Thoico	Cilvoire	Maccimento

SUSTENTABILIDADE APLICADA À CONSTRUÇÃO DE DATA CENTERS - CERTIFICAÇÕES E ESTUDO DE CASO NO CENTRO TECNOLÓGICO MOGI MIRIM (ITAÚ UNIBANCO)

Belo Horizonte
Escola de Arquitetura da UFMG
2016

SUSTENTABILIDADE APLICADA À CONSTRUÇÃO DE DATA CENTERS – CERTIFICAÇÕES E ESTUDO DE CASO NO CENTRO TECNOLÓGICO MOGI MIRIM (ITAÚ UNIBANCO)

Monografia apresentada ao curso de Especialização em Sistemas Tecnológicos e Sustentabilidade Aplicados ao Ambiente Construído da Escola de Arquitetura da Universidade Federal de Minas Gerais, como requisito parcial para a obtenção do título de especialista em Sistemas Tecnológicos e Sustentabilidade Aplicados ao Ambiente Construído.

Orientadora:

Profa. Dra. Roberta Vieira Gonçalves de Souza

Belo Horizonte
Escola de Arquitetura da UFMG
2016

SUSTENTABILIDADE APLICADA À CONSTRUÇÃO DE DATA CENTERS – CERTIFICAÇÕES E ESTUDO DE CASO NO CENTRO TECNOLÓGICO MOGI MIRIM (ITAÚ UNIBANCO)

Thaisa Silveira Nascimento

Monografia apresentada ao curso de Especialização em Sistemas Tecnológicos e Sustentabilidade Aplicados ao Ambiente Construído da Escola de Arquitetura da Universidade Federal de Minas Gerais, como requisito parcial para a obtenção do título de especialista em Sistemas Tecnológicos e Sustentabilidade Aplicados ao Ambiente Construído.

Orientadora:

Prof^a. Dra. Roberta Vieira Gonçalves de Souza

Monografia defendida junto ao programa de Pós-Graduação em Arquitetura e Urbanismo da Universidade Federal de Minas Gerais em 21 de Dezembro de 2016, e aprovada pela banca examinadora constituída pelos seguintes professores:

PROFA. DRA. ROBERTA VIEIRA GONÇALVES DE SOUZA
Universidade Federal de Minas Gerais - UFMG

Universidade Federal de Minas Gerais - UFMG

Belo Horizonte Escola de Arquitetura da UFMG 2016

AGRADECIMENTOS

Aos professores da UFMG, tanto aos novos da Escola de Arquitetura quanto aos primeiros da Escola de Engenharia, por ensinarem sempre dentro e fora de sala de aula.

Ao time do Itaú Unibanco, por me auxiliar com todas as informações e experiência no estudo de caso.

Aos meus pais, por todo o esforço para me educar para a vida.

RESUMO

Este trabalho tem como objetivo principal avaliar a aplicação dos processos de certificação ambiental (certificação de sustentabilidade a ambientes ou certificação ambiental em espaços) de Data Centers, e identificar as peculiaridades dos mesmos. Inicialmente, são verificados os processos aplicáveis a esse tipo de construção e os ganhos alcançados ao se reduzir o consumo de energia elétrica na manutenção dos equipamentos, na refrigeração do ambiente e nos demais quesitos avaliados. Dessa forma, foram estudados Data Centers considerados modelos no quesito sustentabilidade, e relacionadas as suas certificações. Finalmente, foi apresentado o exemplo do Data Center do Itaú Unibanco, localizado em Mogi Mirim e certificado como LEED Gold pelo Green Building Council, e caracterizado como foi realizado o processo de certificação do mesmo.

Palavras chave: Data Center, LEED, Certificação ambiental, Eficiência energética.

ABSTRACT

This study aims to evaluate the application of environmental certification processes to data center environment, and raise its peculiarities. Initially, the procedures applicable to this type of construction and the gains achieved by reducing the consumption of electricity in the maintenance of equipment and the cooling of the environment and other issues were checked. So, data centers considered models in the sustainability category were studied, and its related certifications. Finally, it's brought as example the Data Center of Itaú Unibanco, located in Mogi Mirim and certified LEED Gold by the US Green Building Council, characterizing how the certification process of the building was carried out.

Keywords: Data Center, LEED, Environmental certification, Energy eficiency.

LISTA DE FIGURAS

Figura 1 - Oportunidades de melhoria da eficiência energética dos Data Centers	.14
Figura 2 - Scorecard do data center Grainger Lake Forest, em Illinois	20
Figura 3 - Etapas do processo de certificação LEED	22
Figura 4 - Estrutura dos servidores Bloom Energy	23
Figura 5 - Servidores de energia da Bloom Energy utilizados no Data Center da	
Ebay, em Utah	24
Figura 6 - Sistema de fornecimento de energia do Data Center do Ebay, em Utah	24
Figura 7 - Distribuição da energia renovável utilizada pelo Google em 2011	25
Figura 8 - Emissões de carbono do Google em 2011	26
Figura 9 - Localização dos Data Centers do Google no mundo	26
Figura 10 - Data center Hamina, do Google, na Finlândia	27
Figura 11 - Entrada do Data center do Facebook na Suécia	29
Figura 12 - Sistema de refrigeração utilizando o ar externo em Lulea, Suécia	29
Figura 13 - Interior do Data center do Facebook em Lulea, Suécia	30
Figura 14 - Logo do Facebook na área externa do Data center em Lolea, Suécia	30
Figura 15 - Evolução do tema sustentabilidade no Itaú Unibanco	31
Figura 16 - Consumo de água nas unidades administrativas e agências do Itau	32
Figura 17 - Consumo de energia nas unidades administrativas e agências do Itau	33
Figura 18 - Volume de transações realizadas por canais físicos e digitais no Itaú	
Unibanco	33
Figura 19 - Centro Tecnológico Mogi Mirim; Data Center 1	34
Figura 20 - Sala de controle do Data Center CTMM	35

LISTA DE TABELAS

Tabela 1 - Categorias do selo AQUA de avaliação dos edifícios	16
Tabela 2 - Sistemas de certificação LEED	18
Tabela 3 - Dimensões avaliadas pelo sistema LEED de certificação de edifícios	3 19
Tabela 4 - Certificações de Data center pelo LEED no Brasil	22
Tabela 5 - Nível de intervenção realizado para obtenção da pontuação LEED	36
Tabela 6 - Avaliação da categoria "Terreno Sustentável" do NOC e DC CTMM.	37
Tabela 7 - Avaliação da categoria "Uso racional da água" do NOC e DC CTMM	l38
Tabela 8 - Avaliação da categoria "Materiais e Recursos" do NOC e DC CTMM	39
Tabela 9 - Avaliação da categoria "Inovação de projeto" do NOC e DC CTMM	39
Tabela 10 - Avaliação da categoria "Prioridades regionais" do NOC e DC CTMI	M40
Tabela 11 - Avaliação da categoria "Qualidade do ambiente interno" do NOC C	TMM
Erro! Indicador não de	finido.
Tabela 12 - Avaliação da categoria "Qualidade do ambiente interno" do DC CT	MM 40
Tabela 13 - Avaliação da categoria "Energia e atmosfera" do NOC CTMM	41
Tabela 14 - Avaliação da categoria "Qualidade do ambiente interno" do NOC C	TMM
Erro! Indicador não de	finido.
Tabela 15 - Tarifas de energia elétrica Eletropaulo CPFL Piratininga, subgrupo	A4,
sem imposto	42
Tabela 16 - Características do modelo baseline e proposto	42
Tabela 17 - Avaliação da redução de consumo no modelo proposto	43

LISTA DE GRÁFICOS

Gráfico 1 - Perfil de avaliação do desempenho de edifícios AQUA	16
Gráfico 2 - As certificações LEED no Brasil por localidade	18
Gráfico 3 - As certificações LEED no Brasil por sistema de certificação	19
Gráfico 4 - As certificações LEED no Brasil, por nível de certificação	
Gráfico 5 - As certificações LEED no Brasil por tipo de construção	
Gráfico 6 - Pontuação NOC CTMM no LEED	
Gráfico 7 - Pontuação DC CTMM no LEED	

SUMÁRIO

1	INTRODUÇÃO	11
2	METODOLOGIA	12
3	CONTEXTUALIZAÇÃO	13
	3.1 A ESTRUTURA DE UM DATA CENTER 3.2 OS TIPOS DE CERTIFICAÇÃO	15
4	DATA CENTERS MODELO	23
_	4.1 EBAY	25 28
5		
	 5.1 GESTÃO DE SUSTENTABILIDADE – ITAÚ UNIBANCO. 5.2 O PROJETO CTMM	34 34 35
6		
R	EFERÊNCIAS BIBLIOGRÁFICAS	

1 INTRODUÇÃO

O Data Center é o departamento em que uma empresa aloca e mantém e tecnologia da informação sistemas de back-end (TI) e armazena - os dados mainframes, servidores e bancos de dados. Nos dias de operações de TI centralizadas, grandes, este departamento e todos os sistemas residia em um lugar físico, portanto, nome "centro de dados". (Gartner, 2013). A definição utilizada por Gartner apresenta bem a descrição física do que seria um ambiente de Data Center. Entretanto, o aumento do fluxo de dados, a geração constante de informação e a necessidade de manter essa informação disponível, porém segura a todo o tempo, adiciona um fator a mais de atenção a esse departamento de uma grande empresa. (Techopedia, 2014).

Todavia, para se manter um ambiente desse tipo, disponível e conectado todas as horas do dia, é necessária uma estrutura de fornecimento de energia muito bem organizada. Os chamados downtimes, momentos de queda do sistema, representam para empresas uma perda de capacidade produtiva muitas vezes estimada em milhões de dólares (First National Bank, 2013). Considerando o elevado consumo energético e de água, e a necessidade do mesmo para a continuidade do negócio, criou-se uma preocupação quanto ao impacto ambiental que os Data Centers são capazes de causar.

Paralelamente, cresce o mercado das certificações ambientais, que tendem a não só valorizar os empreendimentos, mas reduzir o consumo e consequentemente os custos de operação da construção civil. (Sinduscon, 2008). O Leadership in Energy and Environmental Design (LEED) é um sistema de certificação, criado pelo Green Building Council, que trabalha com um sistema de pontuação para classificar edifícios de acordo com as tecnologias utilizadas na construção dos mesmos. (Revista Tecnè, 2010).

Dentro desse contexto de consumo dos Data Centers, um investimento massivo na construção de um novo Centro Tecnológico do Itaú Unibanco veio aliado às chamadas boas práticas, tanto relativas à arquitetura do sistema dos computadores quanto da infraestrutura física, buscando minimizar ao máximo o consumo de recursos em sua construção e operação. O projeto do CTMM já visava a obtenção da certificação LEED, com redução de consumo de 12% em energia de refrigeração e 43% de energia elétrica. (Revista Infra, 2015).

A aplicação de formas de construir preocupadas com o meio ambiente, além de reduzir o impacto dos edifícios, visa otimizar a utilização dos recursos, de maneira a reduzir também o custo de operação. Ao avaliar os consumos energéticos de Data Centers certificados e compará-los com os relativos a um tradicional objetiva-se quantificar o ganho desse tipo de processo de certificação no ambiente tecnológico em estudo. Com o estudo de caso, será avaliada também como é a modificação do processo de produção e desenho de um projeto para a equipe de trabalho, levando em conta as adaptações que devem ser feitas e a dificuldade de implantação desse novo conceito.

