
ADRIANO MARTINS DA COSTA REZENDE

COORDINATION AND CONTROL OF

FIXED-WING AERIAL ROBOTS

Dissertation presented to the Graduate
Program in Electrical Engineering of the
Federal University of Minas Gerais in par-
tial fulfillment of the requirements for the
degree of Master in Electrical Engineering.

Advisor: Luciano Cunha de Araújo Pimenta
Co-Advisor: Vinicius Mariano Gonçalves

Belo Horizonte

February 2019

c© 2019, Adriano Martins da Costa Rezende.
Todos os direitos reservados.

Martins da Costa Rezende, Adriano

D1234p Coordination and Control of Fixed-Wing Aerial
Robots / Adriano Martins da Costa Rezende. — Belo
Horizonte, 2019

xxi, 97 f. : il. ; 29cm

Dissertação (mestrado) — Federal University of
Minas Gerais

Orientador: Luciano Cunha de Araújo Pimenta

1. Sistemas multi-robôs. 2. Programação linear
inteira mista. 3. Evitamento de colisões. 4. Campos
vetoriais. 5. Controle não linear.

CDU 519.6*82.10

iii

iv

Acknowledgments

First, I should thank my entire family for all the support during the master course and
for the incentives to the studies since I was a child.

I would like to acknowledge professors Luciano Pimenta and Vinicius Gonçalves
for the orientation during the last two years. I also acknowledge the other professors
of the program for all the knowledge they have transmitted to me. Besides, I should
thank the professors Guilherme Raffo, Leonardo Tôrres and Gustavo Freitas, the other
members of the valuation committee, for the valuable suggestions to improve this
dissertation.

I acknowledge José Lucas Gomes Olavo for making available the simulator with
the aircraft model used to validate the results in this work.

For undergrad students, master and PhD students from the CORO laboratory I
should say thanks for the company and for making the laboratory a nice environment.

Finally, I am so thankful for the financial support provided by CNPq and the
Electrical Engineering Graduate Program (PPGEE) of the UFMG.

v

“Teamwork is the ability to work together toward a common vision. The ability to
direct individual accomplishments toward organizational objectives. It is the fuel that

allows common people to attain uncommon results.”
(Andrew Carnegie)

vii

Resumo

Sistemas multi-agente vem recebendo muita atenção nos últimos anos, uma vez que
eles são capazes de realizar tarefas ou melhor, ou mais rápido ou até mesmo que são
infactíveis para um único agente. Este trabalho apresenta uma formulação baseada
em MILP (programação linear inteira mista) para a coordenação de múltiplos robôs
que devem percorrer, persistentemente, curvas fechadas com pontos de interseção. A
estratégia consiste em um planejamento off-line para as velocidades dos robôs de forma
que estes não precisem, em tempo real, realizar manobras para evitar colisões entre
eles. O modelo do robô considera restrições de velocidade mínima e máxima, fato
que possibilita a aplicação da estratégia a robôs aéreos de asa fixa. Questões que são
usualmente negligenciadas na literatura de sistemas multi-robô são consideradas neste
trabalho, a saber: separação espacial mínima; limites de aceleração; e incertezas nas
velocidades e posições.

Para controlar cada robô no seu caminho específico, uma técnica de campo ve-
torial guia foi desenvolvida. Nesta parte da dissertação uma representação mais com-
pleta da dinâmica de um avião é considerada. O modelo de referência utilizado é não
holonômico e admite entradas de controle limitadas. Uma estratégia de campo vetorial
já consolidada é utilizada para efetuar o cálculo das entradas de controle. Convergên-
cia assintótica é provada através da Teoria de Lyapunov e conjuntos invariantes são
encontrados quando distúrbios são levados em consideração. A estratégia de controle
desenvolvida também apresenta vantagens sobre trabalhos relacionados. Sua principal
característica é a habilidade de lidar com curvas de formato genérico em 3 dimensões.

Simulações com até 48 robôs demonstram a eficiência computacional da estraté-
gia de coordenação baseada em MILP. A eficiência do controlador guiado por campo
vetorial proposto é demonstrada em simulações com um modelo de aeronave mais com-
pleto, com 6 graus de liberdade e 12 estados. Um experimento real com 3 robôs e-puck
é apresentado para validar a estratégia de coordenação e controle de múltiplos robôs
em um cenário do mundo real.

ix

Abstract

Multi-agent systems have receiving much attention in the last years, since they are
able to perform tasks better, faster of even that are unfeasible for single agents. This
work presents a MILP (mixed integer linear programming) based formulation for the
coordination of multiple robots that must follow closed intersecting paths persistently.
The strategy consists on an off-line planning for the robots’ velocities, which prevents
the need of online inter-robot collision avoidance maneuvers. The robot model considers
minimum and maximum speed constraints, which allows the strategy to be applied to
fixed-wing aerial robots. Issues that are often disregarded in the literature of multi-
robot systems are addressed in the present work, they are: minimum spatial separation;
acceleration limits; and uncertainties on the speeds and positions.

In order to control each robot on its specified path, a guidance vector field ap-
proach technique was developed. In this part of the dissertation a more complete
representation of the dynamics of an airplane is considered. The used reference model
is non holonomic and has constrained input controls. A consolidated vector field strat-
egy is used to guide the computation of the control inputs. Asymptotic stability is
proven with Lyapunov Theory and ultimate bounds are found when actuation distur-
bances are taken into account. The developed control strategy also has advantages
over the strategies in related works. Its main characteristic is the ability to deal with
generic curve shapes in 3 dimensions.

Simulations with up to 48 robots show the computational efficiency of the MILP
based coordination strategy. The efficiency of the proposed guidance vector field con-
troller is demonstrated by simulations with a more complete aircraft model, with 6

degrees of freedom and 12 states. A real experiment with 3 actual e-puck robots is
presented in order to validate the multi-robot coordination and control strategy in a
real world scenario.

xi

List of Figures

1.1 Multiple robotic manipulators, manufactured by Comau, working on an
automobile on the production line at Fiat Chrysler Automobiles. Source:
https://www.bloomberg.com. 10

1.2 Multiple robots that transport stacks of products at Amazon warehouse.
Source: www.infobae.com . 10

1.3 On the left is a quadrotor DJI Matrice 100 (Source: https://store.dji.com).
On the right is a fixed-wing UAV developed at UFMG. 12

1.4 Multi-stage structure of the problem solution. 14

2.1 Example of the ORCA algorithm with incorporation of kinematic car-like
constraints proposed in [Alonso-Mora et al., 2012]. 16

2.2 Paths of multiple robots planned in [Avellar et al., 2015] to cover a polygo-
nal area. 17

2.3 Example of multiple paths to be periodically followed by robots presented
in [Gonçalves et al., 2013]. 20

2.4 Block diagram representing how the target dynamics is imposed to the UAV.
Source: [Olavo et al., 2018]. 23

2.5 Low level controllers considered in [Thums, 2012], [Jesus et al., 2013],
[Olavo et al., 2018]. 24

2.6 Examples of vector fields in R2. In red are the target curves and in blue a
normalized vector field. 25

2.7 Representation of the strategy in [Gonçalves et al., 2010]. Two level sets in
R3 and the intersection between them. 27

2.8 Experiments presented in [Kapitanyuk et al., 2017] with ground robots. . . 28

2.9 Results obtained according to the strategy in [Olavo et al., 2018]. 29

3.1 Example of a possible configuration of our problem. Two closed paths and
dangerous stretches (dashed black). Dotted circles show the robots’ size. . 32

xiii

3.2 Illustration of the target points (green) placement and regions of uncertainty
(between black curved traces) in the example of Fig. 3.1. 33

3.3 Illustration of the definitions made in Section 3.3. 40

3.4 Illustration of the safety constraints. 41

3.5 Illustration of the average speed computation. 44

4.1 Definitions for Theorem 4. In blue is the straight line with orientation θ.
In red are vectors with orientations β1 and β2. In green are vectors with
orientations φ(β1) and φ(β2). 68

5.1 Scenario used for a simulation of the coordination strategy. Collision
stretches are the ones in thick black. Inflated collision zones, represented
by the gray polygons, are composed of the segments therein. Target points
are in black and the regions of uncertainty are between the black curved
traces. Robots are represented by arrows indicating their motion direction
and circles indicating their sizes. 72

5.2 Scenario used for the timing analysis. 73

5.3 Execution time of the algorithms. Scenario of Fig. 5.2 74

5.4 Number of variables and constraints. Scenario of Fig. 5.2 74

5.5 Box plot of the total time of the coordination strategy applied to the scenario
of Fig. 5.2. 75

5.6 Numerical simulation. The UAV’s trajectory, in red, converges to a generic
path and remains inside the bounds, represented by the blue curves. 76

