ESTUDO DO COMPORTAMENTO DE VIGAS MISTAS COM PERFIL DE ALMA SENOIDAL

Alexander Galvão Martins

UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ESTRUTURAS

"ESTUDO DO COMPORTAMENTO DE VIGAS MISTAS COM PERFIL DE ALMA SENOIDAL "

Alexander Galvão Martins

Tese apresentada ao Programa de Pós-Graduação em Engenharia de Estruturas da Escola de Engenharia da Universidade Federal de Minas Gerais, como parte dos requisitos necessários à obtenção do título de "Doutor em Engenharia de Estruturas".

Comissão Examinadora:

Prof. Dr. Ricardo Hallal Fakury DEES-UFMG - (Orientador)

Prof. Dr. Gilson Queiroz DEES - UFMG

Prof. Dr. Francisco Carlos Rodrigues DEES - UFMG

Prof. Dr. Maximiliano Malite USP

Prof. Dr. Pedro Colmar Gonçalves da Silva Vellasco UERJ

Belo Horizonte, 29 de setembro de 2009

À minha amada esposa, Vivi, à minha querida mãe, Camila, exemplo de vida e determinação, e aos meus irmãos, Rodrigo e Allan, dedico este trabalho.

AGRADECIMENTOS

À Deus, pelo dom da vida, e por ter me concedido a graça de concluir mais uma etapa em minha vida profissional.

Ao professor Ricardo Hallal Fakury, pelos ensinamentos transmitidos desde o mestrado, pela amizade, orientação, confiança e apoio no desenvolvimento deste trabalho.

Aos professores do Departamento de Engenharia de Estruturas, em especial ao professor Gílson Queiroz, meu orientador no mestrado e a quem tenho uma profunda admiração e carinho, e ao professor Francisco Carlos Rodrigues, parceiro nas atividades acadêmicas e profissionais, que colaboraram significativamente na realização desta pesquisa. É uma grande honra e satisfação ter sido aluno de profissionais tão competentes e respeitados.

Aos funcionários do DEES e LAEES e, em especial, à Inês.

Ao eng. Roberval José Pimenta pelos constantes ensinamentos, por acreditar em minha capacidade, e convidar-me para fazer parte do grupo de estudos do perfil de alma senoidal. Pela "co-orientação", amizade e incentivo nos momentos difíceis, fundamentais para a conclusão desta pesquisa dentro do prazo estabelecido.

Aos colegas do grupo de estudos do perfil de alma senoidal: Daniel Gordilho Souza, Adenilcia Fernanda Grobério Calenzani, Lourdiane Gontijo das Mercês Gonzaga e, em especial, à Eduardo Lourenço Pinto, que me auxiliou durante a realização dos ensaios experimentais.

À CODEME ENGENHARIA S.A. pela confiança em meu trabalho e pela oportunidade concedida para dedicar-me ao doutorado em um período da semana. Ao eng. Wagner Plais, que colaborou no desenvolvimento do programa GeraAnsys, fundamental para agilidade do estudo paramétrico.

À minha amada esposa, Viviane, pelo amor, carinho, compreensão e paciência ao longo destes três anos e meio de privações.

SUMÁRIO

RESUMO	i
ABSTRACT	ii
NOTAÇÕES	iii
1. INTRODUÇÃO	1
1.1. Generalidades	1
1.2. Histórico	3
1.3. Dimensões dos perfis de alma corrugada	6
1.4. Processo de Fabricação	9
1.5. Ligação entre as mesas e a alma	13
1.6. Objetivos	14
1.6.1. Geral	14
1.6.2. Específicos	14
1.7. Metodologia	15
1.8. Contexto do trabalho e justificativa	16
1.9. Escopo do trabalho	17
2. ESTADO DA ARTE	19
2.1. Considerações iniciais	19
2.2. Vigas mistas biapoiadas com perfil de alma senoidal	20
2.3. Aspectos gerais das ligações mistas com perfil de alma plana	26
2.4. Comportamento dos componentes básicos das ligações mistas	29
2.4.1. Largura efetiva da laje na região de momento fletor negativo	29

2.4.2.	Barras c	le armadura tracionadas	.30
2	.4.2.1.	Rigidez inicial	.30

	2.4.2.2.	Força de tração resistente nominal	30
	2.4.2.3.	Capacidade de deformação	30
2.4	.3. Conec	tores de cisalhamento	34
	2.4.3.1	Rigidez inicial	34
	2.4.3.2	Força resistente nominal	34
	2.4.3.3	Capacidade de deformação	35
2.4	.4. Chapa	de topo	36
	2.4.4.1	Rigidez inicial da ligação da mesa inferior	36
	2.4.4.2	Rigidez rotacional para as ligações com perfis de alma plana	36
	2.4.4.3 chapa de	Força resistente nominal à tração da linha de parafusos na ligaçã topo com perfis de alma plana	ăo de 37
	2.4.4.4 ligações	Rigidez rotacional e força resistente da linha de parafusos par de chapa de topo com perfis de alma senoidal	ra as 40
2.5. I	Propriedade olana	es fundamentais da ligação mista completa com perfis de	alma 45
2.5	.1. Rigide	z inicial	45
2.5	.2. Mome	nto resistente nominal	47
2.5	.3. Capaci	idade de rotação	48
2.6. (Capacidade olana	de rotação necessária de vigas semicontínuas com perfis de	alma 48
2.7. I	Flambagem	local da mesa comprimida	52
2.8. I	Flambagem	lateral com distorção	56
2.8	.1. Em pe	rfis de alma plana	56
2.8	.2. Em pe	rfis de alma senoidal	58

	2.9. An	nálise da confiabilidade estrutural do estado limite último de plastifica	ação da viga
	mi	sta com perfil de alma senoidal	64
3.	ANÁL	ISE EXPERIMENTAL	68
	3.1. De	escrição dos protótipos	68
	3.2. Ins	strumentação	72
	3.3. De	escrição dos ensaios	74
	3.4. Re	esultados obtidos	81
4.	ANÁL	LISE NUMÉRICA	96
	4.1. Int	trodução	96
	4.2. Vi	gas mistas biapoiadas – ensaios de Motak e Machacek	
	4.2.1	. Tipos de elementos utilizados	
	4.2.2	. Definição da malha de elementos finitos e vinculações nodais	
	4.2.3	. Relações constitutivas utilizadas	102
	4.2.4	Considerações sobre a aplicação do carregamento	
	4.2.5	Aspectos da análise não-linear	
	4.2.6	. Comparação dos resultados das análises numérica e experimental	106
	4.3. Lig	gações mistas com perfil de alma senoidal	110
	4.3.1	. Tipos de elementos utilizados	
	4.3.2	. Definição da malha de elementos finitos e vinculações nodais	
	4.3.3	. Relações constitutivas utilizadas	113
	4.3.4	. Considerações sobre a aplicação do carregamento	116
	4.3.5	. Análise dos resultados do modelo numérico e comparação com os re ensaios	esultados dos
5	ESTII	DO PARAMÉTRICO	125

5.1. Introdução

0.2.1	gas mistas biapoiadas com perfil de alma senoidal	12
5.3. Lig	ação mista com perfil de alma senoidal	13
6. PROP	OSIÇÃO DE MÉTODOS DE CÁLCULO	13
6.1. Intr	rodução	13
6.2. Pla	stificação da viga mista	13
6.3. Lig	ação mista	13
6.3.1.	Resistência da ligação mista	13
6.3.2.	Modelo mecânico para o mecanismo de falha	14
6.3.3.	Capacidade de rotação	14
6.3.4.	Rigidez inicial	15
6.3.5.	Algumas considerações qualitativas sobre as construções escoradas	escoradas e nã 15
7. CONS	IDERAÇÕES FINAIS	15
7. CONS 7.1. Co	IDERAÇÕES FINAIS	15
 7. CONS 7.1. Co 7.2. Sug 	IDERAÇÕES FINAIS nclusões gestões para trabalhos posteriores	15 15
 CONS 7.1. Co 7.2. Sug 8. REFEI 	IDERAÇÕES FINAIS nclusões gestões para trabalhos posteriores RÊNCIAS BIBLIOGRÁFICAS	15 15
 7. CONS 7.1. Co. 7.2. Sug 8. REFEI ANEXOS 	IDERAÇÕES FINAIS nclusões gestões para trabalhos posteriores RÊNCIAS BIBLIOGRÁFICAS	15 15
 7. CONS 7.1. Co 7.2. Sug 8. REFEI ANEXOS Anexo A 	IDERAÇÕES FINAIS nclusões gestões para trabalhos posteriores RÊNCIAS BIBLIOGRÁFICAS A – Laudo técnico dos ensaios mecânicos	15
 7. CONS 7.1. Co 7.2. Sug 8. REFEI ANEXOS Anexo A Anexo E 	IDERAÇÕES FINAIS nclusões gestões para trabalhos posteriores RÊNCIAS BIBLIOGRÁFICAS A – Laudo técnico dos ensaios mecânicos	
 7. CONSI 7.1. Construction 7.2. Sugnitive 8. REFEI ANEXOS Anexo A Anexo E Anexo C 	IDERAÇÕES FINAIS nclusões gestões para trabalhos posteriores RÊNCIAS BIBLIOGRÁFICAS A – Laudo técnico dos ensaios mecânicos B – Determinação da curva momento versus rotação da ligação n C – Dados auxiliares para a determinação da capacidade de rot	
 7. CONS 7.1. Cor 7.2. Sug 8. REFEI ANEXOS Anexo A Anexo C ligação 1 	IDERAÇÕES FINAIS nclusões gestões para trabalhos posteriores RÊNCIAS BIBLIOGRÁFICAS A – Laudo técnico dos ensaios mecânicos B – Determinação da curva momento versus rotação da ligação n C – Dados auxiliares para a determinação da capacidade de rot nista	

Resumo

Os perfis de alma corrugada têm sido empregados na construção de galpões comerciais, edifícios industriais e passarelas de pedestres. Esse fato fez com que grande parte das pesquisas se concentrassem no comportamento do perfil de aço isolado, sendo encontradas poucas referências sobre o comportamento de estruturas mistas com perfil de alma corrugada, em especial de geometria senoidal. Mesmo a norma brasileira ABNT NBR 8800: 2008 e as normas internacionais não prevêem procedimentos para cálculo e projeto de elementos de aço de alma corrugada, que tratem de todos os fenômenos envolvidos em seu comportamento estrutural. Diante desse quadro, este trabalho tem por objetivo a proposição de procedimentos de cálculo para vigas mistas constituídas por um perfil de aço de alma senoidal sobreposto por laje de concreto maciça ou com fôrma de aço incorporada, nas regiões de momento fletor positivo e negativo. A fim de que fosse alcancado esse objetivo, realizaram-se três ensaios de ligações mistas com perfil de alma senoidal no Laboratório de Análise Experimental de Estruturas (LAEES) da Escola de Engenharia da Universidade Federal de Minas Gerais. Com os resultados desses ensaios e dos ensaios de vigas mistas com perfil de alma senoidal realizados por MOTAK & MACHACEK na Universidade Técnica Tcheca em Praga, calibraramse modelos numéricos via método dos elementos finitos, que foram utilizados em estudos paramétricos para a obtenção do momento fletor resistente e de propriedades fundamentais da ligação mista, na região de momento fletor negativo, e do momento fletor resistente de vigas mistas na região de momento fletor positivo.

ABSTRACT

The corrugated web profiles have been employed in the construction of commercial warehouses, industrial buildings and footbridges as well. Hence, researches have focused on insulated steel profile's behavior, while few references are found about composite structures with corrugated web profile, in particular the sinusoidal geometry. Neither Brazilian standard ABNT NBR 8800: 2008 nor international standards provide procedures for calculation and design of corrugated web steel elements covering all the phenomena involved on its structural behavior. Therefore, the aim of this work is to propose procedures for calculating composite beams formed by sinusoidal web steel profile overlapped by massive concrete slab or by decks concreted over steel sheeting, in the regions of sagging and hogging bending moment. In order to achieve that, three tests of composite connections on sinusoidal web profile were performed in the Laboratory of Experimental Analysis of Structures (LAEES), at the School of Engineering, Federal University of Minas Gerais. Data obtained from these tests and also from composite beams with sinusoidal web profile's tests - performed by MOTAK & MACHACEK at Czech Technical University in Prague - were used to validate finite element numerical models. Finally, these models were used for parametric studies to obtain the bending moment resistance and composite connection fundamental properties as well as in the hogging bending moment region, and bending moment resistance of composite beams in the sagging bending moment region.

Letras romanas maiúsculas

A_a	área da seção do perfil de aço
$A_{s} \boldsymbol{\ell}$	área da seção transversal da armadura
A_{fi}	área da mesa inferior do perfil de aço
D_n	valor nominal da ação permanente
DFB	distância do centro do furo à borda
DEF	distância vertical entre centro dos furos
E	modulo de elasticidade do aço
Eaf	módulo de elasticidade do aço das mesas
E_{aw}	módulo de elasticidade do aço da alma
E_c	módulo de elasticidade do concreto
E_{ci}	módulo de elasticidade inicial do concreto
E_s	módulo de elasticidade do aço da armadura
$(EI)_2$	rigidez à flexão da seção mista homogeneizada da laje por unidade de
	comprimento da viga
F_{cRk}	força resistente nominal dos conectores de cisalhamento na região de momento
	fletor negativo
F_{sRk}	força de tração resistente nominal das barras de armadura
F_e	força máxima aplicada experimental
F_b	resistência da linha superior de parafusos
F_n	força máxima aplicada numérica
$F_{T,Rk}$	força de tração resistente nominal de uma linha de parafusos
G	módulo de elasticidade transversal do aço
G_{eq}	módulo de elasticidade transversal equivalente do aço da alma senoidal
GAB	distância horizontal entre centro de furos
Ia	momento de inércia da seção transversal do perfil de aço
I_{ν}^{+}	momento de inércia da viga mista na região de momento fletor positivo
L_{eq}	comprimento equivalente da charneira plástica
L_n	valor nominal da ação variável

L_l	comprimento da viga, adjacente ao nó, na região de momento negativo
M	momento fletor; momento aplicado
M_p	momento fletor de plastificação
M_{Rk}	momento fletor resistente nominal
M_{Rd}	momento fletor resistente de cálculo
M_{u}	momento fletor último aplicado
Mue	momento fletor último experimental
M_{un}	momento fletor último numérico
$M^{\!+}$	momento resistente da viga mista na região de momento positivo
Q_{Rk}	força resistente nominal de um conector
Р	força concentrada
P_u	carga última aplicada
R	resistência
R_n	resistência nominal
R_c	resistência da mesa comprimida
R_p	resistência da primeira linha de parafusos
R_s	resistência da armadura ao escoamento
R'_s	resistência da armadura à ruptura
S	solicitação
S_i	rigidez inicial da ligação
S_n	solicitação ou efeito das ações nominais

Letras romanas minúsculas

а	altura do concreto da laje comprimida; distância entre vigas;
b_c	largura efetiva da laje de concreto
b_{ch}	largura da chapa de topo
b_f	largura da mesa
b_p	largura da chapa de topo
b_w	altura da onda senoidal (duas vezes a amplitude)
d	altura total do perfil metálico
d_b	diâmetro dos parafusos
d_s	distância do centro geométrico do perfil metálico ao centro geométrico da
	armadura

d_{pch}	distância da primeira linha de parafusos ao centro geométrico da mesa inferior
d_t	altura total da viga mista incluindo a espessura da laje
d_1	distância do centro geométrico do perfil metálico até a face superior desse
	perfil
e_x	distância do furo à borda
e_y	distância da linha superior de parafusos à face interna da mesa superior do
	perfil
f	flecha
f_c	resistência a compressão do concreto
f_{ck}	resistência característica do concreto à compressão
f_{ctm}	resistência média do concreto à tração
f_u	resistência última nominal
f_y	resistência nominal ao escoamento
f_{yd}	resistência de cálculo ao escoamento
f_{yp}	resistência nominal ao escoamento do aço da chapa de topo
f_{ys}	resistência ao escoamento do aço da armadura
h	altura da alma
h_F	altura da fôrma da laje
h_0	altura entre eixos das mesas
k_c	coeficiente que leva em conta o equilíbrio e a distribuição de tensões na laje de
	concreto imediatamente antes da ocorrência das fissuras.
k_{cs}	rigidez inicial dos conectores de cisalhamento na região de momento fletor
	negativo
k_i	rigidez inicial da ligação da mesa inferior
<i>k</i> _r	rigidez de um conector
k_s	rigidez inicial das barras de armadura
k_1	rigidez à flexão da laje por unidade de comprimento da viga
k_2	rigidez à flexão da alma por unidade de comprimento da viga
<i>k</i> ₃	rigidez da conexão de cisalhamento por unidade de comprimento da viga
l	comprimento destravado da viga; vão da viga; comprimento da barra
$m{\ell}_{e\!f\!f}$	comprimento efetivo da linha de escoamento da chapa para os modos 1 e 2
т	distância do furo ao centro da alma
n	distância do centro do furo à borda

	~
NOT	COEC
	VUUES
11011	тçово

q	relação entre a ação variável de referência ou nominal e a ação permanente
	nominal
S	comprimento desenvolvido de uma corrugação; desenvolvimento de w
<i>s</i> ^(<i>B</i>)	capacidade de deformação dos conectores
t_c	espessura da laje de concreto acima da fôrma
<i>t</i> _{ch}	espessura da chapa de topo
t_f	espessura da mesa
t_{fi}	espessura da mesa inferior
t_{fs}	espessura da mesa superior
t_p	espessura da chapa de topo
t_w	espessura da alma
W	comprimento da onda senoidal
У	distância entre a face superior da mesa superior e o eixo das barras de armadura
y_c	distância do centro geométrico da parte comprimida do perfil metálico até a
	face superior desse perfil
y_t	distância do centro geométrico da parte tracionada do perfil metálico até a face
	inferior desse perfil
$\mathcal{Y}0$	distância entre os centros geométricos da laje de concreto e da seção mista
	homogeneizada na região de momento fletor negativo
Ζ	distância entre centros geométricos da área comprimida e do parafuso

Letras gregas

Δ_{us}	capacidade de deformação da armadura
Δ_{ui}	capacidade de deformação da mesa inferior
α	relação entre os momentos resistentes da ligação mista e da viga mista
β_{vm}	fator de redução do momento fletor positivo resistente
β_t	parâmetro para cálculo da deformação da armadura
χ	coeficiente de redução da resistência
δ	deslocamento
δ_{s}	taxa de armadura (relação A_s / A_c)
δ_0	parâmetro para cálculo da deformação da armadura
\mathcal{E}_{smu}	deformação da armadura envolvida pelo concreto

\mathcal{E}_{sy}	deformação correspondente à resistência ao escoamento da armadura
\mathcal{E}_{SU}	deformação correspondente à resistência à ruptura da armadura
Ė	taxa de deformação
ϕ	coeficiente de ponderação da resistência da norma estadunidense
γa	coeficiente de ponderação da resistência do aço
γ_c	coeficiente de ponderação da resistência do concreto
ŶD	coeficiente de ponderação da ação permanente
ŶL	coeficiente de ponderação da ação acidental
γ_m	coeficiente de ponderação da resistência da norma brasileira
γ_s	coeficiente de ponderação da resistência do aço da armadura
η_i	nível de interação da viga mista
λ	índice de esbeltez
μ	taxa de rigidez
ν	coeficiente de Poisson
θ_u	capacidade última de rotação
$ ho_c$	massa específica do concreto
σ_{srl}	tensão na armadura em que ocorrem as primeiras fissuras

1

INTRODUÇÃO

1.1 - Generalidades

Para se vencer grandes vãos, faz-se necessária a utilização de vigas de maior altura para que não sejam violados os estados limites últimos e de utilização. Com a elevação da altura das vigas, para evitar a flambagem local da alma por força cortante, normalmente torna-se necessário o aumento da espessura da alma ou a utilização de enrijecedores transversais, o que causa o crescimento do consumo de aço da estrutura. A fim de se solucionar esse problema, imaginou-se um enrijecimento próprio da alma por meio de corrugações ao longo do comprimento da viga, conforme se vê na FIG.1.1. Essas corrugações têm por objetivo aumentar a capacidade resistente da alma à flambagem local por cisalhamento, o que possibilita a utilização de menores espessuras de chapa sem o emprego de enrijecedores.

FIGURA 1.1 - Perfil de alma corrugada [PLAIS (2005)]

As almas dos perfis podem ser corrugadas segundo diversas formas, algumas das quais são mostradas na FIG.1.2. As diferenças entre as formas de corrugação envolvem, além da geometria, o comportamento mecânico e o custo de fabricação.

FIGURA 1.2 - Formas de corrugação da alma [PLAIS (2005)]

De acordo com DE HOOP (2003), não se têm muitas informações sobre a maioria das formas de corrugação. A alma trapezoidal é a forma mais conhecida e a que possui um número maior de estudos e obras realizadas. Em seguida, tem-se a alma senoidal, cuja utilização vem crescendo nos últimos anos. Cada uma delas possui características peculiares:

- a alma trapezoidal apresenta maior momento fletor resistente em relação ao eixo de menor inércia do perfil, pois os trechos planos da alma estão distantes do eixo de simetria. Porém, a alma trapezoidal está sujeita à ocorrência de flambagem local por força cortante nos trechos planos;
- a alma senoidal, dependendo do comprimento e da profundidade da onda, pode não estar sujeita à flambagem local por força cortante e, devido à sua

geometria, é a mais indicada para as situações onde a fadiga deve ser considerada (DE HOOP, 2003).

1.2 - Histórico

A primeira viga de alma corrugada foi fabricada em 1966 na Suécia, com o objetivo de reduzir o peso da estrutura e os custos de fabricação, especialmente em pontes. No entanto somente em 1986, na França, foi construída a primeira ponte com perfil de alma trapezoidal, a ponte *Cognac*, mostrada na FIG.1.3, pela empresa *Campenon Bernard*.

FIGURA 1.3 - Ponte Cognac [PLAIS (2005)]

A seção transversal da ponte *Cognac* é constituída por duas mesas de concreto protendido ligadas por chapas de aço corrugadas na forma trapezoidal, conforme se vê na FIG.1.4. Uma das principais vantagens desse sistema construtivo foi a diminuição da perda de protensão do concreto devido à pequena rigidez longitudinal da chapa corrugada (DE HOOP, 2003).

FIGURA 1.4 - Seção transversal da ponte Cognac [SAYED-AHMED (2001)]

Seguindo o sucesso da ponte *Cognac*, várias pontes em perfil de alma trapezoidal foram construídas na Europa e na Ásia. Podem-se citar como exemplos o viaduto *Maupré* (1987) e a ponte *Dole* (1995) na França (FIG.1.5 e FIG.1.6, respectivamente), a ponte Shinkai (1993) e a ponte *Hondani* (1997) no Japão (FIG.1.7).

FIGURA 1.5 - Viaduto Maupré [PLAIS (2005)]

FIGURA 1.6 - Ponte Dole [PLAIS (2005)]

FIGURA 1.7 - Ponte Hondani [PLAIS (2005)]

Atualmente, devido ao excelente comportamento mecânico e à elevada eficiência estrutural, principalmente quando a solicitação à flexão é predominante sobre a solicitação à força axial, os perfis de alma corrugada estão sendo empregados na construção de galpões comerciais (FIG.1.8), edifícios industriais (FIG.1.9) e passarelas de pedestres (FIG.1.10).

FIGURA 1.8 - Galpão comercial em alma corrugada [PLAIS (2005)]

FIGURA 1.9 - Galpão industrial em alma corrugada [PLAIS (2005)]

FIGURA 1.10 - Passarela em alma corrugada [PLAIS (2005)]

1.3 - Dimensões dos perfis de alma corrugada

Duas referências européias em fabricação de perfis de alma trapezoidal são a empresa holandesa *GLP Corrugated Plate Industry* e a sueca *Ranabalken*. A FIG.1.11 mostra algumas das formas de alma trapezoidal fabricadas pela *GLP Corrugated Plate Industry*, com variações tanto na profundidade quanto no comprimento dos trechos planos que compõem os trapézios. A espessura da alma varia de 1,5 mm a 12,0 mm e a máxima profundidade do trapézio é de 240 mm. Segundo informações da empresa (http://www.cpi-glp.com), acessado em maio de 2006, a economia de matéria-prima na fabricação de vigas de alma corrugada

varia de 10% a 30% se comparado aos perfis soldados de alma plana e mais de 30% para os perfis laminados.

A empresa autríaca *Zeman & Co* tem fabricado perfis em alma senoidal, praticamente sem diferenças na forma da corrugação da onda senoidal, conforme se vê na FIG.1.12. A espessura da alma pode ser de 2,0 mm, 2,5 mm e 3,0 mm, enquanto a altura total da corrugação é de 40 mm para a espessura de 2,0 mm e 43 mm para as demais.

FIGURA 1.11 - Formas de alma trapezoidal fabricadas pela GLP Corrugated Plate Industry

FIGURA 1.12 - Forma da alma senoidal fabricada pela Zeman & Co [SIOKOLA (1999)]

No Brasil, a empresa *Codeme Engenharia S.A.*, vem projetando, fabricando e montando galpões comerciais e edifícios industriais em perfis de alma senoidal desde 2003. A FIG.1.13 mostra um galpão comercial construído por essa empresa.

FIGURA 1.13 - Galpão comercial construído pela Codeme [PLAIS (2005)]

O equipamento utilizado pela *Codeme Engenharia S.A.* para a fabricação dos perfis foi adquirido junto à empresa *Zeman & Co* e algumas modificações nos padrões de dimensões dos perfis foram feitas para adequação às necessidades brasileiras. A TAB.1.1 apresenta as dimensões e as propriedades dos materiais empregados por cada um dos fabricantes e a FIG.1.14 indica as dimensões mencionadas na referida tabela.

É preciso salientar que a geometria da alma senoidal é a mesma para ambos os fabricantes. Analisando a TAB.1.1 constata-se que o perfil de alma senoidal é um elemento híbrido, pois o processo de fabricação e as propriedades dos aços que compõem as mesas e a alma do perfil são diferentes.

		Codeme Engenharia	Zeman & Co	
		(Plais, 2005)	(Siokola, 1999)	
Alma	Altura (h)	400, 500, 600, 800,	500, 625, 750, 1000,	
	(mm)	1000 e 1200	1250 e 1500	
	Espessura (t_w) (mm)	2,0 e 3,0	2,0, 2,5 e 3,0	
		CIVIL300	St 37-2G	
	Tipo de Aço	$f_{y} = 300 \text{ MPa}$	$f_y = 215 \text{ MPa}$	
		$f_u = 410 \text{ MPa}$	$f_u = 360-510 \text{ MPa}$	
Mesa	Largura (b_f) (mm)	$125 \le b_f \le 350$	$200 \le b_f \le 430$	
	Espessura (t_{fs} , t_{fi})	$4,75 \le t_{fs} \le 19,0$	$10,0 \le t_{fs} \le 30,0$	
	(mm)	$4,75 \le t_{fi} \le 19,0$	$10,0 \le t_{fi} \le 30,0$	
		CIVIL350	S235JRG2	
	Tipo de Aço	$f_y = 350 \text{ MPa}$	$f_y = 235 \text{ MPa}$	
		$f_u = 460 \text{ MPa}$	$f_u = 360-510 \text{ MPa}$	

TABELA 1.1 – Dimensões e propriedades dos perfis de alma senoidal segundo os fabricantes

FIGURA 1.14 - Seção transversal do perfil de alma senoidal [PLAIS (2005)]

1.4 - Processo de fabricação

O processo de fabricação do perfil de alma senoidal é completamente automatizado e permite a produção de várias alturas de vigas a partir de uma mesma bobina. Inicialmente, as chapas das almas são alimentadas por um desbobinador hidráulico (FIG.1.15), sendo em seguida aplanadas e transportadas pelos retificadores, que garantem a centralização das mesmas na linha de produção (FIG.1.16).

FIGURA 1.15 - Desbobinador [PLAIS (2005)]

FIGURA 1.16 - Retificador [PLAIS (2005)]

Após o aplanamento, as chapas são cortadas de acordo com as dimensões especificadas em projeto (FIG.1.17) e encaminhadas ao corrugador para a conformação senoidal, conforme se vê na FIG.1.18.

FIGURA 1.17 - Estação de corte [PLAIS (2005)]

FIGURA 1.18 - Estação de conformação [PLAIS (2005)]

Concluída essa etapa, a chapa da alma é levada à estação de montagem juntamente com as chapas das mesas já preparadas e armazenadas nas laterais da linha de produção (FIG.1.19). Garras hidráulicas conduzem e pressionam as mesas contra as bordas da alma senoidal para o início do processo de soldagem, conforme se vê na FIG.1.20.

FIGURA 1.19 - Estação de montagem [PLAIS (2005)]

FIGURA 1.20 - Estação de soldagem [PLAIS (2005)]

As soldas são executadas automaticamente por dois robôs, um em cada mesa do perfil. Para que se possa garantir a execução das soldas com a qualidade exigida, uma vez que não se tem uma superfície horizontal, o sistema utiliza o processo de soldagem *MAG* de alto desempenho denominado "*T.I.M.E. Process*" da Fronius. O processo de soldagem *MAG* é semi ou totalmente automático, no qual um arco elétrico é aberto entre o eletrodo e a peça protegida por uma cortina de gases. O "*T.I.M.E. Process*" possui as seguintes vantagens:

- assegura alta penetração com constante verificação do perfil da solda;
- minimiza distorções provocadas pelo processo de soldagem;
- permite todas as posições e um menor ângulo de soldagem;
- aumenta consideravelmente a resistência ao teste de "charpy".

A determinação da linha de soldagem entre a alma e as mesas é obtida pela medição a laser e do registro do percurso a ser seguido pelos robôs. Para tanto, eles se movimentam de uma extremidade a outra, em ambos os lados da viga. Com os percursos registrados, os robôs executam a soldagem de ambos os lados simultaneamente em uma velocidade superior a um metro por minuto.

Ao final do processo os robôs retornam às suas posições originais para a realização da autoverificação e da autolimpeza dos bicos de soldagem. As garras hidráulicas liberam a peça, que é transportada à estação de saída, conforme se vê na FIG.1.21.

FIGURA 1.21 - Transportadores [PLAIS (2005)]

1.5 - Ligação entre as mesas e a alma

Nas peças de alma plana, a aplicação de forças localizadas nas mesas pode originar momentos transversais que devem ser transferidos à alma e vice-versa. Para que isso ocorra, esses elementos devem ser ligados por meio de filetes contínuos de solda em ambos os lados da alma, conforme apresentado na FIG.1.22(b). Nesse caso, o momento $M = P\varepsilon$ produzido na ligação entre esses elementos é resistido pelo binário $F\delta_I$. Caso se utilize um único filete de solda, como ilustra a FIG.1.22(a), o momento M deve ser absorvido pela ligação, gerando tensões extremamente elevadas na interface entre os elementos.

No caso de perfis com alma corrugada é possível a ligação da alma às mesas por meio de um único filete contínuo de solda, pois a dimensão das corrugações permite o surgimento do binário $F\delta_2$ pelo qual o momento transversal na alma é transferido às mesas e vice-versa (FIG.1.22(c)). Além disso, as tensões produzidas na ligação são, em geral, inferiores às resultantes nas almas planas, pois o braço de alavanca δ_2 é superior ao braço de alavanca δ_1 .

HAMILTON (1993) realizou 42 testes em 21 vigas nas quais a alma corrugada trapezoidal foi conectada às mesas por meio de um filete contínuo de solda em apenas um dos lados da alma. Em todos os testes o colapso deu-se por flambagem local da alma por força cortante, não tendo havido quaisquer sinais de ruptura nas soldas ou em regiões próximas a essas. A partir desse resultado, a solda contínua em apenas um dos lados tornou-se a ligação padrão entre mesas e alma dos perfis de alma corrugada.

FIGURA 1.22 - Soldas de composição no perfil de alma plana e no perfil de alma corrugada [PLAIS (2005)]

1.6 – Objetivos

1.6.1 - Geral

O objetivo geral deste trabalho é a proposição de procedimentos de cálculo para vigas mistas constituídas por um perfil de aço de alma senoidal sobreposto por laje de concreto maciça ou com fôrma de aço incorporada, nas regiões de momentos fletores positivo e negativo.

1.6.2 - Específicos

Os objetivos específicos são os seguintes:

- na região de momento positivo:
 - determinar o momento fletor resistente nominal e propor um modelo de cálculo para a sua obtenção;
- na região de momento negativo:
 - determinar o momento fletor resistente nominal da ligação mista e avaliar os principais fatores que influenciam seu comportamento;
 - propor um modelo mecânico para a ligação mista;
 - determinar as capacidades de rotação necessária e disponível da ligação mista;
 - determinar a rigidez inicial da ligação mista.

1.7 – Metodologia

Para estudar o comportamento das vigas mistas com perfil de alma senoidal na região de momento fletor positivo foram utilizados resultados de ensaios realizados por MOTAK & MACHACEK (2004) na Universidade Técnica Tcheca em Praga. Os resultados desses ensaios foram reproduzidos por meio de modelos numéricos via MEF, na concepção dos quais procurou-se dar uma atenção especial ao perfil de alma senoidal, que é o novo elemento estrutural utilizado. O comportamento estrutural das lajes mistas, dos conectores de cisalhamento e das barras de armadura já é amplamente conhecido pela comunidade científica e por esse motivo optou-se por simplificar o seu modelamento sem comprometer a qualidade dos resultados obtidos, conforme será visto nos capítulos posteriores. Uma vez calibrados os modelos numéricos com os resultados dos ensaios, fizeram-se estudos paramétricos utilizando os perfis de alma senoidal fabricados atualmente no Brasil. Finalmente, de posse dos resultados das análises paramétricas, determinaram-se procedimentos de cálculo para a obtenção do momento fletor resistente de vigas mistas com perfil de alma senoidal.

Para estudar o comportamento das ligações mistas foram realizados três ensaios no Laboratório de Análise Experimental de Estruturas (LAEES) da Escola de Engenharia da Universidade Federal de Minas Gerais. Com os resultados desses ensaios, calibrou-se um modelo numérico via MEF e, por meio de um estudo paramétrico, determinaram-se procedimentos de cálculo para a obtenção do momento fletor resistente de ligações mistas com perfil de alma senoidal e de suas propriedades fundamentais. Pelo fato de a alma senoidal não colaborar para a capacidade resistente ao momento fletor da viga mista e devido a seu comportamento estrutural observado nos ensaios, determinaram-se também as capacidades de rotação disponível e necessária das ligações mistas.

Devido à falta de trabalhos publicados relacionados a esses assuntos, tomaram-se como ponto de partida os procedimentos de cálculo apresentados na norma brasileira ABNT NBR 8800: 2008 para perfis de alma plana.

1.8 – Contexto do trabalho e justificativa

A norma brasileira ABNT NBR 8800: 2008 não aborda perfis de alma corrugada. Mesmo as normas internacionais não prevêem procedimentos para cálculo e projeto de estruturas com perfil de alma corrugada, em especial a de geometria senoidal, que tratem de todos os fenômenos envolvidos em seu comportamento estrutural. É necessário, portanto, desenvolver recomendações para cálculo e projeto que possam representar de maneira adequada o comportamento de perfis de alma senoidal sob os diversos modos de falha.

O Departamento de Engenharia de Estruturas da Universidade Federal de Minas Gerais, juntamente com a empresa *Codeme Engenharia S.A.*, vem realizando uma série de pesquisas relacionadas ao assunto, que estão resultando em artigos, dissertações de mestrado e teses de doutorado. Essas pesquisas abrangem desde o comportamento do perfil de aço isolado até o comportamento de elementos mistos de aço e concreto para construções prediais. Apresentam-se, a seguir, os temas que foram ou que estão sendo tratados até o presente momento:

- flambagem local de mesa de perfis I com alma senoidal via análise não-linear pelo método dos elementos finitos [SOUZA (2006)];

- flambagem lateral com torção de vigas de aço de alma senoidal [HACKBART JUNIOR (2006)];

- proposição de métodos de cálculo e análise da confiabilidade estrutural de perfis de alma senoidal [PIMENTA (2008)];

- determinação da rigidez rotacional de vigas mistas de alma senoidal no estado-limite de flambagem lateral com distorção [CALENZANI (2008)];

- análise numérico-experimental de flambagem lateral com torção e de ligações em vigas com perfis de alma corrugada senoidal [GONZAGA (2008)];

- análise numérico-experimental da flambagem local de mesas de perfis com alma senoidal [PINTO (2008)].

Vigas e lajes mistas de aço e concreto são consideradas o sistema estrutural mais eficiente para suportar as ações gravitacionais das edificações, devido principalmente à facilidade de construção e à redução de peso, que pode chegar, em sistemas bem dimensionados, a 40%. As vigas mistas com perfil de alma senoidal podem trazer reduções ainda mais significativas no

consumo de aço da estrutura, o que tornaria as construções prediais em aço mais competitivas em relação às construções prediais em concreto pré-moldado ou moldado *in loco*.

Neste trabalho, a região de momento fletor positivo será estudada a partir de vigas mistas biapoiadas e, na região de momento fletor negativo, será estudado o comportamento da ligação mista, uma vez que outros modos de colapso existentes nessa região, como a flambagem lateral com distorção e a flambagem local da mesa, foram tratados em outros trabalhos.

Conforme será visto nos capítulos posteriores, o comportamento das vigas mistas de aço e concreto com perfil de alma senoidal foi pouco estudado, o que confere ao presente trabalho uma grande relevância e principalmente inovação, no que tange ao estudo do comportamento da ligação mista com perfil de alma senoidal.

1.9 – Escopo deste trabalho

Este trabalho é composto de oito capítulos e quatro anexos. No Capítulo 2 é apresentado o estado da arte, em que se apresentam as publicações realizadas até o presente momento relacionadas ao assunto em questão e, no anexo D, o e-mail com as informações do prof. *Josef Machacek* referentes à curva força *versus* deslizamento do conector *Stripcon*, obtida por meio de ensaios *push test*.

No Capítulo 3 é apresentada a análise experimental da ligação mista com perfil de alma senoidal, onde são descritos os modelos ensaiados, os procedimentos utilizados durante a realização dos ensaios e os resultados obtidos. Encontram-se no anexo A os laudos técnicos dos ensaios mecânicos dos corpos de prova retirados dos protótipos e, no anexo B, o procedimento utilizado para a obtenção da curva momento *versus* rotação da ligação mista.

No Capítulo 4 é apresentada a análise numérica via método dos elementos finitos, procurando reproduzir o comportamento dos protótipos de ligação mista e dos protótipos de vigas mistas biapoiadas ensaiados. São descritos os tipos de elementos utilizados no modelo de elementos finitos, as condições de contorno utilizadas, a lei constitutiva dos materiais, os recursos

utilizados no processamento da análise não-linear e os resultados da análise numérica são comparados com os resultados da análise experimental.

Uma vez calibrado o modelo numérico com os resultados dos ensaios, é apresentado no Capítulo 5 um estudo paramétrico das vigas mistas biapoiadas e da ligação mista com perfil de alma senoidal procurando abranger as situações em que esses materiais serão mais utilizados na prática.

Com os resultados do estudo paramétrico, são propostos no Capítulo 6 métodos de cálculo e projeto de vigas mistas biapoiadas e ligação mista com perfil de alma senoidal. Têm-se, no anexo C, o momento de inércia e o momento fletor resistente de várias configurações de vigas mistas com perfil de alma senoidal que foram utilizados para a determinação de parâmetros empregados no cálculo da capacidade de rotação necessária da ligação mista.

No Capítulo 7 são apresentadas as conclusões e sugestões para trabalhos futuros e, finalmente, no Capítulo 8 são indicadas as referências bibliográficas utilizadas no decorrer deste trabalho.

2

ESTADO DA ARTE

2.1 – Considerações iniciais

Para utilização de perfis de aço de alma senoidal em construções prediais é necessário conhecer o seu comportamento estrutural antes e depois do endurecimento do concreto da laje. Como esses perfis vêm sendo empregados na construção de galpões, as pesquisas realizadas até o momento tratam principalmente do comportamento do perfil de aço isolado, especialmente da determinação da capacidade resistente da alma ao cisalhamento, flambagem lateral com torção, efeito de cargas concentradas, flambagem local da mesa e fadiga. Já o comportamento da estrutura mista foi pouco estudado, sendo encontrados somente dois artigos sobre vigas mistas biapoiadas e uma tese de doutorado sobre a flambagem lateral com distorção, acompanhada de algumas publicações relacionadas à mesma.

Uma vez que a flambagem local da mesa comprimida e a flambagem lateral com distorção foram tratados em outros trabalhos, estudar-se-á a ligação mista com perfil de alma senoidal na região de momento fletor negativo. Como não foram encontradas referências sobre esse assunto, apresentar-se-á neste capítulo um resumo sobre o comportamento das ligações mistas com perfis de alma plana, abordando os principais conceitos que serão utilizados ao longo deste trabalho. Serão apresentados também os recentes estudos sobre o comportamento da ligação metálica com chapa de topo em perfis de alma senoidal e os índices de confiabilidade

ESTADO DA ARTE

estrutural do estado-limite último de plastificação da viga mista. Comentar-se-ão também os estudos já realizados e em curso do estado-limite último de flambagem local da mesa comprimida e flambagem lateral com distorção, que são possíveis modos de colapso de vigas contínuas e semicontínuas na região de momento fletor negativo.

2.2 – Vigas mistas biapoiadas com perfil de alma senoidal

MOTAK & MACHACEK (2004) realizaram dois ensaios em escala real de vigas mistas biapoiadas com perfil de alma senoidal fabricados pela empresa $Zeman+Co\ GmbH\ (Wien)$, empresa fabricante da máquina para fabricação de perfis de alma senoidal para a *Codeme Engenharia S.A.* no Brasil. Foi utilizado o perfil 520x200x10,0x3,0 para o protótipo 1 e 520x200x10,0x2,5 para o protótipo 2. A laje de concreto com fôrma de aço incorporada possuía uma largura de 1500 mm e uma altura total de 120 mm, sendo a altura da fôrma de aço igual a 60 mm (*Vikam TR60/235-0,75*). A TAB.2.1 apresenta os valores médios das propriedades mecânicas dos materiais utilizados e as FIG. 2.1 e FIG.2.2 apresentam um esquema e uma vista dos protótipos ensaiados, respectivamente.

