REFERÊNCIAS BIBLIOGRÁFICAS

DAWSON, S. et al. Genetic variation at the plasminogen activator inhibitor-1 locus is associated with altered levels of plasma plasminogen activator inhibitor-1 activity. *Arterioscler Thromb*, v.11, p.183-90. 1991

HENRY, M. et al. Metabolic determinants are much more important than genetic polymorphisms in determining the PAI-1 activity and antigen plasma concentraciones: a

KOSCHINSKY, M.L. Lipoprotein (a) and the link between atherosclerosis and thrombosis. *Can J Cardiol*, v. 20, n. 8, p. 37B-43B, 2004. Suplemento B.

PAIVA, S.G. Trombose venosa: relação com genótipos do sistema ABO e polimorfismos que predisponem a trombofilia. 147f. Dissertação (Mestrado em Ciências Farmacêuticas), Faculdade de Farmácia, UFMG, Belo Horizonte, 2008.

WOO, J. Hypertension, lipoprotein(a), and apolipoprotein A-I as risk factors for stroke in the Chinese. *Stroke*, vol. 22, p. 203-208, 1991

APÊNDICE 1
FICHA CLÍNICA

Projeto: “EVENTOS TROMBÓTICOS ARTERIAIS: AVALIAÇÃO DE FATORES GENÉTICOS E BIOQUÍMICOS PREDISPONENTES EM PACIENTES ATENDIDOS EM SERVIÇO MÉDICO ESPECIALIZADO EM HEMATOLOGIA

<table>
<thead>
<tr>
<th>Protocolo:______________</th>
<th>Data:______________</th>
</tr>
</thead>
</table>

Identificação:

Nome:__

Data de nascimento :_________________ Sexo:M___ F___ Naturalidade:_________

Endereço: Rua(Avenida):__ Nº_______

Bairro:__________________________________

Cidade:__________________________________

Estado:__________ CEP:____________________________ Telefone:__________

Trombofilias

<table>
<thead>
<tr>
<th>Fenômeno Tromboembólico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
</tr>
<tr>
<td>Local de ocorrência</td>
</tr>
<tr>
<td>Idade</td>
</tr>
<tr>
<td>Fenômeno espontâneo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fatores adquiridos associados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trombose arterial</td>
</tr>
<tr>
<td>Hipercolesterolemia</td>
</tr>
<tr>
<td>Diabetes miellitus</td>
</tr>
<tr>
<td>Hipertensão</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trombose Venosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imobilização</td>
</tr>
<tr>
<td>Cirurgia</td>
</tr>
<tr>
<td>Neoplasia</td>
</tr>
<tr>
<td>Uso de estrógeno</td>
</tr>
<tr>
<td>Sepse</td>
</tr>
<tr>
<td>Quimioterapia</td>
</tr>
</tbody>
</table>

Outros
<table>
<thead>
<tr>
<th>Trombose Recorrente</th>
<th>Sim</th>
<th>Não</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novos Locais</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recorrência em uso de Anticoagulante</th>
<th>Sim</th>
<th>Não</th>
</tr>
</thead>
</table>

Diagnostico

<table>
<thead>
<tr>
<th>Teste</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo de Protrombina</td>
<td>Fator VIII</td>
</tr>
<tr>
<td>PTTa</td>
<td>Fator IX</td>
</tr>
<tr>
<td>Anti-trombina</td>
<td>Fator XI</td>
</tr>
<tr>
<td>Proteína S</td>
<td>Fator XII</td>
</tr>
<tr>
<td>Proteína C</td>
<td>Plasminogênio</td>
</tr>
<tr>
<td>Resistência a proteína C</td>
<td>PAI-1</td>
</tr>
<tr>
<td>Fator V Leiden</td>
<td>tPA</td>
</tr>
<tr>
<td>Mutante do fator II</td>
<td>FAN</td>
</tr>
<tr>
<td>MTHFR</td>
<td>Perfil lipídico</td>
</tr>
<tr>
<td>Homocisteína</td>
<td>Função Hepática</td>
</tr>
<tr>
<td>Vitamina B12</td>
<td>Função Renal</td>
</tr>
<tr>
<td>Ácido Folico</td>
<td>Hemograma</td>
</tr>
<tr>
<td>Anticoagulante lúpico</td>
<td>VDRL</td>
</tr>
<tr>
<td>ACL Ig G</td>
<td>Fibrinogênio</td>
</tr>
<tr>
<td>ACL Ig M</td>
<td>Eltrof. de Hemoglobina</td>
</tr>
<tr>
<td>ACL Ig A</td>
<td></td>
</tr>
</tbody>
</table>

