
Multi-objective microgrid storage
planning problem using plug-in electric

vehicles

Vitor Nazário Coelho
Universidade Federal de Minas Gerais

Orientador: Frederico Gadelha Guimarães
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Multi-objective microgrid storage planning problem
using plug-in eletric vehicles

Abstract

Energy storage has been evolving towards a dynamic scenario with bidirectional com-

munication between several autonomous agents. Efficient power dispatching systems

have been mainly assisted by the use of Information and Communication Technologies,

Distributed Systems and Artificial Intelligence. This thesis describes a Multi-objective

Storage Planing Problem considering Plug-in Electric Vehicle (PEV) as storage units.

The problem involves several PEVs and a Microgrid (MG) community, composed of

small houses, residential areas, and different Renewable Energy Resources. The energy

storage planning is formulated as a Mixed-Integer Linear Programming (MILP) problem,

considering PEVs’ users requirements, minimizing three different objectives and analyz-

ing three different criteria. Two novel cost-to-variability indicators, based on Sharpe

Ratio, are introduced for measuring energy storage schedules volatility. By adding these

additional criteria, energy storage planning is optimized seeking to minimize the fol-

lowing: total MG costs; PEVs batteries usage; maximum peak load; difference between

extreme scenarios and two Sharpe Ratio indices.

Since prediction involves inherent uncertainty, the use of probabilistic forecasting is

proposed. Probabilistic forecasts of wind and solar power production, energy consump-

tion and prices are used in order to perform smart energy storage, checking storage plan

robustness. A novel Hybrid Forecasting Model (HFM) with automatic parameter opti-

mization, done by metaheuristic procedures, is proposed for handling the different MG

forecasting problems, generating probabilistic quantiles. Finding optimal values for the

HFM fuzzy rules and weights is a highly combinatorial task. Thus, parameter optimiza-

tion of the model is tackled by a bio-inspired optimizer, namely GES, which combines

two heuristic approaches, namely the GRASP and the Evolution Strategies metaheuris-

tics. The proposed forecasting model is applied to forecasts different mini/microgrid
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time series. In particular, its results are highlighted for load forecasting in residential

and commercial areas, which are typical microgrid scenarios. Due to the quick training

phase done by the proposed metaheuristic calibration algorithm, the proposed model is

suggested to be embedded into Smart Meters (SM) and other future SG devices.

Storage planning is scheduled for different time horizons, according to information

provided by lower and upper bounds extracted from those probabilistic forecasts. In

order to find sets of non-dominated solutions, a matheuristic black box solves several

weighted-sum MILP subproblems. Candidate non-dominated solutions are searched

from feasible solutions obtained during the searching process over the branches of a

Branch-and-Bound tree. Pareto fronts are discussed and analyzed for different energy

storage scenarios. The sets of non-dominated solutions and their conflicts and harmonies

indicate that only minimizing system costs goes against the system robustness, increasing

the risk of having higher peak loads as well as more fluctuations over the expected costs.

It was also noticed the trade-off between grid maximum peak load and the MG total

costs.
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Sara Jemima, Irmã, Thiago Loureiro, T. Pinheiro 23 :D, Vitor Lagoeiro, Vinicius Lages,
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itar. Sem sombra de dúvidas, vocês foram a luz do meu conhecimento e paz. Obrigado

por todos os momentos v́ıvidos.

Em especial, as ideias aqui enviosionadas são partes de diversas conversas filosóficas
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This thesis introduces different aspects that I have been envisioning during my PhD

and a some months before starting it. Thus, it comprises free optimization knowledge

taught to me, mainly by my brother, my family and Marcone, since the beginning of my

undergraduate course and during my childhood.

In the beginning, the forecasting model was only a simple matrix of rules, done for

the final project of an undergraduate guided by Agnaldo. At that time, my brother

Bruno gave me some ideas for using derivatives, integrals and playing with model’s

inputs. Thus, I realized that it might be simple to extend and adapt this model for

other applications. Personally, I really do not think that the proposal is better than any

other forecasting model. However, due to the background given by Igor, the code used

in this thesis is implemented in the core of the OptFrame. The important part of this

is that it is, at least, easy to be used by me! :)

Based on the shoulders and support given by Fred, advisor of this thesis, we extended

the initial model, participating in a forecasting competition and presenting the ideas in

the 2014 WCCI. The real motivation that moves me to keep improving the forecasting

model are manifold. One of them goes back to a day when my girlfriend’s grandmother

was feeling pain and I started to realize the importance of understanding neural signals

(basically, a special type of time series). Emerged in my dreaming world, I thought

that with assistance of this model, or other well-known forecasting models, it might be

possible to learn brain or magnetic fingerprints. Furthermore, hear the plants and the

animals, as I can hear in my inspired moments, is something that I believe that will

become more real to the humans beings. Specially, I should mention that my brother

Igor has just, with few hours of programming, implemented the evaluation function in

CUDA threads. The latter can open a wide range of possible applications. Flexibility

and power of the new generation computers and devices can scare those how think life is
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only what we see. Each of our senses might be able to catch an specific range of waves,

frequency and shapes. It is also expected that some of us can not even catch all sorts of

energy that are moving around the universe. However, I believe that we can fell it even

without knowing what it is. In this sense, computers might assist our understanding in

relation to the electromagnetic spectrum.

Finally, about the multi-objective Microgrid Storage Planning Problem itself, I have

been realizing that minimizing only costs is what the industry and capitalism has been

doing. Thus, why not consider other objective functions, such as energy quality and

environmental impacts? The latter motivates me to keep working with this research

and guiding the transformation that the power grid is passing through. This current

thesis opens possibilities in my mind, thinking about a beautiful and incredible scenario

fulfilled of electric cars, equipped with distinct energy storage systems, moving around

the world and spreading good energies to mother Nature. My brother Bruno has just

been realizing how the ideas described here could be extended to the new generation of

drones and VANTs. Recently, a woman hailed the wind to be stored, here, I wonder if

batteries have already evolved so that it may be a solution.

Dream, dream, dream, it is what moves our actions in the present, taking into account

experiences from the past. Out of this life, our physical body, everything is infinity.
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Chapter 1

Introduction

“Quando a última árvore tiver cáıdo, quando o último rio tiver secado, quando o último

peixe for pescado, vocês vão entender que dinheiro não se come.”

— Greenpeace

Electric grids are changing from a centralized single supply model towards a decen-

tralized bidirectional grid of suppliers and consumers. In this new environment, so-called

Smart Grid (SG), the reality becomes a more dynamic scenario involving uncertainty

in energy production, consumption and distribution. The development of efficient algo-

rithmic techniques that deal with these scenarios is crucial for supporting this important

economical and environmental activity.

The choice of Renewable Energy Resources (RER) by the future power grid is being

expected, and this growth is also motivated because of the need of reducing environmen-

tal impacts, such as emissions of Greenhouse Gas (GHG) (Pereira Jr. et al. 2013, Welsch

et al. 2013). This process leads to an increasing use of renewable energy systems (primar-

ily wind and photovoltaic units) (Batista et al. 2013). The potential for RER is growing

quickly and it is expected that it will, in principle, exponentially exceed the world’s

energy demand (Ellabban et al. 2014). SG infrastructure should also provide new op-

portunities for the grid and its customers for information exchange regarding real-time

electricity rates and demand profiles (Kahrobaee et al. 2014). The massive insertion of

these RER motivates the development of management systems able to integrate these

Distributed Energy Resources (DER) to the SG.

3
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One of the first steps of these changes was highlighted by Rogers, Ramchurn &

Jennings (Rogers et al. 2012), emphasizing that the demand side, the consumers, will

have to adapt to the available resources, in contrast to the current model in which the

supply should always match the demand.

In special, Microgrid (MG) systems aggregate many Distributed Energy Resources

(DER) and loads together as an autonomous entity (Zheng & Cai 2010). Additional

components added by MG consumers, summed to those that are already installed, are

being integrated to the SG, imposing new frontiers for control and management of com-

binations of several mini/microgrids. For example, Plug-in Electric Vehicles (PEV)

(Romo & Micheloud 2015) are being integrated to the power grid (specially with the

rise of smart charging parks, namely SmartPark (Mwasilu et al. 2014)), imposing new

grid constraints, requirements and goals, settled by its users. This massive integration

of DER may cause lack of efficient control and problems in stability, reliability, power

quality and security over MG. However, if these components are used in effective ways

and tried to be understood, their potential will benefit the grid. This new class of com-

ponents, such as PEV, has intrinsic elements for enhancing energy quality and reducing

costs and environmental impacts.

It is expected that energy storage systems will improve MG performance, leading to

higher profits and better use of the RER. Especially in MG systems, its use has important

benefits. The use of storage allows both sides, demand and production, to optimize the

power exchanged with the main grid, in compliance with the electricity market and

forecasts. Renewable energy generators associated with storage units are considered as

active distributed generators, one of the fundamental elements of power management

in MG systems. Current smart-microgrid scenarios may include different renewable

energy resources and different storage units. In this regard, storage increases renewable

energy self-consumption and independence from the grid. A wide range of applications

exist for Energy Storage Systems (ESS). Tan et al. (2013) refer to the following: power

quality enhancement, microgrid isolated operation, active distribution systems and PEVs

technologies. ESS ensembled with nondispatchable renewable energy generation units,

such as wind and solar energy, can be molded into dispatchable units. Their use may

improve dynamic stability, transient stability, voltage support and frequency regulation

(Ribeiro et al. 2001). Furthermore, they can also be used for minimizing global cost and

environment impact.

In this thesis, a new Microgrid Storage Planning Problem (MSPP) is introduced,

aiming to minimize global MG costs while considering grid maximum peak load and
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batteries wear and tear. Understanding the contributions of batteries as an objective

function does not provide profits only for the PEVs owners, but also for the community

linked to that grid. Optimizing its use not only reduces battery replacement costs for

the PEVs owners but is also beneficial for the environment, since they are going to be

used only when needed. The proposed model tries to obtain energy storage planning

scenarios which minimize maximum power flow between the smart-microgrid and the

main grid. Furthermore, additional criteria are taken into account, such as: volatility

between extreme scenarios and schedule total cost and maximum peak load volatility.

The two latter evaluate the schedule compared to its extreme scenarios and also to

a wide range of possible scenarios. This is done by measuring the current expected

cost compared to other possible costs using Sharpe Ratio (Sharpe 1994). Sharpe ratio

is a useful index tool for analysis, used by investors facing alternative choices under

uncertainties (Chow & Lai 2015).

A smart storage scheduling model based on a Mixed-Integer Mathematical formu-

lation is designed. Non-dominated solutions are obtained from feasible solutions found

over branches of the Branch-and-Bound (BB) (Land & Doig 1960) optimization tree,

searched with a smart matheuristic black-box algorithm. Examining suitable sched-

ules to be applied in extreme scenarios is explored by the use of probabilistic forecasts.

The multi-objective energy storage management problem considers PEVs as main stor-

age units, located at SmartParks. Power dispatching schedule is planned attending PEV

operational requirements, settled by its users, and trying to charge PEVs batteries when

energy price is cheaper.

Focusing on reliable forecasts for feeding the proposed multi-objective energy storage

optimizer, a new Hybrid Forecasting Model (HFM) is also introduced in this thesis. The

use of a class of bio-inspired metaheuristics to optimize the parameters of a model based

on fuzzy rules is discussed. Furthermore, we propose an expert input selection that

enhances models input during the training phase. By incorporating the power of evolu-

tionary algorithms to optimize the fuzzy rules and calibrate them, an improvement of the

forecasting performance of the proposed model is expected. In this context, Evolution

Strategies (ES) (Beyer & Schwefel 2002a) stands out as a robust and flexible framework,

which has been effectively applied to solve many combinatorial optimization problems

(Chen & Chen 2009, Costa & Oliveira 2001). However, up to the moment, with only

sparse/none results reported over forecasting problems. Thus, a hybrid heuristic algo-

rithm based on Greedy Randomized Adaptive Search Procedures (GRASP) (Resende &

Ribeiro 2010) and ES metaheuristics is proposed. The GRASP is used to generate the
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initial population of the ES procedure. Each solution, initialized as a different forecast-

ing model, is generated according to a randomized solution generator in connection with

a feature extraction technique.

1.1 Motivation

Coordination and integration of DER in MG systems have been the focus of different

researches and remain a complex task (Logenthiran et al. 2008), along with smart energy

storage. The latter has been studied over the last decades and also remains a great

challenge (Colson & Nehrir 2009). Efficient power dispatching schedules are able to

reduce MG stability problems, limitations and uncertainties associated with the use of

RER.

In most countries, the migration to this future power grid model, the implementation

of the SG, has as its starting point the installation of smart meters (McHenry 2013) and

sensors in residences and commercial buildings. Considering measurement systems with

high sampling rates over years of data acquisition (Monacchi et al. 2014), one can expect

a large amount of detailed data. In the case of electrical network metering, this data

can be converted into valuable and useful information, which is crucial for the success

of a wide range of SG applications. A task that has been left to the researchers is the

one related to the selection and analysis of parts of these datasets. From such data

treatment, those huge datasets become available in different ways in order to allow

researchers from distinct areas to develop smart solutions for multifunctional and highly

complex problems.

In this context, the use of Computational Intelligence (CI) and Artificial Intelligence

(AI) techniques embedded into autonomous agents might provide interesting tools for

assisting data processing. The different components of the SG will be able to process

real-time information and participate in the decision making process. In particular, an

efficient mathematical formulation is able to provide optimal solutions for small prob-

lems, whereas metaheuristics based models offer flexibility for using the methodology on

standard computers or embedded terminal devices.

The development of metaheuristic models for assisting the power dispatching system

with probabilistic forecasts is a suitable approach. Dealing with MG forecasting problem

in RER real databases, involving short-term forecasts poses a great challenge. Thus, the

new proposed forecasting framework tackles this issue by proposing a flexible open-source

model able to forecast different MG components. Furthermore, understanding the differ-
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ences between energy storage schedules regarding multiple views (objectives functions)

is also important for the companies and industries that will assist SG implementation.

1.2 Objectives

The main goal of this thesis is to improve the ability of MG management by designing

a multi-objective power energy dispatching system. Additionally, it has the goal of filling

the gap of the lack of robustness indicators according a given energy storage planning,

which might be a very useful feature for SG implementation and for the integration

of mini/microgrid systems. Thus, this thesis addresses a power dispatching problem

regarding the minimization of different objective functions.

Specific objectives can be divided into five parts:

• Prepare a review of the main approaches presented in the literature regarding

energy storage, highlighting their advantages and disadvantages;

• Understand typical probabilistic forecasts for different MG components, from RER

to energy consumption.

• Introduce a forecasting model based on metaheuristic in order to facilitate the

achievement of efficient forecasts;

• Design a MG scenario composed of different RER with a SmartPark able to ac-

commodate different PEVs;

• Implement an approach for solving the Multi-Objective MSPP (MOMSPP), pro-

viding useful sets of non-dominated solutions.

1.3 Contributions

The major contributions of the current work are:

• A novel multi-objective microgrid storage planning problem:

– Handle the minimization of three different objective functions and three addi-

tional criteria: MG total costs; usage of PEV batteries, maximum grid peak

load, volatility behavior in extreme scenarios and two different objective func-

tions based on the Sharpe Ratio index.
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– Consideration of PEVs located at SmartParks as storage units while respect-

ing the operational constraints required by their users;

– Analysis the upper and lower bounds provided by the probabilistic forecasts

in order to test best-case and worst-case energy storage scenarios;

• Development of a Hybrid forecasting model:

– propose a self-adaptive forecasting model with real-time parameter optimiza-

tion during the learning process;

– Introduce a GRASP solution generator that selects inputs based on values

from feature extraction techniques;

– An expert mechanism for refining the model’s inputs during the supervised

learning phase using Neighborhood Structures (NS), which can add, remove

and adapt model’s input;

• Design of a new self-adaptive evolution strategy for combinatorial optimization

problems:

– Using and adapting a population-based algorithm for combinatorial optimiza-

tion problems, combining it with trajectory search techniques, which is able

to:

∗ Walk through the search space by using discrete moves, following a tra-

jectory provided by random moves in a Reduced Variable Neighborhood

Search;

∗ Combine neighborhood structures in order to guide the search for new

solutions using self-adaptive mutation operators;

– Introduce a flexible self-adaptive search framework implemented in the core

of the open-source optimization framework OptFrame;

– Apply the proposed methodology for solving different NP-Hard combina-

torial optimization problems, including two large scale real case problems

(OPMOP and HFVRPMT).

Minor contributions are related to:

• Design a smart pool search matheuristic algorithm for handling the weighted-sum

MILP in order to solve the MOMSPP;
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• Consider the use of different exogenous variables as input of the forecasting model,

adapted or included during the evolutionary process;

• Use of a bio-inspired optimizer based on the concepts of the ES.

• Apply the model over real load databases composed of different typical MG con-

sumers and large grids;

• Quick training strategy for forecasting in online MG scenarios;

• Use of a metaheuristic based framework suitable to be applied for different fore-

casting horizons, generating h-steps-ahead forecasting.

• Tackles rainfall and wind power generation with probabilistic forecasts;

As s result of this current thesis, the following papers are highlighted:

Published in conferences:

• A General Variable Neighborhood Search heuristic for short term load forecast-

ing in Smart Grids environment (Coelho et al. 2014b). Presented in 2014 Power

Systems Conference;

– This first conference paper introduced the metaheuristic forecasting model,

using a trajectory search algorithm for calibrating a matrix of rules.

• A heuristic fuzzy algorithm bio-inspired by Evolution Strategies for energy fore-

casting problems (Coelho et al. 2014a). Presented in the 2014 IEEE World Congress

on Computational Intelligence, held in China;

– The training algorithm presented in Clemson was improved, as well as a better

interpretation of the proposed hybrid forecasting model.

• A hybrid deep learning forecasting model using GPU disaggregated function eval-

uations applied for Household Electricity Demand Forecasting. Presented in the

Applied Energy Symposium and Forum, REM2016: Renewable Energy Integration

with Mini/Microgrid.

– The hybrid forecasting function evaluation was disaggregated and can now

handle big data time series.
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• A smart pool search matheuristic for solving a multi-objective objective micro-

grid storage planning problem. Presented in the Applied Energy Symposium and

Forum, REM2016: Renewable Energy Integration with Mini/Microgrid.

– The mathematical programming model was improved, as well as the meta-

heuristic searching strategy.

• An automatic calibration framework applied on a metaheuristic fuzzy model for

the CIF competition. To be presented in the 2016 IEEE World Congress on Com-

putational Intelligence, to be held in Vancouver;

– A flexible and automatic framework has been extended to be applied for

different types of time series. Thus, it can easily compete in the competition

without an exhaustive calibration phase. It will participate in the forecasting

competition of the 2016 WCCI.

• A hybrid evolutionary probabilistic forecasting model applied for rainfall and wind

power forecast. To be presented in the 2016 IEEE Conference on Evolving and

Adaptive Intelligent Systems, to be held in Natal;

– We extended the hybrid forecasting model in order to apply it for generating

probabilistic forecasting. Probabilistic rainfall and wind power generation

forecasting were tackled.

Published in journals:

• Multi-objective energy storage power dispatching using plug-in vehicles in a smart-

microgrid (Coelho, Coelho, Coelho, Cohen, Reis, Silva, Souza, Fleming & Guimaraes

2016). Published in Renewable Energy special issue on integrated Energy systems,

with impact factor 3.476 and 3.982 5-year impact factor.

– The first accepted journal paper related to this thesis. It comprises the use of

the hybrid forecasting model, generating probabilistic forecasts and using its

information in order to analyze different possibilities for storing energy into

the batteries.

• A self-adaptive evolutionary fuzzy model for load forecasting problems on smart

grid environment (Coelho, Coelho, Coelho, Reis, Enayatifar, Souza & aes 2016).

Published in Applied Energy, with impact factor 5.613 and 6.330 5-year impact

factor.
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– The hybrid forecasting model was formally detailed and applied for load con-

sumption forecasting. In special, the flexibility of the model was highlighted.

• Hybrid self-adaptive evolution strategies guided by neighborhood structures for

combinatorial optimization problems. Accepted, to appear, in a special issue of

Combinatorial Optimization Problems in the Evolutionary Computation journal.

– In this paper, the hybrid fuzzy model used in this thesis is calibrated using a

discrete evolution strategies. Neighborhood structures are used for adapting

rules values.

• Low risk targeted customers in direct marketing campaigns using a hybrid multi-

objective metaheuristic. In the second round of revisions in a special issue of Vari-

able Neighborhood Search applications in the Computers & Operations Research

journal.

– The idea of using Sharpe Ratio index came from this first application de-

scribed in this paper.

1.4 Work structure

The topics presented in this thesis are organized as follows:

Chapter 2 – Literature Review: discusses the literature surrounding the emerg-

ing SG technology and current state-of-the-art applications related to energy storage.

A brief introduction related to point and probabilistic forecasts, as well as a literature

review, is also presented.

Chapter 3 – Hybrid self-adaptive fuzzy model: introduces the self-adaptive

fuzzy model proposed in this thesis. The model and its expert adaptive mechanisms are

detailed and calibrated using load historical time series from real MG residences.

Chapter 4 – Hybrid self-adaptive evolution strategies: introduces an Evo-

lution Strategy (ES) based algorithm, designed to self-adapt its mutation operators,

guiding the search into the solution space using a Self-Adaptive Reduced Variable Neigh-

borhood Search procedure.

Chapter 5 – Multi-objective power dispatching problem: describes the pro-

posed multi-objective power dispatching problem with six objective functions. The

mathematical formulation and the objective functions are detailed. The optimization
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algorithm designed for optimizing the linear combination of the objective functions is

also described.

Chapter 6 – Computational Experiments: introduces the MG scenario used as

cases of study. Different sets of non-dominated solutions are described and the behavior

of the solutions is described and analyzed.

Chapter 7 – Conclusions and future works: draws the final considerations and

possible extensions of this thesis.



Chapter 2

Literature Review

“Nunca devemos perder o fasćınio pela beleza do mundo natural.”

— Marcelo Gleiser

2.1 Smart grid

Smart Grid is considered as the future of a power grid able to manage production,

transmission and electricity distribution. The task involves the use of Information and

Communication Technologies (ICT), Distributed Generation (DG) and AI. Due to the

need of consistently adapting and integrating new tools to the current grid, SG has

become a major challenge for developed and developing nations in both research and

utilization aspects (Tugcu et al. 2012). Investing on SG infrastructure is a key enabler for

public goods, such as decarbonisation and energy security (Hall & Foxon 2014). SG are

expected to play an important role in the resolution of many issues of current power grid

systems (Fadaeenejad et al. 2014). The latter will be composed of a mesh of networked

MG collaborating to deliver electricity to consumers and, occasionally, assisting stand-

alone systems (Zhao et al. 2015), specially in developing countries (Pereira et al. 2012,

Dı́az & Masó 2013, Pao & Fu 2013, Pereira Jr. et al. 2013, Alemán-Nava et al. 2014, Yuan

et al. 2014, Lin et al. 2013, Welsch et al. 2013, Acharjee 2013, Mahmood et al. 2014).

