UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA DE ESTRUTURAS

ANÁLISE DE ESTRUTURAS DE AÇO COM LIGAÇÕES SEMI-RÍGIDAS

RODRIGO CYRINO MONTEIRO

Dissertação apresentada à escola de Engenharia da Universidade Federal de Minas Gerais como parte dos requisitos necessários à obtenção do título de "Mestre em Engenharia de Estruturas".

COMISSÃO JULGADORA:

Prof. Ricardo Hallal Fakury - Orientador Universidade Federal de Minas Gerais

Prof^a. Elizabeth Vieira Maia - Co-orientadora Universidade Federal de Minas Gerais

Prof. Gilson Queiroz Universidade Federal de Minas Gerais

Prof. Francisco Carlos Rodrigues Universidade Federal de Ouro Preto

Belo Horizonte, 25 de fevereiro de 1997.

AGRADECIMENTOS

A meu orientador e grande incentivador, Prof. Ricardo Hallal Fakury, pela colaboração e constante motivação durante a realização deste trabalho.

À Prof^a Elizabeth Vieira Maia pelo fornecimento do software Atrium e pela ajuda na implementação da teoria proposta.

A todos os professores do Curso de Mestrado em Engenharia de Estruturas, cujo conhecimento científico auxiliou no desenvolvimento deste trabalho.

A CAPES pela ajuda financeira que possibilitou o desenvolvimento de grande parte deste trabalho.

Aos colegas de trabalho e à diretoria da CODEME Engenharia pelo apoio, incentivo e suporte.

Finalmente, a meus pais, irmã e principalmente a Aninha; pela compreensão, paciência e grande ajuda na formatação e impressão final dos textos e figuras.

RESUMO _____

Apresentou-se uma metodologia para o cálculo da rigidez tangente inicial e da rigidez secante última, de ligações classificadas como flexíveis. Avaliou-se as flexibilidades localizadas, existentes no regime elástico, em ligações classificadas como rígidas.

Propôs-se a utilização de modelos de nó, que tornassem possível a consideração da rigidez das ligações classificadas como flexíveis e/ou rígidas, na análise de estruturas planas reticuladas.

Criou-se um programa de computador, para automatizar a criação dos modelos de nó, nas estruturas a serem analisadas. Desta forma, possibilitou-se que a influência das ligações, consideradas como semi-rígidas, pudesse facilmente ser levada em conta na análise estrutural.

Apresentou-se dois exemplos de utilização do programa. Comparou-se os resultados da análise das estruturas convencionais (rótulas perfeitas e nós rígidos) com os resultados da análise das estruturas com modelos de nó.

ABSTRACT _____

A method for the calculation of the initial tangent stiffness and the ultimate secant stiffness of flexible connections was presented. Local flexibilities, in elastic phase, of rigid connection where evaluated.

It was proposed the utilization of node models, in plane frame structural analysis, in order to make possible the consideration of stiffness, in flexible connections and/or in rigid connections.

A computer program was developed to automatize the generation of the node models in the structures to be analyzed. So, it became possible that the influence of the connections, treated as semi-rigids, could easily be considered in the structural analysis.

Two examples of utilization of the program were presented. The responses of conventional structures (simple support nodes and rigid nodes) and structures with node models were compared.

SUMÁRIO

1. INTRODUÇÃO 01 2. LIGAÇÕES FLEXÍVEIS 04 2.1.1 Ligações com Cantoneiras 04 2.1.2 Ligações com Chapa de Topo 08 2.1.3 Ligações com Chapa de Topo 08 2.1.3 Ligações com Chapa de Topo 08 2.1.3 Ligações com Chapa Simples 11 2.2 Rigidez das Ligações 11 2.2.1 Considerações Iniciais 14 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2.4 Rigidez Tangente Inicial 23 2.2.2.5 Rigidez Secante Última 23 2.2.3 Ligações com Chapa Simples 27 2.2.3 Rigidez Tangente Inicial 34 2.2.3 Ligações com Chapa Simples 27 2.3.3 Rigidez Secante Última 35 2.3 Modelo de Nó Adotado 37 3.1 Ligações Abordadas 49 3.2 Flexibilidade das Ligações 59 3.3 Modelos de Nó 3.3.1 Considerações Iniciais 64 3.3.2 Modelo de Nó Adotado 67 3.4 Constantes de Mola para o Modelo de Nó Adotado 3.4.1 Mola de Cisalhamento 69		Página
2. LIGAÇÕES FLEXÍVEIS 2.1 Ligações Abordadas 04 2.1.1 Ligações com Cantoneiras 04 2.1.2 Ligações com Chapa de Topo 08 2.1.3 Ligações com Chapa de Topo 08 2.1.3 Ligações com Chapa Simples 11 2.2 Rigidez das Ligações 11 2.2 Rigidez das Ligações 14 2.2.1 Considerações Iniciais 14 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2.a Rigidez Tangente Inicial 23 2.2.2.b Rigidez Secante Última 23 2.2.3 Ligações com Chapa Simples 27 2.2.3.a Rigidez Tangente Inicial 34 2.2.3.b Rigidez Secante Última 35 2.3 Modelo de Nó Adotado 37 3.1 Ligações Abordadas 49 3.2 Flexibilidade das Ligações 59 3.3 Modelos de Nó 3.3.1 Considerações Iniciais 64 3.2 Modelo de Nó Adotado 67 3.4 Constantes de Mola para o Modelo de Nó Adotado 3.4.1 Mola de Cisalhamento 69	1. INTRODUÇÃO	01
2. LIGAÇÕES FLEXÍVEIS 2.1 Ligações Abordadas 04 2.1.1 Ligações com Cantoneiras 04 2.1.2 Ligações com Chapa de Topo 08 2.1.3 Ligações com Chapa Simples 11 2.2 Rigidez das Ligações 11 2.2.2 Rigidez das Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Chapa Simples 27 2.2.3 Ligações com Chapa Simples 27 2.2.3 Ligações com Chapa Simples 27 2.3.3 Rigidez Tangente Inicial 34 2.2.3 b Rigidez Secante Última 35 2.3 Modelo de Nó Adotado 37 3.4 LIGAÇÕES RÍGIDAS 3.1 Ligações Abordadas 49 3.2 Flexibilidade das Ligações 59 3.3 Modelos de Nó 3.3 1 Considerações Iniciais 64 3.3.2 Modelo de Nó Adotado 6		
2.1 Ligações Abordadas 04 2.1.1 Ligações com Cantoneiras 04 2.1.2 Ligações com Chapa de Topo 08 2.1.3 Ligações com Chapa Simples 11 2.2 Rigidez das Ligações 11 2.2 Rigidez das Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa Me Topo 19 2.2.3 Ligações com Chapa Simples 27 2.2.3 Ligações com Chapa Simples 27 2.2.3 Ligações com Chapa Simples 27 2.3 Modelo de Nó Adotado 37 3.1 Ligações Abordadas 49 3.2 Flexibilidade das Ligações 59 3.3 Modelos de Nó 3.3 1 Considerações Iniciais 64 3.3.2 Modelo de Nó Adotado 67 3.4 Constantes de Mola para o Modelo de Nó Adotado 34.1 Mola de Cisalhamento 69	2. LIGAÇÕES FLEXÍVEIS	
2.1.1 Ligações com Cantoneiras 04 2.1.2 Ligações com Chapa de Topo 08 2.1.3 Ligações com Chapa Simples 11 2.2 Rigidez das Ligações 11 2.2.2 Rigidez das Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Chapa Simples 23 2.2.3 Ligações com Chapa Simples 27 2.2.3 Ligações com Chapa Simples 27 2.2.3 Ligações com Chapa Simples 27 2.2.3 Rigidez Tangente Inicial 34 2.2.3 D Rigidez Secante Última 35 2.3 Modelo de Nó Adotado 37 3.1 Ligações Abordadas 49 3.2 Flexibilidade das Ligações 59 3.3 Modelos de Nó 3.3.1 Considerações Iniciais 64 3.3.2 Modelo de Nó Adotado 67 3.4 Constantes de Mola para o Modelo de Nó Adotado 67 3.4.1 Mola de Cisalhamento 69 <th>2.1 Ligações Abordadas</th> <th>04</th>	2.1 Ligações Abordadas	04
2.1.2 Ligações com Chapa de Topo	2.1.1 Ligações com Cantoneiras	04
2.1.3 Ligações com Chapa Simples 11 2.2 Rigidez das Ligações 14 2.2.1 Considerações Iniciais 14 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2 Ligações com Chapa Simples 23 2.2.3 Ligações com Chapa Simples 27 2.3 Modelo de Nó Adotado 37 3.1 Ligações Abordadas 49 3.2 Flexibilidade das Ligações 59 3.3 Modelos de Nó 3.3.1 Considerações Iniciais 64 3.3.2 Modelo de Nó Adotado 67 3.4 Constantes de Mola para o Modelo de Nó Adotado 3.4.1 Mola de Cisalhamento 69	2.1.2 Ligações com Chapa de Topo	08
2.2 Rigidez das Ligações 14 2.2.1 Considerações Iniciais 14 2.2.2 Ligações com Cantoneiras e Chapa de Topo 19 2.2.2.a Rigidez Tangente Inicial 23 2.2.2.b Rigidez Secante Última 23 2.2.3 Ligações com Chapa Simples 27 2.2.3.a Rigidez Tangente Inicial 34 2.2.3.b Rigidez Secante Última 35 2.3 Modelo de Nó Adotado 37 3. LIGAÇÕES RÍGIDAS 31 3.1 Ligações Abordadas 49 3.2 Flexibilidade das Ligações 59 3.3 Modelos de Nó 3.3.1 Considerações Iniciais 64 3.3.2 Modelo de Nó Adotado 67 3.4 Constantes de Mola para o Modelo de Nó Adotado 67 3.4.1 Mola de Cisalhamento 69	2.1.3 Ligações com Chapa Simples	11
2.2.1 Considerações Iniciais 14 2.2.2 Ligações com Cantoneiras e Chapa de Topo. 19 2.2.2.a Rigidez Tangente Inicial 23 2.2.2.b Rigidez Secante Última. 23 2.2.3 Ligações com Chapa Simples 27 2.2.3.a Rigidez Tangente Inicial 34 2.2.3.b Rigidez Secante Última. 35 2.3 Modelo de Nó Adotado 37 3. LIGAÇÕES RÍGIDAS 37 3.1 Ligações Abordadas 49 3.2 Flexibilidade das Ligações 59 3.3 Modelos de Nó 3.3.1 Considerações Iniciais 64 3.3.2 Modelo de Nó Adotado 67 3.4 Constantes de Mola para o Modelo de Nó Adotado 67 3.4.1 Mola de Cisalhamento 69	2.2 Rigidez das Ligações	
2.2.2 Ligações com Cantoneiras e Chapa de Topo	2.2.1 Considerações Iniciais	14
2.2.2.a Rigidez Tangente Inicial. 23 2.2.2.b Rigidez Secante Última. 23 2.2.3 Ligações com Chapa Simples 27 2.2.3.a Rigidez Tangente Inicial. 34 2.2.3.b Rigidez Secante Última. 35 2.3 Modelo de Nó Adotado 37 3. LIGAÇÕES RÍGIDAS 37 3.1 Ligações Abordadas 49 3.2 Flexibilidade das Ligações 59 3.3 Modelos de Nó 3.3.1 Considerações Iniciais 64 3.3.2 Modelo de Nó Adotado 67 3.4 Constantes de Mola para o Modelo de Nó Adotado 67 3.4.1 Mola de Cisalhamento 69	2.2.2 Ligações com Cantoneiras e Chapa de Topo	19
2.2.2.b Rigidez Secante Última	2.2.2.a Rigidez Tangente Inicial	23
2.2.3 Ligações com Chapa Simples 27 2.2.3.a Rigidez Tangente Inicial 34 2.2.3.b Rigidez Secante Última 35 2.3 Modelo de Nó Adotado 37 3. LIGAÇÕES RÍGIDAS 37 3.1 Ligações Abordadas 49 3.2 Flexibilidade das Ligações 59 3.3 Modelos de Nó 59 3.3.1 Considerações Iniciais 64 3.3.2 Modelo de Nó Adotado 67 3.4 Constantes de Mola para o Modelo de Nó Adotado 3.4.1 Mola de Cisalhamento	2.2.2.b Rigidez Secante Última	23
2.2.3.a Rigidez Tangente Inicial	2.2.3 Ligações com Chapa Simples	27
2.2.3.b Rigidez Secante Última	2.2.3.a Rigidez Tangente Inicial	34
2.3 Modelo de Nó Adotado 37 3. LIGAÇÕES RÍGIDAS 49 3.1 Ligações Abordadas 49 3.2 Flexibilidade das Ligações 59 3.3 Modelos de Nó 59 3.3.1 Considerações Iniciais 64 3.3.2 Modelo de Nó Adotado 67 3.4 Constantes de Mola para o Modelo de Nó Adotado 69	2.2.3.b Rigidez Secante Última	35
3. LIGAÇÕES RÍGIDAS 49 3.1 Ligações Abordadas 49 3.2 Flexibilidade das Ligações 59 3.3 Modelos de Nó 59 3.3.1 Considerações Iniciais 64 3.3.2 Modelo de Nó Adotado 67 3.4 Constantes de Mola para o Modelo de Nó Adotado 69	2.3 Modelo de Nó Adotado	37
 3.1 Ligações Abordadas	3. LIGAÇÕES RÍGIDAS	
 3.2 Flexibilidade das Ligações	3.1 Ligações Abordadas	49
 3.3 Modelos de Nó 3.3.1 Considerações Iniciais	3.2 Flexibilidade das Ligações	59
 3.3.1 Considerações Iniciais	3.3 Modelos de Nó	
 3.3.2 Modelo de Nó Adotado	3.3.1 Considerações Iniciais	64
3.4 Constantes de Mola para o Modelo de Nó Adotado 3.4.1 Mola de Cisalhamento	3.3.2 Modelo de Nó Adotado	67
3.4.1 Mola de Cisalhamento	3.4 Constantes de Mola para o Modelo de Nó Adotado	
	3.4.1 Mola de Cisalhamento	69

3.4.2 Molas de Ligação e Introdução	70
3.4.2.1 Ligações Soldadas	72
3.4.2.1.a Ligações Soldadas com Perfis Laminados	74
3.4.2.1.b Ligações Soldadas com Perfis Soldados	76
3.4.2.2 Ligações Parafusadas com Chapa de Topo Estendida.	81

4. PROGRAMA DE COMPUTADOR

4.1 Considerações Iniciais	92
4.2 Sistema ATRIUM-LIG	93
4.3 Implementação dos Modelos de Nó	102
4.4 Considerações sobre Carregamentos	105

5. EXEMPLOS DE UTILIZAÇÃO

5.1 Exemplo 1: Estrutura Contraventada com Ligações Flexíveis	108
5.2 Exemplo 2: Pórtico com Ligações Rígidas	116

6. CONSIDERAÇÕES FINAIS 1	127
---------------------------	-----

ANEXOS

A.1 Relatórios de Computador: Item 5.1	129
A.2 Relatórios de Computador: Item 5.2	157
A.3 Lista de Tabelas	182
A.4 Lista de Figuras	183
	100
	186
BIBLIOGRAFIA	189

1. INTRODUÇÃO

Em estruturas de aço, é comum classificar-se as ligações de acordo com o momento fletor atuante e a rotação relativa das barras conectadas, após a aplicação do carregamento.

Fig. 1.1 - Ligações rígidas (1), flexíveis (3), ou semi-rígidas (2).

Tschemmernegg e Humer [20] sugerem separar as ligações em três grupos distintos (figura 1.1). As ligações rígidas (1) seriam aquelas em que a rotação relativa (ϕ_v) praticamente não varia, mesmo com a atuação de um momento fletor na

extremidade da viga (M) igual a 80% do momento de plastificação da seção (M_{pl}). As ligações flexíveis (3) seriam aquelas que apresentam uma variação considerável de ϕ_v com a atuação de apenas 20% de M_{pl} na extremidade da viga. As demais ligações, com comportamento intermediário entre as rígidas e as flexíveis, seriam classificadas como semi-rígidas (2).

Atualmente, o procedimento mais utilizado na análise das estruturas reticuladas é de desconsiderar-se a capacidade parcial de restrição à rotação das ligações classificadas como flexíveis. Nas ligações classificadas como rígidas, despreza-se a ocorrência da pequena rotação relativa existente entre as barras conectadas. Portanto, nas extremidades das barras, as ligações viga-coluna são simuladas por rótulas perfeitas $(\phi_v \rightarrow \infty)$ ou por nós totalmente rígidos $(\phi_v = 0)$.

Porém, é crescente a tendência de considerar-se a existência de uma pequena rotação relativa nas ligações rígidas e de uma pequena capacidade de restrição à rotação nas ligações flexíveis. Desta forma, todas as ligações seriam tratadas como semi-rígidas. Isto influi por exemplo, na distribuição dos esforços solicitantes nas barras bem como nos valores dos deslocamentos da estrutura. Também os valores dos comprimentos de flambagem das colunas são modificados. Com isto, ao levar-se em conta a real restrição à rotação oferecida pelas ligações, a análise realizada torna-se mais próxima do comportamento real da estrutura.

A consideração da influência das ligações semi-rígidas na análise das estruturas reticuladas só é viável devido ao avanço tecnológico das ferramentas computacionais disponíveis (hardwares e softwares de análise estrutural). Centros de pesquisa em todo o mundo, vêem estudando uma forma racional e com um grau de precisão satisfatório, para que no futuro, a abordagem das ligações semi-rígidas possa ser um procedimento usual para os projetistas estruturais.

Este trabalho segue uma linha de pesquisa, propondo que a influência das ligações seja considerada através de uma abordagem macroscópica da região da ligação. Desta forma, utilizam-se modelos com nós e barras fictícias para a representação da

região da junção entre as vigas e as colunas. As dimensões e as propriedades físicas das barras fictícias são determinadas em função da geometria e do grau de rigidez definido para as conecções.

A abordagem macroscópica (modelos de nó) ao invés de molas pontuais na junção das peças, contribui muito para a correta simulação do comportamento da ligação. Principalmente para as ligações rígidas onde as flexibilidades existentes têm um efeito localizado na região da conecção.

Os capítulos 2 e 3 deste trabalho descrevem os processos utilizados na determinação do grau de rigidez das ligações, bem como apresentam os modelos de nós adotados para as ligações flexíveis e rígidas.

As formulações apresentadas nos capítulos 2 e 3 (tratando as ligações como semi-rígidas) foram incluídas em um programa de computador. Desta forma, torna-se possível a análise estrutural levando-se em conta (automaticamente) a influência das ligações na distribuição dos esforços solicitantes e nos deslocamentos da estrutura. As informações e instruções para a utilização do programa de computador apresentam-se resumidas no capítulo 4 deste trabalho.

O capítulo 5 apresenta dois exemplos da utilização do programa de computador. São comparados os resultados entre as análises: estrutura com ligações semi-rígidas e estrutura convencional (rótulas perfeitas ou nós rígidos). Os relatórios destas análises encontram-se nos Anexos A.1 e A.2.

É importante esclarecer que este trabalho abordará o comportamento de estruturas de aço em que as ligações (classificadas como flexíveis ou como rígidas) serão tratadas como semi-rígidas, considerando de forma mais adequada o seu desempenho. No entanto, para maior compreensão do texto, as primeiras serão referidas *como "ligações flexíveis"* ou *"ligações classificadas como flexíveis"* e as segundas *como "ligações rígidas"* ou *"ligações classificadas como rígidas"*.

2. LIGAÇÕES FLEXÍVEIS

2.1 Ligações Abordadas

As ligações flexíveis a serem abordadas no presente trabalho foram escolhidas entre as mais comuns no Brasil e as que apresentam grande potencial de utilização. Referem-se sempre à união de viga e coluna formados por perfis tipo \mathbf{I} , com a particularidade de que a viga deve ser ligada à mesa da coluna, exceto para a ligação com chapa simples (item 2.1.3), quando a viga pode estar ligada à alma da coluna.

2.1.1 Ligações com Cantoneiras

As ligações com cantoneiras tratadas aqui consistem de uma ou duas cantoneiras parafusadas à mesa da coluna e soldadas à alma da viga (figuras 2.1 e 2.2). O emprego de apenas uma cantoneira se faz quando é difícil ou mesmo impossível o acesso a um dos lados da viga.

São muito usadas na prática, por representarem uma solução econômica e permitirem ajuste no comprimento final das vigas, devido à folga (usual de 10 mm) existente entre a extremidade da viga e a mesa da coluna. Geralmente a solda das cantoneiras à viga é realizada na fábrica e o aperto dos parafusos à coluna é feito no campo.

Dados experimentais [5] indicam que a ligação com duas cantoneiras é capaz de desenvolver até 20% ou mais de restrição à rotação para cargas de serviço, especialmente se as cantoneiras possuírem grandes comprimento e espessura.

Fig. 2.1 - Ligação com cantoneira simples.

Fig. 2.2 - Ligação com cantoneira dupla.

A fim de evitar a ocorrência de alguns estados limites últimos, são apresentadas algumas exigências de projeto e dimensões mínimas entre as peças constituintes das ligações com cantoneiras (fig. 2.3), que serão sempre obedecidas no decorrer deste trabalho. Estas relações são sugeridas por Queiroz, Pimenta e Fakury [12], baseadas em

prescrições da norma brasileira para execução e projeto de estruturas de aço NBR-8800 [6]:

Fig. 2.3 - Dimensões em uma ligação com cantoneiras.

- a) Deve existir uma simetria no posicionamento da ligação, ou seja, as linhas de centro da viga e da ligação devem ser coincidentes.
- b) Para que a deformação da mesa da coluna não tenha grande influência no comportamento da ligação deve-se ter: $t_{fc} \ge 2.t_a$. Ainda, o balanço da aba da cantoneira deve ser sempre menor que o da mesa da coluna.
- c) Em se tratando de ligações com cantoneiras simples, para garantir que a formação de charneiras plásticas na cantoneira se dê em sua aba parafusada, deve-se ter sempre: t_{wv} ≥ 1,5.t_a

- d) A fim de evitar uma possível ruptura da seção líquida das cantoneiras, o tipo de aço a ser utilizado nas cantoneiras deve ser tal que: $f_u \ge 1,6.f_y$. O espaçamento vertical entre os furos deve ser sempre maior ou igual à três vezes e meia o diâmetro dos parafusos.
- e) Para que não ocorra flambagem local da aba parafusada das cantoneiras, deve-se fazer: $[g - 0.5.(t_a + t_{wv})] / t_a \le 0.55.(E / f_y)^{\frac{1}{2}}$ $d_a / t_a \le 3.5.(E / f_v)^{\frac{1}{2}}$
- *f*) A possível flambagem local da aba soldada das cantoneiras deve ser evitada fazendo-se: $b_a / t_a \le 0.55.(E / f_y)^{\frac{1}{2}}$
- g) Para as vigas a flambagem local de sua alma deve ser evitada, observando-se que: $h_{WV} / t_{WV} \le 3.5.(E / f_y)^{\frac{1}{2}}$ $h_1 \ge 0.5.h_{WV}$
- *h*) Deve-se fazer, sempre: $\mathbf{t_{wc}} \ge \mathbf{t_{wv}}$
- *i*) À fim de tornar válidas as simplificações adotadas no cálculo do momento resistente último da ligação (M_u), deve-se ter:

$$g \ge 4.t_a + 0.5.t_{WV}$$

Na figura 2.3 e nos itens anteriores tem-se:

- $E \Rightarrow$ Módulo de elasticidade do aço das cantoneiras;
- $f_V \Rightarrow$ Tensão de escoamento do aço das cantoneiras;
- $f_u \Rightarrow$ Tensão de ruptura do aço das cantoneiras;
- $t_a \Rightarrow$ Espessura das cantoneiras;

 $d_a \Rightarrow$ Comprimento da cantoneira;

 $b_a \Rightarrow$ Comprimento da aba da cantoneira submetido à solda;

 $h_1 \Rightarrow$ Comprimento da linha de furos;

g ⇒ Distância horizontal da linha de furos ao centro da viga;

 $e_h \Rightarrow$ Distância horizontal da linha de furos à borda da cantoneira;

 $e_V \Rightarrow$ Distância vertical da linha de furos à borda da cantoneira;

 $t_{WC} \Rightarrow$ Espessura da alma da coluna;

 $t_{fc} \Rightarrow$ Espessura da mesa da coluna;

 $t_{WV} \Rightarrow$ Espessura da alma da viga;

 $h_{WV} \Rightarrow$ Altura da alma da viga.

2.1.2 Ligações com Chapa de Topo

A ligação com chapa de topo consiste de uma chapa de extremidade de altura inferior à altura da seção da viga, soldada perpendicularmente à sua alma e parafusada na mesa da coluna, conforme se vê na figura 2.4 . A solda geralmente é executada na fábrica enquanto que o aperto dos parafusos é realizado no campo.

Este tipo de ligação foi amplamente estudado por Kennedy [1], que concluiu ser de comportamento semelhante ao das ligações com cantoneiras. Como será mostrado na seção 2.2, suas curvas características momento-rotação são similares às das ligações com cantoneiras duplas.

Fig. 2.4 - Ligação com Chapa de Topo.

A seguir, baseado na figura 2.5 e a exemplo do que foi feito no item 2.1.1, serão adotadas algumas relações entre as dimensões dos componentes das ligações com chapa de topo, sugeridas em [12] :

- a) Deve existir uma simetria no posicionamento da ligação, ou seja, as linhas de centro da viga e da ligação devem ser coincidentes.
- *b)* Para que a deformação da mesa da coluna não tenha grande influência no comportamento da ligação deve-se ter: $t_{fc} \ge 1,5.t_p$.
- c) Para que não ocorra flambagem local da chapa de topo, deve-se fazer:

g / t_p
$$\leq$$
 0,55.(E / f_y)^{1/2}
d_p / t_p \leq 3,5.(E / f_y)^{1/2}

d) - Para as vigas a flambagem local de sua alma deve ser evitada, observando-se que: $h_{WV} / t_{WV} \le 3.5.(E / f_y)^{\frac{1}{2}}$

Fig. 2.5 - Dimensões em ligação com chapa de topo.

- *e*) Deve-se fazer, sempre: $\mathbf{t}_{wc} \ge \mathbf{t}_{wv}$
- f A fim de tornar válidas as simplificações adotadas no cálculo do momento resistente último da ligação (M_u), deve-se ter: $g \ge 4.t_p + 0.5.t_{wv}$

Na figura 2.5 e nos itens anteriores tem-se:

- $E \Rightarrow$ Módulo de elasticidade do aço da chapa de topo;
- $f_y \, \Leftrightarrow \,$ Tensão de escoamento do aço da chapa de topo;
- $f_u \, \Leftrightarrow \, \, \text{Tensão de ruptura do aço da chapa de topo;}$
- $t_p \Rightarrow$ Espessura da chapa de topo;
- $d_p \Rightarrow$ Comprimento da chapa de topo;
- $h_1 \Rightarrow$ Comprimento da linha de furos;
- g ⇒ Distância horizontal da linha de furos ao centro da viga;

- e \Rightarrow Distância do centro do furo à borda da chapa de topo;
- $t_{wc} \Rightarrow$ Espessura da alma da coluna;
- $t_{fc} \Rightarrow$ Espessura da mesa da coluna;
- $t_{WV} \Rightarrow$ Espessura da alma da viga;
- $h_{WV} \Rightarrow$ Altura da alma da viga.

2.1.3 Ligação com Chapa Simples

Este tipo de ligação apresenta-se ilustrado na figura 2.6. A chapa através da qual é feita a conecção é soldada na coluna no momento de sua fabricação e durante o processo de montagem é parafusada na alma da viga. Conforme observa-se nas figuras 2.6.a e 2.6.b, a chapa pode estar soldada diretamente em uma das mesas da coluna ou perpendicularmente à alma da mesma. Neste trabalho ambas as situações serão abordadas.

Ligações com chapa simples são muito dúcteis e têm ganho considerável popularidade atualmente, dado sua eficiência e facilidade de fabricação e montagem.

A ligação por chapa simples desperta grande interesse em pesquisadores, principalmente americanos. Com base em estudos publicados por Richard [2], Astaneh [3], Lindsey [9] e em recente trabalho de Queiroz, Pimenta e Fakury [12], algumas dimensões e relações entre os elementos constituintes deste tipo de ligação serão adotadas neste trabalho e seguidas como padrão. Assim evita-se ocorrência de estados limites últimos que impeçam a utilização da equação momento-rotação de Richard [2], como será visto no item 2.2.2.

Na figura 2.7 estão representadas as dimensões dos elementos envolvidos nas ligações com chapa simples. Nos itens seguintes são citadas as condições de projeto e as restrições adotadas:

- a) Deve existir uma simetria no posicionamento da ligação, ou seja, as linhas de centro da viga e da ligação devem ser coincidentes.
- b) A junção da chapa de extremidade com alma da viga deve ser feita com apenas uma linha de parafusos (ASTM A325), contendo no mínimo dois e no máximo nove parafusos. Para que a equação momento-rotação de Richard [2] possa ser utilizada com mais precisão, a distância entre os centros dos furos (p) deve ser igual ou próxima de 75 mm.
- c) A espessura da chapa de extremidade deve ser inferior à espessura da alma da viga, $\mathbf{t_p} \leq \mathbf{t_{wv}}$. Além disto, deve-se evitar a flambagem local da alma da viga, fazendose: $\mathbf{h_{wv}} / \mathbf{t_{wv}} \leq 3,5.(E / f_y)^{\frac{1}{2}}$ $\mathbf{h_1} \geq 0,5.\mathbf{h_{wv}}$

Fig. 2.7 - Dimensões em ligações com chapa simples.

- *d*) Em aços com f_y \cong 25 kN/cm², a fim de evitar excessiva deslocabilidade lateral da chapa de extremidade, deve-se fazer: $\mathbf{a}_1 \leq 2.t_p$ $\mathbf{a}_2 \leq \mathbf{d} + 4.t_p$
- e) Para a figura 2.7.a, as distâncias horizontal e vertical do centro do furo à borda da chapa (a₃) devem ser iguais e obedecer às exigências da NBR 8800 [6]. Além disto, segundo Astaneh [3] para evitar uma possível flambagem local da chapa por excessiva concentração de esforço cortante, deve-se fazer:

$$(a_1 + a_2) \le 0.5.d_p$$

f) - Para a figura 2.7.b , admitir-se-á:

$$h_{WV} / t_p \le 3,5.(E / f_y)^{\frac{1}{2}}$$

 $a_3 \ge 1,4.a_4$
 $\alpha \le 35^{\circ}$

Na figura 2.7 e nos itens anteriores tem-se:

- E \Rightarrow Módulo de elasticidade do aço;
- $f_V \Rightarrow$ Tensão de escoamento do aço;
- t_p \Rightarrow Espessura da chapa de extremidade;
- $d_p \Rightarrow$ Comprimento da chapa de extremidade;
- $b_p \Rightarrow$ Largura da chapa de extremidade
- $h_1 \Rightarrow$ Comprimento da linha de furos;
- d ⇒ Diâmetro nominal dos parafusos;

 $a_1, a_2, a_3, a_4 \Rightarrow$ Distâncias definidas na figura 2.7;

 $t_{wc} \Rightarrow$ Espessura da alma da coluna;

 $t_{fc} \Rightarrow$ Espessura da mesa da coluna;

 $t_{WV} \Rightarrow$ Espessura da alma da viga;

 $h_{WV} \Rightarrow$ Altura da alma da viga;

 α \Rightarrow Inclinação do contorno da chapa de extremidade (fig. 2.7.b).

2.2 Rigidez das Ligações

2.2.1 Considerações Iniciais

A consideração e determinação do grau de rigidez de ligações classificadas como flexíveis, passando a tratá-las como semi-rígidas, é atualmente um assunto que desperta grande interesse.

Desde meados da década de 60 até os dias atuais, ensaios com vários tipos de ligações têm sido realizados com o intuito de fornecer dados experimentais, os quais possibilitem a formulação de modelos matemáticos que descrevam com grande fidelidade o comportamento não-linear das ligações, tratando-as como semi-rígidas. Dentre os ensaios realizados com as ligações flexíveis em foco neste trabalho, destacam-se as publicações de Kennedy [1] sobre ligações com cantoneiras e chapa de topo; Richard [2] e Astaneh [3] sobre ligações com chapa simples.

Chen e Lui [5], apresentam diferentes formulações matemáticas de diversos autores, que tentam expressar as curvas momento-rotação (M- Φ) dos tipos de ligação viga-coluna mais convencionais. Para ligações com cantoneiras ou com chapa de topo serão utilizadas as curvas M- Φ dadas pelo modelo de potência de Ang e Morris [5].

Para representar o comportamento das ligações com chapa simples adotar-se-á a curva M-Φ indicada por Richard [2].

As curvas M- Φ acima citadas descrevem a relação não-linear obtida ao se expressar a rotação relativa entre a viga e a coluna, em função do momento fletor absorvido na extremidade da viga pela ligação, ou vice-versa. Como será visto nos itens 2.2.2 e 2.2.3, a rigidez de uma ligação é uma grandeza dependente das características físicas dos elementos nela envolvidos (espessuras e comprimentos de cantoneiras ou chapas, distâncias de linhas de furos) e do momento fletor absorvido pelas ligações. Como o momento absorvido depende do carregamento ao qual está submetido a estrutura, logo a rigor para cada carregamento aplicado na estrutura, ter-se-ia um diferente grau de rigidez para o mesmo tipo de ligação.

A figura 2.8.a abaixo mostra como ocorre a variação da rigidez de ambas as ligações A e B do pórtico representado, ao aumentar-se gradativamente o valor da carga q aplicada na viga AB. Inicialmente, quando não há qualquer carregamento atuando na estrutura, ou para valores muito pequenos de q , ambas as conecções apresentam uma rigidez que pode ser expressa pela reta OA, tangente à curva M- Φ em sua origem, chamada Rigidez Tangente Inicial. Ao incrementar-se o carregamento aplicado na estrutura, o momento fletor absorvido pelas ligações aumenta e a curva M- Φ começa a ser percorrida. O valor da rigidez tangente das ligações, começa então a decair, passando a ser expresso pela reta BC. A reta OB indica a rigidez secante da ligação correspondente à rigidez tangente BC.

Fig. 2.8 - Variação da rigidez das ligações conforme o acréscimo do carregamento.

Este processo se repete sempre que ocorrer um acréscimo no momento fletor absorvido pela ligação. Porém se o pórtico da figura 2.8.a apresentar-se agora como na figura 2.8.b sendo submetido a um esforço horizontal H após a aplicação da carga q, a ligação A sofrerá um descarregamento enquanto que a ligação B ficará ainda mais carregada. Ao descarregar-se, a rigidez da ligação A não percorre a curva M- Φ , mas passa a apresentar um valor tendendo ao da rigidez tangente inicial, representado na figura 2.8.b pela reta BC, paralela à OA.

Em um caso extremo, quando a ligação B absorver um momento fletor que a leve à ruína M_u , a reta BC tangente à curva M- Φ passará a representar a rigidez tangente última da ligação e a ligação A (descarregada) apresentaria um grau de rigidez próximo à rigidez tangente inicial.

Ao longo do desenvolvimento deste trabalho procurou-se obter um método matemático que possibilitasse a obtenção do real grau de rigidez das ligações flexíveis. Infelizmente, devido à falta de dados consistentes sobre o assunto na bibliografia pesquisada (Lindsey et al [9], Geschwindner [10], e King et al [13], dentre outros), tal processo matemático tornou-se inviável. Para contornar este problema a proposta aqui presente é a de se trabalhar, então com dois graus de rigidez para cada ligação. O primeiro (K_i), relativo à rigidez tangente inicial da ligação; e o segundo (K_u), relativo à rigidez secante última da ligação. Utilizar-se-á a rigidez secante última ao invés da tangente última para possibilitar que dados referentes à não linearidade das ligações possam ser utilizados futuramente em uma análise estrutural elástica linear.

Conforme está indicado na figura 2.9 a rigidez inicial K_i será representada pela reta tangente à curva M- Φ na origem, quando não há qualquer carregamento atuando na estrutura. A rigidez secante última K_u é obtida quando hipoteticamente atuar na ligação o momento fletor último M_u , que ocasione a ruptura da ligação. Supondo que uma ligação não ficará submetida à nenhum momento fletor superior ao seu momento M_u , o grau de rigidez secante real da ligação K_{real} estará compreendido na região hachurada entre as retas $K_i e K_u$.

Na figura 2.9 têm-se:

- $\Phi_u \Rightarrow$ Rotação relativa entre a viga e a coluna quando atuar na ligação o momento de ruptura da ligação M_u ;
- Φ ⇒ Rotação relativa entre a viga e a coluna quando atuar na ligação o momento real por ela absorvido M.

O valor da rigidez inicial K_i é extremamente elevado. Assim sendo, ao utilizá-lo na análise de uma estrutura obter-se-iam para as vigas: esforços de extremidade maiores e no meio do vão menores, do que os obtidos ao utilizar-se a rigidez secante última K_u .

Fig. 2.9 - Rigidez tangente inicial e rigidez secante última em uma ligação.

2.2.2 Ligações com Cantoneiras e Chapa de Topo

Na tentativa de representar o comportamento das ligações em questão, o modelo de potência mais simples a utilizar-se seria um modelo de dois parâmetros (a, b) segundo o qual a rotação relativa entre viga e coluna (Φ) é expressa em função do momento fletor absorvido pela ligação (M) através da equação:

$$\Phi = a \times M^{\circ}$$

Dada à sua simplicidade o modelo acima não representa com suficiente precisão a curva M-Φ das ligações.

A curva M- Φ originária do modelo de potência de quatro parâmetros desenvolvido por Ang e Morris e apresentada em [5] será então utilizada, para as ligações com cantoneiras e chapa de topo. Sua equação genérica é indicada por:

$$\Phi = \frac{\Phi_{0}}{\left(KM\right)_{0}} \times k \times M \times \left\{ 1 + \left[\frac{k \times M}{\left(KM\right)_{0}}\right]^{\left(n-1\right)} \right\}$$
(2.1)

Nesta curva, os três primeiros parâmetros: Φ_0 , (KM)₀ e n, são chamados de parâmetros de ajuste de curva e são típicos de cada tipo de ligação (cantoneira simples, cantoneiras duplas ou chapa de topo). O quarto parâmetro k, é uma constante de padronização, que depende da geometria dos elementos constituintes da ligação. O momento fletor absorvido pela ligação é indicado por M.

A figura 2.10 à seguir indica os possíveis formatos da curva M- Φ dada pela equação 2.1 ao variar-se o parâmetro de ajuste n , mantendo-se constantes os demais parâmetros de ajuste bem como a constante de padronização k .

A equação 2.2 indica uma constante de padronização genérica, utilizada inicialmente por Sommer (apresentada em [5]). Os termos p; representam as dimensões

dos elementos envolvidos na ligação e os termos α_i são constantes obtidas através da comparação de curvas teóricas e curvas obtidas através de ensaios.

Fig. 2.10 - Comportamento do Modelo de potência de Ang e Morris.

$$\mathbf{k} = \mathbf{p}_1^{\alpha_1} \times \mathbf{p}_2^{\alpha_2} \times \mathbf{p}_3^{\alpha_3} \times \dots \times \mathbf{p}_n^{\alpha_n} \tag{2.2}$$

A tabela 2.1 a seguir fornece os valores dos parâmetros de ajuste e as fórmulas das constantes de padronização a serem utilizados na equação 2.1. As espessuras e comprimentos de cantoneiras ou chapas (t_a , d_a , t_p , d_p , t_{WV}), bem como distâncias de linhas de furos ao centro da viga (g), encontram-se representadas na fig. 2.11.

Considerando-se os valores descritos pela tabela 2.1 na equação 2.1 (utilizandose kN e cm como unidades de força e comprimento, respectivamente), obtém-se as seguintes equações:

Tipo de Ligação	Parâmetros de Ajuste	Constantes de Padronização
Cantoneira Simples	$###_o = 1.03 \times 10^{-2}$ (KM) _o = 32.75 n = 3.93	$k = d_a^{-2,09} \cdot t_a^{-1,64} \cdot g^{2,06}$
Cantoneiras Duplas	$\frac{11 - 3,95}{\#\#_0} = 3,98 \times 10^{-3}$ (KM) ₀ = 0,63 n = 4,94	$k = d_a^{-2,2} t_a^{0,08} (2g)^{-0,28}$
Chapa de Topo	$###_{o} = 7,04 \times 10^{-3}$ (KM) _o = 186,77 n = 4,32	k = dp ^{-2,41} .tp ^{-1,54} . (2g) ^{2,12} .t _{WV} ^{-0,45}

Tabela 2.1 - Parâmetros de ajuste e constantes de padronização, Modelo de Potência
de Ang e Morris

Fig. 2.11 - Dimensões dos componentes das ligações.

⇒ Para ligações com Cantoneira Simples:

$$### = 1,3212 \times 10^{-4} \times \text{kM} \times \left[1 + (12,8274 \times 10^{-3} \times \text{kM})^{2,93} \right] \qquad 2.3 \text{ (a)}$$

⇒ Para ligações com Cantoneiras Duplas:

= 5,2411 × 10⁻³ × kM ×
$$[1 + (1,3169 × kM)^{3,94}]$$
 2.3 (b)

⇒ Para ligações com Chapa de Topo:

A figura 2.12 a seguir exibe as três curvas M- Φ expressas pelas equações 2.3 para as três de dimensões semelhantes. Observa-se que as ligações com cantoneiras duplas e chapa de topo (curvas 2 e 3) comportam-se de modo similar, apresentando rotações de mesma ordem de grandeza. A ligação com cantoneira simples (curva 1) apresenta-se bem menos rígida que as duas primeiras com rotações dez vezes maiores, para um mesmo valor de momento fletor.

Fig. 2.12 Representação das curvas M- Φ de Ang e Morris.

2.2.2.a Rigidez Tangente Inicial

Conforme indicado na fig. 2.9, a rigidez tangente inicial (K_i) deve ser obtida através da reta tangente à curva M- Φ em sua origem, logo:

$$\mathbf{K}_{i} = \left[\frac{\mathrm{d}\mathbf{M}}{\mathrm{d}\Phi}\right]_{\Phi=0} \tag{2.4}$$

$$\mathbf{K}_{i} = \left[\frac{1}{d\Phi/dM}\right]_{M=0}$$
(2.5)

onde, Φ nas equações 2.4 e 2.5 é expresso pelas equações 2.3, de acordo com o tipo de ligação em questão.

2.2.2.b Rigidez Secante Última

No item 2.2.1 citou-se que a rigidez secante última será obtida quando a conecção absorver um momento fletor M_u que provoque a sua ruína. À seguir, será apresentado um mecanismo de colapso proposto por Queiroz Pimenta e Fakury [12], baseado na referência [5], para as ligações com cantoneiras e chapa de topo. Este mecanismo, (representado na figura 2.13 para ligações com cantoneiras), assume que a ruptura dá-se com a formação de charneiras plásticas na aba parafusada das cantoneiras ou na própria chapa de topo, dependendo do tipo de ligação considerada.

A distância máxima entre as duas charneiras plásticas (figura 2.13) é da mesma ordem de grandeza das espessuras das cantoneiras ou da chapa de topo. Por isto, no mecanismo de ruína a ser descrito, o efeito de interação entre o momento fletor e a força cortante serão considerados no escoamento do material. Pelo princípio dos trabalhos virtuais, para uma seção arbitrária de altura y, em relação à linha de contorno inferior da cantoneira ou chapa de topo, tem-se:

$$2.M_{py} \theta = V_{py} g_y \theta \qquad (2.6)$$

Nesta equação M_{py} representa o momento fletor plástico, V_{py} o esforço cortante por unidade de comprimento, g_y a distância horizontal entre as rótulas plásticas e θ a rotação sofrida pela seção.

Pelo critério de Ducker apresentado em [5] para as ações combinadas M_{py} e V_{py} obtém-se:

$$\left(\frac{M_{py}}{M_{0}}\right) + \left(\frac{V_{py}}{V_{0}}\right)^{4} = 1$$
(2.7)

onde M_0 e V_0 representam respectivamente o momento fletor plástico na ausência de força cortante e a resistência à força cortante na ausência de momento fletor.

Nas equações subseqüentes, os termos $t_i e d_i$ serão utilizados para designar espessuras e comprimentos de cantoneiras ou chapa de topo ($t_a e d_a$ ou $t_p e d_p$). O termo t_{WV} indica a espessura da alma da viga.

Pelo critério de resistência de Tresca, a relação entre M_0 e V_0 pode ser então definida na equação 2.8 , como:

$$M_{0} = \left(\frac{t_{i}^{2}}{4}\right) \times f_{y} \qquad V_{0} = t_{i} \times \left(\frac{f_{y}}{2}\right)$$
$$M_{0} = V_{0} \times 0, 5 \times t_{i} \qquad (2.8)$$

Utilizando-se as equações 2.6 e 2.8 na equação 2.7 resulta:

$$\left(\frac{V_{py}}{V_0}\right)^4 + \frac{g_y}{t_i} \times \left(\frac{V_{py}}{V_0}\right) - 1 = 0$$
(2.9)

A expressão 2.9 indica que V_{py} varia não linearmente ao longo da altura da cantoneira ou chapa de topo (figura 2.13). Para $y = d_i - y_1$, V_{py} assume um valor mínimo que será designado V_p . Para y = 0, V_{py} assume seu valor máximo (V_o). Chen e Lui [5], sugerem para o cálculo do momento último M_u , que se considere a variação de V_{py} como linear. Assim, após o equilíbrio de momentos, Queiroz, Pimenta e Fakury [12] indicam como valor do momento último:

$$\phi M_n = M_u = 0.9 \times \frac{\left[V_p \left(4d_a - y_1\right) + V_o \left(2d_a + y_1\right)\right] \times \left(d_a - y_1\right)}{12}$$
 (2.10)

A equação 2.10 apresenta um coeficiente de resistência embutido de valor 0,9 e indica o momento fletor que leva à ruína ligações com cantoneira simples. Para ligações com cantoneiras duplas e chapa de topo o momento último é o dobro do indicado em 2.10. Na expressão acima, a distância y_1 é dada pelo desenvolvimento da igualdade:

$$\frac{\mathbf{t}_{a} \times \mathbf{f}_{y} \times \mathbf{y}_{1}}{2} = \frac{\left(\mathbf{V}_{o} + \mathbf{V}_{p}\right) \times \left(\mathbf{d}_{a} - \mathbf{y}_{1}\right)}{2}$$

chegando-se a:

$$\mathbf{y}_{1} = \frac{\left(\mathbf{V}_{0} + \mathbf{V}_{p}\right) \times \mathbf{d}_{i}}{\left[\mathbf{V}_{0} + \mathbf{V}_{p} + \left(\mathbf{f}_{y} \times \mathbf{t}_{i}\right)\right]}$$
(2.11)

Pode-se obter V_p à partir do valor mínimo de V_{py} na equação 2.9. Este valor ocorre quando $y = d_i - y_1$, e $g_y = g - 0.5t_{WV}$. Porém, para valores de $g \ge (4t_i + 0.5t_{WV})$ o termo de 4° grau daquela equação torna-se desprezível, logo:

$$V_{p} = V_{0} \times \left(\frac{t_{a}}{g - 0.5 \times t_{WV}}\right)$$
(2.12)

Fig. 2.13 - Mecanismo de ruína de ligações com cantoneiras e chapa de topo.

Uma vez obtido o momento resistente último M_u (equação 2.10), as equações 2.3 podem então ser utilizadas para o cálculo da rotação relativa existente entre as peças conectadas, quando este momento fletor atuar (Φ_u). Logo, a rigidez secante última (K_u) será expressa por:

$$K_{u} = \frac{M_{u}}{\Phi_{u}}$$
(2.14)

2.2.3 LIGAÇÕES COM CHAPA SIMPLES

O procedimento padrão de cálculo de ligações com chapa simples assume que as forças atuantes nos parafusos seriam resultantes apenas do esforço cortante aplicado na extremidade da viga. Porém, vários ensaios realizados por Richard e outros [2] e Astaneh e outros [3], com este tipo de conecção mostram que a direção das forças resultantes nos parafusos não é totalmente vertical. Conforme ilustrado na figura 2.14, percebe-se que os parafusos mais afastados do centro da ligação tendem a absorver, além da força cortante (vertical), a força horizontal oriunda do momento fletor desenvolvido na extremidade da viga. Nos parafusos mais próximos do centro da ligação, as direções das forças resultantes apresentam pequena inclinação em relação ao eixo da linha de furos, indicando que a maior parcela da carga nestes, é originária da força cortante atuante na ligação.

A ductilidade destas ligações, que provoca um giro Φ entre viga e a chapa de ligação, se deve basicamente à três fatores: deformação por força cortante dos parafusos; distorção provocando alargamento dos furos na chapa de ligação ou na alma da viga e possível flambagem da chapa de ligação ou da alma da viga. Para que não ocorra a citada flambagem, devem ser obedecidas as relações indicadas no item 2.1.4.

O comportamento não linear das ligações entre viga e coluna com chapa simples será expresso pelo modelo matemático desenvolvido em [2], seguido de algumas

simplificações de caráter prático propostas por Queiroz, Pimenta, e Fakury [12]. O modelo foi desenvolvido a partir de ensaios e análises numéricas pelo método dos elementos finitos de vigas em balanço de comprimento "e", com ligações cuja linha de furos h_1 continha 2, 3, 5, ou 7 furos.

Fig. 2.14 - Direções resultantes das forças atuantes nos parafusos.

A forma genérica da curva M- Φ proposta em [2] é:

$$\mathbf{M} = \frac{60 \cdot \Phi^{*}}{\left[1 + \left(\frac{60 \cdot \Phi^{*}}{1,1}\right)^{2/3}\right]^{3/2}} \times \left[1 - \left(1 - \frac{e}{h_{1}}\right)^{3,9}\right] \times \mathbf{M}_{ref}$$
(2.14)

onde:

M ⇒ Momento fletor absorvido pela conecção;

- M_{ref} ⇒ Momento fletor de referência; grandeza baseada na hipótese de atuar sob a ligação um momento fletor que, sozinho, na ausência de força cortante, seja capaz de levar todos os parafusos à máxima capacidade de carga.
- $\Phi^* \Rightarrow$ Rotação relativa entre a extremidade da viga e seu elemento de apoio (Φ), dividida por uma rotação de referência (Φ_{ref}).

$$\Phi^* = \frac{\Phi}{\Phi_{\text{ref}}} \qquad \Phi_{\text{ref}} = \frac{7,5\text{mm}}{\left\lceil \frac{(n-1) \cdot p}{2} \right\rceil}$$

A rotação Φ_{ref} encontra-se ilustrada (fora de escala) na figura 2.15 e refere-se à rotação em relação ao centro da ligação, sofrida pela linha de furos, quando o houver um alargamento na parede do furo superior de 7,5 mm (\cong 0,3 polegada). Este valor ficou estabelecido em ensaios [2], como o limite superior de alargamento de furo sem que haja ruptura da chapa de ligação ou da alma da viga. No desenvolvimento posterior da equação M- Φ , a distância entre furos "p" ficará estabelecida como aproximadamente 75 mm (3 polegadas), logo, conforme citado no item 2.1.3, ao estipular-se as dimensões da ligação é recomendável que este parâmetro esteja entre 75 e 80 milímetros.

Fig. 2.15 - Representação de Φ_{ref}

- $n \Rightarrow$ Número de parafusos da linha da furos;
- $h_1 \Rightarrow$ Altura da linha de furos;
- e ⇒ Excentricidade de aplicação da força cortante na ligação. A excentricidade é definida como sendo a distância entre a linha de furos e o ponto de inflexão no gráfico de momentos fletores da viga, conforme ilustrado na figura 2.16 à seguir.

Fig. 2.16 - Representação da excentricidade e.

No que diz respeito a M_{ref} , alguns valores obtidos à partir da referência [2] são apresentados na tabela 2.2 à seguir. Alternativamente, quando as dimensões de uma dada ligação (número ou diâmetro dos parafusos, espessura da chapa de ligação) não estão disponíveis na tabela 2.2, pode-se estimar o valor de M_{ref} através da equação 2.15:

$$M_{ref} = M_{tabela} \times \left(\frac{n}{n_{tabela}}\right)^{2,1} \times \left(\frac{d}{d_{tabela}}\right)$$
(2.15)
Na equação 2.15, M_{tabela} refere-se ao valor indicado na tabela 2.2 cujo valor de espessura de chapa de ligação (t_p) seja igual à da ligação em questão; n_{tabela} e d_{tabela} referem-se respectivamente ao número e diâmetro dos parafusos, correspondentes à M_{tabela} .

