ANÁLISE CRÍTICA DOS CRITÉRIOS NORMATIVOS DE DIMENSIONAMENTO À PUNÇÃO EM LAJES LISAS

Clauderson Basileu Carvalho

UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ESTRUTURAS

"ANÁLISE CRÍTICA DOS CRITÉRIOS NORMATIVOS DE DIMENSIONAMENTO À PUNÇÃO EM LAJES LISAS"

Clauderson Basileu Carvalho

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia de Estruturas da Escola de Engenharia da Universidade Federal de Minas Gerais, como parte dos requisitos necessários à obtenção do título de "Mestre em Engenharia de Estruturas".

Comissão Examinadora:

Prof. Dr. José Marcio Fonseca Calixto DEES - UFMG - (Orientador)

Prof. Dr. Sebastião Salvador Real Pereira DEES - UFMG

Prof. Dr. Ibrahim Abd El Malik Shehata COPPE/UFRJ

Belo Horizonte, 25 de setembro de 2008

SUMÁRIO

1 – INTRODUÇÃO	1
1.1 – Considerações Iniciais	1
1.2 – Justificativa	4
1.3 – Objetivo	4
1.4 – Descrição Resumida da Dissertação	5
2 – DIMENSIONAMENTO À PUNÇÃO	6
2.1 – Comportamento de lajes sob carga de punção	6
2.2 – Modelo Mecânico	
2.3 – Critérios da Norma Brasileira NBR 6118 (2003)	10
2.3.1 – Seções de Controle	10
2.3.2 - Cálculo da tensão solicitante nas superfícies críticas de co	ontorno C e
C''	12
2.3.3 - Cálculo da tensão resistente nas superfícies críticas de co	ontorno C e
C"	13
2.3.4 – Detalhamento da armadura de punção	15
2.3.5 – Verificação de elementos estruturais protendidos	16
2.4 – Critérios do EUROCODE 2 (2004)	18
2.4.1 – Contornos básicos de controle	19
2.4.2 – Cálculo das tensões solicitantes nos contornos básicos de co	ontrole21
2.4.3 – Cálculo das tensões resistentes nos contornos básicos de con	ntrole23
2.4.4 – Detalhamento da armadura de punção	25
2.4.5 – Verificação de elementos estruturais protendidos	26
2.5 – Critérios da norma americana ACI 318 (2005)	
2.5.1 – Contornos Críticos de Controle – Perímetros efetivos (b ₀)	

$2.5.2 - Cálculo da tensão solicitante \tau_u$ no perímetro efetivo b_0	28
$2.5.3 - Cálculo da tensão resistente \tau_n no perímetro efetivo b_0$	29
2.5.4 – Detalhamento da armadura de punção	31
2.5.5 – Verificação de elementos estruturais protendidos	31
3 – METODOLOGIA	33
3.1 – Metodologia de Coleta dos Elementos do Banco de Dados	33
3.2 – Metodologia de Cálculo	41
3.3 – Metodologia de Análise dos Resultados	44
3.3.1 – Metodologia proposta por COLLINS (2001)	45
	TADOG
4 – ANALISE COMPARATIVA ENTRE OS RESUL	TADOS
EXPERIMENTAIS E OS CALCULADOS	
4.1 – Grupo 1 – Lajes em Concreto Armado com Resistência à Comp	oressão do
Concreto Limitada a 50 MPa	50
4.1.1 – Lajes sem armadura transversal de punção	50
4.1.2 – Lajes com armadura transversal de punção	64
4.2 - Grupo 2 - Lajes em Concreto Protendido com Resistência à Comp	pressão do
Concreto Limitada a 50 MPa	78
4.2.1 – Lajes sem armadura transversal de punção	78
4.2.2 – Lajes com armadura transversal de punção	
4.3 - Grupo 3 - Lajes em Concreto Armado com Resistência à Comp	oressão do
Concreto Superior a 50 MPa	105
4.3.1 – Lajes sem armadura transversal de punção	105
4.3.2 – Lajes com armadura transversal de punção	115
4.4 – Grupo 4 – Lajes em Concreto Protendido com Resistência à Com	pressão do
Concreto Superior a 50 MPa	126
4.4.1 – Lajes sem armadura transversal de punção	126
4.4.2 – Lajes com armadura transversal de punção	<u>139</u>

5 – CONCLUSÕES E SUGESTÕES	151
5.1 – Conclusões	152
5.1.1 – Resistência do Concreto Limitada a 50 MPa	153
5.1.2 – Resistência do Concreto Superior a 50 MPa	155
5.2 – Sugestões para Estudos Futuros	157
REFERÊNCIAS BIBLIOGRÁFICAS ANEXO A – BANCO DE DADOS EXPERIMENTAIS	158 165
ANEXO B – FORÇAS CALCULADAS SEGUNDO METOD	OLOGIA
DESCRITA NO CAPÍTULO 3	179
ANEXO C – RELAÇÃO ENTRE AS FORÇAS EXPERIME	ENTAIS E
CALCULADAS	201

LISTA DE FIGURAS

FIGURA 1.1 – Ruína por punção em lajes lisas	2
FIGURA 1.2 – Modelo em elementos finitos representando efeito de punção, com	suas
respectivas análises de tensões, referente à linha média da laje	3
FIGURA 2.1 – Zona de ruptura em lajes submetidas ao puncionamento, sem armadu	ıra
transversal de punção	6
FIGURA 2.2 – Zonas de ruptura em lajes submetidas ao puncionamento com arma	dura
transversal de punção	7
FIGURA 2.3 – Modelo mecânico de KINNUNEN e NYLANDER	9
FIGURA 2.4 – Esquema da fissuração inclinada e da rotação dos segmentos da laje	9
FIGURA 2.5 – Perímetros críticos em pilares internos	10
FIGURA 2.6 – Perímetros críticos em lajes cogumelo	11
FIGURA 2.7 – Perímetros críticos em casos de pilares especiais	11
FIGURA 2.8 – Associação dos lados da seção do pilar com os momentos fletores	13
FIGURA 2.9 – Disposição da armadura de punção em planta e contorno C''	15
FIGURA 2.10 – Detalhamento da armadura de punção	15
FIGURA 2.11 – Ancoragem da armadura de punção	16
FIGURA 2.12 – Efeito favorável dos cabos inclinados no contorno considerado	17
FIGURA 2.13 – Modelo para verificação da punção no estado limite último	18
FIGURA 2.14 – Perímetros básicos de controle ao redor de áreas carregadas	19
FIGURA 2.15 – Contorno de controle próximo a uma abertura	19
FIGURA 2.16 – Contornos críticos em lajes cogumelo	20
FIGURA 2.17 – Distribuição de tensões de cisalhamento devido a momento atuant	te na
ligação laje-pilar	22
FIGURA 2.18 – Contornos de controle u_2	24
FIGURA 2.19 – Detalhamento da armadura de punção	25
FIGURA 2.20 – Perímetros efetivos	27
FIGURA 2.21 – Suposta distribuição do esforço cortante	28
FIGURA 2.22 – Valores de β para uma área de carga não retangular	30
FIGURA 4.1 – Representação gráfica da relação Fu_{exp}/Fu_{calc} para lajes em conc	creto
armado sem armadura de punção e $f_c \leq 50$ MPa	52
FIGURA 4.2 – Gráfico da escala de demérito para lajes em concreto armado	sem
armadura de punção e $f_c \leq 50 \text{ MPa}_{$	53

FIGURA 4.3 – Porcentagem dos valores da relação Fu_{exp}/Fu_{calc} para lajes em concreto
armado sem armadura transversal e $f_c \leq 50$ MPa54
FIGURA 4.4 – Influência da taxa de armadura longitudinal ρ na relação Fu_{exp}/Fu_{calc}
para lajes em concreto armado sem armadura de punção e $f_c \leq 50$ MPa58
FIGURA 4.5 – Influência da resistência do concreto na relação Fu_{exp}/Fu_{calc} para lajes
em concreto armado sem armadura de punção e $f_c \leq 50$ MPa59
FIGURA 4.6 - Porcentagem de erro e acerto na estimativa do local da superfície de
ruptura na verificação dos critérios normativos para lajes em concreto armado com
armadura transversal e $f_c \le 50 \text{ MPa}_{$
FIGURA 4.7 – Representação gráfica da relação Fu_{exp}/Fu_{calc} para lajes em concreto
armado com armadura de punção e $f_c \leq 50 \text{ MPa}_{$
FIGURA 4.8 - Gráfico da escala de demérito para lajes em concreto armado com
armadura de punção e $f_c \leq 50 \text{ MPa}_{$
FIGURA 4.9 – Porcentagem dos valores da relação Fu_{exp}/Fu_{calc} para lajes em concreto
armado com armadura de punção e $f_c \leq 50 \text{ MPa}_{\dots}$ 68
FIGURA 4.10 – Influência da resistência do concreto na relação Fu_{exp}/Fu_{calc} para lajes
em concreto armado com armadura de punção e $f_c \leq 50 \text{ MPa}_{c}$ 72
FIGURA 4.11 – Influência da tensão de escoamento f_y do aço da armadura de punção na
relação Fu_{exp}/Fu_{calc} para lajes em concreto armado com armadura de punção e $f_c \leq 50$
MPa73
FIGURA 4.12 – Representação gráfica da relação Fu_{exp}/Fu_{calc} para lajes em concreto
protendido sem armadura de punção e $f_c \leq 50 \text{ MPa}_{c} = 80$
FIGURA 4.13 - Gráfico da escala de demérito para lajes em concreto protendido sem
armadura de punção e $f_c \leq 50 \text{ MPa}_{_}$ 81
FIGURA 4.14 – Porcentagem dos valores da relação Fu_{exp}/Fu_{calc} para lajes em concreto
protendido sem armadura transversal e $f_c \leq 50$ MPa82
FIGURA 4.15 – Influência da taxa de armadura longitudinal ρ na relação Fu_{exp}/Fu_{calc}
para lajes em concreto protendido sem armadura de punção e $f_c \leq 50 \text{ MPa}_{$
FIGURA 4.16 – Influência da tensão de protensão inicial, na relação Fu_{exp}/Fu_{calc} para
lajes em concreto protendido sem armadura de punção e $f_c \leq 50$ MPa87
FIGURA 4.17 – Influência da resistência do concreto na relação Fu_{exp}/Fu_{calc} para lajes

FIGURA 4.18 - Porcentagem de erro e acerto na estimativa do local da superfície de
ruptura na verificação dos critérios normativos para lajes em concreto protendido com
armadura transversal e $f_c \leq 50 \text{ MPa}_{$
FIGURA 4.19 – Representação gráfica da relação Fu_{exp}/Fu_{calc} para lajes em concreto
protendido com armadura de punção e $f_c \leq 50$ MPa94
FIGURA 4.20 - Gráfico da escala de demérito para lajes em concreto protendido com
armadura de punção e $f_c \le 50 \text{ MPa}_{$
FIGURA 4.21 – Porcentagem dos valores da relação Fu_{exp}/Fu_{calc} para lajes em concreto
protendido com armadura transversal e $f_c \leq 50$ MPa96
FIGURA 4.22 – Influência da tensão de escoamento f_y do aço da armadura de punção na
relação Fu_{exp}/Fu_{calc} para lajes em concreto protendido com armadura de punção e $f_c \leq 50$
MPa99
FIGURA 4.23 – Influência da resistência do concreto na relação Fu_{exp}/Fu_{calc} para lajes
em concreto protendido com armadura de punção e $f_c \leq 50 \text{ MPa}$ 100
FIGURA 4.24 – Influência da tensão inicial de protensão na relação Fu_{exp}/Fu_{calc} para
lajes em concreto protendido com armadura de punção e $f_c \leq 50 \text{ MPa}$ 101
FIGURA 4.25 – Representação gráfica da relação Fu_{exp}/Fu_{calc} para lajes em concreto
armado sem armadura de punção e $f_c > 50 \text{ MPa}_{$
FIGURA 4.26 - Gráfico da escala de demérito para lajes em concreto armado sem
armadura de punção e $f_c > 50 \text{ MPa}$ 108
FIGURA 4.27 – Porcentagem dos valores da relação Fu_{exp}/Fu_{calc} para lajes em concreto
armado sem armadura transversal e f_c >50 MPa109
FIGURA 4.28 – Influência da taxa de armadura longitudinal na relação Fu_{exp}/Fu_{calc}
para lajes em concreto armado sem armadura de punção e $f_c > 50$ MPa112
FIGURA 4.29 - Porcentagem de erro e acerto na estimativa do local da superfície de
ruptura na verificação dos critérios normativos para lajes em concreto armado com
armadura transversal e f_c >50 MPa116
FIGURA 4.30 – Representação gráfica da relação Fu_{exp}/Fu_{calc} para lajes em concreto
armado com armadura de punção e f_c >50 MPa117
FIGURA 4.31 - Gráfico da escala de demérito para lajes em concreto armado com
armadura de punção e $f_c > 50 \text{ MPa}_{118}$
FIGURA 4.32 – Porcentagem dos valores da relação Fu_{exp}/Fu_{calc} para lajes em concreto
armado com armadura transversal e f_c >50 MPa119

LISTA DE TABELAS

TABELA 2.2 – Valores de k22 TABELA 3.1 – Grupo 1 – Resumo dos resultados experimentais de lajes em concreto armado com resistência à compressão do concreto limitada a 50 MPa36 TABELA 3.2 – Grupo 2 – Resumo dos resultados experimentais de lajes em concreto protendido com resistência à compressão do concreto limitada a 50 MPa38 TABELA 3.3 – Grupo 3 – Resumo dos resultados experimentais de lajes em concreto armado com resistência à compressão do concreto acima de 50 MPa39 TABELA 3.4 – Grupo 4 – Resumo dos resultados experimentais de lajes em concreto protendido com resistência à compressão do concreto acima de 50 MPa40 TABELA 3.5 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto armado sem armadura transversal de punção42 TABELA 3.6 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto armado com armadura transversal de punção43 TABELA 3.7 – Metodologia de cálculo das forças de ruptura efetivas, $F_{u,eft}$ em lajes de concreto protendido44 TABELA 3.8 – Escala de Demérito, segundo COLLINS (2001)48 TABELA 4.1 – Resultados da avaliação estatística dos critérios de verificação para lajes em concreto armado sem armadura de punção de secala de demérito dos critérios de verificação de lajes em concreto armado sem armadura longitudinal ρ na avaliação dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \leq 50$ MPa (98 lajes)53 TABELA 4.4 – Influência da taxa de armadura longitudinal ρ nos resultados da avaliação de lajes em concreto armado sem armadura transversal e $f_c \leq 50$ MPa55 TABELA 4.5 – Influência da taxa de armadura longitudinal ρ nos resultados da avaliação de lajes em concreto armado sem armadura transversal e $f_c \leq 50$ MPa57 TABELA 4.6 – Influência da resistência à compressão do concreto nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de	TABELA 2.1 – Valores de k12
TABELA 3.1 – Grupo 1 – Resumo dos resultados experimentais de lajes em concreto armado com resistência à compressão do concreto limitada a 50 MPa	TABELA 2.2 – Valores de k22
armado com resistência à compressão do concreto limitada a 50 MPa	TABELA 3.1 - Grupo 1 - Resumo dos resultados experimentais de lajes em concreto
TABELA 3.2 – Grupo 2 – Resumo dos resultados experimentais de lajes em concreto protendido com resistência à compressão do concreto limitada a 50 MPa38 TABELA 3.3 – Grupo 3 – Resumo dos resultados experimentais de lajes em concreto armado com resistência à compressão do concreto acima de 50 MPa39 TABELA 3.4 – Grupo 4 – Resumo dos resultados experimentais de lajes em concreto protendido com resistência à compressão do concreto acima de 50 MPa40 TABELA 3.5 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto armado sem armadura transversal de punção42 TABELA 3.6 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto armado com armadura transversal de punção de ruptura efetivas, $F_{u,ef}$, em lajes de concreto armado com armadura transversal de punção de ruptura efetivas, $F_{u,ef}$, em lajes de concreto protendido43 TABELA 3.7 – Metodologia de cálculo das forças de ruptura efetivas, $F_{u,ef}$, em lajes de concreto protendido44 TABELA 3.8 – Escala de Demérito, segundo COLLINS (2001)48 TABELA 4.1 – Resultados da avaliação estatística dos critérios de verificação para lajes em concreto armado sem armadura de punção e $f_c \leq 50$ MPa (98 lajes)51 TABELA 4.2 – Resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado sem armadura longitudinal ρ na avaliação dos critérios de verificação de lajes em concreto armado sem armadura longitudinal ρ nos resultados da avaliação des armadura transversal e $f_c \leq 50$ MPa57 TABELA 4.5 – Influência da taxa de armadura longitudinal ρ nos resultados da avaliação de avaliação dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \leq 50$ MPa57 TABELA 4.6 – Influência da resistência à compressão do concreto nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura longitudinal ρ nos resultados da avaliação da escala de demérito d	armado com resistência à compressão do concreto limitada a 50 MPa36
protendido com resistência à compressão do concreto limitada a 50 MPa38 TABELA 3.3 – Grupo 3 – Resumo dos resultados experimentais de lajes em concreto armado com resistência à compressão do concreto acima de 50 MPa39 TABELA 3.4 – Grupo 4 – Resumo dos resultados experimentais de lajes em concreto protendido com resistência à compressão do concreto acima de 50 MPa40 TABELA 3.5 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto armado sem armadura transversal de punção42 TABELA 3.6 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto armado com armadura transversal de punção43 TABELA 3.7 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto armado com armadura transversal de punção de ruptura efetivas, $F_{u,ef}$, em lajes de concreto protendido44 TABELA 3.8 – Escala de Demérito, segundo COLLINS (2001)48 TABELA 4.1 – Resultados da avaliação estatística dos critérios de verificação para lajes em concreto armado sem armadura de punção e $f_c \leq 50$ MPa (98 lajes)51 TABELA 4.2 – Resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \leq 50$ MPa (98 lajes)53 TABELA 4.3 – Influência da taxa de armadura longitudinal ρ na avaliação dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \leq 50$ MPa55 TABELA 4.4 – Influência da taxa de armadura longitudinal ρ nos resultados da avaliação des armadora transversal e $f_c \leq 50$ MPa55 TABELA 4.5 – Influência da taxa de armadura longitudinal ρ nos resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \leq 50$ MPa57 TABELA 4.6 – Influência da resistência à compressão do concreto nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura longitudinal ρ nos resultados da avaliação da	TABELA 3.2 - Grupo 2 - Resumo dos resultados experimentais de lajes em concreto
TABELA 3.3 – Grupo 3 – Resumo dos resultados experimentais de lajes em concreto armado com resistência à compressão do concreto acima de 50 MPa39 TABELA 3.4 – Grupo 4 – Resumo dos resultados experimentais de lajes em concreto protendido com resistência à compressão do concreto acima de 50 MPa40 TABELA 3.5 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto armado sem armadura transversal de punção42 TABELA 3.6 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto armado com armadura transversal de punção de ruptura, F_u , em lajes de concreto armado com armadura transversal de punção de ruptura, F_u , em lajes de concreto armado com armadura transversal de punção de ruptura, $F_{u,eff}$, em lajes de concreto portendido43 TABELA 3.7 – Metodologia de cálculo das forças de ruptura efetivas, $F_{u,eff}$, em lajes de concreto protendido44 TABELA 3.8 – Escala de Demérito, segundo COLLINS (2001)48 TABELA 4.1 – Resultados da avaliação estatística dos critérios de verificação para lajes em concreto armado sem armadura de punção e $f_c \leq 50$ MPa (98 lajes)51 TABELA 4.2 – Resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado sem armadura longitudinal ρ na avaliação dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \leq 50$ MPa (98 Lajes)53 TABELA 4.3 – Influência da taxa de armadura longitudinal ρ na avaliação dos critérios de verificação de lajes em concreto armado sem armadura de punção cada escala de demérito dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \leq 50$ MPa (98 Lajes) =550 MPa (98 Lajes) =	protendido com resistência à compressão do concreto limitada a 50 MPa38
armado com resistência à compressão do concreto acima de 50 MPa39 TABELA 3.4 – Grupo 4 – Resumo dos resultados experimentais de lajes em concreto protendido com resistência à compressão do concreto acima de 50 MPa40 TABELA 3.5 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto armado sem armadura transversal de punção42 TABELA 3.6 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto armado com armadura transversal de punção43 TABELA 3.7 – Metodologia de cálculo das forças de ruptura efetivas, $F_{u,ef}$, em lajes de concreto protendido44 TABELA 3.7 – Metodologia de cálculo das forças de ruptura efetivas, $F_{u,ef}$, em lajes de concreto protendido44 TABELA 3.8 – Escala de Demérito, segundo COLLINS (2001)48 TABELA 4.1 – Resultados da avaliação estatística dos critérios de verificação para lajes em concreto armado sem armadura de punção e $f_c \leq 50$ MPa (98 lajes)51 TABELA 4.2 – Resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado sem armadura longitudinal ρ na avaliação dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \leq 50$ MPa55 TABELA 4.3 – Influência da taxa de armadura longitudinal ρ nos cresultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \leq 50$ MPa56 TABELA 4.5 – Influência da taxa de armadura longitudinal ρ nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \leq 50$ MPa57 TABELA 4.6 – Influência da resistência à compressão do concreto nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \leq 50$ MPa57	TABELA 3.3 - Grupo 3 - Resumo dos resultados experimentais de lajes em concreto
TABELA 3.4 – Grupo 4 – Resumo dos resultados experimentais de lajes em concreto protendido com resistência à compressão do concreto acima de 50 MPa40 TABELA 3.5 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto armado sem armadura transversal de punção42 TABELA 3.6 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto armado com armadura transversal de punção43 TABELA 3.7 – Metodologia de cálculo das forças de ruptura efetivas, $F_{u,ef}$, em lajes de concreto protendido44 TABELA 3.8 – Escala de Demérito, segundo COLLINS (2001)48 TABELA 4.1 – Resultados da avaliação estatística dos critérios de verificação para lajes em concreto armado sem armadura de punção e $f_c \leq 50$ MPa (98 lajes)51 TABELA 4.2 – Resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado sem armadura longitudinal ρ na avaliação dos critérios de verificação de lajes em concreto armado sem armadura longitudinal ρ nos resultados da avaliação da escala de avaliação das critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \leq 50$ MPa (55 TABELA 4.4 – Influência da taxa de armadura longitudinal ρ nos resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \leq 50$ MPa (55 TABELA 4.5 – Influência da taxa de armadura longitudinal ρ nos resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \leq 50$ MPa (57 TABELA 4.5 – Influência da taxa de armadura longitudinal ρ nos resultados da avaliação da escala de demérito dos critérios de verificação da lajes em concreto armado sem armadura transversal e $f_c \leq 50$ MPa (57 TABELA 4.6 – Influência da resistência à compresão do concreto nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura longitudinal ρ nos resultad	armado com resistência à compressão do concreto acima de 50 MPa39
protendido com resistência à compressão do concreto acima de 50 MPa	TABELA 3.4 - Grupo 4 - Resumo dos resultados experimentais de lajes em concreto
TABELA 3.5 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto armado sem armadura transversal de punção42 TABELA 3.6 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto armado com armadura transversal de punção43 TABELA 3.7 – Metodologia de cálculo das forças de ruptura efetivas, $F_{u,efr}$ em lajes de concreto protendido44 TABELA 3.8 – Escala de Demérito, segundo COLLINS (2001)48 TABELA 4.1 – Resultados da avaliação estatística dos critérios de verificação para lajes em concreto armado sem armadura de punção e $f_c \leq 50$ MPa (98 lajes)51 TABELA 4.2 – Resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado sem armadura de punção e $f_c \leq 50$ MPa (98 lajes)53 TABELA 4.3 – Influência da taxa de armadura longitudinal ρ na avaliação dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \leq 50$ MPa55 TABELA 4.4 – Influência da taxa de armadura longitudinal ρ nos resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \leq 50$ MPa56 TABELA 4.5 – Influência da taxa de armadura longitudinal ρ nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \leq 50$ MPa57 TABELA 4.6 – Influência da resistência à compressão do concreto nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \leq 50$ MPa57	protendido com resistência à compressão do concreto acima de 50 MPa40
armado sem armadura transversal de punção	TABELA 3.5 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto
TABELA 3.6 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto armado com armadura transversal de punção	armado sem armadura transversal de punção42
armado com armadura transversal de punção	TABELA 3.6 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto
TABELA 3.7 – Metodologia de cálculo das forças de ruptura efetivas, $F_{u,ef}$, em lajes de concreto protendido	armado com armadura transversal de punção43
concreto protendido44 TABELA 3.8 – Escala de Demérito, segundo COLLINS (2001)48 TABELA 4.1 – Resultados da avaliação estatística dos critérios de verificação para lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa (98 lajes)51 TABELA 4.2 – Resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa (98 lajes)53 TABELA 4.3 – Influência da taxa de armadura longitudinal ρ na avaliação dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \le 50$ MPa55 TABELA 4.4 – Influência da resistência do concreto na avaliação dos critérios de verificação de lajes em concreto armado sem armadura longitudinal ρ nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa57 TABELA 4.6 – Influência da resistência à compressão do concreto nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa57	TABELA 3.7 – Metodologia de cálculo das forças de ruptura efetivas, $F_{u,ef}$, em lajes de
TABELA 3.8 – Escala de Demérito, segundo COLLINS (2001) 48 TABELA 4.1 – Resultados da avaliação estatística dos critérios de verificação para lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa (98 lajes) 51 TABELA 4.2 – Resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa (98 lajes) 53 TABELA 4.3 – Influência da taxa de armadura longitudinal ρ na avaliação dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \le 50$ MPa (98 lajes) 53 TABELA 4.4 – Influência da taxa de armadura longitudinal ρ na valiação dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \le 50$ MPa 55 TABELA 4.4 – Influência da resistência do concreto na avaliação dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \le 50$ MPa 56 TABELA 4.5 – Influência da taxa de armadura longitudinal ρ nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa 57 TABELA 4.6 – Influência da resistência à compressão do concreto nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa 57	concreto protendido44
TABELA 4.1 – Resultados da avaliação estatística dos critérios de verificação para lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa (98 lajes)	TABELA 3.8 – Escala de Demérito, segundo COLLINS (2001) 48
em concreto armado sem armadura de punção e $f_c \le 50$ MPa (98 lajes)51 TABELA 4.2 – Resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa (98 lajes)53 TABELA 4.3 – Influência da taxa de armadura longitudinal ρ na avaliação dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \le 50$ MPa55 TABELA 4.4 – Influência da resistência do concreto na avaliação dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \le 50$ MPa56 TABELA 4.5 – Influência da taxa de armadura longitudinal ρ nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa57 TABELA 4.6 – Influência da resistência à compressão do concreto nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa57	TABELA 4.1 – Resultados da avaliação estatística dos critérios de verificação para lajes
TABELA 4.2 – Resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa (98 lajes)	em concreto armado sem armadura de punção e $f_c \leq 50$ MPa (98 lajes)51
verificação de lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa (98 lajes)	TABELA 4.2 - Resultados da avaliação da escala de demérito dos critérios de
lajes)53 TABELA 4.3 – Influência da taxa de armadura longitudinal ρ na avaliação dos critérios de verificação de lajes em concreto armado sem armadura transversal e f_c ≤50 MPa55 TABELA 4.4 – Influência da resistência do concreto na avaliação dos critérios de verificação de lajes em concreto armado sem armadura transversal e f_c ≤50 MPa56 TABELA 4.5 – Influência da taxa de armadura longitudinal ρ nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e f_c ≤50 MPa57 TABELA 4.6 – Influência da resistência à compressão do concreto nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e f_c ≤50 MPa57	verificação de lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa (98
TABELA 4.3 – Influência da taxa de armadura longitudinal ρ na avaliação dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \le 50$ MPa55 TABELA 4.4 – Influência da resistência do concreto na avaliação dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \le 50$ MPa56 TABELA 4.5 – Influência da taxa de armadura longitudinal ρ nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa57 TABELA 4.6 – Influência da resistência à compressão do concreto nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa57	lajes)53
de verificação de lajes em concreto armado sem armadura transversal e $f_c \le 50$ MPa	TABELA 4.3 – Influência da taxa de armadura longitudinal ρ na avaliação dos critérios
TABELA 4.4 – Influência da resistência do concreto na avaliação dos critérios de verificação de lajes em concreto armado sem armadura transversal e $f_c \le 50$ MPa56 TABELA 4.5 – Influência da taxa de armadura longitudinal ρ nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa57 TABELA 4.6 – Influência da resistência à compressão do concreto nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa57	de verificação de lajes em concreto armado sem armadura transversal e $f_c \leq 50 \text{ MPa}_{c} \leq 55 \text{ MPa}_{c}$
verificação de lajes em concreto armado sem armadura transversal e $f_c \le 50$ MPa56 TABELA 4.5 – Influência da taxa de armadura longitudinal ρ nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa57 TABELA 4.6 – Influência da resistência à compressão do concreto nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa57	TABELA 4.4 - Influência da resistência do concreto na avaliação dos critérios de
TABELA 4.5 – Influência da taxa de armadura longitudinal ρ nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa57 TABELA 4.6 – Influência da resistência à compressão do concreto nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa57	verificação de lajes em concreto armado sem armadura transversal e $f_c \le 50$ MPa56
avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa57 TABELA 4.6 – Influência da resistência à compressão do concreto nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa57	TABELA 4.5 – Influência da taxa de armadura longitudinal ρ nos resultados da
armado sem armadura de punção e $f_c \le 50$ MPa57 TABELA 4.6 – Influência da resistência à compressão do concreto nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa57	avaliação da escala de demérito dos critérios de verificação das lajes em concreto
TABELA 4.6 – Influência da resistência à compressão do concreto nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \leq 50$ MPa57	armado sem armadura de punção e $f_c \leq 50 \text{ MPa}_{c} \leq 50 \text{ MPa}_{c}$
avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado sem armadura de punção e $f_c \le 50$ MPa57	TABELA 4.6 - Influência da resistência à compressão do concreto nos resultados da
armado sem armadura de punção e $f_c \le 50 \text{ MPa}$ 57	avaliação da escala de demérito dos critérios de verificação das lajes em concreto
	armado sem armadura de punção e $f_c \leq 50$ MPa57

TABELA 4.7 – Resultados da avaliação estatística dos critérios de verificação para lajes em concreto armado com armadura de punção e $f_c \leq 50$ MPa (107 lajes)_____65 TABELA 4.8 - Resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado com armadura de punção e $f_c \leq 50$ MPa (107 lajes)_____67 TABELA 4.9 - Influência da resistência do concreto na avaliação dos critérios de verificação de lajes em concreto armado com armadura transversal e $f_c \le 50$ MPa____69 TABELA 4.10 – Influência da tensão de escoamento f_y do aço da armadura de punção na avaliação dos critérios de verificação de lajes em concreto armado com armadura transversal e $f_c \leq 50$ MPa 70 TABELA 4.11 - Influência da resistência à compressão do concreto nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto armado com armadura de punção e $f_c \le 50$ MPa_____71 TABELA 4.12 – Influência da tensão de escoamento f_v do aço da armadura de punção na avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado com armadura transversal e $f_c \le 50$ MPa 71 TABELA 4.13 - Resultados da avaliação estatística dos critérios de verificação para lajes em concreto protendido sem armadura de punção e $f_c \leq 50$ MPa (48 lajes) 79 TABELA 4.14 - Resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto protendido sem armadura de punção e $f_c \leq 50$ MPa.....81 TABELA 4.15 – Influência da taxa de armadura longitudinal ρ na avaliação dos critérios de verificação de lajes em concreto protendido sem armadura transversal e *f_c*≤50 MPa_____83 TABELA 4.16 – Influência da tensão de protensão inicial sem perdas f_{pc} na avaliação dos critérios de verificação de lajes em concreto protendido sem armadura transversal e $f_c \leq 50 \text{ MPa}$ 84 TABELA 4.17 – Influência da taxa de armadura longitudinal ρ nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto protendido sem armadura de punção e $f_c \le 50$ MPa 85 TABELA 4.18 – Influência da tensão de protensão inicial sem perdas f_{pc} nos resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto protendido sem armadura de punção e $f_c \leq 50$ MPa 85

TABELA 4.19 – Resultados da avaliação estatística dos critérios de verificação para lajes em concreto protendido com armadura de punção e $f_c \leq 50$ MPa (15 lajes) 93 TABELA 4.20 - Resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto protendido com armadura de punção e $f_c \le 50$ MPa (15 lajes)_____95 TABELA 4.21 – Influência da tensão de escoamento f_v do aço da armadura de punção na avaliação dos critérios de verificação de lajes em concreto protendido com armadura transversal e $f_c \leq 50$ MPa _____97 TABELA 4.22 – Influência da tensão de escoamento f_v do aço da armadura de punção na avaliação da escala de demérito dos critérios de verificação de lajes em concreto protendido com armadura transversal e $f_c \le 50$ MPa _____98 TABELA 4.23 - Resultados da avaliação estatística dos critérios de verificação para lajes em concreto armado sem armadura de punção e $f_c > 50$ MPa (40 lajes) 106 TABELA 4.24 - Resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado sem armadura de punção e $f_c>50$ MPa (40 lajes)_____108 TABELA 4.25 – Influência da taxa de armadura longitudinal ρ na avaliação dos critérios de verificação de lajes em concreto armado sem armadura de punção e $f_c>50$ MPa_____110 TABELA 4.26 – Influência da taxa de armadura longitudinal ρ na avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado sem armadura de punção e $f_c > 50$ MPa_____111 TABELA 4.27 - Resultados da avaliação estatística dos critérios de verificação para lajes em concreto armado com armadura de punção e $f_c > 50$ MPa (17 lajes) 116 TABELA 4.28 - Resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado com armadura de punção e $f_c>50$ MPa (17 lajes)_____118 TABELA 4.29 – Influência da tensão de escoamento f_y do aço da armadura de punção na avaliação dos critérios de verificação de lajes em concreto armado com armadura transversal e $f_c > 50$ MPa _____120 TABELA 4.30 – Influência da tensão de escoamento f_y do aço da armadura de punção na avaliação da escala de demérito dos critérios de verificação de lajes em concreto armado com armadura transversal e $f_c > 50$ MPa _____121

TABELA 4.31 – Resultados da avaliação estatística dos critérios de verificação para lajes em concreto protendido sem armadura de punção e $f_c>50$ MPa (20 lajes) 127 TABELA 4.32 - Resultados da avaliação da escala de demérito dos critérios de verificação das lajes em concreto protendido sem armadura de punção e $f_c > 50$ MPa (20 lajes)_____129 TABELA 4.33 – Influência da taxa de armadura longitudinal ρ na avaliação dos critérios de verificação de lajes em concreto protendido sem armadura transversal e *fc*>50 MPa_____131 TABELA 4.34 – Influência da tensão de protensão inicial sem perdas f_{pc} na avaliação dos critérios de verificação de lajes em concreto protendido sem armadura transversal e *fc*>50 MPa _____132 TABELA 4.35 – Influência da taxa de armadura longitudinal ρ na avaliação da escala de demérito dos critérios de verificação das lajes em concreto protendido sem armadura de punção e $f_c > 50$ MPa 133 TABELA 4.36 – Influência da tensão de protensão inicial sem perdas f_{pc} na avaliação da escala de demérito dos critérios de verificação de lajes em concreto protendido sem armadura de punção e f_c >50 MPa_____133 TABELA 4.37 - Resultados da avaliação estatística dos critérios de verificação para lajes em concreto protendido com armadura de punção e $f_c > 50$ MPa (09 lajes) 140 TABELA 4.38 - Resultados da avaliação da escala de demérito dos critérios de verificação de lajes em concreto protendido com armadura de punção e $f_c>50$ MPa (09 lajes)_____142 TABELA 4.39 – Influência da tensão de escoamento f_y do aço da armadura de punção na avaliação dos critérios de verificação de lajes em concreto protendido com armadura transversal e $f_c > 50$ MPa _____144 TABELA 4.40 – Influência da tensão de escoamento f_y do aço da armadura de punção na avaliação da escala de demérito dos critérios de verificação de lajes em concreto protendido com armadura transversal e f_c >50 MPa____145

Resumo

As crescentes inovações técnicas e a revisão dos critérios normativos da NBR 6118 (2003) para o dimensionamento ao esforço de punção em lajes lisas de concreto armado e protendido são as diretrizes da elaboração do presente estudo. Dentro deste cenário, o objetivo desta dissertação é avaliar a segurança, precisão e economia destes critérios por meio da comparação com resultados experimentais encontrados na literatura de lajes em concreto armado e protendido, com e sem armadura de punção e executadas com concreto convencional ($f_c \leq 50$ MPa) e de alto desempenho ($f_c > 50$ MPa). Os parâmetros incluídos na análise são a existência ou não de armadura de punção, a taxa de armadura longitudinal de flexão, a resistência à compressão do concreto, a tensão de escoamento do aço da armadura transversal e a tensão inicial de protensão sem perdas Os procedimentos de cálculo preconizados pelo EUROCODE 2 (2004) e pelo ACI 318 (2005) são também analisados. Para o estudo comparativo foi criado um banco de dados composto de 354 resultados de ensaios de lajes com pilar interno sem efeito de momento. A análise comparativa indica que todas as formulações normativas estudadas são seguras, conservativas e antieconômicas. Para a NBR 6118, sugere-se a redução do valor da tensão prescrita na armadura de punção no caso de lajes em concreto armado. Para o EUROCODE 2 recomenda-se a não limitação no valor de k, e para o ACI 318 a inclusão da taxa de armadura longitudinal na formulação. Nas lajes protendidas todos os critérios analisados são muito conservativos gerando desperdício de material.

