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Abstract

In the last decade, many theoretical and experimental achievements have been made

in the physics of graphene. In particular, Raman spectroscopy has been playing an im-

portant role in unraveling the properties of graphene systems. In this thesis we use the

Raman spectroscopy to study some effects of the electron-phonon coupling in monolayer

and bilayer graphene and to probe the electronic and vibrational structure of bilayer

graphene. Phonon self-energy corrections have mostly been studied theoretically and ex-

perimentally for phonon modes with zone-center (q = 0) wavevectors. Here, we combine

Raman spectroscopy and gate voltage to study phonons of monolayer graphene for the

features originated from a double-resonant Raman (DRR) process with q ̸= 0 wavevectors.

We observe phonon renormalization effects in which there is a softening of the frequency

and a broadening of the decay width with increasing the gate voltage, that is opposite

from what is observed for the zone-center q = 0 case. We show that this renormalization

is a signature for the phonons with q ≈ 2k wavevector that come from both intravalley

and intervalley DRR processes. Within this framework, we resolve the identification of

the phonon modes contributing to the G⋆ Raman feature, at ∼ 2450 cm−1, and also for

five second order Raman combination modes in the frequency range of 1700− 2300 cm−1

of monolayer graphene. By combining the DRR theory with the anomalous phonon renor-

malization effect, we show a new technique for using Raman spectroscopy to identify the

proper phonon mode assignment for each combination mode.

We also study the behavior of the optical phonon modes in bilayer graphene devices

by applying top gate voltage, using Raman scattering. We observe the splitting of the

Raman G band as we tune the Fermi level of the sample, which is explained in terms of

mixing of the Raman (Eg) and infrared (Eu) phonon modes, due to different doping in the

two layers. We show that the comparison between the experiment and theoretical model

not only gives information about the total charge concentration in the bilayer graphene

device, but also allows to separately quantify the amount of unintentional charge coming

from the top and the bottom of the system, and therefore to characterize the intrinsic

charges of bilayer graphene with its surrounding environment.

In the second part of this thesis, the dispersion of electrons and phonons near

the K point of bilayer graphene was investigated in a resonant Raman study of the

G′ band using different laser excitation energies in the near-infrared and visible range.

The electronic structure was analyzed within the tight-binding approximation, and the
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Slonczewski-Weiss-McClure (SWM) parameters were obtained from the analysis of the

dispersive behavior of the G′ band considering both the inner and the outer DRR pro-

cesses. We show that the SWM parameters obtained considering the inner process are

in better agreement with those obtained from other experimental techniques, strongly

suggesting that the inner process is the main responsible for the G′ feature in graphene.

Additionally, the dependence of the intensity of the four peaks that compose the G′

band of bilayer graphene with laser excitation energy and laser power is explored and ex-

plained in terms of the electron-phonon coupling and the relaxation of the photon-excited

electron. We show that the carrier relaxation occurs predominantly by emitting a low-

energy acoustic phonon and the different combinations of relaxation processes determine

the relative intensities of the four peaks that give rise to the G′ band. Some peaks show

an increase of their intensity at the expense of others, thereby making the intensity of

the peaks both different from each other and dependent on laser excitation energy and

on power level. This effect gives important information about the electron and phonon

dynamics and needs to be taken into account for certain applications of bilayer graphene

in the field of nanotechnology.
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Resumo

Na última década, muitos avanços teóricos e experimentais foram alcançados na

f́ısica do grafeno. Em particular, a espectroscopia Raman tem sido muito importante

para a elucidar propriedades f́ısicas e qúımicas em sistemas de grafeno. Nessa tese nós

usamos a espectroscopia Raman para estudar alguns dos efeitos do acoplamento elétron-

fônon no grafeno de camada única e de dupla camada, e para se obter informações sobre

a estrutura eletrônica e vibracional do grafeno de camada dupla. As renormalizações das

energias dos fônons tem sido estudadas basicamente para fônons com vetor de onda nulo

(q = 0). Aqui, nós combinamos a espectroscopia Raman com aplicação de tensão de porta

para estudar, em grafeno de camada única, as bandas originadas do processo Raman com

dupla ressonância (DRR) com vetores de onda q ̸= 0. Nós observamos os efeitos de

renormalização dos fônons, em que há a diminuição da frequência e o alargamento no

decaimento dos fônons com o aumento da tensão de porta, e esse efeito é o oposto do que

é observado para os fônons com q = 0. Nós mostramos que esse tipo de renormalização

observada é uma assinatura dos fônons com vetor de onda q ≈ 2k que vêm de um processo

DRR intervale ou intravale. Dentro desse contexto, nós identificamos, para o grafeno

de camada única, os modos de fônons que contribuem para a banda Raman G⋆, em

∼ 2450 cm−1, e para outros cinco picos provenientes de combinação de modos na região

de frequência 1700− 2300 cm−1. Combinando a teoria do processo DRR com o efeito de

renormalização de fônons, nós mostramos uma nova técnica para usar a espectroscopia

Raman para identificar cada modo Raman apropriadamente.

Nós também estudamos o comportamento dos modos ópticos do grafeno de camada

dupla combinando-se o espalhamento Raman e a aplicação de tensão de porta em dispos-

itivos desse material. Nós observamos que a banda G se divide em duas quando o ńıvel de

Fermi da amostra é mudado, e isso é explicado em termos da mistura dos modos de fônon

Raman (Eg) e infravermelho (Eu) devido a diferença de concentração de carga nas duas

camadas. Nós mostramos que a comparação entre os dados experimentais e o modelo

teórico não dá apenas informação sobre a concentração de carga total no dispositivo de

grafeno de camada dupla, mas também nos permite quantificar separadamente as cargas

não intencionais provenientes da camada de cima e de baixo do sistema, e, portanto,

caracterizar a interação do grafeno de camada dupla com o ambiente em sua volta.

Na segunda parte dessa tese, a dispersão de elétrons e fônons perto do ponto

K do grafeno de camada dupla é investigado através do estudo da banda G′ usando

v



várias energias de excitação de laser na região do infravermelho e do viśıvel. A estru-

tura eletrônica foi analisada dentro da aproximação de ligações-forte, e os parâmetros

Slonczewski-Weiss-McClure (SWM) foram obtidos através do comportamento dispersivo

da banda G′ considerando-se tanto o processo DRR interno quanto o externo. Nós

mostramos que os parâmetros SWM obtidos considerando-se o processo DRR interno

está em melhor acordo com os valores obtidos por outras técnicas experimentais, sug-

erindo fortemente que o processo interno é o principal responsável pela banda G′ no

grafeno.

Além disso, a dependência da intensidade dos quatro picos que compõe a banda G′

do grafeno de camada dupla com a energia de excitação de laser e com a potência do laser

é explorada e explicada em termos do acoplamento elétron-fônon e do relaxamento dos

elétrons foto-excitados. Nós mostramos que o relaxamento dos elétrons ocorre predomi-

nantemente pela emissão de fônons acústicos de baixa energia e as diferentes combinações

dos processos de relaxamento determinam as intensidades relativas dos quatro picos que

dão origem à banda G′. Esse efeito nos fornece informações importantes sobre a dinâmica

dos elétrons e fônons e precisa ser levado em conta para aplicações do grafeno de camada

dupla do campo nanotecnológico.
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Chapter 1

Introduction

Why phonon and electron-phonon interactions matters? This question is undoubtable

the start-point to understand many fundamental phenomena in solids. Phonon is the

name given to a quantum of energy of traveling vibrational wave in a solid. Because the

interatomic forces in a solid are so strong, there is little profit in considering the motion

of an atom in a crystal in terms of particle motion. Any momentum we might give to one

atom is so quickly transmitted to its neighbors that after a very short time it would be

difficult to tell which atom we had initially displaced. But we do know that a vibrational

wave in the solid will exist for a much longer time before it is attenuated, and is therefore

a much more useful picture of an excitation in the material. Since a vibrational wave is

specified by giving the coordinates not of just one atom but of every atom in the solid,

we call this a collective motion. A phonon is thus an example of a collective excitation in

a solid [1].

Usually, the states of matter are principally studied in terms of electronic degrees of

freedom in materials. However the coupling of the electronic degrees of freedom to lattice

degrees of freedom is seen to play a crucial role in the materials properties. This coupling

is usually described by interactions between the electronic excitations and phonons and

is responsible for many interesting effects in a crystal. The most classical effect of the

electron-phonon coupling is the the formation of polaron, which is a quasi-particle com-

posed of a charge and its accompanying polarization field. Polarons can be understood

as follows: when an electron moves in a crystal, interacting with lattice ions through

long-range forces, the positive ions will be attracted towards the electron resulting in the

lattice polarization and deformation. Moving through the crystal, the electron carries

the lattice distortion with it, thus one speaks of a cloud of phonons accompanying the

electron. As a consequence, the resulting lattice polarization acts as a potential well that

1



hinders the movements of the charge, thus decreasing its mobility [1].

Another fundamental consequence of the electron-phonon interactions is the super-

conductivity phenomenon. In this case, there is an effective electron-electron interaction

mediated by phonons, that allow pairs of electrons to form a bound state of lower energy

than that of the two free electrons (in other words, phonons that before were scattering

electrons apart throughout the material are now helping the electrons to be stuck together.

This means less resistance and better conductivity!). The existence of these bound state

of two electrons with opposite wavenumber and spin, known as Cooper pairs, provides the

foundation for the theory of superconductivity [1]. Additionally, the Peierls transition,

in which the dimerization of the lattice occurs to minimize the system energy, and the

Kohn anomaly, an abrupt softening of the phonon energy characterized by the disconti-

nuity of the derivative of the phonon frequency, are also fenomena directly related to the

electron-phonon coupling. By now, the reader probably has the answer to the question

asked earlier and should be convinced of the importance of phonons and electron-phonon

interactions in a system.

Electron-phonon interactions can be observed in a diversity of materials. Here, this

thesis is mainly devoted to the study of electron-phonon interactions, as well as their con-

sequences, in graphene-like systems, which have been shown as ideal platforms to observe

some of the effects mentioned above. Graphene is a special material due to its fascinating

electrical, mechanical, optical and thermal properties [2–5]. This strictly two-dimensional

material exhibits exceptionally high crystal and electronic quality, in which charge carriers

can travel thousands of interatomic distances without scattering [5,6], and has revealed

a bunch of new physics and potential technological applications. Particular interest has

been turned to monolayer graphene due to the unique nature of its charge carriers, that

make it a promisor material for photonics, optoelectronics and organic electronics such

as in solar cells, light-emitting, touch screen and photodetctors devices [2,7,8]. Some

progress in the application of graphene is already done, as illustrated in Fig. 1.1. In con-

densed matter physics, most of materials are ruled by the Schrödinger equation, usually

being quite sufficient to describe electronic properties of materials. Monolayer graphene

is an exception and its charge carriers mimic relativistic particles and are more easily

and naturally described starting with the Dirac equation [9]. The electronic structure of

monolayer graphene has a linear dispersion around the K point of the Brillouin zone and

it is a zero gap semiconductor.

Bilayer graphene does not show the linear electronic dispersion as monolayer graphene,

but it has two hyperbolic valence and two hyperbolic conduction bands. Although bilayer
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Figure 1.1: (a) Electrons pass through graphene with less resistance than through silicon,
making the carbon sheet a good candidate for future chips [12]. (b) Hybrid graphene-
quantum dot phototransistors with ultrahigh gain [13]. (c) Light-emitting Electrochemical
cell [14]. (d) A transparent ultralarge-area graphene film transferred on a 35-inch PET
sheet [8]. (e) A graphene-based touch-screen panel connected to a computer with control
software [8]. (f) Graphene nanopore for DNA sequencing [15].

graphene is also a zero gap semiconductor, it is a highly desired material for the develop-

ment of graphene-based electronics such as field effect transistor [5,6], since it becomes a

tunable band gap semiconductor under the application of an electric field perpendicular to

the system [10,11]. However, for all the desirable applications of graphene, it is extremely

important to understand all the properties of these materials.

In this thesis, gate-modulated and laser energy dependent Raman spectroscopy are

the experimental techniques used to characterize monolayer and bilayer graphene. Raman

spectroscopy is a fundamental technique to obtain information about the phonons in the

material and has historically played an important role in the structural characterization of

carbon materials [16]. It has been used in the last decades to characterize graphite, carbon

nanotubes, nanographite, amorphous carbon and graphene. Moreover the vibrational and

electronic structures of graphene systems can be probed with the use of resonant Raman

spectroscopy [17,18], providing experimental support for understanding the vibrational

and electronic properties of carbon materials. Also, Raman spectroscopy is a fast and
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non-destructive technique.

Traditionally, electron-phonon interactions are investigated through chemical dop-

ing, in which the charge carrier density is varied by the introduction of impurities [19].

However, the appliance of electrical fields to control carriers in materials (so-called the

electrical field effect) is an alternative method for changing the charge carrier density

effectively in low dimensional systems. In this thesis we combine both the electric field

effect and Raman spectroscopy to study the electron-phonon coupling in graphene-like

systems. Also, a structural study of the bilayer graphene is done by the analysis of the

double resonance Raman band known as G′ (or 2D) band.

This thesis is arranged as follows: in Chapter 2, a brief discussion about the elec-

tronic and vibrational properties of monolayer and bilayer graphene, together with pre-

dictions of electron-phonon interactions in those systems are presented. In Chapter 3 we

first present the basic theory of first and second order Raman scattering, and then we

explain the origin of the main Raman features in graphene. Chapter 4 explains, in de-

tails, all the steps of graphene devices fabrication for the use in both back and top gated

studies. In Chapter 5 we make use of Raman spectroscopy to study electron-phonon in-

teractions in monolayer and in bilayer graphene by applying a variable gate voltage on

the graphene devices. In Chapter 6 we show how the resonant Raman spectroscopy can

be used in graphene systems to gather information about its electronic and vibrational

properties. Finally, in Chapter 7, we explain how to obtain information about the phonon

dynamics in bilayer graphene by using the double resonance Raman scattering. Chapter

8 summarizes the thesis contents.
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Chapter 2

Basic properties of monolayer and
bilayer graphene

This chapter brings an overview of the electronic and vibrational structures of

graphene. A special focus will be given to the electron-phonon interactions in the last sec-

tion. In particular, some important consequences of these interactions in the frequency

and line width of the zone-center phonons for monolayer and bilayer graphene will be

given.

2.1 Structure and group theory of graphene

Graphene is a flat layer of carbon atoms in a honeycomb lattice with sp2 hybridiza-

tion. Fig. 2.1(a) shows the hexagonal real space for the monolayer graphene with two

inequivalent atoms in the unit cell and the unit cell lattice vectors a1 and a2, given by:

a1 =
a

2
(
√
3x̂+ ŷ) , (2.1)

a2 =
a

2
(−

√
3x̂+ ŷ) , (2.2)

where a =
√
3acc and acc = 0.142 nm is the carbon-carbon bond distance [20]. The real

space for bilayer graphene (top view) with AB Bernal stacking are show in Fig. 2.1(b),

where the black dots plus black open circles represent the atoms in the lower layer, and

red dots represent the atoms in the upper layers. In the AB stacking, one of the atoms of

the top layer lays on the top of one atom of the lower layer. The other atom of the top

layer lays in the middle of the hexagon of the lower layer. In this thesis, we will only work

with AB stacked bilayer graphene. The unit cell of bilayer graphene is composed of four

atoms disposed as shown in Fig. 2.1(c). The reciprocal space of monolayer and bilayer

5



Figure 2.1: (a) The real space of monolayer graphene showing the non-equivalent A and
B atoms and the primitive lattice vectors a1 and a2. (b) The real space top-view of
bilayer graphene. Black dots plus black open circles, and red dots represent the atoms in
the lower and upper layers, respectively. (c) The three dimensional unit cells of bilayer
graphene. (d) The reciprocal space for both monolayer and bilayer graphene showing the
first Brillouin zone in light gray, the high symmetry points and the two reciprocal vectors
b1 and b2.

graphene is shown in Fig. 2.1(d) highlighting the high symmetry points Γ , K, K′, M and

the high symmetry lines T, T′ and Σ . Any other generic point outside the high symmetry

points is named here u. Since there is no periodicity in the ˆ̂z cartesian direction for bilayer

graphene, its reciprocal space is the same of monolayer graphene. The reciprocal vector

b1 and b2 are given by:

b1 =
2π

a
(

√
3

3
k̂x + k̂y) , (2.3)

b2 =
2π

a
(−

√
3

3
k̂x + k̂y) . (2.4)

Group theory is a powerful theoretical tool to determine eigenvectors, the number

and the degeneracies of eigenvalues and to obtain and understand the selection rules gov-

erning, for example, electron-radiation and electron-phonon interactions. The monolayer

graphene on an isotropic medium has the space group P6/mmm (D1
6h) in the Hermann-

Mauguin (Schoenflies) notation. At the Γ point, the group of wavevector is isomorphic to

the point group D6h (the Schoenflies character tables for the point groups can be found

in the AppendixB). The symmetries for N-layer graphene, with N even or odd (from

now on, N̸= 1), are the same as for bilayer and trilayer graphene, respectively. The point

groups isomorphic to the group of the wavevector for monolayer, N-layer graphene (N

even and odd), and for N infinite (graphite) are listed in Table 2.1 for all points and lines

in the first Brillouin Zone (BZ).
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Table 2.1: The space groups and wavevector point groups for monolayer graphene, N-layer
graphene and graphite (N infinite) at all points in the BZ.

Space group Γ K (K′) M T (T′) Σ u
Monolayer P6/mmm D6h D3h D2h C2v C2v C1h

N even P3m1 D3d D3 C2h C2 C1v C1

N odd P6m2 D3h C3h C2v C1h C2v C1h

N infinite P63/mmc D6h D3h D2h C2v C2v C1h

2.2 Electronic structure

2.2.1 Monolayer graphene

The atomic orbitals in graphene are in a sp2 hybridization, in which the carbon

atoms are bounded covalently to each other forming a 120o angle. There are three in-

plane σ orbitals and one out-of-plane π orbital. Since the π electrons are less bounded

to the atoms, they can move in the crystal and can be excited to the conduction band

more easily than the σ electrons, giving rise to interesting electronic and optical physics

phenomena.

The electronic structure of graphene can be described by tight-binding calculations

considering interactions with just first neighbors [20]. The problem consists of solving the

Schrödinger equation,

Ej(k) =
⟨ψj |H|ψj⟩
⟨ψj|ψj⟩

, (2.5)

where ψi and ψj are the Bloch’s functions given by:

ψk(r) =
∑
j

cj(k)φkj(r) , (2.6)

where φkj(r) is given by:

φkj(r) =
1√
M

∑
l

eik.R(l)ϕl(R(l)− r) . (2.7)

M is the number of unit cells, R(l) is the vector giving the position of an atom in the

j-th unit cell and ϕl is the l-th atomic orbital of the atom. It follows that the electronic

dispersion of monolayer graphene is given by

E±(k) =
ϵ2p ± γ0f(k)

1± sf(k)
, (2.8)
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Figure 2.2: The graphene’s π and π∗ electronic dispersion calculated over the first Bril-
louin zone. The inset shows the dispersion along the high-symmetry points. The values
used for γ0 and s are, respectively, 3.033 eV and 0.129 eV. [20] The zoom shows the linear
dispersion near the K point.

where γ0 parameter is the nearest neighbor transfer integral between the atomic orbitals

of the carbon atoms A and B of the graphene sheet, s is the overlap integral and the

function f(k) is given by

f(k) =

√
1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2
. (2.9)

Eq. 2.8 is plotted as a function of k, as exhibited in the Fig. 2.2. Monolayer graphene

is a zero gap semiconductor, where the valence π and conduction π⋆ bands touch each

other at the K (or Dirac) point, and this is where the Fermi level is located. We can

expand Eq. 2.8 (considering ϵ2p and s equal zero) for values of k close to the K point. In

this case, the electronic dispersion of monolayer graphene is given by [20]

E(k) = ~vFk (2.10)

where vF =
√
3γ0a/2~ is the Fermi velocity of the electrons near the Dirac point and is

close to 1× 106m/s [5]. We can see that around the K point, the electronic structure can

be described as a linear dispersion (see the zoom of Fig. 2.2).

2.2.2 Bilayer graphene

Since the unit cell of AB stacked bilayer graphene is the same as that of graphite

(four atoms per unit cell, see Fig. 2.1(c)), we can model the bilayer electronic structure us-

ing the tight-binding model for graphite [21] by adapting the Slonczewski-Weiss-McClure

8



Figure 2.3: The intra- (γ0 and t′) and inter-layer (γ1, γ3 and γ4) tight-binding hoping
parameters in bilayer graphene.

(SWM) parametrization [22,23], using the nearest-neighbor hopping parameters γ0, γ1, γ3

and γ4 (shown in Fig. 2.3). The parameter ∆, which represents the difference between the

on-site energies of the two layers, and t′, which is the in-plane second-neighbor hopping

parameter, can also be included. The electronic structure of bilayer graphene is then,

given by solving the 4× 4 tight-binding Hamiltonian [24]

Hbilayer =


∆ γ0f(k) γ1 γ4f

∗(k)
γ0f

∗(k) 0 γ4f
∗(k) γ3f(k)

γ1 γ4f(k) ∆ γ0f
∗(k)

γ4f(k) γ3f
∗(k) γ0f(k) 0

 (2.11)

Solving the Hamiltonian, we find two valence bands (π1 and π2) and two conduction

bands (π⋆
1 and π⋆

2). Bilayer graphene is also a zero gap semiconductor but the electronic

dispersion is no longer linear around the K point, but it has a hyperbolic dependence with

k, as can be seen in Fig. 2.4 [24]. One valence band touch one conduction band at the K

point and the other two bands have a gap of 2γ1. Considering only the γ0 and γ1 hopping

parameters, the solution for the Hamiltonian can be simplified to [25]

E(k) = s

[
±γ1

2
+

√
γ2k2 +

γ21
4

]
, (2.12)

where s is a band index: +1 for conduction band and −1 for valence band, and γ =√
3γ0a/2.

The γ3 and γ4 parameters have interesting consequences in the electronic structure.

γ3 gives rise to a trigonal warping effect in the low energy spectrum, where the equienergies

curves have triangular shape, while γ4 is related to the electron-hole asymmetry in bilayer

graphene [24]. Figs. 2.5(a) and (b) show, respectively, the bilayer graphene band structure

near to the K point with γ3 and γ4 equal to zero and with γ3 and γ4 different from zero.
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Figure 2.4: Electronic structure of bilayer graphene along the high symmetry lines cal-
culated by Partoens and Peeters [24]. The zoom shows the hyperbolic dispersion near the
K point.

Including the γ3 and γ4 parameters (∆ and t′ were also included), along the high symmetric

line ΓKM direction the 4× 4 matrix factorizes, and the dispersion of the four electronic

bands are given by [18]:

Eπ∗
1

π2
=

−γ1 − σv3 +∆′ ± ξ1
2

, (2.13)

Eπ∗
2

π1
=
γ1 + σv3 +∆′ ± ξ2

2
, (2.14)

where vi = γi/γ0,

∆′ = ∆+ t′

[
2 cos

(
2π

3
−

√
3kacc
2

)
+ cos

(
4π

3
−

√
3kacc

)]
, (2.15)

ξ21 =
√
(γ1 + v3σ ±∆′)2 + 4((1∓ v4)2σ2 ∓ σv3(∆′ ± γ1)) , (2.16)

and

σ = γ0

[
2 cos

(
2π

3
−

√
3kacc
2

)
+ 1

]
. (2.17)

One major intriguing feature of bilayer graphene is a band structure that can be

externally tuned. Ohta et al. [26] used angle resolved photoemission to show that bilayer

graphene has a gap that can be tuned from 0 to up to 200meV. Fundamentally, the gap

opening in bilayer graphene originates from the breaking of inversion symmetry, that can

be achieved, for example, by applying an electric field perpendicular to the layers. This

10



Figure 2.5: Electronic structure of bilayer graphene around the K point using (a) γ3 and
γ4 equal to zero and (b) γ3 and γ4 hopping parameters different from zero (γ3 = 0.3 eV
and γ4 = 0.15 eV).

creates an asymmetry between the two layers that lowers the whole symmetry of the

bilayer system, consequently opening an electronic band gap at the K point.

2.3 Phonon structure

As shown in Section 2.1, the monolayer graphene sheet has two atoms per unit cell,

each one with three degrees of freedom, thus having 6 phonon branches. There are three

acoustic (A) branches, with frequency ω = 0 at the Γ point, and three optic (O) branches.

Also, the phonon modes are classified as longitudinal (L) or transverse (T) according to

vibrations parallel or perpendicular to the carbon-carbon bond directions, respectively.