	Concreto		Perfil Metálico	
	$f_{c,cube}$	E_c	$f_{y,f}/f_{y,w}$	$E_{af}/E_{a,w}$
	[MPa]	[GPa]	[MPa]	[GPa]
Protótipo 1	25,6	31,2	296,2 / 314,5	210 / 208,3
Protótipo 2	25,4	23,0	296,2 / 314,5	210 / 208,3

TABELA 2.1 – Propriedades mecânicas dos materiais [MOTAK & MACHACEK (2004)]

FIGURA 2.1 – Esquema dos protótipos ensaiados [MOTAK & MACHACEK (2004)]

FIGURA 2.2 – Vista de um ensaio [MOTAK & MACHACEK (2004)]

Para a transmissão de esforço entre a laje mista e o perfil metálico foram utilizados conectores chamados de *Stripcon* ou *Ribcon* fabricados pela HILTI CORPORATION (FIG.2.3), adequados para vigas secundárias onde a fôrma de aço está posicionada perpendicularmente ao eixo longitudinal destas. O conector é constituído por uma tira de chapa conformada a frio, cuja resistência ao escoamento pode variar entre 300 e 400 MPa, com largura de 80 mm e forma trapezoidal possuindo um comprimento de onda equivalente à fôrma de aço da laje, porém com uma altura maior. Aberturas são feitas na chapa para permitir que o concreto da laje a atravesse, aumentando com isso a transmissão de esforços entre os materiais. Quatro fixadores, com resistência nominal ao cisalhamento de 18,4 kN, são posicionados nas ondas baixas do conector para proporcionar a sua ligação com o perfil metálico. A determinação da interação completa ou parcial da viga mista se dá por meio do número de fixadores utilizados. O protótipo 1 foi dimensionado para interação completa (117%) enquanto o protótipo 2 para interação parcial de 44%.

FIGURA 2.3 – Conector Stripcon ou Ribcon [MOTAK & MACHACEK (2004)]
A TAB.2.2 apresenta uma comparação entre os resultados obtidos por meio dos ensaios e os resultados teóricos calculados da seguinte maneira: utilizaram-se os procedimentos estabelecidos pelo EN 1994-1-1: 2004 para o cálculo do momento fletor resistente da viga mista, desprezando-se porém a contribuição da alma senoidal; para o cálculo da força cortante resistente nominal utilizou-se a seguinte equação desenvolvida por PASTERNAK & BRANKA (1998), válida para essa geometria de corrugação:

$$V_{Rk} = k_{\tau} \frac{f_{yw}}{\sqrt{3}} h t_{w}$$
(2.1)

onde k_{τ} é o coeficiente de flambagem, considerado para essas vigas igual a 1,0, f_{yw} é a resistência ao escoamento do aço da alma e *h* e t_w são a altura e a espessura da alma, respectivamente.

Para a determinação da flecha máxima da viga, utilizou-se análise elástica considerando a deformação por cisalhamento, importante em decorrência do comportamento da alma senoidal. O módulo de elasticidade transversal do aço da alma foi determinado conforme JOHNSON & CAFFOLA (1997):

$$G_{eq} = G \frac{w}{s}$$
(2.2)

onde G é o módulo de elasticidade transversal do aço, w é o comprimento em projeção da onda senoidal, igual a 155 mm, e s é o desenvolvimento de um comprimento de onda, igual a 179,6 mm.

TEÓRICO **ENSAIO** N/N_f $F_{pl,R}$ F_R $F_{el,R}$ δ_R F_{el} δ F_{max} δ_{max} (grau de interação) [kN] [kN] [kN] [mm] [kN] [mm] [kN] [mm] Protótipo1 189,6 158,6 139,5 18,5 190,3 173,5 1,17 20,2 ---Protótipo2 0,44 160,9 157,2 26,6 149,8 36-41,8 154,0 100,3 --- $F_{pl,R}$ é a força necessária para atingir o momento fletor plástico resistente da seção, F_R é a força necessária para atingir a força cortante resistente da ligação entre a laje e o perfil metálico, F_{el,R} e F_{el} são as forças teórica e experimental, respectivamente, necessárias para se atingir a resistência ao escoamento da fibra inferior da viga metálica, F_{max} é a força máxima aplicada no ensaio, δ_{max} é o deslocamento máximo obtido no ensaio, $\delta_R \in \delta$ são os deslocamentos teórico e experimental, respectivamente, no meio do vão da viga mista no momento do escoamento da fibra inferior do perfil.

TABELA	2.2	—	Resultados	teóricos	e	experimentais	dos	ensaios	[Motak	&
MACHACE	к (200	04)]]							

O ensaio do protótipo 1 foi interrompido após se atingir o momento fletor resistente nominal da viga mista, enquanto o ensaio do protótipo 2 foi interrompido por causa do deslocamento vertical excessivo da viga devida à ligação parcial entre a laje e o perfil metálico atingir valores muito próximos da capacidade resistente ao cisalhamento. Em nenhum dos protótipos ocorreu a flambagem da alma por força cortante, pois a força cortante resistente nominal é bem superior à força cortante total decorrente dos ensaios. As FIG. 2.4 e FIG.2.5 apresentam os gráficos correspondentes à relação entre a força total aplicada e a flecha no meio da vão e o deslizamento entre a laje e o perfil metálico, para os protótipos 1 e 2 respectivamente.

FIGURA 2.4 – Relação entre a força aplicada e a flecha no meio do vão (esquerda) e o deslizamento entre a laje e o perfil (direita) para o protótipo 1 [MOTAK & MACHACEK (2004)]

FIGURA 2.5 – Relação entre a força aplicada e a flecha no meio do vão (esquerda) e o deslizamento entre a laje e o perfil (direita) para o protótipo 2
[MOTAK & MACHACEK (2004)]

MOTAK & MACHACEK (2004) constataram que:

- o protótipo 1 apresentou uma boa correlação entre a força teórica de colapso e a força aplicada. Entretanto, a força correspondente ao início do escoamento (139,5 kN) foi inferior à força teórica (158,6 kN); após esse valor observou-se um comportamento não-linear da viga mista;
- o protótipo 2 atingiu cerca de 95% da força de colapso prevista e, como era esperado, a força cortante solicitante nos conectores foi a responsável pelo colapso da viga;
- ao se aproximar da força cortante resistente dos conectores do protótipo 2, ocorreu um grande deslizamento entre a laje e o perfil (com a ruptura de um dos conectores de cisalhamento) acompanhado de um grande deslocamento vertical da viga;
- os grandes deslocamentos obtidos nos ensaios se devem à grande flexibilidade dos conectores *Stripcon*.

MACHACEK & MOTAK (2006) realizaram um terceiro ensaio com o objetivo de observar a interação entre a flambagem local da alma do perfil e a interação parcial de 66% da viga mista. Para se atingir esse objetivo, o vão da viga mista e a largura da laje foram reduzidos para 4500 mm e 1200 mm, respectivamente, sendo que o perfil metálico adotado foi o mesmo do protótipo 2 (520x200x10x2,5). A TAB.2.3 apresenta as propriedades mecânicas dos materiais utilizados.

	Conc	creto	Perfil Metálico			
	$f_{c,cube}^{(1)}$ E_{c}		$f_{y,f}/f_{y,w}$	$E_{af}/E_{a,w}$		
	[MPa]	[GPa]	[MPa]	[GPa]		
Protótipo 3	24,6	28,0	296,2 / 310,3	210 / 208,3		
⁽¹⁾ valor obtido por meio do ensaio do corpo de prova cúbico do concreto						

TABELA 2.3 – Propriedades mecânicas dos materiais [MACHACEK & MOTAK (2006)]

O ensaio do protótipo 3 foi encerrado devido à flambagem da alma senoidal e a flecha excessiva da viga no meio do vão, com uma força total aplicada de 495,7 kN. O deslocamento vertical do protótipo mais uma vez segue o comportamento elástico até 89% da máxima força teórica calculada, atingindo o triplo do deslocamento calculado no final do ensaio. A TAB.2.4 apresenta uma comparação entre os resultados obtidos por meio dos ensaios e os resultados teóricos, enquanto as FIG.2.6 e FIG.2.7 apresentam os gráficos da relação entre a força

aplicada e a flecha no meio do vão e a relação entre a força aplicada e o deslizamento entre a laje de concreto e o perfil metálico, respectivamente. MACHACEK & MOTAK (2006) fizeram ainda uma análise numérica via MEF dos três ensaios realizados, tendo encontrado uma boa correlação entre os resultados experimentais e numéricos. Porém devido às simplificações adotados em seu modelo numérico não conseguiram captar a flambagem local da alma senoidal por força cortante ocorrida no ensaio do protótipo 3.

TABELA 2.4 – Comparação entre os resultados teóricos e experimentais [MACHACEK & MOTAK (2006)]

	N/N_f	TEÓRICO			ENSAIO				
	(grau de	$F_{pl,R}$	F_R	$F_{el,R}$	δ_R	F_{el}	δ	F_{max}	δ_{max}
	interação)	[kN]	[kN]	[kN]	[mm]	[kN]	[mm]	[kN]	[mm]
Protótipo3	0,66		456,8	473,4	12,3	419,7	12,1	495,7	109,0

FIGURA 2.6 – Relação entre a força aplicada e o deslocamento no meio do vão da viga do protótipo 3 [MACHACEK & MOTAK (2006)]

FIGURA 2.7 – Relação entre a força aplicada e o deslizamento entre a laje de concreto e o perfil metálico [MACHACEK & MOTAK (2006)]

2.3 – Aspectos gerais das ligações mistas com perfil de alma plana

De acordo com a norma brasileira ABNT NBR 8800: 2008, uma ligação é denominada mista quando a laje de concreto participa da transmissão de momento fletor de uma viga mista para um pilar ou para outra viga mista no vão adjacente. As ligações mistas são usadas em vigas mistas contínuas e semicontínuas. Nas vigas mistas contínuas, a ligação deve assegurar continuidade total do componente metálico e da laje de concreto nos apoios. Nas vigas mistas semicontínuas, a ligação mista é obtida a partir de uma ligação metálica flexível ou semi-rígida, aumentando substancialmente sua rigidez e sua capacidade resistente a momento fletor.

A utilização das vigas semicontínuas apresenta algumas vantagens em relação às vigas biapoiadas, como a redução da altura e do peso das vigas, a diminuição das flechas das vigas e de problemas de vibração. Esses fatores melhoram a competitividade da estrutura de aço em relação a outros materiais, como o concreto armado, além de causar menores interferências com projetos de ar condicionado, tubulações hidráulicas, etc.

As ligações mistas de vigas mistas semicontínuas podem participar ou não do sistema de estabilidade lateral da edificação [MATA (2003)], porém o presente trabalho tratará apenas dos sistemas indeslocáveis onde não há transmissão de momento fletor para o pilar (momentos auto-equilibrados em duas vigas adjacentes ao suporte), que representa a situação mais comum na prática.

A ligação mista, de maneira geral, é uma ligação de resistência parcial, pois apesar de ter uma grande rigidez inicial, não tem a mesma resistência à flexão da viga mista suportada por ela. Segundo QUEIROZ [QUEIROZ *et al.* (2001)], a resistência da ligação mista é da ordem de *30* a *50%* da resistência da viga mista na região de momento positivo e de *60* a *90%* da resistência da viga mista a momento negativo. A ligação mista deve, portanto, ter capacidade de rotação suficiente para não sofrer colapso antes que a viga atinja um estado-limite último, que pode ser a formação de rótulas plásticas nas ligações mistas e o desenvolvimento de momento próximo ao de plastificação total no vão da viga mista.

De acordo com a ABNT NBR 8800: 2008, as vigas mistas de aço e concreto de alma cheia contínuas e semicontínuas devem possuir ligação mista e ter, no caso de análise rígidoplástica, a relação entre duas vezes a altura da parte comprimida da alma menos duas vezes o raio de concordância entre a mesa e a alma nos perfis laminados e a espessura desse elemento inferior ou igual a $3,76\sqrt{\frac{E}{f_v}}$, com a posição da linha neutra plástica determinada para a seção

mista sujeita a momento negativo, e relação entre a metade da largura da mesa inferior e a espessura desse elemento inferior ou igual a $0.38\sqrt{\frac{E}{f_y}}$, onde *E* é o módulo de elasticidade e f_y

a resistência ao escoamento do aço.

As FIG.2.8 a FIG.2.10 apresentam alguns tipos de ligações mistas utilizadas usualmente nas construções prediais. A ligação mista com a cantoneira na alma da viga (FIG.2.8) é muito utilizada nos Estados Unidos e no Brasil, enquanto a ligação com chapa de topo (FIG.2.10) é mais utilizada nos países europeus.

FIGURA 2.8 – Ligações mistas com cantoneiras parafusadas na alma e na mesa inferior da viga [MATA (2003)]

FIGURA 2.9 – Ligações mistas com cantoneira de assento parafusada na mesa inferior da viga [MATA (2003)]

FIGURA 2.10 – Ligações mistas com chapa de topo ("flush endplate") [MATA (2003)]

A utilização de cantoneiras laminadas na alma da viga torna-se, por questões construtivas, inviável para o perfil de alma senoidal, restringindo-se estas vigas portanto aos tipos de ligação indicados nas FIG.2.9 e FIG 2.10. A utilização da chapa de topo na extremidade da viga é interessante, uma vez que a resistência da ligação metálica pode ser levada em consideração também na fase de construção, antes do endurecimento do concreto.

As características da relação momento-rotação de uma ligação mista podem ser determinadas pelo método dos componentes, adotado pelo EN 1993-1-8: 2005, que consiste em dividir a ligação em seus componentes básicos (armaduras, conectores de cisalhamento e ligação metálica) e atribuir-lhes uma mola translacional ou rotacional conforme sua resposta à solicitação (tração, compressão, flexão e cisalhamento). As propriedades estruturais de cada um dos componentes (como a resistência última, a rigidez inicial e a capacidade de deformação) são determinadas por meio de curvas força-deslocamento derivadas de modelos mecânicos de diferentes níveis de sofisticação, validados por resultados de ensaios e simulações numéricas. As propriedades dos componentes são combinadas para a determinação das características da ligação como um todo, por meio de associação em série ou paralelo, das molas representativas de cada componente ou grupo de componentes, levando-se em conta o equilíbrio e a compatibilidade de deslocamentos.

2.4 – Comportamento dos componentes básicos das ligações mistas

Conforme comentado anteriormente, a ligação mista pode ser dividida em seus componentes básicos, que são: as barras de armadura tracionada, os conectores de cisalhamento e a ligação metálica. Neste trabalho, será considerada apenas a ligação metálica com chapa de topo, uma vez que essa ligação tem uma série de vantagens sobre a ligação com cantoneira de assento, como resistência à flexão, uma maior resistência à força cortante e uma maior estabilidade durante a montagem da estrutura. No caso da armadura, apenas as barras situadas na largura efetiva da laje de concreto na região de momento negativo participam da ligação mista.

2.4.1 – Largura efetiva da laje na região de momento fletor negativo

Conforme a ABNT NBR 8800: 2008, a largura efetiva da mesa de concreto pode ser adotada, simplificadamente, igual a ¹/₄ da soma dos vãos adjacentes das vigas que participam da ligação. Além de respeitar a largura efetiva, quando o suporte for um pilar, as barras de armadura longitudinal devem estar situadas de cada lado da linha de centro de pilar a uma distância máxima de $2,5b_c$ dessa linha, sendo b_c a largura do pilar na direção transversal às vigas. Adicionalmente, deve-se prever uma armadura transversal ao eixo das vigas, situada de cada lado do pilar, também a uma distância máxima de $2,5b_c$, com área mínima de 50% da área da armadura longitudinal.

2.4.2 – Barras de armadura tracionadas

A ABNT NBR 8800: 2008 estabelece que o diâmetro mínimo para as barras de armadura que compõem a ligação mista é 12,5 mm, enquanto COUCHMAN & WAY (1998) estabelecem um diâmetro mínimo de 16,0 mm. A utilização desses diâmetros tem objetivo de assegurar a ductilidade da armadura, que favorece o comportamento da ligação mista.

2.4.2.1 – Rigidez inicial

A rigidez inicial das barras de armadura, conforme ABNT NBR 8800: 2008, é dada por:

$$k_s = \frac{A_{s\ell}E_s}{\frac{h_a}{2}}$$
(2.3)

onde $A_{s\ell}$ e a área da seção transversal da armadura longitudinal dentro da largura efetiva da mesa de concreto, h_a é a largura do elemento de apoio, paralelamente à armadura, e E_s é o módulo de elasticidade do aço da armadura.

2.4.2.2 – Força de tração resistente nominal

A força de tração resistente nominal das barras de armadura, conforme a ABNT NBR 8800: 2008, é dada por:

$$F_{sRk} = f_{ys} A_{s\ell} \tag{2.4}$$

onde f_{ys} é a resistência ao escoamento do aço da armadura.

2.4.2.3 - Capacidade de deformação

Ao se avaliar a capacidade de deformação das barras de armadura, deve-se considerar a influência do concreto que as envolve, pois conforme se vê na FIG. 2.11 há uma alteração no comportamento da barra tracionada, caracterizado por um aumento da sua rigidez. Essa alteração do comportamento da barra de armadura envolvida pelo concreto é conhecida como *"tension stiffening"*.

FIGURA 2.11 – Diagrama do comportamento idealizado da armadura tracionada envolvida pelo concreto [MATA (2003)]

Ao se submeter uma barra a uma força de tração, mobiliza-se por aderência o concreto que a envolve; como a tensão no concreto ainda é inferior à sua resistência à tração, tem-se o comportamento de uma seção não-fissurada onde as deformações e as tensões podem ser calculadas pela teoria elástica linear (trecho A da FIG. 2.11). Atingindo-se a resistência à tração do concreto, tem-se o surgimento das primeiras fissuras, o que conduz a uma deformação $\Delta \varepsilon_{sr}$ na barra sob tensão constante (trecho B da FIG. 2.11). O valor de $\Delta \varepsilon_{sr}$ é influenciado pela dispersão da resistência à tração do concreto, pela taxa de armadura e pelo comportamento de aderência entre a armadura e o concreto. Na seção da fissura, ocorre a perda de aderência entre os materiais e, com isso, têm-se diferentes deformações entre a barra de armadura e o concreto; essa diferença vai diminuindo ao longo do comprimento de introdução (L_t) com a retomada da aderência entre os materiais, conforme se vê na FIG.2.12. Com o término do surgimento das fissuras, inicia-se um novo estágio (trecho C da FIG. 2.11) com o aumento na abertura das fissuras e o crescimento da tensão na barra em regime elástico, onde a curva σ - ε da barra envolvida pelo concreto é paralela à curva da barra isolada. Novas fissuras podem ocorrer somente se a capacidade de aderência for suficiente para introduzir forças no concreto que alcancem a resistência à tração do concreto entre as fissuras. A partir do escoamento do aço da barra (trecho D da FIG. 2.11), o comportamento do

conjunto barra-concreto é influenciado pelo alongamento da barra de armadura, pela razão entre a resistência à tração do concreto e a resistência ao escoamento da barra e pela falta de aderência entre os materiais na seção das fissuras. Apesar da perda de aderência, a contribuição do concreto é representativa porque a rigidez da barra de armadura é praticamente nula.

FIGURA 2.12 – Distribuição da deformação na armadura e no concreto fissurado [BODE *et al.* (1997)]

A capacidade de deformação das barras de armadura, que devem ser de aço CA 50, conforme a ABNT NBR 8800: 2008, é dada por:

$$\Delta_{us} = L\varepsilon_{smu} \tag{2.5}$$

onde *L* é o comprimento de referência para levar em conta o efeito do concreto que envolve a armadura, podendo ser tomado igual a 200 mm, sendo que as distâncias do primeiro conector até à face e até ao centro do elemento de apoio não podem ser inferiores a 100 mm e 200 mm, respectivamente, e ε_{smu} é a deformação da armadura envolvida pelo concreto, correspondente ao limite de resistência, igual a:

$$\varepsilon_{smu} = \varepsilon_{sy} - \beta_t \Delta \varepsilon_{sr} + \delta_o \left(1 - \frac{\sigma_{sr\ell}}{f_{ys}} \right) \left(\varepsilon_{su} - \varepsilon_{sy} \right)$$
(2.6)

Nessa última expressão:

 ε_{sy} e ε_{su} são as deformações correspondentes à resistência ao escoamento e à resistência à ruptura da armadura isolada, respectivamente;

 $\beta_t = 0,4$ para cargas de curta duração; este coeficiente considera o aparecimento e o aumento da abertura das fissuras, reduzindo o efeito do "*tension stiffening*";

 $\delta_o = 0.8$ para barras de alta dutilidade;

$$\Delta \varepsilon_{sr} = \frac{f_{ctm}k_c}{\delta_s E_s} \tag{2.7}$$

$$\sigma_{sr\ell} = \frac{f_{ctm}k_c}{\delta_s} \left(1 + \frac{\delta_s E_s}{E_c} \right)$$
(2.8)

 f_{ctm} é a resistência média do concreto à tração, dada por:

$$f_{ctm} = 0.3\sqrt[3]{f_{ck}^{2}} \left[0.3 + 0.7 \left(\frac{\rho_{c}}{2400} \right) \right]$$
(2.9)

 ρ_c a massa específica do concreto, em quilograma por metro cúbico, não devendo ser tomada maior que 2400 kg/m³;

 E_c é o módulo de elasticidade secante do concreto;

 δ_s é a taxa de armadura, igual a relação $A_{s\ell}/A_c$;

 A_c é a área da mesa de concreto, descontando-se a área da armadura longitudinal;

 k_c é um coeficiente que leva em conta o equilíbrio e a distribuição das tensões na laje de concreto imediatamente antes da ocorrência das fissuras. Esse coeficiente pode, de forma conservadora, ser tomado como 1,0 ou ser obtido de forma mais precisa usando-se a seguinte expressão:

$$k_c = \frac{1}{1 + \frac{t_c}{2y_o}} + 0.3 \le 1.0$$
(2.10)

 t_c é a altura da laje de concreto (no caso de laje com fôrma de aço incorporada, considerar a altura acima do topo da fôrma e, no caso de laje com pré-laje de concreto pré-moldada, a altura acima da pré-laje);

 y_o é a distância entre os centros geométricos da laje de concreto e da seção mista homogeneizada na região de momento negativo, porém considerando o concreto nãofissurado, sem armadura, e sem levar em conta os efeitos de longa duração, conforme se vê na FIG.2.14.

(a) Viga mista com fôrma de aço incorporada à laje (b) Viga mista com laje maciça FIGURA 2.14 – Definição dos termos para cálculo de k_c [MATA (2003)]

2.4.3 – Conectores de cisalhamento

2.4.3.1 – Rigidez inicial

A rigidez inicial proporcionada pelos conectores de cisalhamento na região de momento negativo, conforme a ABNT NBR 8800: 2008, é dada por:

$$k_{cs} = \frac{nk_r}{\alpha} \tag{2.11}$$

onde *n* é o número de conectores na região de momento negativo (entre a seção de momento máximo negativo e a de momento nulo), k_r é igual a 120 kN/mm para conectores com diâmetro de 22 mm, em lajes maciças, e igual a 100 kN/mm para conectores com diâmetro de 19 mm, em lajes maciças ou em lajes com fôrma de aço incorporada para os quais o produto $R_g R_p$ (calculado conforme anexo O da ABNT NBR 8800: 2008), é igual ou superior a 0,75;

$$\alpha = \nu - \frac{(\nu - 1)(d + y)}{d_s(\xi + 1)}$$
(2.12)

$$\xi = \frac{I_a}{d_s^2 A_{s\ell}}$$
(2.13)

$$\nu = \sqrt{\frac{(\xi + 1)nk_r L_l d_s^2}{E_a I_a}}$$
(2.14)

onde d é a altura do perfil metálico, y é a distância entre a barra de armadura e o perfil metálico, E_a é o módulo de elasticidade do aço, L_l é o comprimento da viga adjacente ao nó, na região de momento negativo, podendo ser tomado com 15% do comprimento do vão; d_s é a distância do centro geométrico do perfil metálico ao centro geométrico da armadura e I_a é o momento de inércia da seção transversal do perfil de aço.

2.4.3.2 – Força resistente nominal

Conforme a ABNT NBR 8800: 2008, a força resistente nominal dos conectores de cisalhamento na região de momento fletor negativo deve ser igual ou superior à da armadura, logo:

$$F_{cRk} = \sum Q_{Rk} \ge F_{sk}^{(B)} = A_{s\ell} f_{ys}$$
(2.15)

onde $\sum Q_{Rk}$ é o somatório das forças resistentes nominais de todos os conectores.

2.4.3.3 - Capacidade de deformação

A FIG.2.15 apresenta a curva momento *versus* rotação para uma ligação mista, considerandose um comportamento trilinear dos conectores representados pelos segmentos de reta OA, AB e BD.

FIGURA 2.15 – Curva aproximada dos conectores de cisalhamento para uma ligação mista [MATA (2003)]

Na FIG. 2.15, o ponto A corresponde ao início do escoamento do conector de cisalhamento mais solicitado, sendo que o trecho elástico da origem até este ponto é considerado válido até um valor máximo da força no conector mais solicitado, igual a $0,7Q_{Rk}$. Assim o escorregamento no ponto A entre a extremidade da laje e a extremidade da viga é dado por:

$$s^{(A)} = \frac{0.7Q_{Rk}}{k_r}$$
(2.16)

Logo, a capacidade de deformação dos conectores de cisalhamento na região de momento fletor negativo, devido ao seu comportamento elastoplástico entre os pontos $A \in B$ da FIG.2.15 pode ser considerado igual a:

$$s^{(B)} = 2s^{(A)} \frac{F_s^{(B)}}{F_s^{(A)}}$$
(2.17)

$$F_s^{(A)} = k_{cs} s^{(A)}$$
(2.18)

$$F_{s}^{(B)} = A_{s\ell} f_{ys}$$
(2.19)

2.4.4 – Chapa de topo

2.4.4.1 – Rigidez inicial da ligação da mesa inferior

Segundo a ABNT NBR 8800: 2008, a rigidez inicial da ligação da mesa inferior com solda de penetração total, ou com filete duplo de resistência de cálculo pelo menos 20% superior à da mesa ao escoamento, é infinita:

$$k_i = \infty \tag{2.20}$$

Logo, considera-se que a capacidade de deformação da ligação nessa região é nula:

$$\Delta_{ui} = 0 \tag{2.21}$$

Caso a ligação seja feita com a mesa de um pilar metálico, a ABNT NBR8800: 2008 considera que há um par de enrijecedores na alma do pilar próxima à mesa comprimida da viga, para que a rigidez da ligação da mesa inferior possa ser considerada como infinitamente rígida.

2.4.4.2 - Rigidez rotacional para as ligações com perfis de alma plana

A ABNT NBR 8800: 2008 não apresenta procedimentos para a determinação da rigidez e da resistência para ligações com chapa de topo, portanto serão comentados a seguir os procedimentos estabelecidos pelo EN 1993-1-8: 2005.

De acordo com o EN 1993-1-8: 2005, a rigidez rotacional de uma ligação com chapa de topo sujeita à flexão é dada por:

$$S_j = \frac{E_a z^2}{\mu \sum \frac{1}{k_i}}$$
(2.22)

onde z é a distância entre os centros geométricos da área comprimida e do parafuso e μ é a taxa de rigidez que pode ser determinada da seguinte maneira:

• se
$$M_{Sd} \leq 2/3 M_{Rd}$$

$$\mu = 1$$
 (2.23a)

• se
$$2/3 M_{Rd} < M_{Sd} \leq M_{Rd}$$

$$\mu = \left(\frac{1.5M_{Sd}}{M_{Rd}}\right)^{\psi}$$
(2.23b)

o coeficinte ψ é igual a 2,7 para a ligação de extremidade com chapa de topo parafusada e k_i é o coeficiente de rigidez dos componentes básicos da ligação. Para a situação onde a chapa de topo encontra-se ligada à alma de uma viga ou pilar (FIG. 2.3(b)), os componentes da ligação são a chapa de topo e os parafusos tracionados; para a situação onde a chapa de topo encontra-se ligada à mesa de uma coluna devem ser considerados, além dos componentes citados anteriormente, a mesa e a alma da coluna na região tracionada da ligação.

Maiores informações sobre a determinação do coeficiente de rigidez dos componentes básicos da ligação com chapa de topo para perfis de alma plana podem ser encontradas em EN 1993-1-8: 2005.

2.4.4.3 – Força resistente nominal à tração da linha de parafusos na ligação de chapa de topo com perfis de alma plana

De acordo com o EN 1993-1-8: 2005 a força resistente nominal à tração de uma linha de parafusos é a menor resistência obtida entre três modos possíveis de falha da ligação:

- modo 1 escoamento da chapa (FIG.2.16);
- modo 2 ruptura do parafuso com escoamento da chapa (FIG.2.17);
- modo 3 ruptura do parafuso (FIG.2.18).

FIGURA 2.16 - Modo 1: escoamento da chapa [COUCHMAN & WAY (1998)]

FIGURA 2.17 – Modo 2: ruptura do parafuso com escoamento da chapa

FIGURA 2.18 – Modo 3: ruptura do parafuso [COUCHMAN & WAY (1998)]

Quando a resistência da linha de parafusos é dada pelo modo 1 tem-se sempre um comportamento dúctil da ligação, enquanto o modo 3 apresenta sempre um comportamento frágil; para o modo 2 a ductilidade da ligação deve ser comprovada por meio de ensaios. Caso se queira desconsiderar a influência da ligação com chapa de topo no comportamento da ligação semi-rígida, é necessário que o modo 1 prevaleça sobre os demais modos na determinação da resistência da linha de parafusos; esta condição visa garantir a ductilidade da ligação. A força de tração resistente nominal de uma linha de parafusos pode ser determinada por meio das seguintes equações:

modo 1

$$F_{T,1,Rk} = \frac{4M_{pl,1,Rk}}{m}$$
(2.24a)

$$M_{pl,l,Rk} = 0.25 \sum \ell_{eff,l} t_{ch}^2 f_y$$
(2.24b)

• modo 2

$$F_{T,2,Rk} = \frac{2M_{pl,2,Rk} + n\sum_{t,Rk}}{m+n}$$
(2.25a)

$$M_{pl,2,Rk} = 0.25 \sum \ell_{eff,2} t_{ch}^2 f_y$$
(2.25b)

• modo 3

$$F_{T,3,Rk} = \sum F_{t,Rk}$$
(2.26)

onde $\Sigma \ell_{eff,1}$ e $\Sigma \ell_{eff,2}$ são os somatórios dos comprimentos efetivos das linhas de escoamento da chapa para os modos 1 e 2, respectivamente, conforme item 6.2.6 do EN 1993-1-8: 2005, t_{ch} é a espessura da chapa, f_y é a resistência ao escoamento do aço da chapa, m e n são as distâncias indicadas na FIG.2.17, sendo $n \le 1,25m$ e $\Sigma F_{t,Rk}$ é o somatório da resistência nominal à tração dos parafusos de uma linha.

É importante salientar que no caso dos parafusos estarem sujeitos à ação de força cortante, deve-se avaliar uma possível redução da resistência nominal à tração dos mesmos.

As Eqs.2.24 a 2.26 são apropriadas quando as deformações na região tracionada da ligação são suficientes para que ocorra a plastificação da chapa nas regiões adjacentes aos parafusos. De acordo com COUCHMAN & WAY (1998), para que se atinjam níveis de deformação satisfatórios na linha de parafusos, esta deve estar posicionada no mínimo 200 mm acima da linha neutra plástica da ligação; as linhas de parafusos localizadas a uma distância inferior a 200 mm devem ter sua força resistente minorada segundo uma distribuição triangular de esforços, conforme se vê na FIG.2.19. O limite de 200 mm foi determinado por meio dos resultados de ensaios experimentais.

FIGURA 2.19 – Distribuição triangular de força nos parafusos [COUCHMAN & WAY (1998)]

2.4.4.4 – Rigidez rotacional e força resistente da linha de parafusos para as ligações de chapa de topo com perfis de alma senoidal

GONZAGA (2008) realizou dois ensaios no Laboratório de Análise Experimental de Estruturas (LAEES), da Escola de Engenharia da UFMG, com o objetivo de estudar o comportamento de ligações com chapa de topo em perfis de alma senoidal. Os protótipos foram constituídos por duas vigas PSS 600x150x12,5x2,0 com uma chapa de topo CH 9,5x170x640 soldada em uma extremidade e parafusada a um perfil laminado W310x23,8 (305x101x6,7x5,6), conforme esquema apresentado nas FIG. 2.20 e FIG.2.21. Salienta-se que esses protótipos são similares aos que foram utilizados nos ensaios de ligação mista, diferenciando-se apenas pela existência da laje mista, conectores de cisalhamento e barras de armadura. O aço utilizado nas mesas do perfil e na chapa de topo é o CIVIL 350 e na alma senoidal o CIVIL 300, produzidos pela USIMINAS – Usinas Siderúrgicas de Minas Gerais, cujas propriedades mecânicas, obtidas dos ensaios de caracterização, são apresentadas na TAB.2.5. Foram utilizados parafusos de alta resistência ASTM A325 com diâmetro nominal de ¾". A FIG.2.22 apresenta uma visão do protótipo ensaiado.

FIGURA 2.20 – Esquema de montagem para os ensaios [GONZAGA (2008)]

TABELA 2.5 – Pro	opriedades m	ecânicas do	s materiais	[GONZAGA ((2008))]
------------------	--------------	-------------	-------------	------------	--------	----

Flemento	Resistência média ao	Resistência média à	
Liemento	escoamento do aço (f_y)	ruptura do aço (f_u)	
Chapa da alma	368 MPa	513 MPa	
Chapas das mesas	420 MPa	574 MPa	
Chapa de topo	413 MPa	560 MPa	

FIGURA 2.21 – Detalhe da ligação com chapa de topo [GONZAGA (2008)]

FIGURA 2.22 – Visão do protótipo [GONZAGA (2008)]

Durante a realização dos ensaios, GONZAGA constatou a formação das charneiras plásticas na chapa de topo, por meio das linhas de LÜDER em torno dos parafusos mais próximos à mesa tracionada, conforme se vê na FIG.2.23. GONZAGA relata também deformações na alma

senoidal próximas à chapa de topo, como se houvesse uma tentativa de planificação da chapa nessa região (FIG.2.24). O fim do ensaio ocorreu com a estabilização da força aplicada no protótipo, porém constatou-se posteriormente com a análise numérica que não se atingiu nenhum estado-limite último para os elementos que compõem a ligação.

FIGURA 2.23 – Formação das linhas de Lüder na chapa de topo [GONZAGA (2008)].

FIGURA 2.24 – Deformação da alma próxima à chapa de topo [GONZAGA (2008)].

As FIG.2.25 e FIG.2.26 apresentam a relação entre o momento fletor resistente e a rotação da ligação metálica.

FIGURA 2.25 – Curva momento fletor resistente *versus* rotação da ligação metálica do protótipo 1 [GONZAGA (2008)]

FIGURA 2.26 – Curva momento fletor resistente *versus* rotação da ligação metálica do protótipo 2 [GONZAGA (2008)]

Os resultados obtidos da análise experimental foram utilizados por GONZAGA para calibrar um modelo númerico via MEF a fim de se fazer um estudo paramétrico da ligação metálica com chapa de topo para perfis de alma senoidal. GONZAGA observou com o modelo numérico que a medida que a onda senoidal se planificava, se tornava mais efetiva para a formação das charneiras plásticas e com isso tinha-se um aumento da força atuante na linha de parafusos. GONZAGA concluiu que somente a linha de parafusos mais próxima à mesa tracionada é responsável pela resistência da ligação.

De posse dos resultados da análise paramétrica, GONZAGA propos funções padrão para a determinação do momento fletor resistente último (M_u) e da rigidez de serviço da ligação (M/θ) , conforme Eq.2.27 e Eq.2.32, respectivamente.

$$M_{u} = \alpha \beta \gamma \varepsilon b_{ch} t_{ch}^{2} f_{y} \ell_{vf}^{-1} h$$
(2.27)

sendo:

$$\alpha = \frac{1}{4} \left(1 + 0.8 \frac{t_f}{t_{ch}} \right) \le \frac{1}{2}$$
(2.28)

$$\beta = 4, 2 \left(0,125 + \frac{t_w}{t_{ch}} \right) \ge 1,0 \tag{2.29}$$

$$\gamma = \sqrt[4]{\frac{\ell_{vf}}{7,5}} \ge 1,0 \tag{2.30}$$

$$\varepsilon = \sqrt{\frac{28}{b_{ch}}} \ge 1,0 \tag{2.31}$$

onde b_{ch} é a largura da chapa de topo, f_y é a resistência ao escoamento do aço, h é a altura da viga, ℓ_{vf} é a distância vertical entre furos e ℓ'_{vf} é a distância vertical entre a primeira linha de furos menos a metade da espessura da mesa e do diâmetro do parafuso, t_f é a espessura da mesa, t_{ch} é a espessura da chapa de topo e t_w é a espessura da alma.

$$\left(\frac{M}{\theta}\right) = \mu E t_{ch} h^2 \ell_{vf}^{-1,5}$$
(2.32)

sendo:

$$\mu = \frac{1}{7,25} \left(1 + \frac{t_f}{t_{ch}} \right) \le 2,0 \tag{2.33}$$

onde E é o módulo de elasticidade do aço.

2.5 – Propriedades fundamentais da ligação mista completa com perfis de alma plana

2.5.1 - Rigidez inicial

Uma vez determinadas as rigidezes de cada um dos elementos que compõe a ligação mista, devem-se combiná-las para obter a rigidez da ligação como um todo. A FIG.2.27 apresenta o modelo para a determinação da rigidez da ligação para a situação onde existe uma linha de

parafusos na chapa de topo, enquanto a FIG.2.28 apresenta o deslocamento de cada um dos componentes da ligação para a situação de serviço.

FIGURA 2.27 – Modelo para a rigidez do conjunto da ligação mista

FIGURA 2.28 - Deslocamento de cada um dos componentes da ligação mista

A ABNT NBR 8800: 2008 despreza a contribuição da ligação da alma e admite que as extremidades da viga e da laje sofram a mesma rotação θ , logo:

$$C = \frac{M}{\theta} = \frac{(d+y)^2}{\frac{1}{k_s} + \frac{1}{k_{cs}} + \frac{1}{k_i}}$$
(2.34)

ANDERSON & NAJAFI (1994) realizaram cinco ensaios de ligação mista, por meio dos quais criaram um modelo para a determinação da rigidez da ligação como um todo. Nesse modelo, eles não consideram o paralelismo entre as seções extrema da laje e da viga e não desprezam a

contribuição da ligação da alma. Assim, assumindo uma rotação em torno da mesa inferior, determinaram as seguintes equações de equilíbrio e compatibilidade da ligação:

$$M = F_{sRk}(d+y) + F_{TRk}d_{pch}$$
(2.35)

$$\theta = \frac{\Delta_{us} + s^{(B)}}{d} = \frac{\Delta_{uch}}{d_{pch}}$$
(2.36)

onde Δ_{us} , $s^{(B)}$, d, Δ_{uch} e d_{pch} estão indicados na FIG.2.28.

Considerando que $F_{sRk} = k_s \Delta_{us}$, $F_{TRk} = S_j \Delta_{uch}$, $F_{cRk} = k_c s^{(B)}$, $F_{sRk} = F_{cRk}$ e utilizando a Eq.2.36, pode-se retrabalhar a Eq.2.35 para eliminar F_{sRk} e F_{TRk} e se obter a rigidez inicial da ligação. Logo:

$$C = \frac{M}{\theta} = \frac{k_{s}k_{c}(d+y)d}{k_{s}+k_{c}} + S_{j}d_{pch}^{2}$$
(2.37)

Segundo ANDERSON & NAJAFI (1994), os resultados obtidos por meio da Eq.2.37 mostraram uma boa correlação com os resultados dos ensaios realizados, sendo apropriados para uso em projeto.

2.5.2 – Momento resistente nominal

Estabelecendo-se que a soma das forças resistentes dos conectores de cisalhamento na região de momento negativo são superiores à das barras de armadura, tem-se o valor do momento resistente nominal da ligação:

$$M_{Rk} = f_{ys} A_{s\ell} (d+y) + F_{TRk} d_{pch}$$
(2.38)

O momento que causa a flambagem lateral com distorção, ver CALENZANI (2008), deve ser superior ao momento resistente nominal da ligação mista.

Caso não se queira considerar a resistência da chapa de topo na resistência da ligação mista, como é o caso da ABNT NBR 8800: 2008, deve-se garantir que o conjunto composto pelos parafusos e chapa de topo seja dúctil o suficiente para não comprometer a capacidade de rotação da ligação.

2.5.3 - Capacidade de rotação

Segundo a ABNT NBR 8800: 2008, a capacidade de rotação da ligação é determinada atribuindo-se aos deslocamentos dos componentes seus valores limites:

$$\theta_u = \frac{\Delta_{us} + \Delta_{ui} + s^{(B)}}{d + y} \tag{2.39}$$

onde Δ_{us} , Δ_{ui} e $s^{(B)}$ são as capacidades de deformação da armadura, da ligação inferior e dos conectores, respectivamente, já definidas anteriormente.

2.6 – Capacidade de rotação necessária de vigas semicontínuas com perfis de alma plana

De acordo com a ABNT NBR 8800: 2008, a resistência última da ligação mista é sempre menor do que o momento plástico negativo da viga mista e, sendo assim, a própria ligação tem que garantir a rotação necessária para o desenvolvimento do máximo momento fletor positivo da viga (inferior ao momento plástico), quando se faz análise plástica. As TAB.2.6 a TAB.2.8 apresentam as rotações necessárias em miliradianos para construções não-escoradas, considerando os coeficientes β_{vm} para determinação do momento fletor positivo resistente de cálculo M_{Rd} , iguais a 0,95, 0,90 e 0,85 respectivamente. O coeficiente β_{vm} é um fator de redução do momento fletor positivo resistente devido à impossibilidade de plastificar totalmente a seção, o que exigiria deformação infinita. Para que as tabelas sejam aplicáveis é necessário que:

- a) o momento fletor resistente de cálculo da ligação seja igual ou superior a 30% do momento fletor resistente de cálculo da viga;
- b) cada tramo da viga tenha ligações mistas em ambas as extremidades ou tenha uma extremidade perfeitamente rotulada e outra com ligação mista.