Palavras-chave: punção, lajes lisas em concreto armado e protendido, critérios normativos.

Abstract

The Brazilian code NBR 6118/2003 introduces significant changes in the criteria for the punching shear strength of reinforced and prestressed concrete flat slabs. In this scenario. the objective of this work is to evaluate these punching shear design procedures in terms of safety, precision and economy with respect to test results of reinforced and prestressed concrete flat slabs, with and without transversal reinforcement built with normal strength concrete ($f_c \leq 50$ MPa) and high-performance concrete ($f_c > 50$ MPa). The effects of the presence or not of punching reinforcement, of longitudinal reinforcement rates, of concrete compressive strength, yield strength of shear reinforcement and the magnitude of the initial prestressed force are also investigated. EUROCODE 2 (2004) and ACI 318 (2005) punching shear design criteria are also analyzed. The data basis is composed of 354 experimental results of slabs with symmetrical internal columns. The overall analysis indicates that all design code criteria are safe, conservative and not economical. A revision of NBR 6118 design equation for the transversal reinforcement contribution in the punching shear strength of reinforced concrete flat slabs is recommended. The results also show that, the value of k, in EUROCODE 2, shall not be limited to 2 and that the longitudinal reinforcement rate be included in ACI 318 design equations. For prestressed slabs all design criteria are extremely conservative and consequently not economical.

Keywords: punching shear, reinforced and prestressed concrete flat slabs, design codes.

AGRADECIMENTOS

Agradeço primeiramente a DEUS pela vida, aos meus pais Clésio e Maria, e meu irmão Claus pelo incentivo, à minha esposa Scheilla pela cooperação e paciência, ao Prof. Dr. José Calixto pelos ensinamentos e a todos que acreditaram em mim. Agradeço também ao Departamento de Engenharia de Estruturas da UFMG que contribuiu para o aprimoramento do meu aprendizado.

1 introdução

1.1 - Considerações Iniciais

As lajes lisas, também denominadas de laje planas, são estruturas laminares horizontais, em concreto armado ou protendido, que se apóiam rígida e diretamente em pilares; não existindo vigas para transferência dos esforços. Edifícios de lajes lisas em concreto armado são projetados e construídos no Brasil desde 1950. Na década de 1970, muitos prédios foram executados com o emprego de protensão aderente; porém, com a produção de cordoalhas engraxadas, iniciada no Brasil em meados de 1995, a técnica de protensão não aderente em lajes lisas vem ganhando cada vez mais espaço nas estruturas dos edifícios das médias e grandes cidades. Este processo construtivo tira partido principalmente do uso de lajes sem vigas (lisas) ou, pelo menos, com o mínimo de sua utilização. Essa forma de projetar tem como objetivo simplificar de sobremaneira a execução das fôrmas da estrutura, resultando em economia de consumo de material e de mão-de-obra na construção. Facilita-se também a montagem das armaduras e o lançamento do concreto, que, na execução das vigas, é mais demorado e trabalhoso, devido às interferências das armaduras das próprias vigas com os pilares. Vale salientar ainda, que as lajes lisas permitem ganho de desnível entre lajes, permitindo "mais andares" com a mesma altura do edifício, em função da eliminação dos vigamentos.

Quando combinadas com a protensão, as lajes lisas apresentam altura reduzida e permitem uma grande flexibilidade, quer na distribuição de tubulações e dutos, quer na disposição das paredes divisórias, sendo, portanto, indicadas tanto para edifícios comerciais quanto residenciais.

No entanto, esse sistema de laje lisa, protendida ou não, apresenta algumas desvantagens, dentre as quais pode-se destacar a possibilidade da ocorrência da punção da laje pelo pilar.

O que se convencionou em chamar de "punção" nessas peças estruturais é o efeito de ruptura transversal, por cisalhamento, em torno de regiões relativamente pequenas submetidas a carregamentos localizados. Segundo LEONHARDT e MÖNNIG (1979), os ensaios demonstram que as deformações tangenciais são, inicialmente, maiores que as deformações radiais. Por isso, surgem primeiro as fissuras radiais. Somente para elevados estágios de carga aparecem algumas fissuras circulares, a partir das quais se desenvolvem as superfícies de ruptura por cisalhamento do cone de punção com inclinação média da ordem de 30°, como indicado na figura 1.1.

FIGURA 1.1 – Ruína por punção em lajes lisas

CORDOVIL (1997) enfatiza que o sólido tronco-cônico que se forma com a fissura circunferencial somente ocorre na ruptura da laje, quando o concreto perde todas as suas resistências, inclusive ao cisalhamento. Cordovil ressalta ainda que a resistência do concreto ao cisalhamento é devida ao "engrenamento dos agregados", que permite o cruzamento das bielas de compressão pela região de concentração de fissuras. A não consideração dessa resistência pode levar a critérios muito conservativos no dimensionamento à punção.

Considerado como um estado limite último (ELU) pela NBR 6118 (2003), a punção ocorre de forma abrupta e frágil. Porém, sua análise é diferente daquela realizada para o estado limite último por força cortante, sendo de fundamental importância no caso das lajes sem vigas.

A resistência de lajes submetidas a forças concentradas é verificada empregando-se uma tensão de cisalhamento nominal em uma superfície crítica concêntrica à região carregada. Segundo o CEB-FIP (1990), essa tensão tangencial atuando na superfície crítica não tem significado físico; porém esse procedimento, embora empírico, apresenta boa correlação com resultados experimentais e de modelos mecânicos encontrados na literatura. Em resumo, a técnica de verificação da resistência e o dimensionamento da punção baseiam-se no estudo de seções de controle, como ilustra a figura 1.2.

FIGURA 1.2 – Modelo em elementos finitos representando o efeito de punção, com suas respectivas análises de tensões, referente à linha média da laje.

1.2 – Justificativa

As crescentes inovações técnicas associadas à recente revisão dos critérios normativos da NBR 6118 (2003) para o esforço transversal de punção em termos do dimensionamento e detalhamento são os aspectos que justificam este trabalho de dissertação. Destaca-se também o crescente emprego de lajes lisas em concreto armado e protendido, com cordoalhas engraxadas, nas estruturas dos edifícios, em virtude das melhorias obtidas na relação custo/benefício. Este último aspecto tem provocado um estudo mais amplo deste tipo de solução estrutural no meio dos projetistas brasileiros, sendo, portanto, também de importância em termos didáticos.

1.3 – Objetivo

Dentro deste cenário, o objetivo desta dissertação é analisar crítica e comparativamente os critérios normativos de dimensionamento à punção em lajes lisas, tendo como referência a NBR 6118 (2003), bem como o EUROCODE 2 (2004) e o ACI 318 (2005), em relação ao maior número de resultados experimentais. Esses resultados experimentais, realizados por diversos autores brasileiros e de outros países, compõem um banco de dados. Vários aspectos serão abordados dentro destes objetivos:

- serão compilados os mais diversos tipos de ensaios realizados em módulos de lajes lisas, englobando as variadas características inerentes às solicitações, bem como seus resultados;
- os critérios de dimensionamento aos esforços transversais de punção, segundo a NBR 6118 (2003), assim como os critérios de dimensionamento aos esforços transversais de punção, segundo o ACI 318 (2005) e o EUROCODE 2 (2004), serão comparados aos resultados desses ensaios, de modo a verificar sua adequação e confiabilidade.

1.4 – Descrição Resumida da Dissertação

A presente dissertação se desenvolve em cinco capítulos. Este primeiro capítulo apresenta uma introdução referente aos termos e conceitos abordados no estudo, englobando ainda a justificativa e objetivo do trabalho.

O segundo capítulo descreve inicialmente o comportamento de lajes lisas sob carga de punção em um modelo mecânico consagrado. Em seguida são descritos sucintamente os critérios de dimensionamento à punção de lajes de concreto armado e protendido, com referência às normas NBR 6118 (2003) - brasileira, ACI 318 (2005) - americana e EUROCODE 2 (2004) - européia, analisando seus respectivos conceitos, abordagens, limitações e empregos.

No terceiro capítulo, o banco de dados é apresentado, tendo como principal conteúdo as características dos ensaios de inúmeras lajes solicitadas por uma carga interna (simulando pilares internos) e suas cargas e superfícies de ruptura à punção correspondentes. Nesse capítulo descreve-se também a metodologia empregada no estudo comparativo dos critérios normativos descritos.

O quarto capítulo refere-se aos estudos comparativos dos resultados experimentais com as normas em questão, abordando enfaticamente os aspectos de segurança, precisão e economia. São realizadas, ainda, análises parciais, para avaliar a influência da existência ou não de armadura de cisalhamento, da existência ou não de protensão, da resistência à compressão do concreto, da tensão no aço da armadura de punção, valor normativo ou obtido em testes, entre outras.

Para finalizar, o quinto capítulo apresenta as conclusões do estudo e sugestões para trabalhos futuros.

DIMENSIONAMENTO À PUNÇÃO

Para que este estudo fosse realizado, procurou-se inicialmente entender melhor o comportamento de lajes sob carga de punção. Por isso será apresentado primeiramente de forma sucinta e objetiva esse comportamento em um modelo mecânico consagrado. Em seguida são descritos os critérios de dimensionamento à punção em lajes lisas de concreto armado e protendido utilizados pelas normas NBR 6118 (2003), EUROCODE 2 (2004) e ACI 318 (2005). A descrição dos critérios das normas foi restringida a pilares internos de lajes lisas, visto que, na pesquisa bibliográfica, de artigos técnicos, teses e dissertações publicadas para a criação de um banco de resultados experimentais, somente foram encontrados resultados de ensaios para este tipo de situação.

2.1 – Comportamento de lajes sob carga de punção

Com relação ao comportamento das lajes sob o carregamento de punção, os ensaios mostram que as deformações circunferenciais são inicialmente maiores que as deformações radiais [LEONHARDT e MÖNNIG (1979)]. Por isso, as fissuras radiais surgem em primeiro lugar. Somente no ato do colapso há formação de uma fissura quase circular, que limita o contorno de um sólido deslocado ao redor do pilar. Segundo CORDOVIL (1997), a distância dessa fissura circular indica até onde a superfície de ruptura se estende. Em lajes sem armadura de cisalhamento, essa superfície atinge distâncias que variam entre duas a três vezes a altura útil *d* da laje, como ilustra a figura 2.1. O sólido deslocado tem a semelhança de um tronco de cone, entretanto, com uma irregularidade acentuada.

FIGURA 2.1 – Zona de ruptura em lajes submetidas ao puncionamento, sem armadura transversal de punção

CORDOVIL (1997) ressalta ainda que, no caso de lajes com armadura de cisalhamento, a superfície de ruptura pode ocorrer em três posições diferentes:

- na zona entre o pilar e a primeira camada da armadura de cisalhamento, com ruptura somente do concreto adjacente ao pilar (punção restrita);
- na zona com armadura de cisalhamento, com ruptura do concreto e da armadura transversal (punção não restrita internamente à armadura transversal);
- na zona situada além da armadura de cisalhamento, com ruptura do concreto (punção não restrita externamente à armadura transversal).

A situação ideal seria a segunda condição, isto é, quando há ruptura da armadura transversal. Assim, a armadura entraria em escoamento plástico, aumentando a ductilidade da estrutura antes do colapso da laje. A figura 2.2 mostra os tipos de ruptura em lajes com armadura de punção.

FIGURA 2.2 – Zonas de ruptura em lajes submetidas ao puncionamento com armadura transversal de punção

2.2 – Modelo Mecânico

KINNUNEN e NYLANDER (1960) apud CORDOVIL (1997) apresentaram um modelo mecânico para a ruptura da laje, sem armadura transversal, por punção de pilar circular no qual a ruína ocorre a partir deste com o deslocamento de um sólido interno (vide figura 2.3). Esse sólido teria a forma aproximada de um tronco de cone, com a superfície inclinada entre 25° e 30° em relação ao plano da laje.

Na zona contígua ao tronco de cone, a laje seria dividida em elementos rígidos iguais, limitados pela superfície inclinada e por fissuras radiais. Cada elemento rígido produziria um trabalho decorrente da rotação em torno de um ponto chamado "centro de rotação" CR, como mostra a figura 2.4. Esse ponto seria o limite entre dois estágios ideais de fissuração: as fissuras que limitam a superfície inclinada, bem como as fissuras radiais, seriam formadas antes da ruptura da laje, e a fissura localizada entre a periferia do pilar e o CR somente seria formada no instante da ruptura da laje.

A partir dessas hipóteses de funcionamento, é possível estabelecer as condições de equilíbrio entre os esforços externos e internos, mostrados na figura 2.3. Nessas circunstâncias, há condições de se estabelecer uma teoria próxima da realidade, bastando, para isso, aplicar o princípio dos trabalhos virtuais, supondo a rotação do elemento como mostra a figura 2.4. Porém, como o modelo estudado por KINNUNEN e NYLANDER foi realizado em pilares circulares, quando se tenta estender essa teoria para formas quadradas ou retangulares, a formulação fica pouco confiável.

FIGURA 2.3 – Modelo mecânico de KINNUNEN e NYLANDER

FIGURA 2.4 - Esquema da fissuração inclinada e da rotação dos segmentos da laje

2.3 – Critérios da Norma Brasileira NBR 6118 (2003)

O modelo de cálculo proposto pela NBR 6118 (2003) corresponde à verificação do cisalhamento em duas ou mais superfícies críticas ou seções de controle, definidas no entorno de forças concentradas.

Na primeira superfície crítica, denominada de contorno C do pilar ou carga concentrada, verifica-se, indiretamente, a tensão de compressão diagonal do concreto, por meio de uma tensão de cisalhamento.

Na segunda superfície crítica, denominada de contorno *C*' e localizada a uma distância *2d* do pilar ou carga concentrada, verifica-se a capacidade da ligação à punção, associada à ruína por tração diagonal, por meio também de uma tensão de cisalhamento. Caso haja necessidade, essa ligação deve ser reforçada por uma armadura transversal.

A terceira superficie crítica, denominada de contorno *C*", apenas deve ser verificada quando for necessário se colocar armadura transversal.

2.3.1 - Seções de Controle

Apresentam-se, a seguir, as formas dos perímetros críticos utilizados nas análises de punção para pilares internos em lajes lisas.

FIGURA 2.5 – Perímetros críticos em pilares internos

No caso de pilares com capitel (engrossamento localizado da laje), em lajes denominadas cogumelo, devem ser feitas verificações nos contornos críticos $C'_1 \in C'_2$, conforme ilustra a figura 2.6. As verificações são:

- se $l_c \leq 2(dc d)$, verifica-se somente o Contorno C'_2 ;
- se $2(d_c d) < l_c \le 2 d_c$, basta verificar o Contorno C'_I ; e
- se $l_c > 2 d_c$, é necessário verificar os Contornos $C'_1 \in C'_2$.

 $d = altura útil da laje no Contorno C'_2;$ $d_c = altura útil da laje na face do pilar ou da carga concentrada;$ $d_a = altura útil da laje no Contorno C'_1; e$ $l_c = distância entre a borda do capitel e a face do pilar.$

FIGURA 2.6 – Perímetros críticos em lajes cogumelo

A NBR 6118 (2003) apresenta ainda prescrições para pilares com geometrias irregulares, pilares com reentrâncias e próximos a aberturas. Nesses casos, os contornos $C \in C'$ são determinados conforme mostra a figura 2.7.

FIGURA 2.7 – Perímetros críticos em casos de pilares especiais

2.3.2 - Cálculo da tensão solicitante nas superfícies críticas de contorno C e C'

Pilar com carregamento simétrico

Neste caso, a tensão de cisalhamento é dada por:

$$\tau_{sd} = \frac{F_{sd}}{ud}, \qquad (2.1)$$

$$d = (d_x + d_y)/2,$$
 (2.2)

onde:

- F_{sd} é a força ou reação concentrada de cálculo;
- u é o valor numérico do perímetro do contorno crítico (u_{θ} para C e u para C');
- *d* é a altura útil média da laje ao longo do contorno crítico *C* ou *C*'; e
- $d_x \in d_y$ são as alturas úteis nas duas direções ortogonais.

Pilar com efeito de momento

Devido à assimetria do carregamento, a tensão de cisalhamento é dada por:

$$\tau_{sd} = \frac{F_{sd}}{ud} + \frac{kM_{sd}}{w_p d}, \qquad (2.3)$$

onde:

- M_{sd} é o momento de cálculo transmitido da laje ao pilar;
- k é o coeficiente que fornece a parcela de M_{sd} , transmitida ao pilar por cisalhamento, que depende da relação c_1/c_2 ; e
- w_p é o módulo de resistência plástica do perímetro crítico em questão.

O coeficiente k assume os valores dados na tabela abaixo.

TABELA 2.1 – Valores de k

c_{1}/c_{2}	0,5	1,0	2,0	3,0
k	0,45	0,60	0,70	0,80

 c_1 é a dimensão do pilar, paralela à excentricidade da força e c_2 é a dimensão do pilar, perpendicular à excentricidade da força.

O módulo de resistência plástica pode ser avaliado pela seguinte expressão:

$$w_{p} = \int_{0}^{u} |e| \cdot dl , \qquad (2.4)$$

onde:

- *dl* é o comprimento infinitesimal no perímetro *u* considerado e
- *e* é a distância de *dl* ao eixo que passa pelo centro do pilar e em torno do qual atua o momento em questão.

No caso de existirem momentos em duas direções ortogonais, a expressão de τ_{sd} é dada por:

$$\tau_{sd} = \frac{F_{sd}}{u.d} + k_1 \frac{M_{sd1}}{w_{p1} \cdot d} + k_2 \frac{M_{sd2}}{w_{p2} \cdot d}, \qquad (2.5)$$

Fazendo-se as adaptações necessárias para $k_1 e k_2$, bem como para $w_{p1} e w_{p2}$. A figura 2.8 esclarece as associações dos momentos com os lados da seção.

FIGURA 2.8 - Associação dos lados da seção do pilar com os momentos fletores

2.3.3 - Cálculo da tensão resistente nas superfícies críticas de contorno C, C' e C"

Contorno C

Neste caso a tensão resistente de compressão diagonal do concreto é igual a:

$$\tau_{sd} \le \tau_{Rd2} = 0,27\alpha_v f_{cd}, \tag{2.6}$$

$$\alpha_v = (1 - f_{ck}/250), \text{ com } f_{ck} \text{ em MPa},$$
 (2.7)

onde:

- $\alpha_v \acute{e}$ o fator de fragilidade do concreto; e
- f_{cd} é a resistência à compressão de cálculo do concreto.

O valor de τ_{Rd2} poderá ser ampliado em 20%, quando os vãos que chegam ao pilar em questão não diferem entre si em mais de 50%, e se não existirem aberturas junto ao pilar, ou seja $\tau_{Rd2} = 0.324 \alpha_v f_{cd}$.

Contorno C'

a) Tensão resistente em elementos estruturais ou trechos sem armadura de punção:

$$\tau_{sd} \leq \tau_{Rd1} = 0.13 \left(1 + \sqrt{\frac{20}{d}} \right) (100 \ \rho \ f_{ck})^{\frac{1}{3}},$$
 (2.8)

$$\rho = \sqrt{\rho_x + \rho_y} , \qquad (2.9)$$

onde:

- *d* é a altura útil média da laje ao longo do contorno crítico *C*', em centímetros;
- ρ é a taxa geométrica de armadura de flexão aderente;
- *f_{ck}* é a resistência característica à compressão do concreto, em MPa;
- $\rho_x e \rho_y$ são as taxas de armadura nas duas direções ortogonais, assim calculadas:
 - na largura igual à dimensão ou área carregada do pilar, acrescida de 3d para cada um dos lados;
 - no caso de proximidade da borda, prevalece a distância até a borda, quando menor que 3d.
- b) Tensão resistente em elementos estruturais ou trechos com armadura de punção:

$$\tau_{sd} \le \tau_{Rd3} = 0.10 \left(1 + \sqrt{\frac{20}{d}} \right) (100 \rho f_{ck})^{\frac{1}{3}} + 1.5 \frac{dA_{sw} f_{ywd} sen\alpha}{s_r (ud)}, \qquad (2.10)$$

onde:

- s_r é o espaçamento radial entre linhas de armadura de punção, sempre menor ou igual a ≤ 0,75d;
- A_{sw} é a área da armadura de punção em um contorno completo paralelo a C';
- α é o ângulo de inclinação entre o eixo da armadura de punção e o plano da laje;
- *u* é o valor numérico do perímetro crítico;
- *f_{ywd}* é a resistência de cálculo da armadura de punção, não maior que 300 MPa para conectores, ou 250 MPa para estribos (CA-50 ou CA-60). Para lajes com espessura maior que 15cm, pode assumir os seguintes valores:

 $f_{ywd} = 250 + 185(h-15)/20$ MPa, para $15 < h \le 35$ cm

 $f_{ywd} = 435$ MPa, para h > 35cm

Quando for necessário utilizar armadura de combate à punção, ela deve ser estendida em contornos paralelos a *C*' até que, em um contorno *C*'' afastado *2d* do último contorno de armadura (figura 2.9), não seja mais necessária armadura, isto é $\tau_{sd} \leq \tau_{Rd1}$.

FIGURA 2.9 – Disposição da armadura de punção em planta e contorno C"

2.3.4 - Detalhamento da armadura de punção

As regiões mínimas em que devem ser dispostas as armaduras de punção, bem como as distâncias regulamentares a serem obedecidas estão na figura 2.10.

FIGURA 2.10 – Detalhamento da armadura de punção

A NBR 6118 (2003) apresenta ainda as seguintes prescrições referentes ao detalhamento da armadura:

- para resistir à punção, as armaduras devem ser constituídas, de preferência, por conectores do tipo "stud", sendo permitido o uso de estribos verticais;
- o diâmetro da armadura de estribos não pode superar h/20, onde h é a espessura da laje. Além disso, deve haver contato mecânico das barras longitudinais com os cantos dos estribos (ancoragem mecânica), conforme mostra a figura 2.11;
- as armaduras devem ser dispostas de forma que se possa garantir o seu posicionamento durante a concretagem.

FIGURA 2.11 - Ancoragem da armadura de punção

2.3.5 - Verificação de elementos estruturais protendidos

Para verificação de elementos estruturais protendidos é utilizada a seguinte expressão:

$$\tau_{sd,ef} = \tau_{sd} - \tau_{Pd}, \qquad (2.11)$$

$$\tau_{Pd} = \frac{\sum P_{k \inf_i sen\alpha_i}}{ud}, \qquad (2.12)$$

onde τ_{Pd} é a tensão devida ao efeito dos cabos de protensão inclinados que atravessam o contorno considerado e passam a menos de d/2 da face do pilar, conforme mostra a figura 2.12. O valor de $P_{kinf,i}$ é a força de protensão no cabo i; α_i é a inclinação do cabo i em relação ao plano da laje no contorno considerado; u é o perímetro crítico do contorno considerado, em que se calculam $\tau_{Sd,ef}$ e τ_{Sd} .

FIGURA 2.12 – Efeito favorável dos cabos inclinados no contorno considerado

As tensões resistentes são calculadas como para lajes em concreto armado (item 2.3.3).

2.4 - Critérios do EUROCODE 2 (2004)

De acordo com o EUROCODE 2 (2004), o modelo de verificação para análise deste tipo de ruína é mostrado na figura 2.13. Basicamente a resistência à punção deve ser verificada na face do pilar (contorno u_{θ}) e no contorno básico de controle u_1 . Se a armação de cisalhamento for necessária, uma verificação adicional deve ser feita no contorno u_2 , onde não exista a necessidade desta armadura.

A = Seção básica de controle

B - área básica de controle *Acont*C - perímetro básico de controle *u_i*D - área carregada *Acarga*E - perímetro básico de controle *u_o rcont* - raio do perímetro de controle adicional - como em lajes com capitéis

FIGURA 2.13 – Modelo para verificação da punção no estado limite último

2.4.1 - Contornos básicos de controle

O contorno básico de controle u_1 está localizado a uma distância 2d da área carregada e deve ser construído visando minimizar seu comprimento, conforme mostra a figura 2.14, inclusive no caso de pilares com seções irregulares (figura 2.14c).

FIGURA 2.14 - Perímetros básicos de controle ao redor de áreas carregadas

Atenção especial deve ser dada para pilares localizados nas proximidades de aberturas situadas a uma distância menor que *6d* da face do pilar. Nesse caso, despreza-se a parte do contorno de controle contido entre duas retas traçadas a partir do centro da área carregada até as extremidades das aberturas, conforme mostra a figura 2.15.

FIGURA 2.15 - Contorno de controle próximo a uma abertura

Para pilares com capitel, peculiares às lajes cogumelo, devem ser feitas verificações no contorno da área carregada, bem como no contorno básico de controle. Neste caso, a localização desse contorno básico depende da relação entre a dimensão em planta do

capitel (l_H) e o aumento da espessura da laje, devido ao capitel (h_H) , conforme ilustra a figura 2.16.

A - seções básicas de controle

B - área carregada Acarga

FIGURA 2.16 - Contornos críticos em lajes cogumelo

Existem duas situações a considerar:

a) Dimensão $l_H < 2h_H$

Neste caso, verifica-se o contorno básico somente fora do capitel. A distância deste contorno ao eixo do pilar r_{cont} a considerar é dada por:

Pilar circular:
$$r_{cont} = 2d + l_H + 0,5c$$

onde:

d é a altura útil da laje fora do capitel;

 l_H é a dimensão em planta do capitel;

c é o diâmetro do pilar circular.

Pilar retangular:
$$r_{cont} \leq (2d + 0.56 \sqrt{l_1 l_2}) \leq 2d + 0.69 l_1$$

onde:

d é a altura útil da laje fora do capitel;

 c_1 é a dimensão em planta do pilar em uma direção;

 c_2 é a outra dimensão em planta do pilar;

$$l_1 = c_1 + 2 \cdot l_{H1};$$

 $l_2 = c_2 + 2 \cdot l_{H2}$ e

 $l_1 \leq l_2$.
b) Dimensão $l_H > 2 (d + h_H)$

Neste caso, verifica-se o contorno básico, tanto dentro quanto fora do capitel, conforme mostra a figura 2.16. As distâncias desses contornos ao eixo de um pilar circular a considerar são dadas por:

$$r_{cont, ext} = 2d + l_H + 0.5c$$

 $r_{cont, int} = 2(d + h_H) + 0.5c$

onde:

d é a altura útil da laje fora do capitel;

 l_H é a dimensão em planta do capitel; e

c é o diâmetro do pilar circular.

2.4.2 - Cálculo das tensões solicitantes nos contornos básicos de controle

O cálculo das tensões solicitantes deve ser feito nos seguintes contornos de controle:

- 1. Contorno u_{θ} da área carregada;
- 2. Contorno básico de controle u_1 e
- 3. Contorno adicional u_2 (figura 2.18), onde armadura de punção não é mais necessária.

Pilar com efeito de momento

Neste caso a tensão solicitante é igual a:

$$\tau_{Ed} = \beta \frac{F_{Ed}}{u_i d} \tag{2.13}$$

onde

- F_{Ed} é a força de cálculo;
- d é a espessura média efetiva da laje, igual a (d_x + d_y)/2, onde d_x e d_y são as alturas úteis efetivas da laje nas direções x e y;
- *u_i* é o comprimento do perímetro do contorno de controle considerado;
- β é um fator dado por:

$$\beta = 1 + k \frac{M_{Ed}}{F_{Ed}} \times \frac{u_1}{w_1}, \qquad (2.14)$$

onde

- *u*¹ é o comprimento do perímetro do contorno básico de controle;
- k é um coeficiente que depende da relação (c₁/c₂) entre as dimensões do pilar. Seu valor numérico, calculado com o emprego da tabela 2.2, fornece a parcela do momento M_{Ed}, transmitida ao pilar por cisalhamento, conforme mostra a figura 2.17;
- *w*₁ é o módulo de resistência plástica do perímetro correspondente ao contorno de controle considerado, dado por:

$$w_{I} = \int_{0}^{u_{1}} |e| dl, \qquad (2.15)$$

onde

- *dl* é um incremento do comprimento do perímetro;
- e é a distância de *dl ao* eixo sobre o qual o momento M_{Ed} atua.

c_{1}/c_{2}	≤0,5	1,0	2,0	≥3,0
k	0,45	0,60	0,70	0,80

TABELA 2.2 – Valores de k

 c_1 é a dimensão do pilar, paralela à excentricidade da força e c_2 é a dimensão do pilar, perpendicular à excentricidade da força.

FIGURA 2.17 - Distribuição de tensões de cisalhamento, devido a momento atuante na ligação laje-pilar

No caso de pilares circulares, a expressão para β é igual a $1+0, 6\pi \frac{e}{D+4d}$, onde e é o quociente entre $\binom{M_{Ed}}{F_{Ed}}$ e D é o diâmetro do pilar.

Para pilares retangulares com momentos nas duas direções, β é dado por:

$$\beta = I + I, 8 \sqrt{\left[\left(\frac{e_x}{b_y}\right)^2 + \left(\frac{e_y}{b_x}\right)^2\right]}, \qquad (2.16)$$

onde e_x e e_y são as excentricidades $\binom{M_{Ed}}{F_{Ed}}$, segundo os eixos x e y, respectivamente; e b_x e b_y são as dimensões do perímetro de controle (figura 2.17).

2.4.3 - Cálculo das tensões resistentes nos contornos básicos de controle

Contorno da Área Carregada u₀

Neste caso, a tensão resistente é igual a:

$$\tau_{Ed} \le \tau_{Rd,max} = 0,5 \ vf_{cd} , \qquad (2.17)$$

onde

- $v = 0.6 [1 (f_{ck}/250)]; e$
- f_{cd} é a resistência à compressão de cálculo do concreto.

Contorno Básico de Controle *u*₁

a) Tensão resistente em elementos sem armadura de punção:

$$\tau_{Ed} \leq \tau_{Rd,c} = 0.12 \ k \ (100 \ \rho_1 \ f_{ck})^{1/3} \geq 0.035(\ k)^{3/2} \ (f_{ck})^{1/2} \ , \tag{2.18}$$

 $\operatorname{com} f_{ck} \operatorname{em} MPa e$

- $k = 1 + \sqrt{\frac{200}{d}} \le 2,0$ com d em mm;
- ρ₁ = √ρ_{lx} · ρ_{ly} ≤ 0,02, sendo ρ_{lx} e ρ_{ly} as taxas de armadura utilizadas nas direções x e y respectivamente. Os valores de ρ_{lx} e ρ_{ly} devem ser calculados por meio do valor médio, levando em conta uma largura de laje igual à largura do pilar, acrescida de 3d para cada lado.

b) Tensão resistente em elementos com armadura de punção:

$$\tau_{Ed} \le \tau_{Rd,cs} = 0,75 \ \tau_{Rd,c} + 1,5 \ (d/s_r) \ A_{sw} \ f_{ywd,ef} \ [1/(u_1d)] \ sena, \tag{2.19}$$
onde:

- A_{sw} é a área da armadura de punção em um contorno considerado (mm²);
- s_r é o espaçamento radial das linhas de armadura de punção (mm);
- $f_{ywd,ef}$ é a resistência efetiva de projeto da armadura de punção:

$$f_{ywd,ef} = 250 + 0.25 d \le f_{ywd}$$
 em MPa;

- *d* é a espessura média efetiva da laje nas duas direções (mm);
- α é o ângulo entre a armadura de punção e o plano médio da laje.

Essa armadura deve ser estendida em contornos paralelos a u_I até que, num contorno u_2 , afastado 1,5d da última linha de armadura, a tensão τ_{Ed} seja menor ou igual a $\tau_{Rd,c}$, conforme mostra a figura 2.18. O valor numérico do perímetro de contorno pode ser calculado através da expressão:

$$u_2 = \beta F_{Ed} / (\tau_{Rd,c} d) \tag{2.20}$$

FIGURA 2.18 - Contornos de controle *u*₂

2.4.4 - Detalhamento da armadura de punção

O EUROCODE 2 (2004) apresenta as seguintes prescrições, quando do detalhamento da armadura de punção:

- a armadura de punção deve ser colocada, conforme mostra a figura 2.18, entre a face da área carregada ou do pilar, até um contorno que diste 1,5*d* do contorno externo *u*₂, onde a armadura não é mais necessária;
- devem existir, pelo menos, duas linhas de conectores;
- a primeira linha de conectores deve ser posicionada a uma distância menor que 0,3d da face do pilar. O espaçamento entre as linhas subseqüentes de conectores não deve exceder 0,75d, conforme mostra a figura 2.19.

A - perímetro externo de controle onde a armadura de punção é necessária *B* - perímetro de controle onde a armadura de punção não é mais necessária

FIGURA 2.19 – Detalhamento da armadura de punção

- O espaçamento dos conectores em uma mesma linha não deve ser superior a 1,5d nas linhas dentro do contorno básico de controle (até 2d da área carregada), e não deve ser superior a 2d nas outras linhas de conectores externas a este contorno.
- Quando a armadura de punção é requerida, a área mínima da seção transversal de um conector (ou equivalente) deve satisfazer a seguinte expressão:

$$A_{sw,min} \cdot (1,5 \cdot sen \ \alpha + \cos \ \alpha) / (s_r \cdot s_t) \ge 0,08 \cdot \sqrt{(f_{ck})/f_{yk}}$$
, (2.21)

onde:

- α é o ângulo entre a armadura de punção e a armadura de flexão, isto é, para conectores verticais α = 90° e, portanto, sen α = 1;
- s_r é o espaçamento radial entre linhas de conectores;
- $s_t \acute{e}$ o espaçamento entre os conectores em uma mesma linha;
- f_{ck} é a resistência característica do concreto, em MPa;
- f_{yk} é a resistência característica do aço da armadura de punção, em MPa.

2.4.5 - Verificação de elementos estruturais protendidos

Para verificação de elementos estruturais protendidos, é utilizada a seguinte expressão:

$$\tau_{Rd,ef} = \tau_{Rd,c} + \eta_1 \sigma_{cp} , \qquad (2.22)$$

sendo:

- $\tau_{Rd,c}$ é a tensão resistente do elemento estrutural, sem efeito de protensão;
- η₁ é igual a 0,1; e

•
$$\sigma_{cp} = \left(\frac{N_{pd,x}}{Ac_x} + \frac{N_{pd,y}}{Ac_y}\right) \div 2.$$

Nesta última relação, $N_{pd,x}$ e $N_{pd,y}$ são as forças de protensão correspondentes aos valores sem as perdas iniciais, nas direções x e y, respectivamente, e que passam a menos de 2d da face do pilar; $Ac_x e Ac_y$ são as áreas efetivas nas direções x e y, respectivamente.

