UBIRATAN PEREIRA DE MELO

ENEMA EM EQUINOS SAUDÁVEIS: AVALIAÇÃO CLÍNICA E LABORATORIAL

Belo Horizonte
Escola de Veterinária
2007
UBIRATAN PEREIRA DE MELO

ENEMA EM EQUINOS SAUDÁVEIS: AVALIAÇÃO CLÍNICA E LABORATORIAL

Dissertação apresentada à Universidade Federal de Minas Gerais, Escola Veterinária, como requisito parcial para a obtenção do grau de Mestre em Medicina Veterinária.
Área: Clínica e Cirurgia Veterinária
Orientadora: Profa. Maristela Silveira Palhares

Belo Horizonte
UFMG – Escola de Veterinária
2007
Agradecimentos

Agradeço a Deus, fonte de fé e inspiração, por todas as conquistas alcançadas durante esse período;
À minha esposa, Cíntia Ferreira, por todo amor, apoio, incentivo e companheirismo durante esse período e por ter me agraciado com um presente de Deus, meu filho Pedro Henrique;
Aos meus pais, Ubiratan e Gioneide, e a tia Alcina por entenderem minha ausência e por me darem todo o apoio e incentivo para chegar até aqui;
À professora Maristela por todos os anos de orientação, e por ser um exemplo de profissional dedicado à pesquisa e ensino;
À Dra. Sílvia Araújo França pelo grande auxílio na leitura das lâminas de histologia;
À professora Fabiola Paes Leme e aos funcionários do laboratório de patologia clínica pela ajuda na realização das análises bioquímicas;
À Marilene, funcionária do laboratório de patologia, pela ajuda no processamento das amostras para histopatologia;
À todos os estagiários (Carol, Tati, Matheus, Lucas, Guilherme) que direta ou indiretamente ajudaram nesse experimento;
Ao Ivan Biet e Ronaldo Alves pela amizade e por buscarem sempre algo novo a aprender;
À sempre amiga Heloísa por toda amizade, incentivo e pelo exemplo de profissionalismo dedicado à Medicina Veterinária;
À Juliana de Oliveira pela amizade e companheirismo durante o transcurso do experimento;
Ao Sebastião Alves, Izalto e João, funcionários do Hospital Veterinário (Clínica de eqüinos), pela ajuda na realização deste experimento;
Ao CNPq pela concessão da bolsa de mestrado;
À Profa. Rogéria Serakides pela realização das fotomicrografias;
À banca examinadora pelas sugestões apresentadas ao estudo.

Agradeço!
SUMÁRIO

LISTA DE TABELAS 07
LISTA DE GRÁFICOS 11
LISTA DE ABREVIATURAS 13
RESUMO 15
ABSTRACT 16

1 Introdução ... 17
2 Revisão de literatura ... 17
 2.1 Anatomia do trato gastrintestinal equino ... 17
 2.2 Fisiologia da motilidade gastrintestinal ... 20
 2.3 Exame clínico do equino com abdome agudo ... 25
 2.3.1 Parâmetros cardiovasculares .. 26
 2.3.2 Motilidade gastrintestinal e palpação transretal .. 28
 2.3.3 Pressão sanguínea ... 29
 2.3.4 Dor ... 31
 2.3.5 Características das fezes .. 32
 2.3.6 Patologia clínica ... 33
 2.4 Desordens do cólon menor .. 34
 2.5 Enemas .. 36
 2.6 Fisiologia dos fluidos corpóreos, equilíbrio ácido-base e eletrolítico 38
3 Material e Métodos ... 47
 3.1 Caracterização dos animais e grupos experimentais .. 47
 3.2 Avaliação clínica ... 48
 3.3 Avaliação hematológica ... 49
 3.4 Avaliação da bioquímica do sangue .. 50
 3.5 Avaliação do equilíbrio ácido-base e perfil eletrolítico 50
 3.6 Avaliação histológica ... 51
 3.7 Análises estatísticas ... 51
4 Resultados e Discussão ... 52
 4.1 Avaliação clínica ... 52
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1 Índices paramétricos</td>
<td>52</td>
</tr>
<tr>
<td>4.1.2 Palpação transretal e administração das soluções de enema</td>
<td>60</td>
</tr>
<tr>
<td>4.1.3 Auscultação intestinal</td>
<td>64</td>
</tr>
<tr>
<td>4.2 Avaliação hematológica</td>
<td>65</td>
</tr>
<tr>
<td>4.2.1 Bioquímica do sangue</td>
<td>70</td>
</tr>
<tr>
<td>4.3 Avaliação do equilíbrio ácido-base e perfil eletrolítico</td>
<td>71</td>
</tr>
<tr>
<td>4.4 Colonoscopia</td>
<td>81</td>
</tr>
<tr>
<td>4.4.1 Avaliação macroscópica</td>
<td>81</td>
</tr>
<tr>
<td>4.4.2 Avaliação histológica</td>
<td>83</td>
</tr>
<tr>
<td>5. Conclusões</td>
<td>84</td>
</tr>
<tr>
<td>6. Referências Bibliográficas</td>
<td>88</td>
</tr>
<tr>
<td>7. Anexos</td>
<td>96</td>
</tr>
</tbody>
</table>
LISTA DE TABELAS

Tabela 1 Relação entre freqüência cardíaca e taxa de sobrevivência em eqüinos portadores de abdome agudo.. 27
Tabela 2 Relação entre TPC e taxa de sobrevivência em eqüinos portadores de abdome agudo.. 28
Tabela 3 Valores de referência para a pressão arterial eqüína.................. 30
Tabela 4 Relação entre pressão sistólica arterial e taxa de sobrevivência em eqüinos portadores de abdome agudo................................. 31
Tabela 5 Relação entre grau de dor e taxa de sobrevivência em eqüinos portadores de abdome agudo.. 32
Tabela 6 Relação entre hematocrito e taxa de sobrevivência em eqüinos portadores de abdome agudo.. 34
Tabela 7 Compartimentalização de líquidos no eqüino............................. 39
Tabela 8 Relação entre anion gap e taxa de sobrevivência em eqüinos portadores de abdome agudo.. 44
Tabela 9 Efeito da administração de diferentes soluções de enema sobre a freqüência cardíaca de eqüinos hígidos.. 53
Tabela 10 Efeito da administração de diferentes soluções de enema sobre a freqüência respiratória de eqüinos hígidos.............................. 55
Tabela 11 Efeito da administração de diferentes soluções de enema sobre a temperatura retal de eqüinos hígidos.. 56
Tabela 12 Efeito da administração de diferentes soluções de enema sobre o tempo de perfusão capilar de eqüinos hígidos......................... 58
Tabela 13 Efeito da administração de diferentes soluções de enema sobre a freqüência do pulso de eqüinos hígidos..................................... 59
Tabela 14 Efeito da administração de diferentes soluções de enema sobre pressão sistólica de eqüinos hígidos... 61
Tabela 15 Efeito de diferentes soluções de enema sobre o eritrograma de eqüinos hígidos... 66
Tabela 16 Efeito de diferentes soluções de enema sobre a leucometria total de eqüinos hígidos... 67
Tabela 17 Efeito de diferentes soluções de enema sobre a leucometria diferencial de eqüinos hígidos... 69
Tabela 18 Efeito de diferentes soluções de enema sobre o número de plaquetas de eqüinos hígidos... 69
Tabela 19 Efeito de diferentes soluções de enema sobre os valores séricos de albumina, proteína total, osmolalidade, uréia, creatinina e glicose de eqüinos hígidos

Tabela 20 Efeito de diferentes soluções de enema sobre os eletrólitos de eqüinos hígidos

Tabela 21 Efeito de diferentes soluções de enema sobre o TCO₂, PaCO₂, pH, HCO⁻₃, desvio de base e anion gap de eqüinos hígidos

Tabela 22 Comparação do efeito de diferentes soluções de enema sobre a freqüência cardíaca de eqüinos hígidos

Tabela 23 Comparação do efeito de diferentes soluções de enema sobre a freqüência respiratória de eqüinos hígidos

Tabela 24 Comparação do efeito de diferentes soluções de enema sobre a temperatura retal de eqüinos hígidos

Tabela 25 Comparação do efeito de diferentes soluções de enema sobre o tempo de perfusão capilar de eqüinos hígidos

Tabela 26 Comparação do efeito de diferentes soluções de enema sobre a freqüência do pulso de eqüinos hígidos

Tabela 27 Comparação do efeito de diferentes soluções de enema sobre a pressão sistólica de eqüinos hígidos

Tabela 28 Comparação do efeito de diferentes soluções de enema sobre os valores séricos de Na⁺ em eqüinos hígidos

Tabela 29 Comparação do efeito de diferentes soluções de enema sobre os valores séricos de K⁺ em eqüinos hígidos

Tabela 30 Comparação do efeito de diferentes soluções de enema sobre os valores séricos de Cl⁻ em eqüinos hígidos

Tabela 31 Comparação do efeito de diferentes soluções de enema sobre os valores séricos de TCO₂ em eqüinos hígidos

Tabela 32 Comparação do efeito de diferentes soluções de enema sobre os valores séricos de PaCO₂ em eqüinos hígidos

Tabela 33 Comparação do efeito de diferentes soluções de enema sobre os valores séricos de pH em eqüinos hígidos

Tabela 34 Comparação do efeito de diferentes soluções de enema sobre os valores séricos de HCO⁻₃ em eqüinos hígidos

Tabela 35 Comparação do efeito de diferentes soluções de enema sobre os valores séricos de desvio de base em eqüinos hígidos

Tabela 36 Comparação do efeito de diferentes soluções de enema sobre os valores séricos de glicose em eqüinos hígidos
<table>
<thead>
<tr>
<th>Tabela</th>
<th>Comparação do efeito de diferentes soluções de enema sobre os valores séricos de</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>anion gap em eqüinos hígidos</td>
<td>103</td>
</tr>
<tr>
<td>38</td>
<td>valores séricos de Cálcio total em eqüinos hígidos</td>
<td>104</td>
</tr>
<tr>
<td>39</td>
<td>valores séricos de magnésio em eqüinos hígidos</td>
<td>104</td>
</tr>
<tr>
<td>40</td>
<td>valores séricos de uréia em eqüinos hígidos</td>
<td>105</td>
</tr>
<tr>
<td>41</td>
<td>valores séricos de creatinina em eqüinos hígidos</td>
<td>105</td>
</tr>
<tr>
<td>42</td>
<td>valores séricos de albumina em eqüinos hígidos</td>
<td>106</td>
</tr>
<tr>
<td>43</td>
<td>valores séricos de proteína total em eqüinos hígidos</td>
<td>106</td>
</tr>
<tr>
<td>44</td>
<td>valores da osmolalidade em eqüinos hígidos</td>
<td>107</td>
</tr>
<tr>
<td>45</td>
<td>valores de hematócrito em eqüinos hígidos</td>
<td>107</td>
</tr>
<tr>
<td>46</td>
<td>valores de eritrócitos em eqüinos hígidos</td>
<td>108</td>
</tr>
<tr>
<td>47</td>
<td>valores de hemoglobina em eqüinos hígidos</td>
<td>108</td>
</tr>
<tr>
<td>48</td>
<td>valores do volume corpuscular médio em eqüinos hídidos</td>
<td>109</td>
</tr>
<tr>
<td>49</td>
<td>valores da concentração de hemoglobina corpuscular média em eqüinos hídidos</td>
<td>109</td>
</tr>
<tr>
<td>50</td>
<td>valores da hemoglobina corpuscular média em eqüinos hídidos</td>
<td>110</td>
</tr>
<tr>
<td>51</td>
<td>valores de leucócitos totais em eqüinos hígidos</td>
<td>110</td>
</tr>
<tr>
<td>52</td>
<td>valores absolutos de bastonetes em eqüinos hígidos</td>
<td>111</td>
</tr>
<tr>
<td>53</td>
<td>valores absolutos de neutrófilos segmentados em eqüinos hígidos</td>
<td>111</td>
</tr>
</tbody>
</table>
Tabela 54 Comparação do efeito de diferentes soluções de enema sobre os valores absolutos de eosinófilos em eqüinos hígidos.. 112

Tabela 55 Comparação do efeito de diferentes soluções de enema sobre os valores absolutos de linfócitos em eqüinos hígidos... 112

Tabela 56 Comparação do efeito de diferentes soluções de enema sobre os valores absolutos de monócitos em eqüinos hígidos.. 113

Tabela 57 Comparação do efeito de diferentes soluções de enema sobre os valores absolutos de basófilos em eqüinos hígidos.. 113

Tabela 58 Comparação do efeito de diferentes soluções de enema sobre os valores absolutos de plaquetas em eqüinos hígidos.. 114

Tabela 59 Efeito da administração de diferentes soluções de enema sobre a motilidade do trato gastrintinal de eqüinos hígidos................................. 115
LISTA DE GRÁFICOS

Gráfico 1 Efeito da administração de diferentes soluções de enema sobre a frequência cardíaca de equinos hígidos.. 54
Gráfico 2 Efeito da administração de diferentes soluções de enema sobre a frequência respiratória de equinos hígidos.. 56
Gráfico 3 Efeito da administração de diferentes soluções de enema sobre a temperatura retal de equinos hígidos.. 57
Gráfico 4 Efeito da administração de diferentes soluções de enema sobre o tempo de preenchimento capilar de equinos hígidos............................. 58
Gráfico 5 Efeito da administração de diferentes soluções de enema sobre leucometria total de equinos hígidos... 68
Gráfico 6 Efeito da administração de diferentes soluções de enema sobre a TCO₂ de equinos hígidos.. 77
Gráfico 7 Efeito da administração de diferentes soluções de enema sobre o pH de equinos hígidos... 77
Gráfico 8 Efeito da administração de diferentes soluções de enema sobre concentração de bicarbonato de equinos hígidos... 78
Gráfico 9 Efeito da administração de diferentes soluções de enema sobre o desvio de base de equinos hígidos... 79
Gráfico 10 Efeito da administração de diferentes soluções de enema sobre o ánion gap de equinos hígidos... 80
<table>
<thead>
<tr>
<th>Figura</th>
<th>Descrição</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Preparação e administração da solução de enema</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>Avaliação macroscópica da mucosa retal via colonoscopia e colheita de fragmento da mucosa via biopsia.</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>Avaliação macroscópica da mucosa colônica e retal após a realização dos enemas.</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>Mucosa colônica normal</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>Mucosa colônica com discreto infiltrado de células inflamatórias.</td>
<td>86</td>
</tr>
<tr>
<td>6</td>
<td>Mucosa colônica com moderado infiltrado de células inflamatórias.</td>
<td>87</td>
</tr>
</tbody>
</table>
LISTA DE ABREVIATURAS

AG – Ânion gap
ANM – Ânions não-mensuráveis
ATP – Trifosfato de adenosina
BE – Desvio de base
BUN – Nitrogênio uréico sanguíneo
Ca\(^+\) - Cálculo total
Ca\(^{++}\) - Cálculo ionizável
CCK – Colecistoquinina
CHCM – Concentração de hemoglobina corpuscular média
Cl\(^-\) - Cloretos
CMM – Complexo mioelétrico migratório
CNM – Cátions não-mensuráveis
CO\(_2\) – Gás carbônico
DC – Débito cardíaco
EDTA – Sal dissódico do ácido etileno diamino tetra-acético
FEC – Fluido extracelular
FIC – Fluido intracelular
FTC – Fluido transcelular
Hb – Hemoglobina
H\(_2\)CO\(_3\) – Ácido carbônico
H\(_2\)O - Água
H\(^+\) - Hidrogênio
K\(^+\) - Potássio
Kg – Quilograma
Mg\(^{++}\) - Magnésio
M\(_2\) – Receptor muscarínico tipo 2
M\(_3\) – Receptor muscarínico tipo 3
NaCl – Cloreto de sódio
NaHCO\(_3\) – Bicarbonato de sódio
NANC – Sistema neurotransmissor não-adrenérgico não-colinérgico

NO – Óxido nítrico

pH – Potencial hidrogênico

pK – Potencial de dissociação

PIV – Peptídeo intestinal vasoativo

5-HT – 5- Hidroxitriptamina

TPC- Tempo de preenchimento capilar

VCM – Volume corpuscular médio
RESUMO

Este estudo teve por objetivo avaliar o efeito de diferentes soluções de enema sobre os parâmetros clínicos, homeostáticos, hematológicos e bioquímica do sangue de eqüinos hígidos, bem como o efeito dessas soluções sobre as características macro e microscópicas da mucosa do cólon menor distal e reto. Foram utilizados 15 eqüinos adultos hígidos, agrupados de acordo com o peso e o sexo (quatro fêmeas e um macho/grupo) divididos em três grupos (5 animais/grupo): Grupo 1- água de torneira associada com sabão neutro; Grupo 2- solução isotônica; Grupo 3- água de torneira associada vaselina. Os efeitos das soluções de enema sobre os parâmetros clínicos, homeostáticos, hematológicos e bioquímica sanguínea, bem como o efeito dessas soluções sobre as características macroscópicas e histológicas da mucosa do cólon menor distal e reto variaram em função do tipo de solução infundida. A solução com menores efeitos sobre os parâmetros clínicos, homeostáticos, hematológicos e bioquímicos, bem como sobre as características macro e microscópicas da mucosa colônica foi a solução isotônica. A solução de água de torneira e sabão neutro induziu provocou alcalose metabólica, diminuição da concentração de eletrólitos e reação inflamatória da mucosa colônica. Embora as três soluções tenham se mostrado efetivas em hidratar e amolecer as fezes, a solução de água com sabão apresentou os melhores efeitos.

Palavras chaves: enema, eqüino, abdome agudo, colonoscopia, sistema digestivo
ABSTRACT

The effect of three different enema solutions was studied on clinical, homeostatic, hematological, and biochemistry parameters of equines, as well as the effect in macro and microscopic characteristics of distal small colon and rectum mucosas. Fifteen healthy adult animals were pooled according to weight and gender (four females and one male per group) and distributed into three groups (five equines per each), as the following: group 1 – tap water associated with neuter soap; group 2 – isotonic solution; and group 3 – tap water associated with vaseline. The type of enema solution influenced on the forecited parameters. Isotonic solution caused less alteration on the parameters of colon mucosa. Tap water and neuter soap induced metabolic alkalosis, decrease in electrolytes concentration, and inflammatory reaction on colon mucosa. Even though all three solutions showed effectiveness in hydrating and softening the feces, water with soap solution presented the best results.

Key words: enema, equine, acute abdomen, colonoscopy, digestive system
1- INTRODUÇÃO

Nos eqüinos, os distúrbios de motilidade do trato gastrintestinal manifestam-se comumente como cólica. O abdome agudo é o problema mais comum na clínica médica dessa espécie. Independente dos recentes avanços no manejo geral dos eqüinos a cólica continua a ocorrer e se constitui na principal causa de morbidade e mortalidade na espécie eqüina, além de acarretar estresse emocional e gastos financeiros aos proprietários (Van Hoogmoed et al., 2000; Singer e Smith, 2002).

O trato gastrintestinal eqüino é uma estrutura volumosa e complexa, realizando uma variedade de funções simultâneas e, às vezes, opostas (secreção e absorção, mistura e propulsão, esvaziamento e enchimento), podendo variar de segmento a segmento. As doenças que afetam esta estrutura provocam alterações na mucosa, musculatura visceral, serosa, sistema nervoso entérico e vascularização. A falha ou negligência em reconhecer a natureza heterogênea deste sistema pode levar a erros na escolha do tratamento mais adequado para uma doença específica (Freeman, 1999).

A administração de enemas é um procedimento de enfermagem comumente utilizado para tratar quadros de compactação e esvaziar o cólon menor e reto antes de procedimentos cirúrgicos e exames diagnósticos. Os enemas foram utilizados pela primeira vez há centenas de anos e, atualmente, sua utilização é baseada na tradição, tentativas e erros, sem nenhuma investigação científica profunda dos seus efeitos, tanto na medicina humana quanto na medicina veterinária.

Grandes quantidades de soluções de água de torneira com sabão ou água pura administrada por meio de enemas são amplamente utilizadas no tratamento de eqüinos com compactações do cólon descendente (cólon menor e reto). Entretanto, ainda não são conhecidos os mecanismos pelos quais essas soluções esvaziam o cólon menor, qual a frequência e quantidade adequada, quais os efeitos sistêmicos desta terapia e se ela altera ou não a integridade da mucosa colônica ou retal.

Este estudo teve como objetivos avaliar o efeito de diferentes soluções de enema sobre os parâmetros clínicos, homeostáticos, hematológicos e bioquímica do sangue de eqüinos hígidos. Avaliaram-se concomitantemente o efeito dessas soluções sobre as características macro e microscópicas da mucosa do cólon menor distal e reto.

2- REVISÃO DE LITERATURA

2.1- Anatomia do trato gastrintestinal eqüino

Como outros herbívoros que subsistem com uma dieta rica em forragem, os eqüinos possuem um trato gastrintestinal de grande capacidade e um abdome volumoso correspondente. A conformação abdominal varia com a idade, higidez do animal, natureza e quantidade do alimento ingerido (Dyce et al., 1997a). Basicamente, o trato gastrintestinal pode ser dividido em três segmentos: estômago, intestino delgado e intestino grosso (Sisson, 1986; Budras et al., 1994).
O estômago situa-se na metade dorsal esquerda do abdome sob o gradil costal, caudal ao diafragma e fígado (Sisson, 1986; Budras et al., 1994). A característica mais marcante é seu pequeno tamanho em relação ao porte do equino, possuindo capacidade aproximada de oito a 15 litros (Budras et al., 1994; Dyce et al., 1997a).

Em uma descrição mais detalhada, apresenta, duas faces, duas curvaturas e duas extremidades. A face parietal é convexa e direcionada craniodorsalmente para a esquerda, situando-se próxima ao fígado e diafragma. A face visceral, também convexa, está dirigida em sentido oposto, relacionando-se com a parte terminal do cólon maior, pâncreas, cólon menor, intestino delgado e omento maior. As bordas entre estas faces recebem o nome de curvatura. A curvatura menor é curta, estendendo-se da terminação esofágica (cârdia) até a junção com o intestino delgado (piloro). A curvatura maior é extensa, repousando ventralmente sobre o cólon maior esquerdo (Sisson, 1986).

O estômago é mantido nessa posição pela pressão das vísceras adjacentes, pelo esôfago e por quatro pregas peritoneais (omento maior, omento menor, ligamento gastro-frênico e ligamento gastro-esplênico) que o mantêm fixo às estruturas vizinhas (Sisson, 1986; Budras et al., 1994).

O intestino delgado liga o estômago ao intestino grosso, iniciando-se no piloro e terminando na curvatura menor do ceco. Esse segmento mede cerca de 20 m e, quando moderadamente distendido, seu diâmetro varia de sete a dez cm. A capacidade do intestino delgado varia entre 40 a 50 litros (Sisson, 1986; Budras et al., 1994; Dyce et al., 1997a).

O intestino delgado é dividido em duodeno (parte fixa), jejun e íleo (parte mesentérica). O duodeno é relativamente curto, aproximadamente um metro, e permanece numa posição relativamente constante dentro do abdome. Ventral ao fígado, sua parte inicial (cranial) forma uma flexura sigmóide, cuja primeira curva é convexa em sentido dorsal e a segunda, também convexa, em sentido ventral. A segunda parte do duodeno (descendente) se dirige dorso-caudalmente sobre o cólon maior direito e ventralmente ao lado direito do fígado. Ao atingir o rim direito e base do ceco se curva no sentido do plano mediano, opostamente à última costela (duodeno transverso) (Budras et al., 1994; Dyce et al., 1997a).

A terceira parte do duodeno (ascendente) cruza o abdome da direita para a esquerda caudalmente à fixação da base do ceco, cruzando o plano mediano caudal à raiz mesentérica. Neste ponto relaciona-se e mantêm-se fixo a base do ceco e cólon menor pela prega duodeno-cólica (Budras et al., 1994). Por outro lado, o mesoduodeno fixa a parte inicial do duodeno ao fígado e a parte descendente ao cólon dorsal direito (Sisson, 1986).

A parte mesentérica do intestino delgado (jejuno e íleo) situa-se dentro da margem livre do omento maior, que é suficientemente longo para permitir às alças completa mobilidade. Com exceção do início do jejuno e do íleo, a parte mesentérica do intestino delgado não possui uma delimitação anatômica constante. Grande parte dessas alças encontra-se sobrepostas no quadrante
dorsal esquerdo do abdome, onde se misturam com as do cólon menor. Entretanto, algumas delas se insinuam entre o cólon maior e o flanco (Sisson, 1986; Dyce et al., 1997a).

A mobilidade do intestino delgado pode ser considerada responsável pelo encarceramento ocasional de uma parte dentro de diversas aberturas, como o forame epiplóico, o anel vaginal, ou mesmo uma fenda no mesentério (Sisson, 1986; Dyce et al., 1997a).

Além de sua enorme capacidade, o intestino grosso também é peculiar por apresentar forma saculada. As saculações ou haustros resultam do encurtamento das tênias, faixas formadas pela concentração de fibras musculares longitudinais externas e elásticas em certas (de uma a quatro) posições na circunferência do órgão. O intestino grosso do eqüino é composto pelo ceco e colón. O ceco consiste em uma base dorsal expandida, um corpo curvo e afilado e um ápice ventral cego; essas partes fundem-se suavemente e o órgão freqüentemente apresenta formato de vírgula (Dyce et al., 1997a).

A base do ceco se origina no abdome caudal direito e extende-se da entrada pélvica até o 14º ou 15º espaço intercostal. O ceco é saculado e possui comprimento médio de um metro, com um volume médio de 33 litros. A parte dorso-medial da base do ceco está fixada à raiz do mesentério. Localizado medialmente na base cecal, o orifício íleo-cecal está dorso-medial ao orifício ceco-cólico no aspecto ventral da parte caudal da base do ceco (Collatos e Romanos, 1993).

O cólon consiste nas partes usuais, ascendente, transversa e descendente. As duas primeiras juntas constituem o cólon maior, como é conhecido, e a terceira é o cólon menor. O cólon ascendente está disposto em quatro partes paralelas, separadas por três flexuras, cada uma delas com denominação individual. A sequência é a seguinte: colón ventral direito, flexura diafragmática ventral (esternal), cólon ventral esquerdo, flexura pélvica, cólon dorsal esquerdo, flexura diafragmática dorsal, cólon dorsal direito. O cólon dorsal direito leva ao cólon transverso curto, e após este encontramos o cólon menor (Dyce et al., 1997a).

Exceto em sua origem e no seu término, o cólon ascendente fica livre dentro do abdome, embora seu grande volume assegure que ele não mude de posição. O pregueamento que sofre em seu desenvolvimento transforma o mesentério original em uma lâmina peritoneal curta (mesocólon ascendente), passando entre porções adjacentes dos ramos dorsal e ventral. Mediante a continuidade com o ceco e com o cólon transverso é fixado por ligamentos retroperitoneais a estas partes. A ligação frouxa entre os ramos esquerdos permite que a parte dorsal deslize de alguma forma para o lado (geralmente para o lado direito) da parte ventral como uma variante comum e provavelmente da topografia usual (Dyce et al., 1997a).

O cólon menor é a estrutura de menor diâmetro do trato gastrintestinal do eqüino, iniciando na terminação do cólon transverso, caudal ao saco cego do estômago e ventral ao rim esquerdo. O comprimento do cólon menor é cerca de 2,5-4 metros e seu diâmetro varia entre 7,5 a 10 cm, situando-se principalmente no espaço entre o
estômago e a entrada pélvica, dorsal ao cólon maior no lado esquerdo (Dyce et al., 1997a; Edwards, 1997; Rhoads, 1999).

O cólon menor está em íntimo contato com as alças do intestino delgado, das quais é distinguível pela presença de duas tênias e saculações (Livesey, 1990). Está inserido na região sublombar pelo mesocólon e na terminação do duodeno pela estreita prega duodenocólica do peritônio. O mesocólon é estreito em sua origem, mas logo atinge uma largura de cerca de 80 a 90 cm. Sua borda parietal está fixada ao longo de uma linha que se estende da face ventral do rim esquerdo até o promontório sacro, e continua cranialmente com a raiz do mesentério e caudalmente com o mesorreto (Sisson, 1986). O cólon menor recebe suprimento sanguíneo tanto da artéria mesentérica cranial quanto da caudal (Livesey, 1990).

O reto é a parte terminal do intestino, com comprimento de cerca de 30 cm e estende-se da entrada pélvica até o ânus, podendo se apresentar numa direção reta ou oblíqua (King, 1994). O reto pode ser dividido em duas partes: peritoneal e retroperitoneal. A primeira parte, a peritoneal, é semelhante ao cólon menor e está afixada por uma continuação do mesocólon denominada mesorreto. A segunda parte, a retroperitoneal, forma uma dilatação com o formato de frasco denominada ampola retal, que está fixada às estruturas vizinhas por tecido conjuntivo e faixas musculares (Sisson, 1986; Dyce et al., 1997b). A ampola funciona como um depósito de fezes antes da evacuação. A parte peritoneal do reto situa-se, comumente, ao longo da parede esquerda da cavidade pélvica, mas pode apresentar-se numa posição mediana ou, raramente, desviada para o lado direito. Está relacionada com as alças do cólon menor e à flexura pélvica do cólon maior, e ventralmente à bexiga. A parte retroperitoneal relaciona-se dorsal e lateralmente com a parede pélvica, e ventralmente as relações diferem entre os dois sexos (Sisson, 1986; Dyce et al., 1997b).

Na égua, o reto situa-se sobre o útero e a vagina, exceto, como acontece frequentemente, quando estes órgãos são deslocados para um lado, permitindo ao reto fazer contato com a bexiga. Nos machos, a face ventral do reto situa-se sobre a bexiga, a uretra e as glândulas genitais acessórias (Dyce et al., 1997b).

2.2- Fisiologia da motilidade gastrintestinal

O tempo de permanência do alimento nos diversos segmentos do trato gastrintestinal depende de múltiplos fatores: individualidade e ocupação do eqüino, pureza e digestibilidade do alimento, tipo e tamanho das partículas, viscosidade da ingesta, gradientes de pressão e forças gravitacionais. Do tempo total de trânsito (35-50 horas) cerca de 85% são gastos no intestino grosso (Meyer, 1995; Evans, 1998; Lester et al., 1998).

A atividade gastrintestinal envolve elevado grau de organização entre vias centrais e periféricas, neurônios e vias neurais, além das vias motoras necessárias para regular a motilidade intestinal. Após recepção de sinais
externos, o estímulo para contração ou relaxamento intestinal é controlado pela interação entre neurônios entéricos extrínsecos e intrínsecos via sistema nervoso simpático e parassimpático, células intersticiais de Cajal, músculo liso entérico, motilina, receptores da motilina e sistema neurotransmissor não-adrenérgico não-colinérgico (NANC) (Murray, 2001a; Van Hoogmoed, 2003; Van Hoogmoed et al., 2004).

O sistema nervoso entérico estabelece uma fonte intrínseca de impulso nervoso sendo composto por uma complexa rede de neurônios dentro do intestino que permitem o controle da motilidade. Este sistema inclui o plexo mioentérico, localizado entre os músculos longitudinal e circular da alça intestinal, e o plexo submucoso localizado na submucosa. Inúmeros receptores nas camadas mucosa, submucosa e muscular estimulam fibras aferentes que fazem sinapse em ambos os plexos, amplificando ou modulando a resposta intestinal aos impulsos nervosos. Essas fibras também podem fazer sinapse com fibras eferentes que estimulam ou inibem contrações tónicas ou propulsivas. O sistema nervoso intrínseco, portanto, garante motilidade propulsiva e reflexos locais independentes da inervação extrínseca (Fenger et al., 2000).

A estimulação parassimpática estimula a motilidade e a secreção gastrintestinal. O estímulo parassimpático origina-se do núcleo vago e é transmitido através dos nervos pélvico e vago, sendo a acetilcolina o neurotransmissor tanto na junção sináptica quanto na junção neuromuscular. Os receptores colinérgicos nos plexos entéricos são receptores nicotínicos e no músculo liso são receptores muscarínicos do tipo 2 (M_2) e 3 (M_3), numa proporção de quatro receptores M_2 para cada receptor M_3, estando ambos envolvidos no controle da motilidade gastrintestinal. O sistema nervoso simpático desempenha função inibitória na motilidade intestinal, através dos receptores adrenérgicos α_1, α_2 e β_2 (Malone et al., 1999; Murray, 2001b; Marti et al., 2005).

A inervação extrínseca é responsável pelo controle dos reflexos protetores entéricos: o reflexo gastro-cólico mediado pelo nervo vago e o intestinal mediado pelo intestino. O reflexo gastro-cólico corresponde ao estímulo da motilidade colônica em resposta à distensão gástrica, estimulando o esvaziamento do trato gastrintestinal após a ingestão de alimento. O reflexo intestinal é o reflexo de inibição da motilidade em resposta à distensão intestinal acentuada, evitando aumento na tensão da parede intestinal e potencial ruptura em resposta à obstrução (Fenger et al., 2000).

O sistema neurotransmissor NANC regula a motilidade gastrintestinal via neurônios inibitórios e excitatórios. O estímulo dos neurônios NANC localizados no plexo mioentérico resulta no relaxamento do músculo liso entérico, provavelmente via mecanismos dependentes do óxido nítrico (NO) e trifosfato de adenosina (ATP) (Van Hoogmoed et al., 2000).

O NO exerce efeito predominantemente inibitório sobre a motilidade gastrintestinal, principalmente nas tênias do cólon, músculo liso circular do cólon ventral e músculo liso circular do
intestino delgado sem efeito aparente sobre a musculatura longitudinal. Embora o NO exerça efeito inibitório sobre a atividade contrátil do músculo liso longitudinal de cães e seres humanos, a camada muscular longitudinal dos eqüinos não responde à atividade do NO (Rakestraw et al., 1996; Van Hoogmoed et al., 2000).

O mecanismo pelo qual o NO inibe a contratilidade do músculo liso circular não é ainda totalmente compreendido, porém pode envolver a ativação da guanilato ciclase e GMP cíclico. O NO pode também modificar diretamente a condutância iônica na membrana celular desencadeando hiperpolarização da membrana celular e relaxamento do músculo liso intestinal. A hiperpolarização resultante da abertura dos canais de potássio desencadeia o fechamento dos canais de cálcio dependentes de voltagem, com consequente diminuição da concentração intracelular de cálcio e diminuição da atividade contrátil intestinal (Rakestraw et al., 1996).

Recentemente, demonstrou-se correlação entre a liberação de NO e a produção de prostaglandinas no cólon maior. Mais precisamente, a liberação de NO aumenta a produção de prostaglandinas por meio da indução da ciclooxigenase. Esta associação pode desempenhar importante papel inibitório sobre a motilidade gastrintestinal, além de amplificar a resposta inflamatória de um segmento intestinal lesado (Van Hoogmoed et al., 2002).

O ATP inibe a contratilidade intestinal via hiperpolarização da membrana celular por meio da elevação da concentração de cálcio intracelular e ativação dos canais de potássio dependentes de cálcio, atuando dessa forma como um receptor purinérgico (Van Hoogmoed et al., 2000).

Vários hormônios desempenham importante papel na regulação da motilidade gastrintestinal. Gastrina, colecistoquinina (CCK), motilina, substância P, 5-Hidroxitriptamina (5-HT) e o hormônio inibidor da liberação de gastrina (bombesina) estimulam a motilidade. Por outro lado, secretina, glucagon, peptídeo intestinal vasoativo (PIV), encefalina e o hormônio inibidor da secreção de somatostatina desempenham papel inibitório. Estes hormônios regulam a motilidade do trato gastrintestinal através de sua ação em neurotransmissores, atuando em receptores dopaminérgicos (D2 e D3), receptores 5-HT e receptores opióides presentes no plexo mioentérico (Evans, 1998; Schneider e Sayegh, 2002; Sasaki et al., 2003).

A CCK é liberada pelas células I presentes no intestino delgado proximal, e a isoforma mais abundante no trato gastrintestinal é a CCK-8. A ativação dos receptores CCK induz contração do músculo liso entérico e relaxamento do esfincter esofágico inferior. Embora a CCK estimule a motilidade intestinal via indução da contração muscular, ela retarda o tempo de esvaziamento gástrico (Schneider e Sayegh, 2002).

A motilina é liberada através de influência vagal, quando da passagem da ingesta pelo duodeno. A motilina é produzida em células enterocromafins especiais chamadas células motilina, e após sua produção é armazenada em pequenas vesículas presentes nessas
células. A motilina desempenha papel fisiológico importante no controle da motilidade gastrintestinal via receptores muscarínicos presentes na inervação colinérgica. Os eqüinos possuem receptores de motilina em todo trato gastrintestinal (Sasaki e Yoshihara, 1999; Schneider e Sayegh, 2002; Van Hoogmoed, 2003).

Nos eqüinos, como em outras espécies, a densidade dos receptores da motilina varia de acordo com o segmento intestinal, e a densidade desses receptores é maior no intestino delgado do que no intestino grosso. O duodeno é o local de maior densidade, enquanto o número de receptores diminui gradativamente no jejuno, flexura pélvica e ceco (Koenig et al., 2002).

O efeito da 5-HT sobre a motilidade gastrintestinal é predominantemente excitatório, entretanto, esse efeito depende do sub-tipo de receptor a qual a 5-HT se liga e do segmento intestinal avaliado. Após a liberação da 5-HT pelas células enterocromafins ocorre ativação dos reflexos peristálticos e concomitante ao aumento da atividade contratil ocorre elevação do fluxo de água e eletrólitos para dentro do lúmen intestinal (Nieto et al., 2000).