2 METODOLOGIA

O presente estudo foi feito a partir da técnica de investigação bibliográfica seguida por um estudo de caso. Partindo do interesse em relação às certificações ambientais que podem ser aplicadas à ambientes de centro de processamento de dados, buscou-se avaliar as suas peculiaridades e os pontos relevantes que devem ser considerados no processo, visando maximizar o ganho ambiental da edificação.

Desta forma, a pesquisa bibliográfica foi baseada em informações contemporâneas, a partir de sites relacionados a órgãos certificadores, blogs e páginas que contivessem a informação mais recente em relação às peculiaridades desse ambiente.

Ao unir essas informações com alguns breves estudos sobre Data Centers que são considerados atualmente modelos de eficiência energética devido à especificações de projeto que buscam reduzir o consumo para manutenção e refrigeração do ambiente, objetivou-se ilustrar como um projeto-modelo pode ser encontrado na prática ao redor do mundo.

Desta forma, a junção dessas informações busca embasar o estudo de caso, parte final da metodologia, relativo à um Data Center modelo construído pelo Itaú Unibanco, recentemente finalizado na região de Mogi Mirim, estado de São Paulo.

O objetivo desse estudo é de trazer ao leitor uma visão mais próxima da realidade que temos no Brasil hoje, em termos de adaptações plausíveis à região climática, bem como das limitações tecnológicas. O estudo traz uma análise mais baseada em números relativos ao projeto, níveis de certificação do Data Center e também as ponderações interessantes que são muitas vezes levadas em conta no processo de certificação do edifício, ilustrando como o processo de aplicação desse conhecimento é feito na prática por grandes empresas.

3 CONTEXTUALIZAÇÃO

3.1 A estrutura de um Data Center

O Data center é onde ocorre todo o processamento computacional, armazenamento de dados e aplicações fundamentais para o funcionamento de uma empresa. Todos os dados e informações que estão disponíveis online hoje, toda a transação via internet e mídia disponível estão localizadas em algum data center ao redor do mundo (Cisco, 2007).

O planejamento adequado da infraestrutura de um data center é extremamente importante e deve levar em conta a performance desejada, a resiliência do serviço e a possibilidade de crescimento. Uma arquitetura capaz de absorver novas aplicações e serviços em um curto espaço de tempo é uma característica importante a ser levada em conta, dada a velocidade com que o mercado e as demandas mudam atualmente, conferindo competitividade ao negócio (Cisco, 2007).

Devido à grande necessidade de disponibilidade da informação armazenada nos Data Centers, se faz necessária uma alimentação de energia extremamente confiável, de forma a evitar quedas de fornecimento. Além disso, esses centros de processamento de dados contam com geradores e no-breaks para que, em caso de pausa no fornecimento de energia, a empresa não seja prejudicada.

Grande parte do consumo de energia dos Data centers é destinado, não só ao funcionamento dos equipamentos de hardware do local mas também para o sistema de refrigeração do mesmo. Devido à alta concentração de servidores e processadores que liberam calor, para se manter uma temperatura ideal, são requeridos sistemas industriais para refrigerar esses centros. (Locaweb, 2016).

Da maioria dos executivos de grandes empresas, focados no crescimento do negócio, é cobrada uma visão ambiental e preocupada com a redução do consumo de recursos e também do custo de manutenção do seu negócio. Isso vem à tona também em situações nas quais a empresa possui o seu crescimento limitado pela infraestrutura de seus centros de processamento de dados e pela disponibilidade de energia elétrica dos mesmos. Para contornar o problema, esses executivos incentivam cada vez mais o desenvolvimento e utilização de tecnologias que requeiram menos energia para o seu funcionamento e que sejam capazes de acomodar o máximo possível de informações do seu negócio. (IBM, 2007).

Além disso, a diferença existente entre as necessidades físicas e operacionais de um data center e a subutilização dos equipamentos trazem um maior custo de operação dessa infraestrutura, seja esse custo em aquisição de hardware, em recursos humanos ou mesmo o custo ambiental. Desse problema surge uma oportunidade que vem sendo explorada pelas grandes empresas de melhorar a capacidade de fornecimento de energia, sistemas de refrigeração e de utilização dos seus

equipamentos, para reduzir o custo e aumentar a vida útil dos seus centros de processamento. (EMC, 2008).

Segundo estudos realizados na universidade americana de Berkeley, o consumo de energia por servidores nos Estados Unidos duplicou de 2000 para 2005, somando cerca de 1,2% de toda a energia consumida no país naquele ano (Stanford, 2007).

Sistemas elétricos e de refrigeração representam 44% do consumo total de um data center comum. Atualmente, o custo de manutenção de uma estrutura como essa durante três anos chega a uma vez e meia o valor gasto com a compra de novos *hardwares*, o que transfere o problema de investimento em novos equipamentos do momento da compra para a fase de manutenção dos mesmos (The Uptime Institute, 2007).

Entretanto, a transição de um data center convencional para um "data center verde" é um processo complexo que deve levar em conta diversos componentes. Para isso existem hoje no mercado diversas soluções que podem ser implementadas estrategicamente, reduzindo o impacto na disponibilidade das informações e consequentemente no negócio da empresa. (IBM, 2007). Essas soluções podem ser aplicadas em diversos pontos do projeto do data center. A Figura 1 abaixo mostra de forma gráfica as oportunidades de aprimoramento dessa estrutura.

Entrega de refrigeração variável

Melhorias no sistema Facilities

Remoção de líquido aquecido

Gestão de fluxo de ar

Layout da sala

Design de produto e gestão de fluxo de ar e eficiência energética

Design de produto e gestão de fluxo de ar e eficiência energética

Figura 1 - Oportunidades de melhoria da eficiência energética dos Data Centers (Fonte: Adaptado IBM, 2007)

Como formas de maximizar a eficiência do data center, o projeto deve levar em conta alguns fatores importantes. O primeiro deles é um levantamento dos sistemas utilizados no local, o consumo

energético dos mesmos e sua localização. Isso é importante para evitar perdas no transporte da energia da fonte até o equipamento. Além disso é preciso estudar os incentivos governamentais disponíveis para atingir a eficiência energética, bem como os objetivos de redução de consumo e emissão de poluentes no país, uma vez que estão diretamente ligados ao consumo do data center. Por último, é extremamente necessário ter em vista os planos de crescimento da empresa, e qual o reflexo disso na estrutura de TI. Desta forma, o planejamento futuro do centro de processamento de dados estará de acordo com as necessidades da companhia, evitando replanejamentos onerosos (IBM, 2007).

3.2 Os tipos de certificação

As certificações ambientais voltadas para a construção civil atualmente passam a possuir uma dupla função na busca pela sustentabilidade do ambiente. Além de provar que determinado projeto atingiu um nível determinado de eficiência no que se refere à redução do impacto no meio ambiente, a certificação passa a ser utilizada como um mapa de critérios a serem utilizados como referencial nessa busca por qualidade.

No Brasil, há um processo de etiquetagem de eficiência energética de edifícios utilizado, formulado pelo PROCEL, que classifica edifícios comerciais, residenciais e públicos de forma distinta, emitindo uma etiqueta na qual é informado o desempenho dos prédios em alguns quesitos, programa que possui um destaque muito grande no Brasil hoje. (Revista Tecnè, 2010). Com o sucesso do sistema utilizado em aparelhos eletroeletrônicos, o programa desenvolvido pelo INMETRO, Instituto Nacional de Metrologia, qualidade e tecnologia, também analisa as características dos edifícios e afere notas, de A a E, de acordo com a eficiência do uso de energia naquela construção. Dessa forma, o empreendedor tem como passar uma segurança maior ao usuário de que ele terá um desempenho satisfatório no uso do edifício.

A partir de 2005, foram desenvolvidos dentro do Programa Brasileiro de Etiquetagem (PBE) dois documentos utilizados como guias no processo de etiquetagem: o Requisitos Técnicos da Qualidade do Nível de Eficiência Energética de Edifícios Comerciais, de Serviços e Públicos (RTQ-C) e o Regulamento Técnico da Qualidade do Nível de Eficiência Energética de Edificações Residenciais (RTQ-R).

Para obter a etiqueta, existem alguns pré-requisitos, gerais e específicos, que envolvem características como a separação de circuitos elétricos, a demanda por água aquecida, isolamento de tubulações, dentre outros, e de acordo com a nota recebida em cada quesito, o sistema de etiquetagem gera uma nota final que é a que representará a eficiência da envoltória e da iluminação do edifício.

Há também o processo AQUA, Alta Qualidade Ambiental, que caracteriza os edifícios em Bom, Superior e Excelente, de acordo com a implantação do quesito de sustentabilidade em todas as etapas do projeto. Adaptado da metodologia de certificação francesa HQE - Haute Qualité

Environnementale, de responsabilidade da associação QUALITEL, o AQUA é uma modalidade de certificação reconhecida internacionalmente. (Fundação Vanzollini, 2010). O processo AQUA trabalha com a avaliação do edifício e 14 categorias, como apresentado no Gráfico 1.

Gráfico 1 - Perfil de avaliação do desempenho de edifícios AQUA (Fonte: Fundação Vanzolini, 2010)

Base (B): Prática corrente ou regulamentar

Boas Práticas (BP): Boas Práticas

Melhores Práticas (MP): Desempenho calibrado conforme o desempenho máximo constatado recentemente nas operações de Alta Qualidade Ambiental.

As 14 categorias são listada na Tabela 1:

Tabela 1 - Categorias do selo AQUA de avaliação dos edifícios (Fonte: Fundação Vanzolini, 2010)

Descrição Categoria

1	RELAÇÃO DO EDIFÍCIO COM O SEU ENTORNO
2	ESCOLHA INTEGRADA DE PRODUTOS, SISTEMAS E PROCESSOS CONSTRUTIVOS
3	CANTEIRO DE OBRAS DE BAIXO IMPACTO AMBIENTAL
4	GESTÃO DA ENERGIA
5	GESTÃO DA ÁGUA
6	GESTÃO DE RESÍDUOS DE USO E OPERAÇÃO DO EDIFÍCIO
7	MANUTENÇÃO – PERMANÊNCIA DO DESEMPENHO AMBIENTAL
8	CONFORTO HIGROTÉRMICO
9	CONFORTO ACÚSTICO
10	CONFORTO VISUAL
11	CONFORTO OLFATIVO
12	QUALIDADE SANITÁRIA DOS AMBIENTES
13	QUALIDADE SANITÁRIA DO AR

14 QUALIDADE SANITÁRIA DA ÁGUA

Adaptado à realidade brasileira, o selo AQUA leva em consideração as heterogeneidades regionais, possibilitando a adoção de soluções de forma personalizada e compatível com o edifício. Os referenciais utilizados para a certificação estão em constante fase de alteração e melhoria, trazendo sempre uma avaliação mais condizente com a realidade local e temporal do edifício.