5.7 In the top is the Lyapunov function Vθ. The dashed blue/yellow trace is
associated with the time the UAV was inside BΩ. In the bottom is the
field potential function P . The dashed lines are the corresponding ultimate
bounds. 77

5.8 Performance of the UAV in the simulation of Figure 5.6. From top to
bottom: height z; ground speed v(t); and bank angle. 77

5.9 Simulation considering a “saddle like” path in R3. In red is the trajectory
followed by the UAV, which converges to the blue tube. 78

5.10 Functions Vθ and P associated to the 3 dimensional simulation. 78

5.11 Performance of the UAV in the simulation of Figure 5.9. 79

5.12 Results obtained according to the control strategy presented in this work.
The initial conditions are the same as in Figure 2.9. 79

5.13 Scenario of the simulation with UAVs’ realistic model. The inflated collision
zones, target points and regions of uncertainty are placed as in Fig. 5.1. . . 80

xiv

5.14 Block diagram in Simulink representing the controllers developed in this work. 82
5.15 Histogram of the normalized position errors at the instants t[q, k] for robots

1, 2 and 3, in the Simulink simulation. 82
5.16 In the top are the reference velocity and performed velocity of the blue UAV

in the Simulink simulation. In the bottom is the error between the velocities. 83
5.17 Scenario of the actual robot experiment post printed on a frame of the

camera system. 84
5.18 Histogram of the normalized position errors at the instants t[q, k] for robots

1, 2 and 3, in the e-puck experiment. 85

xv

List of Tables

5.1 Results for robot 1 in the simulation of Figure 5.1 73
5.2 Results for robot 1 in the experiment of Figure 5.13 81
5.3 Results for robot 1 in the experiment of Figure 5.17 84

xvii

Contents

Acknowledgments v

Resumo ix

Abstract xi

List of Figures xiii

List of Tables xvii

1 Introduction 9
1.1 Multi-agent systems . 9
1.2 Aerial robots . 11
1.3 Contributions . 13

1.3.1 Publications . 14
1.4 Dissertation structure . 14

2 Related works 15
2.1 Multi-robot coordination . 15

2.1.1 Collision free motion . 15
2.1.2 MILP formulations for multi-robot systems 17
2.1.3 Other approaches to the multi-robot coordination 17
2.1.4 Multi-robot systems with cyclic tasks 19
2.1.5 Coordination strategy in this work 20

2.2 Robot control strategies . 21
2.2.1 Fixed-wing UAV reference model 22
2.2.2 Vector fields . 25
2.2.3 Guidance vector field strategies 27
2.2.4 Control strategy in this work 30

xix

3 Coordination strategy 31
3.1 Multi-robot problem statement . 31

3.1.1 Speed model . 33
3.1.2 Uncertainty model . 34

3.2 Definition of collision zones . 35
3.2.1 Practical implementation . 37

3.3 MILP formulation . 38
3.3.1 Safety and periodicity . 40
3.3.2 Average speed reference . 43
3.3.3 Uncertainty . 44
3.3.4 Acceleration limits . 46
3.3.5 Speed limits . 47
3.3.6 Final MILP problem . 48

3.4 Discussion on the coordination solution 50
3.4.1 Alternative objective functions 50
3.4.2 Absence of solution . 50
3.4.3 Alternative approaches . 51
3.4.4 Speed profile along the paths 52

4 Control strategy 55
4.1 Control problem statement . 55
4.2 Control design . 56

4.2.1 Heading control . 57
4.2.2 Velocity control . 59
4.2.3 Altitude control . 60
4.2.4 Disturbance analysis . 61

4.3 Field’s Singularities . 67

5 Results 71
5.1 Coordination strategy . 71

5.1.1 Simulated experiments . 71
5.1.2 Timing analysis . 73

5.2 Vector field control validation . 75
5.2.1 Simulated experiments . 75

5.3 Coordination and control . 80
5.3.1 Multiple airplanes simulation 80
5.3.2 Multiple real robots experiment 82

xx

5.4 Summary of results . 84

6 Conclusion 87
6.1 Final considerations . 87
6.2 Future works . 88

Bibliography 89

xxi

List of abbreviations and acronyms

UFMG Universidade Federal de Minas Gerais

PPGEE Programa de Pós-Graduação em Engenharia Elétrica

UAV Unmanned Aerial Vehicle

MILP Mixed Integer Linear Programming

GPS Global Positioning System

IMU Inertial Measurement Unit

PID Proportional Integral Derivative

ORCA Optimal Reciprocal Collision Avoidance

CHOPs Circular Holding Patterns

MPC Model Predictive Control

NMPC Non-linear Model Predictive Control

MAV Micro Air Vehicle

DMPC Decentralized Model Predictive Control

DAG Direct Acyclic Graph

RRT Rapidly-Exploring Random Tree

PRM Probabilistic Roadmap

BTT Bottleneck Tree

LOS Line-of-sight

NLGL Nonlinear Guidance Law

1

2 CONTENTS

GVF Guidance Vector Field

DOF Degrees-of-freedom

PI Proportional Integral

gdc greatest common divisor

LP Linear Problem

ROS Robot Operating System

List of Symbols

R Set of real numbers

I Set of integer numbers

N Set of natural numbers

R Set of robots

Pi Set of points in R3 that belong to the path of the robot i ∈ R

q Index of target point

∆s Enlargement of the collision zones

t Time

t∗ Time passed since the instant the speed command of a robot is changed

v(t) Forward velocity of a robot

τi Time spent by robot i change its velocity between to setpoint speeds

a Acceleration used by robot i to change its speed

u(v) Uncertainty in the forward velocity of a robot along its path

uv Velocity uncertainty that is independent of the current velocity

u% Velocity uncertainty that is proportional to the current velocity

U i
v Maximum value of uv associated to robot i

U i
% Maximum value of u% associated to robot i

U i
p Maximum value of the position uncertainty associated to robot i

Q Set of points in R3 that belong to at least one path Pi, i ∈ R

3

4 CONTENTS

C Set of collision points

ρij Minimum distance between robots i, j ∈ R to avoid collision between them

E1 Relation that defines neighbor points

E2 Relation that defines closed points in distinguishable paths

E∗ Equivalence relation that defines points in the same collision zone

Z Set of collision zones

S Set of collision stretches

E Set of entrance target points

O Set of output target points

H Set of all target points

W(q) Set of target points that are entrances of the region in which q is entrance

n(q) Function next target point

p(q) Function previous target point

f(i) Function first target point

b(q) Function that maps each target point q to the associated robot i

L(q) Length of the stretch from q to s(q)

t[q, k] Instant robot i must reach target point q in the k-th cycle

r[q] Half of the length of the region of uncertainty associated to q

L[q] Length between target point q and s(q)

C0 Fundamental cycle time

C[i] Cycle time of robot i ∈ R

T [q, k] Time robot i must spend from q to s(q)

λ(i) Integer multiplier for the cycle time C[i]

∆k Auxiliary variable to prove safety

CONTENTS 5

ξ Very large positive number

B[q1, q2] Binary variable associated to the pair (q1, q2) ∈ E2

e[q, k] Error of the position of a robot at instant t[q, k]

ê[q, k] Measurement of the error e[q, k]

V [q, k] Average velocity to be executed between points q and n(q) in the k-th cycle

Dm Minimum distance that a robot travels when there is uncertainty

Did Ideal distance that a robot should travel

Vi[q, k] Instantaneous forward velocity of robot i at point q in the k-th cycle

Vf [q, k] Desired forward velocity of robot i at point n(q) in the k-th cycle

vimin Minimum forward velocity of robot i

vimax Maximum forward velocity of robot i

aimin Minimum linear acceleration of robot i

aimax Maximum linear acceleration of robot i

∆vi Difference between the maximum and minimum forward velocities of robot i

w(q1, q2) Integer number to relax the safety constraints

d Greatest common divisor between λ(i1) and λ(i2)