Nas TAB.2.6 a TAB2.8:

 L/d_t é a relação entre o comprimento do tramo e a altura total da viga mista;

DL significa carga uniformemente distribuída;

1CL significa uma carga concentrada no centro da viga;

2CL significa duas cargas concentradas nos terços do vão da viga.

Pode-se interpolar linearmente na tabela para aços com f_y entre 275 e 350 MPa; para aços com f_y de 250 MPa podem ser usados, do lado da segurança, os valores indicados para f_y igual a 275 MPa.

TABELA 2.6 – Capacidade de Rotação Necessária em miliradianos - $\beta_{vm} = 0,95$ (ABNT NBR 8800: 2008)

L/d_t	$f_y = 350$	MPa	$f_y = 275 \text{ MPa}$		
	DL e 1 CL	2 CL	DL e 1 CL	2 CL	
15	29	43	28	39	
20	46	64	38	52	
25	57	80	46	63	
30	67	95	54	74	

TABELA 2.7 – Capacidade de Rotação Necessária em miliradianos - $\beta_{vm} = 0,90$ (ABNT NBR 8800: 2008)

L/d	$f_y = 350$	MPa	$f_y = 275 \text{ MPa}$		
L/α_t	DL e 1 CL	2 CL	DL e 1 CL	2 CL	
15	22	32	21	29	
20	35	48	29	39	
25	43	60	35	47	
30	50	71	41	56	

TABELA 2.8 – Capacidade de Rotação Necessária em miliradianos - $\beta_{vm} = 0,85$ (ABNT NBR 8800: 2008)

L/d_t	$f_y = 350$	MPa	$f_y = 275 \text{ MPa}$		
	DL e 1 CL	2 CL	DL e 1 CL	2 CL	
15	15	22	14	20	
20	23	32	19	26	
25	29	40	23	32	
30	34	48	27	37	

Conforme comentado anteriormente, as TAB.2.6 a TAB.2.8 apresentam a capacidade de rotação necessária para construções não-escoradas. Nessa situação, a carga proveniente do peso próprio do concreto é suportada somente pela viga metálica, provocando um aumento na

curvatura e na deformação da viga na região de momento positivo. Segundo COUCHMAN & WAY (1999), esse fato leva a um aumento de 40% da capacidade de rotação necessária da ligação em relação às contruções escoradas. Em contrapartida, não ocorrem deformações nas barras de armadura provenientes desse carregamento, o que conduz a um aumento da capacidade de rotação disponível da ligação de aproximandamente 10%.

LI *et al.* (2000) realizaram estudos com diferentes sistemas, procurando avaliar a influência de alguns parâmetros na capacidade de rotação necessária da ligação. Os parâmetros considerados foram:

- o tipo de carregamento: para uma carga concentrada no meio do vão, a plasticidade é confinada em um curto comprimento da viga adjacente à seção de momento máximo, enquanto que para duas cargas aplicadas nos terços do vão, a plasticidade ocorre sobre um trecho maior que o terço central do vão, o que resulta em condições de rotação plástica particularmente altas;
- a relação entre o momento de engastamento e o momento no meio do vão: as rotações de extremidade são nulas para vigas engastadas e aumentam à medida que as vigas tendem para simplesmente apoiadas;
- a resistência ao escoamento do aço: quanto maior a resistência ao escoamento do aço e quanto mais o momento solicitante positivo se aproxima do momento de plastificação, maior a deformação e, consequentemente maior a curvatura necessária para atingir o escoamento, conforme se vê na FIG.2.29;

FIGURA 2.29 – Deformações da viga [COUCHMAN & WAY (1999)]

• *a altura do perfil metálico*: a curvatura necessária para atingir uma dada deformação no escoamento aumenta quando a altura da viga diminui (FIG.2.30).

FIGURA 2.30 - Curvaturas da viga [COUCHMAN & WAY (1999)]

As conclusões obtidas para a determinação da capacidade de rotação necessária da ligação foram:

- a rotação necessária na ligação diminui significativamente com o aumento da relação entre os momentos na ligação mista e no vão e aumenta com a relação entre o vão e a altura total da viga mista;
- quando todos os parâmetros são os mesmos, o carregamento com cargas concentradas nos terços do vão exige uma maior rotação no apoio do que o carregamento com carga concentrada no meio do vão; o carregamento uniformemente distribuído exige um valor intermediário;
- quando o momento solicitante em uma das ligações for zero, a rotação necessária pode ser maior ou menor do que a exigida quando ambas as ligações estiverem sujeitas ao mesmo momento, dependendo do carregamento;
- quando todos os parâmetros forem constantes, inclusive a relação entre o vão e a altura da viga mista, a altura do perfil metálico tem pouca importância.

Nos procedimentos utilizados por LI *et al.* (2000) para a obtenção da capacidade de rotação necessária, não há referência sobre o grau de interação entre a laje e o perfil metálico. Quando se utiliza interação parcial na região de momento positivo, a capacidade de rotação necessária da ligação é diferente da que se obteria na interação completa. Quanto menor o grau de interação, maior será a curvatura da seção transversal para um dado momento fletor. Entretanto, a capacidade resistente da viga mista a momento positivo é reduzida. QUEIROZ *et al.* (2001) mostraram que, quando se utiliza interação parcial na região de momento positivo,

a capacidade de rotação necessária da ligação é inferior à que se obteria na interação completa.

QUEIROZ (2007), por meio de um modelo numérico via método dos elementos finitos, realizou um estudo paramétrico de vigas semicontínuas com perfil de alma plana utilizando também interação parcial na região de momento fletor negativo. De acordo com os resultados obtidos em seu estudo, os parâmetros $\boldsymbol{\ell}$ (vão da viga) e d_t (altura total da viga mista) e não a relação $\boldsymbol{\ell}/d_t$, é que realmente afetam a capacidade de rotação necessária. A respeito do parâmetro α , referente à relação entre os momentos fletores negativo e positivo, nenhuma correlação foi observada com a capacidade de rotação necessária. Essas observações diferem daquelas apresentadas por LI *et al.* (2000), nos quais os parâmetros $\boldsymbol{\ell}/d_t$ e α influenciam na capacidade de rotação necessária, mas estão de acordo com os estudos apresentados por NETHERCOT (2003) e COUCHMAN and WAY (1999).

2.7 – Flambagem local da mesa comprimida

Em perfis de alma plana, a esbeltez da mesa comprimida é calculada utilizando-se a metade de sua largura dividida pela espessura. Porém, em perfis de alma corrugada, a posição da alma varia de seção para seção, havendo determinadas seções em que a distância da alma à uma extremidade da mesa é máxima e à outra extremidade é mínima. Para JOHNSON & CAFOLLA *apud* WANG (2003), a esbeltez da mesa de perfis de alma corrugada, dependendo da geometria das corrugações, deve basear-se na média entre essas distâncias.

SAYED-AHMED (2005a) estudou a flambagem local da mesa de perfis de alma corrugada trapezoidal comparando os resultados obtidos por meio de uma análise numérica via MEF e os valores calculados conforme o procedimento estabelecido pelo AISC LRFD (1999) para vigas de alma plana, em que se prescreve um coeficiente de flambagem k igual a 0,763 e concluiu que para a geometria estudada, deve-se adotar a metade da largura da mesa para determinação de sua esbeltez. Já SIOKOLA (1999) recomenda, para o caso de vigas de alma senoidal, que se adote a metade da largura da mesa reduzida de um quarto da altura da corrugação, porém utilizando um coeficiente de flambagem k igual a 0,425.

Com base nesses dois trabalhos, SOUZA (2006) realizou uma análise não-linear via MEF para avaliar a influência de alguns fatores, como a esbeltez, na flambagem local da mesa dos perfis de alma senoidal e comparar também os resultados obtidos por meio dessa análise com dois procedimentos: o procedimento da NBR 8800: 1986 considerando o valor fixo de k igual a 0,763 e considerando a semilargura da mesa na determinação de sua esbeltez (chamado de NBR-0,763) e o procedimento dado por SIOKOLA (1999), adaptado para a NBR 8800: 1986, considerando o valor fixo de k igual a 0,425 e a semilargura da mesa reduzida de um quarto da altura da senoide na determinação da sua esbeltez (chamado de ZEMAN-0,425). SOUZA concluiu que:

- quanto menor a relação entre a largura da mesa e o dobro da amplitude da onda, maior será a rigidez propiciada pela alma senoidal;
- a altura da alma praticamente não influencia o fenômeno da flambagem local da mesa devido ao fato de a alma corrugada não absorver tensões longitudinais e com isso não contribuir para interação entre flambagem local da mesa e flambagem local da alma, como ocorre nos perfis de alma plana sujeitos a tensões longitudinais de compressão;
- a variação da espessura da alma de 2,0 mm para 3,0 mm resultou em um pequeno aumento de resistência da mesa para flambagem local que variou de 4% a 8%;
- o procedimento ZEMAN-0,425 é conservador para a gama de perfis de alma senoidal analisados. Já o procedimento NBR-0,763 apresentou-se consistente para os perfis de alma senoidal com esbeltezes inferiores à λ_r, e um pouco conservador para esbeltezes superiores à λ_r.

PIMENTA (2008) propõe que os procedimentos de cálculo apresentados na norma brasileira ABNT NBR 8800: 2008 para a determinação do momento fletor resistente de perfis laminados para o estado-limite último de flambagem local da mesa sejam também utilizados para perfis de alma senoidal em que a esbeltez da mesa comprimida seja calculada por:

$$\lambda = \frac{\frac{b_f}{2} - \frac{b_w}{4}}{t_f}$$
(2.40)

onde b_f e t_f são a largura e a espessura da mesa do perfil, respectivamente, e b_w é a altura da onda senoidal (duas vezes a amplitude).

Para verificar a validade dessa proposição, PIMENTA utilizou os dados fornecidos por SOUZA (2006) e desenvolveu um modelo de elementos finitos capaz de prever com boa precisão a

resistência de vigas de aço, tanto de alma plana quanto de alma senoidal, referente ao estadolimite de flambagem local de mesa. Esse modelo foi inicialmente verificado por comparações com normas consolidadas e posteriormente validado por ensaios experimentais realizados por PINTO (2008) (FIG.2.31 e FIG.2.32).

FIGURA 2.31 - Flambagem local da mesa - ensaio do protótipo 4A [PINTO (2008)]

FIGURA 2.32 - Flambagem local da mesa - ensaio do protótipo 4B [PINTO (2008)]

Os dados obtidos foram divididos em dois grupos: o primeiro, que reúne todos os perfis analisados por SOUZA, e o segundo, com apenas os perfis dentro da faixa de utilização prática. Esses resultados foram comparados com as previsões da norma brasileira, considerando-se as seguintes premissas:

- desprezou-se a alma senoidal no cálculo das propriedades da seção transversal;
- considerou-se tensão residual de $0,3f_y$, conforme prescrito pelas normas.

Os resultados podem ser visualizados nas FIG.2.33 e FIG.2.34 para o primeiro e o segundo grupo, respectivamente, observando-se boa correlação entre as análises teórica e numérica, confirmando a viabilidade de utilização do modelo proposto por PIMENTA.

FIGURA 2.33 – Comparação entre as análises (primeiro grupo) [PIMENTA (2008)]

FIGURA 2.34 – Comparação entre as análises (segundo grupo) [PIMENTA (2008)]

2.8 – Flambagem lateral com distorção

2.8.1 – Em perfis de alma plana

Segundo FAKURY *et al.* (2007), em vigas mistas contínuas e semicontínuas, nas regiões de momento negativo contíguas aos apoios internos, a mesa inferior fica comprimida, podendo sofrer flambagem em relação ao seu eixo de maior inércia (a flambagem em relação ao eixo de menor inércia é impedida pela presença da alma). Embora a laje e sua ligação com a face superior da seção de aço possam não impedir completamente o giro dessa seção, a mesa comprimida somente pode flambar se a alma fletir transversalmente, como se vê na FIG. 2.35, o que caracteriza a flambagem lateral com distorção. Na ocorrência do fenômeno, o deslocamento lateral da mesa comprimida assume a forma de uma semi-onda de cada lado do apoio interno, que se estende sobre a maioria do comprimento sujeito a momento negativo, atingindo valor máximo à uma distância desse apoio de duas a três vezes a altura da viga [JOHNSON (2004)]. No projeto de vigas mistas contínuas e semicontínuas, deve-se assegurar o impedimento ao deslocamento lateral nos apoios internos.

FIGURA 2.35 – Flambagem lateral com distorção [FAKURY et al. (2007)]

A ABNT NBR 8800: 2008 fornece um procedimento aproximado para verificação da flambagem lateral com distorção, similar ao da norma européia EN 1994-1-1: 2004, que consiste da determinação do momento crítico elástico, M_{cr} , como passo inicial para obtenção do momento fletor resistente de cálculo. O cálculo de M_{cr} é feito tendo como base o comportamento do mecanismo "U" invertido, formado por duas ou mais vigas adjacentes e da laje na qual os perfis de aço dessas vigas são fixados. A utilização desse mecanismo procura

representar uma situação de projeto comumente encontrada na prática nos pisos mistos de edifícios.

Uma grandeza fundamental para a determinação do valor do momento resistente é a rigidez rotacional da viga mista que, aplicada a uma mola rotacional situada na mesa superior de uma viga, permite reproduzir a influência do mecanismo "U" invertido no momento fletor resistente à FLD dessa viga. Essa rigidez é calculada levando-se em conta a rotação da mesa inferior comprimida do perfil de aço proporcionada pela distorção da alma, pela flexão transversal da laje de concreto e pela deformação da ligação entre o perfil de aço e a laje (deformação da conexão de cisalhamento).

De acordo com o procedimento da ABNT NBR 8800: 2008 para vigas mistas de alma plana, a rigidez rotacional da viga, representada por k_r , é obtida por unidade de comprimento e é dada por:

$$\frac{1}{k_r} = \frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3}$$
(2.41)

onde k_1 é a rigidez à flexão da laje, considerada fissurada (desprezando o concreto tracionado), k_2 é a rigidez à distorção da alma e k_3 é a rigidez da conexão de cisalhamento.

A rigidez à flexão da laje por unidade de comprimento da viga é dada por:

$$k_1 = \frac{\alpha(EI)_2}{a} \tag{2.42}$$

onde α é igual a 2 para vigas de borda, com ou sem balanço, e 3 vigas internas (para vigas internas com quatro ou mais vigas similares, pode-se adotar α igual a 4), (*EI*)₂ é a rigidez à flexão da seção mista homogeneizada da laje, desconsiderando o concreto tracionado, por unidade de comprimento da viga, tomada como o menor valor entre as rigidezes no meio do vão e no apoio interno, e *a* é a distância entre as vigas paralelas.

Ainda segundo a ABNT NBR 8800: 2008, a rigidez à flexão da alma plana do perfil de aço, tomada por unidade de comprimento da viga, é igual a:

$$k_{2} = \frac{Et_{w}^{3}}{4h_{0}(1-\upsilon_{a}^{2})}$$
(2.43)
A ABNT NBR 8800: 2008 despreza a rigidez da conexão de cisalhamento, k_3 , pelo fato de a mesma ser usualmente muito alta em relação às rigidezes k_1 e k_2 .

2.8.2 – Em perfis de alma senoidal

CALENZANI (2008) realizou quatro ensaios no Laboratório de Análise Experimental de Estruturas da UFMG, cujos protótipos eram constituídos por perfis de alma senoidal sobrepostos por uma laje de concreto maciça (dois protótipos) e por laje mista com fôrma de aço incorporada (dois protótipos), simulando o comportamento do mecanismo "U" invertido para o estado-limite de flambagem lateral com distorção, conforme se vê na FIG.2.36.

FIGURA 2.36 – Montagem geral dos ensaios [CALENZANI (2008)]

A FIG.2.37 apresenta as dimensões de um dos protótipos ensaiados. Por meio dos resultados desses ensaios, aferiu-se um modelo numérico via MEF para a determinação da rigidez

rotacional da viga mista e identificação dos principais parâmetros que influem no valor da referida rigidez.

FIGURA 2.37 – Dimensões de um dos protótipos ensaiados [CALENZANI (2008)]

Foram analisados sessenta e oito modelos numéricos usando o programa ANSYS 9.0, variando-se os parâmetros que influem na rigidez à distorção da alma senoidal do perfil de aço, na rigidez à flexão da laje fissurada e na rigidez da conexão de cisalhamento. Nesse estudo, os parâmetros considerados da alma senoidal foram a altura, h, tomada como a distância livre entre as faces internas das mesas, e a espessura, t_w , desse elemento, e ainda a espessura da mesa conectada à laje, t_f . Os da laje foram a sua altura total, a distância entre vigas paralelas, a, e a espessura da fôrma de aço incorporada. Os parâmetros da conexão de cisalhamento foram o número de conectores na seção transversal, ou seja, conexão composta por apenas um conector tipo pino com cabeça soldado na linha de centro da mesa superior do perfil ou por dois conectores soldados simetricamente em relação à essa linha e o espaçamento longitudinal entre os conectores, s, e ainda a espessura da mesa conectada à laje, t_f . Em todos os modelos analisados, a largura da mesa conectada à laje, b_f , foi tomada igual a ¹/₄ da altura da alma h, o que significa que essa proporção é, conservadoramente, a mínima para a qual os resultados obtidos têm validade.

Dessa forma, foram processados modelos, com alturas de alma iguais a 1200, 1000 e 500 mm e espessuras de alma iguais a 2,0 e 3,0 mm. Somente foram previstos conectores de cisalhamento tipo pino com cabeça de 19 mm de diâmetro, tendo em vista serem esses conectores os mais utilizados no Brasil nas vigas mistas. A TAB.2.9 apresenta as propriedades mecânicas dos materiais, enquanto as TAB.2.10 e 2.11 listam os modelos

numéricos de laje mista e os de laje plana, respectivamente, com todos os parâmetros atribuídos ao perfil de aço, à laje de concreto e à conexão de cisalhamento.

	Módulo de elasticidade	Coef. de	Resistência ao escoamento do aço f _y (MPa)				Resistência à compressão	Resistência à tração do concreto	
	E (MPa)	v v	alma	mesa	armadura	fôrma de aço	Conector de cisalhamento	do concreto $f_{c,j}$ (MPa)	f _{ct,j} (MPa)
aço	205000	0,30	300	350	500	280	345	-	-
concreto	23800	0,19	-					25	2,5

TABELA 2.9 – Propriedades mecânicas dos materiais [CALENZANI (2008)]

TABELA 2.10 – Modelos numéricos de laje mista [CALENZANI (2008)]

Modelos		Parâmetros do perfil de aço				Parâmetros da laje mista			Parâmetros da conexão de	
				1	,				cisalnamento	
						Altura da	Distância	Espessura da	Número de	Distância
Designação	Perfil	h	b_f	t_f	t_w	laie h	entre vigas,	fôrma de	conectores	long. entre
						14 90 , 17 ₀	а	aço, t _d	por seção, N	conect, s
U3-M	PSS 1000 x 250 x 16 x 2	1000	250	16	2	140	2000	1.25	1	263,5
U4-M	PSS 1000 x 250 x 16 x 2	1000	250	16	2	140	2000	1,25	2	263,5
U5-M	PSS 1000 x 250 x 8 x 2	1000	250	8	2	140	2000	1.25	1	263,5
U6-M	PSS 1000 x 250 x 8 x 2	1000	250	8	2	140	2000	1,25	2	263,5
U7-M	PSS 1000 x 250 x 16 x 3	1000	250	16	3	140	2000	1.25	1	263,5
U8-M	PSS 1000 x 250 x 16 x 3	1000	250	16	3	140	2000	1,23	2	263,5
U9-M	PSS 1000 x 250 x 16 x 2	1000	250	16	2	200	2000	1.25	1	263,5
U10-M	PSS 1000 x 250 x 16 x 2	1000	250	16	2	200	2000	1,23	2	263,5
U11-M	PSS 1000 x 250 x 16 x 2	1000	250	16	2	140	2000	0.80	1	263,5
U12-M	PSS 1000 x 250 x 16 x 2	1000	250	16	2	140	2000	0,80	2	263,5
U13-M	PSS 1000 x 250 x 16 x 2	1000	250	16	2	140	4000	1,25	1	263,5
U14-M	PSS 1000 x 250 x 16 x 2	1000	250	16	2	140	4000		2	263,5
U15-M	PSS 1000 x 250 x 16 x 2	1000	250	16	2	140	2000	1.25	1	527
U16-M	PSS 1000 x 250 x 16 x 2	1000	250	16	2	140	2000	1,25	2	527
U17-M	PSS 1000 x 250 x 8 x 2	1000	250	8	2	140	2000	1.25	1	527
U18-M	PSS 1000 x 250 x 8 x 2	1000	250	8	2	140	2000	1,25	2	527
U21-M	PSS 500 x 125 x 8 x 2	500	125	8	2	140	2000	1.25	1	263,5
U22-M	PSS 500 x 125 x 8 x 2	500	125	8	2	140	2000	1,25	2	263,5
U23-M	PSS 500 x 125 x 8 x 3	500	125	8	3	140	2000	1.25	1	263,5
U24-M	PSS 500 x 125 x 8 x 3	500	125	8	3	140	2000	1,25	2	263,5
U25-M	PSS 500 x 125 x 8 x 2	500	125	8	2	140	2000	1.25	1	527
U26-M	PSS 500 x 125 x 8 x 2	500	125	8	2	140	2000	1,25	2	527
U27-M	PSS 500 x 125 x 16 x 2	500	125	16	2	140	2000	1.25	1	263,5
U28-M	PSS 500 x 125 x 16 x 2	500	125	16	2	140	2000	1,25	2	263,5
U29-M	PSS 500 x 125 x 16 x 2	500	125	16	2	140	2000	1.25	1	527
U30-M	PSS 500 x 125 x 16 x 2	500	125	16	2	140	2000	1,25	2	527
U31-M	PSS 500 x 125 x 6,3 x 2	500	125	6,3	2	140	2000	1.25	1	263,5
U32-M	PSS 500 x 125 x 6,3 x 2	500	125	6,3	2	140	2000	1,20	2	263,5
U33-M	PSS 500 x 125 x 6,3 x 2	500	125	6,3	2	140	2000	1.25	1	527
U34-M	PSS 500 x 125 x 6,3 x 2	500	125	6,3	2	140	2000	1,25	2	527

Modelos		Parâmetros do perfil de aço			Parâmetros da laje plana			Parâmetros da conexão de cisalhamento		
Designação	Perfil	h	b_f	t_f	t _w	Altura da laje, h _c	Distância entre vigas, <i>a</i>	Área das armaduras	Número de conectores por seção, N	Distância long. entre conect, s
U3-P	PSS 1000 x 250 x 16 x 2	1000	250	16	2	100	2000	$As_{sup} = 94$	1	201,5
U4-P	PSS 1000 x 250 x 16 x 2	1000	250	16	2	100	2000	$As_{inf} = 151$	2	201,5
U5-P	PSS 1000 x 250 x 8 x 2	1000	250	8	2	100	2000	$As_{sup} = 94$	1	201,5
U6-P	PSS 1000 x 250 x 8 x 2	1000	250	8	2	100	2000	$As_{inf} = 151$	2	201,5
U7-P	PSS 1000 x 250 x 16 x 3	1000	250	16	3	100	2000	$As_{sup} = 94$	1	201,5
U8-P	PSS 1000 x 250 x 16 x 3	1000	250	16	3	100	2000	$As_{inf} = 151$	2	201,5
U9-P	PSS 1000 x 250 x 16 x 2	1000	250	16	2	150	2000	$As_{sup} = 94$	1	201,5
U10-P	PSS 1000 x 250 x 16 x 2	1000	250	16	2	150	2000	$As_{inf} = 151$	2	201,5
U11-P	PSS 1000 x 250 x 16 x 2	1000	250	16	2	100	2000	$As_{sup} = 188$	1	201,5
U12-P	PSS 1000 x 250 x 16 x 2	1000	250	16	2	100	2000	$As_{inf} = 302$	2	201,5
U13-P	PSS 1000 x 250 x 16 x 2	1000	250	16	2	100	4000	$As_{sup} = 94$	1	201,5
U14-P	PSS 1000 x 250 x 16 x 2	1000	250	16	2	100	4000	$As_{inf} = 151$	2	201,5
U15-P	PSS 1000 x 250 x 16 x 2	1000	250	16	2	100	2000	$As_{sup} = 94$	1	403
U16-P	PSS 1000 x 250 x 16 x 2	1000	250	16	2	100	2000	$As_{inf} = 151$	2	403
U17-P	PSS 1000 x 250 x 8 x 2	1000	250	8	2	100	2000	$As_{sup} = 94$	1	403
U18-P	PSS 1000 x 250 x 8 x 2	1000	250	8	2	100	2000	$As_{inf} = 151$	2	403
U19-P	PSS 1000 x 250 x 19 x 2	1000	250	19	2	100	2000	$As_{sup} = 94$	2	201,5
U20-P	PSS 1000 x 250 x 19 x 3	1000	250	19	3	100	2000	$As_{inf} = 151$	2	201,5
U21-P	PSS 500 x 125 x 8 x 2	500	125	8	2	100	2000	$As_{sup} = 94$	1	201,5
U22-P	PSS 500 x 125 x 8 x 2	500	125	8	2	100	2000	$As_{inf} = 151$	2	201,5
U23-P	PSS 500 x 125 x 8 x 3	500	125	8	3	100	2000	$As_{sup} = 94$	1	201,5
U24-P	PSS 500 x 125 x 8 x 3	500	125	8	3	100	2000	$As_{inf} = 151$	2	201,5
U25-P	PSS 500 x 125 x 8 x 2	500	125	8	2	100	2000	$As_{sup} = 94$	1	403
U26-P	PSS 500 x 125 x 8 x 2	500	125	8	2	100	2000	$As_{inf} = 151$	2	403
U27-P	PSS 500 x 125 x 16 x 2	500	125	16	2	100	2000	$As_{sup} = 94$	1	201,5
U28-P	PSS 500 x 125 x 16 x 2	500	125	16	2	100	2000	$As_{inf} = 151$	2	201,5
U29-P	PSS 500 x 125 x 16 x 2	500	125	16	2	100	2000	$As_{sup} = 94$	1	403
U30-P	PSS 500 x 125 x 16 x 2	500	125	16	2	100	2000	$As_{inf} = 151$	2	403
U31-P	PSS 500 x 125 x 6.3 x 2	500	125	6.3	2	100	2000	$As_{sup} = 94$	1	201.5
U32-P	PSS 500 x 125 x 6.3 x 2	500	125	6.3	2	100	2000	$As_{inf} = 151$	2	201.5
U33-P	PSS 500 x 125 x 6 3 x 2	500	125	63	2	100	2000	$As_{m} = 94$	- 1	403
U34-P	PSS 500 x 125 x 63 x 2	500	125	6.3	2	100	2000	$\Delta s_{\rm sup} = 151$	2	403
U35-P	PSS 500 x 250 x 8 x 2	500	250	8	2	100	2000	As = 94	1	201.5
U36-P	PSS 500 x 250 x 8 x 2	500	250	8	2	100	2000	$As_{inc} = 151$	2	201,5
U27 D	DSS 1200 -= 200 -= 1(-= 2	1200	200	10	2	100	2000	$A_{\alpha} = 04$	2	201,5
U3/-P	PSS 1200 x 300 x 16 x 2	1200	300	10	2	100	2000	$As_{sup} = 94$	2	201,5
U38-P	PSS 1200 x 300 x 16 x 3	1200	300	16	3	100	2000	$As_{inf} = 151$	2	201,5
U39-P	PSS 1200 x 300 x 19 x 2	1200	300	19	2	100	2000	$As_{sup} = 94$	2	201,5
U40-P	PSS 1200 x 300 x 19 x 3	1200	300	19	3	100	2000	$As_{inf} = 151$	2	201.5

TABELA 2.11 – Modelos numéricos de laje plana [CALENZANI (2008)]

CALENZANI propõe que a rigidez rotacional das vigas mistas de alma senoidal, k_r , seja calculada pela Eq.2.41, assumindo para a rigidez da laje, k_I , o valor fornecido pela Eq.2.42, prescrita pela ABNT NBR 8800: 2008 para vigas de alma plana, uma vez que essa equação conduz na maioria das vezes a resultados conservadores quando comparados com os numéricos e, quando isso não ocorre, a resultados muito pouco inferiores aos numéricos. Para a rigidez da alma senoidal, k_2 , CALENZANI propõe a seguinte expressão:

$$k_{2} = \alpha_{red} \, \frac{0.40 \, E b_{w}^{2} t_{w}}{h} \tag{2.44}$$

com

$$\alpha_{red} = 552746x10^{-6} - 128064x10^{-6} \frac{\left(t_{f\max} - t_{f}\right)}{t_{w}} - 212x10^{-6} \frac{\left(h_{\max} - h\right)}{t_{w}} + 9255x10^{-6} \frac{\left(t_{f\max}^{2} - t_{f}^{2}\right)}{t_{w}^{2}}$$

$$(2.45)$$

onde b_w a altura total da onda da corrugação senoidal (40 e 43 mm para t_w igual a 2,0 e 3,0 mm, respectivamente), $t_{f,max}$ e h_{max} são, respectivamente, a máxima espessura da mesa conectada à laje de concreto e a máxima altura da alma, na faixa estudada, devendo ser tomadas iguais a 19 mm e 1200 mm. O coeficiente de redução α_{red} ajusta o valor da rigidez da alma levando em consideração o nível de engastamento proporcionado pela ligação da alma à mesa superior do perfil de aço.

Segundo CALENZANI, diferentemente dos perfis de alma plana, a rigidez da conexão de cisalhamento (k_3) dos perfis de alma senoidal não pode ser desprezada no cálculo da rigidez rotacional, uma vez que a flexibilidade da conexão de cisalhamento contribui em até 24,4% no valor da flexibilidade rotacional. Propõe-se o uso das TAB.2.12 e TAB.2.13 na determinação da rigidez da conexão de cisalhamento de vigas mistas com perfis de aço de alma senoidal, respectivamente, para os casos de lajes plana e mista. Nota-se que os valores de rigidez estão dispostos em função da espessura e largura da mesa conectada à laje, do número de conectores de cisalhamento e do espaçamento longitudinal entre conectores.

			$k_{3,p}$	(kN/rad)			
Espessura da mesa em	Largura da mesa em	Espaçament entre os $s \le 20$	to longitudinal conectores 01,5 mm	Espaçamento longitudinal entre os conectores $201,5 \text{ mm} < s \le 403 \text{ mm}$			
$\begin{array}{c} \text{contato com a} \\ \text{laje} \\ t_f \\ (\text{mm}) \end{array}$	$\begin{array}{c} \text{contato com a} \\ \text{laje} \\ b_f \\ (\text{mm}) \end{array}$	l conector por seção transversal	2 ou mais conectores por seção transversal	l conector por seção transversal	2 ou mais conectores por seção transversal		
$\geq 16 e \leq 19$	≥ 250	6000	15600	4000	6300		
$\geq 16 e \leq 19$	≥ 125 e < 250	5500	10800	3400	4500		
≥ 8 e < 16	≥ 250	1750	2700	1100	1250		
≥ 8 e < 16	≥ 125 e < 250	1700	2100	1100	1050		
$\geq 6,3 e < 8$	≥ 125 e < 250	1300	1350	850	650		

TABELA 2.12 – Valores propostos para rigidez da conexão, k_3 , de vigas mistas com perfis de alma senoidal e lajes planas [CALENZANI (2008)]

1200

1050

800

-		Ũ	-		/ -
			$k_{3,p}$ (k)	N/rad)	
Espessura da mesa em	Largura da mesa em	Conectores nerv	em todas as uras	Conectores interc	em nervuras caladas
contato com a laje mista t _f (mm)	contato com a laje mista b _f (mm)	l conector por seção transversal	2 ou mais conectores por seção transversal	l conector por seção transversal	2 ou mais conectores por seção transversal
$\geq 16 e \leq 19$	≥ 250	4000	8000	2800	3500
$\geq 16 e \leq 19$	≥ 125 e < 250	3200	5200	2100	2800

1800

1300

850

900

950

750

TABELA 2.13 – Valores propostos para rigidez da conexão, k_3 , de vigas mistas com perfis de alma senoidal e lajes mistas [CALENZANI (2008)]

CALENZANI salienta que as formulações apresentadas limitam-se às vigas mistas com propriedade mecânicas dos materiais e geometria normalmente utilizados na prática no Brasil. Foram consideradas somente fôrmas de aço incorporadas de nervuras trapezoidais espaçadas (eixo a eixo) de 274 mm, com altura de 75 mm, abertura na base de 119 mm e no topo de 155 mm e conectores de cisalhamento do tipo pino com cabeça de diâmetro de 19 mm e altura, após instalados, de 76 m para lajes planas e 127 mm para lajes mistas. Adicionalmente, os perfis de aço abordados em seu trabalho possuem altura máxima de 1200 mm e mínima de 500 mm, espessura máxima da mesa conectada à laje de concreto de 19 mm e mínima de 6,3 mm e largura desta mesa igual ou superior a 1/4 da altura da alma.

PIMENTA(2008) utilizando os dados da pesquisa de CALENZANI(2008) propôs uma outra formulação para a obtenção da rigidez rotacional do mecanismo "U" invertido das vigas mistas com perfil de alma senoidal, eliminando porém o uso das tabelas para obtenção de k_3 :

$$k_1 = \frac{\alpha}{a} \left(EI \right)_2 = \frac{\alpha}{a} \left[\rho_s \left(1 - \Omega \right)^2 + \frac{1}{3} \frac{b' \Omega^3}{nb} \right] d_s^3 E_s$$
(2.46)

$$k_2 = \frac{0.4E_w b_w^2 t_w}{h}$$
(2.47)

$$k_3 = \alpha_{aj} \frac{Et_f^3}{b_f}$$
(2.48)

onde

 $\geq 8 e < 16$

 $\geq 8 e < 16$

 $\geq 6,3 e < 8$

 ≥ 250

 $\geq 125~e < 250$

 $\geq 125 \text{ e} < 250$

950

900

600

$$\Omega = n\rho_s \frac{b}{b'} \left(\sqrt{1 + \frac{2}{n\rho_s} \frac{b'}{b}} - 1 \right) \qquad \rho_s = \frac{A_s}{bd_s} \qquad n = \frac{E_s}{E_c}$$
(2.49)
a

(2.51)

$$\alpha_{aj} = 0.01 \left(\frac{n_1}{n_2}\right)^{0.15} \left(\frac{b_w}{t_f}\right)^{2,2} \left(\frac{t_w}{b_w}\right)^{0.25} \left(\frac{b_f}{b_w}\right)^{0.5}$$
(2.52)

Nessas expressões:

 α , para vigas de borda, é igual a 2 e, para vigas internas, igual a 3, quando houver apenas três vigas, ou a 4, quando houver quatro ou mais vigas;

a é a distância entre vigas;

 $(EI)_2$ é a rigidez à flexão da seção mista homogeneizada da laje, desprezando o concreto tracionado (ou seja, é a rigidez fissurada da laje), por unidade de comprimento da viga, tomada como o menor valor entre a do meio do vão e a de um apoio interno da laje;

b e *b*' são, respectivamente, as larguras tracionada e comprimida da laje;

 E_s e E_w são os módulos de elasticidade dos aços da armadura e da alma do perfil, respectivamente;

 A_s é a área da armadura de tração da laje na largura b;

 d_s a distância da face comprimida da laje ao centro geométrico da armadura de tração;

 n_1 é o número de conectores na seção transversal;

 n_2 é um número que depende da distribuição de conectores ao longo do comprimento.

Vale observar que apesar das equações fornecidas por PIMENTA serem diferentes das equações fornecidas por CALENZANI, os resultados obtidos para a rigidez rotacional das vigas mistas com perfil de alma senoidal são essencialmente os mesmos

2.9 – Análise da confiabilidade estrutural do estado-limite último de plastificação da viga mista com perfil de alma senoidal

Com os resultados obtidos pelo autor deste trabalho das análises experimental e numérica da resistência à plastificação de vigas mistas biapoiadas com perfil de alma senoidal, PIMENTA (2008) realizou um estudo para verificar os índices de confiabilidade estrutural dos procedimentos de cálculo apresentados no Capítulo 6 para a determinação do momento fletor resistente de vigas mistas com perfil de alma senoidal. No desenvolvimento das equações de

64

estado-limite foi utilizado o formato da norma brasileira ABNT NBR 8800: 2008 e da norma estadunidense ANSI/AISC 360-05 (2005), para comparação. A resistência nominal R_n está relacionada à solicitação nominal S_n pelas inequações 2.53 e 2.54, dadas abaixo, conforme os formatos das normas estadunidense e brasileira, respectivamente:

$$\phi R_n \ge \gamma S_n = c \left(\gamma_D D_n + \gamma_L L_n \right) \tag{2.53}$$

$$\frac{R_n}{\gamma_m} \ge \gamma S_n = c \left(\gamma_D D_n + \gamma_L L_n \right)$$
(2.54)

onde $\phi e \gamma_m$ são os coeficientes de ponderação da resistência dados nas normas estadunidense e brasileira, respectivamente, para cada estado-limite analisado; $\gamma_D e \gamma_L$ são os coeficientes de ponderação das ações permanente e variável, tomados iguais a 1,2 e 1,6, respectivamente, na ASCE 7-05 (2006) e a 1,35 (valor médio) e 1,5, respectivamente, na ABNT NBR 8681: 2003; $D_n e L_n$ são, respectivamente, os valores nominais das ações permanente e variável; c é um parâmetro (determinístico) de transformação das ações em efeitos na estrutura.

Nas TAB.2.14 e TAB.2.15 são apresentados os índices β_1 e β_2 , calculados via FORM e por simulação de Monte Carlo, respectivamente. Na primeira, são apresentados os resultados para a linha neutra plástica (LNP) na laje (LNL) e na segunda, os referentes à LNP na mesa superior (LNFs). A relação de carga q apresentada nas tabelas corresponde à relação entre as ações permanentes e variáveis. Observa-se que os índices calculados pelos dois métodos de análise de confiabilidade são praticamente os mesmos.

Relação de	ANSI/AISC		Nbr	8800
carga q	β_{I}	β_2	β_{I}	β_2
0,5	3,9	3,9	4,0	4,0
1,0	3,6	3,5	3,4	3,4
1,5	3,4	3,3	3,2	3,1
2,0	3,2	3,2	3,0	3,0
2,5	3,2	3,1	3,0	3,0
3,0	3,1	3,1	2,9	2,9
3,5	3,1	3,1	_	-
4,0	3,0	3,0	-	-

TABELA 2.14 – Índices de Confiabilidade PVM-LNL [PIMENTA (2008)]

Relação de	Ansi	/AISC	NBR 8800		
carga q	β_{I}	β_2	β_l	β_2	
0,5	3,2	3,1	3,4	3,3	
1,0	3,1	3,1	3,1	3,1	
1,5	3,0	3,0	2,9	2,9	
2,0	3,0	3,0	2,8	2,8	
2,5	2,9	2,9	2,8	2,8	
3,0	2,9	2,9	2,7	2,7	
3,5	2,9	2,9	-	-	
4,0	2,9	2,9	_	-	

TABELA 2.15 – Índices de Confiabilidade PVM-LNFs [PIMENTA (2008)]

Os resultados referentes aos calculados via FORM (β_l), são ilustrados nas FIG.2.38 e FIG.2.39, para LNL e LNFs, respectivamente.

FIGURA 2.38 – Índices de confiabilidade PVM-LNL [PIMENTA (2008)]

FIGURA 2.39 – Índices de confiabilidade PVM-LNFs [PIMENTA (2008)]

O valor mínimo do índice de confiabilidade implícito nas normas técnicas para os perfis de alma plana é 2,6, podendo chegar a 2,4 nos casos em que a relação de carga q for elevada [veja-se comentário B.3.3 da ANSI/AISC 360-05 (2005)]. Todos os índices apresentados nas TAB.2.14 e TAB.2.15 são iguais ou superiores a 2,6 em todas as regiões e situações pesquisadas e, portanto, PIMENTA concluiu que a confiabilidade do procedimento utilizado neste trabalho para o cálculo da plastificação de vigas mistas com perfil de alma senoidal está adequada e compatível com os níveis inerentes às vigas de alma plana.

PIMENTA comenta ainda que os índices calculados pelo modelo da norma brasileira são mais conservadores na região de baixa relação de carga e mais liberais para relação de carga elevada, em comparação com os obtidos via modelo estadunidense. PIMENTA sugere que os coeficientes de ponderação das ações de gravidade utilizados na norma brasileira deveriam ser revisados, a partir de um necessário e amplo programa de obtenção de dados estatísticos das ações no Brasil.

3

ANÁLISE EXPERIMENTAL

3.1 – Descrição dos protótipos

Para se estudar o comportamento das ligações mistas com perfis de alma senoidal foram ensaiados três protótipos no Laboratório de Análise Experimental de Estruturas (LAEES) da Escola de Engenharia da Universidade Federal de Minas Gerais. Os protótipos são constituídos por duas vigas metálicas de alma senoidal ligadas entre si por meio de uma chapa de topo, pela laje de concreto com fôrma de aço incorporada (laje mista), pelos conectores de cisalhamento tipo pino com cabeça e pelas barras de armadura, conforme o desenho esquemático da FIG.3.1. Foi utilizado um pilarete metálico entre as ligações dos perfis a fim de facilitar a introdução de carga no protótipo e, ao mesmo tempo, simular uma situação de projeto que é o apoio de uma viga em um pilar ou viga principal de piso.