Existem sete diferentes isoformas de receptores 5-HT (5-HT₁, 5-HT₂, 5-HT₃, 5-HT₄, 5-HT₅, 5-HT₆ e 5-HT₇), e dentre estas, as isoformas 5-HT₁, 5-HT₂, 5-HT₃ e 5-HT₄ estão diretamente envolvidas na regulação da motilidade gastrintestinal. A distribuição regional dos receptores 5-HT no TGI dos mamíferos diminui sequencialmente do duodeno, jejuno, íleo, ceco, cólon e reto. No eqüino, as isoformas 5-HT₂, 5-HT₃ e 5-HT₄ já foram identificadas no íleo, jejuno e ceco, mas ainda não se sabe como esses receptores estão distribuídos ao longo do trato gastrintestinal dessa espécie (Nieto et al., 2000; Weiss et al., 2002; Sasaki et al., 2004).

A secretina é um hormônio estruturalmente semelhante ao glucagon, sintetizada e excretada pelas células S encontradas em toda a mucosa intestinal. A liberação de secretina é estimulada pela acidificação luminal do duodeno, não havendo influência vagal nessa liberação. Altas concentrações de secretina inibem a motilidade gastrintestinal, diminui o tônus do esfincter esofágico inferior e colônico, além de diminuir a secreção de gastrina. Esse papel fisiológico da secretina pode perpetuar o íleo adinâmico nos eqüinos, principalmente naqueles animais que passam longos períodos sem alimentação (Schneider e Sayegh, 2002).

O PIV é encontrado numa ampla variedade de tipos celulares e tecidos orgânicos incluindo células enterocromafins e neurais entéricas, cérebro, coração, pulmão e trato urogenital. O PIV está presente em todo o trato gastrintestinal, e no eqüino está presente em estruturas nervosas dentro do jejuno, íleo, ceco e cólon (Hall et al., 1982; Kotze e Aswegen, 1990). Existem diversos tipos de receptores PIV e alguns deles podem se ligar também a secretina, embora em menor proporção. No intestino, os receptores PIV são encontrados em diversos tipos celulares incluindo células mucosas, músculo liso das arteríolas da submucosa, músculo liso circular e longitudinal, plexo mioentérico e linfonodos. A ativação desses receptores, após liberação do
PIV pela inervação intrínseca resulta em hiperpolarização e relaxamento das células do músculo liso via abertura dos canais de K⁺ e produção de NO no próprio músculo liso através da NO sintetase endotelial (Schneider e Sayegh, 2002).

Níveis plasmáticos elevados de PIV no fluxo venoso colônico têm sido observados durante a fase de baixo fluxo da injúria de isquemia-reperfusão do cólon maior (Moore et al., 1996) e no sangue periférico após exercício extenuante (Hall et al., 1982).

Embora a motilidade gastrintestinal necessite de complexos mecanismos de controle, ela baseia-se na capacidade do músculo liso visceral gerar alterações cíclicas no potencial de membrana em repouso, dando origem a ondas espontâneas de despolarização, o que por sua vez resulta em contrações rítmicas do músculo liso (Clark, 1990). Nem toda motilidade intestinal provoca os mesmos efeitos. As contrações intestinais podem ser segmentares (localizadas) ou propulsivas (difusas). As contrações segmentares provocam mistura da ingesta, enquanto as contrações propulsivas promovem o movimento aboral da ingesta (Adams, 1987).

Dois tipos de atividade mioelétrica, ondas lentas e potencias de ação em espiga, são produzidos no TGI. As ondas lentas são pequenas flutuações no potencial de ação da membrana celular, sem desencadear despolarização, que se estendem do esôfago ao reto continuamente de maneira rítmica, numa velocidade de três ondas por minuto no estômago e cerca de 12-15 ondas por minuto no intestino delgado.

A ritmicidade dos potencias de ação em onda lenta é controlada intimamente pelas células intersticiais de Cajal e no eqüino, o íleo, flexura pélvica e corpo do ceço apresentam alta densidade dessas células. Os potencias de ação em espiga são flutuações do potencial de ação que excedem o limiar de despolarização, causando contração do músculo liso (Adams, 1987; Navarre e Roussel, 1996; Murray, 2001b; Weiss et al., 2002).

No estômago, os sinais de onda lenta são gerados por um marcapasso localizado na curvatura maior do antro gástrico na camada muscular longitudinal. A onda lenta passa aboralmente do fundo para o piloro numa velocidade de duas a cinco despolarizações por minuto. O potencial de ação em espiga acompanhado por contração da musculatura lisa sobrepõe-se à onda lenta, com a frequência das espigas dependendo do controle autônomo. O peristaltismo gástrico ocorre como resultado do potencial de ação bifásico, que acompanha a onda lenta. Os impulsos começam no marcapasso e seguem no sentido aboral e luminal em direção à camada muscular circular. A camada circular contrai-se, produzindo um anel constrito que segue no sentido distal ao longo do caminho da onda lenta (Fenger et al., 2000).

A primeira fase da contração do potencial de ação gástrico pressiona o conteúdo líquido através do esfincter pilórico relaxado. Em seguida, o esfincter pilórico contrai-se reflexamente, e a segunda fase da contração prossegue com o piloro fechado, o que resulta em fluxo retrógrado e mistura do conteúdo.
gástrico (Fenger et al., 2000).

O padrão de motilidade do intestino delgado, chamado complexo mioelétrico migratório (CMM), pode ser dividido em três ou quatro fases (Sasaki et al., 2003). A fase 1 do CMM é uma fase quiescente caracterizada pela presença de poucas contrações do músculo liso ou trânsito da ingesta. Na fase 2 as contrações irregulares auxiliam na mistura e progressão aboral da ingesta. Já a fase 3 constitui-se de fortes contrações musculares que estreitam o lúmen intestinal e impedem o refluxo da ingesta à medida que ela progride em sentido aboral. A fase 4 é o período de transição entre a fase 3 e a 1 (Navarre e Roussel, 1996; Sasaki et al., 2003). A duração do CMM no eqüino é de aproximadamente duas horas, e a continuidade das estruturas nervosas no intestino delgado, ou seja, dos plexos intramurais, é essencial para sua propagação (Fenger et al., 2000; Murray, 2001b).

O eqüino possui o intestino grosso bem desenvolvido e um tipo de marcapasso de onda lenta foi demonstrado no ceco, cólon ventral direito e na flexura pélvica. Foram identificados quatro tipos de atividades distintas no cólon: (1) atividade de controle elétrico (ondas lentes), (2) atividade de resposta elétrica discreta (eclosões de espigas curtas; < 5 segundos), (3) atividade de resposta elétrica contínua (eclosões de espiga longa; > 5 segundos) e (4) complexo elétrico contrátil (potencial oscilatório). As eclosões em espigas curtas estão associadas com a mistura e retenção da ingesta dentro dos cólons, enquanto as eclosões em espigas longas estão associadas com fortes contrações colônicas e progressão aboral da ingesta. Os episódios elétricos que migram no sentido oral ou aboral são definidos como complexos mioelétricos migratórios colônicos, e todos os outros padrões de atividade são denominados complexos mioelétricos colônicos não-migratórios (Adams, 1987; Fenger et al., 2000).

2.3- Exame clínico do eqüino com abdome agudo

O exame clínico de eqüinos com enfermidades do intestino grosso deve incluir avaliação do estado metabólico e cardiovascular do paciente, pois as condições agudas do intestino grosso têm o potencial de causar endotoxemia e sepse. É essencial o exame do sistema cardiovascular, pulmão e abdome para detectar sintomatologia clínica de endotoxemia, distúrbios da coagulação, acidose metabólica, íleo paralítico, choque e outras manifestações sistêmicas da sepse resultante da lesão do intestino grosso (Jones et al., 2000).

O exame clínico deve ser iniciado pela observação do animal, procurando identificar a atitude, as manifestações de dor, as modificações do formato do abdome e a aparência externa. O conhecimento de medicação previamente administrada é importante, pois alguns medicamentos podem mascarar os sinais dificultando a interpretação dos mesmos. O exame físico deverá revelar informações específicas sobre o eqüino com crise de dor abdominal aguda: 1. Atitude geral e grau de dor; 2. temperatura retal; 3. Freqüência e características do movimento respiratório; 4. Freqüência e características do pulso, incluindo o pulso da artéria digital; 5. Coloração e

2.3.1- Parâmetros cardiovasculares

A frequência cardíaca, pulso arterial, coloração de mucosas e tempo de preenchimento capilar são parâmetros comumente utilizados para avaliar o grau de comprometimento do sistema cardiovascular nos pacientes com abdome agudo, além de demonstrarem valores prognósticos (Hanie e White II, 1990). A frequência cardíaca do eqüino adulto em repouso varia de 28 a 40 batimentos por minutos (Speirs, 1999). A elevação da frequência cardíaca pode ser indicativa de hipovolemia, dor ou disfunção cardíaca. Eqüinos portadores de abdome agudo com frequência cardíaca acima de 60 batimentos geralmente requerem reavaliação e quase sempre se beneficiam de mudanças no plano terapêutico (Corley e Marr, 2003). Todavia, a frequência cardíaca não deve ser utilizada isoladamente na avaliação do paciente com abdome agudo em decorrência da influência de outros fatores a exemplo da desidratação, dor, excitação e estresse (Furr et al., 1995). Deste modo, a frequência cardíaca é melhor avaliada quando mensurada conjuntamente com a coloração das mucosas, tempo de preenchimento capilar, qualidade e frequência do pulso e temperatura retal para identificar a presença e gravidade do choque cardiovascular (Hanie e White II, 1990).

O pulso arterial resulta da diferença entre as ondas de pressão diastólica e sistólica, sendo influenciado pelo tamanho do vaso, distância do coração e diferença entre a pressão sistólica e diastólica. Locais comumente utilizados para avaliação do pulso arterial são a artéria facial, facial transversa, carótida, safena, digital comum e cocigéa. No eqüino, a frequência do pulso varia entre 28-40 pulsasções por minuto (Speirs, 1999). O aumento contínuo da frequência do pulso geralmente indica aumento da gravidade da dor ou choque, seja ele endotoxêmico ou hipovolêmico (Hanie e White II, 1990).

A qualidade do pulso varia diretamente com a pressão do pulso e pressão sistólica. A identificação de um pulso fraco ou até mesmo a não identificação é indicativa de uma pressão sanguínea baixa e consequentemente prognóstico reservado a desfavorável. Na rotina clínica, a palpação digital do pulso pode fornecer uma avaliação relativa da pressão sistólica. A pressão sistólica arterial deve ser maior que 65 mmHg e a pressão de pulso superior a 25 mmHg para que o pulso possa ser identificado (Furr e White II, 1990).

A característica e coloração das mucosas, particularmente a escleral e a oral, são parâmetros importantes na avaliação do paciente com abdome agudo. A umidade da mucosa é um indicador confiável do grau de hidratação do eqüino. Mucosas ressecadas geralmente indicam algum grau de desidratação. Já a coloração da
mucosa é variável indo desde rosa pálido ao vermelho forte e de pálida a cianótica (Colahan, 1985).

O tempo de preenchimento capilar (TPC) é outro parâmetro importante na avaliação do grau de desidratação ou choque. O tempo necessário para o retorno da coloração da mucosa após a pressão digital é indicativo do estado da perfusão sanguínea periférica. Geralmente, o TPC é menor do que dois segundos nos equínos normais. TPC prolongado é geralmente indicativo de diminuição da perfusão capilar, resultante da hipovolemia (Colahan, 1985).

A causa mais comum de alteração do estado cardiovascular é o choque hipovolêmico ou endotoxêmico. A diminuição do volume sanguíneo circulante resulta do seqüestro do fluido extracelular para dentro do terceiro espaço, tais como o cólon maior ou um grande segmento do intestino delgado isquêmico ou distendido. Com o choque hipovolêmico, a partir de uma obstrução simples ou estrangulante, a desidratação ocorre secundária ao movimento de água do fluido intracelular para o extracelular e então do fluido extracelular para o lúmen do intestino comprometido (Singer e Smith, 2002).

Com a hipovolemia, a frequência cardíaca aumenta na tentativa de melhorar a perfusão tecidual. Isto é muitas vezes acompanhado por diminuição na qualidade do pulso, palidez das mucosas e TPC prolongado (Singer e Smith, 2002).

A mensuração da frequência cardíaca pode ser utilizada com valor prognóstico nos casos de abdome agudo conforme sugerido por Parry et al. (1983b) e Puotunen-Reinert (1986). A avaliação da coloração e hidratação das mucosas não tem valor prognóstico. Embora a coloração da mucosa oral possa diferir significativamente entre equínos que sobrevivem ou morrem após um episódio de abdome agudo, ambos os grupos podem apresentar ampla variação de coloração das mucosas, o que torna difícil a utilização deste parâmetro como valor prognóstico. Por outro lado, o tempo de preenchimento capilar demonstra considerável valor prognóstico (Parry et al., 1983b). As Tab. 1 e 2 apresentam a relação entre frequência cardíaca, tempo de perfusão capilar e taxa de sobrevivência em equínos portadores de quadros de abdome agudo.

Tabela 1 - Relação entre frequência cardíaca e taxa de sobrevivência em equínos portadores de abdome agudo.

<table>
<thead>
<tr>
<th>Freqüência cardíaca (bpm*)</th>
<th>Sobrevivência (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>90</td>
</tr>
<tr>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>120</td>
<td>10</td>
</tr>
</tbody>
</table>

Fonte: Parry et al. (1983b).

*bpm: batimentos por minuto
Tabela 2 - Relação entre tempo de perfusão capilar (TPC) e taxa de sobrevivência em eqüinos portadores de abdome agudo.

<table>
<thead>
<tr>
<th>TPC</th>
<th>Sobrevivência (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 segundo</td>
<td>93</td>
</tr>
<tr>
<td>2 segundos</td>
<td>70</td>
</tr>
<tr>
<td>3 segundos</td>
<td>35</td>
</tr>
<tr>
<td>≥ 4 segundos</td>
<td>10</td>
</tr>
</tbody>
</table>

Fonte: Parry et al. (1983b).

2.3.2- Motilidade gastrintestinal e palpação transretal

A motilidade do trato gastrintestinal é outra variável importante na avaliação dos quadros de disfunção gastrintestinal. A freqüência, duração, intensidade e localização dos sons intestinais devem ser avaliados durante a auscultação abdominal. Geralmente, a motilidade gastrintestinal é classificada como ausente, diminuída, normal e aumentada. Deve-se ressaltar, todavia, que a auscultação de sons intestinais nem sempre indicam motilidade intestinal propulsiva (Colahan, 1985; Ehrhardt e Lowe, 1990; Hanie e White II, 1990).

A ausência de sons intestinais durante a auscultação pode ser indicativa de alterações intestinais irreversíveis (isquemia ou infarto intestinal) ou de um quadro de íleo adinâmico, seja ele mecânico ou funcional (Ward, 1990).

O exame transretal é parte essencial da avaliação do paciente com abdome agudo. As informações obtidas a partir desse procedimento são variáveis e dependem em grande parte da habilidade, experiência e conhecimento do médico veterinário que está examinando o animal (Furr e White II, 1990; Mueller e Moore, 2000). Ocasionalmente, o exame transretal indica a doença específica, como encarceramento nefro-esplênico, compactação colônica, torção uterina ou hérnia inguino-escrotal. No entanto, na maioria das vezes, o exame transretal não fornece um diagnóstico específico e sim informações relativas à gravidade do problema e a necessidade de intervenção cirúrgica (Mueller e Moore, 2000).

A sequência exata das estruturas abdominais palpadas durante o exame transretal varia de veterinário para veterinário. Independentemente da sequência, o exame deve ser realizado de maneira consistente e sistemática de modo que nenhuma estrutura palpável seja esquecida durante a avaliação (Mueller e Moore, 2000).

Em condições normais, o exame transretal possibilita acesso ao corpo e base do ceco no quadrante abdominal direito, além de suas tênias medial e dorsal. Já no lado esquerdo, a borda caudal do baço pode ser palpada adjacente à parede abdominal. A flexura pélvica é palpada no quadrante ventral esquerdo imediatamente abaixo da pelve, enquanto o cólon dorsal e ventral esquerdo estão localizados numa
posição médio-ventral neste mesmo antímero. Dorsal ao reto, a aorta abdominal e seus ramos, bem como a artéria mesentérica cranial, artérias ilíacas direita e esquerda, alças do cólon menor (região médio-dorsal do antímero esquerdo), borda caudal do rim esquerdo e ligamento nefro-esplênico podem ser palpados. Ventral ao reto a superfície peritoneal, cólon menor, anéis inguinais (machos), útero (fêmeas) e de modo geral a cavidade pélvica podem ser palpados (Mueller e Moore, 2000).

No geral, características palpáveis das vísceras e conteúdo abdominal são úteis na identificação de um segmento intestinal envolvido e gravidade da lesão (Mueller e Moore, 2000). O resultado do exame transretal deve sempre ser avaliado em conjunto com os resultados do exame clínico, paracentese abdominal e exames laboratoriais (Johnston, 1992). O exame transretal seriado é muitas vezes necessário para determinar a resolução ou progressão da doença e a necessidade de intervenção cirúrgica (Mueller e Moore, 2000).

2.3.3- **Pressão sanguínea**

A mensuração da pressão sanguínea é um procedimento de rotina no exame clínico dos seres humanos, entretanto não se constitui rotina na medicina equina (Speirs, 1999). A pressão arterial sanguínea pode ser mensurada por dois métodos: direto e indireto (Magdesian, 2004).

O monitoramento direto fornece uma demonstração contínua da pressão, todavia se constitui num método invasivo. As vantagens dessa técnica são a melhor acurácia, principalmente nos estados vasoconstritores, bem como o monitoramento da pressão a cada batimento cardíaco. Desta forma, esse tipo de mensuração é ideal para pacientes em estado crítico, tais como aqueles em choque hipovolêmico (Magdesian, 2004). A formação de hematomas é a complicaçãomais comum dessa técnica. Os hematomas formam-se rapidamente quando o sangue é liberado do vaso pela punção da agulha, o que pode ocorrer durante a inserção da agulha se o vaso for perfurado mais de uma vez ou, geralmente, quando, após o procedimento, o cateter é removido (Speirs, 1999).

Há vários métodos para derivar mensurações indiretas da pressão sanguínea. Os métodos indiretos incluem as mensurações manométricas e os métodos oscilométrico e Doppler. Nos seres humanos, a pressão sanguínea é rotineiramente medida de forma indireta, colocando-se uma braçadeira inflável ao redor do braço, e técnicas semelhantes têm sido desenvolvidas para eqüinos, com a braçadeira colocada na base da cauda ou no membro (Parry, 1984; Corley, 2002; Magdesian, 2004).

A acurácia e reprodutibilidade das técnicas indiretas dependem de vários fatores. Um fator muito importante é a largura da braçadeira em relação à estrutura em volta da qual ela é colocada. A artéria cocígínea média tornou-se o lugar padrão para mensuração da pressão sanguínea na espécie eqüina. O quociente ideal entre diâmetro da braçadeira e circunferência da cauda varia dependendo se a pressão a ser medida é a pressão sistólica ou diastólica. Todavia, como não é prática a utilização de diferentes braçadeiras,
chega-se a um meio termo entre as duas medidas. Utilizando o método Doppler para detectar o fluxo sanguíneo, um quociente (diâmetro da braçadeira/circunferência da cauda) de 0,5 fornecerá pressões sistólicas aproximadamente mais baixas e pressões diastólicas aproximadamente 9% maiores que as pressões reais na artéria coccígea média. Os valores obtidos podem ser corrigidos para níveis cardíacos ou podem permanecer inalterados como valores coccígeos não corrigidos (Gay et al., 1977; Parry, 1984; Speirs, 1999).

Como marcador do estado circulatório, a pressão sanguínea arterial é o produto do débito cardíaco (DC) e da resistência vascular sistêmica. O DC é o produto da frequência cardíaca e do volume força, enquanto a resistência vascular sistêmica reflete a capacidade vascular (tônus vasomotor). A pressão sanguínea arterial média, especialmente uma pressão mínima de 50-60 mmHg no equino adulto, é essencial para um adequado fluxo sanguíneo cerebral, pulmonar e coronário. O fluxo sanguíneo mais do que a pressão sanguínea é o principal responsável pela perfusão tecidual, mas atualmente a mensuração desse fluxo é inviável. Por esta razão, a pressão sanguínea é utilizada como uma estimativa do fluxo. Geralmente, a pressão sanguínea está intimamente relacionada com o fluxo sanguíneo, exceto quando a impedância vascular (complacência e resistência vascular) está alterada (Magdesian, 2004).

Os valores normais para a pressão sanguínea arterial eqüina em repouso são apresentados na Tab. 3. O valor no qual a leitura pode ser considerada hiper ou hipotensiva ainda não está ainda bem estabelecido. Não há, aparentemente, qualquer efeito da idade ou do sexo sobre a pressão sanguínea arterial (Speirs, 1999).

Tabela 3 - Valores de referência para a pressão sanguínea arterial eqüina.

<table>
<thead>
<tr>
<th>Pressão sanguínea</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistólica</td>
<td>111,8 ± 13,3 mmHg</td>
</tr>
<tr>
<td>Diastólica</td>
<td>67,7 ± 13,8 mmHg</td>
</tr>
</tbody>
</table>

Fonte: Johnson et al. (1976).

A mensuração indireta da pressão sistólica pode servir como um indicador prognóstico para os casos de abdome agudo conforme sugerido por Gay et al. (1977) e Parry et al. (1983ab), à medida que alterações circulatórias graves são vistas comumente nesses quadros. Quando comparada à frequência do pulso e hematócrito, dois parâmetros comumente utilizados na avaliação do paciente com abdome agudo, a pressão sanguínea parece ter mérito equivalente (Gay et al., 1977). A Tab. 4 demonstra a relação entre a pressão arterial sistólica e a taxa de sobrevivência em eqúinos portadores de abdome agudo.
Tabela 4 - Relação entre pressão sistólica arterial e taxa de sobrevivência em eqüinos portadores de abdome agudo.

<table>
<thead>
<tr>
<th>Pressão sistólica (mmHg – valores não corrigidos)</th>
<th>Sobrevivência (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 59</td>
<td>0</td>
</tr>
<tr>
<td>60 – 79</td>
<td>33</td>
</tr>
<tr>
<td>80 – 99</td>
<td>50</td>
</tr>
<tr>
<td>≥ 100</td>
<td>100</td>
</tr>
</tbody>
</table>

Fonte: Gay et al. (1977).

2.3.4 - Dor

A dor associada com os quadros de abdome agudo é secundária a um número limitado de mecanismos. Receptores de dor localizados dentro das vísceras são estimulados pela distensão, isquemia, irritação química, tração do mesentério e espasmos do músculo liso (Moore, 1985; Ward, 1990). Esses estímulos causam amplo estímulo nociceptivo resultando em dor abdominal. Entretanto, a excitação das terminações nervosas em uma viscera resulta numa dor pobremente localizada, e a resposta do eqüino à dor pode ser um dos poucos sinais que predizem a necessidade de um tratamento rápido e completo (Moore, 1985).

Condições associadas com a dor abdominal na maioria das espécies são muitas vezes fatoriais e, portanto, a dor não pode ser atribuída a um fator isolado. Mais frequentemente, a distensão intestinal é acompanhada por algum grau de isquemia. Nos casos menos graves de abdome agudo, a dor pode ser atribuída a espasmos do músculo liso. A distensão intestinal estimula diretamente receptores que são responsivos a alterações de pressão e tensão. Se a distensão é grave e a pressão intraluminal aumenta, o suprimento sangüíneo para a parede intestinal pode ficar comprometido a ponto de resultar num processo isquêmico. A hipóxia, resultante do comprometimento intestinal vascular, pode aumentar a sensibilidade dos receptores da dor (Moore, 1985; Ward, 1990).

O equino pode apresentar graus variáveis de dor, de leve a profunda. A dor abdominal leve está geralmente associada com as obstruções simples do cólon maior, particularmente as compactações. Episódios mais intensos de dor podem ser observados ocasionalmente, particularmente se a obstrução é decorrente de enterolitíase. Um padrão similar de dor pode ser observado nos quadros de colelitíase. Já nos quadros moderados de dor abdominal, provavelmente há algum grau de distensão, espasmo ou isquemia intestinal ou, em alguns casos, tração do mesentério. A dor intensa geralmente representa um evento terminal, tais como ruptura gástrica, torção, vólvulo ou encarceramento intestinal (Wilson e Gordon, 1987).

Na dor abdominal leve o equino suporta a sensação de desconforto e o quadro doloroso não produz alterações cardiovasculares significativas. O equino apenas escava o solo, olha para os flancos e, eventualmente, estira o corpo de forma discreta. Na dor abdominal moderada, o equino escava o solo; atinge o abdome golpeando-o com o membro posterior; deita-se cuidadosamente, permanecendo em decúbito esternal ou lateral olhando para o flanco e alguns animais rolam sem violência. Já na dor abdominal intensa, o equino apresenta sudorese intensa, atira-se contra o solo e rolam violentamente (Thomassian, 1996).

<table>
<thead>
<tr>
<th>Grau de dor</th>
<th>Sobrevivência (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leve</td>
<td>90</td>
</tr>
<tr>
<td>Moderada</td>
<td>50</td>
</tr>
<tr>
<td>Intensa</td>
<td>25</td>
</tr>
</tbody>
</table>

2.3.5- Características das fezes

A colheita e avaliação das características físicas das fezes constitui um procedimento muito importante para se estimar a velocidade de trânsito e o tipo de abdome agudo. As fezes devem ser examinadas quanto ao formato, grau de umidade ou consistência, coloração, odor, tamanho das partículas, presença de grãos e de corpos estranhos (Wilson e Gordon, 1987; Gonçalves et al., 2005).

O formato das fezes está na dependência do tipo de alimento e da relação concentrado:volumoso; tamanho das partículas e da velocidade do trânsito da ingesta. Sibíulas pequenas e ressecadas podem ser indicativas de ingestão de volumoso de baixa qualidade, trânsito intestinal lento ou compactação colônica. Naqueles
animais que ingerem pastagem tenra e de boa qualidade, a coloração das síbalas é um verde musgo característico. Por outro lado, naqueles animais alimentados com grandes quantidades de grãos ou concentrado as fezes apresentarão coloração amarelada. Essa coloração também é observada naqueles eqüinos alimentados com feno de pessima qualidade. Nesse último caso, além da coloração amarelada, as fezes apresentarão baixo grau de umidade (Wilson e Gordon, 1987; Gonçalves et al., 2005).

O odor das fezes normais é classificado como sui-generis. Esse odor estará alterado principalmente nos quadros de abdome agudo que cursam com fermentação do conteúdo intestinal, particularmente naqueles animais alimentados com grandes quantidades de concentrado. O odor pútrido poderá ser percebido nos quadros de enterite bacteriana (Wilson e Gordon, 1987; Jones, 2003; Gonçalves et al., 2005).

As fibras vegetais nas síbalas normais devem ter em média 3 mm de comprimento. Qualquer quadro patológico que acelere ou retarde o tempo de trânsito intestinal pode provocar alterações no tamanho da fibra. O fornecimento de alimentos volumosos com fibra de má qualidade e ricos em lignina pode alterar os processos digestivos. Isto resultará na não digestão dessa fibra e aparecimento de fibras de grande tamanho nas fezes, além de predispor às compactações do cólon maior (Meyer, 1995; Lewis, 2000; Gonçalves et al., 2005).

2.3.6- Patologia clínica

Os resultados dos exames laboratoriais são mais valiosos na determinação do prognóstico dos eqüinos com abdome agudo do que para a necessidade de intervenção cirúrgica. Quando esses dados são utilizados corretamente e criteriosamente, o clínico veterinário e, por conseqüência, o proprietário do animal podem ficar mais bem informados sobre as reais chances do sucesso do tratamento (Johnston, 1992).

Hematócrito, proteína total e o leucograma podem ser utilizadas para avaliar a condição sistêmica do eqüino, bem como a gravidade e o tipo de distúrbio intestinal. O hematócrito pode ser utilizado para avaliar o grau de desidratação/hipovolemia, entretanto não é uma mensuração confiável devido a outros fatores, como por exemplo a contração esplênica e perda sanguínea influenciarem seu valor final. O hematócrito pode se encontrar extremamente elevado naqueles eqüinos que têm seqüestro de líquidos para o terceiro espaço (Lassen e Swardson, 1995; Southwood, 2006).

A hipoproteinemia também é comum nos eqüinos com quadros de abdome agudo, secundário ao extravasamento de proteína do espaço intravascular para o espaço intraluminal, decorrente de alterações do endotélio vascular (Southwood, 2006).
Tabela 6- Relação entre hematócrito e taxa de sobrevivência em eqüinos portadores de abdome agudo.

<table>
<thead>
<tr>
<th>Hematócrito</th>
<th>Sobrevivência (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 %</td>
<td>93</td>
</tr>
<tr>
<td>45 %</td>
<td>64</td>
</tr>
<tr>
<td>60 %</td>
<td>20</td>
</tr>
<tr>
<td>65 %</td>
<td>10</td>
</tr>
</tbody>
</table>

Fonte: Parry et al. (1983b).

O leucograma consiste na contagem total, diferencial e morfologia de leucócitos. Na fase inicial do abdome agudo observa-se leucocitose secundária ao estresse provocado pela liberação de cortisol e adrenalina. Após a fase inicial observa-se leucopenia, achado normal nos quadros de abdome agudo. Essa leucopenia pode ser indicativa de seqüestro dos leucócitos para a parede da alça intestinal ou para dentro da cavidade abdominal nos casos de peritonite (Lassen e Swardson, 1995).

Neutrofilia é um achado que geralmente relaciona-se com resposta inflamatória crônica e neutropenia com resposta inflamatória aguda, devido à marginação e migração dos neutrófilos para os tecidos. A presença de leucopenia, neutropenia (com neutrófilos imaturos), linfopenia e eosinopenia são sinais clássicos de endotoxemia. O desvio à esquerda degenerativo com leucopenia indica prognóstico desfavorável ou reservado, por ausência de resposta da medula óssea. Por outro lado, o desvio a esquerda regenerativo com leucocitose e presença de células jovens indica prognóstico bom (Wilson e Gordon, 1987; Lassen e Swardson, 1995).

2.4- Desordens do cólon descendente

As desordens do cólon menor são causas comuns de cólica nos eqüinos adultos, correspondendo entre 1,9% e 18% dos casos de cólica encaminhados às instituições de referência nos países desenvolvidos (Dart et al., 1992; Rhoads, 1999). No entanto, esse número pode ser muito maior, pois muitas desordens desse segmento se resolvem apenas com tratamento clínico nos haras (Dart et al., 1992). No Brasil, a frequência das desordens do cólon menor varia entre 7,89% (Xavier, 2004) e 30,95% (Silva et al., 1998).

Não existe predileção por sexo, idade ou raça para as afeções do cólon descendente (Ruggles e Ross, 1991; Rhoads, 1999). Entretanto, eqüinos acima de 15 anos de idade e fêmeas são mais comumente acometidos (Dart et al., 1992).

As principais condições que afetam o cólon descendente são a compactação simples não organizada, lipomas estrangulantes, obstrução focal simples
(enterólitos, corpos estranhos, fecalítos), hematomas intramurais, retenção de mecônio neonatal, edema submucoso, vólvulo, herniação, intussuscepção, ruptura mesocólica, infarto não estrangulante e lacerações reais (Dart et al., 1992; Rhoads, 1999; Schumacher e Mair, 2002).

A compactação simples são a desordem mais comum do cólon menor dos eqüinos, ocorrendo mais frequentemente durante o inverno, secundária ao consumo inadequado de água, ingestão de alimentos fibrosos e de baixa qualidade, alterações odontológicas, edema submucoso e alterações da motilidade gastrintestinal (White II e Dabareiner, 1997; Schumacher e Mair, 2002; Moore, 2005). Devido ao estreitamento do lúmen do cólon ascendente, através do cólon transverso, para o cólon descendente, esse segmento do trato gastrintestinal é altamente predisposto às compactações (Dart et al., 1992).

Os sinais clínicos associados com a obstrução do cólon menor são anorexia, depressão, dor abdominal leve a moderada, produção fecal diminuída, tenesmo, diminuição da motilidade gastrintestinal e distensão gasosa. A distensão gasosa é menos grave naqueles casos onde a obstrução é incompleta. Devido à obstrução do cólon menor restringir-se a parte distal do trato gastrintestinal, a alteração dos parâmetros clínicos e laboratoriais é lenta e um diagnóstico precoce pode ser difícil em alguns casos (Edwards, 1997; Rhoads, 1999; Schumacher e Mair, 2002).

A presença de refluxo enterogástrico é um achado inconsistente e quando presente deve-se à compressão extraluminal do duodeno pelo ceco e cólon maior distendidos por gás (Ruggles e Ross, 1991; Dart et al., 1992; Rhoads, 1999). O refluxo enterogástrico é mais comum em eqüinos sem comprometimento vascular do cólon descendente (Dart et al., 1992).

A obstrução do cólon descendente pode, em alguns casos, ser diagnosticada pela palpação transretal, porém em outros casos pode ser confirmada somente por meio de uma laparotomia exploratória (Schumacher e Mair, 2002). O achado clássico durante a palpação transretal indicativo de obstrução intraluminal e compactação do cólon descendente é a identificação de uma estrutura sólida cheia de ingesta dentro de um segmento intestinal que possui uma tênia anti-mesentérica palpável. Geralmente as nítidas saculações desse segmento desaparecem à medida que o acúmulo de fezes aumenta. O menor diâmetro desse segmento geralmente auxilia na distinção com as compactações do cólon ascendente (Mueller e Moore, 2000; Schumacher e Mair, 2002). Considera-se como compactação do cólon descendente um acúmulo de fezes com mais de 30 cm de comprimento (Ruggles e Ross, 1991; Rhoads, 1999).

A identificação da tênia anti-mesentérica pode ser difícil, especialmente quando o cólon desceu está distendido ao máximo. A distensão gasosa do ceco e cólon ascendente pode ser identificada durante a palpação transretal (Mueller e Moore, 2000; Schumacher e Mair, 2002).

Os objetivos do tratamento clínico são a manutenção da hidratação, estímulo da
motilidade gastrintestinal, amolecimento da compactação através da administração de laxantes osmóticos ou lubrificantes e controle da dor (Byars, 1993; Doran, 1993). A administração de enemas mornos auxilia na hidratação e amolecimento das fezes, no entanto, seus benefícios devem ser comparados com o potencial risco de ruptura do reto e cólon menor. A administração dos enemas para resolução das compactações do cólon menor é controversa. Alguns autores recomendam a sua utilização tanto para compactações do cólon menor quanto reto (Schumacher e Mair, 2002), enquanto outros recomendam sua utilização apenas em compactações retais (White II e Dabareiner, 1997).

Independente da localização da compactação, os enemas só são efetivos naquelas localizadas na região distal do cólon menor e reto, não tendo nenhum efeito nas compactações localizadas nas regiões mais craniais (Byars, 1993).

O uso de soluções de enema composta por água morna e sabão são as mais utilizadas na rotina clínica, e atuam por lubrificação, redução da tensão superficial e amolecimento da massa (Edwards, 1997).

2.5- Enemas

As soluções administradas através de enemas hidratam e amolecem as compactações localizadas no terço final do cólon menor e reto, além de estimularem a peristalse intestinal (White II e Dabareiner, 1997; Rhoads, 1999; Schumacher e Mair, 2002; Schmelzer et al., 2004). Independente destas ações pouco se conhece sobre o mecanismo de como os enemas exercem seus efeitos, existindo duas teorias que possivelmente expliquem seu mecanismo de ação: a teoria do volume e a da irritação química (Schmelzer et al., 2004).

De acordo com a teoria do volume, a infusão de grandes quantidades de enemas distende o lúmen intestinal produzindo uma forte onda de contração intestinal, resultando na expulsão da solução de enema e das fezes presentes no terço final do cólon menor e reto. Com base na teoria da irritação química, o estímulo contrátil ocorre por irritação da mucosa colônica. Quando os neurônios no cólon identificam alterações químicas no lúmen intestinal, as células endócrinas iniciam uma resposta secretória para diluir a substância irritante, criando fortes ondas propulsivas para eliminá-la do organismo. Desta forma, a forte resposta contrátil após a administração de uma solução dentro do cólon menor e reto pode ser uma resposta de proteção do organismo aos efeitos deletérios de substâncias irritantes (Wood, 1994; Potter e Perry, 2001).

A resposta à irritação química pode ser útil se esta é leve o bastante para estimular a defecação sem causar alterações morfo-funcionais nas células do epitílio colônico e retal. Todavia, a excessiva irritação pode lesar as células epiteliais e a inflamação resultante pode aumentar dramaticamente a secreção e propulsão, além de aumentar o risco de absorção de toxinas (Chang et al., 1996). Embora as soluções de água de torneira não sejam irritantes (Niv, 1990), enemas com água e sabão têm sido associados com severa irritação mucosa e colite (Orchard e Lawson, 1986; Schmelzer et al., 2004).
O conteúdo do cólon dos mamíferos é isotônico em relação ao plasma. Desta forma, soluções hipertônicas e hipotônicas infundidas dentro do cólon podem causar alteração sistêmica hídrico-eletrolítica, porém soluções isotônicas minimizam tal efeito (Schmelzer et al., 2004). Hiponatremia, hipomagnesemias, hiposmolaridade e hipoferrremia são complicações comuns em humanos após a aplicação de enemas hipotônicos (Chertow e Brady, 1994; DiPalma et al., 2003).