| História Familiar | |
TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO

PROJETO DE PESQUISA: “EVENTOS TROMBÔTICOS ARTERIAIS: AVALIAÇÃO DE FATORES GENÉTICOS E BIOQUÍMICOS PREDISPONENTES EM PACIENTES ATENDIDOS EM SERVIÇO MÉDICO ESPECIALIZADO EM HEMATOLOGIA”

Prezado Sr.(a),

O presente trabalho de pesquisa tem por objetivo obter um maior conhecimento sobre os eventos trombóticos arteriais a partir de resultados de exames laboratoriais e de dados coletados sobre os sinais e sintomas desta doença. A coleta de amostras de sangue venoso inclui um pequeno risco de acidente de punção, representado, principalmente por extravasamento sanguíneo subcutâneo de pequena gravidade, que pode resultar em leve dor localizada e formação de um pequeno hematoma. Para minimizar este risco, a coleta de sangue será realizada por um profissional farmacêutico, com capacidade técnica e experiência que estará atento para fazer a compressão imediata do local da punção, visando estancar o sangramento. Será utilizado material descartável de boa qualidade (agulhas e tubos a vácuo), visando o êxito da coleta. Você está sendo convidado para participar desta pesquisa como voluntário (a). Se você quiser participar poderá fazê-lo doando 15 mL de seu sangue para o uso exclusivo nesta pesquisa. Seu nome e os resultados dos exames serão mantidos em segredo. Se você não quiser participar, não tem problema, não irá atrapalhar o seu tratamento e a assistência recebida pelo seu médico. Para qualquer dúvida sobre esta pesquisa você deverá entrar em contato, por telefone, com as pessoas responsáveis pela mesma, cujos nomes estão abaixo relacionados.

Dr. Daniel Dias Ribeiro
Médico Hematologista do Hospital das Clinicas - UFMG (Tel. 32489397)

Profa. Dra. Ana Paula Salles Moura Fernandes (Tel. 3409 6902)
Orientadora do projeto, professora de Biologia Molecular Faculdade de Farmácia da UFMG.

Farmacêutico-Bioquímico Adriano de Paula Sabino (Tel. 3409 6900)
Curso de Pós graduação em Ciências Farmacêuticas da Faculdade de Farmácia da UFMG.

NOME: __
Documento de Identificação: __
Assinatura: __ DATA: __/__/____

Agradecemos sua valiosa participação!

Comitê de ética em pesquisa –COEP - UFMG
Av. Presidente Antônio Carlos 6627 – Prédio da Reitoria 7 andar sala 7018 – CEP 31270-901
APÊNDICE 3
Freqüência do FVL e das mutações/polimorfismos no gene da MTHFR, protrombina e sistema Abo em pacientes com AVC, provenientes do Estado do Rio de Janeiro.

Freqüência da mutação no gene da MTHFR - (C677T) em pacientes com AVC - RJ.

<table>
<thead>
<tr>
<th>Mutação</th>
<th>Freqüência dos genótipos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Não detectado</td>
</tr>
<tr>
<td>MTHFR - C677T</td>
<td>(CC)</td>
</tr>
<tr>
<td>Controle (n =201)</td>
<td>95 (47,3%)</td>
</tr>
<tr>
<td>AVC (n = 63)</td>
<td>35 (55,6%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Odds Ratio</th>
<th>Intervalo de confiança 95%</th>
<th>Valor de p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>p<0,05</td>
</tr>
<tr>
<td>0,84</td>
<td>0,45 – 1,56</td>
<td>0,66</td>
</tr>
<tr>
<td>0,58</td>
<td>0,16 – 1,89</td>
<td>0,47</td>
</tr>
</tbody>
</table>

Freqüência do fator V Leiden (G1691A) em pacientes com AVC - RJ.

