBR 6152 (1992). Nestes ensaios foi utilizada uma máquina universal servo-controlada da marca INSTRON, modelo 4482 com capacidade de 100 kN, de propriedade do Departamento de Materiais e Construção Civil da Escola de Engenharia da UFMG. Para cada espessura de aço empregada foram ensaiados três

corpos-de-prova cujas dimensões estão indicadas na figura 3.2. A tabela 3.3 encontrada logo abaixo apresenta os valores médios obtidos nos ensaios.

Figura 3.2 - Dimensões dos corpos-de-prova utilizados na caracterização do aço do perfil metálico (dimensões em mm)

Propriedades Mecânicas	t = 0,80 mm	t = 1,25 mm
Resistência ao Escoamento (MPa)	350,2	345,0
Limite de Resistência do Aço à Tração (MPa)	414,6	414,7
Módulo de Elasticidade (MPa)	201290	200233
Porcentagem de Alongamento na Ruptura (%)	21,9	20,2

Tabela 3.3 - Propriedades mecânicas da chapa MF-50

Os valores das tensões de escoamento encontrados em ambas as espessuras foram maiores do que a tensão de escoamento nominal do aço ZAR 280, que é de 280 MPa. Já o módulo de elasticidade, também para ambas as espessuras, ficou aquém em aproximadamente 2 %, em relação ao módulo de elasticidade nominal de 205.000 MPa. As porcentagens finais de alongamento de 21,9 % e 20,2 %, indicam a grande ductilidade do aço empregado.

3.3.2 Concreto

Todo concreto utilizado na preparação dos protótipos teve como premissas básicas ser de massa específica convencional e ter uma resistência característica à compressão, f_{ck} ,

maior ou igual a 20 MPa. O concreto foi produzido em usina, pela SUPERMIX, empregando cimento de alto forno CP III, areia natural lavada e brita de calcário. O fator água/cimento foi igual a 0,749, de acordo com a nota de venda do concreto.

A caracterização da resistência à compressão do concreto foi feita nas idades iniciais após a fabricação dos protótipos, bem como nas idades de ensaio de cada um. Em cada idade foram rompidos três corpos-de-prova de acordo com os critérios da norma NBR 5739 (1994). Estes ensaios foram realizados numa máquina universal servocontrolada da marca EMIC com capacidade de 1000 kN. A figura 3.3 abaixo ilustra o corpo-de-prova na máquina universal no instante do ensaio.

A concretagem dos protótipos foi feita em duas etapas. Assim sendo, a caracterização da resistência à compressão do concreto nas idades iniciais foi feita de duas maneiras. Quatro dias após a execução da primeira etapa, ensaios de compressão simples do concreto foram realizados e a resistência média encontrada foi de 15,5 MPa. Com essa resistência, as lajes fabricadas já poderiam ser removidas para que a segunda etapa fosse executada. Aos 7 dias, a resistência chegou aos 22,5 MPa, e aos 28 dias a 26,1 MPa.

Figura 3.3 - Teste de compressão no corpo de prova de concreto

A resistência à compressão do concreto utilizado na segunda etapa de fabricação dos protótipos também foi analisada. Aos 7 dias o valor médio obtido foi igual a 17,5 MPa; este valor subiu 23,6 e 24,8 MPa respectivamente aos 14 e 28 dias. A figura 3.4 ilustra o crescimento da resistência à compressão do concreto até a idade de 28 dias para as duas etapas de fabricação dos protótipos. A análise da figura revela que a resistência característica especificada para a idade de 28 dias foi satisfeita.

Figura 3.4 - Variação da resistência à compressão com o tempo

A resistência à compressão do concreto foi medida nas datas de ensaio de cada protótipo. Três corpos-de-prova cilíndricos, com dimensões 15 x 30 cm, foram utilizados em cada idade para esta avaliação. A tabela 3.4 apresenta os resultados da resistência de cada corpo-de-prova, da resistência média bem como do valor estimado da resistência característica em cada idade. Para a determinação do valor estimado da resistência característica foi utilizado o critério do item 6.2.3.3 da NBR 12655 (2006). Este critério estabelece que o valor estimado da resistência característica é dado pelo produto do coeficiente Ψ_6 , função do número de corpos-de-prova ensaiados, vezes a menor resistência de um corpo-de-prova. No caso de 3 corpos-de-prova, Ψ_6 vale 0,86.

Como a resistência do concreto não foi avaliada na data de ensaio do protótipo **D**7, os valores apresentados correspondem à media dos valores obtidos para os protótipos **D**6 e **D**8, respectivamente. A análise dos valores encontrados revela que o valor característico especificado de 20 MPa foi plenamente satisfeito.

Série	Número do protótipo	Idade do concreto	Resistência à compressão de cada CP	Resistência média à compressão	Valor estimado da resistência
		(dias)	(MPa)	(MPa)	característica [*] (MPa)
			29,64		
	1	41	29,76	30,2	25,5
			31,19		
			30,22		
Α	2	48	30,34	29,9	25,0
			29,12		
			29,23		
	3	62	30,87	30,2	25,1
			30,60		
			29,13		
В	4	74	30,38	30,2	25,1
			31,04		
			32,47		
С	5	80	30,13	31,3	25,9
			31,27		
			29,70		
	6	87	28,68	28,8	24,0
			27,93		
			-		
D	7	108	-	29,9	24,8
			-		
			30,76		
	8	150	29,63	31,0	25,5
			32,48		

Tabela 3.4 – Resistência à compressão do concreto nas datas de ensaio dos protótipos

* - Valor estimado da resistência característica = 0,86 x menor resistência de um corpo-de-prova

Série	Número do protótipo	Idade do concreto	Resistência à compressão de cada CP	Resistência média à compressão	Valor estimado da resistência
		(dias)	(MPa)	(MPa)	característica [*] (MPa)
			31,66		
	9	125	29,91	30,0	24,4
			28,34		
			32,85		
Ε	10	132	33,75	31,1	22,8
			26,56		
			30,32		
	11	137	29,80	31,4	25,6
			34,05		
			25,57		
F	12	140	26,01	28,1	22,0
			32,74		
			31,37		
G	13	144	34,26	32,8	25,72**
			-		
			29,89		
	14	157	30,16	30,8	25,7
			32,26		
			30,84		
Н	15	167	29,65	30,4	25,5
			30,80		
			29,99		
	16	171	30,62	30,1	25,6
			29,73		

Tabela 3.5 – Resistência à compressão do concreto nas datas de ensaio dos protótipos (continuação)

* - Valor estimado da resistência característica = 0,86 x menor resistência de um corpo-de-prova
** - Valor estimado da resistência característica = 0,82 x menor resistência de um corpo-de-prova

3.4 Preparação dos protótipos

Por questões de logística, todos os protótipos foram preparados na fábrica da METFORM, em Betim, sendo a concretagem realizada em duas etapas. A primeira etapa ocorreu no dia 04/11/2005, quando foram fabricadas todas as lajes com vão de 1800 mm. A segunda etapa ocorreu uma semana depois, no dia 11/11/2005, com a execução de todas as lajes com vão de 3600 mm.

Para cada protótipo a ser ensaiado foi fabricada uma outra peça idêntica, para, caso acontecesse algum dano no transporte ou resultado inesperado, pudéssemos ter uma laje reserva para repetir o ensaio.

Corpos-de-prova representativos do concreto foram executados juntamente com a fabricação das lajes. Ao todo, foram concretados 90 corpos-de-prova (cp's), sendo 45 em cada uma das etapas. Desses, 30 tinham dimensões de 15×30 cm, enquanto os outros 15 eram de 10×20 cm.

Placas de aço de 19 x 100 mm foram soldadas em pontos das extremidades de cada protótipo, de tal forma a simular a prática construtiva real de se fixar a fôrma à mesa da viga de aço de apoio. Todos os protótipos foram moldados apoiados em vários pontos ao longo do vão, o que certamente não ocorre no campo, onde o sistema geralmente só é apoiado em suas extremidades durante o lançamento do concreto. Entretanto, o fato de obter uma espessura constante da laje, o resultado do ensaio nos leva a valores conservadores em relação à prática, principalmente quando se considera o cisalhamento longitudinal.

Após o lançamento do concreto, realizou-se seu adensamento com vibrador de agulha, para evitar que as canaletas do "steel-deck" apresentassem vazios, o que certamente comprometeria o resultado do ensaio.

Para evitar o aparecimento de fissuras de retração e de variação térmica no concreto, foi colocada uma malha de tela soldada, fabricada a partir de barras trefiladas em aço com

limite de escoamento de 600 MPa, na parte superior da laje, com um cobrimento de aproximadamente 20mm. A área mínima desta malha, nas duas direções, era de pelo menos 0,1% da área do concreto acima da fôrma de aço.

Todos os protótipos foram desformados após 3 dias (retirada da chapa de contenção lateral do concreto) e mantidos úmidos por meio de sacos úmidos até a idade de 7 dias. Esse mesmo procedimento foi feito nos cilindros, para que ambos os concretos ficassem sob a mesma condição durante a cura. A partir do sétimo dia, os protótipos foram empilhados e cobertos até o transporte para o Laboratório de Análise Experimental de Estruturas (LAEEs) da Escola de Engenharia da UFMG, local de realização dos ensaios.
Capítulo 4

Procedimentos dos ensaios e instrumentação

4.1 Introdução

Neste capítulo serão apresentados os procedimentos básicos adotados na realização dos ensaios, assim como todo o detalhamento do processo de instrumentação e dos aparatos utilizados na determinação do comportamento e da resistência das lajes mistas.

4.2 Aparato de carga

Os protótipos foram carregados através de um cilindro hidráulico preso a um pórtico de reação. O cilindro hidráulico estava conectado a uma bomba com linhas de fluxo e retorno, que possibilitam o movimento do pistão em dois sentidos. A bomba era acionada manualmente.

A carga aplicada era transmitida à laje através de um sistema de vigas metálicas, conforme ilustram as figuras 4.1, 4.2 e 4.3. Os protótipos se encontravam na condição de simplesmente apoiado e submetido a um carregamento simétrico em relação ao meio do vão, o que ocasiona uma flexão pura entre as linhas de carga e esforço cortante constante entre os pontos de aplicação de carga e o apoio mais próximo.

Figura 4.1 - Elevação

Figura 4.2 - Planta

Figura 4.3 - Esquema de aplicação de carga

Para que o carregamento se distribuísse na laje o mais uniformemente possível, foi utilizada uma tira de borracha entre o concreto e a chapa metálica, conforme recomendação da CSSBI S2-2002 (2002), mostrada em detalhe na figura 4.4.

Figura 4.4 - Detalhe da chapa de aço e da tira de borracha

Assumiu-se que qualquer restrição longitudinal indesejável foi eliminada pelo sistema de apoios móvel e fixo atuando em conjunto com o sistema esférico da unidade de aplicação de carga.

4.3 Instrumentação

Durante a realização do ensaio, várias informações necessitavam ser obtidas para que se pudesse fazer uma correta análise do comportamento da laje. Os itens a seguir explicam detalhadamente como cada uma dessas informações que foram coletadas.

4.3.1 Carga Aplicada

Os valores correspondentes às cargas aplicadas pelo macaco hidráulico foram medidos por um anel dinamométrico com capacidade de 300 kN. Antes dos ensaios, o anel foi calibrado pelo Centro Tecnológico de Minas Gerais (CETEC), sendo que cada divisão do relógio comparador correspondia a um carregamento de 0,45686 kN. A figura 4.5 abaixo ilustra o anel dinamométrico em questão.

Figura 4.5 - Detalhe do anel dinamométrico

4.3.2 Deslizamento relativo de extremidade

Durante todos os ensaios realizados, o deslizamento relativo de extremidade entre o "steel-deck" e o concreto da laje foi monitorado em quatro pontos: no lado esquerdo e no lado direito dos apoios móvel e fixo. A medida destes deslizamentos foi feita por relógios comparadores da Mitutoyo com precisão de milésimos de milímetro, fixados a uma cantoneira de aço parafusada na face lateral da laje de concreto. A ponteira do relógio estava em contato com uma pequena chapa de aço soldada na placa de apoio, que por sua vez estava soldada na fôrma de aço incorporada. A figura 4.6 abaixo ilustra como foi medido esse deslocamento relativo. O resultado final para o deslizamento de cada extremidade da laje corresponde à média dos valores medidos nos dois relógios.

Figura 4.6 – Detalhe do relógio comparador para medição do deslizamento relativo de extremidade

4.3.3 Flecha no meio do vão

A fim de se medir a flecha no meio do vão do protótipo, foram utilizados dois relógios comparadores, também da marca Mitutoyo, com precisão de centésimos de milímetro. Eles foram posicionados a 18 cm da borda lateral da laje. Para que a medição fosse mais precisa, foi feito um orifício na parte superior da laje de concreto para que houvesse um perfeito encaixe da ponteira, evitando-se deslizamentos que interferissem no valor a ser medido. O resultado final para a flecha no meio do vão corresponde à média dos valores medidos nos dois relógios. A figura 4.7 abaixo mostra em detalhe o relógio e sua posição.

Figura 4.7 – Detalhe do relógio comparador para medição da flecha no meio do vão

4.3.4 Deformações na fôrma de aço

Para a medição das deformações do "steel-deck" foram utilizados extensômetros elétricos de resistência. Em todos os protótipos, os extensômetros foram da marca Kiowa, modelo KFG-5-120-C1-11, num total de 2 por ensaio, ambos localizados no meio do vão, sendo um colado na face externa da onda inferior e outro na face externa da onda superior. Vale frisar que os extensômetros elétricos foram colados paralelamente às ondas da fôrma de aço. As figuras 4.8 e 4.9 ilustram a posição de cada extensômetro no "steel-deck".

Figura 4.8 – Localização dos extensômetros elétricos na fôrma de aço

Figura 4.9 - Detalhe do posicionamento dos extensômetros elétricos

Os procedimentos de fixação dos extensômetros no "steel-deck" consistiram de preparo da superfície (lixamento e limpeza da área), seguido de colagem. Esses procedimentos foram realizados com a laje mista já posicionada para ensaio. Após a colagem, cada extensômetro era testado para verificação de seu funcionamento.

4.4 Procedimento de montagem e dos ensaios

Desde o início da montagem preocupou-se no alinhamento do protótipo em relação ao pórtico de reação, de forma que a carga se concentrasse exatamente no centro da laje. Para isso, utilizou-se o prumo de centro e nível de bolha.

Para as lajes com vão de 3600 mm, marteladas leves, com um martelo de borracha, foram aplicadas sobre o "steel-deck" com o intuito de diminuir a ligação química entre a fôrma de aço e o concreto, de forma que a resistência da ligação fosse

predominantemente a mecânica. Foi observado durante a análise dos resultados que tal procedimento não foi eficaz na diminuição da ligação química entre os materiais.

No início do ensaio, aplicava-se uma pré-carga à laje para a acomodação do sistema. Esta pré-carga era retirada, os relógios comparadores zerados e os extensômetros elétricos verificados. Então a laje mista era carregada de forma gradual, onde após cada carregamento, todas as deformações, deslocamentos e deslizamentos eram medidos, sempre depois da estabilização da carga. Caso fosse notado alguma fissuração, sua localização e extensão eram anotadas na própria laje. O ensaio só terminava quando a laje mista atingia sua carga máxima, ou seja, quando a mesma não era capaz de suportar incrementos de carregamento. Esta carga máxima atingida foi definida então como carga última do protótipo.

Capítulo 5

Apresentação e análise dos resultados

5.1 Introdução

Descreve-se neste capítulo os principais fatos ocorridos durante a realização dos ensaios, bem como a análise global dos resultados obtidos para os diversos parâmetros de monitoramento propostos. Esta análise dos resultados e do comportamento do sistema de laje mista durante a fase do carregamento até o colapso é apresentada por gráficos das relações: carga × deslizamento relativo de extremidade; carga × flecha no meio do vão e carga × deformação no aço. Os valores das medidas realizadas durante todos os ensaios podem ser encontrados em tabelas no Apêndice A e nos seus respectivos gráficos mostrados no Apêndice B.

5.2 Apresentação e análise dos resultados

Para facilitar a compreensão e evitar uma repetição desnecessária, a apresentação e a análise dos resultados são feitas para grupos de protótipos, sendo cada grupo formado por lajes mistas fabricadas com "steel-deck" de uma mesma espessura nominal e com o mesmo vão de ensaio. Desta forma, o primeiro grupo se compõe dos protótipos das séries A, B e C (tabela 3.1). As lajes das séries E, F e G formam o segundo grupo. O terceiro e o quarto grupo são compostos, respectivamente, dos protótipos das séries D e H.

A apresentação e análise dos resultados das lajes mistas deste grupo serão feitas com base no comportamento do protótipo de número 2 da série A, considerado representativo dos demais. Esse protótipo tem vão total de 1.800 mm e altura de 100 mm, tendo sido fabricado com "steel-deck" de espessura nominal de 0,80 mm. Esse protótipo apresentou comportamento bastante similar durante a realização do ensaio em relação às demais lajes da séria A bem como das séries B e C.

O protótipo 2 da série A em questão foi ensaiado 48 dias após a data da concretagem. A laje já apresentava algumas fissuras externas, devido à retração, antes do início do ensaio. O carregamento foi realizado de forma gradual, e com uma carga de 9,14 kN as primeiras fissuras capilares puderam ser notadas próximas à linha de carga do lado do apoio fixo. As fissuras foram aumentando de tamanho até que como carregamento de 20,10 kN chegou-se à carga de rompimento da ligação química entre a fôrma de aço e o concreto. A partir desta fase do ensaio, foi possível ouvir estalos na laje, quase sempre acompanhados por acomodações de carga, e pode-se constatar, até a carga de ruína, fissuração intensa na região compreendida entre as duas linhas de carga. Estes fenômenos viriam a se repetir em todos os ensaios. As fissuras entre as linhas de carga mostravam-se verticais ou levemente inclinadas, indicando uma flexão pura visto que não existe força de cortante nessa região da laje. A carga de ruína foi de 28,33 kN, e a ruptura se deu por cisalhamento longitudinal, devido ao deslizamento entre o aço e o concreto fazendo com que a laje não suportasse mais nenhum acréscimo de carga.

A figura 5.1 ilustra as fissurações no protótipo após a finalização do ensaio. A notação escrita no concreto corresponde ao número de divisões do relógio do anel dinamométrico (carga) no momento da fissura.

Figura 5.1 - Perfil das fissuras nos protótipos

- Relação Carga × Flecha no meio do vão

O comportamento carga \times flecha no meio do vão para o protótipo 2 da série A pode ser sintetizado através da figura 5.2.

Figura 5.2 - Curva carga \times flecha no meio do vão do protótipo 2 da série A

Ao analisar o gráfico acima, observa-se até aproximadamente 12 kN de carga uma progressão bem definida por uma reta. Depois desse valor, há uma sensível perda de rigidez dos protótipos causada pela intensa fissuração e a relação "carga × flecha no meio do vão" passa a ser não linear. Em torno de 20 kN, ocorre uma brusca queda no valor do carregamento. Esta queda de carga corresponde à quebra da aderência química existente entre o concreto e a fôrma de aço. Após esse estágio, pode-se notar uma significativa perda de rigidez da laje: cada pequeno acréscimo de carga provoca um grande aumento no valor da flecha.

O EUROCODE 4 (2004) limita a flecha máxima de lajes mistas, para cargas de serviço, em l/250 do vão livre. Para um vão de 1.800 mm, chega-se ao valor de 7,2 mm, representado no gráfico pela linha tracejada na vertical. O protótipo 2 da série A atingiu essa flecha com uma carga de 20,10 kN, o que corresponde a 71 % da carga última aplicada pelo atuador hidráulico.