The transverse modes can be in-plane (i) or out-of-plane (o) and the longitudinal modes

are always in-plane.

These phonon branches can be calculated by using a simple harmonic oscillator

model which lead us to solve the equation

Miüi =
n∑
j

Kij(ui − uj) (i = 1, ..., N) , (2.18)

where ui is the displacement of the i-th atom in the unit cell, Mi is the mass of the

atom i and Kij is an element of the force constant tensor which gives the interaction

strength between atoms i and j [20]. The summation is performed over the n nearest

neighbors. Fig. 2.6(a) shows the phonon dispersion for monolayer graphene calculated by

force constant method over the entire first Brillouin zone [20] and Fig. 2.6(b) shows the

11



(b)(a)

Figure 2.6: (a) Phonon dispersion of graphene over the entire Brillouin zone calculated
by force constants method [20]. (b) Phonon dispersion of monolayer graphene in the
high symmetric directions calculated by Popov and Lambin [27] using the tight-biding
method. The phonon branches are labeled: out-of-plane transverse acoustic (oTA); in-
plane transverse acoustic (iTA); longitudinal acoustic (LA); out-of-plane transverse optic
(oTO); in-plane transverse optic (iTO); longitudinal optic (LO).

phonon dispersion in the high symmetric directions calculated by Popov and Lambin [27]

using the tight-binding approach.

At the Γ point of monolayer graphene, the iTO and LO modes are double degener-

ated and correspond to the vibrations of the sublattice A against the sublattice B as shown

in Fig. 2.7. According to group theory, the degenerated zone-center LO and iTO phonon

modes belong to the two-dimensional representation E2g, which is Raman active [20].

This mode can be seen in the Raman spectrum with frequency around 1582 cm−1 and it

is known as the G band. The G band is one of the most prominent feature in the Raman

spectrum of graphene, as shown in Section 3.2.

For bilayer graphene, there are four atoms in the unit cell, and then, each phonon

branch of monolayer graphene splits into two branches. The E2g phonon mode of mono-

layer graphene splits into two double degenerated modes associated with the in-phase

(IP) and out-of-phase (OP) displacements of the atoms in the two layers, that belong to

the representations Eg and Eu of the D3d point group, respectively [28]. The Eu mode is

observable in the Infrared spectroscopy, while the Eg mode can be seen as one peak in

the Raman spectrum (G band).

In some cases, the force constant and ab initio calculations do not describe properly
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Figure 2.7: Vibrations of the two atoms of the unit cell of monolayer graphene that
correspond to the six phonon branches at the Γ point. The double degenerated modes
LO and iTO gives rise to the G band in the Raman spectrum.

the dispersion of the phonon modes. This is the case in graphene for the LO and iTO

phonon branches around the Γ and K points, respectively. In these points, there is a

strong electron-phonon coupling and a more carefull calculation must be done in order to

correctly describe the behavior of the phonon modes. More details about the electron-

phonon coupling will be given in the next section.

2.4 Electron-phonon interaction

We think of a metal as composed of a lattice of positively charged ions embedded in

a sea of nearly free conduction electrons. We must suppose that in a vibrational wave in

a metal the local variations in charge density due to the motion of the positively charged

ions are screened by the motion of the conduction electrons (see Fig. 2.8). This influx

of negative charge reduces the restoring force on the ions, and so the frequency of the

oscillation is drastically reduced [1]. The residual electric field that was not screened by the

electron gas acts on the electrons and that gives rise to the electron-phonon interaction.

In this section we shall consider some of the consequences of the interaction of phonons
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Figure 2.8: The deep potential due to the displacement of the ions by a phonon is screened
by the flow of electrons.

with electrons.

2.4.1 The Fröhlich Hamiltonian

In this model we take for granted the concept of screening, and assume that the

ions interact with each other and with the electrons only through a short-range screened

potential (dashed line in Fig. 2.8), and we treat the electrons themselves as independent

fermions. Also we neglect electron-electron interactions. For a Bravais lattice our unper-

turbed Hamiltonian, where the electrons and phonons are treated separately, is:

H0 =
∑
k

εkc
†
kck +

∑
q,s

~ωq,sa
†
q,saq,s , (2.19)

where c†k (ck) is the creation (annihilation) operator for the electrons with energy εk and

momentum k, and a†q (aq) is the creation (annihilation) operator for the phonons with

energy ~ωq, momentum q and direction of polarization s. If it happens that s is parallel

to q, we say that it is a longitudinally polarized phonons in the crystal. If s · q = 0, the

phonon is transversely polarized. To the unperturbed Hamiltonian, we add the interaction

H1 of the electrons with the screened ions:

H1 =
∑
k,k′,l

⟨k|V (r− l− yl)|k′⟩ c†kck′ , (2.20)

where |k⟩ and |k′⟩ are the initial and final electronic state, respectively. Here, we assume

that at any point the potential V (r− l− yl) due to a particular ion depends only on the
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distance from the center of the ion, where yl is the ion displacement from the equilibrium

position l. We can use the Fourier transform of the potencial, then:

Vk−k′ = Ω−1

∫
ei(k

′−k)·(l+yl) V (r− l− yl) d(l+ yl) (2.21)

where Ω is the crystal volume, and we can rewrite Eq. 2.20 as:

H1 =
∑
k,k′,l

ei(k
′−k)·(l+yl) Vk−k′ c†kck′ . (2.22)

If we assume that the displacement yl of the ion is sufficiently small that (k′−k) ·yl ≪ 1,

we have:

ei(k
′−k)·yl ≃ 1 + i(k′ − k) · yl (2.23)

= 1 + iN−1/2(k′ − k) ·
∑
q

eiq·l yq , (2.24)

where q = k− k′. Substituting Eq. 2.24 into Eq. 2.22, we can separate H1 into two parts,

H1 = HBloch +Hel−ph. The first term

HBloch =
∑
k,k′,l

ei(k
′−k)·l Vk−k′ c†kck′ (2.25)

is independent of the lattice displacements. The second term can be written as:

Hel−ph = iN−1/2
∑

k,k′,l,q

ei(k
′−k+q)·l (k′ − k) · yq Vk−k′ c†kck (2.26)

= iN1/2
∑
k,k′

(k′ − k) · yk−k′ Vk−k′ c†kck′ . (2.27)

The displacement yq can be written in the harmonic approximation as a function of the

phonon creation and annihilation operators as:

yq =
∑
s

√
~

2Mωq,s

(a†−q,s + aq,s)s . (2.28)

The Hel−ph then becomes:

Hel−ph = i
∑
k,k′,s

√
N~

2Mωk−k′,s
(k′ − k) · s Vk−k′ (a†k′−k,s + ak−k′,s) c

†
kck′ . (2.29)

For simplicity we shall assume the phonon spectrum to be isotropic, so that the phonons

will be either longitudinally or transversely polarized. Then, only the longitudinal modes,
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Figure 2.9: The Fröhlich Hamiltonian includes an interaction term in which an electron
is scattered from k′ to k with either (a) emission or (b) absorption of a phonon. In each
case the total momentum is conserved.

for which s is parallel to k′ − k, will enter Hel−ph. Also, since the HBloch is not dependent

of the displacement, we shall neglect its effects for the electron-phonon interaction. With

these simplifications we are left with the Fröhlich Hamiltonian:

H =
∑
k

εkc
†
kck +

∑
q

~ωqa
†
qaq +

∑
k,k′

Mk,k′ (a†−q + aq) c
†
kck′ , (2.30)

where the electron-phonon matrix element is defined by:

Mk,k′ = i

√
N~

2Mωq

|k′ − k| Vk−k′ . (2.31)

The interaction Hel−ph can be considered as being composed of two parts - terms

involving a†−qc
†
kck′ and terms involving aqc

†
kck′ . These terms may be represented by the

diagrams shown in Figs. 2.9(a) and (b), respectively. In the first diagram an electron is

scattered from k′ to k with the emission of a phonon with momentum (k′ − k). The

second diagram represents the electron being scattered from k′ to k with the absorption

of a phonon with momentum (k− k′).

2.4.2 Phonon frequencies and the Kohn anomaly

To calculate the effect of the electron-phonon interaction on the phonon spectrum,

we may use perturbation theory to calculate the total energy ε of the system described

by the Fröhlich Hamiltonian (Eq. 2.30) to second order in Hel−ph:

ε = ε0 + ⟨Φ|Hel−ph|Φ⟩+
⟨
Φ|Hel−ph(ε0 −H0)

−1Hel−ph|Φ
⟩
, (2.32)

with ε0 = εk c†kck + ~ω0
q a†qaq being the unperturbed energy of the state Φ having nq

phonons in the longitudinally polarized mode q and nk electrons in state k. Since the

components of Hel−ph act on Φ either to destroy or create one phonon, the first-order term

vanishes from this expression because the resulting wavefunction must be orthogonal to
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Figure 2.10: The Fröhlich Hamiltonian includes an interaction term in which an electron
is scattered from k′ to k with either (a) emission or (b) absorption of a phonon. In each
case the total momentum is conserved.

Φ. In second order there is a set of nonvanishing terms, as the phonon destroyed by the

first factor of Hel−ph to act on Φ can be replaced by the second factor of Hel−ph, and vice

versa. We then find the contribution of the second-order terms ε2 to be

ε2 = ⟨Φ|
∑
k,k′

Mk,k′(a†−q + aq) c
†
kck′(ε0 −H0)

−1 ×
∑
k′′,k′′′

Mk′′,k′′′(a†−q′ + aq′) c†k′′ck′′′ |Φ⟩

(2.33)

= ⟨Φ|
∑
k,k′

|Mk,k′|2
[
(a†−qa−q) c

†
kck′ c†k′ck

(ε0 −H0)
+

(aqa
†
q) c

†
kck′ c†k′ck

(ε0 −H0)

]
|Φ⟩ , (2.34)

all other terms having zero matrix element since the resulting wavefunction will be orthog-

onal to Φ. The first term in the brackets in Eq. 2.34 can be represented as in Fig. 2.10(a).

An electron is first scattered from k to k′ with the absorption of a phonon with momentum

−q = k′ − k. The factor (ε0−H0)
−1 measures the amount of time the electron is allowed

by the Uncertainty Principle to stay in the intermediate state k′ and can be written as

the energy difference between the initial and intermediate states, (εk+~ω0
−q−εk′)−1. The

electron is then scattered back into its original state with the re-emission of the phonon.

We can represent the second term in Eq. 2.34 by Fig. 2.10(b), and then, we find an energy

denominator of εk − ~ω0
q − εk′ .

We can write the creation and annihilation operators in terms of occupation numbers

(nk or nq). For fermions (electrons) we have:

c†kck = nk (2.35)

ckc
†
k = 1− nk, (2.36)

and for bosons (phonons):

a†qaq = nq (2.37)

aqa
†
q = 1 + nq . (2.38)
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Rearranging the creation and annihilation operators in Eq. 2.34 into the form of number

operators then gives:

ε2 = ⟨Φ|
∑
k,k′

|Mk,k′ |2
[
n−q c

†
kck(1− nk′)

(εk − εk′ + ~ω0
−q)

+
(1 + nq) c

†
kck(1− nk′)

(εk − εk′ − ~ω0
q)

]
|Φ⟩ (2.39)

= ⟨Φ|
∑
k,k′

|Mk,k′ |2
[
n−qnk(1− nk′)

(εk − εk′ + ~ω0
−q)

+
(1 + nq)nk(1− nk′)

(εk − εk′ − ~ω0
q)

]
|Φ⟩ . (2.40)

It may be assumed that ωq = ω−q, and hence that in equilibrium ⟨nq⟩ = ⟨n−q⟩. Also,

⟨nqnknk′⟩ = 0 by symmetry. Then:

ε2 =
∑
k,k′

|Mk,k′|2
⟨nqnk⟩ (εk − εk′ − ~ω0

q) + (⟨nk⟩ − ⟨nknk′⟩+ ⟨nqnk⟩)(εk − εk′ + ~ω0
q)

(εk − εk′)2 − (~ω0
q)

2

(2.41)

=
∑
k,k′

|Mk,k′|2
2 ⟨nqnk⟩ (εk − εk′) + (⟨nk⟩ − ⟨nknk′⟩)(εk − εk′ + ~ω0

q)

(εk − εk′)2 − (~ω0
q)

2
. (2.42)

The total energy of the system is then given by:

ε = ~ω0
q ⟨nq⟩+

∑
k,k′

|Mk,k′|2 ⟨nk⟩
[

2 ⟨nq⟩ (εk − εk′)

(εk − εk′)2 − (~ω0
q)

2
+

1− ⟨nk′⟩
(εk − εk′ − ~ω0

q)

]
. (2.43)

The effect of the electron-phonon interaction on the phonon spectrum is contained

in the term proportional to ⟨nq⟩ in Eq. 2.43. Now the perturbed phonon energy ~ωp
q is

the energy required to increase ⟨nq⟩ by unit

~ωp
q =

∂ε

∂ ⟨nq⟩
= ~ω0

q +
∑
k

|Mk,k′|2 2 ⟨nk⟩ (εk − εk′)

(εk − εk′)2 − (~ω0
q)

2
. (2.44)

If we neglect the phonon energy in the denominator in comparison with the electron

energies we have

~ωp
q = ~ω0

q −
∑
k

2|Mk,k′|2 ⟨nk⟩ (εk′ − εk)
−1 . (2.45)

One may picture the origin of this change in phonon frequency by Fig. 2.10(a), in which the

first interaction is represented as the creation of an electron-hole pair by the absorption of

a phonon. One can then say that it is the fact that the phonon spends part of its lifetime

(in the order of picoseconds) in the form of an electron-hole pair that modifies its energy.

One interesting consequence of Eq. 2.45 occurs in metals when q has a value close

to the diameter of the Fermi surface 2kF . In this case, the states k and k′ = k − q
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Figure 2.11: The two possible vector (a) q = Γ and (b) q = K that can connect two
electronic states in the Fermi surface (red dots) in graphene.

are connected by q in the same Fermi surface. Evaluating ∂~ωp
q/∂q and neglecting the

variation of Mk,k′ with q, the electron-phonon interaction contributes an amount

2
∑
k

|Mk,k′ |2 ⟨nk⟩ (εk−q − εk)
−2∂εk−q

∂q
. (2.46)

Here, εk = ~2|k|2/2m, εk−q = ~2|k − q|2/2m and |k − q|2| = k · k − 2k · q + q · q. For

simplicity, we can suppose that q is in the x-direction, so

(εk−q − εk) =
~2

2m
(−2kxqx + q2x) = −~2

m
qx(2kx − qx) . (2.47)

The differential in Eq. 2.46 is given by

∂εk−q

∂qx

= − ~2

2m
(2kx − 2qx) . (2.48)

Substituting Eqs. 2.47 and 2.48 into Eq. 2.46, we have

2
∑
k

|Mk,k−q|2 ⟨nk⟩
[
−~2

2m
qx(2kx − qx)

]−2 −~2

2m
(2kx − 2qx) (2.49)

=2
∑
k

|Mk,k−q|2 ⟨nk⟩
1

~2q2x
2m

[
(2kx − qx)− qx
(2kx − qx)2

]

=2

kF∑
k=0

|Mk,k−q|2 ⟨nk⟩
1

~2q2x
2m

[
1

(2kx − qx)
− qx

(2kx − qx)2

]
. (2.50)

When the summation is performed, we can see that the first term in Eq. 2.50 cause

a logarithmic divergence, and thus a kink in the phonon dispersion is observed. This

divergence when q = 2kF is the so-called Kohn anomaly [1].

For graphene, the Fermi surface is formed by the six K points. There are two

possible phonon wavevectors that can connect two electronic states at the Fermi surface,
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q = Γ and for q = K, as shown in Figs. 2.11(a) and (b), respectively. In fact, Piscanec et

al. [29] show that the Kohn anomaly occurs in graphene for the LO phonon mode around

the Γ point of the Brillouin zone and for the iTO phonon mode around the K point. The

Kohn anomaly gives rise to interesting effects in the Raman spectrum of monolayer and

bilayer graphene and can be studied by changing the Fermi level of the system.

2.4.3 Effects of electron-phonon interaction in monolayer graphene

Now we should study the dependence of the phonon frequency as a function of

the Fermi energy in the framework of non-adiabatic second order perturbation theory

of the Fröhlich Hamiltonian. To do that, we can rewrite Eq. 2.44 in terms of the Fermi-

Dirac distribution f(k) = {exp[(εk − EF )/kBT ] + 1}−1 instead of the electron occupation

number. Then, we get [19]

~ωp
q − ~ω0

q =
∑
k

2|Mk,k′ |2

εk − εk′ + ~ω0
q + iγq

× [f(k)− f(k′)] . (2.51)

The small damping factor iγq (γq ≪ 1) was introduced in the denominator in order to

avoid the singular behavior of the function and is related to the phonon life time and with

the line width of the spectrum. For a specific ωq, the phonon energy correction ∆ωq is

given by Re[~ωp
q−~ω0

q], i.e. the real part of Eq. 2.51. Likewise, the decay width correction

∆γq is given by the imaginary part Im[~ωp
q − ~ω0

q] of Eq. 2.51 [19,30–32]. The real and

the imaginary part of the Eq. 2.51 is given, respectively, by:

∆ωq = Re
[
~ωp

q − ~ω0
q

]
= Re

[∑
k

2|Mk,k′|2 [f(k)− f(k′)]

εk − εk′ + ~ω0
q + iγq

·
εk − εk′ + ~ω0

q − iγq

εk − εk′ + ~ω0
q − iγq

]
,

(2.52)

=
∑
k

2|Mk,k′|2(εk − εk′ − ~ω0
q)

(εk − εk′ + ~ω0
q)

2 + γ2q
× [f(k)− f(k′)] . (2.53)

∆γq =
∑
k

2|Mk,k′ |2 γq
(εk − εk′ + ~ω0

q)
2 + γ2q

× [f(k)− f(k′)] . (2.54)

The behavior of Eqs. 2.53 and 2.54 is shown in Fig. 2.12(b), where there is a resonance

condition when the electron-hole pair energy matches the phonon energy. Also, the renor-

malization of the phonon energy and the line width is strongly dependent on the Fermi

level position. Due to the Pauli exclusion principle (see Fig. 2.12(a)), when the Fermi
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Figure 2.12: (a) Creation of a electron-hole pair by the absorption of a phonon with
energy ~ω0

q. Note that this process is forbidden by the Pauli exclusion principle if the
Fermi energy is larger than the phonon energy. (b) Behavior of the real and the imaginary
part of the phonon energy correction (Eq. 2.51). (c) The frequency ∆ωG and line width
∆γG corrections as a function of the Fermi energy and as a function of the temperature
T for the G Raman band mode (adapted from [19]).

level is increased (or decreased), some electron-hole pairs are now forbidden to be cre-

ated, and this affects the sum in Eqs. 2.53 and 2.54, which is performed in all the possible

values of k that can create an electron-hole pair [1]. The colored region in Fig. 2.12(b)

corresponds to the amount that will not be considered in the sum because of the Pauli

exclusion principle.

We can evaluate Eq. 2.53 to check the dependency of the phonon energy correction

with the Fermi energy. Since γq ≪ 1, we can eliminate it from the denominator, and

then, we have:

∆ωq =
∑
k

2|Mk,k′ |2

εk − εk′ + ~ω0
q

× [f(k)− f(k′)] . (2.55)

For monolayer graphene, the electronic dispersion is linear, E = ~vFk, around the

K point (see Section 2.2.1). Since the electron-hole pair is created by a vertical transition
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(this is the case for the G band of graphene, see Section 3.2 for better explanation),

εk = −~vFk and εk′ = ~vFk. Considering that the electron-phonon matrix element does

not depend on k, and substituting
∑

k →
∫
k
d2k =

∫ 2π

0

∫
k
k dk dθ into the Eq. 2.55,

∆ωq = 2|Mk,k′|2
∫ 2π

0

∫
k

[f(k)− f(k′)]

−2~vFk + ~ω0
q

k dk dθ = 4π|Mk,k′|2
∫ k

0

[f(k)− f(k′)]

−2~vFk + ~ω0
q

k dk .

(2.56)

We can integrate over the energy instead of the wavevector, taking into account that

E = ~vFk, dE = ~vFdk and that the limits of integration for k [0, k] becomes [−EF , EF ]

for E. Also, for T = 0 we have

f(k′) =

{
1, E < EF

0, E > EF

, f(k) =

{
0, E < EF

1, E > EF

. (2.57)

Then, Eq. 2.56 becomes

∆ωq =
4π|Mk,k′ |2

(~vF )2

∫ |EF |

−|EF |

E dE

2E − ~ω0
q

. (2.58)

The phonon frequency renormalization is then, given by:

∆ωq =
4π|Mk,k′|2

(~vF )2

[
|EF |+

~ω0

4
ln

(
|EF | − ~ω0

2

|EF |+ ~ω0

2

)]
. (2.59)

We can see that the frequency correction shows a logarithmic divergence when the

Fermi energy is equal to ±~ω0
q/2, and, in the limit of large |EF |, the phonon energy

has dominantly a linear dependence on the Fermi energy, as shown in Fig. 2.12(c). The

temperature also strongly affects the Kohn anomaly in ±~ω0
q/2, which is smoothed as

can be seen in the frequency and lifetime calculation shown Fig. 2.12(c) for three different

temperatures. The Fermi level can be tuned by doping graphene with electrons or holes.

Using a graphene device, we can move the Fermi level of the graphene by applying a gate

voltage. Then, performing Raman measurements in a graphene device would be a easy

way to probe the Kohn anomaly effect in those systems.

2.4.4 Effects of electron-phonon interaction in bilayer graphene

For AB stacked bilayer graphene, at q = 0 the E2g phonon mode (G band) of

monolayer graphene splits into two double degenerated modes, associated with the in-

phase (Eg) and out-of-phase (Eu) displacements of the atoms in the two layers [28]. The

Eu mode is not Raman active, but, as in monolayer graphene, the Eg mode can be seen
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Figure 2.13: (a) When EF = 0, only interband electron-hole pair creation by the absorp-
tion of a phonon is allowed. (b) When EF ̸= 0, intraband electron-hole pair creation by
the absorption of a phonon are also allowed.

as one peak in the Raman spectrum, known as G band at ∼ 1582 cm−1. Moreover,

since there are two valence (π1 and π2) and two conduction (π⋆
1 and π⋆

2) bands in this

material, phonons can couple with electron-hole pairs produced by interband or intraband

transitions. Interbands transitions are those were the hole is in the valence band and the

electron in the conduction band. The intraband transitions occur when both the electron

and the hole are in the conduction or in the valence band.

T. Ando [33] calculated the dependence of the self-energy for the in-phase (IP) and

for the out-of-phase (OP) phonons as a function of Fermi energy. The phonon renormal-

ization effect in bilayer graphene is understood by considering the selection rules for the

interaction of the IP and OP phonon modes with the interband or intraband electron-hole

pairs. The electron-phonon interaction can be described by a 2×2 matrix for each phonon

symmetry given by [33]:

Φ
Eg

jj′(k) =
1

2

(
sen2ψ cos2 ψ
cos2 ψ sen2ψ

)
, ΦEu

jj′ (k) =
1

2

(
0 1
1 0

)
, (2.60)

where each matrix element gives the contribution of electron-hole pairs involving different

electronic sub-bands πj or π⋆
j . The diagonal terms are responsible for the interband

electron-phonon coupling, while the out-of-diagonal terms give the intraband coupling.

For the IP lattice vibration, all matrix elements are different from zero, and this

phonon can interact with both interband or intraband electron-hole pairs (see Fig. 2.13).

When EF = 0, there is a couple of the phonon with the interband electron-hole pair,

giving rise to the phonon energy renormalization. However, for the OP phonon mode, the

diagonal terms of the matrix are null, showing that there is no electron-phonon interactions

for interband transitions. Therefore, no Kohn anomaly is expected for the antisymmetric
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Figure 2.14: Calculated frequency shift (full lines) and broadening (dashed lines) for the
(a) in-phase and (b) out-of-phase lattice vibrations of bilayer graphene as a function of the
Fermi energy for two different values of crystal disorder δ. Figure adapted from Ref. [33].

phonon mode when the Fermi level is at the K point. The frequency of the out-of-phase

vibration is, then, higher then the frequency of the in-phase vibration for EF = 0.