Parafusos ASTM - A325 d = 3/4 " (19 mm)					
Espessura da chapa	Número de parafusos (n)				
t _p (mm)	3	5	7	9	
6,3	1.355	4.042	8.084	13.481	
8,0	1.648	4.934	9.879	16.462	
9,5	2.258	6.774	13.549	22.559	
11,1	2.371	7.091	14.181	23.643	
12,5	2.258	6.707	13.413	22.356	
Parafusos	ASTM - A	A325 d=	7/8 " (22 r	mm)	
Parafusos Espessura da chapa	ASTM - A	A325 d = mero de pa	7/8 " (22 r arafusos (nm) n)	
Parafusos Espessura da chapa t _p (mm)	ASTM - / Nú 3	A325 d = mero de pa 5	7/8 " (22 r arafusos (7	nm) n) 9	
Parafusos Espessura da chapa t _p (mm) 6,3	ASTM - / Nú 3 1.558	A325 d = mero de pa 5 4.742	7/8 " (22 r arafusos (7 9.439	nm) n) 9 15.728	
Parafusos Espessura da chapa t _p (mm) 6,3 8,0	ASTM - 1 Nú 3 1.558 1.908	A325 d = mero de pa 5 4.742 5.713	7/8 " (22 r arafusos (7 9.439 11.426	nm) n) 9 15.728 19.036	
Parafusos Espessura da chapa t _p (mm) 6,3 8,0 9,5	ASTM - 1 Nú 3 1.558 1.908 2.642	A325 d = mero de pa 5 4.742 5.713 7.926	7/8 " (22 r arafusos (1 9.439 11.426 15.852	nm) 9 15.728 19.036 26.420	
Parafusos Espessura da chapa t _p (mm) 6,3 8,0 9,5 11,1	ASTM - A Nú 3 1.558 1.908 2.642 2.698	A325 d = mero de pa 4.742 5.713 7.926 8.107	7/8 " (22 n arafusos (1 9.439 11.426 15.852 16.214	nm) 9 15.728 19.036 26.420 27.030	

Tabela 2.2 - Valores de M_{tabela} em <u>kN.cm</u> obtidos em ensaios [2].

Segundo as análises [2] feitas com o modelo apresentado na equação 2.14, para valores do fator (e/h₁) menores que um, a força cortante desenvolvida influi no comportamento da ligação, alterando sua curva M- Φ . Entretanto, para (e/h₁) maior ou igual à um, a curva M- Φ da ligação torna-se insensível à força cortante absorvida na

extremidade da viga. Ainda, o fator (e/h₁) pode ser estimado com a seguinte equação, formulada à partir de vigas carregadas com cargas uniformemente distribuídas:

$$\left(\frac{e}{h_1}\right) = \left(\frac{e}{h}\right)_{ref} \times \left(\frac{n}{N}\right) \times \left(\frac{W_{ref}}{W}\right)^{0,4}$$
(2.16)

onde:

- n \Rightarrow Número de parafusos na linha de furos;
- N ⇒ Valor adimensional, baseado no diâmetro dos parafusos. Os valores de N apresentam-se indicados na tabela 2.3;
- W_{ref} ⇒ Módulo de resistência elástico de referência. Este valor também dependente do diâmetro dos parafusos e apresenta-se relacionado na tabela 2.3;

W ⇒ Módulo de resistência elástico da viga;

(e/h)_{ref} ⇒ Valor de referência baseado na relação entre o comprimento da viga e a altura de sua seção (L/d_V) e do tipo de carregamento ao qual está submetido a viga. Nas equações 2.17 abaixo, o fator γ, chamado de coeficiente de excentricidade, assume o valor unitário quando a carga na viga for uniformemente distribuída e será igual à dois quando a carga for concentrada.

$$(e/h)_{ref} = [0.06 \times (L/d_V) - 0.15] \times \gamma$$
 para $(L/d_V) \ge 6$ (2.17.a)

$$(e/h)_{ref} = 0.035 \times (L/d_v) \times \gamma$$
 para $(L/d_v) < 6$ (2.17.b)

Diâmetro dos parafusos	Ν	W_{ref} (cm ³)
3/4 " = 19,0 mm	5	1.640
7/8 " = 22,2 mm	5	2.870
1 " = 25,4 mm	7	7.370

Tabela 2.3 - Valores de $N \in W_{ref}$ [2].

Queiroz, Pimenta e Fakury [12] trabalharam a equação 2.16 considerando que nos casos usuais de vigas com carga uniformemente distribuída ou com carga concentrada no meio do vão, a flecha máxima situa-se no intervalo entre L/800 e L/200. Assim sendo, admitindo-se E = 20500 kN/cm² para o módulo de elasticidade do aço e que a tensão normal máxima admissível para cargas não majoradas é $\sigma = 0.6 \times f_y$, acha-se que a relação L/d_v situa-se entre 8,1 e 40,3 ; porém, na prática L/d_v não deve ser inferior à 12. Considerou-se também que a relação d_v/h₁ (altura da viga sob altura da linha de furos) varia entre 1,4 e 2.

Introduzindo-se as relações anteriormente citadas nas equações 2.17 e posteriormente na equação 2.16 chega-se à um valor mínimo do fator (e/h_1) igual à 0,48.

Logo, o fator $[1 - (1 - e/h_1)^{3,9}]$ da equação 2.14 assume o valor 0,92 para o valor mínimo de (e / h_1) . Entretanto a referência [12] sugere assumir o valor 0,95 para o fator citado. Assim obtém-se um erro máximo de 5% em relação à utilização de $e/h_1 = 1$ (caso em que a força cortante não influi na curva M- Φ da ligação). Com este pequeno percentual de erro, torna-se viável a utilização do modelo anteriormente descrito, mesmo não se levando em conta a influência da força cortante no comportamento da curva M- Φ da ligação.

Desta forma, introduzindo-se as equações correspondentes de Φ^* e Φ_{ref} bem como o valor de 0,95 para o termo $\begin{bmatrix} 1 - (1 - e/h_1)^{3,9} \end{bmatrix}$ a equação 2.14 torna-se:

$$M = \frac{285 \cdot (n-1) \cdot \Phi}{\left\{1 + \left[\frac{300 \cdot (n-1)}{1,1} \cdot \Phi\right]^{2/3}\right\}^{3/2}} \times M_{ref}$$
(2.18)

A figura a seguir mostra as curvas M- Φ correspondentes à equação 2.18 para três conecções diferentes, com 3, 4 e 5 parafusos. Os parafusos são ASTM - A325 de diâmetro igual a 19 mm (3/4") e a espessura da chapa de ligação é t_p=0,63 cm. Percebe-se claramente que quanto maior for o comprimento da linha de furos (maior número de parafusos) mais rígida será a ligação.

Fig. 2.17 - Curvas M- Φ para ligações com chapa simples com 3, 4 e 5 parafusos.

2.2.3.a Rigidez Tangente Inicial

Semelhante ao que foi feito no item 2.2.2.a, a rigidez tangente inicial (K_i) será calculada pela equação 2.4, sendo que Φ é dado pela equação 2.18. A figura 2.9 apresenta uma representação gráfica da reta correspondente à K_i .

$$K_{i} = \left[\frac{dM}{d\Phi}\right]_{\Phi=0}$$
(2.4)

2.2.3.b Rigidez Secante Última

Conforme o item 2.1, a rigidez secante última (K_u) será calculada quando a ligação absorver um momento fletor último (M_u), que a leve à ruína. Para o cálculo de M_u utilizar-se-á o mecanismo de colapso apresentado na referência [12], que se baseia na possibilidade de todos os parafusos da ligação serem submetidos ao limite de resistência R_{φ} , conforme ilustrado na figura 2.18. Este limite de resistência, obtido de acordo com a NBR 8800 [6], será correspondente à força cortante máxima admissível em um parafuso para ligações por contato, considerando-se o esmagamento por rasgamento entre furo e borda.

Fig. 2.18 - Mecanismo de ruína de ligações com chapa simples [12]

O momento último M_u é dado pelas equações 2.19, onde "n" é o número da parafusos na linha de furos e "p" o espaçamento vertical entre furos:

$$\mathbf{M}_{\mathbf{u}} = \left(\frac{\mathbf{n}}{2}\right)^2 \times \mathbf{p} \times \mathbf{R}_{\mathbf{\phi}} \qquad \text{para } \mathbf{n} \text{ par} \qquad (2.19.a)$$

$$\mathbf{M}_{\mathbf{u}} = \left[\frac{\left(\mathbf{n}-1\right) \times \mathbf{n}}{2} - \left(\frac{\mathbf{n}-1}{2}\right)^{2}\right] \times \mathbf{p} \times \mathbf{R}_{\phi} \qquad \text{para } \mathbf{n} \text{ impar} \quad (2.19.b)$$

A resistência R_{ϕ} pode ser obtida com base na NBR 8800 [6], como:

$$\mathbf{R}_{\phi} \leq \begin{cases} \phi_{\mathbf{v}} \times \mathbf{R}_{n\mathbf{v}} \\ \phi \times \mathbf{R}_{np} \\ \phi \times \mathbf{R}_{na} \end{cases}$$

onde:

 $\phi_V \times R_{nV} \Rightarrow$ Resistência de um parafuso ASTM A325 a força cortante com a rosca passando por um plano de corte:

 $\phi_{V} \times R_{nV} = 0.65 \times 0.42 \times A_{p} \times f_{u}$

Onde: $\phi_V = 0,65$ é o coeficiente de resistência; A_p é a área bruta da seção do parafuso e f_u é o limite de resistência do aço do parafuso.

 $\phi \times R_{np}$ \Rightarrow Resistência à pressão de contato de um parafuso na parede de um furo da chapa de ligação.

 $\phi \times \mathbf{R}_{\mathbf{nv}} = 0,75 \times \alpha \times \mathbf{A}_{\mathbf{b}} \times \mathbf{f}_{\mathbf{u}}$

Onde: $\phi = 0,75$ é o coeficiente de resistência; A_b é a área efetiva de contato, igual ao diâmetro do parafuso multiplicado pela espessura da chapa de ligação (d × t_p) e f_u é o limite de resistência do aço da chapa de ligação. Para o coeficiente α , sendo "a₃" e "d" representados na fig. 2.7, têm-se: $\alpha = (a_3/d) \le 2,4$.

 $\phi \times R_{na}$ \Rightarrow Resistência à pressão de contato de um parafuso na parede de um furo da chapa da alma da viga.

$\phi \times R_{na} = 0.75 \times \alpha \times A_b \times f_u$

Onde o termo α assume o valor: $\alpha = (a_2/d) \le 2,4$. A área efetiva A_b é dada por: A_b = (d × t_{WV}). A distância "a₂" e o diâmetro "d" encontram-se representados na figura 2.7.

Após a obtenção do momento último da ligação, pode-se facilmente determinar a rotação relativa entre a viga e seu elemento de apoio (Φ_u), através da inversão da equação 2.18. Esta será a máxima rotação relativa admissível e pode ser calculada pela equação 2.20.

$$\Phi_{u} = \frac{M_{u}}{\left\{ \left[285 \times (n-1) \times M_{ref} \right]^{2/3} - \left[\left(\frac{300}{1,1} \right) \times (n-1) \times M_{u} \right]^{2/3} \right\}^{3/2}}$$
(2.20)

De maneira semelhante ao que foi feito no item 2.2.2.b, a rigidez secante última da ligação será então determinada pela equação 2.14:

$$K_{u} = \frac{M_{u}}{\Phi_{u}}$$
(2.13)

2.3 Modelo de Nó Adotado

À fim de considerar a rigidez tangente inicial K_i assim como a rigidez secante última K_u das ligações, na análise estrutural serão introduzidos na estrutura, modelos de nó que simulem molas de rotação na extremidade das vigas. A opção de adotar-se modelos de nó ao invés de molas propriamente ditas em estruturas com as ligações em foco, tem o objetivo de facilitar a difusão da teoria apresentada neste trabalho, pois desta forma, qualquer programa de análise estrutural pode ser utilizado.

A figura 2.19.a mostra um pórtico cuja viga é ligada às colunas por ligações flexíveis. Para simular molas de rotação (cujas constantes de mola seriam K_i ou K_u e dimensão nula) nas extremidades da viga, (fig. 2.19.b), pensou-se inicialmente em adaptar-se um modelo de nó como o da figura 2.19.c. Este modelo foi proposto em [4] para ligações rígidas. Nele utiliza-se um trecho curto (fig. 2.20), cujo comprimento (*l*) é igual à distância entre a linha de centro da coluna e a seção da viga onde ocorre

predominantemente a rotação relativa em relação à coluna; ao qual é designado uma inércia fictícia I_f.

Fig. 2.19 - Adaptação do modelo de nó proposto em [4] para ligações rígidas, em ligações flexíveis.

Ainda na figura 2.19.c , I_c , I_v e L representam respectivamente: o momento de inércia da coluna; o momento de inércia da viga e o vão teórico da viga (distância entre os eixos das colunas), do pórtico da figura 2.19.a.

No modelo da figura 2.19.c, a barra fictícia AB trabalha como se estivesse engastada em B e livre em A. Supondo que a mesma tenha módulo de elasticidade E igual ao das outras barras componentes da estrutura, sua inércia I_f pode ser então estimada por:

$$I_{f} = \frac{K \cdot l}{E}$$

onde K representa a rigidez tangente inicial K_i ou a rigidez secante última K_u da conecção:

Fig. 2.20 - Distância l para ligações com cantoneiras, chapa de topo e chapa simples.

Dada sua simplicidade, este modelo de nó não descreve satisfatoriamente o comportamento das ligações flexíveis em questão. Ao utilizá-lo, a reação vertical da viga (atuando no ponto A), produz uma rotação relativa (inexistente na ligação real) entre as seções A e B; ainda, a deformação da barra fictícia AB causada pela reação vertical da viga e pelo momento fletor desenvolvido em A, gera um acréscimo irreal do deslocamento vertical neste ponto.

Visando eliminar as situações irreais que surgem ao utilizar-se o modelo citado, desenvolveu-se em [12] o modelo geometricamente triangular, representado na figura 2.21 e que será utilizado neste trabalho para substituir as molas de rotação que representarão a influência da rigidez das ligações na análise estrutural. Na figura 2.21, os termos I_v , I_c , L e l são os mesmos indicados nas figura 2.19.c e 2.20. Os termos $A_f e I_f$ representam respectivamente a área e o momento de inércia das barras fictícias AB e AC, as quais têm a incumbência de simular a existência de uma mola de rotação na junção entre a viga e a coluna.

Ao admitir-se valores suficientemente grandes de A_f , as irregularidades (em relação ao comportamento real da ligação), detectadas no modelo anterior podem ser corrigidas. Assim, tornam-se desprezíveis:

- o acréscimo do deslocamento vertical em A, causado pela deformação das barras AB e AC; esta última originária do momento fletor e da reação vertical atuante neste ponto;
- ⇒ a parcela de rotação do ponto A, devido à reação vertical da viga.

Fig. 2.21 - Modelo de nó adotado para ligações flexíveis [12].

A relação entre o momento de inércia das barras fictícias (I_f) e o valor da rigidez (K) de uma conecção é facilmente obtida, ao considerar-se o modelo triangular (figs. 2.21 e 2.22) como um par de barras engastadas em B e em C; e contínuas em A. Conforme comentário anterior, A_f é admitido como um valor suficientemente grande, assim torna-se aceitável que apenas o momento fletor (M) na extremidade da viga provoque a rotação do ponto A.

Nas equações à seguir, $l' \in E$ representam respectivamente, o comprimento e o módulo de elasticidade das barras fictícias AB e AC (este último suposto igual ao das outras barras da estrutura). A rotação θ no ponto A deve-se exclusivamente à reação M da viga.

Sendo $\mathbf{M} = \mathbf{K} \times \mathbf{\theta}$ a equação de deformação de uma mola de comportamento elástico linear, o valor de I_f pode então ser definido como:

$$\mathbf{I_f} = \frac{\mathbf{K} \cdot \mathbf{l'}}{\mathbf{8} \cdot \mathbf{E}} = \frac{0.14 \cdot \mathbf{K} \cdot \mathbf{l}}{\mathbf{E}}$$
(2.21)

Fig. 2.22 - Esforços atuantes e deformação por flexão no modelo de nó triangular.

Uma vez estipulado I_f, resta então determinar um valor para A_f que mantenha a validade da equação 2.22. Este valor será determinado, analisando-se os possíveis deslocamentos existentes no ponto A (translação vertical e rotação) e as parcelas de influência das reações R e M nestes.

Ao considerar-se uma translação vertical unitária no ponto A, como exposto na figura 2.23, os esforços resultantes neste mesmo ponto, para que seja mantido o equilíbrio de forças e momentos no modelo são:

Fig. 2.23 - Deslocamento vertical unitário no ponto A

$$\begin{cases} \mathbf{M}_{A\delta} = 8,58 \times \frac{\mathbf{E} \cdot \mathbf{I}_{\mathbf{f}}}{l^2} \\ \mathbf{R}_{A\delta} = 13,74 \times \frac{\mathbf{E} \cdot \mathbf{I}_{\mathbf{f}}}{l^3} + 0,358 \times \frac{\mathbf{E} \cdot \mathbf{A}_{\mathbf{f}}}{l^2} \end{cases}$$
(2.22)

Analogamente, a figura 2.24 exibe a direção e sentido dos esforços resultantes no ponto A, após ser realizado o equilíbrio de forças e momentos no modelo, devido à uma rotação unitária no ponto A.

Fig. 2.24 - Rotação unitária no ponto A.

$$\begin{cases} \mathbf{M}_{\mathbf{A}\mathbf{\theta}} = 7,16 \times \frac{\mathbf{E} \cdot \mathbf{I}_{\mathbf{f}}}{l} \\ \mathbf{R}_{\mathbf{A}\mathbf{\theta}} = 8,58 \times \frac{\mathbf{E} \cdot \mathbf{I}_{\mathbf{f}}}{l^2} \end{cases}$$
(2.23)

De volta à figura 2.22, observa-se que os esforços atuantes no ponto A do modelo são as reações R e M da viga. Pode-se então, através do princípio da superposição de efeitos, calcular os deslocamentos $\Delta_A \in \Theta_A$ que ocorrem em A:

$$R = R_{A\delta} \times \Delta_A - R_{A\theta} \times \Theta_A$$
$$M = -M_{A\delta} \times \Delta_A + M_{A\theta} \times \Theta_A$$

Invertendo-se, tem-se:

$$\Delta_{A} = \frac{\mathbf{R} \cdot \mathbf{M}_{A\theta} + \mathbf{M} \cdot \mathbf{R}_{A\theta}}{\mathbf{R}_{A\delta} \cdot \mathbf{M}_{A\theta} - \mathbf{R}_{A\theta} \cdot \mathbf{M}_{A\delta}}$$
(2.24.a)

$$\Theta_{A} = \frac{\mathbf{R} \cdot \mathbf{M}_{A\delta} + \mathbf{M} \cdot \mathbf{R}_{A\delta}}{\mathbf{R}_{A\delta} \cdot \mathbf{M}_{A\theta} - \mathbf{R}_{A\theta} \cdot \mathbf{M}_{A\delta}}$$
(2.24.b)

Ao observar-se os numeradores das equações 2.24, percebe-se que ambos são formados pela soma de dois fatores. Os primeiros, $(R \cdot M_{A\theta} e R \cdot M_{A\delta})$ representam a influência do reação vertical da viga nos deslocamentos, enquanto que $M \cdot R_{A\theta} e M \cdot R_{A\delta}$, representam a influência do momento fletor na extremidade da viga.

De volta às equações 2.22 e 2.23, para estimar uma relação entre A_f e I_f utilizam-se duas constantes adimensionais $\eta \in \beta$:

Inserindo-se as relações para β e A_f anteriormente estipuladas nas equações 2.22 e 2.23, obtêm-se:

$$\begin{cases} \mathbf{M}_{A\delta} = 8,58 \times \beta \\ \mathbf{R}_{A\delta} = (13,74+0,358\cdot \eta) \times \frac{\beta}{l} \end{cases}$$
(2.26)

$$\begin{cases} \mathbf{M}_{\mathbf{A}\mathbf{\theta}} = 7,16 \times \beta \times l \\ \mathbf{R}_{\mathbf{A}\mathbf{\theta}} = 8,58 \times \beta \end{cases}$$
(2.27)

Assim, o denominador comum às equações 2.24.a e 2.24.b assume o seguinte valor:

$$\mathbf{R}_{A\delta} \cdot \mathbf{M}_{A\theta} - \mathbf{R}_{A\theta} \cdot \mathbf{M}_{A\delta} = (24, 8 + 2, 56 \cdot \eta) \times \beta^2$$
(2.28)

A fim de estipular um valor de η satisfatório, utilizar-se-ão as equações 2.24 à 2.28 para o caso de uma viga bi-apoiada com carga uniformemente distribuída ao longo do vão [12]. Admitiu-se que a relação L/l seja maior que 30 e que o momento fletor M desenvolvido na extremidade da viga seja da ordem de 10% do momento de engastamento perfeito.

Fig. 2.25 - Viga de vão L, com carga distribuída q e momentos de extremidade $M=0,1\times M_{eng}.$

Sendo $M_{eng} = q \times L^2 / 12$, $R = q \times L / 2$, L / l = 30 e $M = 0.1 \times M_{eng}$, então: $M = 0.5 \times R \times l$

Ao substituir-se as equações 2.26 à 2.28 e M por $(0,5 \times \mathbb{R} \times l)$ na equação 2.24.b resulta:

$$\Theta_{\mathbf{A}} = \frac{\left[\mathbf{R} \cdot 8,58 \cdot \beta + 0,5 \cdot \mathbf{R} \cdot l \cdot (13,74 + 0,358 \cdot \eta) \cdot \begin{pmatrix}\beta \\ l \end{pmatrix}\right]}{\left(24,8 + 2,56 \cdot \eta\right) \times \beta^{2}}$$

$$\Theta_{A} = \frac{R}{(24,8+2,56\cdot\eta)\times\beta} \times \left[8,58+(6,87+0,179\cdot\eta)\right]$$
(2.29)

A exemplo das equações 2.24, o termo entre colchetes da equação 2.29 também pode ser dividido em parcelas de rotação devido à R e à M. O valor 8,58 expressa a influência da reação vertical e o termo entre parênteses ($6,87 + 0,179 \cdot \eta$) define a influência do momento de extremidade M. Assim sendo, admitiu-se que $\eta = 3000$, pois desta forma, a parcela de rotação do ponto A devido à reação R torna-se desprezível em relação à rotação total Θ_A . Utilizando-se $\eta = 3000$, esta parcela é aproximadamente 1,55% da rotação total, podendo portanto ser desprezado o termo ($R \times M_{A\delta}$) na equação 2.24.b. Isto torna válida a equação 2.21, que permite determinar-se I_f admitindo-se que as rotações no ponto A se devem exclusivamente à M.

Uma vez satisfeita a condição de rotação em A, para o modelo ser aceito deve ser provado que não há deslocamento vertical considerável neste ponto, com I_f dado pela equação 2.21 e A_f dada pela equação 2.25, sendo $\eta = 3000$. Isto será feito, comparando-se o deslocamento vertical Δ_c no centro da viga da figura 2.25, com o deslocamento do ponto A do modelo triangular, obtido pela equação 2.24.a.

Deve-se então igualar a rotação que ocorre no apoio da viga da figura 2.25 com a rotação do ponto A do modelo triangular, para que seja obtida uma relação mínima entre o momento de inércia da viga I_v e o momento de inércia fictício I_f das barras AB e AC:

• A rotação no apoio da viga é dada por:
$$\Theta = \frac{q \cdot L^3}{24 \cdot E \cdot I_v} - \frac{M \cdot L}{2 \cdot E \cdot I_v}$$

- Porém, sendo M = 0,1 × q × L²/12 e q = 2 × R/L : $\Theta = \frac{0,9 \cdot R \cdot L^2}{12 \cdot E \cdot I_V}$
- A rotação no ponto A do modelo, devido ao momento M é dada por: $\Theta = \frac{M \cdot l'}{8 \cdot E \cdot I_f}$
- Sendo $l' = 0.5 \times l \times \sqrt{5}$, L/l = 30 e $M = 0.1 \times q \times L^2/12 = 0.1 \times R \times L/6$:

$$\Theta = \frac{0, 1 \cdot \mathbf{R} \cdot \mathbf{L}^2 \cdot \sqrt{5}}{2880 \cdot \mathbf{E} \cdot \mathbf{I}_{\mathrm{f}}}$$

- Igualando-se as rotações, têm-se: $\frac{0.9 \cdot R \cdot L^2}{12 \cdot E \cdot I_V} = \frac{0.1 \cdot R \cdot L^2 \cdot \sqrt{5}}{2880 \cdot E \cdot I_f}$
- Logo a relação mínima entre os momentos de inércia da viga e das barras fictícias é: $I_v = 966 I_f$

A flecha máxima Δ_c no meio do vão da viga pode ser então obtida em função de R, *l*, E e I_f:

$$\Delta_{\mathbf{c}} = \frac{5 \cdot \mathbf{q} \cdot \mathbf{L}^{4}}{384 \cdot \mathbf{E} \cdot \mathbf{I}_{\mathbf{V}}} - \frac{\mathbf{M} \cdot \mathbf{L}^{2}}{8 \cdot \mathbf{E} \cdot \mathbf{I}_{\mathbf{V}}} = \frac{10 \cdot \mathbf{R} \cdot (30 \cdot l)^{3}}{384 \cdot \mathbf{E} \cdot 966 \cdot \mathbf{I}_{\mathbf{f}}} - \frac{0.2 \cdot \mathbf{R} \cdot (30 \cdot l)^{3}}{96 \cdot \mathbf{E} \cdot 966 \cdot \mathbf{I}_{\mathbf{f}}}$$

$$\Delta_{\mathbf{c}} = \mathbf{0}, \mathbf{67} \times \frac{\mathbf{R} \cdot l^{3}}{\mathbf{E} \cdot \mathbf{I}_{\mathbf{f}}}$$
(2.30)

Utilizando-se as equações 2.26 à 2.28 na equação 2.24.a, pode-se determinar o deslocamento vertical Δ_A no ponto A do modelo. Conforme comentários anteriores será assumido $\eta = 3000$:

$$\Delta_{\mathbf{A}} = \frac{\left[\mathbf{R} \cdot (7,16 \cdot \beta \cdot l) + 0,5 \cdot \mathbf{R} \cdot l \cdot (8,58 \cdot \beta)\right]}{(24,8+2,56 \cdot \eta) \times \beta^2} = 0,0015 \times \frac{\mathbf{R} \cdot l}{\beta}$$
$$\Delta_{\mathbf{A}} = 0,0015 \times \frac{\mathbf{R} \cdot l^3}{\mathbf{E} \cdot \mathbf{I_f}}$$
(2.31)

Ao comparar-se os valores de Δ_A e Δ_c dados pelas equações 2.30 e 2.31, percebe-se que o primeiro é apenas 0,22% do segundo, portanto pode-se considerar Δ_A desprezível. Assim sendo com o modelo triangular conseguiu-se em [12] eliminar as deficiências do modelo anterior (o deslocamento vertical em A bem como a rotação devido à reação R são desprezíveis), simulando satisfatoriamente a existência de uma mola de rotação na extremidade da viga.

Deve-se observar, que ao efetuar-se o cálculo dos deslocamentos Δ_A e Θ_A pelas equações 2.24, utilizou-se como exemplo, o caso de uma viga com carga uniformemente distribuída ao longo do vão. Este é um caso muito desfavorável já que a reação R da viga é grande e as deformações da viga são pequenas. Logo crê-se ser possível a utilização do modelo para outros tipos de carregamento, que serão considerados menos críticos. Ainda as relações L/l devem ser maiores ou igual à 30, assim como as relações I_V/I_f devem ser maiores ou igual à 966, para que sejam mantidas as simplificações anteriormente adotadas.

Em resumo, as equações que fornecem as propriedades das barras fictícias AB e AC do modelo triangular são:

$$\mathbf{I_{f}} = \frac{0.14 \cdot \mathbf{K} \cdot l}{\mathbf{E}} \tag{2.21}$$

$$A_{f} = 3000 \times \frac{I_{f}}{l^{2}}$$

$$(2.32)$$

onde l é indicado pela figura 2.20, e K, representa a rigidez tangente inicial K_i ou a rigidez secante última K_u das ligações flexíveis indicadas no item 2.1.

3. LIGAÇÕES RÍGIDAS _____

3.1 LIGAÇÕES ABORDADAS

Nas ligações rígidas entre vigas e colunas com perfis \mathbf{I} , é assumida uma transmissão de força normal, força cortante e momento da extremidade da viga para a coluna, sendo que o esforço mais importante para definição do comportamento das mesmas é o momento fletor.

Admite-se que na coluna, a introdução do momento fletor da extremidade da viga M_d , bem como da força normal N_d , dê-se através de forças concentradas da tração T_d e compressão C_d , atuantes nas linhas de centro das mesas superior e inferior da viga como indicado na figura 3.1. Ainda, a força cortante da viga Q_d , é transmitida por sua alma. Têm-se então:

$$T_{d} = \frac{M_{d}}{h_{v}} + \frac{N_{d}}{2}$$
 $C_{d} = \frac{M_{d}}{h_{v}} - \frac{N_{d}}{2}$ (3.1)

Estando a viga sujeita à flexão simples, a força normal N_d será nula e as forças $T_d \ e \ C_d$ terão o mesmo valor em módulo.

Neste trabalho serão abordadas apenas as ligações rígidas de uso mais comum no país, as quais são: ligação com chapa de topo estendida (fig. 3.2.a) e ligação com a viga totalmente soldada à mesa da coluna (fig. 3.2.b).

Para a ligação com chapa de topo estendida, será sempre usado na região de introdução da força de tração T_d , quatro parafusos simetricamente dispostos em relação a mesa da viga. Em ambas as modalidades de conecção, conforme [11] e [17], a fim de

facilitar a fabricação das peças e reduzir o risco de ocorrência de decoesão lamelar, optar-se-á sempre que possível, pela utilização de soldas de filete nas junções chapa de topo / mesas da viga ou mesa da coluna / mesas da viga.

Fig. 3.1 - Transmissão de esforços em uma ligação rígida.

O objetivo principal deste trabalho no tocante às ligações rígidas é o de substituí-las em uma análise linear de primeira ordem, por modelos de nó que simulem a pequena flexibilidade existente na conecção viga-coluna. Assim sendo admitir-se-á a existência de uma pequena rotação relativa entre a viga e a coluna. Logo os deslocamentos resultantes na estrutura estarão mais próximos de uma situação real.

Portanto, para que a introdução dos modelos de nó na análise seja viável, é necessário que as ligações sejam dimensionadas de maneira a evitar a ocorrência de qualquer estado limite que venha à atuar em algum dos elementos constituintes das mesmas.

Fig. 3.2 Ligações rígidas abordadas neste trabalho

Queiroz [11] expõe detalhadamente uma proposta para o dimensionamento das ligações em questão. As considerações sobre a distribuição de forças nos elementos constituintes das ligações baseiam-se principalmente nos estudos documentados em [14], [15], [16], [17] e [18]. Os critérios de resistência de cálculo adotados, procuram sempre que possível atender às especificações da NBR 8800 [6], ou da referência [7].

No presente trabalho, todas as ligações rígidas a serem abordadas devem necessariamente obedecer a proposta de dimensionamento da referência [11], cujos estados limites últimos a serem prevenidos são listados à seguir:

- *a*) Escoamento da alma da coluna, por cisalhamento, devido à combinação das forças introduzidas pelas mesas da viga (T_d ou C_d), com sua força cortante Q_d ;
- **b**) Escoamento local da alma da coluna, por tração ou compressão (T_d ou C_d);
- *c)* Flambagem local da alma da coluna (força de compressão C_d introduzida);
- *d*) Plastificação local da alma da coluna, por momento fletor, à força T_d introduzida pela mesa tracionada da viga;
- e) Ruptura por tração e ou esmagamento por compressão, da mesa da viga, assim como de sua solda de junção com a mesa da coluna, ou com a chapa de topo (conforme a ligação seja soldada ou parafusada);
- f) Ruptura da solda de junção da alma da viga com a mesa da coluna, ou da mesma com a chapa de topo (conforme a ligação seja soldada ou parafusada);
- g) Ruptura da solda de composição de colunas confeccionadas com perfis soldados;
- **h**) Em ligações parafusadas:
 - Ruptura dos parafusos;
 - Plastificação local da chapa de topo por flexão, devido à força T_d introduzida;

Em relação ao item h) anterior, Queiroz [11] adverte que a resistência à plastificação da chapa de topo deve ser obtida independente da ocorrência ou não do efeito de alavanca, assumindo-se para a mesma um momento fletor atuante igual a

 $0.5 \times T_d \times (b - d/2)$, onde d indica o diâmetro do parafuso e b apresenta-se conforme indicado na figura 3.3.

Logo, os quatro parafusos localizados na região de introdução do esforço T_d deverão resistir a um esforço combinado de cisalhamento e tração. Admitindo-se a possibilidade de ocorrência de efeito de alavanca na chapa de topo, Packer e Morris [16] e Mann e Morris [17] recomendam que a força de tração atuante em cada parafuso (T_u) deve ser assumida como um quarto da força T_d majorada de 33%, ou seja, que $T_u = 1,33 \times T_d / 4$.

Caso as resistências de cálculo para os estados limites anteriores de *a*) a *g*) sejam insuficientes perante os esforços atuantes, devem ser utilizados enrijecedores horizontais nas colunas, (no nível das mesas da viga), com o intuito de aumentar a capacidade de absorção de carga pela ligação, sem que ocorra a ruína de seus elementos constituintes.

Para cada um dos estados limites anteriores de a) a g), a parcela de carga relativa aos enrijecedores, corresponderá sempre à carga total aplicada, descontada a resistência de cálculo para o estado limite em questão, na ausência dos mesmos.

De acordo com a proposta de dimensionamento a ser seguida [11], os enrijecedores horizontais devem satisfazer os seguintes estados limites últimos:

- *i*) Ruptura por tração ou esmagamento por compressão, da seção líquida dos enrijecedores;
- *j*) Escoamento por tração, da seção bruta dos enrijecedores;
- k) Flambagem por compressão, dos enrijecedores;

- I) Ruptura da seção líquida e ou escoamento da seção bruta dos enrijecedores, por cisalhamento;
- m) Ruptura por cisalhamento da solda de junção dos enrijecedores com a alma da viga;
- *n*) Ruptura da solda de junção dos enrijecedores com a mesa da coluna.

Logo, as ligações rígidas em foco neste trabalho, devem não somente apresentar resistências de cálculo superiores às solicitações para os estados limites últimos citados, bem como também satisfazer às seguintes condições, referentes à padronização dos materiais e das dimensões utilizadas nas conecções:

- *a1)* Somente devem ser utilizados aços cujo limite de escoamento $\mathbf{f_y}$ seja menor ou igual à 36 kN/cm² ; além disto, o limite de resistência $\mathbf{f_u}$ deve ser no mínimo 35% maior que o limite de escoamento. Para que seja mantida uma compatibilidade entre o metal da solda e o metal base, o limite de resistência à tração do metal de solda $\mathbf{f_{uw}}$ deve ser no mínimo 3% inferior e no máximo 30% superior à $\mathbf{f_u}$.
- b1) A espessura das chapas utilizadas na confecção dos perfis, bem como dos possíveis enrijecedores deve estar compreendida entre 3 mm e 50 mm. A dimensão máxima do maior cateto das soldas de filete será 12 mm. Quando este valor for insuficiente, devem ser utilizadas soldas de entalhe com penetração total.
- c1) Para as ligações com chapa de topo estendida, as seguintes relações, que foram propostas em [16] e [17], e adotadas em [11], devem ser obedecidas:

 $\mathbf{b}_p \cong 9 \times \mathbf{d}$ $\mathbf{g} \cong 5 \times \mathbf{d}$ $\mathbf{c} \cong 6 \times \mathbf{d}$ $\mathbf{a} \cong 2, 5 \times \mathbf{d}$ onde " \mathbf{d} " indica o diâmetro nominal dos parafusos utilizados e as dimensões \mathbf{b}_p , \mathbf{g} , \mathbf{c} e \mathbf{a} , que estão representadas na figura 3.3 indicam:

 $\mathbf{b_p} \Rightarrow$ Largura da chapa de topo;

- $\mathbf{g} \Rightarrow$ Distância horizontal entre as duas linhas verticais de furos;
- c ⇒ Distância vertical entre as duas linhas horizontais de furos na região de introdução da força de tração;
- a ⇒ Distância vertical da linha de furos na região tracionada localizada
 externamente ao perfil da viga, à borda da chapa de topo.
- d1) Para evitar uma possível flambagem local da mesa da coluna por força axial, satisfazendo a NBR 8800 [6], deve-se fazer:

$$\frac{\mathbf{b}_{\mathbf{fc}}}{2 \cdot \mathbf{t}_{\mathbf{fc}}} \le 0,55 \times \sqrt{\frac{\mathbf{E}}{\mathbf{f}_{\mathbf{y}}}}$$

Analogamente, para ligações com chapa de topo estendida, para a chapa de topo deve-se ter:

$$\frac{\mathbf{b}_{\mathbf{p}}}{2 \cdot \mathbf{t}_{\mathbf{p}}} \le 0,55 \times \sqrt{\frac{\mathbf{E}}{\mathbf{f}_{\mathbf{y}}}}$$

e1) - De acordo com as condições anteriormente apresentadas, se necessário, serão dispostos na alma da coluna, enrijecedores horizontais, dando continuidade às mesas das vigas, como representado na figura 3.4.

Seguindo as recomendações da NBR 8800 [6], deve ser lembrado que : caso os enrijecedores horizontais sejam utilizados com o objetivo de impedir o estado limite *"escoamento da alma da coluna por cisalhamento"*, (item *a*) anterior), o mínimo momento de inércia dos mesmos em relação ao plano médio da coluna deve satisfazer a seguinte condição:

 $[t_1.(2.b_1+t_{wc})^3/12] \ge (h/50)^4$

Fig. 3.3 - Dimensões em uma ligação com chapa de topo estendida.

Entretanto, em algumas situações, com o intuito de diminuir o comprimento de flambagem do painel da alma da coluna, torna-se necessário além dos enrijecedores horizontais, a utilização de enrijecedores verticais paralelos às mesas da coluna (linhas tracejadas na figura 3.4). Prevendo tais situações, [11] recomenda que o parâmetro de esbeltez para o painel de alma resultante, não deva exceder ao fator λ_p [6]:

$$\frac{\mathbf{h}}{2 \cdot \mathbf{t}_{wc}} \le \lambda_p = 1,08 \times \sqrt{\frac{\mathbf{k} \cdot \mathbf{E}}{\mathbf{f}_y}}$$

Nas equações anteriores, referentes aos itens d1) e e1) assim como nas figuras 3.3 e 3.4 tem-se:

E \Rightarrow Módulo de elasticidade da aço utilizado;

 $\mathbf{f}_{\mathbf{V}}$ \Rightarrow Limite de escoamento do aço utilizado;

- $\mathbf{d_c} \quad \Rightarrow \text{ Altura da seção da coluna;}$
- $\mathbf{t_{fc}} \Rightarrow \text{Espessura das mesas da coluna;}$
- $\mathbf{t_{wc}} \Rightarrow \text{Espessura da alma da coluna;}$
- **h** \Rightarrow Altura da alma da coluna;
- $\mathbf{d}_{\mathbf{V}} \quad \Rightarrow \text{ Altura da seção da viga;}$
- $\mathbf{t_{fv}} \Rightarrow$ Espessura das mesas da viga;
- $\mathbf{t_{WV}} \Rightarrow$ Espessura da alma da viga;

 $h_1 \Rightarrow$ Distância entre linhas de centro dos enrijecedores horizontais;

- $t_1 \Rightarrow$ Espessura dos enrijecedores horizontais;
- **b**₁ \Rightarrow Largura dos enrijecedores horizontais;
- $t_2 \Rightarrow$ Espessura dos enrijecedores verticais;

 $\mathbf{t_p} \Rightarrow$ Espessura da chapa de topo (para ligações com chapa de topo estendida);

b ⇒ Distância entre linhas de furo e mesa da viga, (para ligações com chapa de topo estendida) conforme fig. 3.3.

f1) - Novamente obedecendo à NBR 8800 [6], e conforme representado na figura 3.3:

$\mathbf{b}_{\mathbf{fv}} \leq \mathbf{b}_{\mathbf{fc}}$

$\mathbf{b_{fc}} \le \mathbf{d_c}$

O tamanho mínimo da mesa da viga deve ser duas vezes e meia maior que a soma da espessura da alma da coluna com os recortes dos enrijecedores. Além disto, para ligações com chapa de topo estendida, deve ser observado que o maior valor que b_{fv} pode assumir é de aproximadamente 34 cm. Isto porque $b_p \cong 9 \times d$; e b_{fv} pode no máximo ser igual à b_p (como o maior diâmetro de parafuso à ser utilizado é $1\frac{1}{2}$ "; tem-se $1\frac{1}{2} \times 2,54 \times 9 = 34,29$ cm).

Fig. 3.4 - Ligação rígida com enrijecedores.

O termo \mathbf{k} [11] deve ser expresso por:

$$k = 4 + \frac{5,34}{\left(\frac{h_1}{h}\right)^2}$$
quando
$$\frac{h_1}{h} < 1$$
$$k = 5,34 + \frac{4}{\left(\frac{h_1}{h}\right)^2}$$
quando
$$1 \le \frac{h_1}{h} \le 3$$
$$k = 5,34$$
quando
$$\frac{h_1}{h} > 3$$
(quando quando quando

(ou quando não existirem enrijecedores)

3.2 Flexibilidade das Ligações

De acordo com as considerações iniciais do capítulo 1, ligações classificadas como rígidas, são aquelas que possuem a capacidade de absorver mais de 80% do momento de plastificação da viga, sem o desenvolvimento de uma considerável rotação relativa entre as peças conectadas (viga e coluna). As ligações viga-coluna soldadas e parafusadas com chapa de topo estendida, (principalmente quando são utilizados enrijecedores horizontais) apresentam alto grau de rigidez e geralmente satisfazem à esta regra.

Porém, ao utilizar-se estas conecções, de acordo com as dimensões dos elementos constituintes da ligação e com o carregamento aplicado na estrutura, uma rotação relativa entre a viga e a coluna sempre existirá. Este fato provoca uma redistribuição dos esforços internos atuantes na estrutura.

Em se ocorrendo esta redistribuição, observa-se um decréscimo do momento fletor desenvolvido nas extremidades das barras, somado à ligeiros acréscimos nos deslocamentos da estrutura como um todo.

Logo, ao admitir-se a existência de tal rotação relativa, aceita-se a existência de certo grau de flexibilidade na conecção viga-coluna. Assim sendo, as ligações passam então a serem tratadas como semi-rígidas. Este procedimento pode ser financeiramente interessante uma vez que a redução dos momentos fletores na extremidade das vigas e, consequentemente das colunas, indica que seções menores poderiam ser utilizadas na confecção destas últimas, desde que os deslocamentos da estrutura sejam mantidos dentro de limites admissíveis.

Tschemmernegg e Humer na referência [20], registram resultados de uma série de ensaios realizados na Universidade de Innsbruck na Áustria, com vários tipos de ligações rígidas. Os testes foram realizados em ligações confeccionadas com perfis laminados europeus e tinham como objetivo obter dados sobre a flexibilidade destas conecções, para que suas curvas $M-\Phi$ (momento - rotação) pudessem ser confeccionadas. Logo, após a obtenção das curvas, tornar-se-ia possível a sua consideração em uma análise estrutural.

A referência [19], propõe um modelo de potência de dois parâmetros, para simular a relação M- Φ de ligações parafusadas com chapa de topo estendida. A proposição matemática foi obtida através de uma análise estatística dos resultados de vários processamentos em um programa de elementos finitos. Posteriormente, os resultados foram calibrados por teste experimentais.

Não se restringindo a apenas um tipo específico de conecção, os testes registrados em [20] apontam que a flexibilidade nas ligações em foco, deve ser discretizada em três regiões e efeitos distintos. A figura 3.5 representa a junção de duas vigas e uma coluna, através de ligações classificadas como rígidas. Na junção, as regiões citadas apresentam-se representadas pelos contornos "a", "b" e "c".

Nas áreas hachuradas cujo contorno é indicado por "a", a flexibilidade deve-se à ligação propriamente dita entre os elementos constituintes da ligação. Em uma ligação parafusada com chapa de topo estendida por exemplo, a flexibilidade "a" é representada pela junção chapa de topo / mesa da coluna.

Tal flexibilidade (dita flexibilidade de ligação [20]) torna-se relevante somente para o caso em que o contorno "a" esteja localizado na região de introdução do esforço concentrado de tração T_d , em ligações parafusadas com chapa de topo estendida. Para os demais casos, a flexibilidade de ligação pode ser desprezada.

Fig. 3.5 - Flexibilidades em uma ligação classificada como rígida

Nas áreas hachuradas cujo contorno é indicado por "b", a flexibilidade deve-se às deformações ocorridas na coluna em função da introdução dos esforços concentrados de tração ou compressão.

Esta flexibilidade, designada por flexibilidade de introdução, assume valores consideráveis em ligações soldadas. Em ligações parafusadas, a presença da chapa de topo entre a seção da viga e a mesa da coluna contribui para amenizar a concentração dos esforços transmitidos à coluna. Logo, admitindo-se a não ocorrência da plastificação da chapa de topo, (conforme descrito em 3.1), estas ligações apresentam flexibilidades de introdução inferiores às ligações soldadas.

Na área de contorno "c", a flexibilidade deve-se às distorções ocorridas no painel da coluna (região limitada pelas mesas da viga), em função da força cortante ao qual este fica submetida. De acordo com a distribuição de forças considerada em 3.1, o painel deverá resistir às forças cortantes atuantes na coluna combinadas com as forças concentradas T_d ou C_d . A figura 3.6 representa tal distorção.

Fig. 3.6 - Distorção por esforço cortante no painel da seção da coluna

Para o caso em que existam vigas adjacentes conectadas à mesma coluna, conforme indicado na figura 3.5, para obter-se a distorção resultante ocorrida no painel da coluna, devem ser somados vetorialmente os esforços concentrados das mesas de ambas as vigas. Logo, o painel da coluna ficará submetido a forças cortantes, oriundas do momento fletor desequilibrado (ΔM_d) existente ($\Delta M_d = M_{d1} - M_{d2}$).

Após a discretização das flexibilidades de ligação, de introdução e de distorção por cisalhamento, conclui-se que para que o comportamento de uma ligação seja corretamente representado, sua curva momento-rotação deve ser obtida pela superposição da atuação isolada de cada um dos efeitos anteriormente citados.

Os testes apresentados em [20] forneceram para cada uma das flexibilidades (ligação em ligações parafusadas, introdução em ligações soldadas, e distorção por cisalhamento em ambos os tipos), curvas momento rotação tais como indicadas na figura 3.7. Na figura 3.7 têm-se:

- M_e ⇒ Momento fletor limite atuante na extremidade da viga que causa deformações elásticas na conecção;
- M_p ⇒ Momento fletor limite atuante na extremidade da viga que causa deformações plásticas na conecção;
- $\Phi_e \, \Rightarrow \,$ Máxima rotação relativa ocorrida entre as peças conectadas, no regime elástico;
- $\Phi_p \Rightarrow$ Rotação relativa máxima ocorrida entre as peças conectadas, no regime plástico. Foi definida como a rotação limite à partir da qual acréscimos das deformações ocorridas corresponderiam à decréscimos do momento fletor atuante.

Logo, para a elaboração da curva momento-rotação global da conecção, somarse-ia algebricamente as três curvas representativas das flexibilidades isoladas. Os momentos limites elástico e plástico da curva global seriam representados pelo menor dos três valores fornecidos pelas curvas de flexibilidade isoladas.

Fig. 3.7 - Modelo geral de curvas momento-rotação para cada uma das três flexibilidades discretizadas.

Conforme será observado no item 3.3 subseqüente, neste trabalho, as deformações nas conecções abordadas serão restritas ao regime elástico.

3.3 Modelos de Nó

3.3.1 Considerações Iniciais

Na bibliografia pesquisada, várias são as metodologias adotadas para realizar-se uma análise estrutural considerando-se as ligações viga-coluna em foco como semirígidas.

No processo descrito pela referência [21], introduzir-se-ia nas extremidades das vigas, molas de rotação, de dimensões nulas e constante de rigidez à flexão igual ao grau de rigidez estipulado para a conecção. Este último, seria obtido percorrendo-se uma curva momento-rotação ($M-\Phi$) padronizada, considerando-se o comportamento da conecção, em função do carregamento aplicado.

O ENV 1993 1-1 [8] também propõe a utilização de molas de rotação de dimensões nulas substituindo as conecções. Porém seu grau de rigidez seria obtido através da soma das flexibilidades isoladas dos elementos constituintes da ligação. Neste processo, fatores de correção seriam aplicados durante a obtenção do o grau de rigidez final das molas, para que o mesmo levasse em consideração a distorção por cisalhamento do painel da coluna (figura 3.6). Entretanto, tais fatores de correção ainda encontram-se em estudo, e a distorção do painel da coluna ainda não fica satisfatoriamente retratada no grau de rigidez final da mola proposta.

Outra maneira de se realizar tal consideração (apontada pelas referências [4] e [22]), seria a introdução de barras fictícias na extremidade das vigas, de maneira semelhante à ilustração indicada nas figuras 2.19.b e 2.19.c . Tais barras teriam comprimento (l_f) igual à metade da altura da seção da coluna e rigidez à flexão ($E \times I_f / l_f$) representativa do grau de rigidez estipulado para a ligação. O termo I_f indicaria o momento de inércia das barras fictícias. Através dos procedimentos acima citados, percebe-se que o comportamento das ligações no tocante às distorções por cisalhamento no painel da coluna (figura 3.6), não fica representado adequadamente. Uma opção para que este efeito seja levado em conta com mais precisão, seria a abordagem macroscópica da região da ligação viga-coluna e seus elementos constituintes.

Em recente publicação, Queiroz [23], seguindo a tendência de analisar-se macroscopicamente a região do painel da coluna, descreve o modelo de nó de Lener (1988), representado na figura 3.8. Neste modelo, quatro molas de rotação seriam dispostas na região limite do painel da coluna, nos pontos S, I, E e D. As molas S e I reproduziriam as distorções por cisalhamento do painel, enquanto que E e D representariam as flexibilidades relacionadas à introdução dos esforços concentrados. As barras fictícias OE, OD, OS e OI seriam infinitamente rígidas. Estudos recentes indicam que este modelo de nó pode ser útil na analise de nós em estruturas mistas.

Fig. 3.8 - Modelo de nó de Lener descrito em [23].

A referência [20] indica um modelo de nó macroscópico mais detalhado, sendo portanto, mais fiel ao comportamento das ligações viga-coluna parafusadas ou soldadas. Neste modelo, é admitida a ocorrência de deformações devido às três flexibilidades (de ligação , de introdução e de distorção por cisalhamento) , descritas no item 3.2. Ilustrado na figura 3.9, este modelo foi largamente utilizado na Universidade de Innsbruck (1988) na análise do comportamento inelástico de pórticos planos,

considerando possíveis deformações por plastificação dos elementos constituintes das ligações.

Na figura 3.9, as barras fictícias a e a'; assim como b e b' têm a incumbência de reagir aos binários oriundos dos momentos de extremidade das vigas (respectivamente $M_e e M_d$). Representando a influência da flexibilidade de ligação, as barras a e a', são chamadas molas de ligação. Da mesma forma b e b' representam a influência da flexibilidade de introdução, sendo portanto chamadas de molas de introdução.

Fig. 3.9 - Modelo de nó para ligações soldadas ou parafusadas [20].
Ainda na figura 3.9 a barra fictícia c reage aos esforços cisalhantes, oriundos do momento fletor desequilibrado ($\Delta M = M_e - M_d$), aos quais fica submetido o painel da coluna. Esta barra é designada por mola de cisalhamento.

Em relação à figura acima, intuitivamente observa-se que:

- As molas a e b (a' e b') têm seus efeitos somados, como se trabalhassem em série; portanto, podem ser substituídas por uma mola única ab (a'b').
- Em uma análise elástica, a mola c pode ser substituída pela área da alma da seção da coluna, que é o elemento responsável pela resistência à força cortante na mesma.