Para as lajes das séries A, B e C, a tabela 5.1 apresenta um resumo das cargas correspondentes às flechas de serviço, da carga última medida em cada ensaio, bem como a relação entre elas.

Série	Número do	P flecha de	P último	<u>P flecha serviço</u>
	protótipo	serviço (kN)	(kN)	P último
Α	1	28,33	31,98	0,88
	2	20,10	28,33	0,71
	3	21,93	31,07	0,71
В	4	21,93	27,87	0,79
С	5	23,76	28,78	0,83

Tabela 5.1 – Quadro de cargas correspondentes às flechas máximas de serviço obtidas nos ensaios dos protótipos das séries A, B e C

- Relação Carga × Deslizamento relativo de extremidade

A figura 5.3 apresenta a relação "carga × deslizamento relativo de extremidade" para o protótipo 2 da série A.

Figura 5.3 - Curva carga × desliz. relativo de extremidade do protótipo 2 da série A

A análise do gráfico revela primeiramente a existência de interação completa entre a fôrma de aço e o concreto, representada pelo valor nulo de deslizamento relativo de extremidade. Esta interação completa indica que existe aderência total entre os dois materiais e que, portanto, as deformações na interface aço-concreto são iguais. Com a perda da aderência química (carga de 20 kN), a interação passa a ser parcial e a transferência do cisalhamento na interface "aço-concreto" faz-se somente através das mossas. Em todos os ensaios realizados, essa interação parcial ocorreu após a quebra da aderência química. No caso do "steel deck" MF-50, as mossas são incapazes de transferir integralmente os esforços de cisalhamento na interface fazendo com que surjam valores significativos de deslizamento relativo. O contínuo aumento do carregamento leva ao esgotamento da capacidade das mossas de transferir esses esforços de cisalhamento provocando a gradativa perda de ação composta do concreto com o "steel-deck", levando a laje a atingir o colapso por cisalhamento longitudinal. A

figura 5.4 ilustra claramente o deslizamento entre o "steel-deck" e o concreto ao final do ensaio caracterizando a ruína por cisalhamento longitudinal.

Figura 5.4 - Deslizamento relativo no final do ensaio do protótipo 2 da série A

Apesar da perda da ação composta, em nenhum dos ensaios realizados o concreto separou-se completamente da fôrma de aço, ou seja, o mecanismo de transferência de cisalhamento, mesmo depois da carga última ter sido alcançada, evitou que o sistema fosse completamente desfeito.

Segundo o EUROCODE 4 (2004), o comportamento de uma laje mista caracteriza-se como sendo dúctil se a sua carga de ruptura exceder a carga correspondente ao deslizamento de extremidade de serviço em mais de 10 %. Caso contrário, o comportamento da laje será considerado como frágil. O deslizamento de extremidade de serviço é igual a 0,5 mm de acordo com o EUROCODE 4 (2004). Observando-se o gráfico da figura 5.3, nota-se que a laje possui comportamento dúctil, onde a carga relativa ao deslizamento de serviço foi de 20,1 kN, e a carga última de colapso, 28,33 kN, ou seja, 41 % superior.

A tabela 5.2 apresenta, para as lajes das séries A, B e C, um resumo das cargas correspondentes aos deslizamentos de serviço, da carga última medida em cada ensaio, bem como a relação entre elas. Em todos os ensaios, a relação $P_{\text{último}} / P_{\text{desliz}}$. Foi maior que 1,1, o que significa que todos os ensaios deste grupo tiveram comportamento dúctil.

Série	Número do protótipo	P desliz. (kN)	P último (kN)	<u>P último</u> P desliz.
Α	1 2	28,32 20,10	31,98 28,33	1,13 1,41
	3	24,67	31,07	1,26
В	4	21,93	27,87	1,27
С	5	19,65	28,78	1,46

Tabela 5.2 – Quadro de cargas correspondentes aos deslizamentos de serviço obtidos nos ensaios dos protótipos das séries A, B e C

- Relação Carga × Deformação no "Steel-Deck"

A figura 5.5 a seguir apresenta a relação "carga × deformação no steel-deck", também para protótipo 2 da série A. Estas deformações foram medidas por extensômetros elétricos de resistência, nas fibras superior e inferior da fôrma de aço no meio do vão da laje. Na figura, valores de deformação positivos correspondem à tração e negativos a compressão.

A deformação na fibra inferior no meio do vão foi sempre de tração como esperado. Por outro lado, para a fibra superior ocorre a inversão da deformação (de tração para compressão) durante o carregamento, como pode ser verificado na figura 5.5. No começo do ensaio, a fibra superior do perfil encontrava-se tracionada (deformação positiva), o que implica em interação total entre os elementos constituintes da laje mista e a presença de uma única linha neutra localizada na mesa de concreto acima do "steel-deck". A partir da quebra da aderência química (carga = 20,10 kN), ocorreu a inversão da deformação, passando de tração para compressão. Essa compressão na fibra superior da fôrma de aço indica o surgimento de uma segunda linha neutra abaixo do topo do perfil, como conseqüência da perda da interação completa. Esta perda da interação

completa se deu pela incapacidade das mossas em transmitir integralmente as tensões de cisalhamento do perfil para a laje, gerando o deslizamento relativo entre o concreto e a fôrma de aço comentada anteriormente.

Figura 5.5 - Relação carga × deformação no "steel-deck" do protótipo 2 da série A

A máxima deformação medida, nos ensaios das lajes A, B e C, foi igual a 1649 µmm/mm, encontrada no protótipo 2 da série A. Com base nas propriedades mecânicas do aço empregado na fabricação do "steel-deck" com espessura de 0,80 mm apresentada na tabela 3.3, a deformação de escoamento foi avaliada através da lei de Hooke. O valor obtido foi igual a 1740 µmm/mm, o que permite concluir que em nenhuma das séries houve escoamento da fôrma de aço. Com base nessas evidências experimentais, o colapso deste sistema misto pode ou não ser precedido pelo escoamento da fôrma de aço.

5.2.2 Protótipo das Séries E, F e G

Neste segundo grupo serão analisados também os resultados dos ensaios dos protótipos com vão de 1.800 mm e altura total de laje variando de 100 a 140 mm. A única diferença, porém, é que nesse caso a espessura da fôrma de aço é de 1,25 mm.

O protótipo escolhido para esta análise foi o da série G, considerado representativo dos demais. O ensaio desta laje foi realizado 144 dias depois da concretagem. Esta laje apresentava algumas fissuras externas, devido à retração, antes do início do ensaio.

- Relação Carga × Flecha no meio do vão

A figura 5.6 abaixo ilustra o comportamento carga \times flecha no meio do vão para o protótipo da série G.

Figura 5.6 - Curva carga × flecha no meio do vão do protótipo da série G

Fissuras de flexão puderam ser observadas próximas à marca dos 32 kN, o que se traduz no gráfico anterior pela mudança da inclinação da curva e conseqüente perda de rigidez

da laje. Com o aumento do carregamento e da fissuração, atingiu-se com a carga de 43,4 kN a quebra da aderência química e o surgimento de uma fissura de maior abertura sob a linha de carga mais próxima do apoio fixo. Estes fatos fizeram com que o carregamento voltasse ao nível de 34,27 kN. A laje continuou a ser carregada e em torno de 60 kN de carga, após alguns estalos, uma nova acomodação aconteceu devido ao aumento significativo da abertura da fissura sob a linha de carga próxima ao apoio móvel da laje. A laje foi novamente carregada até que se chegasse a 61,68 kN, carga correspondente de ruptura. O modo de ruína foi, também neste caso, por cisalhamento longitudinal.

Da mesma forma como foi analisado anteriormente o gráfico da flecha, a flecha de serviço máxima permitida é de l/250 do vão livre, ou seja, 7,2 mm. O protótipo da série G atingiu esse valor com uma carga de 47,53 kN, ou cerca de 77 % da carga última aplicada pelo atuador hidráulico, que foi de 61,68 kN.

Para as lajes deste grupo, a tabela 5.3 apresenta um resumo das cargas correspondentes às flechas de serviço, da carga última medida em cada ensaio, bem como da relação entre elas.

Série	Número do	P flecha de	P último	<u>P flecha serviço</u>
	protótipo	serviço (kN)	(kN)	P último
E	9	37,46	50,26	0,75
	10	36,55	57,11	0,64
	11	34,26	55,28	0,62
F	12	37,46	47,97	0,78
G	13	47,53	61,68	0,77

Tabela 5.3 – Quadro de cargas correspondentes às flechas máximas de serviço obtidos nos ensaios dos protótipos das séries E, F e G

- Relação Carga × Deslizamento relativo de extremidade

A figura 5.7 apresenta a relação "carga \times deslizamento relativo de extremidade" também para o protótipo da série G.

Figura 5.7 - Curva carga × deslizamento relativo de extremidade do protótipo da série G

Da mesma forma que no grupo anterior, a análise do gráfico revela interação completa entre a fôrma de aço e o concreto, representada pelo valor nulo de deslizamento relativo no início do ensaio. Assim como nos ensaios com o "steel-deck" de 0,80 mm de espessura, em todos os ensaios desse grupo, a interação parcial ocorreu após a quebra da aderência química. Também nesse caso, apesar da perda da ação composta, em nenhum dos ensaios realizados o concreto separou-se completamente da fôrma de aço, o mecanismo de transferência de cisalhamento, evitou que o sistema fosse completamente desfeito.

Diferentemente dos protótipos da série A, as lajes deste grupo apresentaram deslizamentos nas duas extremidades do protótipo. Uma possível razão para isto pode ser o fato de que cargas mais elevadas foram atingidas neste caso, provocando fissuras de aberturas bem maiores sob as linhas de carga e por conseguinte a quebra da aderência química de ambos os lados.

Observando-se o gráfico da figura 5.7, nota-se que a laje possui comportamento dúctil, visto que a carga relativa ao deslizamento de serviço foi de 43,40 kN, correspondente a

70 % do valor de carga última igual a 61,68 kN. Comportamento similar foi obtido nas demais lajes deste grupo como mostra a tabela 5.4.

Série	Número do	P desliz.	P último	<u>P último</u>
	protótipo	(kN)	(kN)	P desliz.
E	9	34,72	50,26	1,45
	10	36,55	57,11	1,56
	11	31,98	55,28	1,73
F	12	29,25	47,97	1,64
G	13	43,40	61,68	1,42

Tabela 5.4 – Quadro de cargas correspondentes aos deslizamentos de serviço obtidos nos ensaios dos protótipos das séries E, F e G

- Relação Carga × Deformação no "Steel-Deck"

A figura 5.8 apresenta a relação "carga × deformação no steel-deck", para protótipo da série G. Estas deformações foram medidas, através de extensômetros elétricos de resistência, nas fibras superior e inferior da fôrma de aço no meio do vão da laje. Na figura, valores de deformação positivos correspondem à tração e negativos a compressão.

Da mesma forma como nos protótipos do primeiro grupo, a deformação na fibra inferior foi sempre de tração como esperado. Para a fibra superior do "steel-deck", o comportamento mostra a inversão da deformação (de tração para compressão) durante o carregamento. No começo do ensaio a fibra superior do perfil encontrava-se tracionada, mas a partir da quebra da ligação química entre o concreto e a fôrma de aço, mais precisamente aos 43,40 kN, ocorre a tendência de inversão desta deformação, que passa de tração para compressão com carga de 51 kN aproximadamente.

Figura 5.8 - Curva carga × deformação no "steel-deck" no protótipo da série G

A máxima deformação medida nos ensaios deste segundo grupo foi encontrada no protótipo 11 da série E, cujo valor foi de 1952 µmm/mm. Com base nas propriedades mecânicas do aço empregado na fabricação do "steel deck" com espessura de 1,25 mm apresentada na tabela 3.3, a deformação de escoamento corresponde a 1720 µmm/mm. Como se pode observar, o valor medido para o protótipo 11 da série E é maior, indicando que houve escoamento do aço. Além desta laje, somente uma outra deste grupo apresentou escoamento da fôrma de aço: protótipo 10 da série E.

Com relação ao fato de dois protótipos (10 e 11) da série E apresentarem deformações no "steel-deck" acima do escoamento e protótipo 9 não mostrar este fato pode ser explicado pela diferença nos valores da carga de ruptura atingida por eles. Nos dois primeiros a carga de ruína foi em média quase 12 % maior que a carga última atingida pelo protótipo 9. Em relação aos demais protótipos das séries F e G, vale lembrar que todas as lajes mistas destas séries tiveram o mesmo vão de ensaio e que os protótipos da série E possuem a menor espessura total (100 mm) contra 120 mm e 140 mm das séries F e G respectivamente. Portanto é de se esperar maiores deformações nas lajes da série E.

5.2.3 Protótipo da Série D

Neste item serão analisados os resultados dos ensaios dos protótipos com vão de 3600 mm e altura total de laje igual a 160 mm, fabricados com "steel-deck" de espessura nominal 0,80 mm. O protótipo escolhido para esta análise foi o de número 8 da série D, considerado representativo dos demais. O ensaio desta laje foi realizado 150 dias depois da concretagem.

- Relação Carga × Flecha no meio do vão

A figura 5.9 ilustra o comportamento carga × flecha no meio do vão para o protótipo 8 da série D.

Figura 5.9 - Curva carga × flecha no meio do vão do protótipo 8 da série D

Da mesma forma que os demais protótipos, fissuras de retração já podiam ser notadas no concreto antes do início do ensaio. Fissuras de flexão foram observadas próximas a marca 12 kN, carregamento no qual nota-se uma alteração significativa na inclinação da relação carga versus flecha no meio do vão. Essas fissuras foram crescendo em

comprimento e abertura junto com o aumento de carga, fazendo com que a laje perdesse cada vez mais rigidez. O aumento de carga foi gradativo até os 29 kN, quando ocorreu a quebra da aderência química provocando um aumento significativo na abertura da fissura sob a linha de carga próxima ao apoio móvel da laje, fazendo com que o carregamento tivesse uma brusca queda, caindo para 16 kN. A partir desse ponto, o aumento de capacidade portante da laje foi pequeno até que se atingisse a ruína com uma carga de 19,64 kN. O modo de ruptura foi também, neste caso, por cisalhamento longitudinal.

Figura 5.10 - Fissura sob linha de carga durante o ensaio do protótipo série D

Esse comportamento durante o ensaio se deve à grande dimensão do vão de cisalhamento fazendo com que a resistência da aderência química existente entre o aço e o concreto fosse bastante elevada. Fica claro que a tentativa de diminuir essa resistência com as batidas do martelo de borracha antes do início do ensaio não fizeram efeito algum no comportamento do protótipo.

O protótipo 8 da série D atingiu o valor da flecha de serviço (1/250 = 14,4 mm) com uma carga de 19 kN, correspondente a 97% da carga de ruína da laje. Para as lajes deste

grupo, a tabela 5.5 apresenta um resumo das cargas correspondentes às flechas de serviço, da carga última medida em cada ensaio, bem como da relação entre elas.

Tabela 5.5- Quadro de cargas correspondentes às flechas máximas de serviço obtidos nos ensaios dos protótipos da série D

Série	Número do protótipo	P flecha de serviço (kN)	P último (kN)	<u>P flecha serviço</u> P último
	6	16,90	19,19	0,88
D	7	15,08	16,90	0,89
	8	19,10	19,65	0,97

- Relação Carga × Deslizamento relativo de extremidade

A figura 5.11 apresenta a relação "carga \times deslizamento relativo de extremidade" também para o protótipo 8 da série D.

Figura 5.11 - Curva carga × desliz. relativo de extremidade do protótipo 8 da série D

A interação completa é representada pelo valor nulo de deslizamento relativo no início do ensaio. Assim como nos ensaios dos protótipos com vão de 1800 mm, em todos os

ensaios deste grupo, a interação parcial ocorreu após a acomodação de carga sofrida pela laje.

Nota-se que durante o ensaio, somente um lado do protótipo teve deslizamento relativo de extremidade, sendo o lado do apoio móvel. Após a quebra da ligação química, houve um grande deslizamento fazendo com que de imediato fosse alcançado o valor de deslizamento de serviço. Após essa queda do carregamento, observam-se aumentos expressivos de deslizamento relativo para pequenos incrementos de carga.

A tabela 5.6 apresenta as cargas correspondentes ao deslizamento de serviço, igual a 0,5 mm, para os protótipos da série D. A análise dos valores revela que apenas a laje 7 não apresentou comportamento dúctil, visto que sua relação P_{ultimo}/P_{desliz} foi menor que 1,1.

Tabela 5.6 - Quadro de cargas correspondentes aos deslizamentos de serviço obtidos nos ensaios dos protótipos da série D

Série	Número do	P desliz.	P último	<u>P último</u>
	protótipo	(kN)	(kN)	P desliz.
D	6	14,16	19,19	1,35
	7	16,45	16,90	1,03
	8	15 99	19,64	1,23

- Relação Carga × Deformação no "Steel-Deck"

A figura 5.12 abaixo apresenta a relação "carga \times deformação no steel deck", para protótipo 8 da série D. Estas deformações foram medidas, por extensômetros elétricos de resistência, nas fibras superior e inferior da fôrma de aço no meio do vão da laje. Na figura, valores de deformação positivos correspondem à tração.

Figura 5.12 - Curva carga × deformação no steel deck do protótipo 8 da série D

Os ensaios dos protótipos com vão de 3600 mm tiveram um comportamento no início do ensaio muito parecido aos protótipos de 1800 mm, ou seja, a deformação na fibra inferior mostra um padrão similar ao comportamento carga \times flecha no meio do vão, pelo fato da flecha no centro da laje ser acompanhada por tração (deformação positiva) na parte inferior da fôrma. A máxima deformação medida nos ensaios desse grupo foi encontrada no protótipo 8, cujo valor foi de 762 µmm/mm, menor que os 1740 µmm/mm correspondente à deformação de escoamento do aço desta fôrma. Portanto em nenhuma laje desta série ocorreu escoamento do aço.

Diferentemente dos outros protótipos, a fibra superior do "steel-deck" neste caso permaneceu tracionada ao longo de todo o ensaio, mesmo após a quebra da aderência química entre o aço e o concreto. Uma possível razão para este fato são os valores significativamente menores de carga suportados pela laje após a quebra da aderência química.

5.2.4 Protótipo da Série H

Analise-se neste item os resultados dos ensaios dos protótipos com vão de 3600 mm e altura total de laje igual a 160 mm, porém fabricados com "steel-deck" de espessura nominal 1,25 mm. O protótipo escolhido para esta análise foi o de número 16 da série H, considerado representativo dos demais. O ensaio desta laje foi realizado 171 dias depois da concretagem.

- Relação Carga × Flecha no meio do vão

A figura 5.13 ilustra o comportamento carga × flecha no meio do vão para o protótipo 16 da série H.

Figura 5.13 - Curva carga × flecha no meio do vão do protótipo 16 da série H

Da mesma forma que os demais protótipos, este também já apresentava fissuras de retração no concreto antes do início do ensaio. As fissuras de flexão foram notadas próximas à carga de 20 kN. Com um pequeno carregamento adicional, para 23 kN, ocorreu a quebra da aderência química provocando um aumento da abertura da fissura sob a linha de carga próxima ao apoio móvel e uma queda de carga para 17 kN. Um

novo aumento de carregamento se iniciou, e a laje foi suportando os incrementos de carga até que, aos 25 kN, uma nova fissura surgiu, porém desta vez sob a linha de carga nas proximidades do apoio fixo. Novos incrementos de carga foram aplicados à laje, que já não possuía a mesma rigidez inicial, até que aos 34,72 kN atingiu-se a carga de ruína da mesma. A ruptura se deu de forma dúctil e, também neste caso, o modo foi por cisalhamento longitudinal.