2.5- Critérios da norma americana ACI 318 (2005)

Os critérios de análise consistem na verificação de seções críticas localizadas a uma distância d/2 (d é a altura útil da laje) das extremidades ou dos cantos dos pilares, de cargas concentradas, de áreas de reação, ou até mesmo de variações na espessura das lajes, tais como bordas de capitéis ou de engrossamento de lajes de um modo geral. O perímetro desses contornos é denominado perímetro efetivo b_o .

Depois de determinado o perímetro efetivo, compara-se a tensão solicitante com a tensão resistente, determinando-se a necessidade ou não de aumento dessa tensão resistente, com o incremento da área da seção resistente ou da armadura de punção.

2.5.1 - Contornos Críticos de Controle – Perímetros efetivos (b_o)

Apresentam-se, a seguir, as formas dos perímetros efetivos para verificação da punção em diversos casos de ligação laje/pilar.

d = altura útil média da laje ao longo da seção crítica

FIGURA 2.20 – Perímetros Efetivos

Conforme mostra a figura 2.20, os perímetros efetivos (b_o) possuem lados retos ou não, paralelos ao contorno dos pilares, se forem localizados no interior das lajes. Quando existirem aberturas em lajes, situadas a uma distância menor que 10h (onde h é a espessura da laje) em relação à face do pilar, de uma carga concentrada ou de uma reação, ou quando essas aberturas estiverem situadas dentro das seções críticas da laje, o perímetro crítico efetivo com relação à punção, também deverá ser tomado como reduzido (\boldsymbol{b}_{o}^{*}), conforme ilustra também a figura 2.20.

Em lajes cogumelos, são necessárias as verificações da punção em mais de um contorno: dentro da área do capitel (d/2 da face do pilar) e na seção distando d/2 da borda do capitel. Em caso de aberturas, para lajes com capitéis, a parte do perímetro que não é considerado efetivo deve ser igual à metade da que foi definida em lajes sem capitéis.

2.5.2 - Cálculo da tensão solicitante τ_u no perímetro efetivo b_o

A tensão de cisalhamento atuante nos contornos críticos de controle num pilar interno resulta do esforço cortante, acrescida da parcela de momento fletor transferida ao pilar por cisalhamento. Conforme ilustra a figura 2.21, essa tensão é suposta, variando linearmente ao redor do centróide (c-c) das seções críticas e pode ser calculada por:

FIGURA 2.21 - Suposta distribuição do esforço cortante

$$\tau_{u(AB)} = \frac{F_u}{A_c} + \frac{\gamma_v M_u c_{AB}}{J_c} \quad e \quad \tau_{u(CD)} = \frac{F_u}{A_c} - \frac{\gamma_v M_u c_{CD}}{J_c},$$
(2.23)

onde

- F_u é o esforço cortante majorado atuante na seção;
- A_c é área de concreto da seção crítica dada por $A_c = 2d(c_1+c_2+2d)$;
- *c*₁ *e c*₂ são as dimensões do pilar;
- M_u é o momento majorado atuante na seção;

γ_ν é a parcela do momento fletor da ligação laje-pilar transferida ao pilar por cisalhamento. Essa parcela é dada por:

$$\gamma_{\nu} = [1 - \frac{1}{1 + (2/3)\sqrt{(c_1 + d)/(c_2 + d)}}]$$
(2.24)

J_c é uma propriedade da seção crítica, análoga ao momento polar de inércia, dada por:

$$J_{c} = \frac{d(c_{1}+d)^{3}}{6} + \frac{(c_{1}+d)d^{3}}{6} + \frac{d(c_{2}+d)(c_{1}+d)^{2}}{2}$$
(2.25)

- *c*_{AB} é a distância do centróide c-c ao lado AB;
- *c_{CD}* é a distância do centróide c-c ao lado CD.

2.5.3 - Cálculo da tensão resistente τ_n no perímetro efetivo b_o

Tensão resistente em lajes sem armadura de punção

$$\tau_{u} \leq \tau_{n} = \tau_{c} \tag{2.26}$$

onde:

 τ_c é a tensão resistente relativa ao concreto, tomada como o menor valor entre:

$$\tau_{c} = 0.17 \left(1 + \frac{2}{\beta} \right) \sqrt{f'_{c}} \le 0.33 \sqrt{f'_{c}} , \qquad (2.27)$$

$$\tau_{c} = 0,083 \left(\frac{\alpha_{s} d}{b_{0}} + 2 \right) \sqrt{f'_{c}} \le 0,33 \sqrt{f'_{c}} , \qquad (2.28)$$

sendo:

- f'_c a resistência característica à compressão do concreto, em MPa;
- b_{θ} o valor numérico do perímetro efetivo (pode ser o reduzido b_{θ}^{*});
- β a razão entre o maior e o menor lado do pilar (vide figura 2.22);
- *d* é a altura útil da laje;
- $\alpha_{S} = 40$.

FIGURA 2.22 – Valores de β para uma área de carga não retangular

Tensão resistente em lajes com armadura de punção

$$\boldsymbol{\tau}_{\boldsymbol{u}} \leq \boldsymbol{\tau}_{\boldsymbol{n}} = \boldsymbol{\tau}_{\boldsymbol{c}} + \boldsymbol{\tau}_{\boldsymbol{s}} \leq 0.5 \sqrt{f'_{c}}, \qquad (2.29)$$

$$\boldsymbol{\tau_c} \leq 0.17 \sqrt{f'_c} , \qquad (2.30)$$

onde:

 $\boldsymbol{\tau}_c$ é a tensão resistente relativa ao concreto e

 τ_s é a tensão resistente relativa ao aço, dada por $\tau_s = \frac{A_v f_{yt}(sen\alpha + \cos\alpha)}{sb_0}$

sendo:

- A_v a área da armadura de cisalhamento da laje;
- *f_{yt}* a tensão de escoamento do aço da armadura transversal, em MPa, sempre menor ou igual a 400MPa);
- **b**₀ o valor numérico do perímetro efetivo;
- α é o ângulo de inclinação da armadura de cisalhamento em relação ao plano da laje e
- s o espaçamento da armadura em milímetros.

A armadura de punção deve ser estendida em contornos paralelos ao pilar até que, em um perímetro afastado d/2 da última linha de armadura, a tensão de cisalhamento atuante τ_u não exceda a $0.17\sqrt{f'_c}$.

2.5.4 - Detalhamento da armadura de punção

O ACI 318 (2005) apresenta as seguintes prescrições quando do detalhamento da armadura de punção:

- a armadura de cisalhamento pode ser composta por barras, fios ou estribos de uma ou várias pernas, em lajes com *d* maior ou igual a 15cm, mas não inferior a 16 vezes o diâmetro da barra de cisalhamento;
- a distância entre a face do pilar e a primeira linha das pernas dos estribos que circundam o pilar não deverá ser maior do que d/2;
- o espaçamento entre as pernas dos estribos adjacentes na primeira linha de armação de cisalhamento não deve exceder 2d, medidos na direção paralela à face do pilar;
- o espaçamento entre as linhas sucessivas da armação de cisalhamento que circundam o pilar não deve exceder d/2 em uma direção perpendicular à face do mesmo;
- a armadura de cisalhamento das lajes deve satisfazer os requisitos de ancoragem e deve estar amarrada à armadura de flexão longitudinal, na direção em que esta armadura está sendo considerada.

2.5.5 - Verificação de elementos estruturais protendidos

No caso de lajes protendidas, a contribuição do concreto no combate à solicitação de punção pode ser calculada pela seguinte expressão:

$$\tau_{c} = \left(\beta_{p}\sqrt{f'_{c}} + 0.30f_{pc}\right) + \frac{V_{p}}{b_{0}d},$$
(2.31)

onde:

- β_p é o menor valor entre 0,29 e 0,083 $\left(\frac{\alpha_s d}{b_0} + 1,5\right)$;
- *f*'_c é a resistência à compressão do concreto;
- d é a altura efetiva e b_0 o perímetro crítico;
- α_s é igual a 40;
- *f_{pc}* é a tensão de compressão média do concreto nas duas direções, devido à protensão;

V_p é a componente vertical de todas as forças efetivas de protensão que passam pela seção crítica (d/2 da face do pilar).

Nesse caso, devem ser ainda observadas as seguintes recomendações:

- nenhuma parte da seção transversal do pilar pode estar próxima a 4 vezes a altura efetiva da laje em um canto;
- $\sqrt{f'_c}$, utilizado na equação acima, não deve ser maior que 0,5 MPa; e
- f_{pc} , em cada direção, não deve ser menor que 0,9 MPa nem maior que 3,5 MPa.

METODOLOGIA

Os resultados de cálculo para a resistência ao puncionamento, segundo os critérios das normas NBR 6118 (2003), EUROCODE 2 (2004) e ACI 318 (2005), são analisados comparativamente com os resultados obtidos em ensaios de lajes com ruptura por punção. A seguir, serão descritas as metodologias de coleta dos resultados dos ensaios de lajes, que compõem o banco de dados contido no anexo A, bem como para a análise comparativa propriamente dita.

3.1 – Metodologia de Coleta dos Elementos do Banco de Dados

Os resultados dos ensaios de lajes foram obtidos por meio de uma extensa revisão bibliográfica da literatura nacional e internacional. Esses estudos apresentavam objetivos diversos, como resistência característica do concreto (f_{ck}), maior ou menor que 50 MPa, presença ou não de armadura de punção, existência ou não de protensão, grau de precisão das prescrições normativas com relação à região de ocorrência da superfície de colapso nas lajes com armadura transversal (zonas de ruptura), dentre outros. A única característica comum a todos os ensaios é a ruptura por punção das lajes: essa característica se enquadra perfeitamente na metodologia descrita a seguir.

Seguindo a terminologia utilizada pela norma brasileira, todas as lajes selecionadas apresentaram ruptura associada à tração diagonal. Em nenhum caso foi observada ruína associada à diagonal comprimida do concreto. A espessura mínima das lajes amostradas foi de 10 cm. Esse valor é menor que o mínimo requerido pela NBR 6118 para lajes lisas, que é de 16 cm. Ele foi admitido, neste caso, em virtude da quantidade de ensaios realizados com lajes abaixo desta espessura e também pelo fato de que essa prescrição normativa tem outras razões de ser como, por exemplo, relação vão/altura e flechas máximas em serviço, dentre outras. Vale frisar que muitos dos ensaios foram realizados

3

com lajes dessas espessuras, em razão da capacidade de aplicação da carga dos equipamentos existentes nos laboratórios.

Todas as lajes possuem armadura de flexão. Nas lajes com armaduras transversais de punção, nenhuma restrição foi feita quanto ao ângulo de posicionamento das barras ou conectores, ao diâmetro mínimo das mesmas, aos espaçamentos e à disposição. Na amostragem, foram descartadas lajes fabricadas com concreto contendo fibras, agregados leves ou quaisquer outros elementos não usuais em sua composição.

Em termos do esquema de carga, as lajes analisadas foram em sua totalidade submetidas a carregamento simétrico, simulando a situação de pilares internos de um edifício, sem a atuação de momentos fletores. Este fato evidencia o pequeno número de ensaios com carregamentos assimétricos.

As lajes foram divididas em grupos, para facilitar a comparação com as prescrições normativas, visto que o estudo da punção possui algumas variáveis significativas aliadas à complexidade do fenômeno.

O primeiro grupo é composto de lajes em concreto armado, onde a resistência à compressão do concreto (f_c) foi limitada em 50 MPa. Neste grupo, existem 98 sem armadura de punção, e 107 com armadura transversal de punção. O segundo grupo se compõe de lajes protendidas, fabricadas com concreto com f_c , também limitado em 50 MPa. Nesse caso, a amostra possui 48 sem armadura de punção e 15 com armadura transversal de punção e 15 com armadura transversal de punção e 15 com armadura transversal de punção. No terceiro grupo, as lajes são em concreto armado, porém a resistência à compressão do concreto é maior que 50 MPa. Nesse grupo, existem 40 sem armadura de punção e 17 com armadura transversal de punção. O quarto e último grupo é constituído por lajes protendidas, fabricadas com concreto com f_c , maior que 50 MPa. Nesse caso, a amostra possui 20 sem armadura de punção e 9 com armadura transversal de punção. Espera-se verificar com a análise do terceiro e quarto grupos se os procedimentos normativos da atual NBR 6118 (2003) continuam válidos no caso de lajes fabricadas com concreto de resistência acima de 50 MPa.

Os detalhes provenientes das lajes ensaiadas, como suas propriedades geométricas (espessura e altura útil), dimensões dos pilares, propriedades mecânicas dos materiais

empregados, tensão de protensão no concreto, se aplicável e, principalmente, a carga e região de ruptura estão apresentados nas tabelas do apêndice A.

As tabelas a seguir apresentam um resumo dos resultados experimentais amostrados. Estes resultados foram divididos de acordo com os grupos previamente mencionados.

Tipo de	Dotalho	Pasquisadores	Quantidade
Ruptura	Detaine	1 esquisauores	de Lajes
		Gomes e Regan (1999)	3
		Souza e Melo (2004)	1
		Neto e Melo (2004)	1
		Mokhtar et al (1985)	1
		Coelho e Melo (1999)	2
		Carvalho e Melo (2001)	2
		Marzouk e Hussein (1991)	2
		Gardner (1990)	15
		Gardner apud Elstner e Hognestad (1990)	21
		Gardner apud Bazant e Cao (1990)	1
		Gardner apud Moe (1990)	13
	Sem armadura	Silva (2003)	4
Tracão		Martinelli e Filho apud Fusco (2003)	1
Diagonal	transversal	Yamada et al (1992)	2
	(98 Lajes)	Andrade e Melo (2000)	2
		Holanda e Hanai (2003)	1
		Neto e Oliveira (2007)	3
		Borges et al (2003)	9
		Musse e Gomes (2004)	1
		Santos et al (2005)	3
		Cordovil e Fusco (1995)	2
		Trautwein apud Ghali (2006)	1
		Trautwein apud Regan (2006)	1
		Silva et al apud Regan (2002)	2
		Silva et al apud Ramos e Lúcio (2002)	2
		Barbán (2004)	1
		Hassan et al (2002)	1

TABELA 3.1 – Grupo 1 - Resumo dos resultados experimentais de lajes em concreto armado com resistência à compressão do concreto limitada a 50 MPa.

Tipo de	Detalhe	Pesquisadores Quantia	
Ruptura			de Lajes
		Andrade e Gomes (1999)	8
		Silva (2003)	3
		Yamada et al (1992)	11
		Andrade e Melo (2000)	4
		Neto e Oliveira (2007)	4
		Musse e Gomes (2004)	1
	Com armadura transversal	Cordovil e Fusco (1995)	3
		Trautwein (2006)	6
		Trautwein apud Ghali (2006)	6
Tração Diagonal		Trautwein apud Regan (2006)	3
		Trautwein apud Samadian (2006)	6
	(107 Lajes)	Trautwein et al (2003)	5
		Trautwein (2001)	9
		Borges et al (2003)	2
		Barreto e Melo (2004)	4
		Neto e Melo (2004)	1
		Mokhtar et al (1985)	7
		Coelho e Melo (1999)	8
		Carvalho e Melo (2001)	6
		Carvalho e Gomes (2001)	10

TABELA 3.1 – Grupo 1 - Resumo dos resultados experimentais de lajes em concreto armado com resistência à compressão do concreto limitada a 50 MPa. (Continuação)

Tipo de	Detalhe	Pesauisadores	Quantidade
Ruptura	Demine	i esquisuuores	de Lajes
		Carvalho et al apud Nylander et al (2002)	5
		Carvalho et al apud Regan (2002)	4
		Carvalho et al apud Ramos e Lúcio (2002)	3
	Sem	Carvalho et al apud Hassanzadeh e Sundquist	5
Tracão	armadura	(2002)	5
Diagonal	transversal	Silva et al (2006)	10
Diagonai	(48 Lajes)	Corrêa et al (2001)	2
		Carvalho et al (2004)	3
		Barbán et al (2004)	5
		Alves et al (2005)	8
		Hassan et al (2002)	3
	Com		
Tração	armadura	Carvalho et al (2005)	15
Diagonal	transversal		
	(15Lajes)		

TABELA 3.2 – Grupo 2 - Resumo dos resultados experimentais de lajes em concretoprotendido com resistência à compressão do concreto limitada a 50 MPa.

Tipo de	Dotalho	Basquisadoras	Quantidade
Ruptura	Detaine	1 esquisauores	de Lajes
		Gardner (1990)	4
		Gardner apud Bazant e Cao (1990)	2
		Oliveira et al (2000)	2
	Sem	Santos et al (2005)	1
Tração	armadura	Carvalho et al apud Regan (2002)	1
Diagonal	transversal	Carvalho et al apud Hassanzadeh e Sundquist	1
Diagonai	(40 Lajes)	(2002)	1
		Corrêa et al (2001)	1
		Hassan et al (2002)	1
		Oliveira e Melo (2003)	15
		Marzouk e Hussein (1991)	12
		Oliveira et al (2000)	9
Tração	Com		
	armadura	Barreto e Melo (2004)	Δ
Diagonal	uansversal		т
Diagonal	(17 Lajes)	Andrade e Melo (2000)	Δ
			т

TABELA 3.3 – Grupo 3 - Resumo dos resultados experimentais de lajes em concretoarmado com resistência à compressão do concreto acima de 50 MPa.

Tipo de	Detalhe	Pesauisadores	Quantidade
Ruptura	2		de Lajes
		Carvalho et al apud Regan (2002)	9
	Sem	Carvalho et al apud Ramos e Lúcio (2002)	4
Tracão	armadura	Carvalho et al apud Hassanzadeh e Sundquist	1
Tração Diagonal	transversal	transversal (2002)	
	(20 Lajes)	Corrêa et al (2001)	3
		Melges et al (2001)	1
		Hassan et al (2002)	2
Tração	Com	Melges et al (2001)	2
Diagonal	armadura		
transvers			
	(9 Lajes)	Fortunato (2005)	7

TABELA 3.4 – Grupo 4 - Resumo dos resultados experimentais de lajes em concretoprotendido com resistência à compressão do concreto acima de 50 MPa.

3.2 – Metodologia de Cálculo

Na verificação das equações de dimensionamento, as forças de ruptura medidas para 354 lajes em concreto armado e protendido foram determinadas segundo os critérios de cada uma das normas em estudo, descritas no capítulo 2. A magnitude da força escolhida correspondeu ao menor valor encontrado nas superfícies de ruptura: verificação indireta da tensão na diagonal comprimida do concreto, na região junto ao pilar, ou verificação da ligação à punção, associada à tração diagonal nos demais contornos de controle. Na determinação dessas forças de ruptura, nenhum coeficiente de minoração de resistência dos materiais ou de majoração da solicitação foi utilizado. As fórmulas utilizadas para a obtenção destas forças estão apresentadas nas tabelas 3.5, 3.6 e 3.7. As magnitudes das forças de ruptura calculadas e os valores medidos nos ensaios, bem como a relação entre eles estão apresentados nas tabelas dos anexos B e C.

Em resumo, a metodologia do dimensionamento à punção consiste na determinação da tensão solicitante e posterior comparação desta com a tensão resistente em cada uma das seções de controle, estipulada nos critérios de cada uma das normas estudadas. Essas tensões depois foram transformadas em força, para sua comparação com os resultados dos ensaios.

TABELA 3.5 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto armado sem armadura transversal de punção.

Norma	Verificação do esmagamento na diagonal comprimida de concreto	Verificação da tração diagonal
NBR 6118 (2003)	$F_u = [0,27(1 - f_c/250)f_c] \times (u_0 d)$	$F_{u} = [0,13\left(1 + \sqrt{\frac{20}{d}}\right)(100 \ \rho \ f_{c})^{\frac{1}{3}}] \times (u_{1}d)$
EUROCODE 2 (2004)	$F_u = [0,30(1 - f_c/250)f_c] \times (u_0 d)$	$F_{u} = [0,12\left(1 + \sqrt{\frac{20}{d}}\right)(100\rho f_{c})^{\frac{1}{3}}] \times (u_{1}d)$ $F_{u} = [0,035\left(1 + \sqrt{\frac{20}{d}}\right)^{\frac{3}{2}} f_{c}^{\frac{1}{2}}] \times (u_{1}d)$
ACI 318 (2005)	-	$F_{u} = [0,17\left(1 + \frac{2}{\beta}\right)\sqrt{f_{c}}] \times (u_{1}d)$ $F_{u} = [0,083\left(\frac{\alpha_{s}d}{u_{1}} + 2\right)\sqrt{f_{c}}] \times (u_{1}d)$ $F_{u} = [0,33\sqrt{f_{c}}] \times (u_{1}d)$
OBS: f_c é a tensão resisten d é a altura efetiva é	te à compressão do concreto medida no e u_n é o perímetro crítico	nsaio, em MPa.

 ρ é a taxa geométrica de armadura de flexão aderente, igual a *As/(100d)*. $\alpha_s e \beta$ são coeficientes dependentes das propriedades geométricas do sistema

TABELA 3.6 – Metodologia de cálculo das forças de ruptura, F_u , em lajes de concreto armado com armadura transversal de punção

Norma	Verificação do esmagamento na diagonal comprimida de concreto	Verificação da tração diagonal
NBR 6118 (2003)	$F_u = [0,27(1 - f_c/250)f_c] \times (u_0 d)$	$F_{u} = [0,10\left(1 + \sqrt{\frac{20}{d}}\right)(100\rho f_{c})^{\frac{1}{3}} + 1,5\frac{A_{sw}f_{yw}sen\alpha}{s_{r}u_{1}}] \times (u_{1}d)$
EUROCODE 2 (2004)	$F = [0.30(1 - f/250) f] \times (u, d)$	$F_{u} = [0,09 \left(1 + \sqrt{\frac{20}{d}}\right) (100 \rho f_{c})^{\frac{1}{3}} + 1.5 \frac{A_{sw} f_{yw} sen\alpha}{s_{r} u_{1}}] \times (u_{1} d)$
	$T_u = [0, 50(1 - f_c/250)f_c] \land (u_0 u)$	$F_{u} = [0,0263 \left(1 + \sqrt{\frac{20}{d}}\right)^{3/2} f_{c}^{1/2} + 1,5 \frac{A_{sw} f_{yw} sen\alpha}{s_{r} u_{1}}] \times (u_{1}d)$
		$F_{u} = [0, 17\left(1 + \frac{2}{\beta}\right)\sqrt{f_{c}} + \frac{A_{sw}f_{yw}(sen\alpha + \cos\alpha)}{s_{r}u_{1}}] \times (u_{1}d)$
ACI 318 (2005)	-	$F_u = [0,083\left(\frac{\alpha_s d}{u_1} + 2\right)\sqrt{f_c} + \frac{A_{sw}f_{yw}(sen\alpha + \cos\alpha)}{s_r u_1}] \times (u_1 d)$
		$F_u = [0,17\sqrt{f_c} + \frac{A_{sw}f_{yw}(sen\alpha + \cos\alpha)}{s_r u_1}] \times (u_1 d)$
		$F_u = [0, 5\sqrt{f_c}] \times (u_1 d)$

OBS:

 f_c é a tensão resistente à compressão do concreto medida no ensaio, em MPa.

 f_{yw} é a tensão de escoamento da armadura transversal normativa e/ou medida no ensaio, em MPa. d é a altura efetiva e u_n é o perímetro crítico

 ρ é a taxa geométrica de armadura de flexão aderente, igual a As/(100d).

 A_{sw} é a área da armadura de cisalhamento da laje

 α é o ângulo de inclinação da armadura de cisalhamento

 s_r é o espaçamento da armadura

 $\alpha_s e \beta$ são coeficientes dependentes das propriedades geométricas do sistema

TABELA 3.7 – Metodologia de cálculo das forças de ruptura efetivas, F_{u,ef}, em lajes de

Norma	Verificação do esmagamento na diagonal comprimida de concreto	Verificação da tração diagonal		
NBR 6118 (2003)	$F_{u,ef} = F_{uN} + \sum P_{k\text{inf}} sen\alpha$	$F_{u,ef} = F_{uN} + \sum P_{k \inf} sen\alpha$		
EUROCODE 2 (2004)	$F_{u,ef} = F_{uN} + 0.1N_{pd}$	$F_{u,ef} = F_{uN} + 0.1N_{pd}$		
ACI 318 (2005)	-	$F_{u,ef} = [\beta_p \sqrt{f_c}] \times (u_1 d) + 0.3N_{pd} + \sum P_{k \inf} sen\alpha$		
OBS:				
F_{uN} é a força de rupt	tura sem o efeito da protensão – ve	r Tabelas 3.5 e 3.6		
P_{kinf} é a força de protensão no cabo				
α é a inclinação do cabo em relação ao plano da laje no contorno considerado				
N_{pd} são as forças de protensão correspondentes aos valores iniciais sem perdas				
f_c é a tensão resistente à compressão do concreto medida no ensaio, em MPa				
d é a altura efetiva e u_1 é o perímetro crítico				
β_p é um coeficiente dependente da propriedade geométrica do sistema				

concreto protendido

3.3 – Metodologia de Análise dos Resultados

Com a finalidade de comparar os critérios de dimensionamento normativos entre si e com os resultados experimentais, a análise dos resultados será realizada sempre para a razão entre as forças de ruptura obtidas nos ensaios e as forças resistentes calculadas, Fu_{exp}/Fu_{calc} , cujos valores são apresentados integralmente no anexo C. A força Fu_{exp} apresentada corresponde ao esforço último de punção medido em laboratório, e a força Fu_{calc} é a menor força resistente última, de acordo com os critérios normativos em estudo. Na determinação da força Fu_{calc} , nenhum coeficiente de minoração de resistência dos materiais ou de majoração da solicitação foi utilizado. Este procedimento é o mesmo realizado por RIBEIRO (2005) em uma pesquisa sobre critérios normativos para dimensionamento ao cisalhamento em vigas de concreto armado.

Para a realização da análise comparativa dos critérios de cálculo dos esforços de puncionamento adotados pela NBR 6118 (2003), EUROCODE 2 (2004) e ACI 318 (2005), foram utilizadas medidas estatísticas usuais como média, M, a mediana, Md, o desvio padrão, DP, e o coeficiente de variação, CV, da amostra. Nesse caso, a média

reflete o viés conservativo da equação, enquanto que o coeficiente de variação é tomado como indicador de precisão dos resultados. Os valores mínimos e máximos da amostra complementam, medindo a amplitude.

Para o estudo da adequabilidade e comparação entre equações normativas de dimensionamento a punção em peças de concreto armado, foi introduzido um abrangente estudo realizado por COLLINS (2001) para a "Canadian Standards Association". Este estudo foi realizado para análise comparativa de critérios normativos de dimensionamento ao cisalhamento em vigas de concreto armado. Apesar da diferença entre solicitações, resolveu-se adotar este procedimento proposto por Collins, pois, além de desenvolver uma metodologia que classifica diferentes critérios normativos de dimensionamento, considerando a segurança, a precisão e a economia dos resultados, ainda sugere diferentes medidas a serem utilizadas nos estudos de confiabilidade de normas, ambas descritas no item 3.3.1.

Análises parciais procurando verificar a influência da taxa de armadura longitudinal de flexão ρ , da resistência à compressão do concreto f_c , da tensão na armadura transversal de punção f_y (valor normativo versus valor de escoamento do aço medido no ensaio) e do nível de tensão de protensão no concreto f_{pc} , sobre a relação entre forças últimas experimentais e calculadas também serão realizadas, sempre que esses dados estiverem disponíveis na bibliografia pesquisada.

3.3.1 – Metodologia proposta por COLLINS (2001)

Quando se trabalha com os resultados da relação entre forças de ruína experimental e calculada para cada uma das normas em questão (Fu_{exp}/Fu_{calc}), distribuições assimétricas são geralmente encontradas. Para solucionar esse impasse, quando se objetiva estabelecer um método de comparação eficiente entre diferentes critérios normativos de dimensionamento, COLLINS (2001) propõe uma metodologia de transformação desta distribuição assimétrica em simétrica. Dessa forma, é determinado o coeficiente de variação dos dados superiores e inferiores abaixo e acima da mediana, em magnitude com relação ao valor da mediana, permitindo a comparação entre os diferentes métodos de cálculo e a classificação de cada procedimento, por meio de uma

escala de demérito. Este método permite uma comparação complementar entre os valores de extremidade reais e os estimados, aproximando essas duas variáveis.

A transformação da distribuição assimétrica em simétrica é feita a partir da divisão dos resultados em dois grupos iguais a partir da mediana. Sendo a mediana o valor que divide a amostra em duas partes iguais, com 50% dos dados acima e 50% dos dados abaixo deste valor, forma-se um grupo com os dados abaixo da mediana e outro com os dados acima dela. No primeiro grupo, para cada ponto existente abaixo da mediana, cria-se um ponto fictício acima, ambos com a mesma distância em relação à mediana e tendo como resultado uma amostra fictícia com uma população numericamente igual à original. O mesmo procedimento é adotado de forma análoga para o segundo grupo: para cada ponto existente acima da mediana é criado um ponto fictício abaixo, com mesma distância em relação à mediana. Assim, com base nesta metodologia, dois tipos de amostras são analisados:

- Amostra Real: amostra composta pelas relações entre os resultados obtidos nos ensaios experimentais e os resultados calculados pelas normas em estudo, Fu_{exp}/Fu_{calc}.
- Amostra Fictícia: amostra formada através da divisão dos dados da amostra real em dois grupos, a partir da mediana. São duas amostras imaginárias: uma formada pelos dados abaixo da mediana, e outra, formada pelos dados acima da mediana, ambas com mesmo tamanho da amostra real.

Com base nessas amostras, os seguintes parâmetros são determinados:

- *M*: valor da média aritmética das relações Fu_{exp}/Fu_{calc} da amostra real.
- Md: valor da mediana da distribuição das relações Fu_{exp}/Fu_{calc} da amostra real.
 Esse valor divide a distribuição em duas partes iguais, abaixo e acima da mediana.
- DP: valor do desvio padrão da amostra real.
- CV: valor do coeficiente de variação da amostra real.
- CV_{50%ABAIXO}: valor do coeficiente de variação da amostra fictícia formada pelos dados com valores menores que a mediana.
- CV_{50%ACIMA}: valor do coeficiente de variação da amostra fictícia formada pelos dados com valores maiores que a mediana.

- Mínimo: menor valor ou limite inferior da amostra real.
- Máximo: maior valor ou limite superior da amostra real.
- LI_{1%USUAL}: valor que estima o limite inferior da amostra real, através da média e do coeficiente de variação da amostra real com grau de confiança 99%. Esse valor é superado por 99% dos resultados:

*LI*_{1%USUAL}=*M*(1-2,3*CV*)

 - LS_{99%USUAL}: valor que estima o limite superior da amostra real, por meio da média e do coeficiente de variação da amostra real, com grau de confiança 99%. Esse valor é superado por apenas 1% dos resultados:

$LS_{99\%USUAL} = M(1+2, 3CV)$

 - LI_{1%COLLINS}: valor que estima o limite inferior da amostra real, por meio da mediana e do coeficiente de variação da amostra fictícia formada pelos dados abaixo da mediana, com grau de confiança 99%. Esse valor é superado por 99% dos resultados:

*LI*_{1%COLLINS}=*Md*(1-2,3 *CV*_{50%ABAIXO})

 - LS_{99%COLLINS}: valor que estima o limite superior da amostra real, por meio da mediana e do coeficiente de variação da amostra fictícia formada pelos dados acima da mediana, com grau de confiança 99%. Esse valor é superado por apenas 1% dos resultados:

LS_{99%COLLINS}=Md(1+2,3 CV_{50%ACIMA})

Com os parâmetros acima, pode-se calcular não só os valores correspondentes a 1% ou 99%, mas também qualquer outro valor em escala percentual necessária à comparação entre diferentes critérios normativos de dimensionamento.

COLLINS (2001) classifica também os diferentes procedimentos de dimensionamento em termos de uma escala de demérito. Considerando aspectos de segurança, de precisão e de economia, um escore é atribuído para cada faixa da relação Fu_{exp}/Fu_{calc} , conforme mostra a Tabela 3.8. Esse escore tem como base a idéia de que uma relação Fu_{exp}/Fu_{calc} menor que 0,5 é muito pior em termos de segurança que uma acima de 2,0. Ao mesmo tempo, valores extremamente conservativos, por serem antieconômicos, são penalizados com escore igual a 2,0, correspondente a uma relação classificada como de baixa segurança. O valor do demérito de cada procedimento é calculado por meio da soma dos produtos das porcentagens dos valores Fu_{exp}/Fu_{calc} , existentes em cada intervalo, pelo seu escore correspondente. Quanto maior o valor da soma total, pior é considerado o processo normativo.

Fu _{exp} /Fu _{calc}	Escore	Classificação
< 0,50	10	Extremamente Perigosa
0,50 0,65	5	Perigosa
0,65 0,85	2	Baixa Segurança
0,85 1,30	0	Segurança Apropriada
1,30 2,00	1	Conservativa
≥ 2,00	2	Extremamente Conservativa

TABELA 3.8 – Escala de Demérito, segundo COLLINS (2001)

5 CONCLUSÕES E SUGESTÕES

Os critérios de dimensionamento à punção em lajes lisas de concreto armado e/ou protendido prescritos pela NBR 6118 (2003) se baseiam na análise de duas ou mais superfícies críticas: na primeira, formada pelo perímetro da região carregada, avalia-se a resistência da diagonal comprimida do concreto e, nas demais, a ruptura associada à tração diagonal. A superfície de ruína associada à tração diagonal pode ser formada na região da armadura de punção ou externamente a ela. Buscando-se uma avaliação comparativa, quando se utilizam essas formulações, análises com resultados obtidos em ensaios laboratoriais foram realizadas, avaliando-se também os procedimentos normativos propostos pelo ACI 318 (2005) e pelo EUROCODE (2004).

Com o intuito de se analisarem os conceitos envolvidos nas formulações normativas, bem como os diversos parâmetros inerentes a elas e que afetam a resistência à punção em lajes lisas, 354 resultados de ensaios de lajes com carregamento interno sem efeito de momento foram compilados por meio de uma extensa pesquisa bibliográfica. Vale frisar que, em todos os ensaios compilados, apenas um único modo de colapso foi observado: ruptura associada à tração diagonal.

As lajes que compõem o banco de dados foram divididas em quatro grupos, segundo a existência ou não de protensão inicial f_{pc} , e também segundo a resistência à compressão média do concreto, aferida na data do ensaio f_c . O primeiro grupo é composto de lajes em concreto armado e f_c inferior a 50 MPa. Neste grupo, 98 lajes apresentaram-se sem armadura de punção e 107 com armadura de punção. O segundo grupo é composto de lajes protendidas com f_c limitado a 50 MPa; neste caso, 48 lajes não têm armadura de punção e 15 possuem essa armadura. No terceiro grupo, as lajes são em concreto armado com f_c maior que 50 MPa, sendo 40 amostras sem armadura de punção e 17 com armadura de punção e 16 punção. O último grupo é constituído por lajes protendidas com f_c maior que 50 MPa, subdividindo-se em 20 lajes sem armadura de punção e 9 com armadura de punção.

Os resultados se referem sempre às relações entre as forças experimentais de ruptura da laje (Fu_{exp}) e as forças de ruptura calculadas (Fu_{calc}), de acordo com os critérios sugeridos pela norma brasileira, européia e americana, apresentados no capítulo 2. Essas forças foram calculadas sem o emprego dos coeficientes de majoração de carga e minoração da resistência dos materiais.

A análise comparativa avaliou a segurança, a precisão e a economia. Medidas estatísticas como média, mediana, desvio padrão, coeficiente de variação, bem como a metodologia proposta por COLLINS (2001), apresentadas no capítulo 3, formam a base do estudo comparativo realizado.