aq Auxiliary constant

bq Auxiliary constant

A Matrix with constants aq

B Vector of constants bq

Vi Vector of ideal velocities at the target points

x Cartesian coordinate x of the UAV

y Cartesian coordinate y of the UAV

z Cartesian coordinate z of the UAV

6 CONTENTS

θ Heading angle of the UAV

v Forward velocity of the UAV

zc Command for the height z

θc Command for the heading angle θ

vc Command for the forward velocity v

τz Time constant of the height dynamics

τθ Time constant of the heading dynamics

τv Time constant of the forward velocity dynamics

uz Uncertainty in the height dynamics

uω Uncertainty in the heading dynamics

ua Uncertainty in the forward velocity dynamics

Uz Maximum absolute value of the uncertainty uz

Uω Maximum absolute value of the uncertainty uω

Ua Maximum absolute value of the uncertainty ua

vzmax Maximum absolute value of the vertical velocity of the UAV

ωmax Maximum absolute value of the turning rate of the UAV

vmin Minimum forward velocity of the UAV

vmax Minimum forward velocity of the UAV

p Vector in R3 representing the UAV position

Φ Vector field in R3

α1 First basic function to generate the vector field

α2 Second basic function to generate the vector field

G Gain function for the convergence to the curve

H Gain function for the curve’s circulation

CONTENTS 7

P Lyapunov function of the vector field

∇ Nabla operator

Φ̂ Normalized and projected field R3

Φ̂x Component of the normalized and projected field in the x direction

Φ̂y Component of the normalized and projected field in the y direction

Φ̂z Vertical component associated to the normalized and projected field

θf (p) Heading angle of the vector field at point p

θ̄(p, θ) Orientation error of the UAV with respect to θf

ω(t) Desired reference turning rate for the UAV

Vθ Lyapunov function that measures the orientation error

kp Gain of the heading angle controller

M Maximum value of gradients of the field’s components

‖ṗ‖max Maximum value of the speed the UAV may reach

vr Reference forward velocity to be tracked by the UAV

kv Gain of the forward velocity controller

a(t) Desired forward linear acceleration for the UAV

Vv Lyapunov function that measures the forward velocity error

ṽz Desired vertical velocity for the UAV

vz Saturated desired vertical velocity for the UAV

γ Ultimate bound for the error on θ̄

Iθ Invariant set of θ̄

v̄ Error of the forward velocity

µ Ultimate bound for the error on v̄

Iv Invariant set of v̄

8 CONTENTS

v̄z Error of the vertical velocity

ζ Ultimate bound for the error on v̄z

Iz Invariant set of v̄z

w1, w2, w3 Unit vectors in R3

Ψ Reference vector for the UAV’s velocity ṗ

I Invariant set for the position of the UAV

χ Auxiliary variable to compute I

ps Position of a singularity point on the vector field

BΩ Ball of radius Ω around the singularity

Ω Radius of the circle around the singularity

β Angular coordinate for a point in the border of BΩ

∆β Variation on β while the UAV traverses the circle BΩ

φ(β) Orientation of the projected field at the border of BΩ indicated by angle β

δ(β) Orientation of the projected field with respect to the normal vector of BΩ at β

∆Vθ Variation of Vθ while the UAV traverses the circle BΩ

Chapter 1

Introduction

1.1 Multi-agent systems

Cooperative robotics is a field designated to the study of strategies to make a group of
robots perform a desired task together. These multi-agent systems have the purpose
of executing tasks that are either difficult or impossible to be performed by a single
agent. Multi-agent systems may offer important advantages such as shorter execution
time and robustness to agent failure.

Multiple robots working together are widely present in several types of assem-
bly lines. An example is in the automobile industry. Figure 1.1 shows a group of
robots working in the same car. A strategy to coordinate them is necessary to avoid
collisions between the robots and also minimize the working time, as proposed in
[Spensieri et al., 2016]. Such strategies can be extremely useful in the industry, since
they have direct economic implications.

When using multiple robots moving in the same environment, problems related
to collisions and communication need to be carefully addressed. In this work, we focus
on the the problem of inter-robot collisions. The communication issue will not be a
problem as we propose an offline solution that does not require any communication
between the robots.

Another example of system that considers multiple mobile robots moving in the
same area, as proposed in this work, is the multi-robot system deployed in the Amazon
warehouse. Figure 1.2 shows the robots used to transport the products’ stacks. These
mobile robots need to move around the warehouse while avoiding collisions between
each other. Robots are far away from replacing human workers entirely, however, they
are a practicable option to transport products, goods and also commodities.

Besides manufacturing and transporting tasks, multiple robots are also useful in

9

10 Chapter 1. Introduction

Figure 1.1. Multiple robotic manipulators, manufactured by Comau, working
on an automobile on the production line at Fiat Chrysler Automobiles. Source:
https://www.bloomberg.com.

Figure 1.2. Multiple robots that transport stacks of products at Amazon ware-
house. Source: www.infobae.com

area coverage missions. As pointed out in [Palacios-Gasós et al., 2016], the problem of
covering an environment with a team of robots, commonly called multi-robot coverage
problem, can fall in three different categories: static, dynamic or persistent. In static
coverage, fixed positions for a set of agents are defined in order to statically monitor
an environment. Dynamic coverage is related to exploration missions, where an area
must be explored until some level of knowledge is reached. Different from the previous
scenarios, in persistent coverage a given area or specific points inside the area must be
continuously kept under monitoring, which means that robots must keep periodically
revisiting determined places in the environment.

Such persistent coverage tasks in which the robots must keep visiting periodically
specific points of the environment may be modeled as the problem of controlling the
robots to traverse periodically predefined closed paths [Keller et al., 2017]. In general,
such paths might have intersections. In this work a planning strategy to safely co-

1.2. Aerial robots 11

ordinate a group of robots in such scenario is presented. The objective is to cover
closed paths that have intersection points with each other. This problem was earlier
addressed in [Gonçalves et al., 2013], in which the objective of planning a collision-free
velocity profile for point robots is achieved by solving a MILP (mixed integer linear
programming) problem considering minimum and maximum speed limits as physical
constraints. In the present work, those results are extended by considering some prac-
tical issues which are usually disregarded in multi-robot coverage literature. Real size
robots, acceleration limits and uncertainties in the individual robot controllers are take
into account. Minimum and maximum speed limits are also taken into account, which
allows for the application of our strategy to fixed-wing aerial vehicles. The objective
is to maximize safety. The minimum spatial distance between the robots is maximized
by extending the sizes of the so called collision zones. This minimum distance is max-
imized in order to improve safety and coverage quality. Safety is improved because
the robots will be more distant apart. Coverage efficiency will be implicitly improved
because if the robots are not very close to each other they are not covering the same
area at the same time. In addition, in the case of aerial robots this separation might
help to minimize aerodynamic interference. In [Tang et al., 2017] the authors use a
multi-robot planner to solve a point-to-point problem even when the robots are in dif-
ferent heights. They experimentally show the better performance when the planner is
used and justify it with the decrease in aerodynamic interference.

In order to illustrate the efficiency of the approach, several simulations are pre-
sented. Scenarios with up to 48 robots are solved within less than 8 seconds with
MATLAB. An experiment with 3 actual e-puck robots is also presented. It shows the
robustness of the solution and the stability of the online computation of reference speed
that keeps the robots synchronized.

Besides coverage tasks, the strategy presented in this work also envision other
important applications for the proposed framework. In fact, the solution might be used
in any context where there are multiple robots executing cyclic motion in a shared
workspace with the risk of collisions. Direct examples are: planning the motion of
multiple robots transporting products in a warehouse periodically; and the planning of
the schedule of multiple trains connecting multiple cities.

1.2 Aerial robots

Nowadays UAVs (Unmanned Aerial Vehicles) are used in many military and civil ap-
plications. In particular, fixed-wing vehicles are used in tasks such as surveillance,

12 Chapter 1. Introduction

monitoring, convoy protection, and others. As an example, fixed-wing UAVs are used
for the communication and also for collecting atmospheric data [Frew et al., 2013].
Also, these small airplanes are used to collect image data of given areas for the poste-
rior creation of 3 dimensional maps. These types of data may also be acquired by a
group of UAVs, as proposed by [Avellar et al., 2015]. The advances in electronics, and
consequently, the low costs associated with sensors such as GPS (Global Positioning
System), IMU (Inertial Measurement Unit), barometers and compass, have collabo-
rated to the increase in the research interest in such aerial vehicles. Fixed-wing UAVs
have an important advantage regarding the autonomy in terms of energy in comparison
to rotary-wing vehicles. In this context, guidance techniques for such aircraft are re-
ceiving a lot of attention in the academy and industry. Figure 1.3 shows a rotary-wing
vehicle on the left and a fixed wing on the right.

Figure 1.3. On the left is a quadrotor DJI Matrice 100 (Source:
https://store.dji.com). On the right is a fixed-wing UAV developed at UFMG.

The quadrotor robot has an important advantage regarding its mobility. In-
formally, at low speeds the quadrotor can be controlled to move along any direction
regardless its pose. Besides, quadrotors can hover. Their limitations are only related
to the dynamic behavior of the system. Given the constant motion of the wings of the
quadrotor and its aerodynamics, they have a lower autonomy, usually between 10 to 25

minutes of flight. The advantageous mobility feature of quadrotors is, unfortunately,
not present in the fixed-wing vehicles. Informally, the UAV can not instantaneously
move itself sideways. This effect is the same as the one in diferentially driven ground
robots. In this context, in order to explore the advantages of the fixed-wing UAV
regarding energetic efficiency, a more sophisticated high level guidance technique is
needed.