A flecha máxima de serviço, de acordo com o EUROCODE 4 (2004), corresponde a l/250 do vão livre, neste caso, igual a 14,4 mm. O protótipo 16 da série H atingiu essa flecha com uma carga de 26,5 kN, correspondente a 76 % da carga última aplicada pelo atuador hidráulico. Para as lajes deste grupo, a tabela 5.7 apresenta um resumo das cargas correspondentes às flechas de serviço, da carga última medida em cada ensaio, bem como da relação entre elas.

Tabela 5.7 – Quadro de cargas correspondentes às flechas máximas de serviço obtidos nos ensaios dos protótipos da série H

Série	Número do protótipo	P flecha de serviço (kN)	P último (kN)	P flecha serviço P último
	14	28,33	31,98	0,88
Н	15	27,41	36,09	0,76
	16	26,50	34,72	0,76

- Relação Carga × Deslizamento relativo de extremidade

A figura 5.14 apresenta a relação "carga \times deslizamento relativo de extremidade" também para o protótipo 16 da série H.

Figura 5.14 - Curva carga × desliz. relativo de extremidade do protótipo 16 da série H

Em todos os ensaios dos protótipos desse grupo, podem-se notar deslizamentos em ambos os lados da laje. Isso ocorreu devido ao fato de que como foram alcançadas cargas mais elevadas, o concreto apresentou fissuras consideráveis sob duas linhas de carga, fazendo com que houvesse a quebra da aderência química em ambos os lados da laje.

A interação completa ocorreu no início do ensaio, representada pelo valor nulo de deslizamento relativo em ambas as extremidades da laje. Com a quebra da aderência química (carga de 23 kN), começa a interação parcial caracterizada pela existência de deslizamentos relativos de extremidade.

Observando-se o gráfico acima, nota-se que a laje possui comportamento dúctil, visto que a carga relativa ao deslizamento de serviço, correspondente ao valor de 0,5 mm de deslizamento, foi significativamente menor que a carga de ruptura. Comportamento similar foi obtido nas demais lajes deste grupo como mostra a tabela 5.8, visto que a relação P_{ultimo}/P_{desliz} foi maior que 1,1 em todos os protótipos.

Série	Número do protótipo	P desliz. (kN)	P último (kN)	<u>P último</u> P desliz.
	14	22,84	31,98	1,40
Η	15	25,12	36,09	1,44
	16	20,56	34,72	1,69

Tabela 5.8 - Quadro de cargas correspondentes aos deslizamentos de serviço obtidos nos ensaios dos protótipos da série H

- Relação Carga × Deformação no "Steel-Deck"

A figura 5.15 abaixo apresenta a relação "carga \times deformação no steel-deck", para protótipo 16 da série H. Estas deformações foram medidas, por extensômetros elétricos de resistência, nas fibras superior e inferior da fôrma de aço no meio do vão da laje. Na figura, valores de deformação positivos correspondem à tração.

Figura 5.15 - Curva carga × deformação no "steel-deck" do protótipo 16 da série H

Da análise do gráfico, observa-se, como esperado, deformações de tração para a fibra inferior ao longo de todo o ensaio. A máxima deformação de tração medida nos ensaios dos protótipos deste grupo foi encontrada no protótipo 15, cujo valor foi de 512 µmm/mm. Esse valor é significativamente menor que os 1720 µmm/mm correspondente

à deformação de escoamento da fôrma de aço incorporada. Com base nos valores medidos, em nenhum dos protótipos desse grupo atingiu-se escoamento da fôrma de aço incorporada.

A distância entre a seção do meio do vão, onde se mediu a deformação do "steel-deck", e as linhas de carga ser consideravelmente maior (900 mm) neste caso em relação às distâncias das lajes com vão total de 1800 mm já analisadas associado ao fato de que medidas de deformação com extensômetros elétricos de resistência serem bastante influenciadas por efeitos locais do ponto de medida justificam o resultado encontrado para a fibra superior do "steel-deck": esta fibra permaneceu tracionada ao longo de todo o ensaio, mesmo após a quebra da aderência química entre o aço e o concreto. Os valores destas deformações foram, porém, significativamente menores em relação aos medidos na fibra inferior.

5.3 Resumo dos principais resultados encontrados

A tabela 5.9 apresenta um resumo dos principais resultados encontrados nos ensaios dos protótipos das diferentes séries.

Série	Prot.	Carga	Carga	Carga	Escoamento	Modo de ruptura
		Correspondente	Correspondente	Uitima		
		a Flecha de	ao Deslizamento		"steel-deck"	
		Serviço	Relativo de	Ensaio		
			Serviço			
		(kN)	(kN)	(kN)		
	1	28,33	28,32	31,98	não	Cisalham. Longit.
Α	2	20,10	20,10	28,33	não	Cisalham. Longit.
	3	21,93	24,67	31,07	não	Cisalham. Longit.
В	4	21,93	21,93	27,87	não	Cisalham. Longit.
С	5	23,76	19,65	28,78	não	Cisalham. Longit.
	6	16,90	14,16	19,19	não	Cisalham. Longit.
D	7	15,08	16,45	16,90	não	Cisalham. Longit.
	8	19,10	15,99	19,65	não	Cisalham. Longit.
	9	37,46	34,72	50,26	não	Cisalham. Longit.
Ε	10	36,55	36,55	57,11	sim	Cisalham. Longit.
	11	34,26	31,98	55,28	sim	Cisalham. Longit.
F	12	37,46	29,25	47,97	não	Cisalham. Longit.
G	13	47,53	43,40	61,68	não	Cisalham. Longit.
	14	28,33	22,84	31,98	não	Cisalham. Longit.
H	15	27,41	25,12	36,09	não	Cisalham. Longit.
	16	26,50	20,56	34,72	não	Cisalham. Longit.

Tabela 5.9 – Quadro resumo dos principais resultados encontrados nos ensaios dos protótipos

Capítulo 6

Verificação da resistência ao cisalhamento longitudinal

6.1 Considerações iniciais

Em função dos resultados experimentais dos ensaios, concluiu-se que todos os protótipos tiveram um único modo de ruína: colapso por cisalhamento longitudinal entre a fôrma de aço incorporada e o concreto. Portanto, o objetivo principal a ser alcançado neste capítulo será estabelecer critérios para o cálculo da resistência última ao cisalhamento longitudinal, procurando determinar expressões analíticas para o cálculo do carregamento último para estas lajes.

O mecanismo de resistência ao cisalhamento longitudinal entre a fôrma de aço incorporada e o concreto deve levar em conta os seguintes fatores: ligação química, resultante da aderência natural entre o aço e o concreto; a resistência mecânica, fornecida pelas mossas da fôrma de aço e a resistência por atrito nos apoios da laje entre o aço e o concreto, proporcional à reação vertical. Segundo o EUROCODE 4 (2004), existem dois métodos para se calcular a resistência ao cisalhamento longitudinal das lajes mistas: o método empírico "m e k" e o método da interação parcial, ambos descritos a seguir.

6.2 Método "*m* e *k*"

O método "m e k", abordado na revisão de literatura apresentada, é o método considerado internacionalmente como padrão para o cálculo da resistência ao cisalhamento longitudinal entre lajes mistas. Nesse método, a resistência ao cisalhamento longitudinal das lajes é dada por uma regressão linear (método dos mínimos quadrados) dos resultados obtidos dos ensaios com fôrma de mesma espessura, constituindo uma equação que relaciona a resistência nominal ao esforço cortante com os parâmetros dos ensaios.

As expressões analíticas apresentadas pelo EUROCODE 4 (2004), CSSBI (2002), SCHUSTER (1976), BRITISH STANDARD (1982) são bem similares. Assim sendo, será utilizada neste trabalho a expressão semi-empírica adotada pelo CSSBI, que segue uma relação linear e é dada por:

$$V_{us} = b \cdot d \cdot \left(m \cdot \frac{1}{L'} + k \right) \tag{6.1}$$

Onde:

 V_{us} = resistência nominal ao esforço cortante (kN/m); b = largura unitária da laje (1m); d = altura efetiva da laje (mm); m e k = constantes determinadas a partir de dados experimentais (kN/m); e L' = vão de cisalhamento da laje (mm).

As constantes m e k são determinadas a partir dos dados experimentais. Esta análise será feita para cada grupo de espessura de fôrma de aço, separadamente. Na regressão linear, m representa a inclinação da reta, e k representa a interseção com o eixo das ordenadas.

Vale ressaltar que em nesse método, são levados em consideração os fatores que afetam o mecanismo de resistência ao cisalhamento longitudinal, como a resistência mecânica

fornecida pelas mossas e a resistência por atrito nos apoios. Já a ligação química, que também está presente no início do ensaio, é rompida com o aparecimento das primeiras fissuras.

6.2.1 Protótipos com "steel-deck" de espessura de 0,80 mm

Os dados obtidos a partir dos protótipos ensaiados foram usados na determinação dos valores para os parâmetros m e k indicados na equação 6.1 para cada espessura da fôrma de aço testada. A tabela 6.1 mostra o resultado dos ensaios.

Com os resultados dos ensaios, as relações $(X = \frac{1}{L})$ e $(Y = \frac{V_{ut}}{b.d})$ foram determinadas conforme mostra a tabela 6.2. Por uma regressão linear foram calculados a inclinação "m" e o ponto de interseção "k" da reta representada pela equação (Y = m.X + k). Substituindo-se os valores determinados de *m e k* na equação $(V_{us} = b.d.(m.\frac{1}{L} + k))$, encontra-se o valor calculado do esforço cortante V_{us}. Este valor deve ser comparado com os medidos nos ensaios V_{ut} para se avaliar sua correlação. A tabela 6.2 apresenta também esses resultados.

O CSSBI (2002) recomenda que, quando cada espessura da fôrma de aço foi tratada separadamente como feito neste trabalho, a razão entre as resistências calculadas V_{us} e V_{ut} deve estar dentro dos limites 0,85 a 1,15, inclusive. Caso isso não ocorra, os valores de *m e k* devem ser reduzidos em 5 %. Como pode ser constatado na tabela 6.2, os protótipos fabricados com "steel-deck" de 0,80 mm de espessura ficaram dentro desses limites estabelecidos. A figura 6.1 ilustra de forma gráfica esses resultados.
Série	Protótino	L	L'	В	h	d	F	Pue	PP _{laje}	V _{ut}
Strit	11000100	(mm)	(mm)	(mm)	(mm)	(mm)	(kN)	(kN)	(kN/m^2)	(kN/m)
	1	1800	450	927	99,9	73,77	32,89	36,59	1,88	21,43
Α	2	1800	450	927	101,6	75,47	28,33	32,03	1,92	19,01
	3	1800	450	930	101,4	75,27	31,07	34,77	1,92	20,42
В	4	1800	600	934	122,0	95,87	27,87	31,57	2,41	19,07
С	5	1800	600	930	141,0	114,87	28,78	32,48	2,87	20,04
	6	3600	900	934	161,0	134,87	19,19	22,89	3,35	18,28
D	7	3600	900	934	161,0	134,87	16,90	20,60	3,35	17,05
	8	3600	900	932	160,9	134,77	19,65	23,35	3,35	18,55

Tabela 6.1 - Dados experimentais e resultados dos ensaios das séries A, B, C e D

Onde:

L = vão da laje;

L' = vão de cisalhamento da laje;

B = largura efetiva da laje;

h = altura total da laje;

d = altura efetiva da laje;

F = carga máxima aplicada na laje pelo atuador hidráulico;

 P_{ue} = carga máxima total aplicada na laje = F + peso do aparado de carga (3,7 kN)

PP_{laje} = peso próprio da laje;

 V_{ut} = cisalhamento transversal último total alcançado nos ensaios, por metro de largura de laje, e é igual a $\frac{P_{ue} + (PP_{laje} . L.B)}{2.B}$

Série	Ensaio	X	Y	Resultado da regressão	V _{us} (kN/m)	V _{ut} (kN/m)	V _{us} /V _{ut}	% desvio
	1	2,22	291		19,72	21,43	0,92	7,98
Α	2	2,22	252		20,18	19,01	1,06	-6,15
	3	2,22	271	m = 124,19	20,12	20,42	0,99	1,45
В	4	1,67	199	k = -0,008654	19,01	19,07	1,00	0,30
С	5	1,67	174		22,78	20,04	1,14	-13,67
	6	1,11	136		17,44	18,28	0,95	4,57
D	7	1,11	126		17,44	17,05	1,02	-2,29
	8	1,11	138		17,43	18,55	0,94	6,05

Tabela 6.2 - Resultado da análise de regressão linear dos protótipos das séries A, B, C e D

A análise dos resultados revela que, para a espessura de "deck" igual a 0,80 mm, a razão entre as resistências calculadas V_{us} e V_{ut} se encontra dentro dos limites 0,85 a 1,15, conforme preconizado pelo CSSBI (2002). Fatores relacionados à heterogeneidade do concreto justificam o maior desvio encontrado no ensaio do protótipo 5 da série C.

Figura 6.1 - Resistência última nominal ao cisalhamento longitudinal - t = 0,80 mm

6.2.2 Protótipos com "steel-deck" de espessura de 1,25 mm

Os resultados dos ensaios dos protótipos fabricados com "steel-deck" de espessura igual a 1,25 mm estão apresentados na tabela 6.3. Eles foram usados na determinação das constantes m e k da equação 6.1.

Série	Protótipo	L	L'	В	h	d	F	Pue	PP _{laje}	V _{ut}
Serie	11000100	(mm)	(mm)	(mm)	(mm)	(mm)	(kN)	(kN)	(kN/m^2)	(kN/m)
	9	1800	450	949	100,1	73,74	50,25	53,95	1,93	30,16
Е	10	1800	450	948	99,4	73,04	57,11	60,81	1,92	33,80
	11	1800	450	947	100,3	73,94	55,28	58,98	1,94	32,88
F	12	1800	600	952	120,2	93,80	47,97	51,67	2,41	29,31
G	13	1800	600	950	138,6	112,24	61,68	65,38	2,86	36,98
	14	3600	900	951	160,8	134,44	31,98	35,68	3,39	24,86
Н	15	3600	900	954	161,8	135,44	36,09	39,79	3,41	27,00
	16	3600	900	951	161,3	134,94	34,72	38,42	3,40	26,32

Tabela 6.3 - Dados experimentais e resultados dos ensaios das séries E, F, G e H

Onde:

L = vão da laje;

L' = vão de cisalhamento da laje;

B = largura efetiva da laje;

h = altura total da laje;

d = altura efetiva da laje;

F = carga máxima aplicada na laje pelo atuador hidráulico;

 P_{ue} = carga máxima total aplicada na laje = F + peso do aparado de carga (3,7 kN)

PP_{laje} = peso próprio da laje;

 V_{ut} = cisalhamento transversal último total alcançado nos ensaios, por metro de largura de laje, e é igual a $\frac{P_{ue} + (PP_{laje} . L.B)}{2.B}$

Da mesma forma anterior, os parâmetros *m e k*, para "steel-deck" com espessura igual 1,25 mm, foram determinados com base nos resultados dos ensaios. Esses resultados bem como os valores de V_{us} e V_{ut} e da relação entre eles se encontram na tabela 6.4.

Série	Ensaio	X	Y	Resultado da regressão	V _{us} (kN/m)	V _{ut} (kN/m)	V _{us} /V _{ut}	% desvio
	9	2,22	409		32,45	30,16	1,08	- 7,59
Е	10	2,22	463		32,15	33,80	0,95	4,89
	11	2,22	445	m = 221,16	32,54	32,88	0,99	1,05
F	12	1,67	312	$\mathbf{k} = -0,051361$	29,76	29,31	1,02	- 1,52
G	13	1,67	329		35,61	36,98	0,96	3,72
	14	1,11	185		26,13	24,86	1,05	- 5,11
Н	15	1,11	199		26,33	27,00	0,98	2,50
	16	1,11	195		26,23	26,32	1,00	0,36

Tabela 6.4 – Resultado da análise de regressão linear dos protótipos das séries E, F, G e H

A análise dos resultados revela que, para a espessura de "deck" igual a 1,25 mm, a razão entre as resistências calculadas V_{us} e V_{ut} se encontra dentro dos limites 0,85 a 1,15, conforme preconizado pelo CSSBI (2002). A figura 6.2 mostra em forma de gráfico esses resultados.

Figura 6.2 - Resistência última nominal ao cisalhamento longitudinal - # 1,25 mm

6.3 Método da interação parcial

6.3.1 Considerações iniciais

Segundo JOHNSON (1994), o método "m e k" não é baseado em um modelo analítico, de maneira que quando as dimensões, os materiais ou os carregamentos diferem daqueles usados nos ensaios, devem ser feitas algumas hipóteses conservadoras ou realizados ensaios adicionais. Além disso, a metodologia de análise dos resultados é a mesma, não importando se o comportamento do sistema é dúctil ou frágil.

Nesse sentido, o método da interação parcial surge como alternativa ao método "m e k", para melhor explorar o comportamento dúctil dos perfis de fôrma de aço disponíveis no mercado, os projetos de mossas mais bem elaborados e a utilização de vãos maiores. Esse método, apesar de bastante mais trabalhoso que o método "m e k", permite também que se incluam na análise, armaduras adicionais para auxiliar na resistência ao momento positivo, bem como tirar proveito da presença de conectores de cisalhamento nas extremidades dos vãos da fôrma, utilizados pelas vigas mistas. [QUEIROZ et. al. 2001].

6.3.2 Ligação parcial ao cisalhamento

O modelo analítico utilizado para se verificar a resistência das lajes mistas ao momento fletor positivo segue a mesma filosofia do modelo usado para o cálculo das vigas mistas EUROCODE 4 [2004], considerando a plastificação total da seção transversal de momento máximo.

A figura 6.3 mostra um modelo típico da laje mista considerada, onde se pode visualizar o módulo típico da seção mista (parte *a* da figura), a distribuição das tensões no caso da

interação total (parte *b*), a distribuição de tensões para interação parcial (parte *c*), bem como a aproximação adotada na situação de interação parcial (partes d e e).

Figura 6.3 - Distribuição de tensões normais na seção transversal do módulo típico

Existem duas hipóteses de cálculo da resistência ao momento fletor de uma laje mista: interação total e interação parcial.

HIPÓTESE 1 – Interação total:

Considerando-se a interação total entre a fôrma de aço e o concreto, presume-se que não há deslizamento relativo horizontal entre os materiais, ocorrendo a flexão da seção mista em relação a um único eixo neutro, que pode estar na mesa comprimida do concreto ou na fôrma de aço tracionada. A posição dessa linha neutra é determinada ao se comparar os valores de N_{cf} (força de compressão no concreto) e de N_{pa} (força de tração no steel-deck), obtidos das seguintes expressões:

$$N_{cf} = b \cdot h_c \cdot 0.85 f_{ck} \tag{6.2}$$

$$N_{pa} = A_p \cdot f_{yp} \tag{6.3}$$

onde:

b = largura unitária da laje (1000 mm);

 h_c = espessura da camada de concreto acima da mesa superior da fôrma de aço (mm);

0,85 f_{cd} é a resistência à compressão de cálculo do concreto (em MPa) considerando o efeito Rüsch;

 A_p = área efetiva da fôrma de aço na tração (mm²);

 $f_{yp,d}$ = limite de resistência de escoamento de cálculo do aço da fôrma (MPa).

Caso $N_{cf} > N_{pa}$, a linha neutra se encontra na mesma de concreto, e se $N_{pa} > N_{cf}$, a linha neutra se encontra na fôrma de aço. No caso particular do "steel-deck" MF-50, N_{cf} é sempre maior que N_{pa} , portanto, a linha neutra está na mesa de concreto.