If the Fermi energy is now moved away from the K point, the intraband electron-

hole pairs can be produced by phonons (see Fig. 2.13). In this case, the OP phonons also

have their energies renormalized, giving rise to the Kohn anomaly. Figs. 2.14(a) and (b)

show, respectively, the frequency shift (solid lines) and the line width broadening (dashed

lines) of the IP and OP phonon modes as a function of the Fermi energy calculated by

T. Ando [33]. The δ parameter is due to disorder in the crystal. The frequency of the IP

mode undergoes a hardening with increasing EF and exhibit a logarithmic singularity at

EF = ~ω/2, while a narrowing of the line width is observed. The renormalization for this

phonon mode is analogous to the case of monolayer graphene. For the OP phonons, with

the increase of EF , the intraband transitions contributes now to the phonon self-energy,

and the frequency of this mode gradually decreases, and a small broadening of the line

width can be observed.

Special care must be taken to analyze the results for bilayer graphene electron-

phonon coupling. The results showed in Figs. 2.14(a) and (b) are valid only if you change

the Fermi level position but keep the inversion symmetry between the two layers. When

there is an asymmetry between the two layers (for example, an electric field perpendicular

to the layers induced by the application of an external gate voltage), the inversion symme-
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Figure 2.15: Inversion symmetry-breaking induced phonon mixing. Evolution of the G+

(full lines) and G− (dashed lines) (a) relative intensity, (b) line width and (c) frequency
with carrier concentration and Fermi energy. The vertical dotted lines indicate a special
position of the Fermi level, 0.1 eV, that corresponds to half of the G-band energy. Figure
adapted from Ref. [36].

try of bilayer graphene is broken, lowering the symmetry of the system, that now belongs

to the C3v point group [34], and opening an electronic band gap at the K point. As a

consequence, the in-phase and the out-of-phase lattice vibrations are no longer eigenstates

os the system, but the resulting eigenstates can be regarded as superpositions of the IP

and OP displacements [35,36]. Since the Raman active mode (in-phase) is now present

in both resulting modes, there will be two peaks in the Raman spectrum: one with lower

frequency G− and another with higher frequency G+.

The Raman spectrum can be quantitatively analyzed using a simple coupled-mode

description [36] ∣∣∣∣ E − EIP g
g E − EOP

∣∣∣∣ = 0 , (2.61)

where EIP = ~ωIP − iγIP , EOP = ~ωOP − iγOP (γ is the line width), and g is the coupling
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between the IP-OP modes. Solutions to Eq. 2.61 are given by

E± =
EIP + EOP

2
±

√(
EIP − EOP

2

)2

+ g2 , (2.62)

so that the real and imaginary parts of E±, respectively, describe the energy and broaden-

ing of the G+ and G− modes. The behavior of the relative intensities, the width broaden-

ing and the frequency shift of the G+ and G− peaks as a function of the charge concentra-

tion and Fermi energy is shown in Figs. 2.15(a), (b) and (c), respectively [36]. The peak

intensity is determined by the size of EIP content within each mode. At EF = ±200meV,

the two peaks in the Raman spectrum have the same intensity as shown in Fig. 2.15(a)

because the coupling partitions of the Raman active Eg mode is equally distributed to

the G+ and G− peaks. Away from EF = ±200meV, the relative intensities of the G+

and G− reverse, reflecting the fact that G− (G+) is dominated by the IP vibration at low

(high) charge concentration.

Experimental results for the electron-phonon coupling in monolayer and bilayer

graphene will be presented in Chapter 5.
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Chapter 3

The Raman spectroscopy of
graphene

The Raman spectrum of graphitic materials is known to be very sensitive to struc-

tural changes, making the Raman spectroscopy to be widely used in the past four decades

for the characterization of these systems. Moreover, the physics behind the Raman spec-

trum of graphene is rich and can give us information about the electronic and vibrational

structure, as well as the interactions about the electrons and phonons in the material.

This chapter will start with a summary of the history of the Raman spectroscopy, fol-

lowed by an overview of the first order and the double-resonance model, which successfully

explains many features in the Raman spectra of monolayer and bilayer graphene.

3.1 Introduction of Raman Scattering

Light scattering is one of the most powerful tools for studying fundamental physics

and material properties in condensed matter sciences. In the case the scattered light has

the same frequency (wavelength) as the incident light, the process is elastic, and is known

as Rayleigh scattering. If, however, after scattering, the light has a different frequency,

the photon is then inelastically scattered, and a quantized excitation has been created or

annihilated in the material and, in this case, the light scattering process is known as the

Raman effect. It was discovered in 1928 by the Indian physicist Chandrasekhara Venkata

Raman for which he was awarded the Nobel Prize in Physics in 1930. Nowadays, Raman

spectroscopy is a widely used tool for characterization of liquids, gases, and solids, as well

as for studying fundamental physics.

Fig. 3.1 shows the idea of Raman scattering of light as a tool for studying material
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Figure 3.1: Schematics of the Raman spectrum where an incident light with frequency
ωi generates an elastically scattered light (Rayleigh) and two inelastically scattered com-
ponents with frequency ωi − ωq (Stokes) and ωi + ωq (anti- Stokes).

properties. The incident laser light ωi interacts with the material and creates a quantum

excitation ωq in the material system, the scattered light ωs then has a different energy and

line width from the incident photon. When the incident or scattered light coincides with

the electronic gap of the material, we call this a resonant process. The energy difference

between the incident ωi and scattered photon is determined by the energy of the quantum

excitation, which is a measurement of the intrinsic property of the material:

ωs = ωi − ωq . (3.1)

This process is termed as the Stokes Raman scattering, where a phonon is created in the

material, as illustrated in Fig. 3.1. Another possibility is that the laser light annihilates

a phonon that was already in the material before the scattered light is emitted. In this

case,

ωs = ωi + ωq , (3.2)

and the process is known as the anti-Stokes Raman scattering. In this thesis, we will only

consider the Stokes Raman scattering.

Two conservation laws must be obeyed during the Raman scattering. The first one

is energy conservation which was just discussed above. The second one is momentum

conservation. The selection rules associated with the momentum conservation in the

anti-Stokes and Stokes one-phonon Raman are given by:

ks = ki ± kq, (3.3)
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Figure 3.2: (a) First order Raman process that gives rise to the G band. Second order
double resonance Raman processes involving (b) intravalley and (c) intervalley phonons.

where the ± signal stands for the anti-stokes and for the stoke scattering, respectively. In

fact, these relations strongly restrict the wavevectors of phonons involved in the scattering

process, as we will show below.

3.2 First order Raman scattering

The light we use in Raman scattering is typically visible or near infrared. It has

a wavelength of thousands of Å, which is 3 orders of magnitude larger than the unit

cell size of graphene. The momentum of light is then negligible compared with the size

of the Brillouin zone. Conservation of momentum then requires that the phonons have

practically zero momentum. For first-order Raman scattering, this means that the only

mode allowed would be the zone-center optical phonon. In a second-order Raman process,

that will be explored in the next section, the phonons allowed include overtones and

combinations, which are excitations with two phonons coming from the same or different

phonon branch and having opposite momentum. The momentum of individual phonons

may take any value.

The first order resonant Raman process can be understood as follows: a photon is

absorbed by the material and excites an electron from the valence to the conduction band.

The electron is then scattered by a phonon and then, recombines with the hole emitting

a scattered photon. A schematics of this process can be seen in Fig. 3.2(a) for the stokes

process, where the electron loses energy to create a phonon.

We now come to the phonon spectrum of graphene. Fig. 3.3 show the most promi-

nent features in the Raman spectra of defect free monolayer graphene, the so called G

band, appearing at ∼ 1582 cm−1, the G⋆ and the G′ bands at about 2450 cm−1 and

2700 cm−1, respectively. In the case of a disordered or defective sample, we can also see

the so-called D band, at about half of the frequency of the G′ band (around 1350 cm−1).

The G band of monolayer graphene is associated with the double degenerated (E2g)
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Figure 3.3: Typical Raman spectrum of defect free monolayer (upper) and bilayer (lower)
graphene, showing the main Raman features G, G⋆ and G′ bands.

zone-center phonon mode. The G band is the only first order feature Raman active in

graphene systems. As seen in Section 2.3, the E2g zone-center phonon mode is composed

by the LO and iTO phonon branches. In bilayer graphene, there are now two valence and

two conduction bands. Also, the E2g mode splits into Eg and Eu mode. However, only

the Eg mode is Raman active and the G band of bilayer graphene is still composed of one

peak.

3.3 Second order Raman scattering and the double

resonance process

The G⋆ and the G′ bands originate from a second-order Raman process. The G⋆

peaks is asymmetric and is composed of two peaks, one involving two iTO phonons with

q ∼ 0 (measured from the K point) and the other involving one LA and one iTO phonons

with q ≈ 2k (also measured from the K point). The G′ band involves two iTO phonons

near the K point with q ≈ 2k. Check Fig. 3.4(a) for distinction between the processes
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with q ∼ 0 (processes (1) and (2)) and q ∼ 2k (processes (3) and (4)).

Both the iTO+LA from the G⋆ and the G′ peaks exhibit a dispersive behavior, i.e.,

their frequencies in the Raman spectra change as a function of the laser excitation energy

EL. The G′ frequency ωG′ upshifts with increasing EL in a linear way over the visible

range, with slope (∂ωG′/∂EL) around 100 cm−1/eV [17]. On the other hand, the iTO+LA

mode of the G⋆ band downshift with increasing the laser excitation energy, and its slope

(∂ωG⋆/∂EL) is about −16 cm−1/eV [37].

The dispersive behavior of the frequency of the q ≈ 2k bands originates from a

double resonance Raman (DRR) process [38–40]. The double resonance process, shown

in Figs. 3.2(b) and (c), begins with an electron of wavevector k, measured from the K

point, absorbing a photon of energy EL. The electron is inelastically scattered by a

phonon of wavevector q and energy Eph to a point around the K′ point, with momentum

k′ measured from K′. The electron is then scattered back to the k state, and emits a

photon by recombining with a hole. The DRR mechanism can be an intervalley process,

when it connects states around inequivalent K and K′ points in the first Brillouin zone of

graphene, as shown in Fig. 3.2(c), and this is the case for both G⋆ and the G′ bands. There

is also the possibility of an intravalley process, where the scattering of the electron by the

phonon connects two points belonging to the same K point, as shown in Fig. 3.2(b) [39].

When EL is increased, the resonance for the k vector of the electron moves away

from theK point. In the DRR process, the corresponding q vector for the phonon increases

with increasing k. Thus by changing the laser energy, we can probe the phonon dispersion

relation (ω versus q). This effect is obtained experimentally from the dispersion of the

phonon energy as a function of EL [17]. A tunable laser system can directly show this

dispersive behavior for the G⋆ and the G′ bands in the Raman spectrum.

Since the monolayer graphene has only one conduction and one valence band, there

is just one possible scattering process to give rise to the G′ band (the process shown in

Fig. 3.2(c)), and then, the G′ band of the monolayer graphene is composed of only one

peak.

In the case of AB stacked bilayer graphene, there are two valence and two conduction

bands and the phonon branches split also affected by the interlayer interaction. Then, in

the case of bilayer graphene, the DRR conditions involve more combinations than in the

case of monolayer graphene, where there is only one main contribution to the G′ band.

Fig. 3.5 shows a schematic view of the bilayer graphene electronic structure where

the upper (lower) and lower (upper) branches in the valence (conduction) band are labeled

as π1 (π⋆
1) and π2 (π⋆

2), respectively. The major steps of the DRR process occur along
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Figure 3.4: (a) The four processes along the high symmetric ΓKM line that can generate
the double resonance Raman bands in monolayer graphene. (b) Top view of the process
(3) in the first Brillouin zone, that involves phonon wavevector q along the KM direction.
(c) Top view of the process (4) involving q along the ΓK direction.
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Figure 3.5: Schematic view of the electron dispersion of bilayer graphene near the K and
K′ points showing π1 and π2 valence bands and π⋆

1 and π⋆
2 conduction bands. The four

DRR processes are indicated: (a) process P11, (b) process P22, (c) process P12, and (d)
process P21. The phonon symmetries are also indicated in each process. (e) Measured G′

Raman band of bilayer graphene for 2.41 eV laser energy and fitted with four Lorentzians,
each one corresponding to one of the possible process.

the T axis (ΓK ) along which the π2 and π⋆
1 bands belong to the T1 totally symmetric

irreducible representation, while the π1 and π
⋆
2 bands have odd T2 symmetry relative to the

inversion symmetry [28]. Now, for computing the number of resonant conditions involved

in the DRR process, we are left with electrons in only two excited electronic states with k

vectors near the K point which will be scattered by a phonon to an electronic state with

wavevectors near the K′ point. This electron-phonon scattering can now occur involving

phonon with two symmetries T1 and T2. For the case of a T1 phonon and the electron

can be scattered to bands with the same symmetry, i.e., π⋆
1 → π⋆

1 and π⋆
2 → π⋆

2. On the

other hand, the T2 phonon will connect electronic bands with different symmetry, i.e.,

π⋆
1 → π⋆

2 and π⋆
2 → π⋆

1 [28].

These four different Pij processes are depicted in Figs. 3.5(a)-(d), where i (j) denote

the electron scattered from (to) each conduction band π⋆
i(j). Processes P11 and P22 come

from an iTO phonon with T1 symmetry, while processes P12 and P21 come from an iTO

phonon with T2 symmetry. These four different scattering processes give rise to four

Raman peaks in the G′ spectrum. Fig. 3.5(e) shows the Raman spectra of a bilayer

graphene sample fitted with four Lorentzians with a decay line width of ∼ 25 cm−1 for

each peak.

This is an interesting point that shows that the Raman spectroscopy is a powerful
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and fast technique to identify the number of layers in a sample, since the shape of the

G′ band depends on the number of layers of the sample [41]. It is important to notice

that the identification of the number of layers by Raman spectroscopy is well established

only for graphene samples with AB Bernal stacking. Graphene samples made by the

mechanical exfoliation of natural or HOPG graphite leads to graphene flakes that have

predominantly AB stacking, but this is not necessarily the case for graphene samples

made by other growth methods [16].

3.4 Raman instrumentation

Two different comercial triple-monochromator spectrometers were used in this the-

sis: a Dilor XY system and a Horiba Jobin-Ivon T64000 system, both of them equipped

with a N2 cooled Charge Coupled Device (CCD) detector (the CCD needs a temperature

of -140 oC to properly work), working in the backscattering configuration. The CCD can

be understood as a large area of silicon photodiodes that form a bi-dimensional array of

pixels. Through the photoelectric effect, the photodiodes convert photons into photoelec-

trons that are electronically processed. Each pixel delivers information compatible with

the numbers of counts in it.

These equipments can also be used in two modes: single- or triple-monochromator.

In the monochromator system, the incoming beam is reflected by the planar mirror (PM)

1 toward the spherical mirror (SM) 1 which reflects the beam toward the grating (Gr).

As shown in Fig. 3.6(a) each grating is in connection with other four mirrors. Next, the

grating opens the beam’s spectrum and part of a previously selected spectral range is

focused by the SM2 into the monochromator exit slit. It is necessary an edge or notch

filter in order to eliminate the Rayleigh scattering when the single-monochromator is used.

In a triple-monochromator, two of these monochromators are coupled to form the

foremonochromator (see Fig. 3.6(b)) and the last monochromator forms the spectrograph.

The foremonochromator can work in an additive or subtractive mode. In the subtractive

mode, which is the one used in this work, the incoming beam reaches the Gr1 and this

grating disperses the beam in a way that just a selected range of frequency (or, equiv-

alently, wavelength) undergoes the slit 2 (S2). The range of frequencies depends on the

grating position which can be conveniently chosen. Besides selecting a spectral frequency

range, the slit S2 basically prevents the Rayleigh component of the light from propagating

into the detection system. Next, the beam is focused by the grating Gr2 before under-

going the slit 3 (S3). Finally, it arrives at the spectrograph. Inside the spectrograph,

34



Figure 3.6: (a) In a monochromator scheme a grating (Gr) is geometrically connected
to two spherical mirrors (SM1 and SM2) and two planar mirrors (PM1 and PM2). (b)
The triple-monochromator is composed of a foremonochromator and a spectrograph. The
foremonochromator is composed of two gratings that work harmonically in a configuration
that basically filter the Rayleigh component and select a specific spectral range. The other
grating composes the spectrograph where the beam is dispersed and reach a set of CCD’s
pixels.

the beam is dispersed by the grating Gr3. This dispersion covers a complete set of the

CCDs pixels. In a triple-monochromator, the three gratings can be rotated simultane-

ously by a sine arm in order to chose the range of frequencies that will be covered by the

CCD’s pixels. Also, it is possible to measure Raman bands much closer to the Rayleigh

light when compared to the single-monochromator mode. However the biggest problem

of triple-monocromator is that the light intensity is reduced by a factor of 5-10 when

compared to the monochromator due to the additional gratings.

In most cases, an Argon-Krypton ion laser was used to excite the Raman spectra.

The laser emission has several intense discrete lines, with the wavelengths at 647.1 nm,

568.2 nm, 528.7 nm, 520 nm, 514.5 nm, 501.7 nm, 496.5 nm, 488.0 nm, 476.5 nm, 472.7 nm,

465.8 nm and 457.9 nm. A Titanium-Sapphire laser from Los Alamos National Laboratory

(Los Alamos, New Mexico - USA) was also used. It is a continuous laser source ranging

from 730 to 900 nm. This continuous laser system requires a high power laser to pump it,

and for that we have used an Argon laser with ∼ 6W power.
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Chapter 4

Graphene and device fabrication

In this chapter we discuss the experimental methods which were used in this work.

Here, we describe the equipments and techniques used to prepare graphene samples and

to fabricate these raw materials into the field-effect transistors studied in subsequent

chapters.

4.1 Sample preparation

There are several known methods of producing graphene. The first method em-

ployed, and the one still widely used by the research community, is mechanical exfoli-

ation [42]. The most recently developed method, and perhaps the most promising in

prospects of scalability, is chemical vapor deposition [7,43,44], where the heat is used to

break apart gas phase molecules and to reassemble these molecular components into a

solid form. Usually, a catalyst film is used to enhance the breakdown of carbon gases

beyond that possible with heat alone, and to act as a template for the self-assembly of

carbon atoms into graphene.

Another possible graphene fabrication method is the annealing of SiC [45]. When a

crystal of this material is annealed under the right conditions, the Si atoms will evaporate

leaving behind a carbon-rich surface. The carbon atoms will self-assemble into graphene

sheets, guided by lattice matching with the SiC surface. Also, there is the graphene oxide

method [46], in which a chemical treatment is used to oxidize the graphite. The layers are

then dispersed in water, and are carried off in dispersion. This solution may be filtered

or cast onto a substrate to recover the graphene oxide material. Treatment with reducing

chemical agents recovers much of the graphene to its original form.

From all of these methods, the mechanical exfoliation give us the highest quality
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Figure 4.1: Mechanical cleavage of graphite into graphene using a scotch tape. After
successively exfoliation, the graphene is then deposited on a silicon substrate.

graphene sheet (the quality is determined primarily by the starting material). Since we

are interested in the basic properties of graphene, this is the method of fabrication used

in this thesis, and will be discussed in detail below.

4.1.1 Mechanical exfoliation

The mechanical exfoliation of graphite is possible due to the weak van der Waals

interlayer coupling in layered materials like graphite [5]. By using a scotch tape it is

possible to separate the graphite layers until you reach only one layer of graphene. This

technique is exemplified in Fig. 4.1, where a thick piece of natural graphite is successively

cleaved using a scotch tape and then deposited on a silicon/silicon dioxide substrate.

Although being only one atom thick, contrast in the optical microscope is possible because

the presence of the graphene changes the interference condition for light passing through

the silicon dioxide and reflecting off the silicon [42,47]. The scotch tape used here was

the Medium Tack Blue from the Semiconductor Equipment Corporation, USA, and the

graphite was from the Nacional de Grafite Ltda., Brazil.

In our experiments we have used a p-doped silicon wafers covered with silicon dioxide

of thickness 300 nm. It is important that the substrate is clean before the deposition,

so that the graphene can adhere more to the surface of the substrate, yielding larger

graphene flakes. The silicon chips are rinsed with acetone for 30 seconds, then immediately

rinsed with isopropanol (IPA) for another 30 seconds, then immediately blown dry from
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above with nitrogen. For a better cleaning, the substrate can be exposed to an oxygen

plasma or to an UV-ozone camera (a small concentration of ozone gas generated by

an ultraviolet lamp) for about 10 minutes. After the deposition, optical inspection in

the optical microscope is performed over the substrate to localize the graphene flakes.

The number of layers of the flake is confirmed by Raman spectroscopy as described in

Section 3.3 [41].

4.1.2 Lithography

After the flakes identifications, the fabrication of electronic devices from graphene

draws strongly from conventional silicon processing and microfabrication. The first part

of the device fabrication consists of doing the lithography, in which a beam exposes a

resist that has been coated onto the surface. Immersion of the resist in a developing

solution causes the pattern to be revealed in a manner depending on the type of resist

used. I have used two types of lithography for the device patterning in this work. During

my period in Universidade Federal de Minas Gerais (UFMG), the optical lithography was

used, while the e-beam lithography was used when I was at Massachusetts Institute of

Technology (MIT). The two processes are described below as used in this work.

Optical Lithography

For the optical lithography, a photosensitive resist is deposited over the substrate

and exposed by an ultraviolet light. The resist used here was the S1805 positive resist

(areas exposed to the optical beam develop away and are removed). S1813 can also be

used with the same parameters described here. The resist is spun in the substrate using

two steps in the spin-coater: the first one with 1000 rpm spinning speed for 5 seconds,

and the second one with 8000 rpm for 40 seconds. The samples are then baked at 115 oC

for 90 seconds. With these parameters, the thickness of the resulting deposited resist is

∼ 500 nm.

The pattern was drawn using a Microtech Laser Writter LW405. This machine has

two light sources: one with 653 nm wavelength that does not expose the resist and is

used to locate the flakes or marks that will be used in the lithography, and another one

with 405 nm wavelength that is responsible for the exposure. The dose for this thickness

of resist is 80 units of gain. After exposure, the samples are developed in MF-321 for

25 seconds. A post-development rinse by deionized water for 30 seconds is followed by

blowing the chip dry with nitrogen.
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E-Beam Lithography

Similar to the optical lithography, the e-beam lithography reproduces an image in

a resist, but the exposure element is no longer ultraviolet light. In this case, an electron

beam from an Scanning Electron Microscope (SEM) column is scanned across a surface

in a pattern defined by a software file. There are two common resists: the first is the

poly(methyl methacrylate) (PMMA), that is a positive resist; the second is the hydrogen

silsesquioxane (HSQ), which is a negative resist (areas not exposed to the electron beam

develop away and are removed). The resist used in this work was exclusively a 4% by

weight solution of 996,000 molecular weight PMMA in anisole solvent.

First, the substrate to be coated is annealed at 175 oC for 5-10 minutes in order to

remove surface adsorbates (mostly water). Then the substrate is transferred to a spin-

coater and a bead of resist is deposited on the substrate using a pipette. The chip is

accelerated quickly (∼ 5000 rpm/s) to the spinning speed of 4000 rpm where it remains

for 60 seconds. These values give a resist thickness of ∼ 200 nm. After the spin-coater

comes to a stop, the sample is removed and baked on a hotplate at 175 oC for 5 minutes.

Exposure of PMMA by electron beam was performed at 10 keV accelerating voltage

using a JEOL 5910 SEM machine. The lithography aspect is controlled by a separate

computer equipped with a commercial lithography-enabling system called NPGS. At this

accelerating voltage and for the development procedure described below, a 200 nm PMMA

film was found to have an optimum exposure dose of 150µC/cm2. Development was

performed in a solution of 2 parts IPA and 1 part methyl isobutyl ketone (MIBK). The

sample is immersed in this solution for 20 seconds and immediately removed and rinsed

with IPA from a squirt bottle for 20 seconds. The sample is then blown dry from above

with compressed nitrogen.

4.1.3 Metal evaporation

After the lithography, metal is evaporated on the substrate to make the device

contacts. Three techniques are commonly used to deposite metals to a surface: thermal (or

resistive) evaporation, e-beam evaporation and sputtering. In the evaporation processes

(both thermal and e-beam), the substrate is placed inside a vacuum chamber, in which

a block of the material (source) to be deposited is also located. The source material is

then heated to the point where it starts to boil and evaporate. The vacuum is required to

allow the molecules to evaporate freely in the chamber, and they subsequently condense

on all surfaces. Only the method used to heat (evaporate) the source material differs from
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the thermal to the e-beam evaporation. In thermal evaporation, a boat containing the

source material is heated electrically with a high current to make the material evaporate.

In e-beam evaporation, an electron beam is aimed at the source material causing local

heating and evaporation.