The term Smart Grid has been used to represent the entire electrical system in-

cluding generation, transmission and distribution (Ekanayake et al. 2012). Regarding

the distribution system, several efforts target the increase of manageability and effi-

ciency by dividing the smart distribution grid into sub-systems. Figure 2.1 presents a

13
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future envisioned SG system, adapted from the European Commission report on SG

(Commission 2006).

Figure 2.1: Adaptation from the Future Network Vision of the European Commission
report on SG

Different sub-systems will compose the future SG, as can be imagined through Figure

2.1. These sub-systems are called “Smart-Microgrids”, “Mini/Microgrid”, or just “Mi-

crogrids”, and consist of energy consumers and producers at a small scale, which are able

to manage themselves, being self-sustainable or in a stand-alone state. The environment

depicted involves different components idealized for the future power grids, such as: Hy-

dro power stations (medium and small); Low emission power plants; Solar power plant;

Wave energy generation (a brief view of these last five RER can be seen in (Ellabban

et al. 2014)); Offshore wind farms (Ederer 2015); Residential photovoltaic generation

(Dávi et al. 2016); Energy storage systems (Ribeiro et al. 2001); PEVs (Garćıa-Villalobos

et al. 2014); Distribution and management: Transformers, links, underground systems

and power transmission, control and communication center and satellites. Small wind

turbine on buildings rooftops (Tabrizi et al. 2015) and Smart Parks (Venayagamoorthy

& Chakravarty 2014) could be also envisioned for this future system.

Literature works have demonstrated the technical and economical feasibility of greener
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generation technologies based on wind, solar, hydrogen and hydro power. Integrating

these technologies has become a priority in MG (Olivares et al. 2014a), not only because

of insertion of these Renewable Energy Resources (RER) but also because extra elements

have been required (Farhangi 2010): sensor and metering network; network nodes with

computation capabilities; switches or actuators that allow the grid setup to be changed

and the capability of plug-in or plug-out new devices. Future MG may equip customers

with distributed energy generation and storage systems that can change their overall

demand behavior, promoting the development of several smart-microgrids. These tools

will provide users with the ability of taking profit of their generated energy as an impor-

tant economic factor (Xenias et al. 2015) or even aiding them to turn into stand-alone

systems and self-sustainable users. Providing autonomous assistance in order to assist

complex decision making tasks will be required by an increasing number of MG users.

Coordination and control of these new emerging grid components remains a great

challenge (Rogers et al. 2012). Advanced networking, as well as ICT, have been assisting

the integration of the conventional power grid in smarter ways (Nguyen & Flueck 2012),

inspiring the use of distributed Multi-Agent Systems (MAS). Autonomous control of

SG systems allows placing additional DGs without reengineering the whole system, and

using it in the peer-to-peer model eliminates the requirement of a complex central con-

troller and associated telecommunication facilities (Lidula & Rajapakse 2011).

Brown (2008) emphasized bidirectional communication between devices as the most

important characteristic for integrating new DER into the energy systems. From this

communication process and standards (for example IEC61850, as can be seen in Figure

2.2, or ZigBee based protocols (Batista et al. 2013)), a process of decision making is taken

by different SG components. In this sense, MAS, using agent peer-to-peer interaction

instead of client-server, will face an open field of applications in the next years. The

migration to this paradigm and its implementation in the SG has as its starting point

the installation of Smart Meters (SM), which improve access to electricity consumption

information, and sensors in residences or commercial buildings. SM are a key enabler

for communication between SG devices.

2.2 Energy Storage

MG systems require smarter operations to well-coordinate the emerging decentralized

sources of energy. Optimization methods justify the cost of investing in a MG system by

enabling economic and reliable utilization of resources (Fathima & Palanisamy 2015).

Olivares et al. (2014a) observed that the microgrid optimal energy management prob-
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Figure 2.2: Real-time PXI-RTDS MAS simulation platform for a PV-small hydro hybrid
microgrid.

lem falls, generally, into the category of mixed integer nonlinear programming problems,

because, in general, objective functions may include higher polynomial terms and opera-

tional constraints. Levron et al. (2013) presented a methodology for solving the optimal

power flow in MG. The model solves small systems containing up to two renewable

generators and two storage devices. The proposed approach grows in complexity expo-

nentially, since each storage device contributes extra dimensions to the solution space.

Recently, a mathematical formulation proposed by Macedo et al. (2014) extended the

approach of Levron et al. (2013). Their formulation uses a convex equivalent model

which obtains an approximate optimal solution for the same microgrid system. Rigo-

Mariani et al. (2014) researched the power dispatching problem seeking to minimize

system global energy costs. A smart-microgrid DC system with flywheel energy storage

was analyzed. By considering forecasts for a MG residence and solar PV production, an

off-line power dispatching was performed in the search for storage planning schedules.

Mohammadi et al. (2014) considered uncertainties over the forecasting of consumption

and renewable energy generation. A stochastic operation management of one day ahead

was performed using a Heuristic Algorithm. At the initial state 2000 storage planning

scenarios were generated, using a Probability Distribution Function (PDF) to represent

the uncertainty of the forecasts. Those scenarios were generated and later reduced to

20 and sorted in ascending order of probability of occurrence.

Some approaches in the literature incorporated the reduction of GHG emissions as

part of a Multi-Objective Optimization Problem (MOOP) (Colson et al. 2009, Alvarez

et al. 2009, Kanchev et al. 2010). Other applications spotlighted on finding the energy

and power capacities of the storage system that minimize the operating costs of the MG,

as can be verified in Fossati et al. (2015).



Literature Review 17

Different ESS have been adapted to be used over MG, some examples are: Battery

Energy Storage System (Levron et al. 2013), Compressed Air Energy Storage (CAES)

systems (Manchester et al. 2015), Flywheels (Rigo-Mariani et al. 2014), Thermal Energy

Storage (Comodi et al. 2015), Pumped-storage hydroelectricity (Zakeri & Syri 2015), Su-

perconducting Magnetic Energy Storage (SMES) (Tinador 2008). On the other hand,

the use of energy storage in connection with SmartParks is becoming a crucial demand as

the number of PEVs, such as electric cars and plug-in hybrids, in the market is increas-

ing (Venayagamoorthy & Chakravarty 2014). Smart Grid application being developed

are still analyzing the benefits of this growth (Kempton & Tomić 2005). Power dis-

patching systems are incorporating vehicle-to-grid (V2G) power transactions over their

schedule. Bidirectional power flow between PEVs and the grid will become essential

(Venayagamoorthy & Chakravarty 2014, Saber & Venayagamoorthy 2010). As empha-

sized by Romo & Micheloud (2015), penetration of PEVs will increase significantly in the

next 20 years. As a conclusion, smart parking lots with large fleets of electric cars can

provide a flexible storage reserve for a MG system, reducing energy production needs.

Most of the works in the literature dealt with the concept of parameters uncertain-

ties of ESS management. In Papadopoulos et al. (2012), results from a deterministic

storage planning model showed that voltage violations would be quite high without the

consideration of errors in the forecasts. From a probabilistic model with uncertainties,

it was concluded that the integration of micro-generation in each MG household might

reduce such violations. Previous works in ESS have focused on obtaining determin-

istic storage scenarios. This task was mainly done by the introduction of uncertainty

over forecasts and identifying the most likely scenarios (Comodi et al. 2015, Rigo-Mariani

et al. 2014, Mohammadi et al. 2014). In this thesis, uncertainties are considered through

the use of probabilistic forecasts, analyzing scenarios provided by their upper and lower

bounds.

2.3 Forecasting in MG scenarios

“The future lies under uncertainties”, recently published in Science by Spiegelhal-

ter (2014), emphasized the importance of forecasting over decision making problems.

Scientific problems are requiring smart tools for handling with complex situations, and

the need of quantifying uncertainty of future events has been investigated for several

real-world applications.

Lee & Tong (2011) underscore the importance of energy consumption forecasting in

the context of economic development of a country due to the large and rapid changes
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in the industry, which have strongly affected energy consumption. Taylor & McSharry

(2007) emphasized that electricity demand forecasting is of great importance for the

management of power systems. Nowadays, it is a consensus that electrical load forecast-

ing assisted by AI tools plays a vital role for the effective success of the SG (Raza &

Khosravi 2015).

Long-Term Forecasting (LTF) is, usually, required for capacity planning and main-

tenance scheduling. LTF has been performed for decades and remains a challenge, as

can be verified in Javed et al. (2012), where a twenty-year load forecast background is

studied. However, classical approaches to deal with long term load forecasting are often

limited to the use of load and weather information occurring with monthly or annual fre-

quency. The modern approaches take advantage of the advanced metering infrastructure

presented in the SG and the hourly information to create more accurate and conserva-

tive forecasts (Hong et al. 2014). For instance, the Energy Information Administration

of the United States has forecasted that global energy consumption will increase by

49% from 2007 to 2035 (Administration. 2015). Furthermore, the need for Short-Term

Forecasting (STF) for control and scheduling of power systems is increasing, a task that

is also required by transmission companies when a self-dispatching market is in opera-

tion. Commonly, in Short-Term Load Forecasting (STLF) studies, one is interested in

predictions for the next 1-24 hours ahead, sampling data every half hour or one-hour

(Javed et al. 2012). Nowadays it is also possible to find research reporting shorter time

periods, such as Gangui et al. (2012), who studied wind power energy forecasting with

15 minutes of forecasting horizon. Real-time forecasts will not be useful only for wind

or solar forecasts, as it is already a need when considering Microgrids (MG) control and

efficient management (Pascual et al. 2015).

In terms of STLF, MG should be taken into account, since they are more difficult to

be monitored and predicted than large power grids due to their higher randomness and

lower autocorrelation factors (Liu et al. 2014). MG had become a basic and fundamen-

tal infrastructure in the SG environment and have been receiving attention in recent

literature works. For instance, Sun et al. (2013) used a backpropagation neural network

to perform forecasts over a MG environment, however, the accuracy of their results had

been compromised due to large load variations in the small office building that they

analyzed. A problem that does not happen in Large-Grid and Medium-Grid environ-

ments, as can be verified in Taylor & McSharry (Taylor & McSharry 2007), where STLF

was performed over a huge European data set from 10 different countries. Forecasts

and, in particular, probabilistic forecasts will assist decision making in MG, guiding
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and assisting suitable and profitable energy storage. Forecasts of load and prices are

also being considered for auction-based market, where the length of a market period

has been modeled as an interval between 15 min and one hour, which is included in

the category of STLF (Stadler et al. 2016). Hernández et al. (2014) focus on Artificial

Neural Networks (ANN) approach for STLF in order to provide useful information for

MG intelligent elements, in case they can adapt their behavior depending on the future

generation and consumption conditions.

Recent works have proposed various AI techniques for tackling forecasting problems

in applications where traditional forecasting methods have many limitations to tackle

big time series data with high fluctuations (Amjady et al. 2010), such as: ANN (Reis

& Alves da Silva 2005), Fuzzy Inference Systems (FIS) (Mastorocostas et al. 1999,

Wai et al. 2011) and Fuzzy Times Series (FTS) (Chakrabarty et al. 2013, Enayatifar

et al. 2013), Support Vector Machines (SVM) (Selakov et al. 2014) and Hybrid models

(Huarng 2001, Lee & Tong 2012)

Most forecasting models require feature extraction in pursuance of selecting good

quality inputs (Buzug & Pfister 1992). Different works in the literature have already tried

to obtain such features to improve forecasting performance, specially for ANN (Drezga

& Rahman 1998). Enayatifar et al. (2013) obtained the Fuzzy Logical Relationships

(FLRs) by analyzing the Autocorrelation Function (ACF). Lahouar & Slama (2015)

proposed the use of ACF to assist a mechanism for input selection of a random forecasting

model. However, feature extraction from the time series is not the only viable solution

to selecting possible sets of model’s inputs, this problem has been also approached with

the use of bagging (Khwaja et al. 2015).

Driven by theoretical and real world applications, extracted from the literature, the

purpose of this thesis is to use a class of bio-inspired metaheuristics for calibrating the

parameters of a Hybrid Forecasting Model (HFM), which is mainly based on if-then

fuzzy rules. We incorporated the power of the evolutionary algorithms for optimizing

the fuzzy rules and calibrating their parameters, while Neighborhood Structures (NS)

are used for searching for a prominent set of lags. The expert input selection done by

the NS, along with the evolution process, modify and adjust the model inputs during

the training phase.
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2.3.1 Probabilistic forecasts

Several works in the literature so far have been focused on deterministic point fore-

casts, which, usually, indicate the conditional mean of future observations. An increasing

need for generating the entire conditional distribution of future observations has been re-

quired for the new generation of soft sensors. Thus, point forecasts are being suppressed

by a new class of forecasts, called probabilistic forecasts, which are able to provide

additional quantitative information on the uncertainty associated to future time series

data. As discussed in the beginning of this chapter, the energy sector has been changing

quickly and dramatically. With the growing amount of data from the SG associated to

energy systems, there is a need for utilities to generate the entire conditional distribution

of future observations. In special, given the inherent uncertainties associated with RER,

probabilistic forecasts of MG components have been researched in the following areas:

load (Hong et al. 2014), electricity prices (Kou et al. 2015) (Weron 2014), wind (Zhang

et al. 2014) and photovoltaic power (Bessa et al. 2015, Zamo et al. 2014, Monache &

Alessandrini 2014).

Compared to currently widely used deterministic forecasts, probabilistic forecasts are

able to supplement point forecasts with probability information about their likely errors.

This kind of forecasts can be used in order to effectively quantify the uncertainty in time

series data. Another advantage of using a probabilistic forecasting model is that they

are able to quantify non-Gaussian uncertainties in wind and solar power forecasts. As

analyzed by Zhang et al. (2014), probabilistic forecasts are more appropriate inputs for

decision-making in uncertain environments. It is expected that the use of probabilistic

forecasts as inputs for energy storage management and power dispatching systems will

become more widespread. The probabilistic forecasts provide reliable lower and upper

bounds for each predicted time step, and their use for analyzing schedules in extreme

scenarios is addressed within this study.

As example, Section 3.5 tackles two different forecasting problems composed of time

series with high fluctuations and low ACF values. Both problems are introduced in the

following Sections.

Rainfall forecast

Water is the most abundant natural resource on the planet. Nearly ubiquitous way,

it is in the daily lives of seven billion people inhabiting the planet. However, it have

been experienced severe changes regarding its supply (Lutzenberger 1980). Currently the
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management of water resources is undergoing a paradigm shift, which has a strong tra-

dition in controlling the environmental problems assisted by engineering based technical

solutions.

Risk management involving tools for predicting extreme scenarios is of great impor-

tance due to the limits of current implemented technologies, such as dams and reservoirs.

In this sense, the need of novel rainfall forecasting models has been increasing in recent

years (Pahl-Wostl et al. 2008). It is noteworthy that this topic can be carried out in a

sustainable manner, based on the trade-off between social, environmental and economic

interests.

Much of the need to forecast hydrological events is linked to global warming and pos-

sible adverse effects to humans. A study presented at the 2007 International Panel on

Climate Change pointed a variation in climate that occurs due to increased carbon diox-

ide concentration, largely irreversible for a thousand years after emissions stop (Solomon

et al. 2009). Thus, it is expected that extreme events, with higher fluctuations at its

time series, are likely to be more frequent in the future.

In particular, rain is one of the most complex and difficult elements of the hydro-

logical cycle to be understood and modeled. The complexity of atmospheric processes,

the effects of the solar rain (the current phenomenon of El Niño), forms huge range of

variation over a wide range of scales in space and time (French et al. 1992). French, Kra-

jewski & Cuykendall (French et al. 1992) felt this need of forecasting this complex time

series and developed a neural network model for rainfall forecasting based on data from

a space-time mathematical rainfall simulation model. Gwangseob & Ana (Gwangseob &

Ana 2001) emphasized that rainfall forecasting is one of the biggest challenges of oper-

ational hydrology, despite many advances in climate predictions in recent decades. For

these reasons, any attempt to predict rainfall has impacts in urban safety, infrastructure

and preventing disasters due to flooding and unavailability of water. Besides the eco-

nomic impact, of course. Furthermore, reliable forecasts can also be used for enhancing

energy efficiency in hydroelectric power plants. Nowadays, it has been done using short-

term (Monteiro et al. 2013) and long-term forecasts. The latter has been done since the

first dams were built, but, it used to be done by hand by the technicians and operators.

With the increase of novel storage devices, researchers are also investigating the impact

of these forecasts of pumped-hydro storage plants (Muche 2014).

The proposal that forecasts should be expressed in probabilistic terms, rather than

deterministic ones, was argued from the common sense and theoretical perspectives for
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nearly a century. Even though most of the hydrological forecasting operating systems

produce deterministic predictions (Bennett et al. 2014, Nastos et al. 2013), most works

in operational hydrology have been devoted to find the best estimation rather than

quantifying the predictive uncertainty (Krzysztofowicz 1999).

Wind power forecast

Zhang et al. (2014) emphasized that probabilistic wind power forecasting is an effi-

cient tool for dealing with randomness and intermittence of wind resources. The ran-

domness and intermittency of wind resources is the biggest challenge for the integration

of wind energy into the power system. The development of accurate forecasting tools for

wind power generation is an efficient way for dealing with such problem. Conventional

wind power generation forecasts produce a single future value for each point, depend-

ing on a value obtained from past data. However, in any prediction of future values,

uncertainty is always involved. Deterministic forecasts define a single value forecast,

while a probabilistic forecast defines a set of possible values. For decisions in uncertain

environments, the probabilistic prediction is a better choice.

In the present state-of-the-art studies, wind power forecast has been performed by

probabilistic methods. The latter, compared with other methods, obtains a greater

range of values for a given forecasting horizon, more robustness, for the soft sensors,

than those using deterministic measurements.

2.4 Conclusion

This chapter provided a brief overview related to Smart Grid and how a mesh of MG

will compose it. Key points for making this new envisioned power system reality were

pointed out. A literature review and some state-of-the-art works related to ESS were

presented. In special, the motivation for handling microgrid forecasting problems was

highlighted.



Chapter 3

Hybrid self-adaptive fuzzy model

“I have seen the future and it is very much like the present, only longer.”

— Kehlog Albran, The Profit

This chapter discusses the proposed hybrid self-adaptive fuzzy forecasting model,

comparing it to other models found in the literature. The flexibility of the proposed

framework allows it to be applied to the different types of datasets, since it is calibrated

using a metaheuristic based algorithm.

Some definitions regarding time series and forecasting problems are introduced in

Section 3.1. Section 3.2 presents the proposed fuzzy model. Section 3.3 describes the

heuristic model used to optimize the hybrid fuzzy model. Section 3.3.1 introduces how to

represent the fuzzy rules into matrices, examples are given in Section 3.2.2. Section 3.3.2

describes how to evaluate a given model regarding its accuracy of forecasting a given

historical time series, and Section 3.3.3 details the proposed algorithm for calibration

of the fuzzy model rules and weights during the training phase. Computational experi-

ments related to the application of the proposed model for load forecasting problems are

presented in Section 3.4. Its application and extension for generating probabilistic fore-

casting quantiles is presented in Section 3.5. Conclusion and extensions for the proposed

model are presented in Section 3.6.

23
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3.1 Definitions

The class of forecasting problems sought to be solved by the HFM model described

in this thesis may be formulated as follows:

• a set of time series TS = {y, z1, ..., ze}, composed of e + 1 different historical

time series, including the variable of interest y and, optional, exogenous variables

zi ∀i ∈ [1, e]

• The target time series y = y1, ..., yt comprises a set of t observations; The optional

set of e exogenous time series is represented by zi = {zi1, ...zit, ...zit+ke}, ∀i ∈ [1, e].

The index ke means that the exogenous variables can also have previously fore-

casted values in its time series.

The goal is to estimate the forecasts of a finite sequence {ŷt+1, ..., ŷt+k}, with k

indicating the number of steps to be predicted, namely forecasting horizon.

These steps ahead to be predicted are precisely following the sample time t, that is,

the forecast are the k steps ahead starting from t+ 1 to t+ k. The vector of exogenous

variables include information prior to time t and might also include predicted future

points t+ h. It is even possible to have ke > k.

Finally, each predictable point pt can be composed of combinations of lags from the

target time series yt and variables zit.

In this current chapter, we tackle load forecasting, which is a type of time series.

Forecasting models are required to estimate time series future evolution in terms of past

samples and, occasionally, being assisted by the use of some exogenous variables that

affect the future load (Lahouar & Slama 2015). As an example of a time-series, Figure

3.1 depicts an hourly load historical data.

3.2 Fuzzy model

Each input of the model ui, i = 1, . . . , r, with ui = y(t − x), ui = z(t − x) or

ui = z(t + x), represents a choice for the composition of lags that will be used to

obtain the forecast, the backshift operators. For simplicity of the didactic description

of the model, only lags from the target time series y will be stated in the mathematical

description of the fuzzy model. Thus, the model will only use lags provided by the
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Figure 3.1: Average intraday cycle for each day of the week from EirGrid electricity load
dataset from 02/01/2012 to 10/08/2014.

historical time series y, being ui = y(t − x) = yt−x = Bxy(t), being B the lag operator

or backshift for lags x prior to time t.

For instance, two different lags can be selected as inputs, u1 = y(t − 24) and u2 =

y(t − 1), for forecasting a specific horizon from the previously described sequence p(t),

with t− 24 and t− 1, respectively.

Based on these inputs of the model (or even a combination of them) the fuzzy rules

are generated and described as follows, for i = 1, . . . , r:

 if ui>̃ai then f(t) = vi

if ui<̃bi then f(t) = wi
(3.1)

Each input ui is associated with up to 2 inequalities. The rules are based on fuzzy

inequality relations <̃ and >̃, which are described by fuzzy membership functions, and

the parameters ai and bi. The forecast value suggested by each rule is given by the



26 Hybrid self-adaptive fuzzy model

parameters vi and wi. The main idea behind this model is to divide, in a fuzzy sense,

each input into intervals. Whenever the input value is within a given interval, then the

consequent of the rule contributes to the forecast value. New rules create new inter-

vals and consequently more complex relationships between the inputs and the forecast

output.

Figure 3.2 exemplifies the effects of the rules. The first one, Figure 3.2a, shows

the effects of one rule for one input and Figure 3.2b introduces the notion of the fuzzy

space when a new rule is added. These examples consider the use of a backshift operator

yt−x = Bxy(t), for the input lag x prior to time t. Each fuzzy interval provides a different

weight for forecasting a given point yt, given by the combinations of the weights v1, v2,

w1 and w2.

a1 b1

v1

w1

input y
t-x

f(
y

t)

(a) Effects of one rule for one input

a1 b2 b1 a2

w2

v1

w1

v2

input y
t-x

f(
y

t)

(b) Effects of adding a new rule

Figure 3.2: Rules effects
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The fuzzy set Ai = {x, µAi
> 0 | x ∈ X} represents the set of values that satisfy the

inequality ui>̃ai. The membership degree to this set is modeled by fuzzy membership

functions, such as:

µAi
(ui; ai, εi)


0, if ui ≤ ai − εi

1 + (ui−ai)
εi

, if ai − εi < ui ≤ ai

1, if ui > ai

(3.2)

with εi ≥ 0.