A figura 6.3b apresenta a distribuição das tensões normais de flexão considerando interação total com a linha neutra na mesa de concreto. Pode-se notar da figura que a parte tracionada do concreto, abaixo da linha neutra, foi desprezada na análise da resistência do sistema. Considerando-se o equilíbrio dos esforços resultantes no modelo típico, tem-se:

$$N_c = N_{pa} = A_y \cdot f_{yp,d} \tag{6.4}$$

Deste modo, a altura do bloco do diagrama de tensões no concreto é dada por:

$$x = \frac{N_c}{b \cdot (0.85.f_{ck})}$$
(6.5)

Com base nestas expressões, o momento resistente nominal da laje mista (M_{pn}) é igual a:

$$M_{pR} = N_c . \left(d_p - 0.5 . x \right) \tag{6.6}$$

- HIPÓTESE 2 – Interação parcial:

Considera-se agora a interação parcial entre o concreto e a fôrma de aço. Nesta situação ocorre um deslizamento relativo horizontal entre esses elementos gerando, conseqüentemente, duas linhas neutras, uma no concreto e outra no "steel-deck", caracterizando assim o comportamento parcial do sistema.

O diagrama das tensões normais neste caso está indicado na figura 6.3c, onde se pode ver a resultante de força de compressão (N_c) no concreto e as resultantes de compressão (N_{ac}) e de tração (N_{at}) na fôrma de aço. Para melhor visualização e entendimento, a figura 6.3.c foi dividida em duas, 6.3.d e 6.3.e. Nestas figuras, a força de tração na fôrma de aço N_{at} está decomposta nas forças N_a e N_{ac} , onde N_a equilibra a resultante de compressão no concreto N_c , e N_{ac} equilibra a resultante de compressão na região superior da fôrma de aço. Com a superposição dos efeitos nas figuras 6.3.d e 6.3.e, o momento nominal é dado por:

$$M_{pR} = N_c . z + M_{pr}$$
(6.7)

A figura 6.3.e mostra que as forças iguais e opostas N_{ac} fornecem a parcela do momento fletor resistente M_{pr} , que é igual ao momento plástico da fôrma M_{pa} , reduzido pelo efeito axial de tração $N_a = N_c$. A relação entre M_{pr}/M_{pa} e N_c/N_{pa} depende da geometria da fôrma, segundo o EUROCODE 4 (2004), igual a:

$$M_{pr} = 1,25.M_{pa} \cdot \left(1 - \frac{N_c}{N_{pa}}\right) \le M_{pa}$$
 (6.8)

Na figura 6.3.d, a força de compressão na laje N_c é menor que N_{cf} , portanto, a altura do bloco do diagrama de tensão de compressão no concreto continua sendo dada por:

$$x = \frac{N_c}{b \cdot (0.85.f_{ck})} \le h_c \tag{6.9}$$

O braço de alavanca z é variável e depende da relação N_c/N_{pa} , relação que pode ser estudada em duas situações extremas:

1. Se $N_c = N_{pa}$, ou seja, $N_c/N_{pa} = 1$, portanto, a força N_{ac} (figura 6.3.e) é nula, e conseqüentemente o momento fletor M_{pr} é igual a zero. Desta forma:

$$M_{pR} = N_c \cdot (d_p - 0.5 \cdot x) = N_c \cdot z$$
(6.10)

com:

$$z = d_p - 0.5 \cdot x = h_t - e - 0.5 \cdot x \tag{6.11}$$

onde *e* é a distância entre o centro de gravidade efetivo da fôrma de aço até sua fibra inferior.

 Caso N_c seja aproximadamente igual a zero, a relação N_c/N_{pa} também será. Desta forma teremos:

$$N_a = N_c \approx 0 \tag{6.12}$$

e

$$M_{pR} = M_{pr} \approx M_{pa} \tag{6.13}$$

sendo:

 M_{pa} = momento plástico da seção transversal efetiva da fôrma (MPa)

 M_{pr} = momento fletor resistente do "steel-deck", reduzido em função da existência da força de tração (MPa); e

 M_{pR} = Momento fletor resistente nominal da laje mista (MPa)

Considerando-se agora apenas M_{pa} , a linha neutra de plastificação está localizada a uma distância e_p acima da extremidade inferior da fôrma de aço. Desta forma pode-se admitir que o braço de alavanca z seja dado por:

$$z = h_t - e_p - 0.5.x \tag{6.14}$$

No caso de situações intermediárias, onde $0 < \frac{N_c}{N_{pa}} < 1$, o braço de alavanca z será dado por:

$$z = h_t - e_y - 0.5.x \tag{6.15}$$

onde e_v varia em função de N_c/N_{pa} . O valor e_v pode ser dado por aproximação linear dada por:

$$e_{v} = e_{p} - (e_{p} - e) \cdot \frac{N_{c}}{N_{pa}}$$
 (6.16)

Segundo JOHNSON (1994), essa metodologia tem sido validada através de ensaios com o braço de alavanca z a ser considerado dado por:

$$z = h_t - 0.5.x - e_p + (e_p - e) \frac{N_c}{N_{pa}}$$
(6.17)

6.3.3 Determinação da resistência ao cisalhamento - τ_u

Com base nos resultados de cada ensaio realizado pode-se determinar o grau de interação parcial ao cisalhamento η para cada protótipo. Assim é possível calcular a força de compressão N_c (= ηN_{cf}) transferida da fôrma de aço para o concreto ao longo do vão de cisalhamento L'. Desta forma, a tensão resistente de cisalhamento τ_u é dada por:

$$\tau_{u} = \frac{\eta . N_{cf}}{b . (L' + L_{0})}$$
(6.18)

onde *b* é a largura de cada protótipo e L_0 é igual ao comprimento do balanço de cada laje, neste caso igual a 50 mm. Caso o efeito de atrito na região dos apoios seja considerado, explicitamente o EUROCODE 4 (2004) recomenda que a expressão acima seja alterada para:

$$\tau_{u} = \frac{\eta . N_{cf} - \mu . V_{ut}}{b . (L' + L_{0})}$$
(6.19)

onde V_{ut} é a reação de apoio correspondente ao carregamento de ruína de cada ensaio e μ é o coeficiente de atrito tomado igual a 0,5.

Para se determinar o grau de interação parcial ao cisalhamento de cada laje ensaiada é necessário utilizar as dimensões e resistências do concreto e do aço da fôrma medidas nos ensaios realizados. Segundo o EUROCODE 4 (2004), a resistência do concreto a ser empregada pode ser o valor médio, f_{cm} , das resistências medidas de cada grupo avaliado.

A magnitude do momento fletor a ser empregada corresponde ao valor último do ensaio na seção transversal sob o ponto de aplicação de carga. O valor desse momento (M_{teste}) deve incluir a carga última aplicada pelo atuador hidráulico, o peso próprio da laje e o peso do aparato de aplicação de carga. Desta maneira a equação 6.7 fica igual a:

$$M_{teste} = \eta \cdot N_{cf} \cdot z + M_{pr} \tag{6.20}$$

Na expressão acima os parâmetros $z \in M_{pr}$ devem ser expandidos. Para isso utilizaremos as equações 6.9 e 6.17 no caso de z e 6.8 para M_{pr} . Lembrando ainda que a relação N_c/N_{pa} é igual a η , teremos:

$$M_{Teste} = \eta . N_{cf} . \left[h_t - \frac{0.5 . \eta . N_{cf}}{b . 0.85 . f_{cm}} - e_p + (e_p - e) . \eta \right] + 1.25 . M_{pa} . (1 - \eta).$$
(6.21)

Desenvolvendo esta expressão obtemos:

$$\eta . N_{cf} . h_{t} - \frac{0.5 . \eta^{2} . N_{cf}^{2}}{b . 0.85 . f_{cm}} - \eta . N_{cf} . e_{p} + \eta^{2} . N_{cf} . (e_{p} - e) + 1.25 . M_{pa} - 1.25 . M_{pa} . \eta$$

$$- M_{Teste} = 0$$
(6.22)

A Equação 6.22 é uma equação do segundo grau tendo como incógnita o grau de interação parcial η . Esta equação pode ser escrita da seguinte forma:

$$a'.\eta^2 + b'.\eta + c' = 0$$
 , (6.23)

onde

$$a' = N_{cf} \cdot \left(e_p - e\right) - \frac{0.5 \cdot N_{cf}^{2}}{b \cdot 0.85 \cdot f_{cm}} \quad (N \cdot mm) \quad ; \tag{6.24}$$

$$b' = (h_t - e_p) \cdot N_{cf} - 1.25 \cdot M_{pa} \quad (N \cdot mm)$$

para $\eta < 0.2$; $b' = (h_t - e_p) \cdot N_{cf}$; (6.25)

$$\begin{array}{l} c'=1,25.M_{pa} - M_{Teste} \quad (N.mm) \\ para \ \eta < 0,2 \ ; \ c'=M_{pa} - M_{Teste} \end{array}$$
(6.26)

O valor positivo e menor que um de η que satisfaz a equação 6.23 é o valor procurado do grau de interação parcial ao cisalhamento. Esse η deve ser calculado para cada laje ensaiada. De posse dele, o valor de τ_u , para cada protótipo de cada grupo, pode ser determinado pela equação 6.19.

- Protótipos com "steel-deck" com espessura de 0,80 mm

A tabela 6.5 apresenta os dados geométricos e os resultados dos ensaios dos protótipos dessas séries. Os símbolos indicados na tabela correspondem aos mesmos mostrados na tabela 6.1.

Série	Protótipo	L (mm)	L' (mm)	b (mm)	h _t (mm)	P _u (kN)	P _{ut} (kN)	PP _{laje} (kN/m ²)	V _{ut} ⁽¹⁾ (kN)	M _{ut} ⁽²⁾ (kN.m)
	1	1800	450	927	99,9	32,89	36,59	1,88	19,86	8,7625
Α	2	1800	450	927	101,6	28,33	32,03	1,92	17,62	7,7480
	3	1800	450	930	101,4	31,07	34,77	1,92	18,99	8,3649
В	4	1800	600	934	122,0	27,87	31,57	2,41	17,81	10,2820
С	5	1800	600	930	141,0	28,78	32,48	2,87	18,64	10,7042
	6	3600	900	934	161,0	19,19	22,89	3,35	17,07	14,0997
D	7	3600	900	934	161,0	16,90	20,60	3,35	15,93	13,0692
	8	3600	900	932	160,9	19,65	23,35	3,35	17,29	14,2959

Tabela 6.5 – Dados geométricos e resultados dos ensaios dos protótipos das séries A, B, C e D

(1) V_{ut} = cisalhamento transversal último alcançado nos ensaios igual a $\frac{P_{ut} + (PP_{laje} . L.b)}{2}$

(2) M_{ut} = momento fletor último alcançado nos ensaios sob a linha de carga igual a

		$b \cdot L^{\prime 2}$
$V_{ut} \cdot L =$	I I laje	· <u> </u>

Os protótipos destas séries correspondem àqueles fabricados com espessura nominal da fôrma de aço igual a 0,80 mm. Para efeito de cálculo, foi utilizada uma espessura de 0,76 mm, visto que 0,04 mm corresponde à espessura da camada de galvanização. Para o concreto, foi adotado 30,3 MPa para o valor médio da resistência à compressão (tabela 3.4). Os valores das propriedades mecânicas do aço empregadas (tabela 3.3) são 350,2 MPa para tensão de escoamento f_v e 201.290 MPa para o módulo de elasticidade.

Com base nestes valores, a posição da linha neutra e o momento de plastificação da fôrma de aço foram determinados de acordo com os critérios preconizados pela norma do AMERICAN IRON and STEEL INSTITUTE – AISI (2001). Uma redução de área da seção, devido às mossas, foi considerada nos cálculos. Os valores encontrados foram 24,4 mm para a posição da linha neutra (e_p) acima da mesa inferior da fôrma e 5,52734 kNm/m para o momento de plastificação.

A tabela 6.6 apresenta os demais dados necessários à determinação da resistência ao cisalhamento longitudinal. Com esses valores para cada protótipo testado, os parâmetros a', b' e c' foram determinados pelas equações 6.24, 6.25 e 6.26 respectivamente. O valor de η , dentro do intervalo prescrito, foi obtido da solução da equação 6.23 e com ele os valores da tensão resistente de cisalhamento τ_u . Estes resultados podem ser vistos na tabela 6.7.

Série	Protótipo	M _{Teste} ⁽¹⁾	N _{cf} ⁽²⁾	M _{pa} ⁽³⁾
_		(N.mm)	(N)	(N.mm)
	1	8.877.418	289.687	5.123.844
Α	2	7.849.613	289.687	5.123.844
	3	8.502.030	290.624	5.140.426
В	4	10.495.506	291.874	5.162.535
С	5	10.879.679	290.624	5.140.426
	6	14.392.481	291.874	5.162.535
D	7	13.340.582	291.874	5.162.535
	8	14.561.507	291.249	5.151.481

Tabela 6.6 – Parâmetros necessários à determinação da resistência ao cisalhamento longitudinal das séries A, B, C e D

(1) $- \mathbf{M}_{\text{Teste}} = \mathbf{M}_{\text{ut}} \times (\mathbf{B} / 915) \times 1000 \times 1000$

(2)
$$-\mathbf{N_{cf}} = \left[1200 - \left(\frac{2}{3} \cdot \pi \cdot r\right) \cdot 4 \cdot 6\right] \ge 0.76 \le f_y \le (\mathbf{B} / 915)$$

sendo r igual à profundidade da mossa 2,4 mm e o número 4 correspondente à quantidade de linhas de mossas na altura do perfil e 6 ao número de almas do perfil com mossas (ver figura 3.1);

 $(3) - M_{pa} = 5,52734 \times (B / 1000) \times 1000 \times 1000$

Série	Protótipo	a' (Eq. 6.24)	b' (Eq. 6.25)	c' (Eq. 6.26)	η	τ _u (Eq. 6.19) (MPa)
	1	- 1.174.098	21.858.858	- 3.753.925	0,1733	0,0869
Α	2	- 1.174.098	22.351.045	- 2.726.108	0,1228	0,0577
	3	- 1.177.898	22.365.286	- 3.361.940	0,1515	0,0743
В	4	- 1.182.964	28.470.657	- 5.333.265	0,1888	0,0760
С	5	- 1.177.898	33.867.434	- 5.739.541	0,1705	0,0665
	6	- 1.185.296	33.394.479	- 7.939.739	0,2398	0,0692
D	7	- 1.185.296	33.394.479	- 6.887.841	0,2078	0,0593
	8	- 1.182.758	33.293.862	- 8.122.529	0,2461	0,0712

Tabela 6.7– Tensão resistente de cisalhamento τ_u dos protótipos das séries A, B, C e D

A análise dos resultados da tabela 6.7 revela valores similares para a resistência ao cisalhamento longitudinal τ_u dos protótipos das séries A, B, C e D. O valor médio desta resistência τ_{um} é igual a 0,0701 MPa, o desvio padrão σ igual a 0,0088 MPa, e o coeficiente de variação igual a 12,6 %.

A validação deste valor médio da resistência ao cisalhamento longitudinal τ_{um} é feita por uma análise comparativa do valor do esforço cortante último calculado com esta tensão em relação ao esforço cortante máximo medido no ensaio de cada protótipo destas séries. Para o cálculo do esforço cortante último, a equação 6.19 deve ser reescrita da seguinte forma:

$$\eta . N_{cf} = N_c = \tau_u \ b . (L' + L_0) + \mu . V_{ut}$$
(6.27)

Assim o momento resistente último (vide equação 6.7) fica:

$$M_{pR} = [\tau_u \ b.(L' + L_0) + \mu.V_{ut}]z + M_{pr} , \qquad (6.28)$$

onde o braço de alavanca z é avaliado pelas equações 6.9 e 6.17 e M_{pr} pela equação 6.8. Nesta equação N_c assume a relação dada na equação 6.27 e N_{pa} é igual a $A_p \cdot f_y$. A relação entre este momento resistente e o esforço cortante último de cálculo é igual a:

$$M_{pR} = V_{ut} \cdot L' \tag{6.29}$$

Portanto a expressão para determinação do esforço cortante último calculado é dada por:

$$V_{ut} = \frac{\left[\tau_u \ b.(L' + L_0) z + M_{pr}\right]}{(L' - \mu . z)} \quad .$$
(6.30)

A tabela 6.8 apresenta os resultados deste estudo comparativo. A análise dos resultados revela que a razão entre as resistências calculadas $V_{ut \ calculado}$ e as medidas nos ensaios $V_{ut \ ensaio}$ estão dentro dos limites usualmente utilizados (entre 0,85 e 1,15), indicando que os resultados calculados são, portanto, perfeitamente aceitáveis.

Tabela 6.8 – Resultado da análise comparativa para validação de τ_{um} para os protótipos das séries A, B, C e D

Série	Protótipo	V _{ut ensaio} (kN)	V _{ut calculado} (Eq. 6.30) (kN)	Vut calculado Vut ensaio	% desvio
	1	19,86	18,34	0,923	7,70
A	2	17,62	18,51	1,050	- 5,04
	3	18,99	18,55	0,977	2,33
В	4	17,81	16,85	0,946	5,41
С	5	18,64	18,56	0,996	0,45
	6	17,07	16,25	0,952	4,82
D	7	15,93	16,25	1,020	- 2,02
	8	17,29	16,21	0,937	6,25

- Protótipos com "steel-deck" com espessura de 1,25 mm

A tabela 6.9 apresenta os dados geométricos e os resultados dos ensaios dos protótipos destas séries. Os símbolos indicados na tabela correspondem aos mesmos mostrados na tabela 6.1.

Série	Protótipo	L	L'	b	h _t	Pu	P _{ut}	PP _{laje}	V _{ut} (1)	$M_{ut}^{(2)}$
		(mm)	(mm)	(mm)	(mm)	(kN)	(kN)	(kN/m ²)	(kN)	(kN.m)
	9	1800	450	949	100,1	50,25	53,95	1,93	28,63	12,6963
Ε	10	1800	450	948	94,4	57,11	60,81	1,92	32,04	14,2351
	11	1800	450	947	100,3	55,28	58,98	1,94	31,14	13,8281
F	12	1800	600	952	120,2	47,97	51,67	2,41	27,90	16,3286
G	13	1800	600	950	138,8	61,68	65,38	2,86	35,14	20,5929
	14	3600	900	951	160,8	31,98	35,68	3,39	23,64	19,9734
Н	15	3600	900	954	161,8	36,09	39,79	3,41	25,76	21,8630
	16	3600	900	951	161,3	34,72	38,42	3,40	25,03	21,2202

Tabela 6.9 – Dados geométricos e resultados dos ensaios dos protótipos das séries E, F, G e H

(1) V_{ut} = cisalhamento transversal último alcançado nos ensaios igual a $\frac{P_{ut} + (PP_{laje} \cdot L \cdot B)}{2}$

(2) M_{ut} = momento fletor último alcançado nos ensaios sob a linha de carga igual a

$$\left[V_{ut} \cdot L' - \left(PP_{laje} \cdot \frac{b \cdot L'^2}{2}\right)\right]$$

Os protótipos destas séries correspondem àqueles fabricados com espessura nominal da fôrma de aço igual a 1,25 mm. Para efeito de cálculo, foi utilizada uma espessura de 1,21 mm, visto que 0,04 mm corresponde à espessura da camada de galvanização. Para o concreto, foi adotado 30,5 MPa para o valor médio da resistência à compressão (tabela 3.4). Os valores das propriedades mecânicas do aço empregadas (tabela 3.3) foram 345,0 MPa para tensão de escoamento f_v e 200.233 MPa para o módulo de elasticidade.