O enema com fosfato de sódio é o mais utilizado na medicina humana e veterinária para tratamento dos quadros de compactação por mecônio, devido à facilidade de administração e eficiência, porém irrita a mucosa colônica, podendo causar desequilíbrio eletrolítico grave. As principais alterações eletrolíticas associadas aos enemas hipertônicos com fosfato de sódio são hipocalcemia, hipocalcemia, hipernatremia, hiperfosfatemia, hipomagnesemias e ácido metabólico. Repetidos enemas causam hipocalcemia pela perda excessiva de potássio nas fezes, levando a quadros de hipernatremia e hiperfosfatemia (Atkins et al., 1985; Jorgensen et al., 1985). Os principais sinais clínicos observados são febre, taquicardia, hiperventilação, desidratação, hipotensão, hiporeflexia, tetania, diminuição do tônus muscular, coma e morte (Atkins et al., 1985; Hickman et al., 2004).

Nos eqüinos adultos, o enema geralmente é realizado com soluções de água com sabão, solução salina a 0,9% ou óleo mineral diluído em água morna. As soluções de enema são administradas através de uma sonda flexível por fluxo de gravidade, e nunca sob pressão. A sonda nunca deverá ser introduzida mais do que 20 a 25 cm dentro do reto, e o enema deve ser infundido até que o eqüino comece a oferecer resistência, demonstrado pela eliminação do enema (Semrad e Shaftoe, 1992; Schumacher e Mair, 2002).

Wintzer e Jaksh (1990) indicam o uso de grandes quantidades de soluções com atropina ou parafina líquida através de enemas para o tratamento das compactações do cólon menor. Nas compactações retais estes autores indicam repetidos enemas (água, sulfato de magnésio ou parafina líquida), à temperatura corporal, para amolecer o material e facilitar a eliminação. Os mesmos autores indicam após esta terapia inicial a utilização de enemas gelados para estimular o peristaltismo.

A excessiva distensão do reto, o uso de soluções irritantes e a manipulação excessiva do reto durante a administração do enema podem levar a trauma e atonia retal. Se não for observada nenhuma resposta clínica após dois ou quatro enemas, deve-se considerar outra abordagem terapêutica (Semrad e Shaftoe, 1992).

As principais complicações do enema de água com sabão relatadas na literatura humana são hematoquezia, pirexia, diarreia sanguinolente, dor abdominal e alterações do leucograma. Achados de colonoscopia incluem irritação da mucosa colônica, perda do padrão vascular normal e colite ulcerativa (Potter e Perry, 2001; Hill et al., 2005). Schmelzer et al. (2004) avaliaram as alterações na mucosa colônica humana induzida por três diferentes soluções de enema. Com base
nos resultados obtidos, estes pesquisadores concluíram que o tipo de solução utilizada nos enemas teve efeito significativo na perda do epitélio superficial.

As complicações relatadas pela utilização dos enemas em equinos são edema e hiperemia da mucosa colônica, vistas após a administração de grandes quantidades de água com sabão e, em enemas com soluções hipertônicas de fosfato de sódio nos potros, além da ruptura de reto ou cólon menor (Semrad e Shaftoe, 1992; Doran, 1993; Freeman, 1999). Os enemas não possuem nenhum efeito reidratante no equino (Hjortkjaer, 1979). Embora a literatura cite a solução salina a 0,9% como isotônica e com menores efeitos na mucosa, ela na verdade é levemente hipertônica (308 mOsm/l) em relação ao plasma eqüino (272-296 mOsm/l) além de ser onerosa quando administrada em grandes volumes (Doran, 1993; Seahorn e Seahorn, 2003; Magdesian, 2004).

2.6- Fisiologia dos fluidos corpóreos, equilíbrio ácido-base e eletrolítico

Para que as células de qualquer tecido realiem suas funções adequadamente, é importante que a composição do fluido que as envolve seja mantido em condições de rígido controle. A composição desse fluido nos diferentes tecidos é afetada por processos físicos como a difusão, gradientes de pressão, concentração de gradientes, gradientes eletrostáticos, além dos mecanismos de transporte ativo (Johnson, 1998).

Aproximadamente 60% da massa corporal magra de um equino é água (Tab. 7). Todavia, essa quantidade de água pode variar com o sexo, percentagem de gordura corporal e idade. A água corpórea total está distribuída em dois compartimentos: fluido intracelular (FIC) e fluido extracelular (FEC). O FIC comporta 60% da água corpórea total, enquanto o FEC aproximadamente 40% (Rose, 1981; Verbalis, 2003). Ambos os compartimentos compartilham a mesma osmolalidade plasmática. O FEC é dividido posteriormente em fluido intersticial, fluido intravascular (plasmático) e fluido transcelular (FTC). O volume plasmático é estimado em cerca de 50 ml/kg, o que corresponde a um quarto do FEC. O FEC dentro das cavidades peritoneal, pericárdica e pleural (terceiro espaço) tem um volume menor quando comparado ao volume do FEC total (Rose, 1981; Freestone, 1993; Johnson, 1995; Johnson, 1998; Seahorn e Seahorn, 2003).
A osmolalidade é definida como a concentração de todos os solutos em um dado peso de água. A osmolalidade plasmática pode ser mensurada diretamente ou indiretamente. Ambos os métodos produzem resultados semelhantes sob a maioria das condições. No entanto, a osmolalidade total do plasma nem sempre é equivalente a osmolalidade efetiva, algumas vezes referenciada como tonicidade do plasma, em decorrência da última ser função da propriedade de permeabilidade relativa das membranas separando dois compartimentos. Solutos que são impermeáveis às membranas celulares, a exemplo do sódio (Na^+), são restritos ao FEC e são solutos efetivos, pois criam gradientes de pressão osmótica através das membranas celulares levando ao movimento de água do FIC para o FEC. Solutos que são permeáveis às membranas celulares são classificados como solutos ineficientes, pois eles não criam um gradiente de pressão osmótica através das membranas celulares e não estão associados com desvios de fluido entre o FIC e o FEC (Verbalis, 2003).

Os determinantes primários da osmolalidade plasmática são o sódio (Na^+; mEq/l), nitrogênio uréico sangüíneo (BUN; mg/dl) e a glicose (mg/dl). A osmolalidade plasmática pode ser estimada pela seguinte fórmula (Magdesian, 2004):

\[
\text{osmolalidade} = 1,86 \times (Na^+ + K^+) + \left(\frac{\text{BUN}}{2,8}\right) + \left(\frac{\text{glicose}}{18}\right) + 9
\]

A osmolalidade plasmática no equino varia de 279-296 mOsm/Kg (Magdesian, 2004). A hiperossmolalidade indica uma deficiência de água relativa aos solutos no FEC. Devido à água mover-se livremente entre o FIC e o FEC, isto também indica uma deficiência de água corpórea total relativa aos solutos corpóreos totais. Embora um excesso de

Tabela 7- Compartimentalização de líquidos no equino.

<table>
<thead>
<tr>
<th>Compartimentos normais de líquidos</th>
<th>Percentagem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Água corpórea total</td>
<td>60% do peso corporal</td>
</tr>
<tr>
<td>Fluido intracelular (FIC)</td>
<td>60% da água corpórea total</td>
</tr>
<tr>
<td>Fluido extracelular (FEC)</td>
<td>40% da água corpórea total</td>
</tr>
<tr>
<td>Fluido intersticial</td>
<td>50% do FEC</td>
</tr>
<tr>
<td>Fluido intravascular</td>
<td>25% do FEC</td>
</tr>
<tr>
<td>Fluido transcelular</td>
<td>25% do FEC</td>
</tr>
</tbody>
</table>

Fonte: Adaptado de Spier et al. (1993).
sódio possa causar um estado de hiperosmolalidade, a grande maioria dos casos é decorrente da excessiva perda de água associada à diminuição da ingestão ou excreção excessiva de água (diarreia, refluxo). A hiposmolalidade indica um excesso de água em relação aos solutos corpóreos. Como a água move-se livremente entre o FIC e o FEC, isso indica um excesso de água em relação aos solutos corpóreos totais (Verbalis, 2003).

O conteúdo hídrico do trato gastrintestinal equino varia de 6% a 10% do seu peso corpóreo. Os efeitos do comprometimento da integridade desse sistema sobre o equilíbrio dos fluidos corpóreos podem ser catastróficos, e grandes desvios de fluidos entre os compartimentos FIC e FEC podem ocorrer (Seahorn e Seahorn, 2003).

Embora o FIC e o FEC compartilhem a mesma osmolalidade, cada compartimento contém um soluto principal que é responsável por manter osmoticamente o fluido dentro do compartimento (Rose, 1981; Johnson, 1995; Johnson, 1998). O FEC é uma solução rica em cloreto de sódio (NaCl), com quantidades relativamente menores de bicarbonato (HCO₃⁻), potássio (K⁺), fosfato inorgânico, cálcio (Ca++) e magnésio (Mg++). O FIC é caracterizado como uma solução rica em K⁺ e fosfato, e concentrações relativamente menores de Na⁺, Ca++ e cloretos (Cl⁻) (Johnson, 1998).

A composição do fluido extracelular (FEC) é regulada pelo pulmão e rins via influência dos sistemas nervoso autônomo e endócrino. A composição do FEC é influenciada pela ingestão de nutrientes e água, exercício físico, fatores ambientais e enfermidades (Johnson, 1998).

O volume do FEC pode sofrer grandes flutuações como resultado de vários processos fisiológicos e patológicos. Os desvios no FEC ocorrem entre os capilares e o interstício. O movimento de líquido para o lúmen intestinal, cavidade peritoneal, cavidade pleural, ou outro espaço ocorre do interstício para o lúmen ou cavidade. As forças que regulam este movimento são a pressão hidrostática e oncótica no interior dos capilares e no interstício, o número de capilares filtrantes, e a permeabilidade desses capilares. Eventos que alteram o equilíbrio normal entre a absorção e a secreção levam a desvios intracompartmentais do FEC (Spier et al., 1993).

Desvios de líquidos ocorrem em muitos distúrbios gastrintestinais em decorrência do acúmulo de líquido contendo Na⁺ no lúmen intestinal e cavidade peritoneal, ou pelo acúmulo de sangue no interior do leito capilar esplênico. Nos equinos com obstrução intestinal ou íleo adinâmico ocorrem significativos desvios de líquidos entre os compartimentos constituintes do FEC (Spier et al., 1993).

Desvios de fluido do FIC para o FEC ocorrem menos prontamente que os desvios entre os compartimentos do FEC, e de modo geral ocorrem apenas nos distúrbios graves do equilíbrio hídrico/eletrolítico dentro do próprio FEC (Spier et al., 1993).

Os distúrbios ácido-base são relativamente comuns nos neonatos e equinos adultos com desordens do trato gastrintestinal, e a mensuração das
variáveis que determinam esse equilíbrio é importante para auxiliar no diagnóstico, tratamento e prognóstico (Corley e Marr, 1998).

Para que os processos vitais possam transcorrer geralmente é de grande importância que o pOH do sangue e das células se mantenha dentro de limites muito restritos. O pOH sanguíneo dos equinos, sob condições fisiológicas, varia entre 7,35 a 7,45 (Corley e Marr, 1998).

Dois modelos são utilizados para descrever o equilíbrio ácido-base: o modelo convencional pCO2/HCO3⁻ e o modelo dos íons fortes (Carlson, 1997; Corley e Marr, 1998; Constable, 2000; Durward e Murdoch, 2003).

Segundo o modelo convencional, a concentração de H⁺ em uma solução aquosa pode ser descrita como a reação de hidratação química do dióxido de carbono a ácido carbônico:

\[
\text{CO}_2 \text{ dissolvido} + \text{H}_2\text{O} \leftrightarrow [\text{H}_2\text{CO}_3] \leftrightarrow [\text{HCO}_3^-] + [\text{H}^+]
\]

A ionização do ácido carbônico gera o ânion bicarbonato. Em pH 7,4 a reação é desviada para a direita com o CO₂ sendo transportado no sangue como bicarbonato. A concentração de HCO₃⁻ é dependente da pCO₂. Como somente o pH e a pCO₂ podiam ser mensuradas diretamente, a concentração de HCO₃⁻ era derivada resolvendo a equação de Henderson-Hasselbalch (Durward e Murdoch, 2003):

\[
\text{pH} = 6,1 + \log \frac{[\text{HCO}_3^-]}{0,03 \times (\text{pCO}_2)}
\]

Isto descreve o pH como uma função da pCO₂ e concentração de bicarbonato utilizando um valor de pK empírico para o sistema do ácido carbônico de 6,1 (Durward e Murdoch, 2003).

A vantagem da abordagem de Stewart para o equilíbrio ácido-base é que fatores in vivo que influenciam esse equilíbrio são identificados e quantificados separada e isoladamente (Constable, 2000; Durward e Murdoch, 2003). Neste modelo, o H⁺ é gerado pela dissociação da água:

\[
\text{H}_2\text{O} + \text{H}_2\text{O} \leftrightarrow [\text{H}^+] + [\text{OH}^-]
\]
Devido à lei de ação das massas, o produto $[\text{H}^+]$ e $[\text{OH}^-]$ é sempre constante (dissociação constante da água). Uma mudança no pH resulta quando a proporção entre íons hidrogênio e hidroxila muda. No pH de 7,4 a proporção $[\text{H}^+]:[\text{OH}^-]$ é 30:1. No pH neutro (6,9-7) a proporção é 1:1 (Durward e Murdoch, 2003).

Diversos constituintes plasmáticos contribuem para o equilíbrio ácido-base, estando estes divididos em variáveis dependentes e independentes. As variáveis independentes são aquelas que afetam diretamente o equilíbrio ácido-base: pCO_2, ácidos fracos e íons fortes (Na^+, K^+, Cl^-, ânions não identificados). As variáveis dependentes são aquelas cujas concentrações são resultantes do equilíbrio ácido-base: HCO_3^-, pH, OH^- (Corley e Marr, 1998).

De acordo com a lei de Stewart, somente as variáveis independentes influenciam o pH por meio da dissociação da água. Segundo a teoria de Stewart, o pH pode ser calculado pela seguinte fórmula (Durward e Murdoch, 2003):

$$\text{pH} = [\text{CO}_2] + \text{diferença de íons fortes} + [\text{ácidos fracos}]$$

A concentração relativamente constante de H^+ no LEC é resultante de um contínuo equilíbrio entre ácidos e bases. Os ácidos são substâncias que doam íons hidrogênio para uma solução. As bases são substâncias que recebem e ligam íon hidrogênio (H^+) de uma solução. Esse equilíbrio constante é perturbado quando ácidos ou bases são adicionados ou removidos dos líquidos corporais. Uma diminuição do pH sanguíneo para valores inferiores ao limite mínimo para a espécie é conhecida como acidemia, enquanto um valor acima do limite máximo é denominado alcalemia. O distúrbio causado pela adição excessiva de ácidos ou pela remoção de base do LEC é conhecido como acidose. Se o distúrbio se deve à excessiva adição de base ou perda de ácido, o distúrbio é denominado alcalose (Houpt, 1996).

Quando se utiliza a abordagem tradicional de Henderson-Hasselbalch para o equilíbrio ácido-base, quatro distúrbios são reconhecidos: acidose metabólica, alcalose metabólica, acidose respiratória e alcalose respiratória (Constable, 2000).

A acidose metabólica é caracterizada por uma diminuição nos valores do pH e HCO_3^-, podendo ser produzida pela adição de íons hidrogênio ou a perda de íons bicarbonato. Entre as causas mais comuns de acidose metabólica inclui-se a acidose láctica, perda de bicarbonato pelo trato gastrointestinal e insuficiência renal. Já a acidose respiratória é caracterizada por uma diminuição no pH e um aumento na pCO_2, desenvolvendo-se devido a uma diminuição efetiva da ventilação alveolar. Qualquer desordem que interfira com a ventilação efetiva normal pode produzir uma acidose respiratória (Carlson, 1997).

A alcalose metabólica é caracterizada por uma elevação no pH e HCO_3^-. A alcalose metabólica ocorre com alguma frequência nos animais domésticos,
principalmente secundária a problemas intestinais em ruminantes. Já a alcalose respiratória é caracterizada por um aumento no pH e diminuição da pCO₂. A alcalose respiratória ocorre secundária a hiperventilação estimulada pela hipoxemia associada com doenças pulmonares, anemia grave e insuficiência cardíaca congestiva (Carlson, 1997).

O BE é definido como a quantidade de ácido forte ou base necessário para titular o pH do sangue 100% oxigenado em 7,4 a 37 °C e pCO₂ de 40 mmHg (Constable, 2000; Durward e Murdoch, 2003). A maioria dos analisadores de gases sanguíneos calculam o BE em unidade de mEq/L utilizando a equação empírica de Siggaard-Andersen derivada a partir de seu nomograma, com concentração de hemoglobina (Hb) e HCO₃⁻ em unidades milimolar (Constable, 2000):

BE: (1 - 0,023 x [Hb]) x ([HCO₃⁻] – 24,4 + (7,7 + 2,33[Hb]) x (pH – 7,4))

O BE exprime diretamente a quantidade (geralmente expressa em mEq/L) de ácido forte (ou base) adicionada por litro de sangue ou plasma quando o excesso de base médio é arbitrariamente fixado em 0. Por definição o BE normal para seres humanos é 0 mEq/L (variação normal: - 2 a + 2 mEq/L), onde um valor > 2 mEq/L indica alcalose metabólica, enquanto um valor < - 2 mEq/L reflete acíduce metabólica (Constable, 2000).

Embora a abordagem do BE tenha sido amplamente utilizada para avaliar os distúrbios ácido-base nas espécies animais domésticas, os valores calculados não são válidos para todas as espécies. O erro no valor do BE nos animais domésticos surge devido a três fatores (Constable, 2000):

1. Os valores normais para as espécies domésticas violam a definição original do BE (cão: -6,6 mEq/L, ovelha: +2,5 mEq/L, bovinos: +3,4 mEq/L, suínos: =6,6 – 7 mEq/l);
2. A concentração e valor tamponante das proteínas plasmáticas e hemoglobina varia entre as espécies;
3. O pH sanguíneo e a pCO₂ dos animais domésticos difere dos valores para humanos;

Diferente do BE, o anion gap (AG) surgiu a partir do conceito de
Eletroneutralidade e foi introduzido para ajudar a esclarecer a causa de um distúrbio ácido-base metabólico. O AG representa a diferença entre a concentração de ânions não mensurados (ANM) e a concentração de cátions não mensurados (CNM), sendo calculado pela seguinte fórmula (Constable, 2000; Durward e Murdoch, 2003):

$$\text{AG: } ([\text{Na}^+] + [\text{K}^+]) - ([\text{Cl}^-] - [\text{HCO}_3^-])$$

A concentração sérica de potássio sempre deve ser incluída no cálculo do ânion gap das espécies domésticas em decorrência da marcante variação da sua concentração. Geralmente, aproximadamente dois terços do AG origina-se das cargas negativas das proteínas séricas (principalmente albumina), enquanto o restante reflete a concentração sérica de fosfato e ânions fortes a exemplo do lactato, sulfato, β-OH butirato, acetoacetato e ânions associados à uremia (Constable, 2000). Como o AG baseia-se na contribuição da carga negativa das proteínas, ele pode ser grosseiramente estimado na presença de hipoalbuminemia. A correção do AG pela albumina produz um aumento médio de 2,7 mEq/L no AG. Felizmente, a precisão do AG pode ser melhorada pela correção do seu valor pela albumina (Durward e Murdoch, 2003):

$$\text{AG corrigido = AG + (0,25 X [40 – albumina mensurada])}$$

O AG é um indicador confiável da gravidade da acidose metabólica associada aos distúrbios do intestino delgado, entretanto é mais confiável para os distúrbios associados ao intestino grosso visto que nesses distúrbios seu valor é pouco influenciado pela concentração de lactato. Além de seu valor na avaliação dos distúrbios metabólicos, o AG pode ser utilizado na determinação da probabilidade de sobrevivência dos equinos com abdome agudo (Bristol, 1982). A Tab. 8 demonstra a relação entre o valor do AG e a probabilidade de sobrevivência dos equinos com abdome agudo.

<table>
<thead>
<tr>
<th>Anion gap</th>
<th>Sobrevivência (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 20 mEq/l</td>
<td>81</td>
</tr>
<tr>
<td>20-25 mEq/l</td>
<td>47</td>
</tr>
<tr>
<td>> 25 mEq/l</td>
<td>0</td>
</tr>
</tbody>
</table>

Fonte: Bristol (1982).
Os eletrólitos estão envolvidos em muitas funções metabólicas e homeostáticas incluindo reações enzimáticas e bioquímicas, manutenção da função e estrutura da membrana celular, neurotransmissão, condução de sinais nervosos, função hormonal, contração muscular, função cardiovascular, composição óssea e regulação do equilíbrio ácido-base e hídrico (Kraft et al., 2005).

O Na⁺ é o cátion extracelular mais abundante apresentando concentração sérica variando entre 135-145 mEq/l. Mecanismos homeostáticos fisiológicos mantêm a concentração sérica de sódio dentro de limites estreitos. A pressão osmótica e a osmolalidade determinam a distribuição de água entre os vários compartimentos corpóreos, sendo o sódio a principal substância osmoticamente ativa no FEC. A água pode fluir do compartimento com menor osmolalidade para o de maior osmolalidade até que o equilíbrio osmótico seja alcançado. Mudanças na concentração de sódio sérico geralmente refletem mudanças no equilíbrio hídrico, entretanto, a concentração de sódio pode estar aumentada, diminuída ou normal (Rose e Post, 2001). Alterações na concentração de Na⁺ são comuns em pacientes críticos, mas são ainda pobremente entendidas (Rose e Post, 2001).

A hiponatremia (concentração sérica Na⁺ <135 mEq/L) pode refletir uma concentração sérica de Na⁺ diminuída, normal ou aumentada necessitando, dessa forma, da avaliação da osmolalidade sérica. Como a hiponatremia hiposmolar pode se desenvolver na presença de hipovolemia, isovolemia, ou hipervolemia, o equilíbrio hídrico do paciente deve ser avaliado. As potenciais causas da hipovolemia são numerosas e dependem da osmolalidade sérica e volume de fluidos do paciente (Kraft et al., 2005). Hipernatremia (concentração sérica de Na⁺ >145 mEq/L) reflete um déficit de água relativo aos níveis total de sódio no organismo e está associada com hipertonicidade sérica. Existem várias causas de hipernatremia dependendo da alteração do volume hídrico do paciente. Geralmente, a hipernatremia desenvolve-se quando o mecanismo da sede está alterado ou se o acesso à água é restrito ou controlado (Hantman et al., 1973; Berl et al., 1976; Fried et al., 1997).

O K⁺ é o segundo cátion mais abundante no corpo. Aproximadamente 98% do K⁺ corpóreo total é encontrado na FIC e os restantes 2% é encontrado no FEC (Halperin e Kamel, 1998; Seahorn e Seahorn, 2003). A concentração sérica de K⁺ no equino é 3,0-5 mEq/l (Seahorn e Seahorn, 2003). O K⁺ tem muitas funções fisiológicas importantes incluindo metabolismo celular, síntese de proteínas e glicogênio, além da regulação do potencial de ação através das membranas celulares, especialmente no miocárdio (Mandal, 1997; Halperin e Kamel, 1998).

A entrada de K⁺ para dentro das células e a manutenção de uma alta concentração desse íon dentro da célula são mediadas pela bomba de sódio-potássio-adenosina trifosfatase. Vários fatores afetam a atividade dessa bomba incluindo insulina, glucagon, catecolaminas, aldosterona, equilíbrio...
ácido-base, osmolalidade plasmática e níveis de K⁺ intracelular. Sob condições fisiológicas normais, 80% do K⁺ são excretados pelos rins, todavia, pelo menos 90% desse valor são reabsorvidos ativamente nos túbulos renais (Freedman e Burkart, 1991; Halperin e Kamel, 1998; Kraft et al., 2005).

A hipocalemia ocorre quando a concentração de K⁺ está abaixo de 2,5 mEq/l (Seahorn e Seahorn, 2003). Como a hipocalemia resulta em hiperpolarização da membrana celular e contração muscular alterada, seus sinais e sintomas geralmente envolvem mudanças na função cardiovascular e muscular. Os sintomas da hipocalemia incluem fraqueza, íleo adinâmico, comprometimento respiratório e rabdomiólise. A hipocalemia ocorre comumente em seres humanos e equinos nas unidades de terapia intensiva em decorrência do desvio intracelular de K⁺, aumento da eliminação ou, menos comumente, diminuição da ingestão. Ressalta-se, todavia, que os níveis séricos de K⁺ não correlacionam bem com os níveis intracelulares de K⁺ e com a contração corpórea total de K⁺ (Dyckner e Wester, 1978; Freedman e Burkart, 1991). Portanto, a hipocalemia pode não refletir uma diminuição no estoque de K⁺ corporal (Halperin e Kamel, 1998; Kraft et al., 2005).

O Mg ++ é importante na regulação do K⁺ intracelular. A hipomagnesemia pode dar origem a um quadro hipocalêmico refratário secundário ao aumento da excreção renal de K⁺ ou disfunção da bomba sódio-potássio (Ryan, 1993).

A hipercalemia (concentração sérica de K⁺ >5.0 meq/L) pode ser ameaçador à vida quando a concentração de K⁺ excede 6,5 mEq/l. As manifestações clínicas da hipercalemia são relacionadas a mudanças na função neuromuscular e cardíaca. Semelhante a hipocalemia, a hipercalemia verdadeira pode se desenvolver secundária a desvios extracelulares de K⁺, ingestão aumentada ou diminuição da eliminação de potássio (Williams, 1991).

A concentração sérica de cálcio é regulada por vários mecanismos (hormônio paratireóide, vitamina D e calcitonina), e dentre suas funções cita-se seu papel no metabolismo ósseo, coagulação sanguínea, adesão plaquetária, atividade neuromuscular e funções endócrinas e exócrinas. A variação sérica da concentração do cálcio total (Ca⁺) no equino é 9,6-13,2 mg/dl (Seahorn e Sehorn, 2003). Mais de 99% do cálcio corpóreo total é encontrado nos ossos, com menos de 1% no soro. Aproximadamente 40-50% do cálcio no sangue está ligado a proteínas plasmáticas, principalmente albumina (Bushinsky e Monk, 1998). A hipoalbuminemia, vista comumente em pacientes críticos, pode causar diminuição dos níveis séricos de Ca⁺ e para cada diminuição de 1g/dl na concentração de albumina, a concentração de Ca⁺ diminui em aproximadamente 0,8 mg/dl (Zaloga, 1991).

O cálcio ionizável (Ca⁺⁺) é a forma biologicamente ativa do cálcio e corresponde a mais de 50% do cálcio no sangue sob condições normais. O Ca⁺⁺ é rigorosamente regulado pelo sistema endócrino e é o melhor indicador do metabolismo do cálcio do que a
concentração de Ca⁺. A variação normal da concentração sérica de Ca⁺⁺ é 1,2-1,5 mmol/l (Seahorn e Seahorn, 2003). A alcalose metabólica aumenta a ligação do cálcio às proteínas plasmáticas reduzindo, desta forma, a concentração do Ca⁺⁺. Por outro lado, a ácidoze metabólica diminui a ligação do cálcio às proteínas plasmáticas aumentando, dessa forma, a concentração sérica do Ca⁺⁺ (Bushinsky e Monk, 1998; Kraft et al., 2005).

A hipocalcemia, definida como a concentração sérica de Ca⁺ <8.6 mg/dL ou Ca⁺⁺ <1,1 mmol/L, ocorre primariamente devido a hipoalbuminemia. Outras causas incluem hipomagnesemia, hiperfosfatemia, sepse, hipoparatireoidismo e insuficiência renal (Olinger, 1989; Zaloga, 1991).

O Mg⁺⁺ é o segundo cátion mais abundante no meio intracelular, sendo encontrado primariamente no osso, músculo e tecidos moles, com aproximadamente 1% do conteúdo corpóreo total no FEC. A concentração sérica normal de Mg⁺⁺ varia de 1,5-2,4 mg/dl. O Mg⁺⁺ funciona como um importante cofator de numerosos sistemas enzimáticos. O Mg⁺⁺ é absorvido através do intestino delgado, com a maior parte ocorrendo no íleo e jejuno. A homeostasia do Mg⁺⁺ é controlada primariamente pelos rins, porém o sistema gastrintestinal, hormônio paratireóide e concentração plasmática de Mg⁺⁺ também desempenham algum papel. Somente um pouco mais de 1% do estoque de Mg⁺⁺ é encontrado no FEC e os níveis séricos de Mg⁺⁺ podem não se correlacionar bem com a concentração intracelular ou a concentração total de magnésio no organismo (Reinhart, 1988).

3- MATERIAL E MÉTODOS

O experimento foi realizado nas dependências da Clínica Médica de Eqüinos e Laboratório de Patologia Clínica da Escola de Veterinária da Universidade Federal de Minas Gerais, localizada no município de Belo Horizonte. Está situado a 19°55' de latitude S e 43°56' de longitude W Gr., a altitude de 832 m e clima do tipo Cwa, de acordo com a classificação de Köepen, que caracteriza inverno predominantemente seco e verão chuvoso. O trabalho foi desenvolvido nos meses de setembro e outubro de 2006, com temperatura média de 22,3 ºC (16,4-28,1 ºC); umidade relativa do ar de 58% e precipitação pluviométrica de 64,3 mm. Os dados meteorológicos foram obtidos no Instituto Nacional de Meteorologia.

Este experimento foi aprovado pelo Comitê de Ética em Experimentação Animal (CETEA/UFMG) sob o número 19/2006.

3.1- Caracterização dos animais e grupos experimentais

Foram utilizados 15 eqüinos adultos hígidos (12 fêmeas, 3 machos) com peso médio de 262 ± 48,28 kg, em um delineamento inteiramente ao acaso. Antes do período experimental os animais passaram por um período de adaptação de 30 dias durante o qual recebiam ração comercial¹ (0,5 kg/100

¹ Ração Equitage 15P, Guabi Nutrição Animal, Brasil
kg de peso vivo), feno de tifton (- *Cynodon ssp.* (1 kg/100 kg), além de capim elefante (*Pennisetum purpureum*) triturado, água e sal mineral \(^2\) *ad libitum*. Todos os animais receberam tratamento endo \(^3\) e ectoparasitica \(^4\).

Os animais foram agrupados de acordo com o peso e o sexo (quatro fêmeas e um macho/grupo) e divididos em três grupos (cinco animais/grupo): **Grupo 1** - água de torneira associada com sabão neutro \(^5\) (seis gramas de sabão neutro/litro de água; osmolalidade: 24 mOsm/l); **Grupo 2** - solução eletrolítica (Solução: Na\(^+\): 135 mEq/l; HCO\(^3\): 25 mEq/l; Cl\(^-\): 110 mEq/l; K\(^+\): 4 mEq/l; Ca\(^++\): 5 mEq/l; osmolariade: 285 mosm/l; pH: 7,45); **Grupo 3** - água de torneira associada vaselina líquida (3 litros de água /litro de vaselina; osmolalidade: 6 mOsm/l).

Durante a colheita das amostras e avaliação clínica os animais permaneceram em jejum hídrico e alimentar. O jejum hídrico e alimentar iniciou-se no momento da primeira colheita estendendo-se até a última colheita, totalizando 10 horas.

Foram realizados três enemas em cada animal, um a cada três horas. O enema foi administrado por meio de fluxo de gravidade em um volume equivalente a quatro litros de solução à temperatura de 35 °C. A osmolalidade das soluções foi analisada após a composição das mesmas em equipamento específico \(^6\). Apois cada enema, os animais foram estimulados a caminhar ao passo durante 15 minutos e então a cada hora (Fig. 1).

Antes de cada enema era realizada palpação transretal para identificar a presença de fezes na ampola retal e terço distal do cólon menor, bem como avaliar as características das fezes (consistência, hidratação, coloração, odor, tamanho da fibra, presença de grãos e de muco), conforme sugerido por Gonçalves et al. (2005). Além da avaliação das características fecais, a parte acessível da cavidade abdominal via palpação transretal foi avaliada para verificar a presença de alterações no posicionamento dos segmentos intestinais conforme descrito por Mueller e Moore (2000). Para realização da palpação transretal, utilizou-se solução salina (NaCl 0,9%) para lubrificação da luva de palpação transretal.

3.2- Avaliação clínica

Os parâmetros clínicos, incluindo frequência cardíaca (bpm), pulso arterial na artéria facial transversa (ppm), frequência respiratória (mpm), tempo de preenchimento capilar (segundos), temperatura retal (°C), motilidade gastrintestinal, tolerância ao enema, manifestação de dor e pressão sanguínea na artéria cocigéa (sistólica) foram avaliados antes do primeiro enema e após esse a cada 30 minutos. A avaliação terminou uma hora após o último enema. A motilidade gastrintestinal foi avaliada e classificada (ausente, diminuída, normal, aumentada) em ambos antímeros adotando a classificação proposta por Ehrhardt e Lowe (1990) e quando três...

\(^2\) Guabiphos centauro, Guabi Nutrição Animal, Brasil

\(^3\) Panacur pasta, Intervet, Cruzeiro-SP

\(^4\) Butoxp, Intervet, Cruzeiro-SP

\(^5\) Lavarte, Bertin Ltda, São Paulo/SP

\(^6\) Osmômetro
quadrantes apresentassem motilidade normal, a motilidade era considerada normal. Da mesma forma, quando dois ou mais quadrantes apresentassem motilidade diminuída, a motilidade era considerada como diminuída.

Figura 1 - Preparação e administração da solução de enema. Figura A: Preparo da solução de água e sabão. Figura B: administração do enema por fluxo de gravidade.

A pressão sanguínea arterial foi mensurada indiretamente na artéria coccígea utilizando um Doppler\(^7\) para detectar o fluxo e o retorno do fluxo conforme técnica descrita por Gay et al. (1977), sendo a pressão sistólica mensurada em um esfignomanômetro de coluna de mercúrio\(^8\). Todas as mensurações foram realizadas com os animais em posição quadrupedal e os valores representaram a pressão sistólica da artéria coccígea, em mmHg, não corrigida.

3.3- Avaliação hematológica

As amostras de sangue foram colhidas por venopunção central na jugular externa, em tubos a vácuo, contendo EDTA (sal dissódico do ácido etileno diamino tetra-acético)\(^6\). O hemograma constituiu-se do eritrograma e do leucograma. O eritrograma incluiu a contagem total de eritrócitos, além da determinação do hematocrito, hemoglobina e índices hematimétricos: volume corpuscular médio (VCM); hemoglobina corpuscular média (HCM) e concentração de hemoglobina corpuscular média (CHCM), todos determinados em aparelho automático de contagem de células sanguíneas\(^9\). O leucograma incluiu a contagem global de leucócitos, também realizada pelo aparelho de contagem de células sanguíneas. Os esfregaços foram corados segundo a técnica descrita por

\(^7\) Doppler Vascular Veterinário DVT 500 – Martec / Ribeirão Preto – São Paulo
\(^8\) Esfignomanômetro – Missouri, Brasil
\(^6\) Abacus Junior Vet – Hematology Analyser, Diatron
Schalm e Jain (1986), sendo utilizados para se obter a contagem diferencial de leucócitos durante observação realizada por microscopia óptica. A contagem de plaquetas foi realizada em aparelho automático de contagem de células sanguíneas.

As amostras foram colhidas imediatamente antes do primeiro enema (T0); uma hora antes do segundo enema (T1) e uma hora após o terceiro enema (T2).

3.4- Avaliação da bioquímica do sangue

As amostras de sangue foram obtidas por venopunção central na jugular externa, em tubos à vácuo, sem anticoagulante. Após retração do coágulo, o sangue foi centrifugado a 2.000 rpm por cinco minutos, o soro separado em alíquotas de 1,5 ml e congelado a -20°C até o processamento das análises. A bioquímica do sangue incluiu a mensuração da concentração sérica de creatinina10, uréia10, proteína total10 e albumina10, por meio de kits específicos, em aparelho automático de bioquímica11.

As amostras foram colhidas imediatamente antes do primeiro enema (T0); uma hora antes do segundo enema (T1) e uma hora após o terceiro enema (T2).

3.5- Avaliação do equilíbrio ácido-base e perfil eletrolítico

As amostras de sangue foram colhidas por venopunção central na jugular externa, em seringas e tubos a vácuo sem anticoagulante. O sangue colhido na seringa foi utilizado para avaliação imediata do equilíbrio ácido-básico (pH, TCO2, PaCO2, desvio de base, NaHCO3, anion gap), além da determinação da concentração de Na+, Cl-, K+ e glicose por meio de um analisador clínico portátil12 utilizando cartuchos específicos13. O soro proveniente do sangue colhido no tubo a vácuo foi dividido em três alíquotas de 1,5 ml. Duas alíquotas foram congeladas a –20 °C para posterior avaliação da concentração sérica de Ca++, Mg++ por meio de kits específicos10. A alíquota restante foi utilizada para determinação da concentração sérica de creatinina, uréia e proteína total. As análises foram realizadas em aparelho automático de bioquímica11.