In a similar way, the fuzzy set Bi = {x, µBi
> 0 | x ∈ X} represents the set of values

that satisfy the inequality ui<̃bi. The membership degree to this set is modeled by fuzzy

membership functions, such as:

µBi
(ui; bi, εi)


1, if ui ≤ bi

1 + (bi−ui)
εi

, if bi < ui ≤ bi + εi

0, if ui > bi + εi

(3.3)

with εi ≥ 0.

The weight of each rule in the final forecast value depends on the membership degree

of the input ui to the fuzzy set associated with that rule. The overall output of the

proposal model is given by Eq. (3.4).

f(t) =
r∑
i=1

µ̂Ai
(ui)vi + µ̂Bi

(ui)wi (3.4)

where the parameters ai, bi, εi were omitted in the membership functions just to simplify

the notation. Additionally:

µ̂Ai
(ui) =

µAi
(ui)∑r

i=1 µAi
(ui) + µBi

(ui)
(3.5)
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µ̂Bi
(ui) =

µBi
(ui)∑r

i=1 µAi
(ui) + µBi

(ui)
(3.6)

µ̂Ai
(ui) and µ̂Bi

(ui) represent the strength of the rules in the forecast.

Figure 3.3 exemplifies the effects of two pairs of rules with linear or sigmoid fuzzy

rules. The same position depicted in Figure 3.2 was kept for this example. As can

be noticed, when a non-linear membership function was used the regression became

smoother.

a1 b2 b1 a2

w2

v1

w2

v2

input y
t-x

f(
y

t)

(a) Rules with linear membership function

a1 b2 b1 a2

w2

v1

w2

v2

input y
t-x

f(
y

t)

(b) Rules with sigmoid membership function

Figure 3.3: Rules effects with linear and non-linear membership functions
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3.2.1 What’s the rationale?

The correlation between past lags and current observations has been studied for

decades. Several models and analyses try to extract characteristics from the old lags

and correlate them in order to achieve efficient forecasting models. For instance, the

trivial random-walk (Pearson 1905), proposed more than 100 years ago, tries to face

time series that show irregular growth by calculating the first differences. Plotting

efficient and well-designed ACF and Partial Autocorrelation Function (PACF) is still

being researched. A brief introduction about the current state-of-the-art of the use of

ACF can be checked in Hyndman (Hyndman 2014).

Figure 3.4 shows a mini/microgrid residence with maximum load of 273kW, composed

by the historical load time series and forecasts provided by an Autoregressive Integrated

Moving Average – ARIMA (Hyndman & Khandakar 2008) and Random Walk forecasting

models.
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Figure 3.4: MG with one-day ahead forecast

The relationship between the lags and the output can provide useful information for

designing the inputs that will be used by the forecasting model. The Autocorrelation

Function (ACF) describes the tendency for observations made at adjacent time points

to be related to one another. However, these correlations can not be easily interpreted

and adapted when time series with high fluctuations are dealt, such as loads from MG
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(Amjady et al. 2010), wind power generation (Zhang et al. 2013), wind speed (D’Amico

et al. 2014), among others. For a better understanding of the ACF and results dis-

cussed in this section, the autocorrelation functions of four microgrids (A, B, C and D),

described in Section 3.4.2, are summarized in Figure 3.5.
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Figure 3.5: Autocorrelation functions for microgrids A, B, C and D with 500 lags

Compared to a typical, presented in Figure 3.6, ACF generated with energy demand

from two European countries (obtained from the dataset provided Taylor & McSharry

(Taylor & McSharry 2007)), mini/microgrid systems consumption are subject to much

more higher fluctuations. As can be verified in Figure 3.5, the four microgrid profiles

presented different autocorrelation values, as well as a residential area composed only

with positive ACF values. The high fluctuations over the residential area A make its

ACF values the lowest. Furthermore, the latter decreases quicker in relation to older

lags.

3.2.2 Example

Suppose that after analyzing the most prominent inputs from an ACF, from a given

time series (load, temperature, wind speed, etc.), the following inputs were selected to
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Figure 3.6: Autocorrelation functions of hourly samples of energy consumption in 2005

the model.

u =


u1

u2

u3

u4

 =


y(t− 1)

y(t− 5)

y(t− 40)

y(t− 5)


As should be noticed, the model can have repeated inputs, this is not a problem.

In the representation chosen here, different columns can represent different weights and

rules for the type of input.

Therefore, we have the following rules:



32 Hybrid self-adaptive fuzzy model

 if u1>̃a1 then f(t) = v1

if u1<̃b1 then f(t) = w1

(3.7)

 if u2>̃a2 then f(t) = v2

if u2<̃b2 then f(t) = w2

(3.8)

 if u3>̃a3 then f(t) = v3

if u3<̃b3 then f(t) = w3

(3.9)

 if u4>̃a4 then f(t) = v4

if u4<̃b4 then f(t) = w4

(3.10)

The forecast value is determined by the following equation:

f(t) = µ̂A1(u1)v1 + µ̂B1(u1)w1

+µ̂A2(u2)v2 + µ̂B2(u2)w2

+µ̂A3(u3)v3 + µ̂B3(u3)w3

+µ̂A4(u4)v4 + µ̂B4(u4)w4 (3.11)

Rule positions (ai and bi) and corresponding weights (vi and wi) are calibrated during

the optimization process. In this current study, the weights and positions of the rules

are calibrated according to an evolutionary metaheuristic algorithm. Additionally, the

strategy is able to insert, remove and adapt rules during the training process, as will be

detailed in Section 3.3.3.

As a didactic example, Figure 3.7 depicts a defuzzification with 5 and 30 different

pairs of fuzzy rules, using Heaviside step or sigmoid functions. Rules and weights were
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generated in the same interval [0, 1]. Sigmoid membership function was defined with

ε = 0.15.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

input y
t-x

f(
y

t)

(a) Five rules with sigmoid membership func-
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(b) Thirty rules with sigmoid membership
functions
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(c) Thirty rules with Heaviside step functions

Figure 3.7: Many rules effects with Heaviside and Sigmoid membership functions

3.3 Model optimizer

3.3.1 Solution representation of the forecasting model

The following generic parameters describe the proposed model into a single matrix:
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S =



A

V

B

W

E


=



a1 · · · ai · · · ar

v1 · · · vi · · · vr

b1 · · · bi · · · br

w1 · · · wi · · · wr

ε1 · · · εi · · · εr


(3.12)

with i = 1, . . . , r being a specific model’s rules.

Table 3.1 illustrates a possible solution that uses four inputs over its model. The first

two columns are related to values of a didactic load time series and the other two are

inputs obtained from an associated temperature time series. Thus, in order to estimate

a given forecast at time t, the model receives historical data from two different time

series:

• y(t), which returns the values from a historical load time series;

• z(t), exogenous variables which provide values from a temperature time series.

and different lags:

• y(t − 1) and y(t − 2) are the load consumption one and two hours before the

forecasting (hour is used didactically to represent a given discrete interval of data

acquisition), respectively.

• z(t−1) and z(t−24) are the temperatures of the residence one and 24 hours before

the desired forecasting.

The first and the last inputs were modeled as triangular fuzzy rules, since both

columns have ε > 0;

Values used in this example stated by Table 3.1 were arbitrarily chosen. Temperature

values are used only didactically to emphasize the flexibility of the model in handling

inputs from different time series. Brief results related to this mechanism are described

in Section 3.4.4.
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s =



y(t− 1) y(t− 2) z(t− 1) z(t− 24)

A 87 95 15 30

V 70 80 80 100

B 100 90 30 50

W 110 50 115 80

E 10 0 0 5



Table 3.1: Solution example.

3.3.2 Objective function and solution evaluation

A solution s is evaluated by its ability of forecasting values of the training set T ,

comparing its forecasts with the historical measured ones.

Most models are trained to minimize the Mean Squared Error (MSE), since it is

well-known that the mean of the forecast distribution is obtained by minimizing the

squared error loss function S(ŷ(t+ h), y(t+ h)) = (ŷ(t+ h)− y(t+ h))2, where ŷ(t+ h)

is the point forecast and y(t + h) is the current observation obtained in the horizon h.

However, other loss functions are also able to lead to the forecast mean (Savage 1971).

This topic is still being investigated with new diagrams and conditions (Hyndman &

Koehler 2006) (Ehm et al. 2015).

Furthermore, the objective function can be any desired quality indicator or even more

than one, in the case of multiobjective approaches. Different metrics for defining the

accuracy of forecasting models have been discussed in the literature. In the 90’s, Makri-

dakis (Makridakis 1993) proposed a discussion of theoretical and practical application

of some loss functions.

3.3.3 GES training algorithm

The proposed calibration algorithm, called GES, which tackles the rules optimization,

consists on the combination of the metaheuristic procedures Greedy Randomized Adap-

tive Search Procedures – GRASP (Resende & Ribeiro 2010) and Evolution Strategy –

ES (Beyer & Schwefel 2002a). The pseudocode is outlined in Algorithm 3.1.

From the GRASP procedure, the construction phase was used to generate initial

forecasting models, as can be verified in the BMIR (Build Model Inputs and Rules)
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Algorithm 3.1: GES

Input: Function f(.), greedy feature extraction limit α, populations sizes µ and λ
Output: Population Pop

for i← 1 to µ do1

S ← BMIR(α) (see Algorithm 3.2)2

M ← BuildStdVectors (see Eq. (3.13))3

ind← S +M4

Popi ← ind5

end6

while stop criterion not satisfied do7

for i← 1 to λ do8

Generate a random number x ∈ [1, µ]9

ind← Popx10

ind← UpdateParameters11

ind← ApplyMutation12

ind← MutateAddRemoveLags13

Popoffspringi ← ind14

end15

Pop = Selection (f , Pop, Popoffspring)16

end17

return Pop18
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procedure, detailed in Algorithm 3.2. The initial population of the algorithm (lines 1 to

6 of Algorithm 3.1) consists in generating µ individuals. Each individual is generated

according to the BMIR procedure and is, usually, of a different forecasting model from

each other.

Algorithm 3.2: BMIR

Input: historical data sets TS, number of different historical time series
nTimeSeries, greedy feature extraction limit α, maximum lag maxLag,
maximum initial number of rules maxNRules

Output: Initial solution s

for ts← 1 to nTimeSeries do1

meants, σts ← mean value and standard deviation of the time series TSts,2

respectively
RCLts ← featureExtractionTechnique(αts,maxLag,TSts)3

end4

rnRules ← random number [1,maxNRules]5

for i← 1 to rnRules do6

select a random time series ts ∈ nTimeSeries7

select a random input lag ∈ RCLts8

Si ← lag as the current input of its column i9

Si ← [Ai, Vi, Bi,Wi, Ei]
′ with random values according to a normal10

distribution N(meants, σts)
end11

return s12

Variable α regulates the size of the RCL, named Restricted Candidate Lags, an

abstraction of the Restricted List of Candidates in GRASP. That is, input lags that have

low correlation values, according to the desired feature extraction technique, will not be

considered to be inserted in the model (line 3 of Algorithm 3.2). We denote variable αts

with subscript ts to emphasize the possibility of limiting different lags according to the

historical time series that the rule will use. The feature extraction technique receives the

current greedy limit α, the maximum oldest lag able to be used by the model maxLag

and the historical data. Section 3.4.3 discusses the influence of the greedy limit using a

didactic example with ACF. The historical time series data are stored in the dataset TS.

The number of time series is given by the variable nTimeSeries. Variable r indicates

the number of rules (basically, 2× r) that will be initialized in the model of solution

s. From lines 6 to 11 of Algorithm 3.2, each column of the initial solution s receives a

random input from the RCL. A trivial solution generator would be a feature extraction

technique that returns a vector with all possible lags from 1 to maxLag, then, the model

would receive a random input lag for its rules. Position and weights of each fuzzy rule
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are initialized in accordance with a normal distribution (line 10), centered at meants

with standard deviation σts. A special case for the weights v and w is that they are all

initialized with mean1 and σ1, i. e. ts = 1. It was defined like this because, as standard,

the first time series is the target that we need to forecast (in this current study, load

time series). The other ones are auxiliary time series, such as temperatures, wind speed,

presence of people at home, etc. Following this procedure, in average, all the solutions

generated by this procedure can forecast the mean values of the target load time series.

Line 4 of Algorithm 3.1 merges the solution s and the standard deviations matrix

M . The matrix M is generated in connection with the size of the model of s (as stated

by Eq. 3.13).

M =



σA

σV

σB

σW

σE


=



σa1 · · · σai · · · σar

σv1 · · · σvi · · · σvr

σb1 · · · σbi · · · σbr

σw1 · · · σwi · · · σwr

σε · · · σεi · · · σεr


(3.13)

with i = 1, . . . , r being the standard deviation for adapting each pair of model rules.

From now on, the following nomenclature is used:

• indS is the solution s, the fuzzy model, codified in the individual ind;

• indM is the matrix with the standard deviation values, used to guide evolution of

the population through the generations.

In line 11 of Algorithm 3.1 the mutation procedure is activated by a random indi-

vidual of the current population. Eq. (3.14) describes how the mutation is done. Each

cell of the matrix indM is updated with a normal distribution, centered at zero with

standard deviation σupdate,

Mrow,col ←Mrow,col +N(0, σupdate) (3.14)
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The procedure ApplyMutation (line 12 of the Algorithm 3.1) is illustrated in Eq.

(3.15). Each rule, indSij , its position and weights, are updated according to a normal

distribution centered at zero and with standard deviation obtained from the respective

cell of the mutation matrix indMij .

ind =



A+N(0,MσA)

V +N(0,MσV )

B +N(0,MσB)

W +N(0,MσW )

E +N(0,MσE)


(3.15)

Line 13 of the Algorithm 3.1 has the ability of mutating the model lag using the neigh-

borhood structures described in Section 3.3.4. Each of the three NS have probabilities

pNS1 , pNS2 , pNS3 of being applied for mutating model’s inputs.

Finally, the selection procedure (line 16 of the Algorithm 3.1) can be any desired

selection strategy, as long as the strategy returns a population with µ individuals. The

one used here is described as competition (µ+ λ), following the same notation of Beyer

& Schwefel (Beyer & Schwefel 2002a). In this selection process there is competition

between parents and offspring. Thus, the µ best individuals are selected among parents

and offspring.

3.3.4 Expert model input adjustment using Neighborhood Struc-

tures

Three different NS were designed in order to adapt model’s input during the training

phase. A brief view of the movements is described below:

Change lag – NSCL(s): This move increases or decreases in one unit the lag of

column x [x ∈ [1, r]] of solution s.

Remove rule – NSRR(s): This move deletes one column from solution s (if the

solution has, at least, r > 1).

Add rule – NSAR(s): This move consists in adding a new rule with lag ∈ [1,maxLag]

for the solution s, with the same procedure described for Algorithm 3.2.
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The role of designing expert input selection mechanisms has been envisioned by

different researches, a considerable part of them generates specific subsets of features to

be evaluated. Several approaches, such as those based on ANN (Lahouar & Slama 2015),

usually, define pairs composed of inputs and outputs, T ttraining = (xttraining, y
t
training),

being yttraining the historical measured values from the time series and xttraining a N-

dimensional vector of exogenous variables for the tth time instance of a given time series.

The feature sets are analyzed according to different feature selection methods (Koprinska

et al. 2015), based on traditional statistical methods or artificial intelligence and machine

learning strategies. Using prepocessing analysis, a specific set of inputs is chosen and,

then, machine learning algorithms, based on different learning paradigms, are applied

over the datasets. However, are these sets of feature the optimal values for those models?

Some works in the literature have been claiming a strategy that finds the “best” set of

inputs, but, it sounds to be a further discussion to achieve an optimal set of lags for a

given forecasting model.

On the other hand, our proposal handles with time series as a sequence instead

of defining sets of pairs of exogenous variables and desired outputs. Thus, the inputs

required by a given solution s are only accessed when this solution is being evaluated

regarding its performance in the training set. This strategy provides the tool of real-

time inputs searching. The expert input selection strategy proposed allows the model

to be updated in any stage of the learning process, that is done using a metaheuristic

procedure.

3.4 Computational experiments with load forecasting prob-

lems

This section is divided into five subsections. Section 3.4.1 presents the computational

resources, some considerations about the code and model parameters. Section 3.4.2

introduces the real datasets. Section 3.4.3 presents the results related to model inputs

selection. Section 3.4.4 presents some results compared with the literature. Finally,

Section 3.4.5 presents results of our hybrid fuzzy model, applied in real-time MG load

forecasting scenario, compared with well-known forecasting models.

3.4.1 Basic configurations

The GES calibration algorithm was implemented in C++ with assistance from Opt-

Frame (Available at http://sourceforge.net/projects/optframe/) (Coelho et al. 2011a).
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In general, frameworks are based on the researchers experience with the implementation

of multiple methods for different problems. This optimization framework has been suc-

cessfully applied in guiding the implementation of neighborhood structures (see Coelho

et al. (Coelho, Souza, Coelho, aes, Lust & Cruz 2012)). Souza et al. (Souza et al. 2010)

and (Coelho et al. 2015) employed OptFrame to solve an open-pit-mining problem and

a large-scale multi-trip vehicle routing problem. It is important to point out that all

code used in this research is, from this moment, available as an example on OptFrame

core, as an open-source tool under GNU LGPL 3.0.

The tests were carried out on a OPTIPLEX 9010 Intel Core i7-3770, 3.40 x 8 GHZ

with 32GB of RAM, with operating system Ubuntu 12.04.3 precise, and compiled by

g++ 4.6.3, using the Eclipse Kepler Release.

According to empirical calibration and parameters suggested by the literature (Beyer

& Schwefel 2002a), the size of the population, µ, and number of offspring, λ, generated

in each generation were fixed: µ = 10 and λ = 60, respectively. Initial values for the

standard deviation matrix M were chosen at random from [1, 10] and σupdate was fixed

to be 1. The fine tuning of these values is not presented here since the main focus of the

batches of experiments is to discuss the load forecasting regarding different set of inputs.

The objective function (Section 3.3.2) to be minimized during the fuzzy rules calibration

process was chosen to be the Mean Absolute Percentage Error – MAPE quality indicator

(Makridakis 1993).

3.4.2 Datasets

Large grids datasets were obtained by extracting parts of the dataset from Taylor

& McSharry (Taylor & McSharry 2007). Microgrids datasets were kindly provided by

Liu, Tang, Zhang & Liu (Liu et al. 2014). Another real MG residence dataset composed

with load and temperature time series (measured in Fahrenheit) was obtained from the

Global Energy Forecasting Competition 2014 – GEFCOM2014 (Hong 2014).

Taylor & McSharry (Taylor & McSharry 2007) dataset consists in intraday electricity

demand measurements, from 10 European countries for the 30 week period from Sunday,

3 April 2005 to Saturday, 29 October 2005. It is made up with hour (5040 samples),

and half-hour (10080 samples) load demand acquisitions.

Liu, Tang, Zhang & Liu (Liu et al. 2014) dataset is composed of four different micro-

grid users data (composed of users from small residential areas, commercial buildings or

factories). Instances A and B are the load of residential areas, C and D are the load of
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commercial buildings. The load time series from these four MG were divided into two

different sets:

• 2
3

of the data (1368 samples) is used for training the model;

• 1
3

of the data (672 samples) is used as blind validation, in a way to evaluate the

performance of the model after the GES rules calibration.

Several characteristic indices are extracted separately from the historical time series

of loads from these different databases, in the same way as Liu, Tang, Zhang & Liu

(Liu et al. 2014). Table 3.2 presents the calculation results of these indices, which are

described below:

1. Load variations in several months V (Eq. (3.16)), normalized mean square, which

indicates the load variation of the normalized ([0,1]) load power;

V =
N∑
i

(x′i − u′i) (3.16)

where x′i =
∑N

i x′i
N

and u′i =
x′i

max(x)
. N is the total number of samples of the

historical time series.

2. load variations between two adjacent days, Davg (Eq. (3.17)) and Dmax (Eq.

(3.18)), which indicate the average and maximum variation between two adjacent

days, respectively;

Davg =
1

Nd − 1

Nd−1∑
j=1

√
∆Xj∆XT

j

L
(3.17)

Dmax = max

√
∆Xj∆XT

j

L
,∀j = 1, ..., Nd − 1 (3.18)

where Xj is the load curve of each day j ∈ Nd and ∆Xj = Xj+1 −Xj.

3. load variations in a day, R (Eq. (3.19)) and Rmin (Eq. (3.20)), which indicate the

daily load rates compared to the average load and minimum values of each day of

the historical time series, respectively;
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R =
1

Nd

Nd∑
j=1

x̄j
xmaxj

(3.19)

Rmin =
1

Nd

Nd∑
j=1

xminj

xmaxj

(3.20)

where x̄j, x
min
j and xmaxj are, respectively, the average, minimum and maximum

load for a given day j ∈ Nd.

4. load variations in a hour, Mavg (Eq. (3.21)) and Mmax (Eq. (3.22)), which repre-

sents the average and maximum slope, respectively.

Mavg =
1

N − 1

N−1∑
i=1

∣∣∣∣∣∣∣∣x′t+1 − x′t
ti+1 − ti

∣∣∣∣∣∣∣∣ (3.21)

Mmax = Max

(∣∣∣∣∣∣∣∣x′t+1 − x′t
ti+1 − ti

∣∣∣∣∣∣∣∣) ; i = 1, ..., N − 1 (3.22)

As can be verified in Table 3.2, fluctuations over the MG are higher than those in the

Large Grid (LG). Average values of the load for each day are calculated and compared to

the maximum load of that day (R measure). Large grids presented higher values, since

the average is closer to the peak values. Following the same reasoning, the minimum

daily load rate (Rmin) is lower for the microgrids historical load data. The European

load consumption presented similar behaviors for the analyzed characteristics. As can

be seen in the last four lines of the Table 3.2, daily load variation over the temperature

time series of the MC residence is similar to the load grid variation over large grids. On

the other hand, difference between two adjacent days is much higher than in large grids

and fluctuates like MG systems.

3.4.3 Expert input selection

As an example, we present a solution generator based on the ACF as a feature ex-

traction technique for assisting the choice of the model inputs. Other feature extraction
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Table 3.2: Analysis results of load characteristics for the micro and large grids

Objects V Max. load R Rmin(%) Mavg Mmax Davg Dmax

(× 10−3) (%) (%) (× 10−2) (× 10−2) (× 10−2) (× 10−2)

Micro-grid instances (Liu et al. 2014)

A 18,11 273 75,03 52,50 4,52 24,95 20,46 53,62

B 26,04 463 62,47 34,85 5,58 52,39 24,69 69,94

C 28,73 1853 63,23 30,37 5,44 44,52 36,81 131,76

D 33,45 2215 65,69 31,22 7,32 42,46 28,23 91,22

Average 26,58 1201 66,60 37,23 5,72 41,08 27,55 86,63

European large-grid dataset (Taylor & McSharry 2007)

Italy 20,85 48970 83,66 62,48 3,04 15,18 14,94 70,77

Norway 9,53 17929 90,64 78,81 1,48 11,70 5,38 21,74

Spain 10,39 34756 88,11 74,58 2,18 11,12 8,11 31,11

Sweden 11,62 21433 89,02 74,62 1,80 11,33 6,91 26,72

Belgium 11,37 12255 87,58 71,56 1,41 14,12 8,73 32,34

Finland 19,12 12016 90,58 77,21 1,05 11,78 6,43 34,40

France 11,16 64761 88,03 71,85 1,33 8,36 7,63 29,95

GB 17,07 50622 84,46 62,09 1,57 9,80 9,24 30,21

Ireland 17,78 4158 82,99 58,85 1,73 10,20 8,78 37,23

Portugal 17,34 7367 83,10 62,29 1,79 10,64 10,43 38,38

Average 14,62 27427 86,82 69,43 1,74 11,42 8,66 35,28

GEFCOM2014 (Hong 2014)

Load 25,58 315 78,27 57,84 2,64 15,18 13,55 66,90

T1 36,04 102 82,10 65,88 1,97 14,71 16,90 70,01

T2 32,98 103 84,35 70,53 1,67 13,59 15,10 67,33

T3 32,18 98 85,39 71,89 1,70 14,29 14,27 90,85
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techniques (Saeys et al. 2007) could be adapted to our greedy randomized solution gen-

eration BMIR.