FIGURA 3.1 – Desenho esquemático dos protótipos

Algumas premissas foram assumidas na concepção dos protótipos, destacando-se:

- não ocorrência de flambagem local e escoamento da mesa comprimida;
- interação total na transmissão de esforços entre as vigas metálicas e as barras de armadura via conectores de cisalhamento;
- não ocorrência de flambagem lateral com distorção;
- estado-limite último correspondente à ruptura das barras de armadura.

Com base nas premissas listadas anteriormente, optou-se pela utilização de um perfil metálico de alma senoidal com as seguintes dimensões nominais, em milímetro: 620x150x12,5x2,0 para os protótipos 1 e 2; e 615x150x8,0/12,5x2,0 para o protótipo 3 – nesse tipo de denominação, o primeiro número representa a altura do perfil, o segundo é a largura da mesa, o terceiro é a espessura dessa mesa (caso haja espessuras diferentes para as mesas superior e inferior, os seus valores são separados por uma barra) e o último é a espessura da alma. As FIG.3.2(*a*) e FIG.3.2(*b*) apresentam a média das dimensões reais para a seção transversal dos perfis utilizados nos protótipos, sendo que para a sua obtenção foram medidos três pontos ao longo do comprimento do protótipo. As espessuras das chapas das seções transversais dos perfis foram medidas com paquímetro, enquanto que as larguras das mesas, alturas das almas e comprimentos das vigas foram medidos com trena.

FIGURA 3.2 – Seção transversal dos perfis metálicos (a) protótipos 1 e 2 (b) protótipo 3

Adotou-se, no protótipo 3, uma espessura de 8,0 mm para a mesa do perfil em contato com a laje para verificar a possível ocorrência de deformações localizadas na chapa da mesa, próximas ao conector de cisalhamento, devido à utilização de menores espessuras de chapa para as mesas do perfil de alma senoidal.

A TAB.3.1 apresenta a resistência média ao escoamento (f_y) e a resistência média à ruptura (f_u) do aço das chapas do perfil metálico. O anexo A apresenta os laudos técnicos dos ensaios mecânicos dos corpos de prova retirados dos protótipos.

Espessura da chapa	Resistência média ao escoamento do aço (f_y)	Resistência média à ruptura do aço (f_u)	Componente
2,0 mm	410 MPa	521 MPa	alma
8,0 mm	450 MPa	589 MPa	mesa
9,5 mm	427 MPa	598 MPa	chapa de topo
12,4 mm	427 MPa	605 MPa	mesa

TABELA 3.1 – Propriedades mecânicas do aço das chapas do perfil metálico e chapa de topo

Para a transmissão dos esforços entre o perfil metálico e as barras de armadura foram utilizados conectores de cisalhamento tipo pino com cabeça, aço ASTM A-108, cujas resistências nominais ao escoamento e à ruptura do aço são iguais a 345 MPa e 415 MPa, respectivamente; esses conectores têm diâmetro de 19 mm, altura antes da instalação de 135 mm e estão dispostos ao longo das nervuras da fôrma de aço, conforme se vê na FIG.3.3.

A laje de concreto com fôrma de aço incorporada tem altura total de 140 mm, com altura da fôrma de aço igual a 75 mm, e aço ZAR 280 ($f_v = 280$ MPa). A TAB.3.2 apresenta os valores

da resistência média à compressão (f_{cm}) e do módulo de elasticidade inicial (E_{ci}) do concreto, determinados nos dias dos ensaios, para cada um dos protótipos,

	Resistência média à compressão (<i>f_{cm}</i>)	Módulo de elasticidade inicial (E_{ci})
Protótipo 1	26,77 MPa	26839 MPa
Protótipo 2	22,59 MPa	24772 MPa
Protótipo 3	23,60 MPa	25404 MPa

TABELA 3.2 - Propriedades mecânicas do concreto das lajes mistas

Foram utilizadas 6 barras de armadura longitudinal com diâmetro de 12,5 mm, aço CA 50, paralelas ao perfil metálico e barras com diâmetro de 4,2 mm, aço CA 60, dispostas transversalmente ao perfil e espaçadas a cada 20 cm, conforme se vê na FIG.3.3. As propriedades mecânicas das barras com diâmetro de 12,5 mm estão apresentadas na TAB.3.3. Não foram determinadas as propriedades mecânicas das barras com diâmetro de 4,2 mm pelo fato das mesmas não contribuírem para a resistência da ligação mista.

FIGURA 3.3 – Disposição das barras de armadura e conectores nos protótipos

TABELA 3.3 – Propriedades mecânicas d	das barras	de armadura d	e diâmetro c	1e 12,5	mm
---------------------------------------	------------	---------------	--------------	---------	----

Resistência média ao escoamento (f_{ys})	Resistência média à ruptura do aço à tração (f_{us})	Módulo de elasticidade $(E_s)^{(1)}$
574 MPa	691 MPa	210000 MPa
⁽¹⁾ assumido o valor	nominal dado pela ABNT NBR 8	800: 2008

A ligação entre os perfis metálicos foi realizada por meio de uma chapa de topo de aço CIVIL 350, com espessura de 9,5 mm, e parafusos de alta resistência ASTM A325 N, com diâmetro de 19 mm, conforme desenho esquemático mostrado na FIG.3.4. Todos os protótipos foram fabricados com a mesma ligação metálica, mas após a realização dos ensaios dos protótipos 1 e 3, optou-se no protótipo 2 por remover os parafusos da linha mais próxima à mesa tracionada para se verificar a influência dos mesmos no comportamento da ligação mista.

FIGURA 3.4 – Esquema da ligação da chapa de topo entre os perfis metálicos (*a*) protótipos 1 e 3 (*b*) protótipo 2

Nas construções prediais, as vigas semicontínuas com perfil de alma senoidal podem ser utilizadas como vigas secundárias que se apóiam em vigas principais de alma plana ou em colunas. Portanto, a ligação com chapa de topo é a maneira mais simples de se fazer tal ligação.

3.2 – Instrumentação

Foram utilizados extensômetros elétricos de resistência (EER) nas barras de armadura mais próximas do pilarete metálico, na mesa comprimida do perfil e ao longo da altura da alma senoidal próxima à chapa de topo da ligação. Conforme se vê na FIG.3.5, os extensômetros foram posicionados sempre simetricamente nas duas faces do elemento a fim de se avaliar os efeitos de flexão nesses elementos.

FIGURA 3.5 – Posicionamento dos extensômetros elétricos de resistência

Foram empregados transdutores de deslocamentos (DT) para as medidas do deslocamento vertical no meio do vão do protótipo (DT-6), do alongamento da mesa tracionada próxima à ligação da chapa de topo (DT-1 a DT-4) e do deslocamento da face superior da laje de concreto em relação ao pilarete (DT-5), conforme indicado na FIG.3.6. Relógios comparadores (RC) foram utilizados na mesa comprimida para a determinação do seu encurtamento na região próxima à ligação (RC-1 a RC-4) e do deslocamento da face superior da laje de concreto em relação ao pilarete (RC-5).

FIGURA 3.6 – Posicionamento dos transdutores de deslocamentos (DT) e relógios comparadores (RC)

Foram utilizados, portanto, 24 extensômetros elétricos de resistência, 6 transdutores de deslocamentos e 5 relógios comparadores por protótipo, o que conduziu à utilização de um Sistema de Aquisição de Dados (SAD) de 32 canais fabricado pela Lynx Tecnologia Eletrônica. Esse Sistema de Aquisição de Dados é composto por uma placa de aquisição ADS2000 e duas placas condicionadoras AI-2161 de 16 canais. O programa Lynx AqDados

7.02.11 para ambientes Microsoft WindowsTM foi empregado na leitura e gravação dos dados, enquanto o programa Lynx AqDAnalysis 7.0.11 permitiu a criação de diagramas e a exportação de dados para outros programas como o Microsoft ExcelTM.

3.3 – Descrição dos ensaios

As extremidades do protótipo foram apoiadas em aparelhos metálicos de apoio do primeiro gênero, que por sua vez estavam apoiados em blocos de concreto. Foi empregada uma bomba hidráulica equipada com transdutor de pressão SODMEX, mangueiras e atuador hidráulico da ENERPAC, com capacidade de 2000 kN, instalado em um pórtico transversal posicionado acima do pilarete metálico para a aplicação da força, conforme se vê nas FIG.3.7 e FIG.3.8. Essa montagem procura reproduzir uma situação de campo, onde a laje de concreto encontrase tracionada na região de momento negativo.

VISTA LATERAL

CORTE A

FIGURA 3.7 – Esquema de montagem dos ensaios

ANÁLISE EXPERIMENTAL

Antes de se iniciar a aquisição de dados, uma força de 25 kN foi aplicada ao protótipo com o objetivo de proporcionar uma "acomodação" dos componentes da montagem experimental e evitar possíveis oscilações na leitura dos dados para forças muito pequenas. Definiram-se, inicialmente, etapas de 25 kN de força, mas com o escoamento do aço da armadura, o protótipo passou a apresentar deslocamentos sob força constante, o que conduziu ao estabelecimento de etapas com incrementos de deslocamentos em torno de 5 mm. Tanto as etapas de força quanto as etapas de deslocamento foram alteradas ao longo do ensaio em função da ocorrência de eventos, como o surgimento de fissuras na laje de concreto, "estalos" nos componentes metálicos, dificuldade na introdução de força no protótipo, etc. Os dados provenientes dos extensômetros elétricos de resistência e dos transdutores de deslocamentos foram aquisitados diretamente pelo SAD, enquanto que a leitura dos relógios comparadores foi realizada por etapa, após a estabilização da força aplicada.

FIGURA 3.8 - Vista geral do ensaio

O comportamento global dos protótipos durante os ensaios foi muito semelhante, exceto por alguns imprevistos que serão descritos posteriormente. Após os incrementos iniciais de força, surgiram as primeiras fissuras na laje de concreto, paralelas entre si e perpendiculares ao eixo longitudinal do perfil metálico. Na região central do protótipo, as fissuras convergiram para o pilarete metálico, devido à interferência do mesmo na continuidade do concreto, conforme se vê na FIG.3.9.

FIGURA 3.9 – Fissuras na laje de concreto

À medida que ocorriam os incrementos de força, tinha-se um aumento da abertura das fissuras e a diminuição da rigidez do concreto da laje; nessa fase as barras de armadura foram os principais elementos resistentes da ligação na região tracionada. Esse comportamento só foi modificado no escoamento das barras de armadura, pois com o aumento da capacidade de rotação da ligação, iniciavam-se as deformações da chapa de topo do perfil metálico (FIG.3.10) e os parafusos próximos à mesa tracionada começavam a contribuir para a resistência da ligação, observando-se em torno dos parafusos a formação das linhas de LÜDER na chapa, conforme se vê na FIG.3.11.

FIGURA 3.10 - Deformação na chapa de topo da ligação

FIGURA 3.11 – Linhas de LÜDER na chapa em torno dos parafusos

A seção transversal do perfil metálico não permaneceu plana, ocorrendo deslocamentos diferenciais entre as mesas tracionada e comprimida. A alma senoidal esteve sujeita a um estado de tensões complexo, observando-se uma "planificação" em regiões próximas à chapa de topo. Esse fenômeno ocorreu mais acentuadamente em um dos lados da ligação, pois apesar do protótipo teoricamente ser simétrico, há sempre alguma assimetria que gera uma distribuição de esforços diferentes entre os perfis ligados à chapa de topo. Iniciou-se uma deformação da alma a partir da linha de parafusos mais próxima da mesa tracionada em direção à mesa comprimida, em um ângulo de aproximadamente 45° com a horizontal, conforme se vê na FIG.3.12.

FIGURA 3.12 – Início de uma deformação da alma próxima à ligação

ANÁLISE EXPERIMENTAL

Com o aumento dos deslocamentos verticais do protótipo sob força constante, tinha-se o prolongamento da deformação da alma de uma corrugação à outra em um mecanismo similar ao campo de tração. Esse comportamento da alma senoidal fez com que a mesa comprimida, próxima à região da ligação, se deslocasse no sentido da mesa tracionada como se a alma deixasse de sustentá-la e a aplicasse uma força nesse sentido, conforme ilustra a FIG.3.13. Constatou-se a ocorrência de deformações plásticas na mesa comprimida, com a formação das linhas de LÜDER em sua face inferior, de acordo com o que se vê na FIG.3.14.

FIGURA 3.13 - Deslocamento da mesa comprimida no sentido da mesa tracionada

FIGURA 3.14 – Linhas de LÜDER na face inferior da mesa comprimida

O protótipo tornou-se incapaz de sustentar a força aplicada devido à perda de estabilidade da mesa comprimida que flambou no sentido da mesa tracionada, conforme se vê nas FIG.3.15 e FIG.3.16.

FIGURA 3.15 – Deformação da mesa e da alma na região da ligação no final do ensaio (Protótipo 3)

FIGURA 3.16 – Deformação da mesa e da alma na região da ligação no final do ensaio (Protótipo 2)

ANÁLISE EXPERIMENTAL

Conforme comentado anteriormente, ocorreram alguns imprevistos durante a realização dos ensaios. Por se tratar de um assunto novo, não se têm referências sobre o comportamento de ligações mistas com perfil de alma senoidal e a realização do primeiro ensaio foi cercada de uma expectativa para se conhecer tal comportamento. Esperava-se a ruptura das barras de armadura e, como as atenções estavam voltadas para as mesmas, não se percebeu durante a realização do primeiro ensaio, protótipo 1, a ruptura da solda entre a mesa comprimida e a alma na região próxima à chapa de topo, vista na FIG. 3.17.

FIGURA 3.17 – Ruptura da solda entre a mesa comprimida e a alma (Protótipo 1)

Devido ao rompimento da solda, não ficou evidente a deformação por distorção da alma a partir da primeira linha de parafusos (mais próxima à laje mista) e o deslocamento da mesa comprimida em direção à mesa tracionada, conforme se vê na FIG. 3.18. Como medida de segurança, reforçaram-se as soldas dos protótipos 2 e 3 em 50 cm a partir da ligação da chapa de topo.

FIGURA 3.18 – Deformação da alma do Protótipo 1 após o término do ensaio

O outro imprevisto ocorrido foi o deslocamento horizontal do protótipo 2 durante a realização do terceiro ensaio. Com a força em torno de 285 kN, já tendo ocorrido o escoamento das barras de armadura, percebeu-se a inclinação da rótula no ponto de aplicação de força do atuador hidráulico no protótipo. A possível causa para o deslocamento horizontal foi a falta de nivelamento da chapa de topo do pilarete que causou o surgimento de uma força horizontal. Como medida de segurança, descarregou-se o protótipo e efetuaram-se as correções necessárias para o prosseguimento do ensaio.

3.4 – Resultados obtidos

A fim de facilitar a disposição e a leitura dos dados nos gráficos, estabeleceu-se uma nomenclatura para o posicionamento dos extensômetros no protótipo, conforme se vê na FIG.3.19.

FIGURA 3.19- Convenção adotada para o posicionamento dos extensômetros

As FIG. 3.20 a FIG.3.22 apresentam a relação entre a força aplicada e o deslocamento vertical dos protótipos 1, 3 e 2, respectivamente. Apesar de ter ocorrido o rompimento da solda entre a mesa comprimida e a alma, o protótipo 1 atingiu uma força máxima aplicada de 338 kN, enquanto que os protótipos 2 e 3 atingiram as forças máximas de 320 kN e 336 kN, respectivamente.

FIGURA 3.20 – Relação entre a força total aplicada e o deslocamento vertical (Protótipo 1)

FIGURA 3.21 – Relação entre a força total aplicada e o deslocamento vertical (Protótipo 3)

FIGURA 3.22 – Relação entre a força total aplicada e o deslocamento vertical (Protótipo 2)

Analisando os gráficos acima, percebem-se três fases distintas ao longo do ensaio:

• a primeira, entre 0 kN e 120 kN, caracterizada por um comportamento linear da estrutura e deslocamentos verticais em torno de 5 mm;

- a segunda, entre 120 kN e 280 kN, caracterizada por um comportamento não-linear, com o aumento da abertura das fissuras do concreto e perda de rigidez da estrutura, o que conduz a um deslocamento vertical próximo a 20 mm;
- a terceira, com força acima de 280 kN, caracterizada por um aumento da deformação da ligação e do deslocamento vertical do protótipo devido ao escoamento das barras de armadura. Ocorrem deformações na chapa de topo entre a mesa tracionada e a primeira linha de parafusos, fazendo com que a mesma colabore para a resistência da ligação mista.

A relação entre o momento fletor solicitante e a rotação da ligação mista (valores semiempíricos) para cada um dos protótipos é mostrada nas FIG.3.23 a FIG.3.25, sendo que os procedimentos utilizados para a obtenção desta curva são apresentados no anexo B. Analisando as FIG.3.23 a FIG.3.25, percebe-se que o momento fletor máximo da ligação mista situa-se em torno de 40000 kN·cm para os protótipos 1 e 3 e em torno de 38000 kN·cm para o protótipo 2, com capacidade última de rotação da ligação mista de aproximadamente 16,0 mrad.

FIGURA 3.23 – Momento fletor solicitante versus rotação da ligação mista (Protótipo 1)

FIGURA 3.24 – Momento fletor solicitante versus rotação da ligação mista (Protótipo 3)

FIGURA 3.25 – Momento fletor solicitante versus rotação da ligação mista (Protótipo 2)

Conforme comentado anteriormente, durante a realização do ensaio do protótipo 2 houve um deslocamento horizontal que resultou em descarregamento e novo carregamento. Na FIG.3.22, observa-se que a rigidez da estrutura no recarregamento é ligeiramente inferior à rigidez inicial e que devido ao fato de o concreto estar fissurado, tem-se um comportamento

ANÁLISE EXPERIMENTAL

linear da estrutura até se atingir a força total aplicada anteriormente, em torno de 285 kN. Um ponto interessante a ser comentado é o pequeno patamar de escoamento existente no gráfico do protótipo 2, próximo a 290 kN. Como foram retirados os parafusos da linha mais próxima à mesa tracionada, foi necessária uma maior deformação da chapa de topo para mobilizar os parafusos da linha seguinte e se ter uma retomada no crescimento do carregamento.

A alteração da espessura da mesa da viga do protótipo 3 para 8,0 mm não resultou em mudança no comportamento da ligação mista e não ocorreram deformações localizadas na mesa devido à presença dos conectores de cisalhamento e na alma senoidal. Porém, o número excessivo de conectores de cisalhamento utilizado nos protótipos resultou em uma distribuição de esforços entre eles e uma pequena deformação dos mesmos (ver FIG.3.26), não permitindo afirmar que não há problema de efeitos localizados ao se utilizar menores espessuras de mesa, como 6,3 mm e 8,0 mm, com a alma senoidal.

FIGURA 3.26 - Conectores de cisalhamento do Protótipo 3 após o ensaio

Apresenta-se nas FIG.3.27 a FIG.3.29 a relação entre a força total aplicada e a deformação da barra de armadura (média dos valores fornecidos pelos extensômetros) para os protótipos 1, 3 e 2, respectivamente. Em todos os protótipos, percebe-se uma modificação na rigidez da barra na região do extensômetro devido à ocorrência de fissuras.

FIGURA 3.27 – Relação entre a força total aplicada e deformação da barra de armadura (Protótipo 1)

FIGURA 3.28 – Relação entre a força total aplicada e deformação da barra de armadura (Protótipo 3)

FIGURA 3.29 – Relação entre a força total aplicada e deformação da barra de armadura (Protótipo 2)

As FIG.3.30 a FIG.3.32 mostram a relação entre a força total aplicada e o deslocamento da chapa de topo na região tracionada. Os deslocamentos são inferiores a 1,0 mm antes do escoamento das barras de armadura, podendo-se até esse momento desprezar a contribuição da chapa de topo para a resistência da ligação mista. Com o início do escoamento da armadura, por volta de 290 kN, tem-se o aumento significativo dos deslocamentos na chapa, principalmente no lado da ligação onde ocorreram as maiores deformações da alma senoidal.

FIGURA 3.30 – Relação entre a força total aplicada e o deslocamento da chapa de topo na região tracionada (Protótipo 1)

FIGURA 3.31 – Relação entre a força total aplicada e o deslocamento da chapa de topo na região tracionada (Protótipo 3)

FIGURA 3.32 – Relação entre a força total aplicada e o deslocamento da chapa de topo na região tracionada (Protótipo 2)

Observando as FIG. 3.30 a FIG. 3.32, constata-se que os deslocamentos da chapa de topo do protótipo 2 foram maiores do que os dos demais protótipos, evidenciando mais uma vez o

aumento da ductilidade da ligação com a utilização de parafusos mais distantes da mesa tracionada. A contribuição da chapa de topo para a resistência total da ligação mista foi de 15% para o protótipo 1 e 13% para os protótipos 2 e 3.

Uma das características do perfil de alma senoidal é a pequena rigidez longitudinal da alma e a sua incapacidade de transmitir esforços axiais. Os extensômetros colados ao longo da alma da viga descrevem justamente esse comportamento, conforme se vê nas FIG.3.33 a FIG.3.35, cujas deformações correspondem à média dos valores fornecidos pelos extensômetros. As deformações da alma na direção longitudinal da viga são inferiores a 200 x 10^{-6} até o momento em que se inicia a deformaçõe da alma após o escoamento das barras de armadura.

⁽b)

FIGURA 3.33 – Relação entre a força total aplicada e a deformação axial da alma para o Protótipo 1 (*a*) viga esquerda à ligação (*b*) viga direita à ligação

⁽a)

FIGURA 3.34 – Relação entre a força total aplicada e a deformação axial da alma para o Protótipo 3 (*a*) viga esquerda à ligação (*b*) viga direita à ligação

(b)

FIGURA 3.35 – Relação entre a força total aplicada e a deformação axial da alma para o Protótipo 2 (*a*) Viga esquerda à ligação (*b*) Viga direita à ligação

Em todos os ensaios realizados, atingiu-se o escoamento da mesa comprimida na região próxima aos extensômetros, conforme se vê nas FIG.3.36 a FIG.3.38. A deformação
apresentada nessas figuras corresponde à média dos valores obtidos por meio dos extensômetros posicionados em cada uma das faces da mesa comprimida.

FIGURA 3.36 – Relação entre a força total aplicada e a deformação da mesa comprimida (Protótipo 1)

FIGURA 3.37 – Relação entre a força total aplicada e a deformação da mesa comprimida (Protótipo 3)

FIGURA 3.38 – Relação entre a força total aplicada e a deformação da mesa comprimida (Protótipo 2)

Ao se estimar a força total atuante na mesa, constata-se que a mesma é inferior à força necessária para causar o seu escoamento, porém não se está levando em consideração as tensões residuais que podem ser desfavoráveis nessa região. Portanto, não é possível concluir se houve o escoamento de toda a seção da mesa comprimida nos protótipos ensaiados.

4

ANÁLISE NUMÉRICA

4.1 – Introdução

Este capítulo tem por objetivo apresentar a análise numérica dos protótipos de vigas mistas biapoiadas ensaiados por MOTAK & MACHACEK (2004) e dos protótipos de ligação mista com perfil de alma senoidal ensaiados no LAEES da EEUFMG (ver Capítulo 3). Os modelos numéricos desenvolvidos foram elaborados com base em elementos pré-definidos, disponibilizados na biblioteca interna do programa ANSYS[®] versão 10.0. Para a concepção do modelo numérico, considerou-se como referência o trabalho desenvolvido por QUEIROZ (2007), que apresentou em seu trabalho um modelo numérico simples para as vigas mistas biapoiadas com perfil de alma plana, porém eficiente e com excelentes resultados. Algumas alterações foram feitas com objetivo de melhorar o modelamento do perfil de alma senoidal e possibilitar com isso a obtenção de melhores resultados para o seu comportamento.

4.2 – Viga mista biapoiada – ensaios de Motak e Machacek

4.2.1 – Tipos de elementos utilizados

Para modelar o perfil de alma senoidal foram utilizados elementos de casca *Shell 181*, com seis graus de liberdade por nó, sendo três translações e três rotações. Elementos retangulares de quatro nós foram usados quase sempre, exceto na mesa, na junção com a alma senoidal, onde foram necessários elementos triangulares de três nós. O modelo adotado para o perfil metálico foi desenvolvido por SOUZA (2006) em sua dissertação de mestrado e adaptado para que permitisse a utilização de qualquer altura de viga, conforme ilustra a FIG.4.1 para uma malha típica.

FIGURA 4.1 – Malha típica de elementos finitos para o perfil metálico

A parte comprimida da laje de concreto e os componentes que a ligam ao perfil metálico foram modelados por meio do elemento de barra *Link8*, com três graus de liberdade por nó, sendo duas translações e uma rotação. Esse elemento é muito utilizado para o modelamento de estruturas treliçadas, pois trabalha com forças axiais de tração e compressão.

Os conectores de cisalhamento foram representados por meio do elemento *Combin39*, que pode ser ajustado para ser um elemento unidirecional capaz de reproduzir a curva que representa a relação entre a força aplicada e o deslizamento entre a laje de concreto e o perfil metálico, obtida por meio dos ensaios de *push test* dos conectores.

4.2.2 - Definição da malha de elementos finitos e vinculações nodais

Com o objetivo de diminuir o número de elementos e consequentemente reduzir o tempo de processamento computacional, fez-se uso da simetria, modelando-se apenas a metade de cada um dos protótipos. É necessário salientar que o comprimento dos modelos numéricos não é exatamente igual à metade do comprimento dos protótipos ensaiados porque, no modelamento do perfil metálico, o seu comprimento é função do número inteiro de ondas da alma mais a metade de uma onda para se ter a condição de simetria. Conforme se vê na TAB.4.1, a diferença entre o comprimento do modelo numérico e a metade do protótipo ensaiado é pequena e não compromete os resultados.

TABELA 4.1 – Variação entre o comprimento do modelo numérico e a metade dos protótipos ensaiados.

	Metade do comprimento do	Comprimento do modelo	Variação
	protótipo ensaiado em [mm]	numérico [mm]	(%)
Protótipo 1	3750	3681,25	1,8
Protótipo 2	3750	3681,25	1,8
Protótipo 3	2250	2131,25	5,3

A espessura da região comprimida da laje (*a*) foi determinada por meio dos procedimentos para o cálculo do momento fletor resistente de vigas mistas com perfil de alma plana, porém desprezando-se a contribuição da alma senoidal para a resistência da viga mista. O elemento de barra *Link8* foi posicionado no centro geométrico da área comprimida da laje e suas propriedades são referentes a essa região.

Montantes e diagonais com grande rigidez axial, também com o elemento de barra *Link8*, transmitem os esforços do perfil metálico para os conectores de cisalhamento e, por sua vez, para a laje de concreto. A quantidade desses elementos foi considerada de acordo com o número de conectores de cisalhamento utilizados nos protótipos 1 e 3; no protótipo 2, repetiuse o número de montantes do protótipo 1 para evitar diagonais com pequenos ângulos de inclinação. Salienta-se que os elementos de barra dos montantes e laje comprimida não compartilham o mesmo nó, apesar de serem coincidentes. Os deslocamentos relativos entre esses nós foram relacionados da seguinte maneira:

- utilização do comando *Couple* do ANSYS[®] de modo que na direção vertical (eixo *y*) os nós tenham o mesmo deslocamento;
- na direção longitudinal (eixo x), os nós foram ligados pelo elemento *Combin39* que representa o conector de cisalhamento.

A FIG. 4.2 apresenta um corte esquemático dos protótipos ensaiados por MACHACEK & MOTAK (2006). Analisando essa figura, percebe-se um problema de posicionamento dos conectores nos três protótipos ensaiados. Era intenção dos autores que todos os conectores fossem capazes de colaborar na resistência à força de cisalhamento longitudinal na interface entre o perfil de aço e a laje de concreto, haja vista os graus de interação da viga mista reportados nas publicações. Entretanto, sabe-se que conectores posicionados em região de cortante nulo não são mobilizados, pois praticamente não se deformam – não devem, portanto, ser levados em conta no cálculo da viga. Assim sendo, os valores corretos do grau de interação dos protótipos 1, 2 e 3 são, respectivamente, 0,95, 0,37 e 0,51 e não 1,17, 0,44 e 0,66, como publicado.

FIGURA 4.2 – Corte Esquemático dos protótipos ensaiados por MACHACEK E MOTAK (2006)

Outro ponto que deve ser comentado é a forma de aplicação do carregamento, diretamente sobre a laje de concreto. Ficou claro, ao se fazerem os cálculos, que as forças aplicadas conduziram ao aparecimento de forças de atrito na interface laje-perfil, capazes de resistir a uma parcela não desprezável do cisalhamento longitudinal. Isso pode explicar porque as vigas dos ensaios do protótipo 1 e 2 foram capazes de atingir forças próximas às esperadas, respectivamente 100% e 95% dos valores teóricos previstos.

Essas forças de atrito são consideradas no modelo por meio do aumento do número de conectores de cisalhamento. Adotando-se, do lado da segurança, um coeficiente de atrito

elevado igual a 0,3, tem-se uma força de atrito igual a 57 kN para o protótipo 1, 46 kN para o protótipo 2 e 149 kN para o protótipo 3; como a força resistente do conector de cisalhamento *Stripcon* é igual a 147 kN, acrescentou-se pelo menos um conector em todos os modelos para reproduzir a influência da força de atrito.

A FIG.4.3 apresenta cada um dos componentes do modelo da viga mista com perfil de alma senoidal, enquanto a FIG.4.4 apresenta o modelo numérico do protótipo 1.

FIGURA 4.3 – Componentes do modelo de viga mista com perfil de alma senoidal.

FIGURA 4.4 - Modelo numérico do protótipo 1

Como a laje impede a flambagem lateral com torção do perfil metálico, os nós dos elementos da laje de concreto, dos montantes e diagonais e dos elementos da alma senoidal em contato com a mesa superior foram impedidos de se deslocar na direção do eixo z, conforme se vê na FIG.4.5.

FIGURA 4.6 – Vinculações no apoio, detalhe (a), e condição de simetria, detalhe (b).

4.2.3 – Relações constitutivas utilizadas

A relação constitutiva utilizada para o aço das mesas e da alma do perfil metálico segue o critério de plastificação de *Von Mises*, sendo representada por meio da curva tensão *versus* deformação, com base em um modelo elasto-plástico perfeito, conforme esquematizado na FIG.4.7. Adotou-se um módulo tangente no regime plástico igual a um milésimo do módulo de elasticidade ($E_T = E/1000$), para se evitar problemas de convergência do modelo numérico.

FIGURA 4.7 – Modelo constitutivo adotado para o aço das mesas e da alma do perfil metálico

Para o concreto comprimido foi adotado um modelo constitutivo elasto-plástico multilinear com encruamento isotrópico e critério de plastificação de *Von Mises*. A curva tensão *versus* deformação para esse material baseou-se no diagrama tensão-deformação idealizado presente na ABNT NBR 6118: 2003, conforme se vê na FIG.4.8.

FIGURA 4.8 – Modelo constitutivo para o concreto comprimido [ABNT NBR 6118: 2003]

De acordo com a ABNT NBR 6118: 2003, para tensões de compressão menores que 50% da resistência à compressão do concreto (f_c), pode-se admitir uma relação linear entre tensões e deformações. Já CHEN & HAN (1988) estabelecem que o limite elástico para o comportamento do concreto comprimido é em torno de 30% do f_c , enquanto o EN1992-1-1: 2004 considera um limite de 40%.

Apesar de o critério de plastificação de *Von Mises* ser normalmente utilizado para materiais dúcteis, em CHEN & HAN (1988) cita-se que critérios como *Von Mises* e *Tresca* são geralmente utilizados em análises preliminares em elementos finitos para concreto sob tensões de compressão. Esse procedimento tem sido utilizado em outros trabalhos como, por exemplo, LEONEL *et al.* (2003) e QUEIROZ (2007).

Por meio de comunicação privada com o prof. *Josef Machacek*, ver anexo D, obteve-se a curva força *versus* deslizamento do conector *Stripcon*, obtida por ensaios de *push test*, mostrada na FIG.4.9.

FIGURA 4.9 - Curva Força versus Deslizamento do conector Stripcon

Os valores adotados para a resistência ao escoamento do aço, para o módulo de elasticidade e resistência à compressão do concreto foram os obtidos experimentalmente por MOTAK & MACHACEK (2004) e são apresentados no Capítulo 2.

ANÁLISE NUMÉRICA

O material dos montantes e diagonais da treliça que liga o perfil metálico à laje comprimida de concreto foi considerado trabalhando apenas no regime elástico.

Uma vez que o objetivo da análise numérica é obter o momento fletor resistente da viga mista biapoiada com perfil de alma senoidal, não há necessidade de se utilizar uma distribuição de tensões residuais nos elementos que constituem o perfil metálico.

4.2.4 – Considerações sobre a aplicação do carregamento

Apesar de as forças terem sido aplicadas sobre a laje mista nos ensaios realizados por MOTAK & MACHACEK (2004), optou-se nos modelos numéricos por aplicar as forças nos nós superiores e inferiores da alma senoidal na região correspondente aos pontos de aplicação de força, conforme se vê nas FIG.4.10 e FIG.4.11. Utilizou-se esse critério com o objetivo de se evitar concentrações de tensões nos elementos imediatamente inferiores aos pontos de aplicação da aplicação das forças.

FIGURA 4.10 – Aplicação de força nos modelos numéricos dos protótipos 1 e 2

FIGURA 4.11 - Aplicação de força no modelo numérico do protótipo 3

4.2.5 – Aspectos da análise não-linear

O carregamento foi aplicado de forma incremental, devido à não-linearidade considerada para os materiais que constituem a viga mista, com cada incremento de carga controlado por um recurso do ANSYS[®] denominado *Automatic Load Stepping*. O método utilizado para resolução do sistema não-linear foi *Newton Raphson Pleno*, caracterizado pela atualização da matriz de rigidez tangente a cada iteração. Em paralelo a esse processo foi ativado um recurso denominado *Adaptive Descent*, cujo funcionamento consiste em alternar a configuração da matriz de rigidez entre secante e tangente, caso seja identificada, respectivamente, divergência ou convergência no processo. Esse recurso se mostra bem eficiente, permitindo que os modelos atinjam maiores níveis de carregamento.

Para solução dos sistemas de equações lineares, utilizou-se o método denominado no ANSYS[®], como *Direct Sparse*, recomendado pelo mesmo pacote para problemas não-lineares, principalmente quando se tem vários tipos de elementos no mesmo modelo.

Para melhorar a convergência do modelo, foi habilitado o procedimento *Line Search*, que consiste em multiplicar o vetor de incremento de deslocamentos por um fator de valor entre 0,05 e 1,0, determinado pela minimização da energia do sistema. Habilitou-se ainda o recurso

Pivcheck que evita o processamento de um grupo de dados caso seja encontrado um valor negativo ou nulo para o resultado de uma equação.

4.2.6 – Comparação dos resultados das análises numérica e experimental

As FIG.4.12 a FIG.4.14 apresentam diagramas da força aplicada *versus* o deslocamento do meio do vão, obtidos por meio das análises numérica e experimental de cada um dos protótipos. Apresenta-se também nos diagramas, a força teórica determinada por MOTAK & MACHACEK (2004), que seria resistida pelo protótipo, conforme comentado no Capítulo 2. Uma vez que a curva do modelo numérico não apresentou um ramo descendente, a força total aplicada obtida por meio da análise numérica foi determinada da seguinte maneira: traçou-se uma reta paralela ao eixo das ordenadas, a partir do ponto da curva da análise experimental correspondente à força máxima aplicada no protótipo de viga mista; o ponto em que essa reta intercepta a curva da análise numérica corresponde à força máxima aplicada no modelo numérico. Porém, é preciso salientar que a curva a partir desse ponto, torna-se praticamente horizontal não havendo um aumento significativo da força aplicada no modelo. A TAB.4.2 apresenta a força máxima aplicada obtida por meio das análises experimental e numérica e uma comparação entre esses resultados.

FIGURA 4.12 – Força total aplicada versus deslocamento no meio do vão para o protótipo 1

FIGURA 4.13 – Força total aplicada versus deslocamento no meio do vão para o protótipo 2

FIGURA 4.14 – Força total aplicada versus deslocamento no meio do vão para o protótipo 3

	Experimental	Numérica	F_{n}
Ensaio	Força máxima	Força máxima	$\frac{\pi}{F}$
	aplicada em kN (F_e)	aplicada em kN (F_n)	r e
Protótipo 1	190,3	181,5	0,95
Protótipo 2	154,0	156,8	1,02
Protótipo 3	495,7	490,5	0,99

TABELA 4.2 – Comparação entre os resultados obtidos por meio das análises experimental e numérica.

Observa-se, face à boa correlação entre os resultados das análises experimental e numérica, que o modelo de elementos finitos, a despeito das simplificações adotadas, foi capaz de simular adequadamente os ensaios de MOTAK & MACHACEK (2004). Como não foram utilizadas tensões residuais no modelo, o início do escoamento do aço é atingido posteriormente ao ensaio, não havendo uma região de transição entre os limites elástico e plástico. Analisando as FIG.4.12 a FIG.4.14, constata-se que após se atingir a resistência ao escoamento da mesa, praticamente não há mais aumento de carga, denotando, conforme esperado, a participação desprezável da alma na resistência a tensões normais na direção axial da viga, como se vê na FIG.4.15.

FIGURA 4.15 – Distribuição de tensões normais na alma senoidal [kN/cm²]

Um ponto que merece comentário é que, diferentemente do modelo numérico de MACHACEK & MOTAK (2006), o modelo desenvolvido foi capaz de captar a flambagem da alma observada no ensaio do protótipo 3, conforme pode ser visto na FIG.4.16.

Figura 4.16 – Flambagem da alma do protótipo 3

Como foi considerada no modelo numérico somente a área comprimida da laje de concreto, esperava-se que sua rigidez fosse menor do que a rigidez do protótipo ensaiado, porém isso não foi constatado na comparação dos resultados. Dois fatores podem ser apontados como possíveis causas para esse comportamento:

- a utilização de mais conectores de cisalhamento no modelo numérico procurando simular a força de atrito, o que aumentou o nível de interação da viga mista, principalmente nos protótipos 2 e 3;
- o aumento do deslocamento relativo entre a laje mista e o perfil metálico nos protótipos ensaiados, que resultou em uma diminuição significativa da inércia da seção mista.

4.3 – Ligações mistas com perfil de alma senoidal

4.3.1 – Tipos de elementos utilizados

Utilizou-se novamente o elemento de casca *Shell 181* para modelar o perfil de alma senoidal. O mesmo elemento também foi utilizado para simular a chapa de topo, os parafusos da ligação e a alma do pilarete metálico. Nos parafusos, além do elemento *Shell 181*, foi utilizado também o elemento de contato *Contac52* para unir os nós dos elementos da cabeça do parafuso aos nós dos elementos da chapa de topo. O par de elementos *Conta173* e *Targe170* foi utilizado para representar o contato entre a chapa de topo e alma do pilarete metálico.

As barras de armadura, os montantes e diagonais foram modelados com o elemento de barra *Link8;* os conectores de cisalhamento tipo pino com cabeça foram representados por meio dos elementos *Combin39*.

4.3.2 - Definição da malha de elementos finitos e vinculações nodais

O modelo numérico para a ligação mista é similar ao modelo utilizado para os ensaios dos protótipos de vigas mistas biapoiadas com perfil de alma senoidal, exceto pela introdução dos elementos que constituem a ligação metálica. Mais uma vez, utilizou-se o recurso da simetria para diminuir o número de elementos do modelo e, com isso, reduzir o tempo de processamento. Assim como no modelo de vigas mistas biapoiadas, o comprimento do modelo numérico da ligação mista (2480 mm) não corresponde ao comprimento da metade do protótipo ensaiado (2400 mm), mas a diferença entre as medidas é pequena, aproximadamente 3,3%, e não compromete os resultados.

A malha de elementos finitos utilizada para o conjunto constituído pelo perfil metálico, chapa de topo e parafusos, baseou-se no modelo numérico desenvolvido por GONZAGA (2008) para estudar o comportamento de ligações metálicas com perfil de alma senoidal. A diferença entre o modelo proposto e o modelo de GONZAGA consiste apenas na utilização do par de elementos de contato entre a chapa de topo e a alma do pilarete metálico. A FIG. 4.17 apresenta a malha de elementos finitos para o perfil de alma senoidal e a ligação metálica.

FIGURA 4.17 – Malha de elementos finitos do perfil de alma senoidal e ligação metálica

As barras de armadura foram modeladas por meio dos elementos de barra *Link8*, paralelos ao perfil metálico, posicionados no eixo longitudinal das mesmas. Os montantes e diagonais transmitem os esforços do perfil metálico para os conectores de cisalhamento, que por sua vez transmitem os esforços para as barras de armadura. Os montantes e diagonais foram espaçados uniformemente ao longo do comprimento do perfil, mas foi respeitada a distância do primeiro conector de cisalhamento à chapa de topo medida nos protótipos ensaiados. A FIG.4.18 mostra o modelo numérico da ligação mista e apresenta cada um dos componentes listados anteriormente.

Procurou-se avaliar a influência das tensões residuais no perfil metálico, com a introdução de tensões longitudinais de compressão nas bordas e tensões de tração no centro das mesas superior e inferior. Como o comportamento do modelo não foi afetado com a introdução das tensões residuais, optou-se por não utilizá-las no processamento.

FIGURA 4.18 - Modelo numérico da ligação mista

Novamente, os nós dos elementos das barras de armadura, dos montantes e diagonais e dos elementos da alma senoidal em contato com a mesa superior foram impedidos de se deslocar na direção do eixo z. Na extremidade esquerda do perfil metálico, os nós da linha superior foram impedidos de se deslocar na direção vertical (eixo y) e o nó central da mesma linha também foi impedido de se deslocar na direção horizontal (eixo z), de acordo com a FIG.4.19.

FIGURA 4.19 - Vinculações nodais na região do apoio

ANÁLISE NUMÉRICA

Na extremidade direita do perfil, os nós da linha inferior da chapa de topo foram impedidos de se deslocar na direção longitudinal (eixo x), a mesma condição de contorno foi aplicada aos nós dos elementos do fuste dos parafusos, da extremidade da barra de armadura e aos nós de todos os elementos da alma do pilarete metálico (anteparo), conforme se vê na FIG.4.20.