On the other hand, sputtering is a deposition technique in which the material is

released from the source at much lower temperature than evaporation. The substrate

is placed in a vacuum chamber with the source material, named a target, and an inert

gas (such as argon) is introduced at low pressure. A gas plasma is struck using an radio-

frequency (RF) power source, causing the gas to become ionized. The ions are accelerated

towards the surface of the target, causing atoms of the source material to break off from

the target in vapor form and condense on all surfaces including the substrate.

In this thesis, we have used the thermal evaporation to deposit 5 nm of chromium

(Cr) and 80 nm of gold (Au). The Cr is necessary to guarantee the adhesion of the

metals to the substrate. Liftoff of the resist after metal evaporation is accomplished by

immersion of the substrate in acetone at 50 oC until the metal is removed, followed by

rinses of acetone for 10 seconds and IPA for 10 seconds. The sample is then blown dry

for 10 seconds with compressed nitrogen.

Usually, liftoff of both photoresist and PMMA e-beam resist leaves a residue on both

the silicon dioxide substrate and the graphene film. It is possible to remove most of the

undesirable resist residue after liftoff by annealing the sample. The standard annealing

process used for graphene device fabrication is done putting the sample inside a sealed

quartz tube with a flux of a mixture of 900 sccm of Ar and 100 sccm of H2 at 300 oC for

two hours.

The resist liftoff is the final step of a graphene device preparation. Fig. 4.2 shows a

schematic procedure for all the fabrication process.

4.2 Back gated devices

Charges in graphene can be induced by applying a potential difference Vg between

the graphene and the silicon substrate [5,6,42]. We can model the amount of charge

induced in graphene by considering the system as a parallel plate capacitor, where one

plate is the graphene sheet and the other one is the conducting p-doped silicon substrate.

The silicon dioxide layer works as the dielectric medium between them. The geometric

40



(a) (c)

(b) (d) (e) (g)

(f)

Resist

SiO2

Si

Graphene

SiO2

Si

SiO2

Si

SiO2

Si

Cr/Au Graphene

Contacts

Figure 4.2: Schematic diagrams of the lithography process. (a) Exfoliated graphene
sample on the Si/SiO2 substrate. (b) The resist is spun on the substrate. (c) and (d) After
the development, the resist is removed from the exposed regions. (e) Metal evaporation
over the substrate. (f) and (g) Liftoff of the remaining resist.

capacitance per unit area CG of this system is given by

CG =
εε0
d
, (4.1)

where ε0 = 8.854 × 10−12 Fm−1 and ε are the permittivity of the free space and of the

dielectric material, respectively, and d is the dielectric thickness. Then, the number of

electrons per unit of area n of charge e = 1.602× 10−19C transferred to the graphene by

applying a voltage Vg is given by [42]

n =
εε0(Vg − V0)

ed
= 7.2× 1010cm−2V−1(Vg − V0) , (4.2)

where we have used d = 300 nm and ε = 3.9 for the silicon dioxide [48]. Here, V0 is the

necessary voltage to move the Fermi level to the Dirac point, i.e., the charge neutrality

point.

In the same way, the Fermi energy EF can also be related to the gate voltage. We

first must note that the number of states per unit of area in a two-dimensional system is

given by [49]:

n =
N

A
=
gk2F
4π

, (4.3)
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Figure 4.3: (a) Schematic view of the back gate graphene device. A variable voltage
Vg can be applied between the graphene and the p-type silicon substrate. The device is
treated as a parallel plate capacitor where the silicon oxide layer is the dielectric medium.
Also, a source-drain voltage VSD can be applied between two gold contacts. A typical
response for the bilayer graphene devices used in this work under an applied (b) VSD and
(c) Vg, taken at T=300K.

where N is the total number of states, A is the area of the unit cell of the reciprocal space,

g = 4 is the spin and valley degeneracy and kF is the wavevector at the Fermi level. For

monolayer graphene, assuming the linear dispersion EF = ~vFkF , and substituting kF

and Eq. 4.2 into Eq. 4.3, the Fermi energy EF can be written in terms of Vg as

EF = ~vf
√
πCG|Vg − V0|/e . (4.4)

For bilayer graphene, considering only the coupling between the first neighbors

in the same layer γ =
√
3γ0a/2 and the first neighbors of the adjacent layers γ1 (see

Section 2.2.2), the two electronic bands near the neutrality point (π1 and π
⋆
1) are given by

EF = ±
(
−γ1/2 +

√
γ2k2F + γ21/4

)
[25]. Making the same procedure done for monolayer

graphene, we have the Fermi energy as a function of the gate voltage:

|EF | = −γ1
2

+
1

2

√
4πγ2CG

e
|Vg − V0|+ γ21 . (4.5)

Fig. 4.3(a) shows the schematic view of a graphene device, where an applied gate

voltage Vg can induce the potential difference between the silicon substrate and the

graphene with a gold contact. A source-drain voltage VSD can also be applied between

the two gold contacts. From the dependence of the source-drain current ISD on VSD, it

is possible to obtain the resistance R of the system. Figs. 4.3(b) and (c) show a typical

response for the bilayer graphene samples used in this work of the current passing through
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the device under an applied VSD and Vg, respectively, at room temperature. We can see

from Fig. 4.3(b) that the system has a ohmic response, and the resistance is given by the

inverse of the slope of the curve. For this specific sample this value is R = 1825Ω. The

resistance is due to the contacts resistance plus imperfections in the crystal lattice. From

the dependence of the ISD with Vg, we can estimate V0 (the minimum of the curve), i.e.

the value of the voltage necessary to bring the Fermi level to the neutrality point, that

for this sample is around 35V.

4.3 Top gated devices

To induce charges in graphene, it is also possible to apply a top gate instead of a

back gate. A traditional top gate is achieved by depositing a dielectric layer followed by

a metallic contact evaporation on the top of the graphene sheet after the lithography to

make the contacts in the graphene (Fig. 4.4(a)). In this work, we have used another option

for the top gate: an electrolyte solution (Fig. 4.4(b)). The advantages of using a polymer

electrolyte instead of the traditional solid top gate is that the polymer electrolyte is a top

transparent gate and enables the application of large electric fields that induces enormous

carrier densities well beyond 1013 cm−2 and isolates the graphene from air avoiding ad-

sorption of molecules like O2 that can introduce defects. On the other hand, the polymer

electrolyte has potential problems as well, and electrochemical reactions may occur be-

tween the electrolyte and the device during gating, and the reaction may accelerate under

illumination.

The polymer electrolyte is formed by dissolving salts in soft polymeric materials.

The electric conduction mechanism involves motion of oppositely charged ions in opposite

directions in the polymer matrix. At the electrode-polymer interface, the ion flow is

stopped before chemical reactions could occur. A double layer (also known as Debye layer)

of opposing charges is then formed between the gate material and the polymer matrix as

shown in Fig. 4.4(c), and is held as long as the gate voltage does not exceed the threshold

for electrochemical reactions. The distance between the oppositely-charged layers at the

electrodes is given by the Debye screening length which is typically of the order of few

nanometers [50]. Because of the small Debye length, the geometric capacitance (Eq. 4.1)

of the system is much larger than in the usual back gating using Si/SiO2, where the

distance between the two oppositely-charged layers is about 300 nm. It is then possible

to charge the sample with a much higher density of carriers.

We have used two different kinds of polymer electrolyte in this work. The first is
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Figure 4.4: Schematic view of the top gate graphene devices using (a) solid dielectric
and solid contacts and (b) electrolyte solutions. (c) Proposed model of the double-layer
region, where dtg is the Debye length.

a mixture of sodium perchlorate (NaClO4) and polyethylene glicol (PEG, molar weight

900000) with a weight ratio of 0.25:1 and dissolved in tetrahydrofuran (THF) to form a

precursor. The second alternative used here is to dissolve lithium perchlorate (LiClO4)

and poly(methyl methacrylate) (PMMA, molar weight 120000) with a weight ratio of

0.30:1 in propylene carbonate (PC). In both cases, it is important that the components

are very dry, so the electrolyte shows a better stability. Once the precursor is done, we

apply it to the graphene device. The solvent evaporates and a thin film of transparent

polymer electrolyte is formed on top of the device. The device can be baked at about

90 oC to remove residue moisture and alcohol. The transparency of the film makes it

convenient for optical studies of these devices.

Using the polymer electrolyte, the voltages are applied using a potentiostat. The

configuration of the experimental setup is shown in Fig. 4.4(b). The contacted graphene

sample is made using the method described in Section 4.1 and is the working electrode.

Two additional electrodes which is not in contact with the graphene sample is defined on

the SiO2 substrate for the purpose of polymer gating. The additional electrodes can be

either designed during lithography or obtained by inserting a metal wire in the polymer

electrolyte film. One of these electrodes is the counter-electrode, responsible for the

voltage source, and the other one is the pseudo-reference electrode, used to monitor the

electrostatic potential in the working electrode [51].

We now discuss how the applied top gate voltage using a polymer electrolyte is

converted to the doping n in graphene. In general, the application of a gate voltage Vg

creates an electrostatic potential difference ϕ between the graphene and the gate electrode,

and the addition of charge carriers leads to a shift in the Fermi level EF . Therefore, Vg is

44



given by

Vg =
EF

e
+ ϕ , (4.6)

with EF/e being determined by the chemical (quantum) capacitance of the graphene, and

ϕ = ne/CG being determined by the geometrical capacitance CG [52].

If we remember the back gating situation, the graphene on a Si/SiO2 substrate

with 300 nm of SiO2 has a very low value for the geometric capacitance per unit area

CG = 1.15×10−8 Fcm−2 (see Eq. 4.1). Therefore, for a typical value of n = 1×1013 cm−2,

the potential drop is ϕ = 140V, much larger than EF/e. EF/e ∼ 0.37V for monolayer

graphene and EF/e ∼ 0.22V for bilayer graphene. Hence, for back gate Vbg ≈ ϕ and the

doping concentration becomes n = ηVbg, where η = CG/e.

We shall now consider the present case of top gating. Similar to the back gate

system, where we consider a parallel-plate capacitor with the silicon dioxide being the

dielectric material, the top gate system can also be model as a parallel-plate capacitor,

but now the Debye layer is the dielectric layer. The Debye length is given by dtg =

(2ce2/εε0kT )
−1/2 for a monovalent electrolyte [52], where c is the concentration of the

electrolyte, e is the electric charge and kT is the thermal energy. In principle, dtg can be

calculated if the electrolyte concentration is known. However, in the presence of a polymer,

the electrolyte ions form complexes with the polymer chains and the exact concentration

of ions is not amenable to measurement. For polymer electrolyte gating the thickness of

the Debye layer is reported to be a few nanometres (∼ 1 − 5 nm) [52]. The dielectric

constant ε of PEG is ∼ 5 [52] and of PMMA is ∼ 2.6 [53]. Assuming a Debye length of

2 nm, we obtain a gate capacitance per unit area CG = 2.2 × 10−6 Fcm−2 for PEG and

CG = 1.2× 10−6 Fcm−2 for PMMA, which is much higher than the geometric capacitance

for the back gate system. Therefore, the first term in Eq. 4.6 cannot be neglected.

For monolayer graphene, substituting ϕ and Eqs. 4.2 and 4.4 into Eq. 4.6, we get

Vg =
~vF

√
πn

e
+
ne

CG

. (4.7)

Using the numerical values CG = 2.2× 10−6 Fcm−2 and vF = 1.0× 106m/s

Vg = 1.16× 10−7
√
n+ 0.728× 10−13n , (4.8)

where n is in units of cm−2.

In the case of bilayer graphene, additional care must be taken when compared to

the back gated devices. With the use of the polymer electrolyte as top gate it is possible

to charge the sample with a much higher density of carriers. Then, it is possible to reach
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the second valence (or conduction) band π2 (π⋆
2) of bilayer graphene with this gating

mechanism, where the charge density reaches more than the energy between the first and

the second valence (conduction) band, i.e. γ1 (n ∼ 3 × 1013 cm−2) [25]. There are now

two regimes for the dependence of the EF with n that are given by [25]

EF = −γ1
2

+
1

2

√
4πγ2|n|+ γ21 , for EF < γ1 (4.9)

EF =

√
πγ2|n|

2
, for EF > γ1 (4.10)

Hence, substituting Eqs. 4.9 and 4.10 and ϕ into Eq. 4.6, we get

Vg = −γ1
2e

+
1

2e

√
4πγ2|n|+ γ21 +

ne

CG

(4.11)

= −0.175 +
√

0.51× 10−13|n|+ 0.1225 + 0.728× 10−13n , for EF < γ1

Vg =
1

e

√
πγ2|n|

2
+
ne

CG

(4.12)

= 0.79× 10−7
√

|n|+ 0.728× 10−13n , for EF > γ1

where CG = 2.2× 10−6 Fcm−2, γ1 = 0.40 eV and γ =
√
3γ0a/2 were used in the right part

of the equation.
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Chapter 5

Electron-phonon interactions in
graphene

Electron-phonon (el-ph) interactions are responsible for many important effects in

condensed matter physics [1]. In particular, the phonon self-energy, which is mainly due to

the el-ph coupling, is a remarkable effect which contributes to both the phonon frequency

and decay width renormalizations due to the creation (annihilation) of electron-hole (e-

h) pairs through phonon absorption (emission). These phonon self-energy corrections are

needed to explain a set of well-known effects, such as the Kohn anomaly [1,19], the Peierls

transition [1,54,55], polaron formation [1,56,57], and other types of phonon renormaliza-

tions and perturbations caused by el-ph interaction processes [3,58–60]. In this chapter,

we will present the experimental results found for the electron-phonon coupling in mono-

layer graphene and in bilayer graphene. General predictions for the electron-phonon

interactions are well described in Section 2.4.

5.1 Monolayer graphene

Particularly special, single-layer graphene (1LG) has linear electronic energy dis-

persions E(k) around the non-equivalent high symmetry points K and K′ in the Brillouin

zone, which can be described by the Dirac equation considering massless particle be-

havior [61]. However, one cannot properly solve the electronic and vibrational structure

for most nanocarbon materials near the Dirac points when considering the adiabatic

approximation, which decouple the ionic motion of the carbon ions and the electronic

structure [5,32,62]. When the adiabatic approximation cannot be applied [1,19], the el-ph

interactions must take into account non-adiabatic processes, which give rise to important
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and strong phonon self-energy corrections [1]. Within second-order perturbation theory,

the phonon self-energy can be approximately described as (see Eq. 2.51) [1,3,19,60]:

Π(ωq, EF ) = 2
∑
kk′

|Mk,k′|2

~ω0
q − Eeh + iγq

× [fh − fe] , (5.1)

where k and k′ are, respectively, wavevectors for the initial and final electronic states;

q ≡ k− k′ is the phonon wavevector; Eeh ≡ (Ee
k′ − Eh

k) is the electron-hole (e-h) pair

energy; ω0
q is the phonon frequency; γq is the phonon decay width; fh(fe) is the Fermi

distribution function for holes (electrons) and Mk,k′ gives the electron-phonon (el-ph)

coupling matrix element. For a specific ω0
q, the phonon energy correction due to its

self-energy is given by ∆ω = Re[Π(ωq, EF )], which is the real part of Eq.5.1. Likewise,

the decay width correction ∆γq is given by the imaginary part Im[Π(ωq, EF )] of Eq. 5.1

[1,19,60].

These phonon renormalizations occur anytime we have non-zero matrix elements

Mk,k′ , i.e., anytime that an electron-hole pair can be created (annihilated) by a phonon

absorption (emission) process. In Eq. 5.1, although the summation is performed over all

the electronic states, the combination of electronic states that fulfills the momentum and

energy requirements for a given phonon will be the ones to significantly contribute to

the phonon self-energy. In other words, this combination of states will present a non-

null Mk,k′ and a resonant behavior given by the denominator of Eq. 5.1. There are two

types of electron-phonon interactions, namely intravalley (AV) (Fig. 5.1(a) and Fig.5.2(b))

and intervalley (EV) (Figs. 5.2(a) and (c)) processes [63]. For AV processes, the initial

and final states both occur within the region close to the same K point, while for EV

processes, K is connected to an inequivalent K′ by a q ̸= 0 phonon. Thus the AV (EV)

process corresponds to phonons around the Γ (K) point. The phonon wavevector q for

an AV (EV) process is measured from the Γ (K) points and can assume both the q = 0

or q ̸= 0 conditions (see Fig. 3.4 for details).

5.1.1 Phonon renormalization in the second order Raman pro-
cesses

Most of the discussions of the phonon self-energy renormalizations have been for

zone-center phonons (Γ point) with q = 0, which can be appreciated by observing the

G-band Raman feature evolution in monolayer graphene (1LG) as the Fermi level energy

(EF ) is varied (see Figs. 5.1(b) and (c)) [3,31,34,58,64]. In the present work, we use gate-

modulated resonant Raman spectroscopy to address the effect of the EF variation due
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Figure 5.1: (a) Possible (EF = 0) and not possible (EF ̸= 0) AV q = 0 processes for e-h
pair creation due to phonon (with energy ~ωq) absorption. Eeh stands for the e-h pair
energy. (b) The frequency ωG hardening and (c) the decay width γG narrowing for the
G-band Raman feature as a function of gate voltage Vg. (d) Theoretical predictions based
on Ref. [19] of the EF dependence of ∆ω and γq for an AV q = 0 process for T = 10K.

to an applied gate voltage (Vg) on the phonon self-energy (Eq.5.1), for 1LG systems,

in cases where q ̸= 0 (AV and EV processes). These are cases which have not been

sufficiently studied previously. Here, we study the double resonance Raman frequency

ranges between 2350 and 2850 cm−1, which contain the G⋆ and the G′ bands as shown

in Fig. 5.3(a) [17,61,65]. We show below that the phonon renormalization for the q ̸= 0

phonons gives an EF dependence different from that for the q = 0 measured from the

Γ point phonons. We also show that these differences in behavior can be used to show

that the G⋆ feature is composed of two Raman peaks which behave differently from one

another as |Vg| is varied.
The graphene devices used in this experiment were produced as described in Sec-

tion 4.1 and a back gate voltage was applied. For each Vg value, Raman spectra were

taken with a 532 nm wavelength laser source in the backscattering geometry using a 100×
objective and laser power around 1.5mW. The spectra were analyzed using Lorentzian
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line-shapes from which frequencies and decay widths were extracted. Figs. 5.1(b) and (c)

and Figs. 5.3(a)-(e) show the experimental results. We show that, due to the difference in

behavior between the q = 0 and q ̸= 0 processes, this combination of techniques provides a

precise way to verify the assignments of either overtones and/or a combination of phonon

modes.

The G⋆ and G′ features were intentionally chosen for this discussion because: (1)

they are the most prominent double-resonance Raman features in the graphene spectrum,

offering a convenient platform, together with the G band, to observe experimentally the

two different types of phonon renormalizations, one found for the q = 0 phonons and

the other for q ̸= 0 phonons, and (2) as a consequence of these different phonon renor-

malization effects, we have solved a long-time discussion in the literature about the G⋆

feature, showing that the G⋆ feature is composed of both the iTO+LA (q = 2k) and

2iTO (q = 0) Raman active modes, both measured from the K point. In the literature,

the G⋆ feature around 2450 cm−1 has been assigned to either the iTO+LA phonon com-

bination mode (q = 2k EV process) [17], or to the 2iTO phonon overtone mode (q = 0

EV process) [65]. However, Fig. 5.3(a) shows that indeed the G⋆ feature is asymmetric,

suggesting that it consists of two Lorentzians peaks rather than just one. The iTO+LA

(q = 2k) combination mode presents a dispersion of -(16±1) cm−1/eV (measured in this

work), while the 2iTO (q = 0) overtone mode (also measured in this work) is not disper-

sive (see Fig. 5.3(b)).The G′ feature at 2670 cm−1 is widely known to be an overtone of

the iTO phonon mode (q = 2k) [17,61,65]. It gives a dispersive phonon frequency as a

function of laser excitation energy EL which exhibits the value of 103 cm−1/eV [66].

As discussed in the Section 2.4.3, the phonon energy correction ∆ω has previously

been explored for the cases where the phonon momentum q vanishes (q = 0) for the AV

intravalley process and, at zero temperatures (T = 0), is described by:

∆ω = α|EF |+
α~ω0

q

4
ln

(∣∣∣∣∣ |EF | −
~ω0

q

2

|EF |+
~ω0

q

2

∣∣∣∣∣
)

, (5.2)

where α = 4.43 × 10−3 [19] and γq, which will be proportional to the el-ph coupling

strength, gives the damping of the phonon mode due to real e-h pair creation [19,31,

60,64]. Fig. 5.1(d), which was based on Ref. [19], give the results illustrated for the

renormalization of ωq and γq, respectively. From Fig. 5.1(d) and Eq.5.2, we observe that

when |EF | < ~ωq/2, real e-h pairs can be created, which leads to a stronger electron-ion

interaction screening. As a consequence, the phonon mode softens [19,31,60,64]. However,

when |EF | > ~ωq/2 the production of real e-h pairs becomes forbidden due to the Pauli
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Figure 5.2: (a) Possible (EF = 0 and EF ̸= 0) q = 0 (measured from the K point) EV
processes. (b) Not possible (EF = 0) and possible (EF ̸= 0) AV processes for electron-hole
pair creation due to phonon (with energy ~ωq) absorption when the phonon wavevector
is not zero (q ̸= 0). (c) Possible EV processes for electron-hole pair creation due to
phonon (with energy ~ωq) absorption when the phonon wave-vector is not zero (q ̸= 0).
(d) Illustrative predictions for the Vg-dependence of the phonon frequency correction ∆ω
(black line) and the corresponding decay width γq (grey line) when q ̸= 0, both as a
function of EF . The ∆ω and γq values in (d) were normalized to illustrate the concept
of ωq softening and γq broadening. Eeh is the e-h pair energy and EK→K ′ is the energy
required to translate an electron from K to K′. Remember that the energy is not conserved
when going from K to K′. They are inequivalent points under a time-reversal symmetry
operation. Physically, this means that there is an energetic cost (charged to the system)
to go from K to K′. This would not happen if the points were equivalent.

exclusion principle. This leads to a phonon mode hardening where the phonons are not

damped any more (they are now long lived) [19,31,60,64]. As an example of phonon

renormalization when q = 0 for the AV process (see Fig. 5.1(a)), the ωG and γG variations

of the G Raman band are shown in Figs. 5.1(b) and (c), respectively, as |EF | is varied

due to different Vg values. The G band corresponds to the first order q = 0 iTO and

iLO phonon branches around the Γ point. The experimental results (Figs. 5.1(b) and (c))

are in good agreement with theory [19,31,34,64], which shows a ωG hardening and γG

narrowing when Vg increases. Next, we report the new experimental results for phonons

corresponding to the cases q = 0 EV (intervalley) and q ̸= 0 AV/EV processes.

Both the G⋆ iTO+LA mode at ∼ 2450 cm−1 and the G′ mode at ∼ 2670 cm−1

are EV double-resonance Raman processes with q ̸= 0 and, as shown in Figs. 5.3(c)-(e),

and they both show a different behavior when Vg increases compared to the behavior

observed for the AV q = 0 process. Starting with the G′ band, it is seen that its frequency

ωG′ decreases with increasing |Vg| (Fig. 5.3(c)), while its decay width γG′ increases with
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Figure 5.3: (a) The experimental G⋆ and the G′ bands as they appear in the resonant
Raman spectrum. The asymmetric G⋆ feature is a combination of the iTO+LA (q = 2k
read from the K point) mode and the 2iTO (q = 0 read from the K point) mode. The G′

mode is an overtone of the iTO mode (q = 2k). For illustrative purposes, the signal of
the G⋆ feature was multiplied by a factor of 10 and the Lorentzian profiles used to fit the
spectrum are shown in constructing (a). (b) The frequency dispersion of the G⋆ peaks as
a function of laser energy (ELaser) and shows that the iTO+LA (q = 2k) is a dispersive
mode [−(16± 1) cm−1/eV], while the 2iTO (q = 0) is non-dispersive [17,65]. (c) The gate
voltage Vg dependence of the 2iTO (q = 2k) ωG′ and γG′ (inset in (c)). (d) and (e) show,
respectively, the ωq and γq dependencies on |EF | seen for the iTO+LA and 2iTO modes.
The error bars come from the fitting procedure.

increasing |Vg| (see the inset in Fig. 5.3(c)). Here, we see that the same behavior is

observed for the iTO+LA mode frequency ωiTO+LA, as shown in Fig. 5.3(d), and for its

decay width γiTO+LA, as shown in Fig. 5.3(e). For the 2iTO G⋆ feature at ∼ 2470 cm−1,

which is a q = 0 EV process around the K point, it is observed in Figs. 5.3(d) and (e) that

the frequency ω2iTO and the decay width γ2iTO almost do not change with increasing |Vg|.
This behavior shows that the 2iTO (q = 0) mode couples only weakly to the electronic

states in graphene and therefore its phonon self-energy corrections are negligible.