As amostras foram colhidas imediatamente antes do primeiro enema (T0); uma hora antes do segundo enema (T1) e uma hora após o terceiro enema (T2).

Para o cálculo da osmolalidade foi adotada a fórmula descrita por Magdesian (2004):

\[
\text{osmolalidade: } 1,86 \times (\text{Na}^+ + \text{K}^+) + (\text{BUN}/2,8) + (\text{glicose}/18) + 9
\]

10 Kits synermed - Brasil
11 Cobas Mira - Brasil
12 I-Stat – Abbott Laboratórios – São Paulo - Brasil
13 I-Stat Cartridge EC8⁺, Abott Laboratórios – São Paulo - Brasil
3.6- Avaliação macro e microscópica da mucosa colônica

A mucosa retal foi avaliada por meio do procedimento de colonoscopia, utilizando para tal fim um colonoscópio de fibra óptica de 2 metros de comprimento. Durante a colonoscopia foi observada a coloração da mucosa, presença de fezes, edema e muco (Fig. 2). As amostras para avaliação histológica foram obtidas por meio de biópsia durante o procedimento da colonoscopia, sendo colhidas a uma distância média de 50 cm cranial ao esfíncter anal. Estas foram fixadas em formalina a 10% neutra e tamponada e coradas pela hematoxilina-eosina (HE), conforme técnica descrita por Luna (1968).

A avaliação macroscópica e colheita de amostras para histologia foram realizadas antes do primeiro enema e depois de uma hora do último enema. No exame histológico foram avaliados os seguintes parâmetros: comprimento das criptas intestinais, número de camadas de células caliciformes, quantidade de células caliciformes, presença de células inflamatórias transepiteliais e congestão sanguínea e linfática.

3.7- Análises estatísticas

O delineamento experimental foi inteiramente ao acaso. O modelo experimental constituiu-se de parcelas subdivididas (três grupos nas parcelas e três tempos nas subparcelas – hematology, bioquímica do sangue, gasometria e perfil eletrolítico ou 15 tempos na subparcela – frequência cardíaca, pulso, frequência respiratória, tempo de perfusão capilar, temperatura retal) com cinco repetições.
A análise de variância foi utilizada (ANOVA), considerando-se a ocorrência dos erros (a) e (b), referentes à parcela e subparcela, respectivamente. O teste estatístico, para comparação das médias, foi o SNK (Student-Newman Keuls) com nível de significância de 95% (p<0,05).

Os dados referentes à análise macro e microscópica da mucosa retal e porção final do cólon menor foram analisados por dispersão de freqüência, sem, no entanto serem aplicados testes estatísticos. Todos os dados foram tabulados em planilhas do programa Excel Microsoft (versão 2002) e analisados pelo programa Statistical Analyses System (SAS, 1995). As tabelas referentes à análise estatística, de cada variável estudada, encontram-se nos anexos.

4- Resultados e discussão

4.1- Avaliação clínica

4.1.1- Índices paramétricos

O efeito das diferentes soluções de enema sobre os parâmetros clínicos avaliados (freqüência cardíaca, freqüência respiratória, temperatura retal, tempo de perfusão capilar e pressão sistólica) estão demonstrados nas Tab. 9, 10, 11, 12, 13 e 14, respectivamente.

Conforme observado na Tab. 9 a freqüência cardíaca se manteve dentro dos limites fisiológicos para a espécie (Graf. 1), embora tenham ocorrido diferenças dentro do grupo, e entre grupos dentro de cada tempo. O grupo 1 não diferiu (p>0,05) do grupo 3 dentro de cada tempo, exceto nos tempos T5 e T10. Entretanto ambos diferiram do grupo 2. A presença de médias mais altas observados no grupo 2 são decorrentes da presença de um animal

Figura 2 – Avaliação macroscópica da mucosa retal via colonoscopia (A); colheita de fragmento da mucosa, com auxílio de pinça de biopsia (B).
com a frequência cardíaca elevada. A elevação na frequência cardíaca desse animal se manteve durante todo o período experimental. Embora a frequência cardíaca tenha diferido entre os tempos, dentro do grupo, ela se manteve dentro dos limites fisiológicos. Além disso, não se observou diferença (p>0,05) entre os tempos que antecederam ou sucederam os enemas (T0 e T1 - enema 1; T6 e T7- enema 2; T12 e T13 – enema 3), em nenhum dos grupos.

Tabela 9 – Efeito da administração de diferentes soluções de enema sobre a frequência cardíaca* (bpm) de equinos hígidos.

<table>
<thead>
<tr>
<th>Grupos Experimentais</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempos</td>
</tr>
<tr>
<td>T0 (antes)</td>
</tr>
<tr>
<td>ENEMA T1 (30 min.)</td>
</tr>
<tr>
<td>T2 (60 min.)</td>
</tr>
<tr>
<td>T3 (90 min.)</td>
</tr>
<tr>
<td>T4 (120 min.)</td>
</tr>
<tr>
<td>T5 (150 min.)</td>
</tr>
<tr>
<td>T6 (180 min.)</td>
</tr>
<tr>
<td>ENEMA T7 (210 min.)</td>
</tr>
<tr>
<td>T8 (24 min.)</td>
</tr>
<tr>
<td>T9 (270 min.)</td>
</tr>
<tr>
<td>T10 (300 min.)</td>
</tr>
<tr>
<td>T11 (330 min.)</td>
</tr>
<tr>
<td>T12 (360 min.)</td>
</tr>
<tr>
<td>ENEMA T13 (390 min.)</td>
</tr>
<tr>
<td>T14 (410 min.)</td>
</tr>
</tbody>
</table>

^{AB}Letras maiúsculas diferentes, dentro da coluna, diferem entre si (p < 0,05).
^{ab}Letras minúsculas diferentes, dentro da linha, diferem entre si (p < 0,05).

* Valor de referência Freqüência Cardiaca: FC: ≤ 40 bpm (Wilson e Gordon, 1987).

A mensuração da frequência cardíaca é parte fundamental do exame clínico de equinos com quadro de abdome agudo e quanto maior a frequência cardíaca maior a gravidade da lesão (Wilson e Gordon, 1987; Furr et al., 1995). A elevação da frequência cardíaca é causada primariamente por estímulo simpático em resposta à dor, hipovolemia, endotoxemia ou septicemia.

Como a frequência cardíaca se manteve dentro dos limites fisiológicos, independente da solução administrada, é provável que a administração de enemas não estimule o sistema simpático. Seria lógico esperar que o estresse induzido pela infusão do enema e a dor
desencadeada pela distensão do cólon menor e reto provocassem elevação da
freqüência cardíaca, entretanto, tal efeito não foi observado.

A freqüência respiratória (Tab. 10) se manteve dentro dos limites de
referência durante todo o período experimental nos três grupos (Graf. 2).
Não houve diferença (p>0,05) entre os tempos dentro do grupo 1 e grupo 2.
Entretanto, no grupo 3 foi observada diferença (p>0,05) entre T0 e T1 com os
demais tempos. Dentro dos tempos, houve diferença (p<0,05) entre os
grupos em T0, T4, T11, T12 e T13. Aparentemente essas diferenças não
possuem significado clínico em decorrência da manutenção da
freqüência respiratória dentro da faixa de normalidade em todos os grupos e
em todos os tempos. A freqüência respiratória geralmente se encontra
elevada nos equinos com quadro de abdome agudo independente da causa, e
quanto maior a freqüência respiratória maior a gravidade do caso (Parry,
1982). O aumento da freqüência respiratória deve-se primariamente a dor
e excitação. A elevação da freqüência respiratória pode ser sinal de choque
(independente da causa), compensação de um desequilíbrio ácido-base ou
presença de uma víscera distendida comprimindo o tórax (Colahan, 1985;
Wilson e Gordon, 1987; Southwood, 2006).

Gráfico 1- Efeito da administração de diferentes enemas sobre a freqüência cardíaca de
equinos hígidos.
Tabela 10 - Efeito da administração de diferentes soluções de enema sobre a frequência respiratória (mpm) de eqüinos hígidos.

<table>
<thead>
<tr>
<th>Grupos experimentais</th>
<th>Tempos</th>
<th>Água e sabão G_1</th>
<th>Solução eletrolítica G_2</th>
<th>Água e vaselina G_3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T0 (antes)</td>
<td>10,40 ± 2,60$^{\text{Aa}}$</td>
<td>12,60 ± 1,94$^{\text{Ba}}$</td>
<td>9,80 ± 1,48$^{\text{Bb}}$</td>
</tr>
<tr>
<td></td>
<td>T1 (30 min.)</td>
<td>11,20 ± 3,11$^{\text{Aa}}$</td>
<td>12,80 ± 4,14$^{\text{Ba}}$</td>
<td>10,40 ± 2,19$^{\text{BCa}}$</td>
</tr>
<tr>
<td></td>
<td>T2 (60 min.)</td>
<td>11,40 ± 3,36$^{\text{Aa}}$</td>
<td>13,00 ± 4,00$^{\text{ABA}}$</td>
<td>12,60 ± 5,17$^{\text{ACA}}$</td>
</tr>
<tr>
<td></td>
<td>T3 (90 min.)</td>
<td>11,20 ± 3,63$^{\text{Aa}}$</td>
<td>13,40 ± 6,06$^{\text{ABA}}$</td>
<td>12,20 ± 4,60$^{\text{ABa}}$</td>
</tr>
<tr>
<td></td>
<td>T4 (120 min.)</td>
<td>11,00 ± 4,35$^{\text{Ab}}$</td>
<td>14,60 ± 8,70$^{\text{ABa}}$</td>
<td>13,00 ± 4,69$^{\text{Acab}}$</td>
</tr>
<tr>
<td></td>
<td>T5 (150 min.)</td>
<td>11,80 ± 5,67$^{\text{Aa}}$</td>
<td>13,20 ± 6,26$^{\text{ABA}}$</td>
<td>11,80 ± 3,76$^{\text{BAa}}$</td>
</tr>
<tr>
<td></td>
<td>T6 (180 min.)</td>
<td>12,40 ± 5,12$^{\text{Aa}}$</td>
<td>13,40 ± 6,69$^{\text{ABA}}$</td>
<td>13,00 ± 4,89$^{\text{ACA}}$</td>
</tr>
<tr>
<td></td>
<td>T7 (210 min.)</td>
<td>12,60 ± 5,12$^{\text{Aa}}$</td>
<td>13,80 ± 7,56$^{\text{ABA}}$</td>
<td>13,40 ± 5,27$^{\text{Ab}}$</td>
</tr>
<tr>
<td></td>
<td>T8 (24 min.)</td>
<td>12,40 ± 5,02$^{\text{Aa}}$</td>
<td>14,40 ± 8,87$^{\text{ABA}}$</td>
<td>12,80 ± 5,01$^{\text{ACA}}$</td>
</tr>
<tr>
<td></td>
<td>T9 (270 min.)</td>
<td>12,60 ± 4,82$^{\text{Aa}}$</td>
<td>14,80 ± 8,58$^{\text{ABA}}$</td>
<td>12,80 ± 5,01$^{\text{ACA}}$</td>
</tr>
<tr>
<td></td>
<td>T10 (300 min.)</td>
<td>12,60 ± 4,82$^{\text{Aa}}$</td>
<td>14,60 ± 8,64$^{\text{ABA}}$</td>
<td>12,80 ± 5,01$^{\text{ACA}}$</td>
</tr>
<tr>
<td></td>
<td>T11 (330 min.)</td>
<td>12,00 ± 5,04$^{\text{Ab}}$</td>
<td>15,60 ± 6,42$^{\text{Aa}}$</td>
<td>12,80 ± 5,01$^{\text{ACb}}$</td>
</tr>
<tr>
<td></td>
<td>T12 (360 min.)</td>
<td>11,20 ± 4,96$^{\text{Ab}}$</td>
<td>14,60 ± 6,30$^{\text{ABA}}$</td>
<td>13,20 ± 4,81$^{\text{ACab}}$</td>
</tr>
<tr>
<td></td>
<td>T13 (390 min.)</td>
<td>11,40 ± 4,97$^{\text{Ab}}$</td>
<td>15,20 ± 6,83$^{\text{ABA}}$</td>
<td>12,60 ± 4,09$^{\text{ACab}}$</td>
</tr>
<tr>
<td></td>
<td>T14 (410 min.)</td>
<td>11,40 ± 4,97$^{\text{Aa}}$</td>
<td>13,00 ± 4,79$^{\text{ABA}}$</td>
<td>13,00 ± 4,52$^{\text{ACa}}$</td>
</tr>
</tbody>
</table>

$^{\text{Aa}}$Letras maiúsculas diferentes, dentro da coluna, diferem entre si ($p < 0,05$).

$^{\text{Ab}}$Letras minúsculas diferentes, dentro da linha, diferem entre si ($p < 0,05$).

A Tab. 11 demonstra o efeito das diferentes soluções de enema sobre a temperatura retal. Como se pode observar houve diferença ($p < 0,05$) entre os tempos dentro de cada grupo e entre grupos nos tempos T13 e T14. A temperatura retal em todos os três grupos se elevou atingindo maiores valores no grupo 1 (Graf. 3).

A avaliação da temperatura retal é essencial na avaliação de eqüinos com distúrbios gastrintestinais. Elevação da temperatura retal acima de 39°C indica a presença de um processo séptico ou infeccioso, geralmente peritonite ou enterite/colite. Uma temperatura retal baixa (< 37°C) é geralmente indicativa de choque circulatório e sob muitas circunstâncias é um sinal grave (Colahan, 1985). Embora a temperatura retal tenha se mantido dentro da faixa de normalidade, a elevação nos seus valores, principalmente no grupo 1, sugere que a infusão de diferentes soluções dentro do cólon menor/reto possa desencadear um quadro inflamatório decorrente da excessiva manipulação da mucosa retal durante a infusão do enema ou secundário à infusão de substâncias irritantes, ambos desencadeando um processo inflamatório.
Gráfico 2 - Efeito da administração de diferentes enemas sobre a frequência respiratória de equinos hígidos.

Tabela 11 - Efeito da administração de diferentes soluções de enema sobre a temperatura retal (°C)* de equinos hígidos.

<table>
<thead>
<tr>
<th>Tempos</th>
<th>Água e sabão (G1)</th>
<th>Solução eletrolítica (G2)</th>
<th>Água e vaselina (G3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 (antes)</td>
<td>37,32 ± 0,21Ga</td>
<td>37,30 ± 0,43Fab</td>
<td>37,08 ± 0,08EB</td>
</tr>
<tr>
<td>ENEMA</td>
<td>37,38 ± 0,13FGa</td>
<td>37,36 ± 0,39DFFa</td>
<td>37,34 ± 0,16Da</td>
</tr>
<tr>
<td>T1 (30 min.)</td>
<td>37,46 ± 0,27EFGa</td>
<td>37,52 ± 0,37CDFFa</td>
<td>37,56 ± 0,33BCFa</td>
</tr>
<tr>
<td>T2 (60 min.)</td>
<td>37,60 ± 0,18GDEFa</td>
<td>37,58 ± 0,38BCEa</td>
<td>37,50 ± 0,37CDa</td>
</tr>
<tr>
<td>T3 (90 min.)</td>
<td>37,62 ± 0,21DFFa</td>
<td>37,62 ± 0,44BCFa</td>
<td>37,72 ± 0,33A Ca</td>
</tr>
<tr>
<td>T4 (120 min.)</td>
<td>37,74 ± 0,25BCDa</td>
<td>37,64 ± 0,53ABCa</td>
<td>37,60 ± 0,30A Ca</td>
</tr>
<tr>
<td>T5 (150 min.)</td>
<td>37,72 ± 0,31BDa</td>
<td>37,64 ± 0,51ABCa</td>
<td>37,60 ± 0,33A Ca</td>
</tr>
<tr>
<td>T6 (180 min.)</td>
<td>37,74 ± 0,32BDa</td>
<td>37,58 ± 0,43BCDa</td>
<td>37,60 ± 0,39A Ca</td>
</tr>
<tr>
<td>T7 (210 min.)</td>
<td>37,80 ± 0,28BDa</td>
<td>37,70 ± 0,48ABCa</td>
<td>37,66 ± 0,33A Ca</td>
</tr>
<tr>
<td>T8 (240 min.)</td>
<td>37,86 ± 0,26Ba</td>
<td>37,86 ± 0,41Aa</td>
<td>37,68 ± 0,37A Ca</td>
</tr>
<tr>
<td>T9 (270 min.)</td>
<td>37,88 ± 0,29Ba</td>
<td>37,80 ± 0,42AbBa</td>
<td>37,74 ± 0,32AFa</td>
</tr>
<tr>
<td>T10 (300 min.)</td>
<td>37,88 ± 0,29Ba</td>
<td>37,72 ± 0,42ABCa</td>
<td>37,76 ± 0,28AFa</td>
</tr>
<tr>
<td>T11 (330 min.)</td>
<td>37,96 ± 0,18ACa</td>
<td>37,78 ± 0,41ABa</td>
<td>37,80 ± 0,30Aa</td>
</tr>
<tr>
<td>T12 (360 min.)</td>
<td>38,00 ± 0,15Aa</td>
<td>37,74 ± 0,40ABCb</td>
<td>37,74 ± 0,30AFb</td>
</tr>
<tr>
<td>T13 (390 min.)</td>
<td>38,12 ± 0,21Aa</td>
<td>37,72 ± 0,49ABCb</td>
<td>37,82 ± 0,30Ab</td>
</tr>
</tbody>
</table>

a Letras maiúsculas diferentes, dentro da coluna, diferem entre si (p < 0,05).
ab Letras minúsculas diferentes, dentro da linha, diferem entre si (p < 0,05).
* Valores de referência: 37 – 38,5 (°C) (Speirs, 1999).
Entretanto, outros fatores devem ser considerados quando se avalia a elevação da temperatura retal em equinos com abdome agudo, como: elevação da temperatura ambiente ao longo do dia, deambulação dos animais ou elevação do metabolismo.

O grupo 1 diferiu (p<0,05) dos grupos 2 e 3, apenas nos tempos 13 e 14, ou seja após a administração do terceiro enema. Assim, a irradiação local provocada pela água com sabão pode ter sido o fator desencadeante do aumento da temperatura retal, neste grupo. Baseado nestes dados pode-se hipotizar que a administração de sucessivos enemas num paciente com doença gastrintestinal pode alterar os valores da temperatura retal interferindo na avaliação de diferentes casos.

Quanto ao tempo de preenchimento capilar (Tab. 12), não houve diferença (p>0,05) entre os tempos dentro dos grupos 1 e 2, todavia, houve diferença (p<0,05) no grupo 3 entre T9 e T10 com o restante dos tempos. Apesar disto, o grupo 1 diferenciou (p<0,05) do grupo 2 em todos os tempos e do grupo 3 nos tempos 6 e 9. Entre o grupo 2 e o grupo 3 foram observadas diferenças (p<0,05) nos tempos 1, 3, 4, 5, e 6. O tempo de preenchimento capilar se manteve dentro dos limites fisiológicos durante todo o período experimental, independente do grupo e do tempo (Graf. 4), indicando que a administração de enemas não provoca desvíos de fluido do FIC para o FEC e deste para o lúmen intestinal, provocando um quadro de hipovolemia.

Gráfico 3: Efeito da administração de diferentes enemas sobre a temperatura retal de equinos hígidos.
Tabela 12 - Efeito da administração de diferentes soluções de enema sobre o tempo de preenchimento capilar (seg.)* de equinos hígidos.

<table>
<thead>
<tr>
<th>Grupos experimentais</th>
<th>Tempos</th>
<th>Água e sabão</th>
<th>Solução eletrolítica</th>
<th>Água e vaselina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1</td>
<td>G2</td>
<td>G3</td>
<td></td>
</tr>
<tr>
<td>T0 (antes)</td>
<td>1,20 ± 0,44<sup>Ab</sup></td>
<td>1,80 ± 0,44<sup>Aa</sup></td>
<td>1,40 ± 0,54<sup>Bb</sup></td>
<td></td>
</tr>
<tr>
<td>ENEMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1 (30 min.)</td>
<td>1,20 ± 0,44<sup>Ab</sup></td>
<td>1,60 ± 0,54<sup>Aa</sup></td>
<td>1,40 ± 0,54<sup>Bb</sup></td>
<td></td>
</tr>
<tr>
<td>T2 (60 min.)</td>
<td>1,20 ± 0,44<sup>Ab</sup></td>
<td>1,60 ± 0,54<sup>Aa</sup></td>
<td>1,40 ± 0,54<sup>Bb</sup></td>
<td></td>
</tr>
<tr>
<td>T3 (90 min.)</td>
<td>1,20 ± 0,44<sup>Ab</sup></td>
<td>1,80 ± 0,44<sup>Aa</sup></td>
<td>1,40 ± 0,54<sup>Bb</sup></td>
<td></td>
</tr>
<tr>
<td>T4 (120 min.)</td>
<td>1,20 ± 0,44<sup>Ab</sup></td>
<td>1,80 ± 0,44<sup>Aa</sup></td>
<td>1,40 ± 0,54<sup>Bb</sup></td>
<td></td>
</tr>
<tr>
<td>T5 (150 min.)</td>
<td>1,40 ± 0,54<sup>Ab</sup></td>
<td>1,80 ± 0,44<sup>Aa</sup></td>
<td>1,40 ± 0,54<sup>Bb</sup></td>
<td></td>
</tr>
<tr>
<td>T6 (180 min.)</td>
<td>1,20 ± 0,44<sup>Ab</sup></td>
<td>1,80 ± 0,44<sup>Aa</sup></td>
<td>1,60 ± 0,54<sup>ABa</sup></td>
<td></td>
</tr>
<tr>
<td>ENEMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T7 (210 min.)</td>
<td>1,20 ± 0,44<sup>Ab</sup></td>
<td>1,80 ± 0,44<sup>Aa</sup></td>
<td>1,60 ± 0,54<sup>ABa</sup></td>
<td></td>
</tr>
<tr>
<td>T8 (240 min.)</td>
<td>1,20 ± 0,44<sup>Ab</sup></td>
<td>1,80 ± 0,44<sup>Aa</sup></td>
<td>1,60 ± 0,54<sup>ABa</sup></td>
<td></td>
</tr>
<tr>
<td>T9 (270 min.)</td>
<td>1,20 ± 0,44<sup>Ab</sup></td>
<td>1,80 ± 0,44<sup>Aa</sup></td>
<td>1,80 ± 0,83<sup>Aa</sup></td>
<td></td>
</tr>
<tr>
<td>T10 (300 min.)</td>
<td>1,20 ± 0,44<sup>Ab</sup></td>
<td>1,80 ± 0,44<sup>Aa</sup></td>
<td>1,80 ± 0,83<sup>Aa</sup></td>
<td></td>
</tr>
<tr>
<td>T11 (330 min.)</td>
<td>1,20 ± 0,44<sup>Ab</sup></td>
<td>1,80 ± 0,44<sup>Aa</sup></td>
<td>1,60 ± 0,54<sup>ABa</sup></td>
<td></td>
</tr>
<tr>
<td>T12 (360 min.)</td>
<td>1,40 ± 0,54<sup>Ab</sup></td>
<td>1,80 ± 0,44<sup>Aa</sup></td>
<td>1,60 ± 0,54<sup>ABab</sup></td>
<td></td>
</tr>
<tr>
<td>ENEMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T13 (390 min.)</td>
<td>1,40 ± 0,54<sup>Ab</sup></td>
<td>1,80 ± 0,44<sup>Aa</sup></td>
<td>1,60 ± 0,54<sup>ABab</sup></td>
<td></td>
</tr>
<tr>
<td>T14 (410 min.)</td>
<td>1,40 ± 0,54<sup>Ab</sup></td>
<td>1,80 ± 0,44<sup>Aa</sup></td>
<td>1,60 ± 0,54<sup>ABab</sup></td>
<td></td>
</tr>
</tbody>
</table>

^{Ab}Letras maiúsculas diferentes, dentro da coluna, diferem entre si (p < 0,05).

^{ab}Letras minúsculas diferentes, dentro da linha, diferem entre si (p < 0,05).

Gráfico 4 - Efeito da administração de diferentes enemas sobre o tempo de preenchimento capilar de equinos hígidos.
Não houve diferença (p>0,05) da frequência de pulso entre os tempos dentro de cada grupo e, dentro de cada tempo, os grupos 1 e 3 diferiram (p<0,05) do grupo 2 (Tab. 13).

Embora não forneça uma avaliação quantitativa da pressão sistólica periférica, a mensuração da frequência do pulso fornece importantes informações sobre o estatus cardiovascular do eqüino. A elevação da frequência do pulso durante episódios de dor abdominal são secundários ao estímulo simpático e essa elevação associada à alteração das características do pulso, é importante durante a avaliação do paciente. Um pulso forte indica que não há alteração significativa no sistema cardiovascular. Por outro lado, um pulso fraco pode refletir vasoconstrição secundária à hipovolemia, enquanto o pulso irregular reflete grave desequilíbrio eletrolítico ou endotoxemia (Speirs, 1999; Corley, 2002; Southwood, 2006).

Tabela 13 - Efeito da administração de diferentes soluções de enema sobre a frequência do pulso (ppm)* de eqüinos hígidos.

<table>
<thead>
<tr>
<th>Tempos</th>
<th>Água e sabão G1</th>
<th>Solução eletrolítica G2</th>
<th>Água e vaselina G3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 (antes) ENEMA</td>
<td>32,20 ± 6,49Ab</td>
<td>37,20 ± 12,04Aa</td>
<td>29,60 ± 9,31Ab</td>
</tr>
<tr>
<td>T1 (30 min.)</td>
<td>33,20 ± 10,63Ab</td>
<td>37,40 ± 10,38Aa</td>
<td>32,60 ± 9,85Ab</td>
</tr>
<tr>
<td>T2 (60 min.)</td>
<td>32,40 ± 10,03Ab</td>
<td>38,80 ± 8,89Aa</td>
<td>32,40 ± 10,73Ab</td>
</tr>
<tr>
<td>T3 (90 min.)</td>
<td>32,80 ± 10,82Ab</td>
<td>37,80 ± 9,90Aa</td>
<td>30,40 ± 9,81Ab</td>
</tr>
<tr>
<td>T4 (120 min.)</td>
<td>33,40 ± 12,03Ab</td>
<td>37,40 ± 8,87Aa</td>
<td>30,60 ± 9,52Ab</td>
</tr>
<tr>
<td>T5 (150 min.)</td>
<td>35,00 ± 16,00Ab</td>
<td>37,20 ± 9,54Aa</td>
<td>32,00 ± 7,48Ab</td>
</tr>
<tr>
<td>T6 (180 min.)</td>
<td>34,60 ± 16,33Ab</td>
<td>39,00 ± 12,88Aa</td>
<td>32,40 ± 7,53Ab</td>
</tr>
<tr>
<td>T7 (210 min.) ENEMA</td>
<td>34,40 ± 14,25Ab</td>
<td>38,80 ± 13,25Aa</td>
<td>31,80 ± 7,75Ab</td>
</tr>
<tr>
<td>T8 (24 min.)</td>
<td>33,40 ± 12,87Ab</td>
<td>38,40 ± 13,44Aa</td>
<td>31,40 ± 7,98Ab</td>
</tr>
<tr>
<td>T9 (270 min.)</td>
<td>33,60 ± 12,62Ab</td>
<td>37,80 ± 13,16Aa</td>
<td>30,40 ± 6,69Ab</td>
</tr>
<tr>
<td>T10 (300 min.)</td>
<td>33,60 ± 12,62Ab</td>
<td>38,80 ± 13,16Aa</td>
<td>30,40 ± 6,69Aa</td>
</tr>
<tr>
<td>T11 (330 min.)</td>
<td>33,40 ± 13,29Ab</td>
<td>37,80 ± 11,96Aa</td>
<td>31,00 ± 6,32Aa</td>
</tr>
<tr>
<td>T12 (360 min.)</td>
<td>33,00 ± 13,11Ab</td>
<td>36,40 ± 12,11Aa</td>
<td>29,40 ± 4,56Ab</td>
</tr>
<tr>
<td>T13 (390 min.) ENEMA</td>
<td>33,00 ± 13,11Ab</td>
<td>38,60 ± 11,94Aa</td>
<td>31,40 ± 6,22Ab</td>
</tr>
<tr>
<td>T14 (410 min.)</td>
<td>32,40 ± 13,24Ab</td>
<td>36,40 ± 13,95Aa</td>
<td>29,80 ± 4,14Ab</td>
</tr>
</tbody>
</table>

Legenda: Ab Letras maiúsculas diferentes, dentro da coluna, diferem entre si (p < 0,05).

Legenda: Ab Letras minúsculas diferentes, dentro da linha, diferem entre si (p < 0,05).

- Valor de referência: Pulso ≤ 40 ppm (Wilson e Gordon, 1987).
Durante todo o período de observação não houve alteração nas características do pulso. Embora haja diferença entre os grupos 1 e 3 com o grupo 2, os valores obtidos estão dentro da faixa de normalidade. A ausência de alterações na frequência do pulso indica que a administração de diferentes soluções de enema, conforme o protocolo adotado neste experimento, não tem influência sobre os parâmetros cardiovasculares. Essa afirmativa é corroborada pelos resultados obtidos nos valores da freqüência cardíaca e tempo de perfusão capilar.

Em relação à pressão sistólica (Tab. 14) não houve diferença (p>0,05) entre os tempos dentro do grupo 1 e 3. Já o grupo 2 apresentou diferença (p<0,05) entre os tempos. Não foi observada diferença (p>0,05) entre os grupos dentro de cada tempo. Como se observa na Tab. 14 a administração dos enemas, independente da solução, não teve efeito significativo sobre os valores da pressão sistólica. Embora a pressão sistólica dentro do grupo 2 tenha oscilado entre os tempos, aparentemente essa diferença não apresentou significado clínico.

4.1.2- Palpação transretal e administração das soluções de enema

Durante a palpação transretal inicial (tempo 0) não foram observadas alterações na topografia das vísceras abdominais palpáveis em nenhum animal dos três grupos. As características das síbalas foram semelhantes em todos os grupos, apresentando coloração verde-oliva, de tamanho normal, bem hidratada, odor sui-generis, sem presença de grãos ou película de muco.

A infusão do primeiro enema do grupo 1 (água com sabão) desencadeou desconforto abdominal em um animal após a administração de um litro que resultou na expulsão de parte da solução. Esta mesma resposta foi observada nos outros quatro animais após a infusão de dois a três litros de solução. Durante o período de caminhada 100% dos animais eliminaram pequenas quantidades de líquido associado ou não com síbalas formadas. Decorridos 60 minutos do enema, 80% dos animais eliminaram síbalas pastosas. Em 20% (1/5) dos animais, as síbalas apresentaram-se recobertas com muco.

No grupo 2 (solução isotônica), a resposta de eliminação do enema ocorreu após a infusão de 2,5-3 litros da solução em 100% (5/5) dos animais. Durante a caminhada todos os animais eliminaram pequenos jatos de líquido associados com síbalas formadas de coloração verde-oliva. Passados 60-90 minutos, os jatos de líquido foram substituídos pela eliminação de síbalas formadas em 40% (2/5) e pastosas em 60% (3/5) dos animais sem presença de muco.

Durante a administração do primeiro enema do grupo 3 (água com vaselina), 60% (3/5) dos animais apresentaram desconforto abdominal leve durante a infusão. Após a administração de dois litros do enema, esses mesmos animais eliminaram parte do volume infundido, enquanto 40% (2/5) dos animais suportaram todo volume. Durante o período de caminhada (15 minutos), 100% (5/5) dos animais eliminaram
pequenas quantidades de líquido com fezes pastosas. Após este período, os animais continuaram a eliminar pequenas quantidades de líquido por 60 minutos. Decorrido este tempo, fezes pastosas recobertas com vaselina foram eliminadas por 100% (5/5) dos animais.

Tabela 14 - Efeito da administração de diferentes soluções de enema sobre a pressão sistólica (mmHg) de eqüinos hígidos.

<table>
<thead>
<tr>
<th>Grupos Experimentais</th>
<th>Tempos</th>
<th>Água e sabão</th>
<th>Solução eletrolítica</th>
<th>Água e vaselina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T0 (antes)</td>
<td>G1</td>
<td>108,00 ± 16,06^{Aa}</td>
<td>112,80 ± 8,67^{Aa}</td>
</tr>
<tr>
<td></td>
<td>ENEMA</td>
<td>G2</td>
<td>104,00 ± 15,16^{Aa}</td>
<td>109,60 ± 15,83^{ACa}</td>
</tr>
<tr>
<td></td>
<td>T1 (30 min.)</td>
<td>G3</td>
<td>103,60 ± 10,71^{Aa}</td>
<td>109,60 ± 17,91^{ACa}</td>
</tr>
<tr>
<td></td>
<td>T2 (60 min.)</td>
<td>G3</td>
<td>107,80 ± 5,84^{Aa}</td>
<td>105,60 ± 15,38^{ABa}</td>
</tr>
<tr>
<td></td>
<td>T3 (90 min.)</td>
<td>G3</td>
<td>99,60 ± 9,52^{Aa}</td>
<td>103,60 ± 14,02^{ABa}</td>
</tr>
<tr>
<td></td>
<td>T4 (120 min.)</td>
<td>G3</td>
<td>103,20 ± 7,29^{Aa}</td>
<td>108,80 ± 12,77^{ABa}</td>
</tr>
<tr>
<td></td>
<td>T5 (150 min.)</td>
<td>G3</td>
<td>103,20 ± 11,09^{Aa}</td>
<td>102,00 ± 12,00^{ABa}</td>
</tr>
<tr>
<td></td>
<td>T6 (180 min.)</td>
<td>G3</td>
<td>102,00 ± 11,74^{Aa}</td>
<td>110,80 ± 23,22^{ABa}</td>
</tr>
<tr>
<td></td>
<td>T7 (210 min.)</td>
<td>G3</td>
<td>104,80 ± 11,18^{Aa}</td>
<td>98,00 ± 4,00^{Ba}</td>
</tr>
<tr>
<td></td>
<td>T8 (240 min.)</td>
<td>G3</td>
<td>104,80 ± 9,54^{Aa}</td>
<td>101,00 ± 6,55^{BCDa}</td>
</tr>
<tr>
<td></td>
<td>T9 (270 min.)</td>
<td>G3</td>
<td>106,20 ± 4,14^{Aa}</td>
<td>99,80 ± 9,23^{BCa}</td>
</tr>
<tr>
<td></td>
<td>T10 (300 min.)</td>
<td>G3</td>
<td>102,40 ± 5,17^{Aa}</td>
<td>98,00 ± 7,61^{Ba}</td>
</tr>
<tr>
<td></td>
<td>T11 (330 min.)</td>
<td>G3</td>
<td>99,60 ± 8,64^{Aa}</td>
<td>99,20 ± 5,95^{BCa}</td>
</tr>
<tr>
<td></td>
<td>T12 (360 min.)</td>
<td>G3</td>
<td>100,80 ± 16,82^{Aa}</td>
<td>98,40 ± 5,17^{Ba}</td>
</tr>
<tr>
<td></td>
<td>ENEMA</td>
<td>G3</td>
<td>108,80 ± 17,81^{Aa}</td>
<td>104,40 ± 16,39^{ABa}</td>
</tr>
</tbody>
</table>

^{Aa}Letras maiúsculas diferentes, dentro da coluna, diferem entre si (p < 0,05).
^{Ab}Letras minúsculas diferentes, dentro da linha, diferem entre si (p < 0,05).

- Valor de referência: 95-120mmHg (Johnson et al., 1976).

Na palpação transretal realizada antes do segundo enema do grupo 1 não foi encontrada nenhuma alteração na topografia das vísceras abdominais palpáveis, nem tampouco alteração das características das síbalas em relação à primeira palpação. Entretanto, a ampola retal de todos os animais apresentava discreta dilatação e 40% (2/5) dos animais apresentavam edema da mucosa retal. Durante a administração do segundo enema, a quantidade de solução necessária para iniciar a eliminação da solução infundida foi inferior àquela do primeiro, em média 1,5-2 litros. Durante o procedimento, 60% (3/5) apresentaram desconforto abdominal manifestado por olhares para o flanco, escoiceamento do abdome e manoteamento. Durante a caminhada, 80% (4/5) animais eliminaram pequenos jatos de líquido associados com síbalas pastosas, enquanto 20% (1/5) dos animais eliminaram fezes normais.
Decorrida uma hora do procedimento, esse jato de líquido foi substituído pela eliminação de síbalas formadas recobertas por moderada quantidade de muco em 60% (3/5) dos animais, enquanto 40% (2/5) eliminaram síbalas sem muco.

Na palpação transretal antes do segundo enema do grupo 2, as síbalas apresentavam as mesmas características da palpação inicial. Não foi constatada a presença de edema da mucosa retal e apenas 20% (1/5) dos animais apresentaram distensão da ampola retal. Após a infusão de aproximadamente dois litros da solução, 80% (4/5) dos animais eliminaram parte do enema, 40% (2/5) dos animais apresentaram leve quadro de desconforto abdominal e 20% (1/5) apresentou desconforto abdominal mais intenso. Durante a deambulação, todos os animais eliminaram pequenos jatos de líquido em associação com fezes pastosas, sem muco.