FIGURA 4.20 - Vinculações nodais para a ligação metálica e barra de armadura

4.3.3 – Relações constitutivas utilizadas

A relação constitutiva utilizada para o aço das mesas, da alma senoidal e da chapa de topo, segue o modelo elasto-plástico multilinear com encruamento isotrópico e o critério de plastificação de *Von Mises*, conforme esquematizado na FIG.4.21. Adotou-se para a alma senoidal uma deformação correspondente à resistência à ruptura do aço à tração (ε_u) igual a 20%, por ser uma chapa conformada a frio, e para os demais aços uma deformação de 30%. Utilizaram-se as resistências ao escoamento (f_y) e à ruptura do aço (f_u) obtidas por meio dos ensaios dos materiais, com seus valores apresentados no Capítulo 3.

FIGURA 4.21 – Modelo constitutivo para o aço do perfil metálico e chapa de topo

O modelo constitutivo para o material dos parafusos da ligação segue o critério de plastificação de *Von Mises*, sendo representado por meio da curva tensão *versus* deformação, com base em um modelo elasto-plástico perfeito. Assim como GONZAGA (2008), admitiu-se uma resistência ao escoamento do aço do parafuso igual a 635 MPa e um módulo tangente no regime plástico igual a *E*/180.

O material dos montantes, diagonais e da alma do pilarete metálico foi considerado trabalhando apenas no regime elástico.

Para os conectores de cisalhamento tipo pino com cabeça, adotou-se a curva força *versus* deslizamento (FIG.4.22) utilizada nos modelos numéricos de QUEIROZ (2007) para reproduzir o comportamento de vigas mistas biapoiadas e semicontínuas com perfil de alma plana. O valor da força resistente nominal do conector de cisalhamento (Q_{Rk}) foi determinada por meio dos procedimentos apresentados na ABNT NBR 8800: 2008.

FIGURA 4.22 – Curva Força *versus* Deslizamento para o conector tipo pino com cabeça [QUEIROZ 2007]

A relação constitutiva utilizada para o aço das barras de armadura segue o modelo elastoplástico multilinear com encruamento isotrópico e critério de plastificação de *Von Mises*. Conforme comentado no Capítulo 2, ao se avaliar a capacidade de deformação das barras de armadura, deve-se considerar a influência do concreto que as envolve, pois há uma alteração no comportamento da barra tracionada, caracterizado por um aumento da sua rigidez (*tension stiffening*). Decidiu-se, portanto, utilizar o diagrama tensão *versus* deformação da armadura envolvida pelo concreto, presente na ABNT NBR 8800: 2008 e apresentado na FIG.4.23(*a*), adotando-se a deformação correspondente à resistência máxima à tração da armadura isolada (ε_{su}) igual a 0,12. Ao se definir os pontos do diagrama, constatou-se o seguinte problema: a deformação (ε_l) correspondente à tensão em que se formam as primeiras fissuras no concreto (σ_{srl}), apresentava sempre um valor negativo. Ao se consultar o CEB-FIP: 1990, verificou-se que o patamar horizontal do diagrama da barra envolvida pelo concreto é 0,6 $\Delta \varepsilon_{sr}$ e não $\Delta \varepsilon_{sr}$ como indicado na ABNT NBR 8800: 2008 (FIG.4.23 (*b*)). Salienta-se, porém que a diferença encontrada entre os diagramas não compromete o cálculo da deformação da armadura envolvida pelo concreto, correspondente ao limite de resistência do aço das barras.

FIGURA 4.23 – Diagramas do comportamento idealizado tensão *versus* deformação da armadura isolada e da armadura envolvida pelo concreto: (*a*) ABNT NBR 8800: 2008 e (*b*) CEB-FIP: 1990

Utilizando diagrama tensão versus deformação conforme apresentado 0 na ABNT NBR 8800: 2008, porém corrigindo-se o patamar horizontal para $0.6\Delta\varepsilon_{sr}$, percebeu-se que a rigidez inicial do modelo numérico era maior do que a rigidez inicial do protótipo ensaiado. Constatou-se que o valor calculado para a tensão na armadura em que ocorrem as primeiras fissuras no concreto (σ_{srl} = 293 MPa) era maior do que o valor obtido em ensaio $(\sigma_{srl} = 170 \text{ MPa})$ – esse valor foi estimado por meio dos diagramas das FIG.4.27 a FIG.4.29. É sabido que o cálculo de σ_{srl} corresponde a um limite superior e que esse valor fornece, do lado da segurança, a menor deformação última para a armadura envolvida pelo concreto (ε_{smu}) . Assim sendo, corrigiram-se os pontos do diagrama tensão versus deformação do aço da armadura de modo que se tenha o valor de σ_{srl} em torno de 170 MPa.

4.3.4 - Considerações sobre a aplicação do carregamento

Optou-se, inicialmente, pela aplicação de incrementos de deslocamentos ao modelo numérico, aplicados nos nós dos parafusos em contato com a chapa de topo. Porém, a utilização de incrementos de deslocamentos dificultava a automatização dos processamentos dos modelos numéricos durante a análise paramétrica. Resolveu-se, então, aplicar ao modelo incrementos de cargas, conforme se vê na FIG.4.24, sendo os passos de carga controlados automaticamente pelo ANSYS[®]. O resultado, no entanto, não foi satisfatório porque logo após o escoamento do aço da armadura ocorria a interrupção do processamento. A solução

ANÁLISE NUMÉRICA

encontrada foi o controle dos passos de carga por meio de uma progressão geométrica em que é arbitrado o incremento inicial e o número dos passos de carga.

FIGURA 4.24 - Aplicação das forças no modelo numérico

4.3.5 – Análise dos resultados do modelo numérico e comparação com os resultados dos ensaios

As curvas momento *versus* rotação obtidas por meio das análises numérica e experimental é apresentada nas FIG.4.25 a FIG.4.27 para os protótipos 1, 2 e 3 da ligação mista, respectivamente. Uma vez que a curva do modelo numérico não apresentou um ramo descendente, o momento fletor resistente máximo obtido por meio da análise numérica foi determinado da seguinte maneira: traçou-se uma reta paralela ao eixo das ordenadas, a partir do ponto da curva da análise experimental correspondente ao momento fletor resistente máximo do protótipo da ligação mista; o ponto em que essa reta intercepta a curva da análise numérica corresponde ao momento fletor resistente máximo do modelo numérico. A TAB.4.3 apresenta o momento fletor resistente máximo obtido por meio das análises experimental e numérica e uma comparação entre esses resultados.

FIGURA 4.25 - Curva momento versus rotação para o protótipo 1

FIGURA 4.26 - Curva momento versus rotação para o protótipo 2

FIGURA 4.27 - Curva momento versus rotação para o protótipo 3

TABELA 4.3 – Comparação entre os resultados obtidos por meio das análises experimental e numérica.

	Experimental	Numérica	$\frac{M_n}{M_e}$	
Ensaio	Momento fletor resistente máximo	Momento fletor resistente máximo		
	em kN·cm (M_e)	em kN·cm (M_n)		
Protótipo 1	40560	40400	1,00	
Protótipo 2	38280	36200	0,95	
Protótipo 3	40320	39300	0,97	

Nas FIG.4.28 e FIG.4.29, observam-se a formação das charneiras plásticas na chapa de topo, junto à alma, próximo à primeira linha de parafusos e na junção da chapa com a mesa do perfil – compare-se com o que se observou nos ensaios, evidenciado pelas linhas de *Lüder*.

FIGURA 4.28 – Charneiras plásticas na chapa de topo do protótipo 1 [kN/cm²]

FIGURA 4.29 - Charneiras plásticas na chapa de topo do protótipo 2 [kN/cm²]

Determinou-se, por meio dos modelos numéricos, a força resistente em cada uma das linhas de parafusos e, conforme se esperava, somente a primeira linha colabora para a resistência da ligação mista após o escoamento do aço das barras de armadura. A TAB.4.4 apresenta a força nos parafusos, o efeito de alavanca e a resultante de forças na primeira linha de parafusos em cada um dos modelos numéricos.

Modelos	Força nos parafusos	Efeito de alavanca	Resultante de forças		
	[kN]	[kN]	na primeira linha [kN]		
Protótipo 1	156	35	121		
Protótipo 2	106	35	71		
Protótipo 3	157	36	121		

TABELA 4.4 – Forças atuantes na primeira linha de parafusos dos modelos numéricos

A TAB.4.5 apresenta uma comparação entre a resultante de forças na primeira linha de parafusos obtida por meio dos modelos numéricos e pelo modelo de cálculo ("Equivalent T-Stubs") do EN 1993-1-8: 2005 – ver item 2.4.4.3 do Capítulo 2. Dentre as diversas possibilidades de formação de charneiras plásticas na ligação, a de menor resistência apresenta comprimento equivalente no modelo do "T-Stub" (L_{eq}) igual a $4m+1,25e_x$ (protótipos 1 e 3) e $0,5b_p$ (protótipo 2), onde *m* e e_x são a distância do furo ao centro da alma e à borda, respectivamente, e b_p é a largura da chapa de topo [SCI 207 (1997)].

TABELA 4.5 - Comparação da resultante de forças atuante na primeira linha de parafusos

Madalas	Modelo numérico – MEF	("Equivalent T-Stubs") do				
widdelos	[kN]	EN 1993-1-8: 2005 [kN]				
Protótipo 1	121	188				
Protótipo 2	71	66				
Protótipo 3	121	188				

Observando a TAB.4.5, constata-se que a força nos parafusos obtida nos modelos numéricos dos protótipos 1 e 3 é inferior ao valor calculado por meio do modelo apresentado pelo SCI 207 (1997). Quando a linha de parafusos está próxima à mesa tracionada (caso dos protótipos 1 e 3), a alma senoidal não é capaz de colaborar para o completo desenvolvimento das charneiras plásticas na chapa de topo devido à sua distorção, que impede a planificação das ondas próximas à ligação. Vale a pena lembrar que no estudo feito por GONZAGA [GONZAGA (2008)], a força atuante nos parafusos aumentava à medida em que ocorriam as planificações da alma senoidal próxima à ligação. No caso do protótipo 2, como a primeira linha de parafusos está mais distante da mesa tracionada, sua influência na formação das charneiras plásticas passa a ser muito menor. Como a alma também não consegue oferecer

ANÁLISE NUMÉRICA

uma contenção efetiva, a charneira plástica desenvolvida se aproximou mais do comprimento equivalente no modelo do "T-Stub", que considera apenas a largura da chapa de topo.

A FIG.4.30 apresenta a tensão de cisalhamento na alma do protótipo 1, onde percebe-se que, apesar da tensão na alma devido à força cortante estar em torno de 13 kN/cm², tem-se uma região da alma próxima à ligação onde a tensão de cisalhamento excede esse valor. Percebe-se também que há uma inversão da tensão de cisalhamento em uma região da alma compreendida entre a primeira linha de parafusos e a mesa tracionada.

FIGURA 4.30 – Tensão de cisalhamento na alma do protótipo 1 [kN/cm²]

Constatou-se, na direção vertical (eixo y), o desenvolvimento de tensões de compressão e tração na alma do perfil, conforme se vê na FIG.4.31(*a*). Devido à combinação desse estado de tensões normal e de cisalhamento, a tensão de *Von Mises* na alma do perfil atingiu a resistência ao escoamento do aço na região próxima à ligação, de acordo com a FIG.4.31(*b*).

Figura 4.31 – Tensões na alma do protótipo 1: (*a*) tensão normal na direção do eixo *y*; (*b*) tensão de *Von Mises* [kN/cm²]

Devido à complexidade do estado de deformações na alma senoidal e às limitações do programa de elementos finitos utilizado, não foi possível o desenvolvimento pleno do campo de tração, conforme se vê na FIG.4.32. Uma vez que o campo de tração se mostrou incipiente, a flambagem da mesa comprimida também não se desenvolveu completamente, mas foi observada no modelo numérico, como apresentado na FIG.4.33.

Figura 4.32 - Desenvolvimento parcial do campo de tração na alma

ANÁLISE NUMÉRICA

Figura 4.33 – Início da flambagem da mesa comprimida

Como se pode notar, os resultados do modelo numérico obtiveram um boa concordância com os resultados experimentais, demonstrando sua capacidade de simular adequadamente o comportamento dos protótipos, a despeito das limitações e das simplificações adotadas.

5

ESTUDO PARAMÉTRICO

5.1 – Introdução

Com a calibração do modelo numérico das vigas mistas biapoiadas por meio dos ensaios realizados por MOTAK E MACHACEK (2004) e a calibração do modelo numérico da ligação mista com perfil de alma senoidal por meio dos ensaios realizados no LAEES da Escola de Engenharia da UFMG, realizaram-se estudos paramétricos para as vigas mistas biapoiadas e para a ligação mista com perfil de alma senoidal. Esses estudos restringiram-se aos perfis de alma senoidal fabricados atualmente no Brasil, cujas dimensões e limitações foram apresentadas no Capítulo 1. Procuraram-se avaliar as situações onde se acredita que as vigas e as ligações mistas com perfil de alma senoidal serão mais utilizadas na prática.

Com o objetivo de automatizar o estudo paramétrico, foi desenvolvido um programa que, por meio de uma simples entrada de dados, gera o arquivo texto (mais conhecido como *log*) com a definição da malha de elementos finitos, das vinculações nodais, dos carregamentos e dos parâmetros de processamento do modelo numérico para o programa ANSYS[®]. A entrada de dados pode ser montada digitando-se os valores em uma tela do programa ou por meio da leitura de um arquivo do EXCEL[®] com os dados de todos os modelos a serem gerados. A FIG.5.1 mostra a tela do programa, chamado de *GeraAnsys*, onde se vê os campos para a

entrada de dados como a geometria, as propriedades dos materiais e o número de passos de carga.

E:\	Modificar diretório de trabalho Gerar resumo dos resultados
\$2,0°	
Características da viga metálica L (comp. viga) 248 cm E (aço) 20000 kN/cm² Altura da viga 100 cm E (tangente) 20 kN/cm² Tw (esp. alma) 0.2 cm Fy/Fu (mesa) 35 45 kN/cm² Bf (largura mesa) 15 cm Fy/Fu (alma) 30 41 kN/cm² Tf (esp. MS) 1.25 cm Poison (aço) 0.3 Tfi (esp. MI) 1.25 cm	Parâmetros para análise da flambagem lateral por torção Temperatura (pos) 40 *c M. elástico 10000 kN.cm Temperatura (neg) 60 *c M. plástico 10000 kN.cm Nº de iterações 150 Inperfeição : L / 10000 cm Nº passos de carga 150 Modo flambagem 1
Características da viga mista	┌─ Tipo de arquivo a ser gerado
Bc (largura laje) 250 cm ETA 1 Ht (altura laje) 14 cm Tp (chapa topo) 1.9 cm Hf (altura deck) 7.5 cm ATREL 1000 cm ² Fck (concreto) 2 kN/cm ² He (alma) 1 1.325 cm Poison (concreto) 0.16 Momento (VM) 53530.7 kN.cm	 Perfis de alma plana Análise estática Análise plástica Análise plástica Análise de autovalor Considerar tensões residuais Pesquisar Temperaturas Ler dados dos arquivos Apagar arquivos de resultados Apagar arquivos de resultados Viga Mista Ligação de Topo
Características da chapa de topo e dos parafusos da ligação	
Np (n³ parafs)9Area (armadura)7.362cm²Dp (diam. parafs)1.905cmE (armadura)21000kN/cm²Bch (larg.chapa)24.0cmFy/Fu (armadura)5060kN/cm²Tch (esp.chapa)0.8cmH (armadura)10cmGab (gabarito)12.0cmTch (anteparo)1.9cmDef (entre furos)7.5cmDfb (furo a borda)6.0cmcm	✓ Gerar 1ª linha de parafusos Nº Passos 20 ✓ Gerar furos internos % a1 25 ✓ Gerar parafusos Razão 0.750810107219967 ✓ Gerar anteparo ✓ Gerar antéparo ✓ Gerar passos de carga automaticamente

FIGURA 5.1 – Tela para entrada de dados do programa GeraAnsys

5.2 – Vigas mistas biapoiadas com perfil de alma senoidal

O estudo paramétrico concentrou-se na obtenção do momento fletor resistente das vigas mistas biapoiadas com perfil de alma senoidal. Não se avaliaram os deslocamentos devido à necessidade da realização de ensaios em escala real para se conhecer mais precisamente a influência da deformação por cisalhamento no comportamento da viga mista e também pela própria limitação do modelo numérico, que possui uma inércia menor do que a inércia teórica da viga mista. Acredita-se, porém, que os procedimentos apresentados por MOTAK & MACHACEK (2004) no Capítulo 2 são uma boa previsão para a determinação de flechas em vigas mistas com perfil de alma senoidal.

Foram processados 148 casos onde se variaram a altura da seção, a largura e a espessura das mesas, o vão, inclusive a relação L/d_t , da viga mista (onde d_t é altura total incluindo a espessura da laje), a espessura (inclusive a altura da fôrma de aço incorporada) e a largura efetiva da laje, assim como a resistência à compressão do concreto. Utilizaram-se apenas cargas uniformemente distribuídas ao longo do vão, a resistência ao escoamento do aço das mesas do perfil metálico foi tomada igual 350 MPa e do aço da alma igual a 300 MPa e considerou-se somente a interação completa para as vigas mistas. Nota-se que foram processados perfis de aço duplamente simétricos e monossimétricos. Em todos os casos processados, a força cortante solicitante é menor do que a força cortante resistente nominal do perfil de alma senoidal.

A TAB.5.1 apresenta os casos processados e os seus respectivos momentos fletores resistentes nominais, na qual d é a altura do perfil metálico, b_f é a largura da mesa do perfil, t_{fs} é a espessura da mesa superior, t_{fi} é a espessura da mesa inferior, t_w é a espessura da alma, h_f é a altura da fôrma de aço, h_t é a altura total da laje mista, L é o vão teórico do modelo, b_c é a largura colaborante da laje, f_{ck} é a resistência à compressão do concreto e M_{Rk} é o momento fletor resistente nominal do modelo numérico.

Caso	d [mm]	<i>b</i> _{<i>f</i>} [mm]	<i>t_{fs}</i> [mm]	<i>t_{fi}</i> [mm]	<i>t</i> _w [mm]	<i>h_f</i> [mm]	<i>h</i> _t [mm]	L/d_t	<i>L / 2</i> [mm]	Relação b _c / L	<i>b</i> _{<i>c</i>} [mm]	f_{ck} [kN/cm ²]	M _{<i>Rk</i>} [kNcm]
1	600	150	8,00	8,00	2,00	75	150	20	7440	L/6	2480	2,00	37910
2	600	150	8,00	12,50	2,00	75	150	20	7440	L/6	2480	2,00	55247
3	600	150	8,00	19,00	2,00	75	150	20	7440	L/6	2480	2,00	80024
4	600	150	12,50	12,50	2,00	75	150	20	7440	L/6	2480	2,00	58422
5	600	150	12,50	19,00	2,00	75	150	20	7440	L/6	2480	2,00	83665
6	600	150	8,00	8,00	2,00	75	180	20	7750	L/6	2583	2,00	40536
7	600	150	8,00	12,50	2,00	75	180	20	7750	L/6	2583	2,00	58667
8	600	150	8,00	19,00	2,00	75	180	20	7750	L/6	2583	2,00	85000
9	600	150	12,50	12,50	2,00	75	180	20	7750	L/6	2583	2,00	62288
10	600	150	12,50	19,00	2,00	75	180	20	7750	L/6	2583	2,00	88273
11	600	150	8,00	8,00	2,00	50	100	20	6975	L/6	2325	2,00	32882
12	600	150	8,00	12,50	2,00	50	100	20	6975	L/6	2325	2,00	48772
13	600	150	8,00	19,00	2,00	50	100	20	6975	L/6	2325	2,00	70452
14	600	150	12,50	12,50	2,00	50	100	20	6975	L/6	2325	2,00	50335
15	600	150	12,50	19,00	2,00	50	100	20	6975	L/6	2325	2,00	70912

TABELA 5.1 – Casos da parametrização para a viga mista com perfil de alma senoidal

continua

Caso	<i>d</i> [mm]	<i>b_f</i> [mm]	t _{fs} [mm]	t _{fi} [mm]	<i>t</i> _w [mm]	<i>h_f</i> [mm]	h_t [mm]	L/d_t	<i>L / 2</i> [mm]	Relação b _c / L	<i>b</i> _c [mm]	f_{ck} [kN/cm ²]	M _{<i>Rk</i>} [kNcm]
16	600	200	8,00	8,00	2,00	75	150	20	7440	L/6	2480	2,00	49739
17	600	200	8,00	12,50	2,00	75	150	20	7440	L/6	2480	2,00	72631
18	600	200	8,00	19,00	3,00	75	150	20	7440	L/6	2480	2,00	105996
19	600	200	12,50	12,50	2,00	75	150	20	7440	L/6	2480	2,00	76497
20	600	200	12,50	19,00	3,00	75	150	20	7440	L/6	2480	2,00	110727
21	600	200	8,00	8,00	2,00	75	180	20	7750	L/6	2583	2,00	53157
22	600	200	8,00	12,50	2,00	75	180	20	7750	L/6	2583	2,00	77033
23	600	200	8,00	19,00	3,00	75	180	20	7750	L/6	2583	2,00	112973
24	600	200	12,50	12,50	2,00	75	180	20	7750	L/6	2583	2,00	81885
25	600	200	12,50	19,00	3,00	75	180	20	7750	L/6	2583	2,00	117866
26	600	200	8,00	8,00	2,00	50	100	20	6975	L/6	2325	2,00	43155
27	600	200	8,00	12,50	2,00	50	100	20	6975	L/6	2325	2,00	63698
28	600	200	8,00	19,00	3,00	50	100	20	6975	L/6	2325	2,00	93411
29	600	200	12,50	12,50	3,00	50	100	20	6975	L/6	2325	2,00	67498
30	600	200	12,50	19,00	3,00	50	100	20	6975	L/6	2325	2,00	95110
31	800	150	8,00	8,00	2,00	75	150	12	5580	L/4	2790	2,00	46144
32	800	150	8,00	12,50	2,00	75	150	12	5580	L/4	2790	2,00	67939
33	800	150	8,00	19,00	3,00	75	150	12	5580	L/4	2790	2,00	101276
34	800	150	12,50	12,50	2,00	75	150	12	5580	L/4	2790	2,00	71758
35	800	150	12,50	19,00	3,00	75	150	12	5580	L/4	2790	2,00	104531
36	800	150	19,00	19,00	3,00	75	150	12	5580	L/4	2790	2,00	109622
37	800	150	8,00	8,00	2,00	75	180	12	5735	L/4	2868	2,00	48633
38	800	150	8,00	12,50	2,00	75	180	12	5735	L/4	2868	2,00	71811
39	800	150	8,00	19,00	3,00	75	180	12	5735	L/4	2868	2,00	105742
40	800	150	12,50	12,50	2,00	75	180	12	5735	L/4	2868	2,00	75865
41	800	150	12,50	19,00	3,00	75	180	12	5735	L/4	2868	2,00	110268
42	800	150	19,00	19,00	3,00	75	180	12	5735	L/4	2868	2,00	115576
43	800	150	8,00	8,00	2,00	50	100	12	5270	L/4	2635	2,50	41603
44	800	150	8,00	12,50	2,00	50	100	12	5270	L/4	2635	2,50	59974
45	800	150	8,00	19,00	3,00	50	100	12	5270	L/4	2635	2,50	91679
46	800	150	12,50	12,50	2,00	50	100	12	5270	L/4	2635	2,50	62150
47	800	150	12,50	19,00	3,00	50	100	12	5270	L/4	2635	2,50	92800
48	800	150	19,00	19,00	3,00	50	100	12	5270	L/4	2635	2,50	95636
49	800	150	8,00	8,00	2,00	75	150	15	6975	L/6	2325	2,00	46235
50	800	150	8,00	12,50	2,00	75	150	15	6975	L/6	2325	2,00	67865
51	800	150	8,00	19,00	2,00	75	150	15	6975	L/6	2325	2,00	98442
52	800	150	12,50	12,50	2,00	75	150	15	6975	L/6	2325	2,00	71287
53	800	150	12,50	19,00	2,00	75	150	15	6975	L/6	2325	2,00	101321
54	800	150	19,00	19,00	2,00	75	150	15	6975	L/6	2325	2,00	105769

TABELA 5.1 – Continuação

continua

C	d	b_f	t _{fs}	t _{fi}	t _w	h_{f}	h_t	Id	L / 2	Relação	b _c	f_{ck}	M_{Rk}
Caso	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	L / a_t	[mm]	b_c / L	[mm]	[kN/cm ²]	[kNcm]
55	800	150	8,00	8,00	2,00	75	180	15	7285	L/6	2428	2,00	48926
56	800	150	8,00	12,50	2,00	75	180	15	7285	L/6	2428	2,00	71639
57	800	150	8,00	19,00	2,00	75	180	15	7285	L/6	2428	2,00	104015
58	800	150	12,50	12,50	2,00	75	180	15	7285	L/6	2428	2,00	75205
59	800	150	12,50	19,00	2,00	75	180	15	7285	L/6	2428	2,00	107412
60	800	150	19,00	19,00	2,00	75	180	15	7285	L/6	2428	2,00	113499
61	800	150	8,00	8,00	2,00	50	100	15	6665	L/6	2222	2,50	40879
62	800	150	8,00	12,50	2,00	50	100	15	6665	L/6	2222	2,50	60518
63	800	150	8,00	19,00	2,00	50	100	15	6665	L/6	2222	2,50	89505
64	800	150	12,50	12,50	2,00	50	100	15	6665	L/6	2222	2,50	63290
65	800	150	12,50	19,00	2,00	50	100	15	6665	L/6	2222	2,50	90327
66	800	150	19,00	19,00	3,00	50	100	15	6665	L/6	2222	2,50	95463
67	800	150	8,00	8,00	2,00	75	150	20	9455	L/6	3152	2,00	45990
68	800	150	8,00	12,50	2,00	75	150	20	9455	L/6	3152	2,00	68373
69	800	150	8,00	19,00	2,00	75	150	20	9455	L/6	3152	2,00	99043
70	800	150	12,50	12,50	2,00	75	150	20	9455	L/6	3152	2,00	71736
71	800	150	12,50	19,00	2,00	75	150	20	9455	L/6	3152	2,00	101662
72	800	150	19,00	19,00	2,00	75	150	20	9455	L/6	3152	2,00	106260
73	800	150	8,00	8,00	2,00	75	180	20	9765	L/8	2441	2,00	48735
74	800	150	8,00	12,50	2,00	75	180	20	9765	L/8	2441	2,00	71629
75	800	150	8,00	19,00	2,00	75	180	20	9765	L/8	2441	2,00	103066
76	800	150	12,50	12,50	2,00	75	180	20	9765	L/8	2441	2,00	75464
77	800	150	12,50	19,00	2,00	75	180	20	9765	L/8	2441	2,00	106783
78	800	150	19,00	19,00	2,00	75	180	20	9765	L/8	2441	2,00	112856
79	800	150	8,00	8,00	2,00	50	100	20	8990	L/6	2997	2,50	40709
80	800	150	8,00	12,50	2,00	50	100	20	8990	L/6	2997	2,50	60051
81	800	150	8,00	19,00	2,00	50	100	20	8990	L/6	2997	2,50	88971
82	800	150	12,50	12,50	2,00	50	100	20	8990	L/6	2997	2,50	62668
83	800	150	12,50	19,00	2,00	50	100	20	8990	L/6	2997	2,50	90810
84	800	150	19,00	19,00	3,00	50	100	20	8990	L/6	2997	2,50	97952
85	800	250	8,00	8,00	2,00	75	150	12	5580	L/4	2790	2,00	75431
86	800	250	8,00	12,50	3,00	75	150	12	5580	L/4	2790	2,00	112366
88	800	250	12,50	12,50	3,00	75	150	12	5580	L/4	2790	2,00	118087
91	800	250	8,00	8,00	2,00	75	180	12	5735	L/4	2868	2,00	79988
92	800	250	8,00	12,50	3,00	75	180	12	5735	L/4	2868	2,00	118958
94	800	250	12,50	12,50	3,00	75	180	12	5735	L/4	2868	2,00	124070
97	800	250	8,00	8,00	2,00	50	100	12	5270	L/4	2635	2,50	65219
98	800	250	8,00	12,50	3,00	50	100	12	5270	L/4	2635	2,50	100305
100	800	250	12,50	12,50	3,00	50	100	12	5270	L/4	2635	2,50	101881
103	800	250	8,00	8,00	2,00	75	150	15	6975	L/6	2325	2,00	75219

TABELA 5.1 – Continuação

continua
Caso	<i>d</i> [mm]	<i>b_f</i> [mm]	t _{fs} [mm]	t _{fi} [mm]	<i>t</i> _w [mm]	<i>h_f</i> [mm]	<i>h</i> _t [mm]	L/d_t	<i>L / 2</i> [mm]	Relação b _c / L	<i>b</i> _c [mm]	f_{ck} [kN/cm ²]	M _{Rk} [kNcm]
104	800	250	8,00	12,50	2,00	75	150	15	6975	L/6	2325	2,00	110158
106	800	250	12,50	12,50	2,00	75	150	15	6975	L/6	2325	2,00	114349
109	800	250	8,00	8,00	2,00	75	180	15	7285	L/6	2428	2,00	79657
110	800	250	8,00	12,50	2,00	75	180	15	7285	L/6	2428	2,00	117203
112	800	250	12,50	12,50	2,00	75	180	15	7285	L/6	2428	2,00	120068
115	800	250	8,00	8,00	2,00	50	100	15	6665	L/6	2222	2,50	66444
116	800	250	8,00	12,50	3,00	50	100	15	6665	L/6	2222	2,50	101042
118	800	250	12,50	12,50	3,00	50	100	15	6665	L/6	2222	2,50	100661
121	800	250	8,00	8,00	2,00	75	150	20	9455	L/6	3152	2,00	75561
122	800	250	8,00	12,50	2,00	75	150	20	9455	L/6	3152	2,00	110277
123	800	250	8,00	19,00	3,00	75	150	20	9455	L/6	3152	2,00	162739
124	800	250	12,50	12,50	2,00	75	150	20	9455	L/6	3152	2,00	114682
125	800	250	12,50	19,00	3,00	75	150	20	9455	L/6	3152	2,00	168197
126	800	250	19,00	19,00	3,00	75	150	20	9455	L/6	3152	2,00	165791
127	800	250	8,00	8,00	2,00	75	180	20	9765	L/8	2441	2,00	79230
128	800	250	8,00	12,50	2,00	75	180	20	9765	L/8	2441	2,00	115693
129	800	250	8,00	19,00	3,00	75	180	20	9765	L/8	2441	2,00	171803
130	800	250	12,50	12,50	2,00	75	180	20	9765	L/8	2441	2,00	122837
131	800	250	12,50	19,00	3,00	75	180	20	9765	L/8	2441	2,00	176107
132	800	250	19,00	19,00	3,00	75	180	20	9765	L/8	2441	2,00	184110
133	800	250	8,00	8,00	2,00	50	100	20	8990	L/6	2997	2,50	66176
134	800	250	8,00	12,50	2,00	50	100	20	8990	L/6	2997	2,50	99570
135	800	250	8,00	19,00	3,00	50	100	20	8990	L/6	2997	2,50	149435
136	800	250	12,50	12,50	3,00	50	100	20	8990	L/6	2997	2,50	104859
137	800	250	12,50	19,00	3,00	50	100	20	8990	L/6	2997	2,50	149915
138	800	250	19,00	19,00	3,00	50	100	20	8990	L/6	2997	2,50	151987
139	1200	200	9,50	12,50	2,00	75	150	15	10075	L/8	2519	2,00	122798
140	1200	200	9,50	19,00	2,00	75	150	15	10075	L/8	2519	2,00	179003
141	1200	200	12,50	12,50	2,00	75	150	15	10075	L/8	2519	2,00	123752
142	1200	200	12,50	19,00	2,00	75	150	15	10075	L/8	2519	2,00	183126
143	1200	200	19,00	19,00	3,00	75	150	15	10075	L/8	2519	2,00	186880
144	1200	300	9,50	12,50	3,00	75	150	15	10075	L/8	2519	2,00	184838
145	1200	300	9,50	19,00	3,00	75	150	15	10075	L/8	2519	2,00	267470
146	1200	300	12,50	12,50	3,00	75	150	15	10075	L/8	2519	2,00	187169
147	1200	300	12,50	19,00	3,00	75	150	15	10075	L/8	2519	2,00	271676
148	1200	300	19,00	19,00	3,00	75	150	15	10075	L/8	2519	2,00	274529

TABELA 5.1 – Continuação

observando a tabela anterior, percebe-se que o comportamento da viga mista com perfil de alma senoidal é muito similar ao da viga mista com perfil de alma plana em alguns pontos, tais como:

 mantidos todos os parâmetros constantes, para uma mesma altura total de viga mista, quanto maior a área da mesa inferior, maior é a resistência à flexão da viga mista; a área da mesa superior do perfil não modifica significativamente a resistência a flexão da viga mista devido ao pequeno braço de alavanca da força resistente desse elemento.

5.3 – Ligação mista com perfil de alma senoidal

Ao se escolherem os casos para a parametrização da ligação mista com perfil de alma senoidal, procuraram-se contemplar as situações mais encontradas na prática. Porém, algumas premissas foram utilizadas na determinação desses casos, quais sejam:

- a resistência dos modelos não pode ser reduzida pela plastificação da mesa inferior, devido à força de compressão, ou da alma, pela força cortante aplicada, ou por algum tipo de instabilidade, como a flambagem lateral com distorção;
- o somatório da resistência dos conectores de cisalhamento deve ser maior ou igual à resistência ao escoamento das barras de armadura;
- as dimensões da chapa de topo, o diâmetro dos parafusos e a posição desses parafusos na chapa devem obedecer às limitações constantes na ABNT NBR 8800: 2008 para as ligações mistas com perfil de alma plana.

Assim sendo, o modo de falha dos modelos numéricos seria a ruptura das barras da armadura ou a flambagem da mesa inferior.

Foram processados 111 casos onde se variaram a seção transversal do perfil, o número de barras de armadura e, conseqüentemente, o número de conectores de cisalhamento, o vão (para se obter diferentes relações L/d_t), as dimensões da chapa de topo, o diâmetro dos parafusos e a distância horizontal entre furos. Em todos os casos, a distância entre a primeira linha de parafusos e a mesa tracionada e a distância vertical entre furos foi considerada igual a 75 mm, por ser a situação mais usual. Outro ponto que deve ser mencionado é o posicionamento das barras de armadura, adotado igual a 100 mm da face superior da mesa tracionada do perfil metálico.

Para as chapas que compõem as mesas do perfil e a ligação metálica, considerou-se a resistência ao escoamento igual a 350 MPa e a resistência à ruptura igual 450 MPa; para a chapa da alma senoidal esse valores foram 300 MPa e 410 MPa, respectivamente. Para a consideração do *"tension stiffening"* no comportamento das barras de armadura, utilizou-se o diagrama tensão *versus* deformação da ABNT NBR 8800: 2008, corrigindo-se o patamar

horizontal para $0,6\Delta\varepsilon_{sr}$ (conforme comentado no Capítulo 4), tomou-se a resistência à compressão do concreto igual a 20 MPa, a resistência ao escoamento e à ruptura do aço da armadura igual a 500 MPa e 600 MPa, respectivamente, e a deformação correspondente à resistência máxima à tração da armadura isolada igual a 0,12.

A fim de simular a ruptura das barras de armadura ou a ruptura do aço das chapas do perfil metálico e da chapa de topo, utilizou-se o seguinte artifício: logo após o atingimento da tensão correspondente à resistência à ruptura do aço, considerou-se um valor próximo de zero para essa tensão no diagrama tensão *versus* deformação do material.

A FIG.5.2 mostra as dimensões da ligação metálica utilizada para a criação da TAB.5.2, em que se apresentam os casos processados na parametrização; as demais dimensões já foram definidas anteriormente. Na TAB.5.2, NLP significa o número de linhas de parafusos. Em todos os casos, obteve-se o momento fletor resistente da ligação mista (M_{Rk}).