The goal is to compare the models generated using inputs with high ACF value

and the ones generated at random (when α = −1). Model’s input should respect the

maximum lag maxLag. This first experiment intends to present the influence of ACF

values for building an initial fuzzy model. Figure 3.8 indicates the lower MAPE errors

generated in “NSOLS” initializations.

These experiments provide an initial insight about how building several initial solu-

tions could enhance the chance of obtaining better initial models, in terms of model’s

performance measured by a MAPE indicator. This ability is reality in our approach due

to the use of the GRASP procedure as the initial step of our training algorithm.
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Figure 3.8: Two-way interaction plot of greedy ACF limit α and number of generated
solutions

Model inputs are obtained from a given limit α which only consider lags with corre-

lation higher than it, as introduced in Section 3.3.3. It should be noticed that we adapt

the procedure for reducing the maximum lag until it reaches the input with maximum

lag value. For instance, if the given MG had the maximum ACF value equal to 0.8, the

results obtained with α = 1 would be the same of those with α = 0.8. However, as can

be checked in ACF plots depicted in Figure 3.5, the maximum ACF values of each MG
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have slightly different peak values.

A second batch of experiments sought to analyze the behavior of different ACF

limits α guiding the first initial population of the whole procedure. Additionally, we

wanted to check if the expert self-adaptive input selection, using the NS described in

Section 3.3.4, might be able to mutate model’s lag, add and remove rules (as pointed

in line 13 of Algorithm 3.1), during the training phase. The batch of experiments was

composed of 4000 executions with learning time equal to two minutes. All the normality,

independence and variance assumptions were verified and accomplished. The design

of experiment was an effect model with different α = [−1,−0.3,−0.1, 0.3, 0.5, 0.8, 1],

maximum number of rules maxNRules = [10, 100, 500, 1000], applied for learning the

next step ahead of four different MG load time series (A,B,C,D). An Analysis of variance

(ANOVA) test (Shapiro & Wilk 1964) was used for analyzing the differences between

group means. The maximum lag (maxLag) was set to be 672. On the other hand, since

the oldest lag used in the model of Liu, Tang, Zhang & Liu (Liu et al. 2014) was set

to be 170 (set of inputs: (z(t − 1), z(t − 2), z(t − 22), z(t − 23), z(t − 24), z(t − 166),

z(t − 167), z(t − 168), z(t − 169) and z(t − 170))), this same value will be fixed in the

benchmark results of Section 3.4.4.

Figure 3.9 depicts an interaction plot considering different α limits and the use of the

expert input selection mechanism. Dashed lines show the variances of the model with

and without the expert input selection. Best obtained models are depicted with points

in shape of triangles. It can be noticed that when the model’s input was only determined

by the BMIR, it improved the results when α values were around 0.3, indicating that

the model responded well for using input lag with low autocorrelation values. On the

other hand, when the expert inputs adjustment was being used during the evolutionary

process, the use of inputs with high ACF values improved the training performance. The

expert input selection strategy reduced the average MAPE errors from 13.9% to 12% for

a two minutes training. By analyzing the dashed line it can be seen that the variance

of the model was also dramatically reduced by activating the self-adaptive mechanism.

It was felt that the model might be able to reduce the training MAPE even when fed

by inputs with low ACF value, if it has enough time for adjusting its parameters. Thus,

in Figure 3.10 we present the effects of the training time, TIMEES (seconds), using the

proposed self-adaptive inputs selection strategy. Obtained results indicate the ability of

the model in adjusting its input lag during long-runs training phases, an useful feature

for long-term forecasting.
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Figure 3.10: Two-way interaction between training time and model performance with
different initial input lags

Regarding the number of rules, the model performed better forecasts when initialized

with a maximum number of rules equal to maxNRules = 100 or maxNRules = 500, as

can be verified in Figure 3.11. Thus, following some advices from the literature, we will

keep the constructive phase generating simpler models with an upper limit of 100 rules.

Further studies should analyze if higher number of rules can result in model over-fitting,

as already verified for Fuzzy Time Series (FTS) (Enayatifar et al. 2013).

From now on, the constructive method will create initial models which have inputs

with autocorrelation values greater than α = 0.5 and maxNRules = 100 maximum

rules.

3.4.4 Benchmark results

The benchmark results are divided into three parts: The first one presents the bench-

mark over the MG datasets; The second part 3.4.4 shows the performance of the model

in a case of study involving the use load time series and temperature measurements,

while the last Subsection 3.4.4 indicates the results over the large grids.
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Figure 3.11: Effects of the initial number of rules and model’s performance

Results over the MG dataset

The hybrid heuristic fuzzy model is compared with the EMD-EKF-KELM of Liu,

Tang, Zhang & Liu (Liu et al. 2014). Their model combines Empirical Mode Decompo-

sition – EMD, Extended Kalman Filter – EKF, Extreme Learning Machine with Kernel

– KELM and Particle Swarm Optimization – PSO. The forecasting horizon is one step

ahead, k = 1. MAPE and Root-Mean-Square Error – RMSE errors are presented for

each week of the validation set. A batch of 30 executions was done. Tables 3.3 and 3.4

summarize the results of the new self-adaptive hybrid fuzzy model proposed in this work

compared to the EMD-EKF-KELM. The values in bold indicate the best values which

are better than the best values of the EMD-EKF-KELM hybrid model, average values

are not compared since they only reported the best achieved forecasts.

As can be verified in Tables 3.3 and 3.4, the hybrid fuzzy model was able to obtain

good mean results for both MAPE and RMSE quality indicators. Among the batch of

30 executions, at least one of the obtained model had better MAPE than the literature.

For the RMSE, in four cases it was not able to achieve the best values reported by the

literature.

Apart from the first week of the microgrid C, all other best results presented MAPE
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Table 3.3: Hybrid fuzzy model × EMD-EKF-KELM – MAPE (%)

Microgrid 1st week 2nd week 3rd week 4th week

Best results of Liu, Tang, Zhang & Liu (Liu et al. 2014)

A 8,363 9,003 10,376 7,866

B 10,672 8,369 8,010 7,201

C 13,522 13,788 9,917 7,836

D 6,630 6,888 5,531 6,224

Proposed hybrid load forecasting model – HFM

Average values ± Standard deviations

A 9, 033± 0, 232 8, 395± 0, 133 10, 224± 0, 199 8, 320± 0, 416

B 9, 145± 0, 404 9, 794± 0, 852 7, 285± 0, 188 7, 625± 0, 263

C 14, 211± 2, 923 9, 536± 1, 024 9, 298± 1, 291 7, 689± 0, 765

D 5, 697± 0, 169 5, 999± 0, 123 6, 117± 0, 197 7, 455± 0, 173

Best forecasts

A 8,303 7,726 9,555 7,495

B 8,054 8,231 6,555 6,840

C 11,448 8,090 7,661 6,374

D 5,039 5,469 5,341 6,508

Table 3.4: Hybrid fuzzy model × EMD-EKF-KELM – RMSE (MW)

Microgrid 1st week 2nd week 3rd week 4th week

Best results of Liu, Tang, Zhang & Liu (Liu et al. 2014)

A 16,081 15,164 18,759 18,335

B 37,659 24,937 23,066 21,079

C 177,674 132,779 122,219 90,831

D 107,715 97,320 81,147 101,686

HFM

Average values± Standard deviations

A 16, 236± 0, 452 14, 058± 0, 274 20, 299± 0, 659 17, 844± 1, 034

B 28, 192± 5, 122 29, 958± 6, 565 20, 939± 1, 989 23, 145± 2, 690

C 157, 624± 100, 669 95, 777± 23, 830 123, 005± 185, 266 88, 481± 38, 705

D 88, 081± 31, 545 91, 982± 23, 939 110, 707± 46, 645 124, 826± 69, 844

Best forecasts

A 15,204 13,162 18,932 16,456

B 24,411 25,954 19,059 20,548

C 144,491 88,355 104,616 76,621

D 77,955 82,738 95,751 107,210
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error lower than 10,25%. As described in Liu, Tang, Zhang & Liu (Liu et al. 2014),

it is known that when the MAPE is more than 10%, the operation cost of microgrids

would increase sharply. If the obtained results were applied in real online situations, the

archived forecasting errors would not lead to sharp increase of operation cost, indicating

that implementing the presented method over microgrid systems could bring benefits.

Furthermore, the model was able to give good results with low variability, being the

high standard deviation equal to 2,92%.

Another advantage of our approach is that it was competitive using one single set

of parameters during the whole learning process. Liu, Tang, Zhang & Liu (Liu et al.

2014) divided the learning process in 48 groups of optimal parameters in workdays and

holidays, obtained with an off-line parameter optimization using a PSO based algorithm.

Here, we could do the same and trained 48 different models for each of their groups. For

simplicity, and as a way of showing our model’s flexibility, we use only one single model

with a single set of parameters for each MG load time series.

Figure 3.12 shows the forecast of our best execution for the first week of the testing

set. Forecasting errors are depicted in black dashed lines in the bottom of the figure,

representing the absolute error between each prediction and the real value from the

historical time series.

Finally, Figures 3.13a and 3.13b depict forecasts for one day and one week ahead.

Figure 3.13a indicates the forecasts for one day, over the first week of the validation set

while Figure 3.13b presents the forecasts for the whole first week ahead (k = 168). Even

for one week ahead, the model was able to predict different slopes and load fluctuations

over the analyzed MG.

MG forecasting with temperature measurements

A MG load historical data along with three different historical temperature time

series, located in the surroundings of the MG, is considered in this section. As men-

tioned before, this historical dataset was obtained from the GEFCOM2014. The goal

of this batch of experiments is to analyze the fuzzy model’s performance towards the

inclusion of new information from temperature time series. Figure 3.14 exhibits the load

autocorrelation function for this MG, with maximum load of 325 kW, together with the

autocorrelation for one of the temperature time series.

A batch of 30 executions with each of the four different combination of exogenous

variables as input of the model was performed.
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Figure 3.12: Forecasting results of D in 1st week.
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(a) One day ahead.
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(b) One week ahead

Figure 3.13: Forecasting results for the 1st week of MG D

• Four different time series as input of the model:

1. Only load historical data;

2. load data + one temperature time series;
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Figure 3.14: Autocorrelation function for load and temperature of a small MG residence

3. load data + two temperature time series;

4. load data + three temperature time series.

The effect of the new temperature time series as input of the model can be seen in

Figures 3.15a and 3.15b. Labels “1.Temp”, “2.Temp” and “3.Temp” refer to the use of

the different historical temperature time series. As can be verified, the proposed fuzzy

model is able to handle new information and can take profit from it in terms of optimizing

model’s precision and performance. Average MAPE and RMSE decrease from 14,02%

and 23,24% to 11.55% and 19,78%, respectively, when the three temperature time series

were considered as model’s input.

Other time series could be included here and improvements could be expected. Tas-

cikaraoglu & Sanandaji (Tascikaraoglu & Sanandaji 2016) recently detected an inter-

esting trend between the data from a target house and the data from its surrounding

houses. Following the same reasoning of the experiment conducted in this section, new

load time series from the surrounding MG could be included to be handled and enhance

model’s forecasting performance.

Since the model is mainly based on metaheuristic it can be improved in order to

use exogenous variables from different time series in some specific applications. The

flexibility of the model and the use of NS makes the model suitable for real world
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Figure 3.15: Additional exogenous variables as input of the fuzzy model

applications, since new structures can be designed in order to change and adapt specific

parts of the current model.

Results over the large grid datasets

Using the same set of parameters used for the MG, the model was applied to forecast

load from large grids. For the European dataset of Taylor & McSharry (Taylor &

McSharry 2007), the first 20 weeks of each series were used to train the algorithm, the

remaining ten weeks to evaluate post-sample accuracy of 1-24 hours ahead forecast.

A batch of 30 executions was done for each historical time series, average MAPE

values are shown in Table 3.5. ELDhourly,ELD being the European Load Dataset,

indicates the average MAPE for all the hourly historical time series (Italy, Norway,

Spain and Sweden). ELDhalfhourly indicates the average MAPE for all the half-hourly

historical time series (Belgium, Finland, France, GB, Ireland and Portugal). All standard

deviations were lower than 1.0% of MAPE.

Table 3.5: MAPE for the LG historical load time series

Large power grid MAPE (%)

ELDhourly 3.523± 0.972

ELDhalfhourly 2.983± 0.621

The results presented in Table 3.5 indicate that the model was also able to obtain
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average MAPE errors from 3.52% to 1.22% over the large-grid datasets. Compared to

analyses made by Taylor & McSharry (Taylor & McSharry 2007), the model also showed

to be competitive.

3.4.5 Real-time online forecasting

In some applications, off-line learning is performed and, periodically, re-trained if

it is detected that the model is increasing its errors. This strategy was explored and

detailed in the work of Liu, Tang, Zhang & Liu (Liu et al. 2014), updating their model

if the MAPE increased more than a desired limit.

Since our proposal was able to obtain competitive results with two minutes training

using low computational resources, we will check the performance of the proposed model

considering a real-time training strategy. This strategy is useful to overcome brutal

changes in MG loads (Lahouar & Slama 2015).

Furthermore, in future microgrids scenarios, the owner of the microgrid would take

profit of the accuracy of the forecasting, since an efficient power dispatch will require

precise schedules (Rigo-Mariani et al. 2014). It is expected that it will be a reality not

only for microgrid renewable energy generation, but also for MG users, which will do

the best to train their models as the new data is available.

The concept of Number of Training Rounds (NTR), Eq. (3.23), generates an impor-

tant traded-off for forecasting models. NTR defines the number of samples used during

the training phase related to a given forecasting horizon k. In the last experiments we

used the NTR available from the literature, without checking if the use of less data

during the training phase could improve the model’s performance. It is an important

aspect for understanding the behavior of the model with the size of the training set in a

specific training time. The NTR is most frequently associated with the testing set error

because it is known that the error of the training set increases when the problem starts to

learn big data problems. The Bias and Variance dilemma reinforces that increasing the

training set size might provide more variability for the model for predicting information

not seen before. On the other hand, the higher the NTR value is, the model requires

more computational time to learn the historical load data.

NTR =
#nTrainingSamples

k
(3.23)
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Since MG requires quick response from the autonomous forecasting agent (Dimeas &

Hatziargyriou 2005), we run our experiment with ten seconds training for different sizes

of the training set. Figure 3.16 shows an interactive plot of the NTR for the first week of

the testing set of MG-A (red) and MG-C (blue). The points in shapes of triangles and

crosses indicate respectively the minimum and maximum MAPE obtained in a batch of

10 executions. There are two types of lines representing each testing set, the dashed line

indicates the standard deviation while the thicker line shows the average MAPE.
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Figure 3.16: Number of training rounds with two minutes training

Finally, we compare our results with the methods ARFIMA (Hyndman & Khandakar

2008), AUTO.ARIMA (Hyndman & Khandakar 2008), Exponential Smoothing State

Space model (ETS) (Hyndman et al. 2002), Naive Random Walk and trivial MEANF

(historical mean of the training set). The AUTO.ARIMA uses a variation of the Hyn-

dman and Khandakar (Hyndman & Khandakar 2008) algorithm which combines unit

root tests, minimization of the AICc and MLE to obtain an ARIMA model. For the

automatic ARFIMA, auto-arima combined with a Fractionally-Differenced ARIMA, we

consider the parameters calibrated through Haslett-Raftery, so-called ARFIMA-LS, and

full MLE, denominated ARFIMA-MLE.

Table 3.6 indicates average MAPE for some well-known forecasting models and the
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proposed hybrid load forecasting model, abbreviated as HFM.

Table 3.6: MG results with real-time online forecasting

Microgrid k = 1 k = 24 k = 168 k = 672

672 336 168 24

First week of the testing set of MG-A

ETS 9.926 9.705 9.701 9.792

AUTO.ARIMA 10.030 9.982 9.606 10.344

ARFIMA-LS 9.890 9.774 9.768 10.064

ARFIMA-MLE 9.862 9.775 9.822 10.145

RW 9.680 9.680 9.680 9.680

MEANF 22.614 18.597 18.646 18.574

HFM 7.996 7.933 8.456 11.588

First week of the testing set of MG-C

ETS 13.796 14.032 13.948 15.012

AUTO.ARIMA 14.063 13.465 15.547 15.936

ARFIMA-LS 14.047 14.037 14.829 15.819

ARFIMA-MLE 13.873 14.287 14.861 15.913

RW 13.804 13.804 13.804 13.804

MEANF 34.589 34.844 37.361 32.920

HFM 7.334 7.029 7.131 8.903

As can be verified in Table 3.6, the proposed HFM model was competitive with the

automatic ARFIMA-LS, ARFIMA-MLE, AUTO.ARIMA, ETS and, as expected, trivial

models naive RW and MEANF, reporting lower average MAPEs.

Since this model is mainly based on a metaheuristic calibration algorithm, it can be

useful in real world applications that requires quick training, like the 10 seconds training

performed in this last experiment. Furthermore, an intrinsic relationship with expected

improvements on the metaheuristics quality will also enhance the performance of our

training strategy.

3.5 Probabilistic forecasts

This section aims at the generation of multiple quantiles covering the requested

forecasting horizon. Here, the use of the HFM applied in two different forecasting

problems, rainfall and wind power forecast, is reported.

As mentioned in Section 2.3.1, rainfall forecast is of paramount importance for various
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applications for water resources management. However, the variability of rainfall in

space and time makes this prediction very difficult. This is due to the fact that the

amount of rainfall as well as its distribution depend on many variables such as speed and

wind direction, pressure, and temperature. With the phenomenon of El Niño (Sathicq

et al. 2015, Islam & Gan 2015), slight variations will be expected over the course of the

next year. Thus, the use of flexible and smarter forecasting models, able to generalize

data from our given historical data, will be important for understanding these new unseen

informations. On the other hand, the wind power forecast is, currently, a challenging and

very useful problem to be dealt by the Energy Industry. An effective management of the

forthcoming RER, such as the wind power turbines, can be useful for coordinating and

planning energy storage (Mohammadi et al. 2014), as well as enhancing self-generated

energy use (Wang et al. 2015).

In particular, historical rainfall dataset from the city of Vitoria, located in the state

of Esṕırito Santo, Brazil is considered. Meanwhile we handle with a real data from

a wind farm, provided by the Irish EirGrid institute (Center 2015), for analyzing our

proposed probabilistic forecasting framework. The main contribution of this section is

to adapt a novel HFM for performing probabilistic forecast in two different time series

scenarios with high fluctuations.

The remainder results and informations involving probabilistic forecasts are organized

as follows. Section 3.5.1 presents the adaptation of the HFM for generating probabilistic

quantiles from the hybrid evolutionary forecasting model, while Section 3.5.2 presents

the computational experiments.

3.5.1 Methodology for generating probabilistic forecasting

Since the heuristic model is based on a fuzzy model calibrated using a bio-inspired

metaheuristic algorithm, the proposal here is to take advantage of the stochasticity of

the proposed framework. By running the model several times, it is naturally able to

provide different forecasting models that optimize different characteristics from a given

time series.

Thus, the core of our idea is to train the hybrid fuzzy model fm times. As men-

tioned, given the stochasticity of this class of training models which uses metaheuristic

procedures, we can achieve different forecasting models by simply initializing the train-

ing phase with different random seeds. Thus, the core of the idea is to check if different

executions of the HFM can be used together in order to generate probabilistic quantiles.
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From the set of different forecast models, predicted values are sorted from the lowest

to the highest values and, then, quantiles are determined. In our didactic example, we

combine the different forecasting models by putting them in order and extracting normal

quantiles. As mentioned by Adhikari (Adhikari 2015), it is an effective and easy way of

obtaining a probabilistic distribution of the forecasts. Basically, a quantile function is

defined, which provides a given probability in the probability distribution of a random

variable (in our examples, expected rainfall and wind power generation).

In terms of the distribution function F , the quantile function Q returns the value

x such that it gives the probability that the values can be above x, as described in

Eq. (3.24). Thus, it provides the value at which the probability of the random variable

being less than or equal to this value is equal to the given probability p, provided by

the quantiles Qp. It is also known as the percent point function or inverse cumulative

distribution function.

FX(x) := Pr(X ≤ x) = p (3.24)

Here, we define quantiles Q = {1, ..., 99}. Theoretically, the quantile Q0 is equal to

−∞ andQ100 =∞, respectively, the lower and upper bounds of any historical time series.

In our cases of study, the minimum expected values would be 0 for the lower quantiles

Q0, given that we know, surely, that we have 0% of chance of having a rainfall or wind

power generation lower than 0mm or 0W, respectively. Following the same reasoning,

we could define better upper limits for the quantile Q100, looking at the literature and

following historical values of the time series. However, this thesis will only focus on the

ability of our proposal in obtaining, automatically, the quantiles Q1 to Q99.

3.5.2 Initial probabilistic forecasts computational experiments

Historical datasets

The dataset used as didactic example for the wind power turbine was obtained from

the EirGrid Database (Center 2015). It consists in intraday wind power generation

(MW) for the 50 week period from November, 18th of 2013 to February, 18th of 2014

(2160 samples). All experiments used hourly data. The obtained wind power generation

time series can be seen depicted in Figure 3.17, as well as its ACF plot 3.18. As can be

noticed, the ACF values decay quickly and show weak autocorrelation.



60 Hybrid self-adaptive fuzzy model

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

200

400

600

800

1000

1200

1400

1600

1800

Time horizonH
is

to
ri
c
a
l 
w

in
d
 p

o
w

e
r 

tu
rb

in
e
 e

n
e
rg

y
 g

e
n
e
ra

ti
o
n
(M

W
)

Figure 3.17: Historical power generation from a wind turbine
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Figure 3.18: Autocorrelation function of the power generated from the historical data
from the wind turbine
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Real data from the city of Vitoria was extracted from the Brazilian “Agência Nacional

de Águas”, comprising different years from 1926 to 2013. The maximum monthly rainfall

precipitation can be seen depicted in Figure 3.19, as well as its ACF plot (Figure 3.20).

As can be verified, there is almost no correlation between the maximum monthly rainfall,

reinforcing the difficulty of establishing useful inputs/lags for the forecasting model.
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Figure 3.19: Maximum rainfall in Vitoria (maximum month per mm)
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Figure 3.20: Autocorrelation function of the monthly maximum rainfall in Vitoria

Obtained probabilistic forecasts

The batch of experiments for generating the probabilistic forecasting model was com-

posed of 500 executions of 240 seconds of training. The size of the validation set was

set to be 5 times the forecast horizon, thus, for a forecasting horizon of 168 steps ahead
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(one-week ahead) of wind power generation, 840 samples were used during the train-

ing set and the consecutive 168 samples used for comparing the obtained probabilistic

forecasts.