Pela palpação transretal realizada antes da administração do segundo enema (grupo 3), constatou-se que as características das síbalas de 80% (4/5) dos animais permaneceram inalteradas em relação à palpação transretal inicial. Entretanto, em 20% (1/5) dos animais foram observadas fezes pastosas. O odor e a coloração das síbalas não sofreram alteração. Nenhum animal deste grupo apresentou edema nesse tempo. A quantidade de enema infundida antes do início da eliminação foi menor do que para o primeiro enema, em média um litro, em três animais. Os outros dois animais suportaram todo o volume infundido. Durante o período de caminhada todos os cinco animais eliminaram pequenas quantidades de líquido associado ou não com a presença de síbalas formadas ou pastosas recobertas com vaselina. Pequenos jatos de líquido foram eliminados durante 60-90 minutos, e após esse tempo os animais começaram a eliminar fezes pastosas recobertas com vaselina.

A palpação transretal antes do terceiro enema, do grupo 1, revelou a presença de edema da mucosa retal em todos os animais do grupo, além de desencadear um quadro de desconforto abdominal, dificultando a realização do procedimento. Nenhuma anormalidade topográfica foi visualizada, entretanto a ampola retal apresentava distensão. As fezes apresentavam características normais em 40% (2/5) dos animais, enquanto em 60% (3/5) elas eram pastosas e recobertas com muco. Durante a administração do último enema a expulsão foi iniciada após a administração de aproximadamente 1,5 litros em todos os animais. Durante a caminhada, 60% (3/5) os animais eliminaram pequenos jatos de líquido associado com fezes pastosas, enquanto 40% (2/5) eliminaram síbalas recobertas por muco.

Na palpação transretal realizada antes do terceiro enema, grupo 2, não foram observadas alterações nas características das fezes em 80% (4/5) dos animais, enquanto eram pastosas em 20% (1/5) dos animais. Nenhum animal apresentou edema na mucosa retal. Durante a infusão do terceiro enema, 80% (4/5) dos animais eliminaram parte do enema após a administração de 3 litros da solução e 20% (1/5) dos animais suportaram todo o volume administrado. Durante a caminhada 100% (5/5) dos animais eliminaram
pequenos jatos de líquido sem presença de fezes. Uma hora após a administração do enema, 100% (5/5) dos animais eliminaram fezes pastosas de coloração verde-oliva sem muco.

Na palpação transretal realizada antes do terceiro enema do grupo 3, as síbalas se encontravam pastosas em 80% (4/5) dos animais, enquanto 20% (1/5) dos animais apresentavam síbalas normais e nenhuma alteração de coloração ou odor foi identificada. A palpação revelou a presença de discreto edema de mucosa em 20% (1/5) dos animais. Durante a administração do enema, 40% (2/5) dos animais apresentaram desconforto abdominal manifestado por inquietação, olhares para o flanco e manoteamento (escavando o solo). A resposta de eliminação do enema ocorreu após a administração de 3 litros do enema em 80% (4/5) dos animais e de dois litros em 20% (1/5) dos animais. Durante a caminhada houve a eliminação de pequenos jatos de líquido associados ou não com síbalas pastosas recobertas com vaselina.

A administração do enema, independente da solução, desencadeou a eliminação do mesmo após a infusão. Embora não se conheçam os mecanismos de ação dos enemas, provavelmente ocorre um quadro de irritação química e distensão que produz uma forte onda de contração na tentativa de eliminar a substância irritante. Desta forma, a forte resposta contrátil observada após a administração das soluções estudadas pode ser uma resposta de proteção do organismo aos efeitos deletérios de substâncias irritantes, principalmente sabão e vaselina como sugerido por Wood (1994) e Potter e Perry (2001).

A resposta à irritação química pode ser útil se esta é leve o bastante para estimular a defecação sem causar alterações no epitélio colônico e retal. Todavia, a excessiva irritação pode lesar as células epiteliais resultando num processo inflamatório (Chang et al., 1996).

As características das fezes equinas nos diversos quadros de abdome agudo são pouco estudadas na medicina veterinária, no entanto, pode ser um método efetivo de avaliação da função gastrintestinal. Geralmente, as fezes equinas apresentam coloração verde-oliva, odor sui-generis, consistência levemente firme sem presença de muco ou grãos (Wilson e Gordon, 1987; Gonçalves et al., 2005). As características das fezes dos animais estudados estão em concordância com aquelas relatadas na literatura. Entretanto, após a realização do enema, independente da solução utilizada, houve alteração destas características. A principal alteração foi a mudança da consistência das fezes, não havendo alteração no odor e na coloração. A consistência mudou de ligeiramente firme para pastosas em decorrência da infusão de líquido dentro do reto e segmento distal do cólon menor.

A eliminação de fezes pastosas logo após a administração das soluções de enema é uma resposta esperada à terapia, pois estas hidratam e amolecem as fezes localizadas na porção final do cólon menor e reto (White II e Dabareiner, 1997; Rhoads, 1999; Schumacher e Mair, 2002; Schmelzer et al., 2004). Como as soluções infundidas não possuem efeito sobre o conteúdo intestinal localizado em partes mais craniais do cólon menor, a eliminação...
de síbalas formadas e com hidratação normal ou diminuída ocorre após certo período de tempo conforme observado nesse estudo. Esse efeito também é visto durante a realização de enemas em eqüinos com abdome agudo.

Outra alteração foi a presença de grande quantidade de muco recobrindo as fezes dos animais do grupo 1 (água com sabão). Geralmente a presença de muco sobre as fezes é indicativa de aumento no tempo de trânsito intestinal. Todavia, nesse caso, a presença de muco foi uma resposta fisiológica do organismo à administração de irritantes químicos dentro do cólon menor distal e reto. A secreção de muco pelo epitélio colônico cria um microambiente próximo ao epitélio intestinal além de funcionar como uma barreira contra a abrasão e irritação química. Aparentemente, a solução de enema composta de água e sabão apresenta mais irritante químico do que as outras soluções estudadas. A osmolalidade desta solução (24 mOsm/l) pode ter sido um fator adicional à produção do muco, por lesão celular osmótica.

O quadro de desconforto abdominal demonstrado por alguns animais pode ter sido resultante da excessiva distensão do reto e cólon menor durante o procedimento ou ao desenvolvimento de reação intestinal inflamatória. Como alguns animais demonstraram desconforto durante a administração do primeiro enema, independente do grupo, a provável razão foi a rápida distensão intestinal por líquidos.

A identificação de edema à palpação transretal no grupo 1 foi ao encontro do objetivo específico desse estudo que foi o de avaliar o efeito de diferentes soluções de enema sobre a mucosa retal. A presença de edema é um achado quase que constante em eqüinos submetidos à terapia com sucessivos enemas. O surgimento do edema retal durante os quadros clínicos de abdome agudo normalmente são associados com as sucessivas palpações transretais e pouco valor se dá ao efeito da administração do enema sobre o desenvolvimento deste. Com base nos resultados pode-se afirmar que o surgimento do edema é devido primariamente a infusão de soluções irritantes dentro do reto, embora sucessivas palpações transretais possam ter um efeito aditivo. Mas, com base na experiência clínica é improvável que sucessivas palpações transretais realizadas por um profissional experiente possam levar ao desenvolvimento deste edema.

4.1.3- Auscultação intestinal

De forma geral, a motilidade gastrintestinal não foi alterada pela infusão de diferentes soluções de enema. Embora seja advogado por alguns clínicos que a administração de enemas aumente a motilidade do segmento posterior do trato gastrintestinal, esse efeito só foi observado em alguns animais, imediatamente após a infusão dos enemas (Tempos 1, 2 e 7) (Tab.59 – ver anexos)

Observou-se durante o experimento que ocorre aumento da peristalse intestinal imediatamente após a infusão das diferentes soluções. A infusão de grandes quantidades de enemas distende o lúmen intestinal produzindo uma forte onda de contração intestinal, resultando
na expulsão da solução de enema e das fezes presentes no terço final do cólon menor e reto. A forte resposta contrátil após a administração de uma solução dentro do cólon menor e reto pode ser uma resposta de proteção do organismo aos efeitos deletérios de substâncias irritantes.

Embora tenha ocorrido uma forte onda contrátil durante a infusão dos enemas em todos os grupos e a motilidade tenha aumentado após a administração dos enemas, esse aumento da motilidade gastrintestinal não foi mantido por muito tempo. Cerca de uma hora após a infusão de cada enema a motilidade já havia retornado ao normal em todos os grupos. Provavelmente, a eliminação de grande parte do enema durante sua infusão pode ter diminuído seu efeito sobre a motilidade intestinal. Entretanto, a eliminação de grande parte do enema durante sua infusão pode ter diminuído seu efeito sobre a motilidade intestinal. Embara tenha ocorrido uma forte onda contrátil que foi responsável pela eliminação do enema, a rápida distensão do reto e porção distal do cólon menor pode ter desencadeado a ativação do reflexo intestinal. Diante do exposto, é possível que o aumento da motilidade intestinal seja transitório e restrito ao momento da infusão do enema ou por um pequeno período de tempo após o mesmo.

4.2- Avaliação Hematológica

Não houve diferença (p>0,05) entre os tempos dentro dos grupos para os valores de hematócrito, eritrócitos, hemoglobina, volume corpuscular médio e hemoglobina corpuscular média (Tab.15). Houve diferença (p<0,05) nos valores da concentração de hemoglobina corpuscular média entre os tempos no grupo 2, não havendo diferença (p>0,05) entre os tempos dentro dos grupos 1 e 3. Embora tenha ocorrido diferença (p<0,05) entre os grupos dentro dos tempos para os valores de hematócrito, número de eritrócitos, hemoglobina, volume corpuscular médio e hemoglobina corpuscular média, essas diferenças não apresentam significado clínico e refletem provavelmente variação individual dos animais utilizados.

Hemoconcentração é um achado comum nos quadros de abdome agudo que cursam com desidratação e hipovolemia. À medida que o desequilíbrio hídrico é corrigido, o valor do hematócrito volta a valores normais. Nos casos onde ocorre super-hidratação dos animais pode-se observar quadros de hemodiluição como manifestado pela diminuição do valor do hematócrito. A administração das diferentes soluções de enema neste estudo não provocou nenhum efeito no estado de hidratação dos animais estudados. Esses resultados corroboram os dados de Hjortkjaer (1979).

Outros fatores que podem provocar elevação no hematócrito, número de eritrócitos e hemoglobina são excitação, manipulação e esforço físico. Durante o experimento, nenhum animal ficou demasiadamente excitado ou foi submetido à manipulação excessiva.
Tabela 15 – Efeito de diferentes soluções de enema sobre o eritrograma de equínios hígidos.

<table>
<thead>
<tr>
<th>Tempos</th>
<th>Grupos experimentais</th>
<th>Água e sabão</th>
<th>Solução eletrolítica</th>
<th>Água e vaselina</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 0 (antes)</td>
<td>✔ Hematócrito (32 – 52%)</td>
<td>G1: 30,80 ± 3,96<sup>Aa</sup></td>
<td>G2: 28,00 ± 3,60<sup>Ab</sup></td>
<td>G3: 30,00 ± 4,27<sup>Aab</sup></td>
</tr>
<tr>
<td>T 1 (120 min.)</td>
<td>G1: 29,70 ± 3,89<sup>Aa</sup></td>
<td>G2: 28,48 ± 2,30<sup>Ab</sup></td>
<td>G3: 28,60 ± 4,15<sup>Aa</sup></td>
<td></td>
</tr>
<tr>
<td>T 2 (410 min.)</td>
<td>G1: 31,00 ± 6,44<sup>Aa</sup></td>
<td>G2: 28,36 ± 0,84<sup>Ab</sup></td>
<td>G3: 28,98 ± 3,74<sup>Aab</sup></td>
<td></td>
</tr>
</tbody>
</table>

T 0 (antes)	✔ Eritrócitos (6,500 – 12,500/µl)	G1: 7,09 ± 1,44^{Aa}	G2: 6,75 ± 1,02^{Ab}	G3: 7,42 ± 1,29^{Aab}
T 1 (120 min.)	G1: 6,67 ± 0,68^{Ab}	G2: 6,71 ± 0,96^{Ab}	G3: 7,31 ± 1,20^{Aa}	
T 2 (410 min.)	G1: 6,81 ± 0,63^{Aa}	G2: 6,79 ± 1,07^{Aa}	G3: 7,17 ± 1,25^{Aa}	

T 0 (antes)	✔ Hemoglobina (11 – 19 g/dl)	G1: 11,76 ± 1,49^{Aa}	G2: 10,74 ± 1,25^{Ab}	G3: 11,34 ± 1,27^{Aab}
T 1 (120 min.)	G1: 11,42 ± 1,52^{Aa}	G2: 10,92 ± 1,02^{Ab}	G3: 11,26 ± 1,32^{Aa}	
T 2 (410 min.)	G1: 11,52 ± 2,03^{Aa}	G2: 10,98 ± 1,13^{Aa}	G3: 10,88 ± 1,19^{Aa}	

T 0 (antes)	✔ Volume corpuscular médio (36 – 52 fl)	G1: 45,00 ± 5,38^{Aa}	G2: 43,00 ± 2,73^{Ab}	G3: 41,00 ± 2,34^{Ac}
T 1 (120 min.)	G1: 45,00 ± 5,19^{Aa}	G2: 42,60 ± 2,60^{Ab}	G3: 40,80 ± 2,58^{Ac}	
T 2 (410 min.)	G1: 44,60 ± 4,50^{Aa}	G2: 42,80 ± 2,68^{Ab}	G3: 40,40 ± 2,70^{Ac}	

T 0 (antes)	✔ Concentração de hemoglobina corpuscular média (34-39 g/dl)	G1: 37,44 ± 1,53^{Aa}	G2: 37,04 ± 0,91^{Ab}	G3: 37,66 ± 1,47^{Aab}
T 1 (120 min.)	G1: 38,36 ± 0,71^{Aa}	G2: 38,32 ± 0,69^{Ab}	G3: 37,86 ± 1,70^{Ab}	
T 2 (410 min.)	G1: 37,72 ± 0,84^{Aa}	G2: 37,94 ± 1,14^{Ab}	G3: 37,94 ± 1,12^{Aa}	

T 0 (antes)	✔ Hemoglobina corpuscular média (12,3 – 19,7 pg)	G1: 16,86 ± 2,22^{Aa}	G2: 15,98 ± 0,91^{Ab}	G3: 15,32 ± 1,68^{Aa}
T 1 (120 min.)	G1: 17,20 ± 2,04^{Aa}	G2: 16,36 ± 1,04^{Ab}	G3: 15,52 ± 1,60^{Ac}	
T 2 (410 min.)	G1: 16,84 ± 1,98^{Aa}	G2: 16,26 ± 1,01^{Ab}	G3: 15,32 ± 1,52^{Aa}	

^{AB}Letras maiúsculas diferentes, dentro da coluna, diferem entre si (p < 0,05).
^{ab}Letras minúsculas diferentes, dentro da linha, diferem entre si (p < 0,05).

Fonte: Lassen e Swardson (1995).
Diante dos resultados, supõe-se que a administração sucessiva e indiscriminada de enemas de água com sabão possa provocar um quadro de leucopenia, além de prejudicar a interpretação desses resultados em pacientes portadores de abdome agudo.

Tabela 16 – Efeito de diferentes soluções de enema sobre a leucometria total (cels./µl) de equinos hígidos.

<table>
<thead>
<tr>
<th>Grupos experimentais</th>
<th>Agua e sabão</th>
<th>Solução eletrolítica</th>
<th>Agua e vaselina</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>T0 (antes)</td>
<td>10462 ± 1265,98^Aa</td>
<td>10334 ± 1993,40^Aa</td>
</tr>
<tr>
<td></td>
<td>T1 (120 min.)</td>
<td>11688 ± 1779,80^Aa</td>
<td>10196 ± 2081,70^Aa</td>
</tr>
<tr>
<td></td>
<td>T2 (410 min.)</td>
<td>9792 ± 2134,16^Ba</td>
<td>10774 ± 2245,63^Aa</td>
</tr>
<tr>
<td>G2</td>
<td>T0 (antes)</td>
<td>10502 ± 2146,39^Aa</td>
<td>11254 ± 2511,48^Aa</td>
</tr>
<tr>
<td></td>
<td>T1 (120 min.)</td>
<td>10950 ± 2761,34^Aa</td>
<td>11254 ± 2511,48^Aa</td>
</tr>
</tbody>
</table>

^A^Letras maiúsculas diferentes, dentro da coluna, diferem entre si (p < 0,05).

^a^Letras minúsculas diferentes, dentro da linha, diferem entre si (p < 0,05).

Valores de referência: 5500 – 12500/µl

Pela contagem diferencial dos leucócitos, observa-se que os animais do grupo 2 e 3 desenvolveram um quadro de neutrofilia, sem contudo haver elevação dos bastonetes. Em relação aos neutrófilos, as médias observadas no tempo 2 foram superiores (p < 0,05) as dos tempo 0 e 1, no grupo 2. Já no grupo 3, observaram-se diferenças (p < 0,05) entre o tempo 0 e os demais, sendo os maiores valores observados no tempo 1 e 2. No tempo 2, a neutrofilia observada nos grupos 2 e 3 foi suficiente para diferir (p < 0,05) do grupo 1. Embora no grupo 1 tenha ocorrido uma discreta neutrofilia, os valores de neutrófilos segmentados voltaram a valores normais no tempo 2, sem serem observadas diferenças entre os tempos (p > 0,05).

Nos quadros de abdome agudo onde ocorre um grande seqüestro de leucócitos e neutrófilos para dentro do trato gastrintestinal são comuns os quadros de leucopenia e neutropenia. Entretanto, quando a demanda tecidual ou seqüestro de células é baixo, podem ocorrer leucocitose e neutrofilia. A leucocitose não foi observada neste estudo, entretanto, a neutrofilia foi presente em todos os grupos, sendo mais pronunciada no G2 e G3. Provavelmente, a manipulação do reto e a infusão de soluções com componentes irritantes pode ter originado uma resposta inflamatória.
Não houve diferença entre os tempos dentro dos grupos quanto ao número de plaquetas (Tab. 18). Entretanto, houve diferença (p<0,05) entre os grupos dentro dos tempos. A diferença entre os grupos origina-se, provavelmente, da diferença entre os indivíduos que compuseram cada grupo. Baseando-se nos dados deste experimento, conclui-se que a administração de diferentes soluções de enema não causa alteração do número de plaquetas, por todos os valores se manterem dentro do esperado para a espécie.

Gráfico 5 - Efeito da administração de diferentes enemas sobre a leucometria total de equinos hígidos
Tabela 17 – Efeito de diferentes soluções de enema sobre a leucometria diferencial (cels./µl) de eqüinos hígidos.

<table>
<thead>
<tr>
<th>Grupos experimentais</th>
<th>Água e sabão</th>
<th>Solução eletrolítica</th>
<th>Água e vaselina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempos</td>
<td>G1</td>
<td>G2</td>
<td>G3</td>
</tr>
<tr>
<td></td>
<td>T0 (antes)</td>
<td>T1 (120 min.)</td>
<td>T2 (410 min.)</td>
</tr>
<tr>
<td>Bastonetes (0 – 100/µl)</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>T0 (antes)</td>
<td>187,20 ± 49,71 Aa</td>
<td>107,60 ± 95,63 Aa</td>
<td>97,00 ± 101,30 Aa</td>
</tr>
<tr>
<td>T1 (120 min.)</td>
<td>139,60 ± 52,33 Aa</td>
<td>85,40 ± 106,17 Aa</td>
<td>62,80 ± 61,76 Aa</td>
</tr>
<tr>
<td>T2 (410 min.)</td>
<td>118,20 ± 80,14 Aa</td>
<td>194,80 ± 189,94 Aa</td>
<td>152,40 ± 63,88 Aa</td>
</tr>
</tbody>
</table>

Neutrófilos segmentados (2700 – 6700/µl)

<table>
<thead>
<tr>
<th></th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 (antes)</td>
<td>6353,60 ± 690,41 Aa</td>
<td>6471,20 ± 1213,42 Aa</td>
<td>5730,40 ± 1452,7 Aa</td>
</tr>
<tr>
<td>T1 (120 min.)</td>
<td>7092,60 ± 1676,11 Aa</td>
<td>6381,20 ± 976,3 Aa</td>
<td>7189,60 ± 1693,76 Ba</td>
</tr>
<tr>
<td>T2 (410 min.)</td>
<td>6396,60 ± 1673,14 Ab</td>
<td>7343,20 ± 1470,43 Ba</td>
<td>7046,60 ± 1641,18 Bab</td>
</tr>
</tbody>
</table>

Eosinófilos (0 – 900/µl)

<table>
<thead>
<tr>
<th></th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 (antes)</td>
<td>517,40 ± 202,63 Aa</td>
<td>460,80 ± 266,38 Aa</td>
<td>694,60 ± 467,19 Aa</td>
</tr>
<tr>
<td>T1 (120 min.)</td>
<td>525,40 ± 328,95 Aa</td>
<td>523,20 ± 375,83 Aa</td>
<td>389,80 ± 133,66 Ba</td>
</tr>
<tr>
<td>T2 (410 min.)</td>
<td>341,60 ± 142,96 Aa</td>
<td>389,00 ± 139,77 Aa</td>
<td>449,00 ± 199,33 Ba</td>
</tr>
</tbody>
</table>

Linfócitos (1500 – 5000/µl)

<table>
<thead>
<tr>
<th></th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 (antes)</td>
<td>3084,00 ± 803,56 Aa</td>
<td>2956,40 ± 596,53 Aa</td>
<td>3371,20 ± 834,84 Aa</td>
</tr>
<tr>
<td>T1 (120 min.)</td>
<td>3571,40 ± 581,89 Ab</td>
<td>2788,80 ± 720,12 Aa</td>
<td>3166,00 ± 805,75 Ab</td>
</tr>
<tr>
<td>T2 (410 min.)</td>
<td>2725,40 ± 642,71 Ab</td>
<td>2621,20 ± 702,33 Aa</td>
<td>2766,40 ± 1038,88 Ab</td>
</tr>
</tbody>
</table>

Monócitos (0 – 800/µl)

<table>
<thead>
<tr>
<th></th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 (antes)</td>
<td>319,80 ± 128,08 Ab</td>
<td>311,80 ± 283,57 Ab</td>
<td>608,80 ± 134,9 Ab</td>
</tr>
<tr>
<td>T1 (120 min.)</td>
<td>359,00 ± 178,41 Ab</td>
<td>372,20 ± 174,32 Ab</td>
<td>445,80 ± 107,63 Ab</td>
</tr>
<tr>
<td>T2 (410 min.)</td>
<td>210,20 ± 136,57 Ab</td>
<td>200,60 ± 141,94 Ab</td>
<td>535,60 ± 400,86 Ab</td>
</tr>
</tbody>
</table>

Basófilos (0 – 200/µl)

<table>
<thead>
<tr>
<th></th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp 0 (antes)</td>
<td>0,00 ± 0,00 Aa</td>
<td>26,20 ± 58,58 Aa</td>
<td>0,00 ± 0,00 Aa</td>
</tr>
<tr>
<td>T0 (antes)</td>
<td>0,00 ± 0,00 Aa</td>
<td>45,20 ± 63,04 Ab</td>
<td>0,00 ± 0,00 Aa</td>
</tr>
<tr>
<td>T1 (120 min.)</td>
<td>0,00 ± 0,00 Aa</td>
<td>20,00 ± 55,90 Aa</td>
<td>0,00 ± 0,00 Aa</td>
</tr>
</tbody>
</table>

Letras maiúsculas diferentes, dentro da coluna, diferem entre si (p < 0,05).
Letras minúsculas diferentes, dentro da linha, diferem entre si (p < 0,05).

Tabela 18 - Efeito de diferentes soluções de enema sobre o número de plaquetas (x 10³/µl) de eqüinos hígidos.

<table>
<thead>
<tr>
<th>Grupos experimentais</th>
<th>Água e sabão</th>
<th>Solução eletrolítica</th>
<th>Água e vaselina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempos</td>
<td>G1</td>
<td>G2</td>
<td>G3</td>
</tr>
<tr>
<td></td>
<td>T0 (antes)</td>
<td>T1 (120 min.)</td>
<td>T2 (410 min.)</td>
</tr>
<tr>
<td>Agua e sabao</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>T0 (antes)</td>
<td>206,80 ± 53,33 Ac</td>
<td>248,60 ± 42,84 Ab</td>
<td>287,60 ± 94,34 Ab</td>
</tr>
<tr>
<td>T1 (120 min.)</td>
<td>225,20 ± 35,08 Ab</td>
<td>252,60 ± 61,21 Ab</td>
<td>283,00 ± 69,77 Ab</td>
</tr>
<tr>
<td>T2 (410 min.)</td>
<td>208,00 ± 58,79 Ac</td>
<td>245,00 ± 22,24 Ab</td>
<td>298,20 ± 97,94 Ab</td>
</tr>
</tbody>
</table>

Letras maiúsculas diferentes, dentro da coluna, diferem entre si (p < 0,05).
Letras minúsculas diferentes, dentro da linha, diferem entre si (p < 0,05).
Valor de referência: 100.000 – 300.000/µl
4.2.1 – Bioquímica do sangue

A concentração sérica de albumina (Tab. 19) não apresentou diferença (p>0,05) entre os tempos dentro dos grupos 1 e 3. No grupo 2 houve uma elevação dos valores séricos, onde T0 e T2 apresentaram diferença (p<0,05). Não houve diferença (p>0,05) entre os grupos dentro dos tempos.

A concentração sérica de proteína não diferiu (p>0,05) entre os tempos dentro dos grupos 1 e 3, embora tenha ocorrido uma elevação dos seus valores dentro dos grupos (p>0,05). Já no grupo 2 houve diferença (p<0,05) entre os tempos, com maiores valores sendo observados no T2 em relação ao T0 (p<0,05). No tempo 0, a concentração sérica de proteína diferiu entre os grupos (G1=G3 > G2), bem como no tempo 2 (G3> G1=G2).

A osmolalidade plasmática manteve-se dentro dos limites de referência, não havendo diferença (p>0,05) entre os tempos dentro dos grupos 1 e 3. No grupo 2, houve elevação dos valores (p<0,05) entre T0 e T2. Não houve diferença (p>0,05) entre os grupos dentro dos tempos 1 e 2, entretanto, observaram-se diferenças (p<0,05) entre os grupos dentro do tempo 2 (G2> G1=G3).

A uréia manteve-se dentro dos limites de referência durante o experimento, não havendo diferença (p>0,05) entre os tempos dentro dos grupos. Houve diferença (p>0,05) entre os grupos dentro de T0 (G2> G1=G3), T1 (G3<G1<G2) e T2 (G2>G1=G3).

A creatinina manteve-se dentro dos valores de referência, não ocorrendo diferenças (p>0,05) entre os tempos dentro dos grupos. Em todos os três tempos, houve diferença (p<0,05) entre os grupos (G2>G1=G3).

A glicose embora mantendo-se dentro dos limites de referência adotados apresentou diferença (p<0,05) entre os tempos dentro do grupo 1 e 2, não havendo diferença entre os tempos dentro do grupo 3.

A administração das diferentes soluções de enema não causou alterações significativas nas variáveis bioquímicas avaliadas nesse experimento.

A osmolalidade plasmática manteve-se inalterada nos grupos 1 e 3, enquanto apresentou elevação significativa no grupo 2. A osmolalidade é definida como a concentração de todos os solutos em um dado peso de água. A elevação da osmolalidade indica uma deficiência de água relativa aos solutos no FEC. Devido à água mover-se livremente entre o FIC e o FEC, isto também indica uma deficiência de água corpórea total relativa aos solutos corpóreos totais. Embora um excesso de sódio possa causar um estado de hiperosmolalidade secundária à hipernatremia, a grande maioria dos casos é decorrente da excessiva perda de água associada à diminuição da ingestão de água ou excreção excessiva (Verbalis, 2003). Aparentemente, a presença de soluções dentro da porção distal do cólon menor e reto associada à distensão intestinal, bem como as prováveis alterações inflamatórias decorrentes da sua utilização podem causar alteração na permeabilidade capilar e movimento de água do FEC para o terceiro espaço. Outra hipótese é que tenha ocorrido um movimento de água do FEC para o terceiro espaço na tentativa de equilibrar a osmolalidade.
dos dois compartimentos, embora a solução isotónica infundida tenha apresentado osmolalidade semelhante à do plasma.

A concentração sérica de uréia, comumente referenciada como BUN (nitrogênio uréico sanguíneo), é regulada basicamente por dois mecanismos: taxa de síntese da uréia pelos hepatócitos e a taxa de clearence de uréia pelos rins. A síntese da uréia pelos hepatócitos depende da adequada função hepática e é influenciada pelo consumo de proteína ou catabolismo, enquanto o clearence da uréia depende da taxa de filtração glomerular e reabsorção de uréia pelos túbulos renais. Alterações na concentração da uréia podem ser encontradas após diurese prolongada ou disfunção hepática (Stockham, 1995). A administração de diferentes soluções de enema não causou alteração nos valores séricos de uréia. Provavelmente, as soluções de enema não têm influência sobre a taxa de filtração glomerular bem como sobre a função hepática, sendo seguros sob este ponto de avaliação. As diferenças observadas entre os grupos dentro dos tempos são frutos da variação individual das amostras que compuseram cada grupo, ou do período de restrição hídrica e alimentar imposta durante a coleta dos dados.

Nos mamíferos, a concentração plasmática de glicose representa o equilíbrio entre vias bioquímicas envolvendo carboidratos (gliconeogênese, glicogenólise e glicólise), interações hormonais e ingestão dietética (Stockham, 1995). Durante o experimento as concentrações de glicose diminuíram nos grupos 1 e 2, mantendo-se estável no grupo 3. A diminuição dos valores da glicose pode resultar da manipulação das amostras ou de estados de diminuição da ingestão, restrição alimentar além de outras causas. A provável razão da discreta diminuição dos valores da glicose nos grupos 1 e 2 foi a restrição alimentar de 10 horas pela qual os animais foram submetidos durante o experimento, embora esta diminuição não tenha sido observada no grupo 3.

4.3 - Avaliação do equilíbrio ácido-base e perfil eletrolítico

A concentração sérica de Na⁺ se manteve dentro dos limites fisiológicos no grupo 2 em todos os tempos (Tab. 20). Entretanto, nos grupos 1 (tempo 2) e 3 (tempo 1) a concentração deste eletrólito diminuiu para valores abaixo dos limites fisiológicos da espécie. No grupo 3 houve um retorno da concentração de Na⁺ aos valores normais, fato não observado no grupo 1 onde houve uma diminuição gradual dos valores séricos de Na⁺. No grupo 1 ocorreu diferença (p<0,05) entre T0 (tempo 0) e T2 (tempo2). Nos demais grupos não houve diferença (p>0,05) entre os tempos dentro do grupo, e não foi encontrada nenhuma diferença entre os grupos dentro do tempo (p>0,05).
Tabela 19 – Efeito de diferentes soluções de enema sobre os valores séricos de albumina, proteína total, osmolalidade, uréia, creatinina e glicose de eqüinos hígidos.

<table>
<thead>
<tr>
<th>Grupos experimentais</th>
<th>Água e sabão</th>
<th>Solução eletrolítica</th>
<th>Água e vaselina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albúmina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T 0 (antes)</td>
<td>2,60 ± 0,92<sup>Ab</sup></td>
<td>2,36 ± 0,81<sup>Ba</sup></td>
<td>2,60 ± 0,27<sup>Aa</sup></td>
</tr>
<tr>
<td>T 1 (120 min.)</td>
<td>2,54 ± 0,61<sup>Ab</sup></td>
<td>2,70 ± 0,61<sup>Ba</sup></td>
<td>2,62 ± 0,31<sup>Aa</sup></td>
</tr>
<tr>
<td>T 2 (410 min.)</td>
<td>2,82 ± 0,55<sup>Aa</sup></td>
<td>2,86 ± 0,36<sup>Aa</sup></td>
<td>2,54 ± 0,39<sup>Aa</sup></td>
</tr>
<tr>
<td>Proteína total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T 0 (antes)</td>
<td>6,96 ± 0,11<sup>Aa</sup></td>
<td>6,68 ± 0,38<sup>Bb</sup></td>
<td>7,02 ± 0,50<sup>Aa</sup></td>
</tr>
<tr>
<td>T 1 (120 min.)</td>
<td>6,90 ± 0,29<sup>Aa</sup></td>
<td>6,82 ± 0,43<sup>Ba</sup></td>
<td>6,96 ± 0,57<sup>Aa</sup></td>
</tr>
<tr>
<td>T 2 (410 min.)</td>
<td>7,00 ± 0,53<sup>Ab</sup></td>
<td>6,98 ± 0,44<sup>Ab</sup></td>
<td>7,20 ± 0,50<sup>Aa</sup></td>
</tr>
<tr>
<td>Osmolalidade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T 0 (antes)</td>
<td>279,80 ± 4,93<sup>Aa</sup></td>
<td>276,12 ± 2,58<sup>Aa</sup></td>
<td>277,64 ± 2,77<sup>Aa</sup></td>
</tr>
<tr>
<td>T 1 (120 min.)</td>
<td>278,23 ± 4,81<sup>Aa</sup></td>
<td>278,75 ± 2,74<sup>Aa</sup></td>
<td>277,17 ± 2,63<sup>Aa</sup></td>
</tr>
<tr>
<td>T 2 (410 min.)</td>
<td>277,08 ± 5,58<sup>Ab</sup></td>
<td>292,76 ± 30,1<sup>Ba</sup></td>
<td>277,31 ± 2,54<sup>Ab</sup></td>
</tr>
<tr>
<td>Uréia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T 0 (antes)</td>
<td>15,80 ± 2,28<sup>Ab</sup></td>
<td>17,60 ± 4,03<sup>Aa</sup></td>
<td>14,00 ± 1,22<sup>Ac</sup></td>
</tr>
<tr>
<td>T 1 (120 min.)</td>
<td>15,80 ± 1,65<sup>Ab</sup></td>
<td>17,60 ± 3,84<sup>Aa</sup></td>
<td>14,40 ± 1,14<sup>Ac</sup></td>
</tr>
<tr>
<td>T 2 (410 min.)</td>
<td>16,00 ± 2,00<sup>Aa</sup></td>
<td>18,40 ± 3,36<sup>Aa</sup></td>
<td>15,00 ± 0,70<sup>Ac</sup></td>
</tr>
<tr>
<td>Creatinina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T 0 (antes)</td>
<td>0,86 ± 0,11<sup>Ab</sup></td>
<td>1,22 ± 0,49<sup>Aa</sup></td>
<td>0,84 ± 0,23<sup>Ab</sup></td>
</tr>
<tr>
<td>T 1 (120 min.)</td>
<td>0,94 ± 0,15<sup>Ab</sup></td>
<td>1,28 ± 0,54<sup>Aa</sup></td>
<td>1,02 ± 0,23<sup>Ab</sup></td>
</tr>
<tr>
<td>T 2 (410 min.)</td>
<td>0,94 ± 0,19<sup>Ab</sup></td>
<td>1,36 ± 0,52<sup>Aa</sup></td>
<td>0,98 ± 0,27<sup>Ab</sup></td>
</tr>
<tr>
<td>Glicose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T 0 (antes)</td>
<td>90,40 ± 12,91<sup>Aa</sup></td>
<td>84,20 ± 2,94<sup>Ab</sup></td>
<td>84,60 ± 6,06<sup>Ab</sup></td>
</tr>
<tr>
<td>T 1 (120 min.)</td>
<td>87,60 ± 13,50<sup>Ab</sup></td>
<td>78,60 ± 5,94<sup>Bb</sup></td>
<td>86,80 ± 8,16<sup>Ac</sup></td>
</tr>
<tr>
<td>T 2 (410 min.)</td>
<td>83,80 ± 19,67<sup>Bab</sup></td>
<td>79,20 ± 7,98<sup>Bb</sup></td>
<td>86,80 ± 9,03<sup>Ac</sup></td>
</tr>
</tbody>
</table>

^{Ab} Letras diferentes, dentro da coluna, diferem entre si (p < 0,05).
^{ab} Letras diferentes, dentro da linha, diferem entre si (p < 0,05).
<table>
<thead>
<tr>
<th>Grupos experimentais</th>
<th>Tempos</th>
<th>Água e sabão</th>
<th>Solução eletrolítica</th>
<th>Água e vaselina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sódio (135-145 mEq/l)</td>
<td></td>
<td>G1</td>
<td>G2</td>
<td>G3</td>
</tr>
<tr>
<td>T0 (antes)</td>
<td>135,80 ± 2,38<sup>AAa</sup></td>
<td>135,60 ± 1,51<sup>AAa</sup></td>
<td>135,00 ± 1,58<sup>AAa</sup></td>
<td></td>
</tr>
<tr>
<td>T1 (120 min.)</td>
<td>135,20 ± 2,28<sup>ABba</sup></td>
<td>135,40 ± 1,14<sup>AAa</sup></td>
<td>134,80 ± 1,30<sup>AAa</sup></td>
<td></td>
</tr>
<tr>
<td>T2 (410 min.)</td>
<td>134,60 ± 2,70<sup>Ba</sup></td>
<td>135,60 ± 1,34<sup>AAa</sup></td>
<td>135,00 ± 1,64<sup>AAa</sup></td>
<td></td>
</tr>
<tr>
<td>Potássio (3-5 mEq/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0 (antes)</td>
<td>4,06 ± 0,40<sup>AAa</sup></td>
<td>4,16 ± 0,26<sup>AAa</sup></td>
<td>4,22 ± 0,14<sup>AAa</sup></td>
<td></td>
</tr>
<tr>
<td>T1 (120 min.)</td>
<td>3,90 ± 0,22<sup>AAa</sup></td>
<td>3,90 ± 0,33<sup>Baa</sup></td>
<td>4,02 ± 0,16<sup>AAa</sup></td>
<td></td>
</tr>
<tr>
<td>T2 (410 min.)</td>
<td>3,96 ± 0,35<sup>AAa</sup></td>
<td>3,86 ± 0,38<sup>Baa</sup></td>
<td>3,98 ± 0,24<sup>Baa</sup></td>
<td></td>
</tr>
<tr>
<td>Cloretos (99-105 mEq/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0 (antes)</td>
<td>103,20 ± 1,78<sup>AAa</sup></td>
<td>102,40 ± 1,51<sup>AAa</sup></td>
<td>102,00 ± 1,87<sup>AAa</sup></td>
<td></td>
</tr>
<tr>
<td>T1 (120 min.)</td>
<td>101,80 ± 2,58<sup>Ba</sup></td>
<td>101,60 ± 2,88<sup>AAa</sup></td>
<td>101,40 ± 1,67<sup>AAa</sup></td>
<td></td>
</tr>
<tr>
<td>T2 (410 min.)</td>
<td>101,00 ± 2,44<sup>Ba</sup></td>
<td>101,80 ± 3,27<sup>AAa</sup></td>
<td>101,40 ± 1,14<sup>AAa</sup></td>
<td></td>
</tr>
<tr>
<td>Cálcio total (9,6 – 13,2 mg/dl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0 (antes)</td>
<td>10,54 ± 2,17<sup>AAa</sup></td>
<td>10,30 ± 2,14<sup>AAa</sup></td>
<td>9,32 ± 0,90<sup>AAa</sup></td>
<td></td>
</tr>
<tr>
<td>T1 (120 min.)</td>
<td>9,74 ± 1,15<sup>AAa</sup></td>
<td>9,98 ± 2,31<sup>AAa</sup></td>
<td>8,94 ± 2,57<sup>AAa</sup></td>
<td></td>
</tr>
<tr>
<td>T2 (410 min.)</td>
<td>8,82 ± 0,47<sup>AAa</sup></td>
<td>9,30 ± 1,73<sup>AAa</sup></td>
<td>9,84 ± 1,16<sup>AAa</sup></td>
<td></td>
</tr>
<tr>
<td>Magnésio (1,4-2,5 mg/dl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0 (antes)</td>
<td>1,42 ± 0,27<sup>AAa</sup></td>
<td>1,90 ± 0,79<sup>AAa</sup></td>
<td>1,44 ± 0,27<sup>AAa</sup></td>
<td></td>
</tr>
<tr>
<td>T1 (120 min.)</td>
<td>1,44 ± 0,34<sup>AAa</sup></td>
<td>1,60 ± 0,46<sup>AAa</sup></td>
<td>1,42 ± 0,58<sup>AAa</sup></td>
<td></td>
</tr>
<tr>
<td>T2 (410 min.)</td>
<td>1,48 ± 0,50<sup>AAa</sup></td>
<td>1,86 ± 0,54<sup>AAa</sup></td>
<td>1,82 ± 0,54<sup>AAa</sup></td>
<td></td>
</tr>
</tbody>
</table>

^{AAa}Letras maiúsculas diferentes, dentro da coluna, diferem entre si (p < 0,05).
^{bab}Letras minúsculas diferentes, dentro da linha, diferem entre si (p < 0,05).