FIGURA 5.2 – Dimensões da ligação metálica

0	P E R F I L METÁLICO LAJE LIGAÇÃO METÁLICA							CA			A muse duras	М							
CAS	d [mm]	b _f [mm]	t _{fs} [mm]	t _{fi} [mm]	t _w [mm]	L [mm]	h _t	h _F	fck [kN/cm ²]	NLP	φ _{paraf} [cm]	GAB [mm]	DEF [mm]	DFB [mm]	DFT	b _p	t _p [mm]	da laje	[kNcm]
1	400	150	8,00	8,00	2,00	1550	140	75	2,0	4	1,905	120	75	60	75	240	8,00	4 <i>\operator</i> 12,5	17799
2	400	150	8,00	12,50	2,00	1550	140	75	2,0	4	1,905	120	75	60	75	240	8,00	4 \overline 12,5	17859
3	400	150	8,00	12,50	3,00	1550	140	75	2,0	4	1,905	120	75	60	75	240	8,00	6 ¢ 12,5	25355
4	400	150	8,00	12,50	2,00	2480	140	75	2,0	4	1,905	120	75	60	75	240	8,00	8 <i>\overline 12,5</i>	32597
5	400	150	8,00	19,00	3,00	1550	140	75	2,0	4	1,905	120	75	60	75	240	8,00	6 ø 12,5	25738
6	400	150	8,00	19,00	2,00	2480	140	75	2,0	4	1,905	120	75	60	75	240	8,00	8 \overline 12,5	33086
7	400	150	8,00	19,00	3,00	2480	140	75	2,0	4	1,905	120	75	60	75	240	8,00	10 <i>\operator</i> 12,5	40102
8	400	150	8,00	19,00	2,00	4030	140	75	2,0	4	1,905	120	75	60	75	240	8,00	12 12,5	47827
9	400	150	8,00	19,00	2,00	4030	140	75	2,0	4	1,905	120	75	60	75	240	8,00	14 12,5	53223
10	400	150	12,50	12,50	2,00	1550	140	75	2,0	4	1,905	120	75	60	75	240	8,00	4 ø 12,5	18159
11	400	150	12,50	12,50	3,00	1550	140	75	2,0	4	1,905	120	75	60	75	240	8,00	6 ¢ 12,5	25832
12	400	150	12,50	12,50	2,00	2480	140	75	2,0	4	1,905	120	75	60	75	240	8,00	8 \oplus 12,5	32883
13	400	150	12,50	19,00	3,00	1550	140	75	2,0	4	1,905	120	75	60	75	240	8,00	6 φ 12,5	25800
14	400	150	12,50	19,00	2,00	2480	140	75	2,0	4	1,905	120	75	60	75	240	8,00	8 ¢ 12,5	33394
15	400	150	12,50	19,00	3,00	2480	140	75	2,0	4	1,905	120	75	60	75	240	8,00	10 ¢ 12,5	40974
16	400	150	12,50	19,00	2,00	4030	140	75	2,0	4	1,905	120	75	60	75	240	8,00	12 φ 12,5	48053
17	400	150	12,50	19,00	2,00	4030	140	75	2,0	4	1,905	120	75	60	75	240	8,00	14 \ 12,5	53782
18	400	150	12,50	12,50	2,00	1550	140	75	2,0	4	1,905	120	75	60	75	240	9,50	4 \ 12,5	19011
19	400	150	12,50	12,50	3,00	1550	140	75	2,0	4	1,905	120	75	60	75	240	9,50	6 \ 12,5	2/151
20	400	150	12,50	19,00	3,00	1550	140	75	2,0	4	1,905	120	75	60	75	240	9,50	οφ 12,5	27455
21	400	150	12,50	19,00	3,00	2480	140	75	2,0	4	1,905	120	75	60	75	240	9,50	8 φ 12,5	41852
22	400	150	12,50	19,00	3,00	4020	140	75	2,0	4	1,905	120	75	60	75	240	9,50	$10 \neq 12,3$	41033
23	600	150	8.00	8.00	2,00	2480	140	75	2,0	4	1,905	120	75	60	75	240	8,00	12 ψ 12,5	25308
24	600	150	8.00	12 50	2,00	2480	140	75	2,0	6	1,905	120	75	60	75	240	8.00	4 \$ 12,5	25502
26	600	150	8.00	12,50	2.00	2480	140	75	2.0	6	1,905	120	75	60	75	240	8.00	6 d 12 5	35905
27	600	150	8.00	12,50	2.00	2480	140	75	2.0	6	1,905	120	75	60	75	240	8,00	8 \phi 12,5	46140
28	600	150	8.00	19.00	2.00	2480	140	75	2.0	6	1,905	120	75	60	75	240	8.00	6 \u03c6 12.5	36456
29	600	150	8,00	19,00	2,00	2480	140	75	2,0	6	1,905	120	75	60	75	240	8,00	8 \u00e9 12,5	46642
30	600	150	8,00	19,00	3,00	2480	140	75	2,0	6	1,905	120	75	60	75	240	8,00	10 \ 12,5	57095
31	600	150	8,00	19,00	2,00	4030	140	75	2,0	6	1,905	120	75	60	75	240	8,00	12 4 12,5	66047
32	600	150	8,00	19,00	2,00	4030	140	75	2,0	6	1,905	120	75	60	75	240	8,00	14 12,5	74717
33	600	150	12,50	12,50	2,00	2480	140	75	2,0	6	1,905	120	75	60	75	240	8,00	4 ø 12,5	25672
34	600	150	12,50	12,50	2,00	2480	140	75	2,0	6	1,905	120	75	60	75	240	8,00	6 ø 12,5	36471
35	600	150	12,50	12,50	2,00	2480	140	75	2,0	6	1,905	120	75	60	75	240	8,00	8 <i>\operatorname 12,5</i>	46436
36	600	150	12,50	19,00	2,00	2480	140	75	2,0	6	1,905	120	75	60	75	240	8,00	6 ø 12,5	36491
37	600	150	12,50	19,00	2,00	2480	140	75	2,0	6	1,905	120	75	60	75	240	8,00	8 ø 12,5	46539
38	600	150	12,50	19,00	3,00	2480	140	75	2,0	6	1,905	120	75	60	75	240	8,00	10 12,5	56449
39	600	150	12,50	19,00	2,00	4030	140	75	2,0	6	1,905	120	75	60	75	240	8,00	12 φ 12,5	67589
40	600	150	12,50	19,00	2,00	4030	140	75	2,0	6	1,905	120	75	60	75	240	8,00	14 φ 12,5	75275
41	600	150	12,50	12,50	2,00	2480	140	75	2,0	6	1,905	120	75	60	75	240	9,50	4 12,5	26961
42	600	150	12,50	12,50	2,00	2480	140	75	2,0	6	1,905	120	75	60	75	240	9,50	6 ¢ 12,5	37778
43	600	150	12,50	19,00	2,00	2480	140	75	2,0	6	1,905	120	75	60	75	240	9,50	6 ¢ 12,5	38052
44	600	150	12,50	19,00	2,00	2480	140	75	2,0	6	1,905	120	75	60	75	240	9,50	8 φ 12,5	48294
45	600	150	12,50	19,00	3,00	2480	140	75	2,0	6	1,905	120	75	60	75	240	9,50	10 φ 12,5	58128
46	600	150	12,50	19,00	2,00	4030	140	75	2,0	6	1,905	120	75	60	75	240	9,50	12 φ 12,5	69058
47	600	250	9,50	9,50	2,00	2480	140	75	2,0	6	1,905	120	75	60	75	240	8,00	6 ¢ 12,5	36707
48	600	250	9,50	9,50	2,00	2480	140	75	2,0	6	1,905	120	75	60	75	240	8,00	8 ¢ 12,5	46738
49	600	250	9,50	9,50	3,00	2480	140	75	2,0	6	1,905	120	75	60	75	240	8,00	10 \operatorname{10} 12,5	58041
50	600	250	9,50	16,00	2,00	2480	140	75	2,0	6	1,905	120	75	60	75	240	8,00	8 \overline 12,5	47107

TABELA 5.2 – Casos da parametrização da ligação mista.

continua

TABELA 5.2 – Continuação

0		ΡE	RFIL	METÁLI	ICO			LAJE		LIGAÇÃO METÁLICA								14	
CAS	d	b_f	t _{fs}	t _{fi}	t _w	L	h_t	h _F	fck	NLP	ϕ_{paraf}	GAB	DEF	DFB	DFT	b _p	t _p	Armadura da laje	M _{Rk} [kNcm]
-	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kN/cm ²]		[cm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		
51	600	250	9,50	16,00	3,00	2480	140	75	2,0	6	1,905	120	75	60	75	240	8,00	10 ¢ 12,5	57727
52	600	250	9,50	16,00	2,00	4030	140	75	2,0	6	1,905	120	75	60	75	240	8,00	12 \ 12,5	67085
53	600	250	9,50	16,00	2,00	4030	140	75	2,0	6	1,905	120	75	60	75	240	8,00	14 \ 12,5	17223
55	600	250	16,00	16,00	2,00	2480	140	75	2,0	0	1,905	120	75	60	75	240	8,00	8 φ 12,5	47552 58400
55	600	250	16,00	16,00	2,00	4030	140	75	2,0	6	1,905	120	75	60	75	240	8,00	10 \operatorname{12,5}	67662
57	600	250	16,00	16,00	2,00	4030	140	75	2,0	6	1,905	120	75	60	75	240	8,00	$12 \oplus 12,3$	79992
57	600	250	10,00	10,00	2,00	2480	140	75	2,0	6	2,540	120	75	80	75	240	12.50	14 ψ 12,5	10003
50	600	250	9,50	9,50	3.00	2480	140	75	2,0	6	2,540	160	75	80	75	320	12,50	0 ψ 12,5 8 ± 12.5	55165
60	600	250	9.50	16.00	3.00	2480	140	75	2,0	6	2,540	160	75	80	75	320	12,50	8 φ 12,5	55390
61	600	250	9.50	16.00	3.00	2480	140	75	2,0	6	2,540	160	75	80	75	320	12,50	10 ± 12,5	65605
62	600	250	9,50	16.00	2.00	4030	140	75	2.0	6	2,540	160	75	80	75	320	12,50	12 d 12 5	75671
63	600	250	9.50	16.00	3.00	4030	140	75	2.0	6	2.540	160	75	80	75	320	12.50	12 φ 12,5	86008
64	600	250	16.00	16.00	3.00	2480	140	75	2.0	6	2.540	160	75	80	75	320	12.50	8 \u03c6 12.5	54017
65	600	250	16.00	16.00	3,00	2480	140	75	2.0	6	2,540	160	75	80	75	320	12.50	10 \u03c6 12.5	63887
66	600	250	16,00	16,00	2,00	4030	140	75	2,0	6	2,540	160	75	80	75	320	12,50	12 \u03c6 12,5	73781
67	600	250	16,00	16,00	3,00	4030	140	75	2,0	6	2,540	160	75	80	75	320	12,50	14 12,5	85280
68	1000	150	8,00	8,00	2,00	2480	140	75	2,0	9	1,905	120	75	60	75	240	8,00	4 \ 12,5	40770
69	1000	150	8,00	12,50	2,00	2480	140	75	2,0	9	1,905	120	75	60	75	240	8,00	4 \u00f6 12,5	40908
70	1000	150	8,00	12,50	2,00	2480	140	75	2,0	9	1,905	120	75	60	75	240	8,00	6 \ 12,5	57331
71	1000	150	8,00	12,50	2,00	2480	140	75	2,0	9	1,905	120	75	60	75	240	8,00	8 ø 12,5	73983
72	1000	150	8,00	19,00	2,00	2480	140	75	2,0	9	1,905	120	75	60	75	240	8,00	6 ø 12,5	58387
73	1000	150	8,00	19,00	2,00	2480	140	75	2,0	9	1,905	120	75	60	75	240	8,00	8 <i>\overline 12,5</i>	74451
74	1000	150	8,00	19,00	2,00	4030	140	75	2,0	9	1,905	120	75	60	75	240	8,00	10 \overline 12,5	89958
75	1000	150	8,00	19,00	2,00	4030	140	75	2,0	9	1,905	120	75	60	75	240	8,00	12 12,5	105627
76	1000	150	8,00	19,00	2,00	4030	140	75	2,0	9	1,905	120	75	60	75	240	8,00	14 12,5	118301
77	1000	150	12,50	12,50	2,00	2480	140	75	2,0	9	1,905	120	75	60	75	240	8,00	4 12,5	41095
78	1000	150	12,50	12,50	2,00	2480	140	75	2,0	9	1,905	120	75	60	75	240	8,00	6 <i>q</i> 12,5	58273
79	1000	150	12,50	12,50	2,00	2480	140	75	2,0	9	1,905	120	75	60	75	240	8,00	8 <i>\operatorname 12,5</i>	73010
80	1000	150	12,50	19,00	2,00	2480	140	75	2,0	9	1,905	120	75	60	75	240	8,00	6	57603
81	1000	150	12,50	19,00	2,00	2480	140	75	2,0	9	1,905	120	75	60	75	240	8,00	8 <i>\oplus 12,5</i>	73099
82	1000	150	12,50	19,00	2,00	4030	140	75	2,0	9	1,905	120	75	60	75	240	8,00	10 φ 12,5	88953
83	1000	150	12,50	19,00	2,00	4030	140	75	2,0	9	1,905	120	75	60	75	240	8,00	12 \operatorname{12} ,5	106035
84	1000	150	12,50	19,00	2,00	4030	140	75	2,0	9	1,905	120	75	60	75	240	8,00	14 φ 12,5	118800
85	1000	150	12,50	12,50	2,00	2480	140	75	2,0	9	1,905	120	75	60	75	240	9,50	4 \operatorname{4} 4 12,5	43193
86	1000	150	12,50	12,50	2,00	2480	140	75	2,0	9	1,905	120	75	60	75	240	9,50	6 ¢ 12,5	59004
87	1000	150	12,50	19,00	2,00	2480	140	75	2,0	9	1,905	120	75	60	75	240	9,50	6 φ 12,5	60808
88	1000	150	12,50	19,00	2,00	2480	140	75	2,0	9	1,905	120	75	60	75	240	9,50	8 ¢ 12,5	76947
89	1000	150	12,50	19,00	2,00	4030	140	75	2,0	9	1,905	120	75	60	75	240	9,50	10 \operatorname{10} 12,5	94265
90	1000	150	12,50	19,00	2,00	4030	140	75	2,0	9	1,905	120	75	60	75	240	9,50	12 \overline{12,5 }	108734
91	1000	250	9,50	9,50	2,00	2480	140	75	2,0	9	1,905	120	75	60	75	240	8,00	6 ¢ 12,5	58586
92	1000	250	9,50	9,50	2,00	2480	140	75	2,0	9	1,905	120	75	60	75	240	8,00	8 \oplus 12,5	74500
93	1000	250	9,50	9,50	2,00	4030	140	75	2,0	9	1,905	120	75	60	75	240	8,00	10 φ 12,5	91684
94	1000	250	9,50	16,00	2,00	4030	140	75	2,0	9	1,905	120	75	60	75	240	8,00	8 φ 12,5	75564
95	1000	250	9,50	16,00	2,00	4030	140	75	2,0	9	1,905	120	75	60	75	240	8,00	10 ¢ 12,5	90735
96	1000	250	9,50	16,00	2,00	4030	140	75	2,0	9	1,905	120	75	60	75	240	8,00	12 \ 12,5	105618
9/	1000	250	9,50	16,00	2,00	4030	140	15	2,0	9	1,905	120	15	60	/5	240	8,00	14 \ 12,5	123245
98	1000	250	16.00	16.00	2,00	4020	140	75	2,0	9	1,905	120	75	60	75	240	8,00	οψ12,5	01262
100	1000	250	16.00	16,00	2,00	4030	140	75	2,0	9	1,905	120	75	60	75	240	8,00	10 ψ 12,5	106208
100	1000	250	10,00	10,00	2,00	1030	140	15	2,0	,	1,905	120	15	00	15	240	0,00	$12 \psi 12,3$	100208

Continua

0		ΡE	RFIL	METÁLI	ICO			LAJE		LIGAÇAO METALICA								A	м
AS	d	b_f	t _{fs}	t _{fi}	t _w	L	h _t	h_F	fck	NI P	ϕ_{paraf}	GAB	DEF	DFB	DFT	b _p	t _p	Armadura da laie	IM _{Rk} [kNcm]
0	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kN/cm ²]	NLI	[cm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		[in tem]
101	1000	250	16,00	16,00	2,00	4030	140	75	2,0	9	1,905	120	75	60	75	240	8,00	14 12,5	123852
102	1000	250	9,50	9,50	2,00	2480	140	75	2,0	9	2,540	160	75	80	75	320	12,50	6 ø 12,5	72061
103	1000	250	9,50	9,50	3,00	2480	140	75	2,0	9	2,540	160	75	80	75	320	12,50	8 \operatorname{6} 12,5	88572
104	1000	250	9,50	16,00	3,00	2480	140	75	2,0	9	2,540	160	75	80	75	320	12,50	8 \oplus 12,5	89164
105	1000	250	9,50	16,00	2,00	4030	140	75	2,0	9	2,540	160	75	80	75	320	12,50	10 \operatorname{10} 12,5	103425
106	1000	250	9,50	16,00	2,00	4030	140	75	2,0	9	2,540	160	75	80	75	320	12,50	12 \$ 12,5	117094
107	1000	250	9,50	16,00	2,00	4030	140	75	2,0	9	2,540	160	75	80	75	320	12,50	14 12,5	133158
108	1000	250	16,00	16,00	3,00	2480	140	75	2,0	9	2,540	160	75	80	75	320	12,50	8 <i>\overline 12,5</i>	86556
109	1000	250	16,00	16,00	2,00	4030	140	75	2,0	9	2,540	160	75	80	75	320	12,50	10 q 12,5	101924
110	1000	250	16,00	16,00	2,00	4030	140	75	2,0	9	2,540	160	75	80	75	320	12,50	12 \overline{12,5 }	119338
111	1000	250	16,00	16,00	2,00	4030	140	75	2,0	9	2,540	160	75	80	75	320	12,50	14 12,5	135544

TABELA 5.2 - Continuação

Observando a tabela anterior, constata-se que a variação do número de barras de armadura influência mais a resistência à flexão da ligação mista do que somente a variação da espessura da chapa de topo da ligação metálica, mantidos todos os demais parâmetros constantes. Como exemplo, citam-se os casos 10 e 18, em que se alterou a espessura da chapa de topo de 8,0 mm para 9,5 mm, resultando em um acréscimo na resistência à flexão da ligação em torno de 4,6%, enquanto os casos 25 e 26 em que se aumentou somente o número das barras de armadura, resultou em um acréscimo na resistência à flexão da ligação mista em torno de 40,7%. Porém, ao se alterar também outros parâmetros da ligação metálica, como a largura da chapa de topo e o diâmetro dos parafusos, tem-se uma maior influência na resistência da ligação mista. Citam-se, como exemplo, os casos 47 e 58 em que foi mantido o número de barras de armadura e variaram-se os parâmetros da ligação metálica (espessura e largura da chapa de topo e diâmetro dos parafusos), o que resultou em um acréscimo na resistência da ligação mista em torno de 21,1%, enquanto que somente a alteração do número das barras de armadura (casos 47 e 48) resultou em um acréscimo na resistência da ligação mista em torno de 27,3%.

PROPOSIÇÃO DE MÉTODOS DE CÁLCULO

6.1 – Introdução

Com base nos ensaios e estudos teóricos realizados, apresenta-se neste capítulo a proposição de métodos de cálculo para a determinação do momento fletor resistente nominal de viga mistas biapoiadas com interação total e ligações mistas com chapa de topo e perfil de alma senoidal, incluindo ainda a capacidade de rotação disponível e a capacidade de rotação necessária dessas ligações para o desenvolvimento da resistência à flexão da viga mista na região de momento fletor positivo. Para tanto, adaptaram-se os conceitos e procedimentos da norma brasileira ABNT NBR 8800: 2008 e os resultados teóricos são comparados com os resultados da análise paramétrica apresentada no Capítulo 5.

Salienta-se que a norma brasileira ABNT NBR 8800: 2008 não trata especificamente de estruturas formadas por perfis de alma senoidal – em seu escopo estabelece que os perfis devem ser laminados, soldados não-híbridos ou com seção tubular, com ou sem costura. Estabelece também que, caso sejam usados perfis híbridos, devem ser feitas as adaptações necessárias e que, para situações ou soluções construtivas não cobertas por ela, devem ser usados procedimentos aceitos pela comunidade técnico-científica, acompanhados de estudos para manter o nível de segurança previsto.

Vale lembrar que os modelos propostos neste capítulo são referentes aos perfis de alma senoidal fabricados atualmente no Brasil, cujas dimensões e limitações foram apresentadas no Capítulo 1, embora possam também ser estendidos ou adaptados para outras situações.

6.2 – Plastificação da viga mista

O momento fletor resistente nominal referente à plastificação da viga mista de alma plana na região de momento fletor positivo, para interação completa, é determinado pelas seguintes expressões, explicitadas na ABNT NBR 8800: 2008:

$$M_{Rk} = T_{ak} \left(d_1 + h_F + t_c - \frac{a}{2} \right)$$
(6.1)

para a linha neutra na laje de concreto e

$$M_{Rk} = C_{ak} \left(d - y_t - y_c \right) + C_{ck} \left(\frac{t_c}{2} + h_F + d + y_t \right)$$
(6.2)

para linha neutra no perfil metálico, onde

$$T_{ak} = A_a f_y \qquad a = \frac{T_{ak}}{0.85 f_{ck}} \qquad C_{ck} = 0.85 f_{ck} b_c t_c \qquad C_{ak} = \frac{1}{2} (T_{ak} - C_{ck}) \qquad (6.3)$$

$$0,85f_{ck}b_c$$
 or for 2^{-1} (6.6)

 A_a é a área do perfil de aço;

d é a altura total do perfil metálico;

 d_1 é a distância do centro geométrico do perfil metálico até a face superior desse perfil;

 y_c é a distância do centro geométrico da parte comprimida do perfil metálico até a face superior desse perfil;

 y_t é a distância do centro geométrico da parte tracionada do perfil metálico até a face inferior desse perfil;

 h_F é a altura da fôrma da laje;

 t_c é a espessura da laje de concreto acima da fôrma;

 b_c é a largura efetiva da laje, função do comprimento e do espaçamento das vigas;

Propõe-se que essas expressões para o cálculo do momento fletor resistente nominal de vigas mistas com perfil de alma plana, sejam utilizadas também para vigas mistas com perfil de alma senoidal, desprezando-se a alma no cálculo das propriedades geométricas.

Ressalta-se que não é prevista a situação de a linha neutra plástica localizar-se na mesa inferior do perfil. Como a alma não participa da resistência a tensões normais, a única possibilidade de localização da linha neutra plástica no perfil de alma senoidal é na mesa superior.

Utilizando o procedimento proposto, calculou-se o momento fletor resistente nominal da viga mista biapoiada dos casos processados na análise paramétrica do Capítulo 5 e compararam-se os valores obtidos com os resultados da análise numérica. Os resultados são mostrados na FIG.6.1 em conjunto com a curva de ajuste perfeito entre as análises numérica e teórica, enquanto a FIG.6.2 apresenta a relação entre as análises (*numérica/teórica*) para cada modelo processado. Como se observa, obteve-se uma boa correlação entre os dois tipos de análise, justificando plenamente o procedimento proposto. Os coeficientes de tendência e de variação da relação *numérica/teórica* são $\delta = 0.98$ e V = 0.020.

FIGURA 6.1 – Momento fletor teórico *versus* momento fletor numérico dos casos processados e curva de ajuste perfeito entre as análises

FIGURA 6.2 - Relação entre as análises

Para o cálculo das vigas mistas biapoiadas com perfil de alma senoidal, devem-se determinar ainda a força cortante resistente do perfil metálico e a flecha da viga devido ao carregamento atuante. PIMENTA (2008) fornece um resumo dos procedimentos usualmente empregados para a determinação da força cortante resistente do perfil de alma senoidal. Já para a determinação da flecha da viga, sugere-se o procedimento apresentado por MOTAK & MACHACEK (2004) no Capítulo 2, uma vez que não se tem conhecimento de ensaios em escala real de vigas mistas com perfil de alma senoidal utilizando conector tipo pino com cabeça.

6.3 – Ligação mista

6.3.1 - Resistência da ligação mista

Conforme comentado no Capítulo 2, a norma brasileira ABNT NBR 8800: 2008 fornece procedimentos para o cálculo da resistência da ligação mista com vigas compactas de alma plana, porém não considera a contribuição da ligação metálica para a resistência da ligação mista. Ao tratar especificamente da ligação mista com chapa de topo, a ABNT NBR 8800: 2008, a fim de garantir a ductilidade da ligação metálica, estabelece algumas condições construtivas, conforme se vê na FIG.6.3, para que a força resistente da linha de

parafusos seja governada pelo modo 1 de falha (ver item 2.4.4.3 do Capítulo 2), ou seja, o escoamento da chapa de topo. Além dessas condições construtivas, a ABNT NBR 8800: 2008 estabelece ainda que a espessura da chapa de topo não supere 0,5 vezes o diâmetro dos parafusos e que a resistência dos conectores de cisalhamento na região de momento fletor negativo deve ser superior à resistência das barras de armadura (interação completa).

FIGURA 6.3 – Condições construtivas para a chapa de topo da ligação mista [ABNT NBR 8800: 2008]

Neste trabalho, propõe-se que o modelo apresentado na norma brasileira seja utilizado para o cálculo da ligação mista com chapa de topo, que atenda às disposições construtivas exigidas acima, com as seguintes considerações adicionais:

- despreza-se a alma no cálculo das propriedades geométricas e, conseqüentemente, a exigência de que esta seja compacta;
- considera-se a contribuição da ligação metálica na resistência da ligação mista;
- a resistência da mesa comprimida deve ser igual ou superior à soma das forças desenvolvidas pela armadura e pela ligação metálica (veja-se a Eq.6.7);
- consideram-se outros valores para capacidades de rotação disponível e necessária (vejase 6.3.3 adiante).

Assim sendo, o momento fletor resistente nominal é dado pela seguinte expressão:

$$M_{Rk} = f_{ys} A_{s\ell} \left(d - \frac{t_{fi}}{2} + y \right) + F_b \left(h + \frac{t_{fi}}{2} - e_y \right)$$
(6.7)

onde:

 f_{ys} é a resistência ao escoamento do aço da armadura;

 $A_{s\ell}$ é a área das barras de armadura;

 t_{fi} é a espessura da mesa comprimida do perfil;

y é a distância da face superior da mesa tracionada ao centro geométrico das barras de armadura;

h é a distância entre as faces internas das mesas do perfil;

 e_y é a distância da face interna da mesa tracionada à primeira linha de parafusos;

 F_b é a resistência da primeira linha de parafusos, determinada pelo modelo de cálculo ("Equivalent T-Stubs") do EN 1993-1-8: 2005, conforme se segue:

- o momento de plastificação de cada charneira do T equivalente é igual a:

$$M_{p} = \frac{L_{eq}t_{ch}^{2}f_{yp}}{4}$$
(6.8)

onde t_{ch} é a espessura da chapa de topo, f_{yp} é a resistência ao escoamento do aço da chapa e L_{eq} é o comprimento equivalente à charneira plástica tomado como

$$4m + 1,25e_x$$
 (6.9)

sendo *m* e e_x as distâncias do furo ao centro da alma e à borda, respectivamente.

- considerando, portanto, o modo 1, a força na primeira linha de parafusos é dada por:

$$F_b = \frac{4M_p}{m} \tag{6.10}$$

Utilizou-se a Eq.6.7 para determinar a resistência da ligação mista dos casos processados na análise paramétrica. Os resultados são mostrados na FIG.6.4 em conjunto com a curva de ajuste perfeito entre as análises numérica e teórica. Como se pode observar, obteve-se uma boa correlação entre os dois tipos de análise, sempre do lado da segurança, justificando plenamente o procedimento proposto. Os coeficientes de tendência e de variação da relação numérica/teórica são $\delta = 1,11$ e V = 0,027.

141

FIGURA 6.4 – Momento fletor teórico *versus* momento fletor numérico dos casos processados e curva de ajuste perfeito entre as análises

A consideração da resistência da ligação metálica na resistência da ligação mista é importante para se avaliar a possibilidade de flambagem da mesa comprimida, uma vez que a força de compressão solicitante na mesa se deve às forças atuantes na armadura e na linha de parafusos da ligação (ver item 6.3.2 adiante). Salienta-se ainda que ao não se considerar a parcela correspondente à ligação metálica, deve-se assegurar que na região de momento negativo não ocorra flambagem lateral com distorção. A ABNT NBR 8800: 2008 é bem rigorosa quanto a esse assunto e estabelece que para se desprezar a contribuição da ligação metálica na resistência da ligação mista com perfil de alma plana, o parâmetro de esbeltez λ_{dist} , para o cálculo do momento fletor resistente da seção composta pelo perfil metálico e pelas barras de armadura, deve ser inferior ou igual a 0,4 (para maiores detalhes ver item R.2.5.1 da norma brasileira).

6.3.2 - Modelo mecânico para o mecanismo de falha

Por meio de um estudo feito juntamente com PIMENTA (2008), propõe-se um modelo mecânico para o mecanismo de falha das vigas com mesa comprimida compacta a partir das informações obtidas nas análises experimental e numérica das ligações mistas com perfil de

alma senoidal. Considera-se que a capacidade de rotação da viga possa vir a ser alcançada tendo em conta a possibilidade de ocorrência de falha da mesa comprimida relativa ao estadolimite de instabilidade global por flexão (cuja resistência será representada por R_c). O comprimento de flambagem a ser considerado seria a distância entre a chapa de topo e o encontro da mesa comprimida com a diagonal a 45°, a partir da primeira linha de parafusos, multiplicada por um coeficiente de flambagem (K) adequado às condições de contorno. Porém, a falha só aconteceria após a formação do campo de tração, que se daria somente após se atingir a força (P_t) equivalente à soma da resistência ao escoamento das barras da armadura (R_s) e da resistência do mecanismo de charneiras plásticas (R_n) . Haveria então dois casos distintos. Se a força equivalente a P_t fosse superior àquela que provocasse a falha da mesa comprimida, ter-se-ia atingido então a força última do sistema e a capacidade de rotação da ligação. Caso contrário, a rotação da ligação prosseguiria, praticamente sem aumento de força, até que fosse alcançado um nível de deformação que provocasse alteração nos mecanismos resistentes como, por exemplo, o encruamento das barras da armadura ou a formação do mecanismo de membrana na chapa de topo. A partir desse ponto, novamente haveria aumento da força aplicada - a capacidade de rotação seria atingida quando a força alcançasse um valor que provocasse a falha de algum componente do sistema. Como exemplo, citam-se a instabilidade da mesa comprimida, a ruptura das barras da armadura, a ruptura da conexão de cisalhamento e a ruptura da chapa de topo ou dos parafusos. Porém, os mecanismos mais prováveis seriam a falha da mesa comprimida e a ruptura das barras da armadura (cuja resistência seria representada por R's), por causa da diminuição da ductilidade provocada pelo efeito "tension stiffening".

Contudo, conforme as prescrições da norma brasileira ABNT NBR 8800: 2008, a resistência da ligação mista deve ser limitada pelo escoamento das barras da armadura e não pela sua resistência à tração ou outro mecanismo não dúctil. Assim sendo, mesmo no segundo caso, a força última do sistema deveria ser tomada igual a P_t .

Resumindo, em ambos os casos, a força última seria a mesma, representada por P_t . Porém, o mecanismo de colapso e, conseqüentemente, a capacidade de rotação da ligação seriam diferentes – no primeiro caso ($P_t > R_c$), o colapso se daria pela instabilidade da mesa comprimida e, no segundo ($P_t < R_c$), por um dos mecanismos de falha, dados a seguir. Se $R'_s + R_p > R_c$, o colapso ocorreria também por instabilidade da mesa comprimida; caso contrário ($R'_s + R_p < R_c$), por ruptura das barras da armadura. As FIG. 6.5 a FIG.6.7 ilustram

qualitativamente o modelo do mecanismo de falha. Evidentemente, para a formação do campo de tração, seria necessário o esgotamento da resistência ao cisalhamento da alma, causado pela ação combinada da força cortante com a força desenvolvida pela primeira linha de parafusos. Caso contrário, a falha se daria pela ruptura da armadura.

FIGURA 6.5 – Força versus deslocamento – primeiro caso $(P_t > R_c)$ [PIMENTA (2008)]

FIGURA 6.6 – Força *versus* deslocamento – segundo caso ($P_t < R_c \in R'_s + R_p > R_c$) [PIMENTA (2008)]

FIGURA 6.7 – Força *versus* deslocamento – segundo caso ($P_t < R_c \in R'_s + R_p < R_c$) [PIMENTA (2008)]

De maneira geral, pode-se considerar que a mesa seja parcialmente engastada na extremidade em contato com a chapa de ligação e perfeitamente engastada na outra – no caso dos ensaios, por observação, poder-se-ia considerá-la, entretanto, como perfeitamente engastada nas duas extremidades, ou seja, K = 0,5. Com isso, o comprimento de flambagem ficaria igual a 26 cm, para os protótipos 1 e 3, e 22,5 cm, para o protótipo 2. Considerando-se a curva de flambagem da norma brasileira, a resistência da mesa comprimida R_c seria igual a 493 kN, para os protótipos 1 e 3, e 554 kN, para o protótipo 2 – considerando-se valores reais das dimensões e propriedades. A resistência P_t seria igual a 610 kN e $R'_s + R_p$ seria de 696 kN. Portanto, $P_t > R_c$ para todos os protótipos e o mecanismo de colapso dar-se-ia pela falha por instabilidade da mesa comprimida, que limitaria também a capacidade de rotação da ligação – hipóteses confirmadas pelo que se observou nos ensaios. Com a devida consideração dos braços de alavanca, as forças últimas dos protótipos (relativas a P_t) seriam iguais a 337 kN (1 e 3) e 326 kN (2), valores muito próximos aos encontrados nas análises experimental e numérica.

6.3.3 – Capacidade de rotação

De acordo com o ABNT-NBR 8800: 2008, a resistência última da ligação mista é sempre menor do que o momento plástico negativo da viga mista e, sendo assim, a própria ligação tem que garantir a rotação necessária para o desenvolvimento do máximo momento fletor positivo da viga (inferior ao momento plástico), quando se faz análise plástica.

A capacidade de rotação da ligação é determinada atribuindo-se aos deslocamentos dos componentes seus valores limites:

$$\theta_u = \frac{\Delta_{us} + \Delta_{ui} + s^{(B)}}{d + y} \tag{6.11}$$

onde Δ_{us} , Δ_{ui} e $s^{(B)}$ são as capacidades de deformação da armadura, da ligação inferior e dos conectores, respectivamente, já definidas anteriormente. Em ligações com chapa de topo, considera-se que $\Delta_{ui} = 0$.

Neste trabalho, propõe-se que o procedimento da norma brasileira também seja adotado para a determinação da capacidade de rotação de ligações mistas com perfil de alma senoidal, utilizando-se, porém, 70% da deformação última da armadura envolvida pelo concreto no cálculo da capacidade de deformação das barras da armadura, ou seja:

$$\Delta_{us} = 0,7L\varepsilon_{smu} \tag{6.12}$$

onde *L* é o comprimento de referência para levar em conta o efeito do concreto que envolve a armadura, podendo ser tomado igual a 200 mm de acordo com a ABNT NBR 8800: 2008 e ε_{smu} é a deformação da armadura envolvida pelo concreto, correspondente ao limite de resistência.

O valor de 70% da deformação última da armadura envolvida pelo concreto foi determinado a partir dos valores de capacidade de rotação obtidos por meio dos casos estudados na análise paramétrica, em que se procurou um valor que estivesse do lado da segurança e ao mesmo tempo não comprometesse a capacidade de rotação da ligação.

Essa redução tem por objetivo diminuir a probabilidade da ocorrência de flambagem da mesa comprimida antes da efetiva redistribuição dos momentos de acordo com a análise plástica. Para verificar essa proposição, calcular-se-á a capacidade de rotação dos protótipos ensaiados e comparar-se-á o resultado com os obtidos experimentalmente. Utilizando os dados dos protótipos, podem-se calcular $\Delta_{us} = 0,96$ cm e $s^{(B)} = 0,20$ cm. Pela Eq.6.11 chega-se a $\theta_u = 15,9$ mrad. Na FIG.6.8 podem-se visualizar as curvas momento *versus* rotação dos protótipos, obtidas dos ensaios, juntamente com a capacidade última experimental (16,0 mrad) e a calculada pelo procedimento proposto (15,9 mrad).

FIGURA 6.8 – Capacidade última de rotação – comparação entre as análises teórica e experimental

Na TAB.6.1 apresentam-se os valores da capacidade de rotação dos protótipos ensaiados, obtidos das análises experimental e numérica, juntamente com os calculados teoricamente conforme o procedimento proposto, utilizando-se os dados reais dos protótipos (teórico 1). Apresentam-se também as capacidades de rotação de seis casos de ligação mista utilizados na análise paramétrica, juntamente com os valores da capacidade de rotação teórica calculados segundo o procedimento proposto, para dois valores do comprimento de referência: L = 310 mm (teórico 1) e L = 200 mm (teórico 2) – o primeiro é a distância entre o primeiro conector e o centro do elemento de apoio e o segundo, o valor preconizado pela norma brasileira.

São apresentados ainda valores de rotação obtidos da análise numérica, correspondentes a 70% da deformação da armadura envolvida pelo concreto (ε_{smu}), calculada conforme o procedimento da norma brasileira.

Modelo	θ_u [mrad] (experimental)	θ_u [mrad] (numérico)	θ [mrad] (0,7 ε_{smu})	θ_u [mrad] (teórico 1)	θ_u [mrad] (teórico 2)
Protótipo 1	16,0	19,3	14,3	15,9	-
Protótipo 2	16,0	21,2	16,3	15,9	-
Protótipo 3	16,0	19,6	14,2	15,9	-
Caso 11	-	19,9	14,2	14,9	10,2
Caso 16	-	26,5	18,0	17,4	12,0
Caso 34	-	14,4	10,3	10,6	7,2
Caso 39	-	16,2	13,0	12,6	8,6
Caso 78	-	9,3	6,6	6,8	4,6
Caso 83	-	11,2	8,4	8,1	5,5

TABELA 6.1 – Comparação da capacidade última de rotação

Como se pode observar, há uma boa correlação entre os resultados das análises experimental, numérica e teórica. Pode-se concluir, portanto, que o procedimento proposto conduz a resultados suficientemente conservadores para ser utilizado em projeto.

Em vigas mistas com perfil de alma senoidal, a rotação necessária para o desenvolvimento do máximo momento positivo da viga é muito inferior à dos perfis de alma plana. Isso se deve a não ser necessária a plastificação completa do perfil senoidal, haja vista que a alma não contribui para resistir ao momento fletor. Assim sendo, pode-se considerar, sem erro significativo, que a rotação de apoio que provoca o início da plastificação da viga mista seja a rotação necessária. Haja vista as dimensões usuais dos perfis e da laje, pode-se considerar que o início da plastificação da viga mista corresponda ao início do escoamento da mesa inferior (desprezando-se as tensões residuais).

A partir da equação da linha elástica dos casos mostrados na FIG.6.9 e considerando inércias diferentes da viga semicontínua nas regiões de momento fletor positivo e negativo, tem-se a seguinte equação para a determinação da rotação da viga na região do apoio para cada um dos casos apresentados na FIG.6.9:

$$\phi = \frac{M^+ \ell}{6EI_\nu^+} \left[\left(1 - \frac{I_\nu^+}{I_\nu^-} \right) \left(\alpha - 2 + \frac{2}{\sqrt{1+\alpha}} \right) + 2 - \alpha \right] \qquad \text{para DL}$$
(6.13)

$$\phi = \frac{M^+ \ell}{6EI_v^+} \left(\frac{\alpha + 2}{1 + \alpha} - \frac{I_v^+}{I_v^-} \frac{\alpha^2}{1 + \alpha} \right) \qquad \text{para 2CL} \tag{6.14}$$

$$\phi = \frac{M^{+}\ell}{4EI_{\nu}^{+}} \left(\frac{1}{1+\alpha} - \frac{I_{\nu}^{+}}{I_{\nu}^{-}} \frac{\alpha^{2}}{1+\alpha} \right)$$
 para 1CL (6.15)

onde M^+ é a resistência da viga mista na região de momento positivo, I_{ν}^+ é a inércia da viga mista na região de momento fletor positivo, I_{ν}^- é a inércia da seção composta pelo perfil metálico e pelas barras de armadura na região de momento fletor negativo, α é a relação entre os momentos fletores negativo e positivo, ℓ é o vão da viga, DL significa carga uniformemente distribuída, 1CL significa uma carga concentrada no centro da viga e 2CL significa duas cargas concentradas nos terços do vão da viga.

FIGURA 6.9 - Casos de carregamento para a viga semicontínua

Pode-se considerar que a resistência da viga mista na região de momento positivo (M^+) , correspondente ao início de plastificação da mesa, e o momento de inércia da viga mista (I_v^+) sejam aproximados por:

$$M^+ \cong k_1 A_{f_1} f_{\nu} d_t \tag{6.16}$$

$$I_{\nu}^{+} \cong k_{2}A_{f}d_{f}^{2} \tag{6.17}$$

onde k_1 e k_2 são constantes para ajuste das equações, A_{fi} é a área da mesa inferior do perfil e d_t é a altura total da viga mista, ou seja, a soma das alturas do perfil metálico e da laje.

Dentro dos limites usuais dos perfis e das lajes (ver Anexo C) calcularam-se os valores teóricos para a relação entre o momento fletor resistente e a inércia da viga mista e fez-se uma regressão linear com os valores aproximados, calculados por meio das Eq.6.16 e Eq.6.17, obtendo a seguinte equação, com correlação (R^2) de 0,958:

$$\frac{M^{+}}{I_{v}^{+}} \cong 1,4968 \frac{f_{y}}{d_{t}}$$
(6.18)

Novamente, dentro dos limites usuais dos perfis e das lajes, fez-se um estudo para se determinar a variação da relação entre as inércias da viga semicontínua entre as regiões de momentos fletores positivo e negativo para relações de α entre 0,3 e 0,6. Foram realizados testes de *Kolmogorov-Smirnov* para prova de aderência (ver anexo C), cujos resultados mostraram, para um nível de significância de 5%, que a distribuição normal é adequada. Observando as Eq.6.13 a Eq.6.15 constata-se que quanto maior a relação I_v^+/I_v^- menor será a capacidade de rotação necessária. Utilizando a equação μ -1,64*s*, onde μ é a média e *s* é o desvio-padrão da amostra, para o cálculo do valor com 95% de probabilidade de ser excedido, obteve-se I_v^+/I_v^- igual a 1,40 - esse valor foi utilizado para a determinação da capacidade de rotação necessária. Substituindo a Eq.6.18 nas Eq.6.13 a Eq.6.15 e considerando $f_y = 350$ MPa e E = 200000 MPa, tem-se as seguintes relações para a capacidade de rotação necessária:

$$\phi(mrad) = 0,4366 \frac{\ell}{d_t} \left(2,8-1,4\alpha - \frac{1}{1,25\sqrt{1+\alpha}} \right) \text{ para DL}$$
 (6.19)

$$\phi(mrad) = 0,4366 \frac{\ell}{d_t} \left(\frac{\alpha + 2 - 1,4\alpha^2}{1 + \alpha} \right) \qquad \text{para 2CL} \qquad (6.20)$$

$$\phi(mrad) = 0,6549 \frac{\ell}{d_t} \left(\frac{1 - 1,4\alpha^2}{1 + \alpha} \right) \qquad \text{para 1CL} \qquad (6.21)$$

onde ℓ/d_t é a relação entre o vão e a altura total da viga mista.

O valor mínimo de α , conforme a ABNT NBR 8800: 2008, deve ser igual a 0,3. Apresenta-se na TAB.6.2, a capacidade de rotação necessária para valores de α entre 0,3 e 0,6, sendo que para valores de α superiores a 0,6 deve ser adotada a capacidade de rotação necessária dada para α igual a 0,6.

l		$\alpha = 0,3$			$\alpha = 0,4$			$\alpha = 0,5$		$\alpha = 0,6$			
d_t	DL	2CL	1CL	DL	2CL	1CL	DL	2CL	1CL	DL	2CL	1CL	
12	8,8	8,8	5,3	8,2	8,1	4,4	7,6	7,5	3,4	7,0	6,9	2,4	
15	11,0	11,0	6,6	10,2	10,2	5,4	9,5	9,4	4,3	8,7	8,6	3,0	
18	13,2	13,1	7,9	12,3	12,2	6,5	11,4	11,3	5,1	10,4	10,3	3,7	
21	15,4	15,3	9,2	14,3	14,2	7,6	13,3	13,1	6,0	12,2	12,0	4,3	
24	17,6	17,5	10,6	16,4	16,3	8,7	15,2	15,0	6,8	13,9	13,7	4,9	

TABELA 6.2 – Capacidade de rotação necessária (mrad)

Analisando a TAB.6.2 percebe-se, assim como nos perfis de alma plana, que a rotação necessária na ligação diminui com o aumento da relação entre os momentos na ligação mista e no vão. Constata-se também que o carregamento com cargas concentradas nos terços do vão (2CL) e carga uniformemente distribuída (DL) exigem uma maior rotação no apoio do que o carregamento com carga concentrada no meio do vão (1CL).

Vale a pena ressaltar que, apesar de se ter considerado inércias diferentes nas regiões de momento fletor positivo e negativo, os valores da capacidade de rotação necessária apresentada na TAB.6.2 são bem próximos aos valores apresentados por PIMENTA (2008), que considerou a inércia da viga mista (I_{ν}^{+}) em todo o vão.

Utilizando o modelo numérico da viga mista biapoiada com perfil de alma senoidal (ver item 5.2 do Capítulo 5), processaram-se dois casos de vigas mistas que são apresentadas na TAB.6.3 a seguir.

Casos	<i>d</i> [mm]	<i>b_f</i> [mm]	t _{fs} [mm]	<i>t_{fi}</i> [mm]	<i>t</i> _w [mm]	<i>h_f</i> [mm]	<i>h</i> _{<i>t</i>} [mm]	L/d_t	<i>L / 2</i> [mm]	Relação b _c / L	<i>b</i> _{<i>c</i>} [mm]	f_{ck} [kN/cm ²]	M _{Rk} [kNcm]
1	400	150	8,00	12,50	3,00	75	200	20	5890	L/6	1963	2,00	47488
2	1000	200	12,50	19,00	3,00	75	150	15	8525	L/6	2842	2,00	164512

TABELA 6.3 – Casos de vigas mistas utilizados no processamento

as variáveis apresentadas nesta tabela foram enumeradas no item 5.2 do Capítulo 5.

Foram obtidas desses processamentos as rotações de apoio para o máximo momento fletor resistente da viga mista (θ_1) e para o momento fletor resistente da viga mista correspondente ao início do escoamento da mesa inferior do perfil metálico (θ_2). Esses valores foram comparados com a capacidade de rotação necessária dada por meio da Eq.6.19, para $\alpha = 0$, e os resultados são apresentados na TAB.6.4.