Além desses, temos diversos outros modelos de certificação ambiental como o BREEM (Building Research Establishment Environmental Assessment Method), Energy star e diversos outros. Na adoção do método mais adequado de construção e certificação de um projeto são sempre avaliados os requisitos que mais agregam valor ao empreendimento em termos de eficiência energética e hídrica, redução do impacto ambiental no entorno e também benefícios de imagem. Muitas empresas conciliam a valorização certificação ambiental de suas construções ao aumento de valor da marca, como estratégia de negócio, sendo mais um fator a ser considerado na escolha do modelo.

3.2.1 A Certificação LEED

A certificação LEED (*Leadership in Energy and Environmental Design*) foi criada pelo *United States Green Building Council* como um sistema internacional de certificação ambiental para edificações. Focado na sustentabilidade dos projetos, hoje o sistema LEED é utilizado em 143 países. (GBC Brasil, 2016).

Focada em benefícios econômicos, sociais e ambientais, a certificação trabalha com o objetivo de orientar os projetistas nos quesitos construtivos que podem melhorar ou piorar o desempenho do edifício. A sua vertente econômica é focada na diminuição dos custos operacionais do imóvel e de sua maior valorização no mercado. Ao avaliar formas mais eficientes de se estruturar o projeto, consequentemente o edifício possui um retorno significativo ao reduzir os gastos mensais com energia e água, por exemplo (GBC Brasil, 2016).

Socialmente, de forma indireta, a certificação LEED cria uma valorização das fábricas e fornecedores que entregam produtos voltados à sustentabilidade construtiva e a responsabilidade socioambiental. (GBC Brasil, 2016).

Finalmente, o quesito principal da certificação é o aumento da eficiência na utilização dos recursos naturais, diminuindo o máximo possível os impactos ao meio ambiente gerados na construção e utilização do mesmo. O incentivo ao uso de materiais e tecnologias de baixo impacto ambiental, o uso racional de recursos naturais e a redução do consumo de água e energia são pontos foco das empresas que procuram o LEED como forma de certificação de seus edifícios.

No Brasil, 54% dos edifícios certificados pelo sistema estão localizados no estado de São Paulo, seguido do Rio de Janeiro, Paraná e Minas Gerais, como apresentado na **Gráfico 2** (GBC Brasil).

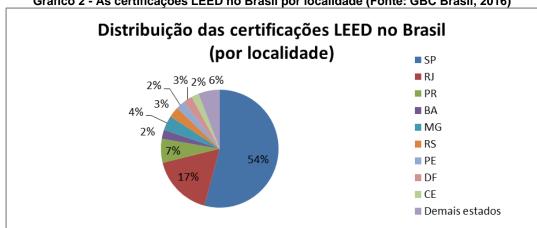


Gráfico 2 - As certificações LEED no Brasil por localidade (Fonte: GBC Brasil, 2016)

Dentro do sistema LEED de certificação, existem atualmente oito categorias. Os projetos são assim divididos para que o sistema de pontuação utilizado seja mais condizente com o uso final da construção, como apresentado na Tabela 2. Para cada tipologia, o sistema LEED oferece um *checklist* para registro do projeto, com pontuações diferentes para cada uma das categorias avaliadas por eles. (GBC Brasil, 2016).

Tabela 2 - Sistemas de certificação LEED (Fonte: Adaptado GBC Brasil, 2016)

Categoria de certificação	Edifícios foco
New Constructions	Novas construções ou edificações que serão reformadas em sua estrutura
New Constituctions	original, modificando os sistemas de ar condicionado, envoltória e realocação
Existing Buildings	Redução de gastos e do impacto ambiental na operação do edifício já
Existing Buildings	existente.
Commercial Interiors	Aplicada a escritórios, objetiva uma melhor qualidade e salubridade dos
Commercial interiors	ambientes de trabalho, aumentando a produtividade dos seus ocupantes
Core and Shell	Engloba toda a área comum, sistema de ar condicionado, estrutura principal,
Core and Shen	como caixa de escadas e elevadores e fachadas
	Lojas de varejo. Essa tipologia se subdivide em:
	1 - LEED for Retail NC - LEED para Novas Construções ou Grandes Reformas
Leed Retail	em Lojas de Varejo.
	2 - LEED for CI – LEED para Interiores Comerciais, quando a loja esta
	localizada dentro de um edifício
Leed for School	Visa a redução de custos de manutenção em escolas e a criação de práticas
Leed for School	de educação ambiental dentro do próprio ambiente escolar
	Integra princípios de crescimento planejado e inteligente, urbanismo
Leed for Neighborhood	sustentável e edificações verdes, por meio de diferentes tipologias de
Development	edificações e mistura de usos dos espaços urbanos. Incentiva também a
Development	utilização de transporte público, eficiente e alternativo e criação de áreas de
	lazer, tais como parques e espaços públicos de alta qualidade.

Dessas categorias, as duas mais utilizadas no Brasil são a Core and Shell, com 43% dos edifícios do Brasil certificados nela, seguida da New Construction, com 38%, como visto no Gráfico 3. O edifícios de Data Centers, foco do estudo, são, em sua grande maioria, certificados como New Construction, e tem os critérios de projeto avaliados segundo essa tipologia (GBC Brasil, 2016).

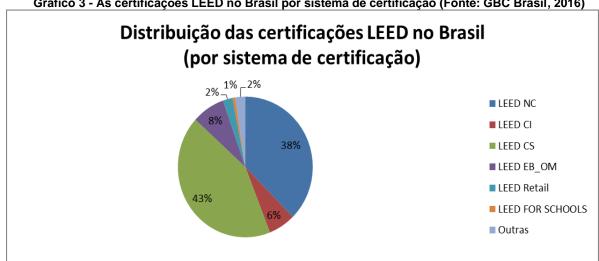


Gráfico 3 - As certificações LEED no Brasil por sistema de certificação (Fonte: GBC Brasil, 2016)

A partir das tipologias criadas no modelo LEED de certificação, o responsável pelo empreendimento, na maioria das vezes orientado por uma consultoria especializada no sistema, deve avaliar qual a pontuação que o seu edifício está apto a receber, em cada uma das chamadas 7 dimensões de avaliação.

Cada dimensão de avaliação, listadas na Tabela 3, analisa um quesito diferente do ambiente construído, e possui instalações que são consideradas pré-requisitos (obrigatórias) e as extra (bonus).

Tabela 3 - Dimensões avaliadas pelo sistema LEED de certificação de edifícios (Fonte: Adaptado GBC Brasil, 2016)

Dimensão avaliada	Descrição
Espaço Sustentável	Analisa o impacto do edifício no seu entorno, avaliando o ecossistema.
Uso eficiente da água	Possui foco na redução do consumo da água e visa estratégias como o reuso da mesma.
Energia e atmosfera	Objetiva a redução do consumo de energia através do uso de sistemas mais eficientes de iluminação e refrigeração.
Materiais e recursos	Prioriza o uso de materiais locais, reciclados ou reutilizados, com redução de resíduos e do uso de recursos naturais.
Qualidade ambiental interna	Pontua a qualidade do ar em ambientes internos, visando o comforto ambiental e a utilização de materiais não-nocivos à saúde dos ocupantes.

63 / 111

Inovação e processos	É uma categoria para pontos adicionais, de iniciativas não-listadas nas categorias LEED ou mesmo a criação de novas técnicas.
Créditos de prioridade regional	É uma categoria que se modifica de acordo com a localidade do edifício, pois avalia as diferenças ambientais, sociais e econômicas de cada local.

A pontuação definida para cada uma das dimensões varia de acordo com a tipologia da certificação, e o impacto que determinado quesito tem na mesma. O nível da certificação é definido conforme a quantidade de pontos adquiridos, podendo variar de 40 pontos, nível certificado a 110 pontos, nível platina.

O *scorecard* é uma ferramenta utilizada para a certificação. Das oito categorias existentes, são atribuídos pontos de acordo com as especificidades que o projeto possui.

O Grainger Lake Forest Data Center foi o primeiro empreendimento certificado com LEED Gold, na sua versão v4. (Pepper Construction, 2016),e seu *scorecard* pode ser visto na Figura 2.

1000042988, lake forest, IL Grainger Lake Forest Data Center LEED BD+C: Data Centers (v4) GOLD, AWARDED JUL 2014 INDOOR ENVIRONMENTAL QUALITY Credit Site assessment
Credit Site development - protect or restore habitat Credit Enhanced IAQ strategies 2/2 Credit Low-emitting materials Credit Open space 1/1 Credit Construction IAQ Mgmt plan 1/1 Credit IAQ assessment Credit Rainwater Mgmt 3/3 2/2 Credit Thermal comfort Heat island reduction 0/1 Credit Light pollution reduction 1/1 Credit Interior lighting 2/2 2/3 1/1 Credit Daylight WATER EFFICIENCY 5/11 Credit Quality views Credit Acoustic performance 0/2 0/1 2/2 Credit Cooling tower water use REQUIRED Prereq ETS Control for Projects in Japan Water metering Credit Outdoor water use reduction AWARDED: 3 / 4 Credit Indoor water use reduction 3/6 Credit Advanced energy metering Credit Enhanced IAQ strategies 1/1 24/33 Credit Site development - protect or restore habitat 0/1 Credit Enhanced commissioning 6/6 1/1 Demand response 0/2 E LOCATION & TRANSPORTATION Credit Renewable energy production 0/3 Credit Enhanced refrigerant Mgmt 1/1 Credit LEED for Neighborhood Development location 0/16 Sensitive land protection Credit Optimize energy performance 16/18 Credit High priority site 0/2 Surrounding density and diverse uses 0/5 Credit Access to quality transit 0/5 Bicycle facilities Credit Building life-cycle impact reduction 0/5 Building product disclosure and optimization - environmental product declarations Reduced parking footprint 1/1 0/2 Credit Building product disclosure and optimization - sourcing of raw materials 1/2 Building product disclosure and optimization - material ingredients 0/2 INTEGRATIVE PROCESS CREDITS AWARDED: 1/4 2/2 Construction and demolition waste Mgmt Credit Integrative process 1/1 REQUIRED Prereq Passive Survivability and Functionality During Emergencies Prereq Assessment and Planning for Resilience REQUIRED

Figura 2 - Scorecard do data center Grainger Lake Forest, em Illinois. (Fonte: USGBC)

A distribuição dos níveis de certificação de edifícios no Brasil é apresentada no Gráfico 4, com a grande maioria dos projetos certificados como GOLD. De 40 a 50 pontos o empreendimento entra na categoria "Certified", 50 a 60 é classificado como Silver, certificação de 32% dos edifícios LEED no Brasil. Em uma faixa maior, de 60 a 80 se encontram os edifícios GOLD, e somente acima de 80 pontos conseguidos é possível se certificar como LEED Platinum, edifícios de excelência ambiental.