O sódio é o cátion mais abundante no FEC (Seahorn e Seahorn, 2003) e mudanças na sua concentração sérica geralmente refletem mudanças no equilíbrio hídrico. Embora comuns nos pacientes em terapia intensiva, os desequilíbrios da concentração de Na⁺ são mal compreendidos (Kraft et al., 2005). A principal mudança observada durante o experimento foi a diminuição gradual da concentração sérica de Na⁺ no grupo 1 e baseando-se na literatura científica pode-se concluir que a administração de enemas com solução de água e sabão induz um quadro de hiponatremia, embora nenhum animal tenha desenvolvido sintomatologia clínica condizente.

A hiponatremia ocorre quando a concentração sérica de Na⁺ cai para valores abaixo de 135 mEq/l (Divers et al., 1986; Kraft et al., 2005), podendo ser resultado de uma deficiência relativa de Na⁺ ou um excesso de água. Entretanto, a hiponatremia está quase invariavelmente associada com a perda excessiva de fluido rico em Na⁺. Com base nos dados, não se pode concluir o real mecanismo pelo qual a solução de água e sabão desencadeou um quadro de hiponatremia, mas provavelmente, a rápida infusão do enema e a...
permanência deste dentro da porção distal do cólon menor e reto, causando distensão, provocou um desvio de fluido rico em Na+ do FEC para o terceiro espaço. Outra hipótese é que alterações inflamatórias na mucosa colônica e retal secundária a repetidos enemas provocou alterações nos mecanismos de excreção e absorção de eletrólitos e fluido neste segmento. Embora a concentração sérica de Na+ no grupo 1 tenha diminuído para valores inferiores aos dos limites de referência, nenhum sinal clínico compatível com hiponatremia foi identificado neste grupo. Todavia, vale ressaltar que é provável que repetidos enemas possam causar um quadro grave de hiponatremia.

A concentração sérica de potássio se manteve dentro dos limites de referência para a espécie durante todo o período experimental nos três grupos. Todavia, foi observado uma discreta diminuição dos valores séricos deste eletrólito em todos os grupos. No grupo 1 não houve diferença (p>0,05) entre os tempos. Por outro lado, no grupo 2 e 3 houveram diferenças (p<0,05) entre os tempos dentro de cada grupo.

Corroborando os dados de Jorgensen et al. (1985) a repetida utilização de enemas provoca diminuição da concentração sérica de potássio. Entretanto, diferente do quadro hipocalêmico observado por aqueles autores, nenhum animal desenvolveu hipocalemia neste estudo com este modelo experimental.

A diminuição da concentração sérica de potássio pode resultar de diversos mecanismos: perda aumentada, desvio transcelular ou ingestão diminuída. A elevada perda de potássio através do trato gastrintestinal é a principal causa de diminuição dos valores séricos deste eletrólito, enquanto a diminuição da ingestão de potássio raramente ocorre (Rastergar e Soleimani, 2001). Provavelmente, a diminuição dos valores de potássio neste estudo foi causada pela repetida administração de enemas provocando uma excessiva perda de potássio junto às fezes.

Embora tenham sido realizado somente três enemas em cada grupo durante o experimento é provável que a administração excessiva de enemas possa causar um quadro de hipocalemia, entretanto, mais estudos são necessários para comprovar esta hipótese.

A concentração sérica de cloretos manteve-se dentro da faixa de normalidade em todos os grupos, não havendo diferença (p>0,05) entre os grupos dentro de cada tempo e entre os tempos dentro dos grupos 2 e 3. Entretanto foi observada diferença (p<0,05) entre o tempo 0 e os tempos 1 e 2 no grupo 1. Observa-se que embora a concentração de cloretos tenha diminuído em todos os grupos, a maior diferença foi observada no grupo 1 (água e sabão).

As mudanças na concentração sérica de cloretos geralmente acompanham àquelas do sódio (Divers et al., 1986) e neste estudo não foi diferente. O grupo 1 foi o único a apresentar diminuição dos valores séricos de sódio, bem como foi o único a apresentar diminuição significativa dos valores de cloretos.

Não houve diferença (p>0,05) na concentração de cálcio total entre os tempos dentro de cada grupo e entre os grupos dentro de cada tempo. A solução de água com sabão provocou uma
diminuição mais marcante na concentração de cálcio total quando comparada às outras soluções.

A hipocalcemia ocorre quando a concentração plasmática de cálcio total encontra-se abaixo de 8,6 mg/dl ou quando a concentração do cálcio ionizável está abaixo de 1,1 mg/dl. A hipocalcemia é um achado constante após a administração de enemas hipertônicos fosfatados (Jorgensen et al., 1985). Embora não observada neste estudo é provável que a administração de sucessivos enemas em curto período de tempo possa provocar maiores diminuições na concentração do cálcio total.

A diminuição dos valores séricos de cálcio ocorre primariamente devido à hipoalbuminemia, e para cada diminuição de 1g/dl na concentração de albumina (abaixo de 3 mg/dl), a concentração sérica de cálcio total cai aproximadamente 0,8 mg/dl (Kraft et al., 2005). A hipoalbuminemia não foi observada neste estudo, mas ao contrário, foi observada elevação dos seus valores. Dessa forma, a diminuição da concentração sérica do cálcio total é secundária a outras causas, como por exemplo, hipomagnesemia, sepsis, hiperfósfatemia, pancreatite, hipoparatireoidismo, dentre outras. Todavia, nenhum destes fatores foi identificado durante o experimento.

A administração de enemas ricos em fósforo pode provocar quadros de hipocalcemia (Jorgensen et al., 1985). Lesões ao epitélio colônico e retal após a administração de sucessivos enemas pode aumentar a absorção de fósforo e quando o produto da solubilidade cálcio-fósforo é excedido, o fósforo pode ligar-se ao cálcio precipitando-o. Aumentos na concentração intracelular de fósforo também promovem a captação celular do cálcio sérico, diminuindo ainda mais a concentração do cálcio (Jorgensen et al., 1985). Embora a concentração eletrolítica final das soluções administradas não tenha sido analisada, é provável que a solução de água e sabão tenha valores elevados de fósforo, entretanto isso carece de comprovação científica.

O magnésio se manteve dentro dos limites fisiológicos e não houve diferença (p>0,05) entre os tempos dentro de cada grupo e entre os grupos dentro de cada tempo. Observa-se que a concentração sérica do magnésio se manteve relativamente estável durante todo o período experimental em todos os grupos. Embora a hipomagnesemia seja comum após a administração de enemas hipertônicos (Walton et al., 2000), tal alteração não foi diagnosticada durante este experimento.

A tensão de dióxido de carbono (TCO₂) (Tab. 21) apresentou comportamento diferente entre os grupos (Graf. 6). No grupo 1 houve discreta elevação dos seus valores sem contudo provocar diferença (p>0,05) entre os tempos. Já nos grupos 2 e 3 houve diminuição dos valores de TCO₂, com diferença (p<0,05) entre os tempos dentro dos grupos. No tempo 0, o grupo 1 diferiu (p<0,05) do grupo 2 e 3, que por sua vez foram semelhantes (p>0,05).

No tempo 1 não ocorreu diferença (p>0,05) entre os grupos. Já no tempo 2, os menores valores foram os do grupo 3, quando comparados aos grupos 1 e 2 (p<0,05). A pCO₂ (Tab. 21) apresentou diminuição dos seus valores ao longo do
tempo. Essa diferença de valores (p<0,05) foi observada entre os tempos 0 e 2 no grupo 1. Embora o valor da pCO₂ tenha apresentado diminuição (p<0,05) também no grupo 2, ocorreu elevação no tempo 2 se igualando a zero (p>0,05). No grupo 3 apenas o tempo 0 diferiu do 2 (p<0,05). Não foi observada nenhuma diferença (p>0,05) entre os grupos dentro de cada tempo.

Seguindo a mesma variação da TCO₂ e pCO₂, os valores de pH apresentaram comportamentos diferentes entre os grupos (Graf. 7). No grupo 1 houve aumento (p<0,05) do valor do pH o que provocou diferença (p<0,05) entre os tempos 0 e 2. Diferentemente do grupo 1, o pH do grupo 2 se manteve constante durante todo o período experimental não havendo diferença (p>0,05) entre os tempos dentro deste grupo. Já no grupo 3 foi observada a mesma resposta daquela descrita para o grupo 1.

Tabela 21 – Efeito de diferentes soluções de enema sobre o TCO₂, PaCO₂, pH, NaHCO₃, desvio de base e anion gap de eqüinos hígidos.

<table>
<thead>
<tr>
<th>Grupos experimentais</th>
<th>Tempos</th>
<th>Água e sabão</th>
<th>Solução eletrolítica</th>
<th>Água e vaselina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T 0 (antes)</td>
<td>G₁</td>
<td>G₂</td>
<td>G₃</td>
</tr>
<tr>
<td>✓ TCO₂ (25 – 32 mEq/l)</td>
<td>29,20 ± 1,78 Ab</td>
<td>31,60 ± 2,07 Ab</td>
<td>30,80 ± 2,04 Ab</td>
<td></td>
</tr>
<tr>
<td>✓ PaCO₂</td>
<td>42,64 ± 2,27 Ab</td>
<td>44,16 ± 3,36 Ab</td>
<td>44,14 ± 2,45 Ab</td>
<td></td>
</tr>
<tr>
<td>✓ pH (7,35 – 7,45)</td>
<td>7,42 ± 0,01 Ab</td>
<td>7,44 ± 0,00 Ab</td>
<td>7,43 ± 0,01 Ab</td>
<td></td>
</tr>
<tr>
<td>✓ NaHCO₃ (20 - 28 mEq/l)</td>
<td>28,00 ± 1,78 Ab</td>
<td>30,32 ± 2,07 Ab</td>
<td>29,56 ± 2,10 Ab</td>
<td></td>
</tr>
<tr>
<td>✓ Desvio de base (–4 – +4)</td>
<td>3,60 ± 2,19 Ab</td>
<td>6,20 ± 1,78 Ab</td>
<td>5,60 ± 2,19 Ab</td>
<td></td>
</tr>
<tr>
<td>✓ Anion gap (6 – 14 mEq/l)</td>
<td>8,60 ± 1,14 Ab</td>
<td>7,20 ± 1,30 Ab</td>
<td>7,60 ± 1,15 Ab</td>
<td></td>
</tr>
</tbody>
</table>

AbLetras maiúsculas diferentes, dentro da coluna, diferem entre si (p < 0,05).
AbLetras minúsculas diferentes, dentro da linha, diferem entre si (p < 0,05).
Gráfico 6 - Efeito da administração de diferentes enemas sobre a TCO₂ de equinos híbridos.

Gráfico 7 - Efeito da administração de diferentes enemas sobre o pH de equinos híbridos.
Em relação ao bicarbonato (HCO₃⁻), o grupo 1 apresentou elevação dos valores ao longo do tempo (Graf. 8), sem contudo haver diferença (p>0,05) entre os tempos. Por outro lado, houve uma diminuição dos valores de HCO₃⁻ durante os tempos nos grupos 2 e 3.

Todavia a flutuação dos valores no grupo 2 (T₀>T₁=T₂) e grupo 3 (T₀=T₁>T₂) provocaram diferença (p<0,05). A comparação dos grupos dentro de cada tempo revelou diferenças (p<0,05) nos tempos 0 (G₂=G₃>G₁) e 2 (G₁=G₂>G₃).

Gráfico 8 - Efeito da administração de diferentes enemas sobre a concentração de bicarbonato de equinos hígidos.

Embora não tenha sido significativo (p>0,05) houve elevação do valor do desvio de base no grupo 1 (Graf. 9). Já nos grupos 2 e 3 houve diminuição dos valores do desvio de base. No tempo 0 maiores valores (p<0,05) foram observados nos grupos 2 e 3 em relação ao 1. No tempo 1, o grupo 2 apresentou maior valor em relação ao 1 (p<0,05), se igualando ao 2 (p>0,05). Já no tempo 2, um menor valor (p<0,05) foi observado no grupo 3 em relação aos demais.
Gráfico 9 - Efeito da administração de diferentes enemas sobre o desvio de base de equinos hígidos.

O ânion gap apresentou aumento dos valores dentro dos grupos ao longo dos tempos. No grupo 1, a elevação do ânion gap não foi significativa (p>0,05). Já nos grupos 2 e 3 houve diferença (p<0,05) entre os tempos. Já os grupos diferiram (p<0,05) no tempo 0 (G1>G2; G1 e G2=G3).

Com base nos resultados apresentados na Tab. 21 e observando a relação entre as variáveis conclui-se que a administração de diferentes soluções de enema podem causar alterações no equilíbrio ácido-base. A solução com menor efeito sobre o equilíbrio ácido-base foi a solução eletrolítica, enquanto a solução de água com sabão provocou um quadro de alcalose metabólica caracterizado por elevação do pH e HCO₃⁻.

A alcalose metabólica é caracterizada pela elevação dos valores de pH e HCO₃⁻, ocorrendo frequentemente em associação com distúrbios do trato gastrintestinal (Carlson, 1997). Muitas destas desordens estão associadas com o desenvolvimento de déficits significativos de Na⁺ e Cl⁻, resultando na diminuição do volume circulante (Corley e Marr, 1998; Durward e Murdock, 2003). A perda de íons hidrogênio a partir do FEC pode ocorrer secundária ao movimento de íons hidrogênio para dentro das células em resposta a diminuição da concentração de potássio (Carlson, 1997).

Neste estudo observou-se que a administração de enemas compostos de água com sabão induz um quadro de hiponatremia, em referência ao valor de T0, e diminuição da concentração sérica
de potássio. Esses dois processos associados podem desencadear um quadro de alcalose, como o observado neste grupo em associação com a perda de íons hidrogênio. Era de esperar-se que esse distúrbio fosse rapidamente compensado pela elevação da pCO₂, mas isso não ocorreu. Embora os animais não tenham sido acompanhados por um período maior de tempo após o fim da administração do enema, é provável que ocorra uma resposta compensatória. Quimioreceptores presentes no centro respiratório identificam a alcalose metabólica e como resposta ocorre um quadro de hipoventilação resultando num aumento da pCO₂ (Carlson, 1997).

A elevação do ânion gap em todos os grupos foi um achado inesperado neste estudo (Graf. 7). A elevação do ânion gap ocorre comumente nos quadros de acidez metabólica (Carlson, 1997; Corley e Marr, 1998) e menos comumente nos quadros de alcalose metabólica (Bristol, 1982; Carlson, 1997). A elevação do ânion gap pode refletir elevação da concentração de ânions não mensuráveis ou diminuição dos cátions não mensuráveis. Aproximadamente dois terços do ânion gap origina-se da carga negativa das proteínas séricas, enquanto o restante reflete a concentração sérica de fosfato e ânions fortes, a exemplo do lactato, sulfato, β-OH butirato, acetocetato e ânions associados à uremia (Constable et al., 1998). Embora incomum, a alcalose metabólica desenvolvida pelos animais do grupo 1 foi acompanhada por elevação do ânion gap.

Gráfico 10 - Efeito da administração de diferentes enemas sobre o ânion gap de equinos hígidos.
4.4- Colonoscopia

O procedimento da colonoscopia não desencadeou nenhum quadro de desconforto abdominal nos animais estudados. Na medicina humana, a endoscopia colônica é o método mais efetivo para avaliação do cólon menor e reto, entretanto, a técnica requer treinamento e habilidade para reduzir a possibilidade de dor e desconforto ao paciente. Além disso, é imprescindível a utilização de anestesia geral para reduzir o desconforto ao paciente (Bar-Meir e Wallace, 2006). Embora não relatada na literatura veterinária, a colonoscopia demonstrou ser uma técnica de fácil realização e segura, requerendo apenas contenção em troncos. Entretanto, cabe ressaltar que apenas o reto e a porção distal do cólon menor são acessíveis durante o procedimento em decorrência da dificuldade de se promover um completo esvaziamento e limpeza do reto e cólon menor.

4.4.1- Avaliação macroscópica

Na primeira colonoscopia, antes do primeiro enema, a mucosa retal de todos os animais apresentava coloração rósea-pálida, sem presença de lesões ulcerativas ou edema (Fig. 3), entretanto 46,6% (7/15) apresentaram pequena lesão puntiforme 50 cm craniais ao ânus, aparentemente sem significado clínico.

Já na colonoscopia realizada após o terceiro enema, os achados variaram entre os grupos (Fig. 3). Em 100% dos animais do grupo 1 houve distensão da ampola retal e a mucosa retal apresentava-se hiperêmica com vasos sanguíneos bem evidentes. A mucosa retal de todos os animais apresentava edema, caracterizado pela hiperreflexibilidade da mucosa intestinal e pelo aumento de volume das pregas intestinais, que variou de discreto a moderado. Em 40% (2/5) dos animais foi visualizada grande quantidade de muco revestindo o teto dorsal do reto, além de uma pequena quantidade de líquido. No grupo 2 (solução isotônica) foi visualizada distensão da ampola retal e ausência de mudança na coloração da mucosa retal. No grupo 3 (água com vaselina) foi visualizada distensão da ampola retal não associada com mudanças de coloração da mucosa e edema. No grupo 3 (água com vaselina) foi visualizada distensão da ampola retal não associada com mudanças de coloração da mucosa retal. Em 80% (4/5) dos animais foram visualizadas fezes pastosas recobertas com vaselina e pequena quantidade de líquido. Apenas 20% (1/5) dos animais deste grupo apresentaram edema de mucosa.
A mucosa do trato gastrintestinal é coberta por células epiteliais especializadas que atuam como uma barreira física contra os patógenos da flora entérica. A lesão a essas células é observada comumente durante os episódios de enfermidade gastrintestinal podendo resultar no aumento da absorção de patógenos, toxinas e fatores imunogênicos para dentro da circulação sistêmica desencadeando um processo inflamatório (Sturm e Dignass, 2002). Dessa forma, a administração de soluções irritantes dentro do trato gastrintestinal equino pode aumentar a
absorção de patógenos e toxinas agravando o processo primário.

Provavelmente, a administração da solução de enema composta de água e sabão provocou uma reação inflamatória manifestada macroscópicamente pela alteração da coloração na mucosa retal. A mudança da coloração da mucosa colônica e retal após a administração de enemas é também relatada na literatura humana (Schmelzer et al., 2000).

4.4.2- Avaliação histológica

As maiores alterações foram identificadas no grupo 1 (água com sabão). Neste, 100% dos animais apresentaram algum grau de infiltração por células inflamatórias, principalmente neutrófilos. Em 40% (2/5) foi verificado grau moderado de infiltração inflamatória (Fig. 4), 40% (1/5) grau moderado e apenas 20% (2/5) apresentou-se normal (Fig. 6). Nos grupos 2 e 3 não foi identificada qualquer alteração inflamatória.

Quanto à congestão, todos os grupos apresentaram alguma alteração. Novamente, o grupo que apresentou maiores alterações foi o grupo da água com sabão. Neste grupo, 100% dos animais apresentam congestão variando de discreta (20% - 1/5) a moderada (80% - 4/5). No grupo 2, apenas 40% (2/5) dos animais apresentaram uma leve congestão, enquanto o restante dos permaneceu normal. Já o grupo 3 apresentou congestão que variou de leve (20% - 1/5) a moderada (20% - 1/5).

A presença de edema visualizada durante a colonoscopia não foi confirmada na histologia. O processo inflamatório parece desempenhar um papel central nas doenças do trato gastrintestinal. A mucosa colônica é rica em células inflamatórias e imunológicas capazes de produzir resposta inflamatória rápida e significativa à estimulação por antígenos, lesão tecidual e substâncias irritantes. Nesse contexto, a lâmina própria parece ser um importante local de regulação dessa inflamação. A lesão inflamatória intestinal marcada pelo grande acúmulo de células inflamatórias na lâmina própria, principalmente neutrófilos, é bem documentada na literatura veterinária (Moore et al., 1994; Gerard et al. 1999).

Neutrófilos são componentes chaves dos mecanismos normais de defesa e inflamação e apresentam importante papel na patogênesis da doença gastrintestinal grave. Neutrófilos ativados sofrem quimiotaxia, aderência ao endotélio vascular e migração aos tecidos adjacentes. Ao aderir-se ao endotélio e migrar através da parede vascular, os neutrófilos liberam substâncias nocivas que aumentam a permeabilidade vascular (Moore et al., 1994). A liberação de lipídeos vasoativos, a exemplo das prostaglandinas e leucotrienos, bem como enzimas proteolíticas, radicais livres de oxigênio e outros mediadores, perpetuam a reação inflamatória induzindo lesão celular e tecidual. Essa reação inflamatória quando não controlada pode acarretar quadros de diarreia ou alteração do padrão de motilidade gastrintestinal, a exemplo do íleo adinâmico.

A presença aumentada de linfócitos na lâmina própria dos animais que receberam a solução de água e sabão
indica que essa solução é altamente irritante para a mucosa intestinal. Dessa forma, a administração de sucessivos enemas pode provocar sérios danos à mucosa intestinal além de causar aumento da absorção de toxinas e liberação de mediadores inflamatórios. Mais estudos são necessários para avaliar se a resposta inflamatória será maior quando um maior número de enemas for realizado.

A ausência de infiltrado inflamatório nos grupos 2 e 3 indica que essas soluções são menos irritantes para a mucosa intestinal e, portanto, seriam as mais recomendadas quando da utilização dos enemas. Schmelzer et al. (2004) alerta para o fato que o efeito irritante dos enemas e as alterações ocorridas na mucosa são dependentes da quantidade de fezes presente no reto e porção distal do cólon menor na hora da infusão.

Embora a vaselina seja um derivado do petróleo, com potenciais efeitos lesivos sobre mucosas orgânicas, seus efeitos podem ter sido amenizados pela presença de fezes no reto. Da mesma forma, maiores efeitos irritantes poderiam ter sido observados com a solução de água com sabão caso não houvesse a presença de fezes durante a administração dos enemas.

Há de ressaltar-se que essa reação inflamatória observada no grupo da água com sabão pode ser maior ou menor dependendo da composição do sabão utilizado, quantidade utilizada para fazer o enema, além do número de enemas. No mercado nacional existem diversos produtos com composição diferentes, alguns apresentando soda caústica em sua composição. O sabão utilizado para formulação do enema neste estudo não possuía este produto na sua composição. Embora não se possa afirmar que a utilização de mais de seis gramas de sabão por litro de solução possa aumentar a gravidade da lesão, é possível que isto ocorra. Dessa forma, mais estudos são necessários para avaliar se a reação inflamatória é influenciada pela quantidade de sabão.

5- Conclusões

O efeito das soluções de enema sobre os parâmetros clínicos, homeostáticos, hematológicos e bioquímicos, bem como o efeito dessas soluções sobre as características macroscópicas e histológicas da mucosa do cólon menor distal e reto variaram em função do tipo de solução infundida. As maiores alterações observadas ocorreram no grupo da água com sabão neutro. Neste grupo, observou-se o desenvolvimento de alcalose metabólica, bem como a diminuição da concentração sérica de alguns eletrólitos. A utilização dessa solução induziu um quadro de colite em todos os animais do grupo. Embora tenha apresentado esses efeitos adversos, a solução de enema composta de água com sabão foi a que apresentou os melhores resultados sobre o umedecimento das fezes. Tal efeito é desejado nos casos de compactação do cólon menor distal e reto, entretanto, deve-se avaliar a relação custo-benefício da utilização dessa solução. Com base nos resultados, esta solução é contra-indicada em pacientes com alterações do equilíbrio ácido-base e eletrolítica, uma vez que ela pode exacerbar tais alterações.
Figura 4- Mucosa colônica normal
Figura 5 – Mucosa colônica com discreto infiltrado de células inflamatórias.
Figura 6 - Mucosa colônicas com moderado infiltrado inflamatório.
Outra possível conseqüência seria o aumento da absorção de endotoxinas em decorrência das alterações provocadas na mucosa intestinal.

Embora a solução de água com sabão seja amplamente utilizada no manejo das compactações da região distal do cólon menor e reto, estas devem ser substituídas por soluções com menores efeitos sobre os parâmetros clínicos, hematológicos, bioquímicos e morfoestruturais da mucosa intestinal. A solução que demonstrou os menores efeitos sobre os parâmetros avaliados foi a solução isotônica. Embora esta solução possua um efeito relativamente menor sobre o umedecimento das fezes, ela deveria ser a solução de escolha quando da opção pela realização de enemas. Com base na formulação adotada neste experimento é possível a manipulação da mesma em pequenos volumes que poderiam ser posteriormente diluídos na quantidade desejada.

6- Referências bibliográficas

MOORE, R. M., CHARALAMBOUS, A. C., MASTY, J. Alterations in colonic arterial and venous plasma neuropeptide...

VERBALIS, J. G. Disorders of body water homeostasis. *Best Practice*

Tabela 22 - Comparação do efeito de diferentes soluções de enema sobre a frequência cardíaca de eqüinos hígidos.

<table>
<thead>
<tr>
<th></th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>224</td>
<td>23361,71555</td>
<td>400,92206</td>
<td>74,01</td>
<td>0.0001</td>
</tr>
<tr>
<td>MODELO</td>
<td>56</td>
<td>22451,63555</td>
<td>910,08000</td>
<td>400,92206</td>
<td>74,01</td>
</tr>
<tr>
<td>ERRO</td>
<td>168</td>
<td>910,08000</td>
<td>400,92206</td>
<td>74,01</td>
<td>0.0001</td>
</tr>
<tr>
<td>Grupo</td>
<td>44</td>
<td>1458,99555</td>
<td>729,49777</td>
<td>134,66</td>
<td>0.0001</td>
</tr>
<tr>
<td>Repetição</td>
<td>4</td>
<td>6389,09333</td>
<td>1597,27333</td>
<td>294,86</td>
<td>0.0001</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td>6389,09333</td>
<td>1597,27333</td>
<td>294,86</td>
<td>0.0001</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>174</td>
<td>14344,02666</td>
<td>1793,00333</td>
<td>330,09</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

CV 6,63%

Tabela 23 - Comparação do efeito de diferentes soluções de enema sobre a frequência respiratória de eqüinos hígidos.

<table>
<thead>
<tr>
<th></th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>224</td>
<td>5522,59555</td>
<td>84,40825</td>
<td>17,82</td>
<td>0.0001</td>
</tr>
<tr>
<td>MODELO</td>
<td>56</td>
<td>1479,86222</td>
<td>915,73333</td>
<td>84,40825</td>
<td>17,82</td>
</tr>
<tr>
<td>ERRO</td>
<td>168</td>
<td>1479,86222</td>
<td>915,73333</td>
<td>84,40825</td>
<td>17,82</td>
</tr>
<tr>
<td>Grupo</td>
<td>44</td>
<td>194,15555</td>
<td>97,09777</td>
<td>20,50</td>
<td>0.0001</td>
</tr>
<tr>
<td>Repetição</td>
<td>4</td>
<td>194,15555</td>
<td>97,09777</td>
<td>20,50</td>
<td>0.0001</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td>194,15555</td>
<td>97,09777</td>
<td>20,50</td>
<td>0.0001</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>174</td>
<td>194,15555</td>
<td>97,09777</td>
<td>20,50</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

CV 17,15%

Tabela 24 - Comparação do efeito de diferentes soluções de enema sobre a temperatura retal de eqüinos hígidos.

<table>
<thead>
<tr>
<th></th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>224</td>
<td>29,68382</td>
<td>0,43313</td>
<td>13,41</td>
<td>0.0001</td>
</tr>
<tr>
<td>MODELO</td>
<td>56</td>
<td>24,25582</td>
<td>0,03230</td>
<td>13,41</td>
<td>0.0001</td>
</tr>
<tr>
<td>ERRO</td>
<td>168</td>
<td>5,42800</td>
<td>0,03230</td>
<td>13,41</td>
<td>0.0001</td>
</tr>
<tr>
<td>Grupo</td>
<td>44</td>
<td>0,66382</td>
<td>0,33191</td>
<td>10,27</td>
<td>0.0001</td>
</tr>
<tr>
<td>Repetição</td>
<td>4</td>
<td>6,92915</td>
<td>1,73228</td>
<td>53,62</td>
<td>0.0001</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td>6,92915</td>
<td>1,73228</td>
<td>53,62</td>
<td>0.0001</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>174</td>
<td>6,92915</td>
<td>1,73228</td>
<td>53,62</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

CV 0,47%
Tabela 25 - Comparação do efeito de diferentes soluções de enema sobre o tempo de perfusão capilar de eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>224</td>
<td>60,11555</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODELO</td>
<td>56</td>
<td>50,83555</td>
<td>0,90777</td>
<td>16,43</td>
<td>0,0001</td>
</tr>
<tr>
<td>ERRO</td>
<td>168</td>
<td>9,28000</td>
<td>0,055238</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppo</td>
<td>2</td>
<td>10,19555</td>
<td>5,09777</td>
<td>92,29</td>
<td>0,0001</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>13,22666</td>
<td>3,30666</td>
<td>59,86</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>224</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>14</td>
<td>1,04888</td>
<td>0,074920</td>
<td>1,36</td>
<td>0,1799</td>
</tr>
<tr>
<td>Tempo x Gruppo</td>
<td>28</td>
<td>1,27111</td>
<td>0,04539</td>
<td>0,82</td>
<td>0,7233</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>25,09333</td>
<td>3,13666</td>
<td>56,78</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>174</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>15,41%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 26 - Comparação do efeito de diferentes soluções de enema sobre a frequência do pulso de eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>224</td>
<td>23768,78222</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODELO</td>
<td>56</td>
<td>22208,30222</td>
<td>396,57682</td>
<td>42,70</td>
<td>0,0001</td>
</tr>
<tr>
<td>ERRO</td>
<td>168</td>
<td>1560,48000</td>
<td>9,28857</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppo</td>
<td>2</td>
<td>1805,12888</td>
<td>902,56444</td>
<td>97,17</td>
<td>0,0001</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>6542,24888</td>
<td>1635,56222</td>
<td>176,08</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>224</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>14</td>
<td>111,71555</td>
<td>7,97968</td>
<td>0,86</td>
<td>0,6043</td>
</tr>
<tr>
<td>Tempo x Gruppo</td>
<td>28</td>
<td>46,73777</td>
<td>1,66920</td>
<td>0,18</td>
<td>1,0000</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>13702,47111</td>
<td>1712,80888</td>
<td>184,40</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>174</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>15,41%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 27 - Comparação do efeito de diferentes soluções de enema sobre a pressão sistólica de eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>224</td>
<td>30057,44888</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODELO</td>
<td>56</td>
<td>17477,36888</td>
<td>312,09587</td>
<td>4,17</td>
<td>0,0001</td>
</tr>
<tr>
<td>ERRO</td>
<td>168</td>
<td>12580,08000</td>
<td>74,88142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppo</td>
<td>2</td>
<td>12,19555</td>
<td>6,09777</td>
<td>0,08</td>
<td>0,9218</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>8351,98222</td>
<td>2087,99555</td>
<td>27,88</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>224</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>14</td>
<td>1016,64888</td>
<td>72,61777</td>
<td>0,97</td>
<td>0,4864</td>
</tr>
<tr>
<td>Tempo x Gruppo</td>
<td>28</td>
<td>2102,60444</td>
<td>75,09301</td>
<td>1,00</td>
<td>0,4687</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>5993,93777</td>
<td>749,24222</td>
<td>10,01</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>174</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>8,33%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabela 28- Comparação do efeito de diferentes soluções de enema sobre os valores séricos de Na⁺ em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>129,20000</td>
<td>5,75333</td>
<td>9,77</td>
<td>0,0001</td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>115,06667</td>
<td>5,75333</td>
<td>9,77</td>
<td>0,0001</td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>14,13333</td>
<td>0,58889</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupoo</td>
<td>2</td>
<td>3,33333</td>
<td>1,66667</td>
<td>2,83</td>
<td>0,0788</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>27,20000</td>
<td>6,80000</td>
<td>11,55</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>1,73333</td>
<td>0,86667</td>
<td>1,97</td>
<td>0,2995</td>
</tr>
<tr>
<td>Tempo x Grupoo</td>
<td>4</td>
<td>2,13333</td>
<td>0,53333</td>
<td>0,91</td>
<td>0,4763</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>80,66667</td>
<td>10,08333</td>
<td>17,12</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV 0,57%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G1</th>
<th>p</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>p</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₀xT₁</td>
<td>0,2283</td>
<td>T₀xT₂</td>
<td>0,6839</td>
<td>T₀xT₂</td>
<td>0,6839</td>
<td>G₁xG₂</td>
<td>0,6839</td>
<td>G₁xG₂</td>
<td>0,6839</td>
<td>G₁xG₂</td>
<td>0,0504</td>
</tr>
<tr>
<td>T₀xT₂</td>
<td>0,0209</td>
<td>T₀xT₂</td>
<td>1,0000</td>
<td>T₀xT₂</td>
<td>0,6839</td>
<td>G₁xG₃</td>
<td>0,1123</td>
<td>G₁xG₃</td>
<td>0,1123</td>
<td>G₁xG₃</td>
<td>0,6839</td>
</tr>
<tr>
<td>T₁xT₂</td>
<td>0,2283</td>
<td>T₁xT₂</td>
<td>0,6829</td>
<td>T₁xT₂</td>
<td>1,0000</td>
<td>G₂xG₃</td>
<td>0,2283</td>
<td>G₂xG₃</td>
<td>0,2283</td>
<td>G₂xG₃</td>
<td>0,1123</td>
</tr>
</tbody>
</table>