Os critérios de dimensionamento da NBR 6118, válidos para concreto com resistência característica à compressão máxima f_{ck} , de 50 MPa, foram extrapolados para o estudo comparativo em relação às lajes onde a resistência do concreto foi superior a este valor.

5.1 – Conclusões

Para todas as normas estudadas, a distribuição dos valores da relação Fu_{exp}/Fu_{calc} é simétrica para a maioria dos grupos: as exceções foram as lajes em concreto armado com $f_c < 50$ MPa e armadura transversal, e lajes protendidas sem armadura de punção.

Todos os procedimentos normativos foram bastante precisos no que tange à avaliação do modo de ruptura: todos estimaram colapso associado à tração diagonal, modo coincidente com o observado em todos os ensaios.

As conclusões foram subdivididas em virtude da resistência à compressão do concreto ($f_c \leq 50$ MPa e $f_c > 50$ MPa), englobando as lajes em concreto armado e concreto protendido, bem como a presença ou não de armadura transversal de punção.

5.1.1 - Resistência do Concreto Limitada a 50 MPa

Lajes em concreto armado sem armadura transversal

- Os resultados encontrados, utilizando-se todos critérios estudados, são seguros, conservativos e antieconômicos.
- Em termos globais, os critérios da NBR 6118 apresentaram o melhor desempenho em termos de segurança, precisão e economia: menor média acima da unidade, coeficiente de variação menor e percentual significativamente maior de resultados na região de segurança apropriada. Este resultado é corroborado pelo menor escore total da avaliação da escala de demérito encontrado com a NBR 6118: 62 contra 76 do ACI 318 e 105 do EUROCODE 2.
- Com base nos resultados, pode-se concluir que a não-limitação no valor de k torna os critérios do EUROCODE 2 bem mais econômicos, sem prejuízo de segurança e precisão.
- Diferenças mais significativas na relação Fu_{exp}/Fu_{calc} foram encontradas para variações na taxa de armadura longitudinal ρ, do que para diferentes valores de resistência à compressão do concreto limitados a 50 MPa. Recomenda-se à norma americana a inclusão, nas suas formulações, da taxa de armadura longitudinal.

Lajes em concreto armado com armadura transversal

- Todos os critérios estudados foram razoavelmente precisos na estimativa do local de formação da superfície de ruptura: o acerto ocorreu em 61% dos casos.
- Os procedimentos do EUROCODE 2 e do ACI 318 apresentaram segurança adequada e tendência conservativa. Com percentuais da relação Fu_{exp}/Fu_{calc} bastante representativos na região de baixa segurança, o critério da NBR 6118 é, por sua vez, relativamente seguro.

- Numa análise global, a norma européia proporcionou os melhores resultados para a relação Fu_{exp}/Fu_{calc} , corroborado pelo menor coeficiente de variação e pela pequena quantidade de resultados na região de baixa segurança.
- Assim como nas lajes sem armadura transversal, a norma européia torna-se mais econômica com a não-limitação no valor de k, mantendo a mesma segurança e precisão.
- Independentemente do critério normativo empregado, resultados mais econômicos foram obtidos para maiores resistências à compressão do concreto.
- Para as todas as normas analisadas, melhores correlações de Fu_{exp}/Fu_{calc} são encontradas com o emprego dos valores de tensão, prescritos na armadura de punção, em relação ao f_y aferido experimentalmente. Porém, para a norma brasileira, ocorreu um aumento significativo de casos na região de baixa segurança, independentemente do valor da tensão de escoamento do aço medido no ensaio ou prescrito. Recomenda-se a redução dessa tensão na formulação da NBR 6118.

Lajes em concreto protendido sem e com armadura transversal

- Com relação ao local de formação da superfície de ruptura em lajes com armadura transversal, os critérios das normas européia e americana foram precisos com 80% de acerto. Com a norma brasileira, este percentual de acerto caiu para 53%.
- Todos os procedimentos normativos avaliados possuem segurança adequada e viés conservativo em suas formulações.
- Em termos globais, o critério do ACI 318 proporcionou, para as lajes sem armadura transversal, melhores resultados da relação Fu_{exp}/Fu_{calc} , em termos de segurança, precisão e economia. Para as lajes com armadura transversal, o procedimento do EUROCODE 2 apresentou o melhor desempenho.

As análises parciais de ρ, f_c e f_{pc} mostraram, independentemente do critério normativo empregado, pouca alteração nos valores da razão Fu_{exp}/Fu_{calc}. Com relação ao valor da tensão utilizada na armadura de punção, todos os critérios normativos apresentaram melhor desempenho com o valor da tensão medido em ensaios.

5.1.2 - Resistência do Concreto Superior a 50 MPa

Lajes em concreto armado sem armadura transversal

- Os critérios de dimensionamento à punção, independentemente da norma analisada, apresentaram segurança adequada e tendência conservativa.
- Os procedimentos preconizados pela NBR 6118 e pelo ACI 318 proporcionam melhores resultados de Fu_{exp}/Fu_{calc} em termos de segurança, precisão e economia. Este fato revela que a extrapolação dos critérios atuais sugeridos pela NBR 6118 para concretos com $f_c > 50$ MPa é bastante viável.
- Todos os critérios normativos apresentaram melhor desempenho para relação
 Fu_{exp}/Fu_{calc}, com a utilização de taxas de armadura longitudinal *ρ* abaixo de 2%.

Lajes em concreto armado com armadura transversal

- Na estimativa do local da superfície de ruptura, o critério do EUROCODE 2 foi bastante preciso com 88% de acerto. Com o ACI 318 e a NBR 6118, esse percentual caiu para 71% e 65%, respectivamente.
- Todas as formulações normativas estudadas apresentaram segurança adequada e tendência bem conservativa com nenhum resultado da razão *Fu_{exp}/Fu_{calc}* abaixo da região de segurança apropriada.
- A avaliação geral evidencia o melhor desempenho da NBR 6118: menor média acima da unidade, maior percentual de valores na região de segurança apropriada e, conseqüentemente, maior economia. Esse resultado demonstra, mais uma vez, a viabilidade da extensão dos procedimentos vigentes da NBR

6118 para o caso de lajes em concreto armado com $f_c > 50$ MPa e armadura de punção.

Melhores correlações de Fu_{exp}/Fu_{calc} são encontradas com a utilização dos valores de tensão na armadura de punção medidos nos ensaios, exceto para a NBR 6118. No caso dessa norma, a utilização desses valores proporciona um aumento significativo de resultados na região de baixa segurança. Recomenda-se, mais uma vez, a redução dessa tensão nas formulações.

Lajes em concreto protendido com e sem armadura transversal

- Os três critérios normativos foram bastante precisos na avaliação do local de formação da superfície de ruptura, apresentando quase 90% de acerto.
- Os procedimentos preconizados pelas três normas analisadas são seguros e conservativos: a exceção é o critério preconizado pelo ACI 318, no caso de lajes protendidas sem armadura transversal, com 35% dos resultados de *Fu_{exp}/Fu_{calc}* localizados na faixa de baixa segurança.
- Para as lajes sem armadura transversal, o critério do EUROCODE 2 apresentou o melhor desempenho em termos de segurança, precisão e economia. Com a presença de armadura transversal, os melhores desempenhos foram encontrados com os procedimentos da norma brasileira e européia.
- Os três procedimentos normativos apresentaram melhor desempenho com a adoção da tensão na armadura de punção medida experimentalmente.

5.2 – Sugestões para Estudos Futuros

Com base nos estudos realizados no presente trabalho e para complementação das análises feitas em lajes lisas de concreto armado e protendido com e sem armadura de combate à punção, sugere-se:

- Realização de ensaios em lajes com ruptura associada à diagonal comprimida do concreto, na região dos pilares, independentemente da resistência à compressão do concreto e ausência ou não de armadura transversal.
- Realização de mais ensaios em lajes com pilares internos tendo efeito de momento, bem como em pilares de canto e de borda.
- Realização de mais ensaios em lajes com aberturas (furos) próximas a pilares internos, de canto e de borda.
- Realização de estudos sobre o efeito da "retangularidade" dos pilares em lajes lisas.
- Realização de análises semelhantes ao presente estudo para lajes com pilares internos tendo efeito de momento, com pilares de canto e de borda e com aberturas nas proximidades dos pilares.
- Estudos semelhantes de verificação dos critérios normativos para lajes de concreto armado e/ou protendido submetidas ao esforço de cisalhamento propriamente dito.

6

REFERÊNCIAS BIBLIOGRÁFICAS

- ALVES, Felipe Winter, BARBÀN, Vladimir Villaverde, MELO, Guilherme Sales e MELLO, Eldon Londe, Punção em Lajes Cogumelo Protendidas com Cabos Curvos em Planta Não Aderentes, Anais do 47º Congresso Brasileiro do Concreto, 2005, 17p.
- AMERICAN CONCRETE INSTITUTE (ACI), Building Code Requirements for Structural Concrete (ACI 318S-05) and Commentary (ACI 318SR-05), Detroit, 2005, 490 p.
- ANDRADE, José Luciano, Ensaios Adicionais em Lajes Cogumelo de Concreto Armado com Armadura de Puncionamento com Estribos Inclinados, Anais do 42º Congresso Brasileiro do Concreto, 2000, 16p.
- ANDRADE, Moacir A. Souza, e GOMES, Ronaldo Barros, Lajes Cogumelo Influência do Posicionamento da Armadura de Cisalhamento em Relação à Armadura de Flexão, Anais do 41º Congresso Brasileiro do Concreto, 1999, 15p.
- ARAÚJO, José Milton de, Curso de Concreto Armado. Volume 4. Ed. Dunas, 2003, 231p.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT), Projeto de Estruturas de Concreto – Procedimento (NBR 6118/2003). Rio de Janeiro, 2003, 170p.
- BARBÀN, Vladimir Villaverde, MELO, Guilherme Sales e MARTINS, Paulo Chaves de Rezende, Punção em Lajes Cogumelo Protendidas Com Cabos Não-Aderentes e Pilares com Pequeno Desalinhamento, Anais do 46° Congresso Brasileiro do Concreto, 2004, 18p.
- BARRETO, Nilo R e MELO, Guilherme S. Punção em Lajes Cogumelo de Concreto Armado com Armadura de Cisalhamento Tipo Estribo Inclinado Aberto, Anais da XXXI Jornadas Sud-Americanas de Ingenieria Estructural, Mendoza, 2004, 16p.
- BARRETO, Nilo Roberto, Punção em Lajes Cogumelo de Concreto Armado Com Armadura de Cisalhamento Tipo Estribo Vertical Contínuo, Anais do 46° Congresso Brasileiro do Concreto, 2004, 16p.
- BORGES, Liana L. J., Influência da Geometria do Pilar na Resistência ao Puncionamento de Lajes Cogumelo de Concreto Armado, Anais do V Simpósio EPUSP Sobre Estruturas de Concreto, 2003. 38p.
- BORGES, Liana L. J., Puncionamento em Lajes Cogumelo com Furos Adjacentes a Pilares e Armadura de Cisalhamento, Anais do 45° Congresso Brasileiro do Concreto, 2003, 17p.
- CARVALHO, Alessandra Luciano, Resistência ao Puncionamento de Lajes Cogumelo Protendidas com Armadura de Cisalhamento – Comparação com Recomendações da NB1, Anais do 46º Congresso Brasileiro do Concreto, 2004, 12p.
- CARVALHO, Alessandra Luciano e GOMES, Ronaldo Barros, Estudo Teórico-Computacional da Resistência à Punção em Lajes Cogumelo com Armadura de Cisalhamento, Anais do 43º Congresso Brasileiro do Concreto, 2001, 17p.
- CARVALHO, Alessandra Luciano, MELO, Guilherme Sales e GOMES, Ronaldo Barros, Proposta para o Cálculo da Resistência à Punção de Lajes Cogumelo de Concreto Protendido com Cabos Não-Aderentes e Armadura de Cisalhamento Baseada em Adaptações da NBR 6118, Anais do 47º Congresso Brasileiro do Concreto, 2005, 12p.

- CARVALHO, Alessandra Luciano, MELO, Guilherme Sales e GOMES, Ronaldo Barros e BITTENCOURT, Rubens Machado, Resistência à Punção de Lajes Cogumelo de Concreto Protendido com Cabos Não-Aderentes e Armadura de Cisalhamento, Anais do 47º Congresso Brasileiro do Concreto, 2005, 17p.
- CARVALHO, Alessandra Luciano e SILVA, Ricardo José Carvalho, Comportamento de Lajes Cogumelo Protendidas Submetidas ao Puncionamento de Acordo com Diversas Normas, Anais da XXX Jornadas Sul-Americanas de Engenharia Estrutural, Brasília, 2002, 15p.
- CARVALHO, Alessandra Luciano e TRAUTWEIN, Leandro Mouta, Critérios de Verificação à Punção em Lajes Cogumelo de Concreto Armado Segundo a Revisão da NB1/2001 e Outras Normas Correntes: Comparações Com Resultados Experimentais. Anais da XXX Jornadas Sul-Americanas de Engenharia Estructural, Brasília, 2002, 19p.
- CARVALHO, Julianne Santos e MELO, Guilherme Sales, Puncionamento em Lajes Cogumelo Reforçadas Externamente com Parafusos de Alta Resistência, Anais do 43º Congresso Brasileiro do Concreto, 2001, 15p.
- COMITE EURO_INTERNATIONAL DU BETON, CEB-FIP MODEL CODE 1990 – Bulletin D'Information n° 204, Lausanne, 1991.
- CORDOVIL, Fábio Armando Botelho. Lajes de Concreto Armado Punção. Ed. da UFSC, 1997. 225p.
- CORRÊA, G. S, Puncionamento em Lajes Cogumelo Protendidas com Cabos Não Aderentes, Anais do IV Simpósio EPUSP Sobre Estruturas de Concreto, 2000, 16p.
- CORRÊA, Gustavo Sena, MELO, Guilherme Sales e MARTINS, Paulo Chaves, Comportamento ao Puncionamento em Lajes Cogumelo Protendidas com Cabos Não-Aderentes, Anais do 43º Congresso Brasileiro do Concreto, 2001, 16p.

- DAMASCENO, Lins Sandro Resquee e OLIVEIRA, Dênio Ramam Carvalho.
 Análise Experimental de Lajes Lisas Unidirecionais de Concreto Armado com Pilares Retangulares ao Puncionamento, Anais do 49º Congresso Brasileiro do Concreto, 2007, 22p.
- EUROPEAN COMMITTEE FOR STANDARDIZATION, EUROCODE 2: Design of Concrete Structures – Part 1: General Rules and Rules for Building, Bruxelas, 2004, 226p.
- FORTUNATO, Paulo Alexandre G., GOMES, Ronaldo Barros e MELO, Guilherme Sales, Punção em Lajes Cogumelo Protendida com Armadura de Cisalhamento. Anais do 47º Congresso Brasileiro do Concreto, 2005. 16p.
- GARDNER, N. J. Relationship of the Punching Shear Capacity of Reinforced Concrete Slabs With Concrete Strength. ACI Structural Journal, vol. 87, n° 1, 1990, p 66-71.
- HASSAN, Ammar; KAWAKAMI, Makoto; YOSHIOKA, Tamio; NITANI, Kyoji.
 Influence of Limited Prestress and High-Strength Concrete on Punching Shear Strength. ACI Structural Journal, vol. 99, n° 6, 2002, p 764-771.
- HOLANDA, Kristiane Mattar Accetti e HANAI, João Bento, Análise Prospectiva das Similaridades de Efeitos da Adição de Fibras de Aço na Resistência à Punção de Lajes-Cogumelo e ao Cisalhamento de Vigas de Concreto, Anais do V Simpósio EPUSP Sobre Estruturas de Concreto, 2003, 20p.
- INSTITUTO BRASILEIRO DE CONCRETO IBRACON. Prática Recomendada IBRACON: Comentários Técnicos NB-1. IBRACON, 2003, 70p.
- KUANG, J. S. e MORLEY, C. T. Punching Shear Behavior of Restrained Reinforced Concrete Slabs, ACI Structural Journal, vol. 89, n° 1, 1993, p 13-19.

- LEONHARDT F. e MONNIG E. Construções de Concreto Volume 2: Casos Especiais de Dimensionamento de Estruturas de Concreto Armado. Ed. Interciência, 1979, 174p.
- LIMA NETO, Aarão Ferreira, Análise Experimental na Fase de Pós-Puncionamento de Lajes Cogumelo de Concreto Armado, Anais do 46° Congresso Brasileiro do Concreto, 2004, 16p.
- LOUREIRO, Giordano José, Projeto de Lajes Protendidas Com Cordoalhas Engraxadas, Anais do 44º Congresso Brasileiro do Concreto, 2002, 16p.
- MARTINELLI, Marina, Análise Numérica de Punção em Lajes de Concreto Armado sem Armadura de Cisalhamento e com Estribos do Tipo Vertical em Inclinado, Anais do 45º Congresso Brasileiro do Concreto, 2003, 14p.
- MARTINELLI, Marina e CAMPOS FILHO, Américo, Aplicação do Método dos Elementos Finitos ao Estudo de Lajes de Concreto Armado Submetidas à Punção, Anais do V Simpósio EPUSP sobre Estruturas de Concreto, 2003, 18p.
- MARZOUK, H; HUSSEN A. Experimental Investigation on the Behavior of High-Strength Concrete Slabs. ACI Structural Journal, vol. 88, n° 6, 1992, p 701-713.
- MELGES, José Luiz Pinheiro, Análise Experimental da Punção em Lajes de Concreto Armado e Protendido, Tese de doutorado, Escola de Engenharia de São Carlos, Universidade de São Paulo, 2001, 233p.
- MELGES, José Luiz Pinheiro, Análise Experimental da Punção em Lajes Protendidas por Pós-Tração, Anais do 43º Congresso Brasileiro do Concreto, 2001, 15p.

- MOKHTAR, Abdel-Salam; GHALI Amin; DILGER Walter. Stud Shear Reinforcement for Flat Concrete Plates. ACI Structural Journal, vol .82, n° 5, 1985, p 676-683.
- MUSSE, Taís Helena e GOMES, Ronaldo Barros, Punção em Lajes Cogumelo Fibras de Aço e Armadura de Cisalhamento, Anais da XXXI Jornadas Sud-Americanas de Ingenieria Estructural, Mendoza, 2004, 20p.
- NETO, Bernardo Nunes de Moraes, Análise Experimental de Lajes Lisas Bidirecionais de Concreto Armado com Pilares Retangulares e Armadura Inclinada de Punção, Anais do 49º Congresso Brasileiro do Concreto, 2007, 16p.
- OLIVEIRA, Dênio R. C., Análise Experimental de Lajes Cogumelo de Concreto Armado com Pilares Retangulares, Anais do 45° Congresso Brasileiro do Concreto, 2003, 15p.
- PARK, R. AND GAMBLE, W. L. Reinforced Concrete Slabs. Ed. John Wiley & Sons, 1980. 618p.
- SANTOS, Luciana Alvarenga, Punção em Lajes-Cogumelo Estudo da Adição de Fibras de Aço, Anais do 47º Congresso Brasileiro do Concreto, 2005, 15p.
- SILVA, J. A., Resistência à Punção de Lajes Cogumelo de Concreto Armado com Armadura de Cisalhamento, Furos e Colunas Retangulares, Anais do V Simpósio EPUSP Sobre Estruturas de Concreto, 2003, 15p.
- SILVA, Ricardo José Carvalho, Resistência a Punção de Lajes Cogumelo Protendidas com Cabos Engraxados e Pilares de Várias Dimensões, Anais do 45º Congresso Brasileiro do Concreto, 2003, 14p.
- SILVA, Ricardo José Carvalho e CARVALHO, Alessandra Luciano, Resistência ao Puncionamento de Lajes Cogumelo Protendidas, Anais do 44º Congresso Brasileiro do Concreto, 2002, 16p.

- SILVA, Ricardo José Carvalho, MELO, Guilherme Sales e REGAN, Paul Erskine, Punção em Lajes Cogumelo Protendidas com Cordoalhas Não Aderentes Sobre Pilares de Diferentes Seções, Anais do 48º Congresso Brasileiro do Concreto, 2006, 15p.
- SOUZA, Raphael M., Furos Adjacentes ou Distantes em Lajes Cogumelo Submetidas à Punção: Estudo Experimental e Comparações com Normas, Anais do 46º Congresso Brasileiro do Concreto, 2004, 16p.
- TRAUTWEIN, L. M., Punção em Lajes Cogumelo de Concreto Armado com Armadura de Cisalhamento Tipo "Stud" Interno e Tipo Estribo Inclinado. Dissertação de Mestrado, Faculdade de Tecnologia, Universidade de Brasília, 2001, 165p.
- TRAUTWEIN, L. M, Lajes Cogumelo de Concreto Armado com Armadura de Cisalhamento do Tipo "Stud" Interno. Tese de Doutorado. Escola Politécnica, Universidade de São Paulo, 2006, 350p.
- TRAUTWEIN, Leandro Mouta, MELO, Guilherme Sales e GOMES, Ronaldo Barros, Lajes Cogumelo de Concreto Armado Com Estribos Inclinados ao Puncionamento, Anais do 43º Congresso Brasileiro do Concreto, 2001, 15p.
- TRAUTWEIN, Leandro Mouta, MELO, Guilherme Sales e GOMES, Ronaldo Barros, Puncionamento em Lajes Cogumelo de Concreto Armado com Armadura de Cisalhamento Interna, Anais do 43° Congresso Brasileiro do Concreto, 2001, 14p.
- YAMADA, Tetsuya; NANNI, Antônio; ENDO, Katsushiko. Punching Shear Resistance of Flat Slabs: Influence of Reinforcement Type and Ratio. ACI Structural Journal, vol. 88, n° 4, 1992, p 555-563.

ANEXO A - BANCO DE DADOS EXPERIMENTAIS

Pasquisadar(as)	Laia	Axb	h	- (0()	fo (MDo)	d (om)	fix (MDo)			Asw			Tino		Mada da Falha
resquisadoi(es)	Laje	(cmxcm)	(cm)	ρ(%)	ic (IVIFa)	a (cm)	iy (IVIFa)	α (graus)	s₀(cm)	s _r (cm)	Asw (cm²)	n	про	FU (KN)	wood de Faina
	1	20 x 20	20	1,26	36,9	15,9	568,13	90	3,5	6	9,425	11	conector	1100	Externa
	2	20 x 20	20	1,26	37,0	15,9	568,13	90	3,5	6	9,425	11	conector	990	Interna
Trautwein et al (2003)	3	20 x 20	20	1,26	40,5	15,9	568,13	90	3,5	6	9,425	11	conector	1090	Externa
	4	20 x 20	20	1,26	40,4	15,4	568,13	90	3,5	6	9,425	11	conector	1205	Externa
	5	20 x 20	20	1,26	41,4	15,4	568,13	90	3,5	6	9,425	11	conector	1222	Externa
	1	20 x 20	20	1,26	40,24	15,9	-	-	-	-	-	-	-	560	-
Gomes e Regan (1999)	1A	20 x 20	20	1,26	41,12	15,9	-	-	-	-	-	-	-	587	-
	12A	20 x 20	20	1,26	36,5	16,3	-	-	-	-	-	-	-	650	-
	1	20 x 20	20	1,2	36,8	15,9	658	90	3,5	6	9,8125	11	conector	1050	Interna
	2	20 x 20	20	1,4	41,1	13,9	636,4	60	4,2	8	2,4925	3	estribo	650	Interna
	3	20 x 20	20	1,2	45,7	16,4	616	60	4,2	8	4,0192	3	estribo	999	Interna
	4	20 x 20	20	1,2	43,4	16,4	560,7	90	3,5	6	16,0768	11	conector	1038	Interna
Trautwein (2001)	5	20 x 20	20	1,2	43,4	15,9	626,2	60	4,2	8	16,0768	4	estribo	979	Interna
	6	20 x 20	20	1,2	47,9	15,9	616	60	4,2	8	6,5117	7	estribo	1087	Externa
	7	20 x 20	20	1,2	42,6	15,9	616	60	4,2	8	8,0384	9	estribo	1160	Externa
	8	20 x 20	20	1,3	40,6	15,4	793,9	60	4,2	8	8,0384	7	estribo	975	Interna
	9	20 x 20	20	1,3	39,4	15,4	576,9	90	3,5	6	6,28	11	conector	933	Interna
	L1a	12 x 12	13	1,09	57,0	10,7	-	-	-	-	-	-	-	240	-
	L1b	12 x 12	13	1,08	59,0	10,8	-	-	-	-	-	-	-	322	-
	L1c	12 x 12	13	1,09	59,0	10,7	-	-	-	-	-	-	-	318	-
	L2a	12 x 12	13	1,07	58,0	10,9	-	-	-	-	-	-	-	246	-
	L2b	12 x 12	13	1,10	58,0	10,6	-	-	-	-	-	-	-	361	-
	L2c	12 x 12	13	1,09	57,0	10,7	-	-	-	-	-	-	-	331	-
	L3a	12 x 12	13	1,08	56,0	10,8	-	-	-	-	-	-	-	241	-
Oliveira e Melo (2003)	L3b	12 x 12	13	1,09	60,0	10,7	-	-	-	-	-	-	-	400	-
	L3c	12 x 12	13	1,10	54,0	10,6	-	-	-	-	-	-	-	358	-
	L4a	12 x 12	13	1,08	56,0	10,8	-	-	-	-	-	-	-	251	-
	L4b	12 x 12	13	1,10	54,0	11,0	-	-	-	-	-	-	-	395	-
	L4c	12 x 12	13	1,09	56,0	10,9	-	-	-	-	-	-	-	404	-
	L5a	12 x 12	13	1,08	57,0	10,8	-	-	-	-	-	-	-	287	-
	L5b	12 x 12	13	1,08	67,0	10,8	-	-	-	-	-	-	-	426	-
	L5c	12 x 12	13	1,07	63,0	10,7	-	-	-	-	-	-	-	446	-

TABELA A.1 – CARACTERÍSTICAS DAS LAJES DE CONCRETO ARMADO

TABELA A.1 – CARACTERÍSTICAS DAS LAJES DE CONCRETO ARMADO (CONTINUAÇÃO)

Posquisador(os)	Laio	Axb	h	0(%)	fc (MPa)	d (cm)	fy (MDa)		_	Asw	-	-	Tino	Pu (kN)	Modo de Ealha
r esquisadoi(es)	Laje	(cmxcm)	(cm)	<i>p(10)</i>	ic (ini a)	u (ciii)	iy (mra)	α (graus)	s₀(cm)	s _r (cm)	Asw (cm²)	n	npo	r u (KN)	wood de l'allia
Bargas at al (2002)	L45_AC1	20 x 60	20	1,32	40,7	15,4	578	90	7,5	7,5	9,43	4	conector	1200	Externa
Borges et al (2003)	L45_AC5	20 x 60	20	1,32	41,1	15,4	674	90	7,7	11,6	6,03	2	conector	1042	Externa
Souza e Melo (2004)	L1	15 x 15	13	1,36	35,5	9,1	-	-	-	-	-	-	-	274	-
	L5	12 x 12	13	1,24	41,3	11,0	629,2	90	7,8	5,5	2,494	2	estribo	371	Externa
Barreto e Melo (2004)	L6	12 x 12	13	1,24	41,3	11,0	629,2	90	7,8	5,5	2,494	3	estribo	380	Externa
	L7	12 x 12	13	1,24	41,3	11,0	629,2	90	7,8	5,5	2,494	2	estribo	432	Externa
	L8	12 x 12	13	1,24	41,3	11,0	629,2	90	7,8	5,5	2,494	3	estribo	412	Interna
Neto e Melo (2004)	AL1	17 x 17	13	1,37	41,8	10,0	-	-	-	-	-	-	-	300	-
Neto e Melo (2004)	AL5	17 x 17	13	1,40	44,4	9,8	654	60	5,2	7,5	2,4938	3	estribo	470	Externa
	AB1	25 x 25	15	1,41	36	11,6	-	-	-	-	-	-	-	408	-
	AB2	25 x 25	15	1,41	38	11,6	278	90	5,8	8,7	8,506	8	conector	520	Interna
	AB3	25 x 25	15	1,41	23	11,6	278	90	5,8	8,7	8,506	8	conector	545	Interna
Mokhtar et al (1985)	AB4	25 x 25	15	1,41	41	11,6	489	90	5,8	8,7	8,506	8	conector	583	Externa
	AB5	25 x 25	15	1,41	40	11,6	278	90	5,8	8,7	8,506	8	conector	583	Interna
	AB6	25 x 25	15	1,41	29	11,6	489	90	5,8	8,7	8,506	6	conector	541	Externa
	AB7	25 x 25	15	1,41	35	11,6	278	90	5,8	8,7	8,506	6	conector	572	Interna
	AB8	25 x 25	15	1,41	30	11,6	489	90	5,8	8,7	8,506	5	conector	508	Externa
	1	12 x 12	13	1,17	28,7	10,9	-	-	-	-	-	-	-	316,0	-
	2	12 x 12	13	1,18	28,7	10,8	-	-	-	-	-	-	-	255,0	-
	3V	12 x 12	13	1,21	30,8	10,7	847	90	5	7,5	1,571	2	estribo	337,3	Externa
	4V	12 x 12	13	1,22	32,0	10,6	731	90	5	7,5	2,494	2	estribo	326,4	Externa
Coelho e Melo (1999)	5V	12 x 12	13	1,19	32,0	10,8	731	90	5	7,5	2,494	3	estribo	330,5	Externa
	61	12 x 12	13	1,16	27,6	10,9	847	60	5	7,5	1,571	2	estribo	342,4	Externa
	71	12 x 12	13	1,20	29,4	10,7	731	60	5	7,5	2,494	2	estribo	361,1	Externa
	81	12 x 12	13	1,18	29,4	10,8	731	60	5	7,5	2,494	3	estribo	405,1	Externa
	91	12 x 12	13	1,21	32,3	10,7	731	60	5	7,5	2,494	4	estribo	425,4	Externa
	101	12 x 12	13	1,19	33,4	10,8	731	60	5	7,5	4,988	3	estribo	445,1	Interna

		~
\mathbf{T}		$\alpha + \alpha$
	/ / XK I K I A /	• • • • • •
		5/

Pesquisador(es)	Laio	axb	h	a (%)	fc (MPa)	d (cm)	fy (MPa)		_	Asw		-	Tino	Pu (kN)	Modo de Eslha
r esquisadoi (es)	Laje	(cmxcm)	(cm)	p(10)	ic (inir a)	u (ciii)	iy (iiir a)	α (graus)	s₀(cm)	s _r (cm)	Asw (cm²)	n	npo	F U (KN)	mouo de l'allia
	JC-1	12 x 12	13	1,43	40,2	9,9	-	-	-	-	-	-	-	313,5	-
	JC-2	12 x 12	13	1,37	40,2	10,15	724	90	5,075	5,075	4,021	2	parafuso	409,9	Interna
	JC-3	12 x 12	13	1,43	40,2	9,9	724	90	4,95	4,95	4,021	2	parafuso	433,7	Externa
Carvalho e Melo (2001)	JC-4	12 x 12	13	1,45	40,2	9,85	724	90	4,925	4,925	4,021	2	parafuso	400,7	Externa
	JC-5	12 x 12	13	1,38	44,7	10,1	-	-	-	-	-	-	-	301,1	-
	JC-6	12 x 12	13	1,43	44,7	9,9	724	90	4,95	4,95	4,021	3	parafuso	470,9	Interna
	JC-7	12 x 12	13	1,4	44,7	10,05	724	90	5,025	5,025	4,021	3	parafuso	474,3	Externa
	JC-8	12 x 12	13	1,24	44,7	10,72	724	90	5,36	5,36	4,021	3	parafuso	457,8	Externa
	2	φ10	20	1,2	34,44	15,3	430	90	7,65	11,475	0,2827	2	conector	693	Interna
	3	φ10	20	1,2	39,2	15,8	430	90	7,9	11,85	0,376	2	conector	773	Interna
	4	φ10	20	1,2	32,08	15,9	430	90	7,95	11,925	0,5027	3	conector	853	Externa
	5	φ10	20	1,2	34,72	15,9	430	90	7,95	11,925	0,7854	4	conector	853	Externa
Carvalho e Gomes	6	φ10	20	1,2	37,38	15,9	430	90	7,95	11,925	0,7854	4	conector	1040	Externa
(2001)	7	φ10	20	1,2	33,83	15,9	430	90	7,95	11,925	1,131	5	conector	1120	Externa
	8	φ10	20	1,2	34,08	15,9	430	90	7,95	11,925	1,131	6	conector	1200	Externa
	9	φ10	20	1,2	40	15,9	430	90	7,95	11,925	1,175	9	conector	1224	Externa
	10	φ10	20	1,2	35,39	15,4	430	90	7,7	11,55	0,2827	5	conector	800	Interna
	11	φ10	20	1,2	34,54	15,4	430	90	7,7	11,55	0,376	5	conector	907	Interna
	NS1	15 x 15	12	1,473	42	9,5	-	-	-	-	-	-	-	320	-
	HS1	15 x 15	12	0,491	67	9,5	-	-	-	-	-	-	-	178	-
	HS2	15 x 15	12	0,842	70	9,5	-	-	-	-	-	-	-	249	-
	HS7	15 x 15	12	1,193	74	9,5	-	-	-	-	-	-	-	356	-
	HS3	15 x 15	12	1,473	69	9,5	-	-	-	-	-	-	-	356	-
	HS4	15 x 15	12	2,37	66	9	-	-	-	-	-	-	-	418	-
Marzouk e Hussein	NS2	15 x 15	15	0,944	30	12	-	-	-	-	-	-	-	396	-
(1991)	HS5	15 x 15	15	0,64	68	9,5	-	-	-	-	-	-	-	365	-
	HS6	15 x 15	15	0,944	70	12	-	-	-	-	-	-	-	489	-
	HS8	15 x 15	15	1,111	69	12	-	-	-	-	-	-	-	436	-
	HS9	15 x 15	15	1,611	74	12	-	-	-	-	-	-	-	543	-
	HS10	15 x 15	15	2,333	80	12	-	-	-	-	-	-	-	645	-
	HS14	22 x 22	12	1,473	72	9,5	-	-	-	-	-	-	-	498	-
	HS15	30 x 30	12	1,473	71	9,5	-	-	-	-	-	-	-	560	-

/		~
	$\alpha \alpha \gamma \alpha \gamma \alpha \gamma \gamma \alpha \gamma \gamma \alpha \gamma \gamma \alpha \gamma \alpha \gamma \alpha \gamma$	CONTENT A CARD
		3 /