In the present work multiple fixed-wing UAVs will be used to cover closed paths.
Thus, a control strategy that makes these airplanes follow the given paths will also be
presented, as a stage of the whole methodology. The control strategy will be based
on artificial vector fields and on an aircraft reference model that incorporates the non-
holonomic behavior of the UAV. These fields of study will be reviewed in the next

1.3. Contributions 13

Chapter.

1.3 Contributions

The contributions of this work can be summarized in the following two topics: (i) de-
velopment of a coordination strategy for multiple fixed-wing UAVs traverse prespecified
closed curves while avoiding collisions between them; and (ii) development of a control
strategy able to guide a fixed-wing UAV along a prespecified path with a given velocity
profile.

The coordination strategy is a methodology able to coordinate multiple robots,
each one along a prespecified path, while avoiding collisions between them. It was done
by planning a speed profile for each robot along its associated path. The planning takes
into account practical issues associated to velocity and acceleration limits, robots with
real size and uncertainties on the velocities and positions of the agents.

The developed control strategy is in a lower level in comparison to the coordina-
tion strategy. It is able to make a robot converge to and circulate the desired curve. A
reference model of the airplane that considers its main features, such as speed limits
and the non-holonomic constraint, was considered to design the controller. Since the
reference model does not represent the fixed-wing UAV exactly, uncertainties in the
model were taken into account in order to ensure robustness.

The two aforementioned objectives correspond to two of the stages of a multi-
stage solution to the area coverage problem with fixed wing UAVs. The first stage is
the higher level planner that defines the paths to be followed. This stage is not tackled
in this work. The second stage is the motion planning of the UAVs along the predefined
paths, which is the coordination problem addressed here. The third stage is the high
level controller that considers a simplified, but representative, model of the airplane,
with the objective of guiding a UAV towards its path. The fourth stage consists of
low level PID controllers that are responsible to impose the reference model assumed
in the previous stage to the airplane. The design of these PID controllers is also out
of the scope of the present work.

Figure 1.4 depicts the multi-stage solution structure. The “Fixed-wing UAV”
block represents the airplane, which can be the physical aircraft or a complex model
for simulation. The “State estimator” block represents the sensors and filters used to
estimate the states of the aircraft. Among the four aforementioned stages, represented
in the figure by the rectangular shapes, the objective is then the development of the
stages represented by the red blocks.

14 Chapter 1. Introduction

Coverage
planning

Coordination
strategy

High level
control

Low level
control

Fixed-wing
UAV

State
estimator

states

Figure 1.4. Multi-stage structure of the problem solution.

1.3.1 Publications

This work originated two publications: [Rezende et al., 2018a] and
[Rezende et al., 2018b]. The first one is entitled Controle de VANT de asa fixa
com campos vetoriais arbitrários, and was presented in the Congresso Brasileiro
de Automática (CBA), in João Pessoa, Paraíba, Brazil. The second one is entitled
Robust Fixed-Wing UAV Guidance with Circulating Artificial Vector Fields and was
published on the 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), in Madrid, Spain. Both works are associated to the guidance vector
field based control strategy for fixed-wing UAVs presented in this dissertation.

1.4 Dissertation structure

This dissertation is organized as follows: in the next Chapter a literature review is made
and the related works are compared to the present work. In Chapter 3 the coordination
strategy for multiple agents is developed. In Chapter 4 the focus goes to a single fixed-
wing UAV and the control strategy is presented. In Chapter 5 several simulations and
experiments are presented to validate the developed strategies. Finally, in Chapter 6
the work is concluded and possible future extensions are proposed.

Chapter 2

Related works

2.1 Multi-robot coordination

This section is dedicated to a revision on works in the literature that deal with the
problem of multi-robot systems.

2.1.1 Collision free motion

When dealing with multiple agents, a recurrent problem is the inter robot col-
lision avoidance. In the literature, this issue is commonly addressed with stop-
ping policies [Soltero et al., 2011], [Wallar et al., 2015], or sensing-repelling strategies
[Lin and Saripalli, 2015],[Zhang et al., 2010]. The first one is not applicable when the
robots are fixed-wing UAVs, since a minimum velocity is needed for aerodynamic lift.
The second one is not usually applicable when the robots must be kept on their planned
paths, to avoid other fixed obstacles for example. Besides, in general there is no guar-
antee of absence of collisions and deadlocks, which may occur when reactive methods
are used.

In [Borkar et al., 2016] the motion of multiple robots is planned over a single pre-
viously defined Lissajous curve. An algorithm is used to define a curve and the number
of agents to cover a rectangular area. The motion is then planned by maximizing the
size of the agents such that collision free trajectories are still feasible.

A widely used algorithm for collision avoidance is ORCA (Optimal Reciprocal
Collision Avoidance), [Van Den Berg et al., 2011]. The algorithm is based on the defi-
nition of velocity obstacles. Each robot detects the other agents on its surroundings and
considers them as moving obstacles in order to plan its own motion. No communication
between the agents is necessary and the strategy is completely decentralized. Several

15

16 Chapter 2. Related works

extensions of the ORCA algorithm are available, for instance, in [Rufli et al., 2013]
smooth piecewise trajectories are generated and in [Alonso-Mora et al., 2012] kinematic
constraints of car-like vehicles are incorporated. Figure 2.1 exemplifies the strategy
proposed in [Alonso-Mora et al., 2012]. In the left, five cars move between antipodal
points of a circle. In the center, the result of a similar simulation is presented for
MagneBikes vehicles. On the right a simulation with five cars is presented again, in
which one of the cars moves regardless of the others and is naturally perceived as a
moving obstacle by its teammates.

Figure 2.1. Example of the ORCA algorithm with incorporation of kinematic
car-like constraints proposed in [Alonso-Mora et al., 2012].

An algorithm that has a similar purpose of ORCA is the CHOPs (Circular Holding
Patterns), which was used in [Tang et al., 2017] to control a team of quadrotors that
must move, each one, to a prespecified point. Given initial straight line trajectories, the
CHOPs algorithm changes the straight lines near the points that they intersect each
other and make the UAVs circulate around this point to avoid collision. Afterwards,
continuous piecewise polynomial trajectories are generated and given as reference to
the robots. The fundamental difference of CHOPs, with respect to ORCA, is that the
former is a centralized planner.

Another technique used to deal with the collision avoidance problem is MPC
(Model Predictive Control). In [Kamel et al., 2017] the authors use a Non-linear MPC
(NMPC) to control multiple MAVs (Micro Air Vehicle). Each agent must track a
trajectory while avoiding collision with other members of the team. The strategy
considers the dynamics of the vehicles, uncertainties in the state estimators and is
decentralized. In [Schwarting et al., 2017] NMPC is used to generate safe trajectories
to an autonomous car in environments with other cars.

Several times, MILP (Mixed integer Linear Programming) formulations are also
used to deal with the collision avoidance problem and other common issues of multi-
robot systems, as in the present work. Next section is dedicated to such approaches.

2.1. Multi-robot coordination 17

2.1.2 MILP formulations for multi-robot systems

Several works have used MILP formulations in the coordination of multi-robot sys-
tems. In [Avellar et al., 2015] the MILP solution provides the number of UAVs and
the paths they need to follow in order to cover an area in minimum time. Figure 2.2
shows an example presented in [Avellar et al., 2015]. The paths for each UAV (green,
blue and red paths) are computed in a way that the polygonal area is covered with
minimum time. In [Richards and How, 2002] a theory that plans paths through a set

Figure 2.2. Paths of multiple robots planned in [Avellar et al., 2015] to cover a
polygonal area.

of waypoints in a sequence that minimizes the elapsed time is proposed. Collision
with other agents and with obstacles are avoided. In order to take into account dy-
namic limits the authors use a conservative strategy writing the constraints in a linear
form. In [Richards and How, 2004] the authors use Decentralized Model Predictive
Control (DMPC) together with a MILP formulation to generate collision free trajec-
tories for multiple UAVs with linearized dynamics. The problem is solved online at
each time step. In [Altché et al., 2016] an offline MILP formulation is used to plan the
motion of multiple actual size robots in a cross section, which has its main applica-
tion in the autonomous driving through intersections. In [Peng and Akella, 2003] and
[Jufeng and Srinivas, 2005] MILP formulations are used to coordinate a set of robots
from initial to final points along predefined paths without collisions.

2.1.3 Other approaches to the multi-robot coordination

In contrast to the MILP formulation, in [Abichandani et al., 2013] and
[Abichandani et al., 2015] the motion planning of multiple robots between sets

18 Chapter 2. Related works

of initial and final points is performed by a nonlinear programming formulation,
and assurance of communication between robots is also incorporated. In fact,
communication limit is an issue that have been also considered in the literature
of multi-robot systems. This problem is critical when the strategy is computed
online [Clark et al., 2003], [Otte and Correll, 2014]. In these works, the robots build
local communication networks and execute, each one, a multi-robot planner, usually
probabilistic, in order to find feasible trajectories to a goal position. The best solution
is then spread through the network. In this context, the implementation of solutions
provided by centralized and offline computed strategies has an important advantage:
it does not require any communication between the robots. In addition, an offline
strategy has also the advantages of providing a predictable behavior for the entire
system and also does not require the performance of complex real time computations
during the navigation.