Tabela 29- Comparação do efeito de diferentes soluções de enema sobre os valores séricos de K⁺ em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>3,68800</td>
<td>0,14486</td>
<td>4,40</td>
<td>0,0004</td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>2,89733</td>
<td>0,14486</td>
<td>4,40</td>
<td>0,0004</td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>0,79066</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupoo</td>
<td>2</td>
<td>0,10000</td>
<td>0,05000</td>
<td>1,52</td>
<td>0,2395</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>1,05688</td>
<td>0,26422</td>
<td>8,02</td>
<td>0,0003</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>0,44133</td>
<td>0,22066</td>
<td>6,70</td>
<td>0,0049</td>
</tr>
<tr>
<td>Tempo x Grupoo</td>
<td>4</td>
<td>0,05466</td>
<td>0,01366</td>
<td>0,41</td>
<td>0,7962</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>1,24444</td>
<td>0,15555</td>
<td>4,72</td>
<td>0,0014</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV 4,53%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G1</th>
<th>p</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>p</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₀xT₁</td>
<td>0,2283</td>
<td>T₀xT₂</td>
<td>0,6839</td>
<td>T₀xT₂</td>
<td>0,6839</td>
<td>G₁xG₂</td>
<td>0,6839</td>
<td>G₁xG₂</td>
<td>0,6839</td>
<td>G₁xG₂</td>
<td>0,0504</td>
</tr>
<tr>
<td>T₀xT₂</td>
<td>0,0209</td>
<td>T₀xT₂</td>
<td>1,0000</td>
<td>T₀xT₂</td>
<td>0,6839</td>
<td>G₁xG₃</td>
<td>0,1123</td>
<td>G₁xG₃</td>
<td>0,4180</td>
<td>G₁xG₃</td>
<td>0,6839</td>
</tr>
<tr>
<td>T₁xT₂</td>
<td>0,2283</td>
<td>T₁xT₂</td>
<td>0,6829</td>
<td>T₁xT₂</td>
<td>1,0000</td>
<td>G₂xG₃</td>
<td>0,2283</td>
<td>G₂xG₃</td>
<td>0,2283</td>
<td>G₂xG₃</td>
<td>0,1123</td>
</tr>
</tbody>
</table>
Tabela 30 - Comparação do efeito de diferentes soluções de enema sobre os valores séricos de Cl⁻ em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>195,9111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>169,9111</td>
<td>8,4955</td>
<td>7,84</td>
<td>0,0001</td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>26,0000</td>
<td>1,0833</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grup.</td>
<td>2</td>
<td>1,37777</td>
<td>0,6888</td>
<td>0,64</td>
<td>0,5381</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>37,4666</td>
<td>9,3666</td>
<td>8,65</td>
<td>0,0002</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>10,97777</td>
<td>5,4888</td>
<td>5,07</td>
<td>0,0146</td>
</tr>
<tr>
<td>Tempo x Grup.</td>
<td>4</td>
<td>4,35555</td>
<td>1,0888</td>
<td>1,01</td>
<td>0,4243</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>115,7333</td>
<td>14,4666</td>
<td>13,35</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>1,02%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 31 - Comparação do efeito de diferentes soluções de enema sobre os valores séricos de TCO₂ em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>197,6444</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>179,3778</td>
<td>8,9688</td>
<td>11,78</td>
<td>0,0001</td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>18,2667</td>
<td>0,7611</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grup.</td>
<td>2</td>
<td>11,5111</td>
<td>5,7555</td>
<td>7,56</td>
<td>0,0028</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>55,6444</td>
<td>13,9111</td>
<td>18,28</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>12,0444</td>
<td>6,0222</td>
<td>7,91</td>
<td>0,0023</td>
</tr>
<tr>
<td>Tempo x Grup.</td>
<td>4</td>
<td>11,6888</td>
<td>2,9222</td>
<td>3,84</td>
<td>0,0150</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>88,4888</td>
<td>11,0611</td>
<td>14,53</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>2,91%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G1</th>
<th>p</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>p</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₀xT₁</td>
<td>0,0439</td>
<td>T₀xT₁</td>
<td>0,2361</td>
<td>T₀xT₁</td>
<td>0,3711</td>
<td>G₁xG₂</td>
<td>0,2361</td>
<td>G₁xG₂</td>
<td>0,7369</td>
<td>G₁xG₂</td>
<td>0,2361</td>
</tr>
<tr>
<td>T₀xT₂</td>
<td>0,0027</td>
<td>T₀xT₂</td>
<td>0,3711</td>
<td>T₀xT₂</td>
<td>0,3711</td>
<td>G₁xG₃</td>
<td>0,0808</td>
<td>G₁xG₃</td>
<td>0,5491</td>
<td>G₁xG₃</td>
<td>0,5491</td>
</tr>
<tr>
<td>T₁xT₂</td>
<td>0,2361</td>
<td>T₁xT₂</td>
<td>0,7639</td>
<td>T₁xT₂</td>
<td>1,0000</td>
<td>G₂xG₃</td>
<td>0,5491</td>
<td>G₂xG₃</td>
<td>0,7639</td>
<td>G₂xG₃</td>
<td>0,5491</td>
</tr>
</tbody>
</table>

100
Tabela 32 - Comparação do efeito de diferentes soluções de enema sobre os valores séricos de PaCO₂ em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>299,82977</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>249,63244</td>
<td>12,48162</td>
<td>5,97</td>
<td>0,0001</td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>50,19733</td>
<td>2,09155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupo</td>
<td>2</td>
<td>10,29644</td>
<td>5,14822</td>
<td>2,46</td>
<td>0,1066</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>75,42977</td>
<td>18,85744</td>
<td>9,02</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>33,95511</td>
<td>16,97755</td>
<td>8,12</td>
<td>0,0020</td>
</tr>
<tr>
<td>Tempo x Grupo</td>
<td>4</td>
<td>10,01422</td>
<td>2,50355</td>
<td>1,2</td>
<td>0,3377</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>119,93688</td>
<td>14,99211</td>
<td>7,17</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>3,04%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G1</th>
<th>p</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>p</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₀ₓT₁</td>
<td>0.7953</td>
<td>T₀ₓT₁</td>
<td>0.122</td>
<td>T₀ₓT₁</td>
<td>0.1619</td>
<td>G₁ₓG₂</td>
<td>0.1096</td>
<td>G₁ₓG₂</td>
<td>0.4389</td>
<td>G₁ₓG₂</td>
<td>0.0532</td>
</tr>
<tr>
<td>T₀ₓT₂</td>
<td>0.0254</td>
<td>T₀ₓT₂</td>
<td>0.0566</td>
<td>T₀ₓT₂</td>
<td>0.0200</td>
<td>G₁ₓG₃</td>
<td>0.1141</td>
<td>G₁ₓG₃</td>
<td>0.6502</td>
<td>G₁ₓG₃</td>
<td>0.1389</td>
</tr>
<tr>
<td>T₁ₓT₂</td>
<td>0.0444</td>
<td>T₁ₓT₂</td>
<td>0.4909</td>
<td>T₁ₓT₂</td>
<td>0.3044</td>
<td>G₂ₓG₃</td>
<td>0.9827</td>
<td>G₂ₓG₃</td>
<td>0.2247</td>
<td>G₂ₓG₃</td>
<td>0.6196</td>
</tr>
</tbody>
</table>

Tabela 33 - Comparação do efeito de diferentes soluções de enema sobre os valores séricos de pH em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>0,02878</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>0,02404</td>
<td>0,00120</td>
<td>6,09</td>
<td>0,0001</td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>0,00474</td>
<td>0,00019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupo</td>
<td>2</td>
<td>0,00515</td>
<td>0,00257</td>
<td>13,04</td>
<td>0,0001</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>0,00196</td>
<td>0,00049</td>
<td>2,49</td>
<td>0,0699</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>0,00010</td>
<td>0,00005</td>
<td>0,25</td>
<td>0,7782</td>
</tr>
<tr>
<td>Tempo x Grupo</td>
<td>4</td>
<td>0,01235</td>
<td>0,00308</td>
<td>15,64</td>
<td>0,0001</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>0,00447</td>
<td>0,00055</td>
<td>2,83</td>
<td>0,0230</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>0,18%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G1</th>
<th>p</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>p</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₀ₓT₁</td>
<td>0.7055</td>
<td>T₀ₓT₁</td>
<td>0.4387</td>
<td>T₀ₓT₁</td>
<td>1.0000</td>
<td>G₁ₓG₂</td>
<td>0.0391</td>
<td>G₁ₓG₂</td>
<td>0.0162</td>
<td>G₁ₓG₂</td>
<td>0.0061</td>
</tr>
<tr>
<td>T₀ₓT₂</td>
<td>0.0001</td>
<td>T₀ₓT₂</td>
<td>0.5790</td>
<td>T₀ₓT₂</td>
<td>0.0004</td>
<td>G₁ₓG₃</td>
<td>0.3541</td>
<td>G₁ₓG₃</td>
<td>0.5790</td>
<td>G₁ₓG₃</td>
<td>0.0001</td>
</tr>
<tr>
<td>T₁ₓT₂</td>
<td>0.0001</td>
<td>T₁ₓT₂</td>
<td>0.1896</td>
<td>T₁ₓT₂</td>
<td>0.0004</td>
<td>G₂ₓG₃</td>
<td>0.2279</td>
<td>G₂ₓG₃</td>
<td>0.0541</td>
<td>G₂ₓG₃</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

101
Tabela 34 - Comparação do efeito de diferentes soluções de enema sobre os valores séricos de HCO₃⁻ em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>198,73911</td>
<td>8,76922</td>
<td>9,01</td>
<td>0,0001</td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>175,38444</td>
<td>8,76922</td>
<td>9,01</td>
<td>0,0001</td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>23,35466</td>
<td>0,97311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupa</td>
<td>2</td>
<td>11,44577</td>
<td>5,72288</td>
<td>5,88</td>
<td>0,0083</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>60,43668</td>
<td>15,10922</td>
<td>15,53</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>9,88331</td>
<td>4,94155</td>
<td>5,08</td>
<td>0,0145</td>
</tr>
<tr>
<td>Tempo x Grupa</td>
<td>4</td>
<td>12,38222</td>
<td>3,09555</td>
<td>3,18</td>
<td>0,0313</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>81,23644</td>
<td>10,15455</td>
<td>10,44</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>3,43%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G1 | **p** | **G2** | **p** | **G3** | **p** | **T0** | **p** | **T1** | **p** | **T2** | **p** |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T₀xT₁</td>
<td>0,8740</td>
<td>T₀xT₁</td>
<td>0,0623</td>
<td>T₀xT₁</td>
<td>0,2472</td>
<td>G₀xG₂</td>
<td>0,0011</td>
<td>G₀xG₂</td>
<td>0,1221</td>
<td>G₀xG₂</td>
<td>0,6806</td>
</tr>
<tr>
<td>T₀xT₂</td>
<td>0,4308</td>
<td>T₀xT₂</td>
<td>0,0196</td>
<td>T₀xT₂</td>
<td>0,0008</td>
<td>G₀xG₀</td>
<td>0,0016</td>
<td>G₀xG₀</td>
<td>0,2598</td>
<td>G₀xG₀</td>
<td>0,0449</td>
</tr>
<tr>
<td>T₁xT₂</td>
<td>0,5275</td>
<td>T₁xT₂</td>
<td>0,5908</td>
<td>T₁xT₂</td>
<td>0,0147</td>
<td>G₁xG₃</td>
<td>0,2350</td>
<td>G₁xG₃</td>
<td>0,6576</td>
<td>G₁xG₃</td>
<td>0,0183</td>
</tr>
</tbody>
</table>

Tabela 35- Comparação do efeito de diferentes soluções de enema sobre os valores séricos de desvio de base em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>248,97777</td>
<td>10,74888</td>
<td>7,59</td>
<td>0,0001</td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>214,97777</td>
<td>10,74888</td>
<td>7,59</td>
<td>0,0001</td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>34,00000</td>
<td>1,41666</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupa</td>
<td>2</td>
<td>16,04444</td>
<td>8,02222</td>
<td>5,66</td>
<td>0,0097</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>71,42222</td>
<td>17,85555</td>
<td>12,6</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>10,97777</td>
<td>5,48888</td>
<td>3,87</td>
<td>0,0348</td>
</tr>
<tr>
<td>Tempo x Grupa</td>
<td>4</td>
<td>22,35555</td>
<td>5,58888</td>
<td>3,95</td>
<td>0,0134</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>94,17777</td>
<td>11,72222</td>
<td>8,31</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>26%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G1 | **p** | **G2** | **p** | **G3** | **p** | **T0** | **p** | **T1** | **p** | **T2** | **p** |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T₀xT₁</td>
<td>0,7928</td>
<td>T₀xT₁</td>
<td>0,2985</td>
<td>T₀xT₁</td>
<td>0,2985</td>
<td>G₀xG₂</td>
<td>0,0021</td>
<td>G₀xG₂</td>
<td>0,0440</td>
<td>G₀xG₂</td>
<td>1,0000</td>
</tr>
<tr>
<td>T₀xT₂</td>
<td>0,1965</td>
<td>T₀xT₂</td>
<td>0,0440</td>
<td>T₀xT₂</td>
<td>0,0005</td>
<td>G₀xG₀</td>
<td>0,0138</td>
<td>G₀xG₀</td>
<td>0,1965</td>
<td>G₀xG₀</td>
<td>0,0138</td>
</tr>
<tr>
<td>T₁xT₂</td>
<td>0,2985</td>
<td>T₁xT₂</td>
<td>0,2985</td>
<td>T₁xT₂</td>
<td>0,0075</td>
<td>G₁xG₃</td>
<td>0,4332</td>
<td>G₁xG₃</td>
<td>0,4332</td>
<td>G₁xG₃</td>
<td>0,0138</td>
</tr>
</tbody>
</table>
Tabela 36 - Comparação do efeito de diferentes soluções de enema sobre os valores séricos de glicose em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>4712,00000</td>
<td>214,18666</td>
<td>12</td>
<td>0,0001</td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>4283,73333</td>
<td>17,84444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>428,26666</td>
<td>17,84444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td>370,80000</td>
<td>185,40000</td>
<td>10,39</td>
<td>0,0006</td>
</tr>
<tr>
<td>Gruppo</td>
<td>2</td>
<td>862,88888</td>
<td>215,72222</td>
<td>12,09</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td>370,80000</td>
<td>185,40000</td>
<td>10,39</td>
<td>0,0006</td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td>862,88888</td>
<td>215,72222</td>
<td>12,09</td>
<td>0,0001</td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>76,13333</td>
<td>38,06666</td>
<td>2,13</td>
<td>0,1404</td>
</tr>
<tr>
<td>Tempo x Gruppo</td>
<td>4</td>
<td>144,26666</td>
<td>38,06666</td>
<td>2,02</td>
<td>0,1235</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>2829,64444</td>
<td>353,70555</td>
<td>19,82</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td>370,80000</td>
<td>185,40000</td>
<td>10,39</td>
<td>0,0006</td>
</tr>
<tr>
<td>CV</td>
<td>4,98%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G1 | **p** | **G2** | **p** | **G3** | **p** | **T0** | **p** | **T1** | **p** | **T2** | **p** |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T0xT1</td>
<td>0,3051</td>
<td>T0xT1</td>
<td>0,0468</td>
<td>T0xT1</td>
<td>0,2184</td>
<td>G1xG2</td>
<td>0,0291</td>
<td>G1xG2</td>
<td>0,0025</td>
<td>G1xG2</td>
<td>0,0980</td>
</tr>
<tr>
<td>T0xT2</td>
<td>0,0210</td>
<td>T0xT2</td>
<td>0,0735</td>
<td>T0xT2</td>
<td>0,4184</td>
<td>G1xG3</td>
<td>0,0401</td>
<td>G1xG3</td>
<td>0,7672</td>
<td>G1xG3</td>
<td>0,2726</td>
</tr>
<tr>
<td>T1xT2</td>
<td>0,1678</td>
<td>T1xT2</td>
<td>0,8242</td>
<td>T1xT2</td>
<td>1,0000</td>
<td>G2xG3</td>
<td>0,8822</td>
<td>G2xG3</td>
<td>0,0053</td>
<td>G2xG3</td>
<td>0,0089</td>
</tr>
</tbody>
</table>

Tabela 37 – Comparação do efeito de diferentes soluções de enema sobre os valores séricos de anion gap em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>94,80000</td>
<td>3,58666</td>
<td>3,73</td>
<td>0,0013</td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>71,73333</td>
<td>0,96111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>23,06666</td>
<td>0,96111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td>5,20000</td>
<td>2,60000</td>
<td>2,71</td>
<td>0,0872</td>
</tr>
<tr>
<td>Gruppo</td>
<td>2</td>
<td>23,24444</td>
<td>5,81111</td>
<td>6,05</td>
<td>0,0016</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td>22,93333</td>
<td>11,46666</td>
<td>11,93</td>
<td>0,0003</td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td>22,93333</td>
<td>11,46666</td>
<td>11,93</td>
<td>0,0003</td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>4,66666</td>
<td>1,16666</td>
<td>1,21</td>
<td>0,3309</td>
</tr>
<tr>
<td>Tempo x Gruppo</td>
<td>4</td>
<td>15,68888</td>
<td>1,96111</td>
<td>2,04</td>
<td>0,0846</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>15,68888</td>
<td>1,96111</td>
<td>2,04</td>
<td>0,0846</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td>22,93333</td>
<td>11,46666</td>
<td>11,93</td>
<td>0,0003</td>
</tr>
<tr>
<td>CV</td>
<td>11,2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G1 | **p** | **G2** | **p** | **G3** | **p** | **T0** | **p** | **T1** | **p** | **T2** | **p** |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T0xT1</td>
<td>0,3429</td>
<td>T0xT1</td>
<td>0,0333</td>
<td>T0xT1</td>
<td>0,0648</td>
<td>G1xG2</td>
<td>0,0333</td>
<td>G1xG2</td>
<td>0,3429</td>
<td>G1xG2</td>
<td>0,5250</td>
</tr>
<tr>
<td>T0xT2</td>
<td>0,2093</td>
<td>T0xT2</td>
<td>0,0078</td>
<td>T0xT2</td>
<td>0,0003</td>
<td>G1xG3</td>
<td>0,1199</td>
<td>G1xG3</td>
<td>0,5250</td>
<td>G1xG3</td>
<td>0,2093</td>
</tr>
<tr>
<td>T1xT2</td>
<td>0,7498</td>
<td>T1xT2</td>
<td>0,5250</td>
<td>T1xT2</td>
<td>1,0000</td>
<td>G2xG3</td>
<td>0,5250</td>
<td>G2xG3</td>
<td>0,7498</td>
<td>G2xG3</td>
<td>0,0648</td>
</tr>
</tbody>
</table>

103
Tabela 38 – Comparação do efeito de diferentes soluções de enema sobre os valores séricos de Cálcio total em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>125,92977</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>72,70044</td>
<td>3,63502</td>
<td>1,64</td>
<td>0,1237</td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>53,22933</td>
<td>2,21788</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grup o</td>
<td>2</td>
<td>1,90044</td>
<td>0,95022</td>
<td>0,43</td>
<td>0,6564</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>11,56311</td>
<td>2,89077</td>
<td>1,30</td>
<td>0,2969</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>4,21111</td>
<td>2,10555</td>
<td>0,95</td>
<td>0,4011</td>
</tr>
<tr>
<td>Tempo x Grup o</td>
<td>4</td>
<td>7,84622</td>
<td>1,96155</td>
<td>0,88</td>
<td>0,4881</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>47,17955</td>
<td>5,89744</td>
<td>2,66</td>
<td>0,0304</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>15,44%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>G1</th>
<th>p</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>p</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0xT1</td>
<td>0,4041</td>
<td></td>
<td>T0xT1</td>
<td>0,7370</td>
<td>T0xT1</td>
<td>0,6902</td>
<td>G1xG2</td>
<td>0,8010</td>
<td>G1xG2</td>
<td>0,8010</td>
<td>G1xG2</td>
<td>0,6150</td>
</tr>
<tr>
<td>T0xT2</td>
<td>0,0803</td>
<td></td>
<td>T0xT2</td>
<td>0,2989</td>
<td>T0xT2</td>
<td>0,5860</td>
<td>G1xG3</td>
<td>0,2075</td>
<td>G1xG3</td>
<td>0,4041</td>
<td>G1xG3</td>
<td>0,2896</td>
</tr>
<tr>
<td>T1xT2</td>
<td>0,3384</td>
<td></td>
<td>T1xT2</td>
<td>0,4773</td>
<td>T1xT2</td>
<td>0,3488</td>
<td>G2xG3</td>
<td>0,3085</td>
<td>G2xG3</td>
<td>0,2805</td>
<td>G2xG3</td>
<td>0,5718</td>
</tr>
</tbody>
</table>

Tabela 39 – Comparação do efeito de diferentes soluções de enema sobre os valores séricos de magnésio em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>10,82977</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>5,68577</td>
<td>0,28428</td>
<td>1,33</td>
<td>0,2524</td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>5,14400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grup o</td>
<td>2</td>
<td>0,89911</td>
<td>0,44955</td>
<td>2,10</td>
<td>0,1447</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>1,05866</td>
<td>0,26466</td>
<td>1,23</td>
<td>0,3226</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>0,41111</td>
<td>0,20555</td>
<td>0,96</td>
<td>0,3975</td>
</tr>
<tr>
<td>Tempo x Grup o</td>
<td>4</td>
<td>0,37155</td>
<td>0,09288</td>
<td>0,43</td>
<td>0,7831</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>2,94533</td>
<td>0,36816</td>
<td>1,72</td>
<td>0,1455</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>28,97%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>G1</th>
<th>p</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>p</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0xT1</td>
<td>0,9461</td>
<td></td>
<td>T0xT1</td>
<td>0,3158</td>
<td>T0xT1</td>
<td>0,9461</td>
<td>G1xG2</td>
<td>0,1142</td>
<td>G1xG2</td>
<td>0,5898</td>
<td>G1xG2</td>
<td>0,2067</td>
</tr>
<tr>
<td>T0xT2</td>
<td>0,8394</td>
<td></td>
<td>T0xT2</td>
<td>0,8925</td>
<td>T0xT2</td>
<td>0,2067</td>
<td>G1xG3</td>
<td>0,9461</td>
<td>G1xG3</td>
<td>0,9461</td>
<td>G1xG3</td>
<td>0,2570</td>
</tr>
<tr>
<td>T1xT2</td>
<td>0,8925</td>
<td></td>
<td>T1xT2</td>
<td>0,3834</td>
<td>T1xT2</td>
<td>0,1846</td>
<td>G2xG3</td>
<td>0,1293</td>
<td>G2xG3</td>
<td>0,5445</td>
<td>G2xG3</td>
<td>0,8925</td>
</tr>
</tbody>
</table>
Tabela 40 – Comparação do efeito de diferentes soluções de enema sobre os valores séricos de uréia em eqüinos hígidos.

<table>
<thead>
<tr>
<th></th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>322,800</td>
<td>0,000</td>
<td></td>
<td>0,000</td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>1,533</td>
<td>0,688</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>15,313</td>
<td>22,23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td>22,23</td>
<td>22,23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grup</td>
<td>2</td>
<td>87,600</td>
<td>4,380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>36,800</td>
<td>9,200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td>36,800</td>
<td>9,200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-pa)</td>
<td>44</td>
<td>22,23</td>
<td>22,23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>3,733</td>
<td>1,866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo x Grup</td>
<td>4</td>
<td>1,066</td>
<td>0,266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>177,066</td>
<td>22,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td>177,066</td>
<td>22,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>5,16%</td>
<td>5,16%</td>
<td>5,16%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0XT1</td>
<td>1,000</td>
<td>T0XT1</td>
<td>1,000</td>
<td>T0XT1</td>
<td>0,4535</td>
<td>T0XT1</td>
<td>0,0022</td>
<td>T0XT1</td>
<td>0,0022</td>
<td>T0XT1</td>
</tr>
<tr>
<td>T0XT2</td>
<td>0,706</td>
<td>T0XT2</td>
<td>0,1406</td>
<td>T0XT2</td>
<td>0,0688</td>
<td>T0XT2</td>
<td>0,0022</td>
<td>T0XT2</td>
<td>0,0135</td>
<td>T0XT2</td>
</tr>
<tr>
<td>T1XT2</td>
<td>0,706</td>
<td>T1XT2</td>
<td>0,1406</td>
<td>T1XT2</td>
<td>0,2643</td>
<td>T1XT2</td>
<td>0,0001</td>
<td>T1XT2</td>
<td>0,0001</td>
<td>T1XT2</td>
</tr>
</tbody>
</table>

Tabela 41 – Comparação do efeito de diferentes soluções de enema sobre os valores séricos de creatinina em eqüinos hígidos.

<table>
<thead>
<tr>
<th></th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>5,792</td>
<td>0,000</td>
<td></td>
<td>0,000</td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>5,139</td>
<td>0,257</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>0,653</td>
<td>0,027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td>0,653</td>
<td>0,027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grup</td>
<td>2</td>
<td>1,280</td>
<td>0,640</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>1,432</td>
<td>0,358</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td>1,432</td>
<td>0,358</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-pa)</td>
<td>44</td>
<td>1,432</td>
<td>0,358</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>0,129</td>
<td>0,064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo x Grup</td>
<td>4</td>
<td>0,030</td>
<td>0,007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>2,266</td>
<td>0,283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td>2,266</td>
<td>0,283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>15,7%</td>
<td>15,7%</td>
<td>15,7%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0XT1</td>
<td>1,000</td>
<td>T0XT1</td>
<td>1,000</td>
<td>T0XT1</td>
<td>0,4535</td>
<td>T0XT1</td>
<td>0,0022</td>
<td>T0XT1</td>
<td>0,0022</td>
<td>T0XT1</td>
</tr>
<tr>
<td>T0XT2</td>
<td>0,706</td>
<td>T0XT2</td>
<td>0,1406</td>
<td>T0XT2</td>
<td>0,0688</td>
<td>T0XT2</td>
<td>0,0022</td>
<td>T0XT2</td>
<td>0,0135</td>
<td>T0XT2</td>
</tr>
<tr>
<td>T1XT2</td>
<td>0,706</td>
<td>T1XT2</td>
<td>0,1406</td>
<td>T1XT2</td>
<td>0,2643</td>
<td>T1XT2</td>
<td>0,0001</td>
<td>T1XT2</td>
<td>0,0001</td>
<td>T1XT2</td>
</tr>
</tbody>
</table>
Tabela 42 – Comparação do efeito de diferentes soluções de enema sobre os valores séricos de albumina em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>13,14800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>11,22800</td>
<td>0,56140</td>
<td>7,02</td>
<td>0,0001</td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>1,92000</td>
<td>0,08000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupo</td>
<td>2</td>
<td>0,03733</td>
<td>0,01866</td>
<td>0,23</td>
<td>0,7937</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>5,27022</td>
<td>1,31755</td>
<td>16,47</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>0,36400</td>
<td>0,18200</td>
<td>2,28</td>
<td>0,1245</td>
</tr>
<tr>
<td>Tempo x Grupo</td>
<td>4</td>
<td>0,52266</td>
<td>0,13066</td>
<td>1,63</td>
<td>0,1984</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>5,03377</td>
<td>0,62922</td>
<td>7,87</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>10,76%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 43 – Comparação do efeito de diferentes soluções de enema sobre os valores séricos de proteína total em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>7,85200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>6,87200</td>
<td>0,34360</td>
<td>8,41</td>
<td>0,0001</td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>0,98000</td>
<td>0,04083</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupo</td>
<td>2</td>
<td>0,40933</td>
<td>0,20466</td>
<td>5,01</td>
<td>0,0152</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>0,62533</td>
<td>0,15633</td>
<td>3,83</td>
<td>0,0152</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>0,28933</td>
<td>0,14466</td>
<td>3,54</td>
<td>0,0449</td>
</tr>
<tr>
<td>Tempo x Grupo</td>
<td>4</td>
<td>0,11733</td>
<td>0,02933</td>
<td>0,72</td>
<td>0,5877</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>5,43066</td>
<td>0,67883</td>
<td>16,62</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>2,90%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

106
Tabela 44 - Comparação do efeito de diferentes soluções de enema sobre os valores da osmolalidade em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>5127,08492</td>
<td>124,78897</td>
<td>1,14</td>
<td>0,3774</td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>2495,77955</td>
<td>109,63772</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>2631,30537</td>
<td>109,63772</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupo</td>
<td>2</td>
<td>225,54787</td>
<td>112,77393</td>
<td>1,03</td>
<td>0,3727</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>356,48610</td>
<td>89,12152</td>
<td>0,81</td>
<td>0,5294</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>196,49781</td>
<td>98,24893</td>
<td>0,90</td>
<td>0,4214</td>
</tr>
<tr>
<td>Tempo x Grupo</td>
<td>4</td>
<td>622,321222</td>
<td>155,58030</td>
<td>1,42</td>
<td>0,2579</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>1094,92648</td>
<td>136,86581</td>
<td>1,25</td>
<td>0,3151</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV 15,7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G1</th>
<th>p</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>p</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0xT1</td>
<td>1,0000</td>
<td>T0xT1</td>
<td>1,0000</td>
<td>T0xT1</td>
<td>0,4535</td>
<td>G1xG2</td>
<td>0,0022</td>
<td>G1xG2</td>
<td>0,0022</td>
<td>G1xG2</td>
<td>0,0001</td>
</tr>
<tr>
<td>T0xT2</td>
<td>0,7066</td>
<td>T0xT2</td>
<td>0,1406</td>
<td>T0xT2</td>
<td>0,0688</td>
<td>G1xG3</td>
<td>0,0022</td>
<td>G1xG3</td>
<td>0,0135</td>
<td>G1xG3</td>
<td>0,0688</td>
</tr>
<tr>
<td>T1xT2</td>
<td>0,7066</td>
<td>T1xT2</td>
<td>0,1406</td>
<td>T1xT2</td>
<td>0,2643</td>
<td>G2xG3</td>
<td>0,0001</td>
<td>G2xG3</td>
<td>0,0001</td>
<td>G2xG3</td>
<td>0,0001</td>
</tr>
</tbody>
</table>

Tabela 45 - Comparação do efeito de diferentes soluções de enema sobre os valores de hematócrito em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>650,82311</td>
<td>28,29475</td>
<td>8,00</td>
<td>0,0001</td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>565,89511</td>
<td>3,53866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>84,92800</td>
<td>4,5966</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupo</td>
<td>2</td>
<td>37,34977</td>
<td>18,67488</td>
<td>5,28</td>
<td>0,0126</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>78,47200</td>
<td>19,61800</td>
<td>5,54</td>
<td>0,0026</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>3,73644</td>
<td>1,86822</td>
<td>0,53</td>
<td>0,5965</td>
</tr>
<tr>
<td>Tempo x Grupo</td>
<td>4</td>
<td>7,02888</td>
<td>1,75722</td>
<td>0,50</td>
<td>0,7384</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>439,30800</td>
<td>54,91350</td>
<td>15,52</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV 6,14%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G1</th>
<th>p</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>p</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0xT1</td>
<td>0,3644</td>
<td>T0xT1</td>
<td>0,6902</td>
<td>T0xT1</td>
<td>0,2508</td>
<td>G1xG2</td>
<td>0,0271</td>
<td>G1xG2</td>
<td>0,3154</td>
<td>G1xG2</td>
<td>0,0362</td>
</tr>
<tr>
<td>T0xT2</td>
<td>0,8976</td>
<td>T0xT2</td>
<td>0,7648</td>
<td>T0xT2</td>
<td>0,3997</td>
<td>G1xG3</td>
<td>0,5077</td>
<td>G1xG3</td>
<td>0,3644</td>
<td>G1xG3</td>
<td>0,1025</td>
</tr>
<tr>
<td>T1xT2</td>
<td>0,2854</td>
<td>T1xT2</td>
<td>0,9205</td>
<td>T1xT2</td>
<td>0,7522</td>
<td>G2xG3</td>
<td>0,1057</td>
<td>G2xG3</td>
<td>0,9205</td>
<td>G2xG3</td>
<td>0,6071</td>
</tr>
</tbody>
</table>
Tabela 46 - Comparação do efeito de diferentes soluções de enema sobre os valores de eritrócitos em eqüinos hígidos.

<table>
<thead>
<tr>
<th></th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
</table>
| TOTAL | 44 | 46,48917 | | | |
| MODELO | 20 | 41,63961 | 2,08198 | 10,30 | 0,0001 |
| ERRO | 24 | 4,84956 | 0,20206 | | |
| Total (parcelas) | 14 | | | | |
| Grupo | 2 | 2,58093 | 1,29046 | 6,39 | 0,0060 |
| Repetições | 4 | 6,44284 | 1,61071 | 7,97 | 0,0003 |
| Erro (a) | 8 | | | | |
| Total (sub-parcelas) | 44 | | | | |
| Tempo | 2 | 0,31799 | 0,15899 | 0,79 | 0,4667 |
| Tempo x Grupo | 4 | 0,03206 | 0,08016 | 0,40 | 0,8090 |
| Repetições (grupo) | 8 | 31,97719 | 3,99714 | 19,78 | 0,0001 |
| Erro (b) | 30 | | | | |
| CV | 6,44% | | | | | |

Tabela 47- Comparação do efeito de diferentes soluções de enema sobre os valores de hemoglobina em eqüinos hígidos.

<table>
<thead>
<tr>
<th></th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
</table>
| TOTAL | 44 | 74,24977 | | | |
| MODELO | 20 | 63,66844 | 3,18342 | 7,22 | 0,0001 |
| ERRO | 24 | 10,58133 | | | |
| Total (parcelas) | 14 | | | | |
| Grupo | 2 | 3,57644 | 1,78822 | 4,06 | 0,0304 |
| Repetições | 4 | 11,98533 | 2,99633 | 6,80 | 0,0008 |
| Erro (a) | 8 | | | | |
| Total (sub-parcelas) | 44 | | | | |
| Tempo | 2 | 0,17644 | 0,08822 | 0,20 | 0,8200 |
| Tempo x Grupo | 4 | 0,08888 | 0,22222 | 0,50 | 0,7331 |
| Repetições (grupo) | 8 | 47,04133 | 5,88016 | 13,34 | 0,0001 |
| Erro (b) | 30 | | | | |
| CV | 5,92% | | | | | |

G1 p | G2 p | G3 p | T0 p | T1 p | T2 p | T0xT1 p | T0xT2 p | T1xT2 p | G1xG2 p | G1xG3 p | G2xG3 p |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T0xT1</td>
<td>0,1489</td>
<td>T0xT1</td>
<td>0,9003</td>
<td>T0xT1</td>
<td>0,6971</td>
<td>G1xG2</td>
<td>0,2381</td>
<td>G1xG2</td>
<td>0,8783</td>
<td>G1xG2</td>
<td>0,9500</td>
</tr>
<tr>
<td>T0xT2</td>
<td>0,3311</td>
<td>T0xT2</td>
<td>0,8783</td>
<td>T0xT2</td>
<td>0,3879</td>
<td>G1xG3</td>
<td>0,2544</td>
<td>G1xG3</td>
<td>0,0328</td>
<td>G1xG3</td>
<td>0,2127</td>
</tr>
<tr>
<td>T1xT2</td>
<td>0,6220</td>
<td>T1xT2</td>
<td>0,7808</td>
<td>T1xT2</td>
<td>0,6318</td>
<td>G2xG3</td>
<td>0,0257</td>
<td>G2xG3</td>
<td>0,0454</td>
<td>G2xG3</td>
<td>0,1916</td>
</tr>
</tbody>
</table>

G1 p | G2 p | G3 p | T0 p | T1 p | T2 p | T0xT1 p | T0xT2 p | T1xT2 p | G1xG2 p | G1xG3 p | G2xG3 p |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T0xT1</td>
<td>0,4261</td>
<td>T0xT1</td>
<td>0,6720</td>
<td>T0xT1</td>
<td>0,8505</td>
<td>G1xG2</td>
<td>0,0230</td>
<td>G1xG2</td>
<td>0,2454</td>
<td>G1xG2</td>
<td>0,2108</td>
</tr>
<tr>
<td>T0xT2</td>
<td>0,5730</td>
<td>T0xT2</td>
<td>0,5730</td>
<td>T0xT2</td>
<td>0,2842</td>
<td>G1xG3</td>
<td>0,3272</td>
<td>G1xG3</td>
<td>0,7066</td>
<td>G1xG3</td>
<td>0,1406</td>
</tr>
<tr>
<td>T1xT2</td>
<td>0,8138</td>
<td>T1xT2</td>
<td>0,8876</td>
<td>T1xT2</td>
<td>0,3745</td>
<td>G2xG3</td>
<td>0,1660</td>
<td>G2xG3</td>
<td>0,4261</td>
<td>G2xG3</td>
<td>0,8138</td>
</tr>
</tbody>
</table>

108
Tabela 48 – Comparação do efeito de diferentes soluções de enema sobre os valores do volume corpuscular médio em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>599.20000</td>
<td>29.65333</td>
<td>116.03</td>
<td>0.0001</td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>593.06666</td>
<td>0.25555</td>
<td>250.7</td>
<td>0.0001</td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>6.13333</td>
<td>0.25555</td>
<td>88.78</td>
<td>0.0001</td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupo</td>
<td>2</td>
<td>128.13333</td>
<td>64.06666</td>
<td>250.7</td>
<td>0.0001</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>90.75555</td>
<td>22.68888</td>
<td>88.78</td>
<td>0.0001</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>1.20000</td>
<td>0.60000</td>
<td>2.35</td>
<td>0.1171</td>
</tr>
<tr>
<td>Tempo x Grupo</td>
<td>4</td>
<td>0.66666</td>
<td>0.16666</td>
<td>0.65</td>
<td>0.6310</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>372.31111</td>
<td>46.53888</td>
<td>182.11</td>
<td>0.0001</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>1.18%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variáveis de interação

<table>
<thead>
<tr>
<th>G1</th>
<th>p</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>p</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0xT1</td>
<td>1.0000</td>
<td>T0xT1</td>
<td>0.2230</td>
<td>T0xT1</td>
<td>0.5375</td>
<td>T0xT2</td>
<td>0.0728</td>
<td>T0xT2</td>
<td>0.2230</td>
<td>T0xT2</td>
<td>0.5375</td>
</tr>
<tr>
<td>T0xT2</td>
<td>0.2230</td>
<td>T0xT2</td>
<td>0.5375</td>
<td>T0xT2</td>
<td>0.0728</td>
<td>T0xT2</td>
<td>0.2230</td>
<td>T0xT2</td>
<td>0.5375</td>
<td>T0xT2</td>
<td>0.0728</td>
</tr>
<tr>
<td>T1xT2</td>
<td>0.2230</td>
<td>T1xT2</td>
<td>0.5375</td>
<td>T1xT2</td>
<td>0.2230</td>
<td>T1xT2</td>
<td>0.5375</td>
<td>T1xT2</td>
<td>0.2230</td>
<td>T1xT2</td>
<td>0.5375</td>
</tr>
</tbody>
</table>

Tabela 49 – Comparação do efeito de diferentes soluções de enema sobre os valores da concentração de hemoglobina corpuscular média em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>57.01644</td>
<td>1.98848</td>
<td>2.77</td>
<td>0.0094</td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>39.76977</td>
<td>0.71861</td>
<td>3.39</td>
<td>0.0504</td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>17.24666</td>
<td>0.71861</td>
<td>3.39</td>
<td>0.0504</td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupo</td>
<td>2</td>
<td>0.043111</td>
<td>0.02155</td>
<td>0.03</td>
<td>0.9705</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>4.91644</td>
<td>1.22911</td>
<td>1.71</td>
<td>0.1806</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>4.87511</td>
<td>2.43755</td>
<td>3.39</td>
<td>0.0504</td>
</tr>
<tr>
<td>Tempo x Grupo</td>
<td>4</td>
<td>1.87822</td>
<td>0.46955</td>
<td>0.65</td>
<td>0.6301</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>28.05688</td>
<td>3.50711</td>
<td>4.88</td>
<td>0.0012</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>2.24%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variáveis de interação

<table>
<thead>
<tr>
<th>G1</th>
<th>p</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>p</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0xT1</td>
<td>0.0990</td>
<td>T0xT1</td>
<td>0.0252</td>
<td>T0xT1</td>
<td>0.7124</td>
<td>T0xT2</td>
<td>0.6063</td>
<td>T0xT2</td>
<td>0.6063</td>
<td>T0xT2</td>
<td>0.08824</td>
</tr>
<tr>
<td>T0xT2</td>
<td>0.6063</td>
<td>T0xT2</td>
<td>0.1062</td>
<td>T0xT2</td>
<td>0.6063</td>
<td>T0xT2</td>
<td>0.6063</td>
<td>T0xT2</td>
<td>0.6063</td>
<td>T0xT2</td>
<td>0.6063</td>
</tr>
<tr>
<td>T1xT2</td>
<td>0.2443</td>
<td>T1xT2</td>
<td>0.4853</td>
<td>T1xT2</td>
<td>0.8824</td>
<td>T1xT2</td>
<td>0.8824</td>
<td>T1xT2</td>
<td>0.8824</td>
<td>T1xT2</td>
<td>0.8824</td>
</tr>
</tbody>
</table>
Tabela 50 – Comparação do efeito de diferentes soluções de enema sobre os valores da hemoglobina corpuscular média em eqüinos hígidos.