3.3.2 Modelo de nó Adotado

Objetivando a idealização de um modelo de nó macroscópico, cuja utilização seja possível em programas da análise elástica linear de pórticos planos, Queiroz [11] realizou as substituições acima citadas no modelo de Tschemmernegg [20], transformando-o no modelo ilustrado pela figura 3.10. Este será o modelo de nó a ser adotado neste trabalho, para que a influência das deformações elásticas das ligações (parafusadas ou soldadas), possam ser consideradas na distribuição de esforços nas barras dos pórticos planos analisados.

No modelo da figura 3.10, a disposição das barras fictícias bem como suas propriedades geométricas, são tais que as considerações sobre a transmissão dos esforços de extremidade das vigas para a coluna, obedeça à regra apresentada no item 3.1. Logo, o momento fletor e a força normal são transmitidos através das mesas da viga, enquanto que a força cortante é transmitida através da alma da mesma.

Fig. 3.10 - Modelo de nó para ligações rígidas proposto por Queiroz [11].

As barras verticais OS e OI, dão continuidade à coluna, devendo substituir a mola de cisalhamento (c) do modelo de Tschemmernegg [20]. Portanto, a área resistente à força cortante destas barras deve corresponder à área da alma da coluna e suas deformações por cisalhamento devem ser levadas em conta na análise estrutural.

As barras $BC \in B'C'$ são rígidas e estão rigidamente conectadas às vigas direita e esquerda em $A \in A'$. Transmitem para as molas ab ou a'b', as forças de tração ou compressão oriundas do momento fletor ou força axial das vigas, através das linhas de centro suas mesas (pontos B, C, B' ou C').

As barras AO e A'O também são rígidas. Apresentam-se rigidamente ligadas ao eixo da coluna no ponto O e rotuladas com deslocamento horizontal permitido nos pontos A e A'. Têm a função de transmitir a força cortante das vigas ao eixo da coluna no ponto O.

Para que AO, A'O, BC e B'C' sejam assumidas rígidas (em relação às outras barras componentes da estrutura), é suficiente que o momento de inércia destas barras seja pelo menos dez vezes maior que o momento de inércia das respectivas vigas. A área de suas seções transversais pode ser considerada igual à área da viga (à esquerda ou à direita) envolvida na ligação.

As barras BS, B'S, CI e C'I correspondem às molas ab ou a'b', que reagem apenas ás forças de tração ou compressão à serem introduzidos na coluna. Comportam-se como barras bi-rotuladas de uma treliça plana. Suas seções transversais devem assumir momento de inércia desprezível e área definida conforme as constantes das molas de ligação (a) e ou de introdução (b), a serem indicadas no item seguinte.

3.4 Constantes de Mola para o Modelo de Nó Adotado

3.4.1 Mola de Cisalhamento

A relação momento-rotação para as ligações em foco, considerando-se isoladamente apenas as deformações no painel da coluna devido a distorções por cisalhamento, pode ser expressa por um gráfico tal como indicado na figura 3.7. Neste trabalho, estas deformações estão limitadas ao regime elástico (trecho linear do gráfico da figura 3.7), logo apenas a alma da coluna será considerada como elemento resistente à força cortante.

Assim sendo, para que a distorção a que fica submetido o painel da coluna seja levada em conta na análise estrutural, basta que seja especificado para as barras que dão continuidade às colunas (OS e OI na figura 3.10) uma área resistente à força cortante (A_v) igual à área da alma da coluna. Com base na figura 3.4 têm-se:

$$\mathbf{A}_{\mathbf{y}} = \mathbf{h} \times \mathbf{t}_{\mathbf{wc}} \tag{3.2}$$

onde h e t_{wc} representam respectivamente a altura e a espessura da alma da coluna. Para colunas confeccionadas com perfis laminados, h pode ser tomado como a altura total da seção transversal.

3.4.2 Molas de Ligação e Introdução

As influências das flexibilidades de ligação e de introdução devem ser algebricamente somadas. No modelo [11], isto é garantido através da mola ab, que é equivalente às atuações em série das molas de ligação (a) e de introdução (b).

Nas *ligações parafusadas*, a flexibilidade de ligação assume valores consideráveis somente na região da mesa tracionada da viga. Neste caso, as deformações são observadas na mesa e alma da coluna, na chapa de topo e nos quatro parafusos da região tracionada da ligação. Na região comprimida da ligação, dada a forma que se dá a transmissão do esforço, somente a flexibilidade de introdução tornase relevante. Nesta última região, convém observar-se que a concentração de esforços na coluna é amenizada pela presença da chapa de topo soldada à viga.

Para as *ligações soldadas*, pode-se afirmar que é garantida a continuidade entre os elementos conectados (mesas da viga / mesa da coluna). Logo, a flexibilidade de ligação pode ser desprezada, tornando-se significante apenas a flexibilidade de introdução.

Basicamente duas referências serão utilizadas para determinar-se as constantes de mola (de ligação e de introdução). Para *ligações parafusadas* e *ligações soldadas confeccionadas com perfis laminados*, tais constantes de mola serão obtidas baseadas na curva $M-\Phi$ representada no ENV 1993 -1-1 [8]. Para o caso de *ligações soldadas*

confeccionadas com perfis soldados de uso corrente neste país, as constantes de mola de introdução serão obtidas à partir do trabalho de Queiroz [23].

De maneira geral, pelo ENV 1993 -1-1 [8], a capacidade de rotação (M/Φ) de uma ligação viga-coluna ou viga-viga, pode ser representada pela equação 3.3 :

$$\frac{\mathbf{M}}{\Phi} = \frac{\mathbf{E} \times \mathbf{h}^2}{\boldsymbol{\mu} \times \sum_{i} \frac{1}{\mathbf{k}_i}}$$
(3.3)

onde tem-se:

- **E** \Rightarrow Módulo de elasticidade do aço utilizado;
- h
- ⇒ Braço de alavanca do binário formado pelos esforços concentrados de tração e de compressão. Em *ligações soldadas ou parafusadas* (com chapa de topo estendida e quatro parafusos simetricamente dispostos em relação a mesa tracionada da viga), h pode ser considerado como a distância entre as linha de centro das mesas da viga (figura 3.11);
- μ \Rightarrow Taxa de rigidez da ligação, determinada de acordo com o momento fletor atuante M_d . Porém, na fase elástica, tem-se $M_d < M_e$ e pode-se fazer $\mu = 1$;
- ki ⇒ Coeficientes de rigidez de cada um dos elementos constituintes da ligação.
 Em *ligações soldadas*, estes coeficientes relacionam-se com a flexibilidade de introdução; para as *ligações parafusadas*, na região de introdução da força de tração, tais coeficientes relacionam-se com as flexibilidades de ligação; na região de introdução da força de compressão, com a flexibilidade de introdução. Os coeficientes de rigidez ki da equação 3.3, referem-se aos seguintes esforços e respectivas deformações:
 - $k_1 \Rightarrow$ Força cortante na alma da coluna;
 - $k_2 \Rightarrow$ Compressão na alma da coluna;
 - **k**₃ \Rightarrow Tração na mesa da coluna; (*ligações parafusadas*)
 - $\mathbf{k_4} \Rightarrow$ Tração na alma da coluna;
 - **k**₅ \Rightarrow Tração na chapa de topo; (*ligações parafusadas*)

(ligações parafusadas).

- **k**₆ ⇒ Tração nos parafusos
 - 71

Fig. 3.11 Braço de alavanca h, ligação soldada ou parafusada [8]

3.4.2.1 Ligações Soldadas

 $(M-\Phi)$ Nas ligações soldadas, curvas momento-rotação devido à influência da exclusivamente flexibilidade de introdução podem ser experimentalmente obtidas. Isto pode ser feito através de um sistema simetricamente carregado, tal como o representado na figura 3.12. Neste sistema, como não há força cortante resultante, o deslocamento do painel da coluna δ deve-se exclusivamente às forças concentradas F originárias do momento fletor atuante nas extremidades das vigas M.

Logo, de posse da relação $M-\Phi$, as constantes de rigidez (cb), relativas às molas ab do modelo [11] podem ser facilmente obtidas, conforme indicado na equação 3.4 abaixo:

$$F = \frac{M}{h} \qquad \delta = \frac{h}{2} \times \Phi \qquad cb = \frac{F}{\delta}$$
$$cb = \frac{2}{h^2} \times \frac{M}{\Phi} \qquad (3.4)$$

Fig. 3.12 - Deslocamento no painel da coluna em ligação soldada.

onde, h e Φ referem-se respectivamente; à distância entre as linhas de centro das mesas das vigas, e à rotação relativa resultante entre a viga e a coluna, conforme representado na figura 3.12.

Para deslocamentos δ limitados ao regime elástico, percorre-se apenas a parte inicial do gráfico M- Φ , com valores para M inferiores à M_e (figura 3.7). Neste trecho, como a relação M- Φ é praticamente linear, a constante de rigidez para as ligações pode ser suposta constante. Ensaios citados em [11] indicam que para *ligações soldadas* não enrijecidas confeccionadas com perfís laminados europeus, no regime elástico, a constante de rigidez para a mola de introdução assume valores médios de **12.000,00 kN/cm**.

Entretanto, ainda na referência [11] observava-se que: " dada a variedade de proporções possíveis das seções transversais, fica claro que não seria possível utilizar um valor único para esta constante de mola ". Logo pesquisas subseqüentes foram realizadas, para obter valores para as constantes de rigidez mais compatíveis com os perfis em uso no Brasil, como por exemplo a referência [23].

3.4.2.1.a Ligações Soldadas com Perfis Laminados

Conforme citado anteriormente, nestes casos as constantes de mola serão obtidas à partir da relação M/Φ fornecida pelo ENV 1993 -1-1 [8] e que encontra-se representada na equação 3.3.

Nesta equação, o coeficiente de rigidez referente à distorção por cisalhamento do painel da coluna (k_1), deve ser desprezado, pois este efeito já foi levado em conta no modelo de nó [11], através da equação 3.2. Os demais coeficientes de rigidez relevantes para a obtenção das constantes de mola de introdução, são k_2 e k_4 (respectivamente compressão e tração na alma da coluna). Estes coeficiente são indicados por:

$$k_{4} = k_{2} = \frac{0.7 \times b_{ef1} \times t_{wc}}{h_{c}} + \frac{A_{1}}{l_{1}}$$
(3.5)

onde b_{ef1} é dado por:

$$\mathbf{b}_{ef1} = \mathbf{t}_{fv} + 2\mathbf{s}_v + 5\mathbf{t}_{fc} + 5\mathbf{r}_c \tag{3.6}$$

A figura 3.13 a seguir indica os elementos envolvidos nas equações 3.5 e 3.6, onde têm-se:

 $\mathbf{t_{fv}} \Rightarrow \text{Espessura da mesa da viga;}$

 $s_V \Rightarrow$ Cateto do filete da solda entre a mesa da viga e a mesa da coluna. Caso a solda seja de penetração deve-se fazer $s_V = 0$;

 $\mathbf{t_{fc}} \Rightarrow \text{Espessura da mesa da coluna;}$

 $\mathbf{r_c}$ \Rightarrow Raio interno de concordância entre a alma e a mesa da coluna;

- $\mathbf{t_{wc}} \Rightarrow \text{Espessura da alma da coluna;}$
- $\mathbf{h_c}$ \Rightarrow Comprimento de alma da coluna, $\mathbf{h_c} = \mathbf{d_c} 2 \times \mathbf{t_{fc}}$;

b₁ \Rightarrow Largura do possível enrijecedor horizontal;

$t_1 \Rightarrow$ Espessura do possível enrijecedor horizontal.

Os termos A_1 e l_1 da equação 3.4 indicam respectivamente a área e o semicomprimento dos possíveis enrijecedores horizontais. Quando existirem tais enrijecedores, estes termos podem ser dados por:

$$A_1 = 2 \times b_1 \times t_1 \qquad \qquad l_1 = (d_c - 2 \times t_{fc})/2$$

Em relação a equação 3.4, deve ser observado que a mesma somente tem validade para os casos em que o prolongamento da coluna (y na figura 3.13) permite o desenvolvimento do comprimento b_{efl} . Em situações de extremidade de coluna (figura 3.15), deve ser obrigatório a utilização de enrijecedores horizontais. Neste caso, na equação 3.4 somente a parcela relativa aos enrijecedores deve ser considerada, logo: $k_2 = k_4 = A_1/l_1$.

Assim, utilizando-se os coeficientes de rigidez em questão (k_2, k_4) e fazendose $\mu = 1$ (fase elástica), a equação 3.3 fica :

$$\frac{M}{\Phi} = \frac{E \times h^2}{\frac{1}{k_2} + \frac{1}{k_4}} = \frac{E \times h^2}{\frac{2}{k_2}}$$

Substituindo-se a relação M/Φ anterior na equação 3.4 obtém-se a equação 3.7 que indica a constante de mola de introdução para *ligações soldadas confeccionadas com perfis laminados*:

$$\mathbf{cb} = \mathbf{E} \times \mathbf{k}_2 \tag{3.7}$$

3.4.2.1.b Ligações Soldadas com Perfis Soldados

A recente publicação de Queiroz [23], apresenta um estudo experimental pioneiro no país, visando a obtenção de constantes de rigidez para molas de introdução em *ligações soldadas* confeccionadas com os perfis soldados normalmente utilizados no Brasil. A equação 3.8 [23] a seguir representa a constante de rigidez para a mola de introdução (cb), no regime elástico. Nesta equação, cb foi obtido considerando-se a existência de prolongamentos da coluna (y) acima ou abaixo da seção da viga. Tais prolongamentos devem ser suficientes para permitir a propagação dos esforços na alma da coluna ao longo de um comprimento b_{ef1} (figura 3.13).

$$cb = \left(\frac{1}{k_1} + \frac{1}{k_2}\right)^{-1}$$
 (3.8)

Na equação 3.8, o primeiro termo $1/k_1$ indica a influência da flexibilidade do painel da coluna devido à aplicação de esforços concentrados (tração ou compressão) ao longo do comprimento de alma b_{ef1} . Este termo representa a parcela mais significante na composição total da constante de rigidez cb.

O termo b_{ef1} , representado na figura 3.13, é obtido para *ligações soldadas*, através de projeções à 45° da mesa da viga na alma da coluna, considerando-se se for o caso, o filete de solda existente nesta região. Tal termo é indicado pela equação 3.9:

$$\mathbf{b}_{ef1} = \mathbf{t}_{fv} + 2\mathbf{s}_v + 2\mathbf{t}_{fc} + 2\mathbf{s}_c \tag{3.9}$$

Na equação 3.9, assim como na figura 3.13, t_{fv} , s_v , t_{fc} , b_1 e t_1 têm os mesmos significados indicados no item 3.4.2.1.a. O termo s_c refere-se à solda de composição da coluna e h_i ao comprimento de sua alma, descontando-se s_c .

Os ensaios relatados em [23] foram realizados em ligações com perfis soldados usuais no Brasil, possuindo uma relação (b_{ef1}/h_i) entre 0,15 e 0,26. Esta faixa engloba a maior parte das situações reais de utilização deste tipo de ligação. Para estes casos, a parcela de k_1 correspondente à introdução de esforços na alma da coluna deve ser dada por $0,65 \times E \times t_{wc}$. Porém, em se considerando a possível existência de

tensões de compressão na coluna devido à força axial atuante na mesma, um fator redutor (1 - α) deve ser aplicado. Ainda, para que a possível utilização de enrijecedores horizontais também seja levada em conta, o termo $E \times A_1/l_1$, representativo da rigidez dos mesmos à tração ou compressão, deve ser somado à expressão final de k_1 . Logo:

$$\mathbf{k}_{1} = 0.65 \times \mathbf{E} \times \mathbf{t}_{wc} \times (1 - \alpha) + \frac{\mathbf{E} \times \mathbf{A}_{1}}{l_{1}}$$
(3.10)

Fig. 3.13 - Introdução de esforços no painel de coluna enrijecida, ligação soldada

Para coluna axialmente tracionada, o fator de redução α deve ser nulo. Para o caso mais comum de coluna axialmente comprimida α pode ser dado por:

$$\alpha = \frac{N_f}{P_{cr}}$$
(3.11)

onde N_f indica a máxima força longitudinal de compressão atuante na mesa da coluna, e P_{cr} a carga crítica de flambagem de Euler de um comprimento L desta mesma mesa, considerado-a elasticamente contida pela alma.

$$N_{f} = b_{fc} \times t_{fc} \times f_{y} \qquad P_{cr} = \frac{\pi^{2} \times E \times I_{fc}}{L^{2}}$$
$$I_{fc} = \frac{b_{fc} \times t_{fc}^{3}}{12} \qquad L \cong \left(\frac{b_{fc} \times t_{fc}^{3} \times h_{i}}{t_{wc}}\right)^{1/4}$$

Nas equações acima, $f_y \in E$ indicam respectivamente o limite de escoamento e o módulo de elasticidade do aço utilizado; b_{fc} corresponde à largura da mesa da coluna e os demais termos são tais como representados na figura 3.13.

Na equação 3.11, a parcela $E \times A_1/l_1$ corresponde à utilização de enrijecedores horizontais no nível das mesas da viga. Assim, tem-se:

$$A_1 = 2 \times b_1 \times t_1 \qquad \qquad l_1 = (d_c - 2 \times t_{fc})/2$$

onde d_c representa a altura total da seção da coluna e os demais termos apresentam-se representados na figura 3.13. Caso a coluna seja não enrijecida, deve-se fazer $A_1 = 0$.

De volta à equação 3.8, o termo $1/k_2$ representa a influência da flexibilidade adicional existente nas *ligações soldadas*, devido à concentração de tensões normais σ ocorrida na região central das mesas da viga. Nas vigas, tal concentração aumenta, quanto maior for a largura b_{fv} da mesa da viga e quanto mais próxima da junção for a região analisada. A figura 3.14 ilustra tal fenômeno.

Na figura 3.14, o comprimento b_{ef2} é definido a partir de prolongamentos à 45 °da alma da coluna, na mesa da viga: $b_{ef2} = t_{wc} + 2s_c + 2t_{fc} + 2s_v$; onde os componentes apresentam-se conforme definições anteriores. Porém, caso $b_{ef2} \ge b_{fv}$, o termo $1/k_2$ na equação 3.8 deve ser considerado nulo. A largura fictícia b_{rv} da mesa da coluna, que simula uma distribuição uniforme de tensões (equivalente à distribuição não uniforme na largura total b_{fv}) foi definida [23] como:

$$\mathbf{b}_{\mathrm{rv}} = 0.5 \times \left(\mathbf{b}_{\mathrm{ef}\,2} + \mathbf{b}_{\mathrm{fv}} \right) \tag{3.12}$$

Fig. 3.14 - Concentração de tensões normais σ nas mesas da viga.

Logo, o coeficiente de rigidez k_2 pode ser definido como:

$$\mathbf{k}_{2} = \frac{\mathbf{E} \times \mathbf{b}_{rv} \times \mathbf{t}_{fv}}{\left(\mathbf{b}_{fv} - \mathbf{b}_{rv}\right)} \tag{3.13}$$

Convém lembrar que o coeficiente de rigidez devido a concentração de tensões na mesa da viga k_2 , deve ser levado em conta na equação 3.8, somente nos casos de *ligação soldada, com perfil soldado, não enrijecida,* em que $b_{ef2} < b_{fv}$. Para os demais casos de *ligações soldadas*, deve-se fazer $1/k_2 = 0$.

Foi observado anteriormente que o coeficiente k_1 (equação 3.10) somente tem validade, quando a coluna possui prolongamentos (y na figura 3.13) suficientes para permitirem o desenvolvimento do comprimento b_{ef1} . Logo, nos casos em que a ligação viga-coluna dá-se na extremidade da coluna (figura 3.15) deve-se obrigatoriamente utilizar-se enrijecedores horizontais, no topo da coluna e, apenas o termo relativo a rigidez oferecida pelos enrijecedores deve ser computado na equação 3.10. Conforme comentário anterior, na equação 3.8 a flexibilidade $1/k_2$ deve ser considerada nula, devido a presença do enrijecedor.

Fig. 3.15 - Enrijecedor horizontal obrigatório nas extremidades das colunas

Ainda sobre o coeficiente k_1 , quando o mesmo é obtido para *ligações* soldadas, com perfis soldados, não enrijecidas, apenas a parcela $0,65 \times E \times t_{wc} \times (1-\alpha)$ da equação 3.10 é aplicada. Este valor utilizado para k_1 , apesar de satisfatório, é um valor médio, que não leva em consideração as deformações devido ao efeito de Poisson que por ventura venham a ocorrer na coluna. Caso tal efeito fosse levado em conta (para a situação em que a coluna está axialmente comprimida) obter-se-ia, na região de introdução de esforços de tração um grau de rigidez menor, e na região de introdução dos esforços de compressão um grau de rigidez maior, que o valor médio fornecido pela equação 3.10.

3.4.2.2 Ligações Parafusadas com Chapa de Topo Estendida

Nas *ligações parafusadas*, as constantes de rigidez (cb) relativas às molas ab do modelo de nó [11] devem ser diferenciadas, de acordo com a região considerada. Assim, para as regiões de introdução das forças de tração e compressão, as constantes de rigidez serão indicadas respectivamente por cb_t e cb_c. Estes valores podem ser obtidos ensaiando-se um sistema simetricamente carregado, tal como o representado na figura 3.16. Neste sistema, os momentos fletores nas extremidades das vigas (M) são iguais, logo o deslocamento δ_t deve-se exclusivamente à força de tração F aplicada. Analogamente o deslocamento δ_c deve-se à força F de compressão.

Fig. 3.16 - Deslocamentos no painel da coluna em ligação parafusada.

Pelo sistema apresentado na figura 3.16, tem-se:

$$F = \frac{M}{h} \qquad \Phi = \frac{\left(\delta_t + \delta_c\right)}{h}$$
$$\frac{F}{\delta_t} = \frac{M}{\Phi \times h^2 - \delta_c \times h} \qquad \frac{F}{\delta_c} = \frac{M}{\Phi \times h^2 - \delta_t \times h} \qquad (3.14)$$

Porém, as constantes de rigidez $cb_t e cb_c$ serão obtidas devido exclusivamente às forças de tração e compressão. Assim, ao considerar-se $\delta_c = 0$ na primeira das equações 3.14, despreza-se a flexibilidade à compressão, resultando então na constante de rigidez à tração cb_t :

$$\mathbf{cb}_{t} = \left[\frac{\mathbf{F}}{\delta_{t}}\right]_{\delta_{c}=0} = \frac{1}{\mathbf{h}^{2}} \times \frac{\mathbf{M}}{\Phi}$$
 (3.15)

Analogamente, a constante de rigidez cb_c pode ser obtida, ao desprezar-se a flexibilidade a tração ($\delta_t = 0$) na segunda das equações 3.14:

$$\mathbf{cb}_{\mathbf{c}} = \left[\frac{\mathbf{F}}{\delta_{\mathbf{c}}}\right]_{\delta_{\mathbf{t}}=\mathbf{0}} = \frac{1}{\mathbf{h}^2} \times \frac{\mathbf{M}}{\Phi}$$
(3.16)

Nas equações 3.15 e 3.16, a relação M- Φ será obtida conforme a equação 3.3, baseada na proposta apresentada no ENV 1993 -1-1 [8]. Seguindo esta norma, para obter-se a relação M- Φ utiliza-se coeficientes de rigidez distintos, correspondentes às flexibilidades locais dos elementos constituintes da ligação. Porém deve ser frisado que os coeficientes fornecidos pela referência [8] foram definidos baseados em ensaios realizados com perfis laminados europeus ou soldados de dimensões similares. Pesquisas futuras devem ser realizadas com estas ligações, confeccionando-as com os perfis soldados usuais no Brasil. Desta forma, tais coeficientes seriam calibrados e adaptados à realidade brasileira.

De volta à equação 3.3 , aplicando-se os coeficientes de rigidez k_i relativos às ligações parafusadas, têm-se:

$$\frac{M}{\Phi} = \frac{E \times h^2}{\frac{1}{k_1} + \frac{1}{k_2} + \left(\frac{1}{k_3} + \frac{1}{k_4} + \frac{1}{k_5} + \frac{1}{k_6}\right)}$$

onde, conforme explanação anterior, os coeficientes de rigidez k_i , referem-se aos seguintes esforços e respectivas deformações:

- $k_1 \Rightarrow$ Força cortante na alma da coluna;
- $k_2 \Rightarrow$ Compressão na alma da coluna;
- k₃ ⇒ Tração na mesa da coluna;
- **k**₄ ⇒ Tração na alma da coluna;
- **k5** ⇒ Tração na chapa de topo;
- **k**₆ ⇒ Tração nos parafusos.

Na equação anterior, a soma entre parênteses no numerador representa a influência da flexibilidade de ligação na região de introdução da força concentrada de tração. Esta soma será indicada por $1/k_{eq}$. O termo $1/k_1$ indica a influência da flexibilidade de distorção por cisalhamento do painel da coluna. Este termo será desprezado, uma vez que no modelo de nó adotado [11], o efeito de distorção é simulado através da aplicação da equação 3.2 nas barras OS e OI (figura 3.10). O termo $1/k_2$ representa a flexibilidade de introdução na região de introdução da força de compressão. Desta forma, tem-se:

$$\frac{\mathbf{M}}{\Phi} = \frac{\mathbf{E} \times \mathbf{h}^2}{\frac{1}{\mathbf{k}_2} + \frac{1}{\mathbf{k}_{eq}}}$$
(3.17)

À seguir, serão definidos os coeficientes de rigidez k_i a serem utilizados nas equações acima:

 $k_2\,$ - Compressão na alma da coluna:

$$k_{2} = \frac{0.7 \times b_{ef1} \times t_{wc}}{h_{c}} + \frac{A_{1}}{l_{1}}$$
(3.18)

sendo:

$$\mathbf{b}_{ef1} = \mathbf{t}_{fv} + 2\mathbf{s}_v + 2\mathbf{t}_p + 5\mathbf{t}_{fc} + 5\mathbf{s}_c \tag{3.19}$$

A figura 3.17 representa os elementos envolvidos na equações 3.18 e 3.19. Os termos t_{wc} , t_{fv} , s_v e t_{fc} possuem o mesmo significado do indicado na equação 3.6. Para as colunas soldadas, s_c indica a solda de composição do perfil. Em colunas laminadas, s_c passa a designar o raio de concordância interna entre a alma e a mesa. Os termos h_c e t_p indicam respectivamente a altura da alma da coluna e espessura da chapa de topo. Os termos A_1 e l_1 indicam respectivamente a área transversal e o semi-comprimento dos possíveis enrijecedores horizontais e são dados por:

$$A_1 = 2 \times b_1 \times t_1 \qquad \qquad l_1 = h_c/2$$

Naturalmente, quando não houverem enrijecedores horizontais comprimidos, deve-se fazer $A_1 = 0$ na equação 3.18. Ainda, quando o prolongamento da seção da coluna além da mesa comprimida da viga (y na figura 3.17) não for suficiente para a formação do comprimento b_{ef1} , obrigatoriamente deve ser utilizado um enrijecedor horizontal, tal como representado na figura 3.18. Neste caso, a equação 3.18 fica resumida a: $k_2 = A_1/l_1$.

Fig. 3.17 - Região de introdução de força de compressão, ligação parafusada.

Fig. 3.18 - Enrijecedor horizontal comprimido obrigatório nas extremidades da coluna.

k₃ - Tração na mesa da coluna:

$$k_{3} = 2 \times \frac{0.85 \times l_{ef1} \times t_{fc}^{3}}{m^{3}}$$
(3.20)

onde t_{fc} indica a espessura da mesa da coluna e m apresenta-se ilustrado na figura 3.19. O termo l_{ef1} indica o comprimento efetivo (perpendicular ao plano da figura 3.19) que cada uma das duas filas horizontais de parafusos utiliza para reagir ao esforço de tração aplicado. Pelo ENV 1993 -1-1 [8] admitese que o comprimento l_{ef1} relativo à fila de parafusos entre as mesas da viga, seja considerado igual ao valor de l_{ef1} para a fila de parafusos localizada na parte estendida da chapa de topo. Como o coeficiente k₃ representa a influência das duas filas de parafusos tracionadas, multiplicou-se por 2 a fração existente na equação 3.20.

Fig. 3.19 - Comprimentos "m" e "e".

O comprimento l_{ef1} para a fila de parafusos localizada na parte estendida da chapa de topo pode ser obtido (para ligações enrijecidas ou não) pelo menor dos valores, indicados na tabela 3.1.

Nesta tabela, a representa a distância vertical entre a linha de parafusos na região estendida da chapa e a borda desta última, assim como representado pela figura 3.20. O termo c indica o espaçamento vertical entre os parafusos na região da mesa tracionada da viga (figura 3.3). O fator α representa um

parâmetro de cálculo, que pode ser obtido pelo ábaco J27 do ENV 1993 1-1 [8] representado abaixo:

LIGAÇÃO NÃO ENRIJECIDA	LIGAÇÃO ENRIJECIDA
2πm	2πm
$\pi m + 2a$	αm
4m+1,25e	
2m + 0,625e + a	
$\pi m + c$	
c + 2a	
2m + 0,625e + 0,5c	
e+0,5c	

Tabela 3.1 - Valores para l_{ef1} [8].

k₄ - Tração na alma da coluna:

$$\mathbf{k}_4 = 2 \times \frac{\mathbf{0}, 70 \times \mathbf{b}_{ef1} \times \mathbf{t}_{wc}}{\mathbf{h}_c} \tag{3.21}$$

onde t_{wc} e h_c apresentam-se representados na figura 3.17. O termo b_{ef1} , deve ser considerado igual ao valor adotado para l_{ef1} na tabela 3.1. Para que a influência das duas linhas de furos sejam levadas em conta, multiplicou-se por dois o termo da direita da equação 3.21.

k5 - Tração na chapa de topo:

$$k_5 = 2 \times \frac{0.85 \times l_{ef2} \times t_p^3}{m^3}$$
 (3.22)

onde t_p refere-se à espessura da chapa de topo e m pode ser aproximado como o comprimento indicado na figura 3.19. O comprimento efetivo de atuação dos esforços de tração l_{ef2} pode ser obtido através do menor dos valores indicados na tabela 3.2. Este fator refere-se apenas à fila superior de parafusos, por isto, para considerar-se a influência das duas filas, o lado direito da equação 3.22 foi multiplicado por dois.

Para a obtenção de l_{ef2} através da tabela 3.2, os termos m_x e a encontramse representados na figura 3.20. O termos b_p e g representam respectivamente a largura da chapa de topo e distância horizontal entre os centros dos furos (figura 3.3). A distância e_p deve ser tomada como: $e_p = 0.5 \times (b_p - g)$

$2\pi m_{X}$	
$\pi m_{\chi} + g$	
$\pi m_x + 2e_p$	
$4m_{x} + 1,25a$	
$e_p + 2m_x + 0,625a$	
0,5b _p	
$0,5g + 2m_{\rm X} + 0,625a$	

Tabela 3.2 - Valores para l_{ef2} [8]

Fig. 3.20 Comprimentos m_x , a e L_b .

k₆ - Tração nos parafusos:

$$k_6 = 2 \times \frac{1.6 \times A_s}{L_b}$$
(3.23)

onde na equação 3.23, A_s indica a área resistente à tração do parafuso utilizado ($A_s = 0.75\pi d^2/4$), sendo d seu diâmetro nominal. O termo L_b (representado na figura 3.20) corresponde ao comprimento de parafuso a ser alongado. Neste trabalho considerar-se-á $L_b = d + t_{fc} + t_p$ onde o acréscimo de d refere-se à consideração das espessuras de meia cabeça do parafuso e porca, bem como das possíveis arruelas a serem utilizadas. Assim como nos coeficientes k_i anteriores, para que a influência de ambas as filas de parafusos tracionados seja levada em conta, multiplicou-se por dois o termo da direita na equação 3.23. Assim sendo, após definidos todos os coeficientes de rigidez k_i , facilmente podem ser determinadas as constantes de rigidez cb_c e cb_t para as regiões de introdução das forças de compressão e tração.

Logo, substituindo-se a equação 3.17 na equação 3.15, admitindo-se que a flexibilidade devido à força de compressão $1/k_2\,$ pode ser desprezada, obtém-se cb_t :

$$\mathbf{cb}_{\mathbf{t}} = \mathbf{E} \times \mathbf{k}_{\mathbf{eq}} \tag{3.22}$$

Analogamente, substituindo-se a equação 3.17 na equação 3.16, desprezando-se a resultante das flexibilidades devido à força de tração $1/k_{eq}$ obtém-se cb_c :

$$\mathbf{cb}_{\mathbf{c}} = \mathbf{E} \times \mathbf{k}_2 \tag{3.23}$$

4. PROGRAMA DE COMPUTADOR _____

4.1 Considerações Iniciais

Para que todas as considerações sobre o comportamento das ligações flexíveis e rígidas apresentadas nos capítulos 2 e 3 pudessem ser automaticamente levadas em conta na análise estrutural, foi desenvolvido um programa de computador em linguagem PASCAL, no qual todos os nós e barras adicionais requeridos pelos modelos de nó adotados, são facilmente gerados, sem nenhum trabalho extra do analista.

O programa gerador de nós e barras desenvolvido, funciona como um préprocessador, que pode ser acoplado à qualquer sistema de análise estrutural que permita o cálculo de estruturas de barras reticuladas.

Adotou-se o sistema ATRIUM [24] como plataforma para a geração dos nós e barras dos modelos de nó, o qual possibilita a análise elástica em teoria da 1^a ordem de estruturas tridimensionais de barras reticuladas, com cargas predominantemente estáticas. Efeitos de variação de temperatura, bem como recalques de apoio podem ser levados em conta.

O sistema ATRIUM [24] é composto basicamente de duas unidades, uma armazenadora dos dados das estruturas (números e coordenadas de nós e barras, carregamentos, etc.); e outra, que efetua o cálculo propriamente dito da estrutura.

Neste trabalho, foram introduzidas na unidade armazenadora, ferramentas que tornassem possível a entrada dos dados referentes aos tipos de ligações viga-coluna utilizados, bem como as dimensões de seus elementos constituintes. O programa gerador dos nós e barras dos modelos de nó, foi somado ao sistema utilizado,

transformando-se então em uma terceira unidade. Ao sistema composto por estas três unidades, denominar-se-á ATRIUM-LIG.

Ao utilizar-se a unidade de armazenamento de dados do sistema ATRIUM-LIG, a estrutura deve ser tratada da maneira convencional, com as ligações flexíveis representadas por rótulas perfeitas e as ligações rígidas representadas por nós rígidos. Os tipos de ligações viga-coluna especificadas assim como as dimensões de seus elementos constituintes são tratados como características das extremidades das barras (vigas).

O programa gerador de nós e barras do sistema ATRIUM-LIG, cria uma *estrutura auxiliar*, onde as rótulas perfeitas ou nós totalmente rígidos são devidamente substituídos pelas barras e nós dos modelos de nó adotados, simulando o grau de rigidez das conecções. Como opção comparativa dos resultados, pode-se utilizar a unidade de cálculo para analisar-se tanto a *estrutura convencional* quanto a *estrutura auxiliar* (com os modelos de nó) que fora criada. Para o caso em que algum tipo de ligação flexível (cantoneiras, chapa de topo ou chapa de extremidade) for especificada, serão criadas duas *estruturas auxiliares*: numa as ligações apresentam rigidez tangente inicial e noutra rigidez secante última.

Como a análise proposta restringe-se a pórticos planos, o sistema ATRIUM-LIG utiliza então, uma versão de cálculo do sistema ATRIUM [24] para a análise de estruturas planas. Além disto, alterou-se a confecção da matriz de rigidez das barras, incorporando-se elementos que tornem possível a consideração de deformações por força cortante nas mesmas. Desta forma, as distorções por cisalhamento do painel da coluna, em ligações rígidas, ficam corretamente representadas na análise.

4.2 Sistema ATRIUM-LIG

Neste trabalho, entende-se por *estruturas convencionais*, aquelas em que as ligações classificadas como flexíveis ou rígidas, são representadas respectivamente por

rótulas perfeitas ou nós totalmente rígidos. As estruturas nas quais as ligações são representadas pelos modelos de nó adotados, serão referidas como *estruturas auxiliares*.

Na unidade armazenadora de dados do sistema, as informações devem ser fornecidas para que sejam obtidas as *estruturas convencionais*. As únicas informações adicionais referem-se ao tipo de ligação existente nas extremidades das barras (vigas) bem como as dimensões de seus elementos constituintes.

Desta forma após a utilização do programa gerador dos modelos de nó, à partir das *estruturas convencionais*, são obtidas as *estruturas auxiliares*. As *estruturas auxiliares* diferem das *estruturas convencionais*, no tocante ao número de nós e barras, bem como das liberações de extremidade destas últimas. Conforme considerações posteriores, devido às diferenças existentes nos comprimentos de barras, o carregamento aplicado nas *estruturas auxiliares* sofre pequenas alterações em relação ao aplicado nas *estruturas convencionais*.

De acordo com a descrição feita no item 2.2.1, neste trabalho, não foi determinado o grau de rigidez real das ligações classificadas como flexíveis. Pelo gráfico da figura 2.9, foi delineada uma região de variação do grau de rigidez destas ligações (área hachurada). Estipulou-se então, que dois valores limites seriam considerados na representação do grau de rigidez das ligações, a rigidez tangente inicial e a rigidez secante última. No sistema considerado, sempre que uma *estrutura convencional* apresentar algum tipo de ligação viga-coluna classificada como flexível, duas *estruturas auxiliares* serão geradas. Na primeira delas, designada pelo sufixo K1, será considerada a rigidez tangente inicial das ligações; enquanto que na segunda, com o sufixo K2, será considerada a rigidez secante última.

Caso a *estrutura convencional* apresente apenas ligações classificadas como rígidas, apenas uma *estrutura auxiliar*, com os modelos de nó de acordo com o definido no item 3.3 será gerada. Esta estrutura será designada pelo sufixo K1.

Fig. 4.1 Estruturas convencionais e estruturas auxiliares geradas.

A figura 4.1.a, exibe o pórtico de uma *estrutura convencional*, cujas ligações viga-coluna são do tipo chapa simples soldada na mesa da coluna e, uma de suas *estruturas auxiliares* (K1 ou K2) geradas pelo sistema.

Da mesma forma, a figura 4.1.b exibe o pórtico de uma *estrutura convencional*, cujas ligações viga-coluna são do tipo soldada na mesa da coluna e, a *estrutura auxiliar* K1 gerada pelo sistema.

Porém, para que a geração das *estruturas auxiliares*, tal como representadas na figura anterior transcorra satisfatoriamente, o sistema ATRIUM-LIG requer que algumas convenções sejam previamente obedecidas:

- a) O sistema de referência global das *estruturas convencionais* deve ser criado de forma que o eixo das abcissas seja crescente no sentido da esquerda para a direita. Da mesma forma, o eixo das ordenadas deve ser crescente de baixo para cima.
- b) Todas as barras da estrutura, assim como os elementos constituintes das ligações (chapas, cantoneiras ou enrijecedores) devem ser do mesmo material.
- c) As equações utilizadas na obtenção do grau de rigidez das ligações foram padronizadas, de forma a utilizarem kN e cm como unidades de força e comprimento. Logo caso as *estruturas auxiliares* sejam automaticamente geradas, todos os dados referentes às *estruturas convencionais* também devem utilizar estas unidades como referência.
- *d*) Conforme comentário anterior, as ligações viga-coluna devem ser tratadas como condições de extremidade das vigas. Assim sendo, somente deverão ser especificadas em barras que atuarem como vigas.

- e) Nos pórticos a serem analisados, as barras (vigas) que tiverem algum tipo de ligação classificada como flexível ou rígida especificada em suas extremidades, devem fazer um ângulo em relação ao eixo das abcissas (do sistema global da estrutura) de no máximo 20°. As barras que atuarem como colunas devem ser verticais, fazendo um ângulo com o mesmo eixo das abcissas de 90°. Estas limitações devem ser obedecidas, para que a distribuição de esforços proposta pelos modelos de nó das estruturas auxiliares mantenha-se válida.
- f) A tabela 4.1 indica os códigos adotados para os tipos de condições de extremidade (ligações viga-coluna) das vigas. Juntamente com as informações usuais das *estruturas convencionais* (coordenadas nodais, incidência de barras, etc...), estes códigos devem ser fornecidos, através da unidade armazenadora de dados do sistema ATRIUM-LIG

TIPOS DE LIGAÇÕES VIGA-COLUNA			
Totalmente rígida	2 - Flexível com cantoneira simples	7 [—] Rígida parafusada	
0 – Junção com viga	3 - Flexível com cantoneiras duplas	8 [—] Rígida soldada	
Extremidade livre	4 ⁻ Flexível com ch. topo		
1 [—] Rótula perfeita	5 ⁻ Flexível com ch. simples soldada mesa coluna		
	6 ⁻ Flexível com ch. simples soldada alma coluna		

Tabela 4.1 Tipos de ligações viga-coluna padronizadas.

g) - Cada tipo de ligação viga-coluna (de 2 à 8) especificado na tabela 4.1 necessita que sejam fornecidos diferentes parâmetros, para o cálculo da rigidez e constantes de mola das ligações, conforme exposto nos itens 2.2 e 3.4. Estes parâmetros relacionam-se com a geometria das ligações e são requeridos pelo sistema ATRIUM-LIG para que possam ser definidas as barras e nós fictícios dos modelos de nó das *estruturas auxiliares*. As figuras 4.2.a à 4.2.e ilustram as ligações bem como os respectivos parâmetros de cálculo requeridos:

Fig. 4.2.a - Parâmetros para cálculo de rigidez; ligações com cantoneiras.

- t_{wv} = espessura da alma da viga;
- g = dist. horizontal entre as linhas de furos;
- d_c = altura total da seção da coluna.

Fig. 4.2.b - Parâmetros para cálculo de rigidez; ligações com chapa de topo.

- b_p = largura da chapa de ligação;
- t_p = espessura da chapa de ligação;
- t_{wv} = espessura da alma da viga;
- a_2 = dist. horizontal linha de furos à borda da viga;
- a₃ = dist. horizontal linha de furos à borda da chapa de ligação;
- n = número de parafusos na ligação ($2 \le n \le 9$);
- d = diâmetro dos parafusos utilizados (ASTM A325);
- $p = distância horizontal entre as linhas de furos (<math>p \cong 75 \text{ mm}$);
- d_c = altura da seção da coluna (ligações chapa soldada na mesa da coluna);
- b_{fc} = largura da mesa da coluna (ligações chapa soldada na alma da coluna).

Fig. 4.2.c - Parâmetros para cálculo de rigidez; ligações com chapa simples.

- d_v = altura total da seção da viga;
- t_{fv} = espessura da mesa da viga;
- d_c = altura total da seção da coluna;
- $b_{fc} = largura da mesa da coluna;$
- t_{fc} = espessura da mesa da coluna;
- t_{wc} = espessura da alma da coluna;
- s_c = solda de composição da coluna (perfis soldados);
- r_c = raio de concordância entre a mesa e a alma da coluna (perfis laminados);
- b_p = largura da chapa de topo;
- t_p = espessura da chapa de topo;
- c_e = comprimento estendido da chapa de topo;
- s_v = cateto do filete de solda da mesa da viga com chapa de topo (caso seja utilizado solda penetração, $s_v = 0$);
- b_s = largura do enrijecedor superior (se não houver, $b_s = 0$);
- t_s = espessura do enrijecedor superior (se não houver, t_s = 0);
- $b_i = largura do enrijecedor inferior (se não houver, <math>b_i = 0$);
- t_i = espessura do enrijecedor inferior (se não houver, $t_i = 0$);
- d = diâmetro dos parafusos utilizados;
- g = distância horizontal entre as linhas de furos (região de tração);
- c = distância vertical entre as linhas de furos (região de tração);
- y_s = distância da mesa superior da viga à extremidade superior da coluna;
- y_i = distância da mesa inferior da viga à extremidade inferior da coluna.

- d_v = altura total da seção da viga;
- b_{fv} = largura da mesa da viga;
- t_{fv} = espessura da mesa da viga;
- d_c = altura total da seção da coluna;
- $b_{fc} = largura da mesa da coluna;$
- t_{fc} = espessura da mesa da coluna;
- t_{wc} = espessura da alma da coluna;
- s_c = solda de composição da coluna (perfis soldados);
- r_c = raio de concordância entre a mesa e a alma da coluna (perfis laminados);
- s_v = cateto do filete de solda da mesa da viga com chapa de topo (caso seja utilizado solda de penetração, $s_v = 0$);
- b_s = largura do enrijecedor superior (se não houver, $b_s = 0$);
- t_s = espessura do enrijecedor superior (se não houver, t_s = 0);
- b_i = largura do enrijecedor inferior (se não houver, $b_i = 0$);
- t_i = espessura do enrijecedor inferior (se não houver, $t_i = 0$);
- y_s = distância da mesa superior da viga à extremidade superior da coluna;
- y_i = distância da mesa inferior da viga à extremidade inferior da coluna.

Fig. 4.2.e - Parâmetros para cálculo de rigidez; ligações soldadas.

h) - Para as ligações classificadas como rígidas, juntamente com os dados da geometria da ligação, devem ser fornecidos os valores dos prolongamentos da coluna acima e abaixo das mesas da viga (y_s e y_i). Conforme exposto nos itens 3.4.2.1.a, 3.4.2.1.b e 3.4.2.2, nas extremidades das colunas, caso estes prolongamentos sejam insuficientes para o desenvolvimento das larguras de influência b_{ef1} deve-se utilizar enrijecedores horizontais, obrigatoriamente. Desta forma, caso y_s (ou y_i) < b_{ef1}, a parcela de rigidez devido à introdução das forças concentradas (tração e compressão em ligações soldadas e compressão em ligações parafusadas), dever-se-á exclusivamente a presença dos enrijecedores horizontais.

4.3 Implementação dos Modelos de Nó

As figuras 4.3.a e 4.3.b representam a implementação dos nós e barras adicionais dos modelos de nó, na extremidade das vigas. Nas *estruturas auxiliares*, sempre que possível, esta implementação é feita de forma a se evitar alterações nas coordenadas dos nós oriundos da *estrutura convencional*.

Na figura 4.3.a os pontos S, I, E e D são gerados à partir da geometria da ligação, enquanto que o ponto P é mantido em sua posição original. As barras PI e PS são geradas, dando continuidade à coluna e as barras ES, EI, DS e DI simulam uma mola de rotação na extremidade das vigas a esquerda e a direita.

A figura 4.3.b representa a implementação das barras e nós adicionais do modelo de nó para ligações rígidas. Os pontos S, Ds, D, Di, I, Ei, E e Es são gerados à partir da geometria das peças envolvidas nas ligações. O ponto P_o representa o nó comum às vigas adjacentes bem como à coluna, na *estrutura convencional*. Nas *estruturas auxiliares*, o ponto Po é substituído pelo ponto P. Porém, caso a inclinação entre o eixo das barras que representam as vigas e a linha horizontal seja tal que $\alpha = 0$, o ponto P manterá as mesmas coordenadas nodais do ponto P_o. As barras PI e PS dão continuidade
às colunas, DsD, DiD, PD, EsE, EEi e PE, são rígidas (com inércia igual a 10 vezes a inércia da viga), enquanto que SDs, IDi, SEs, IEi, têm a função de simular as constantes de mola de introdução e/ou de ligação.

Fig. 4.3 - Representação esquemática da implementação dos modelos de nó adotados.

Devido à geometria dos modelos de nó, na região de junção de vigas adjacentes com uma mesma coluna, devem ser especificadas ligações similares nas extremidades das vigas. Desta forma, na figura 4.3.a, na extremidade das vigas à esquerda e à direita do ponto P, as ligações devem ser flexíveis, de forma que as distâncias l (item 2.3, figura 2.20) permaneçam iguais. Na figura 4.3.b as ligações nas extremidades das vigas à esquerda e à direita do ponto Po devem ser do tipo rígidas. Neste caso, por questões geométricas, as vigas adjacentes devem possuir alturas iguais ($d_{ve} = d_{vd}$). Caso as mesas das vigas sejam de espessuras diferentes ($t_{fve} \neq t_{fvd}$) os pontos S e I são determinados de forma a se obter uma folga igual (f) entre as linhas de centro das mesas das vigas e o eixo das barras SDs, IDi, SEs e IEi.

Tanto para a situação retratada na figura 4.3.a quanto para a situação da figura 4.3.b, deve-se observar que as vigas adjacentes devem ter inclinações tal que exista uma simetria em relação à linha de eixo da coluna (ângulo α). Conforme descrito no item 4.2.e, o ângulo de inclinação das vigas adjacentes deve ser tal que: $-20^{\circ} \le \alpha \le 20^{\circ}$.

Deve-se lembrar que as *estruturas auxiliares* com modelos de nó de ligações rígidas somente poderão ser geradas após o processamento (cálculo) da *estrutura convencional*. Isto porque para a geração e definição das barras dos modelos de nó, é necessário que se definam quais são as molas de tração e/ou de compressão (barras SDs, IDi , SEs e IEi; flexibilidades de ligação e de introdução).

Após o processamento das estruturas, o sistema ATRIUM-LIG identifica quais são as *estruturas auxiliares* e quais são as *estruturas convencionais*. Desta forma, para as *estruturas auxiliares*, durante a impressão do relatório final o analista pode simplificá-lo, optando por excluir os nós e barras adicionais dos modelos de nó. Assim sendo, serão impressos os dados e resultados da distribuição de esforços e deslocamentos da *estrutura auxiliar*. Porém na região das ligações, ao analisar-se os esforços solicitantes nas barras, o equilíbrio dos nós não será satisfeito. Isto porque as barras dos modelos de nó foram omitidas do relatório. Para alertar o analista sobre este fato, juntamente com os esforços solicitantes nas barras, é impresso a seguinte mensagem: *"Este relatório não inclui as barras dos modelos de nó. Logo o equilíbrio de esforços entre as barras listadas não apresenta-se plenamente satisfeito".*

4.4 Considerações Sobre os Carregamentos

Para as *estruturas auxiliares*, o princípio da superposição de efeitos devido à atuação isolada de vários carregamentos não mais tem validade. Para as estruturas com ligações flexíveis a rigidez tangente inicial e a rigidez secante última (item 2.2) são definidas a partir de curvas $M-\Phi$ não lineares. As molas de ligação e de introdução das ligações rígidas (itens 3.4.2.1.a, 3.4.2.1.b e 3.4.2.2) foram definidas considerandose que as mesmas trabalhem sempre em regime elástico. Porém, nestas ligações a posição dos esforços concentrados T_d e C_d (item 3.1) depende exclusivamente do carregamento aplicado. Logo, ao analisar-se uma *estrutura auxiliar* no sistema ATRIUM-LIG, deve-se fornecer um carregamento único, com as cargas atuantes já devidamente combinadas.

A geração automática de nós e barras nas *estruturas auxiliares*, provoca algumas alterações em relação às *estruturas convencionais* (incidência das barras, comprimento das barras, etc...). Esta geração automática é realizada de forma a não permitir que atuem cargas (distribuídas ou concentradas) nas barras adicionais dos modelos de nó (exceto nas barras que dão continuidade às colunas).

As figuras 4.4.a e 4.4.b representam a aplicação de carga uniformemente distribuída ao longo de todo o comprimento de uma barra de uma *estrutura convencional*. As áreas hachuradas correspondem a cargas uniformemente aplicadas nas barras (vigas) das *estruturas convencionais*, nas regiões onde serão criados os modelos de nó (comprimento l).

Fig. 4.4.a - Carga uniformemente distribuída em barra com ligação classificada como flexível.

Fig. 4.4.b - Carga uniformemente distribuída em barra com ligação classificada como rígida.

Durante a criação das *estruturas auxiliares* o sistema ATRIUM-LIG altera suavemente o carregamento aplicado nas vigas, de forma a transformar toda as cargas correspondentes às áreas hachuradas, em um incremento de carga que será uniformemente distribuído ao longo do comprimento da viga. Como os comprimentos l são muito pequenos em relação ao comprimento das vigas, em geral esta pequena alteração nos valores das cargas não é significativa, portanto não compromete os resultados.

5. EXEMPLOS DE UTILIZAÇÃO _____

5.1 Exemplo 1: Estrutura Contraventada com Ligações Flexíveis

Utilizando-se o sistema ATRIUM-LIG, será feita uma análise elástica e em primeira ordem da estrutura contraventada representada na figura 5.1, submetendo-a ao carregamento indicado. O resultado da análise da *estrutura convencional*, onde todas as ligações serão representadas por rótulas perfeitas será comparado com o resultado da análise das *estruturas auxiliares*, onde a rigidez das ligações entre as vigas (barras 7 e 8, 9 e 10 e 11 e 12) e as colunas serão levadas em conta através dos modelos de nó (item 2.3). As ligações entre as barras dos contraventamentos e as colunas serão sempre consideradas como rótulas perfeitas.