The same parameters adopted in Section 3.4 were kept here. Thus, as introduced in

Section 3.5.1, the model was run tm = 500 times with different seeds, obtaining different

forecasting models.

Figure 3.21 shows a whole set of forecasts obtained for one week ahead of wind power

generation. On the other hand, Figure 3.22 shows an example of probabilistic quantiles

for a forecasting horizon of one-week ahead, the thicker line shows the real measured

data.

A reasonable probabilistic approximation can be seen comprised in the quantiles of

Figure 3.22, fitting a reasonable forecasting for one week ahead planning. Quantiles are

able to fit the maximum and minimum amount of energy generated, as can be checked

analyzing the upper (Q99) and lower bound quantiles (Q1). A denser concentration of

quantile can be found in the middle section of the probabilistic forecast, from the range

of 650MW to 900MW.
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Figure 3.21: Obtained hourly forecasts for one week ahead of wind power generation

For the rainfall forecasts, a first experiment focused on obtaining one step ahead

deterministic forecast. This was initially done in order to check if the hybrid model

could, at least, generate visually viable forecasts. As can be verified in Figure 3.23, the

model was able to generate one-step ahead forecast with a maximum error, of rainfall

precipitation, around 75 mm, considering a blind testing set of 24 months. This fact
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Figure 3.22: Probabilistic hourly forecasts for one week ahead of wind power generation

motivated a new batch of experiments to check larger forecasting horizons considering

probabilistic, which, implicitly, provide mean and variance forecast.
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Figure 3.23: One step ahead forecast for maximum monthly rainfall

Figures 3.24 and 3.25 show two different probabilistic forecasts for one and two

years ahead forecasts, respectively, 12 and 24 steps ahead of maximum monthly rainfall.

This kind of forecast are handful and useful for decision making for investments in

infrastructure and understanding the risk for the next years.

Figure 3.24 depicts specific quantiles, facilitating the visualization and interpretation

of the results, namely Q1, Q25, Q50, Q75, Q99. As expected, the lower bound were

forecasted as 0mm for each month, a fact that occurs in the absence of precipitation.
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Figure 3.24: One year ahead of maximum monthly rainfall for the city of Vitoria in the
year of 2013

The upper bound limited the maximum raining below an approximated value of 150mm.

The probabilistic distribution indicates that for the next year (in the example, 2013),

the maximum monthly precipitation had an approximated probability of 75% to 70mm,

considering the average of the 12 months. On the hand, it has forecasted with 50% of

chance that the rainfall would be close to 50mm.

Finally, analyzing Figures 3.25 and 3.26, it can be seen that, even for 24 and 120

steps ahead, the proposed model was able to produce consistent forecasting quantiles.

In special, for two year ahead forecasting of maximum monthly rainfall, the forecasts

were able to cover covered the real measured rainfall.
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Figure 3.25: Two years ahead (24 steps ahead) of maximum monthly rainfall for the city
of Vitoria in the years of 2012 and 2013
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Figure 3.26: Boxplot with ten years ahead (120 steps ahead) of maximum monthly
rainfall for the city of Vitoria in the years of 2012 and 2013

3.6 Considerations and conclusions

In this chapter, a class of forecasting problem with realistic assumptions in Smart

Grid scenarios was discussed. Despite its practical relevance, these variants of forecasting

had received little attention of hybrid models based on metaheuristic. Because of its

difficulty and large number of different forecasting scenarios in a future Smart Grid

(SG) environment, a new flexible framework for forecasting was proposed.

This new approach consisted on a novel self-adaptive fuzzy model bio-inspired by

Evolution Strategies to calibrate its parameters and model’s input. Thus, forecasting

models are generated based on the constructive procedure GRASP, which can consider

an open range of feature extraction techniques. The calibration process, done by the GES

algorithm was able to go through a large search space of solutions with several different

fuzzy rules and weights. The expert input selection and adaptation using NS allows more

compact forecasting model, smaller training sets and easier training. Consequently, our

new proposed model represents a step forward in determining a general procedure for

input variable selection.

Real databases provided by Liu, Tang, Zhang & Liu (Liu et al. 2014), the Global

Energy Forecasting Competition 2014 – GEFCOM2014 (Hong 2014) and Taylor & Mc-

Sharry (Taylor & McSharry 2007) were used in order to verify the efficiency of the

proposed model. It was shown to be able to find good quality forecasting models for
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microgrids and large-grids.

The methodology was able to obtain better results than the hybrid model of Liu,

Tang, Zhang & Liu (Liu et al. 2014). Particularly in view of the method’s flexibility, as

it is mainly based on metaheuristics, it can be used in various everyday situations with

minor adjustments.

A real-time microgrid forecasting scenario was also described and the model was

compared with well-known forecasting models from the literature, presenting competitive

results and lower MAPE for the analyzed historical MG time series.

3.6.1 Considerations regarding probabilistic forecasts generation

The HFM was adapted in order to obtain different forecasting models, which have

different abilities for generating specific forecasting. Thus, these various models are

used in order to obtain probabilistic quantiles. Since the model is calibrated through

the use of metaheuristic procedures, the training phase of the proposed methodology

was executed several times in order to achieve different forecasting models.

Two different forecasting problems, one for rainfall and another for wind power gen-

eration forecast, both with high fluctuation and slopes, were used as didactic examples.

The obtained forecasts from the different models were sorted and quantiles were deter-

mined. By analyzing the obtained graphs, evidences pointed out that the model could

provide useful forecasts and assist decision making of the new generation of soft/smart

sensors.



Chapter 4

Hybrid self-adaptive evolution

strategies

“Quando fecha-se uma porta, abre-se o caminho da rua/mundo, uma nova jornada re-

pleta de incertezas e tropeços, mas com uma bela trajetória para ser percorrida.”

— Vitor Nazário Coelho

This chapter presents an Evolution Strategy (ES) based algorithm, designed to self-

adapt its mutation operators, guiding the search into the solution space using a Self-

Adaptive Reduced Variable Neighborhood Search procedure. The proposed variant uses

the Greedy Randomized Adaptive Search Procedure (GRASP) with different greedy

parameters for generating its initial population, providing an interesting exploration-

exploitation balance. To validate the proposal, this framework is applied to solve dif-

ferent NP-Hard combinatorial optimization problems, such as the Open-Pit-Mining

Operational Planning Problem (OPMOP) with dynamic allocation of trucks, Unrelated

Parallel Machine Scheduling Problem with Setup Times (UPMSP-ST), a large-scale Het-

erogeneous Fleet Vehicle Routing Problem with Multiple Trips, Targeted Offer Problem

in Direct Marketing Campaigns and also the calibration of a hybrid fuzzy model for

Short-Term Load Forecasting.

4.1 Introduction

In this chapter, the class of Evolutionary Algorithms (EA) known as Evolution Strate-

gies (ES) (Beyer & Schwefel 2002b) is investigated and a new ES variant is proposed,

67
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being able to solve challenging combinatorial optimization problems. In special, it is

applied in order to calibrate the HFM introduced in Chapter 3. The idea is to combine

the diversity of the population-based algorithms with the power of Reduced Variable

Neighborhood Search (RVNS) (Hansen & Mladenović 2001), a well known trajectory

search algorithm. Moreover, the strategy supplies RVNS with adaptive rules, produc-

ing a new variant so called Adaptive RVNS (ARVNS). EA are search and optimization

methods inspired by well-known evolutionary principles, such as random mutations and

selective pressure for evolution and adaptation of its population. On the other hand,

VNS and other trajectory based approaches such as Tabu Search (TS) (Glover 1996a)

and Iterated Local Search (ILS) (Lourenço et al. 2003) take advantage of the flexibility

in designing and exploring different Neighborhood Structures (NS) of the problem, using

the simple fact that the local minimum with respect to one neighborhood structure is

not necessarily so with respect to another.

Biological evolution in nature is an inspiration for the ES, which is mainly guided

by operators: mutation and selection. This class of methods have often been applied

for solving continuous optimization problems (Kashan et al. 2015, Chaquet & Carmona

2012, Andersen & Santos 2012, Aler et al. 2012, Costa & Oliveira 2001). While EA

have already been applied to solve several combinatorial optimization problems (Prado

et al. 2014, Qaurooni & Akbarzadeh-T 2013, Freitas & Guimaraes 2011), only few articles

in the literature address combinatorial optimization problems using ES (Cai & Thierauf

1996, Rajasekaran 2006, Kashan et al. 2015). The current focuses os the proposal is on

a mechanism for guiding the search in the solutions space, mainly based on a weighting

system for applying move operations from kmax distinct neighborhoods. The motivation

to develop an ES for combinatorial optimization, combined with use of different NS, come

from the successful applications in both fields, numerical and combinatorial optimization.

Adaptive local search techniques have been exploited by researchers (Dong et al. 2015,

Li et al. 2015, Schneider et al. 2014, Hosny & Mumford 2010). This family of methods

have the ability of exploring attraction basins with iterative moves, combining it with

smart strategies that, in general, check the success of previous steps done by the methods.

In this context, an ILS with self-adaptive shaking procedure was applied for tackling a

flow shop problem (Dong et al. 2015) and multi-depot Vehicle Routing Problem (VRP)

(Li et al. 2015). Following the same idea, Schneider et al. (2014) proposed an adaptive

mechanism for guiding the shaking step of a VNS applied on a VRP. Their approach

select and favored route and vertex according to their success within the search.

By Reduced VNS method a random point from the k-th neighborhood Nk(s) (k =
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1, ..., kmax) of the current incumbent solution x is taken, and no descent from there is

made. RVNS has been showing to be useful in solving large instances, for which local

search is costly (Xiao et al. 2011, Hansen et al. 2009).

The adaptive variant of the RVNS designed in this thesis, the ARVNS, explores

specific parts of each Nk, playing with probabilities evolved through the ES evolutionary

process. Our proposal implicitly considers the problem specific characteristics and the

success of a given Nk within the search. There is no need of mechanisms for analyzing

previous success of the Nk, since it is inherited through the genes, ES mutation operators,

from the parents to the offspring. The later are generated after mutations over the

ARVNS application probabilities and are expected to survive if interesting changes had

occurred.

Here, an evolution strategy based algorithm is introduced, abbreviated as GES, which

generates its initial population through a diversified and greedy procedure. Thus, we sug-

gest the use of the Greedy Randomized Adaptive Search Procedures (GRASP) (Resende

& Ribeiro 2010). GRASP construction phase is responsible to fill the initial population

with individuals generated with different random greedy parameters. Other versions

with simpler solution generation procedures could be also used, such as generating solu-

tions at random or initializing a homogeneous initial population. ES mutation operator

vectors are kept as the main search operator in the solution space, however, being guided

by new data structures incorporated with each individual representation. The proposed

adaptive operators regulate the rate of moves application of different NS, in a special

case of a RVNS search. An optional intensification phase is also suggested for some

problems, in order to accelerate the convergence of the algorithm.

Problems already tackled by the author of this thesis were used as cases of study.

Thus, I took profit from the optimization framework OptFrame, see (Coelho et al.

2011b), a computational framework for the development of efficient metaheuristic algo-

rithms for combinatorial optimization problems. Three different (and very challenging)

combinatorial optimization problems are considered in this work as cases of study:

1. Open-Pit-Mining Operational Planning (OPMOP) problem (Souza et al. 2010);

2. Unrelated Parallel Machine Scheduling Problem with Setup Times (UPMSP-ST)

(Al-Salem 2004), implemented in a Java platform with OptFrame ideas;

3. Calibration of a hybrid fuzzy model calibration for the Short-Term Load Forecast-

ing Problem (STLFP) described in Chapter 3.
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Since we are dealing with many NP-Hard problems, exact solution methods have

restricted applicability. This fact motivates us to search for solutions by means of meta-

heuristic procedures.

The abstraction of the concepts involving the proposed discrete ES and its application

over the aforementioned problems was not found in the literature and shows up as a novel

evolutionary framework for combinatorial optimization problems.

The remainder of this chapter is organized as follows. Section 4.2 details the proposed

self-adaptive ES. Section 4.3 describes an application for the OPMOP. Analogously,

Sections 4.4 and 4.5, describe mutation operators behavior of the proposed algorithm

over the STLFP and UPMSP-ST, respectively. Section 4.6 draws the final considerations

and future works.

4.2 Self-adaptive evolution strategy

Evolution Strategies (ES) were developed in the 60’s and 70’s by P. Bienert, I. Rechen-

berg and H.-P Schwefell in the Technical University of Berlin. The initial version oper-

ated with single individuals, subjected to mutation and selection among its descendants.

Beyer & Schwefel (2002b) provide a detailed description about ES in their comprehensive

introduction.

ES use natural problem-dependent representations according to each problem that is

being tackled. One advantage is its searching ability over the evolution process that is

guided, primarily, by mutation and selection. Here, the strategy takes advantage of the

basic principle, introducing the ARVNS, a RVNS guided by probabilities. A widely range

of genetic operators can be used in order to generate the offspring population. Novel

mechanisms are still being explored and developed in the literature (Chuang et al. 2015).

Mutation operators from ES usually can change all components of a parent vector at

the same time, but with minor changes since it is assumed that in the real biological

evolution small mutations occur frequently but large ones only rarely.

In the 90’s, Cai & Thierauf (1996) proposed a general ES for solving discrete optimiza-

tion problems, suggesting that not all components of a parent vector should be mutated,

but only a few should be randomly changed every time. This strategy was quite smart,

since, in discrete sets, differences between any two adjacent values are usually not small.

This approach have been used/followed in different applications (Hasancebi 2007, Chen

& Chen 2009, Yao et al. 2011). Li et al. (2013) introduced an Mixed Integer ES able of

handling parameter consisted of discrete and integer variables.
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Motivated by successful applications in the literature, it was felt that the ES could

deal with combinatorial optimization problems in partnership with a self-adaptive strat-

egy based on moves generated from simple NSs where neighborhood structures guide the

individuals through the solution space. Thus, a special care in the design of the algorithm

was given, exploring the RVNS ability of handling random moves in Nk, k = 1, ..., kmax.

The details will be discussed along this chapter. The use of NS is well-know in the liter-

ature and has been widely applied for solving NP-Hard problems (Johnson et al. 1988,

Kirkpatrick 1984, Glover 1989, Mladenovic & Hansen 1997, Lourenço et al. 2003, Lust

& Teghem 2010, Pisinger & Ropke 2010).

In this sense, a compact and efficient encoding is designed for adapting NS use and

strength in connection with individual mutation operators, described in the next section.

4.2.1 Mutation operators

According to the problem that is being solved, a desired data structure, or represen-

tation, is selected and a solution to the problem is defined as s. Here, each individual

ind is comprised of two additional mutation vectors, defined as P and A, presented in

Equations (4.1) and (4.2) respectively, embedded within the solution representation s.

Following this strategy, each individual of the population is defined as described in

Equation (4.3) as a triple formed by s, P and A.

P = [p1, p2, ..., pk, ..., pNSmax] (4.1)

A = [a1, a2, ..., ak, ..., aNSmax] (4.2)

ind = (s, P,A) (4.3)

The first mutation vector P represents the likelihood associated with the choice of

each NS in a set composed of NSmax neighborhood structures. This vector guides the

probability of applying each NS used to walk on the search space. Each position stores
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the probability pk ∈ [0, 1], pk ∈ R of the application of a given move m ∈ Nk.

The second mutation vector A stores integer values for controlling the strength of the

disturbance, once a NS is selected to be applied and shake the solution s. Each position

ak ∈ [0, napk], ak ∈ N of this vector indicates the number of random moves m ∈ Nk

to be applied from neighborhood k, with napk representing the maximum number of

applications of different moves in each mutation event.

Both vectors are adapted across the generations of the evolutionary process, according

to well-know probability distribution functions. The evolution of these two mutation

vectors will be discussed for each application described in this current study. Other set

of parameters could also be included for adapting the distributions along the generations.

4.2.2 Generic evolution strategy pseudocode guideline

The proposed self-adaptive evolution strategy algorithm pseudocode is outlined in

Algorithm 4.1. As emphasized by Lust & Teghem (2010), generating an initial popula-

tion diversified and with good potential is a very important feature for the convergence

of population based algorithms. Thus, use the GRASP procedure in partnership with

the proposed algorithm is suggested.

The initial population (lines 1 to 7 of Algorithm 4.1) consists in generating a set µ

individuals. Line 3 calls the GRASP procedure and generates each solution of the initial

population with different random greedy parameter γ. Achieving a diversified initial

population is an important stage for the algorithm convergence, as can be verified in

Lust et al. (2011), therefore, different γ parameters are used, in order to control the size

of the candidates list. Thus, a random GRASP is designed here. In the second step (line

4 of the Algorithm 4.1), the self-adaptive mutation vectors P and A are built for each

individual. The procedure BuildMutationVectors (outlined in Algorithm 4.2) describes

a generic and simple idea for generating initial values for the mutation vectors. Line

5 merges the triple formed by a GRASP solution s and the mutation operators P and

A. In this sense, the following nomenclature is defined: let indS be the solution s of

the individual ind; indP be the probability parameter vector; indA be the application
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parameter vector.

Algorithm 4.1: GES

Input: greedy parameter γ, Function f(.), population size µ, offspring size λ,

random individuals selected for local searching κ

Input: N neighborhoods

Output: Population Pop

for i← 1 to µ do1

Generate a random number γ ∈ [0, 1]2

s← GRASP(γ)3

(P,A)← BuildMutationVectors(|N |)4

ind← (s, P, A)5

Popi ← ind6

end7

while stop criterion not satisfied do8

for i← 1 to λ do9

ind← Random individual Popx with x ∈ [1, µ]10

ind′ ← UpdateParameters(ind, σreal, σ
p
binomial,σ

n
binomial, |N |)11

ind′′ ← ARVNS(ind′, N)12

Popoffspringsi ← ind′′13

end14

for i← 1 to κ do15

Generate a random number x ∈ [1, λ]16

localSearchProcedure(Popoffspringsx ) – (optional)17

end18

Pop = Selection (f , Pop, Popoffsprings)19

end20

return Pop21

Algorithm 4.2 fills the probabilities vector, P , random numbers generated between

the interval [0, 1] and the same idea is applied for the vector of applications, A, respecting
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the range [1, napk].

Algorithm 4.2: BuildMutationVectors

Input: number of neighborhoods max

Output: Mutation parameters vector P and A

P ← Initialize Vector of Probabilities P for r neighborhoods1

A← Initialize Vector of Applications A for r neighborhoods2

for k ← 1 to max do3

Pk ← Generate a random number ∈ [0, 1]4

Ak ← Generate a random number ∈ [1, napk]5

end6

return P,A7

In line 11 of Algorithm 4.1, individual parameters are updated, the pseudocode of

the procedure “UpdateParameters” is described in Algorithm 4.3. Vectors of mutation

parameters A and P , are updated and adapted according to a Normal or Binomial

Distribution, both centered at mean zero and standard deviation σreal and σpbinomial,

respectively. For the binomial distribution, an additional parameter σnbinomial indicating

the number of trials is required. Parameter σpbinomial regulates the probability of successes

in a sequence of σnbinomial independent yes/no experiments. Updates of the vectors indP

and indA can be viewed in lines 2 and 3, respectively, in the Algorithm 4.3. Line 5 checks

if the limits of both mutation operators are respected after the mutation. As expected,

the maximum value assigned for the application probability, of each cell from vector

indP , should be between 0% to 100%. Following a similar reasoning, the maximum

number of application, for each cell k from vector indA, should be napk and no less than
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1.

Algorithm 4.3: UpdateParameters

Input: Individual ind, Standard Deviation σreal e σbinomial, number of

neighborhoods max

Output: Individual ind updated

for k ← 1 to max do1

indPk ← indPk +N(0.0, σreal)2

indAk ← indAk +B(0.0, σpbinomial, σ
n
binomial)3

end4

Check the limits of the operators indP and indA5

return ind6

Line 12 of the Algorithm 4.1 calls the mutation procedure, a special case of the clas-

sical RVNS, called ARVNS, illustrated in Algorithm 4.4, In line 2 of the Algorithm 4.4,

a random number z ∈ [0, 1] is generated and then, line 3 checks if this number satisfies

the probability indPk . In the positive case, the neighborhood structure Nk allocated in

the current index k is applied indAk times. The neighborhood order of this parameter

vector is chosen at random. An optional mutation rate parameter can be added in each

individual representation in order to regulate the sequence that the NS are applied.

Algorithm 4.4: ARVNS

Input: Individual ind

Input: N neighborhoods

Output: Individual ind

for k ← 1 to max do1

Generate a random number z ∈ [0, 1]2

if z < indPk then3

for a← 1 to indAk do4

s′ ←MOV Ek(ind
S)5

indS ← s′6

end7

end8

end9

return s10
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Line 17 of the Algorithm 4.1 opens the possibility of calling an optional intensifi-

cation phase, usually done by local search techniques, such as Variable Neighborhood

Descent (VND). When triggered, an intensification phase refines κ random solutions in

the offspring population. It should be emphasized that this phase is optional, since sev-

eral variations could be implemented here according to the combinatorial optimization

problem that is being tackled.

Finally, the selection procedure, line 19 of the Algorithm 4.1, can be any desired

selection strategy, as long as it returns a population with cardinality µ. Two basic forms

of competition, both with the same notation of Beyer & Schwefel (2002b), are used. In

the first one, denoted by (µ+λ), there is competition between parents and offspring. In

this strategy, µ best individuals are selected among the union of parents and offspring. In

the second selection strategy, denoted by (µ, λ), only the offspring compete for survival.

It is clear that using the strategy (µ + λ) as a way of selection, the population of the

next generation suffers a considerable higher selective pressure than using the strategy

(µ, λ).

4.3 Open-pit-mining operational planing problem

The OPMOP involves the allocation of mining equipment to the pits, which may be

of ore or waste rocks, as well as determining the number of trips for each truck so that

both the production goals and the desired mineral composition of the ore are fulfilled.

The goal is to find a mining rate on every pit that minimizes deviations from production

goals, quality, and also the number of trucks required for the process. Dynamic truck

allocation is considered, which is the possibility to allocate the trips from a certain truck

to a different pit. This allocation system contributes to an increased fleet productivity

and, therefore, to reduce the number of trucks needed for the production process. Figure

4.1 shows a graphical example of the OPMOP, composed of pits with different mineral

compositions, two shovels and different trucks.

A briefly literature review is described below.

Costa (2005) developed a heuristic algorithm based on GRASP and VNS using six

different types of movements to explore the solution space. A comparison was made

between the results obtained by this heuristic algorithm and those found by the solver

LINGO, version 7, applied to a mathematical programming model developed in Costa

et al. (2004). Results showed that the heuristic algorithm was able to find better solutions

faster. Guimarães et al. (2007) presented a computer simulation model to validate results
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Figure 4.1: OPMOP example

obtained by applying a mathematical programming model to determine the mining rate

in open-pit mines (e.g. occurrence of queues).