To explain our experimental findings, a phenomenological formulation for the phonon

self-energy for the EV q = 0 and AV/EV q ̸= 0 processes in single-layer graphene are

presented. If we remember the case of AV processes for the q = 0 phonons (Fig. 5.1(a)),
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which applies to the G-band feature (see Figs. 5.1(b) and (c)), the creation of a real e-h

pair is very high when EF = 0, which implies a ωq softening and a γq broadening. With

increasing |EF |, ωq hardens and γq narrows, which means that the real e-h pair creation is

being halted by the Pauli principle because the phonon energy is becoming smaller than

2|EF |. Next, we see that this approach can now be used to understand the q ̸= 0 processes

considering a small difference: now, instead of the Pauli principle, the density of phonon

and electronic states, as well as the energy and momentum conservation requirements,

will be responsible for halting the real e-h pair creation.

As shown above, a different behavior is expected for the q = 0 phonon (measured

from K-point) in the EV process shown in Fig. 5.2(a), which explains the G⋆ 2iTO mode

behavior as |EF | is varied with varying Vg. According to the Fermi golden-rule, the

probability that a real electron-hole pair exists at EF = 0 (upper line of Fig. 5.2) is

quite small since the density of states of both, electrons and phonons, at EF = 0 almost

vanishes [3,61]. Therefore, no softening of ωq and no broadening of γq is expected, since

almost no real electron-hole pair is being created. When |EF | increases (lower line in

Fig. 5.2), the probability for a K point q = 0 phonon to connect inequivalent energy k

and k′ states increases, because the density of phonon and electron states also increases

as we move away from the K point [3,61]. This means that the number of real e-h pair

creations increases and thus the phonon mode softening and damping effects could be

observed with increasing |EF |. However, for EV processes with q = 0 (measured from the

K point), the phonon energy and momentum are not enough to create an e-h pair. This

means that ∆ω will be a small correction and, therefore, small ωq softening and small γq

damping are expected for any |EF | value (weak EF -dependence).

By considering phonon modes with q ̸= 0 (AV and EV processes) as shown in

Figs. 5.2(b) and (c), the phonon wavevectors are either around the Γ point or around

the K point. These cases explain the G′ and the G⋆ iTO+LA mode behaviors as |Vg| is
varied. Since the phonon and electron density of states are small close to the K point

and since the phonon energy dispersion for graphene has a much smaller slope than that

for the electronic energy dispersions [61], there is essentially no coupling between q ̸= 0

phonons and e-h pairs (there is no q such that q = k− k′) if EF = 0 and therefore the

softening and damping of the phonon mode in this case does not take place in a resonant

way, i.e., where Eeh = ~ωq. If no phonons with q ̸= 0 can connect electronic states with

different k and k′ at EF = 0, the matrix elements Mk,k′ in Eq. 5.1 are close to zero and

essentially no self-energy corrections occur. Precisely speaking, in the case of the EV

process (Fig. 5.2(c)), the e-h pair creation is possible for EF = 0 but, as stated above, the
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density of phonon and electron states is very small at EF ∼ 0 which makes the probability

for the e-h pair creation also small. However, when EF ̸= 0, the density of phonon and

electron states increases and phonon modes with q ̸= 0 can now connect electronic states

with different k and k′, in the sense that there is a q such that q = k− k′ (the differences

between slopes in the electron and phonon dispersion decrease when we move away from

the K point [61]). This gives rise to a strong electron-phonon coupling which enhances

the creation of real e-h pairs. As a consequence, the phonon mode softens (ωq decreases)

and gets damped (γq broadens) as shown in Figs. 5.2(b) and (c). This q ̸= 0 (AV and

EV processes) behavior is illustrated in Fig. 5.2(d), where it is seen that the frequency

softening (black solid line) must increase with increasing |EF | while the decay width (grey

solid line) must broaden with increasing |EF |.

5.1.2 Electron-phonon coupling of combination modes

In this section, we will show a new technique to assign phonon modes in materials

using gate-dependent and laser dependent Raman spectroscopy. We will use the results

of electron-phonon coupling for the second order Raman process presented in the last

section to study some combination modes with q ̸= 0 in monolayer graphene.

Gate modulated and laser excitation energy (EL) dependent Raman spectroscopy

have been both widely used to distinguish the numbers of layers of a graphene flake [41],

to distinguish the stacking order in flakes [67–70], and to study the phonon self-energy

as well as electron-phonon interactions [19,29,30,32,52,64,71]. Recently, attention has

been given to studying some weak Raman features in the frequency range 1650 < ω <

2300 cm−1, which are associated with Raman combination and overtone modes [67–69].

Indeed, it has been shown that such studies on few layer graphene (FLG) can give us

information about both the number of graphene layers in FLG and their stacking order

[67,68]. However, these works disagree with each other regarding the number of phonon

peaks and the phonon assignments attributed to each peak [67–69]. Since there are

many possible combination modes in this frequency region and since the double resonance

Raman (DRR) mode frequencies are dispersive as a function of EL [39], it has not been

easy to determine the number of peaks and their individual dispersions. Additionally,

there are two DRR conditions for the phonon wavevector: q ≈ 2k (measured from the Γ

and K points) and q = 0 (measured from the K point) which give different Raman peaks

with and without dispersive behaviors [72,73], respectively. The peaks around the Γ point

come from an intravalley process, in which the photo-excited electron is scattered by a
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phonon to another point of the conduction band near the same Dirac point and the peaks

around the K point come from an intervalley process, where the electron is scattered from

the K point to an inequivalent K′ point of the Brillouin zone (BZ). Moreover, the phonon

self-energy and the electron-phonon (el-ph) coupling associated with these combination

modes have not yet been explored in detail.

Concerning single layer graphene (1LG), the first study of the combination modes

in this frequency region between 1690 and 2150 cm−1 was reported by Cong et al. [68],

where they show only three peaks (which are denoted in the present paper by peaks 1, 3

and 4, from the lowest to the highest frequency). They [68] proposed their assignments

to be combinations of the q ̸= 0 phonon branches LO+iTA, iTO+LA and LO+LA, from

the lowest to the highest frequency, around the Γ point of the BZ, i.e., all their peaks

come from intravalley DRR processes. Rao et al. [67] showed that there are two more

peaks in this region, one around 1880 cm−1 (peak 2 in the present paper) and the other

one around 2220 cm−1 (our peak 5). The 1880 cm−1 and 2220 cm−1 peaks were tentatively

assigned by them [67] to the q ̸= 0 oTO+LO and iTO+iTA phonon branch, respectively,

both being an intervalley DRR process, i.e., around the K point of the BZ. However,

by performing only EL-dependent Raman experiments, it is not easy to properly assign

the combination modes when these combination modes are close together in frequency.

Moreover, an experiment limited to EL-dependent measurements does not tell us in which

directions in k space the various scattering processes are happening.

In this work, it is shown that the k-dependent electron-phonon interaction as in-

vestigated by studying the Raman spectra, as a function of both Fermi energy EF by

variation of the gate voltage Vg and laser energy EL, is important to give accurate/reliable

information about the combination modes. Besides this, we show that gate-modulated

Raman spectroscopy of q = 0 and q ̸= 0 phonons is a new and powerful approach to

understand the nature and to assign phonon modes as well as their overtones and mutual

mode combinations. We apply this new approach to solve the uncertainty behind the

phonon assignments of the Raman features between 1700-2300 cm−1. The well known

EL-dependent experiment tells us which phonon branches could be involved in the pro-

cesses, giving also their respective dispersion slopes, that depend on graphene phonon

velocities. First, we confirm the number of Raman peaks observed experimentally in this

frequency range and we check that the mode assignment is correct for each Raman peak

by making a direct comparison between the experimental data and theoretical phonon

dispersion calculations [27]. Further, for the Raman peaks that come from an intervalley

DRR process, a discussion about the scattering directions, in terms of the high symmetry
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directions KΓ and KM, of the various processes is important because the el-ph scattering

matrix elements have a large k dependence, which gives more precise information on q

phonon wavevector dependence, and we find that the q vectorial dependence is relevant

for the DRR process.

Finally, we explore the phonon self-energy and electron-phonon (el-ph) coupling for

these modes in 1LG by varying EF of the system by an applied gate voltage (Vg). For

all the five observed Raman peaks in this frequency range, we can see a softening of the

phonon frequency ωq and a broadening of the phonon decay width γq as a function of EF .

These behaviors give us important and accurate information on the relevant Raman scat-

tering processes, i.e., whether a given Raman feature involves zone-center q = 0 phonons

or if it is rather a DRR process involving q ≈ 2k wavevector phonons [37]. We show that,

by combining the DDR theory with these anomalous phonon renormalization effects, we

obtain a new technique of Raman spectroscopy for the assignment of combination phonon

modes and overtones in monolayer graphene.

The Raman measurements were done in the back scattering configuration using a

2.10 and 2.16 eV (590 and 575 nm, respectively) dye laser, a 2.33 eV (532 nm) Nd:YAG

laser, and a 2.54 eV (488 nm) Argon laser, with a 100× objective and laser power around

1.5mW to avoid heating effects. The device was fabricated as described in Section 4.1.

Back gate measurements were done near room temperature with voltages in the range

from -70 to 70V.

Fig. 5.4(a) shows the combination modes in the spectral region from 1700 to 2300 cm−1

for four different laser lines: 488 nm, 532 nm, 575 nm and 590 nm. Each spectrum was

fitted with five Lorentzians, in agreement with the number of peaks proposed by Rao et

al. [67]. The experimental frequency dispersion of the five peaks taken from the fitting

procedure applied to the Raman features in Fig. 5.4(a) were plotted together with the the-

oretical phonon dispersions of 1LG adapted from Popov and Lambin [27] (see Figs. 5.4(b)

and (c)). The symbols correspond to the frequencies of peaks 1 to 5 for each EL along the

high symmetry KΓ and KM directions. Squares, circles, triangles, diamonds and stars

denote peaks 1 to 5, respectively. The full lines are the theoretical phonon branches [27]

for the combination modes LO+iTA (black), iTO+LA (red), LO+LA (blue), oTO+iTO

(purple), oTO+LO (grey) and iTO+iTA (green). The peak numbers given in Fig. 5.4(a)

are written below the corresponding phonon branch assigned to each combination mode.

When the peaks can be fitted to a phonon dispersion for either direction of KΓ or KM,

we can assign the peak to the corresponding combination mode.

In Fig. 5.4(c), the experimental data were plotted considering the phonon assign-
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Figure 5.4: (a) The Raman spectra for the combination modes in the frequency region
from 1700 to 2300 cm−1 for four different laser lines: 488 nm (2.54 eV), 532 nm (2.33 eV),
575 nm (2.16 eV) and 590 nm (2.10 eV). (b) and (c) Phonon dispersion of 1LG (solid
lines) adapted from Popov and Lambin [27] showing the phonon branches combinations
LO+iTA (black), iTO+LA (red), LO+LA (blue), oTO+iTO (purple), oTO+LO (grey)
and iTO+iTA (green) near the Γ and the K point. (b) The phonon assignments of the
present work for the experimental results obtained from the spectra in (a). Squares,
circles, triangles, diamonds and stars correspond to peaks from 1 to 5, respectively. The
peaks 1, 2 and 3 come from an intravalley DRR process, while the peaks 4 and 5 come
from an intervalley DRR process. (c) The experimental data from this work plotted
considering the assignments proposed in the literature [67,68]: peaks 1, 3 and 4 coming
from an intravalley DRR process and the peaks 2 and 5 coming from an intervalley DRR
process. The peak numbers are written below the corresponding phonon branch assigned
to it.

ments reported in the literature by Cong et al. [68] and by Rao et al. [67]: peaks 1, 3

and 4 coming from an intravalley DRR process and the peaks 2 and 5 coming from an

intervalley DRR process. Fig. 5.4(c) shows that the assignments proposed in the litera-

ture [67,68] for the peaks 1 and 5 as LO+iTA around the Γ point and as iTO+iTA around

the K point, respectively, are in good agreement with the theoretical curve as regards both

the frequency values and dispersion slopes. On the other hand, we can clearly see that

peak 2 does not match well the proposed [67] assignment of the oTO+LO combination

mode around the K point, and the peak 3 is not in good agreement with the combination

phonon branch iTO+LA around the Γ point. Due to the small energy difference between

peaks 3 and 4 (around 30 cm−1) and the similar dispersion values (see Table 5.1), there is

an ambiguity in the experimental assignment when made by using only laser dependent

measurements, as is now in common usage.

Here, we propose different assignments for the peaks 2, 3 and 4, which are based on

and supported by phonon self-energy renormalization calculations and by angle depen-
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Table 5.1: Combination mode assignments, including region in the BZ, scattering direc-
tions and dispersion (cm−1/eV) for the five q ̸= 0 combination Raman modes in single
layer graphene (1LG) from this work and from works published in the literature [67,68].

Peaks (ωq cm−1)1 1 (1887) 2 (1913) 3 (2036) 4 (2064) 5 (2214)

This work LO+iTA iTO+LA LO+LA oTO+iTO iTO+iTA
BZ point Γ Γ Γ K (KΓ) K (KM)
Dispersion 128 ± 2 135 ± 6 213 ± 5 214 ± 5 -50 ± 5

Cong el al. [68] LO+iTA - iTO+LA LO+LA -
BZ point Γ Γ Γ
Dispersion 140 198 221

Rao el al. [67] LO+iTA oTO+LO iTO+LA LO+LA iTO+iTA
BZ point Γ K Γ Γ K
Dispersion 135 150 204 223 -56

1All the peak position references were taken with the laser line 488 nm (2.54 eV).

dent el-ph scattering matrix element calculations, that provide more precise information

that was not considered in the previous works [67,68]. It is worth commenting that these

angle dependent scattering calculations give us the direction along which the scattering

processes have the highest probability of happening (see the brightest spots in the cal-

culated Figs. 5.5(d)-(f), where θi and θf are, respectively, the initial and final scattering

angles at the K point measured from the kx axis). Here we select the phonon dispersion

in the direction of q (q = ki − kf ) that gives the maximum el-ph matrix element. From

Fig. 5.4(b), we can see that the experimental peak 2 (red circles) is in better agreement

with the combination phonon branch iTO+LA around the Γ point. Also, as shown in

Fig. 5.4(b), by comparing the experimental and the theoretical phonon dispersions, we

can see that peak 3 matches more accurately the phonon branch LO+LA around the Γ

point, while peak 4 is in good agreement with the intervalley DRR process around the K

point involving the oTO+iTO phonons. In Table 5.1 we summarize the new assignments

found in this work and compare them to the assignments published in the literature for

1LG [67,68]. Also given in Table 5.1 are values for the EL-dependent phonon dispersion

rate (∂ω/∂EL) for each combination mode. The most likely el-ph scattering directions

are also addressed for the intervalley DRR processes assigned in this work and included

in the table as KΓ and KM.

In order to make reliable combination mode assignments, it is also important to

specify the direction along which the scattering process is happening. As discussed above,

we have assigned the peaks 4 and 5, respectively, as oTO+iTO and iTO+iTA q ̸= 0

58



(a) (b)

(c)

(d) (e) iTO+iTA oTO+LO

qf

qi

K

K’
qf

qi

K

K’

ky

kx

oTO+iTO

qi

(eV )
2

qf

qi

K

K’

(f)

1950

2100

2250

oTO+LO

4
5

oTO+iTO
(4)

M K   G

F
re

q
u
en

cy
(c

m
-1

)

iTOiTA
(5)

M M M

K

K

K`

G

KM

M

KG

K

K

K`

G

M

M

qi

(eV )
2

qi

(eV )
2

Figure 5.5: DRR processes involving phonons in the (a) KM or in the (b) KΓ direction,
respectively, measured from the K point (red full arrows). (c) The phonon dispersion
relation for the two intervalley combination modes: peaks 4 (purple diamonds) and 5
(green stars)). The half colored symbols correspond to the DRR process in the KM
direction and the open symbols correspond to the DRR process in the KΓ direction.
The absolute value for the angular dependence of the intervalley el-ph scattering matrix
elements for the (d) oTO+iTO, (e) iTO+iTA and (f) oTO+LO phonon combination
modes for EL = 2.54 eV. θi and θf are, respectively, the initial and final scattering angles.
The diagrams in (d), (e) and (f) show the scattering directions for which the el-ph matrix
elements are maximum [76].

combination modes around the K point generated by an intervalley process. However, the

phonon wavevector which is mainly involved in the DRR process lies along either the KM

or the KΓ directions (considering the high symmetry directions, for simplicity) measured

from the K point [74,75] (see Figs. 5.5(a) and (b) for the distinction between a KΓ and a

KM process). In Fig. 5.5(c) we plot the experimental phonon dispersion for peaks 4 and

5 considering both the KM and KΓ directions. Besides the different attributions among

the various peaks, our results differ from the results in the literature [67,68] specially

because we use the oTO+iTO combination mode instead of the oTO+LO combination

mode proposed in Refs. [67].

Fig. 5.5(c) shows that for peak 4, the agreement between the experimental data

and the theoretical phonon dispersion strongly suggests that the scattering events are

happening in the KΓ direction. However, it could be hard to decide whether it is the

oTO+LO or the oTO+iTO that is the correct assignment for this phonon mode, since

the frequencies of these combination modes and their dispersions are very close to each

other. In our assignment, we use the fact that the directions of the maximum el-ph matrix

elements, as well as their phonon self-energy corrections studied by varying EF (as shown

later in the text), are different for oTO+LO and oTO+iTO. Figs. 5.5(d), (e) and (f) show
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the absolute values for the angular dependence of the intervalley el-ph matrix elements

for the oTO+iTO, iTO+iTA and oTO+LO phonon combination modes for EL = 2.54 eV,

where θi and θf are, respectively, the initial and final scattering angles defined at the K and

K′ points. The diagrams in Figs. 5.5(d)-(f) show the scattering directions for which the

el-ph matrix elements are maximum (brightest spots in the figures) for the corresponding

combination mode. Looking at the el-ph matrix elements for the oTO+iTO combination

mode in Fig. 5.5(d), we can see that the direction for which the el-ph matrix elements are

maximum is closer to the KΓ direction. On the other hand, if we look at the scattering

diagram for the oTO+LO combination mode in Fig. 5.5(f), the el-ph matrix elements are

a maximum closer to the KM direction. From Fig. 5.5(c), we can see a better agreement of

peak 4 along KΓ than along the KM direction. Then, by first combining the el-ph matrix

elements with the theoretical phonon dispersion, we can conclude that peak 4 comes from a

DRR process involving the oTO+iTO phonon combination mode in the KΓ direction. It is

worth commenting that the matrix elements for the oTO+iTO and oTO+LO combination

modes are much weaker than those for the iTO+iTA modes because the oTO mode does

not have strong el-ph coupling in graphene.

In Fig. 5.5(c), the experimental data for peak 5 is seen to be close to the theoretical

curve for both the KΓ and KM directions and we must use other information to decide

the direction for which the main contribution to the Raman scattering occurs. In this

case, the correct assignment is also decided based on the phonon renormalizations, the

theoretical predictions for the scattering processes and the most important el-ph matrix

elements. In Fig. 5.5(e), we can see that the direction for which the iTO+iTA combination

mode has a maximum is closer to the KM direction, from which we conclude that the

main contribution to peak 5 comes from an intervalley DRR process in the KM direction.

Next, we explore the phonon self-energies and the el-ph coupling for those com-

bination modes, which provide fundamental information about el-ph interactions and is

also fundamental to verify the accuracy of the assignment procedure. Figs. 5.6(b)-(f),

respectively, show the experimental data for the dependence of the phonon frequency

ωq (black solid triangles) and the phonon decay width γq (open dots) on Vg (or on the

Fermi energy) for the five combination modes. The phonon frequencies of the combi-

nation modes are shown using the same scale so that a better comparison can be made

regarding the strength of the phonon renormalization phenomena for each combination

mode. The dashed lines are guides for the eyes. Fig. 5.6(a) shows the gate-modulated

response of the G band, where we can see that, when the charge carrier density increases,

ωG undergoes a hardening, while the γG narrows, consistent with previous works [52,64].
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Figure 5.6: The dependence of the phonon frequency ωq (black solid triangles) and phonon
decay width γq (open dots) on gate voltage (Vg) for the (a) G band and phonon combi-
nation modes (b) 1, (c) 2, (d) 3, (e) 4 and (f) 5. All the graphics, except for the G band,
are on the same scale for better comparison between the five combination modes. Notice
that all five combination modes show a decrease of the ωq and a broadening of the γq with
increasing Vg. The dashed lines are guides for the eyes and the error bars come from the
fitting procedure.

Also, the neutrality point can be estimated from the ωG dependence. From Fig. 5.6(a)

one can see that the minimum of the frequency occurs around 0V, indicating the charge

neutrality point.

In contrast, by observing Figs. 5.6(b) to (f), it is seen that ωq is softened for all the

five Raman combination features from 1700 to 2300 cm−1, and that the ωq softening is

accompanied by a broadening of γq with increasing carrier concentration (increasing |Vg|).
As explained in the last Section, this behavior observed for all five combination modes in

the present study is common to Raman modes that come from an intravalley or intervalley

DRR process with q ≈ 2k and is opposite to the behavior observed for the Γ point q = 0

phonons, such as for ωG. In the case of q ̸= 0, the electronic and vibrational density of

states, together with energy and momentum conservation requirements, are determining

if the el-h pair creation due to a q ̸= 0 phonon absorption will happen or not. Namely,

when the Fermi level is around zero, either no el-h pair can be created by the absorption
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of a phonon or the probability of an el-h pair creation is very small because the density

of states vanishes at the Dirac point. However, when the charge concentration increases,

the renormalization of the phonon energy occurs by the creation of an el-h pair through

the absorption of a phonon, then a softening of ωq and a broadening of γq are observed,

in contrast to what happens for q = 0 phonons at the Γ point [37].

The results in Figs. 5.6(b)-(f) confirm that the Raman combination modes come

from a DRR process with q ≈ 2k phonons, in accordance with the predictions of the Ref.

[37] and explanations given above. We also can see that the ωq and γq renormalizations

due to the change in the Fermi level position are weak for peaks 1 (Fig. 5.6(b)) and 3

(Fig. 5.6(d)), when compared to the other three peaks. In accordance to the assignments

given to the peaks and since both of these peaks involve the LO phonon branch, we can

conclude that the coupling of this phonon to all the other relevant phonon modes is not

large compared to the other peaks. Moreover, the LO mode is not expected to show a

strong el-ph coupling when q moves away from the Γ point (LO will present a strong

coupling for q = 0 at the Γ point) [29], which confirms the reason for our assignments to

peaks 1 (LO+iTA) and 3 (LO+LA). It is worth saying that the acoustic modes have zero

(small) energy at the Γ point (around Γ point) so that a negligible contribution to the

phonon renormalizations could be expected coming from these acoustic modes.

On the other hand, the ωq and γq renormalizations for the peaks 2, 4 and 5 are of

the same order of magnitude as that for the G band, which has a strong el-ph coupling

[19,30,32,52,64]. The behavior observed for peaks 4 (oTO+iTO) and 5 (iTO+iTA) is due

to the strong el-ph coupling of the iTO phonon branch expected for the K point phonons

in 1LG. Another interesting observation: peak 2 (iTO+LA), which is a q ̸= 0 mode

around the Γ point, shows that the renormalizations due to the iTO mode become strong

when moving away from the Γ point. This is fully consistent with what we observed for

peaks 1 and 3 around the Γ point. While the LO mode renormalization weakens, the

iTO mode renormalization is strengthened in moving away from the Γ point (remember

that for q = 0 Γ point phonons LO has a strong renormalization while the iTO has not).

The observed gate-dependent behavior consistently confirms the assignments given to the

combination modes in this work, since there is a consistency between the phonon modes

assigned to each peak and the strength of the el-ph coupling in each mode.

This result shows that the gate-modulated Raman scattering is indeed a powerful

technique to confirm the phonon mode assignments attributed to Raman peaks when

the gate voltage and EL dependence are both measured. This is clearly the case for the

peaks 3 and 4 in this work. It is worth mentioning that, especially as regards peak 4, the
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gate-modulated results are important to decide which is the correct combination mode

assignment for this peak. This feature could have been assigned to the oTO+LO phonon

combination mode, as stated earlier [67]. However, if this assignment were correct, the

el-ph coupling would be expected to be similar to what is seen in Figs. 5.6(b) and (d),

which are combinations that contain the LO phonon mode. Note that the oTO mode is

not expected to show a strong el-ph coupling [29]. The sizeable renormalization effect seen

experimentally in Fig. 5.6(e) therefore strengthens the oTO+iTO choice for that feature.