Serão geradas ao todo 8 *estruturas auxiliares* que serão divididas em 4 grupos. Cada grupo corresponderá a um tipo da ligação flexível utilizada em todas as junções viga-coluna da estrutura: cantoneira simples, cantoneiras duplas, chapa de topo e chapa simples soldada na mesa da coluna. Conforme citado no item 4.1, para cada tipo de ligação viga-coluna (cada grupo), serão geradas 2 *estruturas auxiliares* considerando-se a rigidez tangente inicial e a rigidez secante última das ligações.

A lista à seguir fornece um resumo dos arquivos a serem criados para os 4 grupos de ligações flexíveis consideradas. Os relatórios de todos os arquivos envolvidos encontram-se no Anexo A.1 deste trabalho. Os arquivos com os sufixos K1 e K2 referem-se respectivamente às *estruturas auxiliares* com rigidez tangente inicial e rigidez secante última, respectivamente:

Grupo 1 - Ligações com Cantoneir	a Simples:
Arquivo 1: CSPLK1	Rigidez tangente inicial;
Arquivo 2: CSPLK2	Rigidez secante última;
Grupo 2 - Ligações com Cantoneir	as Duplas:
Arquivo 3: CDPLK1	Rigidez tangente inicial;
Arquivo 4: CDPLK2	Rigidez secante última;
Grupo 3 - Ligações com Chapa de	Торо:
Arquivo 5: CHTPK1	Rigidez tangente inicial;
Arquivo 6: CHTPK2	Rigidez secante última;
Grupo 4 - Ligações com Chapa Sin	nples Soldada na Mesa da Coluna:
Arquivo 7: CHEXK1	Rigidez tangente inicial;
Arquivo 8: CHEXK2	Rigidez secante última;

Posteriormente, serão comparados os esforços solicitantes e os deslocamentos das *estruturas auxiliares*, em função do grau de rigidez utilizado (rigidez tangente inicial K_i, ou rigidez secante última K_u).

As ligações viga-coluna definidas para a estrutura contraventada da figura 5.1 obedecem às considerações feitas no item 2.1 bem como às prescrições da NBR-8800 [6]. Será utilizado o aço ASTM A36, tanto para os perfis quanto para as cantoneiras e chapas de ligação. Os parafusos utilizados são do tipo ASTM-A325N (diâm. = 19 mm), os eletrodos de solda são AWS E70XX e as cantoneiras são L 101,6 × 101,6 × 0,64. As figuras 4.2.a, 4.2.b e 4.2.c representam a geometria das conecções, sendo os parâmetros para cálculo de rigidez dados por:

Ligação com Cantoneira Simples:	Ligação com Cantoneiras Duplas:	Ligação com Chapa de Topo:
n = 4 (n° de parafusos)	$n = 6 (n^{\circ} de parafusos)$	$n = 6 (n^{\circ} de parafusos)$
$d_a = 28,00 \text{ cm}$	$d_a = 24,00 \text{ cm}$	$d_p = 24,00 \text{ cm}$
$t_a = 0,64 \text{ cm}$	$t_a = 0,64 \text{ cm}$	$t_p = 0,80 \text{ cm}$
$t_{wv} = 0,63 \text{ cm}$	$t_{wv} = 0,63 \text{ cm}$	$t_{wv} = 0,63 \text{ cm}$
g = 6,67 cm	g = 13,33 cm	g = 10,00 cm
$d_{c} = 25,00 \text{ cm}$	$d_{c} = 25,00 \text{ cm}$	$d_c = 25,00 \text{ cm}$
Ligação com Chapa Simples Soldada	na Mesa da Coluna:	
$b_{p} = 7,00 \text{ cm}$	$n = 4 (n^{o} de parafusos)$	
$t_p = 0.63 \text{ cm}$	d = 1,90 cm	
$t_{wv} = 0,63 \text{ cm}$	p = 7,50 cm	

Apesar de muito pequeno, quando as ligações flexíveis são comparadas com as ligações rígidas, o valor absoluto da rigidez tangente inicial das ligações flexíveis é bem maior do que a rigidez real das mesmas. Na referência [13] King e Chen sugerem (sob

 $d_c = 25.00 \text{ cm}$

 $a_2 = 3,00 \text{ cm}$

 $a_3 = 3,00 \text{ cm}$

condições normais de utilização da estrutura) a adoção de 50% do valor da rigidez tangente inicial (K_i) para a representação grau de rigidez real das ligações (K_{real}). Esta simplificação seria aceitável desde que o grau de rigidez sugerido (50% de K_i) fosse superior à rigidez secante última da ligação (K_u). Isto pode ser visualizado com mais clareza pelo gráfico da figura 2.9 (o grau de rigidez real da ligação deve estar compreendido na área hachurada).

Fig. 5.1 - Estrutura contraventada com ligações flexíveis: estrutura convencional.

Porém, os relatórios do programa ATRIUM-LIG (Anexo A.1) com os dados das 8 *estruturas auxiliares* analisadas revelam que para as ligações com cantoneiras duplas e com chapa de topo, o valor ¹/₂ da rigidez tangente inicial é inferior à rigidez secante última. Estes dados apresentam-se resumidos abaixo.

Ligação com Cantoneira Simples: $K_i = 76.403 \text{ kNcm/rad}$ $K_u = 35.981 \text{ kNcm/rad}$	Ligação com Cantoneiras Duplas: $K_i = 444.399 \text{ kNcm/rad}$ $K_u = 364.507 \text{ kNcm/rad}$
$\frac{1}{2} K_i = 38.202 \text{ kNcm/rad}$	$\frac{1}{2}$ K _i = 222.199 kNcm/rad
Ligação com Chapa Topo:	Ligação com Chapa Simples:
$K_i = 331.286 \text{ kNcm/rad}$	$K_i = 2.180.817 \text{ kNcm/rad}$
$K_u = 254.092 \text{ kNcm/rad}$	$K_u = 287.061 \text{ kNcm/rad}$
$\frac{1}{2} K_i = 165.643 \text{ kNcm/rad}$	$\frac{1}{2}$ K _i = 1.090.409 kNcm/rad

Logo, devem ser realizados estudos complementares, para que a simplificação sugerida por King e Chen [13] seja adotada com precisão. Isto porque, a consideração de um grau de rigidez inferior à K_u , significa que a ligação já teria absorvido um momento fletor igual (ou superior) a M_u (item 2.2.1), o que a levaria à ruína.

Conforme citado, o Anexo A.1 deste trabalho exibe os relatórios do programa ATRIUM-LIG com os dados da *estrututra convencional* e das *estruturas auxiliares*. A tabela 5.1 compara momentos fletores e deslocamentos da *estrutura convencional* e das 8 *estruturas auxiliares* que foram geradas. Todos os valores listados na tabela correspondem aos esforços e deslocamentos da viga formada pelas barras 11 e 12, que foi tomada como referência. Percebe-se que: a medida que aumenta o grau de rigidez das ligações reduz-se a rotação relativa existente entre a viga e a coluna, elevando-se os valores dos momentos fletores na extremidade das vigas e diminuindo-se os momentos fletores bem como os deslocamentos no meio do vão destas.

Como já era esperado, ao observar-se os valores de rigidez das *estruturas auxiliares*, pode-se afirmar que as ligações com cantoneira simples possuem um grau de rigidez extremamente baixo, quando comparado com os outros tipos de ligações classificadas como flexíveis.

Estrutura	Grau de F	Rigidez	Momentos	Fletores	Atuantes	Deslocamentos no	
Analisada	das Ligações		Extremos	Meio do Vão		Meio do Vão	
	(kN×cm/rad)		(kN×cm)	(kN×cm)	%	(cm)	%
					redução		redução
Convencional				18.135,0		2,53	
Cant. Simples	Inicial =	76.403	738,6	16.580,3	8,57%	2,13	15,8%
	Final =	35.981	360,1	16.958,9	6,49%	2,18	13,6%
Cant. Duplas	Inicial =	444.399	2.975,0	14.344,0	20,90%	1,82	28,1%
	Final =	364.507	2.618,0	14.700,9	18,94%	1,87	26,2%
Ch. Topo	Inicial =	331.286	2.458,4	14.872,6	17,99%	1,89	25,2%
	Final =	254.092	2.033,0	15.298,0	15,64%	1,95	22,8%
Ch. Extremidade	Inicial = 2	2.180.817	5.779,0	11.358,6	37,37%	1,39	45,1%
	Final =	287.061	2.152,4	14.985,2	17,37%	1,88	25,7%

Tabela 5.1 - Comparação entre momentos fletores e deslocamentos da estruturaconvencional com as estruturas auxiliares (barras 11 e 12).

A influência das ligações com cantoneiras duplas e com chapa de topo é similar. Isto pode ser notado observando-se os percentuais de redução de momentos fletores e deslocamentos no meio do vão da viga.

Proporcionalmente às demais conecções analisadas, a rigidez tangente inicial das ligações com chapa de extremidade é muito elevada. No meio do vão da viga as reduções de momentos fletores e de deformações, utilizado-se a rigidez inicial são de 37,37% e de 45,1%, respectivamente. Em contrapartida, a rigidez secante última ($K_u = 287.061 \text{ kN}\times\text{cm/rad}$) é bem inferior à rigidez tangente inicial, revelando a alta ductilidade deste tipo de conecção. Neste caso, a simplificação sugerida por King e Chen [13] (adotar-se ¹/₂ de K_i) seria aceitável, uma vez que o grau de rigidez adotado estaria situado dentro da área hachurada do gráfico da figura 2.9.

De forma conservadora poder-se-ia usar os dois graus de rigidez considerados (tangente inicial e secante última) no dimensionamento das vigas da estrutura. Desta forma, momento fletor e deformação no meio do vão seriam obtidos pela *estrutura auxiliar* com rigidez K_u. Na extremidade da viga, a ligação seria dimensionada pela

combinação do momento fletor com o esforço cortante, obtidos pela *estrutura auxiliar* com rigidez Ki.

A tabela 5.2 informa os valores dos momentos fletores que são introduzidos pelas ligações, nas colunas das *estruturas auxiliares*. Deve-se lembrar que nestas últimas, os nós inferiores ou superiores referem-se sempre ao ponto de junção das barras fictícias dos modelos de nó com as colunas. (pontos S ou I na figura 4.3.b). Embora de pequena ordem de grandeza, estes momentos devem ser considerados na verificação das colunas.

Exceto para o nó superior do tramo superior das colunas, em geral o momento fletor introduzido é menor que o momento fletor atuante na extremidade das viga. Isto porque o momento introduzido é dividido entre os tramos de coluna acima e abaixo da viga.

Estrutura	Rigid	ez	COLUNA	COLUNAS Momento Fletor Introduzido (kN×cm					
Analisada	das Ligações		Inferior	Intermediária		Superior			
	(kN×cm/rad)		Nó Sup.	Nó Inf.	Nó Sup.	Nó Inf.	Nó Sup.		
Cant. Simples	Inicial =	76.403	969	1.352	922	1.359	2.285		
	Final =	35.981	819	1.122	760	1.136	1.920		
Cant. Duplas	Inicial =	444.399	1.881	2.777	1.976	2.740	4.438		
	Final =	364.507	1.733	2.543	1.797	2.512	4.095		
Ch. Topo	Inicial =	331.286	1.658	2.425	1.709	2.399	3.920		
	Final =	254.092	1.483	2.150	1.503	2.132	3.510		
Ch. Extremidade	Inicial =	2.180.817	3.207	4.918	3.684	4.812	7.418		
	Final =	287.061	1.677	2.441	1.703	2.401	3.962		

 Tabela 5.2 - Momentos fletores introduzidos nas extremidades das colunas.

Com o objetivo de estudar melhor qual a restrição à rotação oferecida pelos modelos de nó nas extremidades das colunas, foi feita uma análise de flambagem

elástica das *estruturas auxiliares*, utilizando-se o software específico SUPERSAP [25]. A mesma análise foi realizada para a *estrutura convencional*, para posterior comparação dos resultados. A figura 5.3 indica o carregamento unitário que foi aplicado na estrutura contraventada. Com o resultado da análise é possível obter-se um fator multiplicador (m) tal que a carga crítica de flambagem da estrutura será m vezes maior que o carregamento aplicado. Com isto, pode-se determinar o valor do coeficiente de flambagem K dos três tramos das colunas. Por exemplo, para os tramos inferiores das colunas têm-se:

$$m \times 3 = \frac{\pi^2 \times E \times I}{(K \times L)^2} \qquad \qquad \therefore \qquad \qquad k = \frac{\pi}{L} \times \sqrt{\frac{E \times I}{3 \times m}}$$

onde E e I indicam o módulo de elasticidade e o momento de inércia das colunas no plano da estrutura contraventada. O termo L corresponde ao comprimento destravado das colunas que é de 300 cm. (figura 5.1).

Fig. 5.2 - Análise de flambagem elástica da estrutura contraventada.

Estrutura	Rigidez das Ligações	COLUN	AS: Coeficien	tes de Flam	bagem K
Analisada	(kN×cm/rad)	Inferior	Intermediária	Superior	% Redução
Convencional		0,987	1,209	1,710	
Cant. Simples	Inicial = 76.403	0,980	1,201	1,698	0,66%
	Final = 35.981	0,984	1,205	1,704	0,34%
Cant. Duplas	Inicial = 444.399	0,965	1,181	1,671	2,28%
	Final = 364.507	0,967	1,184	1,675	2,04%
Ch. Topo	Inicial = 331.286	0,968	1,186	1,677	1,92%
	Final = 254.092	0,971	1,189	1,682	1,63%
Ch. Extremidade	Inicial = 2.180.817	0,940	1,151	1,628	4,79%
	Final = 287.061	0,968	1,186	1,677	1,92%

 Tabela 5.3 - Comparação entre os coeficientes de flambagem das colunas.

Como já era esperado, nas *estruturas auxiliares* houve uma redução dos valores dos coeficientes de flambagem das colunas. Esta redução foi menor nas estruturas com ligações em cantoneiras simples, que apresentam valores de rigidez mais baixos. A redução do coeficiente K foi maior nas estruturas com ligações com chapa de extremidade, que apresentam uma rigidez inicial proporcionalmente mais elevada.

Apesar de pouco significativas, as reduções nos coeficientes de flambagem poderiam ser levadas em conta no dimensionamento das colunas. Entretanto, deve-se lembrar que as colunas estariam sujeitas à flexão normal composta, uma vez que o momento fletor introduzido pelas ligações (tabela 5.2) deveria ser levado em conta na verificação.

5.2 Exemplo 2: Pórtico com Ligações Rígidas

Será utilizado o sistema ATRIUM-LIG para uma análise elástica do pórtico deslocável representado na figura 5.3. Neste pórtico, todas as ligações viga-coluna são classificadas como rígidas. As bases serão consideradas rotuladas para que a estabilidade da edificação seja garantida somente pelas ligações viga-coluna.

Basicamente, serão realizadas duas análises: uma em primeira ordem e outra em segunda ordem. Desta forma, existirão duas situações de cálculo para a *estrutura convencional*: em 1^a e 2^a ordem.

Para cada situação de cálculo da *estrutura convencional*, serão geradas duas *estruturas auxiliares*; uma com todas as ligações viga-coluna do tipo parafusada com chapa de topo estendida e a outra com todas as ligações viga-coluna do tipo soldada. O Anexo A.2 fornece todos os relatórios com os dados das estruturas envolvidas neste exemplo. Os arquivos que tiverem o sufixo K1 referem-se às *estruturas auxiliares*. Ao todo, serão 6 estruturas, que podem ser resumidas em dois grupos:

Grupo 2 - Análise em Segunda Ordem:

Arquivo 4: CONV2 Estrutura Convencional; Arquivo 5: PAR2K1 Estrutura Auxiliar, Ligações Parafusadas com Chapa de Topo Estendida; Arquivo 6: SOL2K1 Estrutura Auxiliar, Ligações Soldadas.

Os perfis utilizados no pórtico da figura 5.3 serão **I** soldados. Logo, na geração das *estruturas auxiliares* com ligações soldadas, o sistema ATRIUM-LIG considerará as flexibilidades de introdução (item 3.4.2.1.b) de acordo com o trabalho de Queiroz [23]. Para as *estruturas auxiliares* com ligações parafusadas, as flexibilidades de ligação e/ou introdução (item 3.4.2.2) serão consideradas seguindo as recomendações do ENV 1993-1-1 [8].

Grupo 1 - Análise em Primeira Ordem:
 Arquivo 1: CONV1 Estrutura Convencional;
 Arquivo 2: PAR1K1 Estrutura Auxiliar, Ligações Parafusadas com Chapa de Topo Estendida;
 Arquivo 3: SOL1K1 Estrutura Auxiliar, Ligações Soldadas.

Fig. 5.3 - Pórtico com ligações rígidas: estrutura convencional.

As ligações viga-coluna definidas para o pórtico da figura 5.3 obedecem às considerações feitas no item 3.1 bem como às prescrições da NBR 8800 [6]. Será utilizado o aço ASTM A36, tanto para os perfis quanto para os enrijecedores horizontais e chapas de ligação. Os eletrodos são AWS E70XX. Nas ligações parafusadas, serão utilizados sempre quatro parafusos simetricamente dispostos em relação à mesa

tracionada da viga. Os parafusos serão do tipo ASTM A325N (diâm. = 31,75 mm). As figuras 4.2.d, e 4.2.e representam a geometria das conecções sendo os parâmetros para cálculo de rigidez dados por:

Ligação com Chapa de Top	o Estendida:	
$d_v = 55.00 \text{ cm}$:	$b_{\rm p} = 25.00$ cm:	$t_i = 0.80$ cm:
$t_{\rm fv} = 1.90 \rm cm;$	$t_{\rm p} = 3.15 {\rm cm};$	d = 3.75 cm:
$d_c = 30,00 \text{ cm};$	$c_e = 10,00 \text{ cm};$	g = 11.00 cm;
$b_{fc} = 25,00 \text{ cm};$	$s_v = 0.00$ cm (solda penetração);	c = 10.90 cm;
$t_{fc} = 3,15 \text{ cm};$	$b_s = 9,55 \text{ cm};$	$v_s = 265,00$ cm;
$t_{wc} = 1,90 \text{ cm};$	$t_s = 0.80 \text{ cm};$	$y_i = 265,00$ cm.
$s_c = 0,80 \text{ cm};$	$b_i = 9,55 \text{ cm};$	
Ligação Soldada:		
$d_v = 55,00$ cm;	$s_c = 0.80 \text{ cm};$	$y_s = 265,00$ cm;
$b_{fy} = 25,00 \text{ cm};$	$s_v = 0.00$ cm (solda penetração);	$y_i = 265,00$ cm.
$t_{fv} = 1,90 \text{ cm};$	$b_s = 9,55 \text{ cm};$. , , , , , , , , , , , , , , , , , , ,
$d_c = 30,00 \text{ cm};$	$t_s = 0.80 \text{ cm};$	
$b_{fc} = 25,00 \text{ cm};$	$b_i = 9,55 \text{ cm};$	
$t_{fc} = 3,15 \text{ cm};$	$t_i = 0,80 \text{ cm};$	
$t_{wc} = 1,90$ cm;		

Os parâmetros y_s e y_i indicam os prolongamentos das colunas acima e abaixo das mesas superior e inferior das vigas. Para que a propagação dos esforços concentrados na alma da coluna seja levada em conta na formação das constantes de mola (tração e compressão nas ligações soldadas e compressão nas ligações parafusadas) os valores de y_s e y_i devem ser superiores ao comprimento b_{ef1} (itens: 3.4.2.1.b e 3.4.2.2). Assim sendo, para que em todas as ligações do pórtico o comprimento b_{ef1} possa ser desenvolvido, foi adotado $y_s = y_i = 265$ cm. Desta forma, em uma mesma *estrutura auxiliar*, as ligações na extremidade das barras 18, 19, 20 e 21 terão as mesmas constantes de mola que as demais ligações do pórtico.

Conforme citado anteriormente, as *estruturas convencionais* e *auxiliares* envolvidas neste exemplo serão submetidas a análises em 1^a e 2^a ordens. A análise em 2^a ordem será baseada na consideração do efeito P Δ através do método da carga horizontal equivalente, recomendado pela NBR 8800 [6] em seu anexo L. Neste método, após a análise em 1^a ordem considera-se uma situação de equilíbrio da estrutura deformada. A figura 5.4 mostra a geometria dos pórticos considerados. Os valores P₀, P₁ e P₂

correspondem às parcelas das cargas verticais da edificação que estão na área de influência do pórtico nos níveis 0, 1 e 2 respectivamente. O deslocamento horizontal (Δ_0 , Δ_1 , $\Delta_2 e \Delta_3$) no nível de cada pavimento do pórtico gera o desenvolvimento de esforços cortantes (V_0 , $V_1 e V_2$) para satisfazer o equilíbrio de forças da estrutura deformada. Logo, na análise em 2^a ordem, devem ser acrescidos os esforços horizontais H₀, H₁, H₂ e H₃ às cargas horizontais aplicadas no nível de cada pavimento.

$$H_{3} = V_{2}$$

$$V_{2} = \frac{P_{2} \times (\Delta_{3} - \Delta_{2})}{L}$$

$$H_{2} = V_{1} - V_{2}$$

$$H_{1} = V_{0} - V_{1}$$

$$V_{0} = \frac{(P_{2} + P_{1} + P_{0}) \times (\Delta_{1} - \Delta_{0})}{L}$$

$$H_{0} = -V_{0}$$

Fig. 5.4 - Análise em 2^a ordem (efeito P Δ): método da carga horizontal equivalente.

O processo anteriormente descrito é realizado várias vezes (a partir da estrutura analisada em 1^a ordem) até que uma convergência seja atingida; ou seja, quando forem determinados os valores de H_0 , H_1 , H_2 e H_3 com os quais não exista uma variação significativa dos deslocamentos horizontais.

Conforme citado, o Anexo A.2 fornece os relatórios das análises (em 1^a e 2^a ordens) realizadas. Em todas as análises, observa-se que nas extremidades das vigas os momentos fletores provocam tração na face superior das mesmas. Logo nas ligações viga-coluna, as constantes de mola superior e inferior (K_{sup} e K_{inf} ; *estruturas auxiliares*) trabalharão à tração e à compressão, respectivamente.

Nas *estruturas auxiliares* com ligações parafusadas e soldadas as constantes de mola (rigidez) inferior e superior, calculadas pelo sistema ATRIUM-LIG são:

Ligações Parafusadas:	Ligações Soldadas:
$K_{sup} = 20.586 \text{ kN/cm} (tração)$	K _{sup} = 56.791 kN/cm (tração)
$K_{inf} = 63.986 \text{ kN/cm} (\text{compressão})$	K _{inf} = 56.791 kN/cm (compressão)

Para as ligações parafusadas há uma rigidez menor na região de introdução dos esforços de tração, em comparação com as ligações soldadas. Isto porque nesta região (item 3.2) a flexibilidade de ligação assume valores consideráveis, influindo no cálculo da constante de mola de tração (equações 3.15 e 3.17; item 3.4.2.2). Na região de introdução dos esforços de compressão há uma rigidez maior, em comparação com as ligações soldadas. Tal fato deve-se em função da presença da chapa de topo, que contribui para abrandar o efeito de compressão na alma da coluna, aumentado o comprimento efetivo b_{fe1} (equação 3.19; item 3.4.2.2).

As tabelas 5.4 e 5.5 exibem a variação (em %) dos momentos fletores e dos deslocamentos verticais no meio do vão das vigas das *estruturas auxiliares*, em relação às da *estrutura convencional*. A tabela 5.4 resume as variações para a análise em 1^a ordem enquanto que a tabela 5.5 refere-se à análise em 2^a ordem.

VIGAS		QUERDO		VÃO DIREITO				
Pavtos 01, 02 03	Variação	Mom. F	letor (%)	Variação	Variação	Mom.	Fletor (%)	Variação
ANÁLISE EM	Apoio	Meio do	Apoio	Flecha	Apoio	Meio d	lo Apoio	Flecha
1 ^a ORDEM	Esquerdo	Vão	Direito	(%)	Esquerdo	Vão	Direito	(%)
ESTRUTURA ANALISADA				PAVIME	NTO 03			
Lig. Parafusadas	-9,00%	7,67%	-13,21%	7,02%	-13,43%	7,80%	. -8,86%	7,16%

Lig. Soldadas	-8,15%	3,38%	-9,14%	1,92%	-9,18%	3,48%	-8,20%	2,03%
ESTRUTURA ANALISADA				PAVIME	NTO 02			
Lig. Parafusadas	-5,67%	7,83%	-14,07%	7,30%	-15,22%	8,28%	-5,70%	7,90%
Lig. Soldadas	-2,89%	2,22%	-10,36%	0,13%	-11,04%	2,57%	-3,31%	0,59%
ESTRUTURA ANALISADA		PAVIMENTO 01						
Lig. Parafusadas	-7,41%	7,99%	-13,28%	8,26%	-15,80%	9,00%	-6,45%	9,75%
Lig. Soldadas	-5,91%	2,80%	-9,01%	1,22%	-10,65%	3,44%	-5,14%	2,06%

Tabela 5.4 - Análise em **1ª Ordem**; Variações (em %) dos momentos e do deslocamento vertical das **Vigas**. Comparações em relação à *estrutura convencional*.

VIGAS	,	VÃO ES	QUERDO			VÃO DI	REITO	
Pavtos 01, 02 03	Variação	Mom. F	letor (%)	Variação	Variação	Mom. Fl	etor (%)	Variação
ANÁLISE EM 2ª ORDEM	Apoio Esquerdo	Meio do Vão	Apoio Direito	Flecha (%)	Apoio Esquerdo	Meio do Vão	Apoio Direito	Flecha (%)
ESTRUTURA ANALISADA				PAVIME	NTO 03			
Lig. Parafusadas	-8,99%	7,67%	-13,21%	7,02%	-13,43%	7,80%	-8,88%	7,16%
Lig. Soldadas	-8,11%	3,38%	-9,16%	1,92%	-9,16%	3,48%	-8,24%	2,03%
ANALISADA				PAVIME	NTO 02			
ANALISADA	-5,63%	7,78%	-13,99%	PAVIME 7,24%	NTO 02 -15,31%	8,31%	-5,72%	7,93%
ANALISADA Lig. Parafusadas Lig. Soldadas	-5,63% -2,73%	7,78% 2,19%	-13,99% -10,39%	PAVIME 7,24% 0,08%	NTO 02 -15,31% -11,02%	8,31% 2,61%	-5,72% -3,45%	7,93% 0,63%
ANALISADA Lig. Parafusadas Lig. Soldadas ESTRUTURA ANALISADA	-5,63% -2,73%	7,78% 2,19%	-13,99% -10,39%	PAVIME 7,24% 0,08% PAVIME	NTO 02 -15,31% -11,02% NTO 01	8,31% 2,61%	-5,72% -3,45%	7,93% 0,63%
ANALISADA Lig. Parafusadas Lig. Soldadas ESTRUTURA ANALISADA Lig. Parafusadas	-5,63% -2,73% -7,76%	7,78% 2,19% 7,82%	-13,99% -10,39% -12,92%	PAVIME 7,24% 0,08% PAVIME 8,03%	NTO 02 -15,31% -11,02% NTO 01 -16,31%	8,31% 2,61% 9,11%	-5,72% -3,45% -6,25%	7,93% 0,63% 9,92%

Tabela 5.5 - Análise em **2ª Ordem**; Variações (em %) dos momentos e do deslocamento vertical das **Vigas**. Comparações em relação à *estrutura convencional*.

COLUNAS	CANTO E	SQUERDO	CEN	TRO	CANTO	DIREITO
ANÁLISE EM	Var. Mom.	Fletor (%)	Var. Mom.	Fletor (%)	Var. Mom.	Fletor (%)
1 ^a ORDEM	Nó Inferior	Nó Superior	Nó Inferior	Nó Superior	Nó Inferior	Nó Superior
ESTRUTURA			TRECHO S	SUPERIOR		
ESTRUTURA ANALISADA			TRECHO	SUPERIOR		

Lig. Soldadas	-10,68%	-6,24%	-18,60%	-16,41%	-10,75%	-6,81%	
ESTRUTURA ANALISADA			TRECHO INT	ERMEDIÁRIO			
Lig. Parafusadas	-8,05%	-11,88%	-14,51%	-13,31%	-10,08%	-12,10%	
Lig. Soldadas	-6,09%	-8,77%	-12,85%	-15,23%	-7,59%	-10,20%	
ESTRUTURA ANALISADA		TRECHO INFERIOR					
Lig. Parafusadas	-	9,34%		-7,48%		-2,70%	
Lig. Soldadas		7,41%		-7,46%		-3,35%	

Tabela 5.6 - Análise em **1ª Ordem**; Variações (em %) dos momentos fletores nas extremidades das **Colunas**. Comparações em relação à *estrutura convencional*.

COLUNAS ANÁLISE EM 2ª ORDEM	CANTO E Var. Mom. Nó Inferior	SQUERDO Fletor (%) Nó Superior	CEN Var. Mom. Nó Inferior	TRO Fletor (%) Nó Superior	CANTO Var. Mom. Nó Inferior	DIREITO Fletor (%) Nó Superior		
ESTRUTURA ANALISADA			TRECHO	SUPERIOR				
Lig. Parafusadas	-12,45%	-6,75%	-23,34%	-13,09%	-12,86%	-7,15%		
Lig. Soldadas	-10,72%	-6,20%	-20,19%	-17,44%	-10,71%	-6,85%		
ESTRUTURA								
ANALISADA								
Lig. Parafusadas	-7,84%	-11,98%	-14,63%	-12,95%	-10,38%	-11,98%		
Lig. Soldadas	-6,15%	-8,52%	-13,63%	-16,36%	-7,69%	-10,37%		
ESTRUTURA ANALISADA			TRECHO	INFERIOR				
Lig. Parafusadas		18,50%		-6,83%		-3,04%		
Lig. Soldadas		19,51%8,70%4,39%						

Tabela 5.7 - Análise em **2ª Ordem**; Variações (em %) dos momentos fletores nas extremidades das **Colunas**. Comparações em relação à *estrutura convencional*.

Da mesma forma, as tabelas 5.6 (1^a ordem) e 5.7 (2^a ordem) referem-se à variação dos momentos fletores nas extremidades das colunas das *estruturas auxiliares*, em relação aos da *estrutura convencional*. Em todas as tabelas citadas os percentuais negativos (positivos) indicam diminuição (aumento) da grandeza considerada. Nas *estruturas*

auxiliares, os valores dos momentos fletores nas extremidades das vigas e das colunas referem-se sempre às solicitações atuantes nos pontos D ou E e S ou I da figura 4.3.b.

Ao comparar-se os dados da tabela 5.4 (vigas, 1^a ordem) com os da tabela 5.5 (vigas, 2^a ordem) percebe-se muita semelhança entre as variações indicadas. Isto mostra coerência nos resultados, indicando um bom funcionamento do modelo de nó de Queiroz [11] mesmo nas análises em que são levadas em conta o efeito P Δ . A rotação relativa entre as vigas e as colunas é notada através da diminuição dos momentos fletores nas extremidades, com conseqüente aumento dos momentos fletores e deslocamentos verticais no centro das vigas. Em comparação com as ligações soldadas, percebe-se que as ligações parafusadas propiciaram uma maior redução de momentos nas extremidades bem como um maior aumento dos momentos e deslocamentos no centro da viga. Tal fato relaciona-se com a maior flexibilidade de introdução na região tracionada destas conecções. O maior grau de rigidez das ligações soldadas pode ser comprovado observando-se os pequenos aumentos no deslocamento vertical (de 0,08% a 2,23% na tabela 5.5).

Comparando-se os resultados apresentados na tabela 5.6 (colunas, 1^a ordem) com os da tabela 5.7 (colunas, 2^a ordem) percebe-se também uma semelhança, a exemplo do observado para as vigas. De uma forma geral, em ambas as análises (tabelas 5.6 e 5.7) observa-se que a redistribuição de esforços proporcionada pelos modelos de nó reduz os momentos atuantes nas extremidades das colunas, exceto para o trecho inferior (nó superior) da coluna do canto esquerdo. Neste caso, percebe-se que a análise em 2^a ordem ampliou ainda mais este incremento, devido ao efeito P Δ (para ligações soldadas 7,41% em 1^a ordem contra 19,51% em 2^a ordem). Entretanto, como os valores absolutos do momentos atuantes neste ponto não são elevados, este aumento não é significativo.

A tabela 5.8 exibe os valores dos deslocamentos horizontais no nível do pavimento 3 (Δ_3 na figura 5.4). Comparou-se os resultados das análises em 1^a e 2^a ordens. Intuitivamente, seria esperado um significativo aumento destes deslocamentos para as *estruturas auxiliares*, principalmente nas estruturas com ligações parafusadas, onde é considerável a flexibilidade de ligação nas regiões tracionadas das ligações. Entretanto,

observando-se os valores indicados na tabela 5.8, verifica-se que para as *estruturas auxiliares* com ligações parafusadas, praticamente não existiu aumento nos deslocamentos horizontais (0,91%, 0,82%). Para as *estruturas auxiliares* com ligações soldadas, o deslocamento horizontal foi ligeiramente reduzido (6,53%, 7,58%). Estas variações podem ser justificadas pelo fato de que, nas análises, a semi-rigidez das ligações foi considerada através do modelo de nó geométrico. Com isto, o pequeno encurtamento no comprimento das barras da estrutura contribui para aumentar ligeiramente a rigidez (*EI/L*) das mesmas.

Logo, a pequena rotação relativa (viga-coluna) admitida pelos modelos de nó possibilita alguma redução dos momentos fletores (tabelas 5.4, 5.5, 5.6 e 5.7), com uma pequena influência nos valores dos deslocamentos horizontais.

DESLOCAMENTO	ANÁLISE EN	I 1ª ORDEM	ANÁLISE EM 2ª ORDEM					
HORIZONTAL	Desl. Δ_3 (cm)	Variação (%)	Desl. Δ_3 (cm)	Variação (%)				
EST. ANALISADA		PAVIMENTO 3						
Convencional	0,659		0,857					
Lig. Parafusadas	0,665	0,91%	0,864	0,82%				
Lig. Soldadas	0,616	0,616 -6,53% 0,792 -7,58%						

Tabela 5.8 - Deslocamentos horizontais no pavimento 3. Variações em relação àestrutura convencional.

A exemplo do realizado no item 5.1, também neste exemplo foi utilizado o software SUPERSAP [25] para a realização da análise de flambagem elástica da *estrutura convencional* e das *estruturas auxiliares*. O carregamento unitário foi aplicado conforme a representação da figura 5.5, de forma que a carga crítica do pórtico seja determinada, considerando-se que as constantes de mola K_{sup} e K_{inf} trabalhem tracionadas e comprimidas, respectivamente.

Fig. 5.5 - Análise de flambagem elástica do pórtico deslocável.

FLAMBAGEM	COLUNAS	DE CANTO	COLUNAS CENTRAIS		
ELÁSTICA	Coeficiente K	Variação (%)	Coeficiente K	Variação (%)	
EST. ANALISADA		TRECHO S	SUPERIOR		
Convencional	4,66		3,33		
Lig. Parafusadas	4,93	5,79%	3,51	5,41%	
Lig. Soldadas	4,88	4,72%	3,49	4,80%	
EST. ANALISADA		TRECHO INTI	ERMEDIÁRIO		
Convencional	3,30		2,36		
Lig. Parafusadas	3,49	5,76%	2,49	5,51%	
Lig. Soldadas	3,43	4,55%	2,46	4,24%	
EST. ANALISADA		TRECHO	INFERIOR		
Convencional	2,70		1,92		
Lig. Parafusadas	2,85	5,56%	2,03	5,73%	
Lig. Soldadas	2,82	4,44%	2,01	4,69%	

Tabela 5.9 - Coeficientes de flambagem K. Comparações em relação à estruturaconvencional.

Em um procedimento semelhante ao descrito no item 5.1, foram determinados os coeficientes de flambagem K dos três tramos das colunas, considerando-se o comprimento destravado dos mesmos igual a 320 cm. Estes valores apresentam-se listados na tabela 5.9. Nesta tabela, os incrementos dos coeficientes de flambagem K das *estruturas auxiliares* em relação a *estrutura convencional* variam entre aproximadamente 5 e 6%. Com isto, observa-se uma pequena redução na restrição à rotação (oferecida pelos modelos de nó) nas extremidades das colunas. Como esta redução de restrição é reduzida, não haveriam grandes modificações num possível dimensionamento das colunas do pórtico, utilizando-se os coeficientes de flambagem das *estruturas auxiliares*.

6. CONSIDERAÇÕES FINAIS

O cálculo da rigidez das ligações abordadas e a formulação dos modelos de nó adotados foram devidamente apresentados. A utilização automática destes recursos foi devidamente implementada em um programa de análise de estruturas reticuladas. Desta forma, é possível ao projetista considerar de forma simplificada, a influência da semirigidez das ligações nas respostas da estrutura. As análises realizadas nos exemplos 5.1 e 5.2 indicaram ser possível obter alguma vantagem financeira desta influência (reduções de momentos fletores nas vigas ou colunas, redução de deslocamentos nas vigas, alterações no comprimento de flambagem das colunas, etc ...).

Em relação às ligações classificadas como flexíveis, alguns comentários podem ser feitos:

- Pensou-se em abordar estas conecções, adotando-se sempre a rigidez tangente inicial

 (K_i) e a rigidez secante última (K_u). Isto porque não se dispõe de um processo
 matemático que auxilie no cálculo do grau de rigidez real (K_{real}) destas ligações.

 Porém, publicações recentes [13] sugerem que sob condições normais de utilização

 da estrutura, pode-se adotar como rigidez das ligações 50% de K_i. Entretanto, como
 foi visto no exemplo 5.1, para que esta simplificação seja aceita, trabalhos
 posteriores podem ser realizados.
- O modelo de nó para ligações flexíveis foi formulado supondo-se que a rigidez destas ligações participe apenas da resistência à cargas verticais aplicadas na estrutura. Portanto, a estabilidade da estrutura, bem como a resistência à possíveis cargas horizontais devem ser garantidas por outros elementos que não as ligações viga-coluna (contraventamentos, outras estruturas associadas, núcleos de concreto, etc...)
- No sentido de melhorar a precisão dos resultados, trabalhos posteriores podem ser realizados, propondo-se inclusive variações na geometria do modelo de nó, analisando as respostas deste para cargas não simétricas.

 Para efeito de dimensionamento, ao considerar as ligações flexíveis como semirígidas deve-se levar em conta a existência de um momento fletor atuante na ligação, além do esforço cortante usual.

Em relação as estruturas classificadas como rígidas observa-se que:

- As constantes de mola (esforços introduzidos de tração e compressão) foram determinadas com base no comportamento elástico da ligação. Esta consideração é válida, uma vez que estas conecções apresentam um alto grau de rigidez à rotação e em situações normais de utilização das estruturas, dificilmente os esforços atuantes na ligação ultrapassam a fase elástica da mesma.
- As considerações sobre as flexibilidades (tração/compressão) das ligações soldadas com perfis soldados foram baseadas em resultados de ensaios e de análises numéricas (método dos elementos finitos) realizados por Queiroz [23]. Porém, para ligações parafusadas ou soldadas com perfis laminados adotou-se a formulação do ENV 1993-1-1 [8]. Trabalhos posteriores podem ser realizados com ligações parafusadas, com o intuito de calibrar os coeficientes de rigidez (k_i, itens 3.4.2.1.a e 3.4.2.2). Desta forma, estes coeficientes estariam adaptados aos perfis soldados usuais no Brasil.
- A geometria do modelo de nó proposto [11] reflete de forma satisfatória o comportamento da ligação, captando inclusive as distorções por cisalhamento existentes no painel da coluna. Além disto, as flexibilidades existentes têm efeito localizado na região da ligação. Por isto é fundamental que a simulação da semi-rigidez das ligações seja feita de forma macroscópica, através de um modelo que retrate a geometria da conecção.

Uma possível desvantagem da utilização de modelos de nó é o fato de que o número de nós e barras da estrutura aumentam bastante. Porém, a introdução destes nós e barras adicionais deve ser automatizada, com a utilização de um software específico. Além disto, com o constante incremento das ferramentas computacionais disponíveis no mercado, este aumento no número de nós e barras é um problema facilmente contornável.

ANEXOS

A.1 Relatórios de Computador: Item 5.1

NOME DO ARQUIVO : conv

ESTRUTURA CONTRAVENTADA - LIGACOES FLEXIVEIS

TSTRUTURA CONVENCIONAL

MERO	DE	NOS					••	:	11
UMERO	DE	MATER	RIA	IS				:	1
NUMERO	DE	SECO	ES				• •	:	3
NUMERO	DE	BARRA	AS				• •	:	18
NUMERO	DE	CARRI	EGAI	MEN	TOS			:	1
NUMERO	DE	COMBI	INA	COE	s .		••	:	0
TEMPERA	TU I	RA DE	RE:	FER	ENC	ΓA	••	:	25.00
TIPO DE	E PE	ERFIL	UT:	ILI	ZADO	Σ.		:	Soldado

COORDEN	ADAS NODAIS		RESTRICOES	NODAIS
NO	Х	Y	ΤΧ ΤΥ	RZ
1	0.00	0.00	1 1	0
2	0.00	300.00	0 0	0
3	0.00	600.00	0 0	0
4	0.00	900.00	0 0	0
5	300.00	300.00	0 0	0
6	300.00	600.00	0 0	0
7	300.00	900.00	0 0	0
8	600.00	0.00	1 1	0
9	600.00	300.00	0 0	0
10	600.00	600.00	0 0	0
11	600.00	900.00	0 0	0

NAO FORAM ESPECIFICADAS AS LIGACOES VIGA-COLUNA

TABELA	DE MAT	ERIAIS							
NUMERO	MOD.	ELASTICI	DADE	COEF. POISS	ON CO	EF. DILT	TERMICA	Fy	
1		2	20500	0.1	30	0.	.000010000	25.00	40.
TABELA	DE SEC	OES							
NUMERO	~~ ~~~	о <u>сі</u> ,	REA		IZ	FATOF	R FORMA		
1		80.	500	9580.9	990		0.22		
2		62.	975	13910.	300		0.32		
3		37.	000	366.0	000		0.52		
CONFORT									
INECTI	VIDADE	E PROPR	TEDADES	DE BARRAS					
BARRA	NUI	ГОИ	SECAO	MATERIAL	LIBE	RACUES			
1	Ţ	2	1	1	000	000			
2	2	3	1	1	000	000			
٤	3	4	1	1	000	000			
4	8	9	1	1	000	000			
5	9	10	1	1	000	000			
6	10	11	1	1	000	000			
7	2	5	2	1	001	000			
8	5	9	2	1	000	001			
9	3	6	2	1	001	000			
10	6	10	2	1	000	001			
11	4	7	2	1	001	000			
12	7	11	2	1	000	001			
13	1	9	3	1	001	001			
14	2	8	3	1	001	001		•	
15	2	10	3	1	001	001			
16	3	9	3	1	001	001			
17	3	11	3	1	001	001			

Fι 0(

8	4		10		3		1	0	01	001			
EGAMEN	то	No.	1	-	CARREGAM	ento	MAJORAI	DO	E	COMBINADO			
AS NOD	AIS	ı											
		FΧ			FY		M7.						
	Ο.	000			-4.400		0.000						
	Ο.	000			-4.400		0.000						
	Ο.	000			-4.400		0.000						
	Ο.	000			-4.400		0.000						
	Ο.	000			-4.400		0.000						
	0.	000			-4.400		0.000						
AS NAS TIPO	BA	RRAS	5										
1.DLxy			DI		DF		VI			VF			
2.DLX			DI		DF		VI			VF			
3.MOME			DI		DF		VI			VF			
4.CONC			D)	FX		FY			MZ			
5.TEMP 5.AML		T(A	у+) ML1		T(y-) AML2		H(y) AML3		į	AML4	AML5		AML6
1		ο.	000		300.000	-	0.403	-	-0	. 403			
1		0.	000		300.000		0.403	-	-0	403			
1		0.	000		300.000	_	0.403	-	-0.	403			
1		0.	000		300.000	_	0.403	-	-0.	.403			
1		0.	000		300.000		0.403	-	-0.	403			
1		0.	000		300.000	-	0.403	-	-0.	.403			
	8 EGAMEN AS NOD AS NOD AS NOD TIPO L.DLXY 2.DLX 3.MOME 4.CONC 5.TEMP 5.AML 1 1 1 1 1 1 1	8 4 EGAMENTO AS NODAIS 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	8 4 EGAMENTO No. AS NODAIS FX 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.0000	8 4 10 EGAMENTO No. 1 AS NODAIS FX 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000000	8 4 10 EGAMENTO NO. 1 - AS NODAIS FX 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.000000 0.00000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 4 10 3 EGAMENTO NO. 1 - CARREGAMENTO AS NODAIS FX FY 0.000 -4.400 0.000 -4.400	$\begin{array}{c cccccc} 8 & 4 & 10 & 3 & 1 \\ \hline \mbox{EGAMENTO NO.} & 1 & - & \mbox{CARREGAMENTO MAJORAJ} \\ \hline \mbox{AS NODAIS} \\ \hline \mbox{FX} & FY & \mbox{MZ} \\ \hline \mbox{0.000} & -4.400 & 0.000 \\ \hline \mbox{0.000} & -4.400 & 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccccc} 8 & 4 & 10 & 3 & 1 & 001 & 001 \\ \hline & EGAMENTO NO. & 1 - CARREGAMENTO MAJORADO E COMBINADO \\ \hline & AS NODAIS \\ & FX & FY & MZ \\ & 0.000 & -4.400 & 0.000 \\ & 0.000 & -4.400 & 0.000 \\ & 0.000 & -4.400 & 0.000 \\ & 0.000 & -4.400 & 0.000 \\ & 0.000 & -4.400 & 0.000 \\ & 0.000 & -4.400 & 0.000 \\ \hline & 0.000 & -0.403 & -0.403 \\ \hline & 0.000 & 300.000 & -0.403 & -0.403 \\ \hline & 0.00$	8 4 10 3 1 001 001 EGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO AS NODAIS FX FY MZ 0.000 -4.400 0.000 0.000 -4.400 0.000 0.000 -4.400 0.000 0.000 -4.400 0.000 0.000 -4.400 0.000 0.000 -4.400 0.000 0.000 -4.400 0.000 AS NAS BARRAS TIPO 1.DLxy DI DF VI VF 2.DLx DI DF VI VF 3.MOME DI DF VI VF 3.MML AML1 AML2 AML3 AML4 AML5 1 0.000 300.000 -0.403 -0.403 1 0	8 4 10 3 1 001 001 EGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO AS NODAIS FX FY MZ 0.000 -4.400 0.000 0.000 -4.400 0.000 0.000 -4.400 0.000 0.000 -4.400 0.000 0.000 -4.400 0.000 0.000 -4.400 0.000 0.000 -4.400 0.000 AS NAS BARRAS TIPO 1.0Lxy DI DF VI VF 2.DLx DI DF VI VF 3.MOME DI DF VI VF 3.MOME DI DF VI VF 4.CONC D FX FY MZ 5.TEMP T(y+) T(y-) H(y) 5.AML AML1 AML2 AML3 AML4 AML5 1 0.000 300.000 -0.403 -0.403 1 0.000 300.000 -0.403 -

CARREGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO

DESLOCAMENTOS NODAIS

NO	TX	ТҮ	RZ
1	0.00000	0.00000	0.00004
2	-0.00761	-0.06624	0.00000
3	-0.00367	-0.11089	-0.00002
4	-0.00129	-0.13316	-0.00000
5	-0.00000	-2.46294	0.00000
6	-0.00000	-2.50759	0.00000
7	-0.00000	-2.52986	0.00000
8	0.00000	0.00000	-0.00004
9	0.00761	-0.06624	-0.00000
10	0.00367	-0.11089	0.00002
11	0.00129	-0.13316	0.00000
REACOES	DE APOIO		
NO			

NO	FORCA X	FORCA Y	MOMENTO Z
1	23.215	375.900	0.000
8	-23.215	375.900	0.000

RCOS	NAS EXTREMI	DADES DAS BA	RRAS	
.RA	CARREG.	AXIAL	CORTANTE Y	MOMENTO Z
1	1	364.362	-0.138	0.000
_		-364.362	0.138	-41.499
2	1	245.606	0.189	41.499
-		-245.606	-0.189	15.345
3	1	122.507	-0.051	-15.345

٠

		-122.507	0.051	0.000
4	1	364.362	0.138	0.000
-		- 364.362	-0.138	41.499
5	1	245.606	-0.189	-41.499
~		-245.606	0.189	-15.345
6	1	122.507	0.051	15.345
-		-122.507	-0.051	-0.000
/	1	-32.737	120.900	-0.000
•		32.737	0.000	18135.000
8	1	-32.737	0.000	-18135.000
•		32.737	120.900	0.000
9	1	-15.814	120.900	0.000
10		15.814	0.000	18135.000
10	1	-15.814	-0.000	-18135.000
	_	15.814	120.900	-0.000
ΤŦ	1	-5.534	120.900	0.000
1.0		5.534	0.000	18135.000
12	1	-5.534	0.000	-18135.000
10	_	5.534	120.900	-0.000
13	1	25.800	-0.000	0.000
1 4		-25.800	0.000	0.000
14	1	25.800	0.000	0.000
1 5	_	-25.800	-0.000	0.000
15	1	11.167	-0.000	0.000
10	_	-11.167	0.000	0.000
10	1	11.167	0.000	0.000
1 77		-11.167	-0.000	0.000
17	1	6.244	-0.000	0.000
10		-6.244	0.000	0.000
19	1	6.244	0.000	0.000
		-6.244	-0.000	0.000

*

"RACOES CANT. SIMPLES - LIG FLEX RIGIDEZ INICIAL

ATORIO NAO INCLUE BARRAS MODELOS DE NO

NUMERO NUMERO NUMERO NUMERO NUMERO "EMPERA _?O DI	DE NOS DE MATERIA DE SECOES DE BARRAS DE CARREGA DE COMBINA ATURA DE RE E PERFIL UT	IS MENTOS COES FERENCIA ILIZADO	11 1 3 18 1 0 25.00 Soldado			
COORDEN	ADAS NODAI	S	RESTRICOES	NODAIS		
NO	X	Ŷ	ТХ ТҮ	RZ		
1	0.00	0.00	1 1	0		
2	0.00	300.00	0 0	0		
3	0.00	600.00	0 0	0		
4	0.00	900.00	0 0	0		
5	300.00	300.00	0 0	0		
6 7	300.00	600.00	0 0	0		
י א	500.00	900.00	0 0	0		
9	600.00	300.00		0		
10	600.00	600.00	0 0	Ő		
11	600.00	900.00	0 0	0		
RIGIDE2	Z DAS LIGACO	DES VIGA-COLUI	NA			
BARRA:	7 NO I:	LIGACAO FLEX	IVEL CANTONEIRA	SIMPLES		
		K = 76403	kN.cm/rad			
BARRA:	8 NO J:	LIGACAO FLEX K = 76403	IVEL CANTONEIRA kN.cm/rad	SIMPLES		
BARRA:	9 NO I:	LIGACAO FLEX K = 76403	IVEL CANTONEIRA kN.cm/rad	SIMPLES		
BARRA:	10 NO J:	LIGACAO FLEX K = 76403	IVEL CANTONEIRA kN.cm/rad	SIMPLES		
BARRA:	11 NO I:	LIGACAO FLEX K = 76403	IVEL CANTONEIRA kN.cm/rad	SIMPLES		
BARRA:	12 NO J:	LIGACAO FLEX K = 76403	IVEL CANTONEIRA kN.cm/rad	SIMPLES		
TABELA	DE MATERIA	IS				
NUMERO 1	MOD. ELAS	FICIDADE COL 20500	EF. POISSON CO 0.30	DEF. DILT. TERMICA 0.000010000	Fy 25.00	F) 40.0
TABELA	DE SECOES					
NUMERO		AREA	IZ	FATOR FORMA		
1		80.500	9580.990	0.22		
2		62.975	13910.300	0.32	•	
3		37.000	366.000	0.52	-	
				÷		