TABELA 6.4 – Comparação entre os valores obtidos por meio das análises numérica e teórica

Modelo	Rotação necessária de apoio [mrad]									
11104010	θ_1	θ_2	Eq.6.19							
Caso 1	43,0	17,0	16,0							
Caso 2	36,0	13,0	13,0							

Observando a TAB.6.4 constata-se que a rotação de apoio fornecida pela Eq.6.19 é inferior à rotação de apoio obtida por meio da análise numérica (θ_1) correspondente ao máximo momento fletor resistente da viga mista, mas essa rotação está muito próxima da rotação correspondente ao momento fletor resistente da viga mista em que se tem o início do escoamento da mesa inferior do perfil metálico (θ_2). Esse fato pode estar associado à plastificação da mesa superior do perfil metálico que exige uma maior rotação de apoio. Ressalta-se também o fato de que o momento fletor resistente da viga mista considerando-se apenas a resistência da mesa inferior do perfil metálico está muito próximo do momento fletor da viga mista calculado pelo processo elástico.

Por essa razão, propõe-se neste trabalho que somente a resistência da mesa inferior do perfil metálico deva ser considerada no cálculo do momento fletor positivo resistente de vigas semicontínuas com perfil de alma senoidal.

Acredita-se que essa proposição está do lado da segurança, porém para se ter uma informação mais precisa a respeito da capacidade de rotação necessária da ligação mista, faz-se necessária a criação de um modelo numérico completo via MEF, capaz de reproduzir o comportamento de vigas semicontínuas com perfil de alma senoidal.

6.3.4 – Rigidez inicial

De acordo com o ABNT-NBR 8800: 2008, a rigidez inicial da ligação, S_i , definida como a relação entre o momento solicitante e a rotação da ligação, é dada pela Eq.6.22, desprezandose a contribuição da ligação da alma e admitindo-se que as extremidades da viga e da laje sofram a mesma rotação θ , apesar do escorregamento:

$$S_{i} = \frac{M}{\theta} = \frac{(d+y)^{2}}{\frac{1}{k_{s}} + \frac{1}{k_{cs}} + \frac{1}{k_{i}}}$$
(6.22)

onde k_s é a rigidez inicial das barras de armadura, k_{cs} é a rigidez inicial dos conectores e k_i é a rigidez inicial da ligação inferior, conforme apresentado no Capítulo 2.

Neste trabalho, propõe-se que o procedimento da norma brasileira também seja adotado para a determinação da rigidez inicial da ligação mista com perfil de alma senoidal, porém não considerando a rigidez inicial da ligação inferior por estar se utilizando uma chapa de topo para a ligação metálica e o seu valor tender para infinito.

Por meio da curva momento *versus* rotação, determinou-se que a rigidez inicial dos protótipos ensaiados é igual a 18.086.956 kN·cm/rad, valor obtido para um momento fletor resistente de serviço correspondente a 2/3 do momento fletor resistente último da ligação mista. Utilizando os dados dos protótipos, tem-se d = 61,98 cm, y = 10,5 cm, $k_s = 3092$ kN/cm e $k_{cs} = 4085$ kN/cm e substituindo esses valores na Eq.6.22, obtém-se $S_i = 9.245.384$ kN·cm/rad (51% da rigidez obtida nos ensaios). A diferença entre as rigidezes experimental e teórica foi relatada também por MATA (2003) em seus ensaios de ligação mista com vigas de alma plana. É sabido que a Eq.6.22 fornece valores do lado da segurança, uma vez que não considera o efeito do "*tension stiffening*" na rigidez da barras de armadura. Devido ao fato de a chapa de topo contribuir para a resistência e a rigidez da ligação mista somente após o escoamento das barras de armadura e, como na maior parte dos casos, para o momento fletor de serviço, as barras de armadura não atingiram a resistência ao escoamento, não se considerou a rigidez da ligação mista.

6.3.5 – Algumas considerações qualitativas sobre as construções escoradas e nãoescoradas

A maneira como os protótipos da ligação mista foram ensaiados reproduz o comportamento de construções escoradas, nas quais todas as ações aplicadas (peso próprio de materiais e sobrecarga) são suportadas pela ligação mista. No caso de construções não-escoradas, têm-se duas etapas distintas: a primeira ocorre na fase de construção em que o peso próprio da laje de concreto e do vigamento metálico e a sobrecarga de construção são resistidos exclusivamente pela ligação metálica. Somente após o endurecimento do concreto, é que se tem início a segunda fase, onde as barras de armadura substituem a ligação metálica como o principal elemento resistente da ligação mista. Portanto, para a determinação de flechas em vigas semicontínuas de construções não-escoradas, pode-se utilizar a rigidez da ligação metálica e a rigidez da ligação mista após o endurecimento do concreto; o mesmo pode ser feito com a

resistência à flexão da ligação metálica [GONZAGA (2008)], durante a fase de construção, para erguer o diagrama de momento fletor solicitante da viga, evitando com isso problemas de resistência à flexão durante essa fase.

Apesar da rigidez da ligação mista ser bem maior do que a rigidez da ligação metálica, a ação solicitante durante a fase de construção é menor do que a ação solicitante final, o que conduz, na maioria dos casos, a pequenas rotações da ligação metálica durante a fase de construção. Esse fato não altera significativamente o comportamento da ligação mista ensaiada daquele da ligação mista de construções não-escoradas e acredita-se, portanto, que os procedimentos apresentados neste trabalho possam ser utilizados tanto para as construções escoradas quanto para as construções não-escoradas.

7

CONSIDERAÇÕES FINAIS

7.1 – Conclusões

Neste trabalho foi estudado o comportamento de vigas mistas com perfil de alma senoidal. Para isso foram utilizados os resultados de ensaios realizados por MOTAK & MACHACEK (2004) de vigas mistas biapoiadas e foram realizados três ensaios de ligações mistas com perfil de alma senoidal no Laboratório de Análise Experimental de Estruturas (LAEES) da UFMG. A partir dos resultados desses ensaios, calibraram-se modelos numéricos que foram utilizados em estudos paramétricos para a determinação de procedimentos de cálculo para a obtenção do momento fletor resistente e de propriedades fundamentais da ligação mista e do momento fletor resistente de vigas mistas biapoiadas com perfil de alma senoidal. Devido à falta de publicações e estudos relacionados a esse assunto, tomaram-se como ponto de partida os procedimentos de cálculo apresentados pela norma brasileira ABNT NBR 8800: 2008 para perfis de alma plana. Tem-se, a seguir, um resumo dos principais tópicos a serem destacados e as conclusões obtidas em cada um dos assuntos abordados:

 Nos ensaios de MOTAK & MACHACEK, observou-se que o posicionamento dos conectores conduziu a uma redução do grau de interação da viga mista que foi compensado pela força de atrito na interface entre a laje e o perfil metálico. O modelo numérico, a despeito das simplificações adotadas, mostrou-se adequado para simular o comportamento dos protótipos ensaiados.

- 2. O momento fletor resistente de cálculo referente à plastificação da viga mista com perfil de alma senoidal pode ser determinado por meio dos procedimentos apresentados na norma brasileira ABNT NBR 8000: 2008, desprezando-se a alma no cálculo das propriedades geométricas. A linha neutra plástica da viga mista deve estar localizada na laje de concreto ou na mesa superior do perfil e sugere-se a utilização de vigas mistas com interação total a fim de diminuir a flecha das vigas.
- 3. Para a determinação da flecha da viga, deve-se levar em consideração o efeito da deformação por cisalhamento devido à presença da alma senoidal. JOHNSON & CAFFOLA (1997) sugerem a utilização de um módulo de elasticidade transversal equivalente para o aço da alma, levando em consideração a geometria da alma senoidal.
- 4. Nos ensaios de ligação mista, observou-se que a participação da ligação metálica tornou-se mais efetiva após o escoamento das barras da armadura. O colapso dos protótipos ocorreu por flambagem inelástica da mesa comprimida, após o aparecimento de um mecanismo similar ao campo de tração na alma. Esse fenômeno resultou da deformação excessiva da alma, em conseqüência do aumento da deformação da chapa de topo provocada pela força desenvolvida na primeira linha de parafusos, após o início da formação dos mecanismos de charneiras plásticas. Essa força provocou um aumento da tensão de cisalhamento vertical da alma junto à chapa de topo, causando o esgotamento de sua capacidade de carga. À medida que se propagava, o mecanismo de campo de tração provocava uma planificação da alma e, paulatinamente, a redução da rigidez das corrugações, na direção perpendicular à sua seção transversal. Com isso, a alma passou a não mais restringir adequadamente a mesa comprimida, que falhou por instabilidade por flexão em relação a seu eixo de menor inércia, deformando-se na direção da mesa tracionada. Observou-se a formação de charneiras plásticas na chapa de topo, evidenciadas pelo aparecimento de linhas de Lüder. Um modelo mecânico do mecanismo de falha foi proposto juntamente com PIMENTA (2008) a partir dos resultados dos ensaios. Um modelo de elementos finitos foi desenvolvido para simular os ensaios - os resultados numéricos foram comparados aos experimentais, demonstrando que o modelo foi capaz de simular adequadamente o comportamento dos protótipos.

- 5. Percebeu-se durante os ensaios e constatou-se com a análise numérica que somente a primeira linha de parafusos colabora para a resistência da ligação mista com perfil de alma senoidal. Verificou-se também que o modelo de cálculo ("Equivalent T-Stubs") do EN 1993-1-8 (2005) pode ser utilizado para se calcular a força desenvolvida na primeira linha de parafusos da chapa de topo.
- 6. A resistência da ligação mista com perfil de alma senoidal é fornecida pelas barras de armadura e pela primeira linha de parafusos. Além das disposições construtivas apresentadas na norma brasileira ABNT NBR 8000: 2008 para a ligação mista com perfil de alma plana e chapa de topo, devem ser atendidas as seguintes considerações adicionais para a ligação mista com perfil de alma senoidal: despreza-se a alma no cálculo das propriedades geométricas e, conseqüentemente, as exigências de que esta seja compacta; a resistência da mesa comprimida deve ser igual ou superior à soma das forças desenvolvidas pela armadura e pela ligação metálica e consideram-se outros valores para as capacidades de rotação disponível e necessária.
- 7. A capacidade de rotação da ligação mista pode ser calculada pelo modelo fornecido na norma brasileira ABNT NBR 8000: 2008, utilizando-se, porém, 70% da deformação última da armadura envolvida pelo concreto no cálculo da capacidade de deformação das barras da armadura. Essa limitação tem por objetivo impedir a probabilidade da ocorrência de flambagem da mesa comprimida antes da efetiva redistribuição dos momentos de acordo com a análise plástica.
- 8. Em vigas mistas com perfil de alma senoidal, a rotação necessária para o desenvolvimento do máximo momento positivo da viga é muito inferior à dos perfis de alma plana. Isso se deve a não ser necessária a plastificação completa do perfil de alma senoidal, haja vista que a alma não contribui para resistir ao momento fletor. Assim sendo, pode-se considerar, sem erro significativo, que a rotação de apoio que provoca o início da plastificação da viga mista seja a rotação necessária. A partir da equação da linha elástica e considerando inércias diferentes da viga semicontínua entre as regiões de momentos fletores positivo e negativo, determinaram-se equações para a obtenção da rotação necessária para os seguintes casos de carregamento: duas cargas concentradas (DL), uma carga concentrada no meio do vão (1CL) e duas cargas concentradas nos terços médios do vão (2CL).
- 9. Comparando o resultado das equações para obtenção da rotação necessária da ligação mista com a rotação obtida por meio do modelo numérico de vigas mistas com perfil de alma senoidal, constatou-se que a rotação de apoio necessária para o

desenvolvimento do máximo momento fletor positivo da viga mista é maior do que o valor fornecido por essas equações. Esse fato está associado à plastificação da mesa superior do perfil metálico que exige uma maior rotação do apoio. Por essa razão, propõe-se que somente a resistência da mesa inferior do perfil metálico deva ser considerada no cálculo do momento fletor positivo resistente de vigas semicontínuas com perfil de alma senoidal;

10. A rigidez inicial da ligação mista pode ser determinada conforme o procedimento apresentado pela norma brasileira ABNT NBR 8000: 2008 para perfis de alma plana, porém não considerando a rigidez inicial da ligação inferior por estar se utilizando uma chapa de topo para a ligação metálica e o seu valor tender para infinito. Não se considerou a rigidez da ligação da chapa de topo para a rigidez inicial da ligação mista, por serem as barras de armadura o principal elemento resistente da ligação mista até se atingir o limite de escoamento do aço das barras.

7.2 – Sugestões para trabalhos posteriores

O perfil de alma senoidal tem sido empregado em passarelas e em elementos estruturais de galpões, como tesouras, pilares e vigas de rolamento. Esse fato fez com que as pesquisas existentes até o presente momento se concentrassem no comportamento do perfil isoladamente, a fim de que os mesmos possam ser utilizados nesses tipos de construções. O comportamento de vigas mistas biapoiadas e semicontínuas com perfil de alma senoidal é um assunto extremamente recente e pouco explorado, sendo que esta pesquisa é a primeira, de acordo com o estudo bibliográfico feito, sobre o comportamento de ligações mistas com perfil de alma senoidal. Portanto, há uma série de pontos que devem ser estudados, aprofundados e melhorados a fim de se conhecer melhor o comportamento das vigas e ligações mistas com perfil de alma senoidal. Sugerem-se, a seguir, os seguintes trabalhos que podem dar prosseguimento a esta pesquisa:

- 1. Realização de ensaios de *push-test* para os conectores tipo pino com cabeça para se avaliar os efeitos localizados no perfil metálico devido à presença da alma senoidal.
- Realização de ensaios em escala real de vigas mistas biapoiadas com perfil de alma senoidal, utilizando conectores tipo pino com cabeça, para se avaliar mais precisamente a influência da deformação por cisalhamento na flecha da viga mista.

- Estudo dos tipos de ligações possíveis para vigas mistas biapoiadas com perfil de alma senoidal e determinação de procedimentos de cálculo para as mesmas.
- Análise experimental e numérica para aberturas na alma do perfil senoidal e proposição de métodos de cálculo para o reforço dessa região.
- 5. Aperfeiçoamento do modelo numérico a fim de se captar melhor a capacidade de deformação da alma senoidal e propor um modelo de cálculo para a capacidade de rotação da ligação mista levando-se diretamente em conta esse parâmetro.
- Análise experimental e numérica visando à obtenção de dados para se conhecer mais precisamente o comportamento global de vigas mistas de alma senoidal sujeitas a flambagem lateral com distorção.
- Análise experimental para a determinação da distribuição de tensões residuais nos perfis de alma senoidal, o que permitiria um avanço no estudo da flambagem local da mesa e da flambagem lateral com torção.

REFERÊNCIAS BIBLIOGRÁFICAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 8681**: Ações e segurança nas estruturas. Rio de Janeiro, 2003.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6118**: Projeto de estruturas de concreto-Procedimento. Rio de Janeiro, 2007.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 8800**: Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios. Rio de Janeiro, 2008.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 5739**: Concreto – Ensaio de compressão de corpos de prova cilíndricos. Rio de Janeiro, 1994.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 7222**: Argamassa e concreto – Determinação da resistência à tração por compressão diametral de corpos de prova cilíndricos. Rio de Janeiro, 1994.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION. **AISC-LRFD:** Load and Resistance Factor Design Specification for Structural Steel Building (with errata incorporated as of September 1, 2002). Chicago, Illinois, EUA, 1999.

AMERICAN NATIONAL STANDARD. **ANSI/AISC 360-05**: Specification for Structural Steel Building. Chicago, Illinois, EUA, 2005.

AMERICAN SOCIETY OF CIVIL ENGINEERS. **ASCE 7-05**: Minimum Design Loads for Buildings and Other Structures, EUA, 2006.

AMERICAN SOCIETY FOR TESTIN AND MATERIALS. **ASTM A370**: Standard Test Methods and Definitions for Mechanical Testing of Steel Products, 2006.

ANDERSON, D.; NAJAFI, A. A. Performance of Composite Connections: Major Axis End Plate Joints. J. Construct. Steel Research, Elsevier Science Limited, 1994.

ANSYS: Theory Reference: Manual Online. Houston, EUA, 2004.

BERGFELT, A.; LEIVA-ARAVENA, L. Shear buckling of trapezoidal corrugated girder webs, Division of Steel and Timber Structures, Chalmers University of Technology, Gothenburg, Sweden, 1984, Publication S84:2.

BODE, H.; KRONENBERGER, H. J.; MICHAELI, W. **Composite Joints – Further Experimental Results**. Conference Report, International Conference Composite Construction – Conventional and Innovative. Innsbruck, Austria, 1997, p. 433-438.

BRANKA, P. Tragverhalten von Trager mit Schlanken, Ebenen und Profilierten Stege.1999. Tese de Doutorado – Universidade de Brandemburgo, Cottbus, Alemanha.

CALENZANI, A. F. G.. Proposição de Procedimento para a Determinação da Rigidez
Rotacional de Vigas Mistas Contínuas e Semicontínuas com Perfis de Alma Senoidal.
2008. Tese de Doutorado – Universidade Federal de Minas Gerais, Belo Horizonte.

CALENZANI, A. F. G.; FAKURY, R. H.; PAULA, F. A.; RODRIGUES, F. C.; QUEIROZ, G.; PIMENTA, R. J. Determinação da Rigidez Rotacional de Vigas Mistas de Alma Senoidal no Estado Limite de Flambagem Lateral com Distorção. CMNE/CILAMCE, Lisboa, Portugal, 2007.

CHEN, W. F.; HAN, D. J. Plasticity for Structural Engineers. 1° edição, New York, Springer-Verlag, 1988.

COMITÉ EURO-INTERNATIONAL DU BÉTON. CEB-FIP. Model Code 1990. London: Thomas Telford, 1993.

CORRUGATED PLATE INDUSTRY. Disponível em <http://www.cpi-glp.com> Acesso em: maio/2006.

COUCHMAN, G. H.; WAY. A. Ductility Requirements for Composite Connections. The Steel Construction Institute, 1999.

COUCHMAN, G. H.; WAY, A. Joints in Steel Construction: Composite Connections. The Steel Construction Institute. SCI & BCSA. Ascot, SCI-213, 1998.

DASt-Ri 015. Deutscher Ausschuss für Stahlbau: DASt-Richtlinie 015 – Träger mit schlanken Stegen. Stahlbau-Verlagsgesellschaft, Colônia, Alemanha, 1990.

DE HOOP, H. G. Literate Study – Master Thesis: Girders with Corrugated Webs. Papendrecht, The Netherlands, 2003.

DIN 18800. Teil 2: Stahlbauten - Stabilitätsfälle, Knicken von Stäben und Stabwerken. Deutsches Institut für Normung, Berlim, 1990.

EASLEY, J. T.; MCFARLAND. Buckling Formulas for Corrugated Metal Shear Diaphragms. ASCE Journal of the Structural Division, 1975, p. 1403-1417.

ELGAALY, M. Web Design Under Compressive Edge Loads. Engineering Journal, AISC, 4th Qtr., 1983, p. 153-171.

ELGAALY, M.; SESHADRI, A.; HAMILTON, R. W. Shear Strength of Beams with Corrugated Webs. Journal of Structural Engineering, 1996, p. 390-397.

ELGAALY, M.; SESHADRI, A. Steel Built-up Girders with Trapezoidally Corrugated Webs. Engineering Journal, First Quarter, 1998, p. 1-11.

EL-METWALLY, A. S.; LOOV, R. E. **Prestressed composite girders with corrugated steel webs**. Proceedings of the 5th International Conference on Short and Medium Span Bridges (SMSB V): Developments in Short and Medium Span Bridge Engineering '98, Calgary, Alta, 1998, p. 1175-1187.

EL-METWALLY, A. S. **Prestressed composite girders with corrugated webs.** 1999. Dissertação de Mestrado – Department of Civil Engineering, The University of Calgary, Alta. EUROPEAN CONVENTION FOR CONSTRUCTION STEELWORK. ECCS. Technical Committee 11. Composite Structures. **Design of Composite Joints for Buildings**. Nº 109. 1a. Edition. Brussels.

EUROPEAN COMMITTEE FOR STANDARDIZATON. **EUROCODE 2**: Design of Concrete Structures – Part1-1: General Rules and Rules for Buildings. Bruxelas, 2004.

EUROPEAN COMMITTEE FOR STANDARDIZATON. **EUROCODE 3**: Design of Steel Structures – Part1-1: General Rules and Rules for Buildings. Bruxelas, 2005.

EUROPEAN COMMITTEE FOR STANDARDIZATON. **EUROCODE 3**: Design of Steel Structures – Part1-8: Design of Joints. Bruxelas, 2005.

EUROPEAN COMMITTEE FOR STANDARDIZATON. **EUROCODE 4**: Design of Composite Steel and Concrete Structures – Part1-1: General Rules and Rules for Buildings. Bruxelas, 2004.

FAKURY, R. H.; CALENZANI, A. F. G.; PAULA, F. A.; RODRIGUES, F. C.; QUEIROZ,
G.; PIMENTA, R. J. Determinação da Rigidez Rotacional de Vigas Mistas de Alma
Senoidal em Pisos com Lajes Mistas. XXXIII Jornadas Sudamericanas de Ingenieria
Estructural, 2007.

FAKURY, R. H.; HACKBART JUNIOR, H.; CALENZANI, A. F. G.; QUEIROZ, G.; PIMENTA, R. J. **Determinação do Momento Fletor Resistente e Vigas de Aço de Alma Senoidal à Flambagem Lateral com Torção.** XXVI Congresso Ibero-latinoamericano de Mecânica Computacional, XXVI CILAMCE, Guarapari, 2005.

FRONIUS OSTERREICH. Disponível em <http://www.fronius.at> Disponível em: maio/2006.

GALAMBOS, T. V. Guide to stability design criteria for metal structures. John Wiley & Sons, Inc., New York, EUA, 1988.

GONZAGA, L. G. M. Análise numérico-experimental de flambagem lateral com torção e de ligações em vigas com perfis de alma corrugada senoidal. 2008. Tese de Doutorado – Universidade Federal de Minas Gerais, Belo Horizonte.

HACKBART JUNIOR, H. Estudo da flambagem lateral com torção de vigas de aço de alma senoidal. 2006. Dissertação de mestrado – Universidade Federal de Minas Gerais, Belo Horizonte.

HAMILTON, R. Behavior of Welded Girders with Corrugated Webs. A report submitted to NSF, 1993.

HILTI CORPORATION. Disponível em <http://www2.hilti.com/cz/> Disponível em: maio/2006

JOHNSON, R. P. Composite structures of steel and concrete, 3a. Ed., Blackwell, 2004.

JOHNSON, R. P.; CAFOLLA, J. **Corrugated webs in plate girders for bridges.** Proceedings of the Institution of Civil Engineering, Structures and Buildings, 1997, 123: 157-164.

LEONEL, E. D; RIBEIRO, G. O; DE PAULA, F. A. Simulação numérica de estruturas de concreto armado por meio de MEF/ANSYS. V Simpósio EPUSP sobre Estruturas de Concreto Armado, 2003.

LI, T. Q.; NETHERCOT, D. A.; LAWSON, R. M. Required Rotation of Composite Connections. Journal of Constructional Steel Research 56, 2000, p.151-173.

LYNX TECNOLOGIA ELETRÔNICA Disponível em http://www.lynxtec.com.br Disponível em: março/2006.

MACHACEK, J; MOTAK, J. Stripcon Shear Connectors in Composite Girders. Stability and Ductility of Steel Structures; D. Camotim *et al.*; Lisboa, Portugal, 2006.

MATA, L. A. C. Ligações Mistas Aço-Concreto para Sistemas Estruturais Indeslocáveis e Deslocáveis. 2003. Tese de doutorado – Universidade Federal de Minas Gerais, Belo Horizonte.

MOTAK, J.; MACHACEK, J. Experimental Behaviour of Composite Girders with Steel Undulating Web and Thin-Walled Shear Connectors Hilti Stripcon. Journal of Civil Engineering and Management, Vol X, No. 1, 2004, p. 45-49.

NETHERCOT, D.A. Composite Construction. Spon Press, London, 2003.

PASTERNAK, H. Expert statement on the transverse force load carrying capacity of corrugated web beams) Gutachterliche Stellungnahme zur Querkrafttragfähigkeit von Wellstergträgern. Braunschweig/Cottbus, 1996.

PASTERNAK, H.; BRANKA, P. Zum Tragverhalten von Wellstegträgern. Bauingenieur 73(10), 1998, p. 437-444.

PLAIS, W. Perfis de Alma Senoidal. Documento Técnico da Codeme Engenharia S.A., 2005.

PIMENTA, R. J. Perfis de Alma Senoidal: Proposição de Métodos de Cálculo e Análise da Confiabilidade Estrutural. 2008. Tese de Doutorado – Universidade Federal de Minas Gerais, Belo Horizonte.
PINTO, E. L. Análise Numérico-Experimental da Flambagem Local de Mesas de Perfis com Alma Senoidal. 2008. Projeto de tese – Universidade Federal de Minas Gerais, Belo Horizonte.

QUEIROZ, G.; PIMENTA, R. J.; MATA, L. A. C. Elementos das Estruturas Mistas Aço-Concreto. Ed. O Lutador, 1a.edição, Belo Horizonte, 2001.

QUEIROZ, G.; GONZAGA, L. G. M.; FAKURY, R. H.; RODRIGUES, F. C.; PIMENTA, R. J. Lateral-Torcional Buckling of Sinusoidally-Corrugated Web Beams. D. Camotim *et al.* Lisboa, Portugal, 2006.

QUEIROZ, F. D. Finite Element Analysis of Composite Beams: The Influence of Different Levels of Shear Connection. 2007. Tese de doutorado – Department of Civil and Environmental Engineering, Imperial College, London.

THE STEEL CONSTRUCTION INSTITUTE. **SCI 207**: Joints in Steel Construction: Moment Connections. P-207, Ascot, Reino Unido, 1997.

SAYED-AHMED, E. Y. Behaviour of steel and (or) composite girders with corrugated steel webs. Canadian Journal of Civil Engineering, Vol.28, 2001, p. 656-672.

SAYED-AHMED, E. Y. Lateral torsion-flexure buckling of corrugated web steel girders. Proceedings of the Institution of Civil Enginners / Structure & Buildings 158, 2005a, p. 53-69.

SAYED-AHMED, E. Y. Plate Girders with Corrugated Steel Webs. Engineering Journal, First Quarter, 2005, p. 1-13, 2005b.

SIOKOLA, W. Corrugated Web Beam: Technical Documentation. 4th Edition - Zeman & Co, 1999.

SOUZA, D. G. Estudo de Flambagem Local de Mesa de perfis I com Alma Senoidal via Análise Não-linear pelo MEF. 2006. Dissertação de Mestrado – Universidade Federal de Minas Gerais, Belo Horizonte.

LAUDO TÉCNICO DOS ENSAIOS MECÂNICOS

Apresentam-se nesse anexo os laudos técnicos dos ensaios mecânicos realizados nos corpos de prova retirados dos três protótipos de ligação mista com perfil de alma senoidal e os certificados de inspeção das chapas emitidos pela usina. Os ensaios para obtenção da resistência média à compressão e do módulo de elasticidade do concreto foram realizados no Laboratório de Análise Experimental de Estruturas (LAEES) da Escola de Engenharia da Universidade Federal de Minas Gerais. Durante a concretagem dos protótipos foram retirados 5 corpos de prova de concreto de cada um deles, sendo 3 corpos de prova utilizados para a obtenção da resistência à compressão e 2 para a obtenção do módulo de elasticidade. As propriedades mecânicas do concreto foram determinadas no dia da realização do ensaio de cada um dos protótipos. Os ensaios de compressão foram realizados conforme a norma brasileira ABNT NBR 5739: 1994, usando uma máquina universal PC 200 de capacidade 2000 kN, enquanto os ensaios de compressão para a determinação do módulo de elasticidade longitudinal, conforme a norma brasileira ABNT NBR 8522: 2003, usando uma máquina universal DL 30000 de capacidade 300 kN. A identificação dos corpos de prova do concreto é feita da seguinte maneira: o trabalho número 257 refere-se aos corpos de prova do concreto do protótipo 1, o trabalho número 260 ao concreto do protótipo 3 e o trabalho número 263 ao concreto do protótipo 2. Na obtenção do módulo de elasticidade longitudinal, os corpos de

prova CP1 e CP2 são do protótipo 1, CP3 e CP4 são do protótipo 3 e CP5 e CP6 do protótipo 2.

Os ensaios para obtenção das resistências ao escoamento e ruptura do aço das chapas do perfil, da ligação metálica e das barras de armadura foram realizados pelo Laboratório do Departamento de Construção de Máquinas da Faculdade de Engenharia da Fundação Universidade de Itaúna. Foram retirados 4 corpos de prova da chapa de 9,5 mm da ligação metálica, 3 corpos de prova das barras de armadura com diâmetro de 12,5 mm e, de cada protótipo, foram retirados 1 corpo de prova da chapa de 12,5 mm da mesa tracionada e 4 corpos de prova da chapa de 2,0 mm da alma. Os ensaios de tração foram realizados conforme a norma ASTM A370.

UFMG

Laboratório de Análise Experimental de Estruturas (LAEES)

Relatório de Ensaio

Máquin: Progran Ident. A	a: En na: T .most	nic S esc v ra:>>	SH300 ersão) c 3.04 >>>>>	ėlula: T	'rd 30 >>>>>	Ex1	ensom	etro: -	Data	: 21. >>>	/03/200 Método	7 H de En:	Hora: 1 salo: C	7:38:: ompr	52 essão >>>>>	Trabali UFM(> Mate	no nº () G - 10: rtal: co)257 x20 cm ncreto
			Corpo Prova	o de a		I	Diâmet (mr	ro n)	inc	: Tensão (MPa/s	,)	@For	Forç ça Mao (N	a (. I)	@For	Tensā ça Max (MPa	0 (. 1)		
			CP1 CP2 CP3				10 10 10	0 0 1		0.40 0.40 0.40		207 204 217	682.3 961.8 884.0	4 8 6		26.6 26.2 27.3	3 9 8		
			Núme Média Desv. Coef.	ero CP: a .Padrã Var.(%	s o >)		100. 0.375 0.374	3 2 3 5		3 0.4000 0.0000 0.0000		2	21020 681 3.24	3 0 2 1		26.7 0.561 2.09	3 7 7 8		
Tensã 100.0 –	0 (N	(Pa)																	
				; ;					- 						, , ,		- 	- -	
80.0							· · · ·							 - -		· · · ·	·		
60.0			· · · · ·	 	· · · · ·	 	· · · ·	; ; ;	· · · ·		 			 	·	· · · ·	· ·	 	· · · · ·
40.0						, J J			· ·		 				· · ·		- 	L	
20,0				/															
0.0 0.0	P1		40,0 CP2	5	0.0 CP3	12	0.0 CP4	10	90.0	200	0.0	Temp	00 (S)						:

UFMG

Laboratório de Análise Experimental de Estruturas (LAEES)

Relatório de Ensaio

Máquina: Emic SSH300	Célula: Trd 30	Extensômetro: -	Data: 04/04/2007	Hora: 15:17:51	Trabalho nº 0263
Programa: Tesc versão 3.0	4		Método de	Ensaio: Compressã	o UFMG - 10x20 cm
ident. Amostra: >>>>>>>>>	->>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	~~~~~~	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	~~~~~~	>>> Material: concreto

Corpo de Prova	Diāmetro (mm)	Inc Tensão (MPa/s)	Força @Força Max. (N)	Tensão @Força Max. (MPa)
	((1411 020)	()	(un d)
CP 1	99	0.40	182889.06	23.59
CP 2	99	0.40	182703.58	23.71
CP 3	100	0.40	159208.70	20.47
Número CPs	3	3	3	3
Média	99.17	0.4000	174900	22.59
Desv.Padrão	0.3002	0.0000	13620	1.837
Coef.Var.(%)	0.3027	0.0000	7.785	8,132

Tensão (MPa)

UFMG

Laboratório de Análise Experimental de Estruturas (LAEES)

Relatório de Ensaio

Máquina: Emic SSH300	Célula: Trd 30	Extensômetro: -	Data: 28/03/2007	Hora: 17:20:03	Trabalho nº 0260
Programa: Tesc versão 3.0	4		Método de B	Ensaio: Compressão	o UFMG - 10x20 cm
Ident. Amostra: >>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	~~~~~	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	~~~~~	>>Material: Concreto

Corpo de Prova	Diâmetro (mm)	Inc Tensão (MPa/s)	Força @Força Max. (N)	Tensão @Força Max. (MPa)
CP 1	100	0.40	184125.64	23.45
CP 2	100	0.40	188268.16	23.74
Número CPs	2	2	2	2
Média	100.2	0.4000	186200	23.60
Desv.Padrão	0.3465	0.0000	2929	0.2014
Coef.Var.(%)	0.3456	0.0000	1.573	0.8537

Tensão (MPa)

Relatório de Ensaio

Corpo de	Área	Força	Tensão na	Modulo de	F60%	Forca de R	uptura Prevista
Prova		Máxima	Força Máxima	Elasticidade			
	(mm2)	(N)	(MPa)	(MPa)	(N)	(N)	(N)
CP 1	7853.98	84746.12	10.79	24118.01	84822.98	78539.80	141371.64
CP 2	7853.98	84755.91	10.79	25425.26	84822.98	78539.80	141371.64
CP 3	7853.98	84873.36	10.81	28342.57	84822.98	78539.80	141371.64
CP 4	7853.98	84844.00	10.80	25336.44	84822.98	78539.80	141371.64
CP 5	7853.98	84834.21	10.80	23334.67	84822.98	78539.80	141371.64
CP 6	7853.98	85049.55	10.83	27472.86	84822.98	78539.80	141371.64
Número CPs	6	6	6	6	6	6	6
Média	7854	84850	10.80	25670	84820	78540	141400
Desv.Padrão	0.0000	109.8	0.01398	1920	0.0000	0.0000	0.0000
Coef.Var.(%)	0.0000	0.1294	0.1294	7.478	0.0000	0.0000	0.0000
Mínimo	7854	84750	10.79	23330	84820	78540	141400
Máximo	7854	85050	10.83	28340	84820	78540	141400

Força (N)

6)	AC	C PEÇÕES	TÉCNICAS					1		CODEME ENGENHARIA S/A
				1	AUDO TÉCM	NICO DE ENS	AIOS MECÂ	NICOS			
mpresa / Fa hsalos aco odigo / Nor specificaçã	abricante: C mpanhados ma: ASTM ∧ o Material de	odeme Engenha por: ACC Inspe 270 e ensaio: USI C	iria S/A ções Técnica IVIL 350	s							FOLHA: 1 / 1 Certificado Nº: 001/08 DATA: 07/04/08 Amostra: 108
Ser M	ilectron tel	S AN INT	-0-12		Ens	aio de Tração A	mostra 10B	and the second second	1997		Antoaua, ivo
				Limite de E	scoamento	Limite de Resis	tência à Tração		Alonga	amento	
CP Nº Specimen Nº	Largura Width (mm)	Espessura Thickness (mm)	Área Area (mm2)	Real Actual (MPa)	e Yield Especificado Specified (MPa)	Real Actual (MPa)	Stress Especificado Specified (MPa)	Real	Elong	Especificado	Laudo Resulted
TR - 01	19,66	9,48	186,38	446	350	598	500 - 650	38.0	(///)	16	Aproveda
TR - 02	19,60	9,41	184,44	423	350	604	500 - 650	41,0		16	Aprovado
boratório; boratory; rtificado M	Fundação I	Universidade d	le Itaúna								
boratory t	est number	And the second second	The T	Statistics in the second	Ene		1 100				
R. Storker	1	WENT COMMENT	-	Limite de P	Ensi	aio de Tração A Tansle test	mostra 12B	States -	192		
CP Nº	Largura	Espessura	Área	Tensil	e Yield	Tensile	stress		Elong	amento jation	Transcondered
Nº TP 01	(mm)	Thickness Area (mm2) Real Actual (MPa) Specified (MPa) Actual (MPa) Specified (MPa) Actual (MPa) Specified (MPa) Actual (M				Especificado Specified (%)	Laudo Resulted				
TR - 02	19,56	9,50	185,91	403	350	595 596	500 - 650 500 - 650	46,0		16	Aprovado
						Harthees teatro Ensaio de Imp inpact teat	pacto		AND.		
latório de	ensaio de l	ração - Endard	an Universid	arte de liteúne . Nº	191000	Anexos					
boratory ti latório de	est nº (Tens ensaio de t	ração - Fndaçã	io Universid	ade de Itaúna - Nº ·	181981						
indt I		hur	lint		Chords	Observaçõ Remerks NA	es	Fiscal	Ização		
Anto	llí) onio (Claret	da C	Costa	Data:			Cate			
	recno	MANY THE	- Indiana I		Curte			Sec.			

C)	AC	C PEÇÕES	FÉCNICAS				1	and a	CODEME ENGENHARIA S/A
			Constant Press	1	AUDO TÉCI	NICO DE ENS	AIOS MECÂ	NICOS		
npresa / Fi Isaios aco Idigo / Noi Ipecificaçã	abricante: C mpanhados rma: ASTM A io Material d	Codeme Engenhai por: ACC Inspeç N370 e ensaio: Aço Co	ria S/A iões Técnica: onstrução Civ	il Gerdau GG50						FOLHA: 17 Certificado Nº: 002/06 DATA: 07/04/08
		all and the	A CONTRACTOR		S LIFE SER	Ensaios de Tr	ação	and the second second		Amosta, 1, 2 e 5
CP Nº	Diâmetro		Área	Limite de E	scoamento	Limite de Resis	tência à Tração	Alor	igamento	
pecimen Nº	Nominal (mm)	Peso Linear (Kg/m)	Area (mm2)	Real Actual (MPa)	Especificado Specified (MPa)	Real Actual (MPa)	Especificado Specified (MPa)	Real Actual (9	Especificado Specified (%	Laudo Resulted
1 2 3	12,50 12,50 12,50	0,97 0,97	123,57 123,57 123,57	574 574	500 500	686 691	550 550	17,6 41,0	8	Aprovado Aprovado
poratório: poratory:	Fundação	Universidade de	e Itaúna	5/4	500	695	550	41,0	8	Aprovado
tificado I poratory t	Nº: 181961, est number	181962 e 1819	63							
						Ensaio de Dobra Gudet bend ten	amento	15 11		
						Ensaio de Du Hardves testro	reza			
atório de oratory t	ensaio de t est nº (Tens	ração - Fndaçã sile test):	o Universida	ade de Itaúna - Nº 1	181961, 181962 e '	Anexos Anexo 181963				
there J	Antor IS 294	nio Cla lecnóloge		a Costa	Clente:	Observaçõi _{Remaris} NA	85	Fiscalizaçã Data: Em		
	U A	ID - CD - WS / CW CREA N	CL 09 1 02121	/ S6 / AĖ 44 1721 51						

FUNDAÇÃO UNIVERSIDADE DE ITAÚNA

CGC 21 256 425 0001 - 36 - INSCRIÇÃO ESTADUAL ISENTO Rodovia MG 431 - km 45 – Campus Universitário Fone: (37) 3249-3078 – E-mail: labmetal@uit.br CEP 35680-142 – Caixa Postal 100 - ITAÚNA – MINAS GERAIS **DEPARTAMENTO DE CONSTRUÇÃO DE MAQUINAS** FACULDADE DE ENGENHARIA ASSESSORAMENTO INDUSTRIAL E PESQUISAS TECNOLÓGICAS

CERTIFICADO Nº. 182744

INTERESSADO: CODEME ENGENHARIA S/A. MATERIAL: CINCO AMOSTRAS DE CHAPA DE AÇO. NATUREZA DO TRABALHO: ENSAIOS DE TRAÇÃO

ENSAIO DE TRAÇÃO:

C.P	Dimensão (mm)	Área (mm²)	Escoa. (MPA)	Resist. (MPA)	Along BASE 50mm
1.1	11,76 x 12,28	144,41	432	596	27,5
1.2	2,00 x 12,19	24,38	410	519	21,5
1.3	2,05 x 12,22	25,05	396	520	20,0
1.4	1,98 x 12,49	24,73	401	529	27,5
1.5	2,01 x 12,72	25,57	422	533	19,0

OBS.: CP1. 2 a CP1. 3 – Vertece CP1. 4 a CP1. 5 – Lateral

Ensaio conforme ASTM A536.

ITAÚNA, 05 de MAIO de 2008.

EWERTON AUGUSTO DE SOUSA NOGUEIRA CREA 47457/D

O PRESENTE RESULTADO REFERE-SE EXCLUSIVAMENTE A AMOSTRA ENVIADA PELO CLIENTE

FUNDAÇÃO UNIVERSIDADE DE ITAÚNA

CCC 21 286425 (0001 - 36-INSCRICAO ESTADUAL ISENTO Rodovia MG 431 - km 45 – Campus Universitário Fone: (37) 3249-3078 – E-mail: labmetal à uit.br CEP 35680-142 – Caixa Postal 100 - ITAÚNA – MINAS GERAIS DEPARTAMENTO DE CONSTRUÇÃO DE MAQUINAS FACULDADE DE ENGENHARIA ASSESSORAMENTO INDUSTRIAL E PESQUISAS TECNOLÓGICAS

CERTIFICADO Nº. 182745

INTERESSADO: CODEME ENGENHARIA S/A. MATERIAL: CINCO AMOSTRAS DE CHAPA DE AÇO. NATUREZA DO TRABALHO: ENSAIOS DE TRAÇÃO

ENSAIO DE TRAÇÃO:

C.P	Dimensão (mm)	Área (mm²)	Escoa. (MPA)	Resist. (MPA)	Along BASE 50mm
2.1	12,22 x 13,42	163,99	424	599	32,0
2.2	2,00 x 13,06	26,12	427	530	15,0
2.3	2,02 x 12,26	24,77	418	522	21,5
2.4	2,01 x 13,14	26,41	428	533	19,5
2.5	2,18 x 13,46	29,34	377	488	21,0

OBS.: CP2. 2 a CP2. 3 – Vertece CP2. 4 a CP2. 5 – Lateral

Ensaio conforme ASTM A536.

ITAÚNA, 05 de MAIO de 2008.