Com base nestes valores, a posição da linha neutra e o momento de plastificação da fôrma de aço foram determinados de acordo com os critérios preconizados pela norma do AMERICAN IRON and STEEL INSTITUTE – AISI (2001). Uma redução de área da seção, devido às mossas, foi considerada nos cálculos. Os valores encontrados foram 25,7 mm para a posição da linha neutra (e_p) acima da mesa inferior da fôrma e 10,11654 kNm/m para o momento de plastificação.

A tabela 6.10 apresenta os demais dados necessários à determinação da resistência ao cisalhamento longitudinal. Com esses valores para cada protótipo testado, os parâmetros a', b' e c' foram determinados através das equações 6.24, 6.25 e 6.26 respectivamente. O valor de η , dentro do intervalo prescrito, foi obtido da solução da equação 6.23 e com ele os valores da tensão resistente de cisalhamento τ_u . Estes resultados podem ser vistos na tabela 6.11.

Série	Protótipo	M _{Teste} (1)	N _{cf} ⁽²⁾	M _{pa} ⁽³⁾
		(N.mm)	(N)	(N.mm)
	9	13.168.081	465.147	9.601.033
Ε	10	14.748.485	464.656	9.590.916
	11	14.311.659	464.166	9.580.799
F	12	16.988.932	466.617	9.631.384
G	13	21.380.613	465.637	9.611.150
	14	20.759.211	466.127	9.621.267
Η	15	22.794.917	467.597	9.651.618
	16	22.055.133	466.127	9.621.267

Tabela 6.10 – Parâmetros necessários à determinação da resistência ao cisalhamento longitudinal das séries E, F, G e H

- (1) $\mathbf{M}_{\text{Teste}} = \mathbf{M}_{\text{ut}} \times (\mathbf{B} / 915) \times 1000 \times 1000$
- (2) $-\mathbf{N_{cf}} = \left[1200 \left(\frac{2}{3} \cdot \pi \cdot r\right) \cdot 4 \cdot 6\right] \ge 0.76 \le f_y \le (\mathbf{B} / 915)$

sendo r igual à profundidade da mossa 2,4 mm e o número 4 correspondente à quantidade de linhas de mossas na altura do perfil e 6 ao número de almas do perfil com mossas (ver figura 3.1);

 $(3) - M_{pa} = 10,11654 \text{ x} (B / 1000) \text{ x} 1000 \text{ x} 1000$

Série	Protótipo	a' (Eq. 6.24)	b' (Eq. 6.25)	c' (Eq. 6.26)	η	τ _u (Eq. 6.19) (MPa)
	9	-2.805.545	34.630.163	-3.567.048	0,1039	0,0717
Ε	10	-2.802.589	34.263.766	-5.157.569	0,1524	0,1156
	11	-2.799.633	34.636.089	-4.730.860	0,1381	0,1025
F	12	-2.814.414	44.085.975	-7.357.548	0,1687	0,1047
G	13	-2.808.502	40.658.889	-9.366.676	0,2342	0,1481
	14	-2.854.658	62.983.062	-11.137.944	0,1783	0,0789
Η	15	-2.863.664	51.584.822	-10.730.394	0,2105	0,0944
	16	-2.854.658	63.216.126	-12.433.866	0,1985	0,0885

Tabela 6.11 – Tensão resistente de cisalhamento τ_u dos protótipos das séries E, F, G e H

O valor médio desta resistência τ_{um} é igual a 0,1006 MPa, o desvio padrão σ encontrado igual a 0,0224 MPa e o coeficiente de variação igual a 22,3 %.

Da mesma forma como foi calculado para o "steel-deck" de espessura 0,80 mm, a tabela 6,12 apresenta os resultados do estudo comparativo do valor do esforço cortante último calculado com esta tensão em relação ao esforço cortante máximo medido no ensaio de cada protótipo destas séries. A análise dos resultados revela que a razão entre as resistências calculadas, $V_{ut \ calculado}$, e as medidas nos ensaios, $V_{ut \ ensaio}$, estão dentro dos limites usualmente utilizados (entre 0,85 e 1,15), indicando que os resultados calculados são, portanto, também aceitáveis.

Série	Protótipo	V _{ut ensaio} (kN)	V _{ut calculado} (Eq. 6.30) (kN)	Vut calculado Vut ensaio	% desvio
Е	9	28,63	31,77	1,110	- 10,98
	10	32,04	31,63	0,987	1,30
	11	31,14	31,73	1,019	- 1,88
F	12	27,90	27,95	1,002	- 0,16
G	13	35,14	30,49	0,868	13,21
	14	23,64	26,15	1,106	- 10,62
Н	15	25,76	26,36	1,023	- 2,35
	16	25,03	26,22	1,047	- 4,73

Tabela 6.12 – Resultado da análise comparativa para validação de τ_{um} para os protótipos das séries E, F, G e H

6.4 Análise comparativa entre as duas metodologias para determinação da resistência ao cisalhamento longitudinal

6.4.1 Protótipos com "steel-deck" de espessura de 0,80 mm

Apresenta-se a seguir uma análise comparativa entre os valores calculados pelas metodologias estudadas, método m e k e método da interação parcial τ_u , dos resultados dos ensaios dos protótipos fabricados com "steel-deck" de espessura nominal igual a 0,80 mm. A tabela 6.13 explicita os valores calculados.

Série	Protótipo	L (mm)	L' (mm)	b (mm)	V _{ut} ⁽¹⁾ (kN)	V _{calc. τu} ⁽²⁾ (kN)	V _{calc. m e k} ⁽³⁾ (kN)
	1	1800	450	927	19,86	18,34	18,28
Α	2	1800	450	927	17,62	18,51	18,71
	3	1800	450	930	18,99	18,55	18,71
В	4	1800	600	934	17,81	16,85	17,76
С	5	1800	600	930	18,64	18,56	21,19
	6	3600	900	934	17,07	16,25	16,29
D	7	3600	900	934	15,93	16,25	16,29
	8	3600	900	932	17,29	16,21	16,25

Tabela 6.13 – Análise comparativa dos valores calculados da resistência ao cisalhamento longitudinal dos protótipos das séries A, B, C e D

(1) V_{ut} = cisalhamento transversal último alcançado nos ensaios (vide tabela 6.5)

(2) $V_{calc. \tau u}$ = cisalhamento transversal último calculado pelo método da interação parcial, conforme mostra a tabela 6.8

(3) $V_{\text{calc. m e } \mathbf{k}} = \text{cisalhamento transversal último calculado pelo método } m \text{ e } k.$ = V_{us} (tabela 6.2) x b

Os resultados desta análise comparativa revelam que o método m e k proporciona valores calculados ligeiramente superiores aos determinados pelo método da interação parcial.

6.4.2 Protótipos com "steel-deck" de espessura de 1,25 mm

Apresenta-se a seguir uma análise comparativa entre os valores calculados pelas metodologias estudadas, método m e k e método da interação parcial τ_u , dos resultados dos ensaios dos protótipos fabricados com "steel-deck" de espessura nominal igual a 1,25 mm. A tabela 6.14 explicita os valores calculados.

Série	Protótipo	L (mm)	L' (mm)	b (mm)	V _{ut} ⁽¹⁾ (kN)	V _{calc. Tu} ⁽²⁾ (kN)	V _{calc. m e k} ⁽³⁾ (kN)
	9	1800	450	949	28,63	31,77	30,80
Ε	10	1800	450	948	32,04	31,63	30,48
	11	1800	450	947	31,14	31,73	30,82
F	12	1800	600	952	27,90	27,95	28,33
G	13	1800	600	950	35,14	30,49	33,83
	14	3600	900	951	23,64	26,15	24,85
Н	15	3600	900	954	25,76	26,36	25,12
	16	3600	900	951	25,03	26,22	24,94

Tabela 6.14 – Análise comparativa dos valores calculados da resistência ao cisalhamento longitudinal dos protótipos das séries E, F, G e H

(1) V_{ut} = cisalhamento transversal último alcançado nos ensaios (vide tabela 6.9)

(2) $V_{calc. \tau u}$ = cisalhamento transversal último calculado pelo método da interação parcial, conforme mostra a tabela 6.12

(3) $V_{\text{calc. m e } k}$ = cisalhamento transversal último calculado pelo método *m* e *k*. = V_{us} (tabela 6.4) x **b**

Os resultados desta análise comparativa revelam que o método m e k proporciona valores calculados ligeiramente inferiores aos determinados pelo método da interação parcial, ou seja, diferente da espessura 0,80 mm.

6.5 Resistência de cálculo ao cisalhamento longitudinal

6.5.1 Método "m e k"

A Tabela 6.15 apresenta os valores finais dos parâmetros "m e k" para as diferentes espessuras da fôrma de aço "steel-deck" MF-50, fabricada pela METFORM S.A. Os valores correspondentes à espessura de 0,95 mm foram obtidos de uma interpolação linear dos demais.

Espessura nominal da	m	k
fôrma (mm)	(kN/m)	(kN/m.mm)
0,80	124,19	- 0,008654
0,95	156,51	- 0,022890
1,25	221,16	- 0,051361

Tabela 6.15 - Valores nominais para os parâmetros "m e k"

A equação 6.1 foi estabelecida para o esquema de carregamento consistindo de duas cargas concentradas equidistantes dos apoios. Por outro lado, os projetos de lajes são geralmente feitos considerando-se cargas uniformemente distribuídas em toda a área da laje. Assim sendo, torna-se necessário modificar ambas as equações. A modificação mais usual e inclusive recomendada pelo próprio EUROCODE 4 (2004) e pelo CSSBI (2002), como uma aproximação conservadora e para criar uma condição de carga uniforme equivalente, é a alteração no valor do vão de cisalhamento L'. O vão de cisalhamento L' é igual a L/4 no caso de cargas uniformemente distribuídas. Esse valor tem sido adotado por todas as especificações internacionais pesquisadas neste trabalho.

Nesta pesquisa adotou-se ϕ_v igual a 0,70, valor recomendado pelo CSSBI (2002). Na sua determinação considerou-se que, além das variações adversas na resistência dos materiais e na mão de obra, as cargas de serviço não deveriam ultrapassar a carga de deslizamento de extremidade de serviço medida nos ensaios dividida por 1,20, conforme recomendação do EUROCODE 4 (2004). O EUROCODE 4 considera a carga de deslizamento de extremidade de serviço aquela que provoca um deslizamento horizontal relativo na extremidade do protótipo, entre a fôrma de aço e o concreto, igual a 0,5 mm.

Substituindo-se L' = L/4 e ϕ_v = 0,70 na equação 6.1, resulta a seguinte expressão para determinação da resistência de cálculo ao cisalhamento longitudinal, V_{usd} , no caso de carga uniformemente distribuída:

$$V_{usd} = 0,7 \cdot b \cdot d \cdot \left(m \cdot \frac{4}{L} + k \right).$$
(6.31)

No projeto de lajes, o carregamento usual é expresso em termos da carga uniformemente distribuída W_p . A relação entre essa carga uniformemente distribuída e o esforço cortante de extremidade correspondente é dada por:

$$\mathbf{V}_{\rm usd} = \mathbf{W}_{\rm p} \cdot \left(\frac{\mathrm{L}}{2}\right). \tag{6.32}$$

Igualando-se estas duas equações, tem-se:

$$W_{p} = 1, 4 \cdot b \cdot d \cdot \frac{1}{L} \cdot \left(m \cdot \frac{4}{L} + k \right).$$
(6.33)

A expressão acima representa a carga última de cálculo que se pode ter na laje. Para se determinar o carregamento de serviço basta dividir o valor de W_p pelo coeficiente de majoração de cargas γ_f correspondente.

6.5.2 Método da Interação Parcial

A Tabela 6.16 apresenta os valores da resistência de cálculo determinada pelo método da interação parcial para as duas espessuras da fôrma de aço analisadas.

Espessura nominal da	τ _{um}	σ _{sd}	τ _{u,Rk} ⁽¹⁾
fôrma (mm)	(MPa)	(MPa)	(MPa)
0,80	0,0701	0,0088	0,0525
1,25	0,1006	0,0224	0,0559

Tabela 6.16 – Valor característico para a resistência $T_{u,Rk}$

(1) $\boldsymbol{\tau}_{u,Rk} = \boldsymbol{\tau}_{um} - 2 \times \boldsymbol{\sigma}_{sd}$

As equações mostradas anteriormente foram desenvolvidas para o esquema de carregamento consistindo de duas cargas concentradas equidistantes dos apoios. Por outro lado, os projetos de lajes são geralmente feitos considerando-se cargas uniformemente distribuídas em toda a área da laje. Assim sendo, torna-se necessário modificar estas equações. Desta forma o momento externo de cálculo atuante numa seção que dista L_x do apoio mais próximo da laje é dado por:

$$M_{d} = \frac{w_{p} \ L \cdot L_{x}}{2} - \frac{w_{p} \ (L_{x})^{2}}{2} , \qquad (6.34)$$

onde w_p é a carga uniformemente distribuída de cálculo, L o vão da laje na direção das nervuras e L_x a distância entre a seção considerada e o apoio mais próximo da laje.

Segundo o EUROCODE 4 (2004), o momento resistente deve ser avaliado com base nos valores das resistências de cálculo dos materiais aço e concreto. Com esta premissa a equação 6.28 passa a ser igual a:

$$M_{pRd} = \left[\tau_{uRd} \ b.(L_x) + \mu. \frac{w_p \ L}{2} \right] z + M_{prd} , \qquad (6.35)$$

onde

b é largura unitária da laje (1000 mm);

- τ_{uRd} é a tensão resistente de cálculo ao cisalhamento dada por: $\tau_{uRd} = \tau_{uRk} / \gamma_{Vs}$, sendo τ_{uRk} resistência característica ao cisalhamento obtida dos ensaios para cada espessura de "steel-deck", conforme mostra a tabela 6.16, e γ_{Vs} o coeficiente de minoração de resistência. O EUROCODE 4 (2004) recomenda o valor de 1,25 para este coeficiente. Com base nos ensaios realizados τ_{uRd} é igual a 0,0420 MPa e 0,0447 MPa para lajes fabricadas com "steel-deck" de espessura nominal 0,80 e 1,25 mm respectivamente.
- μ é o coeficiente de atrito, cujo valor é igual a 0,50 segundo recomendação do EUROCODE 4;

z é o braço de alavanca dado por:

$$z = h_t - 0.5 \cdot x - e_p + (e_p - e) \cdot \frac{\tau_{uRd} \ b \cdot (L_x)}{A_p \ \cdot f_{yp,d}} \quad , \tag{6.36}$$

sendo

 h_t é a altura nominal da laje (em mm);

x é a altura do bloco do diagrama de tensão de compressão no concreto dada por:

$$x = \frac{\tau_{uRd} \ b.(L_x)}{b.(0.85.f_{cd})} \le h_c \quad , \tag{6.37}$$

onde f_{cd} é a resistência de cálculo do concreto à compressão (em MPa) e h_c a espessura da lâmina de concreto acima da fibra superior da fôrma.

- e_p é a distância entre a fibra inferior até a linha neutra de plastificação da fôrma de aço (em mm);
- *e* é a distância entre o centro de gravidade efetivo da fôrma de aço até sua fibra inferior (em mm);

 A_p é área efetiva da fôrma de aço (mm²); e

- $f_{yp,d}$ é tensão de escoamento de cálculo do aço da fôrma = ϕ_s . $f_{yp,k}$
- M_{prd} é o momento resistente de cálculo da fôrma de aço, reduzido em função da existência da força de tração, dado por:

$$M_{prd} = 1,25.M_{pa} \cdot \left(1 - \frac{\tau_{uRd} \ b.L_x}{A_p \ .\ f_{yp,d}}\right) \le M_{pa} \quad , \tag{6.38}$$

onde M_{pa} é o momento plástico da fôrma de aço incorporada.

No dimensionamento o momento externo atuante (equação 6.34) deve ser sempre menor ou igual ao momento resistente de cálculo (equação 6.35) para cada uma das seções ao longo do vão da laje. Para exemplificar este fato vamos analisar uma laje com altura igual a 100 mm, vão de 1800 mm e espessura da fôrma de 0,8 mm. Em termos de propriedades dos materiais vamos empregar concreto com resistência característica à compressão de 20 MPa e o aço para fôrma com tensão característica de escoamento igual a 350 MPa. O carregamento uniformemente distribuído de cálculo é igual a 18,60 kN/m. Com base nestes valores e empregando as equações 6.34 e 6.35, os momentos externo atuante e interno resistente foram calculados para diversas seções ao longo do vão como mostra a tabela 6.17.

Lx	Z	Mpr≤Mpa	Momento Interno Resistente	Momento Externo Atuante
(mm)	(mm)	(N.mm)	(N.mm / m)	(N.m / m)
0	75,6	4.551.485	5.184.257	0
100	75,5	4.551.485	5.473.103	1.581.000
200	75,3	4.551.485	5.760.850	2.976.000
300	75,2	4.551.485	6.047.497	4.185.000
400	75,0	4.551.485	6.333.044	5.208.000
500	74,9	4.551.485	6.617.490	6.045.000
600	74,7	4.551.485	6.900.837	6.696.000
650	74,7	4.551.485	7.042.098	6.951.750
700	74,6	4.551.485	7.183.084	7.161.000
745	74,5	4.551.485	7.309.736	7.309.568
750	74,5	4.551.485	7.323.795	7.323.750
755	74,5	4.551.485	7.337.851	7.337.468
760	74,5	4.551.485	7.351.904	7.350.720
800	74,5	4.551.485	7.464.231	7.440.000
900	74,3	4.551.485	7.744.277	7.533.000
1000	74,2	4.551.485	8.023.224	7.440.000
1100	74,0	4.551.485	8.301.070	7.161.000
1200	73,9	4.551.485	8.577.817	6.696.000
1300	73,7	4.551.485	8.853.464	6.045.000
1400	73,6	4.498.957	9.075.483	5.208.000
1500	73,5	4.413.929	9.263.901	4.185.000
1600	73,3	4.328.900	9.451.219	2.976.000
1700	73,2	4.243.872	9.637.437	1.581.000
1800	73,0	4.158.844	9.822.555	0

Tabela 6.17 - Cálculo de Momentos na Laje Mista

A analise comparativa entre o momento resistente com o momento atuante, apresentada na tabela, revela que este último foi sempre em cada seção da laje, como ilustra também a figura 6.4.

Figura 6.4 - Momento \times L_x

Neste caso o carregamento de cálculo, igual a 18,60 kN/m, corresponde ao máximo que esta laje suporta, visto que ocorreu a igualdade entre o momento externo com o interno resistente na seção L_x correspondente a aproximadamente 750 mm. Caso em alguma seção da laje o momento externo atuante ultrapasse o momento interno resistente, o carregamento deverá ser diminuído, até o valor onde o momento resistente passe a ser sempre igual ou maior em todas as seções da laje.

Capítulo 7

Conclusões e sugestões para continuidade da pesquisa

7.1 Introdução

O objetivo principal deste trabalho foi analisar o comportamento e a resistência de um sistema de lajes mistas com fôrma de aço incorporada durante todas as fases do carregamento após a cura do concreto. A fôrma de aço incorporada utilizada foi o "steel-deck" MF-50 fabricada pela METFORM S. A.

Para se identificar e considerar os vários parâmetros que têm maior influência no comportamento estrutural e na resistência desse sistema, e conseguir identificar corretamente os modos de colapso, foi necessário utilizar um programa de ensaios em laboratório, com protótipos de diferentes combinações de espessura da laje, vão de cisalhamento e espessura da fôrma de aço. Durante a pesquisa foram ensaiados 16 protótipos, considerando-se duas espessuras da fôrma de aço: 0,80 e 1,25 mm.