CONECTIVIDADE E PROPRIEDADES DE BARRAS

DUNGUN	NO I	NO J	SECAO	MATERIAL	LIBER	ACOES		
1	1	2	1	1	000	000		
2	2	3	1	1	000	000		
3	3	4	1	1	000	000		
4	8	9	1	1	000	000		
5	9	10	1	1	000	000		
6	10	11	1	1	000	000		
7	2	5	2	1	001	000		
8	5	9	2	1	000	001		
9	3	6	2	1	001	000		
10	6	10	2	1	000	001		
11	4	7	2	1	001	000		
12	7	11	2	1	000	001		
13	1	9	3	1	001	001		
14	2	8	3	1	001	001		
15	2	10	3	1	001	001		
16	3	9	3	1	001	001		
17	3	11	3	1	001	001		
18	4	10	3	1	001	001		
							_	
CARREGA	MENTO I	No. 1 -	CARREGAN	IENTO MAJORAI	DOEC	OMBINADO)	
CARGAS	NODAIS							
NO		FX	FY	MZ				
2	0.0	000	-4.400	0.000				
3	0.0	000	-4.400	0.000				
4	0.0	000	-4.400	0.000				
9	0.0	000	-4.400	0.000				
10	0.0	000	-4.400	0.000				
11	0.0	000	-4.400	0.000				
CARGAS BAR. T	NAS BAI IPO	RRAS						
CARGAS BAR. T 1.D	NAS BAH IPO Lxy	RRAS	DI	vi vi		VF		
CARGAS BAR. T 1.D 2.D	NAS BAH IPO Lxy Lx	RRAS DI DI	DI	VI VI		VF VF		
CARGAS BAR. T 1.D 2.D 3.M	NAS BAH IPO Lxy Lx OME	RAS DI DI DI	DI DI DI	VI VI VI		VF VF VF		
CARGAS BAR. T 1.D 2.D 3.M 4.C	NAS BAH IPO LXY DLX OME ONC	RAS DI DI DI D	DI DI DI F2	YI VI VI VI VI		VF VF VF MZ		
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T	NAS BAI IPO Lxy Lx OME ONC EMP	RRAS DI DI DI T(y+)	DF DF DF T(y-)	YI VI VI YI YI H(Y)		VF VF VF MZ	NMT F	
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A	NAS BAI IPO Lxy DLx OME CONC EMP ML	RRAS DI DI DI T(y+) AML1	DF DF F7 T(y-) AML2	YI VI VI Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Al	VF VF VF MZ ML4	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A	NAS BAH IPO Lxy DLx OME CONC EMP ML 1	RRAS DI DI DI T(y+) AML1 0.000	DF DF DF T(y-) AML2 300.000	VI VI VI VI VI VI VI VI VI VI VI VI VI V	AI -0	VF VF VF MZ ML4	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8	NAS BAH IPO LXY DLX OME CONC EMP ML 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000	DF DF DF T(y-) AML2 300.000 300.000	VI VI VI VI VI VI VI VI VI VI VI VI VI V	Al -0	VF VF MZ ML4 403 403	AML5	AM L6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9	NAS BAH IPO LXY OME CONC EMP ML 1 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000 0.000	DF DF DF T(y-) AML2 300.000 300.000 300.000	VI VI VI VI VI VI VI VI FY H(Y) 2 AML3 0 -0.403 0 -0.403 0 -0.403	Al -0.4 -0.4 -0.4	VF VF MZ ML4 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10	NAS BAI IPO Lxy DLx OME CONC EMP ML 1 1 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000	DF DF DF T(y-) AML2 300.000 300.000 300.000 300.000	VI VI VI VI FY H(Y) AML3 O -0.403	Al -0.4 -0.4 -0.4 -0.4	VF VF MZ ML4 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11	NAS BAH IPO LXY OLX OME CONC EMP ML 1 1 1 1 1	RAS DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000	DF DF DF T(y-) AML2 300.000 300.000 300.000 300.000 300.000	VI VI VI VI FY H(y) AML3 O -0.403	Al -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ ML4 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12	NAS BAH TPO Lxy DLx OME CONC EMP ML 1 1 1 1 1 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DH DF F2 T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000	VI VI VI VI VI FY H(Y) AML3 O -0.403	Al -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12	NAS BAI TPO LXY OME CONC EMP ML 1 1 1 1 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000	DF DF DF T(y-) AML2 300.000 300.000 300.000 300.000 300.000	VI VI VI VI VI FY H(Y) AML3 O -0.403	Al -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA	NAS BAH TPO Lxy DLx OME COME CONC EMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DF DF F2 T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAM	VI VI VI FY H(Y) AML3 O -0.403	A) -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ ML4 403 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA DESLOCA	NAS BAH TPO Lxy DLx OME ONC EMP ML 1 1 1 1 1 1 MENTO M	RRAS DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DH DF F2 T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000	VI VI VI VI FY H(Y) AML3 O -0.403	Al -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 DO E CO	VF VF MZ ML4 403 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA DESLOCA NO	NAS BAI IPO LXY DLX OME CONC EMP ML 1 1 1 1 1 1 MENTO M MENTOS	RRAS DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DF DF DF T(y-) AML2 300.000 300.000 300.000 300.000 300.000 CARREGAN	VI VI VI VI VI VI VI VI VI VI FY H(Y) AML3 0 -0.403 0 -0.403	Al -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ ML4 403 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA DESLOCA NO 1	NAS BAH TPO LXY OME CONC EMP ML 1 1 1 1 1 1 MENTO M MENTO M MENTOS 0.00	RAS DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DF DF DF T(y-) AML2 300.000 300.000 300.000 300.000 300.000 CARREGAN TY 0.00000	VI VI VI VI VI VI VI VI VI VI VI VI VI V	A) -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA DESLOCA NO 1 2	NAS BAH IPO LXY OLX OME CONC EMP ML 1 1 1 1 1 1 MENTO M MENTO M MENTOS 0.00 -0.00	RAS DI DI DI T(y+) AML1 0.000	DF DF DF T(y-) AML2 300.000 300.000 300.000 300.000 300.000 CARREGAN TY 0.00000 -0.06611	VI VI VI VI VI VI VI VI VI VI VI VI VI V	A) -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 DO E CO	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA DESLOCA NO 1 2 3	NAS BAH TPO Lxy DLx OME CONC EMP ML 1 1 1 1 1 1 1 MENTO M MENTOS 0.00 -0.00	RAS DI DI DI T(y+) AML1 0.000	DH DF T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAN TY 0.00000 -0.06611 -0.11097	VI VI VI VI VI VI VI VI VI VI VI VI VI V	A) -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA DESLOCA NO 1 2 3 4	NAS BAH TPO Lxy DLx OME CONC EMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RAS DI DI DI T(y+) AML1 0.000	DH DF T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAN TY 0.00000 -0.06611 -0.11097 -0.13315	VI VI VI VI VI VI VI VI VI VI VI VI VI V	Al -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 DO E CO	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA DESLOCA NO 1 2 3 4 5	NAS BAH TPO Lxy DLx OME ONC EMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RAS DI DI DI T(y+) AML1 0.000	DH DF F2 T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAN TY 0.00000 -0.06611 -0.11097 -0.13315 -2.05449	VI VI VI VI VI VI VI VI VI VI VI VI VI V	Al -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 DO E CO	VF VF MZ ML4 403 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA DESLOCA NO 1 2 3 4 5 6	NAS BAH TPO Lxy DLx OME ONC EMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RAS DI DI DI DI T(y+) AML1 0.0000 0.0000 0.0000 0.0000 0.000000	DF DF DF T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAN TY 0.00000 -0.06611 -0.11097 -0.13315 -2.05449 -2.09165	VI VI VI VI VI VI VI VI VI VI VI VI VI V	A) -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA DESLOCA NO 1 2 3 4 5 6 7	NAS BAH TPO Lxy OLX OME OME OME ONC EMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RAS DI DI DI T(y+) AML1 0.0000 0.0000 0.0000 0.0000 0.000000	DF DF DF T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAN TY 0.00000 -0.06611 -0.11097 -0.13315 -2.05449 -2.09165 -2.13049	VI VI VI VI VI VI VI VI VI VI VI VI VI V	A) -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 DO E CO	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA DESLOCA NO 1 2 3 4 5 6 7 8	NAS BAH TPO Lxy OLX OME CONC EMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RAS DI DI DI T(y+) AML1 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	DH DF T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAN TY 0.00000 -0.06611 -0.11097 -0.13315 -2.05449 -2.09165 -2.13049 0.00000	VI VI VI VI VI VI M(Y) AML3 VI AML3 V -0.403 V -0.00028 V -0.00028 V -0.00028 V -0.00028 V -0.000028 V -0.00028 V -0.00028 V -0.00028 V -0.0000 V -0.00028 V -0.000028 V -0.0000 V -0.0000 V -0.00028 V -0.000028 V -0.000028 V -0.00028 V -0.000028 V -0.00028 V -0.000028 V -0.000028 V -0.000028 V -0.00000 V -0.000000 V -0.00000 V -0.00000 V -0.00000 V -0.000000 V -0.00000 V -0.00000 V -0.000000 V -0.000000 V -0.000000 V -0.000000 V -0.000000 V -0.000000 V -0.000000 V -0.000000 V -0.000000 V -0.00000000 V -0.00000000000000000000000000000000000	Al -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 DO E CO	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6

9	0.00856	-0.06611	0.00046
10	0.00482	-0.11097	0.00013
11	-0.00110	-0.13315	0.00084
REACOES	DE APOIO		
NO	FORCA X	FORCA Y	MOMENTO Z
1	25.459	375.900	0.000
8	-25.459	375,900	0.000

ESFORCOS NAS EXTREMIDADES DAS BARRAS

BARRA	CARREG.	AXIAL	CORTANTE Y	MOMENTO Z
1	1	364.823	-3.305	0.000
		-364.823	3.305	-969.076
2	1	246.505	-7,940	-1352.550
		-246.505	7.940	-922.279
3	1	121.963	-12.718	-1358.840
		-121.963	12.718	-2284.892
4	1	364.823	3.305	0.000
		-364.823	-3.305	969.076
5	1	246.505	7.940	1352.550
		-246.505	-7.940	922.279
6	1	121.963	12.718	1358.840
		-121.963	-12.718	2284.892
7	1	-34.979	120.900	765.378
		34.979	0.000	16553.547
8	1	-34.979	-0.000	-16553.547
		34.979	120.900	-765.378
9	1	-19.641	120.900	788.411
		19.641	0.000	16530.514
10	1	-19.641	0.000	-16530.514
		19.641	120.900	-788.411
11	1	6.044	120.900	738.590
		-6.044	0.000	16580.335
12	1	6.044	0.000	-16580.335
		-6.044	120.900	-738.590
13	1	24.769	-0.000	0.000
		-24.769	0.000	0.000
14	1	24.769	0.000	0.000
		-24.769	-0.000	0.000
15	1	9.156	-0.000	0.000
		-9.156	0.000	0.000
16	1	9.156	0.000	0.000
		-9.156	-0.000	0.000
17	1	7.461	-0.000	0.000
		-7.461	0.000	0.000
18	1	7.461	0.000	0.000
		-7.461	-0.000	0.000

ATENCAO: Este relatorio nao inclui as barras dos modelos de no. Logo, o equilibrio de esforcos entre as barras listadas nao apresenta-se plenamente satisfeito.

٠

CACOES CANT. SIMPLES - LIG FLEX RIGIDEZ ULTIMA

RELATORIO NAO INCLUE BARRAS MODELOS DE NO

NUMERO NUMERO NUMERO ''UMERO JMERO TEMPERA TIPO DI	DE NOS DE MATERIA DE SECOES DE BARRAS DE CARREGA DE COMBINA ATURA DE RE E PERFIL UT	IS MENTOS COES FERENCIA ILIZADO	11 1 3 18 1 0 25.00 Soldado			
COORDE	NADAS NODAI	s	RESTRICOES	NODAIS		
NO	x	Y	TX TY	RZ		
1	0.00	0.00	1 1	0		
2	0.00	300.00	0 0	0		
3	0.00	600.00	0 0	0		
4	0.00	900.00	0 0	0		
5	300.00	300.00	0 0	0		
р 7	300.00	600.00	0 0	0		
2 2	500.00	900.00	0 0	U		
9	600.00	300.00		0		
10	600.00	600.00		0		
11	600.00	900.00	0 0	õ		
				-		
RIGIDE2 BARRA:	Z DAS LIGAC 7 NO I:	OES VIGA-COLU LIGACAO FLEX K = 35981	NA IVEL CANTONEIRA kN.cm/rad	SIMPLES		
BARRA:	8 NOJ:	LIGACAO FLEX K = 35981	IVEL CANTONEIRA kN.cm/rad	SIMPLES		
BARRA:	9 NO I:	LIGACAO FLEX K = 35981	IVEL CANTONEIRA kN.cm/rad	SIMPLES		
BARRA:	10 NO J:	LIGACAO FLEX K = 35981	IVEL CANTONEIRA kN.cm/rad	SIMPLES		
BARRA:	11 NO I:	LIGACAO FLEX K = 35981	IVEL CANTONEIRA kN.cm/rad	SIMPLES		
BARRA:	12 NO J:	LIGACAO FLEX K = 35981	IVEL CANTONEIRA kN.cm/rad	SIMPLES		
TABELA ™UMERO 1	DE MATERIA MOD. ELAS	IS FICIDADE CO 20500	EF. POISSON CO 0.30	DEF. DILT. TERMICA 0.000010000	Fy 25.00	F۲ 40.00
BELA	DE SECOES					
NUMERO		AREA	IZ	FATOR FORMA		
1		80.500	9580.990	0.22		
2		62.975	13910.300	0.32		
3		37.000	366.000	0.52	·	

CONECTIVIDADE E PROPRIEDADES DE BARRAS

$\begin{array}{c cccccc} 1 & 1 & 2 & 1 & 1 & 000 & 000 \\ 2 & 2 & 3 & 1 & 1 & 000 & 000 \\ 3 & 3 & 4 & 1 & 1 & 000 & 000 \\ 4 & 8 & 9 & 1 & 1 & 000 & 000 \\ 5 & 9 & 10 & 1 & 1 & 1 & 000 & 000 \\ 6 & 10 & 11 & 1 & 1 & 000 & 000 \\ 7 & 2 & 5 & 2 & 1 & 001 & 000 \\ 8 & 5 & 9 & 2 & 1 & 001 & 000 \\ 10 & 6 & 10 & 2 & 1 & 001 & 000 \\ 11 & 4 & 7 & 2 & 1 & 001 & 000 \\ 12 & 7 & 11 & 2 & 1 & 001 & 000 \\ 13 & 1 & 9 & 3 & 1 & 001 & 001 \\ 14 & 2 & 8 & 3 & 1 & 001 & 001 \\ 15 & 2 & 10 & 3 & 1 & 001 & 001 \\ 16 & 3 & 9 & 3 & 1 & 001 & 001 \\ 17 & 3 & 11 & 3 & 1 & 001 & 001 \\ 18 & 4 & 10 & 3 & 1 & 001 & 001 \\ 18 & 4 & 10 & 3 & 1 & 001 & 001 \\ 10 & 0.000 & -4.400 & 0.000 \\ 3 & 0.000 & -4.400 & 0.000 \\ 1 & 0.000 & 0.000 & -0.403 & -0.403 \\ 1 & 0.000 & 300.000 & -0.403 & -0.403 \\ 1 & 0.000 & 300.000 & -0.403 & -0.403 \\ 1 & 0.000 & 300.000 & -0.403 & -0.403 \\ 1 & 1 & 0.000 & 300.000 & -0.403 & -0.403 \\ 1 & 1 & 0.000 & 300.000 & -0.403 & -0.403 \\ 1 & 1 & 0.000 & 300.000 & -0.403 & -0.403 \\ 1 & 1 & 0.000 & 300.000 & -0.403 & -0.403 \\ 1 & 1 & 0.000 & 300.000 & -0.403 & -0.403 \\ 1 & 1 & 0.000 & 300.000 & -0.403 & -0.403 \\ 1 & 1 & 0.0000 & 0.00000 & -0.403 & -0.403 \\ 1 & 0.0007 & 0.1317 & -0.00038 \\ 3 & -0.00472 & -0.11096 & -0.00011 \\ 5 & 0.00000 & -2.15319 & -0.00000 \\ 6 & 0.00000 & -2.15321 & -0.00000 \\ 6 & 0.00000 & -2.15321 & -0.00000 \\ \end{array}$	[¬] ARRA	NO I	NO J	SECAO	MATERIAL	LIBER	ACOES		
2 2 3 1 1 000 000 3 3 4 1 1 000 000 4 8 9 1 1 000 000 6 10 11 1 000 000 7 2 5 2 1 001 000 8 5 9 2 1 001 000 10 6 10 2 1 001 000 11 4 7 2 1 001 000 12 7 11 2 1 001 001 13 1 9 3 1 001 001 14 2 8 3 1 001 001 15 2 10 3 1 001 001 16 3 9 3 1 001 001 17 3 11 3 1 01 001 18 4 10 3 1 001 001 18 4 10 3 1 001 001 19 3 0.000 -4.400 0.000 3 0.000 -4.400 0.000 3 0.000 -4.400 0.000 10 0.000 -4.400 0.000 11 0.000 -4.400 0.000 11 0.000 -4.400 0.000 10 0.000 -4.400 0.000 11 0.000 -4.400 0.000 10 0.000 -4.400 0.000 11 0.000 -4.400 0.000 10 0.000 -4.400 0.000 -0.403 -0.403 11 0.000 300.000 -0.403 -0.403 10 1 0.0000 300.000 -0.403 -0.403 10 1 0.0000 300.000 -0.403 -0.403 10 1 0.0000 300.00	1	1	2	1	1	000	000		
3 3 4 1 1 000 000 5 9 10 1 1 000 000 5 9 10 1 1 000 000 7 2 5 2 1 001 000 9 3 6 2 1 001 000 10 6 10 2 1 001 000 11 4 7 2 1 001 001 12 7 11 2 1 001 001 13 1 9 3 1 001 001 14 2 8 3 1 001 001 15 2 10 3 1 001 001 16 3 9 3 1 001 001 17 3 11 3 1 001 001 18 4 10 3 1 001 001 10	2	2	3	1	1	000	000		
4 8 9 1 1 000 000 5 9 1 1 000 000 6 10 11 1 1 000 000 7 2 5 2 1 001 000 9 3 6 2 1 001 000 10 6 10 2 1 000 001 11 4 7 2 1 001 001 12 7 11 2 1 001 001 13 1 9 3 1 001 001 14 2 8 3 1 001 001 15 2 10 3 1 001 001 16 3 9 3 1 001 001 17 3 11 3 1 001 001 2 0.000 -4.400 0.000 0.000 0.403 0.403 10	3	3	4	1	1	000	000		
5 9 10 11 1 1 000 000 7 2 5 2 1 001 000 9 3 6 2 1 001 000 10 6 10 2 1 001 000 11 4 7 2 1 001 000 12 7 11 2 1 001 001 13 1 9 3 1 001 001 14 2 8 3 1 001 001 15 2 10 3 1 001 001 16 3 9 3 1 001 001 17 3 11 3 1 001 001 18 4 10 3 1 001 001 18 4 10 3 1 001 001 CARREGAMENTO NO. 1 - CARREGAMENTO MAJORADO E COMBINADO CARCAS NAS BARRAS BAR. TIPO 1. DI DF VI VF 2 0.000 -4.400 0.000 10 0.000 -4.400 0.000 CARCAS NAS BARRAS BAR. TIPO 1. DI DF VI VF 3.MOME DI AML2 AML3 AML4 AML5 AML6 7 1 0.000 300.000 -0.403 -0.403 8 1 0.000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 11 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 13 1 0 1 0.000 300.000 -0.403 -0.403 14 0.000 300.000 -0.403 -0.403 15.TEMP T(y+) T(y-) H(y) AML AML1 AML2 AML3 AML4 AML5 AML6 7 1 0.000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 11 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 13 1 0 1 0.000 300.000 -0.403 -0.403 14 0.0007 300.000 -0.403 -0.403 15 0.0000 0.0000 -0.403 -0.403 16 0 0.000 300.000 -0.403 -0.403 17 0.000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 13 -0.00472 -0.11095 -0.0001 5 0.00000 -2.11218 -0.00000 6 0.00000 -2.11519 -0.00000 8 0.00000 -2.11519 -0.00000 8 0.00000 -2.11519 -0.00000 8 0.00000 -2.11519 -0.00000 8 0.00000 -2.11519 -0.00000	4	8	9	1	1	000	000		
6 10 11 1 1 000 000 8 5 9 2 1 000 001 9 3 6 2 1 000 001 10 6 10 2 1 000 001 11 4 7 2 1 001 000 12 7 11 2 1 001 001 14 2 8 3 1 001 001 15 2 10 3 1 001 001 16 3 9 3 1 001 001 17 3 11 3 1 001 001 18 4 10 3 1 001 001 2 0.000 -4.400 0.000 1 0.000 1 0.000 1 3 0.000 -4.400 0.000 1 0.000 1 0 0 1 1 0.000	5	9	10	1	1	000	000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	10	11	1	1	000	000		
8 5 9 2 1 000 001 10 6 10 2 1 000 001 11 4 7 2 1 000 001 12 7 11 2 1 001 001 13 1 9 3 1 001 001 15 2 10 3 1 001 001 17 3 11 3 1 001 001 18 4 10 3 1 001 001 2 0.000 -4.400 0.000 -4.400 0.000 3 0.000 -4.400 0.000 -4.400 0.000 10 0.000 -4.400 0.000 -4.400 0.000 10 0.000 -4.400 0.000 -4.400 0.000 10 0.000 -4.400 0.000 -4.400 0.000 1.0Lx DI DF VI VF -2.1EX VF -4.400	7	2	5	2	1	001	000		
9 3 6 2 1 001 000 10 6 10 2 1 001 000 11 4 7 2 1 001 000 12 7 11 2 1 001 001 13 1 9 3 1 001 001 14 2 8 3 1 001 001 15 2 10 3 1 001 001 16 3 9 3 1 001 001 18 4 10 3 1 001 001 18 4 10 3 1 001 001 CARREGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO CARCAS NODAIS NO FX FY MZ 2 0.000 -4.400 0.000 3 0.000 -4.400 0.000 11 0.000 -4.400 0.000 12 0.000 -4.400 0.000 11 0.000 -4.400 0.000 11 0.000 -4.400 0.000 11 0.000 -4.400 0.000 12 0 0.000 -4.400 10 0.000 -4.400 0.000 11 0.000 300.000 -0.403 -0.403 11 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 13 1 0.000 300.000 -0.403 -0.403 14 0.0007 300.000 -0.403 -0.403 15 0.0000 300.000 -0.403 -0.403 16 0.0000 300.000 -0.403 -0.403 17 0.0000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 11 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 13 -0.00472 -0.11096 -0.0001 14 0.0073 -0.1317 -0.00071 5 0.00000 -2.1519 -0.00000 6 0.00000 -2.1519 -0.00000 7 0.00000 -2.1519 -0.00000 8 0.00000 -2.1519 -0.00000 8 0.00000 -2.1551 -0.00000 1 0.0000 0.00000 -0.0024 2 -0.0000 -2.1519 -0.00000 1 0.0000 0.00000 -0.0000 1 0.0000 0.0000 -2.1519 -0.00000 1 0.0000 0.00000 -0.0000 1 0.0000 0.0000 -2.15519 -0.00000 1 0.0000 0.00000 -0.0000 1 0.0000 0.00000 -0.00000 1 0.00000 -2.15519 -0.000000 1	8	5	9	2	1	000	001		
10 6 10 2 1 001 000 12 7 11 2 1 001 000 13 1 9 3 1 001 001 14 2 8 3 1 001 001 15 2 10 3 1 001 001 17 3 11 3 1 001 001 17 3 11 3 1 001 001 18 4 10 3 1 001 001 2 ARREGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO CARGAS NODAIS NO FX FY MZ 2 0.000 -4.400 0.000 1 0 0.000 -4.400 0.000 2 CARGAS NAS BARRAS BAR. TIPO 1 0.000 300.000 -0.403 -0.403 8 1 0.000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 11 1 0 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 3 -0.00472 -0.11096 -0.0011 4 0.00073 -0.1317 -0.0071 5 0.00000 -2.15199 -0.00001 4 0.0000 -2.15199 -0.00000 8 0.00000 0 0.00000 -0.0000	9	3	6	2	1	001	000		
11 4 7 2 1 001 000 12 7 11 2 1 001 001 13 1 9 3 1 001 001 14 2 8 3 1 001 001 15 2 10 3 1 001 001 16 3 9 3 1 001 001 17 3 11 3 1 001 001 18 4 10 3 1 001 001 2ARREGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO CARGAS NODAIS NO FX FY MZ 2 0.000 -4.400 0.000 3 0.000 -4.400 0.000 3 0.000 -4.400 0.000 10 0.000 -4.400 0.000 CARGAS NAS BARRAS BAR. TIPO 1. DLAY DI DF VI VF 2. DLAY DI DF VI VF 3. MOME DI DF VI VF 4. CONC D FX FY MZ 5. TEMP T(y+) T(y-) H(y) AML AML1 AML2 AML3 AML4 AML5 AML6 7 1 0.000 300.000 -0.403 -0.403 8 1 0.000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 11 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 13 -0.003 300.000 -0.403 -0.403 14 0.0007 300.000 -0.403 -0.403 15 - CARREGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO DESLOCAMENTOS NODAIS NO TX TY RZ 1 0.0000 0.0000 -0.0024 2 -0.00855 -0.06611 -0.00038 3 -0.00472 -0.11096 -0.0001 4 0.00073 -0.1317 -0.00071 5 0.00000 -2.15199 -0.00000 8 0.00000 0.00000 -0.4003 -0.403 3 -0.00472 -0.11096 -0.0001 4 0.00073 -0.1317 -0.00071 5 0.00000 -2.15199 -0.00000 8 0.00000 0.00000 -0.0000 -0.0000 8 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.4003 -0.403 1 4 0.00073 -0.11218 -0.000000 8 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.403 -0.403 3 -0.00472 -0.11096 -0.00011 4 0.00073 -0.11218 -0.000000 5 0.00000 -2.15199 -0.000000 -0.000000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.000000 -0.00	10	6	10	2	1	000	001		
12 7 11 2 1 000 001 13 1 9 3 1 001 001 14 2 8 3 1 001 001 15 2 10 3 1 001 001 17 3 11 3 1 001 001 CARREGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMEINADO CARGAS NODAIS NO FX FY MZ 2 0.000 -4.400 0.000 3 0.000 -4.400 0.000 1 0.000 -4.400 0.000 1 0.000 -4.400 0.000 1 0.000 -4.400 0.000 11 0.000 -4.400 0.000 11 0.000 -4.400 0.000 11 0.000 -4.400 0.000 1 0.000 -4.400 0.000 1 0.000 300.000 -0.403 2.DLx DI </td <td>11</td> <td>4</td> <td>7</td> <td>2</td> <td>1</td> <td>001</td> <td>000</td> <td></td> <td></td>	11	4	7	2	1	001	000		
13 1 9 3 1 001 001 14 2 8 3 1 001 001 15 2 10 3 1 001 001 16 3 9 3 1 001 001 17 3 11 3 1 001 001 18 4 10 3 1 001 001 2ARREGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO CARRAS NODAIS NO FX FY MZ 2 0.000 -4.400 0.000 3 0.000 -4.400 0.000 1 0.000 -4.400 0.000 1 0.000 -4.400 0.000 1 0.000 -4.400 0.000 1 0.000 -4.400 0.000 CARGAS NAS BARRAS BAR. TIPO 1.1 0.000 -4.400 0.000 CARGAS NAS BARRAS BAR. TIPO 1.1 0.000 -4.400 0.000 CARGAS NAS BARRAS BAR. TIPO 1.1 0.000 FX FY FY MZ 2.0Lx DI DF VI VF 2.0Lx DI DF VI VF 3.MOME DI DF VI VF 4.CONC D FX FY MZ 5.TEMP T(Y+) T(Y-) H(Y) AML AML1 AML2 AML3 AML4 AML5 AML6 7 1 0.000 300.000 -0.403 -0.403 8 1 0.000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 11 1 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 11 1 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 13 -0.000 300.000 -0.403 -0.403 14 0.0007 300.000 -0.403 -0.403 15 - CARREGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO DESLOCAMENTOS NODAIS NO TX TY RZ 1 0.0000 0.00000 -0.0003 3 -0.00472 -0.11096 -0.00011 4 0.00073 -0.1317 -0.00071 5 0.00000 -2.15199 -0.00000 8 0.00000 0.00000 -0.0000 8 0.00000 0.00000 -0.00000 1 0.00000 0.00000 1 0.00000 0.00000 1 0.0000 0.00000 1 0.00000 0.00000 1 0.0000 0.00000 1 0.0000 0.0000 1 0.0000 0.00000 1 0.0000 0.00000 1 0.0000 0.0000 1 0.0000 0.0000 0.0000 1 0.0000 0.0000 1 0.0000 0.0000 1 0.0000 0.0000 0.0000 1 0.0003 00.000 -0.403 1 0.0000 0.0000 0.0000 1 0.0003 1 0.0000 0.0000 0.0000 1 0.0003 1 0.0000 0.0000 0.0000 0.0000 1 0.0003 1 0.0000 0.0000 0.0000 0.0000 1 0.0003 1 0.0000 0.00000 0.0000 1 0.0003 1 0.0000 0.00000 0.00000 1 0.00003 1 0.0000 0.00000 0.00000 1 0.00000 1 0.00000 0.00000 1 0.00000 0.00000 1 0.00000 1 0.00000 0.00000 1	12	7	11	2	1	000	001		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	1	9	3	1	001	001		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	2	8	3	1	001	001		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	2	10	3	1	001	001		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	3	9	3	1	001	001		
18 4 10 3 1 001 001 CARREGAMENTO NO. 1 - CARREGAMENTO MAJORADO E COMBINADO CARGAS NODAIS NO FX FY MZ 2 0.000 -4.400 0.000 3 0.000 -4.400 0.000 4 0.000 -4.400 0.000 10 0.000 -4.400 0.000 11 0.000 -4.400 0.000 10 0.000 -4.400 0.000 11 0.000 -4.400 0.000 11 0.000 -4.400 0.000 11 0.000 -4.400 0.000 11 0.000 -4.400 0.000 10 0.000 -4.400 0.000 11 0.000 -4.400 0.000 12.0Lx DI DF VI VF 2.0Lx DI DF VI VF 3.MOME DI DF VI VF 5.TEMP T(y+) T(y+) H(y+) </td <td>17</td> <td>3</td> <td>11</td> <td>3</td> <td>1</td> <td>001</td> <td>001</td> <td></td> <td></td>	17	3	11	3	1	001	001		
CARREGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO CARGAS NODAIS NO FX FY MZ 2 0.000 -4.400 0.000 3 0.000 -4.400 0.000 1 0.000 -4.400 0.000 10 0.000 -4.400 0.000 10 0.000 -4.400 0.000 11 0.000 -4.400 0.000 CARGAS NAS BARRAS BAR. TIPO 1.DLxy DI DF VI VF 3.MCME DI DF VI VF 4.CONC D FX FY MZ 5.TEMP T(y+) T(y-) H(y) AML AML1 AML2 AML3 AML4 AML5 AML6 7 1 0.000 300.000 -0.403 -0.403 8 1 0.000 300.000 -0.403 -0.403 9 1 0.000 300.000 -0.403 -0.403 11 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 CARREGAMENTO NO. 1 - CARREGAMENTO MAJORADO E COMBINADO DESLOCAMENTOS NODAIS NO TX TY RZ 1 0.0003 0.0000 -0.403 -0.403 3 -0.00472 -0.11317 -0.00071 4 0.00073 -0.13317 -0.00071 5 0.00000 -2.11218 -0.00000 8 0.00000 -2.11218 -0.00000 8 0.00000 -2.115199 -0.00000 8 0.00000 -2.118521 -0.00000 8 0.00000 -0.00000	18	4	10	3	1	001	001		
CARREGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO CARGAS NODAIS NO FX FY MZ 2 0.000 -4.400 0.000 3 0.000 -4.400 0.000 1 0.000 -4.400 0.000 10 0.000 -4.400 0.000 11 0.000 -4.400 0.000 CARGAS NAS BARRAS BAR. TIPO 1.DLxy DI DF VI VF 2.DLx DI DF VI VF 4.CONC D FX FY MZ 5.TEMP T(y+) T(y-) H(y) AML AML1 AML2 AML3 AML4 AML5 AML6 7 1 0.000 300.000 -0.403 -0.403 8 1 0.000 300.000 -0.403 -0.403 8 1 0.000 300.000 -0.403 -0.403 11 1 0.000 300.000 -0.403 -0.403 11 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 13 1 1 0.000 300.000 -0.403 -0.403 14 0.000 300.000 -0.403 -0.403 15 0.0000 0.0000 0.00024 2 -0.00855 -0.06611 -0.00038 3 -0.00472 -0.11096 -0.00011 4 0.00073 -0.13317 -0.00071 5 0.00000 -2.11218 -0.00000 6 0.00000 -2.18521 -0.00000 7 0.00000 -2.18521 -0.00000 8 0.00000 0.00000 -0.00024				-	-				
$\begin{array}{c c} CARGAS NODAIS\\ \hline NO & FX & FY & MZ\\ \hline 2 & 0.000 & -4.400 & 0.000\\ \hline 3 & 0.000 & -4.400 & 0.000\\ \hline 4 & 0.000 & -4.400 & 0.000\\ \hline 1 & 0.000 & -4.400 & 0.000\\ \hline 10 & 0.000 & -4.400 & 0.000\\ \hline 11 & 0.000 & -4.400 & 0.000\\ \hline 11 & 0.000 & -4.400 & 0.000\\ \hline 12 & DIO & -4.400 & 0.000\\ \hline 1.DLxy & DI & DF & VI & VF\\ \hline 2.DLx & DI & DF & VI & VF\\ \hline 3.MOME & DI & DF & VI & VF\\ \hline 4.CONC & D & FX & FY & MZ\\ \hline 5.TEMP & T(Y+) & T(Y-) & H(Y)\\ \hline AML & AML1 & AML2 & AML3 & AML4 & AML5 & AML6\\ \hline 7 & 1 & 0.000 & 300.000 & -0.403 & -0.403\\ \hline 8 & 1 & 0.000 & 300.000 & -0.403 & -0.403\\ \hline 10 & 1 & 0.000 & 300.000 & -0.403 & -0.403\\ \hline 11 & 1 & 0.000 & 300.000 & -0.403 & -0.403\\ \hline 12 & 1 & 0.000 & 300.000 & -0.403 & -0.403\\ \hline 12 & 1 & 0.000 & 300.000 & -0.403 & -0.403\\ \hline 12 & 1 & 0.000 & 300.000 & -0.403 & -0.403\\ \hline 12 & 1 & 0.000 & 300.000 & -0.403 & -0.403\\ \hline 14 & 0.0007 & 0.00000 & -0.403 & -0.403\\ \hline 12 & 1 & 0.000 & 300.000 & -0.403 & -0.403\\ \hline 14 & 0.0007 & 0.00000 & -0.00024\\ \hline 2 & -0.00855 & -0.06611 & -0.00038\\ \hline 3 & -0.00472 & -0.11096 & -0.00011\\ \hline 4 & 0.00073 & -0.13317 & -0.00071\\ \hline 5 & 0.00000 & -2.15199 & -0.00000\\ \hline 6 & 0.00000 & -2.15519 & -0.00000\\ \hline 8 & 0.00000 & -0.00000 & -0.00024\\ \hline \end{array}$	CARREGA	MENTO 1	No. 1 -	- CARREGAM	IENTO MAJORA	DOEC	OMBINAD	0	
CARGAS NODAIS NO FX FY MZ 2 0.000 -4.400 0.000 3 0.000 -4.400 0.000 3 0.000 -4.400 0.000 10 0.000 -4.400 0.000 11 0.000 -4.400 0.000 CARGAS NAS BARRAS BAR. TIPO 1.DLxy DI DF VI VF 3.MOME DI DF VI VF 4.CONC D FX FY MZ 5.TEMP T(y+) T(y-) H(y) AML AML1 AML2 AML3 AML4 AML5 AML6 7 1 0.000 300.000 -0.403 -0.403 8 1 0.000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 11 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 14 1 0.000 300.000 -0.403 -0.403 15 0.000 0.0000 0.00024 2 -0.00855 -0.06611 -0.00038 3 -0.00472 -0.11096 -0.00011 4 0.00073 -0.13317 -0.00071 5 0.00000 -2.15199 -0.00000 6 0.00000 -2.18521 -0.00000 8 0.00000 0.00000 -0.00024									
NO FX FY MZ 2 0.000 -4.400 0.000 3 0.000 -4.400 0.000 $^{+}$ 0.000 -4.400 0.000 $^{+}$ 0.000 -4.400 0.000 $^{+}$ 0.000 -4.400 0.000 $^{+}$ 0.000 -4.400 0.000 $^{+}$ 0.000 -4.400 0.000 $^{+}$ 0.000 -4.400 0.000 CARGAS NAS BARRAS BAR. TIPO Image: Comparison of the state	CARGAS	NODAIS							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NO		FX	FY	MZ				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0.0	000	-4.400	0.000				
$\begin{array}{cccccccc} & \begin{array}{c} & & 0.000 & -4.400 & 0.000 \\ & & 0.000 & -4.400 & 0.000 \\ & 10 & 0.000 & -4.400 & 0.000 \\ & & 11 & 0.000 & -4.400 & 0.000 \\ \hline \end{array} \\ \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & $	3	0.0	000	-4.400	0.000				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ŷ.	0.0	000	-4.400	0.000				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)	0.0	000	-4.400	0.000				
11 0.000 -4.400 0.000 CARGAS NAS BARRAS BAR. TIPO 1.DLxy DI DF VI VF 2.DLx DI DF VI VF 4.CONC D FX FY MZ 5.TEMP T(y+) T(y-) H(y) AML AML1 AML2 AML3 AML4 AML5 AML6 7 1 0.000 300.000 -0.403 -0.403 8 1 0.000 300.000 -0.403 -0.403 9 1 0.000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 11 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 14 1 0.000 300.000 -0.403 -0.403 15 0.0000 0.00000 -0.403 -0.403 3 -0.00472 -0.11096 -0.00011 4 0.00073 -0.13317 -0.00071 5 0.0000 -2.11218 -0.00000 6 0.00000 -2.115199 -0.00000 8 0.00000 -2.115199 -0.00000 8 0.00000 -2.10521 -0.00000 1 0.0000 0.00000 -0.00024	10	0.0	000	-4.400	0.000				
CARGAS NAS BARRAS BAR. TIPO 1.DLxy DI DF VI VF 2.DLx DI DF VI VF 3.MOME DI DF VI VF 4.CONC D FX FY MZ 5.TEMP T(y+) T(y-) H(y) AML AML1 AML2 AML3 AML4 AML5 AML6 7 1 0.000 300.000 -0.403 -0.403 8 1 0.000 300.000 -0.403 -0.403 9 1 0.000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 11 1 0.000 300.000 -0.403 -0.403 12 1 0.000 0.00000 -0.403 -0.403 12 1 0.000 0.00000 -0.403 -0.403 12 0.0000 0.00000 -0.403 -0.403 13 -0.0472 -0.11096 -0.00011 4 0.00073 -0.13317 -0.00071 5 0.00000 -2.11218 -0.00000 6 0.00000 -2.115199 -0.00000 7 0.00000 -2.115199 -0.00000 8 0.00000 0.00000 -0.00024	11	0.0	000	-4.400	0.000				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CARGAS BAR. T	NAS BAI IPO	RRAS						
2.DLx DI DF VI VF 3.MOME DI DF VI VF 4.CONC D FX FY MZ 5.TEMP T(y+) T(y-) H(y) AML AML1 AML2 AML3 AML4 AML5 AML6 7 1 0.000 300.000 -0.403 -0.403 8 1 0.000 300.000 -0.403 -0.403 9 1 0.000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 11 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 CARREGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO DESLOCAMENTOS NODAIS NO TX TY RZ 1 0.0000 0.00000 0.00024 2 -0.00855 -0.06611 -0.00038 3 -0.00472 -0.11096 -0.00011 4 0.00073 -0.13317 -0.00071 5 0.00000 -2.15199 -0.00000 6 0.00000 -2.15199 -0.00000 8 0.00000 0.00000 -0.00024	1.D	Lxv	DI	DF	VT		VF		
3. MOME DI DF VI VF 4. CONC D FX FY MZ 5. TEMP $T(y+)$ $T(y-)$ $H(y)$ AML AML1 AML2 AML3 AML4 AML5 AML6 7 1 0.000 300.000 -0.403 -0.403 8 1 0.000 300.000 -0.403 -0.403 9 1 0.000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 11 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 CARREGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO DESLOCAMENTOS NODAIS NO TX TY RZ 1 0.00030 0.0000 0.00024 2 -0.00855 -0.06611 -0.00038 3 -0.00472 -0.11096 -0.00011 4 0.00073 -0.13317 -0.00071 5 0.00000 -2.11218 -0.00000 6 0.00000 -2.18521 -0.00000 8 0.00000 0.00000 -0.0024	2.D	Lx	DI	DF	VI VI		VF		
4. CONC D FX FY MZ 5. TEMP $T(y+)$ $T(y-)$ $H(y)$ AML AML1 AML2 AML3 AML4 AML5 AML6 7 1 0.000 300.000 -0.403 -0.403 8 1 0.000 300.000 -0.403 -0.403 9 1 0.000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 11 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 CARREGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO DESLOCAMENTOS NODAIS NO TX TY RZ 1 0.00000 0.00000 0.00024 2 -0.00855 -0.06611 -0.00038 3 -0.00472 -0.11096 -0.00011 4 0.00073 -0.13317 -0.00071 5 0.00000 -2.11218 -0.00000 6 0.00000 -2.18521 -0.00000 8 0.00000 0.00000 0.00024	3.M	OME	DI	DF	VT		VF		
5. TEMP T(y+) T(y-) H(y) AML AML1 AML2 AML3 AML4 AML5 AML6 7 1 0.000 300.000 -0.403 -0.403 8 1 0.000 300.000 -0.403 -0.403 9 1 0.000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 11 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 CARREGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO DESLOCAMENTOS NODAIS NO TX TY RZ 1 0.00000 0.00000 0.00024 2 -0.00855 -0.06611 -0.00038 3 -0.00472 -0.11096 -0.00011 4 0.00073 -0.13317 -0.00071 5 0.00000 -2.11218 -0.00000 6 0.00000 -2.18521 -0.00000 8 0.00000 0.000000 -0.00024	4.C	ONC	 D	FX	FV		MZ		
AMLAML1AML2AML3AML4AML5AML6710.000 300.000 -0.403 -0.403 810.000 300.000 -0.403 -0.403 910.000 300.000 -0.403 -0.403 1010.000 300.000 -0.403 -0.403 1110.000 300.000 -0.403 -0.403 1210.000 300.000 -0.403 -0.403 1210.000 300.000 -0.403 -0.403 CARREGAMENTO No.1 - CARREGAMENTO MAJORADO E COMBINADODESLOCAMENTOS NODAISNOTXTYRZ10.00000 0.00000 0.00024 2 -0.00855 -0.06611 -0.00038 3 -0.00472 -0.11096 -0.00011 4 0.00073 -0.13317 -0.00000 6 0.00000 -2.15199 -0.00000 7 0.00000 -2.18521 -0.00000 8 0.00000 -0.00024	5.T	EMP	T(v+)	T(v-)	H(v)		110		
7 1 0.000 300.000 -0.403 -0.403 8 1 0.000 300.000 -0.403 -0.403 9 1 0.000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 11 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 DESLOCAMENTOS NODAIS NO TX TY RZ 1 0.00000 0.00000 0.00024 2 -0.00855 -0.06611 -0.00038 3 -0.00472 -0.11096 -0.00011 4 0.00073 -0.13317 -0.00000 4 0.00000 -2.15199 -0.00000 -0.00000 -0.00000 -0.00000 8 0.000000 -0.	Ā	ML	AML1	AML2	AML3	A	ML4	AML5	AML6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	1	0.000	300.000	-0.403	-0.	403		
9 1 0.000 300.000 -0.403 -0.403 10 1 0.000 300.000 -0.403 -0.403 11 1 0.000 300.000 -0.403 -0.403 12 1 0.000 300.000 -0.403 -0.403 CARREGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO DESLOCAMENTOS NODAIS NO TX TY RZ 1 0.00000 0.00000 0.00024 2 -0.00855 -0.06611 -0.00038 3 -0.00472 -0.11096 -0.00011 4 0.00073 -0.13317 -0.00071 5 0.00000 -2.11218 -0.00000 6 0.00000 -2.15199 -0.00000 7 0.00000 -2.18521 -0.00000 8 0.00000 0.00000 -0.00024	8	1	0.000	300.000	-0.403	-0.	403		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	1	0.000	300.000	-0.403	-0.	403		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1	0.000	300.000	-0.403	-0.	403		
12 1 0.000 300.000 -0.403 -0.403 CARREGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO DESLOCAMENTOS NODAIS NO TX TY RZ 1 0.00000 0.00000 0.00024 2 -0.00855 -0.06611 -0.00038 3 -0.00472 -0.11096 -0.00011 4 0.00073 -0.13317 -0.00071 5 0.00000 -2.11218 -0.00000 6 0.00000 -2.15199 -0.00000 7 0.00000 -2.18521 -0.00000	11	1	0.000	300.000	-0.403	-0.	403		
CARREGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO DESLOCAMENTOS NODAIS NO TX TY RZ 1 0.00000 0.00024 2 -0.00855 -0.06611 -0.00038 3 -0.00472 -0.11096 -0.00011 4 0.00073 -0.13317 -0.00071 5 0.00000 -2.15199 -0.00000 6 0.00000 -2.18521 -0.00000 8 0.00000 0.00000 -0.00024	12	1	0.000	300.000	-0.403	-0.	403		
CARREGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO DESLOCAMENTOS NODAIS NO TX TY RZ 1 0.00000 0.00024 2 -0.00855 -0.06611 -0.00038 3 -0.00472 -0.11096 -0.00011 4 0.00073 -0.13317 -0.00071 5 0.00000 -2.11218 -0.00000 -0.00000 -0.00000 6 0.00000 -2.18521 -0.00000 -0.00024									
DESLOCAMENTOS NODAIS NO TX TY RZ 1 0.00000 0.000024 2 -0.00855 -0.06611 -0.00038 3 -0.00472 -0.11096 -0.00011 4 0.00073 -0.13317 -0.00071 5 0.00000 -2.11218 -0.00000 6 0.00000 -2.18521 -0.00000 7 0.00000 -2.18521 -0.00024	CARREGA	MENTO N	No. 1 -	CARREGAM	ENTO MAJORAI	00 E C	OMBINAD	c	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DESLOCA	MENTOS	NODATS						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NO		TX	$\mathbf{T}\mathbf{V}$	D 7				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0.00	0000	0.00000	0.00024				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-0.00	1855	-0.06611	-0 00024				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	-0.00	1472	-0.11096					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0.00	1073	-0.13317					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	0.00	0000	-2.11210					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	0.00	0000	-2.15100	-0 00000				•
8 0.00000 0.00000 -0.00024	7	0.00	0000	-2.18521	-0 00000				
	8	0.00	0000	0.00000	-0.00024				

9	0.00855	-0.06611	0.00038
10	0.00472	-0.11096	0.00011
11	-0.00073	-0.13317	0.00071
LEACOES	DE APOIO		
NO	FORCA X	FORCA Y	MOMENTO Z
1	24.956	375.900	0.000
8	-24.956	375.900	0.000

ESFORCOS NAS EXTREMIDADES DAS BARRAS

BARRA	CARREG.	AXIAL	CORTANTE Y	MOMENTO Z
1	1	364.817	-2.791	0.000
		-364.817	2.791	-818.514
2	1	246.458	-6.569	-1121.741
		-246.458	6.569	-760.251
3	1	122.081	-10.668	-1136.301
		-122.081	10.668	-1920.210
4	1	364.817	2.791	0.000
		-364.817	-2.791	818.514
5	1	246.458	6.569	1121.741
		-246.458	-6.569	760.251
6	1	122.081	10.668	1136.301
		-122.081	-10.668	1920.210
7	1	-34.227	120.900	371.286
		34.227	-0.000	16947.639
8	1	-34.227	-0.000	-16947.639
		34.227	120.900	-371.286
9	1	-18.822	120.900	380.754
		18.822	0.000	16938.171
10	1	-18.822	-0.000	-16938.171
		18.822	120.900	-380.754
11	1	4.231	120.900	360.073
		-4.231	0.000	16958.852
12	1	4.231	-0.000	-16958.852
		-4.231	120.900	-360.073
13	1	24.781	-0.000	0.000
		-24.781	0.000	0.000
14	1	24.781	0.000	0.000
		-24.781	-0.000	0.000
15	1	9.263	-0.000	0.000
		-9.263	0.000	0.000
16	1	9.263	0.000	0.000
		-9.263	-0.000	0.000
17	1	7.197	-0.000	0.000
		-7.197	0.000	0.000
18	1	7.197	0.000	0.000
		-7.197	-0.000	0.000

ATENCAO: Este relatorio nao inclui as barras dos modelos de no. Logo, o equilibrio de esforcos entre as barras listadas nao apresenta-se plenamente satisfeito.

۰.
___ ...