Souza et al. (2010) proposed an algorithm, called GGVNS, which combines the meta-

heuristics General Variable Neighborhood Search (GVNS) (Hansen et al. 2008) and

GRASP procedure. The GVNS was chosen due to its simplicity, efficiency and capacity

of its natural local search to deal with different neighborhoods. The authors compared

the results generated by GGVNS with those achieved by CPLEX optimizer 11.0.1, using

eight test problems. Computational experiments showed that the algorithm was com-

petitive and, in most instances, capable of finding new optimal solutions - with a gap

< 1% - requiring a short computational time.

Coelho, Souza, Coelho, Guimaraes, Lust & Cruz (2012) developed the first multi-

objective application to the OPMOP. Three multi-objective heuristic algorithms were

validated based on Two-phase Pareto Local Search with VNS (2PPLS-VNS), proposed

by Lust & Teghem (2010), Multi-objective Variable Neighborhood Search (MOVNS),

presented by Geiger (2004), and Non-dominated Sorting Genetic Algorithm II (NSGA-

II) developed by Deb et al. (2002). Approximations of Pareto sets generated by the

developed algorithms were compared considering the hypervolume and spacing metrics.

Computational experiments have shown the superiority of the algorithms based on VNS
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methods, which were able to find better sets of non-dominated solutions, more diversified

and with an improved convergence.

4.3.1 Representation and evaluation of a solution

Given a set of mining pits F , a set of trucks T and a set of shovels K, a solution for

OPMOP is represented by a matrix R = [Y |N ], where Y is a matrix |F | × 1 and N a

matrix |F | × |T |. Each cell yi of the matrix Y|F | × 1 represents shovel k ∈ K allocated to

the pit i ∈ F . If there aren’t trips made to the pit i, the shovel k associated with this

pit is considered inactive and it is not penalized for a production below the minimum

limit.

In the matrix N|F | × |T |, each cell nil represents the number of trips performed by the

truck l ∈ T to the pit i ∈ F . The value 0 (zero) means no trip to that truck. The value

X means that the truck is incompatible with the shovel allocated to the pit.

Table 4.1: Representation of a Solution

Shovel Truck 1 Truck 2 ... TruckT

F1 (Shovel 1, 1) 8 X ... X

F2 (Available, 0) 0 0 ... 0

F3 (Shovel 8, 0) 0 0 ... 0

... ... ... ... ... ...

FF (Shovel 5, 1) 0 9 ... 3

In Table 4.1, there is an example of a possible solution to the OPMOP. At the

column Shovel, line F1, the pair (Shovel 1, 1), indicates that the loading equipment

Shovel 1 is allocated to the pit F1 and the number one means that it is operating. At

the column Shovel, line F3, the pair (Shovel 8, 0) indicates that the loading equipment

Shovel 8 is allocated to the pit F3, but it is not operative. Finally, in line F2, the value

(Available, 0) means that there is no loading equipment allocated to the pit F2 and,

therefore, this pit is available. The other columns represent the number of trips from

the truck to the corresponding pit, considering the compatibility between the truck and

loading equipment allocated to the front. Cells with values X indicate incompatibility

between a truck and its loading equipment.
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4.3.2 Mathematical model and solution evaluation

In the considered formulation of the OPMOP, extracted from Souza et al. (2010),

the mono-objective function is given by Eq. (4.4):

min fPM(s) =
∑
j∈T

λ−j d
−
j +

∑
j∈T

λ+j d
+
j + α−D−O + α+D+

O

+ β−D−W + β+D+
W +

∑
l∈T

ωlUl (4.4)

Eq. (4.4) seeks to minimize the positive and negative deviations from the goals of

each control parameter j of the mixture, d+j and d−j respectively, as well as the positive

and negative deviations from the production goals of ore and waste rocks, represented,

in this order, by decision variables D+
O , D−O , D+

W and D−W . This function also considers

the minimization of the number of used trucks, represented by the binary variable Ul,

which is 1 if the truck l is used and 0, otherwise.

The constants λ−j , λ+j , α−, α+, β−, β+ and ωl are weights that reflect the importance

of each component of the objective function.

Since the movements generated by the used neighborhood structures can lead to

infeasible results, a solution is evaluated by a function f to be minimized, composed of

two parts. The first one is the actual objective function, fPM , given by Eq. (4.4), and

the second one consists of functions that penalize the occurrence of infeasibility in the

solution. Thus, the function f , given by Eq. (4.5), measures the deviation of the goals

and penalizes any violation of the constraints in the problem.

f(s) = fPM(s) + fp(s) +
∑
j∈T

f qj (s) +
∑
l∈V

ful (s) +
∑
k∈C

f ck(s) (4.5)

where:

fPM(s) is a function that evaluates s with regard to the production goals and the quality

of the final mixture.

fp(s) penalizes s if the limits for the production of ore and waste rocks are not respected;
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f qj (s) penalizes s if the limits for the j-th control parameter of the mixture are not

respected;

ful (s) penalizes s if the maximum utilization rate for the l-th truck is exceeded;

f ck(s), penalizes s if the productivity limits for the shovel k are not respected.

4.3.3 Neighborhood structures

In order to explore the solution space, as described in Section 4.2, eight neighborhood

structures, introduced by Souza et al. (2010), are used to analyze the convergence of the

proposed GES. As detailed in Algorithm 3.14, the NS are polarized during the GES

algorithm execution and may, by chance, “generate/create” new structures. With this

new proposed mechanism it is possible to create new ways to shake a given solution,

since a solution s′, generated from s, is a combination of [0, napk] random moves from

all Nk(s), as described in Algorithm 3.15.

A short description of the movements that will guide the GES walk trough the

solutions space are described below:

Movement number of trips – NSNT (s): This move increases or decreases in one

unit the number of trips a truck l performs to a pit i, in which there is a compatible

load equipment. Thus, in this movement a cell nil of matrix N has its value increased

or decreased by one.

Movement load – NSLD(s): It consists of swapping two distinct cells yi and yj of

matrix Y , that is, swapping the load equipments allocated to pits i and j, if both pits

have an allocated loading equipment. When there is an allocated load equipment on

only one of the pits, this movement will relocate the load equipment to the available

pit. To maintain compatibility between shovels and trucks, the trips made to the pits

are relocated along with the load equipments.

Movement relocate trip from a truck – NSTT (s): In this movement, two cells nil

and nkl of matrix N are selected and one unit of nil is transferred to nkl. Thus, the truck

l does one trip less to the pit i and it does one trip more to the pit k. Compatibility

between equipments are observed, with relocation of the trip only if there is a match

between them.

Movement relocate trip from a pit – NSTP (s): Two cells nil and nik of matrix

N are selected and one unit of nil is relocated to nik. This move relocates one trip
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that the truck l performs to the pit i for the truck k. Compatibility between equipment

restrictions are respected and there is relocation only when there is match between them.

Movement pit operation – NSPO(s): This operation consists on removing the load

equipment that is operating in pit i. The procedure removes all trips made to the pit

i, leaving the shovel equipment allocated to it inactive. The equipment only returns to

operation once a new route is associated to the pit.

Movement truck operation – NSTO(s): Consists on removing from operation one

truck l that is related to a pit i. Thus, the cell nil of matrix N has its value set to zero.

Movement swap trips – NSST (s): Two cells of the matrix N are selected and one

unit of a cell is transferred to another one, which means the journey of a truck made to

a pit is forwarded to another truck on another pit.

Movement swap shovels – NSSS(s): Two distinct cells yi and yk matrix Y have their

values exchanged, that is, the load equipments operating on pits i and k are exchanged.

Similarly to the neighborhood structure NSLD, the load equipments are exchanged, but

the trips made to the pits are not. To maintain compatibility between shovels and

trucks, the incompatible trips made to the pit are removed.

4.3.4 Computational experiments and analysis

Computational experiments were carried on a Pentium Core 2 Quad (Q6600) with

8GB of RAM, operating system Ubuntu 14.04.

A first batch of experiments, discussed in Section 4.3.4, seeks to find good param-

eters of population size and selection strategy rates for the OPMOP. Time-to-Target

plots (TTTplots) were used in order to find a set of parameters able to find good tar-

geted solutions. This approach was used since the main idea was to demonstrate the

convergence of the GES and, if possible, achieve comparable solution with the GGVNS

algorithm of Souza et al. (2010). Thus, the main focus of the experiments section is to

demonstrate the ability of the proposed algorithm in self-adapt its parameters during the

evolution process. This feature is discussed in Section 4.3.4. In addition, the proposed

hybrid self-adaptive GES is tested on a set of standard benchmark problem instances

from the literature1. These test problems were the same used in Souza et al. (2010) to

validate the GGVNS algorithm.

1Available at http://www.decom.ufop.br/prof/marcone/projects/mining.html.
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GES calibration using Time-to-Target plots

Six variants with different set of parameters are analyzed here, Table 4.2 shows the

parameters of these GES variants. The variants GES1-VND and GES2-VND include

VND as local search procedure for refining some solutions. In these two variants, a

portion of κ = 3 individuals from the offspring population are chosen for the local

search procedure (as suggested in Line 17 of Algorithm 3.1). Only a small group of those

NS described in Section 4.3.3 is used, namely: NSLD, NSNT , NSTT and NSTP . The

expensive computational cost of the local search justifies this restriction. The maximum

number of application was set as napk = 15 for each k = 1, ..., 8.

Table 4.2: GES proposed variants for the OPMOP

Acronym µ λ Selection VND

GES1 30 160 (µ, λ)

GES2 30 160 (µ+ λ)

GES3 100 600 (µ, λ)

GES4 100 600 (µ+ λ)

GES1-VND 30 160 (µ, λ)
√

GES2-VND 30 160 (µ+ λ)
√

Two TTTplots experiments were performed for checking the efficiency of the pro-

posed variants in achieving targeted solutions. Run time distributions or TTTplots

display, on the ordinate axis, the probability that an algorithm will find a solution at

least as good as a given target value within a given running time, shown on the abscissa

axis. These plots were first used in Feo et al. (1994). Run time distributions have been

advocated also in Ribeiro & Resende (2011) as a way to characterize the running times

of stochastic algorithms for combinatorial optimization.

Aiex et al. (2007) described a Perl program to create TTTplots for measuring times

that are assumed to fit a shifted exponential distribution, closely following Aiex et al.

(2002). Such plots are very useful to compare different algorithms or strategies for

solving a given problem and have been widely used as a tool for algorithm design and

comparison.

For a better comparison among the variants, their empirical probability curves were

superimposed. On the first experiment, the algorithms were applied to the test problem
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opm1, the target was set at 230.00 (2% of optimal value), Figure 4.2a. In the second

one, the algorithms were applied to the instance opm8, the target was set at 164,024.00

(0.0033% of optimal value), Figure 4.2b. A battery of 100 executions was made and the

performance ended only when the algorithm had found the target value. These times

were then sorted in ascending order, and for each algorithm, were associated with the

i-th largest running time ti, a probability pTTTplotsi = (i − 1/2)/N and plot the points

zi = (ti, p
TTTplots
i ), for each i = 1, ..., N . The results of the experiments are shown in

Figs. 4.2a and 4.2b.

(a) opm1 Instance

(b) opm8 Instance

Figure 4.2: Superimposed empirical distribution
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Table 4.3: Convergence of the estimation of Pr(Xi ≤ Xj)

GES1 GES2 GES3 GES4 GES1-VND GES2-VND

GES1 48.23% 42.74% 32.17% 66.34% 63.13%

GES2 50.16% 43.77% 34.19% 65.58% 62.65%

GES3 56.05% 53.94% 37.68% 72.52% 69.91%

GES4 65.68% 61.72% 59.25% 80.28% 78.68%

GES1-VND 33.52% 34.15% 27.28% 19.36% 45.85%

GES2-VND 36.83% 37.27% 30.02% 21.20% 54.15%

Analyzing the empirical probability curves, it is possible to see that the variants that

used the selection strategy (µ + λ) prevailed over the versions that used the selection

(µ, λ). This fact shows that the competition between parents and offspring made those

individuals with a good optimality potential persist for more generations. This result is

consistent with the report of Herdy (1992), recommending the use of the (µ+λ) selection

in discrete finite size search spaces.

In Figure 4.2a there is a total supremacy of the GES4, achieved by its selection

strategy (µ + λ) combined with population size µ = 100 and λ = 600. Since the initial

instants of the search, the variant GES4 was able to generate better solutions than

the other algorithms proposed. However, analyzing the curves of Figure 4.2b, one can

notice that from 60 seconds and on, GES4 lost its performance being surpassed by the

variant GES2-VND, which continues to progress systematically, being the first to reach

the desired target with a probability of approximately 100%.

In order to deal with the situation shown in Figure 4.2b, a probability experiment

according to Ribeiro & Rosseti (2009) is presented. Let A1 and A2 be two stochastic

search algorithms applied to the same problem and let X1 and X2, be the continuous

random variable represeting the time required for algorithm A1 and A2, respectively,

to find a solution as good as the given target. Ribeiro & Rosseti (2009) developed a

numerical tool to calculate the probability of the runtime of the algorithm A1 being less

than or equal to the runtime of the algorithm A2, that is, Pr(X1 ≤ X2). This tool

approximates the absolute error in the integration, by selecting appropriate value of ε.

The latter optimizes the resulting approximation errors, called ∆(ε), in order to make

it sufficiently small. Using this tool to validate the analysis of the empirical experiment

in Figure 4.2b, the Table 4.3 was generated.
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Analyzing Table 4.3, it appears that even though the variant GES2-VND has a

greater probability of finding the target starting from 60 seconds of execution, the variant

GES4 has a probability of 78.68% to have the runtime less than or equal to the variant

GES2-VND. In addition, it’s clear that the variant GES4 outperforms all other variants.

This first set of experiment allows us to define, at least, a first set of parameters for

the hybrid self-adaptive GES able to converge in a similar computational time than the

one used by the literature. From now on, the variant GES4 will simply be named GES.

Evolution strategy self-adaptive mechanism

In order to verify the effect of the maximum number of application for each NS of

the OPMOP, a first batch of experiments composed of 1800 executions, 225 for each of

the eight instances, was performed with different limits napk (as presented in Section

4.2.1). Objective functions were normalized for each instance and an Analysis of Variance

(ANOVA) test (Shapiro & Wilk 1964) was done for analyzing the differences between

the limits napk. Figure 4.3 shows an effect plot with limits napk = 1, napk = 15,

napk = 100, napk = 1000, for k = 1, ..., 8. As can be noticed, the only significant

difference detected, with 95% confidence level, was the worse performance of the GES

with strict limits napk = 1. Even though I believe that the model could be free to adapt

the NS application naturally, thus, we might had left it with a large number napk = 1000.

However, in order to keep the disturbances slighter, the maximum number of application

for each napk as 15 was kept.

maximum number of application

F
O

0.15

0.20

0.25

0.30

0.35

1 15 100 1000

●

●

●

●

Figure 4.3: Effect of the maximum number of application napk for each NS
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Instance opm1 was now solved and the mean values of the mutation vectors of typical

120 seconds execution are reported. The mutation operators were able to adapt its

application probability during the evolutionary process, as can be seen in the Figure

4.4.

A special relationship was detected between some NS, thus, two other plots (Figures

4.5a and 4.5b), were generated focusing only in the specific ability of combining NS.

As described in Section 4.3.3, the neighborhood NSLD(s) is able to swap shovels from

different active pits. Due to the different ore composition between pits, it is interesting

to reallocate trips for improving the final quality of the mixture after a swap done by

NSLD(s). The GES was able to increase the number of moves from the neighborhood

NSTP (s) at the same time that the probability of applying swaps from NSLD(s) in-

creased. This was an interesting fact, since it was verified that improvements on the trip

allocation had to be performed and NSTP (s) was able to attend these changes respecting

the other pits, shovels and trucks.

Another interesting behavior of the mutation operators was detected between the

neighborhood NSPO(s), able to remove a pit from operation, and the neighborhoods

that deal with trucks trips NSTP (s) and NSTT (s). Again, GES was able to take profit

of free trips from the trucks now free due to the higher probability of using NSPO(s)

moves.

Figure 4.4: Mutation operators evolution – OPMOP
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Figure 4.5: Mutation operators evolution

4.4 Short Term Load Forecasting Problem

The importance of load forecasting has been increasing lately and improving the use

of energy resources remains a great challenge to the emerging Smart Grid (SG) systems.
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Energy consumption forecasting in the context of economic development of a country was

highlighted by Lee & Tong (2011). SG are considered as the future of power grids, able

to manage production, transmission and electricity distribution. The task of optimizing

the SGs has been mainly done by using Artificial Intelligence (AI) technique (Raza &

Khosravi 2015, Olivares et al. 2014b, Rigo-Mariani et al. 2014).

In this sense, improving the calibration of a forecasting model trough the aid of an

evolutionary algorithm seems reasonable. Here, the ability of the GES in calibrating

the Hybrid Forecasting Model (HFM) introduced in Chapter 3 is verified. In its initial

version, model’s fuzzy rules were being calibrated by a trajectory search based algo-

rithm and a classic evolution strategy using a mutation matrix fulfilled with standard

deviations.

This problem will be used as a didactic case of study that combines the use of nine

different NS. An acceptable convergence of the model is checked and verified in Section

4.4.3.

4.4.1 Representation and evaluation of a solution

A solution to the HFM is represented as a matrix of continuous values indicating

fuzzy rules intervals and, respective, weights. An example of a solution representation

s with three columns can be seen in Figure 4.6. For the batch of experiments analyzing

the mutation operators, a solution with several different inputs, and approximately 1000

columns to be calibrated, will be used.

s =



z(K − 1) z(K − 2) z(K−1)+z(K−2)
2

A 87 95 103

V 70 80 95

B 100 90 110

W 110 50 80



Figure 4.6: Metaheuristic fuzzy model solution

The evaluating process is simple, the solution depicted in Figure 4.6 is evaluated by

its ability in forecasting a given validation historical load time series. The rules of the

matrix are applied considering previous measured data. Results of the combination of

all rules and its weights give the next point forecast. These are very similar to artificial

neural network based models (Drezga & Rahman 1999) and fuzzy time series (Song &
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Chissom 1993). Errors between each forecast and the real measured point from the

validation set are calculated using quality indicators (Goodwin & Lawton 1999).

4.4.2 Neighborhood structures

New didactic NS able to change each cell of the fuzzy matrix s with a disturbance

X are designed. The NS will be called NSaddX (s) and is described below:

Movement add X – NSaddX(s): This move increase or decrease the value of a

random cell of the rules and weights matrix of a solution s.

From this proposed NS, nine different structures with different disturbances pa-

rameters X are genered: NSadd0.1(s), NSadd1(s), NS
addM

15 (s), NS
addM

6 (s), NS
addM

2 (s),

NSaddM (s), NSadd2M (s), NSadd5M (s) and NSaddBM (s). Some of them use the average

values of the historical load time series, namely M , as disturbance value. The special

character B in NSaddBM (s) indicates a big value multiplied by the average M .

4.4.3 Computational experiments and analysis

Computational experiments were carried on a Intel Core i7-3537U CPU (2.00GHz),

with 4GB of RAM, operating system Ubuntu 14.04. For simplicity, the configuration

achieved after the OPMOP TTTplots calibration (Section 4.3.4) and confirmed in liter-

ature instances is used here.

The dataset used to check the mutation operators was kindly provided by Liu et al.

(2014). It is composed of a microgrid user data from small residential area with maximum

load of 273 KW. The dataset is composed of 1368 hourly samples for training and

672 samples used as blind validation. Section 4.4.3 reports obtained Mean Absolute

Percentage Error – MAPE for the validation set, as a way of certifying the success of

the GES in calibrating the metaheuristic fuzzy model.

Evolution strategy self-adaptive mechanism

A first batch of two minutes training, typical for online microgrids load forecasting,

was performed and the behavior of the mutation operators are discussed in Figures 4.7,

4.8a and 4.8b.

Figure 4.7 plots the vector of probability multiplied by the current number of appli-

cation of each NS, average values for the population are presented for each generation.

The ability of the GES mutation mechanism in regulate the probability of the NS regard-

ing to its power of disturbance is highlighted. Moves that slightly change the solution
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matrix s are the most likely to be applied, as the case of NSadd0.1(s), NSadd1(s) and

NS
addM

15 (s). On the other hand, NSaddBM (s) was adapted and adjusted, through the

generations, to be rarely applied.

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

Generation

P
ro

b
a
b
ili

ty
*#

M
o
v
e
s

 

 Add
0.1

Add
1

Add
M/15

Add
M/6

Add
M/2

Add
M

Add
2M

Add
5M

Add
BM

Figure 4.7: Mutation operators evolution P ×A – STLFP

Figures 4.8b and 4.8a show groups of NS aggregated regarding to the impact they

have in mutating the solutions.

The stem plot (Figure 4.8b) shows the higher number of moves that are applied for

some NS and differences between application probabilities.

Another batch with two hour training was performed. Figure 4.9a shows the average

values with napk = 15 ∀ k = 1, ..., 8 and Figure 4.9b presents the results for a larger

nap limit of 1000. We highlight that the operators seldom present slopes with higher

probabilities and more moves applications. Specially, for the neighborhood NSaddBM (s)

it happened in both cases, but few generations later it converged to a steady state,

returning the average values of the population to low values of application probability.

Even after the 3000 generation, Figure 4.9b, we believe that the number of applications

would follow the same decrease after some generations.

GES convergence

A batch of 30 executions for the aforementioned dataset was executed and average

MAPE errors of 9.5%, 8.5%, 9.8% and 8.2% were obtained for the 1st, 2nd, 3rd and 4th

week, respectively. Thus, as described by Liu et al. (2014), it is known that when the

MAPE is less than 10%, the applicability of the forecast model over microgrids becomes

interesting and does not increase its cost sharply. The obtained results indicate, again,
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Figure 4.8: Analysis of NS in STLFP

the ability of the GES in calibrating the matrix of weights and rules and achieve useful

forecasting models.

4.5 Unrelated Parallel Machine Scheduling Problem with

Setup Times

The UPMSP-ST tackled here has as the main goal the makespan minimization. This

problem has great practical and theoretical importance. It belongs to the NP-hard

class, since it can be seen as a generalization of Parallel Machine Scheduling Prob-

lem with Identical Machines and without Setup Times (Garey & Johnson 1979). The

UPMSP-ST is found in different industry sectors, such as: textile, chemicals, painting,

semiconductors and paper production (Rabadi et al. 2006).

In the UPMSP-ST there is a set of N jobs and a set of M machines, with the
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(a) Training with lower limits for napk

(b) Training with large limits for napk

Figure 4.9: Two hour training results

following features: i) each job must be allocated to only one machine; ii) each job j has

a different processing time pij for each machine i ∈ M ; iii) there is also a setup time

Sijk for calibrating the machine i after processing job j and before processing job k; iv)

there is a calibration time Si0j for processing the first job of a given machine i ∈M .