Pagguigador(ag)	Laia	axb	h	- (0()	fo (MDo)	d (om)	fu (MDo)			Asw			Tino		Modo de
Pesquisador(es)	Laje	(стхст)	(cm)	ρ(%)	ic (ivira)	u (cm)	iy (ivira)	α (graus)	s₀(cm)	s _r (cm)	Asw (cm²)	n	про	PU (KN)	Falha
	301	20 x 20	20	1,226	37,8	16,4	588	90	8	8	6,283	6	conector	830	Interna
	302	20 x 20	20	1,226	34,2	16,4	588	90	4	4	6,283	12	conector	790	Interna
	303	20 x 20	20	1,306	42,4	15,4	588	90	4	4	9,425	18	conector	966	Interna
Andrade e Gomes	304	20 x 20	20	1,226	36,1	16,4	588	90	-4*	4	9,425	20	conector	956	Interna
(1999)	305	20 x 20	20	1,306	29,3	15,4	588	90	6	4	6,283	8	conector	785	Interna
	306	20 x 20	20	1,226	37,4	16,4	588	90	-4*	6	12,567	14	conector	950	Interna
	307	20 x 20	20	1,226	34,1	16,4	588	90	6	6	14,726	8	conector	1090	Externa
	308	20 x 20	20	1,306	31,5	15,4	588	90	4	6	14,726	8	conector	1020	Interna
	8	φ10,16	10,16	2,05	24,14	7,62	-	-	-	-	-	-	-	128,99	-
	9	φ10,16	10,16	2,05	22,62	7,62	-	-	-	-	-	-	-	135,66	-
	10	φ10,16	10,16	2,05	24,65	7,62	-	-	-	-	-	-	-	128,99	-
	11	φ15,24	15,24	2,14	22,62	11,33	-	-	-	-	-	-	-	311,36	-
	12	φ20,32	15,24	2,14	24,82	11,33	-	-	-	-	-	-	-	356,55	-
	13	φ20,32	15,24	0,66	24,82	12,17	-	-	-	-	-	-	-	271,33	-
	14	φ 15 ,24	10,16	5,01	25,00	7,26	-	-	-	-	-	-	-	202,38	-
	15	φ 15 ,24	10,16	1,47	25,00	8,08	-	-	-	-	-	-	-	160,13	-
	16	φ 15 ,24	10,16	0,45	23,17	8,58	-	-	-	-	-	-	-	107,37	-
Gardner (1990)	17	φ10,16	10,16	1,47	25,51	8,08	-	-	-	-	-	-	-	120,67	-
	19	φ20,32	15,24	0,47	22,06	12,34	-	-	-	-	-	-	-	271,33	-
	20	φ20,32	15,24	2,14	15,06	11,33	-	-	-	-	-	-	-	277,56	-
	21	φ20,32	15,24	0,66	16,09	12,17	-	-	-	-	-	-	-	229,96	-
	22	φ15,24	10,16	5,01	13,17	7,26	-	-	-	-	-	-	-	154,35	-
	23	φ15,24	10,16	1,47	14,51	8,08	-	-	-	-	-	-	-	107,64	-
	25	φ20,32	15,24	0,66	52,08	12,17	-	-	-	-	-	-	-	306,47	-
	26	¢20,32	10,16	5,01	52,08	7,26	-	-	-	-	-	-	-	322,92	-
	27	φ15,24	10,16	1,47	52,08	8,08	-	-	-	-	-	-	-	242,86	-
	28	φ15,24	10,16	0,45	52,08	8,58	-	-	-	-	-	-	-	242,86	-

*Espaçamento interno à região carregada

	~
\mathbf{T}	a (a)
- 'I'A DIZI A A I - 7 'A DA7 ''I'IZDIK''I'IZ''A K' INAK' I A HZK' INIZ'IZI'A A DA7 A DA7 A DA7 A DA7 A DA7 A D	
	/\
	101101
	5 /

Pesquisador(es)	Laia	axb	h	- (0/)	fo (MDo)	d (om)	fu (MDo)			Asw			Tino		Modo de
resquisadoi(es)	Laje	(cmxcm)	(cm)	ρ(%)	ic (IVIFa)	u (ciii)	iy (ivira)	α (graus)	s₀(cm)	s _r (cm)	Asw (cm²)	n	про	FU (KN)	Falha
	A-1a	25,4 x 25,4	15,24	1,15	14,07	11,76	-	-	-	-	-	-	-	302,46	-
	A-1b	25,4 x 25,4	15,24	1,15	25,24	11,76	-	-	-	-	-	-	-	364,74	-
	A-1c	25,4 x 25,4	15,24	1,15	29,03	11,76	-	-	-	-	-	-	-	355,84	-
	A-1d	25,4 x 25,4	15,24	1,15	36,82	11,76	-	-	-	-	-	-	-	346,94	-
	A-1e	25,4 x 25,4	15,24	1,15	20,27	11,76	-	-	-	-	-	-	-	355,84	-
	A-2a	25,4 x 25,4	15,24	2,47	13,65	11,43	-	-	-	-	-	-	-	333,60	-
	A-2b	25,4 x 25,4	15,24	2,47	19,51	11,43	-	-	-	-	-	-	-	400,32	-
	A-2c	25,4 x 25,4	15,24	2,47	37,44	11,43	-	-	-	-	-	-	-	467,04	-
	A-2d	25,4 x 25,4	15,24	2,47	27,92	11,43	-	-	-	-	-	-	-	511,52	-
Gardner apud Elstner e Hognestad (1990)	A-3a	25,4 x 25,4	15,24	3,70	12,76	11,43	-	-	-	-	-	-	-	355,84	-
	A-3b	25,4 x 25,4	15,24	3,70	22,62	11,43	-	-	-	-	-	-	-	444,80	-
ũ ()	A-4	25,4 x 25,4	15,24	1,15	26,13	11,76	-	-	-	-	-	-	-	400,32	-
	A-5	25,4 x 25,4	15,24	2,47	27,79	11,43	-	-	-	-	-	-	-	533,76	-
	A-6	25,4 x 25,4	15,24	3,70	25,03	11,43	-	-	-	-	-	-	-	498,18	-
	A-7	25,4 x 25,4	15,24	2,47	28,48	11,43	-	-	-	-	-	-	-	400,32	-
	A-8	25,4 x 25,4	15,24	2,47	21,93	11,43	-	-	-	-	-	-	-	435,90	-
	A-7a	25,4 x 25,4	15,24	2,47	27,92	11,43	-	-	-	-	-	-	-	280,22	-
	A-9	25,4 x 25,4	15,24	7,02	29,86	11,43	-	-	-	-	-	-	-	444,80	-
	A-10	25,4 x 25,4	15,24	6,28	29,72	11,43	-	-	-	-	-	-	-	489,28	-
	A-11	25,4 x 25,4	15,24	2,47	25,93	11,43	-	-	-	-	-	-	-	529,31	-
	A12	25,4 x 25,4	15,24	2,47	25,93	11,43	-	-	-	-	-	-	-	529,31	-
Cordnor onud Pozost o	3	ф 10,16	10,16	3,96	52,88	7,80	-	-	-	-	-	-	-	275,42	-
Gardner apud Bazant e Cao (1990)	6	φ 10,16	10,16	3,29	47,94	7,80	-	-	-	-	-	-	-	309,58	-
	9	φ 10,16	10,16	2,63	52,06	7,80	-	-	-	-	-	-	-	228,89	-

TABELA A.1 – CARACTERÍSTICAS DAS LAJES DE CONCRETO ARMADO (CONTINUAÇÃO)

Pesquisador(es) Laje	Laio	axb	h	- (9/)	fo (MPa)	d (cm)	fy (MPa)			Asw			Tino	Du (kNI)	Modo de
resquisadoi(es)	Laje	(cmxcm)	(cm)	p(%)	ic (ivira)	u (ciii)	iy (ivira)	α (graus)	s₀(cm)	s _r (cm)	Asw (cm²)	n	про	FU (KN)	Falha
	R-1	15,24 x 45,72	15,24	1,38	27,58	11,43	-	-	-	-	-	-	-	393,65	-
	R-2	15,24 x 15,24	15,24	1,38	26,55	11,43	-	-	-	-	-	-	-	311,36	-
	S1-60	25,4 x 25,4	15,24	1,06	23,31	11,43	-	-	-	-	-	-	-	389,20	-
	S2-60	25,4 x 25,4	15,24	1,03	22,06	11,43	-	-	-	-	-	-	-	355,84	-
	S3-60	25,4 x 25,4	15,24	1,02	22,62	11,43	-	-	-	-	-	-	-	363,62	-
Cordnor apud Moo	S4-60	25,4 x 25,4	15,24	1,13	23,86	11,43	-	-	-	-	-	-	-	333,60	-
(1990)	S1-70	25,4 x 25,4	15,24	1,06	24,48	11,43	-	-	-	-	-	-	-	392,31	-
	S2-70	25,4 x 25,4	15,24	1,02	25,37	11,43	-	-	-	-	-	-	-	378,08	-
	S4-70	25,4 x 25,4	15,24	1,13	35,16	11,43	-	-	-	-	-	-	-	373,63	-
	S4A-70	25,4 x 25,4	15,24	1,13	20,48	11,43	-	-	-	-	-	-	-	311,36	-
	S5-60	20,32 x 20,32	15,24	1,06	22,20	11,43	-	-	-	-	-	-	-	342,50	-
	S5-70	20,32 x 20,32	15,24	1,06	24,27	11,43	-	-	-	-	-	-	-	378,08	-
	M1A	30,48 x 30,48	15,24	1,5	23,03	11,43	-	-	-	-	-	-	-	432,79	-
	L1	15 x 15	13	1,45	39,6	9	-	-	-	-	-	-	-	273	-
	L2	15 x 30	13	1,45	40,4	9	-	-	-	-	-	-	-	401	-
	L3	15 x 45	13	1,45	40,8	9	-	-	-	-	-	-	-	469	-
Silva (2003)	L7	15 x 15	13	1,45	49	9	NF**	90	4,2	4,2	4,021	3	Conector	420	Externa
	L8	15 x 30	13	1,45	49,4	9	NF**	90	4,2	4,2	4,021	3	Conector	452	Externa
	L11	15 x 30	13	1,57	40,8	9	NF**	90	4,2	4,2	3,016	3	Conector	350	Externa
	L12	φ 40,2	13	1,45	42,3	9	-	-	-	-	-	-	-	525	-
	1	12 x 12	13	1,5	60,88	9,3	-	-	-	-	-	-	-	270	-
	2	12 x 12	13	1,4	62,85	9,7	-	-	-	-	-	-	-	335	-
	3V	12 x 12	13	1,2	63,02	10,5	900	90	5	7,5	1,571	2	estribo	386	Interna
	4V	12 x 12	13	1,3	66,35	10,3	643	90	5	7,5	2,494	2	estribo	377	Externa
	5V	12 x 12	13	1,3	61,45	10,3	643	90	5	7,5	2,494	3	estribo	423	Interna
Oliveira et al (2000)	61	12 x 12	13	1,4	62,38	10	900	57	5	7,5	1,571	2	estribo	410	Interna
	71	12 x 12	13	1,4	60	10	634	57	5	7,5	2,494	2	estribo	490	Externa
	81	12 x 12	13	1,4	62,6	10	643	57	5	7,5	2,494	3	estribo	540	Externa
	91	12 x 12	13	1,4	60	10	643	57	5	7,5	2,494	4	estribo	560	Externa
	101	12 x 12	13	1,3	61	10,5	643	57	5	7,5	2,494	3	estribo	520	Interna
	111	12 x 12	13	1,3	62,06	10,2	643	57	5	7,5	2,494	4	estribo	551	Interna

**Não fornecido pelo ensaio

Posquisador(os)	Laio	axb	h	- (9()	fo (MPa)	d (cm)	fy (MDa)			Asw			Tino		T
r esquisadoi (es)	Laje	(cmxcm)	(cm)	<i>p</i> (<i>m</i>)	ic (iiii a)	u (ciii)	iy (ivir a)	α (graus)	s₀(cm)	s _r (cm)	Asw (cm²)	n	про	r u (KN)	
	L1	12 x 12	13	1,24	66,6	11	629,2	45	5,5	7,8	2,494	3	estribo	500	T
arreto e Melo (2004)	L2	12 x 12	13	1,24	64,9	11	749,2	45	5,5	7,8	1,571	3	estribo	470	
	L3	12 x 12	13	1,24	57	11	629,2	45	5,5	7,8	2,494	2	estribo	448	
	L4	12 x 12	13	1,24	68,9	11	749,2	45	5,5	7,8	1,571	2	estribo	448	
artinelli e Filho apud Fusco (2003)	1	20 x 20	10	1,05	28,7	8	-	-	-	-	-	-	-	150	I
	T1	30 x 30	20	1,23	21,58	16,7	-	-	-	-	-	-	-	441	T
	T2	30 x 30	20	1,23	23,35	16,7	361	90	-	14	0,51	ETEX***	estribo	600	
	Т3	30 x 30	20	1,23	23,74	16,7	361	90	-	9,5	0,75	ETEX***	estribo	727	
	T4	30 x 30	20	1,23	24,43	16,7	331	90	-	13	0,97	ETEX***	estribo	697	
	T5	30 x 30	20	1,23	22,66	16,7	331	90	-	10	1,27	ETEX***	estribo	762	
	T6	30 x 30	20	1,23	24,33	16,7	367	90	-	13	1,53	ETEX***	estribo	735	I

TABELA A.1 - CARACTERÍSTICAS DAS LAJES DE CONCRETO ARMADO (CONTINUAÇÃO)

Martinelli -Fusco -Interna Interna Interna Interna Interna Yamada et al (1992) K1 30 x 30 20 1,53 16,7 26 ----658 ----K2 30 x 30 20 1,53 27,17 16,7 347 90 16 0.25 ETEX*** estribo 950 Interna -ETEX*** K3 30 x 30 20 1,53 25.9 16,7 347 90 8 0,5 estribo 1183 Interna -K4 ETEX*** 30 x 30 20 1,53 27.37 16,7 317 90 16 0,55 estribo 1153 Interna -K5 30 x 30 20 1,53 26 16,7 317 90 8 1,11 ETEX*** 1440 Interna estribo ETEX*** K6 30 x 30 20 1,53 26,39 16,7 330 90 16 0,99 estribo 1274 Interna -K7 30 x 30 20 1,53 27,76 16,7 330 90 8 1,98 ETEX*** 1498 estribo Interna 1 12 x 12 13 1,53 38.2 9,1 -244,7 -------2 12 x 12 13 1,56 38.8 8,9 225,1 --------3 12 x 12 13 1,46 36,9 9,5 NF** 2 298,7 45 3,4 7,5 1,571 estribo Interna 4 12 x 12 13 1,43 54 9,7 NF** 45 3,4 7,5 2,494 2 estribo 356,1 Externa NF** 3 299,2 5 12 x 12 13 1,56 36,2 8,9 45 3,4 7,5 1,571 estribo Interna Andrade e Melo (2000) 6 12 x 12 13 1,39 50,1 10 NF** 45 3,4 7,5 2,494 3 estribo 376,8 Interna 7 12 x 12 13 NF** 90 3,4 7,5 2 330,4 1,46 38,8 9.5 1,571 estribo Externa 8 12 x 12 13 1,39 50,1 10 NF** 90 3,4 7,5 2,494 2 374,4 Externa estribo 3 9 12 x 12 13 1,56 NF** 90 3,4 7,5 300,4 36,2 8,9 1,571 estribo Interna 10 13 1,39 10 NF** 90 3,4 7,5 2,494 3 400 12 x 12 51,9 estribo Interna Holanda e Hanai OSC.S1 8 x 8 10 1,57 43,73 8 ---176.48 -----(2003)

**Não fornecido pelo ensaio

Barreto e

***Em toda extensão da laje

172

Modo de

Falha Interna Interna

Interna Interna

TABELA A.1 – CARACTERÍSTICAS DAS LAJES DE CONCRETO ARMADO (CONTINUAÇÃO)

Pesquisedor(es)	Laio	axb	h	a (%)	fc (MPa)	d (cm)	fy (MPa)			Asw			Tino	Pu (kN)	Modo de
r esquisadoi (es)	Laje	(cmxcm)	(cm)	p(10)	ic (ivir a)	u (ciii)	iy (mra)	α (graus)	s₀(cm)	s _r (cm)	Asw (cm²)	n	npo	r u (KN)	Falha
	L1	8,5 x 8,5	11	1,4	39,4	8,7	-	-	-	-	-	-	-	224	-
	L2	8,5 x 25,5	11	1,2	39,8	8,75	-	-	-	-	-	-	-	241	-
	L3	8,5 x 42,5	11	1,3	40,9	8,65	-	-	-	-	-	-	-	294	-
Neto e Oliveira (2007)	L4	8,5 x 8,5	11	1,4	39,4	8,7	585	60	4,35	6,525	2,4938	3	estribo	282	Externa
	L5	8,5 x 25,5	11	1,2	42,7	8,7	585	60	4,35	6,525	2,4938	3	estribo	288,5	Externa
	L6	8,5 x 42,5	11	1,3	42,8	8,7	585	60	4,35	6,525	2,4938	3	estribo	344,5	Interna
	L7	8,5 x 42,5	11	1,3	43,9	8,7	585	60	4,35	6,525	2,4938	3	estribo	322	Interna
	L42	20 x 40	20	1,52	43,2	13,9	-	-	-	-	-	-	-	657	-
	L42A	20 x 40	20	1,28	36,2	16,4	-	-	-	-	-	-	-	693	-
	L45	20 x 60	20	1,38	42	15,4	-	-	-	-	-	-	-	798	-
	L46	20 x 80	20	1,28	39,3	16,4	-	-	-	-	-	-	-	897	-
Borges et al (2003)	L41	15 x 25	20	1,52	44,7	13,9	-	-	-	-	-	-	-	551	-
	L41A	15 x 25	20	1,28	38,9	16,4	-	-	-	-	-	-	-	600	-
	L43	15 x 45	20	1,52	39	13,9	-	-	-	-	-	-	-	550	-
	L43A	15 x 45	20	1,28	38,7	16,4	-	-	-	-	-	-	-	726	-
	L44	15 x 60	20	1,28	40	16,4	-	-	-	-	-	-	-	761	-
Musse e Gomes (2004)	L1	15 x 15	13	1,435	42	9,1	-	-	-	-	-	-	-	309	-
	L2	15 x 15	13	1,467	42	8,9	NF**	90	4,2	4,2	6,283	3	conector	460	Externa
	L1A	15 x 15	13	2,667	17,6	8,3	-	-	-	-	-	-	-	232	-
Santos et al (2005)	L1B	15 x 15	13	1,467	17	8,9	-	-	-	-	-	-	-	200	-
	L4	15 x 15	13	1,451	35,8	9	-	-	-	-	-	-	-	347	-
	L7	15 x 15	13	2,667	51,6	8,3	-	-	-	-	-	-	-	298	-
	7	10 x 10	15	0,937	33,8	13,1	-	-	-	-	-	-	-	320	-
Cordovil o Eucoo	8	10 x 10	15	0,937	34,3	13,1	NF**	90	7	10	2,4938	3	conector	400	Interna
(1995)	11	10 x 10	15	0,937	33,5	13,1	NF**	90	7	10	2,4938	3	conector	412	Interna
· · · ·	14	15 x 25	12	0,826	29,8	10,35	NF**	90	5,3	9	2,4938	3	conector	302	Interna
	15	15 x 25	12	0,826	29,9	10,35	-	-	-	-	-	-	-	258	-
	16	20 x 20	20	1,2645	39,1	15,9	601	90	3,5	6	2,4925	11	conector	830	Interna
	17	20 x 20	20	1,2645	39,6	15,9	575	90	3,5	6	6,28	11	conector	978	Interna
Trautwein (2006)	18	20 x 20	20	1,2645	35,4	15,9	615	90	3,5	6	4,0192	11	conector	856	Interna
(2000)	19	20 x 20	20	1,2488	43,6	16,1	674	90	4	8	1,57	5	conector	853	Interna
	I10	20 x 20	20	1,2488	44,4	16,1	615	90	4	8	4,0192	5	conector	975	Interna
	l11	20 x 20	20	1,2488	41,4	16,1	601	90	4	8	2,4925	5	conector	945	Interna

**Não fornecido pelo ensaio

TABELA A.1 – CARACTERÍSTICAS DAS LAJES DE CONCRETO ARMADO (CONTINUAÇÃO)

Posquisador(os)	Laio	axb	h	- (9/)	fo (MPa)	d (cm)	fy (MDa)			Asw			Tino		Modo de
resquisadoi(es)	Laje	(стхст)	(cm)	p(%)	ic (IVIFa)	u (ciii)	iy (wira)	α (graus)	s₀(cm)	s _r (cm)	Asw (cm²)	n	про	FU (KN)	Falha
	MV1	25 x 25	15	1,3	32,2	11,3	-	-	-	-	-	-	-	375	-
	MV2	25 x 25	15	1,3	29,5	11,3	NF**	90	5,65	8,5	0,399	3	conector	602	Externa
Trautwoin anud Ghali	MV3	25 x 25	15	1,3	29,3	11,3	NF**	90	5,65	8,5	0,703	2	conector	556	Externa
(2006)	MV4	25 x 25	15	1,3	31,3	11,3	NF**	90	5,65	8,5	0,186	4	conector	588	Externa
	MV5	25 x 25	15	1,3	36,5	11,3	NF**	90	5,65	8,5	0,399	3	conector	592	Externa
	MV6	25 x 25	15	1,3	29	11,3	NF**	90	5,65	8,5	0,186	3	conector	502	Interna
	MV7	25 x 25	15	1,3	37,1	11,3	NF**	90	5,65	8,5	0,397	3	conector	592	Externa
	1	24 x 24	16	1	35,2	12,8	-	-	-	-	-	-	-	564	-
Trautwein apud Regan	2	24 x 24	16	1,4	26,7	12,8	NF**	90	12	24	5,094	2	Estribo	617	Interna
(2006)	3	24 x 24	16	1,4	28	12,8	NF**	90	12	24	9,054	2	Estribo	750	Externa
	4	24 x 24	16	1,4	32,8	12,8	NF**	90	6	12	9,054	3	Estribo	696	Externa
	R1	20 x 20	20	1,022	33,9	16,4	NF**	90	8	12	13,57	4	conector	560	Externa
	R2	20 x 20	20	1,022	37,6	16,4	NF**	90	8	8	6,03	6	conector	587	Interna
Trautwein apud	R3	20 x 20	20	1,022	33,4	16,4	NF**	90	8	12	9,05	4	conector	693	Externa
Samadian (2006)	R4	20 x 20	20	1,022	39,4	16,4	NF**	90	8	8	9,05	6	conector	773	Externa
	A1	20 x 20	20	1,022	37,4	16,4	NF**	90	8	8	6,28	6	conector	853	Externa
	A2	20 x 20	20	1,022	43,1	16,4	NF**	90	8	12	6,28	4	conector	853	Interna
Silve et al apud Pagan	BD2	10 x 10	12,5	1,28	49	10,1	-	-	-	-	-	-	-	268	-
(2002)	BD8	10 x 10	12,5	1,28	44,1	10,1	-	-	-	-	-	-	-	251	-
	DT1	15 x 15	22,5	2,5	54,5	19,7	-	-	-	-	-	-	-	780	-
Silva et al apud Ramos e	AR2	20 x 20	10	1,3	48,9	8	-	-	-	-	-	-	-	258	-
Lúcio (2002)	AR9	20 x 20	10	1,3	46,4	8	-	-	-	-	-	-	-	251	-
Carvalho et al apud Hassanzadeh e Sundquist (2002)	B1	φ 2 5	22	2,86	51,2	19	-	-	-	-	-	-	-	439	-
Corrêa et al (2001)	LP1	15 x 15	12	1,1	52,2	10,5	-	-	-	-	-	-	-	327,5	-
Barbán (2004)	L1	15 x 15	12	1,96	35,7	9,87	-	-	-	-	-	-	-	360	-
Hassan et al (2002)	N1	20 x 40	17	0,27	37,8	15	-	-	-	-	-	-	-	554,6	-
1 1055011 et al (2002)	H1	20 x 40	17	0,27	90,7	15	-	-	-	-	-	-	-	862,9	-

**Não fornecido pelo ensaio

Pesquisador		axh	h		fc	fnc	d	fv			Asw				Pu	Modo	Pn	a	N°
(es)	Laje	стхст	(cm)	р (%)	(MPa)	(MPa)	(cm)	(MPa)	α (graus)	s₀ (cm)	s _r (cm)	Asw (cm²)	n	Тіро	(kN)	de Falha	(kN)	(graus)	Cabos (2x****)
	1	φ 2 4	24	0,69	43,9	0	22	-	-	-	-	-	-	-	709	-	252	1,67	3
Carvalho et al	2	φ24	24	0,868	36,1	2,63	22	-	-	-	-	-	-	-	797	-	252	1,67	4
apud Nylander	3	φ24	24	0,868	39,9	2,63	22	-	-	-	-	-	-	-	921	-	252	1,67	4
et al (2002)	4	φ24	24	0,868	23,4	2,63	22	-	-	-	-	-	-	-	701	-	252	1,67	4
	6	φ24	24	0,69	31,9	1,97	22	-	-	-	-	-	-	-	659	-	252	1,67	3
	A1	10 x 10	12,5	0,62	37,8	3,312	10,9	-	-	-	-	-	-	-	380	-	138	1,71	4
	A2	10 x 10	12,7	0,47	37,8	2,142	11,3	-	-	-	-	-	-	-	315	-	136	1,67	4
	A3	10 x 10	12,8	0,62	37,8	3,164	10,9	-	-	-	-	-	-	-	352,7	-	135	0	0
	A4	10 x 10	12,9	0,51	37,8	1,984	10,4	-	-	-	-	-	-	-	321	-	128	0	0
Silva et al	B1	20 x 20	12,4	0,60	40,1	3,387	11,4	-	-	-	-	-	-	-	582,5	-	140	2,41	8
(2006)	B2	20 x 20	12,4	0,48	40,1	2,226	11,0	-	-	-	-	-	-	-	488	-	138	2,46	8
	B3	20 x 20	12,4	0,63	40,1	3,121	10,8	-	-	-	-	-	-	-	519,8	-	129	2,07	4
	B4	20 x 20	12,4	0,50	40,1	2,161	10,6	-	-	-	-	-	-	-	458,8	-	134	2,46	4
	C1	30 x 30	12,6	0,61	41,6	3,333	11,1	-	-	-	-	-	-	-	720	-	140	3,21	8
	D3	20 x 20	12,5	0,51	44,1	2,272	10,3	-	-	-	-	-	-	-	395,2	-	142	0	0
	BD1	10 x 10	12,5	1,28	52,8	7,65	10,1	-	-	-	-	-	-	-	293	-	179,3	0	4
	BD4	10 x 10	12,5	1,28	46	7,65	10,1	-	-	-	-	-	-	-	293	-	179,3	0	4
	BD5	10 x 10	12,5	1,28	41,4	3,95	10,1	-	-	-	-	-	-	-	208	-	92,58	0	4
	BD6	10 x 10	12,5	1,28	43,3	3,95	10,1	-	-	-	-	-	-	-	225	-	92,58	0	4
	BD7	10 x 10	12,5	1,28	44,2	3,95	10,1	-	-	-	-	-	-	-	221	-	92,58	0	4
Carvalho et al	DT2	15 x 15	22,5	0,89	50,1	8,9	17,2	-	-	-	-	-	-	-	832	-	251,35	0,64	3
apud Regan	DT3	15 x 15	22,5	0,89	54	8,9	17,2	-	-	-	-	-	-	-	962	-	251,35	0,64	3
(2002)	DT4	15 x 15	22,5	0,89	59	2,8	17,2	-	-	-	-	-	-	-	715	-	79,08	0,64	3
	DT5	15 x 15	22,5	0,81	58,2	8,9	17,2	-	-	-	-	-	-	-	910	-	251,35	0,64	3
	DT6	15 x 15	22,5	1,06	53,7	8,9	17	-	-	-	-	-	-	-	832	-	251,35	0,64	3
	DT8	15 x 15	22,5	1,72	57	2,2	17,2	-	-	-	-	-	-	-	676	-	62,13	0,64	3
	DT9	15 x 15	22,5	0,89	56,2	8,9	17,2	-	-	-	-	-	-	-	806	-	251,35	0,64	3
	DT10	15 x 15	22.5	1.28	54.7	8.9	17.2	-	-	- 1	-	-	-	-	832	-	251.35	0.64	3

TABELA A.2 – CARACTERÍSTICAS DAS LAJES DE CONCRETO PROTENDIDO

		\sim
\mathbf{T}		* * ~ `
· (' ^ D) / (^ ^ /) - / ' ^ D) ^ / "(' / D) ('' (' / ^ ^ ^ / ^)) ^ / (^ / ^ /) / / (^ /)) / / (^ /) D) / (^ (' /) / (^ /)) / ())) / ()) / ()) / ())) / ())) / ())) / ())) / ())) / ())) / ())) / ()))	7 Y XXI'I'I XII I X 7	· · · · ·
$-1 \square D D D \square \square \square D D D D D D D D D D D D $		
		/

Pesquisador		avh	h		fc	fnc	d	fv			Asw				Pu	Modo	Pn	~	Nº
(es)	Laje	(cmxcm)	(cm)	р (%)	(MPa)	(MPa)	(cm)	(MPa)	α (graus)	s₀ (cm)	s _r (cm)	Asw (cm²)	n	Tipo	(kN)	de Falha	(kN)	(graus)	Cabos (2x****)
	AR3	20 x 20	10	1,3	46,8	1,01	8	-	-	-	-	-	-	-	270	-	465	1,83	2
	AR4	20 x 20	10	1,3	53,9	1,54	8	-	-	-	-	-	-	-	252	-	709	1,83	2
Carvalho et al	AR5	20 x 20	10	1,3	44,6	1,02	8	-	-	-	-	-	-	-	251	-	469,5	1,83	2
apud Ramos e	AR7	20 x 20	10	1,3	54,8	1,38	8	-	-	-	-	-	-	-	288	-	636	1,83	2
LUCIO (2002)	AR8	20 x 20	10	1,3	51,9	0,96	8	-	-	-	-	-	-	-	280	-	440	1,83	2
	AR10	20 x 20	10	1,3	51,8	0,73	8	-	-	-	-	-	-	-	372	-	335	1,83	2
	AR11	20 x 20	10	1,3	47,5	0,5	8	-	-	-	-	-	-	-	342	-	230	1,92	2
	A1	φ 2 5	18	1,81	38,8	2,79	15	-	-	-	-	-	-	-	668	-	217,64	0,78	3
Carvalho et al	A2	φ 2 5	18	1,81	35,9	2,74	15	-	-	-	-	-	-	-	564	-	213,74	0,78	3
apud Hassanzadeh e	A3	φ 2 5	18	1,81	37,2	3,17	15	-	-	-	-	-	-	-	912	-	247,28	0,78	3
Sundquist	B2	φ 2 5	22	2,86	48,8	2,12	19	-	-	-	-	-	-	-	827	-	202,11	0	3
(2002)	B3	φ 2 5	22	2,86	48,3	2,21	19	-	-	-	-	-	-	-	1113	-	210,69	0,06	3
	B4	φ 2 5	22	2,86	50,6	1,99	19	-	-	-	-	-	-	-	952	-	189,71	0,06	3
	LP2	15 x 15	12	1,1	50,6	2,368	10,5	-	-	-	-	-	-	-	355,4	-	94,7	2,43	4
	LP3	15 x 15	12	1,1	53,9	4,642	10,5	-	-	-	-	-	-	-	415,4	-	111,4	2,43	4
(2001)	LP4	15 x 15	12	1,1	49,2	0,872	10,5	-	-	-	-	-	-	-	390	-	104,6	2,43	4
()	LP5	15 x 15	12	1,1	49,2	1,442	10,5	-	-	-	-	-	-	-	475	-	86,5	2,43	8
	LP6	15 x 15	12	1,1	52,9	1,905	10,5	-	-	-	-	-	-	-	437	-	76,2	2,43	8
	M4	18 x 18	16	0,911	51,92	2,745	13,47	-	-	-	-	-	-	-	772,6	-	138,67	1,826	8
Melges et al (2001)	M5	18 x 18	16	0,925	59,4	2,829	13,26	627,7	90	4,865	9,5	12,208	2	conector	1104,1	Externa	141,78	1,826	8
(2001)	M6	18 x 18	16	0.933	51.56	2,949	13.16	623.8	90	4.865	9.5	12,208	3	conector	1077.8	Externa	147.14	1.826	8

		~
		1010
- '' ^ D B I _ ^ _ ^ ^ / '' ^ ^ ^ ^ ^ _ A D ^ ' ' E D IN THE ^ Y AN T A LEN THE E HE E TANKE DE THA DDE TENITHEN AND A TANKE A DE TANKE DE TANKE DE TANKE DDE TANKE DE TANKE DDE TAN	// Y AND THAT //	^ / ` ^ / N
- LADELA A / - CARACTERINIU AN DANTAIEN DE CUINCREIU ERUTENDUUT		
		101101
	\ \	• • /

Pesquisedor		arh	h		fc	fnc	d	fv			Asw				Pu	Modo	Pn	~	N٥
(es)	Laje	(cmxcm)	(cm)	р (%)	(MPa)	(MPa)	(cm)	(MPa)	α (graus)	s₀ (cm)	s _r (cm)	Asw (cm²)	n	Tipo	(kN)	de Falha	(kN)	(graus)	Cabos (2x****)
	L1	20 x 20	20	0,67	38,8	2,48	16,2	-	-	-	-	-	-	-	699	-	124	0	8
	L1A	20 x 20	20	0,67	26,4	2,43	16,5	-	-	-	-	-	-	-	750	-	121,5	0	8
	S1	25 x 25	20	0,67	39,4	2,504	15,6	-	-	-	-	-	-	-	900	-	125,2	0	8
	L2C	20 x 20	20	0,67	27	2,478	15,5	581	90	8	12	4,021	2	conector	887	Interna	123,9	0,572	8
	L2R	20 x 20	20	0,67	32,2	2,564	16,4	581	90	8	12	4,021	2	conector	900	Interna	128,2	0	8
	L3R	20 x 20	20	0,67	36,7	2,714	16,3	570	90	8	12	6,283	3	conector	1079	Interna	135,7	0,523	8
	L3RII	20 x 20	20	0,67	36,8	2,434	14,4	562	90	8	12	6,283	3	conector	950	Interna	121,7	0	8
	L4R	20 x 20	20	0,67	34,6	2,792	15,9	570	90	8	12	6,283	4	conector	1000	Interna	139,6	0	8
Carvalho et al	L4RII	20 x 20	20	0,67	46	2,72	16,4	539	90	8	12	9,818	4	conector	1185	Externa	136	0	8
(2005)	L6RR	20 x 20	20	0,67	37,7	2,898	15,4	539	90	8	8	9,818	6	conector	1093	Interna	144,9	0,489	8
	S2R	25 x 25	20	0,67	45	2,524	14,4	562	90	7,5	7,5	9,425	2	conector	1050	Externa	126,2	0	8
	S3R	25 x 25	20	0,67	41	2,734	15,6	562	90	8	8	9,425	3	conector	1200	Externa	136,7	0	8
	S4R	25 x 25	20	0,67	38	3,17	14,4	562	90	8	8	9,425	4	conector	1210	Externa	158,5	0,447	8
	S5R	25 x 25	20	0,67	41	2,94	14,4	562	90	8	8	9,425	5	conector	1205	Externa	147	0	8
	S5RII	25 x 25	20	0,67	34	2,924	14,8	548	90	8	8	6,032	5	conector	1150	Interna	146,2	0	8
	S5C	25 x 25	20	0,67	40	2,794	14,7	562	90	8	8	9,425	5	conector	1121	Externa	139,7	0	8
	S6R	25 x 25	20	0,67	44	2,65	14,4	597	90	8	8	3,741	6	conector	900	Interna	132,5	0	8
	S6RII	25 x 25	20	0,67	36	2,794	14,3	548	90	8	8	6,032	6	conector	1043	Interna	139,7	0	8
	L1	20 x 20	20	0,67	55	2,4	14	580	90	8	8	2,494	6	conector	900	Interna	120	0	8
	L2	20 x 20	20	0,67	56	2,846	13,5	590	90	8	8	6,283	3	conector	1050	Externa	142,3	0	8
Fortunato	L3	20 x 20	20	0,67	52	2,77	14,6	570	90	8	8	4,021	6	conector	1050	Interna	138,5	0	8
(2005)	L4	20 x 20	20	0,67	65	2,814	14,4	580	90	8	8	2,494	4	conector	1000	Interna	140,7	0	8
	L5	20 x 20	20	0,67	59	2,688	15,2	590	90	8	8	6,283	5	conector	1175	Interna	134,4	0	8
	L6	20 x 20	20	0,67	57	2,692	14,8	560	90	8	8	9,817	4	conector	1190	Externa	134,6	0	8
	L7	20 x 20	20	0,67	56	2,554	15,2	590	90	8	8	6,283	4	conector	1200	Externa	127,7	0	8
	L2	15 x 15	12	0,316	37,8	2,195	9,87	-	-	-	-	-	-	-	400	-	131,7	1,719	4
Dorbán at al	L3	15 x 15	12	0,316	37,1	2,164	9,87	-	-	-	-	-	-	-	390	-	129,85	1,719	4
(2004)	L4	15 x 15	12	0,316	45	2,103	9,87	-	-	-	-	-	-	-	410	-	126,2	1,719	4
(<i>)</i>	L5	15 x 15	12	0,316	45,1	2,063	9,87	-	-	-	-	-	-	-	397	-	123,8	1,719	4
	L6	15 x 15	12	0,316	41,4	2,123	9,87	-	-	-	-	-	-	-	410	-	127,35	1,719	4