TELATORIO NAO INCLUE BARRAS MODELOS DE NO

LERO	DE	NOS .				:	11	
NUMERO	DE	MATER	RIAIS	• • • • •		:	1 .	
NUMERO	DE	SECO	ES			:	3	
NUMERO	DE	BARRA	AS		• • •	:	18	
NUMERO	DE	CARRI	EGAME	NTOS .		:	1	
NUMERO	\mathbf{DE}	COMB	[NACO]	ES	• • •	:	0	
TEMPERA	ATUF	RA DE	REFE	RENCIA		:	25.00	
TIPO DE	E PI	RFIL	UTIL	IZADO		:	Soldado	

COORDEN	ADAS NODAIS		RESTRICOES	NODAIS
NO	Х	Y	ТХ ТУ	Z RZ
1	0.00	-0.00	1 1	. 0
2	0.00	300.00	0 (0
3	0.00	600.00	0 (0 (
4	0.00	900.00	0 0	0 (
5	300.00	300.00	0 0	0
6	300.00	600.00	0 0	0
7	300.00	900.00	0 0	0 (
8	600.00	0.00	1 1	0
9	600.00	300.00	0 0	0
10	600.00	600.00	0 0	0
11	600.00	900.00	0 0	0

RIGIDEZ DAS LIGACOES VIGA-COLUNA

BARRA:	1	NO 1:	LIGACAO	FLEXIVEL	CANTONEIRAS	DUPLAS
			K = 4	44399 kN.d	cm/rad	

- BARRA: 8 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 444399 kN.cm/rad
- BARRA: 9 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 444399 kN.cm/rad
- BARRA: 10 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 444399 kN.cm/rad
- BARRA: 11 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 444399 kN.cm/rad
- BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 444399 kN.cm/rad

TABELA DE MATERIAIS

NUMERO 1	MOD.	ELASTICIDADE 20500	COEF. POISSON 0.30	COEF. DILT. TERMICA 0.000010000	Fy 25.00	F، 40.0
"ABELA	DE SEC	COES				
NUMERO		AREA	IZ	FATOR FORMA		
1		80.500	9580.990	0.22		
2		62.975	13910.300	0.32		
3		37.000	366.000	0.52		

CONECTIVIDADE E PROPRIEDADES DE BARRAS

BARRA	NO I	NO J	SECAO	MATERIAL	LIBER	ACOES		
1	1	2	1	1	000	000		
2	2	3	1	1	000	000		
3	3	4	1	1	000	000		
4	8	9	1	1	000	000		
5	9	10	1	1	000	000		
6	10	11	1	1	000	000		
7	2	5	2	1	001	000		
8	5	9	2	1	000	001		
9	3	6	2	1	001	000		
10	6	10	2	1	000	001		
11	4	7	2	1	001	000		
12	7	11	2	1	000	001		
13	1		3	1	001	001		
14	- 2	Ŕ	3	1	001	001		
15	2	10	2	1	001	001		
16	2	9	3	1	001	001		
17	3	11	2	1	001	001		
10	ر ۲	10	2	1	001	001		
10	4	10	2	T	001	001		
CARREGA	MENTO 1	No. 1 -	CARREGAM	ENTO MAJORA	DO E C	OMBINAD	00	
CARGAS	NODAIS							
NO		FX	FY	MZ				
2	0.0	000	-4.400	0.000				
3	0.0	000	-4.400	0.000				
4	0.0	000	-4,400	0.000				
9	0.0	000	-4.400	0.000				
10	0.0	000	-4.400	0.000				
11	0.0	000	-4.400	0.000				
CARGAS	NAS BAI	RRAS						
BAR. I	'IPO							
1.0	Lxy	DI	DF	VI		VF		
2.0)Lx	DI	DF	VI		VF		
3.M	IOME	DI	DF	VI		VF		
4.0	CONC	D	FX	FY		MZ		
5.1	TEMP	Т(у+)	Т(у-)	Н(У)				
6.A	ML	AML1	AML2	AML3	A	ML4	AML5	AML6
7	1	0 000	300 000	-0 403	-0	403		
, R	1	0.000	300.000	-0.403	-0	403		
<u>a</u>	1	0.000	300.000	-0.403	_0.	403		
10	1	0.000	300.000	-0.403	-0.	403		
11	1	0.000	300.000	-0.403	-0.	403		
10	1 1	0.000	300.000	-0.403	-0.	403		
12	T	0.000	300.000	-0.403	-0.	403		
CAPPECA	ለፍለጥር እ		CADDECAM		DO F C	OWBINAD	0	
CHINEGE	MENIO I	.	CARREGAM	ENIO MAJORA		OPDINAL	.0	
DESLOCA	MENTOS	NODAIS						
NO		ТХ	TY	RZ				
1	0.00	0000	0.00000	0.00052				
2	-0.00)923 ·	-0.06615	-0.00092				
3	-0.00)557 ·	-0.11111	-0.00031				
4	0.00)342 ·	-0.13315	-0.00161				
5	0.00	0000	-1.71227	-0.00000				
6	0.00	0000	-1.72247	-0.00000				
7	0.00	0000	-1.81804	-0.00000				
8	0.00	000	0.00000	-0.00052				

9	0.00923	-0.06615	0.00092
10	0.00557	-0.11111	0.00031
11	-0.00342	-0.13315	0.00161
DEXCORC	DE NDOTO		

REACUES	DE APOIO		
NO	FORCA X	FORCA Y	MOMENTO Z
1	27.979	375.900	0.000
8	-27.979	375.900	0.000

ESFORCOS NAS EXTREMIDADES DAS BARRAS

BARRA	CARREG.	AXIAL	CORTANTE Y	MOMENTO Z
1	1	365.117	-6.413	0.000
		-365.117	6.413	-1880.560
2	1	247.128	-16.593	-2777.351
		-247.128	16.593	-1976.435
3	1	121.291	-25.055	-2740.392
		-121.291	25.055	-4437.992
4	1	365.117	6.413	0.000
		-365.117	-6.413	1880.560
5	1	247.128	16,593	2777.351
		-247.128	-16.593	1976.435
6	1	121.291	25.055	2740.392
		-121.291	-25.055	4437.992
7	1	-38.689	120.900	3181.048
		38.689	-0.000	14137.877
8	1	-38.689	-0.000	-14137.877
		38.689	120.900	-3181.048
9	1	-23.423	120.900	3365.802
		23.423	0.000	13953.123
10	1	-23.423	-0.000	-13953.123
		23.423	120.900	-3365.802
11	1	17.038	120.900	2974.966
		-17.038	0.000	14343.959
12	1	17.038	-0.000	-14343.959
		-17.038	120.900	-2974.966
13	1	24.112	-0.000	0.000
		-24.112	0.000	0.000
14	1	24.112	0.000	0.000
		-24.112	-0.000	0.000
15	1	7.763	-0.000	0.000
		-7.763	0.000	0.000
16	1	7.763	0.000	0.000
		-7.763	-0.000	0.000
17	1	8.964	-0.000	0.000
		-8.964	0.000	0.000
18	1	8.964	0.000	0.000
		-8.964	-0.000	0.000

ATENCAO: Este relatorio nao inclui as barras dos modelos de no. Logo, o equilibrio de esforcos entre as barras listadas nao apresenta-se plenamente satisfeito.

LIGACOES CANTONEIRAS DUPLAS - LIG FLEX RIGIDEZ ULTIMA RELATORIO NAO INCLUE BARRAS MODELOS DE NO TRO DE NOS	NOME DO ARQUIV	CDPLK2					
RELATORIO NAO INCLUE BARRAS MODELOS DE NO TRO DE NOS	LIGACOES CANTO	NEIRAS DUPLAS -	LIG FLEX RIGI	EZ ULTIMA			
TO DE NOS : 11 TO DE MATERIAIS : 1 TAO DE SECOES : 1 NUMERO DE GARREARMENTOS : 18 NUMERO DE CARREGAMENTOS : 25.00 TIPO DE PERFIL UTILIZADO : Soldado COORDENAADAS NODAIS RESTRICOES NODAIS NO X Y TX TY RZ 1 0.00 0.00 1 1 1 0 2 0.00 300.00 0 0 0 3 0.00 600.00 0 0 0 4 0.00 900.00 0 0 0 6 300.00 600.00 0 0 0 7 300.00 900.00 0 0 0 8 600.00 0.00 1 1 1 0 9 600.00 300.00 0 0 0 10 600.00 600.00 0 0 0 11 600.00 900.00 0 0 0 12 600.00 500.00 0 0 0 13 600.00 500.00 0 0 0 14 600.00 600.00 0 0 0 15 300.00 10 10 600.00 600.00 0 0 0 10 600.00 500.00 0 0 0 11 600.00 900.00 0 0 12 600.00 500.00 0 13 600.00 500.00 0 14 600.00 500.00 0 15 300.00 900.00 0 10 600.00 600.00 0 10 600.00 600.00 0 10 600.00 500.00 0 11 600.00 900.00 0 12 600.00 500.00 0 13 600.00 500.00 0 14 600.00 500.00 0 15 300.00 0 10 600.00 500.00 0 10 600.00 500.00 0 10 600.00 500.00 0 11 600.00 900.00 0 12 600.00 500.00 0 13 600.00 500.00 0 14 600.00 500.00 0 15 300.00 0 10 600.00 500.00 0 10 0 10 7 10 20500 0.30 0 10 0 10 7 10 20500 0 10 0 10 7 10 20500 0 10 0 10 7 10 0 10 7 10 0 10 60.50 9 10 0 10 0	RELATORIO NAO	INCLUE BARRAS M	ODELOS DE NO				
COORDENADAS NODAIS RESTRICCES NODAIS NO X Y TX TY RZ 1 0.00 0.00 1 0 0 2 0.00 300.00 0 0 0 4 0.00 900.00 0 0 0 5 300.00 300.00 0 0 0 6 300.00 600.00 0 0 0 7 300.00 900.00 0 0 0 9 600.00 0.00 1 1 0 9 600.00 600.00 0 0 0 11 600.00 900.00 0 0 0 11 600.00 900.00 0 0 0 11 600.00 900.00 0 0 0 11 600.00 900.00 0 0 0 10 600.00 11 10 10 10 BARRA: 7 N0 I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS	TRO DE NOS RO DE MATEJ RO DE SECO AUMERO DE BARRA NUMERO DE CARRA NUMERO DE COMB TEMPERATURA DE TIPO DE PERFIL	RIAIS ES AS EGAMENTOS INACOES REFERENCIA UTILIZADO	: 11 : 1 : 3 : 18 : 1 : 0 : 25.00 : Soldado				
NO X Y Y TX TY RZ 1 0.00 0.00 1 1 0 2 0.00 300.00 0 0 0 3 0.00 600.00 0 0 0 5 300.00 300.00 0 0 0 6 300.00 600.00 0 0 0 7 300.00 900.00 0 0 0 8 600.00 900.00 0 0 0 1 1 0 9 600.00 300.00 0 0 0 10 600.00 600.00 0 0 0 11 600.00 900.00 0 0 0 RIGIDEZ DAS LIGACOES VIGA-COLUNA BARRA: 7 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 KN.cm/rad BARRA: 8 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 KN.cm/rad BARRA: 9 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 KN.cm/rad BARRA: 10 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 KN.cm/rad BARRA: 10 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 KN.cm/rad BARRA: 10 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 KN.cm/rad BARRA: 11 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 KN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 KN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 KN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 KN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 KN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 KN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 KN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 KN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 KN.cm/rad TABELA DE MATERIAIS "''MERC NOD. ELASTICIDADE COEF. POISSON COEF. DILT. TERMICA FY F' 1 20500 0.30 0.000010000 25.00 40.0. TABELA DE SECOES NUMERO AREA IZ FATOR FORMA 1 80.500 9580.990 0.22 2 62.975 13910.300 0.32 3 37.000 366.000 0.52	COORDENADAS NO	DAIS	RESTRICON	S NODAIS			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NO	X Y	r XT	Y RZ			
2 0.00 300.00 0 0 0 3 0.00 600.00 0 0 0 4 0.00 900.00 0 0 0 5 300.00 300.00 0 0 0 6 300.00 600.00 0 0 0 7 300.00 900.00 0 0 0 9 600.00 300.00 0 0 0 10 600.00 600.00 0 0 0 11 600.00 900.00 0 0 0 RIGIDEZ DAS LIGACOES VIGA-COLUNA BARRA: 7 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 8 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 9 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 10 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 11 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad TABELA DE MATERIAIS "''MERO MOD. ELASTICIDADE COEF. POISSON COEF. DILT. TERMICA FY F' 1 20500 0.30 0.00001000 25.00 40.0. TABELA DE SECOES NUMERO AREA IZ FATOR FORMA 1 80.500 9580.990 0.22 2 62.975 13910.300 0.322 3 37.000 366.000 0.52	1 0.0	0.00	1	1 0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 0.00	0 300.00	0	0 0			
4 0.00 900.00 0 0 0 5 300.00 600.00 0 0 0 6 300.00 900.00 0 0 0 7 300.00 900.00 0 0 0 9 600.00 300.00 0 0 0 9 600.00 600.00 0 0 0 10 600.00 600.00 0 0 0 11 600.00 900.00 0 0 0 11 600.00 900.00 0 0 0 11 600.00 900.00 0 0 0 11 600.00 900.00 0 0 0 Rigitee 364507 kn.cm/rad BARRA: 8 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kn.cm/rad K = 364507 kn.cm/rad BARRA: 10 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = K = 364507 kn.cm/rad BARRA: 1 NO J: LIGACAO FLEXIVEL C	3 0.0	0 600.00	0	0 0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 U.U	J 900.00	0	0 0			
7 300.00 900.00 0 0 0 8 600.00 300.00 0 0 0 9 600.00 300.00 0 0 0 10 600.00 600.00 0 0 0 11 600.00 900.00 0 0 0 11 600.00 900.00 0 0 0 11 600.00 900.00 0 0 0 RIGIDEZ DAS LIGACOES VIGA-COLUNA BARRA: 7 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 8 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 10 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 10 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 1 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 10 NJ: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad F F TABELA DE MATERIAIS 1 20500 0.30 0.000010000 25.00 40.0 TABELA DE SECOES 1 205	6 300.0		0				
8 600.00 0.00 1 1 0 9 600.00 300.00 0 0 0 10 600.00 600.00 0 0 0 11 600.00 900.00 0 0 0 RIGIDEZ DAS LIGACOES VICA-COLUNA BARRA: 7 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 8 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 9 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 10 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 11 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 11 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K =	7 300.0	0 900.00	0	0 0			
9 600.00 300.00 0 0 0 0 10 600.00 600.00 0 0 0 11 600.00 900.00 0 0 0 RIGIDEZ DAS LIGACOES VIGA-COLUNA BARRA: 7 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 8 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 9 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 10 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 11 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 11 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad FABELA DE MATERIAIS ""MERO MOD. ELASTICIDADE COEF. POISSON COEF. DILT. TERMICA FY F 1 20500 0.30 0.000010000 25.00 40.0. TABELA DE SECOES NUMERO AREA IZ FATOR FORMA 1 80.500 9580.990 0.22 2 62.975 13910.300 0.32 3 37.000 366.000 0.52	8 600.00	0.00	ů 1	1 0			
10 600.00 600.00 0 0 0 11 600.00 900.00 0 0 0 0 RIGIDEZ DAS LIGACOES VIGA-COLUNA BARRA: 7 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kn.cm/rad BARRA: 8 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kn.cm/rad BARRA: 9 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kn.cm/rad BARRA: 10 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kn.cm/rad BARRA: 11 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kn.cm/rad BARRA: 11 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kn.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kn.cm/rad Model Statistic Statististic Statistic Statistic Statistic Statistic Statisti	9 600.0	0 300.00	0	0 0			
11600.00900.000000RIGIDEZ DAS LIGACOES VIGA-COLUNA BARRA:7NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/radBARRA:BARRA:8NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/radBARRA:BARRA:9NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/radBARRA:10NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/radBARRA:10NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/radBARRA:11NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/radBARRA:12NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/radBARRA:12NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/radBARRA:12NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/radTABELA DE MATERIAIS ************************************	10 600.00	600.00	0	0 0			
RIGIDEZ DASLIGACOES VIGA-COLUNA BARRA:BARRA:7NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/radBARRA:8NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/radBARRA:9NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/radBARRA:10NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/radBARRA:11NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/radBARRA:11NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/radBARRA:12NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/radBARRA:12NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/radTABELA DE MATERIAIS "''MERO MOD. ELASTICIDADE COEF. POISSON 20500COEF. DILT. TERMICA 0.30TABELA DE SECOES NUMERO 1AREAIZFATOR FORMA 180.5009580.99000.323337.000366.00000.52	11 600.0	900.00	0	0 0			
BARRA: 8 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 9 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 10 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 11 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad TABELA DE MATERIAIS "'JMERO MOD. ELASTICIDADE COEF. POISSON COEF. DILT. TERMICA FY F' 1 20500 0.30 0.000010000 25.00 40.0 TABELA DE SECOES NUMERO AREA IZ FATOR FORMA 1 80.500 9580.990 0.22 2 62.975 13910.300 0.32 3 37.000 366.000 0.52	RIGIDEZ DAS LIC BARRA: 7 NO	GACOES VIGA-COLU I: LIGACAO FLE: K = 36450	UNA XIVEL CANTONEIF 7 kN.cm/rad	AS DUPLAS			
BARRA: 9 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 10 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 11 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad TABELA DE MATERIAIS "''IMERO MOD. ELASTICIDADE COEF. POISSON COEF. DILT. TERMICA FY F' 1 20500 0.30 0.000010000 25.00 40.0. TABELA DE SECOES NUMERO AREA IZ FATOR FORMA 1 80.500 9580.990 0.22 2 62.975 13910.300 0.32 3 37.000 366.000 0.52	BARRA: 8 NO	J: LIGACAO FLE: K = 36450	XIVEL CANTONEIF 7 kN.cm/rad	AS DUPLAS			
BARRA: 10 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 11 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad TABELA DE MATERIAIS "'IMERO MOD. ELASTICIDADE COEF. POISSON COEF. DILT. TERMICA FY F 1 20500 0.30 0.000010000 25.00 40.0 TABELA DE SECOES NUMERO AREA IZ FATOR FORMA 1 80.500 9580.990 0.22 2 62.975 13910.300 0.32 3 37.000 366.000 0.52	BARRA: 9 NO	I: LIGACAO FLE K = 36450	XIVEL CANTONEIF 7 kN.cm/rad	AS DUPLAS			
BARRA: 11 NO I: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad TABELA DE MATERIAIS "'JMERO MOD. ELASTICIDADE COEF. POISSON COEF. DILT. TERMICA FY F' 1 20500 0.30 0.000010000 25.00 40.0. TABELA DE SECOES NUMERO AREA IZ FATOR FORMA 1 80.500 9580.990 0.22 2 62.975 13910.300 0.32 3 37.000 366.000 0.52	BARRA: 10 NO	J: LIGACAO FLEX K = 364507	XIVEL CANTONEIF 7 kN.cm/rad	AS DUPLAS			
BARRA: 12 NO J: LIGACAO FLEXIVEL CANTONEIRAS DUPLAS K = 364507 kN.cm/rad TABELA DE MATERIAIS ""JMERO MOD. ELASTICIDADE COEF. POISSON COEF. DILT. TERMICA Fy Fi 1 20500 0.30 0.000010000 25.00 40.0 TABELA DE SECOES NUMERO AREA IZ FATOR FORMA 1 80.500 9580.990 0.22 2 62.975 13910.300 0.32 3 37.000 366.000 0.52	BARRA: 11 NO	I: LIGACAO FLE K = 36450	XIVEL CANTONEIF 7 kN.cm/rad	AS DUPLAS			
TABELA DE MATERIAIS MOD. ELASTICIDADE COEF. POISSON COEF. DILT. TERMICA Fy Fi 1 20500 0.30 0.000010000 25.00 40.0 TABELA DE SECOES NUMERO AREA IZ FATOR FORMA 1 80.500 9580.990 0.22 2 62.975 13910.300 0.32 3 37.000 366.000 0.52	BARRA: 12 NO	J: LIGACAO FLEX K = 36450	XIVEL CANTONEIF 7 kN.cm/rad	AS DUPLAS			
TABELA DE SECOES IZ FATOR FORMA 1 80.500 9580.990 0.22 2 62.975 13910.300 0.32 3 37.000 366.000 0.52	TABELA DE MATEI יייזMERO MOD. EI 1	RIAIS LASTICIDADE CO 20500	DEF. POISSON 0.30	COEF. DILT 0.	. TERMICA 000010000	Fy 25.00	F۱ 40.0
2 62.975 13910.300 0.32 . 3 37.000 366.000 0.52	TABELA DE SECO NUMERO	ES AREA		FATOR	FORMA		
3 37.000 366.000 0.52	2	60.500 62 975	13010 300		0.32		
	3	37.000	366.000		0.52	*	

CONECTIVIDADE E PROPRIEDADES DE BARRAS

	NO I	NO J	SECAO	MATERIAL	LIBER	ACOES		
1	1	2	1	1	000	000		
2	2	3	1	1	000	000		
3	3	4	1	1	000	000		
4	8	9	1	1	000	000		
5	9	10	1	1	000	000		
6	10	11	1	1	000	000		
7	2	5	2	1	001	000		
8	5	9	2	1	000	001		
9	3	6	2	1	001	000		
10	6	10	2	1	000	001		
11	4	7	2	1	001	000		
12	7	11	2	1	000	001		
13	1		3	1	001	001		
14	2	8	3	1	001	001		
15	2	10	3	1	001	001		
16	3	q	3	1	001	001		
17	3	11	3	1	001	001		
18	Δ	10	2	1	001	001		
10	7	10	5	1	001	001		
CARREGA	MENTO 1	No. 1 -	CARREGAM	ENTO MAJORA	DO E C	OMBINAD	0	
LARGAS	NODATS							
NO		FX	FV	M7				
2	0.0	100	-4 400	0 000				
3	0.0	000	-4.400	0.000				
4	0.0	000	-4.400	0.000				
	0.0		-4.400	0.000				
10	0.0		-4.400	0.000				
11	0.0	000	-4.400	0.000				
CAPCAS	U.U.		-4.400	0.000				
CARGAD	INAS DAR	IRAS						
BAR. T	TPO							
BAR. T	IPO LXV	דת	DF	VT		VE		
BAR. T 1.D 2.D	IPO Lxy Lx	DI	DF	VI		VF		
BAR. T 1.D 2.D 3.M	IPO Lxy Lx OME	DI DI DI	DF DF	VI VI		VF VF VF		
BAR. T 1.D 2.D 3.M	IPO Lxy Lx OME	DI DI DI	DF DF DF	VI VI VI		VF VF VF		
BAR. T 1.D 2.D 3.M 4.C	IPO Lxy Lx OME ONC	DI DI DI D	DF DF DF FX	VI VI VI FY		VF VF VF MZ		
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A	IPO Lxy Lx OME ONC EMP ML	DI DI DI T(y+) AML3	DF DF DF FX T(y~) AML2	VI VI FY H(y)	21	VF VF VF MZ	ami 5	λMT 6
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A	IPO Lxy Lx OME ONC EMP ML	DI DI D T(y+) AML1	DF DF DF FX T(y-) AML2	VI VI VI FY H(y) AML3	A	VF VF VF MZ	AML5	AML6
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A	IPO Lxy Lx OME ONC EMP ML 1	DI DI D T(y+) AML1	DF DF DF FX T(y~) AML2 300.000	VI VI VI FY H(Y) AML3 -0.403	AN -0.4	VF VF MZ ML4	AML5	AML6
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8	IPO Lxy Lx OME ONC EMP ML 1 1	DI DI D T(y+) AML1 0.000 0.000	DF DF DF FX T(y-) AML2 300.000 300.000	VI VI VI FY H(Y) AML3 -0.403 -0.403	AN -0.4 -0.4	VF VF MZ 4L4	AML5	AML6
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9	IPO Lxy Lx OME ONC EMP ML 1 1 1	DI DI D T(y+) AML1 0.000 0.000 0.000	DF DF FX T(y-) AML2 300.000 300.000 300.000	VI VI VI FY H(y) AML3 -0.403 -0.403 -0.403	AM -0.4 -0.4 -0.4	VF VF MZ 4L4 403 403 403	AML5	AM L6
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10	IPO Lxy Lx OME ONC EMP ML 1 1 1 1	DI DI D T(y+) AML1 0.000 0.000 0.000 0.000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000	VI VI VI FY H(y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403	-0.4 -0.4 -0.4 -0.4	VF VF MZ 403 403 403 403	AML5	AM L6
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11	IPO Lxy Lx OME ONC EMP ML 1 1 1 1 1	DI DI D T(y+) AML1 0.000 0.000 0.000 0.000 0.000	DF DF FX T(y~) AML2 300.000 300.000 300.000 300.000 300.000	VI VI VI FY H(y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403	-0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ 1L4 03 03 03 03 03	AML 5	AML6
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12	IPO Lxy Lx OME ONC EMP ML 1 1 1 1 1 1 1	DI DI D T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000	DF DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403	AN -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ 403 403 403 403 403 403 403 403	AML5	AML6
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 11 12	IPO Lxy Lx OME ONC EMP ML 1 1 1 1 1 1 1	DI DI D T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000	VI VI VI FY H(y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403	AN -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ 1L4 103 103 103 103 103 103	AML5	AML6
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGAN	IPO Lxy Lx OME ONC EMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DI DI D T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000	DF DF FX T(y~) AML2 300.000 300.000 300.000 300.000 300.000 300.000 300.000	VI VI VI FY H(y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403	AN -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ 1L4 03 03 03 03 03 03 03 03 03 03 03 03 03	AML 5	AML6
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGAI DESLOCAI	IPO Lxy Lx OME ONC EMP ML 1 1 1 1 1 1 1 1 MENTO N	DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAE	AN -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ 4L4 403 403 403 403 403 403 403 403 403 40	AML5	AM L6
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGAI DESLOCAI NO	IPO Lxy Lx OME ONC EMP ML 1 1 1 1 1 1 1 MENTO N MENTOS	DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DF DF FX T(y~) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAMI	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAE	AM -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ 4L4 403 403 403 403 403 403 403 403 403	AML 5	AM L6
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGAI DESLOCAI NO 1	IPO Lxy Lx OME ONC EMP ML 1 1 1 1 1 1 MENTO N MENTOS	DI DI DI D T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DF DF DF FX T(y~) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAMI	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAE	AM -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ 4L4 403 403 403 403 403 403 403 403 403 40	AML 5	AML6
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGAI DESLOCAI NO 1 2	IPO Lxy Lx OME ONC EMP ML 1 1 1 1 1 1 1 1 MENTO N MENTOS 0.00	DI DI DI D T(y+) AML1 0.000	DF DF DF FX T(y~) AML2 300.000 300.000 300.000 300.000 300.000 300.000 300.000 TY 0.00000	VI VI VI FY H(y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAE RZ 0.00048	AN -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ 4L4 403 403 403 403 403 403 403 403 403	AML 5	AML6
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGAI DESLOCAI NO 1 2 3	IPO Lxy Lx OME ONC EMP ML 1 1 1 1 1 1 1 1 1 0 MENTO N MENTOS 0.00 -0.00	DI DI DI D T(y+) AML1 0.000	DF DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAMI	VI VI VI FY H(y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAE RZ 0.00048 -0.00085	AN -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ 1L4 103 103 103 103 103 103 103 103 103	AML 5	AML6
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGAN DESLOCAN NO 1 2 3 4	IPO Lxy Lx OME ONC EMP ML 1 1 1 1 1 1 1 1 0 MENTO N MENTOS 0.00 -0.00 -0.00	DI DI DI D T(y+) AML1 0.000	DF DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAMI TY 0.00000 -0.06614 -0.11109	VI VI VI FY H(y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAE RZ 0.00048 -0.00085 -0.00028	AN -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ 114 103 103 103 103 103 103 103	AML5	AML6
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGAN DESLOCAN NO 1 2 3 4 5	IPO Lxy Lx OME ONC EMP ML 1 1 1 1 1 1 1 1 0.00 -0.00 -0.00 0.00	DI DI DI D T(y+) AML1 0.000	DF DF DF FX T(y~) AML2 300.000 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAMI TY 0.00000 -0.06614 -0.11109 -0.13315	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAE RZ 0.00048 -0.00085 -0.00028 -0.00149	AN -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ 114 103 103 103 103 103 103 103 103	AML5	AML6
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGAN DESLOCAN NO 1 2 3 4 5 6	IPO Lxy Lx OME ONC EMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DI DI DI D T(y+) AML1 0.000000	DF DF DF FX T(y~) AML2 300.000 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAMI TY 0.00000 -0.06614 -0.11109 -0.13315 -1.76814	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAE RZ 0.00048 -0.00085 -0.00028 -0.00149 -0.00000	AN -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ 414 403 403 403 403 403 403 403 403 403 40	AML5	AML6
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGAN DESLOCAN NO 1 2 3 4 5 6 7	IPO Lxy Lx OME ONC EMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DI DI DI D T(y+) AML1 0.000000	DF DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAMI CARREGAMI TY 0.00000 -0.06614 -0.11109 -0.13315 -1.76814 -1.78396	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAE RZ 0.00048 -0.00085 -0.00028 -0.00149 -0.00000 -0.00000	AN -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ 4L4 403 403 403 403 403 403 403 403 403 40	AML5	AML6
BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGAN DESLOCAN NO 1 2 3 4 5 6 7	IPO Lxy Lx OME ONC EMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DI DI DI D T(y+) AML1 0.000000	DF DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAMI CARREGAMI CARREGAMI 0.00000 -0.06614 -0.11109 -0.13315 -1.76814 -1.78396 -1.86776	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAE RZ 0.00048 -0.00085 -0.00028 -0.00149 -0.00000 -0.00000 -0.00000	AN -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ 4L4 403 403 403 403 403 403 403 403 403 40	AML5	AML6

9	0.00911	-0.06614	0.00085
10	0.00545	-0.11109	0.00028
11	-0.00304	-0.13315	0.00149
EACOES	DE APOIO		
NO	FORCA X	FORCA Y	MOMENTO Z
1	27.585	375.900	0.000
8	-27.585	375.900	0.000

ESFORCOS NAS EXTREMIDADES DAS BARRAS

BARRA	CARREG.	AXIAL	CORTANTE Y	MOMENTO Z
1	1	365.062	-5.909	-0.000
		-365.062	5.909	-1732.819
2	1	247.022	-15.147	-2542.656
		-247.022	15.147	-1796.987
3	1	121.402	-23.060	-2512.259
		-121.402	23.060	-4094.530
4	1	365.062	5,909	0.000
		-365.062	-5.909	1732.819
5	1	247.022	15.147	2542.656
		-247.022	-15.147	1796.987
6	1	121.402	23.060	2512.259
		-121.402	-23.060	4094.530
7	1	-38.069	120.900	2785.454
		38.069	0.000	14533.471
8	1	-38.069	-0.000	-14533.471
		38.069	120.900	-2785.454
9	1	-22.864	120.900	2934.997
		22.864	-0.000	14383.928
10	1	-22.864	-0.000	-14383.928
		22.864	120.900	-2934.997
11	1	15.264	120.900	2618.037
		-15.264	0.000	14700.888
12	1	15.264	0.000	-14700.888
		-15.264	120.900	-2618.037
13	1	24.235	-0.000	0.000
		-24.235	0.000	0.000
14	1	24.235	0.000	0.000
		-24.235	-0.000	0.000
15	1	8.000	-0.000	0.000
		-8.000	0.000	0.000
16	1	8.000	0.000	0.000
		-8.000	-0.000	0.000
17	1	8.716	-0.000	0.000
		-8.716	0.000	0.000
18	1	8.716	0.000	0.000
		-8.716	-0.000	0.000

ATENCAO: Este relatorio nao inclui as barras dos modelos de no. Logo, o equilibrio de esforcos entre as barras listadas nao apresenta-se plenamente satisfeito.

NOME DO AR	QUIVO :	CHTPK1						
LIGACOES C	OM CHAP	A DE TOPO - 1	LIG FLEX RIGI	DEZ	INICIAL			
RELATORIO	NAO INCI	LUE BARRAS MO	DDELOS DE NO					
YUMERO DE 'ERO DE MERO DE NUMERO DE NUMERO DE NUMERO DE TEMPERATUR TIPO DE PE	NOS MATERIA SECOES BARRAS CARREGAN COMBINAC A DE REI RFIL UTI	IS MENTOS COES FERENCIA ILIZADO	11 1 3 18 1 0 25.00 Soldado					
COORDENADA	S NODAIS	5	RESTRIC	OES	NODAIS			
NO	X	Ŷ	TX	ΤY	RZ			
1	0.00	300.00	1	1 1	0			
2	0.00	600.00	0	0	0			
4	0.00	900.00	0	Ő	0			
53	00.00	300.00	0	Ő	0			
6 3	00.00	600.00	0 0	Ō	0			
7 3	00.00	900.00	0	0	0			
86	00.00	0.00	1	1	0			
96	00.00	300.00	0	0	0			
10 6	00.00	600.00	0	0	0			
11 6	00.00	900.00	0	0	0			
RIGIDEZ DA BARRA: 7	S LIGACO NO I:	DES VIGA-COLU LIGACAO FLEX	JNA KIVEL CHAPA D	Е ТС)PO			
		K = 331286	6 kN.cm/rad					
BARRA: 8	NO J:	LIGACAO FLEX K = 331286	KIVEL CHAPA D 5 kN.cm/rad	е тс)PO			
BARRA: 9	NO I:	LIGACAO FLEZ K = 331286	KIVEL CHAPA D 5 kN.cm/rad	е то)PO			
BARRA: 10	NO J:	LIGACAO FLEZ K = 331286	KIVEL CHAPA D 5 kN.cm/rad	Е ТС)PO			
BARRA: 11	NO I:	LIGACAO FLEXK = 331286	KIVEL CHAPA D 5 kN.cm/rad	E TC)PO			
BARRA: 12	NO J:	LIGACAO FLEX K = 331286	KIVEL CHAPA D 5 kN.cm/rad	E TC	990			
TABELA DE NUMERO MO 1	MATERIA D. ELASI	IS FICIDADE CO 20500	DEF. POISSON 0.30	cc	DEF. DILT. 3 0.000	FERMICA	Fy 25.00	F 40.0
TABELA DE NUMERO 1 2	SECOES	AREA 80.500 62.975	IZ 9580.990 13910.300		FATOR FO)RMA).22).32		
3		37.000	366.000		().52	•	

CONECTIVIDADE E PROPRIEDADES DE BARRAS

BARRA	NO I	NO J	SECAO	MATERIAL	LIBER	ACOES		
1	1	2	1	1	000	000		
2	2	3	1	1	000	000		
3	3	4	1	1	000	000		
4	8	9	1	1	000	000		
5	9	10	1	1	000	000		
6	10	11	1	1	000	000		
7	2	5	2	1	001	000		
8	5	9	2	1	000	001		
9	3	6	2	1	001	000		
10	6	10	2	1	000	001		
11	4	7	2	1	001	000		
12	7	11	2	1	000	001		
13	1		3	1	001	001		
14	2	8	3	1	001	001		
15	2	10	3	1	001	001		
16	3	q	3	1	001	001		
17	2	11	2	1	001	001		
18	1	10	נ ר	1	001	001		
10	4	10	3	T	001	001		
CARREGA	MENTO 1	No. 1	- CARREGAM	ENTO MAJORA	ADO E C	OMBINADO)	
CARGAS	NODAIS							
NO		FX	FY	MZ				
2	0.0	000	-4.400	0.000				
3	0.0	000	-4.400	0.000				
4	0.0	000	-4 400	0.000				
9	0.1	200	-4 400	0.000				
10	0.0	000	-4 400	0.000				
11	0.0	000	-4.400	0.000				
	•••		4.400	0.000				
CARGAS	NAS BAL	RRAS						
BAR. T	'IPO							
1.0	Lxv	DT	DF	VT		VF		
2.D	Lx	<u></u> דת		VI		VF		
З.М	OME	DT		VI		VF		
4.0	ONC		FY	v I EV		V1 М7		
	EMP	ም (v ±)	אז (עבו)			ΗZ		
6.4	MT.	- (y') 	⊥(y−) λMT 2	Π(Υ) λMT 2	2	MT 4	ANT 5	XMT C
0.11		ANDI	APILZ	AMLS	A	ML4	AMLS	AMLO
7	1	0.000	300.000	-0.403	-0	403		
8	1	0.000	300.000	-0.403	-0	403		
9	1	0 000	300 000	-0.403	-0	403		
10	1	0.000	300.000	-0.403	-0.	403		
11	1	0.000	300.000	-0.403	-0.	403		
12	1	0.000	300.000	-0.403	-0.4	403		
12	-	0.000	300.000	-0.403	-0.	403		
CARRECA	ለዋልጥር እ	Io 1 -	CADDECAN					
~			CARADAAN.	ENIO MAJUKA		UDANITOTIC		
DESLOCA	MENTOS	NODATS						
NO		TY TY	ΨV	לים				
1	0.00	1000	11					
2	-0.00	1901	-0 06614		I			
2	-0.00	1530	-0 11100	-0.00081				
ر ۸		1222	-0.13315	-0.00026	1			
ب ۲	-0.00	200	-1 70670	-0.00143				
5 6	-0.00		-1.01510	0.00000				•
0	-0.00	0000	-1.01218	0.00000				

7 -0.00000 -1.89345 0.00000 8 0.00000 0.00000 -0.00046

9	0.00904	-0.06614	0.00081
10	0.00539	-0.11108	0.00026
11	-0.00286	-0.13315	0.00143
NO NO 1 8	DE APOIO FORCA X 27.386 -27.386	FORCA Y 375.900 375.900	MOMENTO Z 0.000 0.000

ESFORCOS NAS EXTREMIDADES DAS BARRAS

BARRA	CARREG	AYTAT.	CORTANTE Y	MOMENTO Z
1	1	365 033	-5.652	0.000
-	T	-365 033	5.652	-1657,969
2	1	246.967	-14.420	-2425.109
2	-	-246,967	14.420	-1709.036
3	1	121 454	-22.039	-2398.881
5	-		22.039	-3919.830
4	1	365 033	5.652	-0.000
-	-	-365.033	-5.652	1657,969
5	1	246.967	14.420	2425.109
2	-	-246.967	-14,420	1709.036
6	3	121.454	22.039	2398.881
Ŭ,	-	-121.454	-22.039	3919.830
7	1	-37.768	120,900	2608.584
	-	37.768	0.000	14722.431
8	1	-37.768	-0.000	-14722.431
-	_	37.768	120.900	-2608.584
9	1	-22.577	120.900	2742.402
		22.577	0.000	14588.613
10	1	-22.577	-0.000	-14588.613
		22.577	120.900	-2742.402
11	1	14.348	120.900	2458.423
		-14.348	0.000	14872.592
12	1	14.348	-0.000	-14872.592
		-14.348	120.900	-2458.423
13	1	24.299	-0.000	0.000
		-24.299	0.000	0.000
14	1	24.299	0.000	0.000
		-24.299	-0.000	0.000
15	1	8.124	-0.000	0.000
		-8.124	0.000	0.000
16	1	8.124	0.000	0.000
		-8.124	-0.000	0.000
17	1	8.599	-0.000	0.000
		-8.599	0.000	0.000
18	1	8.599	0.000	0.000
		-8.599	-0.000	0.000

ATENCAO: Este relatorio nao inclui as barras dos modelos de no. Logo, o equilibrio de esforcos entre as barras listadas nao apresenta-se plenamente satisfeito.

\COES CO	M CHAPA DE TOPO - L	IG FLEX RIGIDE	Z ULTIMA	
RELATORIO N	AO INCLUE BARRAS MOI	DELOS DE NO		
NUMERO DE N NUMERO DE S NUMERO DE B NUMERO DE C NUMERO DE C TEMPERATURA [*] PO DE PER	OS:IATERIAIS:ECOES:ARRAS:CARREGAMENTOS:COMBINACOES:A DE REFERENCIA:FIL UTILIZADO:	11 1 3 18 1 0 25.00 Soldado		
JORDENADAS	NODAIS	RESTRICOES	S NODAIS	
NO	ХУ	TX TY	YRZ	
1	0.00 0.00	1 1	1 0	
2	0.00 300.00	0 (0 0	
3	0.00 600.00	0 0	0 0	
4	0.00 900.00	0 (0 0	
5 30	0.00 300.00	0 (0 0	
6 30	0.00 600.00	0 (0 0	
7 30	0.00 900.00	0 (0 0	
8 60	0.00 0.00	1 -		
9 60	0.00 300.00	0 0		
10 60	0.00 600.00	0 0		
11 60	0.00 900.00	0 6	0 0	
RIGIDEZ DAS BARRA: 7	LIGACOES VIGA-COLUN NO I: LIGACAO FLEX K = 254092	NA IVEL CHAPA DE ' kN.cm/rad	TOPO	
BARRA: 8	NO J: LIGACAO FLEX K = 254092	IVEL CHAPA DE (kN.cm/rad	TOPO	
BARRA: 9	NO I: LIGACAO FLEX K = 254092	IVEL CHAPA DE ' kN.cm/rad	ТОРО	
BARRA: 10	NO J: LIGACAO FLEX K = 254092	IVEL CHAPA DE (kN.cm/rad	TOPO	
BARRA: 11	NO I: LIGACAO FLEX K = 254092	IVEL CHAPA DE (kN.cm/rad	TOPO	
BARRA: 12	NO J: LIGACAO FLEX K = 254092	IVEL CHAPA DE ' kN.cm/rad	TOPO	
TABELA DE M NUMERO MOD 1	IATERIAIS). ELASTICIDADE CO 20500	EF. POISSON (0.30	COEF. DILT. TERMICA 0.000010000	Fy 25.00
ABELA DE S	SECOES			
NUMERO	AREA	IZ	FATOR FORMA	
1	80.500	9580.990	0.22	
2	62.975	13910.300	0.32	
3	37 000	366.000	0.52	,

CONECTIVIDADE E PROPRIEDADES DE BARRAS

37.000

3

•

366.000

0.52

 \mathbf{F} 40.0

SARRA	NO I	NO J	SECAO	MATERIAL	LIBER	ACOES		
1	1	2	1	1	000	000		
2	2	3	1	1	000	000		
3	3	4	1	1	000	000		
4	8	9	1	1	000	000		
5	9	10	1	1	000	000		
6	10	11	1	1	000	000		
7	2	5	2	1	001	000		
8	5	9	2	1	000	001		
9	3	6	2	1	001	000		
10	6	10	2	1	000	001		
11	4	7	2	1	001	000		
12	7	11	2	1	000	001		
`3	1	9	3	1	001	001		
4	2	8	3	1	001	001		
± 5	2	10	3	1	001	001		
16	3	9	3	1	001	001		
17	3	11	3	1	001	001		
18	4	10	3	1	001	001		
CARREGA	MENTO 1	No. 1 -	CARREGAM	ENTO MAJORA	DO E C	OMBINAD	0	
CARGAS	NODAIS							
NO		FX	FY	MZ				
2	0.0	000	-4.400	0.000				
3	0.0	000	-4.400	0.000				
4	0.0	000	-4.400	0.000				
9	0.0	000	-4.400	0.000				
10	0.0	000	-4.400	0.000				
11	0.0	000	-4.400	0.000				
CARGAS BAR. T	NAS BAI	RRAS						
CARGAS BAR. 1 1.D	NAS BAH IPO Lxy	RRAS DI	DF	VI		VF		
CARGAS BAR. T 1.D 2.D	NAS BAH TIPO DLXY DLX	RRAS DI DI	DF DF	VI VI		VF VF		
CARGAS BAR. T 1.D 2.D 3.M	NAS BAI TPO LXY OLX IOME	RRAS DI DI DI	DF DF DF	VI VI VI		VF VF VF		
CARGAS BAR. T 1.D 2.D 3.M 4.C	NAS BAH PIPO PLXY DLX IOME CONC	RRAS DI DI DI D	DF DF DF FX	VI VI VI FY		VF VF VF MZ		
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T	NAS BAH PIPO PLXY PLX IOME CONC PEMP	RRAS DI DI DI T(y+)	DF DF DF FX T(y-)	VI VI VI FY H(Y)		VF VF VF MZ		
CARGAS BAR. 1 1.D 2.E 3.M 4.C 5.1 6.A	NAS BAH DLXY DLX IOME CONC EMP ML	RRAS DI DI DI T(y+) AML1	DF DF DF FX T(y-) AML2	VI VI VI FY H(Y) AML3	AI	VF VF VF MZ ML4	AML5	AML6
CARGAS BAR. 1 1.0 2.0 3.M 4.0 5.1 6.A	NAS BAH TIPO DLXY DLX IOME CONC TEMP ML	RRAS DI DI DI T(y+) AML1	DF DF DF FX T(y-) AML2	VI VI FY H(Y) AML3	A	VF VF VF MZ ML4	AML5	AML6
CARGAS BAR. T 1.D 2.E 3.M 4.C 5.T 6.A 7	NAS BAH TIPO DLXY DLX TOME CONC TEMP ML 1	RRAS DI DI DI T(y+) AML1 0.000	DF DF DF FX T(y-) AML2 300.000	VI VI VI FY H(Y) AML3 -0.403	AJ -0.4	VF VF MZ ML4	AML5	AML6
CARGAS BAR. T 1.D 2.E 3.M 4.C 5.T 6.A 7 8	NAS BAH TIPO DLXY DLX IOME CONC TEMP ML 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000	DF DF DF FX T(y-) AML2 300.000 300.000	VI VI VI FY H(Y) AML3 -0.403 -0.403	Al -0	VF VF MZ ML4 403 403	AML5	AML6
CARGAS BAR. 1 1.D 2.E 3.M 4.C 5.1 6.A 7 8 9	NAS BAH PIPO DLXY DLX IOME CONC PEMP ML 1 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000 0.000	DF DF DF FX T(y-) AML2 300.000 300.000 300.000	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403	Al -0.4 -0.4 -0.4	VF VF MZ ML4 403 403	AML5	AML6
CARGAS BAR. 1 1.D 2.E 3.M 4.C 5.1 6.A 7 8 9 10	NAS BAH PIPO DLXY DLX IOME CONC PEMP ML 1 1 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000	DF DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403	Al -0.4 -0.4 -0.4 -0.4	VF VF MZ ML4 403 403 403	AML5	AML6
CARGAS BAR. 1 1.0 2.0 3.M 4.0 5.1 6.A 7 8 9 10 11 12	NAS BAN PIPO DLXY DLX IOME CONC PEMP ML 1 1 1 1 1 1	RRAS DI DI DI T(Y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000	DF DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000	VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403	Al -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ ML4 403 403 403 403 403	AML5	AML6
CARGAS BAR. 1 1.D 2.E 3.M 4.C 5.1 6.A 7 8 9 10 11 12	NAS BAH PIPO DLXY DLX IOME CONC PEMP ML 1 1 1 1 1 1 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DF DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403	Al -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.E 3.M 4.C 5.T 6.A 7 8 9 10 11 12	NAS BAH PIPO DLXY DLX IOME CONC PEMP ML 1 1 1 1 1 1 1 1 1 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000	DF DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403	Al -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. 1 1.D 2.E 3.M 4.C 5.T 6.A 7 8 9 10 11 12 ARREGA	NAS BAN PIPO DLXY DLX IOME CONC PEMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DF DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAM	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAN	Al -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 DO E CO	VF VF MZ ML4 403 403 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.E 3.M 4.C 5.T 6.A 7 8 9 10 11 12 ARREGA DESLOCA	NAS BAN TIPO DLXY DLX IOME CONC TEMP ML 1 1 1 1 1 1 1 1 MENTO M	RRAS DI DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 300.000	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAN	A -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 DO E CO	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.E 3.M 4.C 5.T 6.A 7 8 9 10 11 12 ARREGA DESLOCA NO	NAS BAH PIPO DLXY DLX IOME CONC PEMP ML 1 1 1 1 1 1 1 MENTO M MENTOS	RRAS DI DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 TY	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAN	Al -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 DO E CO	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. 1 1.D 2.E 3.M 4.C 5.T 6.A 7 8 9 10 11 12 ARREGA DESLOCA NO 1	NAS BAN DLXY DLX IOME CONC EMP ML 1 1 1 1 1 1 MENTO M MENTOS 0.00	RRAS DI DI DI DI T(y+) AML1 0.000	DF DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAM	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAN RZ 0.00042	Al -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 DO E CO	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.E 3.M 4.C 5.T 6.A 7 8 9 10 11 12 ARREGA DESLOCA NO 1 2	NAS BAN PIPO DLXY DLX IOME CONC PEMP ML 1 1 1 1 1 1 1 MENTO M MENTOS 0.00 -0.00	RRAS DI DI DI DI T(Y+) AML1 0.000000	DF DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAM TY 0.00000 -0.06613	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAN RZ 0.00042 -0.00072	A) -0.4 -0.4 -0.4 -0.4 -0.4 DO E CO	VF VF MZ ML4 403 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 ARREGA DESLOCA NO 1 2 3	NAS BAN TPO DLXY DLX IOME CONC TEMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RRAS DI DI DI DI T(y+) AML1 0.0000 0.000000	DF DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAM TY 0.00000 -0.06613 -0.11105	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAN RZ 0.00042 -0.00072 -0.00023	Al -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 DO E CO	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 ARREGA DESLOCA NO 1 2 3 4	NAS BAN TIPO DLXY DLX IOME CONC TEMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RRAS DI DI DI DI T(y+) AML1 0.0000 0.0000 0.000000	DF DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAM TY 0.00000 -0.06613 -0.11105 -0.13315	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAN RZ 0.00042 -0.00072 -0.00023 -0.00128	A -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 DO E CO	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.E 3.M 4.C 5.T 6.A 7 8 9 10 11 12 ARREGA DESLOCA NO 1 2 3 4 5	NAS BAN PIPO PLXY PLX IOME CONC PEMP ML 1 1 1 1 1 1 1 MENTO M MENTOS 0.00 -0.00 0.00 -0.00 0.00	RRAS DI DI DI DI T(y+) AML1 0.0000 0.000 0.0000 0.0000 0.000000	DF DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAM TY 0.00000 -0.06613 -0.11105 -0.13315 -1.86244	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAN RZ 0.00042 -0.00072 -0.00023 -0.00128 0.00000	Al -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 DO E CO	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.E 3.M 4.C 5.T 6.A 7 8 9 10 11 12 ARREGA DESLOCA NO 1 2 3 4 5 6	NAS BAH PIPO PLXY PLX IOME CONC PEMP ML 1 1 1 1 1 1 1 MENTO M MENTOS 0.00 -0.00 -0.00 -0.00 -0.00	RRAS DI DI DI DI T(y+) AML1 0.0000 0.0000 0.0000 0.000000	DF DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAM TY 0.00000 -0.06613 -0.11105 -0.13315 -1.86244 -1.88663	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAN RZ 0.00042 -0.00072 -0.00072 -0.00023 -0.00128 0.00000 0.00000	Al -0.4 -0.4 -0.4 -0.4 -0.4 DO E CO	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. 1 1.D 2.E 3.M 4.C 5.T 6.A 7 8 9 10 11 12 ARREGA DESLOCA NO 1 2 3 4 5 6 7	NAS BAN PIPO DLXY DLX IOME CONC PEMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RRAS DI DI DI DI T(y+) AML1 0.0000 0.000 0.0000 0.0000 0.000000	DF DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAM TY 0.00000 -0.06613 -0.11105 -0.13315 -1.86244 -1.88663 -1.95285	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAN RZ 0.00042 -0.00072 -0.00023 -0.00128 0.00000 0.00000 0.00000	Al -0.4 -0.4 -0.4 -0.4 -0.4 DO E CO	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.D 2.D 3.M 4.C 5.T 6.A 7 8 9 10 11 12 ARREGA DESLOCA NO 1 2 3 4 5 6 7 8	NAS BAH PIPO DLX IOME CONC PEMP ML 1 1 1 1 1 1 1 MENTO M MENTOS 0.00 -0.00 0.00 0.00 0.00 0.00 0.00	RRAS DI DI DI DI T(y+) AML1 0.0000 0.0000 0.0000 0.000000	DF DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAM TY 0.00000 -0.06613 -0.11105 -0.13315 -1.86244 -1.88663 -1.95285 0.00000	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAN RZ 0.00042 -0.00072 -0.00023 -0.00128 0.00000 0.00000 -0.00042	A -0.4 -0.4 -0.4 -0.4 -0.4 DO E CO	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6

9	0.00890	-0.06613	0.00072
10	0.00525	-0.11105	0.00023
11	-0.00241	-0.13315	0.00128
REACOES	DE APOIO		
NO	FORCA X	FORCA Y	MOMENTO Z
1	26.914	375.900	0.000
8	-26.914	375.900	0.000

ORCOS	NAS EXTREMIN	DADES DAS BAI	RRAS	
BARRA	CARREG.	AXIAL	CORTANTE Y	MOMENTO Z
1	1	364.971	-5.057	-0.000
		-364.971	5.057	-1483.432
2	1	246.843	-12.743	-2150.477
		-246.843	12.743	-1503.076
3	1	121.583	-19.680	-2132.238
		-121.583	19.680	-3510.072
4	1	364.971	5.057	0.000
		-364.971	-5.057	1483.432
5	1	246.843	12.743	2150.477
		-246.843	-12.743	1503.076
6	1	121.583	19.680	2132.238
		-121.583	-19.680	3510.072
7	1	-37.059	120.900	2144.312
		37.059	0.000	15186.703
8	1	-37.059	-0.000	-15186.703
		37.059	120.900	-2144.312
9	1	-21.885	120.900	2242.962
		21.885	0.000	15088.053
10	1	-21.885	-0.000	-15088.053
		21.885	120.900	-2242.962
11	1	12.247	120.900	2032.975
		-12.247	0.000	15298.040
12	1	12.247	-0.000	-15298.040
		-12.247	120.900	-2032.975
13	1	24.437	-0.000	0.000
		-24.437	0.000	0.000
14	1	24.437	0.000	0.000
		-24.437	-0.000	0.000
15	1	8.402	-0.000	0.000
		-8.402	0.000	0.000
16	1	8.402	0.000	0.000
		-8.402	-0.000	0.000
17	1	8.310	-0.000	0.000
		-8.310	0.000	0.000
18	1	8.310	0.000	0.000
		-8.310	-0.000	0.000

ATENCAO: Este relatorio nao inclui as barras dos modelos de no. Logo, o equilibrio de esforcos entre as barras listadas nao apresenta-se plenamente satisfeito.