<table>
<thead>
<tr>
<th>Mutação</th>
<th>Freqüência dos genótipos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Não detectado</td>
</tr>
<tr>
<td>FVL – G1691A</td>
<td>(GG)</td>
</tr>
<tr>
<td>Controle (n =201)</td>
<td>199 (99,0%)</td>
</tr>
<tr>
<td>AVC (n = 63)</td>
<td>60 (95,2%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Odds Ratio</th>
<th>Intervalo de confiança 95%</th>
<th>Valor de p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>p<0,05</td>
</tr>
<tr>
<td>4,97</td>
<td>0,66 – 43,69</td>
<td>0,09</td>
</tr>
</tbody>
</table>

p<0,05
Freqüência da mutação no gene da protrombina (G20210A) em pacientes com AVC.

<table>
<thead>
<tr>
<th>Mutação</th>
<th>Freqüência dos genótipos</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT – G20210A</td>
<td>Não detectado (GG)</td>
</tr>
<tr>
<td></td>
<td>Heterozigoto (GA)</td>
</tr>
<tr>
<td>Controle (n = 201)</td>
<td>200 (99,5%)</td>
</tr>
<tr>
<td>AVC (n = 63)</td>
<td>57 (90,5%)</td>
</tr>
<tr>
<td>Odds Ratio</td>
<td>21,05</td>
</tr>
<tr>
<td>Intervalo de confiança 95%</td>
<td>2,44 – 423,62</td>
</tr>
<tr>
<td>Valor de p</td>
<td>< 0,001</td>
</tr>
</tbody>
</table>

p<0,05

Freqüência dos genótipos do sistema ABO entre os pacientes com AVC

<table>
<thead>
<tr>
<th>Genótipos</th>
<th>Pacientes (n=58) (%)</th>
<th>Controles (n=201) (%)</th>
<th>OR</th>
<th>IC 95%</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1A1</td>
<td>1 (1,7)</td>
<td>7 (3,5)</td>
<td>0,48</td>
<td>0,02 – 4,18</td>
<td>0,68</td>
</tr>
<tr>
<td>A1A2</td>
<td>2 (3,4)</td>
<td>9 (4,5)</td>
<td>0,76</td>
<td>0,11 – 3,94</td>
<td>1,00</td>
</tr>
<tr>
<td>A1O1</td>
<td>22 (37,9)</td>
<td>43 (21,4)</td>
<td>2,09</td>
<td>1,06 – 4,11</td>
<td>0,03</td>
</tr>
<tr>
<td>A1O2</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2A2</td>
<td>1 (1,7)</td>
<td>1 (0,5)</td>
<td>2,98</td>
<td>0,0 – 111,09</td>
<td>0,44</td>
</tr>
<tr>
<td>A2O1</td>
<td>3 (5,2)</td>
<td>11 (5,5)</td>
<td>0,98</td>
<td>0,20 – 4,15</td>
<td>1,00</td>
</tr>
<tr>
<td>A2O2</td>
<td>ND</td>
<td>1 (0,5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1B</td>
<td>2 (3,4)</td>
<td>8 (4,0)</td>
<td>0,84</td>
<td>0,12 – 4,58</td>
<td>1,00</td>
</tr>
<tr>
<td>A2B</td>
<td>1 (1,7)</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>1 (1,7)</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BO1</td>
<td>6 (10,3)</td>
<td>19 (9,5)</td>
<td>1,45</td>
<td>0,54 – 3,83</td>
<td>0,57</td>
</tr>
<tr>
<td>BO2</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1O1</td>
<td>18 (31,3)</td>
<td>85 (48,8)</td>
<td>0,42</td>
<td>0,21 – 0,84</td>
<td>0,01</td>
</tr>
<tr>
<td>O1O2</td>
<td>ND</td>
<td>4 (2,3)</td>
<td>1,17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2O2</td>
<td>1 (1,7)</td>
<td>2 (1,2)</td>
<td>1,75</td>
<td>inválido</td>
<td>0,54</td>
</tr>
</tbody>
</table>