TOTAL

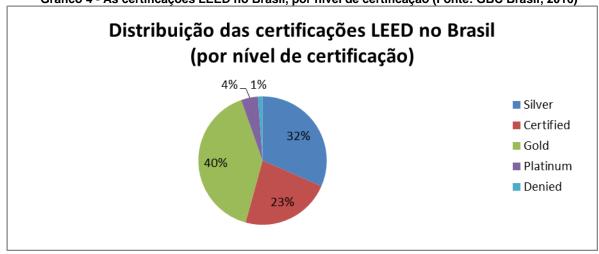
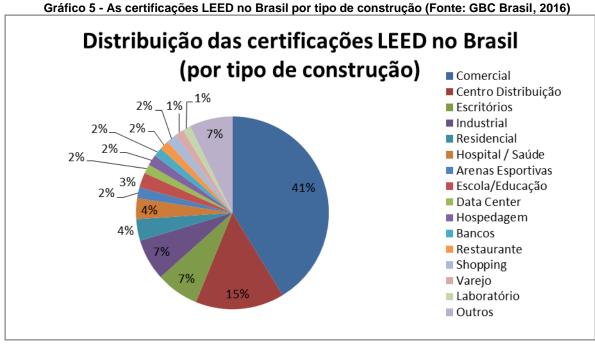



Gráfico 4 - As certificações LEED no Brasil, por nível de certificação (Fonte: GBC Brasil, 2016)

Os mais diversos tipos de construção podem ser certificados no modelo, porém no Brasil ainda é possível avaliar a inserção do mesmo mais representativamente nos edifícios comerciais, em detrimento a outrs tipos como Escolas, Hospitais e os próprios Data Centers, responsáveis por uma parcela de somente 2% dos edifícios LEED no país, como mostrado no Gráfico 5.

Como ilustrado na Tabela 4 abaixo, disponibilizada pelo Green Building Council, no Brasil possuimos um gap ainda muito grande na incorporação do modelo LEED no desenvolvimento dos projetos e construção de Data Centers. Em todo o país temos somente sete empreendimentos desse

tipo certificados pelo modelo.

Tabola 4 - Cartificaci	ões de Data center ne	lo LEED no Brasil (Fonte	· GRC Bracil 2016)
rabeia 4 - Certificaci	des de Data Center de	IO LEED NO BIASII (FONTE	. GDC DIASII. ZUIDI

Projeto	Cidade	Estado	Sistema	Versao	Nível da Certificação	Pontos da Certificação	Data da Certificação
VIVO Datacenter Tambore	Santana De Parnaiba	SP	LEED NC	3.0	Gold	64	31/10/2012
Centro Tecnologico Campinas - CTC 03	Campinas	SP	LEED NC	3.0	Gold	64	18/07/2014
Centro Tecnologico Campinas - CTC 02	Campinas	SP	LEED NC	3.0	Gold	64	21/07/2014
Confidential	Confidential	SP	LEED NC	3.0	Gold	66	06/03/2015
Confidential	Confidential	SP	LEED NC	3.0	Gold	66	06/03/2015
Data Center BMF Bovespa	São Paulo	SP	LEED NC	3.0	Certified	44	10/07/2015
Confidential	Confidential	RJ	LEED NC	3.0	Gold	67	04/01/2016

Para obtenção da certificação LEED são seguidos cinco passos, ilustrados na Figura 3. O primeiro deles é a escolha da categoria a ser pleiteada, bem como a meta de pontos a ser atingida. Esse procedimento é feito com o auxilio de um consultor no modelo, que possa apresentar o domínio necessário para a decisão sobre quais pontos agregam mais ao empreendimento.

Figura 3 - Etapas do processo de certificação LEED (Fonte: GBC Brasil, 2016)

Depois a primeira etapa, deve ser feito um registro junto ao GBC local que irá analisar o projeto a partir dos seguintes documentos:

- Declaração padronizada LEED assinada pelos projetista ou responsáveis técnicos;
- Plantas e memoriais descritivos de projetos e sistemas
- Cálculos de eficiência

Após o envio da documentação necessária, a mesma é avaliada quanto ao atendimento aos critérios das pontuações, e então a certificação é concedida ou não.

As principais críticas ao modelo giram em torno da avaliação do modelo pós ocupação. Após a obtenção da certificação em projeto, não há um controle sobre a utilização dos equipamentos declarados nos documentos. Essa falta de controle cria algumas ressalvas quando à real motivação das empresas ao certificar algum dos seus projetos, que devem ser levadas em conta ao associar "Certificação ambiental" à "Eficiência ambiental" de um empreendimento.

4 DATA CENTERS MODELO

4.1 **Ebay**

"eBay Inc. começa a partir de um lugar mais verde, porém não paramos por aí. Nos comprometemos a tocar nosso negócio de forma a ter o mínimo de impacto possível no planeta. Essa missão não é fácil e nós ainda estamos aprendendo a tocar nosso negócio e reduzir a sua pegada ecológica ao mesmo tempo. Porém no eBay Inc, não é somente sobre fazer a coisa certa – é também sobre estender nosso foco em inovações guiadas por tecnologia para dentro de tudo que fazemos. De testes para novos projetos de energia renovável para a próxima geração a repensar como Data Centers são construídos e geridos, estamos inserindo eficiência e sustentabilidade em cada face da operação de nossos negócios." – Traduzido de Portal Green Ebay

O data center da empresa americana de comércio pela internet, que movimenta cerca de U\$175 bilhões de dólares por ano, está localizado em Salt Lake City, em Utah, Estados Unidos. O primeiro empreendimento a utilizar a tecnologia de "servidores" de energia, da Bloom Energy como fonte primária de fornecimento (Data Center Dynamics, 2013).

Esses servidores de energia (Bloom's Energy Servers) são uma nova forma de produção de energia feita on-site, de forma confiável e economicamente viável. São montados a partir de placas de combustível que é convertido em eletricidade a partir de um processo eletroquímico, Dessa forma, a geração de energia não gera poluentes como a combustão, funcionando como uma espécie de bateria. (Bloom Energy, 2016).

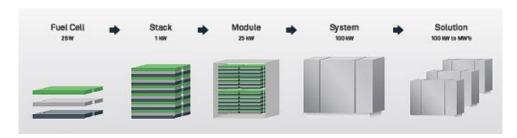


Figura 4 - Estrutura dos servidores Bloom Energy (Fonte: Forced Green, 2010)

Em Utah, o Ebay utiliza 6, dos 8 megawatts consumidos no funcionamento e resfriamento do Data Center, provenientes desse tipo de geração. Ao todo no local são 30 servidores de energia instalados na parte externa do Data Center. (Forbes, 2016)

Figura 5 - Servidores de energia da Bloom Energy utilizados no Data Center da Ebay, em Utah. (Fonte: Forbes)

Segundo os responsáveis pelo projeto, o novo sistema de geração de energia reduz em 49% a emissão de CO₂ relativa ao empreendimento, além de garantir uma maior disponibilidade do sistema da empresa, uma vez que o mesmo não é sujeito à problemas da rede de transmissão de energia convencional, por exemplo. (Forbes, 2016).

Figura 6 - Sistema de fornecimento de energia do Data Center do Ebay, em Utah. (Fonte: Forbes, 2016)

Certificado como LEED Gold, o edifício da Ebay em Salt Lake city recebeu também o prêmio Geen IT Magazine. Entregue após apuração de uma comitiva e também dos leitores da revista, para empresas ou iniciativas que contribuíram de forma significativa para desenvolver a performance ambiental da indústria de TI (PR News Wire). O projeto recebeu o prêmio por, além de utilizar os servidores Bloom Energy como fonte principal de abastecimento, ainda se utiliza do ar frio e do clima árido da região para tornar mais eficiente a refrigeração do local. Quando as torres de refrigeração pelo ar estão em funcionamento, o sistema de refrigeração de ar convencional pode ser desligado, reduzindo o consumo de energia do prédio como um todo, e sendo mantido de uma forma mais eficiente e econômica. (Forbes, 2016).

No modelo tradicional de construção de um Data Center, devido à grande necessidade de disponibilidade de serviço e de dados, muitas vezes o sistema de fornecimento de energia é superdimensionado, trazendo um consumo excessivo de recursos. A confiabilidade do sistema de

fornecimento utilizado pelo Ebay em Utah faz com que essa necessidade seja reduzida, pois exclui a necessidade de duplicidade de infraestrutura que frequentemente existe em ambientes como esse, e traz também um consumo de energia linear, sem variações de custo ao longos dos meses (Data center Dynamics, 2016).

4.2 Google

"O Google tem sido líder na revelação de informações relativas a eficiência energética e consumo de energia em seus data centers, bem como estratégias de reciclagem de água para reduzir o impacto de suas instalações em comunidades locais."

— Data Center Knowledge

O Google é hoje uma empresa de referência em tecnologia da informação. Com um crescimento muito rápido nos últimos anos, o grupo não abriu mão de manter o seu impacto no meio ambiente cada vez menor e, em 2011, atingiu a marca de utilização de energia renovável para 33% do seu consumo total no mundo, se tornando o maior comprador de energia limpa do atualmente (Google Green, 2016).

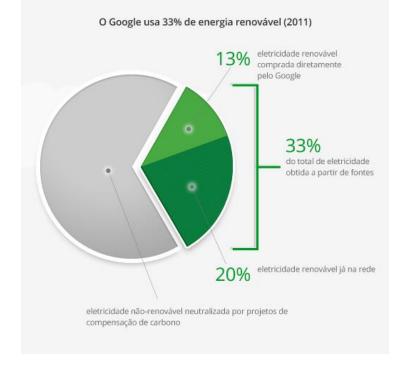


Figura 7 - Distribuição da energia renovável utilizada pelo Google em 2011 (Fonte: Google)

Além disso, a empresa manteve um controle de redução das emissões de carbono e disponibilizou os resultados de forma dinâmica para o acesso do público. Em 2011, segundo o estudo apresentado por eles, o consumo de energia elétrica da empresa foi de 2.675.898 MWh, e gerando um total de 1,68 milhões de toneladas de dióxido de carbono, valor que seria duplicado caso não

fossem tomadas medidas de eficiência e sustentabilidade em seus prédios e Data Centers. (Google Green, 2016).

Figura 8 - Emissões de carbono do Google em 2011 (Fonte: Google)

Nossas emissões de carbono: 2011 **Toneladas** Tipo de emissão métricas de CO,e Emissões diretas (escopo 1) 29.563 Carros do Street View, programa de translado, veículos corporativos, combustível no local em escritórios próprios.. Compra de eletricidade (escopo 2) 1.439.703 Escritório e data centers. 208.157 Outras emissões indiretas (escopo 3) Viagens de trabalho, deslocamento de funcionários, construção de servidores e de data centers, combustível no local em escritórios alugados. Total 1.677.423

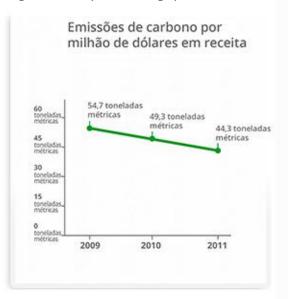


Figura 9 - Localização dos Data Centers do Google no mundo (Fonte: Google, 2016)

Como os Data Centers representam uma grande fração do consumo de energia da empresa, a mesma possui um foco especial no que se refere à eficiência energética desse tipo de construção. Como forma de divulgar o trabalho que é feito para a eficiência, o Google divulgou as práticas mais recomendadas para se atingir esse objetivo.