NOME DO ARQUIVO :	CHEXK1
LIGACOES COM CH E	XTREMIDADE - LIG FLEX RIGIDEZ INICIAL
RELATORIO NAO INC	LUE BARRAS MODELOS DE NO
NUMERO DE NOS NUMERO DE MATERIA NUMERO DE SECOES NUMERO DE BARRAS 'IMERO DE CARREGA 'ERO DE COMBINA PERATURA DE RE TIPO DE PERFIL UT	
COORDENADAS NODAI	S RESTRICOES NODAIS
NO X	Y TX TY RZ
1 0.00	
3 0.00	
4 0.00	900.00 0 0 0
5 300.00	300.00 0 0 0
6 300.00	600.00 0 0 0
7 300.00	900.00 0 0 0
8 600.00	0.00 1 1 0
9 600.00	
11 600.00	
11 800.00	900.00 0 0 0
RIGIDEZ DAS LIGAC BARRA: 7 NO I:	OES VIGA-COLUNA LIGACAO FLEXIVEL CH EXTREM MESA DA COLUNA K = 2180817 kN.cm/rad
BARRA: 8 NO J:	LIGACAO FLEXIVEL CH EXTREM MESA DA COLUNA K = 2180817 kN.cm/rad
BARRA: 9 NO I:	LIGACAO FLEXIVEL CH EXTREM MESA DA COLUNA K = 2180817 kN.cm/rad
BARRA: 10 NO J:	LIGACAO FLEXIVEL CH EXTREM MESA DA COLUNA K = 2180817 kN.cm/rad
BARRA: 11 NO I:	LIGACAO FLEXIVEL CH EXTREM MESA DA COLUNA K = 2180817 kN.cm/rad
BARRA: 12 NO J:	LIGACAO FLEXIVEL CH EXTREM MESA DA COLUNA K = 2180817 kN.cm/rad
TABELA DE MATERIA NUMERO MOD. ELAS 1	TICIDADE COEF. POISSON COEF. DILT. TERMICA FY F 20500 0.30 0.000010000 25.00 40.0
"ABELA DE SECOES JUMERO 1	AREAIZFATOR FORMA80.5009580.9900.22
2 3	62.97513910.3000.3237.000366.0000.52

CONECTIVIDADE E PROPRIEDADES DE BARRAS

	NO I	NO J	SECAO	MATERIAL	LIBER	ACOES		
1	1	2	1	1	000	000		
2	2	3	1	1	000	000		
3	3	4	1	1	000	000		
1	8	9	1	1	000	000		
5	9	10	1	1	000	000		
6	10	11	1	1	000	000		
7	2	5	2	1	001	000		
8	5	9	2	1	000	001		
9	3	6	2	1	001	000		
10	6	10	2	1	000	001		
11	4	7	2	1	001	000		
12	7	11	2	1	000	001		
13	1	9	3	1	001	001		
14	2	8	3	1	001	001		
15	2	10	3	1	001	001		
16	3	9	3	1	001	001		
17	3	11	3	1	001	001		
18	4	10	3	1	001	001		
CARREGA	MENTO 1	No. 1 -	CARREGAM	ENTO MAJORA	DOEC	OMBINAD	00	
CARGAS	NODAIS							
NO		FX	FY	MZ				
2	0.0	000	-4.400	0.000				
3	0.0	000	-4.400	0.000				
4	0.0	000	-4.400	0.000				
9	0.0	000	-4.400	0.000				
10	0.0	000	-4.400	0.000				
11	0.0	000	-4.400	0.000				
CARGAS BAR. 1	NAS BAI TPO	RRAS						
CARGAS BAR. 1 1.E	NAS BAH TIPO DLxy	RRAS DI	DF	VI		VF		
CARGAS BAR. 1 1.[2.[NAS BAH TIPO DLxy DLx	RRAS DI DI	DF DF	VI VI		VF VF		
CARGAS BAR. 1 1.E 2.E 3.M	NAS BAH TIPO DLxy DLx IOME	RRAS DI DI DI	DF DF DF	VI VI VI		VF VF VF		
CARGAS BAR. 7 1.[2.[3.M 4.0	NAS BAH TIPO DLxy DLx IOME CONC	RRAS DI DI DI D	DF DF DF FX	VI VI VI FY		VF VF VF MZ		
CARGAS BAR. T 1.[2.[3.M 4.C 5.T	NAS BAH TIPO DLXY DLX IOME CONC TEMP	RRAS DI DI DI T(y+)	DF DF DF FX T(Y-)	VI VI VI FY H(Y)		VF VF VF MZ		
CARGAS BAR. 1 1.0 2.1 3.M 4.0 5.1 6.A	NAS BAH TIPO DLXY DLX IOME CONC TEMP ML	RRAS DI DI DI T(y+) AML1	DF DF DF FX T(y-) AML2	VI VI VI FY H(Y) AML3	A	VF VF VF MZ ML4	AML5	AML6
CARGAS BAR. 1 1.[2.[3.M 4.C 5.1 6.A	NAS BAH TIPO DLxy DLx IOME CONC TEMP ML	RRAS DI DI DI T(y+) AML1	DF DF FX T(y-) AML2	VI VI VI FY H(y) AML3	A	VF VF VF MZ ML4	AML5	AML6
CARGAS BAR. T 1.E 2.E 3.M 4.C 5.T 6.A 7	NAS BAH TIPO DLxy DLx IOME CONC TEMP ML 1	RRAS DI DI DI T(y+) AML1 0.000	DF DF FX T(y-) AML2 300.000	VI VI VI FY H(Y) AML3 -0.403	A. -0.	VF VF MZ ML4	AML5	AML6
CARGAS BAR. T 1.[2.[3.M 4.(5.T 6.A 7 8	NAS BAH TIPO DLxy DLx IOME CONC TEMP ML 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000	DF DF FX T(y-) AML2 300.000 300.000	VI VI VI FY H(Y) AML3 -0.403 -0.403	-0. -0.	VF VF MZ ML4 403	AML5	AML6
CARGAS BAR. 1 1.0 2.1 3.M 4.0 5.1 6.A 7 8 9	NAS BAH TIPO DLXY DLX IOME CONC TEMP ML 1 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000 0.000	DF DF FX T(y-) AML2 300.000 300.000 300.000	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403	-0. -0. -0.	VF VF MZ ML4 403 403	AML5	AML6
CARGAS BAR. 1 1.E 2.E 3.M 4.C 5.1 6.A 7 8 9 10	NAS BAH TIPO DLXY DLX IOME CONC TEMP ML 1 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403	-0. -0. -0.	VF VF MZ ML4 403 403 403	AML5	AML6
CARGAS BAR. 7 1.0 2.0 3.M 4.0 5.7 6.A 7 8 9 10 11	NAS BAH TIPO DLxy DLx IOME CONC TEMP ML 1 1 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000	VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403	-0. -0. -0. -0.	VF VF MZ ML4 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.E 2.E 3.M 4.C 5.T 6.A 7 8 9 10 11 12	NAS BAH TIPO DLxy DLx IOME CONC TEMP ML 1 1 1 1 1 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000	VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403	-0. -0. -0. -0. -0. -0.	VF VF MZ ML4 403 403 403 403 403	AML5	AML6
CARGAS BAR. 7 1.0 2.0 3.M 4.0 5.7 6.A 7 8 9 10 11 12 CARREGA	NAS BAH TIPO DLXY DLX IOME CONC TEMP ML 1 1 1 1 1 1 1 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403	-0. -0. -0. -0. -0. -0. -0.	VF VF MZ ML4 403 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.E 2.E 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA	NAS BAH TIPO DLXY DLX IOME CONC TEMP ML 1 1 1 1 1 1 1 1 1 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 300.000	VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403	A -0. -0. -0. -0. -0. -0. -0. -0.	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.E 2.E 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA DESLOCA	NAS BAH TIPO DLXY DLX IOME CONC TEMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RRAS DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000	VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAI	-0. -0. -0. -0. -0. -0. -0. -0.	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. 7 1.0 2.0 3.M 4.0 5.7 6.A 7 8 9 10 11 12 CARREGA DESLOCA NO	NAS BAH TIPO DLXY DLX IOME CONC TEMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RRAS DI DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 TY	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAI	-0. -0. -0. -0. -0. -0. -0. -0.	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. 7 1.0 2.0 3.M 4.0 5.7 6.A 7 8 9 10 11 12 CARREGA DESLOCA NO 1	NAS BAH TIPO DLXY DLX IOME CONC TEMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RRAS DI DI DI DI T(y+) AML1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAMI TY 0.00000	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAN RZ 0.00088	A -0. -0. -0. -0. -0. -0. -0. -0.	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.E 2.E 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA DESLOCA NO 1 2	NAS BAH TIPO DLXY DLX IOME CONC TEMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RRAS DI DI DI DI T(y+) AML1 0.000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAMI TY 0.00000 -0.06616	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAI RZ 0.00088 -0.00158	A -0. -0. -0. -0. -0. -0. -0. -0.	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.E 2.E 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA DESLOCA NO 1 2 3	NAS BAH TIPO DLXY DLX IOME CONC TEMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RRAS DI DI DI DI T(y+) AML1 0.000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAMI TY 0.00000 -0.06616 -0.11123	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAI RZ 0.00088 -0.00158 -0.00063	A -0. -0. -0. -0. -0. -0. -0.	VF VF MZ ML4 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.E 2.E 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA DESLOCA NO 1 2 3 4	NAS BAH TIPO DLXY DLX IOME CONC TEMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RRAS DI DI DI T(y+) AML1 0.0000 0.000 0.0000 0.000000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAM TY 0.00000 -0.06616 -0.11123 -0.13298	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAI RZ 0.00088 -0.00158 -0.00063 -0.00262	A -0. -0. -0. -0. -0. -0. -0.	VF VF MZ ML4 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.E 2.E 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA DESLOCA NO 1 2 3 4 5	NAS BAH PIPO DLXY DLX IOME CONC PEMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1	RRAS DI DI DI T(y+) AML1 0.0000 0.0000 0.0000 0.000000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAMI TY 0.00000 -0.06616 -0.11123 -0.13298 -1.20769	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAI RZ 0.00088 -0.00158 -0.00262 0.00000	A -0. -0. -0. -0. -0. -0. -0. -0.	VF VF MZ ML4 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.E 2.E 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA DESLOCA NO 1 2 3 4 5 6	NAS BAH PIPO DLXY DLX IOME CONC PEMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1	RRAS DI DI DI T(y+) AML1 0.0000 0.000 0.0000 0.0000 0.000000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAM TY 0.00000 -0.06616 -0.11123 -0.13298 -1.20769 -1.14776	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAI RZ 0.00088 -0.00158 -0.00063 -0.00262 0.00000 0.00000	A -0. -0. -0. -0. -0. -0. -0. -0.	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. 7 1.E 2.E 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA DESLOCA NO 1 2 3 4 5 6 7	NAS BAH PIPO DLXY DLX IOME CONC PEMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RRAS DI DI DI DI T(y+) AML1 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAM TY 0.00000 -0.06616 -0.11123 -0.13298 -1.20769 -1.14776 -1.38896	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 ENTO MAJORAI RZ 0.00088 -0.00158 -0.00063 -0.00262 0.00000 0.00000 0.00000	A -0. -0. -0. -0. -0. -0. -0.	VF VF MZ ML4 403 403 403 403 403 403	AML5	AML6
CARGAS BAR. T 1.E 2.E 3.M 4.C 5.T 6.A 7 8 9 10 11 12 CARREGA DESLOCA NO 1 2 3 4 5 6 7 8	NAS BAH PIPO DLxy DLx IOME CONC PEMP ML 1 1 1 1 1 1 1 1 1 1 1 1 1	RRAS DI DI DI DI T(y+) AML1 0.0000 0.0000 0.0000 0.000000	DF DF FX T(y-) AML2 300.000 300.000 300.000 300.000 300.000 300.000 CARREGAM CARREGAM CARREGAM CARREGAM CARREGAM CARREGAM	VI VI VI FY H(Y) AML3 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.403 -0.003 ENTO MAJORAI RZ 0.00088 -0.00158 -0.00063 -0.00063 -0.00000 0.00000 -0.00088	A -0. -0. -0. -0. -0. -0. -0.	VF VF MZ ML4 403 403 403 403 403	AML 5	AML6

9	0.01049	-0.06616	0.00158
10	0.00648	-0.11123	0.00063
11	-0.00658	-0.13298	0.00262
PFACOES	DE APOIO		
NO	FORCA X	FORCA Y	MOMENTO Z
1	31.427	375.900	0.000
8	-31.427	375.900	0.000

ESFORCOS NAS EXTREMIDADES DAS BARRAS

•

BARRA	CARREG.	AXIAL	CORTANTE Y	MOMENTO Z
1	1	365.683	-10.994	0.000
		-365.683	10.994	-3207.422
2	1	248.081	-30.344	-4918.117
		-248.081	30.344	-3684.521
3	1	120.335	-43.138	-4811.576
-	_	-120.335	43.138	-7417.954
4	1	365,683	10.994	-0.000
		-365.683	-10.994	3207.422
5	1	248.081	30.344	4918.117
		-248.081	-30.344	3684.521
6	1	120.335	43.138	4811.576
		-120.335	-43.138	7417.954
7	1	-44.822	120.900	6471.729
		44.822	-0.000	10665.846
8	1	-44.822	0.000	-10665.846
		44.822	120.900	-6471.729
9	1	-27.761	120.900	7107.474
		27.761	0.000	10030.101
10	1	-27.761	-0.000	-10030.101
		27.761	120.900	-7107.474
11	1	33.208	120.900	5778.990
		-33.208	-0.000	11358.585
12	1	33.208	0.000	-11358.585
		-33.208	120.900	-5778.990
13	1	22.845	-0.000	0.000
		-22.845	0.000	0.000
14	1	22.845	0.000	0.000
		-22.845	-0.000	0.000
15	1	5.632	-0.000	0.000
		-5.632	0.000	0.000
16	1	5.632	0.000	0.000
		-5.632	-0.000	0.000
17	1	11.102	-0.000	0.000
		-11.102	0.000	0.000
18	1	11.102	0.000	0.000
		-11.102	-0.000	0.000

ATENCAO: Este relatorio nao inclui as barras dos modelos de no. Logo, o equilibrio de esforcos entre as barras listadas nao apresenta-se plenamente satisfeito.

...GACOES COM CH EXTREMIDADE - LIG FLEX RIGIDEZ ULTIMA

RELATORIO NAO INCLUE BARRAS MODELOS DE NO

NUMERO NUMERO NUMERO NUMERO IMERO IMERO IMPERA	DE NC DE MA DE SE DE BA DE CA DE CO ATURA E PERF	S ATER COE ARRA ARRE MBI DE IL	IAI S. GAM NAC REF UTI	S ENTOS OES ERENCIA LIZADO .	· · · · · · · · · · · · · · · · · · ·	1 1 25.0 Sold	1 1 3 8 1 0 0 ado								
COORDEN	IADAS	NOD	AIS				RES	TRICO	DES	NODA	IS				
NO 1				Y 0 00				TX 1	1 Y	<u>к</u> д 0					
1	0	000		300.00	1			0	0	Ő					
2	0).00		600.00	1			ŏ	ŏ	õ					
4	Ő	00.00		900.00	I			Ō	0	0					
5	300	0.00		300.00)			0	0	0					
6	300	.00		600.00)			0	0	0					
7	300	00.00	i i	900.00)			0	0	0					
8	600	.00		0.00	1			1	1	0					
9	600	0.00)	300.00)			0	0	0					
10	600			600.00				0	0	0					
T T	800			900.00	,			0	0	Ŭ					
RIGIDE2 BARRA:	Z DAS 7	LIG NO	ACO I:	ES VIGA- LIGACAO K = 28	COLUI FLEX 7061	NA IVEL kN.c	CH m/r	EXTRI ad	EM	MESA	DA	COLUNA			
BARRA:	8	NO	J:	LIGACAO K = 28	FLEX 7061	IVEL kN.c	CH m/r	EXTRI ad	EM	MESA	DA	COLUNA			
BARRA:	9	NO	1:	LIGACAO K = 28	FLEX: 7061	IVEL kN.c	CH m/r	EXTRI ad	EM	MESA	DA	COLUNA			
BARRA:	10	NO	J:	LIGACAO K = 28	FLEX: 7061	IVEL kN.c	CH m/r	EXTRI ad	EM	MESA	DA	COLUNA			
BARRA:	11	NO	I:	LIGACAO K = 28	FLEX 57061	IVEL kN.c	CH m/r	EXTRI ad	EM	MESA	DA	COLUNA			
BARRA:	12	NO	J:	LIGACAO K = 28	FLEX 87061	IVEL kN.c	CH m/r	EXTRI ad	EM	MESA	DA	COLUNA			
TABELA NUMERO 1	DE MA MOD.	ATER . EL	IAI AST	S SICIDADE 20500	CO	EF. P	OIS 0	SON .30	С	OEF.	DIL O	T. TERM	ICA 000	Fy 25.00	F 40.0
3ELA JMERO 1 2 3	DE SE	ECOE	s	AREA 80.500 62.975 37.000		9 13	580 910 366	IZ .990 .300 .000		H	FATO	R FORMA 0.22 0.32 0.52			

CONECTIVIDADE E PROPRIEDADES DE BARRAS

•

BARRA	NO I	NO J	SECAO I	MATERIAL	LIBER	ACOES		
1	1	2	1	1	000	000		
2	2	3	1	1	000	000		
3	3	4	1	1	000	000		
4	8	9	1	1	000	000		
5	9	10	1	1	000	000		
6	10	11	1	1	000	000		
7	2	5	2	1	001	000		
8	5	9	2	1	000	001		
9	3	6	2	1	001	000		
:0	6	10	2	1	000	001		
11	4	7	2	ī	001	000		
12	7	11	2	1	000	001		
13	1		3	1	001	001		
14	2	Ŕ	ĩ	- 1	001	001		
15	2	10	3	1	001	001		
16	3	- G	3	1	001	001		
17	3	11	2	1	001	001		
19	3	10	2	1	001	001		
10	4	10	J	T	001	001		
CARREGA	MENTO 1	No. 1 -	CARREGAM	ENTO MAJORA	DO E C	OMBINA	DO	
ARCAS	NUDAIS							
NO	nobiiib	FX	FV	M2				
2	0 0	100	-4 400	0.000				
2	0.0	000	-4.400	0.000				
7	0.0		-4.400	0.000				
4	0.0		-4.400	0.000				
10	0.0	200	-4.400	0.000				
11	0.0		-4.400	0.000				
CARGAS	NAS BAI	RRAS	11100					
		דת	DF	17 T		VF		
	JLXY					VF		
2.1						VF		
3.M	IOME	DI		V I EV		V 1' M 17		
4.0	UNC		FX	Г I II(11)		F1Z		
5.1	EMP	T(y+)	T(y-)	H(Y)	2	MT A	AMT 5	ΔΜΙ 6
6.A	MT'	AMLI	AML2	AMLJ	A	ML4	ANDO	AULO
7	1	0 000	200 000	-0 402	-0	103		
/	1	0.000	300.000	-0.403	-0.	403		
0	1	0.000	300.000	-0.403	-0.	403		
9	1	0.000	300.000	-0.403	-0.	403		
10	1	0.000	300.000	-0.403	-0.	403		
	1	0.000	300.000	-0.403	-0.	403		
12	1	0.000	300.000	-0.403	-0.	403		
CARREGA	MENTO 1	No. 1 -	CARREGAM	ENTO MAJORA	DO E C	OMBINA	ADO	
DESLOCA	MENTOS	NODAIS						
NO		тх	ΤY	RZ	, I			
1		0000	0.00000	0.00047	,			
-	0.0	0000		-0 00082				
2	0.0 0.0-	0911	-0.06610	-0.00002				
23	0.00 -0.00 -0.00	0911 0544	-0.06610 -0.11106	-0.00025				
2 3 4	0.0 -0.0 -0.0	0911 0544 0279	-0.06610 -0.11106 -0.13314	-0.00025				
2 3 4 5	0.0 -0.0 -0.0 -0.0	0911 0544 0279 0000	-0.06610 -0.11106 -0.13314 -1.78383	-0.00025 -0.00025 -0.00145 -0.00000				Ň
2 3 4 5 6	0.00 -0.00 -0.00 -0.00 -0.00	0911 0544 0279 0000 0000	-0.06610 -0.11106 -0.13314 -1.78383 -1.80210	-0.00025 -0.00145 -0.00000 -0.00000				١
2 3 4 5 6 7	$\begin{array}{c} 0.00\\ -0.00\\ -0.00\\ 0.00\\ -0.00\\ -0.00\\ -0.00\end{array}$	0911 0544 0279 0000 0000 0000	-0.06610 -0.11106 -0.13314 -1.78383 -1.80210 -1.88072	-0.00025 -0.00145 -0.00000 -0.00000 -0.00000				,
2 3 4 5 6 7 8	$\begin{array}{c} 0.00 \\ -0.00 \\ -0.00 \\ -0.00 \\ -0.00 \\ -0.00 \\ -0.00 \\ 0.00 \end{array}$	0911 0544 0279 0000 0000 0000 0000	-0.06610 -0.11106 -0.13314 -1.78383 -1.80210 -1.88072 0.00000	-0.00025 -0.00145 -0.00000 -0.00000 -0.00000 -0.00000				,
2 3 4 5 6 7 8	$\begin{array}{c} 0.00\\ -0.00\\ -0.00\\ -0.00\\ -0.00\\ -0.00\\ -0.00\\ 0.00\end{array}$	0911 0544 0279 0000 0000 0000 0000	-0.06610 -0.11106 -0.13314 -1.78383 -1.80210 -1.88072 0.00000	-0.00025 -0.00145 -0.00000 -0.00000 -0.00000 -0.000047				١

9	0.00911	-0.06610	0.00082
10	0.00544	-0.11106	0.00025
11	-0.00279	-0.13314	0.00145
ACOES	DE APOIO		
NO	FORCA X	FORCA Y	MOMENTO Z
1	27.404	375.900	0.000
8	-27.404	375.900	0.000

ESFORCOS NAS EXTREMIDADES DAS BARRAS

.

BARRA	CARREG.	AXIAL	CORTANTE Y	MOMENTO Z
1	1	365.071	-5.746	0.000
		-365.071	5.746	-1676.485
2	1	247.010	-14.618	-2441.432
		-247.010	14.618	-1702.825
3	1	121.502	-22.446	-2401.455
		-121.502	22.446	-3962.021
4	1	365.071	5.746	-0.000
		-365.071	-5.746	1676.485
5	1	247.010	14.618	2441.432
		-247.010	-14.618	1702.825
6	1	121.502	22.446	2401.455
		-121.502	-22.446	3962.021
7	1	-37.711	120.900	2291.074
		37.711	0.000	14846.501
8	1	-37.711	-0.000	-14846.501
		37.711	120.900	-2291.074
9	1	-22.605	120.900	2415.211
		22.605	-0.000	14722.364
10	1	-22.605	0.000	-14722.364
		22.605	120.900	-2415.211
11	1	14.849	120.900	2152.352
		-14.849	-0.000	14985.223
12	1	14.849	0.000	-14985.223
		-14.849	120.900	-2152.352
13	1	24.215	-0.000	0.000
		-24.215	0.000	0.000
14	1	24.215	0.000	0.000
		-24.215	-0.000	0.000
15	1	8≠028	-0.000	0.000
		-8.028	0.000	0.000
16	1	8.028	0.000	0.000
		-8.028	-0.000	0.000
17	1	8.493	-0.000	0.000
		-8.493	0.000	0.000
18	1	8.493	0.000	0.000
		-8.493	-0.000	0.000

ATENCAO: Este relatorio nao inclui as barras dos modelos de no. Logo, o equilibrio de esforcos entre as barras listadas nao apresenta-se plenamente satisfeito.

A.2 Relatórios de Computador: Item 5.2

٠

•

NOME DO	O ARQUIV): c	onv1						
PORTICO	O ANALIS	E la ORD	ЕМ						
TSTRUT	URA CONVI	ENCIONAL							
NO NOMERO NUMERO NUMERO NUMERO TEMPERA TIPO DI	DE NOS DE MATEI DE SECO DE BARRA DE CARRA DE COMBA ATURA DE E PERFIL	RIAIS ES EGAMENTO: INACOES REFERENO UTILIZA	S CIA DO	: : : : : 25. : Sol	18 1 21 1 0 00 dado				
COORDEL		DATS			PESTRI	COES	NODATS	1	
NO	NON CAUNA	X	v			ту	RZ.	·	
1	0.0	n i	n. nn		1	1	0		
2	0.0	32	0.00		- 0	0	Ō		
3	0.0	0 64	0 00		0	ñ	ñ		
<u>л</u>	0.00	0 040	0.00		0	ň	0 0		
т 5	400.00	0 200	2.00		0	0	Ô		
6	400.00				0	0	0 0		
7	400.00	040			0	0	0		
, 9	400.00				1	1	0		
0	800.00				1	1	0		
9 10	800.0				0	0	0		
10	800.00	041			0	0	0		
11	800.00	J 96	J.00		0	0	0		
12	1200.00	320	0.00		0	0	0		
13	1200.00	5 640	0.00		0	0	0		
14	1200.00	960	0.00		0	0	0		
15	1600.00	D (0.00		1	1	0		
16	1600.00	320	00.00		0	0	0		
17	1600.00	0 640	0.00		0	0	0		
18	1600.00	960	0.00		0	0	0		
NAO FOI	RAM ESPE	CIFICADAS	S AS L	IGACOE	S VIGA-	COLUN	A		
TABELA	DE MATER	RIAIS		÷.					_
NUMERO	MOD. EI	LASTICIDA	ADE (COEF.	POISSON	CU	EF. DI	LT. TERMICA	FY DE DO
Ŧ		20	500		0.30			0.000010000	25.00
	DD DDDD		•						
TABELA	DE SECOI				-	-			
NUMERO		ARI	SA .	-	1	Z c	F'A'I	OR FORMA	
1		202.50	00	3	0624.00	0		0.22	
2		127.00	00	7	4040.00	0		0.25	
CONECT.	IVIDADE I	E PROPRI	EDADES	DE BA	RRAS				
BARRA	NO I	NO J S	SECAO	MATE	RIAL	LIBE	RACOES		
1	1	2	1		1	000	000		
2	2	3	1		1	000	000		
3	3	4	1		1	000	000		
4	8	9	1		1	000	000		
5	9	10	1		1	000	000		
6	10	11	1		1	000	000		
7	15	16	1		1	000	000		
8	16	17	1		1	000	000		•
9	17	18	1		1	000	000		
10	2	5	2		1	000	000		
11	5	9	2		1	000	000		

F۱ 40.0

12 13 14 15 16 17 18 19	9 12 3 6 10 13 4 7	12 16 6 10 13 17 7 11	2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1	000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000		
20	11	14	2	1	000 000		
CARREGA	14 Amento n	0. 1 -	2 CARREGAMEI	I NTO MAJORADO	E COMBINADO	,	
CARGAS	NODATS						
NO	NODITO	FX	FY	MZ			
2	22.0	00	-7.000	0.000			
3	22.0	00	-7.000	0.000			
4	11.0	00	-7.000	0.000			
۲	0.0	00	-7.000	0.000			
J	0.0	00	-7.000	0.000			
_1	0.0	00	-7.000	0.000			
16	0.0	00	-7.000	0.000			
17	0.0	00	-7.000	0.000			
18	0.0	00	-7.000	0.000			
CARGAS	NAS BAR	RAS					
1.1	DLxy	DI	DF	VI	VF		
2.1	DLx	DI	DF	VI	VF		
3.1	IOME	DI	DF	VI	VF		
4.0	CONC	D	FX	FY	MZ		
5.1	ML	AML1	T(y-) AML2	H(Y) AML3	AML4	AML5	AML6
10	1	0.000	400.000	-0.770	-0.770		
11	1	0.000	400.000	-0.770	-0.770		
12	1	0.000	400.000	-0.770	-0.770		
13	1	0.000	400.000	-0.770	-0.770		
14	1	0.000	400.000	-0.770	-0.770		
15	1	0.000	400.000	-0.770	-0.770		
10	1	0.000	400.000	-0.770	-0.770		
10	1	0.000	400-000	-0.770	-0.770		
10	1	0.000	400.000		-0.770		
20	1	0.000	400.000	-0.770	-0.770		
21	1	0.000	400.000	-0.770	-0.770		
CARREGA	MENTO N	o. 1 -	CARREGAMEN	ITO MAJORADO	E COMBINADO		
TESLOCA	MENTOS	NODAIS					
NO		тх	ТҮ	RZ			
1	0 00	ሰበበ	0 00000	-0 00099			

110	IN	11	Π <u>Π</u>
1	0.00000	0.00000	-0.00099
2	0.46454	-0.06628	-0.00238
3	0.64026	-0.11099	-0.00142
4	0.74239	-0.13275	-0.00271
5	0.47369	-0.87137	0.00050
6	0.64133	-0.86673	0.00012
7	0.72111	-1.04484	0.00035
8	0.00000	0.00000	-0.00209

9	0.48284	-0.15415	-0.00033
10	0.64239	-0.25687	-0.00016
11	0.69984	-0.30970	-0.00004
12	0.49249	-0.81972	-0.00005
13	0.64539	-0.86023	0.00006
14	0.67943	-1.04073	-0.00030
15	0.00000	0.00000	-0.00293
16	0.50214	-0.06933	0.00118
17	0.64839	-0.11507	0.00102
18	0.65902	-0.13708	0.00257
EACOES	DE APOIO		
NO	FORCA X	FORCA Y	MOMENTO Z
1	17.027	859.809	0.000
8	-21.566	1999.783	0.000
15	-50.461	899.409	0.000

ESFORCOS NAS EXTREMIDADES DAS BARRAS

•

BARRA	CARREG.	AXIAL	CORTANTE Y	MOMENTO Z
1	1	859.809	-17.027	-0.000
		-859.809	17.027	-5448.731
2	1	580.039	-98.560	-17642.904
		-580.039	98.560	-13896.300
3	1	282.309	-127.465	-17866.296
		-282.309	127.465	-22922.477
4	1	1999.783	21.566	0.000
		-1999.783	-21.566	6901.195
5	1	1332.567	18.274	2587.801
		-1332.567	-18.274	3259.926
6	1	685.247	5.628	666.008
		-685.247	-5.628	1135.031
7	1	899.409	50.461	-0.000
		-899.409	-50.461	16147.536
8	1	593.394	113.286	18451.115
		-593.394	-113.286	17800.362
9	1	285.444	132.837	18212.243
		-285.444	-132.837	24295.491
10	1	-59.533	272.769	23091.635
		59.533	35.231	24416.104
11	1	-59 -533	-35.231	-24416.104
		59.533	343.231	-51276.157
12	1	-62.825	316.986	41787.160
		62.825	-8.986	23407.094
13	1	-62.825	8.986	-23407.094
		62.825	299.014	-34598.651
14	1	-6.905	290.730	31762.596
		6.905	17.270	22929.464
15	1	-6.905	-17.270	-22929.464
		6.905	325.270	-45578.477
16	1	-19.551	315.050	41652.542
		19.551	-7.050	22767.427
17	1	-19.551	7.050	-22767.427
		19.551	300.950	-36012.605
18	1	138.465	275.309	22922.477
		-138.465	32.691	25601.134
19	1	138.465	-32.691	-25601.134
		-138.465	340.691	-49075.256
20	1	132.837	337.556	47940.225

		-132.837	-29.556	25482.142
21	1	132.837	29.556	-25482.142
		-132.837	278.444	-24295.491

•

LIGACOES PARAF. 1a ORDEM - LIG RIG MODELO G. QUEIROZ

TORIO NAO INCLUE BARRAS MODELOS DE NO

ыRO	DE NO	os .			:	1	8								
NUMERO	DE MA	ATEF	RIA	(S	:		1								
NUMERO	DE SI	ECOE	ES .		:		2								
NUMERO	DE BA	ARRA	AS .		:	2	1								
NUMERO	DE CA	ARRE	EGAN	IENTOS	:		1								
NUMERO	DE CO	OMBI		COES			0								
TEMPERA	TIRA	DE	REF	FERENCIA	•	25.0	0 0								
TTPO DE	E PERI	TT.	וידיוז		••••	Sold	ado								
1110 01			011		•••	DOIG	uuo								
COOPDEN	בעחענ	NOT	אדגר	2			סדפתם	TCOES		ATS					
NO	INDAD	NOL	7877 7	, ,	,		TLEEN T		1 07						
1		$\frac{1}{2}$	`	1	.		1	1 1 1		,)					
1			,		,			1 - 0 (, ,					
2	(J.UC)	320.00)) \					
3	(0.00)	640.00)			0 ()					
4	(0.00)	960.00)			0 0) ()					
5	400	0.00)	320.00)			0 (o c)					
6	400	0.00	כ	640.00)			0 0) C)					
7	400	0.00)	960.00)			0 () ()					
8	800	0.00)	0.00)			1 1	LC)					
9	800	0.00)	320.00)			0 0) ()					
10	800	0.00)	640.00)			0 0) ()					
11	800	n. or	, n	960.00	,)			0 ($\dot{\mathbf{r}}$)					
12	1200	n nr	, i	320.00	, 1			ñ (, c)					
12	1200	$\frac{1}{2}$, ר	520.00	,)					,)					
14	1200		ן א	040.00	,					,)					
14	1200		ן ר	960.00)			1 1		, ,					
15	1000)	0.00)			1 .		,					
16	1600	1.00)	320.00)			0 ()					
17	1600	0.00)	640.00)			0 0) ()					
18	1600	0.00)	960.00)			0 0) C)					
RIGIDE2	Z DAS	LIC	GACO	DES VIGA-	-COLUN	IA									
BARRA:	10	NO	I:	LIGACAO	RIGID	DA CH	TOPO	ESTI	ENDIE)A PAR	AFU	SADA	MESA	DA	COLUNA
				Kinf =	63986	5 kN/	cm Co	mp		Ksup	=	2058	36 kN	/cm	Trac
BARRA:	11	NO	J:	LIGACAO	RIGIC	A CH	TOPO	ESTI	ENDIE	A PAR	AFU	SADA	MESA	DA	COLUNA
				Kinf =	68986	5 kN/	cm Co	mp		Ksup	=	2058	36 kN	/cm	Trac
								-							
ARRA:	12	NO	I:	LIGACAO	RIGIC	A CH	TOPO	ESTI	INDIE	A PAR	AFU	SADA	MESA	DA	COLUNA
		-		Kinf =	63986	kN/	cm Co	mp		Ksup	=	2058	36 kN	/cm	Trac
										T				,	
BARRA :	13	NO	т.	LIGACAO	RTGTC	A CH	торо	ESTI		A PAR	AFU	SADA	MESA	DA	COLUNA
Difficult	10	NO	υ.	Kinf =	63026	. kN/	Cm Co	mn	5110	Ksun	=	2058	B6 kN	/cm	Trac
				KIIII –	03900	,,		шÞ		nbup		200		/ ••••	
BADDA .	14	NO	т.	TTCACAO	DTOTO	а сн	TODO	FSTI			AFII	SADA	MESA	DA	COLUNA
DANNA.	14	NO	T •	Vinf -	COOC			- EOII		Kenn		2055	RG WN		Trac
				KINI =	03980) KN/		шр		renh	_	2000	50 XN	/ Сш	ITUC
	. –		-				-	nom			3 1711		MECA		COLUNA
BARRA:	15	NO	J:	LIGACAO	RIGIU	A CH	TOPO	ESTI	SNDIL	A PAR	Aru	SADA	MESA	DA	CULUNA
				Kinf =	63986	6 KN/	cm Co	mp		кsup	. =	2058	36 KN	/Cm	Trac
BARRA:	16	NO	Ι:	LIGACAO	RIGIC	A CH	TOPO	ESTI	ENDIE	DA PAR	AFU	SADA	MESA	DA	COLUNA
				Kinf =	63986	5 kN/	cm Co	mp		Ksup	=	2058	36 kN	/cm	Trac
BARRA:	17	NO	J:	LIGACAO	RIGIC	A CH	TOPO	ESTI	ENDIE	A PAR	AFU	SADA	MESA	DA	COLUNA
				Kinf =	63986	5 kN/	cm Co	mp		Ksup	=	2058	36 kN	/cm	Trac

D2 RRA: 18 NO I: LIGACAO RIGIDA CH TOPO ESTENDIDA PARAFUSADA MESA DA COLUNA $Kinf = 63986 \ kN/cm \ Comp$ Ksup = 20586 kN/cm Trac BARRA: 19 NO J: LIGACAO RIGIDA CH TOPO ESTENDIDA PARAFUSADA MESA DA COLUNA Kinf = 63986 kN/cm CompKsup = 20586 kN/cm TracBARRA: 20 NO I: LIGACAO RIGIDA CH TOPO ESTENDIDA PARAFUSADA MESA DA COLUNA $Kinf = 63986 \ kN/cm \ Comp$ Ksup = 20586 kN/cm TracBARRA: 21 NO J: LIGACAO RIGIDA CH TOPO ESTENDIDA PARAFUSADA MESA DA COLUNA Kinf = 63986 kN/cm Comp Ksup = 20586 kN/cm Trac

TABELA	DE MATERIAIS				
NUMERO	MOD. ELASTICIDADE	COEF. POISSON	COEF. DILT. TERMICA	Fy	F
1	20500	0.30	0.000010000	25.00	40.0
TABELA	DE SECOES				
NUMERO	AREA	IZ	FATOR FORMA		
1	202.500	30624.000	0.22		

74040.000

0.25

CONECTIVIDADE E PROPRIEDADES DE BARRAS

127.000

BARRA	NO I	NO J	SECAO	MATERIAL	LIBER	ACOES
1	1	2	1	1	000	000
2	2	3	1	1	000	000
3	3	4	1	1	000	000
4	8	9	1	1	000	000
5	9	10	1	1	000	000
6	10	11	1	1	000	000
7	15	16	1	1	000	000
8	16	17	1	1	000	000
9	17	18	1	1	000	000
10	2	5	2	1	000	000
11	5	9	2	1	000	000
12	9	12	2	1	000	000
13	12	16	2	1	000	000
14	3	6	2	. 1	000	000
15	6	10	2	1	000	000
16	10	13	2	1	000	000
17	13	17	2	1	000	000
18	4	7	2	1	000	000
19	7	11	2	1	000	000
20	11	14	2	1	000	000
21	14	18	2	1	000	000

CARREGAMENTO No. 1 - CARREGAMENTO MAJORADO E COMBINADO

CARGAS NODAIS

NO	FX	FY	MZ
2	22.000	-7.000	0.000
3	22.000	-7.000	0.000
4	11.000	-7.000	0.000
9	0.000	-7.000	0.000
10	0.000	-7.000	0.000
11	0.000	-7.000	0.000
16	0.000	-7.000	0.000
17	0.000	-7.000	0.000
18	0.000	-7.000	0.000

~\RGAS	NAS BARRAS					
AR. I	'IPO Tana					
1.0	LXY	DI DI	F VI	VF		
2.0	LX	DI DI	F VI	VF		
3.M	OME	DI DI	F VI	VF		
4.0	ONC	D F	K FY	MZ		
5.T	EMP T(y	(y−) T(y−)) H(Y)			
6.A	ML AN	ILI AML:	2 AML3	AML4	AML5	AML6
10	1 0.0	00 400.000	-0.770	-0.770		
11	1 0.0	00 400.000	-0.770	-0.770		
12	1 0.0	00 400.000	-0.770	-0.770		
13	1 0.0	00 400.000	-0.770	-0.770		
14	1 0.0	400.000	-0.770	-0.770		
15	1 0.0	00 400.000	-0.770	-0.770		
16	1 0.0	400.000	~0.770	-0.770		
17	1 0.0	00 400.000	-0.770	-0.770		
18	1 0.0	400.000	-0.770	-0.770		
19	1 0.0	00 400.000	-0.770	-0.770		
20	1 0.0	400.000	-0.770	-0.770		
21	1 0.0	00 400.000	-0.770	-0.770		
CARREGA	MENTO No.	1 - CARREGAN	IENTO MAJORA	DO E COMBINA	DO	
DESLOCA	MENTOS NODA	TC				
NO		ΔΨ ΔΤΟ	D7	,		
1		11	R4 _0 00093			
2	0.43640	-0.06744	-0.00082	i de la constante de		
3	0 60689	-0 11290	-0.00220	•		
4	0.70984	-0.13501				
5	0.45057	-0 9/337	-0.00270	1		
6	0.61673	-0 93001	0.00042			
7	0.69767	-1 11818	0.00004			
8	0.00000	0.00000				
9	0.47610	-0.15184	-0.00200			
10	0.63117	-0.25306				
11	0.68659	-0.30519	-0.000015			
12	0.49688	-0.89961	0.00004			
13	0.64529	-0.92816	0.00014			
14	0.67555	-1.11528	-0.00024			
15	0.00000	0,00000	-0.00306			
16	0.51771	-0.07049	0.00098			
17	0.65958	-0.11698	0.00075			
18	0.66511	-0.13932	0.00254			
REACOES	DE APOIO					
NO	FORCA X	FORCA Y	MOMENT	ΟZ		
1	20.302	874.837	0.	000		
8	-21.759	1969.726	0.	000		
15	-53.543	914.437	0.	000		
FEFORA		NTRIPER SIC				
ESLOKCO!	J NAJ EATRE	MIDADES DAS	DAKKAS			

BARRA	CARREG.	AXIAL	CORTANTE Y	MOMENTO Z				
1	1	874.837	-20.302	0.000				
		-874.837	20.302	-5957.612				
2	1	589.820	-106.659	-16221.910				

		-589.820	106.659	-12245.460
3	1	286.773	-138.692	-15643.977
		-286.773	138.692	-21373.020
4	1	1969.726	21.759	0.000
		-1969.726	-21.759	6385.162
5	1	1313.082	18.875	2211.768
		-1313.082	-18.875	2825.884
6	1	676.368	5.680	527.600
		-676.368	-5.680	988.464
7	1	914.437	53.543	-0.000
		-914.437	-53.543	15712.200
8	1	603.098	120.785	16591.513
		-603.098	-120.785	15645.904
9	1	289.859	144.012	15875.953
		-289.859	-144.012	22560.879
10	1	-64.357	278.017	21380.088
		64.357	29.983	26366.480
11	1	-64.357	-29.983	-26366.480
		64.357	337.983	-44466.951
12	1	-67.242	311.661	35186.027
		67.242	-3.661	25513.473
13	1	-67.242	3.661	-25513.473
		67.242	304.339	-32367.028
14	1	-10.033	296.047	29962.822
		10.033	11.953	24725.216
15	1	-10.033	-11.953	-24725.216
		10.033	319.953	-39166.745
16	1	-23.227	309.761	35314.216
		23.227	-1.761	24653.583
17	1	-23.227	1.761	-24653.583
		23.227	306.239	-33958.619
18	1	149.692	279.773	20858.706
		-149.692	28.227	27563.926
19	1	149.692	-28.227	-27563.926
		-149.692	336.227	-42593.441
20	1	144.012	333.141	41500.447
		-144.012	-25.141	27469.015
21	1	144.012	25.141	-27469.015
		-144.012	282.859	-22141.523

ATENCAO: Este relatorio nao inclui as barras dos modelos de no. Logo, o equilibrio de esforcos entre as barras listadas nao apresenta-se plenamente satisfeito.

NOME D	O ARQ	UIV	•:	SOL1K	1								
LIGACOES SOLD. 1a ORDEM - LIG RIG MODELO G. QUEIROZ													
RELATO	RIO N	AO (INC	LUE BARR	AS MODI	ELOS D	E NO						
JMERO NUMERO NUMERO NUMERO NUMERO TEMPER TIPO DI	DE N DE M DE S DE B DE C DE C ATURA E PER	OS ATEL ECO ARR ARR OMB DE FIL	RIA ES AS EGA INA RE UT	IS MENTOS . COES FERENCIA ILIZADO		18 1 21 1 0 25.00 Soldad	o						
COORDE	NADAS	NO	DAI	S		RE	STRIC	DES	NODA	IS			
NO		2	x	•	Y		ТΧ	ТΥ	RZ				
1	1	0.0	0	0.0	0		1	1	0				
2	1	0.0	5	320.00	0		0	0	0				
3	I	0.0	0	640.00	0		0	0	0				
4	10	0.00)	960.00	0		0	0	0				
5 6	40			320.00	0		0	0	0				
0 7	40))	640.00)		0	0	0				
2 2	40 90/		ט ר	960.0	U n		1	1	0				
9	20		י ר	220.00			1	<u>с</u>	0				
10	80	0.00	י ר	520.00	ט ר		0	0	0				
11	80) n	960.00))		0	0	0				
12	1200		ן ר	320.00	כ ר		0	n n	0				
13	120	0.00	י ר	640 00	י ר		Ő	0 0	0				
14	120	0.00	้า	960.00	ָ 1		ñ	ň	ň				
15	160	0.00	, ,		י ר		1	ĩ	ñ				
16	160	0.00	้า	320.00	ן ר		ń	ñ	ñ				
17	160	0.00	5	640.00	, ,		Õ	ŏ	õ				
18	160	0.00	5	960.00	5		Ō	õ	Ō				
RIGIDE	2 אח	тта	2200	ARG UTCA.									
BARRA:	10	NO		LICACAO	RIGINA	VICA	SOLDA	גח	MESA	DA COL	TINA		
2111011	10		+ •	Kinf =	56791	kN/cm	Comp	JDA	MLOA	$K_{SUD} =$	56791	kN/cm	Trac
					00/91		comp				56751		1100
JARRA:	11	NO	J:	LIGACAO	RIGIDA	VIGA	SOLDA	ADA	MESA	DA COL	UNA		
				Kinf =	56791	kN/cm	Comp			Ksup =	56791	kN/cm	Trac
						,	F			L		,	
BARRA:	12	NO	I:	LIGACAO	RIGIDA	VIGA	SOLDA	ADA	MESA	DA COL	UNA		
				Kinf =	56791	kN/cm	Comp			Ksup =	56791	kN/cm	Trac
						,	-			-		•	
BARRA:	13	NO	J:	LIGACAO	RIGIDA	VIGA	SOLDA	DA	MESA	DA COL	UNA		
				Kinf =	56791	kN/cm	Comp			Ksup =	56791	kN/cm	Trac
BARRA:	14	NO	I:	LIGACAO	RIGIDA	VIGA	SOLDA	DA	MESA	DA COL	UNA		
				Kinf =	56791	kN/cm	Comp			Ksup =	56791	kN/cm	Trac
BARRA:	15	NO	J:	LIGACAO	RIGIDA	VIGA	SOLDA	DA	MESA	DA COL	UNA		
				Kinf =	56791	kN/cm	Comp			Ksup =	56791	kN/cm	Trac
			_					_					
BARRA:	16	NO	1:	LIGACAO	RIGIDA	VIGA	SOLDA	DA	MESA	DA COL	UNA	.	
				Kinf =	56791	KN/CM	Comp			кsup =	56791	KN/CM	Trac
- וחמגם	1 7	NO	- -	1 101010	DT070-	177.03	001		MEGT		T T T T T		
DAKKA:	τ,	NŲ	J:	LIGACAO	RIGIDA		SULDA	JUA	MESA	UA CUL Vau∾ →	UNA 56701	kN /~	mar -
				$\mathbf{VIUT} =$	20/21	KN/CM	Comp			renħ =	20/91	ки/сщ	TTAC

CARGAS N BAR. TI	IAS BARRAS IPO	5				
1.DI	ху	DI	DF V	I VI	?	
2.DI	x	DI	DF V	I VI	<u>?</u>	
3.MC	ME	DI	DF V	I VI	?	
4.00	NC	D	FX F	Y M2	Ζ	
5.TE	CMP T(y+) T(y	v-) Н(у)		
6.AM	IL A	ML1 AM	IL2 AML	3 AML4	AML5	AML6
10	1 0.	000 400.0	-0.77	0 -0.770)	
11	1 0.	000 400.0	00 -0.77	0 -0.770)	
12	1 0.	400.0)	
13	1 0.	400.0)	
14	1 0,	400.0)	
15	1 0.	400.0				
17	1 0.	400.0)	
10	1 0.	400.0)	
10	1 0.)	
20	1 0.)	
20	1 0.	000 400.0)	
21	1 0.	400.0	-0.//	0 -0.//()	
CARREGAM	ENTO No.	1 - CARREG	AMENTO MAJO	RADO E COME	SINADO	
DESLOCAM	ENTOS NOD	AIS				
NO	ТΧ	Т	Y	RZ		
1	0.00000	0.0000	-0.000	84		
2	0.44193	-0.0669	9 -0.002	26		
3	0.60289	-0.1122	-0.001	19		
4	0.69724	-0.1341	2 -0.002	67		
5	0.44938	-0.8820	2 0.000	46		
6	0.60319	-0.8678	2 0.000	05		
7	0.67946	-1.0648	8 0.000	32		
8	0.00000	0.0000	0 -0.002	03		
9	0.46115	-0.1527	3 -0.000	35		
10	0.60519	-0.2544	8 -0.000	17		
11	0.65599	-0.3069	9 -0.000	04		
12	0.47107	-0.8365	7 -0.000	00		
13	0.60801	-0.8652	8 0.000	12		
14	0.63286	-1.0618	4 -0.000	27		
15	0.00000	0.0000	0 -0.002	94		
16	0.48174	-0.0700	4 0.001	07		
17	0.61138	-0.1162	6 0.000	80		
18	0.61635	-0.1384	1 0.002	53		
REACOES	DE APOIO	_				
NO	FORCA	X FORCA	Y MOME	NTO Z		
1	19.94	4 869.0	57	0.000		
8	-21.76	3 1981.2	85 (0.000		
15	-53.18	0 9 08. 6	57	0.000		
REFORCE	NAC EVED		C BIDDIC			
ESLOKCO2	CAPPEC	EMIDADES DA				
1	√ai\iti⊎•• 1	840 O	57 LUKTA			•

MAR	CANNEG.	AVIAD	CORTANTE I	MORENIO 2
1	1	869.057	-19.944	-0.000
		-869.057	19.944	-5852.505
2	1	586.434	-109.577	-16568.901

		-586.434	109.577	-12677.203
3	1	284.435	-140.315	-15958.668
		-284.435	140.315	-21491.528
4	1	1981.285	21.763	0.000
		-1981.285	-21.763	6386.495
5	1	1320.048	18.801	2254.654
		-1320.048	-18.801	2763.435
6	1	681.144	5.585	542.107
		-681.144	-5.585	948.654
7	1	908.657	53.180	0.000
		-908.657	-53.180	15605.760
8	1	599.519	123.776	17050.145
		-599.519	-123.776	15985.571
9	1	287.422	145.730	16254.617
		-287.422	-145.730	22640.718
10	1	-67.633	275.623	21725.831
		67.633	32.377	25099.216
11	1	-67.633	-32.377	-25099.216
		67.633	340.377	-46655.737
12	1	-70.595	313.861	37335.317
		70.595	-5.861	24211.338
13	1	-70.595	5.861	-24211.338
		70.595	302.139	-32822.007
14	1	-8.738	294.999	30845.528
		8.738	13.001	23439.158
15	1	-8.738	-13.001	-23439.158
		8.738	321.001	-40856.155
16	1	-21.954	310.903	37054.606
		21.954	-2.903	23353.142
17	1	-21.954	2.903	-23353.142
		21.954	305.097	-34819.110
18	1	151.315	277.435	21055.385
		-151.315	30.565	26466.923
19	1	151.315	-30.565	-26466.923
		-151.315	338.565	-44590.769
20	1	145.730	335.578	43538.631
		-145.730	-27.578	26368.924
21	1	145.730	27.578	-26368.924
		-145.730	280.422	-22303.520

ATENCAO: Este relatorio nao inclui as barras dos modelos de no. Logo, o equilibrio de esforcos entre as barras listadas nao apresenta-se plenamente satisfeito.