Different approaches were used for solving the UPMSP-ST, initially, in (Al-Salem

2004), the authors developed a heuristic procedure called Partitioning Heuristic and

introduced the UPMSP-ST. (Rabadi et al. 2006) proposed a metaheuristic for random

prioritized search and described a mathematical formulation for the problem. In Ying

et al. (2012), a Simulated Annealing algorithm was implemented with a smart strategy

for eliminating unpromising jobs. Vallada & Ruiz (2011) analyzed two genetic algorithms
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and published a benchmark set of instances at SOA website: http://soa.iti.es/problem-

instances. In the works of Haddad et al. (2014), Cota, Haddad, Souza & Coelho (2014),

Cota, Haddad, Souza & Martins (2014), Haddad et al. (2015), the authors proposed

several trajectory search based algorithms, named: AIV, AIRP, AIA and HIVP, respec-

tively. These methods were designed based on the ILS and VND, which obtained better

results than Vallada & Ruiz (2011), and among them, AIRP had the best performance.

The AIRP combines a greedy constructive procedure with the ILS and RIV (described in

Section 4.5.2) metaheuristics. Also, periodically, the search is intensified and diversified

by a Path Relinking (Glover 1996b) procedure. In this sense, comparing the proposed

evolutionary framework against the AIRP, Section 4.5.3, is reasonable.

4.5.1 Representation and evaluation of a solution

A solution s for the UPMSP-ST is represented as a vector of integers withm positions,

where each position represents one machine. Each active machine is associated with a

list containing all jobs allocated to it.

Figure 4.10a shows an example of a possible scheduling for a instance with two

machines and six jobs. In this example, machine M1 will process jobs 3, 5 and 1, in

this order; and machine M2, in turn, will process 4, 2 and 6, following this order. The

conclusion time of machine M1 is calculated by the expression CM1 = 1+28+3+38+8+

1 = 79, while machine M2 conclusion time is given by CM2 = 2+17+7+21+2+48 = 97.

Figure 4.10b illustrates the solution representation of the example given in Figure

4.10a. Jobs 3, 5 and 1 are scheduled to machine M1 while the rest are scheduled to M2.

In this single objective optimization, solution s is evaluated by the makespan, in

other words, by the processing time of the last machine to finishes its jobs.

4.5.2 Neighborhood structures

Three well-know NS are tested in this application and they are described below:

Movement Swap In The Same Machine – NSSSM(s): The movement of swapping

jobs in the same machine originates a NSSM(s) neighborhood. It consists in changing

the positions of two jobs that belong to the same machine.

Figure 4.11a illustrates the swap of jobs 5 and 6 in machine M2.

Movement Swap Between Different Machines – NSSMD(.): Similar to the

NSSSM(s), but swapping one job from one machine with another job that belongs to a
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(a) Example of a possible scheduling

(b) Solution representation

Figure 4.10: Example of solution representation

different machine.

Multiple Insertion – NMI(.): It consists on relocating one job from one machine to

any position of all machines.

Figure 4.11b shows how NMI(.) works, job 4 from machine M2 is transferred to

machine M1, just before job 1.

RIV as an optional local search intensification phase

The optional local search phase of the GES, Line 17 of the Algorithm 4.1, activates

the proposal of Cota, Haddad, Souza & Coelho (2014), namely RIV. The latter is inspired

by the ILS with a Random VND.

The RIV uses the neighborhoods NMI(.) and NSSSM(s) with first and best improve-

ments strategies, respectively, and explores, sporadically, the NSSMD(.) neighborhood

for perturbing the solutions.

4.5.3 Computational experiments and analysis

The proposed algorithm for the UPMSP-ST was implemented in JAVA using the

Netbeans 8.0.2 IDE. Computational experiments were carried on a Core i7 (1.9 GHz)

with 6GB of RAM and Windows 7.

The method was re-implemented, following OptFrame first version in C++, and the
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(a) Swap in same machine

(b) Multiple Insertion

Figure 4.11: Example of operators

ideas introduced in Section 4.2. This seems to be a good opportunity for analyzing and

ensuring the convergence of the proposal in a different environment, considering new

codes programmed in a similar language.

Benchmark results

Eight different configurations of the GES algorithm were designed, as described in

Table 4.4. Six, among these variants, were allowed to activate RIV local search in κ = 3

individuals from the offspring population, picked at random (See Section 4.3.4). The

other two variants, with the same population size as the ones used for the previous cases

of study, were analyzed without the RIV intensification phase.
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Table 4.4: GES proposed variants for the UPMSP-ST

Acronym µ λ Selection RVI

GES1 50 150 (µ+ λ)
√

GES2 20 60 (µ+ λ)
√

GES3 50 150 (µ, λ)
√

GES4 20 60 (µ, λ)
√

GES5 100 600 (µ+ λ)
√

GES6 100 600 (µ, λ)
√

GES7 100 600 (µ+ λ)

GES8 100 600 (µ, λ)

The stopping criterion adopted was the processing time, given by: executionT ime =

n× (m/2)× t milliseconds, being n the total number of jobs, m the total number of

machines and three different values for t (10, 30 and 50). These values adopted for t

were the same ones by Cota, Haddad, Souza & Coelho (2014).

A batch of 30 executions was performed using 36 SOA instances. These instances

involve combinations of 50, 100 and 150 jobs with 10, 15 and 20 machines. The average

values of each instance were calculated and the deviations between the best results for

each instance were measured. Due to the stochastic character of the search, the different

GES configurations were executed 30 times for each instance and for each t value, as

already has been done for the AIRP.

Figure 4.12 shows a box plot graph with average objective function values.

It is noteworthy that the selection strategy (µ + λ) was again able to direct the

evolutionary process to better performance. Even though the were able to obtain better

solutions (10% better) than the ones found by the AIRP. This fact shows the potential

of the proposal to combine NS and to find new solutions in the search space.

It should be noticed that the two variants with the intensification procedure RIV

achieved better average objective function values. This fact induces that the RIV pro-

cedure was well designed by Cota, Haddad, Souza & Coelho (2014), being able to col-

laborate within the search as an intensification phase. Furthermore, it gives a brief

motivation for using other smart strategies, based on metaheuristic procedures, in part-

nership with the proposed GES.
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Figure 4.12: Box plot of the algorithms AIRP, GES1, GES2, GES3, GES4, GES5,
GES6, GES7 and GES8.

Evolution strategy self-adaptive mechanism

Three different sizes of instances (large, medium and small size) were used for analyz-

ing the mutation operators. Parameters µ = 100 and λ = 600 were kept for this analysis.

We aim now at two variants, verifying the convergence with and without the RIV in-

tensification phase. For the sake of clarity, the best results among the two independent

runs (using different seeds) are depicted in Figures 4.13, 4.14 and 4.15.

In these Figures, the lower bounds (some are optimum values) were plotted for en-

hancing bounds comprehension of the mutation operators behavior. The evaluation of

the best known solution can be followed across the generations, exhibited with blue

lines. Values were normalized for each of the three instances by dividing them by the

maximum makespan found in the first generation.

The convergence of the variant using RVI was close to the lower bound in all exe-

cutions. Figure 4.13 shows how operators keep trying to escape from local optimum,

considerably improving the best known solution until the generation 150.

Figure 4.14 depicts an execution applied for solving a medium size instance, in which

the population was guided only by the ARVNS. Analyzing Figure 4.14b, it can be verified

that the mutation operators suffered an intensive change after the generation 50. This
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Figure 4.13: Average mutation operators values evolution in a Large instance of the
UPMSP-ST using κ = 3

fact might had happened because of a local trap, which the population was able to

escape near the generation 600 (Figure 4.14a). Four other improvements were also

achieved from generation 600 until 1000.

Beyond shadow of doubt, it can be noted that the mutation operators become more

randomized after finding local traps. For the cases showed in Figures 4.15a and 4.15b,

both variants were able to reach the global optimum after generations 30 and 20, re-

spectively.

4.6 Conclusions and extensions

A new hybrid self-adaptive algorithm based on the concepts of evolution strategies

was introduced in this chapter. Three different combinatorial optimization problems

were used as cases of study. For each of them, algorithm convergence and mutation

operators behavior were analyzed.

The results have shown that the proposed evolutionary method is able to achieve

competitive solutions. Even though the average performance of the GES, applied to the

UPMSP-ST, was not considerably better than the literature, it was able to enhance the

quality of the solutions in 10% of the analyzed problems.
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(a) From generations 1 to 1000
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(b) From generations 1 to 300

Figure 4.14: Average mutation operators values evolution on a Medium instance of the
UPMSP-ST without using RVI

The ability of adapting the probabilities of application was also verified in each of

the three analyzed problems. The operators handled different NS and its application

across different phases of the evolution process. The flexibility of the proposal makes

it suitable for a wide area of practical applications, such as, in mining, scheduling and
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(a) Without RVI
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(b) With RVI

Figure 4.15: Average mutation operators values evolution on a small instance of the
UPMSP-ST

electric load forecasting.

As could be verified, the self-adaptive ES was able to adapt the mutation operators in

such a way that there is a balance between exploration and exploitation throughout the

generations of the evolutionary process, being able to escape from local optima attraction
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basins. This ability is related to the issue of performing small changes in the solution for

finding local optima, and, on the other hand, enhancing the probability and strength of

the mutation operators reflects in increasing the shaking and hence escaping from local

traps. This fact promoted a self-adaptive balance between exploiting an attraction basin

and jumping out of it.

Further experiments should focus on how close are the solutions from local optima.

Thus, future works might investigate the fitness landscape of the problems discussed here.

Improving and designing novel self-adaptive mechanisms is other possible extension, as

well as parameter calibration. Finally, we suggest to implement a parallel version of the

GES algorithm in order to take advantage of multi-core technology available in current

devices.
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Chapter 5

Multi-objective microgrid storage

planning problem

“A natureza pode suprir todas as necessidades do homem, menos a sua ganância e busca

pelo conhecimento divino.

Truth is god.”

— Mahatma Gandhi

This chapter describes the proposed framework developed and used to solve the

multi-objective energy storage planning problem. Section 5.1 presents the mathematical

formulation developed in this thesis, as well as a description of the three main objective

functions to be minimized. Section 5.2 introduces three other objective functions, crite-

ria, used to evaluate energy storage schedule behavior in extreme and different scenarios.

Section 5.3 introduces the proposed matheuristic pool search algorithm. Finally, Section

5.4 draws some final considerations and conclusions regarding the proposed problem, its

mathematical formulation and the matheuristic.

5.1 Mathematical programming model

A MILP model was developed for optimizing an objective function based on the

linear combination of three different energy storage planning objectives.

The following parameters were considered for the model:
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I: Set of discrete intervals from 1 to furthest desired storage time horizon k;

qd
i : demand of all customers at the interval i ∈ I;

qrG
i : indicates the energy production of all renewable energy resources at the interval

i ∈ I;

qsell
i : energy selling price at the interval i ∈ I;

qbuy
i : energy buying price at the interval i ∈ I;

PEV : set of plug-in electric vehicles;

pevSOCmin
v : indicates the minimum Depth of Discharge (DoD) of the vehicle v;

pevPower
v : indicates PEV battery maximum capacity;

peva
vi: indicates if the vehicle v is available at the SmartPark at the interval i ∈ I;

pevarr
vi : indicates if the vehicle v is arriving at the SmartPark at the interval i ∈ I;

pevSOCarr
vi : indicates the battery percentage of the vehicle v at its arrival at the interval

i ∈ I, obviously, only if pevarrvi = 1, otherwise it does not need to be attended;

pevdep
vi : indicates if the vehicle v is departing from the SmartPark at the interval i ∈ I;

pev
SOCdep

vi : indicates the battery percentage demanded by the vehicle v at its departure

at the interval i ∈ I, only if pevdepvi = 1, otherwise it does not need to be attended;

C: set of different battery cycles;

pevdRate
vc : battery discharge rate of the plug-in vehicle v with power cycle c.

pevdPrice
vc : price for discharging the battery of the plug-in vehicle v at a rate pevdRatevc ;

pevcRate
vc : indicates the charge rate of the vehicle v;

pevcPrice
vc : price for charging the battery of the plug-in vehicle v at a rate of charge

cycle pevcRatevc .

The following decision variables were defined:

yc
vci : binary variable which indicates if the vehicle v is charging with power cycle c at

the interval i ∈ I;



Multi-objective microgrid storage planning problem 105

yd
vci : binary variable which indicates if the vehicle v is discharging with power cycle c

at the interval i ∈ I;

Finally, some auxiliary decision variables are used for checking the constraints:

ybR
vi : variable with real values indicating the battery rate of the PEV v at the interval

i ∈ I;

esell
i : variable with real values indicating the amount of energy being sold at the interval

i ∈ I;

ebuy
i : variable with real values indicating the amount of energy being bought at the

interval i ∈ I;

esellActive
i : binary variable which indicates if any energy is being sold at the interval

i ∈ I;

ebuyActive
i : binary variable which indicates if any energy is being bought at the interval

i ∈ I;

tCD: real variable indicating the total charging and discharging expenses;

fobjTotalCost: real variable indicating objective function that measures the MG total

costs;

fobjBatteriesUse: real variable indicating objective function that measures batteries use;

fobjMaxPeakLoad: real variable indicating objective function that measures maximum

peak load during the whole set of intervals i ∈ I.

The mathematical model proposed in this thesis can be seen from Eqs. (5.1) to

(5.17). The global objective function to be minimized (Eq. (5.1)) is composed of the

linear combination of three different objective functions, described in Eqs. (5.2), (5.3)

and (5.4). Total MG cost (Eq. (5.2)) is measured by the total amount of energy that

is being bought or sold at each interval i ∈ I plus the cost associated with each vehicle

charge or discharge, these two latter are paid to the PEVs owners (its calculation is

described in Eq. (5.8)). Batteries use (Eq. (5.3)) is calculated as the sum of charges

and discharges scheduled during the whole energy storage planning. Eq. (5.4) assigns

the maximum peak load of the MG system to the value of the third objective function.



106 Multi-objective microgrid storage planning problem

Eqs. (5.5), (5.6) and (5.7) force the system to either only buy or sell energy at

each interval. Eq. (5.9) forces the PEVs to only either charge or discharge while Eqs.

(5.10) and (5.11) make them charge or discharge only when PEVs are available at the

SmartPark. Battery SOC limits, pevSOCmin
v ≤ ybRvi ≤ 100, are defined in Eqs. (5.12) and

(5.13). Eq. (5.14) ensures that PEVs’ batteries will attend a minimum SOC wished at

its departure. PEV’s battery rate is updated according to Eqs. (5.15) and (5.16). Eq.

(5.15) attends the special case of the first interval while Eq. (5.16) takes the rate of the

last battery, if the vehicle is not arriving, and add or subtract energy from charges or

discharges. Finally, in Eq. (5.17), the amount of energy that is being sold or bought, at

each interval i ∈ I, is determined.

Finally, the set of Mi values, for each interval i, is calculated according to the max-

imum possible grid rates. The maximum rate of charge/discharge is considered and

summed to the expected grid rate.

minimize λ1fobjTotalCost + λ2fobjBatteriesUse + λ3fobjMaxPeakLoad (5.1)
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S. T.:

fobjTotalCost =
∑
i∈I

(
ebuyi qbuyi − eselli qselli

)
+ tCD (5.2)

fobjBatteriesUse =
∑
i∈I

∑
v∈PEV

∑
c∈C

(
ydvcipev

dRate
vc + ycvcipev

cRate
vc

)
(5.3)

fobjMaxPeakLoad ≥ ebuy + esell ∀i ∈ I (5.4)

esellActivei ∗Mi ≥ esell ∀i ∈ I (5.5)

ebuyActivei ∗Mi ≥ ebuy ∀i ∈ I (5.6)

esellActive + ebuyActive ≤ 1 ∀i ∈ I (5.7)

tCD =
∑
i∈I

∑
v∈PEV

∑
c∈C

(
(ydvcipev

dPrice
vc + ycvcipev

cPrice
vc )pevPowerv

)
(5.8)

∑
c∈C

(
ydvci + ycvi

)
≤ 1 ∀v ∈ PEV, i ∈ I (5.9)∑

c∈C
ydvci ≤ pevavi ∀v ∈ PEV, i ∈ I (5.10)∑

c∈C
ycvci ≤ pevavi ∀v ∈ PEV, i ∈ I (5.11)

ybRvi ≤ 100 ∀v ∈ PEV, i ∈ I (5.12)

ybRvi ≥ pevSOCmin
v pevavi ∀v ∈ PEV, i ∈ I (5.13)

ybRvi ≥ pev
SOCdep

vi pevdepvi ∀v ∈ PEV, i ∈ I (5.14)∑
c∈C

ybRv1 ≤ pev
SOCarr
v1 pevarrv1 +

∑
c∈C

(
ydvcipev

dRate
vc − ycvcipevcRatevc

)
∀v ∈ PEV (5.15)

∑
c∈C

ybRvi ≤ (1− pevarrvi )ybRv(i−1) + pevarrvi pev
SOCarr
vi

+
∑
c∈C

(
ydvcipev

dRate
vc − ycvcipevcRatevc

)
∀v ∈ PEV, i ≥ 2 ∈ I

(5.16)

∑
v∈PEV

∑
c∈C

(
(ydvcipev

dRate
vc − ycvcipevcRatevc )pevPowerv

)
+ qrGi − qdi −

∑
v∈PEV

(
ycvipev

cRate
v

)
= eselli − ebuyi ∀i ∈ I

(5.17)
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5.2 Extreme energy storage scenarios

The energy storage schedule obtained by solving the mathematical model described

in Section 5.1 is further evaluated regarding six criteria. The first three criteria are the

three objectives used in the optimization problem, while three additional criteria are

introduced in this section.

The fourth criterion, so-called fobjExtremeScenario, evaluates the schedule compared to

the opposite case of it. In other words, a comparison of the total cost of the worst and

the best case is made and the discrepancy is returned. It seeks to find solutions which

are flexible to be applied even in extreme scenarios, that is, this criterion measures the

robustness of the schedule. Thus, batteries charge and discharge schedule are kept and

analyzed through the most different expected scenario.

Table 5.1 indicates some possible MG scenarios based on energy consumption, renew-

able energy production and main grid energy price. As can be seen, the worst possible

case, regarding the total cost paid by the MG user, is the one when the consumption

is the maximum possible (q99) with the highest expected prices (q99) and almost no

renewable energy generation (q1).

Section 6.3 explores the results when an energy storage schedule is performed con-

sidering the worst case scenario and the best case scenario happens and vice versa.

Table 5.1: MG scenarios based on probabilistic quartiles

Current MG energy scenario

scenario consumption production price

worst case q99 q1 q99

best case q1 q99 q1

neutral q50 q50 q50

The fifth and sixth criteria, namely fobjSharpeRatioTotalCost, fobjSharpeRatioMaxLoad, eval-

uate the schedules over a wide range of possible scenarios and use the Sharpe Ratio

to verify the total cost and maximum load volatility. Eqs. (5.18) and (5.19) measure

Sharpe Ratio, known in the literature as reward-to-variability index, but, here, adapted

and used as a cost-to-variability indicator.

The schedule with the highest expected cost and maximum peak loads is considered

to be a constant risk-free return throughout the analyzed period. The optimum value
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for objective function f ∗objBatteriesUse provides this information, since it represents the so-

lution where energy storage is performed only seeking to attend PEVs’ constraints and

save batteries use. This solution indicates an energy storage planning where all extra

needed energy is bought from the main grid and the PEVs charge is scheduled to be

done when the energy price is cheaper. In view that energy price can not guaranteed

to be the cheapest, a small variability is also considered over f ∗objBatteriesUse. Thus, an

adapted Sharpe Ratio (Ledoit & M. 2008) is designed, where the term Vf∗objBatteriesUse
in-

dicates volatility over the energy price (measured from probabilistic forecast variations

from the time series depicted in Figure 6.4). Finally, volatility V (fobjTotalCost(s)) and

V (fobjMaxPeakLoad(s)) are obtained from the standard deviation of objective functions

fobjTotalCost(s) and fobjMaxPeakLoad(s), respectively, over a set of random scenarios. Ran-

dom scenarios are generated from the combination of different quartiles of energy con-

sumption, renewable energy production and energy prices. The behavior of the PEVs’

scheduled charges and discharges of solution s are analyzed for each of those scenarios.

fSRTotalCost(s) =
f ∗objBatteriesUse − fobjTotalCost(s)

V (fobjTotalCost(s))− Vf∗objBatteriesUse

(5.18)

fSRMaxPeakLoad(s) =
f ∗objBatteriesUse − fobjMaxPeakLoad(s)

V (fobjMaxPeakLoad(s))− Vf∗objBatteriesUse

(5.19)

5.3 Smart Solution Pool Matheuristic

In order to find near efficient Pareto solutions for the MOMSPP in short compu-

tational time, we present the Smart Pool Search Matheuristic (SPSMH). The idea of

SPSMH is to solve the mathematical model by using a commercial Black-Box solver for

MILP problems with different weights for the three objective functions. This strategy

is capable of providing a good balance between each of the objectives, by ensuring that

a large number of weighted problems are solved. In particular, the current MILP model

is searched in the branches of a Branch-and-Bound tree explored with CPLEX 12.5.1

Dynamic Search procedure.

Algorithm 5.1 presents the procedure used to generate weighted sum MILP problems,

solve them, and filter the obtained solutions in order to create a Pareto front. MIP
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starting solutions (line 5) are considered to be included in the beginning of the search

done by the Black-Box solver. Several different MILP problems are generated by the

linear combination of the weights λ1, λ2 and λ3 (for each objective function). Since the

handled MILP is convex, any Pareto-optimal solution regarding the objectives can be

achieved by a specific combination of weights.

Algorithm 5.1: Smart Pool Search Matheuristic

Input: Number of linear combination intervals nIntervals, metaheuristic search
time limit timeLim

Output: Set of non-dominated solutions Xe

Λ = [0, 1
nIntervals

, ..., nIntervals−1
nIntervals

, 1]1

mipPop← ∅2

foreach (λ1, λ2, λ3) ∈ Λ3 do3

model← MILP model with weights λ1, λ2, λ34

mipSol∗ ← best solution ∈ mipPop regarding current model weights5

poolSol, poolEval[1...3] ← Black-Box Solver(model,mipSol∗,timeLim)6

mipPop← mipPop + new solutions from the current poolSol7

poolAval← evaluations of each solution s ∈ poolSol regarding to8

fobjSharpeRatio(s) and fobjExtremeScenario(s) (optional)
for nS ← 0 to |poolSol| do9

addSolution(Xe, poolSolnS, poolEvalnS)10

end11

end12

return Xe13

Parameter nIntervals guides the precision of the linear combination between the

weights λ1, λ2 and λ3 and the number of solutions generated. A set of possible values

for these weights, namely Λ, is created in Line 1 of Algorithm 5.1. Basically, variable

nIntervals regulates a discrete number of real values, from the interval [0, 1], that can

be assigned to these weights.

Line 4 generates the MILP model described in Section 5.1 with weights λ1, λ2 and λ3

for the objectives objTotalCost, objBatteriesUse, objMaxPeakLoad, respectively. The

Black-Box solver solves the generated model by exploring a BB tree formed by linear

programming relaxation nodes. In this process, different feasible (integer) solutions are

usually achieved during the searching procedure. Those solutions are returned at the

end of the search, which can be finished when optimal values have been reached or due

to other stopping criteria, such as computational time. It is worth mentioning that the

optimal values correspond to the best solution that minimizes a specific weighted-sum

single objective function. So, it is necessary to solve multiple problems with different
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weights, in order to satisfy the multi-objective nature of the problem. The matheuristic

returns the obtained feasible solutions and its evaluations (regarding the first three

objective functions). The obtained set of solutions is hereafter called Pool of Solutions

(line 6). Optionally, each solution from the pool is now evaluated according to the three

additional criteria described in Section 5.2.