		\sim
\mathbf{T}		N N N
- 'I' A DI /I - A - A - ') 7 ' A D A 7 "I' I / DI G'I' I 7 A G'I A A G'I - A II /G'I A N 7 ' Y AN 7 ' DI /' I Y A DD 7 Y I' I / N I AI I A 7 /	/ '/ \N ' ' N A /	· · · · ·
$-1 \land D \Box \Box \land \land \Box = \Box \land \land \land \cup \Box \Box \land \land \cup \Box \land \cup \Box \Box \Box \cup \Box \land \land \Box \Box \cup \Box \cup$		
		5/

Pesquisador		axh	h		fc	fnc	d	fv			Asw				Pu	Modo	Pn	~	Nº
(es)	Laje	(cmxcm)	(cm)	р (%)	(MPa)	(MPa)	(cm)	(MPa)	α (graus)	s₀ (cm)	s _r (cm)	Asw (cm²)	n	Тіро	(kN)	de Falha	(kN)	(graus)	Cabos (2x****)
	LC1	15 x 15	12	1,169	41,4	0,628	10,5	-	-	-	-	-	-	-	290,6	-	75,4	0	4
	LC2	15 x 15	12	1,169	42,1	0,570	10,5	-	-	-	-	-	-	-	314,1	-	68,4	2,292	4
	LC3	15 x 15	12	1,169	41,5	0,639	10,5	-	-	-	-	-	-	-	299,8	-	76,7	0	4
Alves et al	LC4	15 x 15	12	1,169	43,8	0,654	10,5	-	-	-	-	-	-	-	358	-	78,5	2,292	4
(2005)	LC5	15 x 15	12	1,169	35,4	1,325	10,5	-	-	-	-	-	-	-	360,9	-	79,5	2,292	8
	LC6	15 x 15	12	1,169	35,2	1,628	10,5	-	-	-	-	-	-	-	322,5	-	65,1	2,292	8
	LC7	15 x 15	12	1,169	34,9	1,270	10,5	-	-	-	-	-	-	-	289,8	-	76,2	2,292	8
	LC8	15 x 15	12	1,169	35,8	1,620	10,5	-	-	-	-	-	-	-	375,6	-	64,8	2,292	8
	N2	20 x 40	17	0,27	37,4	0,38	15	-	-	-	-	-	-	-	746,2	-	32,3	0	0
	N3	20 x 40	17	0,27	38,4	0,49	15	-	-	-	-	-	-	-	730,9	-	41,65	0	0
Hassan et al (2002)	N3'	20 x 40	17	0,49	36,1	0,48	15	-	-	-	-	-	-	-	696,1	-	40,8	0	0
	H2	20 x 40	17	0,27	94	0,59	15	-	-	-	-	-	-	-	853,2	-	50,15	0	0
	НЗ	20 x 40	17	0,27	88,4	0.85	15	-	-	-	-	-	-	-	980.5	-	72.25	0	0

ANEXO B – FORÇAS CALCULADAS SEGUNDO METODOLOGIA DESCRITA NO CAPÍTULO 3

Dadas Exporin	nontais						Fcal	c (kN)					
Dados Experim	lentais		NBR 61	18 (2003)			EUROCO	DE 2 (2004) *			ACI 3	18 (2005)	
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha
	1	1070,35	Externa	1070,35	Externa	862,87	Externa	862,87	Externa	693,48	Interna	1069,89	Externa
Transformite of all	2	1071,32	Externa	1071,32	Externa	863,65	Externa	863,65	Externa	694,42	Interna	1071,34	Externa
(2003)	3	1104,08	Externa	1104,08	Externa	890,06	Externa	890,06	Externa	726,52	Interna	1120,87	Externa
(2000)	4	1067,6	Externa	1067,6	Externa	854,91	Externa	854,91	Externa	693,02	Interna	1080,95	Externa
	5	1076,34	Externa	1076,34	Externa	861,91	Externa	861,91	Externa	701,54	Interna	1094,25	Externa
Comos o Donos	1	454,14	-	-	-	395,19	-	-	-	477,96	-	-	-
Gomes e Regan (1999)	1A	457,43	-	-	-	398,05	-	-	-	483,16	-	-	-
(1000)	12A	455,77	-	-	-	399,22	-	-	-	471,86	-	-	-
	1	1052,13	Externa	1052,13	Externa	848,18	Externa	848,18	Externa	692,54	Interna	1068,44	Externa
	2	467,26	Interna	585,52	Externa	388,59	Interna	435,21	Externa	442,06	Interna	450,23	Externa
	3	692,19	Interna	703,97	Externa	540,56	Externa	540,56	Externa	578,99	Externa	578,99	Externa
	4	1147,78	Externa	1147,78	Externa	931,23	Externa	931,23	Externa	786,54	Interna	1200,47	Externa
Trautwein (2001)	5	748,38	Externa	748,38	Externa	580,05	Externa	580,05	Externa	657,43	Externa	657,43	Externa
	6	862,32	Interna	1028,61	Externa	736,04	Interna	821,52	Externa	790,11	Interna	1049,86	Externa
	7	965,13	Interna	1152,79	Externa	824,30	Interna	932,41	Externa	745,12	Interna	1215,9	Externa
	8	933,57	Interna	966,48	Externa	766,85	Externa	766,85	Externa	694,73	Interna	932,82	Externa
	9	1069,81	Externa	1069,81	Externa	856,67	Externa	856,67	Externa	684,39	Interna	1067,49	Externa
	L1a	237,95	-	-	-	185,58	-	-	-	242,06	-	-	-
	L1b	243,22	-	-	-	190,20	-	-	-	249,67	-	-	-
	L1c	240,7	-	-	-	187,73	-	-	-	246,27	-	-	-
	L2a	244,34	-	-	-	191,58	-	-	-	250,93	-	-	-
	L2b	236,83	-	-	-	184,20	-	-	-	240,83	-	-	-
	L2c	237,95	-	-	-	185,58	-	-	-	242,06	-	-	-
	L3a	239,03	-	-	-	186,92	-	-	-	243,24	-	-	-
Oliveira e Melo	L3b	242,06	-	-	-	188,78	-	-	-	248,35	-	-	-
(2003)	L3c	231,25	-	-	-	179,86	-	-	-	232,37	-	-	-
	L4a	239,03	-	-	-	186,92	-	-	-	243,24	-	-	-
	L4b	244,02	-	-	-	191,83	-	-	-	245,41	-	-	-
	L4c	242,99	-	-	-	190,52	-	-	-	246,56	-	-	-
	L5a	240,44	-	-	-	188,03	-	-	-	245,4	-	-	-
	L5b	253,75	-	-	-	198,43	-	-	-	266,05	-	-	-
	L5c	244,51	-	-	-	190,69	-	-	-	254,48	-	-	-

TABELA B.1 – FORÇAS CALCULADAS NAS LAJES DE CONCRETO ARMADO

Dadas Exporir	nontois						Fca	lc (kN)					
	lientais		NBR 61	18 (2003)			EUROCO	DDE 2 (2004) *			ACI 3	18 (2005)	
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha
Borges et al	L45_AC1	876,06	Externa	876,06	Externa	688,43	Externa	688,43	Externa	770,96	Externa	770,96	Externa
(2003)	L45_AC5	769,9	Externa	769,9	Externa	596,62	Externa	596,62	Externa	631,07	Externa	631,07	Externa
Souza e Melo (2004)	L1	186,45	-	-	-	138,66	-	-	-	172,48	Interna	172,48	Interna
	L5	336,46	Externa	336,46	Externa	230,62	Externa	230,62	Externa	238,43	Externa	238,43	Externa
Barreto e Melo	L6	365,7	Interna	379,56	Externa	264,50	Externa	264,50	Externa	291,31	Externa	291,31	Externa
(2004)	L7	336,46	Externa	336,46	Externa	230,62	Externa	230,62	Externa	238,43	Externa	238,43	Externa
	L8	365,7	Interna	379,56	Externa	264,50	Externa	264,50	Externa	291,31	Externa	291,31	Externa
Neto e Melo	AL1	234,28	-	-	-	179,15	Externa	-	-	230,42	Interna	230,42	Interna
(2004)	AL5	286,04	Interna	389,84	Externa	240,43	Interna	267,66	Externa	297,06	Interna	298,40	Externa
	AB1	317,41	-	-	-	253,34	-	-	-	336,25	Interna	336,25	Interna
	AB2	758,96	Interna	721,54	Interna	623,69	Interna	659,55	Externa	493,26	Interna	493,26	Interna
	AB3	654,09	Interna	654,09	Interna	557,91	Externa	557,91	Externa	407,22	Interna	453,75	Interna
Mokhtar et al	AB4	765,34	Interna	896,71	Externa	628,66	Interna	676,47	Externa	543,7	Interna	739,45	Interna
(1985)	AB5	763,25	Interna	725,83	Interna	627,03	Interna	669,73	Interna	497,88	Interna	497,88	Interna
	AB6	667,58	Externa	667,58	Externa	497,87	Externa	497,87	Externa	457,27	Interna	574,30	Externa
	AB7	710,77	Externa	710,77	Externa	530,08	Externa	530,08	Externa	486,09	Interna	486,09	Interna
	AB8	608,73	Externa	608,73	Externa	450,50	Externa	450,50	Externa	465,08	Interna	508,95	Externa
	1	199,1	-	-	-	156,11	-	-	-	176,51	Interna	176,51	Interna
	2	197,02	-	-	-	154,07	-	-	-	174,13	Interna	174,13	Interna
	3V	238,42	Interna	287,06	Externa	195,05	Externa	195,05	Externa	181,31	Interna	192,61	Externa
	4V	286,84	Interna	288,21	Externa	195,42	Externa	195,42	Externa	194,09	Externa	194,09	Externa
Coelho e Melo	5V	292,27	Interna	345,00	Externa	240,20	Externa	240,20	Externa	238,37	Interna	260,90	Externa
(1999)	61	224,89	Interna	279,17	Externa	190,20	Interna	190,20	Externa	186,52	Externa	186,52	Externa
	71	267,13	Interna	281,86	Externa	191,51	Externa	191,51	Externa	188,18	Externa	188,18	Externa
	81	269,41	Interna	334,45	Externa	232,86	Externa	232,86	Externa	250,07	Externa	250,07	Externa
	91	272,39	Interna	390,04	Interna	236,05	Interna	280,30	Externa	276,08	Interna	321,30	Externa
	101	349,96	Externa	349,96	Externa	243,66	Externa	243,66	Externa	266,54	Externa	266,54	Externa

Dados Experir	nontais						Fca	alc (kN)					
	nemais		NBR 6	118 (2003)			EUROCO	ODE 2 (2004) *			ACI 3	18 (2005)	
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha
	JC-1	207,35	-	-	-	158,10	-	-	-	181,45	-	-	-
	JC-2	288,8	Externa	288,8	Externa	192,25	Externa	192,25	Externa	185,77	Externa	185,77	Externa
	JC-3	282,16	Externa	282,16	Externa	186,62	Externa	186,62	Externa	177,99	Externa	177,99	Externa
Carvalho e Melo	JC-4	281,33	Externa	281,33	Externa	185,82	Externa	185,82	Externa	176,45	Externa	176,45	Externa
(2001)	JC-5	218,45	-	-	-	167,53	-	-	-	196,99	-	-	-
	JC-6	331,08	Externa	331,08	Externa	222,88	Externa	222,88	Externa	232,25	Externa	232,25	Externa
	JC-7	336,38	Externa	336,38	Externa	227,37	Externa	227,37	Externa	238,51	Externa	238,51	Externa
	JC-8	356,7	Externa	356,7	Externa	245,30	Externa	245,30	Externa	267,47	Externa	267,47	Externa
	2	272,47	Interna	277,92	Interna	227,33	Interna	237,29	Interna	136,40	Interna	137,53	Interna
	3	303,83	Interna	311,07	Interna	255,19	Interna	268,43	Interna	156,36	Interna	157,86	Interna
	4	296,91	Interna	306,59	Interna	248,98	Interna	266,68	Interna	151,38	Interna	153,39	Interna
	5	322,82	Interna	337,94	Interna	269,31	Interna	296,96	Interna	171,48	Interna	174,62	Interna
Carvalho e Gomes (2001)	6	329,56	Interna	344,67	Interna	275,02	Interna	302,67	Interna	176,35	Interna	179,50	Interna
	7	343,56	Interna	365,33	Interna	284,88	Interna	324,70	Interna	188,24	Interna	192,77	Interna
	8	344,22	Interna	365,99	Interna	285,44	Interna	325,26	Interna	188,71	Interna	193,24	Interna
	9	361,89	Interna	384,51	Interna	300,18	Interna	341,55	Interna	201,77	Interna	206,47	Interna
	10	277,46	Interna	282,90	Interna	231,89	Interna	241,85	Interna	139,36	Interna	140,49	Interna
	11	281,6	Interna	288,83	Interna	234,88	Interna	248,12	Interna	142,83	Interna	144,33	Interna
	NS1	214,75	-	-	-	161,76	-	-	-	199,11	-	-	-
	HS1	173,98	-	-	-	138,09	-	-	-	251,48	-	-	-
	HS2	211,31	-	-	-	159,16	-	-	-	257,05	-	-	-
	HS7	241,77	-	-	-	182,11	-	-	-	264,29	-	-	-
	HS3	253,39	-	-	-	190,87	-	-	-	255,20	-	-	-
	HS4	271,79	-	-	-	190,37	-	-	-	231,63	-	-	-
Marzouk e	NS2	229,64	-	-	-	185,05	-	-	-	234,25	-	-	-
Hussein (1991)	HS5	190,99	-	-	-	143,86	-	-	-	253,35	-	-	-
	HS6	304,58	-	-	-	245,44	-	-	-	357,82	-	-	-
	HS8	320,04	-	-	-	257,90	-	-	-	355,26	-	-	-
	HS9	370,78	-	-	-	298,79	-	-	-	367,90	-	-	-
	HS10	430,54	-	-	-	329,58	-	-	-	382,53	-	-	-
	HS14	297,13	-	-	-	223,81	-	-	-	335,18	-	-	-
	HS15	341,38	-	-	-	257,14	-	-	-	417,37	-	-	-

Fcalc (kN) Dados Experimentais EUROCODE 2 (2004) * NBR 6118 (2003) ACI 318 (2005) Modo Modo Modo Modo Modo Fu Fu Fu Fu Modo de Fu Fu Pesquisador(es) Laje de de de de de (fy normativo) (fy experimental) (fy experimental) (fy normativo) (fy experimental) Falha (fy normativo) Falha Falha Falha Falha Falha 301 947,04 Externa 947,04 Externa 758,01 Externa 758,01 Externa 734,04 Interna 907,79 Externa 302 915.96 Externa 915.96 Externa 733.14 Externa 733,14 Externa 698,21 Interna 863,48 Externa 303 1171,19 Interna 1171,19 Interna 954,47 Externa 954,47 Externa 709,96 Interna 1223,31 Externa 304 1094,15 Interna 1094,15 956,42 Externa 956,42 Externa 717,35 1208,77 Externa Interna Interna Andrade e Gomes (1999)Externa 305 703,18 Externa 703.18 Externa 546.48 Externa 546,48 Externa 586,12 Externa 586,12 306 Interna 985,47 Externa 985,47 730,15 1257,62 Externa 1126.66 1126,66 Interna Externa Interna 307 Externa 915,07 732,43 697,19 862,22 Externa 915,07 Externa 732,43 Externa Externa Interna 308 Externa Externa 656,03 Externa 656,03 611,94 748,78 Externa 831,85 831,85 Externa Interna 8 121,66 --85,02 -69,01 . -. ---9 119,04 83.19 66.8 ---_ --_ --10 122,51 85,62 69,74 ------11 237,75 184,28 148,39 ---------185,18 12 265,82 206,04 ------13 198,68 160,73 204,15 ---------14 174,86 89,39 84,74 -------15 134,21 96.28 97,63 ---------101.9 16 95,78 69.97 ----_ _ _ _ Gardner (1990) 17 120,68 86,57 77,13 ---------19 196,36 174,16 141,46 --------20 225,03 ---174,42 ---144,24 --21 164,38 171,96 --139,11 -------22 117,16 72,19 61,51 ---------23 111,94 80,30 74,37 ---------25 254,35 205,76 295,71 ---------26 248,93 127,25 149,92 --------27 171,40 122,96 140,91 ---------28 125.47 95,34 152,78 --------

TABELA B.1 - FORÇAS CALCULADAS NAS LAJES DE CONCRETO ARMADO (CONTINUAÇÃO)

*Eurocode 2 com todas as limitações impostas normativamente

**Eurocode 2 sem a limitação proposta para a variável k

Dadas Exporim	ontoio						Fca	alc (kN)					
Dados Experim	entais		NBR 6	118 (2003)			EUROCO	ODE 2 (2004) *			ACI 31	18 (2005)	
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha
	A-1a	222,17	-	-	-	178,01	-	-	-	216,35	-	-	-
	A-1b	269,96	-	-	-	216,30	-	-	-	289,78	-	-	-
	A-1c	282,85	-	-	-	226,64	-	-	-	310,8	-	-	-
	A-1d	306,18	-	-	-	245,33	-	-	-	350,03	-	-	-
	A-1e	250,95	-	-	-	201,07	-	-	-	259,72	-	-	-
	A-2a	273,45	-	-	-	202,57	-	-	-	205,32	-	-	-
	A-2b	308,03	-	-	-	228,19	-	-	-	245,46	-	-	-
	A-2c	382,76	-	-	-	283,55	-	-	-	340,01	-	-	-
	A-2d	347,12	-	-	-	257,14	-	-	-	293,64	-	-	-
Gardner apud	A-3a	305,88	-	-	-	198,04	-	-	-	198,46	-	-	-
Elstner e	A-3b	370,21	-	-	-	239,69	-	-	-	264,26	-	-	-
Hognestad (1990)	A-4	273,12	-	-	-	218,83	-	-	-	294,89	-	-	-
	A-5	346,54	-	-	-	256,72	-	-	-	292,91	-	-	-
	A-6	382,94	-	-	-	247,93	-	-	-	278	-	-	-
	A-7	349,39	-	-	-	258,83	-	-	-	296,53	-	-	-
	A-8	320,23	-	-	-	237,23	-	-	-	260,2	-	-	-
	A-7a	347,12	-	-	-	257,14	-	-	-	293,64	-	-	-
	A-9	502,77	-	-	-	262,94	-	-	-	303,62	-	-	-
	A-10	483,69	-	-	-	262,53	-	-	-	302,92	-	-	-
	A-11	338,63	-	-	-	250,85	-	-	-	282,93	-	-	-
	A12	338,63	-	-	-	250,85	-	-	-	282,93	-	-	-
Gardner apud	3	203,44	-	-	-	114,97	-	-	-	105,57	-	-	-
Bazant e Cao	6	185,1	-	-	-	111,28	-	-	-	100,52	-	-	-
(1990)	9	176,57	-	-	-	114,37	-	-	-	104,74	-	-	-

Dados Experim	ontais						Fca	alc (kN)					
Dauos Experim	entais		NBR 6	118 (2003)			EUROCO	ODE 2 (2004) *			ACI 3	18 (2005)	
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha
	R-1	308,30	-	-	-	245,04	-	-	-	332,07	-	-	-
	R-2	234,52	-	-	-	186,40	-	-	-	207,32	-	-	-
	S1-60	246,51	-	-	-	195,92	-	-	-	268,25	-	-	-
	S2-60	239,75	-	-	-	190,55	-	-	-	261,01	-	-	-
	S3-60	240,94	-	-	-	191,50	-	-	-	264,26	-	-	-
Conduct crevel	S4-60	253,79	-	-	-	201,71	-	-	-	271,41	-	-	-
Gardner apud Moe (1990)	S1-70	250,57	-	-	-	199,16	-	-	-	274,92	-	-	-
Moc (1000)	S2-70	250,37	-	-	-	198,99	-	-	-	279,91	-	-	-
	S4-70	288,83	-	-	-	229,56	-	-	-	329,51	-	-	-
	S4A-70	241,20	-	-	-	191,70	-	-	-	251,46	-	-	-
	S5-60	222,46	-	-	-	176,81	-	-	-	225,71	-	-	-
	S5-70	229,16	-	-	-	182,14	-	-	-	235,99	-	-	-
	M1A	298,50	-	-	-	237,25	-	-	-	303,44	-	-	-
	L1	194,61	-	-	-	144,24	-	-	-	179,42	-	-	-
	L2	229,86	-	-	-	170,38	-	-	-	237,86	-	-	-
	L3	264,68	-	-	-	196,19	-	-	-	295,95	-	-	-
Silva (2003)	L7	304,48	Externa	-	-	200,39	Externa	-	-	210,77	Externa	-	-
	L8	341,61	Externa	-	-	227,84	Externa	-	-	243,89	Externa	-	-
	L11	329,12	Externa	-	-	219,51	Externa	-	-	221,65	Externa	-	-
	L12	275,12	-	-	-	203,92	-	-	-	298,57	-	-	-
	1	221,39	-	-	-	165,71	-	-	-	204,02	-	-	-
	2	232,11	-	-	-	175,92	-	-	-	220,27	-	-	-
	3V	272,65	Interna	355,13	Externa	227,17	Interna	240,31	Externa	215,51	Interna	269,23	Externa
	4V	321,71	Interna	362,46	Externa	244,24	Externa	244,24	Externa	264,23	Interna	269,85	Externa
	5V	316,83	Interna	418,36	Externa	271,44	Interna	288,24	Externa	259,44	Interna	342,05	Externa
Oliveira et al	61	251,89	Interna	351,18	Externa	205,22	Interna	235,10	Externa	234,06	Interna	252,42	Externa
(2000)	71	288,20	Interna	346,65	Externa	232,07	Externa	232,07	Externa	247,56	Externa	247,56	Externa
	81	290,81	Interna	417,29	Externa	244,48	Interna	285,61	Externa	302,36	Interna	333,57	Externa
	91	288,20	Interna	452,6	Interna	242,53	Interna	331,13	Externa	299,88	Interna	405,58	Externa
	101	303,02	Interna	426,57	Externa	257,08	Interna	295,16	Externa	318,67	Interna	348,53	Externa
	111	293,05	Interna	460,74	Interna	247,53	Interna	335,23	Externa	308,98	Interna	421,82	Externa

Dados Exporimo	ntais		Fcalc (kN)											
	intais		NBR 6	118 (2003)			EUROCO	ODE 2 (2004) *			ACI 3	18 (2005)		
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	
	L1	302,76	Interna	444,22	Interna	254,87	Interna	326,79	Externa	339,36	Interna	398,00	Externa	
Barreto e Melo	L2	266,45	Interna	383,76	Interna	218,59	Interna	323,98	Externa	263,92	Interna	373,34	Interna	
(2004)	L3	292,17	Interna	374,61	Externa	246,75	Interna	256,77	Externa	280,1	Externa	280,10	Externa	
	L4	270,63	Interna	387,94	Interna	221,80	Interna	273,52	Externa	268,13	Interna	307,96	Externa	
Martinelli e Filho apud Fusco (2003)	1	150,81	-	-	-	107,86	-	-	-	158,4	-	-	-	
	T1	447,39	-	-	-	394,37	-	-	-	478,23	-	-	-	
	T2	380,35	Interna	386,25	Interna	326,85	Interna	336,60	Interna	278,22	Interna	278,22	Interna	
	Т3	413,85	Interna	426,66	Interna	355,60	Interna	376,73	Interna	305,99	Interna	305,99	Interna	
Yamada et al (1992)	T4	414,05	Interna	420,54	Interna	355,77	Interna	370,13	Interna	303,37	Interna	303,37	Interna	
	T5	444,04	Interna	455,1	Interna	381,50	Interna	405,94	Interna	322,65	Interna	322,65	Interna	
	Т6	445,53	Interna	466,39	Interna	382,78	Interna	416,04	Interna	333,72	Interna	333,72	Interna	
	K1	511,99	-	-	-	451,31	-	-	-	524,92	-	-	-	
	K2	411,25	Interna	413,24	Interna	353,44	Interna	357,07	Interna	285,49	Interna	285,49	Interna	
	K3	439,71	Interna	447,66	Interna	377,84	Interna	392,38	Interna	306,11	Interna	306,11	Interna	
	K4	426,14	Interna	427,93	Interna	366,21	Interna	371,62	Interna	295,64	Interna	295,64	Interna	
	K5	496,80	Interna	504,02	Interna	426,83	Interna	448,66	Interna	343,87	Interna	343,87	Interna	
	K6	441,71	Interna	446,94	Interna	379,56	Interna	391,32	Interna	306,53	Interna	306,53	Interna	
	K7	586,20	Interna	607,12	Interna	503,54	Interna	550,55	Interna	415,81	Interna	415,81	Interna	
	1	185,04	-	-	-	137,60	-	-	-	156,65	-	-	-	
	2	181,46	-	-	-	134,05	-	-	-	152,94	-	-	-	
	3	199,96	Interna	-	-	161,37	Interna	-	-	169,92	Externa	-	-	
	4	256,48	Interna	-	-	206,11	Externa	-	-	210,85	Externa	-	-	
Andrade e Melo	5	185,83	Interna	-	-	148,11	Interna	-	-	181,56	Interna	-	-	
(2000)	6	260,67	Interna	-	-	217,67	Interna	-	-	283,01	Externa	-	-	
	7	224,30	Interna	-	-	180,40	Externa	-	-	166,11	Interna	-	-	
	8	297,19	Interna	-	-	208,08	Externa	-	-	210,82	Externa	-	-	
	9	206,30	Interna	-	-	168,77	Interna	-	-	150,67	Interna	-	-	
	10	299,23	Interna	-	-	256,08	Interna	-	-	240,79	Interna	-	-	

Dados Exporin	ontois	Fcalc (kN)											
	lentais		NBR 6	118 (2003)			EUROCO	ODE 2 (2004) *			ACI 3	18 (2005)	
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha
Holanda e Hanai (2003)	OSC.S1	145,68	-	-	-	104,19	-	-	-	111,73	-	-	-
	L1	155,27	-	-	-	113,92	-	-	-	123,99	-	-	-
	L2	184,48	-	-	-	135,59	-	-	-	187,63	-	-	-
Nata a Olivaira	L3	224,57	-	-	-	164,48	-	-	-	249,37	-	-	-
(2007)	L4	227,42	Interna	265,08	Interna	179,09	Externa	179,09	Externa	187,86	Interna	193,1	Externa
(2001)	L5	252,17	Interna	303	Externa	201,11	Externa	201,11	Externa	233,88	Externa	233,88	Externa
	L6	284,59	Interna	348,37	Externa	233,81	Externa	233,81	Externa	267,05	Externa	267,05	Externa
	L7	286,09	Interna	351,33	Externa	235,80	Externa	235,80	Externa	270,46	Externa	270,46	Externa
	L42	472,50	-	-	-	396,59	-	-	-	529,41	-	-	-
	L42A	525,46	-	-	-	461,00	-	-	-	604,35	-	-	-
	L45	586,04	-	-	-	505,66	-	-	-	729,84	-	-	-
	L46	672,54	-	-	-	590,03	-	-	-	901,12	-	-	-
Borges et al (2003)	L41	413,03	-	-	-	346,68	-	-	-	415,86	-	-	-
	L41A	472,19	-	-	-	414,26	-	-	-	491,47	-	-	-
	L43	456,66	-	-	-	383,30	-	-	-	503,02	-	-	-
	L43A	537,29	-	-	-	471,37	-	-	-	624,87	-	-	-
	L44	593,22	-	-	-	520,44	-	-	-	737,97	-	-	-
Musse e Gomes	L1	200,76	-	-	-	149,30	-	-	-	187,61	-	-	-
(2004)	L2	286,65	Externa	-	-	188,17	Externa	-	-	192,58	Externa	-	-
	L1A	163,22	-	-	-	107,26	-	-	-	107,09	-	-	-
Contoo at al (2005)	L1B	145,17	-	-	-	107,24	-	-	-	115,77	-	-	-
Santos et al (2005)	L4	188,21	-	-	-	139,51	-	-	-	170,6	-	-	-
	L7	233,61	-	-	-	153,52	-	-	-	183,37	-	-	-
	7	246,48	-	-	-	203,54	-	-	-	232,23	-	-	-
	8	337,54	Interna	-	-	277,52	Interna	-	-	251,19	Interna	-	-
(1995)	11	336,04	Interna	-	-	276,31	Interna	-	-	249,78	Interna	-	-
(1995)	14	280,21	Interna	-	-	222,50	Interna	-	-	231,32	Interna	-	-
	15	196,73	-	-	-	151,96	-	-	-	226,73	-	-	-

Dados Experimentais							Fca	alc (kN)					
Dados Experime	ntais		NBR 6	118 (2003)			EUROCO	DDE 2 (2004) *			ACI 3	18 (2005)	
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha
	16	677,09	Interna	941,87	Interna	545,55	Interna	880,73	Externa	506,92	Interna	639,68	Interna
	17	1097,15	Externa	1097,15	Externa	884,47	Externa	884,47	Externa	718,4	Interna	1108,34	Externa
Trautwein (2006)	18	868,34	Interna	1043,62	Interna	690,10	Interna	852,03	Externa	656,98	Interna	885,97	Interna
	19	522,47	Interna	683,73	Interna	430,49	Interna	629,54	Interna	387,35	Interna	473,93	Interna
	I10	771,44	Interna	858,19	Externa	620,19	Interna	674,73	Externa	586,9	Interna	760,8	Interna
	l11	609,18	Interna	810,26	Interna	495,93	Interna	659,18	Externa	454,94	Interna	555,77	Interna
	MV1	287,65	-	-	-	227,88	-	-	-	307,25	-	-	-
	MV2	238,77	Interna	-	-	186,11	Interna	-	-	172,71	Interna	-	-
Transformer	MV3	256,47	Interna	-	-	201,06	Interna	-	-	188,37	Interna	-	-
Ghali (2006)	MV4	230,32	Interna	-	-	178,68	Interna	-	-	165,94	Interna	-	-
	MV5	254,58	Interna	-	-	198,32	Interna	-	-	189,73	Interna	-	-
	MV6	224,81	Interna	-	-	174,43	Interna	-	-	160,1	Interna	-	-
	MV7	255,72	Interna	-	-	199,19	Interna	-	-	191,01	Interna	-	-
	1	315,16	-	-	-	258,59	-	-	-	368,9	-	-	-
Trautwein apud	2	352,98	Interna	-	-	301,05	Interna	-	-	274,18	Interna	-	-
Regan (2006)	3	439,07	Interna	-	-	384,43	Interna	-	-	362,64	Interna	-	-
	4	597,08	Externa	-	-	445,68	Externa	-	-	482,54	Externa	-	-
	R1	822,76	Externa	-	-	655,72	Externa	-	-	695,14	Interna	-	-
	R2	889,72	Externa	-	-	712,13	Externa	-	-	732,1	Interna	-	-
Trautwein apud	R3	818,7	Externa	-	-	652,48	Externa	-	-	690	Interna	-	-
Samadian (2006)	R4	903,7	Externa	-	-	723,32	Externa	-	-	749,42	Interna	-	-
	A1	888,14	Externa	-	-	710,87	Externa	-	-	730,15	Interna	-	-
	A2	778,35	Interna	-	-	625,39	Interna	-	-	609,8	Interna	-	-
O'har at al anud	BD2	209,61	-	-	-	177,62	-	-	-	187,58	-	-	-
Silva et al apud Regan (2002)	BD8	202,38	-	-	-	188,93	-	-	-	177,96	-	-	-
Regan (2002)	DT1	813,68	-	-	-	876,38	-	-	-	666,14	-	-	-
Silva et al apud	AR2	193,41	-	-	-	196,11	-	-	-	206,76	-	-	-
Ramos e Lúcio (2002)	AR9	190,06	-	-	-	208,15	-	-	-	201,41	-	-	-

Dadaa Evravim	ontoio	Fcalc (kN)											
Dados Experime	entais		NBR 6	118 (2003)			EUROCO	DE 2 (2004) *		ACI 318 (2005)			
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha
Carvalho et al apud Hassanzadeh e Sundquist (2002)	B1	836,92	-	-	-	1038,64	-	-	-	620,16	Interna	620,16	Interna
Corrêa et al (2001)	LP1	240,59	-	-	-	327,69	-	-	-	255,35	Interna	255,35	Interna
Barbán (2004)	L1	235,81	-	-	-	324,95	-	-	-	193,6	Interna	193,6	Interna
Hassan et al	N1	281,16	-	-	-	698,11	-	-	-	547,8	Interna	547,8	Interna
(2002)	H1	376,41	-	-	-	899,01	-	-	-	848,56	Interna	848,56	Interna

Dados Experimentais		Fcalc (kN)											
Dados Experime	ntais		NBR 6	118 (2003)			EUROCO	DE 2 (2004) *			ACI 31	8 (2005)	
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha
	1	656,85	-	-	-	565,65	-	-	-	695,15	-	-	-
Convolto at al anud	2	678,50	-	-	-	775,66	-	-	-	863,56	-	-	-
Nylander et al (2002)	3	699,52	-	-	-	795,07	-	-	-	891,99	-	-	-
	4	595,11	-	-	-	698,68	-	-	-	755,60	-	-	-
	6	594,98	-	-	-	661,03	-	-	-	752,70	-	-	-
	A1	201,92	-	-	-	196,38	-	-	-	285,96	-	-	-
	A2	194,28	-	-	-	172,84	-	-	-	265,23	-	-	-
	A3	168,97	-	-	-	193,52	-	-	-	248,97	-	-	-
Silva et al (2006)	A4	147,69	-	-	-	149,46	-	-	-	201,82	-	-	-
	B1	316,23	-	-	-	262,54	-	-	-	502,63	-	-	-
	B2	291,18	-	-	-	207,84	-	-	-	436,35	-	-	-
	B3	247,08	-	-	-	236,78	-	-	-	406,20	-	-	-
	B4	235,46	-	-	-	196,19	-	-	-	368,39	-	-	-
	C1	383,16	-	-	-	299,14	-	-	-	649,22	-	-	-
	D3	189,46	-	-	-	195,15	-	-	-	325,50	-	-	-
	BD1	214,90	-	-	-	293,78	-	-	-	357,48	-	-	-
	BD4	205,25	-	-	-	286,38	-	-	-	346,08	-	-	-
	BD5	198,16	-	-	-	218,57	-	-	-	247,75	-	-	-
	BD6	201,15	-	-	-	220,86	-	-	-	251,19	-	-	-
	BD7	202,53	-	-	-	221,92	-	-	-	252,79	-	-	-
	DT2	471,90	-	-	-	826,93	-	-	-	1063,08	-	-	-
Carvalho et al apud	DT3	483,41	-	-	-	837,16	-	-	-	1080,45	-	-	-
Regari (2002)	DT4	485,84	-	-	-	559,85	-	-	-	684,87	-	-	-
	DT5	480,42	-	-	-	834,51	-	-	-	1098,47	-	-	-
	DT6	501,78	-	-	-	843,45	-	-	-	1060,27	-	-	-
	DT8	595,89	-	-	-	630,11	-	-	-	635,42	-	-	-
	DT9	489,66	-	-	-	842,72	-	-	-	1089,97	-	-	-
	DT10	545,76	-	-	-	892,54	-	-	-	1083,5	-	-	-