CREA 47457/D

O PRESENTE RESULTADO REFERE-SE EXCLUSIVAMENTE A AMOSTRA ENVIADA PELO CLIENTE

FUNDAÇÃO UNIVERSIDADE DE ITAÚNA

CGC 21 256 425/ 0001-36-INSCRIÇÃO ESTADUAL ISENTO Rodovia MG 431- km 45 – Campus Universitário Fone: (37) 3249-3078 – E-mail: labmetal@uit.br CEP 35680-142 – Caixa Postal 100 - ITAÚNA – MINAS GERAIS DEPARTAMENTO DE CONSTRUÇÃO DE MAQUINAS FACULDADE DE ENGENHARIA ASSESSORAMENTO INDUSTRIAL E PESQUISAS TECNOLÓGICAS

CERTIFICADO Nº. 182746

INTERESSADO: CODEME ENGENHARIA S/A. MATERIAL: CINCO AMOSTRAS DE CHAPA DE AÇO. NATUREZA DO TRABALHO: ENSAIOS DE TRAÇÃO

ENSAIO DE TRAÇÃO:

C.P	Dimensão (mm)	Área (mm²)	Escoa. (MPA)	Resist. (MPA)	Along BASE 50mm
3.1	12,22 x 12,83	156,87	427	605	30,0
3.2	2,09 x 13,01	27,19	416	512	21,0
3.3	2,03 x 12,94	26,27	410	522	19,5
3.4	2,05 x 13,84	28,37	415	520	25,0
3.5	2,03 x 13,21	26,82	400	523	25,0

OBS.: CP3. 2 a CP3. 3 – Vertece CP3. 4 a CP3. 5 – Lateral

Ensaio conforme ASTM A370.

ITAÚNA, 05 de MAIO de 2008.

EWERTON AUGUSTO DE SOUSA NOGUEIRA CREA 47457/D

O PRESENTE RESULTADO REFERE-SE EXCLUSIVAMENTE A AMOSTRA ENVIADA PELO CLIENTE

		Observações - Remark: PROGRAMA NOVEMBR SUBST IT 02-TROCA NC		ADreviaturas - Ar Dir = Direção-Dir Pos = Posição-Pos BM = Base Medida- Al = Solúvel em á	Corrida Análise Heat Analysis 427971 p	Composição Químic	Unidade-Unit = N, BM = 200 mm Lar	Amostra Pos 1 Sample 72179302 BB 0 72179304 BB 0	Peso Bruto Real Ensaio de Tração	Slab 281 611070790. 281 611070804- 282 611070812- 282 611070847- 272 611070855- 272 611070855-	USI-CIVIL-350	Para mutua proteção As mutual protecti C		USIMINAS
	10 10	is 10/2006 - CM -	2	rection sition sition cauge Length Larg = Largura-Width :S = Seção Ty feido-Soluble in acid	C Si Mn p S AI 0,15 0,21 1,42 0,018 0,005 0,0	ca (% Peso) - Chemical Composition (% Waight)	//mm² rg = 40 mm S = Retangular-Rectangular	Dir LE LR LE/LR(%) AL(%) YS TS YS/TS EL C 434 559 75 24,0 C 436 579 75 31,0	Total-Total Actual Gross Weight = 27,070 Tonelag - Tensile Test	Pieces Net Weight Gross Weight Hout Same 1 3000 3000 2990 427971 721 1 2990 2990 427971 721 1 3010 3010 427971 721 1 3020 3010 427971 721 1 3020 3000 427971 721 1 3020 3000 427971 721 1 3020 3000 427971 721	Dimensões Nominais 12.50 X 2440,0 X 1200	o de fonceador e cliente este certificado tem caráter confidencial e sua tran icon to clients and ourseives, al reports are submitted as a confidencial prog- Partificarions que o material ásciminado to tatolicado pelo processo de ou- Partificarions que o praterial facenta herein described has been made by the	CNPL: 60.847.7300025 - 82 INSCRIÇÃO ESTADUAL: 313.002022.0120	AUSINA: IPATINGA- NA - USINA NTENONTE CAMANA USINA: IPATINGA- NA - USINA NTENONTE CAMANA AV. FEDRO LIMINAES GONES, Sadi - BANRO USINIMAS, CP 22 CEP-33160 - 900 TEL. (31) 3829.2699 - FAX; (31) 3829.2408
				Abrev C = T Eansversal-Cross Transverse P = P	1 Cu ND V T1 038 0,02 0,030 0,004 0,018				gem Métrica-Metric Ton Peça gem Métrica-Metric Ton	pinc pinc mp1 Slab mp1 Slab 179304 272 179304 271 179304 271 179304 271 179304 271 27304 271 27304 271 27304 271 27304 271 27304 271 27304 272	s - Nominal Dimensions 00 mm	nscrição total ou parcial, assim como, cópias xerográfica perid authorization for publication of statements, conclus genio básico(LD), ensaiado pe analisado pelos nosos iat pasto cougen process(LD), tested and analysed to var va	HOT ROLLED STEEL PLATE	CERTIFICADO DE INSPEÇÃO INSPECTION CERTIFICATE CHAPA GROSSA
LABORATORIES AND DELIVERY TESTING MA	GEBENCIA DE L'ADREA VALOR E ANIPOL PAULO HEET ANIPOL GEBENCIA DE L'ADREA VALOR E ANIPOL			<pre>iaturas - Abroviations 'consversel-Transverse Base na borda-Bottom at edge anela-Ladle</pre>	Cr Ni Mo Sn 0,02 0,01 0,01 0,001				s-Pieces = 9 Volumes = 9	a Voluma 5110708711 Piccas Net Weight 6110708894 1 3010 61107091071 3000 611071070 1 3020	Borda - Edge / Oleamento - Olied NAO APARADA E NAO OLEADA MILL EDGE AND DRY	s ou eletrônicas siso proíbidas, exetico quando autoriz ion exitatis from or regarding our espotions is reserved portubrios, terpológicos de acordo com as específicas	1.4	Cilenue customer: CODEME ENGENHA
INAGER NAGER				OHS	N B Ca Sb IS 0,0055 0,0001 0,000 0,000 VYC	Siste Certifica				Peso Bruto Corrida Amostra Gross Weight Heat Sample 3010 427971 72179304 3000 427971 72179304 3030 427971 72179304	Aparéncia Superficie - Surface A SUPERFICIE COMMERCIAL SUBERFICIE	radas por escrito pela USIMINAS Sale Orr pending our written approval. Nº cos técnicas.	CC C Orden de	IRIA S A Nota Fisc Commercial In
VISTORIADOR SURVEYOR	-			AS 10949 SAS 18001	SO 9001 O 14001	do nelsy navros-					7 ppearance	der Certificate N ²	7 24 15/11/2006	al Data de Emissão nvoice Date of Issue

178

ANEXO A

Observações - Remarks EMAIL 13/09-20:00 Corrida Análise Heat Analysis 529671 P Dir = Direction-Direction Pos = Posição-Desition DM = Base Medida-Gauge Length Larg = Largura-Width S = Seção Transversal-Cross Transverse Al = Soluvel em ácido-Soluble in acid Amostra Pos Sample 37662301 T4 Placa Volume Slab 301 71051100 Unidade-Unit = N/mm^2 Método de Ensaio LE-Test Method YS = 0,2% BM = 200 mm Larg = 40 mm S = Retangular-Rectangular USIMINAS Abreviaturas - Abreviations Composição Química (% Peso) - Chemical Composition (% Weight) Peso Líquido Real Total-Total Actual Net Weight = 24,150 Tonelagem Métrica-Metric Ton Peso Bruto Real Total-Total Actual Gross Weight = 24,230 Tonelagem Métrica-Metric Ton USI-CIVIL-300 Ensaio de Tração - Tensile Test Qualidade - Steel 710511003 0 Dir Peças Peso Líquido Peso Bruto Corrida Amostra Pieces Net Weight Gross Weight Heat Sample 1 13780 / 13820 529671 37662301 USBAG, IPATINGA - MG- USINA INTENDENTE CÁMARA AV, PEDRO LIMMARES GOMES, 5431 - BARRIO USIMIAS CP 22 CEP. 35160 - 900 TEL.(31)3822/2599 - FAX: (31)3822,2408 E-mail: upitm01 @usinimas.com.br CNP1: 60.884,7200025 - 82 INSCRIÇÃO ESTADUAL: 313.002022.0120 USINAS SIDERÚRGICAS DE MINAS GERAIS S.A. 0,16 Q LE 383 LR TS 513 0,12 Si. LE/LR(%) AL(%) YS/TS EL 75 24,0 0,38 Mm 0,020 Ð 0,009 0,032 0 AL 0,02 Cu CERTIFICADO DE INSPEÇÃO HOT ROLLED STEEL COIL INSPECTION CERTIFICATE BOBINA A QUENTE 0,002 ND 0,002 4 0,003 0,02 提 Placa Volume Slab 251 710514005 C = Transversal-Transverse T4 = Topo a um quarto da largura-Top at a P = Panela-Ladle Abreviaturas - Abreviations Peças-Pieces = 2 710514005 Cliente-Customer: CH. IAÉNCIA DE LABORATÓRIOS E ENSAIOS DE LIBERAÇÃO LABORATORIES AND DELIVERY TESTING MANAGER 0,02 NI Peças Peso Líquido Pieces Net Weight 1 10370 allthibio CODEME ENGENHARIA S A PAULO HOET ALIPIO 0,01 Mo Volumes = 2 0,001 Sn N 0,0053 Peso Bruto Corrida Amostra Gross Weight Heat Sample 10410 529671 37662301 dua Tanz B Sb 0,0001 0,00 SURFACE 2 (NBR-11888/NTU) width Nota Fiscal Commercial Involce 00073793 Certificado pelas normas: 1 133381 10 Ordem de Venda Sale Order Z ISO 14001 ISO/TS 16949 OHSAS 18001 Sistema de Gestão ISO 9001 Item ω SURVEYOR Data de Emissão Date of Issue Nº Certificado Certificate Nº 08/11/2006 1351946

OR	SURVEY	INAGER	LABORATORIES AND DELIVERY TESTING MA						ſ
			PAULO HOLE ALION						
								bservações - Remarks MAIL 13/09-20:00	mo
2.2	ISO/IS 1694 OHSAS 1800	1 and	røviaturas - Abreviations = Transversal-Transverse = Base na borda-Bottom at edge = Panela-Ladle	Abr C = BB ral-Cross Transverse P =	S = Seção Transvei	- Largura-Width	Length Larg =	Dír = Direção-Directio Pos = Posição-Position BN = Base Medida-Gauge Al = Solúvel em ácido-	
Hinne	100 ISO 14001	0,0060 0,0001 0,0003 0.	15 0,02 0,02 0,01 0,001	10,0 CON'N 750'N 40'N			lons	Abreviaturas - Abrevia	
INTERNS:	Certificado pelas	N B Ca S	Cr Ni Mo Sn	01.02 0.032 0.00≤ 0.01	S A1 0	Mn P 1,39 0,023	2 S1 0,16 0,18	Corrida Analise Heat Analysis 529606 P	
estáo	Sistema de G				(% Weight)	al Composition	Peso) - Chemica	Composição Química (%	
N. Statements	In the last of the second seco				ular	angular-Rectang) mm S = Reta	Unidade-Unit = N/mm ² EM = 200 mm Larg = 4	
						LE/LR(%) AL(%) YS/TS EL 77 23,2 76 24,0	LE LR YS TS 434 564 422 557	Amostra Pos Dir Sample 72110701 BB C 72110702 BB C	
							sile Test	Ensaio de Tração - Ten	_
			<pre>% Pieces = 5 Volumes = 5</pre>	rica-Metric Ton Pe rica-Metric Ton	ll,770 Tonelagem Mét 11,770 Tonelagem Mét	Net Weight = 1 ross Weight = 1	l-Total Actual Total Actual G	Peso Líquido Real Tota Peso Bruto Real Total-	
	bostra hmple 1110701 110701	Peso Bruto Corrida Ann Gross Weight Heat San 2350 529606 721 2370 529606 721	Jack Volume Peccas Pesco Liquido Jab 1005035 1 2350 22 610105043 1 2370	22 22 22	Heat Sample 529606 72110702 529606 72110701 529606 72110701	Gross Weight 2350 2350 2350	es Net Weight 2350 2350 2350	Slab 281 610104934 1 222 610105019 1 222 610105027 1	
	cie - Surface Appearance ERCIAL 3FACE	Aparência Superfíci SUPERFICIE COME COMMERCIAL SUR	VAO APARADA E NAO OLEADA		X 2440,0 X 12000 mm	9,50		USI-CIVIL-350	
1341680	N [®] Item 00073791 3	zadas por escrito pela USIMINAS I pending our writien approval. Ses técnicas. Folha - Sheet = 1	Ificas ou eletrónicas são proibidas, exceto quando autoris relusion extracts from or regarcing our reports is reserved s laboratórios ternológicos de abordo com as especificaço sur rechnológical laboratories according to the technical s	tai ou parcial, assim como, odpias xerográt orization for publication od statements, conc on(LD), ensailado e analisado pelos nossos pen process(LD), tested and analysed by o na Dimense tone	a confidencial property autors to a confidencial property autors relo processo de oxigênio básio so been made by the basic oxigen ensões Nominais -	reports are submitted a reports are submitted a fiminado foi fabricado p rial herein described ha	nts and ourselves, all s que o material discr reby certify that material	As mutual protection to clie Certificam We h	_
26/10/2006	1 539120 8 Ordem de Venda Sale Order	540	Nt olo	HOT ROLLED STEEL PLATE		.com.br 3.002022.0120	ili: uipitm01@usiminas J: 60.894.730/0025 - 82 RIÇÃO ESTADUAL: 31	Para mútua proteção de forme	-
Data de Emissão Date of Issue	Nota Fiscal I Commercial Invoice	A C MILL		INSPECTION CERTIFICATE	ARA IIMINAS CP 22	SINA INTENDENTE CÂM MES, 5431 - BAIRRO US	A: IPATINGA - MG - us PEDRO LINHARES GOI 35160 - 900 TEL: (3	USIMINAS M	
		BIAGA	Cliente-Customer: CODEME ENGENHA	CERTIFICADO DE INSERCÃO	GERAIS S.A.	GICAS DE MINAS	NAC TERÚRO	SN	

S.A. CERTIFICADO DE INSPEÇÃO Cliente-Customer: CODEME INSPECTION CERTIFICATE CHAPA GROSSA CHAPA GROSSA CHAPA GROSSA HOT ROLLED STEEL PLATE HOT ROLLED STEEL PLATE Borda - Edge / Dismiting our result from or fisional sub protectives as abigoidade autoritation of subtro	S.A. CERTIFICADO DE INSPEÇÃO Cliente-Customer: CODEME ENGENHARIA S A INSPECTION CERTIFICATE Insertidational contratation of a sector contratating a sector contratation of a sector contratating a s
Cliente-Customer: CODEME acodicas ou eletrônicas solución e social ou contractoria de acoding ou reproducion extractoriano extractoriano eletrônica de acoding ou reproducion extractoriano eletrônica de acoding ou reproducion de acoding ou reprodución de acoding de acoding de acoding de acoding de acoding de acoding de acod	Cliente-Customer: CODEME ENGENHARIA S A Brozelluss, eustachijas alb picolidas, wrecho guardo du contradals por sortino pela USIMINAS, regending our methog our worting pela USIMINAS, regending our sector guardo du contradas por sortino pela USIMINAS, regending our sector guardo du contradas por sortino pela USIMINAS, regending our sector guardo du contradas por sortino pela USIMINAS, regending our sector guardo du contradas por sortino pela USIMINAS, regending our sector guardo du contradas por sortino pela USIMINAS, regending our sector guardo du contradas por sortino pela USIMINAS, regending our sector guardo du contradasortino pela US
C - > 0 - 0 - 0	ENGENHARIA S A

181

B

DETERMINAÇÃO DA CURVA MOMENTO VERSUS ROTAÇÃO DA LIGAÇÃO MISTA

A rotação da ligação mista foi obtida por meio do deslocamento vertical dos protótipos ensaiados, porém o valor do deslocamento vertical correspondente à rotação da ligação foi determinado da seguinte maneira:

$$\Delta_{ligação} = \Delta_{ensaio} - \Delta_{flexao} - \Delta_{cisalhamento}$$
(B.1)

onde:

 Δ_{ensaio} é o deslocamento vertical do protótipo;

 Δ_{flexao} é o deslocamento vertical devido à curvatura da viga;

 $\Delta_{cisalhametno}$ é o deslocamento vertical devido à deformação por cisalhamento.

O deslocamento vertical devido à curvatura da viga pode ser calculado pela seguinte expressão:

$$\Delta_{flexao} = \frac{P\ell^3}{48EI_x} \tag{B.2}$$

sendo *P* a carga aplicada, $\boldsymbol{\ell}$ o comprimento do protótipo, *E* o módulo de elasticidade do aço e I_x o momento de inércia da seção composta pelo perfil metálico e pelas barras de armadura, desprezando-se a alma senoidal.

ANEXO B

O deslocamento vertical devido à deformação por cisalhamento é dado por:

$$\Delta_{cisalhamento} = \frac{VQ\ell}{I_x t_w G_{eq}}$$
(B.3)

onde V é a força cortante solicitante, Q é o momento estático do perfil metálico, t_w é a espessura da alma e G_{eq} é o módulo de elasticidade transversal do aço da alma determinado conforme a Eq.(B.4) de JOHNSON & CAFFOLA (1997):

$$G_{eq} = G \frac{w}{s} \tag{B.4}$$

sendo G o módulo de elasticidade transversal do aço, w o comprimento em projeção da onda senoidal, igual a 155 mm e s o desenvolvimento de um comprimento de onda, igual a 179,6 mm.

A rotação da ligação mista é dada portanto pela seguinte equação:

$$\phi = \frac{2\Delta_{ligacão}}{\ell} \tag{B.5}$$

A outra maneira de se determinar a rotação da ligação mista é por meio dos transdutores de deslocamentos e relógios comparadores posicionados no protótipo, conforme se vê na FIG.3.6. Porém os resultados obtidos não foram satisfatórios. Acredita-se que as possíveis causas são o fato do deslocamento da chapa de topo ocorrer apenas entre a mesa tracionada e a primeira linha de parafusos, fazendo com que nessa região a seção transversal não permaneça plana, e a flambagem da mesa comprimida que interfere na leitura dos relógios comparados instalados próximos à chapa de topo.

C

DADOS AUXILIARES PARA A DETERMINAÇÃO DA CAPACIDADE DE ROTAÇÃO NECESSÁRIA DA LIGAÇÃO MISTA

Apresenta-se neste anexo a TAB. C.1, com diversas configurações de vigas mistas biapoiadas com perfil de alma senoidal, utilizadas para a determinação da relação entre o momento fletor positivo resistente e o momento de inércia da viga mista e a relação entre as inércias da viga mista nas regiões de momentos fletores positivo e negativo. Essas relações foram utilizadas para a obtenção da capacidade de rotação necessária da ligação mista, de acordo com o Capítulo 7.

Conforme se vê na TAB. C.1, procurou-se cobrir as dimensões dos perfis fabricados atualmente no Brasil e diferentes dimensões para a largura colaborante de laje (b_c) , altura da fôrmas de aço (h_F) e altura total da laje mista (h_t) . Considerou-se em todos os casos que a resistência à compressão do concreto da laje é igual a 20 MPa. Para cada uma das configurações de perfil e laje mista indicadas na tabela foram determinados:

- o momento de inércia teórico da viga mista na região de momento fletor positivo (I_v^+) , desprezando-se a alma senoidal;
- o momento de inércia aproximado da viga mista na região de momento fletor positivo (I_{ap}^{+}) , calculado conforme a Eq.7.17;
- o momento fletor positivo resistente da viga mista (M^+) , desprezando-se a contribuição da alma senoidal;

- o momento fletor positivo aproximado da viga mista (M_{ap}^{+}) , calculado conforme Eq.7.16;
- o número mínimo de barras de armaduras, diâmetro de 12,5 mm e aço CA-50, para a ligação mista de modo que se tenha α = 0,3, α = 0,4, α = 0,5 e α = 0,6;
- o momento de inércia da seção composta pelo perfil metálico e pelas barras de armadura (I_v) , desprezando-se a alma senoidal.

Com os dados da TAB. C.1 construiu-se o gráfico de (M^+ / I_v^+) por (M_{ap}^+ / I_{ap}^+) e por meio de uma regressão linear determinou-se a relação entre os valores teóricos e aproximados, ver FIG. C.1. A FIG. C.2 mostra a distribuição de freqüência e a função de densidade de probabilidade (PDF) normal da relação entre o momento de inércia das regiões de momento fletor positivo e negativo.

TABELA C.1 – Momento fletor resistente e momento de inércia de vigas mistas com perfil de alma senoidal

	Р	ERFIL	METÁ	LICO		LA	JE MI	STA					α	= 0,3	α	= 0,4	α	= 0,5	α	= 0,6
	d	b _f	t _{fs}	t _{fi}	t _w	h	h _f	b _c	I_v^+	I_{an}^{+}	M^+	M_{an}^{+}	D	I,	D	I,	D	I,	D	I,
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(cm4)	(cm4)	kNcm	kNcm	Barras	(cm4)	Barras	(cm4)	Barras	(cm4)	Barras	(cm4)
1	400	150	8,0	8,0	2,0	110	50	1000	9221	31212	23965	21420	3	11813	4	12531	5	13190	5	13190
2	400	150	8,0	19,0	2,0	110	50	1000	12624	74129	47205	50873	5	19566	7	21858	8	22919	10	24895
3	400	300	9,5	19,0	2,0	110	50	1000	28292	148257	85612	101745	9	40062	12	43409	15	46519	18	49416
4	400	300	19,0	19,0	2,0	110	50	1000	41405	148257	85860	101745	9	49583	12	51997	15	54277	18	56433
5	400	150	8,0	8,0	2,0	110	50	2000	9221	31212	25002	21420	3	11813	4	12531	5	13190	6	13797
6	400	150	8,0	19,0	2,0	110	50	2000	12624	74129	51758	50873	6	20741	7	21858	9	23931	11	25815
7	400	350	9,5	19,0	2,0	110	50	2000	33007	172967	107332	118703	11	47315	15	51707	19	55749	22	58576
8	400	350	19,0	19,0	2,0	110	50	2000	48306	172967	108024	118703	11	58259	15	61438	19	64418	22	66533
9	400	150	8,0	8,0	2,0	110	50	3000	9221	31212	25348	21420	3	11813	4	12531	5	13190	6	13797
10	400	150	8,0	19,0	2,0	110	50	3000	12624	74129	52743	50873	6	20741	8	22919	9	23931	11	25815
11	400	350	9,5	19,0	2,0	110	50	3000	33007	172967	115884	118703	12	48448	16	52749	20	56710	24	60370
12	400	350	19,0	19,0	2,0	110	50	3000	48306	172967	117061	118703	12	59074	16	62201	20	65134	24	67889
13	400	150	8,0	8,0	2,0	150	50	1000	9221	36300	27325	23100	3	12592	4	13525	5	14382	6	15172
14	400	150	8,0	19,0	2,0	150	50	1000	12624	86213	54473	54863	6	22640	7	24017	9	26575	11	28901
15	400	300	9,5	19,0	2,0	150	50	1000	28292	172425	94981	109725	9	42933	12	47096	15	50964	18	54568
16	400	300	19,0	19,0	2,0	150	50	1000	41405	172425	95551	109725	9	52039	12	55178	15	58143	18	60947
17	400	150	8,0	8,0	2,0	150	50	2000	9221	36300	28362	23100	3	12592	4	13525	5	14382	6	15172
18	400	150	8,0	19,0	2,0	150	50	2000	12624	86213	57428	54863	6	22640	8	25327	9	26575	11	28901
19	400	350	9,5	19,0	2,0	150	50	2000	33007	201163	125440	128013	12	52215	16	57564	20	62491	24	67044
20	400	350	19,0	19,0	2,0	150	50	2000	48306	201163	126779	128013	12	62308	16	66375	20	70189	24	73772
21	400	150	8,0	8,0	2,0	150	50	3000	9221	36300	28708	23100	3	12592	4	13525	5	14382	6	15172
22	400	150	8,0	19,0	2,0	150	50	3000	12624	86213	58413	54863	6	22640	8	25327	10	27765	11	28901
23	400	350	9,5	19,0	2,0	150	50	3000	33007	201163	131861	128013	13	53594	17	58833	21	63663	25	68129
24	400	350	19,0	19,0	2,0	150	50	3000	48306	201163	141681	128013	14	64375	18	68312	22	72008	27	76320
25	800	150	8,0	8,0	2,0	110	50	1000	37637	99372	40765	38220	3	45144	4	47222	4	47222	5	49130
26	800	150	8,0	19,0	2,0	110	50	1000	52245	236009	87105	90773	5	74236	7	81494	9	88060	10	91115
27	800	300	9,5	19,0	2,0	110	50	1000	117326	472017	165412	181545	10	157723	13	167937	16	177435	19	186291
28	800	300	19,0	19,0	2,0	110	50	1000	173873	472017	165660	181545	10	199931	13	206788	16	213268	19	219401
29	800	150	8,0	8,0	2,0	110	50	2000	37637	99372	41802	38220	3	45144	4	47222	4	47222	5	49130
30	800	150	8,0	19,0	2,0	110	50	2000	52245	236009	91658	90773	6	77958	7	81494	9	88060	11	94030
31	800	350	9,5	19,0	2,0	110	50	2000	136880	550687	200432	211803	12	185184	15	195379	19	208023	23	219697
32	800	350	19,0	19,0	2,0	110	50	2000	202852	550687	201124	211803	12	234034	15	240882	19	249511	23	257615
33	800	150	8,0	8,0	2,0	110	50	3000	37637	99372	42148	38220	3	45144	4	47222	4	47222	5	49130
34	800	150	8,0	19,0	2,0	110	50	3000	52245	236009	92643	90773	6	77958	7	81494	9	88060	11	94030
35	800	350	9,5	19,0	2,0	110	50	3000	136880	550687	208984	211803	12	185184	16	198637	20	211028	24	222477
36	800	350	19,0	19,0	2,0	110	50	3000	202852	550687	210161	211803	12	234034	16	243092	20	251585	24	259564
3/	800	150	8,0	8,0	2,0	150	50	1000	37637	108300	44125	39900	3	46434	4	48868	4	48868	5	51104
38	800	150	8,0	19,0	2,0	150	50	1000	52245	257213	94373	94763	5	//060	12	85249	9	92659	10	96105
39	800	300	9,5	19,0	2,0	150	50	1000	11/326	514425	174781	189525	10	163162	13	1/4/51	16	185528	19	195576
40	800	300	19,0	19,0	2,0	150	50	1000	1/38/3	514425	175351	189525	10	204406	13	212442	16	220034	- 19	227220

continua

TABELA C.1 - continuação

	Р	ERFIL	META	ALICO		LA	JE MI	STA					α	= 0,3	α	= 0,4	α	= 0,5	α	= 0,6
	d	b _f	t _{fs}	t _{fi}	t _w	h	h _f	b _c	I_v^+	I_{ap}^{+}	M^+	M _{ap} ⁺	Barras	I_v	Barras	I_v	Barras	I,	Barras	I,
_	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(cm4)	(cm4)	kNcm	kNcm	Burrus	(cm4)	Burrus	(cm4)	Burrus	(cm4)	Burrus	(cm4)
41	800	150	8,0	8,0	2,0	150	50	2000	37637	108300	45162	39900	3	46434	4	48868	4	48868	5	51104
42	800	350	8,0	19,0	2,0	150	50	2000	52245 136880	600163	9/328	94/63	12	81260	16	206952	20	92659	24	234002
44	800	350	19,0	19,0	2,0	150	50	2000	202852	600163	210510	221113	12	239390	16	250003	20	259954	24	269305
45	800	150	8,0	8,0	2,0	150	50	3000	37637	108300	45508	39900	3	46434	4	48868	5	51104	5	51104
46	800	150	8,0	19,0	2,0	150	50	3000	52245	257213	98313	94763	6	81260	7	85249	9	92659	11	99395
47	800	350	9,5	19,0	2,0	150	50	3000	136880	600163	224961	221113	12	191687	16	206952	20	221011	24	234002
48	1200	150	8.0	8.0	2,0	110	50	1000	85253	205932	57565	55020	3	100228	3	100228	4	104373	5	108180
50	1200	150	8,0	19,0	2,0	110	50	1000	118889	489089	127005	130673	5	164372	7	179382	9	192962	10	199279
51	1200	300	9,5	19,0	2,0	110	50	1000	267160	978177	245212	261345	10	350301	13	371322	16	390871	19	409097
52	1200	300	19,0	19,0	2,0	110	50	1000	397541	978177	245460	261345	10	449520	13	463200	16	476126	19	488359
53	1200	150	8,0	8,0	2,0	110	50	2000	85253	205932	58602	55020	3	100228	3	100228	4	104373	5	108180
55	1200	350	8,0	19,0	2,0	110	50	2000	311687	489089	293532	304903	12	411100	15	432082	19	458105	23	482132
56	1200	350	19,0	19,0	2,0	110	50	2000	463798	1141207	294224	304903	12	526000	15	539661	19	556874	23	573039
57	1200	150	8,0	8,0	2,0	110	50	3000	85253	205932	58948	55020	3	100228	3	100228	4	104373	5	108180
58	1200	150	8,0	19,0	2,0	110	50	3000	118889	489089	132543	130673	6	172069	7	179382	9	192962	11	205309
59	1200	350	9,5	19,0	2,0	110	50	3000	311687	1141207	302084	304903	12	411100	16	438788	20	464290	23	482132
61	1200	350 150	19,0	19,0	2,0	150	50	1000	403/98	218700	60925	56700	12	102028	10	102028	20 4	106671		110935
62	1200	150	8,0	19,0	2,0	150	50	1000	118889	519413	134273	134663	5	168395	7	184733	9	199515	10	206390
63	1200	300	9,5	19,0	2,0	150	50	1000	267160	1038825	254581	269325	10	358029	13	381004	16	402369	19	422290
64	1200	300	19,0	19,0	2,0	150	50	1000	397541	1038825	255151	269325	10	455768	13	471092	16	485572	19	499275
65	1200	150	8,0	8,0	2,0	150	50	2000	85253	218700	61962	56700	3	102028	4	106671	4	106671	5	110935
67	1200	350	9.5	19,0	2,0	150	50	2000	311687	1211963	311640	314213	12	420340	16	450602	20	478474	24	504228
68	1200	350	19,0	19,0	2,0	150	50	2000	463798	1211963	312979	314213	12	533477	16	553716	20	572694	24	590525
69	1200	150	8,0	8,0	2,0	150	50	3000	85253	218700	62308	56700	3	102028	4	106671	4	106671	5	110935
70	1200	150	8,0	19,0	2,0	150	50	3000	118889	519413	138213	134663	6	176773	7	184733	9	199515	11	212953
71	1200	350	9,5	19,0	2,0	150	50	3000	311687	1211963	318061	314213	12	420340	16	450602	20	478474	24	504228
73	400	150	8.0	8.0	2,0	135	75	1000	9221	34347	26065	22470	3	12288	4	13137	5	13917	5	13917
74	400	150	8,0	19,0	2,0	135	75	1000	12624	81574	49755	53366	5	20561	7	23181	8	24395	10	26653
75	400	300	9,5	19,0	2,0	135	75	1000	28292	163148	88162	106733	9	41820	12	45666	15	49241	17	51486
76	400	300	19,0	19,0	2,0	135	75	1000	41405	163148	88410	106733	9	51080	12	53936	15	56634	17	58350
78	400	150	8,0 8,0	8,0	2,0	135	75	2000	9221	34347 81574	55302	53366	5	21905	4	24395	2	25551	0	27706
79	400	350	9,5	19,0	2,0	135	75	2000	33007	190340	112432	124521	11	49451	15	54500	18	58019	22	62393
80	400	350	19,0	19,0	2,0	135	75	2000	48306	190340	113124	124521	11	60082	15	63843	19	67368	22	69871
81	400	150	8,0	8,0	2,0	135	75	3000	9221	34347	27448	22470	3	12288	4	13137	5	13917	6	14635
82	400	150	8,0	19,0	2,0	135	75	3000	12624	81574	56287	53366	6	21905	8	24395	9	25551	11	27706
84	400	350	9,5	19,0	2,0	135	75	3000	48306	190340	123334	124521	12	61045	16	64746	20	68215	24	71476
85	400	150	8,0	8,0	2,0	180	75	1000	9221	40368	29845	24360	3	13243	4	14356	5	15379	6	16321
86	400	150	8,0	19,0	2,0	180	75	1000	12624	95874	58726	57855	6	24195	7	25786	9	28741	11	31427
87	400	300	9,5	19,0	2,0	180	75	1000	28292	191748	100790	115710	9	45291	12	50125	15	54617	18	58801
88	400	150	19,0	19,0	2,0	180	75	2000	9221	40368	30882	24360	3	13243	12	14356	15	15379	18	16321
90	400	150	8,0	19,0	2,0	180	75	2000	12624	95874	61681	57855	6	24195	8	27299	10	30115	11	31427
91	400	350	9,5	19,0	2,0	180	75	2000	33007	223706	136359	134995	13	56911	17	62994	21	68601	25	73786
92	400	350	19,0	19,0	2,0	180	75	2000	48306	223706	138377	134995	13	66256	17	71030	21	75509	25	79719
93	400	150	8,0	8,0	2,0	180	75	3000	9221	40368	31228	24360	3	13243	4	14356	5	15379	6	16321
94	400	350	8,0 9.5	19,0	2,0	180	75	3000	33007	223706	142334	134995	13	56911	17	62994	21	68601	26	75022
96	400	350	19,0	19,0	2,0	180	75	3000	48306	223706	155646	134995	14	67478	19	73304	23	77646	28	82715
97	800	150	8,0	8,0	2,0	135	75	1000	37637	104907	42865	39270	3	45938	4	48235	4	48235	5	50346
98	800	150	8,0	19,0	2,0	135	75	1000	52245	249154	89655	93266	5	75981	7	83815	9	90902	10	94198
99	800	300	9,5	19,0	2,0	135	75	1000	117326	498308	167962	186533	10	161082	13	1/2145	16	182433	19	192026
101	800	150	8.0	8.0	2,0	135	75	2000	37637	104907	43902	39270	3	45938	4	48235	4	48235	5	50346
102	800	150	8,0	19,0	2,0	135	75	2000	52245	249154	95202	93266	6	79998	7	83815	9	90902	11	97345
103	800	350	9,5	19,0	2,0	135	75	2000	136880	581360	205532	217621	12	189200	15	200243	19	213938	23	226584
104	800	350	19,0	19,0	2,0	135	75	2000	202852	581360	206224	217621	12	237332	15	244904	19	254446	23	263406
105	800	150	8,0	8,0	2,0	135	75	3000	52245	249154	44248 96187	<u>39270</u> 93266	3	45938	4	48235	4	48235	5	97345
100	800	350	9.5	19,0	2,0	135	75	3000	136880	581360	216634	217621	12	189200	16	203772	20	217193	24	229595
108	800	350	19,0	19,0	2,0	135	75	3000	202852	581360	217811	217621	12	237332	16	247347	20	256738	24	265562
109	800	150	8,0	8,0	2,0	180	75	1000	37637	115248	46645	41160	3	47468	4	50188	4	50188	5	52687
110	800	150	8,0	19,0	2,0	180	75	1000	52245	273714	98626	97755	6	83867	7	88215	9	96290	11	103631
1 1 1 1	000	200	1 7 7	190	10	1 180	1 12	1000	11/3/0	14/4/8	100390	191710	10	10/400	1 1 5	100143	10	191911	19	/11/9/4

continua

TABELA C.1 - continuação

	P	ERFIL	META	ÁLICO)	LA	JE MI	STA					α	= 0,3	α	= 0,4	α	= 0,5	α	= 0,6
	d	b _f	t _{fs}	t _{fi}	t _w	ht	h _f	b _c	I _v ⁺	I _{ap} ⁺	M^+	M _{ap} ⁺	Dorroo	I,	Dorroc	I,	Dorrog	I,	Dorroc	I,
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(cm4)	(cm4)	kNcm	kNcm	Dallas	(cm4)	Dallas	(cm4)	Darras	(cm4)	Dallas	(cm4)
112	800	300	19,0	19,0	2,0	180	75	1000	173873	547428	181201	195510	10	207995	13	216975	16	225461	19	233491
113	800	150	8,0	8,0	2,0	180	75	2000	37637	115248	47682	41160	3	47468	4	50188	5	52687	5	52687
114	800	150	8,0	19,0	2,0	180	75	2000	52245	273714	101581	97755	6	83867	7	88215	9	96290	11	103631
115	800	350	9,5	19,0	2,0	180	75	2000	136880	638666	229459	228095	12	196834	16	213532	20	228911	24	243122
116	800	350	19,0	19,0	2,0	180	75	2000	202852	638666	231477	228095	12	243685	16	255545	20	266667	24	277116
117	800	150	8,0	8,0	2,0	180	75	3000	37637	115248	48028	41160	3	47468	4	50188	5	52687	5	52687
118	800	150	8,0	19,0	2,0	180	75	3000	52245	273714	102565	97755	6	83867	8	92351	9	96290	11	103631
119	800	350	9,5	19,0	2,0	180	75	3000	136880	638666	235434	228095	13	201141	17	217494	21	232568	25	246508
120	800	350	19,0	19,0	2,0	180	75	3000	202852	638666	248746	228095	13	246724	17	258392	22	271972	26	282108
121	1200	150	8,0	8,0	2,0	135	75	1000	85253	213867	59665	56070	3	101341	3	101341	4	105794	5	109884
122	1200	150	8,0	19,0	2,0	135	75	1000	118889	507934	129555	133166	5	166866	7	182700	9	197025	10	203688
123	1200	300	9,5	19,0	2,0	135	75	1000	267160	1015868	247762	266333	10	355091	13	377323	16	397998	19	417274
124	1200	300	19,0	19,0	2,0	135	75	1000	397541	1015868	248010	266333	10	453384	13	468080	16	481967	19	495109
125	1200	150	8,0	8,0	2,0	135	75	2000	85253	213867	60702	56070	3	101341	4	105794	4	105794	5	109884
126	1200	150	8,0	19,0	2,0	135	75	2000	118889	507934	135102	133166	6	174986	7	182700	9	197025	11	210049
127	1200	350	9,5	19,0	2,0	135	75	2000	311687	1185180	298632	310721	12	416827	15	439017	19	466540	23	491951
128	1200	350	19,0	19,0	2,0	135	75	2000	463798	1185180	299324	310721	12	530624	15	545299	19	563791	23	581158
129	1200	150	8,0	8,0	2,0	135	75	3000	85253	213867	61048	56070	3	101341	4	105794	4	105794	5	109884
130	1200	150	8,0	19,0	2,0	135	75	3000	118889	507934	136087	133166	6	174986	7	182700	9	197025	11	210049
131	1200	350	9,5	19,0	2,0	135	75	3000	311687	1185180	309734	310721	12	416827	16	446110	20	473081	24	498002
132	1200	350	19,0	19,0	2,0	135	75	3000	463798	1185180	310911	310721	12	530624	16	550034	20	568234	24	585335
133	1200	150	8,0	8,0	2,0	180	75	1000	85253	228528	63445	57960	3	103445	4	108480	4	108480	5	113105
134	1200	150	8,0	19,0	2,0	180	75	1000	118889	542754	138526	137655	5	171524	7	188895	9	204611	10	211922
135	1200	300	9,5	19,0	2,0	180	75	1000	267160	1085508	260390	275310	10	364050	13	388547	16	411329	19	432569
136	1200	300	19,0	19,0	2,0	180	75	1000	397541	1085508	261001	275310	10	460687	13	477305	16	493008	19	507869
137	1200	150	8,0	8,0	2,0	180	75	2000	85253	228528	64482	57960	3	103445	4	108480	4	108480	5	113105
138	1200	150	8,0	19,0	2,0	180	75	2000	118889	542754	141481	137655	6	180432	7	188895	9	204611	11	218899
139	1200	350	9,5	19,0	2,0	180	75	2000	311687	1266426	322559	321195	12	427540	16	459807	20	489526	24	516986
140	1200	350	19,0	19,0	2,0	180	75	2000	463798	1266426	324577	321195	12	539363	16	561311	20	581892	24	601230
141	1200	150	8,0	8,0	2,0	180	75	3000	85253	228528	64828	57960	3	103445	4	108480	4	108480	5	113105
142	1200	150	8,0	19,0	2,0	180	75	3000	118889	542754	142465	137655	6	180432	7	188895	9	204611	11	218899
143	1200	350	9,5	19,0	2,0	180	75	3000	311687	1266426	328534	321195	12	427540	16	459807	20	489526	24	516986
144	1200	350	19,0	19,0	2,0	180	75	3000	463798	1266426	341846	321195	13	544986	17	566580	21	586839	25	605883

FIGURA C.1 – Relação entre (M^+ / I_v^+) e (M_{ap}^+ / I_{ap}^+)

ANEXO C

FIGURA C.2 – Distribuição de freqüência e PDF (normal) da relação entre o momento de inércia das regiões de momento fletor positivo e negativo

ANEXO D

D

E-MAIL ENVIADO PELO PROF. JOSEF MACHACEK

1

Siepem

From:"Prof. Josef Machacek" <machacek@fsv.cvut.cz>To:"Siepem" <siepem@codeme.com.br>Sent:quarta-feira, 23 de janeiro de 2008 11:50Subject:Re: Load-Slip Relationship For Stripcon Connectors

Dear Mr Plais,

Your request concerns probably Fig. 5 in our paper. In accordance with cited reference [2] the average force-slip diagram from tests used to analyse the experiments reads:

Force F per Stripcon connector/slip:

0/0; 7.5/0.01; 17.5/0.03; 35.0/0.05; 52.6/0.08; 70.1/0.12; 87.6/0.18; 105.1/0.35; 122.6/0.57; 140.1/0.95; 157.7/1.89; 175.2/6.76; 157.7/12.12.

Note:

- Stripcon in our investigation was modelled by two non-linear springs. - Unloaded part was modelled with positive slope Ep = 0.0003 Eo (Eo being the initial one).

- We also approximated the load-slip diagram in accordance with Ollgaard formula, but with ANSYS software this was not necessary.

Hope information supplied will help you.

With kind regards Josef Machacek