Uma delas é a medição da PUE, Power Usage Effectiveness, que comprara o gasto com energia de uma forma geral nos Data centers e a energia direcionada para os servidores e máquinas

em si. De uma forma geral, o PUE convencional de Data centers é de 100%, ou seja, o consumo para manter as máquinas é igual ao consumo de energia gasta com refrigeração, e iluminação. Já no Google, esse número cai para 14%, o que indica a redução no consumo de energia que não é destinada aos servidores (Fonte: Google Green, 2016).

O Google também recomenda como prática a otimização da distribuição de energia. Segundo estudos realizados pela equipe de pesquisa em sustentabilidade do Google, um terço do consumo total nos data centers não produz efetivamente resultados para a empresa, pois é dissipado no seu transporte. Para evitar esse tipo de perda, a empresa apostou em materiais que evitam essa dissipação, e mantém fontes de alimentação o mais próximas possíveis dos equipamentos, evitando um caminho muito longo para transporte. Após essas medidas tomadas, foi levantada uma otimização de 15% da energia nesse processo, reduzindo o montante inicial gasto. (Google Green, 2016).

4.2.1.1 Google Hamina Data Center

Construído em uma pequena cidade no interior da Finlândia, o Data center de Hamina utilizou a estrutura de uma antiga fábrica de papel da Stora Enso, construída em 1950. O local foi escolhido devido à disponibilidade de local, mão de obra e à possibilidade de se recuperar e utilizar uma infraestrutura já existente da fábrica. Apesar do prédio antigo, é considerado um dos mais avançados e eficientes data centers do Google, devido à tecnologia pioneira de refrigeração dos servidores, que utiliza a água do mar para manter a temperatura dos mesmos. (Google Green, 2016).

Figura 10 - Data center Hamina, do Google, na Finlândia. (Fonte: Google Green, 2016)

A água do mar Báltico é bombeada para dentro da estrutura através de uma tubulação original do prédio e passa por trocadores de calor, que são aquecidos pelo calor gerado pelos servidores. Após aquecida a água, ela retorna para uma construção externa onde é misturada com mais água vinda do mar, e depois descartada. Desta forma o descarte da água aquecida não gera impacto no ecossistema marinho local (Data center Dynamics, 2016).

4.3 Facebook – Lulea, Suécia

Sabendo das novas tendências de migração de serviços para a tecnologia de nuvem, maior volume de tratamento de dados, e mais conexões feitas entre pessoas do mundo todo, a equipe do Facebook estabeleceu como princípio para eles de que esse processo deveria ser feito da forma mais eficiente e sustentável possível (Open Compute 2011).

O Open Compute Project surgiu de um desejo do próprio Facebook de repensar toda a infraestrutura de armazenamento de dados dos seus Data Centers e também de otimizar o consumo energético, muito elevado em ambientes como esse. Foi aí que se iniciou o projeto do que hoje é o Prineville, em Oregon EUA, concebido para ser o mais eficiente centro de processamento de dados do mundo, que alcançou a otimização de 38% a menos em gastos com energia e 24% de redução nos custos totais de manutenção do seu funcionamento (Open Compute, 2011).

Ainda seguindo essa linha de projetos, porém levando o conceito um pouco mais a fundo, em 2013 foi finalizada a primeira fase do primeiro Data center do Facebook fora dos Estados Unidos, construído em Lulea, na Suécia. Considerado um dos Data centers mais eficientes e sustentáveis do mundo possui todos os seus equipamentos movidos a energia hidrelétrica. Devido à alta confiabilidade do sistema de fornecimento de energia no país, a empresa conseguiu reduzir também o uso dos seus geradores movidos a diesel em 70% do tempo (Lulea Data Center Facebook, 2013).

O primeiro Data center da empresa no local foi aberto em 2013, e a segunda fase do mesmo foi concluída em 2015. Lulea 2, como é chamada a segunda fase do projeto, possui aproximadamente 125mil m² de área construída, e utilizou o conceito de construção modular, que tornou o processo de construção mais rápido e mais eficiente no que se refere a otimização do uso de materiais (Computing, 2014).

Figura 11 - Entrada do Data center do Facebook na Suécia. (Fonte: The guardian)

Além disso, essa construção possui uma localização estratégica no que se refere a redução do consumo energético. Construído no limite do círculo Ártico, utiliza o ar polar para refrigerar os servidores (Lulea Data Center Facebook, 2013). As médias de temperatura no inverno local chegam a -20°C, e o ar gélido do exterior é circulado por paredes de ventiladores, de forma a manter as temperaturas do interior constantes (The Guardian, 2015). Essa forma de refrigeração é utilizada em uma média de 8 meses ao ano, reduzindo drasticamente os gastos energéticos relativos a esse sistema (Daily mail, 2011).

O restante do ar aquecido pelos equipamentos é utilizado para aquecer o escritório local (Lulea Data Center Facebook, 2013). Os servidores, localizados em racks pretos nos corredores do local, foram criados utilizando como modelo o Open Compute Project, um projeto em que grandes empresas de todo o mundo discutem melhores formas e designs utilizados na construção de seus Data Centers (The Guardian, 2015).

Figura 13 - Interior do Data center do Facebook em Lulea, Suécia. (Fonte: Facebook)

5 ESTUDO DE CASO: CENTRO TECNOLÓGICO DE MOGI MIRIM

5.1 Gestão de sustentabilidade – Itaú Unibanco

"Em tempos de escassez de recursos naturais, como água e energia, além do excesso de poluição por resíduos, tomar iniciativas para redução de consumo e geração de lixo é fundamental. Reduzir e otimizar o uso desses recursos é responsabilidade de todos. Por isso, há tempos buscamos diminuir o impacto ambiental, direto e indireto, de nossas operações, melhorando nossa eficiência e contribuindo para uma performance" –

Marco Ambrogio Crespi Bonomi; Diretor Geral de Varejo Itaú Unibanco

Esse é um dos pensamentos que guiam a gestão do Itaú Unibanco, e que ilustra o trabalho idealizado na forma do mais novo Data Center da empresa. Em seu relatório anual de sustentabilidade do ano de 2015, é declarado que, apesar da empresa ser classificada como setor de serviços, o impacto que a mesma exerce no ambiente é direto por meio da operação de todas as unidades administrativas, agências e centros tecnológicos, e faz com que seja necessário avaliar todas as formas possíveis de mitigação dessa interferência.

Com 4.100 agências espalhadas e mais de 27 mil caixas eletrônicos espalhados pelo território do Brasil e em mais 19 países, o Itaú Unibanco possui ainda 80 mil colaboradores em todos os setores da sua administração.

Ainda no relatório anual, são declaradas como fontes principais de consumo de água e energia elétrica os sistemas de refrigeração e uso de equipamentos de tecnologia, que buscam ser reduzidas com a adoção de melhores práticas de mercado e uma gestão cada vez mais próxima e atenta aos recursos naturais. A equipe de gestão de sustentabilidade gerencia conjuntamente as unidades de consumo, estudando dados e gerando indicadores periódicos de consumo de água, energia, geração de resíduo, tratamento de efluentes e emissões de CO₂.

Devido à alta dependência das instalações dos equipamentos eletrônicos e de refrigeração, dada à natureza do negócio, a busca por eficiência energética é continua através da adoção de melhores práticas e estabelecimento de metas ousadas para a redução do consumo. Atualmente, o mercado livre de energia provê cerca de 81% de toda a energia consumida nos prédios administrativos, de fontes variadas, dentre elas uma PCH, energia solar, eólica e de biomassa. Porém, a abrangência nacional da rede de agências ainda é um entrave na padronização das fontes de energia, devido à capilaridade dessa rede no território, o que representa um grande desafio para o setor de sustentabilidade.

Já quanto ao consumo de água, a fonte principal de abastecimento ainda é o fornecimento público, o que foi um fator de risco durante a escassez do ano de 2015. Para essa situação foi preparado um plano de resposta ao racionamento para assegurar a continuidade do negócio com ações de monitoramento do consumo a partir de campanhas de conscientização periódica sobre a importância do uso responsável da água e energia.

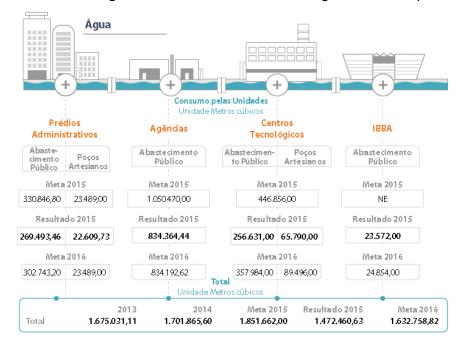


Figura 16 - Consumo de água nas unidades administrativas e agências do Itaú. (Fonte: Itaú, 2016)

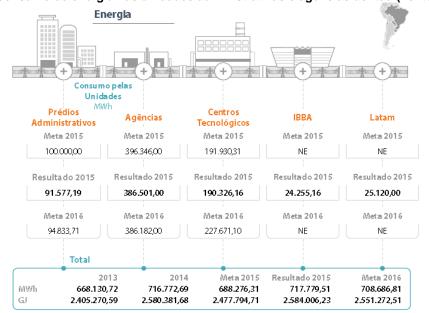
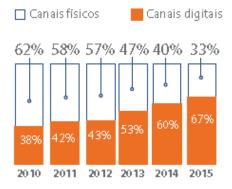



Figura 17 - Consumo de energia nas unidades administrativas e agências do Itaú (Fonte: Itaú, 2016)

Com a missão institucional de "ser o banco líder em performance sustentável e satisfação do cliente", o Itaú Unibanco vem investido nos últimos anos para ser também o que chamam de banco digital. Ao diversificar a oferta de aplicativos que possibilitam a realização de transações via internet, com maior facilidade, o banco testemunhou uma migração de 29% do seu volume total de transações via canais físicos para os canais digitais de 2010 a 2015 (Relatório de sustentabilidade 2015).

Figura 18 - Volume de transações realizadas por canais físicos e digitais no Itaú Unibanco (Fonte: Itaú, 2016)

Essa migração do perfil de utilização dos serviços do banco faz com que, cada vez mais, devam investir na melhoria dos seus centros tecnológicos, de forma a oferecer a disponibilidade necessária a esse segmento.

5.2 O PROJETO CTMM

"O Itaú Unibanco inaugurou nesta sexta-feira, na cidade de Mogi Mirim (SP), um dos maiores data centers do mundo em área construída, que fica a 160 quilômetros de São Paulo em um terreno de que conta com 815 mil metros quadrados de área. Batizado de Centro Tecnológico Mogi Mirim (CTMM), o data center cuidará dos processamentos e armazenamentos do banco, visando cobrir a demanda destes serviços até o ano de 2050, o que implica em um aumento de 25 vezes da capacidade atual." – Exame, 2015

Figura 19 - Centro Tecnológico Mogi Mirim; Data Center 1 (Fonte: O Popular Mogi Mirim, 2015)

5.3 O processo de certificação

O projeto básico do Data Center de Mogi Mirim foi finalizado em abril de 2011. As certificações ambientais que a equipe de sustentabilidade do banco buscou teve foco nas duas principais áreas de consumo energético da estrutura: O Data Center e o Centro de Comando, o NOC (Network Operation Center). O processo de avaliação e pontuação do edifício para a certificação LEED foi feito então, em duas frentes, com pontos diferentes obtidos em cada uma delas.