The procedure addSolution (described in Algorithm 5.2), extracted from Lust &

Tehrem (Lust & Teghem 2010), filters the dominated solutions in the obtained popu-

lation. This latter mechanism (line 10) efficiently tries to add each obtained solution

s ∈ poolSol in the set of non-dominated solutions Xe. It is considered that a vector

z(x) = (z(x)1, z(x)2, z(x)3), composed with the values of the three objective functions

considered by the MILP model, dominates a vector z(s) = (z(s)1, z(s)2, z(s)3) if, and

only if, z(x)k ≤ z(s)k ∀k ∈ {1, 2, 3} and ∃k ∈ {1, 2, 3} : z(x)k < z(s)k. Thus, this

relation is denoted by z(x) ≺ z(s). On the other hand, the relation z(x) � z(s) does

not requires the last condition.

Algorithm 5.2: addSolution

Input: Population Xe potentially efficient; Solution s, and its evaluations z(s)

Output: Xe; Added (optional)

Added ← true1

forall x ∈ Xe do2

if z(x) � z(s) then3

Added ← false; Break4

end5

if z(s) ≺ z(x) then6

Xe← Xe \ x7

end8

end9

if Added = true then10

Xe← D ∪ s11

end12

return Xe13

5.4 Conclusion

In this chapter, a new multi-objective power dispatching problem is introduced by

planing energy storage into PEVs. The proposed framework optimizes three different
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microgrid objectives functions. While the most common approaches try to minimize

the total costs, related to the best time for buying and selling energy, the proposal also

considers aspects for enhancing communitarian energy quality, such as grid maximum

peak load. The idea of thinking and introduce a communitarian scenario can benefit

mini/microgrid users. Undoubtedly, other environmental indicators could be inserted in

the proposed MILP model. Finally, the use of PEVs battery was also analyzed as an

objective function, which tries to minimize batteries wear and tear. Three additional

criteria were also introduced in order to evaluate the robustness of a energy storage

schedule.

In order to solve the MOMSPP, a smart matheuristic black-box was introduced. The

proposed metaheuristic uses a pool of feasible solutions found over the branches of a BB

tree. Another smart strategy tries to feed the MILP problems with the best known

feasible solutions for that specific set of objective function weights.



Chapter 6

Computational experiments of the

MOMSPP

“This is my simple religion. There is no need for temples; no need for complicated

philosophy. Our own brain, our own heart is our temple; the philosophy is kindness.”

— Dalai Lama

This chapter is divided into three Sections. Section 6.1 introduces how the MG sce-

narios were generated. Subsection 6.1.1 describes the model used for generating prob-

abilistic forecast for the MG components. Section 6.2 describes the behavior of MILP

model in solving the three objective functions. Thus, the latter considers deterministic

energy storage management considering historical data. Section 6.3 analyzes the ob-

tained Pareto Fronts regarding the three additional criteria. Non-dominated solutions

visualization is assisted with Aggregation Trees (AT) (de Freitas et al. 2015), parallel

coordinates and polar graphs.

The discussions about the obtained results of this Chapter are remarked in Chapter

7.

6.1 Microgrid scenario

In the microgrid considered in this study, all components are connected through a

DC bus without power flow constraints. The scenario is composed of:

113
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• Consumption: A building with a maximum contractual power of 243 kW.

• Production:

1. Wind Power Turbine (WPT) with a total capacity of 160 kW;

2. Solar PV array with a total capacity of 80 kW.

• SmartPark storage unit:

– PEV car composed with a typical Lithium-ion battery 60kW/60kWh storage.

– PEV car composed with three high speed flywheel 10kW/10kWh storage.

– PEV car composed with a CAES 60kW/60kWh storage.

The problem of energy management described here consists in planning, with a time

step of 1h, energy storage for each hour of a desired planning horizon. Two different

storage planning time horizons are handled in this current work, 24 and 168 hours ahead.

Figures 6.1 and 6.2 show day and week month historical data of the analyzed periods.

WPT data were adapted from EirGrid (Center 2015), Solar PV adapted from Hong,

Wilson & Xie (Hong et al. 2014) and residential house (adapted from Liu, Tang, Zhang

& Liu (Liu et al. 2014)). As can be verified in these figures, three different PEVs are

shown. PEVs availability are stated between each pair of red and blue points (maybe a

last red arrival point can be without a pair, since vehicle will only depart later than the

last time stamp). When vehicle arrives there is a red symbol marking its arrival state of

charge (SOC). Analogously, in each departure, the blue point marks the desired battery

SOC. During the arrival until the last time stamp before departure, PEV is available

as an extra energy demand/source for the MG. Both words (demand/source) are used

here since each PEV may represent an extra demand, taking into account that its owner

might require charging during its stay at the SmartPark, what would represent an extra

demand. On the other hand, if available to be used, as will be shown along the chapter,

it can represent a very useful and beneficial MG component.

The three PEVs depicted in Figures 6.1 and 6.2 were generated according to the

procedure described in Algorithm 6.1.
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Figure 6.1: One day forecasts, 24 samples
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Figure 6.2: One week ahead forecasts

Figure 6.3: Historical microgrid data with hour sampling
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Algorithm 6.1: Generate PEV

Input: Cardinality of the set of interval |I|
Output: PEV availability pevavi, PEV arrival pevarrvi , PEV departure pevdepvi , PEV

arrival SOC pevSOCarr
vi , PEV departure SOC pev

SOCdep

vi

for i← 0 to |I| do1

pevavi ← random binary ∈ [true, false]2

if pevavi is true then3

pevSOCarr
vi ← random SOC ∈ [low,medium,much]4

i′ ← i+ random available time ∈ [short,medium, long]5

pevavi,...,i′ ← true6

i← i′7

pevdepvi ← true8

pev
SOCdep

vi ← pevavi+ random extra SOC ∈ [low,medium,much]9

end10

end11

return pevavi, pev
arr
vi , pevdepvi , pevSOCarr

vi , pev
SOCdep

vi12

In Line 2 of Algorithm 6.1, PEV receives a random status of arriving or not. If it is

arriving, a random initial SOC, from different ranges of possible initial SOCs, is assigned

in line 4. After defining the availability time at the SmartPark, line 5, the departure

flag is set in line 8 and a random departure SOC, higher than arrival, is defined in line

9. In the model considered in this thesis, each vehicle is considered to demand energy

from the grid and, thus, its departure SOC is always greater than its arrival SOC. A

maximum allowed percentage of charging per interval is set to be 35%. Thus, any huge

charging, higher than 35%, is expected by the PEV owner. Parameters are formally

presented in Section 5.1.

Typical microgrid prices, also obtained from Hong, Wilson & Xie (Hong et al. 2014),

are shown in Figure 6.4. This figure shows the probabilistic forecast of the prices. In

this case, the medium quartile q50 is considered to be the real measured price. For

simplicity, this data is repeated to the other days, when required by a longer energy

storage planning.

6.1.1 Probabilistic forecasting problems

The probabilistic forecasts are obtained using the HFM described in Chapter 3. If it

happens that the forecasts are far from the actual measured data, they are slightly ad-
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Figure 6.4: Probabilistic price forecasts

justed in order to provide a reasonable probabilistic forecast scenario to be, didactically,

used here.

Figures 6.5a, 6.5b, 6.5c and 6.5d show the obtained probabilistic forecasts for the

historical data introduced in Section 6.1. As can be verified, lower and upper quartiles

(q1 and q99, respectively) were able to afford acceptable limits for each MG component

time series forecast (prices (Figure 6.4), consumption (Figures 6.5a and 6.5b), solar

(Figure 6.5c), total renewable energy production, solar + wind, (Figure 6.5d)). From

intervals the forecast time horizons 105 to 115 the model did not have a good performance

in forecasting solar PV production, thus, a small gap can be verified. Nevertheless, since

the extreme scenario analyses handled here do not consider the relationship between the

current measured values, the probabilistic forecast can still be considered precise.

6.2 Energy storage management over deterministic sce-

narios

The SPSMH algorithm was implemented in C++ in the framework OptFrame 2.0,

already introduced in Section 3.4.1, runing with CPLEX 12.5.1.
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(d) Wind and solar generation for one week ahead.

Figure 6.5: Probabilistic forecasts

The tests were carried out on a DELL Inspiron Intel Core i7-3537U, 2.00 x 4 GHZ

with 8GB of RAM, with operating system Ubuntu 12.04.3 precise, and compiled by g++

4.6.3, using the Eclipse Kepler Release.

6.2.1 Initial results and first storage planing scenarios

This first batch of experiments seeks to analyze the behavior of the proposed model

over the deterministic scenario presented in Section 6.1. Two different storage planning

time horizons were evaluated, k = 24 and k = 168. Main grid prices of the first scenario

were taken from the 11th quantile of the probabilistic forecast reported in Figure 6.4. The

expected buying prices for the forecast horizon of k = 168 were taken from the medium
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quartile, q50, and repeated for each day. Selling prices were set to be 70% of the buying

price for the first energy storage planning and 30% for the long-term. The number of

discrete intervals nIntervals, which regulates the possible values for the objective func-

tions weights (Section 5.3), was set to be 20 and 10, respectively for k = 24 and k = 168.

Thus, 9260 and 1330 MILP models were solved (excluding the case where λ1, λ2, λ3 are

equal to 0), respecting a maximum optimization time limit of 60 seconds. For instance,

the following set of possible values for the linear weightening were considered for the

one-week ahead storage planning: Λk=168 = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1].

As may be noticed, the number of possible values can be increased in large scale and

real case applications by increasing the value of nIntervals.

Batteries characteristics are shown in Figure 6.6. Flywheel and CAES batteries were

set to be able to discharge deeper than the Lithium-ion, 2% and 40% of maximum

DoD, respectively. Possible rates of charge and discharge were generated according to

11 possibilities.
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Figure 6.6: Batteries rate of charge, discharge and prices.
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Figure 6.7 presents the obtained set of non-dominated solution for the first forecast

time horizon, composed of 205 solutions.
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Figure 6.7: Pareto front for one day ahead with deterministic energy storage schedule.

The expected grid rate for the best solution of each objective function can be seen

in Figures 6.8a and 6.8b. As can be verified, the optimization of each objective function

resulted in different power dispatching strategies. The best total cost of the one-day

ahead schedule was $ 112.92, with a total percentage of batteries use of 418% and

maximum load of 67 kW. By saving batteries use, a solution with a slightly greater

maximum peak load of 72 kW was obtained with a total cost of $ 152.61. The schedule

which minimizes the maximum peak load schedule was able to minimize it in up to 31

kW, expecting a total cost of $ 189,13 and a total amount of batteries use equal to 1022

%. An analogous behavior was reported for the one week ahead storage planning.

6.2.2 Results considering the SPSMH with MIP start solutions

In the proposed approach, only the binary variables from the original MILP are

stored, as well as the objective function values. Thus, the CPLEX restores each solution
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Figure 6.8: Grid rate for deterministic power dispatching

and starts its search.
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Generating new microgrid scenarios with PEVs

Load time series from two different small microgrid residential areas (one already

considered in Section 6.1) and one commercial building, in a city of Zhejiang Province

of China, provided by Nian Liu et al. (Liu et al. 2014), were considered here, as well as

a microgrid house with high load fluctuation, extracted from the REDD dataset.

The cases of study described here comprise a small Wind Power Turbine (WPT) and

Solar PV array. The last two have been adapted from time series of a WPT with 160 kW

capacity and PV array with a total capacity of 80 kW, already described in Section 6.1.

We design three scenarios: the case 1 is composed only with the REDD microgrid house

(Figure 6.9); the second combined two different residential areas and loads from the

house (Figure 6.10); and the case 3 combines the demand profiles from the commercial

building and the microgrid household. Random arrivals are shown with asterisk points

and their departures with circles. Different color represents different PEVs.
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Figure 6.9: Microgrid household with two small sources of RER generation and 3 PEVs

We updated the prices described in Section 6.2 and included a SMES battery as

another option for this new mini/microgrid scenarios. Figure 6.11 depicts the discharging

prices that we assigned to the PEVs batteries. Four different energy storage systems were

considered: CAES, Flywheels, Lithium-ion and SMES. Some studies in the literature

have been discussing if rapid charging is really a point to be damaging batteries. Results

in a particle accelerator, performed by Li et al. (Li et al. 2014), at the Department of
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Figure 6.10: Residential microgrid area with two sources of RER generation and 10
PEVs

Energy of the SLAC National Accelerator Laboratory in Menlo Park, showed that more

uniform charging, whether fast or slow, were the main causes of battery degradation.

They found evidences that rapid charging and draining doesn’t damage Lithium Ion

Electrode as much as the literature used to think. In any case, our model is robust

enough to be adjusted to any new information found by researchers. Since it is based

on a discrete set of values associated to each charge or discharge cycle, the only thing

that might be needed is to update those values.

We included some uncertainties over the batteries maximum rates of charge and

discharge. They were generated at random according to the PEV maximum battery (20,

30, 60 or 70 kWh), also chosen at random. However, at least, 100 discretized points,

were considered as possible rates for charging and discharging the PEVs batteries. They

were uniformly generated from 0 until the maximum rate for each vehicle.

Scenarios were composed of different number of PEVs: 3, 10, 20, and 50. Forecasting

horizons of 24 hours ahead were considered.

Matheuristic smart mechanism performance

The CPLEX matheuristic black-box has been set to proceed with its search with the

maximum time of 5 seconds. Different numbers of weighted-sum MILP were generated

for each scenario: 27, 64 and 125. Three variants were analyzed, one with sequential
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Figure 6.11: Batteries discharge prices according to the rate of discharge.

order of the weighted-sum MILP, SPSMH, another one with random order, namely

SPSMH-R, and the last one was the same variant reported in Section 6.2.1, so-called

SPSMH-without, which does not include the MIP start mechanism.

Obtained sets of non-dominated solutions were evaluated according to the Hyper-

volume (HV) and Coverage quality indicators (Zitzler & Thiele 1998), Diversity metric

∆ (Deb et al. 2002) and Cardinality regarding a Pareto Front Reference (REF), com-

posed with all obtained solution for each case. Hypervolume was calculated using the

computational tool provided by Beume et al. (Beume et al. 2009).

As can be seen in Table 6.1, the ∆ metric was reduced, resulting in better quality of

the Pareto Fronts obtained by the SPSMH. The other quality indicators also reported

better results when using the proposed initialization mechanisms.

Specially in problems with 20 and 50 PEVS, the SPSMH-without was almost not able

to find any solution, in five seconds execution, to be added to the final Pareto Front.

The idea of initializing the model with initial feasible solutions was very useful and could

enhance the quality of the final set of non-dominated solutions. Further experiments

should analyze the behavior of the method with higher computational times.
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Table 6.1: Pareto fronts average values comparisons

Indicator of Quality SPSMH-without SPSMH SPSMH-R

Cardinality 53,1 62,7 64,5

Coverage 0,1498 0,2525 0,2346

∆ 0,0236 0,0025 0,0026

HV 217,10 224,65 227,93

6.3 Energy storage management using probabilistic fore-

casts

In this second batch of experiments, two different scenarios, extracted from Ta-

ble 5.1, were considered. The first one involves power dispatching based on the worst

case scenario and on evaluating objective function fobjExtremeScenario regarding the best

case. The second scenario was designed to optimize energy storage considering the

best case scenario while its performance over the worst case scenario was also eval-

uated by fobjExtremeScenario. Both Sharpe Ratio criteria (fobjSharpeRatioTotalCost(s) and

fobjSharpeRatioMaxLoad(s)) were evaluated for 20 different random scenarios.

Figures 6.14a and 6.14b present the obtained set of non-dominated solutions, com-

posed of more than 4000 solutions, represented by parallel coordinates graphs, ordered

with the tool provided by de Freitas et al. (2015). The latter introduced a polynomial

algorithm for finding the best order of the objective functions, in order to provide more

readable and understandable Pareto Fronts. In particular, Aggregation Trees are used

for finding the best groups, regarding a new concept of harmony and conflict between

objectives. The AT are depicted in Figures 6.12a and 6.12b.

Finally, polar graphs are also depicted, Figures 6.13a and 6.13b, in order to facilitate

the visualization of the conflicts between the objectives.

As can be verified in the branches of the AT, considering the worst case scenario,

the pairs of objective function and criteria (3, 6) and criteria (4, 5) the lowest conflict.

It can concluded by verifying the first branches in the AT. This result makes sense and

reinforces that by minimizing the max peak load, implicitly, its variability over the grid

also decrease. On the other hand, when minimizing total costs and battery use, higher

variability of grid peak load might be expected.

Moreover, in the worst case scenario, the robustness of the total cost (measured by
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(a) Worst case storage planning. (b) Best case storage planning.

Figure 6.12: Aggregation tree
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Figure 6.13: Polar graph

the criterion 4) can be seen in harmony with the volatility measured by criterion 5.

Objectives fobjTotalCost (1) and fobjBatteriesUse(s) (2) present the highest conflict, clearly

capturing the existing trade-off regarding the use of batteries. The latter fortify the

benefit of using PEVs battery in order to assist mini/microgrid energy management,

emphasizing how batteries can contribute for the RER integration. For the best case

scenario, the pair of objective functions (1, 2) kept showing largest conflict, information

supported by looking at the last branches of the respective AT.
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Since fobjSharpeRatioMaxLoad(s) and fobjMaxPeakLoad(s) are more harmonic storage sched-

ules, it can also be concluded that the use of PEVs batteries promotes decrease of max-

imum peak load and its volatility over different possible scenarios. The use of PEVs

batteries is also beneficial for reducing the difference between the expected total cost of

the power dispatching and the one that might happen in extreme scenarios.
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Chapter 7

Conclusions and future works

“A arte de prever involve a sabedoria do passado, vislumbrando-se o presente. Mas, a

relatividade nos ensina que a rećıproca do futuro também é verdadeira.”

— Anonymous

7.1 Summary and final considerations

The main achieved goals, stated in the beginning of this thesis, are described below:

(i) a detailed literature review related to the main topics addressed in this thesis was

presented; (ii) a novel multi-objective energy storage power dispatching was introduced,

analyzed and discussed; (iii) the development and design of a new hybrid forecasting

model, with enough flexibility, able to be applied for forecasting different MG compo-

nents; and, finally, (iv) a smart matheuristic black-box algorithm was used to solve the

proposed MILP model.

In the Chapter 2, a literature review surrounding the SG technology, energy storage

system and forecasting techniques was presented.

A novel Hybrid Forecasting Model (HFM) was introduced in Chapter 3. The model

was applied to forecast different load forecasting problems of the SG environment. Prob-

abilistic forecast were also achieved for two different forecasting problems: rainfall and

wind power generation forecasting. While Chapter 4 described a novel self-adaptive ES

for combinatorial optimization problems. In particular, the HFM was also calibrated

using it.
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Chapter 5 described the proposed multi-objective storage planing power dispatching,

Optimization of different MG characteristics was proposed, such as: MG total costs, use

of PEVs batteries, maximum MG system peak load, behavior in extreme and sets of

different scenarios. Probabilistic forecasts were used in order to evaluate energy storage

schedule in extreme scenarios and for optimizing schedules volatility. The well-known

economic indicator Sharpe Ratio was applied for evaluating a new cost-to-variability

index.

Finally, through computational experiments, Chapter 6, it was verified a reasonable

potential of improving the use of self-generated energy, as well as reducing mini/micro-

grid energy peak load by considering an ESS based on PEVs located at SmartParks.

Trade-offs between the use of PEVs batteries, which are an important environment issue,

were discussed. It is expected that the proposed model could be applied not only by MG

users but also as a decision-making tool in order to assist smart-microgrid management.

7.2 Extensions

Entire code used in this research is, from this moment, available as example on the

OptFrame website. Thus, it is expected that future researchers continue contributing to

enhancing the proposed model, increasingly its efficiency and improving the tools and

ideas presented in this thesis.

7.2.1 Extensions for the self-adaptive fuzzy model

The HFM could be adapted to tackle forecasting over different SG components, such

as wind (Foley et al. 2012), solar (Bacher et al. 2009) forecasting, smart park storage

forecasting (Saber & Venayagamoorthy 2010), among others. Finally, a parallel version

of GES would be very useful to improve the performance of the model in problems with

a huge amount of data. This approach could take advantage of multi-core technology

and Graphics Processing Unit, which are already available in current machines and with

easy abstraction for metaheuristic based algorithms.

It is proposed to develop a multi-objective version of the calibration algorithm GES,

using different quality indicators (Hyndman & Koehler 2006) in order to obtain different

forecasting models. It is suspected that, with this MO approach, different parts of the

historical data could be learned. These non-dominated set of models could also be

aggregated and analyzed as a probabilistic forecast, which has been receiving attention

for load (Hong et al. 2014) and wind (Zhang et al. 2014) forecasting problems.
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Current results were limited to only generate the probabilistic forecasts, thus, future

efforts should try to evaluated the obtained probabilistic functions with well-known

indicators, such as a Pinball Function (Gneiting 2011). This kind of comparison would

complement the discussions and comparison with the literature.

7.2.2 Extensions for the multi-objective power disptaching problem

As future work the proposed model should be applied in other MG scenarios, in-

cluding other renewable energy resources and a larger scenario with lower granularities.

Those scenarios should include other RER and higher discretization levels (down to

milliseconds), which would allow a more precise power dispatching. Since the model is

mainly based on a MILP approach, it might be limited to handle real time scenarios,

where decision making should be done as quick as possible. Thus, the development of a

metaheuristic algorithm might provide a flexible tool to be applied over those cases.

The current model was limited and did not considered uncertainties over PEVs avail-

ability. Undoubtedly, PEVs users could be delayed or do not come to the SmartPark

as expected. Thus, unexpected variations on the arriving and departuring time could

be handle by a set of rules. The latter should prepare and analyze the impacts on the

system whether a PEV does not come.

Other improvements and extensions in the MILP are also possible. The model may

include a new set of parameters for controlling energy efficiency according to the way the

battery is discharged. Basically, a new vector of parameters could contain the efficiency

for each battery cycle (80% rate of discharge, in one hour, of a PEV battery with

maximum capacity of 100kWh might provide only 72kWh, if battery efficiency is 90%).
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Sathicq, M. B., Bauer, D. E. & Gómez, N. (2015). Influence of el niño southern os-

cillation phenomenon on coastal phytoplankton in a mixohaline ecosystem on the

southeastern of south america: Ŕıo de la plata estuary, Marine Pollution Bulletin

98(1-2): 26 – 33. doi: http://dx.doi.org/10.1016/j.marpolbul.2015.07.017.

Savage, L. J. (1971). Elicitation of personal probabilities and expectations, Journal of

the American Statistical Association 66(336): pp. 783–801.

URL: http://www.jstor.org/stable/2284229



150 REFERENCES

Schneider, M., Stenger, A. & Hof, J. (2014). An adaptive vns algorithm for vehi-

cle routing problems with intermediate stops, OR Spectrum 37(2): 353–387. doi:

10.1007/s00291-014-0376-5.
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