2.1.3.1 Energy supply issues

Another issue that is also of concern in persistent multi-agent coverage tasks is
the energy supply limitation [Mitchell et al., 2015], [Kamra and Ayanian, 2015]. In
[Mathew et al., 2013], the motion of a set of charging robots is planned to refuel a set
of task robots. The problem is tackled with a DAG (direct acyclic graph) formulation
and solved with MILP. In [Scherer and Rinner, 2016], the environment is decomposed
in cells and an algorithm is proposed to compute the path for each robot of a set. They
move between base stations and points of interest, while communication with the basis
and enough energy to return are ensured.

2.1.3.2 Computational complexity issues

Centralized strategies consider the planning of all robots in a single stage. In general,
this type of approach leads to an exponential growth in the computation time when
the number of robots increases, fact that is also refereed to as the curse of dimension-
ality. Some strategies to deal with this problem use sequential prioritized planners.
In [den Berg and Overmars, 2005] the movement of higher priority robots are planned
first and afterwards they are considered as moving obstacles in the planning of lower pri-
ority ones. These planners have the advantage of scalability with the number of robots,
since the multi-robot problem is dealt by solving multiple single robot problems. In
[Čáp et al., 2015] the problem is dealt with a revised method of prioritized planning
and a novel asynchronous decentralized implementation. The algorithm is proven to
be complete and deadlock free. In fact, incompleteness properties and deadlocks are

2.1. Multi-robot coordination 19

common problems of many sequential approaches. In [Van Den Berg et al., 2010] an
algorithm is presented in order to decouple a multi-robot path planning problem. The
algorithm divides the group of robots into subgroups, which are as small as possible,
in a way that these subgroups are decoupled. Then, a multi-robot planner is used to
plan the motion of each subgroup. Problems with many robots are solved in reason-
able time since solving many small subproblems is faster than solving a single large
problem. Another strategy to deal with the dimensionality problem is subdimensional
expansion [Wagner et al., 2012]. It consists on the planning in the dimension of single
robots when they are far away and in the extended dimension only when they are close
to each other. With RRT and PRM based planners, scenarios with up to 32 robots
were solved in a matter of some minutes.

The majority of works discussed until now considers the point-to-point problem,
when multiple robots must follow, each one, a route (predefined or not) from an initial
to a final point avoiding collisions. The point-to-point multi-robot motion problem
is sometimes tackled with probabilistic planners as in [Solovey and Halperin, 2017].
The presented algorithm, bottleneck tree (BTT), is able to solve the problem of safe
coordination of multiple robots moving between predefined sets of points following
predefined paths. The point-to-point problem is also seen as a Pebble Motion Plan-
ning on a Graph [Alotaibi and Al-Rawi, 2016], [Surynek, 2009], [Yu and Rus, 2015],
[Surynek, 2014]. These methods are capable of solving problems with a few thousands
of robots/nodes in a matter of seconds. However, physical properties such as dynamics
and uncertainties are not considered. Besides, the literature focus on the point-to-point
problem, not covering the persistent movements in cycles.

2.1.4 Multi-robot systems with cyclic tasks

When optimization methods are used, the coordination of multiple robots moving per-
sistently in cyclic paths is not as frequently addressed as the point-to-point problem.
A difficulty that appears is the mathematical formulation of a model that satisfies the
constraints for all instants of time. The work in [Gonçalves et al., 2013] introduces a
strategy to solve this infinite horizon cyclic problem with a finite number of variables
and constraints. As the authors show, this is possible due to the assumed periodicity
and commensurablility properties of the cycles. In fact, this is one of the main assump-
tions of their formulation. The problem is formulated as a MILP, whose constraints
directly ensures the satisfaction of the problem’s requirements. These are related to
safety, periodicity, commensurability and speed limitation. Figure 2.3 shows an ex-
ample considered in [Gonçalves et al., 2013], each of the paths must be followed by a

20 Chapter 2. Related works

robot and the black dots represent intersection points between paths.

Figure 2.3. Example of multiple paths to be periodically followed by robots
presented in [Gonçalves et al., 2013].

2.1.5 Coordination strategy in this work

In the present work, the results in [Gonçalves et al., 2013] for planning cyclic trajec-
tories are extended by considering constraints related to finite size robots, speed and
acceleration limits and uncertainties, which are most of the time disregarded in pre-
vious related works. The consideration of finite size robots makes the guarantee of
collision free trajectories more realistic. The maintenance of minimum and maximum
speed limits allows the method to be applied to fixed wing UAVs. Acceleration limits
ensure the achievement of feasible trajectories. Taking into account uncertainties in
realistic scenarios is also essential. The method is based on the definition of an online
computation of reference speeds that keeps the cycles of the robots synchronized, which
is necessary to the veracity of the safety constraints. In fact, the coordination strategy
can be divided in two stages. The first one is a discrete high level strategy solved by
the MILP. The second one is a continuous lower level strategy which, according to
the dynamics of the robot, ensures the performance planned by the MILP. The latter
is completely decentralized and consists on the online feedback based computation of
average speeds for each robot at each segment of its path.

In contrast to [Borkar et al., 2016], which maximizes the sizes of the agents while
preventing collisions, the approach presented in the current work considers robots with
known physical dimensions and then maximizes the size of the enlargement, further
defined as ∆s, of the so called collision zones, where the presence of multiple robots

2.2. Robot control strategies 21

is forbidden at the same instant of time. It was possible to deal with the collision
problem by avoiding multiple robots simultaneously in the same collision zone. In
the present work, “collision zones” are defined by entrance and exit points in the
robots’ predefined paths similarly to what was done in [Peng and Akella, 2003] and
[Jufeng and Srinivas, 2005]. In fact, their MILP formulation is very similar to the one
in this work in the way that they consider collision zones, and in the way they use a
conservative strategy to consider dynamic constraints. The main difference is that here
cyclic paths are considered while they consider fixed finite paths – the point-to-point
problem.

Thus, the present method required a strategy to solve this infinite horizon
problem with a finite number of variables and constraints, the one presented in
[Gonçalves et al., 2013]. An important advantage of the collision avoidance treatment
presented here is that the robots do not need to execute unpredictable online computed
maneuvers. Their trajectories are defined in a way that multiple agents will never tra-
verse a given intersection point very close to each other on time. In addition, limited
uncertainties on the velocities executed by the physical robots with respect to the ones
computed from the result of the solution of the optimization problem were considered.

Energy issues are out of the scope of this work. However, the techniques previ-
ously discussed, such as [Mitchell et al., 2015] and [Mathew et al., 2013], may be di-
rectly or indirectly incorporated in the present framework. The predictability of the
presented solution may be an important feature to easy the application of a refueling
strategy.

Despite the centralization of the presented method, in the results section it is
shown to be scalable as well, since it solves an instance with 48 robots within a few
seconds. In fact, the consideration of fixed predefined paths and their division into
long unidimensional stretches (not small segments associated to small time steps as
in [Richards and How, 2004]) can be seen as the justification for the computational
efficiency of the method.

2.2 Robot control strategies

In the previous Section, strategies to plan the motion of multiple robots were discussed.
In general, those strategies do not tackle the problem of controlling a robot to execute
the planned path. This section focus on discussing the state of the art on techniques
to control fixed-wing UAVs along desired paths.

An extensive survey about several approaches to the guidance problem is pre-

22 Chapter 2. Related works

sented in [Sujit et al., 2014]. The work is destined to practitioners, which shows the
importance of such methods in modern technology. For instance, line-of-sight (LOS)
[Ambrosino et al., 2009] and nonlinear guidance laws (NLGL) [Park et al., 2007] are
based on a virtual target point, which guides the UAV towards the path. A different
approach, which is simple and generates good trajectories, considers a guidance vector
field (GVF) [Nelson et al., 2007] together with a control law to make the UAV converge
to a desired path.

Different approaches to the fixed-wing UAV control include the use of Model
Predictive Control (MPC) for path tracking. In [Alessandretti and Aguiar, 2017] a
MPC is developed to enforce a UAV to track a path in 2D. In fact, the limitation of fixed
height is very common in the literature. In [Oettershagen et al., 2014] a MPC combined
with L1-navigation strategy is used to make a fixed-wing UAV track a desired path
in 3D. In [Andersen and Kristiansen, 2017] quaternion algebra is applied to perform
the path tracking in 3 dimensions, but straight lines and planar circles are considered.
A comparison of the performance of control strategies in 3 dimensions is presented in
[Pelizer et al., 2017].