O Network operation center é o núcleo do Data center, de onde é controlado todo o sistema que faz a empresa funcionar, assegurando a disponibilidade do sistema. De dentro do NOC são controladas todas a partes da infraestrutura, atuando na operação e no troubleshooting de incidentes.

Em um ambiente como o do banco, cuja disponibilidade deve ser constante, há equipes trabalhando em turnos, 24/7 afim de garantir que todos os recursos sejam acessados a qualquer hora do dia.

Figura 20 - Sala de controle do Data Center CTMM (Fonte: O popular Mogi Mirim)

O DC, como chamado em projeto, se refere à parte do edifício que abriga toda a infraestrutura na qual rodam os sistemas necessários ao funcionamento do banco. Devido à sua característica, que prevê pouca ou nenhuma ocupação humana, porém um número alto de servidores e equipamentos de altíssimo consumo energético, essa fração do edifício deve ser avaliada de forma apartada do centro de comando.

Os dois certificados se diferenciam na pontuação principalmente em dois quesitos: Qualidade do ambiente interno e Eficiência energética.

5.3.1 Categorias LEED atendidas em comum

Na tabela Tabela 5 abaixo, podemos avaliar o nível de intervenção realizado no projeto para que determinado quesito exigido pelo LEED fosse atendido. Alguns quesitos, por avaliação da empresa englobando custo e benefício do mesmo, são tidos como "NÃO PLEITEADOS", e retirados da meta do projeto.

Tabela 5 - Nível de intervenção realizado para obtenção da pontuação LEED

AT	ATENDIDO: atendido considerando a documentação disponível ou a sua efetiva implantação in loco
IT1	INTERVENÇÃO NÍVEL 1: ações menos complexas ou previstas para o empreendimento, necessitando tecnologias e investimentos mais acessíveis
IT2	INTERVENÇÃO NÍVEL 2: Ações mais complexas, necessitando estudo de viabilidade técnica e econômica
NA	NÃO ATENDIDO: As estratégias necessárias para atendimento do crédito não foram e não serão incorporadas
NPL	NÃO PLEITEADO: As estratégias necessárias para atendimento do requisito não foram estabelecidas como meta para o projeto
NAP	NÃO APLICÁVEL: Não se aplica ao projeto por suas características intrínsecas

Após avaliação do que entraria ou não na meta de obtenção do projeto, os itens do *scorecard* são avaliados de acordo com cada uma das categorias dentro do LEED. Abaixo no Gráfico 6 temos o resumo da pontuação obtida para o NOC do CTMM, certificado na categoria *Silver* com 60 pontos e no Gráfico 7 avaliamos a pontuação do *Data Center* em si, com 75 pontos certificado na categoria *Gold*.

Gráfico 6 - Pontuação NOC CTMM no LEED

Resumo da pontuação do projeto - NOC

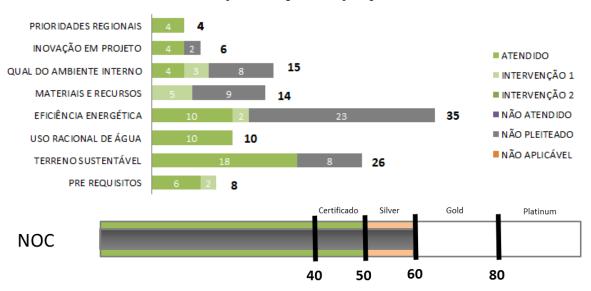
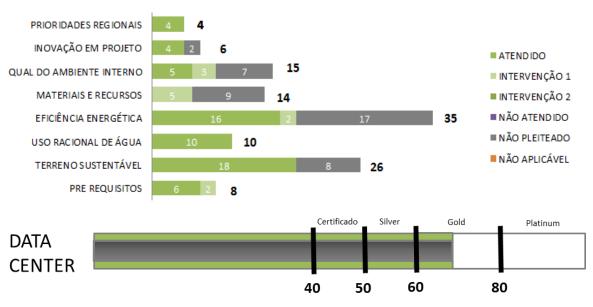



Gráfico 7 - Pontuação DC CTMM no LEED
Resumo da pontuação do projeto - Data Center

No descritivo na Tabela 6 conseguimos fazer uma avaliação de um dos quesitos priorizados na construção.

Tabela 6 - Avaliação da categoria "Terreno Sustentável" do NOC e DC CTMM

			atogoria romono dadiomaron ad		
	Y	Terreno Sustentável	Pontos possíveis: 26	Meta	Status
	Prereq 1	Prevenção de poluição nas atividades	de construção	Obrigatório	IT1
	Crédito 1	Escolha do terreno: 1 ponto		NÃO	NPL
	Crédito 2	Densidade urbana e comunidade loca	l: 5 pontos	NÃO	NPL
	Crédito 3 Recuperação de áreas contaminadas: 1 ponto		NÃO	NPL	
<u> </u>	Crédito 4.1 Transporte alternativo: 6 pontos		SIM	AT	
táve				SIM	AT
tent	Crédito 4.3	Transporte alternativo: Veículos de ba	aixa emissão e baixo consumo: 3 pontos	SIM	AT
Sustent	Crédito 4.4	Transporte alternativo: Estacionamen	tos: 2 pontos	SIM	AT
eno (Crédito 5.1	Desenvolvimento local: Habitats Natu	ırais: 1 ponto	SIM	AT
erre	Crédito 5.2	Desenvolvimento local: Área livre de	construção:1 ponto	SIM	AT
Ĕ	Crédito 6.1	Projeto para drenagem de águas pluvi	iais: Controle de qualidade: 1 ponto	SIM	AT
	Crédito 6.2	Projeto de drenagem de águas pluvia	is: Controle de qualidade: 1 ponto	SIM	AT
	Crédito 7.1	Ilhas de calor: Não cobertura: 1 ponto		SIM	AT
	Crédito 7.2	Ilhas de calor: Cobertura: 1 ponto		SIM	AT
	Crédito 8	Poluição luminosa: 1 ponto		NÃO	NPL

Por se tratar de um terreno com proporções que fogem ao comum, algumas limitações foram refletidas no *scorecard*. O crédito 2 por exemplo, apesar de possuir muitos pontos atrelados a ele, possui o empecilho da localidade. Um Data Center de tamanhas proporções, para ser localizado em um ambiente com alta densidade urbana acarreta diversos pontos de atenção e pontos econômicos a serem avaliados que acabam não fazendo sentido quando se trata de um empreendimento como esse. Isso se deve ao fato de que o número de pessoas que o acessam não é tão elevado. Ao todo,

trabalham no CTMM cerca de 400 pessoas, se revezando entre os turnos, número que, se comparado à população de giro dos centros administrativos do banco chega a ser irrisório.

Desta forma, créditos que agregariam mais valor à comunidade local foram priorizados como a implantação de um transporte alternativo saindo do centro da cidade, construção de bicicletários e vestiários bem como vagas específicas para veículos de baixa emissão que possibilitariam que os colaboradores se deslocassem até o trabalho utilizando formas menos poluidoras de transporte.

O crédito 8 dessa categoria é um crédito não considerado para a certificação, decorrente da necessidade de iluminação do local para fins de segurança.

Na Tabela 7, tanto no NOC como no DC, todos os 10 créditos possíveis foram atendidos.

Tabela 7 - Avaliação da categoria "Uso racional da água" do NOC e DC CTMM

			a categoria coo racional da agua do r		
		Uso Racional da Água	Pontos possíveis: 10	Meta	Status
<u>a</u>	Prereq 1	Redução do consumo de água: Re	duzir 20%	Obrigatório	AT
águ	Prereq 1 Redução do Consumo de agua: Reduzir 20% Crédito 1 Água potável para paisagismo: Reduzir 50%: 2 pontos		SIM	AT	
da	Crédito 1 Água potável para paisagismo: 100%: + 2 pontos		SIM	AT	
nal	Crédito 2	Tecnologias inovadoras para eflue	entes: 2 pontos	SIM	AT
racional da	Crédito 3 Redução do consumo de água: Reduzir 30%: 2 pontos		SIM	AT	
Uso r	Crédito 3	Redução do consumo de água: Re	duzir 35%: + 1 ponto	SIM	AT
	Crédito 3	Redução do consumo de água: Re	duzir 40%: + 1 ponto	SIM	AT

A categoria "Uso racional da água" leva em consideração dois fatores principais. A redução do uso de água potável para paisagismo foi atendida com a implantação de sistemas de água de reuso provenientes das áreas frequentadas do local, como NOC e vestiários. Desta forma foi abolido qualquer uso de água de fora do sistema para a irrigação das áreas de jardins. O segundo fator é uma avaliação da redução do consumo de água de uma forma geral, em relação a um projeto sem as intervenções realizadas que no projeto do CTMM foram alcançados cerca de 40% de redução.

A Tabela 8 representa a categoria "Materiais e recursos" e as duas unidades avaliadas do Data Center atingiram a mesma pontuação de 5 pontos. Essa categoria foi a que menos atingiu pontos proporcionalmente de todas elas, com uma fração de 36% dos pontos possíveis. Tal nota pode ser atribuída ao fato de trabalharem em uma nova construção, deixando de lado os pontos provenientes de ações de *retrofit* de estruturas já existentes, o que impediu o pleito de quatro dos nove pontos não atingidos. Os demais pontos não pleiteados foram os de utilização de materiais reciclados e reutilização de materiais.

Tabela 8 - Avaliação da categoria "Materiais e Recursos" do NOC e DC CTMM

		Tanona o Titanayao	da categoria materiais e necurso		
		Materiais e Recursos	Pontos possíveis: 14	Meta	Status
	Prereq 1	Depósito de recicláveis		Obrigatório	AT
	Crédito 1.1	Reuso do edifício: Manter 55%: 1 por	nto	NÃO	NPL
	Crédito 1.1	Reuso do edifício: Manter 75%: 1 por	nto	NÃO	NPL
	Crédito 1.1	Reuso do edifício: Manter 95%: 1 por	nto	NÃO	NPL
S	Crédito 1.2	Manter 50% dos elementos não estr	uturais internos: 1 ponto	NÃO	NPL
Materiais e Recursos	Crédito 2	Gestão de resíduos em obra: 50% for	a do aterro: 1 ponto	SIM	IT1
Secu	Crédito 2	Gestão de resíduos em obra: 75% for	a do aterro: 1 ponto	SIM	IT1
e F	Crédito 3	Reuso de materiais: 5%: 1 ponto		NÃO	NPL
riais	Crédito 3	Reuso de materiais: 10%: 1 ponto		NÃO	NPL
ate	Crédito 4	Conteúdo reciclado: 10% (pós consu	mo + 1/2 pré consumo): 1 ponto	NÃO	NPL
Σ	Crédito 4	Conteúdo reciclado: 20% (pós consu	mo + 1/2 pré consumo): + 1 ponto	NÃO	NPL
	Crédito 5	Materiais regionais: 10%: 1 ponto		SIM	AT
	Crédito 5	Materiais regionais: 20%: 1 ponto		SIM	AT
	Crédito 6	Materiais rapidamente renováveis:	l ponto	NÃO	NPL
	Crédito 7	Madeira certificada FSC: 1 ponto		SIM	IT1

Já na categoria "Inovação de projeto, tanto o NOC quanto o Data Center atingiram 4 dos 6 pontos possíveis, conforme a Tabela 9. Por ser instalado em Mogi Mirim, uma pequena cidade nas proximidades de São Paulo, o CTMM previu o desenvolvimento local, provocando uma movimentação na economia decorrente dos funcionários fixos no local, bem como de fornecedores e pessoas envolvidas em toda a etapa de construção.