5.2 Mixing of the optical modes in bilayer graphene

In this section we will show experimental results about the electron-phonon inter-

action in bilayer graphene. In particular, it will be shown that the Raman spectroscopy

together with gate voltage is a powerfull technique to estimate the degree of symmetry

breaking of bilayer graphene (2LG) and to estimate the environment influence in a 2LG

device.

Bilayer graphene has attracted a lot of attention recently because of its special low

energy electronic dispersion, in which a tunable band gap can be opened by application

of a transverse electric field (see Section 2.2.2) [3,10,26,77–81]. Such device is desirable

for low energy photo-emitters and detectors possessing a high tunability by the control

of charge concentrations on the graphene layers. Recent experimental demonstration of

this tunable band gap in 2LG was based on the absorption measurements in the infrared

region [10,80,81] or by electric transport measurements [78,79]. However the tunable

band gap bilayer graphene device operation can be greatly influenced by the surrounding

environment.

Typically, unintentional doping charges coming from the top and the bottom of

the system can accumulate on 2LG, giving rise to an unintentional electric field which

determines a non-homogeneous doping between the layers and the opening of a band gap

in the band structure, without any applied external electric field [82]. In this work we

use Raman spectroscopy to monitor the unintentional charge coming from the top and

the bottom of the system, which gives information on the electrostatic environment of

the sample and which helps to characterize the bilayer devices for further applications.

The band gap opening and tunability in bilayer graphene is based on the application of

an electric field E perpendicular to the layers, given by

E =
(ntop − nbot)|e|

ε0
(5.3)
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Figure 5.7: Raman shift in bilayer graphene as a function of the electron concentration
n, for (a) ntop = nbot, (b) ntop = 0, (c) ntop = 1.2 and (d) ntop = 2.4 calculated by Gava et
al [82]. Calculated values of the shifts are connected by lines. For a given value of n there
are two phonon modes represented with two rectangles. The height of the rectangles is
the decay width and the areas are proportional to the relative Raman intensities (i.e., the
integrated area of each peak) of the two modes. Thus, the ratio of the widths of the two
rectangles is equal to the ratio of the maximum heights of the two Raman peaks. When
the ratio is less than 0.1, the mode with the smallest intensity is red, otherwise is black.
Figure adapted from Ref. [82].

where ntop and nbot are the charge carriers densities coming from the top and the bottom

layers of 2LG, respectively, ε0 is the vacuum permittivity, and e is the electronic charge

(e = −|e|). Raman spectroscopy has already shown to be a fast and non-destructive tool

to characterize graphene samples [16,41] and doping effects [25,32,52,64,83], however no

carefully analysis has been done to demonstrate the effect of non-homogeneous doping in

2LG devices.

Recent theoretical calculations made by Gava et al. [82] suggest that from the

analysis of the Raman spectra of gated bilayer graphene it is possible to quantitatively

identify the amount of non-intentional charges coming from the atmosphere and from

the substrate and to characterize the electrostatic environment of few-layers graphene.

According to Gava et al. [82], the dependence of the two peaks of the G band of bilayer

graphene is different depending on the initial doping of the two layers. The Raman shift
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Figure 5.8: (a) Optical microscope image of the graphene sample before application of
the polymer electrolyte. (b) Schematic illustration of the device and the experimental
setup.

as a function of the electron concentration is shown in Fig. 5.7 for four different values of

n0
top.

In this section we study the dependence of the G band of bilayer graphene on the

gate voltage. From the direct comparison between the experimental and the theoretically

simulated Raman spectra, and from the analysis of the frequency ω, decay width γ and

relative intensities I of the Raman features as a function of the electron concentration

n, we were able to estimate the charge unintentionally accumulated on the device from

the environment. Fig.5.8(a) shows the bilayer graphene field-effect transistor (FET) used

in the experiment. The device was produced as explained in Section 4.1 and top gating

was performed by using a polymer electrolyte consisting of polyethylene glycol (PEG)

and NaClO4 with ratio concentration of 1:0.25. The Raman measurements were done in

the back scattering configuration at room temperature using 2.41 eV as excitation laser

energy. The spot size of the laser was ∼1µm using a 80× objective and the laser power

was kept at 1.4mW.

Capacitance measurements of the polymeric electrolyte used in the experiment were

performed by Impedance Spectroscopy with frequency analyzer AUTOLAB PGSTAT30

by using a symmetrical cell with two Au electrodes and a polymer electrolyte layer. The

impedance (Z) measurements for the electrolytes were carried out with frequency ranging

from 50 kHz to 0.5Hz at 0V with 10mV amplitude. The expression Z = 1/iωCG , where

ω is the frequency, was used to determine the capacitance CG and the value obtained for

capacitance per unit area for the interface electrolyte/bilayer was CG = 1.5×10−6 F cm−2.

However, the shape and the thickness of the dielectric double layer depend on the specific

surface at contact with the electrolyte. Therefore, from the measured value of impedance,
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we can only have the order of magnitude of CG of the electrolyte in contact with bilayer

graphene. We can see that the order of magnitude of the capacitance is in accordance with

the predictions for the top gate systems using polymer electrolyte (see Section 4.3) [52].

In the case of 2LG with AB layer stacking, both the electronic and phonon bands

split into two sub-bands [28]. The E2g phonon mode of monolayer graphene splits into two

distinct modes, associated with the in-phase (IP) and out-of-phase (OP) displacements of

the atoms in the two layers with respect to inversion symmetry [34]. The IP and OP modes

belong to the two double degenerated representation Eg and Eu of the D3d point group,

respectively [34–36,82]. The Eu mode is not Raman active and, therefore, the G band of

isolated bilayer graphene is composed of only one peak. However, when the two layers of

bilayer graphene have different charge carrier concentration, induced by the application of

an external gate voltage, the inversion symmetry of bilayer graphene is broken, lowering

the symmetry of the system. As a consequence of the induced asymmetry between the

two layers, the two IP and OP modes are mixed each other, and the two new eigen-modes

have the Raman active IP component. Therefore, two peaks are observed in the G band

of bilayer graphene [34–36,82] (more details are available in Section 2.4.4).

In Fig.5.9(a) we show the experimental Raman spectra (red dashed curves) taken

with the application of top gate voltage (Vg) from -1.50 to 1.00V. The G band splitting into

two components G+ and G− (higher and lower frequency peak, respectively) can be clearly

observed for Vg below -0.6V. In this work we compare our experimental spectra with

theoretical calculations from Ref. [82]. In particular, in Ref. [82] the authors considered

the Γ phonon self-energy in order to compute the electron-phonon coupling contribution

to the variation of the frequency, broadening, and relative Raman intensity of the two

phonon modes in bilayer graphene, as a function of the electron concentration n and

as a function of the induced charge from the bottom of the system, nbot. The phonon

self-energy and the band structure of gated bilayer graphene are computed using a tight-

binding scheme as described in details in Ref. [82]. In order to compare the experimental

spectra and theoretical calculations, we need to convert Vg into electron concentration n

using the expression

βVg = (n− n0)e . (5.4)

The total capacitance per unit area β, which includes the quantum capacitance CQ and

geometrical capacitance CG [52], and the intrinsic doping at the zero gate n0 are used as

fitting parameters. Moreover, by the comparison between experimental and theoretical

results from Ref. [82] we can estimate the charges unintentionally adsorbed, at zero gate,
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from the top and bottom layers of the device, n0
top and n

0
bot respectively. These quantities

are related to n0 by

n0 = n0
top + n0

bot , (5.5)

and therefore we only used n0
bot as additional fitting parameter. n0

bot and n0 are the two

independent fitting parameters characterizing the charge transfer on the system. Finally,

the theoretical decay width γth calculated as a function of n and n0
bot is given by electron-

phonon and anharmonic phonon-phonon interaction [82]. Therefore, in order to take into

account other factors determining a finite lifetime and neglected in the calculations, we

used in the fitting procedure a parameter γ0, independent on the total charge n and equal

for the two peaks, related to the total decay line width by γ = γth + γ0.

In Fig.5.9(a) we show the comparison between the experimental spectra (red dashed

curve) and the theoretical calculation (black continuous curve). For each Vg, the theo-

retical spectra is obtained as the sum of two Lorentzians, L+(ω) for the G+ peak and

L−(ω) for the G− peak. The two Lorentzians are centered in ω+/−, with decay width

γ+/− = γ
+/−
th + γ0, and with integrated area I+/−, as follows:

L+/−(ω) =
I+/−(γ+/−/2)

(ω − ω+/−)2 + (γ+/−/2)2
. (5.6)

ω+/−, γ
+/−
th , and I+/− are evaluated according to the theory from Ref. [82], where they are

calculated as a function of n and n0
bot. In order to convert n and n0

bot into Vg we have used

Eq. 5.4. In particular, we have used two different parameters, β+ and β−, for positive and

negative Vg, respectively, which induce positive and negative n, i.e., electron and hole

doping charge. The fit is performed computing the χ2, i.e., the square of the difference

between the experimental and theoretical spectra, averaged over all the measured Raman

range and over different Vg. We considered Vg in the range of ±0.5V. This choice is

motivated by the fact that for large values of Vg the linear relation between gate voltage

and charge could be modified, and charges from the electrolyte could accumulate on the

bottom of the sample, making the fit results less reliable. The values for the parameters

used in the fit, i.e., β+, β−, n0, n
0
bot, and γ

0, are varied in uniform and dense grids.

Fig.5.9(a) shows the best fit (black solid curves) obtained for the experimental data.
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Figure 5.9: (a) Comparison between experimental (red dashed line) and theoretical (black
continuous line) spectra for different Vg as obtained from the direct fit of spectra; (b-c-d)
Frequency ω+/−, decay width γ+/− and ratio of intensity I+/− as obtained fitting the
experimental spectra with two Lorentzians and compared with theory. The dots are the
experimental data and the full curves are the theoretical calculations from Ref. [82]. The
blue dashed line corresponds to the values of n to which we expect a jump in the quantum
capacitance.
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For this fit, the values of the fitting parameters are:

β+ = (3.7± 0.2)× 10−6 F cm−2 ,

β− = (4.6± 0.2)× 10−6 F cm−2 ,

n0 = (−0.15± 0.02)× 1013 cm−2 ,

n0
bot = (0.00± 0.02)× 1013 cm−2 ,

γ0 = (7.5± 0.1) cm−1 .

The different values of β+ and β− can be ascribed to the different mobilities of the

positive (Na+) and negative (ClO−
4 ) ions. For this values found for β, the range of Vg

used in the experiment, from -1.6V to 1.0V, corresponds to a change in the Fermi level

position of about -0.51 eV to 0.38 eV and a change in the charge concentration of about

−4.7×1013 cm−2 to 2.3×1013 cm−2. Notice that the agreement between the experimental

and simulated spectra is excellent in the range -0.5 to 0.5V. The slight shifts out of this

range can be ascribed to a possible hysteresis in the experiment, and to the fact that we

did not consider in our model the expected jump of the quantum capacitance CQ when,

increasing (decreasing) the Fermi level, we reach the second conduction (valence) band in

bilayer graphene [52]. The Fermi level value to when the second conduction (valence) band

starts to be filled (emptied) is ±0.4 eV [44,84]. This corresponds to a charge concentration

of about n = ±3 × 1013 cm−2 (see the blue dashed vertical line in Figs.5.9(b)-(d)), and

according to our values of n0 obtained from the fit, the gate values at which the jumping

of the quantum capacitance is expected are around Vg = 1.3V for positive gate voltage

and Vg = −1.0V for negative gate voltage.

The fact that n0
bot = 0 shows that the amount of charge transferred from the sub-

strate to the bottom layer of the sample in this case is negligible. On the other hand, the

unintentional doping concentration found for the top layer is n0
top = −0.15 × 1013 cm−2.

Although it is known that the polymer electrolyte diminishes both hysteresis and influ-

ence of external effects, such as changes in gas adsorption from ambient [85], the polymer

electrolyte layer itself can, for instance, contain residual water or absorb water from the

humid air [86], and this will contribute to an unintentional charge transfer, because water

can diffuse through the polymer and be adsorbed in the graphene layer.

All the G band experimental spectra of Fig.5.9(a) were fitted using two Lorentzians

in order to extract the frequency and decay width of the two components G+ and G−,

as well as the relative Raman intensity, i.e., the ratio between the Raman intensities

of the modes with higher frequency (I+) and lower frequency (I−). Figs.5.9(b) and (c)
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show, respectively, the dependence of the G+ (red dots) and G− (black dots) frequency

ω and width γ as a function of the electron concentration n. The full lines are the

theoretical calculations based on Ref. [82]. The dependence of the frequency of the G+

and G− Raman peaks (Fig.5.9(b)) is well described by the calculation of the phonon self

energy as a function of charge concentration. The distinct behaviors of the G+ and G− is

qualitatively explained by the different electron-phonon couplings for the in-phase and out-

of-phase phonon modes with inter-band and intra-band electron-hole pairs, as explained

in Ref. [35] and in Section 2.4.4 (see Fig. 2.15 for theoretical predictions). While G+

blueshifts with charge carrier concentration, the G− mode redshifts when EF is changed.

For the width dependence, while γ+ does not change with n, γ− is maximum near

n = 0 and minimum for values of n corresponding to values of EF larger than half of

the phonon energy, as has been observed before in both monolayer and bilayer graphene.

It is worth commenting that the scattered data points for the frequency, line width and

relative intensity shown in Figs.5.9(b), (c) and (d) are mostly caused by charge carrier

fluctuation during the measurement, where a hysteresis of the charge neutrality point is

found by sweeping the gate voltage up and down. The shift of the neutrality point can

reach 0.25V in a range of 1V of gate voltage due to hysteresis effect [87]. Fig.5.9(d)

shows the dependence of I+/I− as a function of n. The quantity I+/I− shows a min-

imum value between n ∼ −1 to 1 × 1013 cm−2 and increases more strongly for positive

carrier concentration. The underestimation of the theoretical results for high negative

and positive charge concentrations can be ascribed to the approximations made in the

theoretical model. These results show how the Raman spectroscopy can be used to fully

characterize the bilayer graphene device and its interaction with the environment.

5.3 Summary

In summary, we have shown experimental results of electron-phonon coupling in

monolayer and bilayer graphene. For monolayer graphene, we have studied the phonon

self-energy correction for phonon modes with q ̸= 0 from a phenomenological and exper-

imental point of view. In the q ≈ 2k cases (oppositely to what is observed for the q = 0

intravalley process), the phonon softening and damping is a minimum when EF = 0 and

increases with increasing |EF |. For the intervalley q = 0 case (measured from the K point),

Eeh ∼ 0 and a weak and small ωq and γq dependence with EF is expected. Due to these

different phonon self-energy behaviors, gate-modulated resonant Raman spectroscopy of

overtones and of a combination of phonon modes provides a powerful technique to assign
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the phonons participating in the formation of each overtone or combination mode, to

identify whether a Raman feature is associated with the q = 0 or the q ̸= 0 processes

and to determine how a given phonon mode is coupled to the electronic states of single

layer graphene. We applied these combined techniques to study the G⋆ and G′ modes.

Our theoretical approach satisfactorily explains the experimental results and within this

framework, we also showed that the G⋆ mode is an asymmetric peak composed by both,

the iTO+LA combination mode, which is an intervalley q = 2k process with a strong

phonon renormalization, and the 2iTO overtone mode, which is an intervalley q = 0 pro-

cess with a weak phonon renormalization, thereby resolving a long-time discussion in the

literature. This work is published in Physical Review Letters 109, 046801 (2012).

The phonon renormalization for q ≈ 2k cases were also applied to five combination

modes in the region from 1700 to 2300 cm−1. By exploring the q ̸= 0 phonon anoma-

lous self-energy corrections and by comparing the experimental data with the theoretical

phonon dispersion and making use of the angle dependent electron-phonon (el-ph) scat-

tering calculations, we have assigned properly the five combination modes observed in

this frequency region. For all five phonon combination modes, we observed a decrease of

the phonon frequency and a broadening of the phonon decay width with increasing gate

voltage occurs, as is predicted for a double resonance Raman process with q ̸= 0. We

show that the el-ph coupling is larger for peaks 2, 4 and 5 mostly due to the strong el-ph

coupling of the iTO phonon branch. The renormalizations for peaks 1 and 3 are small

due to the weak el-ph coupling of the LO phonon branch. These el-ph dependencies on

gate voltage support our assignments when compared to the assignments in the current

literature [67,68]. This work is under review in the Nano Letters journal.

For bilayer graphene, a detailed analysis of the top gated G band is presented. We

observed that, unlike in the unbiased case where the G Raman band is composed by only

one peak, the gate voltage breaks the inversion symmetry and the G band splits in two

modes, that are combinations of the in-phase and out-of-phase modes of the unbiased bi-

layer graphene. We analyze the dependence of the frequency, line width and the relative

intensities of the peaks with higher and lower frequency as a function of the electron con-

centration and we compared the experimental results with theoretical calculations from

Ref. [82]. From this comparison, we could estimate the unintentional carrier concentration

adsorbed on the device, at zero gate, from the substrate, n0
bot, and from the electrolyte,

n0
top, and we found n0

bot = 0.0 and n0
top = −0.15 × 1013 cm−2, showing that Raman spec-

troscopy is a powerful technique to study the electrostatic environment of graphene. This

work is published in Carbon 50, 3435 (2012).
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Chapter 6

Probing the electronic and
vibrational structure of bilayer
graphene

Resonance Raman scattering (RRS) has been widely use to probe the electronic and

the phonon structures of carbon materials like carbon nanotubes , graphite, diamond-like

carbon and linear carbon chains [16]. Also, the double resonance G′ Raman band provide

rich information about the energy and momentum of the participating electrons and

phonons. In this chapter we review the combination of RRS and DRR processes to probe

information about phonons and electrons in bilayer graphene. From the DRR model (see

Section 3.3), we have a set of two coupled quantities: the electron and phonon frequencies

and their dispersion relations. From the knowledge of one of these quantities (for example,

the phonon energies and their dispersion), it is possible to get the other quantity (which,

for this example, would be information about the electronic structure). The information

comes from the experimental Raman band originated from a specific double Resonance

scattering process. By changing the laser excitation energy, different points in momentum

space for the electronic and phonon dispersion are probed, and in this way, it is possible

to map the phonon or electronic dispersion relations by this method.

In recent years, the physics of monolayer graphene has been thoroughly investigated,

unveiling a wealth of interesting and unusual properties, most of which are related to

graphene’s distinct electronic properties, consisting of a linear and isotropic dispersion of

the electronic states around the Fermi level (EF ) near the K point in the Brillouin zone

(BZ). On the other hand, bilayer graphene is also an interesting material. While in the

unbiased bilayer the valence and conduction bands touch each other at the Fermi level,
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Figure 6.1: The intra- (γ0 and t
′) and inter-layer (γ1, γ3 and γ4) tight-binding parameters

in bilayer graphene.

a gap can be opened and tuned, for example, by the application of an external electric

field perpendicular to the layers [3,10,11,35], which makes bilayer graphene a promising

system for the fabrication of nanoelectronic devices. However, the development of bilayer

graphene based devices depends on the detailed understanding of its electronic properties.

Since the unit cell of AB stacked bilayer graphene is the same as that of graphite, we

can model the bilayer electronic structure using a tight-binding model for graphite [21],

by adapting the Slonczewski-Weiss-McClure (SWM) parametrization [22,23] of relevant

couplings. There are several theoretical [24,88,89] and experimental [18,44,84,90–92] stud-

ies of the nearest-neighbors hopping SWM parameters, but the agreement between the

reported values, obtained with different experimental techniques, is not entirely satisfac-

tory. In a previous resonance Raman study of bilayer graphene performed in the visible

range by Malard et al. [18], the electronic structure of bilayer graphene was probed by

analyzing the dispersion of the G′ Raman band as a function of the laser energy, and the

electronic band dispersion was described within a tight-binding approximation by deter-

mining the SWM parameters γ0, γ1, γ3 and γ4 (see Fig. 6.1). They [18] have shown that a

linear iTO phonon dispersion provides a good fit of the experimental data obtained with

visible photons.

In the present work, we have extended the range of laser energies, measuring the

G′ Raman band with many laser lines in the range 1.33 to 2.81 eV (932 to 440 nm). We

used He-Cd, Ar-Kr and dye lasers for the laser lines in the visible range 1.91-2.81 eV and

a Ti:Sapphire laser (from Los Alamos National Laboratory - New Mexico - USA) for the

excitation in the near-infrared (IR) range 1.33-1.72 eV. Fig. 6.2 shows the Raman G′ band

of bilayer graphene recorded with 19 different laser lines between 1.33 and 2.81 eV. We

can see that both the frequency and the shape of the G′ band are strongly dependent on

the laser excitation energy EL.
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Figure 6.2: (a) The Raman G′ band of bilayer graphene recorded with 19 different laser
lines between 1.33 and 2.81 eV (932 to 440 nm). (b) G′ Raman band of bilayer graphene
measured with 2.41 eV laser energy and fitted with four Lorentzian peaks originated from
the P11, P12, P21 and P22 processes.

The measurements in the near-IR range are especially relevant since we can probe

phonons that are much closer to the K point. The analysis of the low energy data allowed

us to observe a non-linear softening of the phonon branch near the K point, and the

significant splitting of the symmetric (S) and anti-symmetric (AS) phonon branches. In

particular, we show that the phonon softening is stronger for the symmetric branch.

Concerning the electronic structure, we have also considered the in-plane second-neighbor

hopping parameter t′ (see Fig. 6.1), which is expected to be of the same order as the

out-of-plane nearest-neighbor parameters, to describe the G′ Raman band dispersion.

The parameter ∆, which represents the difference between the on-site energies of the

sublattices A and B, was also taken into account.

6.1 The historical background

The G′ Raman band in graphene systems comes from an intervalley double reso-

nance Raman process [39,40] that involves one initial electronic state with wavevector k

near the K point, one intermediate electronic state with wavevector k′ near the K′ point,
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Figure 6.3: (a) P11 and P22 DRR outer processes involving the symmetric phonon. (b)
P12 and P21 DRR outer processes involving the anti-symmetric phonon. (c) DRR outer
process involves electrons in the KΓ direction and phonons in the KM direction. (d) P11

and P22 DRR inner processes involving the symmetric phonon. (e) P12 and P21 DRR inner
processes involving the anti-symmetric phonon. (f) DRR inner process involves electrons
in the KM direction and phonons in the KΓ direction.

and two in-plane transverse optical (iTO) phonons with wavevectors q = k+k′, measured

from the K point (see Figs. 6.3(c) and (f)) [16]. Since photons with different energies

excite electrons with different wavevectors k, the DRR process probes phonons with dif-

ferent q values near the K point. Therefore, the dispersion of electrons and phonons can

be investigated in a resonance Raman experiment, when the energy of the photons can

be tuned [16].

In the case of bilayer graphene, there are two electronic valence bands (π1 and π2)

and two conduction bands (π∗
1 and π∗

2) [3]. There are also two iTO phonon branches, one

related to the symmetric (S) and the other one with the anti-symmetric (AS) phonons,

with respect to inversion symmetry. Group theory analysis for bilayer graphene predicts

four distinct DRR processes, P11, P22, P12, and P21, which are illustrated in Fig. 6.3.

The triangularly-shaped isoelectronic curves around the K and K′ points in Figs. 6.3(c)

and (f) are the equienergy contours of the π electrons involved in the scattering process.

The value of the equienergy in a given DRR process is determined by the laser excitation

energy EL, that creates the electron-hole excitation. Since the lower and upper conduction

bands (π∗
1 and π∗

2) belong to different irreducible representations, the symmetric phonons

(T1 symmetry) are associated with the P11 and P22 DRR processes (Figs. 6.3(a) and (d))
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involving electronic states with same symmetry (π∗
1 → π∗

1 or π∗
2 → π∗

2), whereas the anti-

symmetric phonons (T2 symmetry) occur for the P12 and P21 processes (Figs. 6.3(b) and

(e)) involving electronic states with different symmetries (π∗
1 → π∗

2 or π∗
2 → π∗

1) [28].

Each one of these processes (P11, P22, P12 and P21) is responsible for one peak in the

G′ band. Fig. 6.2(b) shows the Raman spectrum of the G′ band measured with 2.41 eV

laser energy and fitted with four peaks. All the peaks have the same decay width of

∼ 24 cm−1, which is the line width of the single G′ band in monolayer graphene [16,41].