Another strategy that is also receiving attention is based on artificial vector fields.
They will be better discussed in Sections 2.2.2 and 2.2.3. The use of vector fields to
control UAVs along target paths requires the consideration of simplified dynamical
models of the airplane. Next section discusses about these models.

2.2.1 Fixed-wing UAV reference model

The modeling of physical systems has a fundamental importance in the development
of control strategies. The problem of modeling fixed-wings aircrafts, with their proper
characteristics, is tackled in [Stevens et al., 2015]. In Chapter 2 of this book a detailed
model with 6 degrees of freedom (DOF) and 12 states is presented. This representative
model is suitable for the development of low level controllers and for simulating the
UAV dynamics, however, it is too complex to be used in the development of path
following strategies.

In order to design guidance laws for UAVs, reference models are used
[Jesus et al., 2013], [Olavo et al., 2018]. These models are simple representations of
the airplane dynamics that incorporate its basic behavior, such as the presence of a

2.2. Robot control strategies 23

non holonomic constraint. A model considered in the literature is

ẋ = v cos(θ), (2.1a)

ẏ = v sin(θ), (2.1b)

ż =
zc − z
τz

+ uz,
|zc − z|
τz

≤ vzmax (2.1c)

θ̇ =
θc − θ
τθ

+ uω,
|θc − θ|
τθ

≤ ωmax (2.1d)

v̇ =
vc − v
τv

+ ua, vmin ≤ vc ≤ vmax (2.1e)

in which x, y and z are the Cartesian coordinates of the center of mass of the UAV,
θ is the yaw angle, and v is the forward speed in the xy plane with respect to the
ground. The control inputs of altitude, yaw angle and forward velocity are zc, θc and
vc, respectively. The time constants, all strictly positive, associated to z, θ, and v

are τz, τθ and τv, respectively. The terms uz, uθ and uv are additive uncertainties.
The actuation limits are vzmax for the absolute value of the vertical speed, ωmax for
the absolute value of the turning ratio, and vmax > vmin > 0 for the minimum and
maximum forward velocities.

The use of model in (2.1) is suitable given that low level controllers are used
to impose its dynamics to the UAV, as it is in shown [Olavo et al., 2018]. Figure 2.4
depicts the scheme to perform this imposition. The target dynamics block is the system
in (2.1) and acts as a filter that ensures smooth input control signals to the low level
controllers.

Low-level
controllers

Fi
xe

d
w

in
g

U
AV

Target
dynamics

Figure 2.4. Block diagram representing how the target dynamics is imposed to
the UAV. Source: [Olavo et al., 2018].

In [Thums, 2012] a structure for a low level controller is also presented to con-
trol the complete model of an aircraft. The structure consists of 5 PID controllers,
1 PI and 3 cross-coupling gains. A tuning method for the gains of these controllers

24 Chapter 2. Related works

is proposed based on evolutionary algorithms [Deb et al., 2002] and Linear Matrix In-
equalities (LMI) [Gonçalves et al., 2006].

Figure 2.5. Low level controllers considered in [Thums, 2012],
[Jesus et al., 2013], [Olavo et al., 2018].

The uncertainties in model (2.1) may account for differences in the reference
model and the closed loop system composed of the complete aircraft dynamics, where
atmospheric disturbances such as wind gusts and turbulence are present. This is the
reason why the low-level PID controllers cannot follow perfectly the reference model
(2.1). In other words, the uncertainties uz, uω and ua may account for natural im-
perfections in the low-level control of the fixed-wing aircraft. If a guidance strategy
is robust to these uncertainties in model (2.1), it may be successfully applied to the
closed loop system composed by the complete UAV model plus the PID controllers.
These uncertainties are considered to be limited in norm.

Model (2.1) considers a first order dynamics for the height, yaw angle and for-
ward velocity. However, different approaches are also presented in the literature. For
instance, in [Quintero et al., 2015] a simpler model is considered, in which the first or-
der dynamics for θ is disregarded. Some works consider an extra step in the integration
of the yaw angle command, or yet, as considered in [Ren and Atkins, 2005], the bank
angle is considered to have a first order dynamics and the yaw angle rate depends on
the bank angle. In [Hull, 2007] a model that includes the pitch angle, in the x, y and
z dynamics is considered. In [Jesus et al., 2013] and [Olavo et al., 2018] the model in
(2.1) is used and the authors explore the advantages of using a representation of it in
polar coordinates.

2.2. Robot control strategies 25

2.2.2 Vector fields

Among the control strategies to guide robots through specific paths, the artificial vector
field based approach is receiving much attention in recent years. It consists on the
definition of a vector function Φ that associates an n dimensional vector to each position
in the n dimensional workspace. In general, these strategies are easy to implement,
have low computational costs, and are accompanied by formal convergence proofs.

The vector field is defined in a way that the integral lines of the vector field
converges to the target curve. Thus, if a robot follows the velocity indicated by the
vector field it will converge to the curve. Figure 2.6 exemplifies two vector fields in 2
dimensions.

-2 -1 0 1 2
x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

-2 -1 0 1 2
x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
y

Figure 2.6. Examples of vector fields in R2. In red are the target curves and in
blue a normalized vector field.

In recent years, several works have tackled the problem of constructing vector
fields for robot control. In [Lawrence et al., 2007] vector fields that converge to circular
loiters are developed and convergence proofs are presented based on Lyapunov Theory.
Fields that converge to different curve shapes are obtained via diffeomorphisms. In
[Lawrence et al., 2007] only planar curves are considered, in other words, fields in 2D
or fields in 3D converging to curves with fixed height. In [Frew and Lawrence, 2012]
a vector field strategy is developed for three dimensional star shaped curves. A radial
Fourier basis set is used to represent the curves and convergence proofs are presented.
In [Ceccarelli et al., 2008] a method is developed to make a group of robots converge
and circulate a given beacon, which is possibly moving. However, no specific curve
is defined to be circulated. In [Liang et al., 2015] the authors propose two static 3D
vector field strategies. The proposed field is based on the tangent vector associated to
a given point in the curve and in a distance measurement to the curve. Convergence
proofs are also presented.

26 Chapter 2. Related works

Finally, in [Gonçalves et al., 2010] a strategy is developed for generating n-
dimensional time varying vector fields. The authors propose a strategy for generating
vector fields with integral curves that converge to and circulate a closed time varying
curve P in n-dimensional spaces.

Here we aim to rapidly recall the vector field strategy. Let n be the dimension
of the workspace and p ∈ Rn a coordinate for a point in this space. The strategy
in [Gonçalves et al., 2010] relies on the ability of finding n − 1 well-behaved scalar
functions α1(p, t), α2(p, t), ... αn−1(p, t) such that the intersection of the level sets
αi(p, t) = 0, i = 1, 2, ..., n − 1, implicitly defines the target curve P . Next, the
structures of the vector fields for 2 and 3 dimensions are presented without considering
the time variation.

Let Φ(p) : Rn → Rn be the vector field. It will be assumed that n may be 2 or
3, depending on the context. For n = 2, we have

Φ(x, y) = G(P)
∇P
‖∇P‖

+H(P)
R∇α1

‖R∇α1‖
, (2.2)

where R ∈ SO(2) is a rotation matrix corresponding to a ±90 degrees rotation (i.e.
clockwise or counter-clockwise) and the operator ∇ performs the gradient with respect
to the spatial coordinates. The scalar function P ≡ P (α1, ..., αn−1) : Rn−1 → R+ is
zero at P and positive elsewhere. The function P represents a distance to P , and
P (p) = 0 ⇐⇒ p ∈ P . It is also considered a scalar function G(P) : R+ → R−,
that is G(P) ≤ 0, such that G(P) = 0 ⇐⇒ P = 0, |G(P)| ≤ 1. Also, G(P) is
decreasing, therefore invertible. The function H(P) is defined as H(P) =

√
1−G(P)2.

Alternatively, in R3 we have

Φ(x, y, z) = G(P)
∇P
‖∇P‖

+H(P)
∇α1 ×∇α2

‖∇α1 ×∇α2‖
, (2.3)

where the operator × corresponds to the cross product.
Note that if ‖∇P‖ = 0 or ‖∇α1×∇α2‖ = 0 there is a problem with the normal-

ization. We have ∇P = 0 when p ∈ P or in some isolated equilibrium points outside
P . The former case is not a problem since G(P) → 0 as well. Besides, it is assumed
that in the latter case the isolated equilibrium points are repulsive points. The same
repulsiveness is assumed when ‖∇α1 ×∇α2‖ = 0.

Figure 2.7 illustrates the level sets used in the construction of the vector field
given by (2.3) The zero level sets of two scalar functions α1 and α2 are highlighted in
blue and red. The intersection between them (black line) defines the closed curve to
which the integral lines of the field converge.