TABELA B.2 – FORÇAS CALCULADAS NAS LAJES DE CONCRETO PROTENDIDO

Dados Experimentais		Fcalc (kN)											
Dados Experime	mais		NBR 6	118 (2003)		EUROCODE 2 (2004) *					ACI 318	3 (2005)	
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha
	AR3	250,00	-	-	-	150,91	-	-	-	264,30	-	-	-
	AR4	290,36	-	-	-	165,14	-	-	-	322,73	-	-	-
Carvalho et al apud	AR5	247,54	-	-	-	148,89	-	-	-	260,92	-	-	-
Ramos e Lúcio	AR7	282,14	-	-	-	163,62	-	-	-	310,69	-	-	-
(2002)	AR8	253,49	-	-	-	154,97	-	-	-	269,20	-	-	-
	AR10	239,95	-	-	-	151,56	-	-	-	249,43	-	-	-
	AR11	222,37	-	-	-	144,22	-	-	-	223,35	-	-	-
	A1	480,68	-	-	-	508,37	-	-	-	516,05	-	-	-
	A2	468,53	-	-	-	496,23	-	-	-	499,93	-	-	-
Carvalho et al apud	A3	476,65	-	-	-	518,07	-	-	-	532,86	-	-	-
Sundquist (2002)	B2	823,63	-	-	-	793,98	-	-	-	699,10	-	-	-
Gallaquior (2002)	B3	822,13	-	-	-	797,12	-	-	-	704,78	-	-	-
	B4	834,83	-	-	-	794,23	-	-	-	699,77	-	-	-
	LP2	270,22	-	-	-	232,41	-	-	-	329,14	-	-	-
	LP3	280,95	-	-	-	282,17	-	-	-	414,96	-	-	-
Corrêa et al (2001)	LP4	271,36	-	-	-	200,54	-	-	-	281,35	-	-	-
	LP5	294,57	-	-	-	212,03	-	-	-	322,87	-	-	-
	LP6	293,35	-	-	-	225,84	-	-	-	338,80	-	-	-
	M4	409,67	-	-	-	371,28	-	-	-	564,65	-	-	-
Melges et al (2001)	M5	579,86	Externa	579,86	Externa	455,25	Externa	455,25	Externa	416,89	Externa	416,89	Externa
	M6	660,49	Externa	660,49	Externa	531,69	Externa	531,69	Externa	506,92	Externa	506,92	Externa

Fcalc (kN) Dados Experimentais EUROCODE 2 (2004) * NBR 6118 (2003) ACI 318 (2005) Modo Modo Modo Modo Modo Modo Fu Fu Fu Fu Fu Fu Pesquisador(es) Laje de de de de de de (fy normativo) (fy experimental) (fy normativo) (fy experimental) (fy normativo) (fy experimental) Falha Falha Falha Falha Falha Falha 11 373,49 440,54 598,26 ------I 1A 337.4 411,69 534,57 ---------S1 381,16 ---445,66 --651,48 -L2C 481,27 481,27 478,19 478,60 402,18 Externa Externa Interna Externa Interna 413,49 Externa L2R Externa 514,25 Externa 514,25 Externa 534,78 Interna 546,19 450,16 Interna 483,48 Externa L3R 662,77 664,85 Externa 664,85 Externa Interna 686,78 Externa 585,12 Interna 673,49 Externa L3RII 552.27 548.4 Externa 548.4 Externa Interna 565.31 Externa 505.92 Interna 584.51 Externa L4R 685.89 Interna 695.54 Externa 638.65 Interna 775.67 Externa 561.32 Interna 698.87 Interna L4RII 791,29 Externa 791,29 Externa 858,59 Externa 858.59 Externa 809,76 Interna 940.92 Externa Carvalho et al (2005) L6RR 806,29 806.29 764.41 Externa 764.41 Externa Externa Externa 669.46 Interna 844.88 Externa S2R 476,24 Externa 476,24 Externa 474,85 Externa 474,85 Externa 455,87 Externa 455,87 Externa S3R 583,01 Externa 583.01 Externa 619,09 Externa 619,09 Externa 601,81 Externa 601.81 Externa S4R 612,24 Externa 612,24 Externa 643,45 Externa 643,45 Externa 624,14 Externa 624,14 Externa S5R 654.98 654.98 714,08 714.08 726.58 748.63 Externa Externa Externa Externa Externa Interna S5RII 633.72 Externa 633.72 706.61 Externa 706.61 Externa 679.93 Interna 703.02 Externa Externa S5C 664,14 Externa 664,14 Externa 718,40 Externa 718,40 Externa 738,19 Interna 756,75 Externa S6R 609.38 733.91 Externa 561,53 778.68 Externa 525.27 615,34 Interna Interna Interna Interna S6RII 681,47 Externa 681,47 Externa 701,94 Interna 746,17 Externa 660,58 Interna 789,39 Externa 480.24 641.45 445,07 658.82 414.63 Interna 417.84 L1 Interna Interna Interna Interna Interna L2 525,91 Externa 525,91 559,88 Externa 521,64 Externa 521,64 Externa Externa 559,88 Externa L3 640.05 760,26 585,26 804,16 541,24 615.5 Interna Externa Interna Externa Interna Interna Fortunato (2005) 488,05 675,65 L4 512,76 Interna 662,91 Externa Interna Externa 451,14 Interna 456,38 Interna L5 783,67 Externa 907,94 754,91 Externa 754,91 Externa Externa 783,67 756,97 Interna Interna L6 654.38 670.60 Externa 654.38 Externa 670.60 Externa 750.7 Externa 750.7 Externa Externa L7 670.5 Externa 670.5 Externa 682,93 Externa 682,93 Externa 749,77 Interna 767,29 Externa L2 162.42 150.42 271.33 -----L3 161,16 148,83 268,34 ---Barbán et al (2004) L4 168,93 158,83 283,25 ----L5 168,45 ---158,23 -281,71

154,25

-

-

-

-

276,29

-

-

-

TABELA B.2 – FORÇAS CALCULADAS NAS LAJES DE CONCRETO PROTENDIDO (CONTINUAÇÃO)

*Eurocode 2 com todas as limitações impostas normativamente

165,4

-

**Eurocode 2 sem a limitação proposta para a variável k

L6

Dados Experime	ntais	Fcalc (kN)													
	mais	NBR 6118 (2003)				EUROCODE 2 (2004) *					ACI 31	ACI 318 (2005)			
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha		
	LC1	227,26	-	-	-	188,94	-	-	-	220,03	-	-	-		
Alves et al (2005)	LC2	250,42	-	-	-	188,75	-	-	-	241,72	-	-	-		
	LC3	227,44	-	-	-	189,30	-	-	-	220,62	-	-	-		
	LC4	256,68	-	-	-	192,80	-	-	-	251,69	-	-	-		
	LC5	266,57	-	-	-	194,01	-	-	-	278,24	-	-	-		
	LC6	256,95	-	-	-	199,80	-	-	-	278,22	-	-	-		
	LC7	263,44	-	-	-	192,11	-	-	-	273,05	-	-	-		
	LC8	257,98	-	-	-	200,59	-	-	-	279,35	-	-	-		
	N2	280,17	-	-	-	297,73	-	-	-	509,63	-	-	-		
	N3	282,64	-	-	-	306,54	-	-	-	524,9	-	-	-		
Hassan et al (2002)	N3'	337,73	-	-	-	311,58	-	-	-	509,33	-	-	-		
	H2	380,92	-	-	-	471,44	-	-	-	806,94	-	-	-		
	H3	373,2	-	-	-	470,04	-	-	-	805,04	-	-	-		

Dados Experimentais

Laje

Pesquisador(es)

Datases EUROCODE 2 (2004) ** Pesquisador(es) Laje Fu (fy normativo) Modo de Falha Fu (fy experimental) Modo de Falha Trautwein et al (2003) 1 916,13 Externa 916,13 Externa 2 916,13 Externa 916,13 Externa 3 944,15 Externa 914,58 Externa 2003) 4 914,58 Externa 914,58 Externa 5 922,07 Externa 922,07 Externa 922,07 Externa Gomes e Regan (1999) 1A 422,24 - - - - 1 899,73 Externa 899,73 Externa 1 - 1 899,73 Externa 979,80 Externa - - - 1 899,73 Externa 979,80 Externa - - - - 1 899,73 Externa 979,80 Externa 9 - - -	Dados Exporir	nontais	Fcalc (kN)							
Pesquisador(es)LajeFu (fy normativo)Modo de FalhaFu (fy experimenta)Modo de FalhaTrautwein et al (2003)1915,31Externa915,31Externa2916,13Externa916,13Externa3944,15Externa914,58Externa3942,07Externa914,58Externa5922,07Externa922,07Externa6omes e Regan (1999)1419,211419,211A422,241A422,241A422,241A429,73Externa899,73Externa1A420,711A999,73Externa899,73Externa1A999,73Externa899,73Externa1A999,73Externa1-1A999,73Externa1-1A999,73Externa1-1A979,80Externa1-1B979,80Externa989,07Externa1A979,80Externa989,07Externa1B11219,651B221,941B221,951B221,951B </th <th></th> <th>ineritars</th> <th></th> <th>EUROCO</th> <th>DE 2 (2004) **</th> <th></th>		ineritars		EUROCO	DE 2 (2004) **					
1 915,31 External 915,31 External 1 916,13 External 916,13 External 1 914,15 External 916,13 External 1 914,58 External 914,58 External 1 419,21 - - - 6omes e Regan 1 419,21 - - - 1 419,21 - - - - 1 419,21 - - - - 1 422,24 - - - - 1 899,73 Externa 899,73 Externa 2 413,13 Interna 478,63 Externa 3 568,76 Externa 568,76 Externa 4 979,80 Externa 979,80 Externa 6 754,82 Interna 871,45 Externa 7 842,36 Interna 989,07 Externa	Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha				
Trautwein et al (2003) 2 916,13 Externa 916,13 Externa 3 944,15 Externa 944,15 Externa 4 914,58 Externa 914,58 Externa 5 922,07 Externa 922,07 Externa 6omes e Regan (1999) 1 419,21 - - - 1 422,24 - - - - 12A 420,71 - - - - 13 568,76 Externa 989,73 Externa - 14 979,80 Externa 615,31 Externa - -		1	915,31	Externa	915,31	Externa				
Traditive n et al (2003) 3 944,15 Externa 944,15 Externa 4 914,58 Externa 914,58 Externa 914,58 Externa 5 922,07 Externa 922,07 Externa 922,07 Externa Gomes e Regan (1999) 1 419,21 - - - 12A 420,71 - - - - 13 568,76 Externa 588,76 Externa 58 Externa 14 979,80 Externa 615,31 Externa 615,31 Externa 16 754,82 Interna 871,45 Externa	Traviturain at al	2	916,13	Externa	916,13	Externa				
4 914,58 Externa 914,58 Externa 5 922,07 Externa 922,07 Externa Gomes e Regan (1999) 1 419,21 - - - 1A 422,24 - - - - - 12A 420,71 - - - - - - 2 413,13 Interna 899,73 Externa 568,76 Externa -	(2003)	3	944,15	Externa	944,15	Externa				
5 922,07 Externa 922,07 Externa Gomes e Regan (1999) 1 419,21 - - - 1A 422,24 - - - - 12A 420,71 Interna 899,73 Externa 568,76 Externa 1 979,80 Externa 568,76 Externa 615,31 Externa 1 6 754,82 Interna 871,45 Externa 1 14,93 Interna 989,07	(2000)	4	914,58	Externa	914,58	Externa				
Gomes e Regan (1999) 1 419,21 - - - 1A 422,24 - - - - 12A 420,71 - - - - 13 568,76 Externa 899,73 Externa - - 4 979,80 Externa 979,80 Externa -		5	922,07	Externa	922,07	Externa				
Gomes e Regan (1999) 1A 422,24 - - - 12A 420,71 - - - - 12B 413,13 Interna 899,73 Externa 568,76 Externa 14 979,80 Externa 615,31 Externa 615,31 Externa 16 754,82 Interna 871,45 Externa 7 842,36 Interna 989,07 Externa 17 842,36 Interna 820,38 Externa 9 914,99 Interna 916,47 Externa 11b 224,51 - - - - - - <td>0</td> <td>1</td> <td colspan="2">1 419,21 -</td> <td>-</td> <td>-</td>	0	1	1 419,21 -		-	-				
112A 420,71 - - - 1 899,73 Externa 899,73 Externa 2 413,13 Interna 478,63 Externa 3 568,76 Externa 568,76 Externa 4 979,80 Externa 979,80 Externa 6 754,82 Interna 871,45 Externa 7 842,36 Interna 989,07 Externa 9 914,99 Interna 989,07 Externa 9 914,99 Interna 820,38 Externa 9 914,99 Interna 916,47 Externa 11b 224,51 - - - 122 225,54 - - - 122 219,65 - - - 122 219,65 - - - 123 220,64 - - - 123 220,64 - -	Gomes e Regan	1A	422,24	-	-	-				
1 899,73 Externa 899,73 Externa 2 413,13 Interna 478,63 Externa 3 568,76 Externa 568,76 Externa 4 979,80 Externa 979,80 Externa 6 754,82 Interna 871,45 Externa 7 842,36 Interna 989,07 Externa 9 914,99 Interna 820,38 Externa 9 914,99 Interna 820,38 Externa 9 914,99 Interna 916,47 Externa 11c 222,19 - - - 12a 225,54 - - - 12b 218,61 - - - 12c 219,65 - - - 12b 218,61 - - - 12c 219,65 - - - 12b 218,61 - -	(1000)	12A	420,71	-	-	-				
2 413,13 Interna 478,63 Externa 3 568,76 Externa 568,76 Externa 4 979,80 Externa 979,80 Externa 5 615,31 Externa 615,31 Externa 6 754,82 Interna 871,45 Externa 7 842,36 Interna 989,07 Externa 8 814,53 Interna 820,38 Externa 9 914,99 Interna 916,47 Externa 11t 219,65 - - - 11t 219,65 - - - 11t 222,19 - - - <td></td> <td>1</td> <td>899,73</td> <td>Externa</td> <td>899,73</td> <td>Externa</td>		1	899,73	Externa	899,73	Externa				
3 568,76 Externa 568,76 Externa 14 979,80 Externa 979,80 Externa 15 615,31 Externa 615,31 Externa 16 754,82 Interna 871,45 Externa 17 842,36 Interna 989,07 Externa 18 814,53 Interna 820,38 Externa 19 914,99 Interna 820,38 Externa 111 219,65 - - - 112 222,19 - - - 112 222,554 - - - 112 2218,61 - - - 112 218,61 - - - 113 220,64 - - - 113 223,44 - - - 113 220,64 - - - 113 222,25 - - -		2	413,13	Interna	478,63	Externa				
4 979,80 Externa 979,80 Externa Trautwein (2001) 5 615,31 Externa 615,31 Externa 6 754,82 Interna 871,45 Externa 7 842,36 Interna 989,07 Externa 8 814,53 Interna 820,38 Externa 9 914,99 Interna 916,47 Externa 9 914,99 Interna 916,47 Externa 1L1b 224,51 - - - 1L1c 222,19 - - - - 1L2a 225,54 - - - - - 1L2b 218,61 - - - - - - 1L3a 220,64 - - - - - - 1L3c 213,46 - - - - - - 1L4a 220,64 - -		3	568,76	Externa	568,76	Externa				
Trautwein (2001) 5 615,31 External 615,31 External 6 754,82 Interna 871,45 External 7 842,36 Interna 989,07 External 8 814,53 Interna 820,38 External 9 914,99 Interna 916,47 External 9 914,99 Interna 916,47 External 1L1a 219,65 - - - 1L1b 224,51 - - - 1L2a 225,54 - - - 1L2b 218,61 - - - 1L2c 219,65 - - - 1L2b 218,61 - - - 1L3a 220,64 - - - 1L3b 223,44 - - - 1L4a 220,64 - - - 1L4b 225,25 - - </td <td rowspan="4">Trautwein (2001)</td> <td>4</td> <td>979,80</td> <td>Externa</td> <td>979,80</td> <td>Externa</td>	Trautwein (2001)	4	979,80	Externa	979,80	Externa				
6 754,82 Interna 871,45 Externa 7 842,36 Interna 989,07 Externa 8 814,53 Interna 820,38 Externa 9 914,99 Interna 916,47 Externa 9 914,99 Interna 916,47 Externa 1 1 229,65 - - - 1 1 2225,54 - - - - 1 1 2219,65 -		5	615,31	Externa	615,31	Externa				
7 842,36 Interna 989,07 Externa 8 814,53 Interna 820,38 Externa 9 914,99 Interna 916,47 Externa 9 914,99 Interna 916,47 Externa 1 1 2219,65 - - - 1 1 222,19 - - - - 1 1 2225,54 - - - - - 1 1 222,19 - - - - - - 1 1 222,54 -		6	754,82	Interna	871,45	Externa				
8 814,53 Interna 820,38 Externa 9 914,99 Interna 916,47 Externa 1 11a 219,65 - - - 1 11b 224,51 - - - - 1 11b 222,19 -		7	842,36	Interna	989,07	Externa				
9 914,99 Interna 916,47 Externa L1a 219,65 - <td< td=""><td></td><td>8</td><td>814,53</td><td>Interna</td><td>820,38</td><td>Externa</td></td<>		8	814,53	Interna	820,38	Externa				
L1a 219,65 - - - L1b 224,51 - - - - L1c 222,19 - - - - - L2a 225,54 - - - - - - L2b 218,61 - - - - - - L2b 219,65 - - - - - - L3a 220,64 - - - - - - L3b 223,44 - - - - - - L3c 213,46 - - - - - - L4a 220,64 - - - - - - L4b 225,25 - - - - - - L4c 224,30 - - - - - -		9	914,99	Interna	916,47	Externa				
L1b 224,51 - - - L1c 222,19 - - - - L2a 225,54 - - - - L2b 218,61 - - - - L2b 219,65 - - - - L3a 220,64 - - - - L3b 223,44 - - - - L4a 220,64 - - - - L4b 225,25 - - - - L4c 224,30 - - - -		L1a	219,65	-	-	-				
L1c 222,19 - - - L2a 225,54 - - - - L2b 218,61 - - - - - L2b 219,65 - - - - - - L2c 219,65 - - - - - - L3a 220,64 - - - - - - L3b 223,44 - - - - - - L3c 213,46 - - - - - - L4a 220,64 - - - - - - L4a 220,64 - - - - - - L4b 225,25 - - - - - - L4c 224,30 - - - - -		L1b	224.51	-	-	-				
L2a 225,54 - - - L2b 218,61 - - - - L2b 218,61 - - - - - L2c 219,65 - - - - - - L3a 220,64 - - - - - - L3b 223,44 - - - - - - L3c 213,46 - - - - - - L4a 220,64 - - - - - - L4a 220,64 - - - - - - L4b 225,25 - - - - - - L4c 224,30 - - - - -		L1c	222.19	-	-	-				
L2b 218,61 - - - L2b 218,61 - - - - L2c 219,65 - - - - L3a 220,64 - - - - L3b 223,44 - - - - L3c 213,46 - - - - L4a 220,64 - - - - L4b 225,25 - - - - L4c 224,30 - - - -		L2a	225.54	-	-	-				
Oliveira e Melo (2003) L2c 219,65 - - - L3a 220,64 - - - - - L3b 223,44 - - - - - - L3c 213,46 - - - - - - L4a 220,64 - - - - - - L4a 220,64 - - - - - - L4b 225,25 - - - - - - L4c 224,30 - - - - - -		L 2b	218.61	-	-	-				
Oliveira e Melo (2003) L3a 220,64 - - - L3b 223,44 - - - - - L3c 213,46 - - - - - - L4a 220,64 - - - - - - L4a 225,25 - - - - - - L4c 224,30 - - - - - -		1.2c	219.65	-	-	-				
Oliveira e Melo (2003) L3b L3c L3c L4a 223,44 - - - - - - - - - - - - - - - - - -		1.3a	220.64	-	-	-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Oliveira e Melo	L 3h	223.44	_	_	_				
L4a 220,64 - - L4b 225,25 - - L4c 224,30 - -	(2003)		213 46	-	-	-				
L4a 225,04 L4b 225,25 L4c 224,30		142	220.64		_	_				
L40 223,23 L4c 224,30		L4a	220,04	_	_	_				
			220,20	-	-	-				
			224,30	-	-	-				
		Loa	221,95	-	-	-				
LDD 234,23			234,23	-	-	-				

Borges et al	L45_AC1	736,49	Externa	736,49	Externa
(2003)	L45_AC5	638,26	Externa	638,26	Externa
Souza e Melo (2004)	L1	172,11	-	-	-
	L5	270,80	Externa	270,80	Externa
Barreto e Melo	L6	310,58	Externa	310,58	Externa
(2004)	L7	270,80	Externa	270,80	Externa
	L8	310,58	Externa	310,58	Externa
Neto e Melo	AL1	216,26	-	-	-
(2004)	AL5	269,05	Interna	325,02	Externa
	AB1	293,00			
	AB2	653,98	Interna	696,68	Interna
	AB3	619,50	Interna	645,24	Externa
Mokhtar et al (1985)	AB4	659,72	Interna	782,36	Externa
	AB5	657,84	Interna	700,54	Interna
	AB6	575,80	Externa	575,80	Externa
	AB7	613,05	Externa	613,05	Externa
	AB8	521,02	Externa	521,02	Externa
	1	183,79	-	-	-
	2	181,86	-	-	-
	3V	223,88	Interna	230,85	Externa
	4V	231,93	Externa	231,93	Externa
Coelho e Melo	5V	277,96	Interna	283,54	Externa
(1999)	61	210,63	Interna	224,21	Externa
	71	226,67	Externa	226,67	Externa
	81	255,39	Interna	274,87	Externa
	91	257,94	Interna	331,76	Externa
	101	287,62	Externa	287,62	Externa

Fu

(fy normativo)

Fcalc (kN)

EUROCODE 2 (2004)**

Fu

(fy experimental)

Modo de

Falha

Modo de

Falha

*Eurocode 2 com todas as limitações impostas normativamente **Eurocode 2 sem a limitação proposta para a variável **k**
TABELA B.3 – FORÇAS CALCULADAS NAS LAJES DE CONCRETO ARMADO PARA O EUROCODE 2 SEM LIMITAÇÃO DE k (CONTINUAÇÃO)

Dados Experimentais		Fcalc (kN)				
		EUROCODE 2 (2004)**				
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	
	JC-1	191,40	-	-	-	
	JC-2	231,06	Externa	231,06	Externa	
	JC-3	225,93	Externa	225,93	Externa	
Carvalho e Melo	JC-4	225,30	Externa	225,30	Externa	
(2001)	JC-5	201,64	-	-	-	
	JC-6	269,84	Externa	269,84	Externa	
	JC-7	274,06	Externa	274,06	Externa	
	JC-8	290,18	Externa	290,18	Externa	
	2	242,60	Interna	252,56	Interna	
	3	269,95	Interna	283,19	Interna	
	4	262,56	Interna	280,26	Interna	
	5	283,25	Interna	310,90	Interna	
Carvalho e	6	289,31	Interna	316,96	Interna	
Gomes (2001)	7	298,71	Interna	338,52	Interna	
	8	299,30	Interna	339,12	Interna	
	9	314,80	Interna	356,16	Interna	
	10	247,08	Interna	257,04	Interna	
	11	249,94	Interna	263,18	Interna	
	NS1	198,23	-	-	-	
	HS1	187.33	-	-	-	
	HS2	195.05	-	-	-	
	HS7	223.17	-	-	-	
	HS3	233.90	-	-	-	
	HS4	237.08	-	-	-	
Marzouke	NS2	211.97	-	-	-	
Hussein (1991)	HS5	188 72	-	-	-	
	HS6	281 15	_	_	_	
	100	201,10	_	_	_	
	100	342.26	-		-	
	LC10	342,20	-	-	-	
		377,33	-	-	-	
	H014	214,21	-	-	-	
	HS15	315,12	-		-	

Dados Experimentais		Fcalc (kN)					
		EUROCODE 2 (2004)**					
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha		
	301	797,55	Externa	797,55	Externa		
	302	771,38	Externa	771,38	Externa		
	303	1021,10	Externa	1021,10	Externa		
Andrade e Gomes	304	1006,31	Externa	1006,31	Externa		
(1999)	305	584,62	Externa	584,62	Externa		
	306	1036,87	Externa	1036,87	Externa		
	307	770,63	Externa	770,63	Externa		
	308	701,82	Externa	701,82	Externa		
	8	111,38	-	-	-		
	9	108,99	-	-	-		
	10	112,16	-	-	-		
	11	214,57	-	-	-		
	12	239,90	-	-	-		
	13	183,40	-	-	-		
	14	118,85	-	-	-		
	15	123,89	-	-	-		
	16	90,33	-	-	-		
Gardner (1990)	17	111,40	-	-	-		
	19	160,76	-	-	-		
	20	203,09	-	-	-		
	21	158,73	-	-	-		
	22	95,99	-	-	-		
	23	103,33	-	-	-		
	25	234,78	-	-	-		
	26	169,19	-	-	-		
	27	158,22	-	-	-		
	28	135,42	-	-	-		

*Eurocode 2 com todas as limitações impostas normativamente **Eurocode 2 sem a limitação proposta para a variável **k**

TABELA B.3 – FORÇAS CALCULADAS NAS LAJES DE CONCRETO ARMADO PARA O EUROCODE 2 SEM LIMITAÇÃO DE k (CONTINUAÇÃO)

Dados Experimentais		Fcalc (kN)					
			EUROCOL	DE 2 (2004) **			
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha		
	A-1a	205,08	-	-	-		
	A-1b	249,19	-	-	-		
	A-1c	261,10	-	-	-		
	A-1d	282,63	-	-	-		
	A-1e	231,64	-	-	-		
	A-2a	235,27	-	-	-		
	A-2b	265,01	-	-	-		
	A-2c	329,31	-	-	-		
	A-2d	298,65	-	-	-		
Gardner apud	A-3a	230,00	-	-	-		
Elstner e	A-3b	278,38	-	-	-		
Hognestad (1990)	A-4	252,11	-	-	-		
	A-5	298,15	-	-	-		
	A-6	287,94	-	-	-		
	A-7	300,60	-	-	-		
	A-8	275,52	-	-	-		
	A-7a	298,65	-	-	-		
	A-9	305,38	-	-	-		
	A-10	304,91	-	-	-		
	A-11	291,34	-	-	-		
	A12	291,34	-	-	-		
Gardner anud	3	149,55	-	-	-		
Bazant e Cao	6	144,74	-	-	-		
(1990)	9	148.77	-	-	-		

*Eurocode 2 com todas as limitações impostas normativamente **Eurocode 2 sem a limitação proposta para a variável **k**

	Dados Experimentais		Fcalc (kN)					
			EUROCODE 2 (2004) **					
	Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha		
		R-1	284,59	-	-	-		
		R-2	216,48	-	-	-		
		S1-60	227,55	-	-	-		
		S2-60	221,31	-	-	-		
		S3-60	222,41	-	-	-		
	Cordner onud	S4-60	234,27	-	-	-		
	Moe (1990)	S1-70	231,30	-	-	-		
		S2-70	231,11	-	-	-		
		S4-70	266,61	-	-	-		
		S4A-70	222,64	-	-	-		
		S5-60	205,35	-	-	-		
		S5-70	211,53	-	-	-		
		M1A	275,54	-	-	-		
		L1	179,64	-	-	-		
		L2	212,18	-	-	-		
		L3	244,32	-	-	-		
	Silva (2003)	L7	249,55	Externa	-	-		
		L8	283,75	Externa	-	-		
		L11	273,37	Externa	-	-		
		L12	253,95	-	-	-		
		1	204,36	-	-	-		
		2	214,26	-	-	-		
		3V	254,50	Interna	285,98	Externa		
		4V	292,29	Externa	292,29	Externa		
	Oliveira et al (2000)	5V	299,31	Interna	344,95	Externa		
		61	233.95	Interna	283.78	Externa		
		71	270,88	Interna	280,13	Externa		
		81	273.24	Interna	344.76	Externa		
		91	270.88	Interna	399.71	Externa		
		101	284.85	Interna	351,26	Externa		
		111	275.50	Interna	402.33	Externa		

Dados Experimentais		Fcalc (kN)					
		EUROCODE 2 (2004) **					
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha		
	L1	282,84	Interna	383,71	Externa		
Barreto e Melo	L2	246,32	Interna	362,99	Interna		
(2004)	L3	273,30	Interna	301,50	Externa		
	L4	250,09	Interna	321,17	Externa		
Martinelli e Filho apud Fusco (2003)	1	139,21	-	-	-		
	T1	412,98	-	-	-		
	T2	341,17	Interna	350,92	Interna		
	Т3	370,01	Interna	391,13	Interna		
	T4	370,32	Interna	384,68	Interna		
	T5	395,68	Interna	420,12	Interna		
Vamada at al	T6	397,30	Interna	430,57	Interna		
(1992)	K1	472,60	-	-	-		
(1002)	K2	369,64	Interna	373,27	Interna		
	K3	393,79	Interna	408,32	Interna		
	K4	382,46	Interna	387,87	Interna		
	K5	442,80	Interna	464,63	Interna		
	K6	395,61	Interna	407,36	Interna		
	K7	519,86	Interna	566,87	Interna		
	1	170,80	-	-	-		
	2	167,50	-	-	-		
	3	185,74	Interna	-	-		
	4	240,21	Interna	-	-		
Andrade e Melo	5	172,63	Interna	-	-		
(2000)	6	244,30	Interna	-	-		
	7	210,04	Interna	-	-		
	8	251,18	Externa	-	-		
	9	193,29	Interna	-	-		
	10	283,03	Interna	-	-		
Holanda e Hanai (2003)	OSC.S1	134,47	-	-	-		

*Eurocode 2 com todas as limitações impostas normativamente **Eurocode 2 sem a limitação proposta para a variável **k**

Dados Experimentais		Fcalc (kN)					
		EUROCODE 2 (2004) **					
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha		
	L1	143,32	-	-	-		
	L2	170,29	-	-	-		
	L3	207,29	-	-	-		
(2007)	L4	216,42	Interna	225,32	Externa		
(2007)	L5	238,69	Interna	253,02	Externa		
	L6	267,87	Interna	294,16	Externa		
	L7	269,22	Interna	296,66	Externa		
	L42	436,15	-	-	-		
	L42A	485,04	-	-	-		
	L45	540,96	-	-	-		
Democratical	L46	620,81	-	-	-		
Borges et al	L41	381,26	-	-	-		
(2000)	L41A	435,87	-	-	-		
	L43	421,53	-	-	-		
	L43A	495,96	-	-	-		
	L44	547,58	-	-	-		
Musse e Gomes	L1	185,31	-	-	-		
(2004)	L2	235,13	Externa	-	-		
	L1A	136,88	-	-	-		
Santos et al	L1B	134,00	-	-	-		
(2005)	L4	173,74	-	-	-		
	L7	195,91	-	-	-		
	7	227,52	-	-	-		
	8	295,59	Interna	-	-		
(1995)	11	294,24	Interna	-	-		
()	14	244,70	Interna	-	-		
	15	181,59	-	-	-		
	16	563,41	Interna	907,23	Interna		
	17	938,22	Externa	938,22	Externa		
Trautwein (2006)	18	707,38	Interna	903,81	Externa		
	19	448,25	Interna	647,30	Interna		
	I10	638,06	Interna	713,38	Externa		
	111	513.38	Interna	696.94	Externa		

TABELA B.3 – FORÇAS CALCULADAS NAS LAJES DE CONCRETO ARMADO PARA O EUROCODE 2 SEM LIMITAÇÃO DE k (CONTINUAÇÃO)

Dados Experimentais		Fcalc (kN)				
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	
	MV1	265,52	-	-	-	
	MV2	213,53	-	Interna	-	
-	MV3	228,42	-	Interna	-	
I rautwein apud	MV4	206,65	-	Interna	-	
Ghan (2000)	MV5	227,75	-	Interna	-	
	MV6	201,69	-	Interna	-	
	MV7	228,79	-	Interna	-	
	1	290,92	-	-	-	
Trautwein apud	2	325,78	-	Interna	-	
Regan (2006)	3	409,55	-	Interna	-	
	4	501,39	-	Externa	-	
	R1	689,92	-	Externa	-	
	R2	749,28	-	Externa	-	
Trautwein apud	R3	686,51	-	Externa	-	
Samadian (2006)	R4	761,05	-	Externa	-	
	A1	747,95	-	Externa	-	
	A2	640,94	-	Interna	-	
	BD2	210,35	-	-	-	
Silva et al apud Regan (2002)	BD8	220,53	-	-	-	
(2002)	DT1	879,02	-	-	-	
Silva et al apud	AR2	236,30	-	-	-	
Ramos e Lúcio (2002)	AR9	247,65	-	-	-	
Carvalho et al apud Hassanzadeh e Sundquist (2002)	B1	1047,43	-	-	-	
Corrêa et al (2001)	LP1	363,16	-	-	-	
Barbán (2004)	L1	362,98	-	-	-	
Hassan et al	N1	731,41	-	-	-	
(2002)	H1	950,60	-	-	-	

	~
	DUT A CAO DE 1
- 1 'Y DEL Y D Y - EMDE'Y Y EYNTYN L Y HEYNYN DE LYND DLYLENINH YN DY	
- TADELA D 4 - EURUAAUAI UUAI JAA NAA LAIEA DE UUNUREI U ERUTENDI DU FARA U EURUUDE 7 AEM T	
3	3

Dados Experimentais		Fcalc (kN)					
		EUROCODE 2 (2004) **					
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha		
	1	565,65	-	-	-		
Carvalho et al	2	775,66	-	-	-		
apud Nylander et	3	795,07	-	-	-		
al (2002)	4	698,68	-	-	-		
	6	661,03	-	-	-		
	A1	219,86	-	-	-		
	A2	201,49	-	-	-		
	A3	217,01	-	-	-		
	A4	176,07	-	-	-		
Cilua et al (2000)	B1	291,16	-	-	-		
Sliva et al (2006)	B2	244,91	-	-	-		
	B3	266,37	-	-	-		
	B4	232,01	-	-	-		
	C1	333,91	-	-	-		
	D3	234,67	-	-	-		
	BD1	327,34	-	-	-		
	BD4	318,43	-	-	-		
	BD5	249,51	-	-	-		
	BD6	252,27	-	-	-		
	BD7	253,55	-	-	-		
Carvalho et al	DT2	842,76	-	-	-		
apud Regan	DT3	853,39	-	-	-		
(2002)	DT4	576,57	-	-	-		
	DT5	850,63	-	-	-		
	DT6	861,63	-	-	-		
	DT8	650,70	-	-	-		
	DT9	859,16	-	-	-		
	DT10	910,94	-	-	-		

Dados Experimentais		Fcalc (kN) EUROCODE 2 (2004) **				
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha			
	AR3	190,53	-	-	-	
	AR4	206,66	-	-	-	
Carvalho et al	AR5	187,87	-	-	-	
apud Ramos e	AR7	205,37	-	-	-	
Lúcio (2002)	AR8	195,98	-	-	-	
	AR10	192,54	-	-	-	
	AR11	184,03	-	-	-	
	A1	539,05	-	-	-	
Carvalho et al	A2	526,13	-	-	-	
apud	A3	548,32	-	-	-	
Hassanzadeh e	B2	802,63	-	-	-	
Sundquist (2002)	B3	805,75	-	-	-	
	B4	802,99	-	-	-	
	LP2	267,51	-	-	-	
	LP3	318,02	-	-	-	
Corrêa et al	LP4	235,31	-	-	-	
(2001)	LP5	246,80	-	-	-	
	LP6	261,46	-	-	-	
	M4	402,10	-	-	-	
Melges et al	M5	494,89	Externa	494,89	Externa	
(2001)	M6	577,94	Externa	577,94	Externa	

*Eurocode 2 com todas as limitações impostas normativamente **Eurocode 2 sem a limitação proposta para a variável **k**

TABELA B.4 – FORÇAS CALCULADAS NAS LAJES DE CONCRETO PROTENDIDO PARA O EUROCODE 2 SEM LIMITAÇÃO DE k (CONTINUAÇÃO)