Tabela 9 - Avaliação da categoria "Inovação de projeto" do NOC e DC CTMM

	(Z)	Inovação de Projeto	Pontos possíveis: 6	Meta	Status
	Crédito 1.1	SSc5.2 Desenvolvimento loca	l, área livre de construção: 1 ponto	SIM	AT
0	Crédito 1.2	Wec 2 - Tecnologias inovador	as para efluentes: 1 ponto	SIM	AT
vaçã	Crédito 1.3	Wec 3 - Redução no consumo	de água: 1 ponto	SIM	AT
nov	Crédito 1.4	ID: Programa de educação am	biental: 1 ponto	NÃO	NPL
_	Crédito 1.5	: 1 ponto		NÃO	NPL
	Crédito 2	Profissional acreditado LEED:	1 ponto	SIM	AT

O segundo ponto do crédito 1.1 está diretamente ligado à premissa de disponibilidade do negócio em questão. Os dois Data Centers construídos no local estão a cerca de 800m de distância um do outro. Tal definição construtiva é uma forma de prevenir que, em caso de acidentes, os dois polos sejam afetados, indisponibilizando assim as operações necessárias ao banco.

O crédito 2 provê 1 ponto ao empreendimento que realizar o processo com o acompanhamento de um profissional acreditado pelo Green Building Council. O profissional tem o trabalho de orientar a equipe do projeto a inserir as alterações que acredita serem mais eficientes na melhoria da qualidade ambiental do edifício e também quais delas possuem um custo benefício bom para o aumento da pontuação. De acordo com a equipe responsável pelo projeto no Itaú, é o primeiro ponto ganho pois, mesmo com o *know-how* dos profissionais internos, um processo de avaliação do porte do CTMM necessitaria desse profissional para que a orientação fosse a mais clara possível, resultando no sucesso do processo.

A categoria "Prioridades regionais", ilustrada na Tabela 10, nada mais é do que um compilado de créditos de demais categorias, beneficiando aqueles empreendimentos que desenvolveram bem os critérios de eficiência energética, otimização do uso da água e Inovação de projeto.

Tabela 10 - Avaliação da categoria "Prioridades regionais" do NOC e DC CTMM

		Prioridades Regionais	Pontos possíveis: 4	Meta	Status
es	Crédito 1.1 Wec 1: Água potável para paisagismo: 1 ponto		SIM	AT	
Crédito 1.2 Wec 2: Tecnologias inovadoras		Wec 2: Tecnologias inovadoras para	efluentes: 1 ponto	SIM	AT
ioric	Crédito 1.3 Wec 3: Redução no consumo de água: 1 ponto		SIM	AT	
Pri	Crédito 1.4	Otimizar eficiência energética: 1 po	onto	SIM	AT

5.3.2 Categorias LEED atendidas em paralelo

5.3.2.1 Qualidade do ambiente interno

Por se tratar de uma parte do Data Center na qual trabalham várias pessoas, um dos quesitos que pesam na avaliação e, consequentemente, na certificação LEED obtida é a qualidade do ambiente interno. Apesar das diferenças no modelo de ocupação das duas unidades avaliadas no CTMM, o ponto de diferença na pontuação das duas foi o acesso a paisagens, conforme a Tabela 11.

Tabela 11 - Avaliação da categoria "Qualidade do ambiente interno" comparativo DC x NOC CTMM

_	Tabela	i i - Avaliação da categoria "Quali	dade do ambiente interno con	iiparativo DC x NO	CCININ	
		Qualidade do ambiente interno	Pontos possíveis: 15	Meta	Status DC	Status NOC
	Prereq 1	Qualidade do ar interno		Obrigatório	AT	AT
	Prereq 2	Controle de fumaça de tabaco		Obrigatório	AT	AT
	Crédito 1	Monitoramento do ar exterior: 1 ponto		SIM	AT	AT
	Crédito 2	Ventilação adicional: 1 ponto		SIM	AT	AT
ou.	Crédito 3.1	Plano para a qualidade do ar interno durante a	obra: 1 ponto	SIM	IT1	IT1
Ambiente Interno	Crédito 3.2	Plano para a qualidade do ar interno antes da o	cupação: 1 ponto	NÃO	NPL	NPL
te =	Crédito 4.1	Materiais com baixo VOC: Adesivos e selantes:	1 ponto	SIM		IT1
ien	Crédito 4.2	Materiais com baixo VOC: Tintas e revestiment	os: 1 ponto	SIM	IT1	IT1
a d	Crédito 4.3	Materiais com baixo VOC: Sistemas de piso: 1 p	onto	NÃO	NPL	NPL
do A	Crédito 4.4	Materiais com baixo VOC: Comp. Madeiras e fib	oras naturais: 1 ponto	NÃO	NPL	NPL
	Crédito 5	Controle de fontes poluidoras e prod. Químicos	s no ambiente interno: 1 ponto	NÃO	NPL	NPL
Qualidade	Crédito 6.1	Controlabilidade dos sistemas: iluminação: 1 po	onto	NÃO	NPL	NPL
λua	Crédito 6.2	Controlabilidade dos sistemas: Conforto térmio	co: 1 ponto	NÃO	NPL	NPL
_0	Crédito 7.1	Conforto térmico: Projeto ASHRAE 55: 1 ponto		SIM	AT	AT
	Crédito 7.2	Conforto térmico: Verificação: 1 ponto		SIM	AT	AT
	Crédito 8.1	Iluminação natural para 75% dos espaços: 1 por	nto	NÃO	NPL	NPL
	Crédito 8.2	Acesso a paisagens para 90% dos espaços: 1 por	nto	NÃO	AT	NPL

Para obter-se o crédito relativo a esse quesito, é necessário prover acesso a paisagens externas em 90% dos espaços, o

5.3.2.2 <u>Energia e Atmosfera</u>

Já na segunda categoria que apresentou diferença, "Energia e Atmosfera", as pontuações foram de 12 para o NOC e 18 pontos para o DC, conforme Tabela 12.

Tabela 12 - Avaliação da categoria "Energia e atmosfera" comparativo DC e NOC CTMM

	Tabela 12 - Avaliação da categoria "Energia e atmosfera" comparativo DC e NOC CTMM Energia e Atmosfera Pontos possíveis: 35 Meta Status DC S				Status NOS
		chergia e Athiosfera Pontos possiveis: 35	ivieta	Status DC	Status NOC
	Prereq 1	Comissionamento básico dos sistemas que consomem energia	Obrigatório	IT1	IT1
	Prereq 2	Eficiência energética mínima	Obrigatório	AT	AT
	Prereq 3	Proibição de CFC	Obrigatório	AT	AT
	Crédito 1	Otimizar eficiência energética: Reduzir 12%: 1 ponto	SIM	AT	AT
	Crédito 1	Otimizar eficiência energética: Reduzir 14%: 1 ponto	SIM	AT	AT
	Crédito 1	Otimizar eficiência energética: Reduzir 16%: 1 ponto	SIM	AT	AT
	Crédito 1	Otimizar eficiência energética: Reduzir 18%: 1 ponto	SIM	AT	AT
	Crédito 1	Otimizar eficiência energética: Reduzir 20%: 1 ponto	SIM	AT	AT
	Crédito 1	Otimizar eficiência energética: Reduzir 22%: 1 ponto	NÃO	AT	NPL
	Crédito 1	Otimizar eficiência energética: Reduzir 24%: 1 ponto	NÃO	AT	NPL
	Crédito 1	Otimizar eficiência energética: Reduzir 26%: 1 ponto	NÃO	AT	NPL
	Crédito 1	Otimizar eficiência energética: Reduzir 28%: 1 ponto	NÃO	AT	NPL
	Crédito 1	Otimizar eficiência energética: Reduzir 30%: 1 ponto	NÃO	AT	NPL
<i>a</i>	Crédito 1	Otimizar eficiência energética: Reduzir 32%: 1 ponto	NÃO	AT	NPL
fera	Crédito 1	Otimizar eficiência energética: Reduzir 34%: 1 ponto	NÃO	NPL	NPL
nos	Crédito 1	Otimizar eficiência energética: Reduzir 36%: 1 ponto	NÃO	NPL	NPL
Atr	Crédito 1	Otimizar eficiência energética: Reduzir 38%: 1 ponto	NÃO	NPL	NPL
Energia e Atmosfera	Crédito 1	Otimizar eficiência energética: Reduzir 40%: 1 ponto	NÃO	NPL	NPL
erg	Crédito 1	Otimizar eficiência energética: Reduzir 42%: 1 ponto	NÃO	NPL	NPL
ш	Crédito 1	Otimizar eficiência energética: Reduzir 44%: 1 ponto	NÃO	NPL	NPL
	Crédito 1	Otimizar eficiência energética: Reduzir 46%: 1 ponto	NÃO	NPL	NPL
	Crédito 1	Otimizar eficiência energética: Reduzir 48%: 1 ponto	NÃO	NPL	NPL
	Crédito 2	Energia renovável no local: Reduzir 1%: 1 ponto	NÃO	NPL	NPL
	Crédito 2	Energia renovável no local: Reduzir 3%: 1 ponto	NÃO	NPL	NPL
	Crédito 2	Energia renovável no local: Reduzir 5%: 1 ponto	NÃO	NPL	NPL
	Crédito 2	Energia renovável no local: Reduzir 7%: 1 ponto	NÃO	NPL	NPL
	Crédito 2	Energia renovável no local: Reduzir 9%: 1 ponto	NÃO	NPL	NPL
	Crédito 2	Energia renovável no local: Reduzir 11%: 1 ponto	NÃO	NPL	NPL
	Crédito 2	Energia renovável no local: Reduzir 13%: 1 ponto	NÃO	NPL	NPL
		Comissionamento avançado: 2 pontos	SIM	IT1	IT1
		Gestão avançada do gás refrigerante: 2 pontos	SIM	AT	AT
		Medição e verificação: 3 pontos	SIM	AT	AT
		Energia limpa: 2 pontos	NÃO	NPL	NPL

Os três pontos de diferença foram relativos à porcentagem de redução do consumo energético. No Centro de operações, em relação ao Data center antigo, localizado em São Paulo, foi possível reduzir 20% do consumo total mensal, majoritariamente obtidos pela troca dos equipamentos antigos por mais eficientes e com consumo reduzido.

Para a análise da viabilidade de redução do consumo energético a empresa contratou um estudo sobre a redução no consumo decorrente da modernização do projeto do Data Center. O baseline utilizado para realizar o comparativo foi o consumo atual do Data center de São Paulo, conforme a norma ASHRAE 90.1-2007. A simulação computacional foi elaborada com base nos projetos disponibilizados e na planilha de validação de dados de consumo do banco.