2.2. Robot control strategies 27

Figure 2.7. Representation of the strategy in [Gonçalves et al., 2010]. Two level
sets in R3 and the intersection between them.

The terms in (2.2) and (2.3) can be easily interpreted as a convergent component
and a circulation component. Let Φv be the term that multiplies G(P) and Φt the one
that multiplies H(P). The components Φv and Φt are responsible for the convergence
to the curve and for the curve tracking, respectively. In [Gonçalves et al., 2010] some
important properties of the field are proved, from which two of them are recalled.

Property 1 Considering the simple integrator model, that is, ṗ = Φ, the function
P (p) is a Lyapunov function and Ṗ = ∇P TΦ = G(P)||∇P || ≤ 0.

Property 2 For every non fixed point, the convergent component (Φv) and the circu-
lating one (Φt) are perpendicular to each other, i.e., Φv ⊥ Φt.

The recent work in [Wu et al., 2018] has presented a strategy to generate vector
fields based on contraction analysis theory. The authors consider curves in generic
manifolds and use generic metrics to compute the distance to the curve. An ad-
vantage of their work is that the curve is considered to be represented by a para-
metric equation, which is simpler than the representation with implicit functions of
[Gonçalves et al., 2010].

2.2.3 Guidance vector field strategies

The velocities indicated by a vector field Φ can be directly applied to a robot if it
is represented by the simple integrator model ṗ = u. In general, holonomic robots,
those that do not have velocity constraints, can be controlled such that the closed loop
system is well represented by the simple integrator. A good example is the aerial robot
of the quadrotor type in low velocities. Since fixed-wing UAVs have a non holonomic
constraint, it is not possible to develop low level controllers such that the closed loop

28 Chapter 2. Related works

system is well represented by the simple integrator. Models such as the ones described
in Section 2.2.1 are the sort of models that can be obtained. Thus, if it is desired to
control a fixed-wing vehicle to follow a vector field, additional control laws are needed.
These controllers are usually referred to as Guidance Vector Field (GVF) laws. In
general, these laws consists mainly on the computation of yaw angle rates.

Guidance vector field laws are often investigated using straight lines and cir-
cles [Frew et al., 2008]. In [Lawrence et al., 2007], GVF laws initially developed for
circles are then applied to different shapes obtained by covariant transformations.
In [Kapitanyuk et al., 2017] a controller is developed for generic curve shapes. The
method develops a controller that is able to align the UAV yaw angle with the ori-
entation of the vector field. Asymptotic convergence of the orientation is obtained
with a controller with a proportional and a feed-forward term. The authors of
[Kapitanyuk et al., 2017] point out the difficulties in finding a formal proof establishing
that getting oriented asymptotically with the field leads to convergence to the target
path, despite this convergence happens in all practical examples. Figure 2.8 shows the
result obtained when the strategy developed in [Kapitanyuk et al., 2017] was applied
to make ground robots follow a Cassini oval curve. In [de Marina et al., 2017] a very

Figure 2.8. Experiments presented in [Kapitanyuk et al., 2017] with ground
robots.

similar strategy, which considers the effect of constant wind disturbance, is used to
make an actual small size fixed-wing UAV follow an ellipse.

Vector fields in 2 dimensions that converge to closed curves and are continuous
always admit at least one fixed point, i.e. a point in which the vector field is null.
This is a consequence of the Brouwer fixed-point Theorem [Khamsi and Kirk, 2011].
These fixed points become discontinuity points when the vector field is normalized,
which is a usual step in the guidance strategies. See for instance Figures 2.6 and 2.8.

2.2. Robot control strategies 29

The work in [Kapitanyuk et al., 2017] also presents a formal discussion related to these
singularities. There they establish a set of initial conditions for the UAV that lead it
to convergence to the path without passing through the singularities. In general, such
discussions are disregarded in the literature of vector field guidance strategies.

In [Liang et al., 2015], controllers to guide a UAV in vector fields defined in 3

dimensions are developed. Convergence of the two proposed fields are presented, but
no proof regarding the guidance controllers is performed. In fact, obtaining convergence
proofs for the proposed controller is an important objective of many related works. In
[Jesus et al., 2013] a simplified non-holonomic model is considered in order to prove the
convergence to a circular path with a hybrid controller. Despite the use of the simplified
model, the authors use a set of low level controllers that impose the simplified dynamics
to the actual UAV. In [Olavo et al., 2018] the work is extended with uncertainties in
the model, which may account for modeling errors and external disturbances. In the
presence of uncertainties the UAV converges to a band around the target circle. In Fig.
2.9 the trajectories are shown, for different initial conditions, for a UAV following a
circle with radius 500m according to the strategy in [Olavo et al., 2018]. No additional
disturbance was added to the complete model. Note that, due to the switches in the
control law, sometimes the UAV follows a straight line or a circle. The UAV is guided
by the vector field only when the vehicle is approaching the circle from outside with a
proper orientation. In other configurations the airplane follows or a straight line or a
circle with fixed radius of curvature.

-1 -0.5 0 0.5 1 1.5

East Position (km)

-1

-0.5

0

0.5

1

N
or

th
P
os

it
io

n
(k

m
)

Trajectories for di,erent initial conditions

Figure 2.9. Results obtained according to the strategy in [Olavo et al., 2018].

30 Chapter 2. Related works

2.2.4 Control strategy in this work

The control strategy presented in this work is based on vector fields and is able to
make a UAV converge to and circulate a non planar closed curve with generic shape
in 3 dimensions. The controllers are designed upon the reference model in (2.1).
The convergence proofs are presented based on the vector field structure developed
in [Gonçalves et al., 2010], since it has a formal formulation and is able to generate
fields whose integral lines converge to generic curve shapes.

The guidance law is similar to the one developed in [Kapitanyuk et al., 2017], in
the sense that it is composed of a proportional term and a feedforward term. How-
ever, non planar curves are also considered here. In addition, model uncertainties are
considered. When the uncertainties are taken into account it is proved that the UAV
does not converge exactly to the curve but it remains inside a tube around it. In other
words, the existence of an invariant set is proved. This result is analogous to the one
in [Olavo et al., 2018], in which a similar ultimate bound is found for circular curve
shapes only.

The present work also tackles the problem of singularities in the vector field.
These singularities are points in which the field admits fixed points, which become
discontinuity points when the field is normalized. The work in [Kapitanyuk et al., 2017]
also tackle this problem, where the authors compute a set of initial conditions for the
UAV that will not lead it to the singularities, given the developed control laws. A
different strategy is adopted here. We define a circle around the singularity point and
the UAV is commanded to fly in a straight line when inside this circle. The strategy
is proven to converge.

In summary, the control strategy developed in this work is able to deal with the
majority of the details commonly addressed separately in different works that consider
GVF, namely: 3 dimensional workspace as in [Liang et al., 2015]; generic curve shapes
as in [Kapitanyuk et al., 2017] and [Liang et al., 2015]; uncertainties in the reference
model as in [Olavo et al., 2018]; and treatment of singularities in the vector field as in
[Kapitanyuk et al., 2017]. Thus, the contribution is a guidance vector field technique
that considers generic curve shapes in 3D while dealing with uncertainties in the aircraft
reference model and singularities in the field.

Chapter 3

Coordination strategy

3.1 Multi-robot problem statement

The multi-robot problem addressed in this work consists on the coordination of a group
of robots with the task of following curves, i.e. each agent must follow a pre-specified
closed path periodically with given orientation. Formally consider the following defini-
tion

Definition 1 Let R be the set of robots indexed by i and Pi a subset of R3 defined by
the points that compose the path to be cyclically traveled by the robot i ∈ R.

These paths are assumed to have a geometry that is feasible to be followed by the robots.
It is admitted that a robot’s path have intersecting points with other paths. The
objective is to elaborate a speed planning for each robot in such a way that collisions
between robots are avoided. This problem is essentially the same as the one proposed
in [Gonçalves et al., 2013]. However, issues related to practical implementations are
now also tackled. In fact, four important features are incorporated:

1. At all time the robots must remain separated by a minimal spatial distance
considering their finite sizes.

2. The robots’ speeds must be in the intervals defined by minimum and maximum
limits.

3. The robots might be unable of changing their velocities instantaneously, i.e. a
velocity dynamics shall be considered.

4. The robots’ speeds and positions might be uncertain.

31

32 Chapter 3. Coordination strategy

Fig. 3.1 shows a simple possible scenario, where two robots must follow two closed
curves in counterclockwise direction, the red and blue ellipses. The stretches dotted
in black are the collision stretches. The union of collision stretches with associated
collision points forms a collision zone. The limit points are defined as the boundaries
of the collision stretches, represented as black dots in Fig. 3.1. Note that a collision
zone may contain more than one intersection point. A collision zone may also contain
stretches of paths of more than two robots (it is not the case of Fig. 3.1). The definition

-3 -2 -1 0 1 2 3

-1.5

-1

-0.5

0

0.5

1

1.5

Collision
zone 1Collision

zone 2

Figure 3.1. Example of a possible configuration of our problem. Two closed
paths and dangerous stretches (dashed black). Dotted circles show the robots’
size.

of the collision zones must be made in such a way that for a collision to occur between
robots i1 and i2, they must be in the same collision zone. Therefore it is established
that: the presence of more than one robot in the same collision zone at the same time
should be forbidden.