p<0,05
Freqüência dos alelos entre pacientes com AVC e controles

<table>
<thead>
<tr>
<th>Alelos</th>
<th>Pacientes (116 (%))</th>
<th>Controles (402 (%))</th>
<th>OR</th>
<th>IC 95%</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>27 (23,3)</td>
<td>74 (18,4)</td>
<td>1,40</td>
<td>0,81 – 2,39</td>
<td>0,88</td>
</tr>
<tr>
<td>A2</td>
<td>6 (5,2)</td>
<td>23 (5,7)</td>
<td>0,88</td>
<td>0,31 – 2,39</td>
<td>1,00</td>
</tr>
<tr>
<td>O1</td>
<td>68 (58,6)</td>
<td>268 (67,0)</td>
<td>0,66</td>
<td>0,42 – 1,04</td>
<td>0,03</td>
</tr>
<tr>
<td>O2</td>
<td>2 (1,7)</td>
<td>10 (2,5)</td>
<td>0,65</td>
<td>1,10 – 3,28</td>
<td>0,02</td>
</tr>
<tr>
<td>B</td>
<td>13 (11,5)</td>
<td>27 (6,4)</td>
<td>1,67</td>
<td>0,77 – 3,57</td>
<td>0,09</td>
</tr>
</tbody>
</table>

p<0,05
ANEXO 1
Protocolos para preparação de reagentes utilizados na eletroforese

<table>
<thead>
<tr>
<th>Protocolo</th>
<th>Reagentes</th>
</tr>
</thead>
</table>
| **TBE 5X** | Tris base 54 g
Ácido bórico 27,5 g
EDTA 0,5M pH: 8,0 20 ml
Água bidestilada q.s.p. 1000 mL |
| **TBE 1X** | TBE 5X 200 mL
Água destilada 1800 mL |
| **SOLUÇÃO PARA GEL DE POLIACRILAMIDA 6%** | Acrilamida 58 g
Bisacrilamida 2,0 g
TBE 5X 200 ml
Água bidestilada q.s.p. 1000 mL |
| **SOLUÇÃO PARA GEL DE POLIACRILAMIDA 8%** | Acrilamida 77,3 g
Bisacrilamida 2,6 g
TBE 5X 200 ml
Água bidestilada q.s.p. 1000 mL |
| **APS 10%** | Persulfato de amônio 30 g
Água 300 mL |
| **TAMPÃO DE AMOSTRA 2X** | Ficoll 400 12,5 g
Azul de bromofenol 0,05 g
Xilenocianol 0,05 g
TBE 5X 75 mL
Água bidestilada q.s.p. 1000 mL |
| **SOLUÇÃO FIXADORA** | Etanol PA 5 mL
Ácido acético glacial 250 µL |
<table>
<thead>
<tr>
<th>Água destilada</th>
<th>45 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLUÇÃO DE NITRATO DE PRATA</td>
<td></td>
</tr>
<tr>
<td>Nitrato de prata</td>
<td>0,15 g</td>
</tr>
<tr>
<td>Água destilada</td>
<td>50 mL</td>
</tr>
<tr>
<td>SOLUÇÃO REVELADORA</td>
<td></td>
</tr>
<tr>
<td>Hidróxido de sódio</td>
<td>1,5 g</td>
</tr>
<tr>
<td>Formaldeído</td>
<td>150 µL</td>
</tr>
<tr>
<td>Água destilada</td>
<td>50 mL</td>
</tr>
</tbody>
</table>

q.s.p.: quantidade suficiente para