7.2 Conclusões

As dimensões dos protótipos das lajes ensaiadas seguiram as recomendações normativas mais utilizadas na literatura técnica internacional sobre o assunto, permitindo concluir que o trabalho executado adotou uma metodologia adequada para o objetivo proposto. Conseqüentemente pode-se afirmar que os resultados obtidos são confiáveis e seguros. A análise dos resultados dos ensaios foi realizada com base nas relações "carga \times flecha no meio do vão", "carga \times deslizamento relativo de extremidade" e "carga \times deformação na fôrma de aço", obtidas das medições realizadas durante os ensaios em todos os incrementos de carga até a ruína das lajes.

A análise global dos resultados revelou um comportamento das lajes mistas fabricadas com "steel-deck" MF-50 e concreto estrutural convencional bastante similar ao apresentado pelas lajes mistas feitas com "steel-deck" MF-75 também fabricado pela METFORM S.A. Inicialmente existe uma interação completa entre o perfil de aço e o concreto; com o aumento das solicitações, ocorre a fissuração da laje acompanhada de acomodações de carga, provocando, conseqüentemente, a quebra da aderência química na ligação "deck – concreto". A partir daí, como as mossas presentes no perfil de aço são incapazes de transferir o cisalhamento total nessa interface, surge um deslizamento relativo entre o "steel-deck" e o concreto, fazendo com que a interação entre os mesmos passe a ser parcial. Em todos os casos, a ruptura deu-se por cisalhamento longitudinal.

Esse comportamento do sistema foi observado em todos os ensaios realizados: fissuração, acomodação e deslizamento; independentemente da altura da laje e espessura da chapa. Em alguns protótipos observou-se escoamento da fôrma de aço, e por não ser este um fator presente em todas os ensaios, a ruptura do sistema pode ocorrer antes ou após o escoamento do "steel-deck".

Definindo-se esse modo de colapso, foram estudados dois métodos recomendados pelo EUROCODE 4 (2004) para o cálculo da resistência: método "m e k" e método da interação parcial.

O método "m e k" é considerado internacionalmente o método padrão para o cálculo da resistência ao cisalhamento longitudinal do sistema de lajes mistas, onde a resistência é dada por uma equação que relaciona a resistência nominal ao esforço cortante com os parâmetros dos ensaios. Com base nos resultados de resistência última, os parâmetros "m e k" foram determinados. A tabela 7.1 abaixo apresenta os valores para as diversas espessuras de fôrma fabricadas pela METFORM S.A.

Espessura nominal da	m (kN/m)	k (kN/m mm)	
0,80	124,19	- 0,008654	
0,95	156,51	- 0,022890	
1,25	221,16	- 0,051361	

Tabela 7.1 - Valores nominais para os parâmetros "m e k"

Para verificação da resistência ao cisalhamento longitudinal, o método da interação parcial é uma alternativa ao método "m e k", sendo que a vantagem desse método é poder considerar a existência ou não de conectores, armaduras de extremidade ou de reforço na laje. Com base nos resultados de resistência última, a tensão resistente ao cisalhamento longitudinal, avaliada através do método da interação parcial, também foi determinada para o "steel-deck" MF-50. A tabela 7.2 apresenta os valores para as espessuras nominais de fôrma iguais a 0,80 mm e 1,25 mm analisadas neste estudo.

Espessura Tensão Tensão Tensão nominal da resistente resistente resistente de fôrma média característica cálculo *tuRd* Tum TuRk (MPa) (MPa) (MPa) (mm) 0,80 0,0701 0,0525 0,0420 1,25 0,1012 0,0559 0,0447

Tabela 7.2 - Valores da tensão resistente τ ao cisalhamento longitudinal de lajes mistas fabricadas com "steel-deck" MF 50

Ao compararmos os valores do cisalhamento transversal último alcançado nos ensaios (V_{ut}) para os métodos "m e k" e interação parcial, observamos que em todos os ensaios realizados os valores encontrados estão muito próximos, comprovando que os resultados encontrados são confiáveis e seguros.

7.3 Sugestões para continuidade da pesquisa

Para que se possam ampliar os conhecimentos obtidos neste trabalho, recomenda-se a realização de estudos e ensaios que envolvam protótipos fabricados com fôrmas de diferentes espessuras e formas de seção transversal, tipos de mossas e diferentes relações vão de cisalhamento / altura da laje.

Alguns estudos com o "steel-deck" MF-50 podem ainda ser realizados: utilização dele com conectores do tipo "stud bolt", efeito da adição de armadura positiva ou negativa, bem como o emprego desta fôrma de aço em estruturas prediais de concreto armado. Além destes sugere-se um estudo para se verificar a influência do número de mossas e da rigidez da parede da fôrma de aço na resistência da laje mista.

Apêndice A

Tabela de resultados

A.1 Introdução

•

Neste apêndice, são apresentados, em forma de tabelas, todos os resultados obtidos nos ensaios realizados. Nos resultados, deformações com sinal positivo correspondem à tração e com sinal negativo à compressão.

A.2 Tabelas

Características do Protótipo: L = 1800 mm ; L' = 450 mm ; h = 100 mm ; # 0,80 mm								
Carga		Flecha média no meio do vão	Deformação vão no "st (x1	Deformação no meio do vão no "steel-deck" (x10 ⁻⁶)		Deslizamento médio nos apoios (mm)		
Div.	kN	(mm)	Fibra Superior	Fibra Inferior	Fixo	Móvel		
0	0,000	0,000	0	0	0,000	0,000		
3	1,371	0,130	19	23	0,000	0,000		
5	2,284	0,380	40	46	0,000	0,000		
8	3,655	0,540	55	68	0,000	0,000		
10	4,569	0,575	83	113	0,000	0,000		
12	5,482	0,660	107	160	0,000	0,000		
15	6,853	0,720	130	206	0,000	0,000		
18	8,223	0,840	152	213	0,000	0,005		
20	9,137	0,935	158	239	0,000	0,005		
22	10,051	1,035	175	267	0,000	0,007		
25	11,422	1,200	180	276	0,000	0,007		
29	13,249	1,405	183	284	0,000	0,007		
30	13,706	1,440	187	293	0,000	0,007		
32	14,620	1,615	167	301	0,000	0,008		
34	15,533	1,725	138	310	0,000	0,008		
36	16,447	1,895	144	340	0,000	0,008		
38	17,361	2,015	150	371	0,000	0,008		
41	18,731	2,300	123	382	0,000	0,009		
42	19,188	2,400	125	391	0,000	0,009		
44	20,102	2,455	128	402	0,000	0,009		
45	20,559	2,535	132	411	0,000	0,009		
47	21,472	2,605	135	421	0,000	0,010		
48	21,929	2,705	147	430	0,000	0,010		
50	22,843	2,920	161	476	0,000	0,012		
53	24,214	3,160	198	648	0,000	0,013		
55	25,127	3,300	227	696	0,000	0,014		
58	26,498	3,540	304	745	0,003	0,020		
60	27,412	3,770	329	795	0,005	0,022		
62	28,325	3,945	- 71	844	0,015	0,023		
55	25,127	8,500	- 146	893	0,074	1,064		
58	26,498	9,450	- 222	1117	0,075	1,265		
60	27,412	10,280	- 298	1114	0,075	1,459		
62	28,325	11,930	- 375	1285	0,076	1,760		
63	28,782	12,480	- 411	1295	0,079	1,845		
64	29,239	12,865	- 390	1409	0,080	2,145		
65	29,696	13,465	- 522	1406	0,084	2,303		
67	30,610	14,400	- 672	1559	0,089	2,580		
70	31,980	17,340	- 1013		0,105	3,375		

Tabela A.1 - Resultados obtidos para o protótipo 1 - Série A

Características do Protótipo: L = 1800 mm ; L' = 450 mm ; h = 100 mm ; # 0,80 mm							
Carga		FlechaDeformação no meiomédia novão no "steel-deck"meio do vão(x10-6)		o no meio do teel-deck" 0 ⁻⁶)	do Deslizamento médio nos apoios (mm)		
Div.	kN	(mm)	Fibra Superior	Fibra Inferior	Fixo	Móvel	
0	0,000	0,000	0	0	0,000	0,000	
5	2,284	0,105	8	5	0,000	0,000	
10	4,569	0,245	15	10	0,000	0,000	
15	6,853	0,465	23	15	0,000	0,000	
20	9,137	0,685	30	20	0,000	0,005	
24	10,965	0,880	51	24	0,000	0,005	
28	12,792	1,190	70	64	0,000	0,005	
32	14,620	1,425	91	117	0,000	0,005	
35	15,990	1,700	73	171	0,000	0,005	
38	17,361	1,915	55	222	0,000	0,005	
41	18,731	2,085	38	445	0,000	0,005	
44	20,102	2,285	20	486	0,000	0,005	
32	14,620	3,160	3	441	0,313	0,005	
35	15,990	3,720	- 55	395	0,463	0,010	
38	17,361	4,230	- 100	350	0,601	0,010	
41	18,731	4,710	- 130	305	0,731	0,010	
44	20,102	7,375	- 153	332	1,263	0,010	
44	20,102	7,375	- 175	589	1,263	0,010	
47	21,472	8,220	- 348	847	1,439	0,010	
50	22,843	9,445	- 411	948	1,670	0,010	
52	23,757	10,270	- 460	1050	1,827	0,010	
55	25,127	12,795	- 532	1151	2,464	0,010	
55	25,127	12,795	- 632	1302	2,464	0,010	
57	26,041	13,670	- 715	1429	2,723	0,006	
60	27,412	16,310	- 883	1539	3,418	0,006	
62	28,325	19,825	- 895	1650	3,418	0,006	
62	28,325	19,825	- 1019		5,068	0,006	

Tabela A.2 - Resultados obtidos para o protótipo 2 – Série A
Características do Protótipo: L = 1800 mm ; L' = 450 mm ; h = 100 mm ; # 0,80 mm								
Ca	rga	Flecha média no meio do vão	Deformação no meio do vão no "steel-deck" (x10 ⁻⁶)		Deslizamento médio nos apoios (mm)			
Div.	kN	(mm)	Fibra Superior	Fibra Inferior	Fixo	Móvel		
0	0,000	0,000	0	0,00	0,000	0,000		
5	2,284	0,125	18	27	0,000	0,000		
10	4,569	0,285	17	36	0,000	0,000		
15	6,853	0,540	35	66	0,000	0,000		
20	9,137	0,845	54	97	0,000	0,000		
24	10,965	1,115	73	127	0,000	0,000		
28	12,792	1,475	58	134	0,010	0,000		
32	14,620	1,750	43	140	0,010	0,000		
36	16,447	2,070	47	147	0,010	0,000		
39	17,818	2,300	77	180	0,010	0,000		
42	19,188	2,570	106	212	0,010	0,00		
44	20,102	2,665	109	245	0,010	0,000		
46	21,016	2,880	112	250	0,020	0,000		
48	21,929	3,165	122	254	0,020	0,000		
50	22,843	3,260	131	263	0,030	0,000		
52	23,757	3,600	140	287	0,040	0,000		
54	24,670	4,030	*	312	0,070	0,000		
40	18,274	4,550	*	233	0,300	0,010		
42	19,188	5,030	*	251	0,490	0,010		
44	20,102	5,235	*	269	0,540	0,010		
46	21,016	6,240	*	322	0,780	0,006		
48	21,929	7,040	*	375	0,950	0,006		
50	22,843	7,695	*	389	1,090	0,006		
52	23,757	8,155	*	430	1,270	0,006		
54	24,670	8,850	*	444	1,370	0,006		
56	25,584	9,625	*	458	1,560	0,006		
58	26,498	10,185	*	472	1,650	0,006		
60	27,412	10,805	*	623	1,840	0,006		
62	28,325	11,710	*	655	1,960	0,006		
64	29,239	12,575	*	702	2,210	0,006		
66	30,153	13,425	*	771	2,470	0,006		
68	31,066	19,455	*	1026	3,830	0,006		
* - extensômet	ro defeituoso							

Tabela A.3 - Resultados obtidos para o protótipo 3 – Série A

Características do Protótipo: L = 1800 mm ; L' = 600 mm ; h = 120 mm ; # 0,80 mm								
Carga		Flecha média no meio do vão	Deformação no meio do vão no "steel-deck" (x10 ⁻⁶)		Deslizamento médio nos apoios (mm)			
Div.	kN	(mm)	Fibra Superior	Fibra Inferior	Fixo	Móvel		
0	0,000	0,000	0	0	0,000	0,000		
4	1,827	0,060	1	6	0,000	0,000		
8	3,655	0,125	2	13	0,000	0,000		
12	5,482	0,185	3	19	0,000	0,003		
16	7,310	0,265	5	26	0,000	0,003		
20	9,137	0,345	27	61	0,000	0,006		
24	10,965	0,440	40	91	0,000	0,007		
28	12,792	0,540	52	119	0,000	0,008		
32	14,620	0,680	64	143	0,000	0,009		
36	16,447	0,850	80	146	0,000	0,013		
40	18,274	1,010	97	174	0,000	0,019		
44	20,102	1,165	113	201	0,000	0,022		
48	21,929	1,370	139	228	0,000	0,027		
52	23,757	1,555	166	283	0,000	0,032		
56	25,584	1,855	192	457	0,000	0,046		
52	23,757	2,095	168	429	0,000	0,115		
46	21,016	2,740	70	405	0,000	0,323		
48	21,929	3,455	32	368	0,000	0,539		
38	17,361	3,515	- 6	332	0,000	0,559		
40	18,274	3,920	- 68	295	0,000	0,787		
44	20,102	4,635	- 130	420	0,000	1,011		
48	21,929	5,465	- 159	487	0,001	1,258		
44	20,102	6,710	- 382	718	0,004	1,624		
48	21,929	7,525	- 333	989	0,004	1,855		
50	22,843	8,100	- 463	1056	0,004	2,033		
52	23,757	8,650	- 500	1123	0,004	2,188		
54	24,670	9,420	- 537	1146	0,004	2,398		
56	25,584	10,295	- 629	1169	0,004	2,680		
58	26,498	11,285	- 644	1342	0,004	2,996		
60	27,412	13,045	- 854	1375	0,004	3,643		
61	27,868	15,545	- 1087	1638	0,004	4,365		

Tabela A.4 - Resultados obtidos para o protótipo 4 - Série B

Características do Protótipo: L = 1800 mm ; L' = 600 mm ; h = 140 mm ; # 0,80 mm								
Carga		Flecha média no meio do vão	Deformação no meio do vão no "steel-deck" (x10 ⁻⁶)		Deslizamento médio nos apoios (mm)			
Div.	kN	(mm)	Fibra Superior	Fibra Inferior	Fixo	Móvel		
0	0,000	0,000	0	0	0,000	0,000		
5	2,284	0,055	4	2	0,000	0,000		
10	4,569	0,120	8	7	0,000	0,000		
15	6,853	0,205	11	12	0,000	0,000		
20	9,137	0,290	15	17	0,000	0,000		
25	11,422	0,395	19	22	0,000	0,000		
30	13,706	0,500	23	27	0,000	0,000		
35	15,990	0,635	27	32	0,000	0,000		
40	18,274	0,810	30	133	0,000	0,000		
45	20,559	0,975	85	207	0,000	0,000		
48	21,929	1,070	94	231	0,000	0,000		
50	22,843	1,160	102	246	0,000	0,000		
53	24,214	1,260	109	261	0,000	0,000		
55	25,127	1,385	116	277	0,000	0,000		
57	26,041	1,525	158	329	0,000	0,000		
58	26,498	1,590	171	350	0,000	0,000		
60	27,412	1,695	178	379	0,000	0,000		
62	28,325	1,910	186	408	0,000	0,000		
64	29,239	2,355	207	460	0,000	0,016		
41	18,731	2,995	- 6	316	0,408	0,019		
43	19,645	4,495	- 125	381	0,960	0,022		
45	20,559	5,070	- 128	433	1,160	0,022		
48	21,929	5,745	- 166	509	1,396	0,024		
50	22,843	6,255	- 204	592	1,574	0,024		
52	23,757	6,855	- 286	674	1,760	0,027		
54	24,670	8,255	- 367	775	2,295	0,092		
56	25,584	8,880	- 363	859	2,500	0,104		
58	26,498	9,715	- 422	913	2,763	0,118		
60	27,412	10,665	- 482	968	3,079	0,145		
62	28,325	11,515	- 529	1033	3,413	0,156		
63	28,782	14,660	- 625	1234	4,565	0,262		
63	28,782	16,275	- 731	1252	4,980	0,286		

Tabela A.5 - Resultados obtidos para o protótipo 5 – Série C

Características do Protótipo: L = 3600 mm ; L' = 900 mm ; h = 160 mm ; # 0,80 mm								
Ca	irga	Flecha média no meio do vão	Deformação vão no "s (x1	o no meio do teel-deck" 0 ⁻⁶)	Deslizamento médio nos apoios (mm)			
Div.	kN	(mm)	Fibra Superior	Fibra Inferior	Fixo	Móvel		
0	0,000	0,000	*	*	0,000	0,000		
5	2,284	0,175	*	*	0,000	0,000		
10	4,569	0,370	*	*	0,000	0,000		
15	6,853	0,660	*	*	0,000	0,000		
20	9,137	1,030	*	*	0,000	0,000		
23	10,508	1,320	*	*	0,000	0,000		
25	11,422	1,535	*	*	0,000	0,000		
28	12,792	1,870	*	*	0,000	0,000		
30	13,706	2,090	*	*	0,000	0,000		
32	14,620	2,340	*	*	0,000	0,004		
34	15,533	2,630	*	*	0,000	0,005		
36	16,447	2,870	*	*	0,000	0,005		
38	17,361	3,245	*	*	0,000	0,005		
40	18,274	3,600	*	*	0,000	0,007		
42	19,188	3,880	*	*	0,002	0,008		
44	20,102	4,320	*	*	0,002	0,008		
46	21,016	4,605	*	*	0,002	0,008		
48	21,929	5,030	*	*	0,002	0,010		
50	22,843	5,340	*	*	0,002	0,012		
52	23,757	5,725	*	*	0,002	0,015		
54	24,670	6,225	*	*	0,002	0,015		
56	25,584	6,780	*	*	0,002	0,015		
58	26,498	7,140	*	*	0,002	0,017		
52	23,757	7,800	*	*	0,039	0,015		
54	24,670	8,190	*	*	0,056	0,025		
56	25,584	8,450	*	*	0,066	0,025		
31	14,163	9,260	*	*	0,675	0,025		
31	14,163	10,625	*	*	1,005	0,026		
33	15,076	11,910	*	*	1,293	0,027		
34	15,533	12,875	*	*	1,505	0,030		
35	15,990	13,410	*	*	1,612	0,030		
37	16,904	14,615	*	*	1,855	0,030		
40	18,274	16,175	*	*	2,165	0,030		
42	19,188	18,600	*	*	2,720	0,030		
* - Extensôme	etro sem leitura							