If the analysis of the DRR process is done considering only backscattering of electronic

states along the KΓ direction with phonons along the KM direction (Fig. 6.3(c)), this

process is called outer DRR process (scattering shown in Figs. 6.3(a) and (b)). On the

other hand, if the analysis is done considering the scattering of the electrons along the

KM direction with phonons along the KΓ direction (Fig. 6.3(f)), this process is called

inner DRR process (scattering shown in Figs. 6.3(d) and (e)).

In the literature, the analysis of the DRR process used to be done considering only

the scattering of electronic states along the high symmetric ΓKM line. This restricted

one-dimensional analysis of the DRR process rests on the following assumptions: (i) that

a one-dimensional integration along the ΓKM direction captures the essential features

of the DRR process, as found in Ref. [74]; (ii) that some of the graphically determined

double-resonant q vectors, related to forward-scattering processes (connecting points on

the electronic equienergy curves surrounding the K and K′ points in Figs. 6.3(c) and (f)),

vanish by destructive interference, as also found in Ref. [74]. (iii) that, by plotting the

phonon density of states (PDOS) of graphene, for phonons satisfying the DRR process,

one can identify a strong singularity at the phonon q vector involved in the outer process,

and a much smaller PDOS value for the phonon q involved in the inner process [17]. This

is the reason why attention is usually paid solely to the one-dimensional outer process

[17,41,93]. While the analysis in Ref. [74] did consider both outer and inner processes,

and the calculation of the Raman cross section considered all possible resonant and non-

resonant processes, a critical approximation was employed: the matrix elements involved,

related to electron-photon and electron-phonon couplings, were assumed to be constant

and independent of the wavevectors k and q of the electrons and phonons, respectively.

Moreover, recent experiments [94,95] have shown that their results can only be

explained if the inner process is the main responsible for the G′ feature. In both works

[94,95], a comprehensive analysis by combining polarized Raman measurements with an

analysis based on first-principles calculations of the changes in electronic energy bands

and phonon dispersion of a single-layer graphene under homogeneous uniaxial strains is
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presented and the dominant scattering path of the double resonance Raman scattering

process is determined. Yoon et al. [94] and Mohr et al. [95] observed a splitting of the

G′ band with increasing strain and they explained that the splitting, the shift rates, the

polarization effects, and the crystallographic orientation dependence do not solely come

from a movement of the Dirac cones or their deformation, but rather from an orientation-

dependent softening of the involved iTO phonon branch. The large magnitude of the

splitting can only be explained with phonons from the branches between the Γ and K

points (phonons involved in the inner process) that contribute to the double resonant G′

mode.

This state of affairs indicates that some of the conventional wisdom related to the

DRR process in carbon based systems needs to be reevaluated. In the present work, we

analyze our experimental data considering both the outer and the inner process. For each

approach, the SWM parameters are obtained through the analysis of the dependence of

the G′ Raman band with the laser excitation energy EL.

6.2 Experimental results

In order to understand the experimental results obtained in this work, it is important

to build a bridge between experiment and theory. To achieve this, we must find a relation

between the electronic and the phonon dispersions of bilayer graphene. The electronic

dispersion of bilayer graphene can be described in terms of the standard SWM model for

graphite, using a tight-binding model, as described in the Section 2.2.2 using Eq. 2.13 and

Eq. 2.14 [21].

For any of the Pij (i, j = 1, 2) processes, we seek the dependence of the phonon

energy Eph with EL. In the initial step of the DRR process (electron-hole pair creation),

the incident photon is in resonance with the excitation of the electronic state from the

valence to the conduction bands at the ki point. In the following, we drop the vectorial

notation for the k and q vectors, since we are considering only the ΓKM direction. The

laser energy can then be written as:

EL = Eπ⋆
i
(ki)− Eπi

(ki) , (6.1)

which allows us to determine the momentum ki of the excited electron in the process.

The electron is then scattered from a state in the vicinity of the K point to a state in the

vicinity of the K′ point by emitting an iTO phonon with energy

Eij
ph(qij) = Eπ∗

i
(ki)− Eπ∗

j
(k′j) , (6.2)

77



where qij depends on ki and k′j. This equation uniquely determines the momentum k′j

of the scattered electron, provided that Eij
ph(qij) is known. The phonon energy can be

computed, and is directly related to the Raman shift for a specific Pij process, obtained

with a given EL. Physically, the difference between the outer and inner processes lies in

the phonon wavevector qij.

As can be inferred from the geometry in Figs. 6.3(c) and (f), qij = ki + k′j for the

outer process, and qij = −(ki+k
′
j) for the inner process, both measured from the K point.

In both cases, qij has a maximum amplitude of ≈ 2ki. The outer and inner processes have

their vectors ki and k
′
j pointing in opposite directions. Interestingly enough, this means

that calculations for the inner process can be done simply by switching ki into −ki and
k′j into −k′j in Eqs. 2.13 and 2.14 and looking for values of k′j satisfying Eq. 6.2.

In a previous resonance Raman study in bilayer graphene performed in the visi-

ble range by Malard et al. [18], the electronic bands were obtained by considering the

first-neighbor parameters γ0, γ1, γ3, γ4 considering the outer process. A linear phonon

dispersion was used in this previous study [18] to fit the G′ peak frequencies versus EL

data. Fig. 6.4(a) shows the fitting of the data of the present study (data from Fig. 6.2(a)),

fitted with four Lorentzians, considering the linear phonon dispersion and the SWM pa-

rameters used in reference [18]. We can see that this fit fails for the experimental data

in the near-IR region and, in particular, for the data associated with the lower energy

phonon, that involves phonons closer to the K point.

In order to fit the low energy experimental data in Fig. 6.4, we consider a non-linear

relation for the iTO phonon dispersion, given by a second-order polynomial (w(q) =

A + Bq + Cq2) where A, B and C are fitting parameters. Fig. 6.4(b) shows the fit

considering the same phonon dispersion for the symmetric and anti-symmetric phonon

branches, and the γ0, γ1, γ3, γ4 parameters, also considering the outer process as Ref. [18].

Fig. 6.4(c) shows the fit using the same SWM parameters as in Fig.6.4(b) but considering

two distinct phonon dispersions for the symmetric and anti-symmetric branches. As we

can see in Figs. 6.4(b) and (c), the fitting in the low energy range is improved considering

the non-linear dispersion, but different dispersions for the S and AS branches are needed

to obtain a good fit of the experimental data. All fitting parameters of Fig. 6.4 (that

considers the outer process) are shown in Table 6.1.

In the fittings shown in Figs. 6.4(a)-(c), we have considered only the first-neighbor

parameters γ0, γ1, γ3, γ4. In principle, we could also introduce higher-order terms and, in

particular, the in-plane second-neighbor interaction t′, which is expected to be of the same

order of magnitude as the out-of-plane first-neighbor interaction. Fig. 6.4(d) shows the fit
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Figure 6.4: Laser energy dependence of the peaks of the G′ bands, fitted considering the
outer process and three different approximations: (a) linear phonon dispersion and the
SWM parameters γ0, γ1, γ3, γ4 (same approximation as in Ref. [18]); (b) same non-linear
phonon dispersion for the symmetric (S) and anti-symmetric (AS) phonon branches, and
the SWM parameters γ0, γ1, γ3, γ4; (c) non-linear and distinct phonon dispersions for the
S and AS phonon branches, and the same SWM as in (b). (d) Fitting using the same
phonon dispersion as in (c), the first-neighbor SWM parameters γ0, γ1, γ3 and γ4, second-
neighbor in-plane t′ parameter and the ∆ parameter, which represents the difference in
energy of sublattices A and B. All fitting parameters used in approximations (a), (b), (c)
and (d) are shown in Table 6.1.

Table 6.1: Values of the SWM parameters (in units of eV) and the iTO phonon dispersion
parameters (w(q) = A+Bq+Cq2) obtained from the three different fits of the experimental
data shown in Figs. 6.4(a), (b), (c) and (d) and considering outer process.

symmetric anti-symmetric

γ0 γ1 γ3 γ4 ∆ t′ A(meV) B(meVÅ) C(meVÅ
2
) A(meV) B(meVÅ) C(meVÅ

2
)

(a) 2.9 0.30 0.1 0.12 - - 153.7 38.5 - 154.0 38.8 -
(b) 3.0 0.35 0.1 0.15 - - 149.3 69.5 -46.6 149.3 69.5 -46.6
(c) 3.0 0.35 0.1 0.15 - - 146.3 86.9 -70.3 150.5 66.3 -44.8
(d) 3.0 0.35 0.1 0.10 0.01 0.15 146.3 86.9 -70.3 150.5 66.3 -44.8
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of the experimental data considering also the t′ and ∆, which represents the difference in

energy of the sublattices A and B. As we observe in Fig. 6.4(d), the resultant fit is slightly

improved, mainly due to the use of larger number of fitting parameters.

It is important to emphasize that different values of the γ parameters are found when

we include t′ and ∆. Therefore, the numerical values of the tight-binding parameters

obtained from the fit of the experimental data depends on the approximation used to

analyze the data. For the outer process, a good fit can always be obtained for γ0 values

ranging between 2.9 and 3.1 eV. Concerning the γ1 parameter, reasonable fits could only

be obtained for γ1 < 0.35 eV, which is slightly smaller than that usually found in the

literature γ1 ≈ 0.40 eV [24,44,84] from other techniques and calculations. However, the

major discrepancy is in the value of γ3. The best fit is obtained when γ3 ≈ 0.1 eV, and

a reasonable fit cannot be obtained for values of γ3 > 0.15 eV. Once again, this value is

smaller than others found in the graphite literature (γ3 ≈ 0.30 eV [89,96,97]). Also recent

infrared measurements in exfoliated bilayer graphene consider γ3 ≈ 0.30 eV [24,88].

If we consider only nearest neighbor parameters, the best fit is obtained for γ4 ≈ 0.15

eV, which is in close agreement with previous experiments [18,44,84]. However, smaller

values of γ4 provide a good fit when the second-neighbor t′ parameter is included. In fact,

both γ4 and t
′ parameters are associated with the asymmetry between electrons and holes

in bilayer graphene. Finally, reasonable fits can be obtained for different small positive

and negative values of ∆ (|∆| < 0.01eV).

Due to the discrepancies of the values of the SWM parameters found considering

the outer process and the results found in the literature using different experimental tech-

niques and calculations, we reanalyzed the same data of Fig. 6.2(c) but now considering

the inner process. We also have used two distinct non-linear phonon dispersions for the

symmetric and the anti-symmetric phonon branches, since the best fit was obtained when

we consider different dispersions for the two iTO phonon branches of bilayer graphene.

Fig. 6.5 shows the experimental data (dots) and the tight-binding fitting results

(curves) comparing both the outer and the inner processes. Fig. 6.5(a)outer shows the fit

considering the outer process for the DRR scattering. The values obtained for γ0, γ1, γ3,

γ4, ∆, and t′ are shown in Table 6.2(a). Note that, in Fig. 6.5, the fittings considering

the two different DRR scattering processes produce rather different results. In the inner

process case, we cannot fit the data with the same parameters that produce the best fit

for the outer process shown in Fig. 6.5(a)outer. This is shown in Fig. 6.5(a)inner, where

the theoretical curve (obtained using the values of γ1 and γ3 from Table 6.2(a)) differs

considerably from the experimental values. The best fit for the inner process is shown in

80



(a) outer (a) inner

(b) inner (b) outer

Figure 6.5: Laser energy dependence of the G′ band peaks, with four different fittings,
considering: ((a) outer) The outer scattering process with the best SWM parameters
for this case, in Table 6.2(a); ((a) inner) The inner process fitted using the best SWM
parameters for the outer process (Table 6.2(a)). ((b) inner) The inner scattering process
with the best SWM parameters for this case, shown in Table 6.2(b). ((b) outer) The outer
process fitted using the best SWM parameters for the inner process (Table 6.2(b)).

Table 6.2: Best values of the SWM parameters (in units of eV) obtained for (a) the outer
and (b) the inner scattering processes.

γ0 γ1 γ3 γ4 ∆ t′

(a) 3.0 0.35 0.10 0.10 0.01 0.15
(b) 3.0 0.40 0.30 0.10 0.01 0.15

Fig. 6.5(b)inner and gives values of γ1 = 0.40 eV and γ3 = 0.30 eV, the same values found

in the literature by other techniques, and with the same values of γ0, γ4, ∆ and t′ of the

outer process. In a similar manner, the outer process cannot be fitted using the best fit

parameters for the inner process case: deviations from the experimental results are again

observed, as shown in Fig. 6.5(b)outer.

The above discussion shows that the inner DRR process gives tight-biding parame-

ters in better agreement with those obtained by other experimental techniques. In princi-

ple, there is a large number of phonon wavevectors that satisfy the DRR process, connect-
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Table 6.3: Best values of the iTO phonon dispersion parameters (w(q) = A+ Bq + Cq2)
obtained for (a) the outer and (b) the inner scattering processes.

symmetric anti-symmetric
A B C A B C

(meV) (meVÅ) (meVÅ2) (meV) (meVÅ) (meVÅ2)

(a) 146.3 86.9 -70.3 150.5 66.3 -44.8
(b) 150.1 -65.9 -46.9 152.0 -54.4 -34.0

ing electronic states in equienergy contours around the K and K′ points. The calculation

of the DRR profile must take into account all these possible DRR phonon wavevectors,

by doing the full two-dimensional integration with the correct q wavevector dependence

of the associated electron-phonon matrix elements. Some interference effects also appear

when the Raman expression is squared out in order to calculate the Raman intensity [73].

Until this work was done, to our knowledge, there was only one full calculation of the

shape of the DRR bands that takes into account the q wavevector dependence of the

electron-phonon matrix elements, and this calculation predicts an asymmetric shape for

the G′ band in monolayer graphene [73]. However, the experimental G′ band obtained

with visible photons are nicely fitted by a single Lorentzian line. This shows that some

ingredients were missing in order to fully explain the DRR process in graphene systems.

Later, a more precise calculation was performed by Venezuela et al. [98] in which the

intensity and line shape of defect-induced and two-phonon bands were well described

quantitatively. In that work [98], contrary to the previous findings in literature that

the phonons which mostly contribute to the G′ band are outer phonons, Venezuela et

al. showed that, in fact, the inner phonons are the most important for the G′ band in

graphene, in accordance with our work. This finding stems from the complex behavior of

the scattering matrix elements in graphene.

The results obtained in this work could be the starting point to investigate other

systems which constitute a hot subject in graphene physics, such as the inner DRR process

in strained or twisted bilayer graphene. In the former case, bilayer graphene is grown on

an insulating material (such as SiO2), which imposes a strain on the graphene system.

This setup has been considered as a building block for microelectronics [99–101]. In the

latter case, the stacking of the two layers is different from the usual AB (Bernal) stacking.

In both cases, there is a significant modification in the electronic and optical properties of

the systems, which directly influences the double resonance Raman bands. This produces
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Figure 6.6: Phonon dispersion relation of bilayer graphene near the K point of the sym-
metric (blue points) and the anti-symmetric (red points) phonon branches obtained from
the double resonance Raman spectroscopy. The black and blue solid curves correspond
respectively to the phonon dispersion near the Dirac point of the iTO phonon branch of
monolayer graphene calculated using tight-binding by Popov et al. [27] and using DFT
by Lazzeri et al. [102] within the GW approximation.

different G′ peaks that can be theoretically studied by looking at the Pij processes.

Another interesting result that we can obtain from this work is about the distinct

dispersions of the symmetric and anti-symmetric phonon branches. Table 6.3(b) shows the

parameters obtained for the S and AS phonon branches. Note that the S phonon branch

is more sensitive to the change of scattering process than the AS mode, i.e., when going

from the outer process to the inner process. We observe that the quadratic coefficients C

assume negative values, showing that the slope of the phonon dispersion increases with

decreasing q values. This is direct evidence of the Kohn anomaly for the iTO phonon

branches, which are expected to drop discontinuously at the K point.

The experimental data shown in Fig. 6.5 can be directly plotted in a phonon energy

dispersion relation (ωph versus q plot) [17]. Fig. 6.6 shows the phonon dispersion of the

symmetric (blue points) and the anti-symmetric (red points) phonon branches obtained

from the DRR results. Fig. 6.6 also shows the phonon dispersion near the Dirac point of

the iTO phonon branch of monolayer graphene calculated using the tight-binding approx-

imation by Popov et al. [27] (black solid curve) and using DFT by Lazzeri et al. [102] (blue

solid curve) within the GW approximation, where electron-electron interactions are taken

into account more precisely. It is interesting to see that the theoretical phonon dispersion
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calculated by tight-binding is in better agreement with the experimental data for higher

phonon energies. However, this model fails to describe the data for lower phonon ener-

gies, which are in good agreement with the calculations within the GW approximation.

This result shows the importance of considering electron-electron interactions in order to

correctly describe the Kohn anomaly near the K point of graphene.

Another interesting observation is that the Kohn anomaly is stronger for the S

phonon branch, as shown in Fig. 6.6. This result is in agreement with the calculation

performed by T. Ando [33], which predicts a stronger phonon renormalization for the

symmetric phonons, due to distinct selection rules for interaction of S and AS phonons

with intra-valley and inter-valley electron-hole pairs.

6.3 Summary

In summary, the dispersion of electrons and phonons of bilayer graphene was in-

vestigated by performing a resonance Raman study of the the G′ Raman band, using

laser energies from the visible to the near-IR range. The electronic structure was ana-

lyzed within the tight-binding approximation and within the Slonczewski-Weiss-McClure

(SWM) parametrization [22,23] considering both the outer and the inner double reso-

nance Raman (DRR) process. Considering the outer process, our values for γ1 and γ3

are lower than the values obtained by other experimental techniques and calculations in

the literature. On the other hand, when considering the inner process, the values for all

the SWM parameters are the same of those found in the literature, strongly suggesting

that the main contribution for the G′ band comes from the inner DRR process. Also,

we have measured the phonon dispersion of the iTO branches near the it K point, and it

was observed two distinct dispersions for the iTO phonon branches. The softening of the

phonons reveals the K point Kohn anomaly in bilayer graphene, and also shows that the

phonon renormalization is stronger for the symmetric phonon branch. Our results agree

with the phonon dispersion calculation [102] that takes into account electron-electron in-

teraction in graphene systems, which plays a major role to correctly describe the Kohn

anomaly near the K point. The work about the outer process was published in Physical

Review B (Rapid Communications) 80, 241414 (2009), and the study of the inner process

was published in Carbon 49, 1511 (2011).
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Chapter 7

Using the G′ Raman Cross-Section
To Understand the Phonon
Dynamics in Bilayer Graphene
Systems

Graphene systems are known to be excellent electrical conductors with mean free

paths at room temperature usually larger than one micron [3,9,103]. They have there-

fore attracted strong interest for possible applications in nanoscale electronics [104,105].

Graphene is also a great thermal conductor and its thermal conductivity has been re-

ported to reach around 2,000Wm−1K−1 at room temperature [106–108]. It is thus im-

portant to consider temperature T dependent effects because the high performance of

graphene can be compromised due to T -dependent changes in its properties. Some rele-

vant works [108,109] have been done on monolayer graphene (1LG) and bilayer graphene

(2LG) regarding T -dependent effects. In those works [108,109], Raman spectroscopy was

used to study the temperature dependence of the frequency ωG and line width γG of the

optical E2g phonons at the Γ point of the Brillouin zone (BZ), known as the G band.

The A′
1 mode at the K point (known as the G′ or 2D band) was also studied to give

information about the thermal properties of these systems [108,109]. In particular, Yoon

et al. [109] showed that the thermal expansion coefficient of 1GL strongly depends on T

and is negative at least in the temperature range of their measurements (200<T<400K).

Also, it has been shown that the relative Raman cross-sections σ of the four G′

peaks depend on the laser excitation energy EL [92]. The four peaks are related to

different electron k and phonon q wavevectors. Since the electron-phonon interaction

matrix elements depend on the electron wavevector, we expect that the k dependence of
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the matrix element can be examined by experiment through the combination of power,

temperature and laser wavelength dependencies, which is the motivation of the present

work. The σ is obtained through the integrated area (IA) under the Raman peak and

should not depend on its broadening. The difference of the σ between the four G′ peaks

[41] is responsible for the special lineshape of the G′ band of AB stacked 2LG, which is

usually used to identify the 2LG regions within typical samples by Raman spectroscopy

(see Sectio, 3.3) [41]. Thus, it is very important to understand all the processes that give

rise to the G′ band as well as their dependence on temperature T and laser energy EL.

In this chapter, we use Raman spectroscopy to study both the EL-dependent and the

T -dependent effects in AB Bernal stacked 2LG and we use the relative IA of the four

peaks of the G′ band to understand the electron inelastic scattering processes in bilayer

systems. In particular, we show that the dependence of the IA of the four peaks on both

EL and laser power gives us important information about the electron-phonon (el-ph)

interaction and the relaxation time τ of the photo-excited electrons.

7.1 Thermalization effects by emission of low-energy

phonons in carbon-systems

It is known that, in graphite, the dynamics of photo-excited carriers are dominated

by both electron-electron (el-el) and electron-phonon (el-ph) scattering. After optical

excitation, the electrons are thermalized by el-ph scattering, in such a way that the

electron and hole distributions relax to their respective band extrema and this relaxation

process takes about 1 ps [110,111]. These electron relaxation processes cause a significant

reduction of the ballistic conductance of graphene and carbon nanotubes at bias potentials

larger than ∼ 0.2V, severely limiting interconnect performance [19,112]. A microscopic

characterization of phonon decays is thus a key step in improving the understanding of

the properties of these materials, whereas engineering individual decay channels would

allow to control energy relaxation and ultimately performance.

In 2004, Jiang et al. [63] performed the el-ph interaction calculations in graphite

using up to 4th nearest-neighbor sites within the tight-binding framework. Also, they

[63] calculated the relaxation time of photo-excited electrons over a wide energy region.

Fig. 7.1 shows the results found by Jiang et al. [63], the emission and absorption relaxation

times of a photo-excited electron (τe and τa) as a function of energy. For an electron to

absorb a phonon, there should exist a phonon in the solid. However, an electron can emit

a phonon even though there is no phonon in the solid. Therefore, generally the phonon
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Figure 7.1: (a) Electron relaxation time dependence on the initial electron state energy.
Black and red lines are for phonon emission τe and absorption τa, respectively. Inverse
of the relaxation time for each phonon branch for (b) phonon absorption and (c) phonon
emission. In (b) the values for the optical branches have been amplified by a factor of 100
and the values for the tangential acoustic branches have been amplified by a factor of 10.
The results are for γ0 = 2, 9 eV and T = 300K. Figure adapted from Ref. [63].

emission process has more phonons and the electron relaxes faster by phonon emission

than by phonon absorption, as can be seen in Fig 7.1(a). The el-ph relaxation time is

determined by the el-ph coupling strength, and by the electron and phonon dispersion

relations. The dip in Fig. 7.1(a) reflects the van Hove singularity of the electron density

of states at the M points in the Brillouin zone. Figs. 7.1(b) and (c) give the inverse of the

relaxation time for each of the phonon branches considered in the work of Ref. [63], where

we can see that the main responsible for the electron relaxation process is the emission of

acoustic phonons, due to its small energy when compared to the optical phonons.

The photo-excited electron relaxation mechanism was studied experimentally in

graphite and in carbon nanotubes [113,114] using time-resolved and photoluminescence

experiments. But this kind of electron-phonon interaction was not reported in graphene

systems until now. What we will show in this work is that, due to the special electronic

structure of bilayer graphene, we can use the Raman spectroscopy to study electron

relaxation processes, through the dependence of the Raman cross-section of the G′ feature

on laser energy and temperature.

7.2 Photo-excited electron relaxation in bilayer graphene

In this section we explain how to obtain information of the phonon dynamics in

bilayer graphene using Raman spectroscopy. The Raman measurements were taken in

87



Figure 7.2: (a) and (b) Double resonance Raman processes which give rise to the four
peaks in the G′ band in AB stacked bilayer graphene. (c) The G′ band measured with the
532 nm laser line and the four peaks corresponding to each process: P11 (black line), P12

(red line), P21 (green line) and P22 (blue line), with the relative magnitude of the phonon
wavevectors q shown. (d) Density of electronic states of 2LG for the valence bands π1
and π2 (black curves) and for the conduction bands π⋆

1 (red curve) and π⋆
2 (blue curve).

the back scattering configuration using four different laser excitation energies: 2.18 eV

(570 nm) dye laser, 2.33 eV (532 nm) Nd:YAG laser, 2.41 eV and 2.54 eV (514 and 488 nm,

respectively) Ar laser. For each EL, we changed the laser power over the 0.5 to 12mW

range. The sample only was exposed to the laser beam, whose spot size was ∼1µm with

a 100× objective, during the acquisition time (2 seconds) in order to avoid damage to the

graphene flake. In this laser power range, no D band was observed in the Raman spectra,

indicating that no defects were introduced by the laser light exposure. All the Raman

features presented in the measured spectra were fitted with four Lorentzian curves.