NOME D	O ARQUIVC): co	nv2					
PORTICO ANALISE 2a ORDEM								
ESTRUT	URA CONVE	NCIONAL						
NUMERO NUMERO NUMERO NUMERO NUMERO TEMPER TIPO DI	DE NOS . DE MATER DE SECOE DE BARRA DE CARRE DE COMBI ATURA DE E PERFIL	IAIS S GAMENTOS NACOES . REFERENC UTILIZAD	IA	: : : : 25 : So	18 1 2 21 1 0 .00 Idado			
COORDE	NADAS NOD	AIS			RESTR	ICOES	NODAIS	
NO	х		Y		Т	Х ТҮ	RZ	
1	0.00	0	.00			1 1	0	
2	0.00	320	.00			0 0	0	
3	0.00	640	.00			0 0	0	
4	0.00	960	.00			0 0	0	
5	400.00	320	.00			0 0	0	
6	400.00	640	.00			0 0	0	
7	400.00	960	.00			0 0	0	
8	800.00	0	.00			1 1	0	
9	800.00	320	.00			0 0	0	
10	800.00	640	.00			0 0	0	
11	800.00	960	.00			0 0	0	
12	1200.00	320	.00			0 0	0	
13	1200.00	640	.00			0 0	0	
14	1200.00	960	.00			0 0	0	
15	1600.00	0	.00			1 1	0	
16	1600.00	320	.00			0 0	0	
17	1600.00	640	.00			0 0	0	
18	1600.00	960	.00			0 0	0	
NAO FOI	RAM ESPEC	IFICADAS	AS L	IGACO	ES VIGA	-COLUN	A	
TABELA		τλτα						
NUMERO	MOD. EL	ASTICIDA		COFF	POTSSO		דת קים	
1		205	00	COLT.	F01550			000010000
*		205			0.5	0	U	
TABELA	DE SECOE	S	•					
NUMERO	52 52002	2 2 D F	λ			T 7.	ፑልጥር	
1		202 50	<u>ה</u>		30624 0	00	TAIO	0.22
2		127 00	0		74040 0	00		0.25
		127.00	0			00		0.25
CONECT	IVIDADE E	PROPRTE		DF B	APRAS			
BARRA	NO T		FCAO	MATTI	ERTAL	T.TRE	RACOES	
1	1	2	1	TIM I I	1	000	000	
2	2	2	1		1	000	000	
3	2	4	1		1	000		
4	2 2	ч С	1		1	000	000	
5	ğ	10	1		1	000	000	
б	10	11	1		1	000	000	
7	15	16	1 1		1	000		
, Å	16	17	⊥ 1		⊥ 1	000	000	
ä	17	18	1		1	000		
10	<u>,</u> 2	10 5	エ う		1	000	000	
11	5	9	2		1	000	000	
± ±	5		2		+	000	000	

٠

Fy 25.00

•

F 40.0

	2	12	2	1	000 000		
13	12	16	2	1	000 000		
14	3	6	2	1	000 000		
15	6	10	2	1	000 000		
16	10	13	2	1	000 000		
7	13	17	2	1	000 000		
8	4	7	2	1	000 000		
19	7	11	2	1	000 000		
20	11	14	2	1	000 000		
21	14	18	2	1	000 000		
CARREG.	AMENTO NO	. 1 -	- CARREGAME	NTO MAJORAD	O E COMBINA	DO	
CARGAS	NODATS						
NO	R CLUCK	Ϋ́	FV	M7			
1	-19.41	<u>^</u>	0 000	0 000			
2	37 86	.0	-7 000	0.000			
2	25 30		-7.000	0.000			
1	23.35	0	-7.000	0.000			
4	11.10		-7.000	0.000			
10	0.00		-7.000	0.000			
10	0.00	0	-7.000	0.000			
11	0.00	0	-7.000	0.000			
16	0.00	0	-7.000	0.000			
17	0.00	0	-7.000	0.000			
18	0.00	0	-7.000	0.000			
CARGAS	NAS BARR	AS					
1		рт	DE	\$7 T	1712		
2 1	DLXY		DF		VF		
2.1			DF	VI	VF		
ا د د	MOME		DF	VI	VF		
4.0	CUNC	D Triangle Contraction (Contraction)	FX	FY	MZ		
5.5	TEMP	T(y+)	T(y-)	H(Y)			
0.4	AML	AMLI	A 67 1 ' 3				AMIG
			AML2	AML3		AMLS	AHLO
10	1	0.000	Anil2	AML3	-0.770	AMLO	ANLO
10 11	1	0.000	400.000 400.000	AML3	-0.770	AMLD	AFILO
10 11 12	1 1	0.000	400.000 400.000	-0.770 -0.770	-0.770 -0.770	AMLS	AHLU
10 11 12 13	1 1 1	0.000 0.000 0.000	400.000 400.000 400.000	AML3 -0.770 -0.770 -0.770	-0.770 -0.770 -0.770	AMLO	AHLU
10 11 12 13 14	1 1 1 1	0.000 0.000 0.000 0.000	400.000 400.000 400.000 400.000	-0.770 -0.770 -0.770 -0.770 -0.770	-0.770 -0.770 -0.770 -0.770 -0.770	AMLO	AMLU
10 11 12 13 14	1 1 1 1	0.000 0.000 0.000 0.000 0.000	400.000 400.000 400.000 400.000 400.000	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770	AMLO	AMLO
10 11 12 13 14 15	1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000	400.000 400.000 400.000 400.000 400.000 400.000	AML3 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770	AMLS	AMLO
10 11 12 13 14 15 16	1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000 0.000	400.000 400.000 400.000 400.000 400.000 400.000 400.000	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	AMLO	AMLO
10 11 12 13 14 15 16 17	1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000	AML3 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	AMLS	AMLO
10 11 12 13 14 15 16 17 18	1 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000	AML3 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	AMLS	AMLO
10 11 12 13 14 15 16 17 18 19	1 1 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000	AML3 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	AMLS	AMLO
10 11 12 13 14 15 16 17 18 19 20	1 1 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000	AML3 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	AMLS	AMLO
10 11 12 13 14 15 16 17 18 19 20 21	1 1 1 1 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000	AML3 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	AMLS	AMLO
10 11 12 13 14 15 16 17 18 19 20 21 21 CARREGA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000	AML3 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	DO	AMLO
10 11 12 13 14 15 16 17 18 19 20 21 CARREGA	1 1 1 1 1 1 1 1 1 1 AMENTO NO	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000	AML3 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	DO	AMLO
10 11 12 13 14 15 16 17 18 19 20 21 20 21 CARREGA DESLOCA NO	1 1 1 1 1 1 1 1 1 1 AMENTO NO	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 5 CARREGAMEN	AML3 -0.770	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	DO	AMLO
10 11 12 13 14 15 16 17 18 19 20 21 CARREGA DESLOCA NO 1	1 1 1 1 1 1 1 1 1 1 1 AMENTO NO AMENTOS N 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 5 CARREGAMEN TY 0.00000	AML3 -0.770	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	DO	AMLO
10 11 12 13 14 15 16 17 18 19 20 21 CARREGA DESLOCA NO 1 2	1 1 1 1 1 1 1 1 1 1 AMENTO NO AMENTOS N 0.000 0.627	0.000 0.0000 0.0000 0.0000 0.0000 0.000000	400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 5 CARREGAMEN TY 0.00000 -0.06593	AML3 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.775 -0.770 -0.770 -0.770 -0.770 -0.775 -0.770 -0.770 -0.770 -0.770 -0.775 -0.770 -0.750	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	DO	AMLO
10 11 12 13 14 15 16 17 18 19 20 21 CARREGA DESLOCA NO 1 2 3	1 1 1 1 1 1 1 1 1 1 1 AMENTO NO AMENTOS N 0.000 0.627 0.834	0.000 0.0000 0.0000 0.0000 0.0000 0.000000	400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 5 CARREGAMEN TY 0.00000 -0.06593 -0.11058	AML3 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.775 -0.00145	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	DO	
10 11 12 13 14 15 16 17 18 19 20 21 CARREGA DESLOCA NO 1 2 3 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.000 0.0000 0.0000 0.0000 0.0000 0.000000	400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 5 CARREGAMEN TY 0.000000 -0.06593 -0.11058 -0.13233	AML3 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.775 -0.00167 -0.00145 -0.00272	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	DO	AMLO
10 11 12 13 14 15 16 17 18 19 20 21 CARREGA DESLOCA NO 1 2 3 4 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.000 0.0000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 5 CARREGAMEN TY 0.00000 -0.06593 -0.11058 -0.13233 -0.87906	AML3 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.775 -0.00167 -0.00255 -0.00145 -0.00272 0.00057	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	DO	AMLO
10 11 12 13 14 15 16 17 18 19 20 21 CARREGA DESLOCA NO 1 2 3 4 5 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.000 0.0000 0.0000 0.0000 0.0000 0.000000	400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 5 CARREGAMEN TY 0.00000 -0.06593 -0.11058 -0.13233 -0.87906 -0.86597	AML3 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.775 -0.00145 -0.00255 -0.00145 -0.00272 0.00057 0.00013	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	DO	AMLO
10 11 12 13 14 15 16 17 18 19 20 21 CARREGA DESLOCA NO 1 2 3 4 5 6 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.000 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 400.000 5 CARREGAMEN TY 0.00000 -0.06593 -0.11058 -0.13233 -0.87906 -0.86597 -1.04480	AML3 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.775 -0.00170 RZ -0.00167 -0.00255 -0.00145 -0.00272 0.00057 0.00013 0.00035	-0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770 -0.770	DO	, AMELO

8	0.00000	0.0000	-0.00279
9	0.64252	-0.15414	-0.00043
10	0.83525	-0.25686	-0.00019
11	0.89813	-0.30968	-0.00005
12	0.65135	-0.81196	0.00002
13	0.83818	-0.86029	0.00007
14	0.87772	-1.04066	-0.00029
15	0.00000	0.00000	-0.00359
16	0.66018	-0.06969	0.00101
17	0.84111	-0.11550	0.00099
18	0.85731	-0.13751	0.00256
REACOES	DE APOIO		
NO	FORCA X	FORCA Y	MOMENTO Z
1	30.299	855.243	0.000
8	-28.977	1999.665	0.000
15	-56.322	904.091	0.000

ESFORCOS NAS EXTREMIDADES DAS BARRAS

•

BARRA	CARREG.	AXIAL	CORTANTE Y	MOMENTO Z	
1	1	855.243	-10.889	-0.000	
		-855.243	10.889	-3484.489	
2	1	579.260	-98.579	-17943.376	
		-579.260	98.579	-13601.794	
3	1	282.219	-127.434	-17895.763	
		-282.219	127.434	-22883.082	
4	1	1999.665	28.977	0.000	
		-1999.665	-28.977	9272.585	
5	1	1332.457	21.358	2948.875	
		-1332.457	-21.358	3885.726	
6	1	685.234	5.754	637.492	
		-685.234	-5.754	1203.784	
7	1	904.091	56.322	-0.000	
		-904.091	-56.322	18023.103	
8	1	594.283	113.771	18243.648	
		-594.283	-113.771	18162.921	
9	1	285.547	132.840	18166.699	
		-285.547	-132.840	24342.070	
10	1	-49.830	268.983	21427.865	
		49.830	39.017	24565.363	
11	1	-49.830	-39.017	-24565.363	
		49.830	347.017	-52641.408	
12	1	-57.448	313.191	40419.948	
		57.448	-5.191	23256.650	
13	1	-57.448	5.191	-23256.650	
		57.448	302.809	-36266.751	
14	1	-3.465	290.041	31497.557	
		3.465	17.959	22919.032	
15	1	-3.465	-17.959	-22919.032	
		3.465	325.959	-45864.379	
16	1	-19.069	314.264	41341.162	
		19.069	-6.264	22764.608	
17	1	-19.069	6.264	-22764.608	
		19.069	301.736	-36329.621	
18	1	138.594	275.219	22883.082	
		-138.594	32.781	25604.437	
19	1	138.594	-32.781	-25604.437	
		-138.594	340.781	-49108.043	

.

20	1	132.840	337.453	47904.259
		-132.840	-29.453	25476.835
21	1	132.840	29.453	-25476.835
		-132.840	278.547	-24342.070

.

NOME D	O ARC	UIVO :	par2K	1								
'IGACOES PARAF. 2a ORDEM - LIG RIG MODELO G. QUEIROZ												
RELATO	RIO N	AO INC	LUE BARR	AS MODI	ELOS E	DE NO)					
NUMERO NUMERO NUMERO NUMERO NUMERO CEMPER TIPO D	DE N DE M DE S DE B DE C DE C ATURA E PER	IOS ATERIA ECOES ARRAS ARREGA OMBINA DE RE FIL UT	MENTOS . COES FERENCIA		18 1 21 1 0 25.00 Soldad	lo						
COORDE	NADAS	NODAI	S		RE	STR	COES	NOD	AIS			
NO		Х		Y		TΣ	к тү	RZ				
1		0.00	0.0	0		1	1	0				
2		0.00	320.0	0		C) 0	0				
3		0.00	640.0	0		C) 0	0				
4		0.00	960.0	0		C	0 (0				
5	40	0.00	320.0	0		C) 0	0				
6 7	40	0.00	640.0	0		C) 0	0				
/	40	0.00	960.0	0		C) 0	0				
8	80	0.00	0.0	0		1	. 1	0				
10	00	0.00	320.0	0		ι C	0 0	0				
10	20	0.00	640.0	0				0				
12	120	0.00	960.0	0				0				
13	120	0.00	520.0	0				0				
14	120	0.00	960.0	0				0				
15	160	0.00	900.0	0		1	, U 1	0				
16	160	0.00	320.0	0		0		0				
17	160	0.00	640.0	0		0	n n	Ő				
18	160	0.00	960.0	0		0	0	Ő				
RIGIDE	7 549	TTCAC	OFS VICA									
BARRA	10	NO TO	LICACAO	DTCTDA		ΩΡΩ	FOTEN	גחדחו		GYUX	MEGA DA	COLUNA
Dinuuii	10	NO 1.	Kinf =	63986	kN/cm	Com	ESTER	DIDF	Ksun =	2058	$\frac{1}{6} \frac{kN}{cm}$	Trac
			KIML -	03,00		CON	P		nsup	2050		IIac
BARRA:	11	NO J:	LIGACAO Kinf =	RIGIDA 63986	CH T kN/cm	OPO Com	ESTEN IP	DIDA	A PARAFU Ksup =	SADA 2058	MESA DA 6 kN/cm	COLUNA Trac
BARRA:	12	NO I:	LIGACAO Kinf =	RIGIDA 63986	CH T kN/cm	OPO Com	esten P	IDIDA	A PARAFU Ksup =	SADA 2058	MESA DA 6 kN/cm	COLUNA Trac
BARRA .	13	NO .T.	TTCACAO	DICIDA	വത	000	CONTRA	INTEX		C 3 D 3	MEGA DA	
	13	NO 0.	Kinf =	CIGIDA	kN/cm	Com	EOIEN	IDTDG	Kenn -	2052	6 kN/cm	COLUNA Trad
			KIIII –	03300	KN/Ca	COI	P		rent -	2000	6 KN/Ch	Trac
BARRA:	14	NO T:	LIGACAO	RIGIDA	сн т	OPO	ESTEN	גחדחו	PARAFII	SADA	MESA DA	COLUNA
			Kinf =	63986	kN/cm	Com	n		$K_{SUD} =$	2058	6 kN/cm	Trac
				00000		0010	P		Noup	2000		1140
BARRA:	15	NO J:	LIGACAO	RIGIDA	СН Т	OPO	ESTEN	DIDA	PARAFU	SADA	MESA DA	COLUNA
		- •	Kinf =	63986	kN/cm	Com	p		Ksup =	2058	6 kN/cm	Trac
					,		A ⁻		·		, -	
BARRA:	16	NO I:	LIGACAO	RIGIDA	CH T	оро	ESTEN	IDIDA	PARAFU	SADA	MESA DA	COLUNA
			Kinf =	63986	kN/cm	Com	р		Ksup =	2058	6 kN/cm	Trac
							-		-		•	
BARRA:	17	NO J:	LIGACAO	RIGIDA	CH T	OPO	ESTEN	DIDA	PARAFU	SADA	MESA DA	COLUNA
			Kinf =	63986	kN/cm	Com	p		Ksup =	2058	6 kN/cm	Trac

	10								
BARRA:	18 NG	JI: LIG Kin	ACAO RIGI f = 6398	DA CH TOPO 6 kN/cm Coi	ESTEND mp	IDA PAR Ksur	AFUSADA ME D = 20586	SA DA COI kN/cm Tra	LUNA AC
BARRA:	19 NG	D J: LIG Kin:	ACAO RIGI f = 6398	DA CH TOPO 6 kN/cm Com	ESTEND mp	IDA PAF Ksur	AFUSADA ME D = 20586	ESA DA COI kN/cm Tra	LUNA AC
ARRA:	20 NG	D I: LIG Kin:	ACAO RIGI f = 6398	DA CH TOPO 6 kN/cm Com	ESTEND mp	IDA PAF Ksur	AFUSADA ME D = 20586	ESA DA COI kN/cm Tra	LUNA AC
BARRA:	21 NG	D J: LIG Kin	ACAO RIGI f = 6398	DA CH TOPO 6 kN/cm Com	ESTEND mp	IDA PAF Ksup	AFUSADA ME 5 = 20586	ESA DA COI kN/cm Tra	LUNA AC
TABELA		RRTATS							
NUMERO	MOD. H	ELASTICI	DADE CO	EF. POISSO	N COE	F. DILT	. TERMICA	Fv	F
1		20	0500	0.3	0	0.	000010000	25.00	40.0
TABELA	DE SECO	DES							
NUMERO		AI	REA	:	IZ	FATOR	FORMA		
1		202.9	500	30624.0	00		0.22		
2		127.0	000	74040.00	00		0.25		
CONECTI	IVIDADE	E PROPR	LEDADES D	E BARRAS					
BARRA	NO I	NO J	SECAO	MATERIAL	LIBER	ACOES			
1	1	2	1	1	000	000			
2	2	3	1	1	000	000			
3	3	4	1	1	000	000			
4	8	9	1	1	000	000			
5	9	10	1	1	000	000			
6	10	11	1	1	000	000			
7	15	16	1	1	000	000			
8	16	17	1	1	000	000			
9	17	18	1	1	000	000			
10	2	5	2	1	000	000			
10	с 0	9	2	1	000	000			
13	12	16	2	1	000	000			
14	3	10	2	1	000	000			
15	6	10	2	· · · · · · · · · · · · · · · · · · ·	000	000			
16	10	13	2	1	000	000			
17	13	17	2.	1	000	000			
18	4	7	2	1	000	000			
19	7	11	2	1	000	000			
20	11	14	2	1	000	000			
21	14	18	2	1	000	000			

~ ~	-		2	–	000	000	
19	7	11	2	1	000	000	
20	11	14	2	1	000	000	
21	14	18	2	1	000	000	
CARREGA	AMENTO No.	1 -	CARREGAMENTO	MAJORAD	ΟE	COMBINAI	00
CARGAS	NODAIS						
NO	FX		FY	MZ			
1	-19.920		0.000	0.000			
2	38.470		-7.000	0.000			
3	25.350		-7.000	0.000			
4	11.100		-7.000	0.000			

4	11.100	-7.000	0.000				
9	0.000	-7.000	0.000				
10	0.000	-7.000	0.000				
11	0.000	-7.000	0.000				
16	0.000	-7.000	0.000				
17	0.000	-7.000	0.000				
18	0.	000	-7.000	0.000			
---------	---------	---------	--------------	--------------	----------	--------	------
CARGAS	NAS BA	RRAS					
1.1	DLXV	DI	DF	VI	VF		
2.1	DLx	DI	DF	VI	VF		
3.1	MOME	DI	DF	VI	VF		
4.0	CONC	D	FX	FY	MZ		
5.5	ГЕМР	T(y+)	T(y-)	H(y)			
6.2	AML	AML1	AML2	AML3	AML4	AML5	AML6
10	1	0.000	400.000	-0.770	-0.770		
11	1	0.000	400.000	-0.770	-0.770		
12	1	0.000	400.000	-0.770	-0.770		
13	1	0.000	400.000	-0.770	-0.770		
14	1	0.000	400.000	-0.770	-0.770		
15	1	0.000	400.000	-0.770	-0.770		
16	1	0.000	400.000	-0.770	-0.770		
17	1	0.000	400.000	-0.770	-0.770		
18	1	0.000	400.000	-0.770	-0.770		
19	1	0.000	400.000	-0.770	-0.770		
20	1	0.000	400.000	-0.770	-0.770		
21	1	0.000	400.000	-0.770	-0.770		
ANDREG		N- 1			E CONDIN		
CARREG	AMENTO	NO. 1 -	- CARREGAMEI	NTO MAJUKADO	E COMBIN	ADU	
DESLOCA	AMENTOS	NODAIS	(T) 2	57			
UN 1		TX	TY	RZ			
1	0.0	0000	0.00000	-0.00150			
2	0.6	0161	-0.06708	-0.00245			
د .	0.8	0212	-0.11249	-0.00120			
4	0.9	0893	-0.13459	-0.00270			
5	0.6	1291	-0.94961	0.00049			
6 7	0.8	1119	-0.92864	0.00005			
/	0.8	9672	-1.11814	0.00029			
8	0.0	0000	0.00000	-0.00279			
9	0.6	3776	-0.15183	-0.00052			
10	0.8	2531	-0.25304	-0.00022			
12	0.8	8266	-0.30518	-0.00005			
12	0.0	2002	-0.89249	0.00010			
14	0.8	3911	-0.92805	0.00015			
14	0.0	7460	-1.11522				
15	0.0	7760	0.00000	-0.00373			
17	0.0	7702		0.00079			
10	0.8	6410	-0.11/41	0.00072			
10	0.8	0419	-0.133/0	0.00254			
REACOES	S DE AP	010					
NO	FO	RCA X	FORCA Y	MOMENTO 2	Z		
1	3	3.991	870.198	0.000	כ		
8	-2	9.439	1969.617	0.000)		
15	-5	9.552	919.186	0.000	כ		
SFORC	DS NAS	EXTREMI	DADES DAS BA	ARRAS			
BARRA	CARR	EG.	AXIAL	CORTANTE Y	Y MOM	ENTO Z	
1		1	870.198	-14.071	L	-0.000	
			-870.198	14.07	1 -41	29.237	

•

2	1	589.065	-106.816	-16537.506
		-589.065	106.816	-11971.671
3	1	286.694	-138.651	-15666.875
		-286.694	138.651	-21339.112
4	1	1969.617	29.439	0.000
		-1969.617	-29.439	8638.993
5	1	1312.973	22.106	2517.626
		-1312.973	-22.106	3382.389
6	1	676.357	5.751	488.716
		-676.357	-5.751	1046.211
7	1	919.186	59.552	-0.000
		-919.186	-59.552	17475.517
8	1	603.962	121.160	16350.724
		-603.962	-121.160	15986.943
9	1	289.949	144.000	15831.196
		-289.949	-144.000	22602.454
10	1	-54.275	274.133	19764.311
		54.275	33.867	26486.751
11	1	-54.275	-33.867	-26486.751
		54.275	341.867	-45842.186
12	1	-61.608	307.776	33828.413
		61.608	0,224	25375.398
13	1	-61.608	-0.224	-25375.398
		61.608	308.224	-34000.791
14	1	-6.485	295.372	29725.124
		6.485	12.628	24702.904
15	1	-6.485	-12.628	-24702.904
		6.485	320.628	-39449.068
16	1	-22.840	308.987	35012.990
		22.840	-0.987	24657.028
17	1	-22.840	0.987	-24657.028
		22.840	307.013	-34252.955
18	1	149.751	279.694	20824.895
		-149.751	28.306	27567.147
19	1	149.751	-28.306	-27567.147
		-149.751	336.306	-42620.812
20	1	144.000	333.051	41470.744
		-144.000	-25.051	27463.916
21	1	144.000	25.051	-27463.916
		-144.000	282.949	-22181.425

٠

ATENCAO: Este relatorio nao inclui as barras dos modelos de no. Logo, o equilibrio de esforcos entre as barras listadas nao apresenta-se plenamente satisfeito. IGACOES SOLD. 2a ORDEM - LIG RIG MODELO G. QUEIROZ

RELATORIO NAO INCLUE BARRAS MODELOS DE NO

NUMERO NUMERO NUMERO NUMERO 'UMERO EMPERA TIPO DE	DE NC DE MA DE SI DE BA DE CA DE CA DE CA TURA C PERI	OS ATER ECOE ARRA ARRE DMBI DE FIL	IAI S. GAM NAC REF UTI	IENTOS DES TERENCIA LIZADO .		18 1 21 1 0 25.00 Soldado	5					
COORDEN	IADAS	NOD	AIS	3		RES	STRIC	DES	NODAIS			
NO		Х		Y			ТΧ	ΤY	RZ			
1	(00.0		0.00)		1	1	0			
2	(0.00		320.00)		0	0	0			
3	(00.00		640.00)		0	0	0			
4	(0.00		960.00	l		0	0	0			
5	400	0.00		320.00)		0	0	0			
6	400	00.00		640.00	ļ		0	0	0			
7	400	0.00		960.00)		0	0	0			
8	800	0.00		0.00	1		1	1	0			
9	800	0.00		320.00)		0	0	0			
10	800	0.00		640.00)		0	0	0			
11	800	0.00		960.00	1		U	0	0			
12	1200	J.UU		320.00			0	0	0			
13	1200			640.00	1		0	0	0			
14	1200			960.00)		1	1	0			
15	1600	0.00 1 00		320.00				ň	0			
17	1600	0.00		640.00	, 1		n n	ň	0			
18	1600	0.00 1 00		960.00	,		ñ	ň	0 0			
10	1000			200.00			Ŭ	Ŭ	·			
RIGIDE2	DAS	LIG	ACC	DES VIGA-	COLUN	A						
BARRA:	10	NO	I:	LIGACAO	RIGID	A VIGA	SOLD	ADA	IESA DA COLU	NA		
				Kinf =	56791	kN/cm	Comp		Ksup =	56791	kN/cm	Trac
							-					
BARRA:	11	NO	J:	LIGACAO	RIGID	A VIGA	SOLD	ADA	IESA DA COLU	NA		
				Kinf =	56791	kN/cm	Comp		Ksup =	56791	kN/cm	Trac
BARRA:	12	NO	I:	LIGACAO	RIGID	A VIGA	SOLD	ADA	1ESA DA COLU	NA		_
				Kinf =	56791	kN/cm	Comp		Ksup =	56791	kN/cm	Trac
BARRA:	13	NO	J:	LIGACAO	RIGID	A VIGA	SOLD	ADA	IESA DA COLU	NA ECZO1	l-N (am	m
				Kinf =	56791	kN/cm	Comp		Ksup =	20/31	KN/Cm	Trac
			-				201 D			Nλ		
BARRA:	14	NO	⊥:	LIGACAO	RIGIDA	A VIGA	SOLD	ADA	MESA DA COLO	NA 56701	kN /cm	Trac
				Kinf =	56791	KN/CM	Comp		Ksup –	20/91	KN/Cm	IIac
	16	NO	Ŧ .	1 101010	DTATA	.		גחג	WERN DN COLU	Nλ		
BARRA:	15	NÜ	1:	LIGACAU	RIGIDA	A VIGA	Comp	ADA	Kein =	56791	kN/cm	Trac
				ZTUL =	20/91	KN/CM	Comp		tranh -			
BYDDY.	16	NO	т۰	T TGACAO	RIGIN	A VICA	SOLD	ADA	MESA DA COLU	NA		
DULVIA	TO	NO	т.	Kinf =	56701	kN/cm	Comp		Ksup =	56791	kN/cm	Trac
				WTUT -	56791	ANY CI	COmp		- · E		,	•
BARRA	17	NO	J:	LIGACAO	RIGTD	A VIGA	SOLD	ADA	MESA DA COLU	NA		
	_ /		- •	Kinf =	56791	kN/cm	Comp		Ksup =	56791	kN/cm	Trac

BARRA:	18 NO	I: LIG Kin	ACAO RIGID f = 56791	A VIGA kN/cm	SOLDADA Comp	MESA	DA COLU Ksup =	JNA 56791	kN/cm	Trac
PARRA:	19 NO	J: LIG Kin	ACAO RIGID. f = 56791	A VIGA kN/cm	SOLDADA Comp	MESA	DA COLU Ksup =	JNA 56791	kN/cm	Trac
	20 NO	I: LIG Kin	ACAO RIGID. f = 56791	A VIGA kN/cm	SOLDADA Comp	MESA	DA COLU Ksup =	JNA 56791	kN/cm	Trac
BARRA:	21 NO	J: LIG Kin	ACAO RIGID f = 56791	A VIGA kN/cm	SOLDADA Comp	MESA	DA COLU Ksup =	J NA 56791	kN/cm	Trac
TABELA NUMERO 1	DE MATEI MOD. EI	RIAIS LASTICI 2	DADE COE 0500	F. POI:	SSON CC 0.30	DEF.	DILT. T) 0.000	ERMICA 010000	F 25.0	y F 0 40.0
TABELA NUMERO 1	DE SECO	ES A 202.	REA 500	3062	IZ 4.000	F	ATOR FOI	RMA .22		
2		127.	000	7404	0.000		0	.25		
CONECT	IVIDADE	E PROPR	IEDADES DE	BARRA	S I ITBI	ዋይልሮብ	ES			
1	1	2		AIGNIA		00 0	0			
2	2	3	1		1 000	00 0	0			
3	3	4	1		1 000	o o o	0			
4	8	9	1		1 000	00 0	0			
5	9	10	1			00 0	0			
6 7	10	14	L 1) UU 1 00	0			
8	16	17	1		1 000	00	õ			
9	17	18	1		1 000	5 00	0			
10	2	5	2		1 000	00 0	0			
11	5	9	2		1 000	00 C	0			
12	9	12	2		1 000	00 0	0			
13	12	16	2	·	1 000	00 00	0			
14	3	6	2	·. ·		J UU D 00	0			
15	10	13	2			00 00	0			
17	13	17	2	•	1 000	0 00	0			
18	4	7	2		1 000	0 00	0			
19	7	11	2		1 000	0 00	0			
20	11	14	2		1 000	0 OO	0			
21	14	18	2		1 000	0 00	0			
CARREGA	MENTO NO	o. 1 -	CARREGAME	NTO MA	JORADO E	COMB	INADO			
CARGAS	NODAIS	FX	FV		M7.					
1	-18.3	80	0.000	0.	000					
2	37.2	80	-7.000	0.	000					
3	25.0	10	-7.000	0.	000					
4	11.0	90	-7.000	0.	000					
9	0.0	00	-7.000	0.	000					
10	0.0	00	-7.000	0.	000					ŧ
14	0.0		-7.000	U.	000					
10 17	0.0	00	-7.000	0.	000					
± /	v.v		/	· ·						

18		0.000	-7.000	0.000			
CARGAS	S NAS TIPO	BARRAS					
1.	DLXV	DI	DF	VI	VF		
2.	DLx	DI	DF	VI	VF		
3.	MOME	DI	DF	VI	VF		
4.	CONC	D	FX	FY	MZ		
5.	TEMP	T(y+)	T(y−)	H(y)			
6.	AML	AMLI	AML2	AMLS	AML4	AML5	AML6
10	1	0.000	400.000	-0.770	-0.770		
11	1	0.000	400,000	-0.770	-0.770		
12	1	0.000	400.000	-0.770	-0.770		
13	1	0.000	400.000	-0.770	-0.770		
14	1	0.000	400.000	-0.770	-0.770		
15	1	0.000	400.000	-0.770	-0.770		
16	1	0.000	400.000	-0.770	-0.770		
17	1	0.000	400.000	-0.770	-0.770		
18	1	0.000	400.000	-0.770	-0.770		
19	1	0.000	400.000	-0.770	-0.770		
20	1	0.000	400.000	-0.770	-0.770		
21	1	0.000	400.000	-0.770	-0.770		
CARREG	SAMENT	No. 1 -	CARREGAME	NTO MAJORADO	E COMBINADO		
DESLOC	AMENT	TOS NODAIS					
NO		ТХ	TY	RZ			
1	(0.00000	0.00000	-0.00146			

1	0.00000	0.00000	-0.00146
2	0.59012	-0.06666	-0.00242
3	0.77608	-0.11182	-0.00121
4	0.87335	-0.13374	-0.00267
5	0.59545	-0.88846	0.00052
6	0.77579	-0.86668	0.00006
7	0.85556	-1.06484	0.00032
8	0.00000	0.00000	-0.00267
9	0.60625	-0.15272	-0.00045
10	0.77743	-0.25447	-0.00020
11	0.83209	-0.30697	-0.00004
12	0.61484	-0.83005	0.00006
13	0.78006	-0.86572	0.00013
14	0.80895	-1.06180	-0.00027
15	0.00000	0.00000	-0.00354
16	0.62520	-0.07038	0.00090
17	0.78347	-0.11665	0.00078
18	0.79245	-0.13881	0.00252

REACOES	DE APOIO		
NO	FORCA X	FORCA Y	MOMENTO Z
1	32.571	864.800	0.000
8	-28.849	1981.171	0.000
15	-58.722	913.028	` 0.000

ESFORCOS	NAS EXTREM	IIDADES DAS BAR	RAS	
BARRA	CARREG.	AXIAL	CORTANTE Y	MOMENTO Z
1	1	864.800	-14.191	-0.000
		-864.800	14.191	-4164.443

2	1	585.782	-109.712	-16839.327
		-585.782	109.712	-12442.739
3	1	284.372	-140.269	-15972.993
		-284.372	140.269	-21464.737
4	1	1981.171	28.849	0.000
		-1981.171	-28.849	8465.781
5	1	1319.944	21.719	2546.870
		-1319.944	-21.719	3249.936
6	1	681.134	5.630	508.751
		-681.134	-5.630	993.858
7	1	913.028	58.722	0.000
		-913.028	-58.722	17232.022
8	1	600.274	124.093	16841.015
		-600.274	-124.093	16279.335
9	1	287.494	145.729	16220.922
		-287.494	-145.729	22674.120
10	1	-58.240	272.019	20213.118
		58.240	35.981	25224.016
11	1	-58.240	-35.981	-25224.016
		58.240	343.981	-47918.849
12	1	-65.371	310.246	36069.650
		65.371	-2.246	24084.946
13	1	-65.371	2.246	-24084.946
		65.371	305.754	-34340.458
14	1	-5.547	294.410	30636.566
		5.547	13.590	23421.251
15	1	-5.547	-13.590	-23421.251
		5.547	321.590	-41100.932
16	1	-21.636	310.220	36786.685
		21.636	-2.220	23357,997
17	1	-21.636	2.220	-23357.997
		21.636	305.780	-35077.321
18	1	151.359	277.372	21028.294
		-151.359	30.628	26469.907
19	1	151.359	-30.628	-26469.907
		-151.359	338.628	-44611.892
20	1	145.729	335.506	43515.393
		-145.729	-27.506	26364.398
21	1	145.729	27.506	-26364.398
		-145.729	280.494	-22335.812

٠

ATENCAO: Este relatorio nao inclui as barras dos modelos de no. Logo, o equilibrio de esforcos entre as barras listadas nao apresenta-se plenamente satisfeito.

.

A.3 Lista de Tabelas

Página

Tabela 2.1 -	Parâmetros de ajuste e constantes de padronização, Modelo
	de Potência de Ang e Morris
Tabela 2.2 -	Valores de M_{tabela} em <u>kN.cm</u> obtidos em ensaios [2] 31
Tabela 2.3 -	Valores de N e W_{ref} [2]
Tabela 3.1 -	Valores de l_{ef1} [8]
Tabela 3.2 -	Valores de l_{ef2} [8]
Tabela 4.1 -	Tipos de ligações viga-coluna padronizadas
Tabela 5.1 -	Comparação entre momentos fletores e deslocamentos da estrutura
	convencional com as estruturas auxiliares (barras 11 e 12) 112
Tabela 5.2 -	Momentos Fletores Introduzidos nas extremidades das colunas 113
Tabela 5.3 -	Comparação entre os coeficientes de flambagem das colunas 115
Tabela 5.4 -	Análise em 1ª Ordem; Variações (em %) dos momentos e do
	deslocamento vertical das Vigas. Comparações em relação à estrutura
	convencional
Tabela 5.5 -	Análise em 2ª Ordem; Variações (em %) dos momentos e do
	deslocamento vertical das Vigas. Comparações em relação à estrutura
	convencional 121
Tabela 5.6 -	Análise em 1ª Ordem; Variações (em %) dos momentos fletores nas
	extremidades das Colunas. Comparações em relação à estrutura
	convencional
Tabela 5.7 -	Análise em 2ª Ordem; Variações (em %) dos momentos fletores nas
	extremidades das Colunas. Comparações em relação à estrutura
	convencional
Tabela 5.8 -	Deslocamentos horizontais no pavimento 3. Variações em relação à
	estrutura convencional
Tabela 5.9 -	Coeficientes de flambagem K. Comparações em relação à estrutura
	convencional

A.4 Lista de Figuras

Página

Figura	1.1	-	Ligações rígidas (1), flexíveis (3), ou semi-rígidas (2)	01
Figura	2.1	-	Ligação com cantoneira simples	05
Figura	2.2	-	Ligação com cantoneira dupla	05
Figura	2.3	-	Dimensões em uma ligação com cantoneiras	06
Figura	2.4	-	Ligação com Chapa de Topo	09
Figura	2.5	-	Dimensões em ligação com chapa de topo	10
Figura	2.6	-	Tipos de ligações com chapa de extremidade	12
Figura	2.7	-	Dimensões em ligações com chapa simples	13
Figura	2.8	-	Variação da rigidez das ligações conforme o acréscimo	
			do carregamento	16
Figura	2.9	-	Rigidez tangente inicial e rigidez secante última em uma ligação	18
Figura	2.10	-	Comportamento do Modelo de potência de Ang e Morris	20
Figura	2.11	-	Dimensões dos componentes das ligações	21
Figura	2.12	-	Representação das curvas M-Ф de Ang e Morris	22
Figura	2.13	-	Mecanismo de ruína de ligações com cantoneiras e chapa de topo	26
Figura	2.14	-	Direções resultantes das forças atuantes nos parafusos	28
Figura	2.15	-	Representação de Φ_{ref}	29
Figura	2.16	-	Representação da excentricidade e	30
Figura	2.17	-	Curvas M-Ф para ligações com chapa simples	
			com 3, 4 e 5 parafusos	34
Figura	2.18	-	Mecanismo de ruína de ligações com chapa simples [12]	35
Figura	2.19	-	Adaptação do modelo de nó proposto em [4] para ligações	
			rígidas, em ligações flexíveis	38
Figura	2.20	-	Distância <i>l</i> para ligações com cantoneiras, chapa de topo e	
			chapa simples	39
Figura	2.21	-	Modelo de nó adotado para ligações flexíveis	40

Figura 2.22 - Esforços atuantes e deformação por flexão no modelo

		de nó triangular	41
Figura 2.23	3 -	Deslocamento vertical unitário no ponto A	42
Figura 2.24	1 -	Rotação unitária no ponto A	43
Figura 2.25	5 -	Viga de vão L, com carga distribuída q e momentos	
		de extremidade $M = 0.1 \times M_{eng}$	45
Figura 3.1	-	Transmissão de esforços em uma ligação rígida	50
Figura 3.2	-	Ligações rígidas abordadas neste trabalho	51
Figura 3.3	-	Dimensões em uma ligação com chapa de topo estendida	56
Figura 3.4	-	Ligação rígida com enrijecedores	58
Figura 3.5	-	Flexibilidades em uma ligação classificada como rígida	61
Figura 3.6	-	Distorção por esforço cortante no painel da seção da coluna	62
Figura 3.7	-	Modelo geral de curva momento-rotação para cada uma das três	
		flexibilidades discretizadas	63
Figura 3.8	-	Modelo de nó de Lener descrito em [23]	65
Figura 3.9	-	Modelo de nó para ligações soldadas ou parafusadas [20]	66
Figura 3.10) -	Modelo de nó para ligações rígidas proposto por Queiroz [11]	68
Figura 3.1	l -	Braço de alavanca h , ligação soldada ou parafusada [8]	72
Figura 3.12	2 -	Deslocamento no painel da coluna em ligação soldada	73
Figura 3.13	3 -	Introdução de esforços no painel de coluna enrijecida,	
		ligação soldada	77
Figura 3.14	1 -	Concentração de tensões normais σ nas mesas da viga	79
Figura 3.15	5 -	Enrijecedor horizontal obrigatório nas extremidades das colunas	80
Figura 3.10	<u></u> -	Deslocamentos no painel da coluna em ligação parafusada	81
Figura 3.17	7 -	Região de introdução de força de compressão,	
		ligação parafusada	85
Figura 3.18	3 -	Enrijecedor horizontal comprimido obrigatório nas	
		extremidades da coluna	85
Figura 3.19) -	Comprimentos "m" e "e"	86
Figura 3.20) -	Comprimentos m _x , a e L _b	90
Figura 4.1	-	Estruturas convencionais e estruturas auxiliares geradas	95
Figura 4.2.	a -	- Parâmetros para cálculo de rigidez; ligações com cantoneiras	98

Figura 4.2.b	- Parâmetros para cálculo de rigidez; ligações com chapa de topo 98
Figura 4.2.c	- Parâmetros para cálculo de rigidez; ligações com chapa simples 99
Figura 4.2.d	- Parâmetros para cálculo de rigidez; ligações parafusadas
	com chapa de topo estendida 100
Figura 4.2.e	- Parâmetros para cálculo de rigidez; ligações soldadas 101
Figura 4.3	- Representação esquemática da implementação dos modelos
	de nó adotados 103
Figura 4.4.a	- Carga uniformemente distribuída em barra com ligação
	classificada como flexível 106
Figura 4.4.b	- Carga uniformemente distribuída em barra com ligação
	classificada como rígida 106
Figura 5.1	- Estrutura contraventada com ligações flexíveis:
	estrutura convencional
Figura 5.2	- Análise de flambagem elástica da estrutura contraventada 114
Figura 5.3	- Pórtico com ligações rígidas: <i>estrutura convencional</i> 117
Figura 5.4	- Análise em 2^a ordem (efeito P Δ): método da carga horizontal
	equivalente
Figura 5.5 -	Análise de flambagem elástica do pórtico deslocável 125

REFERÊNCIAS BIBLIOGRÁFICAS

- KENNEDY, D. J. L. "Moment-Rotation Characteristics of Shear Connections" - AISC, Engineering Journal, 4th quarter 1969, pp. 105-115.
- [2] RICHARD, R. M.; GILLETT, P. E.; KRIEGH, J. D.; LEWIS, B. A. "The Analysis and Design of Single-Plate Framing Connections" - AISC, Engineering Journal, 2nd quarter 1980, pp. 38-52.
- [3] ASTANEH, A. ; MCMULLIN, K. M. ; CALL, S. M. "Design of Single-Plate Shear Connections" - AISC, Engineering Journal, 1st quarter 1989, pp. 21-32.
- [4] TSCHEMMERNEGG, F. ; TAUTSCHNIG, A. ; KLEIN, H. ; BRAUN, C. ; HUMER, C. - "Zur Nachgiebigkeit von Rahmenknoten" - Stahlbau, out. 1987, pp.299 - 306.
- [5] CHEN, W. F. ; LUI, E. M. "Stability Design of Steel Frames" CRC Press, Boca Raton, 1991.
- [6] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. "Projeto e Execução de Estruturas de Aço de Edifícios". Associação Brasileira de Normas Técnicas. NBR-8800, 1986.
- [7] AMERICAN INSTITUTE OF STEEL CONSTRUCTION "Manual of Steel Construction, Load and Resistance Factor Design". American Institute of Steel Construction, Inc. Chicago, 1986.
- [8] ENV 1993-1-1: Eurocode 3, "Part 1-1, Design of Steel Structures General Rules and Rules for Buildings." CEN, Brussels, 1992.
- [9] LINDSEY, S. D., IOANNIDES, S. A. AND GOVERDHAN, A. "LRFD Analysis and Design of Beams whith Partially Restrained Connections" -AISC, Engineering Journal, 4th quarter 1985, pp. 155-162.

- [10] GESCHWINDNER, L. F. "A Simliplified Look at Partially Restrained Beams" - AISC, Engineering Journal, 2nd quarter 1991, pp. 73-78.
- [11] QUEIROZ, G. "Estudo do Comportamento e Sistematização do Projeto de Ligações Rígidas entre Perfis I com Almas Coplanares" - Dissertação de Mestrado, Escola de Engenharia - Universidade Federal de Minas Gerais, 1992.
- [12] QUEIROZ, G. ; PIMENTA, R. J. ; FAKURY, R. H. "Estudo do Comportamento de Ligações Flexíveis em Estruturas de Aço" - Relatório de Pesquisa RPEES 001/93, Escola de Engenharia - Universidade Federal de Minas Gerais, 1993.
- KING, W. S. AND CHEN, W. F. "LRFD Analysis for Semi-Rigid Frame Design" - AISC, Engineering Journal, 4th quarter 1993, pp. 130-140.
- [14] SALMON, C. G. ; JOHNSON, J. L. "Steel Strucures Design and Behavior", Harper Collins Publishers, New York, 1990.
- [15] CHEN, W. F. ; NEWLIN, D. E. "Column Web Strength in Beam-to-Column Connections", Journal of Structural Division, ASCE, vol. 99, NO. ST9, september 1973, pp. 1978 1984.
- [16] PACKER, J. A.; MORRIS, L. J. "A Limit State Design Method for the Tension Region of Bolted Beam-Column Connections", The Structural Engineer, vol. 55 NO. 10, october 1977, pp. 446-458.
- [17] MANN, A. P. ; MORRIS, L. J. "Limit Design of Extended End-Plate Connections", Journal of Structural Division, ASCE, vol. 105 NO. ST3, march 1979, pp. 511-526.
- [18] GRAHAM, J. "Observations from the Behavior of Bolted Beam to Unstiffened Column Rigid Connections", The Structural Engineer, vol. 71 NO. 06, march 1993, pp. 99-105.

- [19] KRISHNAMURTHY, N.; HUANG, H. T.; JEFFREY, P. K.; AVERY, L. K. "Analytical M-θ Curves for End-Plate Connections", Journal of the Structural Division, ASCE, vol 105 NO. ST1, january 1979, pp. 133-145.
- [20] TSCHEMMERNEGG, F. ; HUMER, C. "The Design of Structural Steel Frames under Consideration of Nonlinear Behavior of Joints" - Journal of Construction Steel Research, vol 11, january 1988, pp. 73-103.
- [21] RODRIGUES, F. C., SALDANHA, A. C., and PFEIL, M. S. "Análise Não-Linear do Coportamento de Pórticos Planos Metálicos com Ligações Semi-Rígidas" - Anais do 15° Congresso Ibero Latino-Americano Sobre Métodos Coputacionais para Engenharia - Belo Horizonte - MG - Brasil 1994, pp 1512-1521.
- WITTEVEEN, J.; STARK, J. W. B.; BIJLAARD, F. S. K.; ZOETEMOEIJER,
 P. "Welded and Bolted Beam-to-Column Connections" Journal of the Structural Division, ASCE, vol 108 NO. ST2, february 1982, pp. 433-455.
- [23] QUEIROZ, G. "Análise Experimental de Ligações Soldadas" Tese de Doutorado, Escola de Engenharia Universidade Federal de Minas Gerais, 1995.
- [24] MAIA, E. V. "Projeto e Implementação de um Sistema Amigável para Análise de Pórticos Espaciais" - Dissertação de Mestrado, Escola de Engenharia - Universidade Federal de Minas Gerais, 1992.
- [25] Algor Interactive Systems Incorporation "Program SUPERSAP" United States, 1987.

BIBLIOGRAFIA

AMERICAN INSTITUTE OF STEEL CONSTRUCTION - "Manual of Steel Construction, Load and Resistance Factor Design". American Institute of Steel Construction, Inc. Chicago, 1986.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. - "Projeto e Execução de Estruturas de Aço de Edifícios". Associação Brasileira de Normas Técnicas. NBR-8800, 1986.

ASTANEH, A.; MCMULLIN, K. M.; CALL, S. M. - "Design of Single-Plate Shear Connections" - AISC, Engineering Journal, 1st quarter 1989, pp. 21-32.

BARAKAT, M.; CHEN, W. F. - "Practical Analysis of Semi-Rigid Frames" - AISC, Engineering Journal, 2nd quarter 1990, pp.54-68.

BJOAHODVE, R. - "Effect of End Restraint on Column Strength - Practical Applications" - AISC, Engineering Journal, 1st quarter 1984, pp. 1-13.

BJORHOVDE, R.; COLSON, A., HAAIJER, G.; STARK, J. W. B. -"Connections II: Behavior, Strength, and Design" - Precedings of the Second International Workshop, Pittsburgh, 1991.

CHEN, W. F. ; LUI, E. M. - "Stability Design of Steel Frames" - CRC Press, Boca Raton, 1991. CHEN, W. F.; NEWLIN, D. E. - "Column Web Strength in Beam-to-Column Connections", Journal of Structural Division, ASCE, vol. 99, NO. ST9, september 1973, pp. 1978 1984.

CUNNINGHAM, R. - "Some Aspects of semi-rigid connections in structural steelwork", The Structural Engineer, vol. 68 NO. 5, march 1990, pp. 85-92.

CURTIS, E. L. ; MURRAY, T. M. - "Column Flange Strength at Moment End-Plate Connections" - AISC, Engineering Journal, 2nd quarter 1989, pp. 41-50.

DISQUE, R. O. - "Inelastic K-Factor in Column Design" - AISC, Engineering Journal, 2nd quarter 1973.

ENV 1993-1-1: Eurocode 3, "Part 1-1, Design of Steel Structures - General Rules and Rules for Buildings." CEN, Brussels, 1992.

GERE, J. M. ; WEAVER, W. J. - "Análise de Estruturas Reticuladas", Editora Guanabara S. A., Rio de Janeiro, 1981.

GESCHWINDNER, L. F. - "A Simliplified Look at Partially Restrained Beams" - AISC, Engineering Journal, 2nd quarter 1991, pp. 73-78.

GRAHAM, J. - "Observations from the Behavior of Bolted Beam to Unstiffened Column Rigid Connections", The Structural Engineer, vol. 71 NO. 06, march 1993, pp. 99-105.

GRIFFITHS, J. D. - "End Plate Moment Connections - Their Use and Misuse" - AISC, Engineering Journal, 1st quarter 1984, pp.32-34.

KENNEDY, D. J. L. - "Moment-Rotation Characteristics of Shear Connections" - AISC, Engineering Journal, 4th quarter 1969, pp. 105-115.

KING, W. S. AND CHEN, W. F. - "LRFD Analysis for Semi-Rigid Frame Design" - AISC, Engineering Journal, 4th quarter 1993, pp. 130-140.

KRISHNAMURTHY, N. ; HUANG, H. T. ; JEFFREY, P. K. ; AVERY, L. K. "Analytical M-θ Curves for End-Plate Connections", Journal of the Structural Division, ASCE, vol 105 NO. ST1, january 1979, pp. 133-145.

LINDSEY, S. D., IOANNIDES, S. A. AND GOVERDHAN, A. - "LRFD Analysis and Design of Beams whith Partially Restrained Connections" -AISC, Engineering Journal, 4th quarter 1985, pp. 155-162.

MAIA, E. V. - "Projeto e Implementação de um Sistema Amigável para
Análise de Pórticos Espaciais" - Dissertação de Mestrado , Escola de
Engenharia - Universidade Federal de Minas Gerais, 1992.

MANN, A. P. ; MORRIS, L. J. - "Limit Design of Extended End-Plate Connections", Journal of Structural Division, ASCE, vol. 105 NO. ST3, march 1979, pp. 511-526.

MCGUIRE, W. - "Steel Structures", Prentice-Hall, Inc., Englewood Cliffs, N.J., 1968.

PACKER, J. A.; MORRIS, L. J. - "A Limit State Design Method for the Tension Region of Bolted Beam-Column Connections", The Structural Engineer, vol. 55 NO. 10, october 1977, pp. 446-458.

QUEIROZ, G. ; PIMENTA, R. J. ; FAKURY, R. H. - "Estudo do Comportamento de Ligações Flexíveis em Estruturas de Aço" - Relatório de Pesquisa RPEES 001/93, Escola de Engenharia - Universidade Federal de Minas Gerais, 1993.

QUEIROZ, G. - "Análise Experimental de Ligações Soldadas" - Tese de Doutorado, Escola de Engenharia - Universidade Federal de Minas Gerais, 1995.

QUEIROZ, G. - "Elementos das Estruturas de Aço" - 4^a edição, Gilson Queiroz, Belo Horizonte, 1993.

QUEIROZ, G. - "Estudo do Comportamento e Sistematização do Projeto de Ligações Rígidas entre Perfis I com Almas Coplanares" - Dissertação de Mestrado, Escola de Engenharia - Universidade Federal de Minas Gerais, 1992.

RICHARD, R. M.; GILLETT, P. E.; KRIEGH, J. D.; LEWIS, B. A. - "The Analysis and Design of Single-Plate Framing Connections" - AISC, Engineering Journal, 2nd quarter 1980, pp. 38-52.

RODRIGUES, F. C., SALDANHA, A. C., and PFEIL, M. S. - "Análise Não-Linear do Coportamento de Pórticos Planos Metálicos com Ligações Semi-Rígidas" - Anais do 15° Congresso Ibero Latino-Americano Sobre Métodos Coputacionais para Engenharia - Belo Horizonte - MG - Brasil 1994, pp 1512-1521.

SALMON, C. G. ; JOHNSON, J. L. - "Steel Strucures Design and Behavior", Harper Collins Publishers, New York, 1990.

SIDERBRÁS - SIDERURGIA BRASILEIRA, S. A. - "Ligações em Estruturas Metálicas", Siderbrás - Siderurgia Brasileira, S. A., Brasília, 1988.

TSCHEMMERNEGG, F. ; TAUTSCHNIG, A. ; KLEIN, H. ; BRAUN, C. ; HUMER, C. - "Zur Nachgiebigkeit von Rahmenknoten" - Stahlbau, out. 1987, pp.299 - 306.

TSCHEMMERNEGG, F. ; HUMER, C. - "The Design of Structural Steel Frames under Consideration of Nonlinear Behavior of Joints" - Journal of Construction Steel Research, vol 11, january 1988, pp. 73-103.

WEISKAMP, K. - "Turbo Pascal 6.0", Livros Técnicos e Científicos Editora Ltda., Rio de Janeiro, 1992.

WITTEVEEN, J.; STARK, J. W. B.; BIJLAARD, F. S. K.; ZOETEMOEIJER, P. - "Welded and Bolted Beam-to-Column Connections" - Journal of the Structural Division, ASCE, vol 108 NO. ST2, february 1982, pp. 433-455.