Tabela A.6 - Resultados obtidos para o protótipo 6 - Série D

Características do Protótipo: L = 3600 mm ; L' = 900 mm ; h = 160 mm ; # 0,80 mm								
Ca	arga	Flecha média no meio do vão	Deformação no meio do vão no "steel-deck" (x10 ⁻⁶)		Deslizamento médio nos apoios (mm)			
Div.	kN	(mm)	Fibra Superior	Fibra Inferior	Fixo	Móvel		
0	0,000	0,000	0	0	0,000	0,000		
5	2,284	0,070	6	25	0,000	0,000		
10	4,569	0,275	13	49	0,000	0,000		
15	6,853	0,570	19	56	0,000	0,000		
20	9,137	0,950	32	73	0,000	0,000		
23	10,508	1,205	44	89	0,000	0,005		
25	11,422	1,385	45	98	0,000	0,005		
28	12,792	1,660	46	107	-0,001	0,005		
30	13,706	1,910	47	116	-0,001	0,005		
32	14,620	2,210	48	124	-0,001	0,005		
34	15,533	2,450	49	133	-0,001	0,005		
36	16,447	2,730	50	142	-0,001	0,005		
35	15,990	2,715	59	156	0,000	0,010		
38	17,361	2,975	68	169	0,000	0,010		
40	18,274	3,395	163	292	0,000	0,010		
42	19,188	3,625	175	311	0,000	0,010		
44	20,102	4,055	175	329	0,000	0,010		
46	21,016	4,515	175	347	0,000	0,010		
44	20,102	4,455	191	373	0,000	0,010		
46	21,016	4,690	208	398	-0,001	0,010		
48	21,929	4,875	224	423	-0,001	0,015		
50	22,843	5,330	240	449	-0,001	0,015		
52	23,757	5,665	263	483	0,000	0,015		
54	24,670	6,065	285	516	0,000	0,015		
56	25,584	6,810	289	536	-0,001	0,015		
58	26,498	7,070	294	556	-0,001	0,020		
60	27,412	7,630	298	559	-0,001	0,025		
62	28,325	8,485	303	573	0,000	0,035		
64	29,239	9,720	307	587	0,010	0,045		
36	16,450	10,685			0,024	0,710		
37	16,900	12,330	-	-	0,024	1,450		
33	15,080	15,040	-	-	0,024	2,126		
37	16,900	16,870	-	-	0,024	2,810		

Tabela A.7 - Resultados obtidos para o protótipo 7 – Série D

Características do Protótipo: $L = 3600 \text{ mm}$; $L' = 900 \text{ mm}$; $h = 160 \text{ mm}$; # 0,80 mm								
Carga		Flecha média no meio do vão	Deformação vão no "st (x1	Deformação no meio do vão no "steel-deck" (x10 ⁻⁶)		Deslizamento médio nos apoios (mm)		
Div.	kN	(mm)	Fibra Superior	Fibra Inferior	Fixo	Móvel		
0	0,000	0,000	0	0	0,000	0,000		
10	4,569	0,495	18	30	0,000	0,000		
20	9,137	0,930	24	48	0,001	0,000		
25	11,422	1,185	37	91	0,001	0,000		
30	13,706	1,555	58	213	0,004	0,001		
35	15,990	1,965	86	302	0,004	0,001		
37	16,904	2,250	104	338	0,004	0,001		
40	18,274	2,565	113	381	0,004	0,001		
42	19,188	2,860	131	421	0,004	0,001		
44	20,102	3,285	174	491	0,004	0,001		
46	21,016	3,630	205	510	0,004	0,001		
48	21,929	4,015	220	546	0,004	0,001		
50	22,843	4,630	254	576	0,004	0,001		
52	23,757	5,010	263	594	0,004	0,001		
54	24,670	5,570	290	619	0,004	0,001		
56	25,584	6,115	303	652	0,004	0,001		
58	26,498	6,700	315	677	0,004	0,001		
60	27,412	7,415	339	701	0,004	0,001		
62	28,325	8,055	354	716	0,004	0,003		
64	29,239	9,195	379	762	0,001	0,011		
35	15,990	9,755	287	555	0,018	0,911		
37	16,904	11,605	296	570	0,018	1,417		
39	17,818	12,375	309	582	0,018	1,602		
42	19,188	13,465	309	594	0,018	1,850		
43	19,645	19,430	312	607	0,018	3,114		

Tabela A.8 - Resultados obtidos para o protótipo 8 - Série D

Carga		Flecha média no meio do vão	Deformação vão no "s (x1	Deformação no meio do vão no "steel-deck" (x10 ⁻⁶)		Deslizamento médio nos apoios (mm)	
Div.	kN	(mm)	Fibra Superior	Fibra Inferior	Fixo	Móvel	
0	0,000	0,000	*	0	0,000	0,000	
5	2,284	0,080	*	12	0,000	0,000	
10	4,569	0,245	*	27	0,000	0,000	
15	6,853	0,400	*	52	0,000	0,000	
20	9,137	0,580	*	73	0,003	0,000	
25	11,422	0,800	*	94	0,003	0,000	
30	13,706	0,985	*	119	0,003	0,000	
35	15,990	1,210	*	140	0,004	0,000	
38	17,361	1,370	*	161	0,006	0,000	
40	18,274	1,445	*	174	0,006	0,000	
43	19,645	1,605	*	183	0,007	0,000	
45	20,559	1,690	*	201	0,008	0,000	
50	22,843	2,015	*	232	0,017	0,002	
53	24,214	2,155	*	247	0,018	0,003	
57	26,041	2,400	*	286	0,022	0,003	
60	27,412	2,565	*	314	0,024	0,003	
63	28,782	2,715	*	335	0,027	0,003	
66	30,153	2,885	*	366	0,029	0,003	
70	31,980	3,160	*	405	0,036	0,005	
73	33,351	3,355	*	442	0,044	0,006	
76	34,721	3,545	*	472	0,050	0,008	
64	29,239	4,180	*	436	0,328	0,011	
67	30,610	4.515	*	451	0,415	0,011	
70	31,980	4,770	*	466	0,483	0,011	
72	32,894	5,165	*	475	0,587	0,011	
75	34.265	5.680	*	494	0.694	0.011	
78	35.635	6.220	*	536	0.813	0.011	
80	36,549	6,665	*	585	0,897	0,011	
82	37,463	6,950	*	619	0,956	0,011	
85	38.833	7,720	*	725	1,103	0.011	
87	39.747	8.185	*	817	1.185	0.011	
90	41.117	8.705	*	890	1.259	0.018	
92	42.031	9.260	*	945	1.325	0.057	
72	32.894	9.825	*	829	1,360	0.410	
75	34.265	10.225	*	856	1,360	0.508	
78	35 635	10,570	*	878	1,360	0 590	
80	36 549	10 975	*	899	1 360	0,690	
83	37 919	11 310	*	926	1 360	0.761	
85	38 833	11 590	*	945	1 360	0.813	
87	30,747	11,005	*	075	1,300	0.065	

Tabela A.9 - Resultados obtidos para o protótipo 9 - Série E

90	41,117	12,445	*	1003	1,365	1,058
92	42,031	12,860	*	1024	1,385	1,125
93	42,488	13,210	*	1045	1,412	1,200
93	42,488	13,350	*	1054	1,423	1,219
94	42,945	13,535	*	1064	1,437	1,250
97	44,315	14,280	*	1109	1,505	1,362
97	44,315	14,500	*	1191	1,529	1,388
105	47,970	16,675	*	1271	1,780	1,650
108	49,341	16,890	*	1301	1,788	1,655
110	50,255	17,165	*	1326	1,816	1,715
110	50,255	18,635	*	1414	1,977	1,845
* - Extensôme	tro sem leitura					

Carga		Flecha média no meio do vão	Deformação no meio do vão no "steel-deck" (x10 ⁻⁶)		Deslizamento médio nos apoios (mm)	
Div.	kN	(mm)	Fibra Superior	Fibra Inferior	Fixo	Móvel
0	0,000	0,000	*	0	0,000	0,000
10	4,569	0,250	*	28	0,000	0,000
20	9,137	0,535	*	64	0,000	0,000
30	13,706	0,930	*	135	0,001	0,001
40	18,274	1,500	*	226	0,003	0,003
45	20,559	1,775	*	269	0,005	0,005
50	22,843	2,070	*	318	0,008	0,006
55	25,127	2,395	*	357	0,011	0,009
60	27,412	2,640	*	403	0,014	0,011
65	29,696	2,995	*	452	0,019	0,013
70	31,980	3,255	*	489	0,028	0,016
75	34,265	3,580	*	538	0,033	0,023
80	36,549	3,895	*	580	0,048	0,027
66	30,153	4,610	*	556	0,328	0,049
70	31,980	5,045	*	580	0,422	0,049
75	34,265	5,900	*	647	0,598	0,049
80	36,549	6,930	*	712	0,801	0,049
84	38,376	7,965	*	818	0,993	0,055
88	40,204	8,655	*	892	1,123	0,062
90	41,117	9,060	*	931	1,193	0,072
93	42,488	9,535	*	989	1,290	0,073
95	43,402	10,050	*	1044	1,395	0.073
98	44,772	10.700	*	1108	1.519	0.073
100	45.686	11.150	*	1157	1.574	0.073
85	38,833	12,215	*	1063	1,661	0,570
90	41,117	12,905	*	1105	1,661	0,735
93	42,488	13,265	*	1130	1,661	0,818
95	43,402	13.635	*	1154	1,661	0,860
98	44,772	14,140	*	1191	1,661	0,921
100	45,686	14,520	*	1215	1,672	0,965
103	47,057	15,210	*	1258	1,711	1,028
105	47.970	15,835	*	1298	1,773	1.341
108	49.341	16,625	*	1356	1,848	1,428
110	50.255	17,220	*	1398	1,920	1,543
113	51.625	18.085	*	1450	2,028	1,608
115	52.539	18.725	*	1505	2.115	1.701
120	54.823	20.930	*	1630	2.450	1.888
123	56.194	23.185	*	1753	2.813	2,153
125	57 110	24 625	*	1838	3,063	2 316

Tabela A.10 - Resultados obtidos para o protótipo 10 - Série E

Características do Protótipo: L = 1800 mm ; L' = 450 mm ; h = 100 mm ; # 1,25 mm								
Ca	irga	Flecha média no	Deformação no meio do vão no "steel-deck"		Deslizamento médio nos apoios			
	1	melo do vao	(XI	U ⁻)	(m	m)		
Div.	kN	(mm)	Fibra Superior	Fibra Inferior	Fixo	Móvel		
0	0,000	0,000	0	0	0,000	0,000		
10	4,569	0,220	6	30	0,000	0,000		
20	9,137	0,485	18	64	0,000	0,000		
30	13,706	0,780	22	103	0,000	0,000		
40	18,274	1,170	37	158	0,001	0,001		
50	22,843	1,675	52	240	0,002	0,001		
60	27,412	2,245	86	310	0,010	0,003		
65	29,696	2,530	89	353	0,016	0,005		
70	31,980	2,880	107	387	0,028	0,011		
55	25,127	3,840	73	341	0,041	0,345		
60	27,412	4,420	43	353	0,041	0,480		
65	29,696	5,055	15	377	0,041	0,615		
70	31,980	5,755	- 37	432	0,042	0,748		
75	34,265	6,890	- 128	542	0,047	0,949		
80	36,549	7,985	- 189	652	0,114	1,112		
66	30,153	8,665	- 235	597	0,428	1,159		
70	31,980	9,195	- 235	636	0,572	1,159		
75	34,265	9,775	- 229	679	0,702	1,159		
80	36,549	10,460	- 232	743	0,828	1,165		
85	38,833	11,395	- 257	801	0,973	1,249		
90	41,117	12,735	- 296	880	1,156	1,354		
93	42,488	13,350	- 321	923	1,236	1,433		
95	43,402	13,985	- 339	962	1,325	1,495		
100	45,686	15,315	- 376	1056	1,482	1,622		
105	47,970	16,870	- 425	1175	1,663	1,834		
108	49,341	17,895	- 464	1257	1,773	1,959		
110	50,255	18,465	- 483	1285	1,836	2,024		
113	51,625	19,425	- 516	1349	1,945	2,141		
116	52,996	20,705	- 556	1416	2,083	2,291		
118	53,909	22,225	- 590	1805	2,243	2,546		
121	55,280	24,425	- 657	1952	2,455	2,883		

Tabela A.11 - Resultados obtidos para o protótipo 11 - Série E

Características do Protótipo: L = 1800 mm ; L' = 600 mm ; h = 120 mm ; # 1,25 mm								
Ca	irga	Flecha média no	Deformação no meio do vão no "steel-deck"		Deslizamento médio nos apoios			
	1	melo do vao	(XI Fibro	U) Fibre	(m	m)		
Div.	kN	(mm)	Flora Superior	Fibra Inferior	Fixo	Móvel		
0	0,000	0,000	0	0	0,000	0,000		
10	4,569	0,155	11	15	0,000	0,000		
20	9,137	0,315	22	54	0,000	0,000		
30	13,706	0,555	33	92	0,000	-0,005		
35	15,990	0,670	36	110	0,000	-0,005		
40	18,274	0,815	47	149	0,000	-0,005		
45	20,559	0,980	58	188	0,000	-0,005		
48	21,929	1,090	67	214	0,000	-0,005		
50	22,843	1,165	76	240	0,000	-0,005		
53	24,214	1,270	85	266	0,000	-0,005		
55	25,127	1,365	103	303	0,000	-0,005		
58	26,498	1,495	82	317	0,000	-0,005		
56	25,584	2,025	61	331	0,000	0,038		
58	26,498	2,920	40	345	0,000	0,285		
60	27,412	3,200	27	358	0,000	0,354		
63	28,782	3,675	- 9	419	0,000	0,470		
65	29,696	3,960	- 46	477	0,000	0,537		
69	31,523	4,600	- 82	535	0,001	0,676		
73	33,351	5,315	- 46	593	0,001	0,837		
77	35,178	6,025	- 73	697	0,001	0,996		
82	37,463	6,970	- 131	813	0,002	1,203		
87	39,747	8,070	- 277	835	0,004	1,440		
92	42,031	9,195	- 300	975	0,005	1,685		
97	44,315	11,020	- 359	1122	0,038	2,051		
76	34,721	12,750	- 490	1132	0,467	2,338		
80	36,549	13,480	- 494	1142	0,716	2,338		
85	38,833	14,105	- 578	1190	0,888	2,338		
90	41,117	15,050	- 594	1238	1,128	2,343		
95	43,402	15,965	- 610	1273	1,361	2,350		
100	45,686	16,950	- 625	1449	1,508	2,411		
105	47,970	20,920	- 645	1577	2,046	2,976		

Tabela A.12 - Resultados obtidos para o protótipo 12 - Série F

Características do Protótipo: $L = 1800 \text{ mm}$; L' = 600 mm ; h = 140 mm ; # 1,25 mm								
C	arga	Flecha média no meio do vão	ha Deformação no meio do no vão no "steel-deck" vão (x10 ⁻⁶)		Deslizamento médio nos apoios (mm)			
Div.	kN	(mm)	Fibra Superior	Fibra Inferior	Fixo	Móvel		
0	0,000	0,000	0	0	0,000	0,000		
10	4,569	0,170	0	0	0,000	0,000		
20	9,137	0,320	15	24	0,001	0,000		
30	13,706	0,485	21	49	0,002	0,003		
40	18,274	0,695	34	85	0,003	0,004		
50	22,843	0,960	64	134	0,004	0,005		
60	27,412	1,215	92	195	0,004	0,005		
65	29,696	1,355	101	216	0,005	0,005		
70	31,980	1,520	113	247	0,005	0,005		
75	34,265	1,715	125	274	0,005	0,005		
80	36,549	1,950	141	308	0,006	0,005		
85	38,833	2,180	156	338	0,009	0,005		
90	41,117	2,480	174	381	0,018	0,005		
95	43,402	2,705	183	406	0,034	0,005		
75	34,265	3,305	119	360	0,337	0,003		
80	36,549	4,120	92	375	0,593	0,003		
85	38,833	4,910	83	387	0,862	0,003		
90	41,117	5,490	86	406	1,052	0,003		
95	43,402	6,180	83	448	1,279	0,003		
100	45,686	6,760	64	503	1,446	0,003		
105	47,970	7,510	58	579	1,650	0,003		
110	50,255	8,540	28	710	1,876	0,063		
115	52,539	9,525	- 12	814	2,237	0,073		
120	54,823	10,600	- 55	899	2,572	0,078		
125	57,108	11,775	- 83	991	2,980	0,080		
130	59,392	12,995	- 122	1073	3,382	0,090		
105	47,970	15,200	- 281	1058	3,912	0,483		
110	50,255	15,700	- 297	1076	3,912	0,633		
115	52,539	16,515	- 309	1104	3,912	0,887		
120	54,823	17,110	- 321	1128	3,914	1,068		
125	57,108	17,880	- 324	1180	3,917	1,285		
130	59,392	18,695	- 327	1247	3,944	1,493		
135	61,676	22,280	- 446	1457	4,559	1,998		

Tabela A.13 - Resultados obtidos para o protótipo 13 - Série G

Características do Protótipo: L = 3600 mm ; L' = 900 mm ; h = 160 mm ; # 1,25 mm							
Carga		Flecha média no meio do vão	Deformação no meio do vão no "steel-deck" (x10 ⁻⁶)		Deslizamento médio nos apoios (mm)		
Div.	kN	(mm)	Fibra Superior	Fibra Inferior	Fixo	Móvel	
0	0,000	0,000	0	0	0,000	0,000	
10	4,569	0,485	6	3	0,000	0,000	
20	9,137	1,035	38	74	0,000	0,000	
30	13,706	1,555	61	86	0,000	0,000	
40	18,274	2,120	70	98	0,003	0,000	
45	20,559	2,495	80	172	0,003	0,000	
50	22,843	3,185	89	195	0,006	0,000	
44	20,102	3,470	70	181	0,021	0,000	
36	16,447	3,960	52	141	0,268	0,000	
40	18,274	4,715	55	159	0,419	0,000	
43	19,645	5,150	64	166	0,502	0,000	
46	21,016	5,795	73	173	0,631	0,000	
49	22,386	6,325	82	180	0,737	0,000	
52	23,757	6,890	91	187	0,838	0,000	
55	25,127	8,320	100	245	0,959	0,003	
58	26,498	9,100	165	325	1,071	0,008	
61	27,868	9,935	216	205	1,186	0,008	
48	21,929	10,995	68	237	1,256	0,364	
50	22,843	11,560	69	241	1,256	0,471	
53	24,214	12,205	70	245	1,256	0,580	
56	25,584	12,840	74	248	1,256	0,680	
59	26,955	13,610	92	290	1,262	0,795	
62	28,325	14,305	110	331	1,277	0,892	
65	29,696	15,620	129	337	1,401	1,030	
66	30,153	18,465	144	340	1,578	1,522	
68	31,066	19,200	159	269	1,622	1,613	
69	31,523	20,000	175	398	1,690	1,701	
70	31,980	22,875	187	426	1,964	1,934	

Tabela A.14 - Resultados obtidos para o protótipo 14 – Série H

Características do Protótipo: L = 3600 mm ; L' = 900 mm ; h = 160 mm ; # 1,25 mm							
Carga		Flecha média no meio do vão	Deformação no meio do vão no "steel-deck" (x10 ⁻⁶)		Deslizamento médio nos apoios (mm)		
Div.	kN	(mm)	Fibra Superior	Fibra Inferior	Fixo	Móvel	
0	0,000	0,000	0	0	0,000	0,000	
10	4,569	0,455	9	21	0,000	0,000	
20	9,137	0,900	28	52	0,000	0,000	
30	13,706	1,375	44	82	0,000	0,000	
35	15,990	1,610	46	93	0,000	0,000	
40	18,274	1,845	55	110	0,000	0,000	
45	20,559	2,165	70	128	0,000	0,000	
50	22,843	2,560	83	149	0,000	0,000	
53	24,214	2,910	101	174	0,000	0,000	
55	25,127	3,155	116	195	0,000	0,000	
34	15,533	3,925	95	152	0,000	0,293	
37	16,904	4,375	101	162	0,000	0,374	
40	18,274	4,775	110	174	0,000	0,437	
43	19,645	5,135	116	180	0,000	0,499	
46	21,016	5,435	128	186	0,000	0,547	
50	22,843	6,090	131	204	0,000	0,660	
53	24,214	6,515	141	213	0,000	0,737	
56	25,584	7,060	150	229	0,000	0,834	
60	27,412	7,670	162	247	0,000	0,926	
63	28,782	8,280	182	274	0,000	1,021	
66	30,153	8,975	208	311	0,000	1,122	
70	31,980	9,890	229	369	0,000	1,256	
73	33,351	10,790	248	406	0,000	1,361	
76	34,721	11,595	211	436	0,000	1,514	
54	24,670	12,525	214	381	0,350	1,560	
57	26,041	13,050	217	390	0,470	1,560	
60	27,412	13,520	226	396	0,556	1,560	
65	29,696	15,115	242	412	0,876	1,560	
70	31,980	17,965	251	433	1,398	1,560	
73	33,351	19,070	266	448	1,589	1,565	
76	34,721	20,460	284	470	1,826	1,595	
79	36,092	22,605	293	503	2,112	1,991	
79	36,092	24,755	297	512	2,251	2,046	