The process which gives rise to the G′ band in graphene is an intervalley double

resonance Raman (DRR) process involving two phonons from the in-plane transverse

optical (iTO, q ≈ 2k) phonon branches [39,74]. In the case of 2LG with the Bernal AB

layer stacking, the electronic structure close to the K point has two valence bands (π1

and π2) and two conduction bands (π⋆
1 and π⋆

2). In a general DRR Pij process for 2LG
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Figure 7.3: The measured Raman integrated area IA of the four peaks that compose
the G′ band of bilayer graphene as a function of the laser power for the (a) 570 nm, (b)
532 nm (c) 514 nm and (d) 488 nm incident laser lines. The black squares correspond to
the P11 processes, the red dots to the P12, the green up and blue down triangles to the
P21 and P22, respectively. The open circles in the insets correspond to the total IA of the
G′ band. The solid lines are guide for the eyes.

(Figs. 7.2(a) and (b)), one electron is resonantly and vertically excited from the valence

band πi (i = 1, 2) to the conduction band π⋆
i by absorbing a photon with energy EL. The

electron is then resonantly scattered by a phonon with wavevector q to the π⋆
j (j=1,2)

band of an inequivalent K′ point of the BZ. Finally, the electron is scattered back by

another phonon and recombines with the hole, thereby emitting a photon. As we have

shown in Chapter 6, the main contribution to the G′ peak occurs when the electron is

scattered from the inside of the electronic dispersion (q < K) [75,94,95,98], as we show in

Fig. 7.2. Since there are two possible electronic transitions (πi to π
⋆
i for i = 1, 2), there are

four possible electron scattering processes, and they are illustrated in Figs. 7.2(a) and (b).

The iTO phonons from the symmetric (S) phonon branch are involved in the processes P11

and P22 (Fig. 7.2(a)), while the anti-symmetric (AS) ones are involved in the P12 and P21

processes (Fig. 7.2(b)). [28] Since the electronic states are shifted from each other because

of an interlayer interaction energy [89], the wavevectors of the phonons that satisfy the

DRR condition are different, and consequently, the phonons have a small energy difference

from one another. In the case of the G′ band, the larger the q wavevector, the higher

is its phonon energy. Thus, considering qij as the wavevector of the phonon involved

in the process Pij, we find that q11 < q12 < q21 < q22. Then, the G′ band of 2LG is

composed of four peaks, as we can see in Fig. 7.2(c), where we show the fitting based on

four Lorentzians and their corresponding scattering processes.

The power dependence of the IA of the four peaks of the G′ band for the 570 nm,
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532 nm, 514 nm and 488 nm laser excitation lines is shown in Figs. 7.3 (a), (b), (c) and (d),

respectively. For clarity, the colors and the symbols in the legends of Figs. 7.2 and 7.3 were

kept the same for each process. The black squares in Fig. 7.3 correspond to the P11 process,

the red dots to P12, the green up and blue down triangles to P21 and P22, respectively.

The open dots in the insets correspond to the total IA of the G′ band. Disregarding the

electron-phonon relaxations, the IA in a Raman process is proportional to its Raman cross-

section and the cross-section is proportional to Hii× Qij, where the matrix element Hii

gives the electron-photon interaction that is basically associated to the electronic density

of states (DOS), while the matrix element Qij gives the electron-phonon interaction. In

other words, the electron which makes a transition between the electronic bands πi−π⋆
i for

i=1,2, is scattered by a phonon, which subsequently connects that electron to electronic

states π⋆
i to π⋆

j for i,j=1,2. From Fig 7.2(d), we can see that H11 >H22, i.e., the DOS for

the π⋆
1 band is larger than that for the π⋆

2 band. Also, it is known that the matrix elements

Qij are larger for the anti-symmetric phonons than for the symmetric ones [63,115]. Then,

in a first approximation, the Raman cross-sections σij is expected to obey σ22 < σ11 <

σ21 < σ12, leading to the corresponding IA of the peaks P22 < P11 < P21 < P12. However,

this is not the dependence found in Fig. 7.3. Moreover, Fig. 7.3 shows two behaviors: one

which is EL-dependent (here we are considering qualitative behavior) and another which

is T -dependent, as we explain below.

Regarding the EL dependence of the IA, one can see in Fig. 7.3 that the P11 peak

is weaker in intensity than the other peaks, including the P22 peak. Also, the P11 IA

does not change appreciably for the different EL values, which is consistent with the P11

process being determined by a single relaxation time. On the other hand, we clearly see

that the IA of the other three processes are changing for each EL and they are becoming

very close to each other as the incident EL increases. This is an important point that was

never addressed before and we can relate this behavior to the el-ph coupling mechanism

and to the phonon relaxation times.

First, one must pay attention to whether an increase in the laser power PL is increas-

ing the temperature and changing the force constants of the material or if the increasing

laser power is just increasing the phonon population in the system. The change of the

phonon frequency with temperature is a manifestation of the anharmonic terms in the

lattice potential energy, which is determined by the anharmonic potential constants, the

phonon occupation number, the phonon-phonon interactions and the thermal expansion of

the crystal [112]. Figs. 7.4(a) and (b) show, respectively, the frequency ωG and the width

decay γG of the Raman G band as a function of the laser power PL for the 488 nm (blue
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Figure 7.4: (a) The frequency ωG with the respective slope for each laser line and (b) the
decay width ΓG of the G band of bilayer graphene as a function of the laser power for the
488 nm (blue stars), 514 nm (dark cyan diamonds), 532 nm (green triangles) and 570 nm
(red squares) laser lines.

stars), 514 nm (dark cyan diamonds), 532 nm (green triangles) and 570 nm (red squares)

laser lines. For all EL, it is possible to observe a softening of the ωG and a small broaden-

ing of the γG as a function of the PL. According to Bonini et al. [112], these results clearly

show that the temperature of our bilayer system is increasing with increasing PL and we

are seeing the combined result of the thermal expansion of the crystal and also of the

phonon-phonon scattering [112]. Based on the literature [108,116], for experiments using

samples prepared under similar conditions as the samples used in this work, a downshift

of -0.0154 cm−1/oC is expected for the G band of bilayer graphene. From Fig. 7.4(a), one

can see a ∼ 7 cm−1 downshift of the G band for the 514 nm and 532 nm laser lines, which

corresponds to an increase of ∼ 455 oC in temperature. For the 570 nm laser line, we find

a redshift of ∼ 6 cm−1, corresponding to a increasing in the temperature of ∼ 390 oC,

while for the 488 nm laser line, we find a redshift of ∼ 5 cm−1 indicating a increasing in

the temperature of ∼ 325 oC. It is important to comment that the variation of the tem-

peratures with EL is an expected occurrence since the thermal response of both bilayer

graphene and also the SiO2 will be somewhat different for different EL [117].

The G′ band comes from the scattering of an electron by two iTO phonons from

one K point to another inequivalent K′ point in the BZ [39,74]. It is worth noting that all

the analysis made for the electron scattering and relaxation in the conduction band can

be analyzed in an similar way for the scattering of a hole in the valence band. In the time

between when the electron is photo-excited and the electron is scattered by the first iTO

phonon (an intervalley EVij process) [63,118], the electron can first relax from π⋆
2 to π⋆

1
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(or from π⋆
1 to π⋆

2) by the emission or absorption of a phonon [63,118] and this relaxation

can also involve intravalley AV or intervalley EV processes (see Fig. 7.5(a)). In the range

of the laser excitation energies used in this work (2.18-2.54 eV), the electron relaxation

time is faster by the emission of a phonon (around 20 fs) than by the absorption of a

phonon (around 200 fs), as can be seen in Fig 7.1 [63,118]. Moreover, the electrons relax

from 2 to 3 times faster by an emission of an acoustic phonon than by an optical phonon

emission [63,118]. Thus, the main channel of relaxation for the excited electrons is by the

emission of a low-energy acoustic phonon. From the Fermi golden rule, it is known that the

transition rate is proportional to the density of states (DOS). We can see from Fig. 7.2(d)

that the electronic DOS of π⋆
1 (red curve) is larger than the DOS of π⋆

2 (blue curve) in the

range of EL used in this experiment. In this framework, it is important to note that both

intra-band (π⋆
i to π⋆

i for i=1,2) and inter-band (π⋆
1 to π⋆

2 and π⋆
2 to π⋆

1) relaxations are

allowed to occur. In particular, because π⋆
1 has a higher DOS in comparison to π⋆

2, then

π⋆
1 loses more population than π⋆

2 during the relaxation process. To illustrate what this

means, consider that π⋆
1 has 100 electrons and π⋆

2 has 50 electrons. Next, by relaxation

mechanisms, consider that both the π⋆
1 and π⋆

2 will give 10% of their population to one

another. In the end, π⋆
1 will have 95 electrons while π⋆

2 will have 55, which means that π⋆
1

lost more electrons (10) than π⋆
2 lost (5). Since a low decay rate from π⋆

2 to π
⋆
1 is expected,

the red arrows in Fig. 7.5 denote the net transition from π⋆
1 to π⋆

2. After being scattered

by the first iTO phonon, the electron can relax by emitting a phonon at the K′ point in a

similar way. When these decays happen, the rate of the scattering that gives rise to the

G′ band for some processes decreases in IA and contributes to the IA of another process

at the same time. For example, in the process P11 the electron can decay from the π⋆
1

to the π⋆
2 state at the K point before the scattering by the iTO phonon (see Figs. 7.5(b)

and (f)). In this case, this decay contributes to the increase of the P21 and P22 processes,

while the IA of the P11 peak decreases. A similar analysis can be made after the electron

is scattered to the K′ point by the first iTO K point phonon. At the K′ point, the electron

decays from the π⋆
1 to the π⋆

2 band, in which the IA of the P11 peak decreases again and

the IA of the P12 and P22 peaks increases. A decay effect also occurs for the other three

processes, P12, P21 and P22, and these processes are illustrated in Figs. 7.5(c), (d), and

(e), respectively. In the figures, the solid lines represent the original scattering of the

iTO phonon process and the dashed lines represent the new possible scattering processes

for the electron that can occur after the decay. When the electron at π⋆
1 is relaxed to

π⋆
2, the hole at π1 is required to be relaxed to π2 so as to recombine with the electron.

Because of all the decays and competitions between one process and another, there is a
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Figure 7.5: (a) All the possible electron relaxation processes by the emission of a phonon
(the same processes can also occur by the absorption of a phonon). The decay can be by
an intravalley (AV) or intervalley (EV) process (see text). The possible electron decay (red
arrows) for processes (b) P11, (c) P12, (d) P21 and (e) P22. The solid lines represent the
original scattering events for that process and the dashed lines represent the new possible
scattering processes for the electron after the decay. In this sense, from the most to the
less favored process by the electron decay we have P22 >P21 ∼P12 >P11. (f) Schematic
view of the P11 process relaxation into the P21 and P22 processes.

large difference in the IA of the four G′ components Pij.

In the EL range used in this work, Jiang et al. [63] showed that the electron relax-

ation time in graphite by phonon emission becomes shorter when the energy is increased

(∼ 10 fs faster for 2.54 eV than for 2.18 eV). This happens because the density of the final

states for a given initial state after phonon emission is higher in graphite for higher energy

(or momentum) phonons. Then, we expect that this situation should be the same for the

case of 2LG. In this latter case, for higher EL, the relaxation rate increases, consequently

increasing the contribution of all the processes to the P22 process. This is the reason why

the IA of the P22 process gets closer to the IA of P12 and P21 for higher EL. According to

Jiang et al. [63], this effect is a maximum when the energy of the electronic state is equal

to the hopping energy (γ0 ≈ 2.9 eV) between the nearest neighbor carbon atoms. For

energies higher than 3 eV, the relaxation time increases and we expect the IA of the P22

process to again become smaller than that for the P12 and P21 processes. As seen in the

insets of Figs. 7.3(a)-(d), the total IA monotonically increases for each EL. This means

that the increase or decrease of the four peaks is a continuous process and comes from the

relaxation within the Pij transitions. For 448 nm laser excitation, the mutual relaxation

93



for P12, P21 and P22 is sufficiently fast so that the populations of the photo-excited carriers

rapidly reach thermal equilibrium. The reason why the P11 is relatively small is that the

probability of the relaxation process to π⋆
1 is small and there is almost no flow into the

P11 process from the other processes.

Another interesting point to be noted is regarding the T dependence, where one can

see an anomalous behavior of the IA of the four peaks of the G′ band for the 532 nm laser

line. From Fig. 7.3(b), there is a saturation of the process P12 and a slight increase in the

slope of the P21 and P22 processes as the laser power increases. Different laser lines excite

the electron to a different point of the conduction band. In the case of bilayer graphene,

the conduction π⋆
1 band gets close to the π⋆

2 band for higher energies due to γ3 and γ4

interlayer interactions [18,22,23,44].

Thus this extra resonance mechanism depends on laser energy. For the 532 nm

laser line, the energy difference likely matches the energy of the ZO′ phonon (breathing

mode between the two layers) whose energy is about 10meV. [119] In this resonance

regime, the rate of emission of phonons by the relaxation of the electrons from the π⋆
1

to the π⋆
2 band becomes very high. For a laser with longer (smaller) wavelength, the

difference in energy between the π⋆
1 and π⋆

2 bands is higher (lower) than the energy of

the ZO′ phonon. The additional relaxation path by the ZO′ phonon might suppress

the saturation of the absorption which is the reason why the total Raman IA for the

514nm line (inset of Fig. 7.3(c)) is acceleratingly increased with increasing laser power.

For the other cases of Fig. 7.3, however, the total Raman IA monotonically increases with

a slightly saturating behavior. In the case of Fig. 7.5(c), the P12 process decreases followed

by a larger contribution to the P21 and P22 processes. It is also worth mentioning that

this resonance condition also depends on the laser power. For lower laser power, this

resonance is not observed. Since there is no saturation in the optical absorption, the

relative differences between P12 and P21 with increasing power are mostly due to phonon-

phonon processes that become more important with increasing temperature. Since the

contribution of the process P11 to the other processes is already large, even out of the

resonance regime, we cannot see any appreciable change in the IA of the P11 peak with

increasing laser power. For the 514 nm laser line, this saturation of the P12 process

persists, but this saturation is weaker than that for the 532 nm laser line, indicating that

the relaxation process is getting out of resonance. This is a very important result for the

applications of bilayer graphene in nano devices, since most electronic systems show an

increase in T when in use. Especially for photocurrent measurements, it has been shown

that the maximum enhancement coefficient of the electric field was found to occur for
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incident light around the green region [120,121], in agreement with our result.

7.3 Summary

In summary, we made a detailed analysis of the integrated area (IA) under the four

peaks (P11, P12, P21 and P22) that compose the G′ Raman band of bilayer graphene under

various laser excitation conditions. We show that their IA depends on the temperature and

on the excitation laser energy. Due to the strong electron-phonon coupling and the fast

electron thermalization, some processes experience a decrease in their scattering rate due

to electron relaxation through the conduction band by low-energy phonon emission. This

decreased scattering rate contributes to the increase of the rate of another Pij scattering

process. Our analysis of the experiment is in agreement with theoretical calculations

about the phonon decay process, which predicts that the A′
1 mode at the K point (the

mode with the strongest el-ph coupling in graphene and the one that will be overpopulated

by the optical phonons) has a large decay channel toward the low-energy acoustic phonon

modes [112]. Also, due to a resonance condition which increases the electron relaxation

rate, we found an anomalous behavior for the IA of the G′ peaks around the green 532 nm

laser line that can be observed by increasing the temperature. This is an important

characteristic of the electron scattering in bilayer graphene and should be taken into

account in future electronics applications of this material. This work is published in

Nano Letters 12, 2883 (2012).
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Chapter 8

Conclusions

In this thesis we study the origin and the consequences of the electron-phonon cou-

pling in graphene systems. With the Raman spectroscopy together with gate dependent

measurements in graphene devices we are able to get information on the electron-phonon

interaction and how tuning the Fermi level position affects this coupling. In Chapters 2

and 3 we make an overview of the electronic and vibrational structure of monolayer

graphene, as well as the theory behind the Raman scattering and the double resonance

Raman process. Predictions of some expected electron-phonon effects such as the Kohn

anomaly are also described in Chapter 2. A detailed explanation of the fabrication of

graphene devices for both back gate and top gate measurements is discussed in the Chap-

ter 4 and the samples produced by the techniques described there are used for the exper-

iments in the following chapters.

The electron-phonon (el-ph) interaction is very strong in graphene, and some special

phonons, specially those responsible for the main Raman features, can create an electron-

hole pair. This process renormalizes the phonon energy giving rise to the Kohn anomaly.

The Kohn anomaly was very well studied theoretically and experimentally for the zone-

center (Γ point) q = 0 phonon branch, which can be appreciated by observing the G band

Raman feature evolution in graphene as the Fermi level energy (EF ) is varied [19,32,52].

In the case of the zone-center q = 0 phonon, the renormalization is suppressed when the

Fermi level position is changed by an amount larger than half of the phonon energy due

to the Pauli exclusion principle, and a hardening of the phonon frequency followed by

a line width narrowing is observed. In this thesis we study the phonon renormalization

in monolayer graphene for the q ̸= 0 phonons around the Γ point (intravalley processes)

and around the K point (intervalley processes) of the Brillouin zone. For the q ≈ 2k

phonons we observe a softening of the phonon frequency and a broadening of the decay
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width, the opposite behavior observed for the q = 0 phonons. For the q = 0 (measured

from the K point) intervalley phonon, the phonon renormalization was negligible. A

phenomenological model based on the density of states of electron and phonons was given

to explain the behavior of the q ̸= 0 phonon renormalization.

These new results launch gate-modulated Raman as a new approach to identify and

assign phonon modes in solid state materials. We then applied gate-modulated Raman,

together with laser-dependent Raman measurements to study the G⋆ band (∼ 2450 cm−1)

and five combination modes in the spectral range of 1700 − 2300 cm−1 in monolayer

graphene. We showed that the G⋆ mode is an asymmetric peak composed by two peaks,

the iTO+LA combination mode, which is an intervalley q ≈ 2k process with a strong

phonon renormalization, and the 2iTO overtone mode, which is an intervalley q = 0

(measured from the K point) process with a weak phonon renormalization. For the five

combination modes, we have assigned the first three peaks, respectively, to the intravalley

combination modes LO+iTA, iTO+LA and LO+LA around the Γ point of the Brillouin

zone and peaks 4 and 5 to the intervalley oTO+iTO (KΓ direction) and iTO+iTA (KM

direction) combination modes around the K point of the Brillouin zone, respectively. The

el-ph dependencies of the peaks frequency and decay width on gate voltage support our

assignments when compared to the assignments in the current literature [17,67,68,71].

We believe that this technique will certainly contribute to the understanding of more

complex structures such as few-layer graphene, their stacking order relations as well as

how these stacking orders influence the many-body interactions in the system. Moreover,

the techniques reported here can become a key strategy to learn and understand a whole

class of new layered 2D-materials, such as molybdenum sulfide (MoS2), hydroxides and

oxides in general, now emerging in the scientific community.

For bilayer graphene, we shown the mixing of the optical phonon modes due to the

asymmetry between the two layers. By applying a top gate voltage, charge carries are

induced in the top layer of the bilayer graphene that lower the symmetry of the system

and then, two peaks are observed in the G band of the Raman spectrum. By monitoring

the frequency, the width and the relative intensity of the two peaks of the G band and

comparing our experimental results with theoretical calculations made by Gava et al. [82],

we could probe distinct electron-phonon couplings in bilayer graphene and estimate the

amount of unintentional doping that comes from the environment.

In the second part of this thesis, we probed the electronic and vibrational structure

of bilayer graphene by analyzing the G′ band measured with laser excitation energies in

the visible and near-infrared region (1.33-2.81 eV). Within the Slonczewski-Weiss-McClure
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(SWM) parametrization [22,23], we can adjust the phonon dispersion and obtain the γ0,

γ1,γ3 ,γ4, ∆ and t′ hopping parameters considering both the outer and the inner double

resonance Raman processes, as well as the phonon dispersion for the symmetric and anti-

symmetric iTO phonon branches. By comparing our SWM hopping parameters with those

obtained in the literature by other experimental techniques and calculations, we showed

that the inner double resonance process is the main responsible for the origin of the G′

band in bilayer graphene.

Finally, by the study of the dependence of the relative intensity of the four peaks of

the G′ band of bilayer graphene on laser energy and laser power, we could have information

about the phonon dynamics in bilayer graphene. We showed that, due to the strong

electron-phonon coupling and the fast electron thermalization, some processes experience

a decrease in their scattering rate due to electron relaxation through the conduction band

by low-energy phonon emission. This decreased scattering rate contributes to the increase

of the rate of another scattering process.

This work shows how important the electron-phonon interactions are in solid state

materials. The well understanding of such interactions is essential for the correct appli-

cation of the material in technological devices. We show that the Raman spectroscopy

is a powerful technique to materials characterization and a wealth of information can be

obtained by the properly analysis of the Raman spectra.
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Appendix B

Characters tables

In this Appendix, the character tables for all points inside the first Brillouin zone of

graphene will be given, as well as the base function, the character of equivalence χeq and

the atom equivalence representation Γeq for each table. With Γeq is possible to calculate

the representations for electrons and vibrations for each point in the Brillouin zone, as

done in Chapter 2.2 and 2.3 [122].
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Table B.1: Character table for the Γ point.
D6h E C2 2C3 2C6 3C ′

2 3C ′′
2 i σh 2S6 2S3 3σd 3σv

Γ+
1 1 1 1 1 1 1 1 1 1 1 1 1 x2 + y2,z2

Γ+
2 1 1 1 1 -1 -1 1 1 1 1 -1 -1

Γ+
3 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

Γ+
4 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1

Γ+
5 2 -2 -1 1 0 0 2 -2 -1 1 0 0 (xz, yz)

Γ+
6 2 2 -1 -1 0 0 2 2 -1 -1 0 0 (x2 − y2, xy)

Γ−
1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

Γ−
2 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 z

Γ−
3 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1

Γ−
4 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1

Γ−
5 2 -2 -1 1 0 0 -2 2 1 -1 0 0 (x, y)

Γ−
6 2 2 -1 -1 0 0 -2 -2 1 1 0 0

χeq 2 0 2 0 0 2 0 2 0 2 2 0 Γeq = Γ+
1 + Γ−

4

Table B.2: Character table for the K (K′) point.
D3h E 2C3 3C ′

2 σh 2S3 3σv

K+
1 1 1 1 1 1 1 x2 + y2,z2

K+
2 1 1 -1 1 1 -1

K+
3 2 -1 0 2 -1 0 (x, y),(x2 − y2, xy)

K−
1 1 1 1 -1 -1 -1

K−
2 1 1 -1 -1 -1 1 z

K−
3 2 -1 0 -2 1 0

χeq 2 -1 0 2 -1 0 Γeq = K+
3

Table B.3: Character table for the M point.
D2h E C2 C ′

2 C ′′
2 i σh σd σv

M+
1 1 1 1 1 1 1 1 1 x2, y2, z2

M+
2 1 1 -1 -1 1 1 -1 -1 xy

M+
3 1 -1 1 -1 1 -1 1 -1 xz

M+
4 1 -1 -1 1 1 -1 -1 1 yz

M−
1 1 1 1 1 -1 -1 -1 -1

M−
2 1 1 -1 -1 -1 -1 1 1 z

M−
3 1 -1 1 -1 -1 1 -1 1 y

M−
4 1 -1 -1 1 -1 1 1 -1 x

χeq 2 0 0 2 0 2 2 0 Γeq = M+
1 +M−

4
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Table B.4: Character table for the T (T′) point.
C2v E C ′

2 σh σv

T1 1 1 1 1 y, x2, y2, z2

T2 1 1 -1 -1 xz
T3 1 -1 1 -1 x,xy
T4 1 -1 -1 1 z, yz
χeq 2 0 2 0 Γeq = T1 + T3

Table B.5: Character table for the Σ point.
C2v E C ′

2 σh σv

Σ1 1 1 1 1 x, x2, y2, z2

Σ2 1 1 -1 -1 zy
Σ3 1 -1 1 -1 y,xy
Σ4 1 -1 -1 1 z, zx
χeq 2 2 2 2 Γeq = 2Σ1

Table B.6: Character table for the u point.
C1h E σh

u+ 1 1 x, y, x2, y2, z2,xy
u− 1 -1 z, zy, zx
χeq 2 2 Γeq = 2u+
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