Utilizando o software Energy Plus – V6.0, foi feita a modelagem tridimensional da geometria do edifício com seu zoneamento térmico, e inseridas as cargas de energia elétrica, iluminação, ar condicionado. Segundo a norma ASHRAE carga de processo é toda a carga elétrica que mantém o prédio em funcionamento, com destaque para a carga TI, a grande consumidora de energia elétrica do edifício.

No estudo também são consideradas as tarifas praticadas na região do empreendimento, apresentados na Tabela 13, relativas ao subgrupo A4 de média tensão.

Tabela 13 - Tarifas de energia elétrica Eletropaulo CPFL Piratininga, subgrupo A4, sem imposto (Fonte: Relatório de Análise Técnica CeTE, maio 2013)

Horário	Ponta	Fora de ponta
Demanda (R\$/kW)	4,57	4,57
Consumo (R\$/kW)	0,248	0,151

Para a simulação são consideradas as características dos modelos baseline e proposto de acordo com as características de envoltória, ar condicionado e iluminação listadas no apêndice G da norma Standard 90.1-2007, utilizada pelo LEED para determinação da eficiência energética, apresentados na tabela.

Tabela 14 - Características do modelo baseline e proposto (Fonte: Relatório de Análise Técnica CeTE, maio 2013)

Características dos modelos					
	Baseline	Proposto TI	Proposto Administrativo		
Luminotécnica	Potência 277,5 KW	Potência 140 KW	Potência 23 KW		
Carga de TI	7 MW	7MW			
Carga UPS	2 UPS com 3 módulos de	2 UPS com 3 módulos de			
Carga Or O	675W por sala	675W por sala			
Carga equipamentos geral	16W/m² nos escritórios		16W/m² nos escritórios		
Sistema de	Central de água gelada	Central de água gelada	Central de água gelada		
condicionamento de ar	com chiller centrífugo com condensação a água	com chiller centrífugo com condensação a água	com chiller centrífugo com condensação a água		
Temperatura de água					
gelada (Tentrada a	6,7°C a 13°C	15,6°C a 22.2°C	8,3°C a 15°C		
Tsaída)					
COP IPLV	6.1/6.4	8.5/13	6.1/9.5		

Como estratégia para a redução do consumo no empreendimento, a administração apresentou uma proposta de 40% de redução na parte Luminotécnica, e instalação de COP e IPLV elevados, com a adição de momentos de *free-Cooling*.

O padrão de uso considerado para o empreendimento foi de que as salas de equipamento teriam seu funcionamento 24/7 e as salas administrativas com padrão de uso comercial, de 8h às 18h dos dias úteis. Esses padrões de uso não se alteraram do baseline para o modelo proposto.

A Tabela 15 apresenta o custo anual de energia elétrica para os dois modelos. Na simulação considerando as especificações de projeto, seriam alcançados 2 pontos na certificação LEED, com 14,2% de redução do consumo.

Tabela 15 - Avaliação da redução de consumo no modelo proposto (Fonte: Relatório de Análise Técnica CeTE, maio 2013)

Modelo	Custo anual energia (R\$)	Redução (%)	Pontuação LEED
Baseline	15.732.640		
Proposto	13.496.910	14,2%	2

No Centro de processamento de dados, a redução de 32% deveu-se não só à modernização dos equipamentos como à implantação de técnicas de virtualização de servidores. A partir da virtualização, o consumo energético tanto para funcionamento dos equipamentos quanto para o resfriamento do local cai de forma expressiva, uma vez que o contingente de Hardware tecnológico implantado no local é reduzido também, mantendo a mesma capacidade de processamento.

Quando da certificação do edifício pronto, pós estudo de viabilidade realizado, já haviam sido implementadas técnicas de virtualização dos equipamentos de TI, responsáveis pelo consumo de 61.632MWh do Data Center. Essa medida tomada foi responsável pelo aumento em 18% do consumo já reduzido em projeto.

6 CONCLUSÃO

A realização desse projeto foi motivada pelo desejo de apresentar uma vertente de certificações ambientais não muito divulgada, porém muito importante para o setor de tecnologia.

Como produto final deste trabalho, esperou-se obter uma base de dados rica a respeito de metodologias utilizadas para obter-se a eficiência do uso de recursos nos edifícios de Data Centers e as certificações relativas a esse ambiente. Objetivou-se também exemplificar como são construídos na prática alguns Data Centers que podem ser tidos como referências quanto à construções sustentáveis, bem como apresentado um estudo de caso mais específico sobre o Centro Tecnológico de Mogi Mirim, construído pelo Itaú Unibanco.

Após analise direcionada da certificação LEED do CTMM, notou-se que os pontos da mesma foram concentrados majoritariamente em três categorias: Eficiência Energética e Uso racional da água. As três categorias, considerando o tipo do empreendimento, são as categorias que mais apresentam retorno na fase de operação do mesmo, reduzindo os recursos utilizados e consequentemente o custo final com energia e água para o local. A categoria "Terreno Sustentável" também fica em destaque devido à principalmente ações de incentivo à transportes alternativos aos colaboradores da unidade.

Com esse trabalho foi possível desenvolver e apresentar uma visão mais próxima da análise feita por uma empresa ao buscar esse tipo de inovação na construção, que concilia o posicionamento de mercado com a preocupação com os impacto ao meio ambiente e a manutenção dos recursos necessários à sua operação.

REFERÊNCIAS BIBLIOGRÁFICAS

Bloom Energy. Disponível em http://www.bloomenergy.com/fuel-cell/energy-server/. Acesso em 18. Jun. 2016.

Centro Brasileiro de Informação de Eficiência Energética, PROCEL. Disponível em < http://www.procelinfo.com.br/main.asp. Acesso em 25. Out. 2015.

Computing Co. Disponível em < http://www.computing.co.uk/ctg/news/2343969/facebook-to-open-second-data-centre-in-sweden. Acesso em 05. Jun. 2016

Cisco Data Center Infrastructure 2.5 Design Guide. 2007. San Jose, California. USA. 180p.

Data Center Dynamics. Disponível em < http://www.datacenterdynamics.com.br/awards/awards-brazil/2011/projeto-de-data-center-sustentavel>. Acesso em 05. Nov. 2015.

Data Center Dynamics. Disponível em http://www.datacenterdynamics.com/critical-environment/avoiding-data-center-downtime-the-essentials/84631.fullarticle>. Acesso em 25. Out. 2015.

Data Centers Google. Disponível em <www.google.com/about/datacenters>. Acesso em 01. Nov. 2015

Daily mail. Disponível em < http://www.dailymail.co.uk/sciencetech/article-2054168/Facebook-unveils-massive-data-center-Lulea-Sweden.html.

DPR Projects. Disponível em < http://www.dpr.com/projects/sweden-data-center>. Acesso em 05. Jun. 2016.

Exame. Disponível em < http://exame.abril.com.br/negocios/noticias/ltaú-unibanco-inaugura-data-center-de-r-3-bilhoes>. Acesso em 25. Out. 2015.

Facebook: Lulea Data Center. Disponível em https://www.facebook.com/LuleaDataCenter/?fref=ts. Acesso em 05. Jun. 2016.

Firts National Bank. Disponível em < https://www.firstnational.com/assets/site/documents/about-us/newsroom/news-purecell-energy.pdf Acesso em 01. Nov. 2015.

Forbes Tech. Disponível em http://www.forbes.com/sites/heatherclancy. Acesso em 18. Jun. 2016.

Forced Green. Disponível em < http://www.forcedgreen.com/2010/02/a-green-energy-sand-box/>. Acesso em 18. Jun. 2016.

Fundação Vanzolini. Selo Alta Qualidade Ambiental. Disponível em http://www.vanzolini.org.br/hotsite-aqua.asp. Acesso em 25. Out. 2015

Gartner Institute. Disponível em < http://www.gartner.com/it-glossary/data-center/>. Acesso em 01. Nov. 2015.

Green Ebay. Disponível em < http://green.ebay.com/greenteam/ebay/blog/building-a-greener-company/26>. Acesso em 18. Jun. 2016.

Itaú Unibanco Holding. Disponível em https://www.ltaú.com.br/sobre/quem-somos/. Acesso em 15. Out. 2016.

Jonathan G. Koomey Ph.D. Staff Scientist, Lawrence Berkeley National Laboratory and Consulting Professor, Stanford University, "Estimating total power consumption by servers in the U.S. and the world". 2007.

Kenneth G. Brill, "Data center energy efficiency and productivity", The Uptime institute, 2007.

Locaweb. Disponível em https://blog.locaweb.com.br/geral. Acesso em 19. Jun. 2016.

Open Compute Project. Disponível em < http://www.opencompute.org/about/>. Acesso em 05. Jun. 2016.

O Popular Mogi Mirim. Disponível em < http://opopularmm.com.br/ltaú-unibanco-inaugura-centro-tecnologico-de-operacoes-13167>. Acesso em 25. Out.. 2015.

Pepper construction. Disponível em http://www.pepperconstruction.com/project/grainger-lake-forest-data-center-worlds-first-leed-v4-gold. Acesso em 12. Jun. 2016.

Planeta Sustentável. Disponível em < ">http://planetasustentavel.abril.com.br/noticia/desenvolvimento/data-center-verdes-eficientes-sustentaveis-636462.shtml?func=1&pag=1&fnt=14px>">http://planetasustentavel.abril.com.br/noticia/desenvolvimento/data-center-verdes-eficientes-sustentaveis-636462.shtml?func=1&pag=1&fnt=14px>">http://planetasustentavel.abril.com.br/noticia/desenvolvimento/data-center-verdes-eficientes-sustentaveis-636462.shtml?func=1&pag=1&fnt=14px>">http://planetasustentaveis-636462.shtml?func=1&fnt=14px>">http://planetasustentaveis

PR New Wire. Disponível em < http://www.prnewswire.com/news-releases/raritans-energy-and-data-center-infrastructure-management-solutions-receive-multiple-industry-awards-123743739.html> . Acesso em 18. Jun. 2016.

Revista Infra. Disponível em ">. Acesso em 25. Out. 2015.

Revista Techné. Carimbos verdes. Disponível em < http://techne.pini.com.br/engenharia-civil/155/carimbo-verde-287728-1.aspx. Acesso em 01. Nov. 2015.

Sindicato da Indústria da Construção Civil no Estado de São Paulo. Disponível em < http://www.sindusconsp.com.br/img/meioambiente/05.pdf>. Acesso em 01. Nov. 2015.

Techopedia. Disponível em https://www.techopedia.com/2/28676/enterprise/databases/5-essential-things-that-keep-a-data-center-running. Acesso em 01. Nov. 2015.

The Efficient, Green Data Center. Delivering IT with Financial and Environmental Consciousness. Massachussets, USA. 36p.

The green data center, IBM. 2007. USA. 20 p.

The guardian. Disponível em https://www.theguardian.com/technology/2015/sep/25/facebook-datacentre-lulea-sweden-node-pole. Acesso em 05. Jun. 2016.

United States Green Building Council. Leadership in Energy and Environmental Design, LEED. Disponível em http://www.usgbc.org/leed. Acesso em 25. Out.2015.

UPTIME Institute. Disponível em < https://pt.uptimeinstitute.com/TierCertification/>. Acesso em 05. Nov. 2015.