Tabela A.15 - Resultados obtidos para o protótipo 15 - Série H

Características do Protótipo: L = 3600 mm ; L' = 900 mm ; h = 160 mm ; # 1,25 mm							
Carga		Flecha média no meio do vão	Deformação no meio do vão no "steel-deck" (x10 ⁻⁶)		Deslizamento médio nos apoios (mm)		
Div.	kN	(mm)	Fibra Superior	Fibra Inferior	Fixo	Móvel	
0	0,000	0,000	0	0	0,000	0,000	
10	4,569	0,525	12	30	0,000	0,000	
20	9,137	1,030	31	67	0,000	0,000	
30	13,706	1,550	43	94	0,000	0,000	
35	15,990	1,835	46	113	0,000	0,000	
40	18,274	2,125	61	137	0,001	0,001	
45	20,559	2,550	86	168	0,001	0,001	
50	22,843	3,200	144	210	0,001	0,001	
38	17,361	4,850	137	189	0,002	0,247	
40	18,274	5,410	144	201	0,002	0,357	
45	20,559	6,320	156	213	0,002	0,514	
50	22,843	7,570	171	238	0,002	0,702	
55	25,127	8,860	189	274	0,008	0,854	
44	20,102	9,775	177	247	0,353	0,948	
47	21,472	10,425	182	256	0,480	0,948	
50	22,843	11,105	186	265	0,611	0,948	
55	25,127	12,540	192	286	0,896	0,960	
58	26,498	13,830	196	311	1,096	1,030	
60	27,412	14,870	214	335	1,205	1,098	
63	28,782	17,390	238	366	1,496	1,220	
66	30,153	18,835	251	387	1,622	1,321	
70	31,980	21,920	278	430	1,840	1,692	
72	32,894	23,230	281	448	1,941	1,834	
73	33,351	24,755	283	463	2,067	2,005	
74	33,808	26,310	285	484	2,209	2,189	
76	34,721	27,750	287	509	2,312	2,345	
76	34,721	29,710	296	509	2,416	2,734	

Tabela A.16 - Resultados obtidos para o protótipo 16 - Série H

Apêndice B

Apresentação gráfica dos resultados

B.1 Introdução

Neste apêndice, são apresentadas, em forma de figuras, as relações "carga \times flecha no meio do vão", "carga \times deslizamento relativo de extremidade" e "carga \times deformação no "steel-deck"" de todos os protótipos ensaiados.

B.2 Relação carga × flecha no meio do vão

Figura B.1 - Relação carga × flecha no meio do vão - Série A - Protótipo 1

Figura B.2 - Relação carga \times flecha no meio do vão - Série A - Protótipo 2

Figura B.3 - Relação carga × flecha no meio do vão - Série A - Protótipo 3

Figura B.4 - Relação carga \times flecha no meio do vão - Série B - Protótipo 4

Figura B.5 - Relação carga \times flecha no meio do vão - Série C - Protótipo 5

Figura B.6 - Relação carga × flecha no meio do vão - Série D - Protótipo 6

Figura B.7 - Relação carga \times flecha no meio do vão - Série D - Protótipo 7

Figura B.8 - Relação carga \times flecha no meio do vão - Série D - Protótipo 8

Figura B.9 - Relação carga × flecha no meio do vão - Série E - Protótipo 9

_117

Figura B.10 - Relação carga × flecha no meio do vão - Série E - Protótipo 10

Figura B.11 - Relação carga \times flecha no meio do vão - Série E - Protótipo 11

Figura B.12 - Relação carga \times flecha no meio do vão - Série F - Protótipo 12

Figura B.13 - Relação carga \times flecha no meio do vão - Série G - Protótipo 13

Figura B.14 - Relação carga \times flecha no meio do vão - Série H - Protótipo 14

Figura B.15 - Relação carga \times flecha no meio do vão - Série H - Protótipo 15

Figura B.16 - Relação carga \times flecha no meio do vão - Série H - Protótipo 16

B.3 Relação carga × deslizamento relativo de extremidade

Figura B.17 - Relação carga × desliz. relativo de extremidade - Série A - Protótipo 1

Figura B.18 - Relação carga \times desliz. relativo de extremidade - Série A - Protótipo 2

Figura B.19 - Relação carga × desliz. relativo de extremidade - Série A - Protótipo 3

Figura B.20 - Relação carga × desliz. relativo de extremidade - Série B - Protótipo 4

Figura B.21 - Relação carga \times desliz. relativo de extremidade - Série C - Protótipo 5

Figura B.22 - Relação carga \times desliz. relativo de extremidade - Série D - Protótipo 6

Figura B.23 - Relação carga × desliz. relativo de extremidade - Série D - Protótipo 7

Figura B.24 - Relação carga \times desliz. relativo de extremidade - Série D - Protótipo 8

Figura B.25 - Relação carga \times desliz. relativo de extremidade - Série E - Protótipo 9

Figura B.26 - Relação carga \times desliz. relativo de extremidade - Série E - Protótipo 10

Figura B.27 - Relação carga × desliz. relativo de extremidade - Série E - Protótipo 11

Figura B.28 - Relação carga \times desliz. relativo de extremidade - Série F - Protótipo 12

Figura B.29 - Relação carga \times desliz. relativo de extremidade - Série G - Protótipo 13

Figura B.30 - Relação carga × desliz. relativo de extremidade - Série H - Protótipo 14

Figura B.31 - Relação carga \times desliz. relativo de extremidade - Série H - Protótipo 15

Figura B.32 - Relação carga \times desliz. relativo de extremidade - Série H - Protótipo 16

B.4 Relação carga × deformação no "steel-deck"

Figura B.33 - Relação carga × deformação no "steel-deck" - Série A - Protótipo 1

Figura B.34 - Relação carga \times deformação no "steel-deck" - Série A - Protótipo 2

Figura B.35 - Relação carga \times deformação no "steel-deck" - Série A - Protótipo 3

Figura B.36 - Relação carga \times deformação no "steel-deck" - Série B - Protótipo 4

Figura B.37 - Relação carga \times deformação no "steel-deck" - Série C - Protótipo 5

Figura B.38 - Relação carga \times deformação no "steel-deck" - Série D - Protótipo 7

Figura B.39 - Relação carga \times deformação no "steel-deck" - Série D - Protótipo 8

Figura B.40 - Relação carga \times deformação no "steel-deck" - Série D - Protótipo 9

Figura B.41 - Relação carga \times deformação no "steel-deck" - Série E - Protótipo 10

Figura B.42 - Relação carga \times deformação no "steel-deck" - Série E - Protótipo 11

Figura B.43 - Relação carga \times deformação no "steel-deck" - Série E - Protótipo 12

Figura B.44 - Relação carga × deformação no "steel-deck" - Série F - Protótipo 13

Figura B.45 - Relação carga \times deformação no "steel-deck" - Série G - Protótipo 14

Figura B.46 - Relação carga \times deformação no "steel-deck" - Série H - Protótipo 15

Figura B.47 - Relação carga \times deformação no "steel-deck" - Série H - Protótipo 16

Apêndice C

Fotografias

Figura C.1 – Detalhe da tela soldada

Figura C.2 - Concretagem dos protótipos

Figura C.3 - Pórtico para aplicação de carga na laje mista

Figura C.4 - Sistema de aquisição de dados

Figura C.5 - Localização dos extensômetros no centro do vão do "steel-deck"

Figura C.6 - Detalhe do extensômetro

Figura C.7 - Máquina universal servocontrolada para ensaios dos corpos de prova de concreto

Figura C.8 - Fissuras no protótipo durante a realização do ensaio

Apêndice D

Momento de plastificação – Steel Deck MF-50 Área Efetiva pelo AISI 2001

D.1 Introdução

Neste apêndice, é demonstrado o procedimento de cálculo para a determinação do momento de plastificação do Steel Deck MF-50 para as espessuras 0,80 e 1,25 mm, sendo essas as espessuras usadas nos ensaios dos protótipos.

D.2 Steel Deck # 0,80 mm

Espessura de projeto (t) = 0,76 mm (espessura do aço sem galvanização)

- Verificação do flange e enrijecedor comprimidos:

 $f_y = 350 \text{ MPa} \text{ (ensaio de caracterização do aço # 0,80mm)}$ E = 201.290 MPa w (mm) = 51,626 mm $b_0 (mm) = 128,252 \text{ mm}$ $b_0/t = 168,75$ (D.1) k = 4 $S = 1,28. \sqrt{\frac{E}{f_y}} = 30,70$

(D.2)

$$\lambda = \frac{1,052}{\sqrt{k}} \cdot \frac{w}{t} \cdot \sqrt{\frac{f_y}{E}} = 1,490$$
(D.4)

$$\rho = \frac{1 - 0.22/\lambda}{\lambda} = 0.572 \tag{D.5}$$

$$I_a(mm^4) = \left(\frac{128 \cdot \frac{b_0}{t}}{S} - 285\right) \cdot t^4 = 139,68$$
(D.6)

$$I_s(mm^4) = 287,73$$
 (D.7)

$$A'_{s}(mm^{2}) = 24,92$$
 (D.8)

Onde:

 f_y = resistência ao escoamento do aço (MPa)

 $E = m \acute{o} du lo de elasticidade do aço (MPa)$

w = largura do elemento sem incluir dobras (mm)

b₀ = largura do elemento com enrijecedor intermediário (mm)

k = coeficiente de flambagem local

 $\lambda =$ índice de esbeltez do elemento

 ρ = valor de referência do índice de esbeltez reduzido do elemento

 I_a = momento de inércia de referência do enrijecedor intermediário ou de borda (mm⁴)

 I_s = momento de inércia da seção bruta do enrijecedor (mm⁴)

 A_{s} = área reduzida do enrijecedor intermediário (mm²)

	Comprimento	Comprimento	Área Bruta	Área Efetiva	Dist. Fibra Ext.	Аху	Distância Fibra	
ELEMENTO	Bruto (mm)	Bruto (mm)	(mm²)	A (mm ²)	y (mm)	(mm ³)	Extern	3 (mm)
1 - Flange Superior	2 x 51,626	103,25	78,47	44,89	0,38	17,06	Y Sup (mm) =	9,099
2 - Curva Superior	2 x 6,831	13,66	10,38	10,38	1,71	17,79		
3 - Enrijecedor Superior	1 x 32,780	32,78	24,92	24,92	5,26	131,05		
4 - 1/2 Alma Superior	2 x 23,000	46,00	19,04	35,83	24,83	889,77		
TOTAL SUPERIOR	195,70	195,70	132,81	116,02		1.055,67		
5 - Flange Inferior	2 x 51,626	103,25	78,47	78,47	0,38	29,82	Y Inf (mm) =	1,646
6 - Curva Inferior	2 x 6,831	13,66	10,38	10,38	1,71	17,79		
7 - Enrijecedor Inferior	1 x 32,780	32,78	24,92	24,92	5,26	131,05		
8 - 1/2 Alma Inferior	2 x 23,000	46,00	19,04	2,25	5,46	12,31		
TOTAL INFERIOR	195,70	195,70	132,81	116,02		190,97		
TOTAL	391,39	-	265,62	232,04	-			
ep (mm) = 24,40	(distância LNP	a fibra inferior)						
Mpa = 5,527	kN.m/m							

Tabela D.1 - Planilha para cálculo do momento de plastificação # 0,80 mm

D.3 Steel Deck # 1,25 mm

Espessura de projeto (t) = 1,21 mm (espessura do aço sem galvanização)

- Verificação do flange e enrijecedor comprimidos:

 $f_{y} = 345 \text{ MPa (ensaio de caracterização do aço # 1,25mm)}$ E = 200.233 MPa w (mm) = 51,626 mm $b_{0} (mm) = 128,252 \text{ mm}$ $b_{0}/t = 105,99$ k = 4 $S = 1,28 \cdot \sqrt{\frac{E}{f_{y}}} = 30,84$ 3.S = 92,51 $\lambda = \frac{1,052}{\sqrt{k}} \cdot \frac{w'_{t}}{\sqrt{f'_{y}/E}} = 0,932$ $\rho = \frac{1-0,22}{\lambda} = 0,820$ $I_{a} (mm^{4}) = \left(\frac{128 \cdot \frac{b_{0}}{t}}{S} - 285\right) \cdot t^{4} = 332,19$

$$I_s\left(mm^4\right) = 473,\!17$$

 $A'_{s}(mm^{2}) = 40,42$

ELEMENTO	Comprimento Bruto (mm)	Comprimento Bruto (mm)	Área Bruta (mm²)	Área Efetiva A (mm²)	Dist. Fibra Ext. y (mm)	A x y (mm ³)	Distância Fibra Externa (mm)	
1 - Flange Superior	2 x 51,626	103,25	124,93	102,44	0,61	61,98	Y Sup (mm) =	5,575
2 - Curva Superior	2 x 7,117	14,23	17,22	17,22	1,99	34,34		
3 - Enrijecedor Superior	1 x 33,410	33,41	40,43	40,42	5,46	220,70		
4 - 1/2 Alma Superior	2 x 22,835	45,67	29,92	41,17	19,40	804,87		
TOTAL SUP.	196,57	196,57	212,50	201,25		1.121,89		
5 - Flange Inferior	2 x 51,626	103,25	124,93	124,93	0,61	75,59	Y Inf (mm) =	2,696
6 - Curva Inferior	2 x 7,117	14,23	17,22	17,22	1,99	34,34		
7 - Enrijecedor Inferior	1 x 33,410	33,41	40,43	40,42	5,46	220,70		
8 - 1/2 Alma Inferior	2 x 22,835	45,67	29,92	18,67	11,35	211,91		
TOTAL INF.	196,57	196,57	212,50	201,25		542,54		
TOTAL	393,13	-	425,01	402,50	-			
ep (mm) = 25,68	(distância LNP	a fibra inferior)						
Mpa = 10,117	kN.m/m							

Tabela D.2 - Planilha para cálculo do momento de plastificação # 1,25 mm

REFERÊNCIAS BIBLIOGRÁFICAS

AMERICAN IRON AND STEEL INSTITUTE – AISI – Load and Resistance Factor Design for Cold-Formed Steel Structural Members, Wasington, March, 1991.

AMERICAN SOCIETY OF CIVIL ENGINEERS - Standard for the Structural Design of Composite Slabs, ANSI/ASCE 3-91, New York, December, 1992.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – NBR 14323 (1999) -DIMENSIONAMENTO DE ESTRUTURAS DE AÇO DE EDIFÍCIOS EM SITUAÇÃO DE INCÊNDIO - Anexo C.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – NBR 6152 (1992) – MATERIAIS METÁLICOS – ENSAIO DE TRAÇÃO À TEMPERATURA AMBIENTE.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – NBR 5739 (1994) – CONCRETO – ENSAIO DE COMPRESSÃO DE CORPOS-DE-PROVA CILÍNDRICOS.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – NBR 8800 (1996) – PROJETO E EXECUÇÃO DE ESTRUTURAS DE AÇO DE EDIFÍCIOS.

BELTRÃO, A. J. N. – COMPORTAMENTO ESTRUTURAL DE LAJES MISTAS COM CORRUGAÇÕES DE ALMA DE PERFIS DE CHAPA DOBRADA. Dissertação de Mestrado em Engenharia de Estruturas, Pontifícia Universidade Católica, Rio de Janeiro, 2003. CAMPOS, P. C. – EFEITO DA CONTINUIDADE NO COMPORTAMENTO E NA RESISTÊNCIA DE LAJES MISTAS COM FORMA DE AÇO INCORPORADA. Dissertação de Mestrado em Engenharia de Estruturas, UFMG, Belo Horizonte, Agosto 2001, 136p.

CANADIAN SHEET STEEL BUILDING INSTITUTE – CSSBI – Criteria for the Testing of Composite Slabs – March 2002.

EUROCODE 4 – DESIGN OF COMPOSITE STEEL AND CONCRETE STRUCTURES. Parts 9 and B3. British Standards, 2004 GOMES, L. C. – ESTUDO DO SISTEMA DE LAJES MISTAS COM FÔRMA DE AÇO INCORPORADA EMPREGANDO CONCRETO ESTRUTURAL LEVE. Dissertação do Mestrado em Engenharia de Estruturas, UFMG, Belo Horizonte, 2001, 165p.

JOHNSON, R. P. – COMPOSITE STRUCTURES OF STEEL AND CONCRETE, V. 01, Blackwell Scientific Publications, 2nd Edition, Oxford, 1994.

MELO, C. B. F. – ANÁLISE DO COMPORTAMENTO E DA RESISTÊNCIA DO SISTEMA DE LAJE MISTA. Dissertação do Mestrado em Engenharia de Estruturas, UFMG, Belo Horizonte, 1999, 141p.

QUEIROZ, G. ; PIMENTA, R. J. ; ANTINOSSI, L. – ELEMENTOS DAS ESTRUTURAS MISTAS AÇO-CONCRETO, Belo Horizonte, 2001, 332p.

SCHUSTER, COMPOSITE SLAB SYSTEM (NORMAL WEIGH CONCRETE), Reinhold M., Strengh and behaviour of the P - 2430 - 12HB, , Report N° WRI 110-12-02, Departament of Civil Engeneering, University of Waterloo, April 1984

SILVA, H. J. F. – ANÁLISE DO SISTEMA DE LAJE MISTA COM FÔRMA DE AÇO INCORPORADA APLICADO A ESTRUTURAS PREDIAIS EM CONCRETO ARMADO. Dissertação do Mestrado em Engenharia de Estruturas, UFMG, Belo Horizonte, 1999, 139p.

STEEL DECK INSTITUTE – SDI – Design Manual for Composite Decks, Form Decks and Roof Decks, SDI, Canton, Ohio, Pub. 29, 1995.

TAKEY, T. H. – SISTEMA DE LAJE MISTA PARA EDIFICAÇÕES COM USO DE PERFIS DE CHAPA METÁLICA. Dissertação de Mestrado em Engenharia de Estruturas, Pontifícia Universidade Católica, Rio de Janeiro, 2001.

VIANNA, J. C. – SISTEMA DE LAJE-MISTA PARA EDIFICAÇÕES RESIDENCIAIS COM USO DE PERFIS EMBOSSADOS DE CHAPA DOBRADA. Dissertação de Mestrado em Engenharia de Estruturas, Pontifícia Universidade Católica, Rio de Janeiro, 2005.

VIEIRA, D. J. – ESTUDO TEÓRICO-EXPERIMENTAL DO COMPORTAMENTO DE LAJES MISTAS COM PERFIS INCORPORADOS DE AÇO. Dissertação de Mestrado em Engenharia de Estruturas, Pontifícia Universidade Católica, Rio de Janeiro, 2003.