Dados Experimentais		Fcalc (kN)					
			EUROCOL	DE 2 (2004) **			
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha		
	L1	458,68	-	-	-		
	L1A	426,66	-	-	-		
	S1	467,48	-	-	-		
	L2C	491,87	Interna	501,94	Externa		
	L2R	547,05	Interna	566,77	Externa		
	L3R	675,86	Interna	713,41	Externa		
	L3RII	569,84	Interna	602,73	Externa		
	L4R	652,52	Interna	809,15	Externa		
Carvalho et al	L4RII	885,73	Interna	891,48	Externa		
(2005)	L6RR	846,16	Externa	846,16	Externa		
	S2R	506,53	Externa	506,53	Externa		
	S3R	648,81	Externa	648,81	Externa		
	S4R	683,09	Externa	683,09	Externa		
	S5R	759,41	Externa	759,41	Externa		
	S5RII	746,76	Externa	746,76	Externa		
	S5C	761,43	Externa	761,43	Externa		
	S6R	581,61	Interna	829,88	Externa		
	S6RII	720,94	Interna	794,73	Externa		
	L1	466,02	Interna	679,77	Interna		
	L2	568,07	Externa	568,07	Externa		
	L3	604,53	Interna	854,78	Externa		
Fortunato (2005)	L4	509,29	Interna	720,88	Externa		
	L5	808,67	Interna	827,04	Externa		
	L6	711,46	Externa	711,46	Externa		
	L7	721,04	Externa	721,04	Externa		
	L2	187,33	-	-	-		
	L3	185,40	-	-	-		
Barbán et al	L4	199.10	-	-	-		
(2004)	15	198.55	-	-	-		
	16	192.88	_	_	-		

Dados Experimentais		Fcalc (kN)				
			EUROCOL	DE 2 (2004) **		
Pesquisador(es)	Laje	Fu (fy normativo)	Modo de Falha	Fu (fy experimental)	Modo de Falha	
	LC1	222,44	-	-	-	
	LC2	222,44	-	-	-	
	LC3	222,83	-	-	-	
Alves et al (2005)	LC4	226,94	-	-	-	
Aives et al (2003)	LC5	225,81	-	-	-	
	LC6	231,54	-	-	-	
	LC7	223,76	-	-	-	
	LC8	232,51	-	-	-	
	N2	330,86	-	-	-	
	N3	340,11	-	-	-	
Hassan et al	N3'	333,96	-	-	-	
(2002)	H2	523,95	-	-	-	
	H3	520,96	-	-	-	

*Eurocode 2 com todas as limitações impostas normativamente **Eurocode 2 sem a limitação proposta para a variável **k**

 L6
 192,88

 *Eurocode 2 com todas as limitações impostas normativamente

 **Eurocode 2 sem a limitação proposta para a variável k

ANEXO C – RELAÇÃO ENTRE AS FORÇAS EXPERIMENTAIS E CALCULADAS

Dados Exporimont	aic				Critérios I	Normativos			
Dados Experimenta	dis	NBR 61	18 (2003)	EUROCOD	E 2 (2004)*	ACI 318	8 (2005)	EUROCOL	DE 2 (2004)**
Pesquisador(es)	Laje	Fu _{exp} /Fu _{calc} (fy _{normativo})	$ \begin{array}{c} Fu_{exp}/Fu_{calc} \\ (fy_{teste}) \end{array} $	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	$ \begin{array}{c} Fu_{exp}/Fu_{calc} \\ (fy_{teste}) \end{array} $	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})
	1	1,03	1,03	1,27	1,27	1,59	1,03	1,20	1,20
	2	0,92	0,92	1,15	1,15	1,43	0,92	1,08	1,08
Trautwein et al (2003)	3	0,99	0,99	1,22	1,22	1,50	0,97	1,15	1,15
	4	1,13	1,13	1,41	1,41	1,74	1,11	1,32	1,32
	5	1,14	1,14	1,42	1,42	1,74	1,12	1,33	1,33
	1	1,23	-	1,42	-	1,17	-	1,34	-
Gomes e Regan (1999)	1A	1,28	-	1,47	-	1,21	-	1,39	-
	12A	1,43	-	1,63	-	1,38	-	1,54	-
	1	1,00	1,00	1,24	1,24	1,52	0,98	1,17	1,17
	2	1,39	1,11	1,67	1,49	1,47	1,44	1,57	1,36
	3	1,44	1,42	1,85	1,85	1,73	1,73	1,76	1,76
	4	0,90	0,90	1,11	1,11	1,32	0,86	1,06	1,06
Trautwein (2001)	5	1,31	1,31	1,69	1,69	1,49	1,49	1,59	1,59
	6	1,26	1,06	1,48	1,32	1,38	1,04	1,44	1,25
	7	1,20	1,01	1,41	1,24	1,56	0,95	1,38	1,17
	8	1,04	1,01	1,27	1,27	1,40	1,05	1,20	1,19
	9	0,87	0,87	1,09	1,09	1,36	0,87	1,02	1,02
	L1a	1,01	-	1,29	-	0,99	-	1,09	-
	L1b	1,32	-	1,69	-	1,29	-	1,43	-
	L1c	1,32	-	1,69	-	1,29	-	1,43	-
	L2a	1,01	-	1,28	-	0,98	-	1,09	-
	L2b	1,52	-	1,96	-	1,50	-	1,65	-
	L2c	1,39	-	1,78	-	1,37	-	1,51	-
	L3a	1,01	-	1,29	-	0,99	-	1,09	-
Oliveira e Melo (2003)	L3b	1,65	-	2,12	-	1,61	-	1,79	-
	L3c	1,55	-	1,99	-	1,54	-	1,68	-
	L4a	1,05	-	1,34	-	1,03	-	1,14	-
	L4b	1,62	-	2,06	-	1,61	-	1,75	-
	L4c	1,66	-	2,12	-	1,64	-	1,80	-
	L5a	1,19	-	1,53	-	1,17	-	1,29	-
	L5b	1,68	-	2,15	-	1,60	-	1,82	-
	L5c	1,82	-	2,34	-	1,75	-	1,98	-

Dados Experimentais	Critérios Normativos									
Dauos Experimenta	ais	NBR 61	18 (2003)	EUROCOD	E 2 (2004)*	ACI 318	8 (2005)	EUROCOL	DE 2 (2004)**	
Pesquisador(es)	Laje	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	
Borges et al (2003)	L45_AC1	1,37	1,37	1,74	1,74	1,56	1,56	1,63	1,63	
	L45_AC5	1,35	1,35	1,75	1,75	1,65	1,65	1,63	1,63	
Souza e Melo (2004)	L1	1,47	-	1,98		1,59	-	1,59	-	
	L5	1,10	1,10	1,61	1,61	1,56	1,56	1,37	1,37	
Barreto e Melo (2004)	L6	1,04	1,00	1,44	1,44	1,30	1,30	1,22	1,22	
	L7	1,28	1,28	1,87	1,87	1,81	1,81	1,60	1,60	
	L8	1,13	1,09	1,56	1,56	1,41	1,41	1,33	1,33	
Neto e Melo (2004)	AL1	1,28	-	1,67		1,30	1,30	1,39	-	
	AL5	1,64	1,21	1,95	1,76	1,58	1,58	1,75	1,45	
	AB1	1,29	-	1,61	-	1,21	1,21	1,39	-	
	AB2	0,69	0,72	0,83	0,79	1,05	1,05	0,80	0,75	
	AB3	0,83	0,83	0,98	0,98	1,34	-	0,88	0,84	
Mokhtar et al (1985)	AB4	0,76	0,65	0,93	0,86	1,07	0,79	0,88	0,75	
Molandar of all (1000)	AB5	0,76	0,80	0,93	0,87	1,17	1,17	0,89	0,83	
	AB6	0,81	0,81	1,09	1,09	1,18	0,94	0,94	0,94	
	AB7	0,80	0,80	1,08	1,08	1,18	1,18	0,93	0,93	
	AB8	0,83	0,83	1,13	1,13	1,09	-	0,98	0,98	
	1	1,59	-	2,02	-	1,79	-	1,72	-	
	2	1,29	-	1,66	-	1,46	-	1,40	-	
	3V	1,41	1,18	1,73	1,73	1,86	1,75	1,51	1,46	
	4V	1,14	1,13	1,67	1,67	1,68	1,68	1,41	1,41	
Coelho e Melo (1999)	5V	1,13	0,96	1,38	1,38	1,39	1,27	1,19	1,17	
	61	1,52	1,23	1,80	1,80	1,84	1,84	1,63	1,53	
	71	1,35	1,28	1,89	1,89	1,92	1,92	1,59	1,59	
	81	1,50	1,21	1,74	1,74	1,62	1,62	1,59	1,47	
	91	1,56	1,09	1,80	1,52	1,54	1,32	1,65	1,28	
	101	1,27	1,27	1,83	1,83	1,67	1,67	1,55	1,55	

Dados Experimentais	Critérios Normativos									
Dados Experimenta	ais	NBR 61	18 (2003)	EUROCOD	E 2 (2004)*	ACI 31	8 (2005)	EUROCOL	DE 2 (2004)**	
Pesquisador(es)	Laje	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	
	JC-1	1,51	-	1,98	-	1,73	-	1,64	-	
	JC-2	1,42	1,42	2,13	2,13	2,21	2,21	1,77	1,77	
	JC-3	1,54	1,54	2,32	2,32	2,44	2,44	1,92	1,92	
Convolto o Mala (2001)	JC-4	1,42	1,42	2,16	2,16	2,27	2,27	1,78	1,78	
	JC-5	1,38	_	1,80	-	1,53	-	1,49	-	
	JC-6	1,42	1,42	2,11	2,11	2,03	2,03	1,75	1,75	
	JC-7	1,41	1,41	2,09	2,09	1,99	1,99	1,73	1,73	
	JC-8	1,28	1,28	1,87	1,87	1,71	1,71	1,58	1,58	
	2	2,54	2,49	3,05	2,92	5,08	5,04	2,86	2,74	
	3	2,54	2,49	3,03	2,88	4,94	4,90	2,86	2,73	
	4	2,87	2,78	3,43	3,20	5,63	5,56	3,25	3,04	
	5	2,64	2,52	3,17	2,87	4,97	4,88	3,01	2,74	
Convolto o Compo (2001)	6	3,16	3,02	3,78	3,44	5,90	5,79	3,59	3,28	
Carvaino e Gomes (2001)	7	3,26	3,07	3,93	3,45	5,95	5,81	3,75	3,31	
	8	3,49	3,28	4,20	3,69	6,36	6,21	4,01	3,54	
	9	3,38	3,18	4,08	3,58	6,07	5,93	3,89	3,44	
	10	2,88	2,83	3,45	3,31	5,74	5,69	3,24	3,11	
	11	3,22	3,14	3,86	3,66	6,35	6,28	3,63	3,45	
	NS1	1,49	-	1,98	-	1,61	-	1,61	-	
	HS1	1,02	-	1,29	-	0,71	-	0,95	-	
	HS2	1,18	-	1,56	-	0,97	-	1,28	-	
	HS7	1,47	-	1,95	-	1,35	-	1,60	-	
	HS3	1,40	-	1,87	-	1,39	-	1,52	-	
	HS4	1,54	-	2,20	-	1,80	-	1,76	-	
Marzouk a Hussain (1001)	NS2	1,72	-	2,14	-	1,69	-	1,87	-	
Marzouk e Hussein (1991)	HS5	1,91	-	2,54	-	1,44	-	1,93	-	
	HS6	1,61	-	1,99	-	1,37	-	1,74	-	
	HS8	1,36	-	1,69	-	1,23	-	1,48	-	
	HS9	1,46	-	1,82	-	1,48	-	1,59	-	
	HS10	1,50	-	1,96	-	1,69	-	1,71	-	
	HS14	1,68	-	2,23	-	1,49	-	1,82	-	
	HS15	1,64	-	2,18	-	1,34	-	1,78	-	

					Critérios I	Normativos			
Dados Experimenta	ais	NBR 61	18 (2003)	EUROCOD	E 2 (2004)*	ACI 31	8 (2005)	EUROCOL	DE 2 (2004)**
Pesquisador(es)	Laje	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})
	301	0,88	0,88	1,09	1,09	1,13	0,91	1,04	1,04
	302	0,86	0,86	1,08	1,08	1,13	0,91	1,02	1,02
	303	0,82	0,82	1,01	1,01	1,36	0,79	0,95	0,95
Andrada a Camaa (1000)	304	0,87	0,87	1,00	1,00	1,33	0,79	0,95	0,95
Andrade e Gomes (1999)	305	1,12	1,12	1,44	1,44	1,34	1,34	1,34	1,34
	306	0,84	0,84	0,96	0,96	1,30	0,76	0,92	0,92
	307	1,19	1,19	1,49	1,49	1,56	1,26	1,41	1,41
	308	1,23	1,23	1,55	1,55	1,67	1,36	1,45	1,45
	8	1,06	-	1,52	-	1,87	-	1,16	-
	9	1,14	-	1,63	-	2,03	-	1,24	-
	10	1,05	-	1,51	-	1,85	-	1,15	-
	11	1,31	-	1,69	-	2,10	-	1,45	-
	12	1,34	-	1,73	-	1,93	-	1,49	-
	13	1,37	-	1,69	-	1,33	-	1,48	-
	14	1,16	-	2,26	-	2,39	-	1,70	-
	15	1,19	-	1,66	-	1,64	-	1,29	-
	16	1,12	-	1,53	-	1,05	-	1,19	-
Gardner (1990)	17	1,00	-	1,39	-	1,56	-	1,08	-
	19	1,56	-	1,92	-	1,38	-	1,69	-
	20	1,23	-	1,59	-	1,92	-	1,37	-
	21	1,34	-	1,65	-	1,40	-	1,45	-
	22	1,32	-	2,14	-	2,51	-	1,61	-
	23	0,96	-	1,34	-	1,45	-	1,04	-
	25	1,20	-	1,49	-	1,04	-	1,31	-
	26	1,30	-	2,54	-	2,15	-	1,91	-
	27	1,42	-	1,98	-	1,72	-	1,53	-
	28	1,94	-	2,55	-	1,59	-	1,79	-

Dados Experimentais		Critérios Normativos									
Dados Experimenta	ais	NBR 61	18 (2003)	EUROCOD	E 2 (2004)*	ACI 318	8 (2005)	EUROCOD	DE 2 (2004)**		
Pesquisador(es)	Laje	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})		
	A-1a	1,36	-	1,70	-	1,40	-	1,47	-		
	A-1b	1,35	-	1,69	-	1,26	-	1,46	-		
	A-1c	1,26	-	1,57	-	1,14	-	1,36	-		
	A-1d	1,13	-	1,41	-	0,99	-	1,23	-		
	A-1e	1,42	-	1,77	-	1,37	-	1,54	-		
	A-2a	1,22	-	1,65	-	1,62	-	1,42	-		
	A-2b	1,30	-	1,75	-	1,63	-	1,51	-		
	A-2c	1,22	-	1,65	-	1,37	-	1,42	-		
	A-2d	1,47	-	1,99	-	1,74	-	1,71	-		
Cordner and Eletner a	A-3a	1,16	-	1,80	-	1,79	-	1,55	-		
Gardner apud Eistner e	A-3b	1,20	-	1,86	-	1,68	-	1,60	-		
Hoghestad (1990)	A-4	1,47	-	1,83	-	1,36	-	1,59	-		
	A-5	1,54	-	2,08	-	1,82	-	1,79	-		
	A-6	1,30	-	2,01	-	1,79	-	1,73	-		
	A-7	1,15	-	1,55	-	1,35	-	1,33	-		
	A-8	1,36	-	1,84	-	1,68	-	1,58	-		
	A-7a	0,81	-	1,09	-	0,95	-	0,94	-		
	A-9	0,88	-	1,69	-	1,46	-	1,46	-		
	A-10	1,01	-	1,86	-	1,62	-	1,60	-		
	A-11	1,56	-	2,11	-	1,87	-	1,82	-		
	A12	1,56	-	2,11	-	1,87	-	1,82	-		
Cordnor anud Pazant a Cas	3	1,35	-	2,40	-	2,61	-	1,84	-		
	6	1,67	-	2,78	-	3,08	-	2,14	-		
(1990)	9	1,30	-	2,00	-	2,19	-	1,54	-		

Dados Experimentais	Critérios Normativos										
Dados Experimenta	415	NBR 61	18 (2003)	EUROCOD	E 2 (2004)*	ACI 318	8 (2005)	EUROCOD	DE 2 (2004)**		
Pesquisador(es)	Laje	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})		
	R-1	1,28	-	1,61	-	1,19	-	1,38	-		
	R-2	1,33	-	1,67	-	1,50	-	1,44	-		
	S1-60	1,58	-	1,99	-	1,45	-	1,71	-		
	S2-60	1,48	-	1,87	-	1,36	-	1,61	-		
	S3-60	1,51	-	1,90	-	1,38	-	1,63	-		
	S4-60	1,31	-	1,65	-	1,23	-	1,42	-		
Gardner apud Moe (1990)	S1-70	1,57	-	1,97	-	1,43	-	1,70	-		
	S2-70	1,51	-	1,90	-	1,35	-	1,64	-		
	S4-70	1,29	-	1,63	-	1,13	-	1,40	-		
	S4A-70	1,29	-	1,62	-	1,24	-	1,40	-		
	S5-60	1,54	-	1,94	-	1,52	-	1,67	-		
	S5-70	1,65	-	2,08	-	1,60	-	1,79	-		
	M1A	1,45	-	1,82	-	1,43	-	1,57	-		
	L1	1,40	-	1,89	-	1,52	-	1,52	-		
	L2	1,74	-	2,35	-	1,69	-	1,89	-		
	L3	1,77	-	2,39	-	1,58	-	1,92	-		
Silva (2003)	L7	1,38	-	2,10	-	1,99	-	1,68	-		
	L8	1,32	-	1,98	-	1,85	-	1,59	-		
	L11	1,06	-	1,59	-	1,58	-	1,28	-		
	L12	1,91	-	2,57	-	1,76	-	2,07	-		
	1	1,22	-	1,63	-	1,32	-	1,32	-		
	2	1,44	-	1,90	-	1,52	-	1,56	-		
	3V	1,42	1,09	1,70	1,61	1,79	1,43	1,52	1,35		
	4V	1,17	1,04	1,54	1,54	1,43	1,40	1,29	1,29		
	5V	1,34	1,01	1,56	1,47	1,63	1,24	1,41	1,23		
Oliveira et al (2000)	61	1,63	1,17	2,00	1,74	1,75	1,62	1,75	1,44		
	71	1,70	1,41	2,11	2,11	1,98	1,98	1,81	1,75		
	81	1,86	1,29	2,21	1,89	1,79	1,62	1,98	1,57		
	91	1,94	1,24	2,31	1,69	1,87	1,38	2,07	1,40		
	101	1,72	1,22	2,02	1,76	1,63	1,49	1,83	1,48		
	111	1,88	1,20	2,23	1,64	1,78	1,31	2,00	1,37		

Dados Experimentais	Critérios Normativos									
Dados Experimenta	ais	NBR 61	18 (2003)	EUROCOD	E 2 (2004)*	ACI 318	8 (2005)	EUROCOL	DE 2 (2004)**	
Pesquisador(es)	Laje	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	
	L1	1,65	1,13	1,96	1,53	1,47	1,26	1,77	1,30	
Barreto e Melo (2004)	L2	1,76	1,22	2,15	1,45	1,78	1,26	1,91	1,29	
	L3	1,53	1,20	1,82	1,74	1,60	1,60	1,64	1,49	
	L4	1,66	1,15	2,02	1,64	1,67	1,45	1,79	1,39	
Martinelli e Filho apud Fusco (2003)	1	0,99	-	1,39	-	0,95	-	1,08	-	
	T1	0,99	-	1,12	-	0,92	-	1,07	-	
	T2	1,58	1,55	1,84	1,78	2,16	2,16	1,76	1,71	
	Т3	1,76	1,70	2,04	1,93	2,38	2,38	1,96	1,86	
	T4	1,68	1,66	1,96	1,88	2,30	2,30	1,88	1,81	
	T5	1,72	1,67	2,00	1,88	2,36	2,36	1,93	1,81	
Yamada et al (1992)	T6	1,65	1,58	1,92	1,77	2,20	2,20	1,85	1,71	
	K1	1,29	-	1,46	-	1,25	-	1,39	-	
	K2	2,31	2,30	2,69	2,66	3,33	3,33	2,57	2,55	
	K3	2,69	2,64	3,13	3,01	3,86	3,86	3,00	2,90	
	K4	2,71	2,69	3,15	3,10	3,90	3,90	3,01	2,97	
	K5	2,90	2,86	3,37	3,21	4,19	4,19	3,25	3,10	
	K6	2,88	2,85	3,36	3,26	4,16	4,16	3,22	3,13	
	K7	2,56	2,47	2,97	2,72	3,60	3,60	2,88	2,64	
	1	1,32	-	1,78	-	1,56	-	1,43	-	
	2	1,24	-	1,68	-	1,47	-	1,34	-	
	3	1,49	-	1,85	-	1,76	-	1,61	-	
	4	1,39	-	1,73	-	1,69	-	1,48	-	
Andrade e Melo (2000)	5	1,61	-	2,02	-	1,65	-	1,73	-	
	6	1,45	-	1,73	-	1,33	-	1,54	-	
	7	1,47	-	1,83	-	1,99	-	1,57	-	
	8	1,26	-	1,80	-	1,78	-	1,49	-	
	9	1,46	-	1,78	-	1,99	-	1,55	-	
	10	1,34	-	1,56	-	1,66	-	1,41	-	
Holanda e Hanai (2003)	OSC.S1	1,21	-	1,69	-	1,58	-	1,31	-	

					Critérios I	Normativos			
Dados Experimenta	ais	NBR 61	18 (2003)	EUROCOD	E 2 (2004)*	ACI 31	8 (2005)	EUROCOL	DE 2 (2004)**
Pesquisador(es)	Laje	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})
	L1	1,44	-	1,97	-	1,81	-	1,56	-
	L2	1,31	-	1,78	-	1,28	-	1,42	-
	L3	1,31	-	1,79	-	1,18	-	1,42	-
Neto e Oliveira (2007)	L4	1,24	1,06	1,57	1,57	1,50	1,46	1,30	1,25
	L5	1,14	0,95	1,43	1,43	1,23	1,23	1,21	1,14
	L6	1,21	0,99	1,47	1,47	1,29	1,29	1,29	1,17
	L7	1,13	0,92	1,37	1,37	1,19	1,19	1,20	1,09
	L42	1,39	-	1,66	-	1,24	-	1,51	-
	L42A	1,32	-	1,50	-	1,15	-	1,43	-
	L45	1,36	-	1,58	-	1,09	-	1,48	-
	L46	1,33	-	1,52	-	1,00	-	1,44	-
Borges et al (2003)	L41	1,33	-	1,59	-	1,32	-	1,45	-
	L41A	1,27	-	1,45	-	1,22	-	1,38	-
	L43	1,20	-	1,43	-	1,09	-	1,30	-
	L43A	1,35	-	1,54	-	1,16	-	1,46	-
	L44	1,28	-	1,46	-	1,03	-	1,39	-
	L1	1,54	-	2,07	-	1,65	-	1,67	-
Musse e Gomes (2004)	L2	1,60	-	2,44	-	2,39	-	1,96	-
	L1A	1,42	-	2,16	-	2,17	-	1,69	-
Septes at al (2005)	L1B	1,38	-	1,86	-	1,73	-	1,49	-
Santos et al (2005)	L4	1,84	-	2,49	-	2,03	-	2,00	-
	L7	1,28	-	1,94	-	1,63	-	1,52	-
	7	1,30	-	1,57	-	1,38	-	1,41	-
	8	1,19	-	1,44	-	1,59	-	1,35	-
Cordovil e Fusco (1995)	11	1,23	-	1,49	-	1,65	-	1,40	-
. ,	14	1,08	-	1,36	-	1,31	-	1,23	-
	15	1,31	-	1,70	-	1,14	-	1,42	-

					Critérios I	Normativos			
Dados Experimenta	NS	NBR 61	18 (2003)	EUROCOD	E 2 (2004)*	ACI 31	8 (2005)	EUROCOL	DE 2 (2004)**
Pesquisador(es)	Laje	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})
	16	1,23	0,88	1,52	0,94	1,64	1,30	1,47	0,91
	17	0,89	0,89	1,11	1,11	1,36	0,88	1,04	1,04
Troutwoin (2006)	18	0,99	0,82	1,24	1,00	1,30	0,97	1,21	0,95
Trautwein (2006)	19	1,63	1,25	1,98	1,35	2,20	1,80	1,90	1,32
	l10	1,26	1,14	1,57	1,45	1,66	1,28	1,53	1,37
	l11	1,55	1,17	1,91	1,43	2,08	1,70	1,84	1,36
	MV1	1,30	-	1,65	-	1,22	-	1,41	-
	MV2	2,52	-	3,23	-	3,49	-	2,82	-
	MV3	2,17	-	2,77	-	2,95	-	2,43	-
Trautwein apud Ghali (2006)	MV4	2,55	-	3,29	-	3,54	-	2,85	-
	MV5	2,33	-	2,99	-	3,12	-	2,60	-
	MV6	2,23	-	2,88	-	3,14	-	2,49	-
	MV7	2,32	-	2,97	-	3,10	-	2,59	-
	1	1,79	-	2,18	-	1,53	-	1,94	-
Troutwein anud Dagon (2006)	2	1,75	-	2,05	-	2,25	-	1,89	-
Trautwein apud Regan (2006)	3	1,71	-	1,95	-	2,07	-	1,83	-
	4	1,17	-	1,56	-	1,44	-	1,39	-
	R1	0,68	-	0,85	-	0,81	-	0,81	-
	R2	0,66	-	0,82	-	0,80	-	0,78	-
Trautwein apud Samadian	R3	0,85	-	1,06	-	1,00	-	1,01	-
(2006)	R4	0,86	-	1,07	-	1,03	-	1,02	-
	A1	0,96	-	1,20	-	1,17	-	1,14	-
	A2	1,10	-	1,36	-	1,40	-	1,33	-
	BD2	1,28	-	1,51	-	1,43	-	1,27	-
Silva et al apud Regan (2002)	BD8	1,24	-	1,33	-	1,41	-	1,14	-
,	DT1	0,96	-	0,89	-	1,17	-	0,89	-
Silva et al apud Ramos e	AR2	1,33	-	1,32	-	1,25	-	1,09	-
Lúcio (2002)	AR9	1,32	-	1,21	-	1,25	-	1,01	-

Dados Experimentais		Critérios Normativos									
	115	NBR 6118 (2003)		EUROCODE 2 (2004)*		ACI 318 (2005)		EUROCODE 2 (2004)**			
Pesquisador(es)	Laje	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})		
Carvalho et al apud Hassanzadeh e Sundquist (2002)	B1	0,52	-	0,42	-	0,71	-	0,42	-		
Corrêa et al (2001)	LP1	1,36	-	1,00	-	1,28	-	0,90	-		
Barbán (2004)	L1	1,53	-	1,11	-	1,86	-	0,99	-		
Hassan et al (2002)	N1 H1	1,97 2,29	-	0,79 0,96	-	1,01 1,02	-	0,76 0,91	-		

Dadaa Eurorimanti					Critérios I	Normativos			
Dados Experimenta	115	NBR 61	18 (2003)	EUROCOD	E 2 (2004)*	ACI 318	8 (2005)	EUROCOL	DE 2 (2004)**
Pesquisador(es)	Laje	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})
	1	1,08	-	1,25	-	1,02	-	1,25	-
	2	1,17	-	1,03	-	0,92	-	1,03	-
Carvaino et al apud Nylander	3	1,32	-	1,16	-	1,03	-	1,16	-
et al (2002)	4	1,18	-	1,00	-	0,93	-	1,00	-
	6	1,11	-	1,00	-	0,88	-	1,00	-
	A1	1,88	-	1,94	-	1,33	-	1,73	-
	A2	1,62	-	1,82	-	1,19	-	1,56	-
	A3	2,09	-	1,82	-	1,42	-	1,63	-
	A4	2,17	-	2,15	-	1,59	-	1,82	-
	B1	1,84	-	2,22	-	1,16	-	2,00	-
Sliva et al (2006)	B2	1,68	-	2,35	-	1,12	-	1,99	-
	B3	2,10	-	2,20	-	1,28	-	1,95	-
	B4	1,95	-	2,34	-	1,25	-	1,98	-
	C1	1,88	-	2,41	-	1,11	-	2,16	-
	D3	2,09	-	2,03	-	1,21	-	1,68	-
	BD1	1,36	-	1,00	-	0,82	-	0,90	-
	BD4	1,43	-	1,02	-	0,85	-	0,92	-
	BD5	1,05	-	0,95	-	0,84	-	0,83	-
	BD6	1,12	-	1,02	-	0,90	-	0,89	-
	BD7	1,09	-	1,00	-	0,87	-	0,87	-
Convolto et al anvid De non	DT2	1,76	-	1,01	-	0,78	-	0,99	-
Carvaino et al apud Regan	DT3	1,99	-	1,15	-	0,89	-	1,13	-
(2002)	DT4	1,47	-	1,28	-	1,04	-	1,24	-
	DT5	1,89	-	1,09	-	0,83	-	1,07	-
	DT6	1,66	-	0,99	-	0,78	-	0,97	-
	DT8	1,13	-	1,07	-	1,06	-	1,04	-
	DT9	1,65	-	0,96	-	0,74	-	0,94	-
	DT10	1,52	-	0,93	-	0,77	-	0,91	-

TABELA C.2 – RELAÇÃO ENTRE AS FORÇAS EXPERIMENTAIS E CALCULADAS NAS LAJES DE CONCRETO PROTENDIDO

		Critérios Normativos									
Dados Experimenta	IS	NBR 61	18 (2003)	EUROCOD	E 2 (2004)*	ACI 318	3 (2005)	EUROCODE 2 (2004)**			
Pesquisador(es)	Laje	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	$ \begin{array}{c} Fu_{exp}/Fu_{calc} \\ (fy_{teste}) \end{array} $	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})		
	AR3	1,08	-	1,79	-	1,02	-	1,42	-		
	AR4	0,87	-	1,53	-	0,78	-	1,22	-		
	AR5	1,01	-	1,69	-	0,96	-	1,34	-		
Carvaino et al apud Ramos e	AR7	1,02	-	1,76	-	0,93	-	1,40	-		
Lucio (2002)	AR8	1,10	-	1,81	-	1,04	-	1,43	-		
	AR10	1,55	-	2,45	-	1,49	-	1,93	-		
	AR11	1,54	-	2,37	-	1,53	-	1,86	-		
	A1	1,39	-	1,31	-	1,29	-	1,24	-		
	A2	1,20	-	1,14	-	1,13	-	1,07	-		
Carvalho et al apud	A3	1,91	-	1,76	-	1,71	-	1,66	-		
Hassanzaden e Sundquist	B2	1,00	-	1,04	-	1,18	-	1,03	-		
(2002)	B3	1,35	-	1,40	-	1,58	-	1,38	-		
	B4	1,14	-	1,20	-	1,36	-	1,19	-		
	LP2	1,32	-	1,53	-	1,08	-	1,33	-		
	LP3	1,48	-	1,47	-	1,00	-	1,31	-		
Corrêa et al (2001)	LP4	1,44	-	1,94	-	1,39	-	1,66	-		
	LP5	1,61	-	2,24	-	1,47	-	1,92	-		
	LP6	1,49	-	1,94	-	1,29	-	1,67	-		
	M4	1,89	-	2,08	-	1,37	-	1,92	-		
Melges et al (2001)	M5	1,90	1,90	2,43	2,43	2,65	2,65	2,23	2,23		
	M6	1,63	1,63	2,03	2,03	2,13	2,13	1,86	1,86		

Dados Experimentais		Critérios Normativos								
		NBR 6118 (2003)		EUROCODE 2 (2004)*		ACI 318 (2005)		EUROCODE 2 (2004)**		
Pesquisador(es)	Laje	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	
Carvalho et al (2005)	L1	1,87	-	1,59	-	1,17	-	1,52	-	
	L1A	2,22	-	1,82	-	1,40	-	1,76	-	
	S1	2,36	-	2,02	-	1,38	-	1,93	-	
	L2C	1,84	1,84	1,85	1,85	2,21	2,15	1,80	1,77	
	L2R	1,75	1,75	1,68	1,65	2,00	1,86	1,65	1,59	
	L3R	1,62	1,62	1,63	1,57	1,84	1,60	1,60	1,51	
	L3RII	1,73	1,73	1,72	1,68	1,88	1,63	1,67	1,58	
	L4R	1,46	1,44	1,57	1,29	1,78	1,43	1,53	1,24	
	L4RII	1,50	1,50	1,38	1,38	1,46	1,26	1,34	1,33	
	L6RR	1,43	1,43	1,36	1,36	1,63	1,29	1,29	1,29	
	S2R	2,20	2,20	2,21	2,21	2,30	2,30	2,07	2,07	
	S3R	2,06	2,06	1,94	1,94	1,99	1,99	1,85	1,85	
	S4R	1,98	1,98	1,88	1,88	1,94	1,94	1,77	1,77	
	S5R	1,84	1,84	1,69	1,69	1,66	1,61	1,59	1,59	
	S5RII	1,81	1,81	1,63	1,63	1,69	1,64	1,54	1,54	
	S5C	1,69	1,69	1,56	1,56	1,52	1,48	1,47	1,47	
	S6R	1,48	1,23	1,60	1,16	1,71	1,46	1,55	1,08	
	S6RII	1,53	1,53	1,49	1,40	1,58	1,32	1,45	1,31	
Fortunato (2005)	L1	1,87	1,40	2,02	1,37	2,17	2,15	1,93	1,32	
	L2	2,01	2,01	2,00	2,00	1,88	1,88	1,85	1,85	
	L3	1,64	1,38	1,79	1,31	1,94	1,71	1,74	1,23	
	L4	1,95	1,51	2,05	1,48	2,22	2,19	1,96	1,39	
	L5	1,56	1,56	1,50	1,50	1,55	1,29	1,45	1,42	
	L6	1,82	1,82	1,77	1,77	1,59	1,59	1,67	1,67	
	L7	1,79	1,79	1,76	1,76	1,60	1,56	1,66	1,66	
Barbán et al (2004)	L2	2,46	-	2,66	-	1,47	-	2,14	-	
	L3	2,42	-	2,62	-	1,45	-	2,10	-	
	L4	2,43	-	2,58	-	1,45	-	2,06	-	
	L5	2,36	-	2,51	-	1,41	-	2,00	-	
	L6	2,48	-	2,66	-	1,48	-	2,13	-	

Dados Experimentais		Critérios Normativos								
		NBR 6118 (2003)		EUROCODE 2 (2004)*		ACI 318 (2005)		EUROCODE 2 (2004)**		
Pesquisador(es)	Laje	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	Fu _{exp} /Fu _{calc} (fy _{normativo})	Fu _{exp} /Fu _{calc} (fy _{teste})	
Alves et al (2005)	LC1	1,28	-	1,54	-	1,32	-	1,31	-	
	LC2	1,25	-	1,66	-	1,30	-	1,41	-	
	LC3	1,32	-	1,58	-	1,36	-	1,35	-	
	LC4	1,39	-	1,86	-	1,42	-	1,58	-	
	LC5	1,35	-	1,86	-	1,30	-	1,60	-	
	LC6	1,26	-	1,61	-	1,16	-	1,39	-	
	LC7	1,10	-	1,51	-	1,06	-	1,30	-	
	LC8	1,46	-	1,87	-	1,34	-	1,62	-	
Hassan et al (2002)	N2	2,66	-	2,51	-	1,46	-	2,26	-	
	N3	2,59	-	2,38	-	1,39	-	2,15	-	
	N3'	2,06	-	2,23	-	1,37	-	2,08	-	
	H2	2,24	-	1,81	-	1,06	-	1,63	-	
	H3	2,63	-	2,09	-	1,22	-	1,88	-	