<table>
<thead>
<tr>
<th></th>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>114,75911</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>112,14311</td>
<td>51,44</td>
<td>0,0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>2,61600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupo</td>
<td>2</td>
<td>18,72844</td>
<td>85,91</td>
<td>0,0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>6,85022</td>
<td>15,71</td>
<td>0,0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>0,74977</td>
<td>0,37488</td>
<td>3,44</td>
<td>0,0486</td>
<td></td>
</tr>
<tr>
<td>Tempo x Grupo</td>
<td>4</td>
<td>0,18808</td>
<td>0,45222</td>
<td>0,41</td>
<td>0,7962</td>
<td></td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>85,63377</td>
<td>10,70442</td>
<td>98,20</td>
<td>0,0001</td>
<td></td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>2,03%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G1</th>
<th>p</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>p</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0xT1</td>
<td>0,1165</td>
<td>T0xT1</td>
<td>0,0813</td>
<td>T0xT1</td>
<td>0,3477</td>
<td>G1xG2</td>
<td>0,0003</td>
<td>G1xG2</td>
<td>0,0005</td>
<td>G1xG2</td>
<td>0,0105</td>
</tr>
<tr>
<td>T0xT2</td>
<td>0,9245</td>
<td>T0xT2</td>
<td>0,1925</td>
<td>T0xT2</td>
<td>1,0000</td>
<td>G1xG3</td>
<td>0,0001</td>
<td>G1xG3</td>
<td>0,0001</td>
<td>G1xG3</td>
<td>0,0001</td>
</tr>
<tr>
<td>T1xT2</td>
<td>0,0976</td>
<td>T1xT2</td>
<td>0,6363</td>
<td>T1xT2</td>
<td>0,3477</td>
<td>G2xG3</td>
<td>0,0042</td>
<td>G2xG3</td>
<td>0,0005</td>
<td>G2xG3</td>
<td>0,0001</td>
</tr>
</tbody>
</table>

Tabela 51 – Comparação do efeito de diferentes soluções de enema sobre os valores de leucócitos totais em eqüinos hígidos.

<table>
<thead>
<tr>
<th></th>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>17808320,00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>156350293,33333</td>
<td>7817514,66666</td>
<td>8,63</td>
<td>0,0001</td>
<td></td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>21738028,66666</td>
<td>905751,11111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupo</td>
<td>2</td>
<td>1642413,33333</td>
<td>821206,66666</td>
<td>0,91</td>
<td>0,4173</td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>71860208,88888</td>
<td>1796052,22222</td>
<td>19,83</td>
<td>0,0001</td>
<td></td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>336893,33333</td>
<td>1684446,66666</td>
<td>1,86</td>
<td>0,1775</td>
<td></td>
</tr>
<tr>
<td>Tempo x Grupo</td>
<td>4</td>
<td>8218013,33333</td>
<td>2054503,33333</td>
<td>2,27</td>
<td>0,0915</td>
<td></td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>71260764,44444</td>
<td>8907595,55555</td>
<td>9,83</td>
<td>0,0001</td>
<td></td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>8,92%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G1</th>
<th>p</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>p</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0xT1</td>
<td>0,0528</td>
<td>T0xT1</td>
<td>0,8206</td>
<td>T0xT1</td>
<td>0,2236</td>
<td>G1xG2</td>
<td>0,8334</td>
<td>G1xG2</td>
<td>0,1158</td>
<td>G1xG2</td>
<td>0,1158</td>
</tr>
<tr>
<td>T0xT2</td>
<td>0,2767</td>
<td>T0xT2</td>
<td>0,4719</td>
<td>T0xT2</td>
<td>0,4639</td>
<td>G1xG3</td>
<td>0,9476</td>
<td>G1xG3</td>
<td>0,0663</td>
<td>G1xG3</td>
<td>0,0663</td>
</tr>
<tr>
<td>T1xT2</td>
<td>0,0043</td>
<td>T1xT2</td>
<td>0,3465</td>
<td>T1xT2</td>
<td>0,6181</td>
<td>G3xG3</td>
<td>0,7826</td>
<td>G3xG3</td>
<td>0,0915</td>
<td>G3xG3</td>
<td>0,7725</td>
</tr>
</tbody>
</table>
Tabela 52 – Comparação do efeito de diferentes soluções de enema sobre os valores absolutos de bastonetes em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>426403,77777</td>
<td>7936,38222</td>
<td>0,71</td>
<td>0,7784</td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>158727,64444</td>
<td>11153,17222</td>
<td>1,12</td>
<td>0,2516</td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>267676,13333</td>
<td>11049,88888</td>
<td>0,98</td>
<td>0,3631</td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupos</td>
<td>2</td>
<td>14790,57777</td>
<td>7395,28888</td>
<td>0,66</td>
<td>0,5245</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>43799,55555</td>
<td>10949,88888</td>
<td>0,98</td>
<td>0,4361</td>
</tr>
<tr>
<td>Erros (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>26541,51111</td>
<td>13270,75555</td>
<td>1,19</td>
<td>0,3216</td>
</tr>
<tr>
<td>Tempo x Grupos</td>
<td>4</td>
<td>39819,68888</td>
<td>9954,92222</td>
<td>0,89</td>
<td>0,4836</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>33776,31111</td>
<td>4222,03888</td>
<td>0,38</td>
<td>0,9216</td>
</tr>
<tr>
<td>Erros (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>83,91%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G1</th>
<th>p</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>p</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0xT1</td>
<td>0,4829</td>
<td>T0xT1</td>
<td>0,7425</td>
<td>T0xT2</td>
<td>0,2041</td>
<td>T1</td>
<td>0,1145</td>
<td>G1xG2</td>
<td>0,2450</td>
<td>G1xG2</td>
<td>0,2628</td>
</tr>
<tr>
<td>T0xT2</td>
<td>0,3119</td>
<td>T0xT2</td>
<td>0,4150</td>
<td>T1xT2</td>
<td>0,1923</td>
<td>G2xG2</td>
<td>0,8752</td>
<td>G1xG3</td>
<td>0,1895</td>
<td>G2xG3</td>
<td>0,6133</td>
</tr>
<tr>
<td>T1xT2</td>
<td>0,7514</td>
<td>T1xT2</td>
<td>0,1923</td>
<td>T1xT2</td>
<td>0,1923</td>
<td>G2xG3</td>
<td>0,7380</td>
<td>G1xG3</td>
<td>0,1923</td>
<td>G2xG3</td>
<td>0,5316</td>
</tr>
</tbody>
</table>

Tabela 53 – Comparação do efeito de diferentes soluções de enema sobre os valores absolutos de neutrófilos segmentados em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>84505523,77777</td>
<td>3600234,36222</td>
<td>0,0001</td>
<td></td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>72004687,24444</td>
<td>520868,18888</td>
<td>0,0014</td>
<td></td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>12500836,53333</td>
<td>1442686,18888</td>
<td>0,0504</td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupos</td>
<td>2</td>
<td>101679,77777</td>
<td>53398,68888</td>
<td>0,9030</td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>29328064,22222</td>
<td>7332016,05555</td>
<td>0,0001</td>
<td></td>
</tr>
<tr>
<td>Erros (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>5243272,04444</td>
<td>2621826,02222</td>
<td>5,03</td>
<td>0,0149</td>
</tr>
<tr>
<td>Tempo x Grupos</td>
<td>4</td>
<td>5770744,75555</td>
<td>1442686,18888</td>
<td>2,77</td>
<td>0,0504</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>31555808,84444</td>
<td>3944476,10555</td>
<td>7,57</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erros (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>10,82%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G1</th>
<th>p</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>p</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0xT1</td>
<td>0,1185</td>
<td>T0xT1</td>
<td>0,8454</td>
<td>T0xT2</td>
<td>0,0982</td>
<td>T1</td>
<td>0,0893</td>
<td>G1xG2</td>
<td>0,7989</td>
<td>G1xG2</td>
<td>0,0940</td>
</tr>
<tr>
<td>T0xT2</td>
<td>0,9257</td>
<td>T0xT2</td>
<td>0,0082</td>
<td>T1xT2</td>
<td>0,1177</td>
<td>G2xG2</td>
<td>0,8355</td>
<td>G1xG3</td>
<td>0,1673</td>
<td>G2xG3</td>
<td>0,5220</td>
</tr>
<tr>
<td>T1xT2</td>
<td>0,1404</td>
<td>T1xT2</td>
<td>0,0457</td>
<td>T1xT2</td>
<td>0,1177</td>
<td>G2xG3</td>
<td>0,0893</td>
<td>G1xG3</td>
<td>0,1673</td>
<td>G2xG3</td>
<td>0,5220</td>
</tr>
</tbody>
</table>
Tabela 54 – Comparação do efeito de diferentes soluções de enema sobre os valores absolutos de eosinófilos em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>3140665,77777</td>
<td>99333,34222</td>
<td>2,07</td>
<td>0,0456</td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>1986666,84444</td>
<td>48083,28888</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>1153998,93333</td>
<td>13330,68888</td>
<td>0,28</td>
<td>0,7603</td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupo</td>
<td>2</td>
<td>26661,37777</td>
<td>113797,05555</td>
<td>2,37</td>
<td>0,0813</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>545188,22222</td>
<td>136340,60555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>202703,51111</td>
<td>101351,75555</td>
<td>2,11</td>
<td>0,1434</td>
</tr>
<tr>
<td>Tempo x Grupo</td>
<td>4</td>
<td>211388,88888</td>
<td>52847,22222</td>
<td>1,10</td>
<td>0,3797</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td></td>
<td>1090724,84444</td>
<td>2,84</td>
<td>0,0228</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>45,99%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 55 – Comparação do efeito de diferentes soluções de enema sobre os valores absolutos de linfócitos em eqüinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>248552208,31111</td>
<td>104674,97555</td>
<td>4,15</td>
<td>0,0006</td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>19281499,51111</td>
<td>232237,86666</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>5573708,79999</td>
<td>1026841,48888</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupo</td>
<td>2</td>
<td>1062950,57777</td>
<td>531475,28888</td>
<td>2,29</td>
<td>0,1231</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>7026994,31111</td>
<td>1756748,57777</td>
<td>7,56</td>
<td>0,0004</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>2053682,97777</td>
<td>1026841,48888</td>
<td>4,42</td>
<td>0,0232</td>
</tr>
<tr>
<td>Tempo x Grupo</td>
<td>4</td>
<td>244069,88888</td>
<td>244069,88888</td>
<td>1,05</td>
<td>0,4020</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td></td>
<td>1020199,01111</td>
<td>4,39</td>
<td>0,0022</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>16,03%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G1</th>
<th>p</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>p</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0xT1</td>
<td>0,9545</td>
<td>T0xT1</td>
<td>0,6568</td>
<td>T0xT1</td>
<td>0,0379</td>
<td>G1xG2</td>
<td>0,6868</td>
<td>G1xG2</td>
<td>0,9875</td>
<td>G1xG3</td>
<td>0,4462</td>
</tr>
<tr>
<td>T0xT2</td>
<td>0,2171</td>
<td>T0xT2</td>
<td>0,6164</td>
<td>T0xT2</td>
<td>0,0893</td>
<td>G1xG3</td>
<td>0,2136</td>
<td>G1xG3</td>
<td>0,3379</td>
<td>G2xG3</td>
<td>0,6702</td>
</tr>
<tr>
<td>T1xT2</td>
<td>0,1975</td>
<td>T1xT2</td>
<td>0,3436</td>
<td>T1xT2</td>
<td>0,6733</td>
<td>G2xG3</td>
<td>0,1048</td>
<td>G2xG3</td>
<td>0,3457</td>
<td>G2xG3</td>
<td>0,6702</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G1</th>
<th>p</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>p</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0xT1</td>
<td>0,1229</td>
<td>T0xT1</td>
<td>0,5875</td>
<td>T0xT1</td>
<td>0,5072</td>
<td>G1xG2</td>
<td>0,6792</td>
<td>G1xG2</td>
<td>0,0169</td>
<td>G1xG3</td>
<td>0,7354</td>
</tr>
<tr>
<td>T0xT2</td>
<td>0,2509</td>
<td>T0xT2</td>
<td>0,2823</td>
<td>T0xT2</td>
<td>0,0588</td>
<td>G1xG3</td>
<td>0,3554</td>
<td>G1xG3</td>
<td>0,1960</td>
<td>G2xG3</td>
<td>0,8941</td>
</tr>
<tr>
<td>T1xT2</td>
<td>0,0105</td>
<td>T1xT2</td>
<td>0,5875</td>
<td>T1xT2</td>
<td>0,2022</td>
<td>G2xG3</td>
<td>0,1862</td>
<td>G2xG3</td>
<td>0,2278</td>
<td>G2xG3</td>
<td>0,6381</td>
</tr>
</tbody>
</table>

112
Tabela 56 – Comparação do efeito de diferentes soluções de enema sobre os valores absolutos de monócitos em equinos hígidos.

<table>
<thead>
<tr>
<th></th>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>2304870,31111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>1578737,77777</td>
<td>78936,888888</td>
<td></td>
<td>2,61</td>
<td>0,0133</td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>726132,53333</td>
<td>30255,52222</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td>274881,15555</td>
<td>122107,28888</td>
<td></td>
<td>2,61</td>
<td>0,0133</td>
</tr>
<tr>
<td>Grup</td>
<td>2</td>
<td>549762,31111</td>
<td>274881,15555</td>
<td></td>
<td>9,09</td>
<td>0,0012</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>236810,53333</td>
<td>59202,63333</td>
<td></td>
<td>1,96</td>
<td>0,1336</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td>79795,51111</td>
<td>39897,75555</td>
<td></td>
<td>1,32</td>
<td>0,2862</td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td>122107,28888</td>
<td>30526,82222</td>
<td></td>
<td>1,01</td>
<td>0,4224</td>
</tr>
<tr>
<td>Temp</td>
<td>2</td>
<td>79795,51111</td>
<td>39897,75555</td>
<td></td>
<td>1,32</td>
<td>0,2862</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>4</td>
<td>122107,28888</td>
<td>30526,82222</td>
<td></td>
<td>1,01</td>
<td>0,4224</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>8</td>
<td>79795,51111</td>
<td>39897,75555</td>
<td></td>
<td>1,32</td>
<td>0,2862</td>
</tr>
<tr>
<td>CV</td>
<td>46,53%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 57 – Comparação do efeito de diferentes soluções de enema sobre os valores absolutos de basófilos em equinos hígidos.

<table>
<thead>
<tr>
<th></th>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>53739,24444</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>27108,71111</td>
<td>13554,35555</td>
<td></td>
<td>1,22</td>
<td>0,3170</td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>26630,53333</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td>122107,28888</td>
<td>30526,82222</td>
<td></td>
<td>1,01</td>
<td>0,4224</td>
</tr>
<tr>
<td>Grup</td>
<td>2</td>
<td>10325,51111</td>
<td>5162,75555</td>
<td></td>
<td>4,65</td>
<td>0,0196</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>5166,35555</td>
<td>1291,58888</td>
<td></td>
<td>1,16</td>
<td>0,3513</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td>10325,51111</td>
<td>5162,75555</td>
<td></td>
<td>4,65</td>
<td>0,0196</td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td>2120,02222</td>
<td>856,08888</td>
<td></td>
<td>0,19</td>
<td>0,8258</td>
</tr>
<tr>
<td>Temp</td>
<td>2</td>
<td>428,04444</td>
<td>2120,02222</td>
<td></td>
<td>0,19</td>
<td>0,8258</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>4</td>
<td>856,08888</td>
<td>2120,02222</td>
<td></td>
<td>0,19</td>
<td>0,8258</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td>1291,58888</td>
<td>1291,58888</td>
<td></td>
<td>1,16</td>
<td>0,3599</td>
</tr>
<tr>
<td>CV</td>
<td>310,99%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Análise estatística

- **T0** x **T1**: p = 0,7247
- **T0** x **T2**: p = 0,3291
- **T1** x **T2**: p = 0,1888
- **G1** x **G2**: p = 0,9426
- **G1** x **G3**: p = 0,9055
- **G2** x **G3**: p = 0,9312
- **G1** x **G2**: p = 0,9426
- **G1** x **G3**: p = 0,9055
- **G2** x **G3**: p = 0,9312
- **G1** x **G2**: p = 0,9426
- **G1** x **G3**: p = 0,9055
- **G2** x **G3**: p = 0,9312
Tabela 58 – Comparação do efeito de diferentes soluções de enema sobre os valores absolutos de plaquetas em eqúinos hígidos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>193393,11111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODELO</td>
<td>20</td>
<td>179363,64444</td>
<td>8968,18222</td>
<td>15,34</td>
<td>0,0001</td>
</tr>
<tr>
<td>ERRO</td>
<td>24</td>
<td>14029,46666</td>
<td>584,56111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (parcelas)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupo</td>
<td>2</td>
<td>43699,24444</td>
<td>21849,62222</td>
<td>37,38</td>
<td>0,0001</td>
</tr>
<tr>
<td>Repetições</td>
<td>4</td>
<td>56329,11111</td>
<td>14082,27777</td>
<td>24,09</td>
<td>0,0001</td>
</tr>
<tr>
<td>Erro (a)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (sub-parcelas)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo</td>
<td>2</td>
<td>264,57777</td>
<td>132,28888</td>
<td>0,23</td>
<td>0,7992</td>
</tr>
<tr>
<td>Tempo x Grupo</td>
<td>4</td>
<td>1547,28888</td>
<td>386,82222</td>
<td>0,66</td>
<td>0,6246</td>
</tr>
<tr>
<td>Repetições (grupo)</td>
<td>8</td>
<td>77523,42222</td>
<td>9690,42777</td>
<td>16,58</td>
<td>0,0101</td>
</tr>
<tr>
<td>Erro (b)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>46,53%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G1</th>
<th>p</th>
<th>G2</th>
<th>p</th>
<th>G3</th>
<th>p</th>
<th>T0</th>
<th>p</th>
<th>T1</th>
<th>p</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₀xT₁ 0,2406</td>
<td></td>
<td>T₀xT₁ 0,7959</td>
<td></td>
<td>T₀xT₁ 0,7661</td>
<td></td>
<td>G₁xG₂ 0,0116</td>
<td></td>
<td>G₁xG₂ 0,0859</td>
<td></td>
<td>G₁xG₂ 0,0235</td>
<td></td>
</tr>
<tr>
<td>T₀xT₂ 0,9381</td>
<td></td>
<td>T₀xT₂ 0,8159</td>
<td></td>
<td>T₀xT₂ 0,4948</td>
<td></td>
<td>G₁xG₃ 0,0001</td>
<td></td>
<td>G₁xG₃ 0,0009</td>
<td></td>
<td>G₁xG₃ 0,0001</td>
<td></td>
</tr>
<tr>
<td>T₁xT₂ 0,2788</td>
<td></td>
<td>T₁xT₂ 0,6237</td>
<td></td>
<td>T₁xT₂ 0,3331</td>
<td></td>
<td>G₂xG₃ 0,0176</td>
<td></td>
<td>G₂xG₃ 0,0583</td>
<td></td>
<td>G₂xG₃ 0,0019</td>
<td></td>
</tr>
</tbody>
</table>

114
Tabela 59- Efeito da administração de diferentes soluções de enema sobre a motilidade do trato gastrintinal de eqüinos hígidos.

<table>
<thead>
<tr>
<th></th>
<th>Tempo 0</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grupo 1 (água e sabão)</td>
<td>Grupo 2 (solução isotônica)</td>
<td>Grupo 3 (água e vaselina)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QDD</td>
<td>QVD</td>
<td>QDE</td>
<td>QVE</td>
<td>QDD</td>
<td>QVD</td>
<td>QDE</td>
<td>QVE</td>
<td>QDD</td>
</tr>
<tr>
<td>Atonia</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Hipoperistalse</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Normal</td>
<td>100%</td>
<td>100%</td>
<td>80%</td>
<td>100%</td>
<td>100%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>100%</td>
</tr>
<tr>
<td>hiperperistalse</td>
<td>0%</td>
<td>0%</td>
<td>20%</td>
<td>0%</td>
<td>0%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Tempo 1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grupo 1 (água e sabão)</td>
<td>Grupo 2 (solução isotônica)</td>
<td>Grupo 3 (água e vaselina)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QDD</td>
<td>QVD</td>
<td>QDE</td>
<td>QVE</td>
<td>QDD</td>
<td>QVD</td>
<td>QDE</td>
<td>QVE</td>
<td>QDD</td>
</tr>
<tr>
<td>Atonia</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Hipoperistalse</td>
<td>40%</td>
<td>20%</td>
<td>20%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Normal</td>
<td>60%</td>
<td>80%</td>
<td>60%</td>
<td>80%</td>
<td>100%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>100%</td>
</tr>
<tr>
<td>hiperperistalse</td>
<td>0%</td>
<td>0%</td>
<td>20%</td>
<td>0%</td>
<td>0%</td>
<td>20%</td>
<td>20%</td>
<td>0%</td>
<td>20%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Tempo 2</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grupo 1 (água e sabão)</td>
<td>Grupo 2 (solução isotônica)</td>
<td>Grupo 3 (água e vaselina)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QDD</td>
<td>QVD</td>
<td>QDE</td>
<td>QVE</td>
<td>QDD</td>
<td>QVD</td>
<td>QDE</td>
<td>QVE</td>
<td>QDD</td>
</tr>
<tr>
<td>Atonia</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Hipoperistalse</td>
<td>40%</td>
<td>0%</td>
<td>20%</td>
<td>0%</td>
<td>0%</td>
<td>20%</td>
<td>0%</td>
<td>0%</td>
<td>20%</td>
</tr>
<tr>
<td>Normal</td>
<td>60%</td>
<td>100%</td>
<td>60%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>40%</td>
<td>80%</td>
<td>100%</td>
</tr>
<tr>
<td>hiperperistalse</td>
<td>0%</td>
<td>0%</td>
<td>20%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>60%</td>
<td>20%</td>
<td>0%</td>
</tr>
<tr>
<td>Tempo</td>
<td>Grupo 1 (água e sabão)</td>
<td>Grupo 2 (solução isotônica)</td>
<td>Grupo 3 (água e vaselina)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QDD</td>
<td>QVD</td>
<td>QDE</td>
<td>QVE</td>
<td>QDD</td>
<td>QVD</td>
<td>QDE</td>
<td>QVE</td>
<td>QDD</td>
</tr>
<tr>
<td>Atonia</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Hipoperistalse</td>
<td>40% (2/5)</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>20% (1/5)</td>
<td>20%</td>
<td>20%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Normal</td>
<td>60% (3/5)</td>
<td>100%</td>
<td>100%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>100% (5/5)</td>
<td>100%</td>
</tr>
<tr>
<td>Hiperperistalse</td>
<td>0% (1/5)</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>20%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

| **Tempo 4** |
|-----------------|-----------------|-----------------|-----------------|
| Grupo 1 (água e sabão) | Grupo 2 (solução isotônica) | Grupo 3 (água e vaselina) |
| QDD | QVD | QDE | QVE | QDD | QVD | QDE | QVE | QDD | QVD | QDE | QVE |
| Atonia | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
| Hipoperistalse | 40% (2/5) | 0% | 0% | 0% | 20% (1/5) | 20% | 20% | 0% | 0% | 0% | 0% | 0% |
| Normal | 60% (3/5) | 100% | 100% | 100% | 100% | 100% | 80% | 100% | 100% | 100% |
| Hiperperistalse | 0% (1/5) | 0% | 0% | 0% | 0% | 0% | 20% | 0% | 0% | 0% | 0% | 0% |

| **Tempo 5** |
|-----------------|-----------------|-----------------|-----------------|
| Grupo 1 (água e sabão) | Grupo 2 (solução isotônica) | Grupo 3 (água e vaselina) |
| QDD | QVD | QDE | QVE | QDD | QVD | QDE | QVE | QDD | QVD | QDE | QVE |
| Atonia | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
| Hipoperistalse | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
| Normal | 100% | 100% | 100% | 100% | 100% | 100% | 80% | 100% | 100% | 100% |
| Hiperperistalse | 0% (1/5) | 0% | 0% | 0% | 0% | 0% | 20% | 0% | 0% | 0% | 0% | 0% |
Tabela 59 - Efeito da administração de diferentes soluções de enema sobre a motilidade do trato gastrintinal de eqüinos hígidos (cont.)

Tempo 6

<table>
<thead>
<tr>
<th></th>
<th>Grupo 1 (água e sabão)</th>
<th>Grupo 2 (solução isotônica)</th>
<th>Grupo 3 (água e vaselina)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QDD QVD QDE QVE</td>
<td>QDD QVD QDE QVE</td>
<td>QDD QVD QDE QVE</td>
</tr>
<tr>
<td>Atonia</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
</tr>
<tr>
<td>Hipoperistalse</td>
<td>20% 0% 0% 0%</td>
<td>20% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
</tr>
<tr>
<td>(1/5)</td>
<td></td>
<td>(1/5)</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>80% 100% 100% 100%</td>
<td>80% 100% 100% 100%</td>
<td>100% 100% 100% 100%</td>
</tr>
<tr>
<td>hiperperistalse</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
</tr>
</tbody>
</table>

Tempo 7

<table>
<thead>
<tr>
<th></th>
<th>Grupo 1 (água e sabão)</th>
<th>Grupo 2 (solução isotônica)</th>
<th>Grupo 3 (água e vaselina)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QDD QVD QDE QVE</td>
<td>QDD QVD QDE QVE</td>
<td>QDD QVD QDE QVE</td>
</tr>
<tr>
<td>Atonia</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
</tr>
<tr>
<td>Hipoperistalse</td>
<td>40% 0% 20% 0%</td>
<td>20% 20% 0% 0%</td>
<td>0% 0% 0% 20%</td>
</tr>
<tr>
<td>(2/5)</td>
<td>(1/5)</td>
<td>(1/5)</td>
<td>(1/5)</td>
</tr>
<tr>
<td>Normal</td>
<td>60% 100% 40% 80%</td>
<td>80% 80% 80% 80%</td>
<td>100% 100% 100% 60%</td>
</tr>
<tr>
<td>hiperperistalse</td>
<td>0% 0% 40% 20%</td>
<td>0% 0% 20% 0%</td>
<td>0% 0% 20% 0%</td>
</tr>
<tr>
<td></td>
<td>(2/5) (1/5)</td>
<td>(1/5)</td>
<td>(1/5)</td>
</tr>
</tbody>
</table>

Tempo 8

<table>
<thead>
<tr>
<th></th>
<th>Grupo 1 (água e sabão)</th>
<th>Grupo 2 (solução isotônica)</th>
<th>Grupo 3 (água e vaselina)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QDD QVD QDE QVE</td>
<td>QDD QVD QDE QVE</td>
<td>QDD QVD QDE QVE</td>
</tr>
<tr>
<td>Atonia</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
</tr>
<tr>
<td>Hipoperistalse</td>
<td>40% 0% 40% 0%</td>
<td>20% 20% 0% 0%</td>
<td>0% 0% 0% 40%</td>
</tr>
<tr>
<td>(2/5)</td>
<td>(2/5)</td>
<td>(1/5)</td>
<td>(2/5)</td>
</tr>
<tr>
<td>Normal</td>
<td>60% 100% 60% 100%</td>
<td>80% 60% 100% 100%</td>
<td>100% 100% 100% 60%</td>
</tr>
<tr>
<td>hiperperistalse</td>
<td>0% 0% 0% 0%</td>
<td>0% 20% 0% 0%</td>
<td>0% 0% 0% 0%</td>
</tr>
<tr>
<td></td>
<td>(1/5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabela 59 - Efeito da administração de diferentes soluções de enema sobre a motilidade do trato gastrintestinal de equinos hígidos (cont.)

<table>
<thead>
<tr>
<th></th>
<th>Grupo 1 (água e sabão)</th>
<th>Grupo 2 (solução isotônica)</th>
<th>Grupo 3 (água e vaselina)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QDD QVD QDE QVE</td>
<td>QDD QVD QDE QVE</td>
<td>QDD QVD QDE QVE</td>
</tr>
<tr>
<td>Atonia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
</tr>
<tr>
<td>Hipoperistalse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40% 0% 20% 0%</td>
<td>20% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
</tr>
<tr>
<td></td>
<td>(2/5)</td>
<td>(1/5)</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60% 100% 80% 100%</td>
<td>80% 100% 100% 100%</td>
<td>100% 100% 100% 100%</td>
</tr>
<tr>
<td>hiperperistalse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
<td></td>
</tr>
</tbody>
</table>

Tempo 10

<table>
<thead>
<tr>
<th></th>
<th>Grupo 1 (água e sabão)</th>
<th>Grupo 2 (solução isotônica)</th>
<th>Grupo 3 (água e vaselina)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QDD QVD QDE QVE</td>
<td>QDD QVD QDE QVE</td>
<td>QDD QVD QDE QVE</td>
</tr>
<tr>
<td>Atonia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
</tr>
<tr>
<td>Hipoperistalse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20% 0% 0% 0%</td>
<td>20% 0% 0% 0%</td>
<td>20% 0% 0% 0%</td>
</tr>
<tr>
<td></td>
<td>(1/5)</td>
<td>(1/5)</td>
<td>(1/5)</td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80% 100% 100% 100%</td>
<td>80% 100% 100% 100%</td>
<td>100% 100% 100% 100%</td>
</tr>
<tr>
<td>hiperperistalse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
<td></td>
</tr>
</tbody>
</table>

Tempo 11

<table>
<thead>
<tr>
<th></th>
<th>Grupo 1 (água e sabão)</th>
<th>Grupo 2 (solução isotônica)</th>
<th>Grupo 3 (água e vaselina)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QDD QVD QDE QVE</td>
<td>QDD QVD QDE QVE</td>
<td>QDD QVD QDE QVE</td>
</tr>
<tr>
<td>Atonia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
</tr>
<tr>
<td>Hipoperistalse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40% 0% 0% 0%</td>
<td>20% 0% 0% 0%</td>
<td>20% 0% 0% 0%</td>
</tr>
<tr>
<td></td>
<td>(2/5)</td>
<td>(1/5)</td>
<td>(1/5)</td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60% 100% 100% 100%</td>
<td>80% 100% 100% 100%</td>
<td>100% 100% 100% 100%</td>
</tr>
<tr>
<td>hiperperistalse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
<td></td>
</tr>
</tbody>
</table>

118
Tabela 59 - Efeito da administração de diferentes soluções de enema sobre a motilidade do trato gastrintestinal de equinos hígidos (cont.).

✓ Tempo 12

<table>
<thead>
<tr>
<th></th>
<th>Grupo 1 (água e sabão)</th>
<th>Grupo 2 (solução isotônica)</th>
<th>Grupo 3 (água e vaselina)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QDD QVD QDE QVE</td>
<td>QDD QVD QDE QVE</td>
<td>QDD QVD QDE QVE</td>
</tr>
<tr>
<td>Atonia</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
</tr>
<tr>
<td>Hipoperistalse</td>
<td>40% (2/5) 0% 0% 20% (1/5) 0%</td>
<td>20% (1/5) 20% (1/5) 20% (1/5) 0%</td>
<td>20% 20% 20% 0%</td>
</tr>
<tr>
<td>Normal</td>
<td>60% (3/5) 100% (5/5) 100% (5/5) 80% (4/5) 100% (5/5) 80% (4/5) 100% (5/5)</td>
<td>80% (4/5) 80% (4/5) 80% (4/5) 100% (5/5)</td>
<td>80% 80% 80% 100%</td>
</tr>
<tr>
<td>hiperperistalse</td>
<td>0% 0% 0% 0% 0% 0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
</tr>
</tbody>
</table>

✓ Tempo 13

<table>
<thead>
<tr>
<th></th>
<th>Grupo 1 (água e sabão)</th>
<th>Grupo 2 (solução isotônica)</th>
<th>Grupo 3 (água e vaselina)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QDD QVD QDE QVE</td>
<td>QDD QVD QDE QVE</td>
<td>QDD QVD QDE QVE</td>
</tr>
<tr>
<td>Atonia</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
</tr>
<tr>
<td>Hipoperistalse</td>
<td>40% (2/5) 0% 40% (2/5) 0% 20% (1/5) 0%</td>
<td>20% (1/5) 20% (1/5) 20% (1/5) 0%</td>
<td>20% 20% 20% 0%</td>
</tr>
<tr>
<td>Normal</td>
<td>60% (3/5) 100% (5/5) 100% (5/5) 80% (4/5) 100% (5/5) 80% (4/5) 100% (5/5)</td>
<td>80% (4/5) 80% (4/5) 80% (4/5) 100% (5/5)</td>
<td>80% 80% 80% 100%</td>
</tr>
<tr>
<td>hiperperistalse</td>
<td>0% 0% 0% 0% 0% 0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
</tr>
</tbody>
</table>

✓ Tempo 14

<table>
<thead>
<tr>
<th></th>
<th>Grupo 1 (água e sabão)</th>
<th>Grupo 2 (solução isotônica)</th>
<th>Grupo 3 (água e vaselina)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QDD QVD QDE QVE</td>
<td>QDD QVD QDE QVE</td>
<td>QDD QVD QDE QVE</td>
</tr>
<tr>
<td>Atonia</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
</tr>
<tr>
<td>Hipoperistalse</td>
<td>20% (1/5) 0% 20% (1/5) 0% 20% (1/5) 0%</td>
<td>20% (1/5) 20% (1/5) 20% (1/5) 0%</td>
<td>0% 0% 20% (1/5) 0%</td>
</tr>
<tr>
<td>Normal</td>
<td>80% (4/5) 100% (5/5) 100% (5/5) 80% (4/5) 100% (5/5) 80% (4/5) 100% (5/5)</td>
<td>100% (5/5) 100% (5/5) 100% (5/5)</td>
<td>80% 100% 100% (5/5)</td>
</tr>
<tr>
<td>hiperperistalse</td>
<td>0% 0% 0% 0% 0% 0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
<td>0% 0% 0% 0%</td>
</tr>
</tbody>
</table>