For now, an important assumption in the coordination problem is that the robots
are always at their pre-specified paths. The problem of controlling the robots to remain
in their paths will be addressed in the next chapter. It is evident that, if we want to
control a robot to follow a specified path, a position measurement is necessary. In
addition, if we want it to travel with a given velocity, a velocity measurement should
also be available.These data are assumed to be available within an uncertainty margin,
as will be discussed still in this section.

On the path of each robot we define points named target points that will be either
the robots’ entrance to or exit from a collision zone. They divide the path into segments.
Their positions are not defined a priori, i.e. it is considered that they exist but their
exact location will be determined as part of the solution to the problem. Desired time
instants to reach each target point of a path must also be found. In the surroundings
of each target point we define an uncertainty stretch or region of uncertainty, where it
will be possible to guarantee the presence of the robot in the specified instants. The
target points must be placed somewhere outside the collision zones considering also

3.1. Multi-robot problem statement 33

the size of the regions of uncertainty. This ensures that the robot will never be inside
the collision zone at the wrong time even in the presence of uncertainties. The size of
these uncertainty regions are not known a priori either.

Fig. 3.2 shows how the target points could be placed in the paths and possible
regions of uncertainty around them. Note that the target points are outside the col-
lision zones and their uncertainty regions do not overlap the collision stretches. The
formulation must accomplish that. In the figure, the red robot must travel through the
points q1 → q2 → q3 → q4 → q1 and the blue one through q5 → q6 → q7 → q8 → q5.
Now, since the instants for a robot to reach each point q must be found, it is evident
that the time to traverse each segment from one target point to the other will also be
found.

-3 -2 -1 0 1 2 3

-1.5

-1

-0.5

0

0.5

1

1.5

Uncertainty
regionsTarget

points

q1q2

q3 q4

q5q6

q7
q8

"s"s

"s "s

"s"s

"s "s

Figure 3.2. Illustration of the target points (green) placement and regions of
uncertainty (between black curved traces) in the example of Fig. 3.1.

The length ∆s is defined as the geodesic distance between the regions of uncer-
tainty and the collision stretches, see Fig. 3.2. This distance will be a decision variable
in our formulation.

3.1.1 Speed model

In order to ensure that the agents will not be in the wrong place at the wrong time it
is necessary to control the velocities of the robots as they travel along their paths. It
is considered that, first, the speed references for the robots will be allowed to change
at specific instants of time. These are the instants in which the robots are required to
reach the target points. Second, it is considered, for now, the existence of a low-level
controller that will make the change of speed evolve as a ramp that connects the initial
velocity to the final one in a predefined time interval τ . If t∗ is the time that has passed
since the instant the speed command is changed and v(0), v(T) are the speed at the
beginning and at the final time t∗ = T , respectively, the reference velocity of the robot

34 Chapter 3. Coordination strategy

will be given by

v(t∗) =

{
v(0) + at∗, if 0 < t∗ ≤ τ,

v(T), if τ < t∗ ≤ T,
(3.1)

in which a = (v(T) − v(0))/τ is the acceleration within the interval 0 ≤ t∗ ≤ τ . Ac-
celeration and velocity limits are also incorporated to model (3.1). For this purpose,
amin and amax are defined as the minimum and maximum values of the linear accelera-
tion and vmin and vmax as the lower and upper limits of the instantaneous commanded
speed. The choice of the model (3.1) is interesting for two reasons. First, its simplicity
will allow to write velocity constraints in a linear form. Second, it is possible to choose
τ as small as possible, according to the acceleration limits, in order to explore the
capacity of a robot to change its speed. In fact, note that the inferior limitation of τ
implies in an acceleration limit if the linear speed is limited.

3.1.2 Uncertainty model

It is also considered that the velocities of real robots are subject to uncertainty, i.e, the
profile given by (3.1) may not be perfectly tracked by the low level motion controller.
This can happen, for example, due to measurement or actuation errors. This controller
is in a level even lower than the controller responsible to perform (3.1) and, for now,
will not be discussed in detail. The deviation of the actual velocity from that profile
is modeled as an additive disturbance given by

u(v) = uv + u%v, (3.2)

where u(v) is the disturbance, v is the commanded velocity and uv and u% are bounded
random variables limited by [−U i

v, U
i
v] and [−U i

%, U
i
%], respectively, where i indicates

the robot. The portion uv is an error that is independent of the commanded speed
while the portion u%v is proportional to it. Uncertainty in the measurement of position
is also considered as a random variable limited by [−U i

p, U
i
p]. This implies that the

exact position errors that will be used in the online speed reference computation are
not perfectly measured.

The general problem of coordinating the speeds of the robots to maximize safety
while they traverse their associated curves is translated in this work as the following
problems:

3.2. Definition of collision zones 35

Problem 1 Find the instants in time each robot must reach each uncertainty region
associated with a target point such that ∆s, the size of the enlargement of the collision
zones, is maximized without violation of speed and acceleration constraints. In parallel,
find the position of the target points and the sizes of the uncertainty regions given the
bounds [−U i

v, U
i
v], [−U i

%, U
i
%] and [−U i

p, U
i
p].

Problem 2 In order to execute the solution of Problem 1, find the control law to
generate appropriate reference velocities and accelerations for the robots’ low-level con-
trollers.

3.2 Definition of collision zones

In this section the collision zones will be mathematically defined. The definition will
be made with basis on an equivalence relation that will partition a set of collision
points on collision zones. For details on equivalence relations see Chapter I, Section 7

of [Kunen, 2009].

Definition 2 Let Q =
⋃
i∈RPi, i.e., the union of the points of all paths.

Definition 3 The set of collision points is a collection C of all points c ∈ Q such that
there exists another c′ ∈ Q such that a robot placed in c collides with a different robot
placed in c′. Formally

C = {c∈Q | ∃i, j 6=i, c∈Pi, c′∈Pj : dist(c, c′)<ρij} , (3.3)

in which ρij is a predefined minimum separation between robots i and j and dist(c, c′)
is the Euclidean distance between c and c′.

In order to deal with the issue of the minimum spatial separation the set C will
be partitioned. Each partition will represent a region where the presence of more than
one robot may cause a collision. A convenient and elegant way to partition a set is
by creating an equivalence relation on C. According to some criterion, this relation
describes if two points should be in the same partition or not. In the current problem,
it is reasonable to require that two points on the same path Pi that are in the same
connected component, considering connectivity in C, should be in the same partition.
Furthermore, two points in C of different paths should be in the same partition if they
are separated by a distance that causes a collision. Now consider the following two
relations on C that will be used to represent the two aforementioned partition criteria.

36 Chapter 3. Coordination strategy

Definition 4 Let the relation of neighboring points in the same path be

E1 =
{

(c, c′) ∈ C2 | c, c′ ∈ Pi : dist(c, c′) < ε
}
, (3.4)

in which ε is a fixed small number. And the relation of proximity of points in different
paths be

E2 =
{

(c, c′) ∈ C2 | c∈Pi, c′∈Pj, i6=j : dist(c, c′)<ρij
}
. (3.5)

Furthermore, the two requirements are joined as

E = E1 ∪ E2. (3.6)

Note that E is symmetric and reflexive but it is not an equivalence relation, since
it is not transitive, see [Kunen, 2009]. In order to transform it in an equivalence relation
it is necessary to recall some concepts.

Definition 5 Given relations A and B on the same set C, the composition of them is

A ◦ B =
{

(a, b)∈C2 | ∃ c∈C, (a, c)∈A ∧ (c, b)∈B
}
. (3.7)

Furthermore, let I be the identity relation, i.e., all the pairs {(a, a) ∈ C2}. Let also
Ak = Ak−1 ◦ A, A0 = I. Finally, the transitive reflexive closure of A is

A∗ =
∞⋃
k=0

Ak = I ∪ A ∪ A2 ∪ A3 ... (3.8)

The transitive reflexive closure A∗ is the minimal equivalence relation that contains A.

As an example, consider E∗1, which is the relation that is true if and only if the
pair (c, c′) is in the same connected component of C according to ε, in other words, if
p and p′ are in the same collision stretch, that will be mathematically defined ahead.

The equivalence relation can be used to induce a partition by considering two
points c and c′ in the same set if and only if (c, c′) ∈ E∗. Due to the properties of
equivalence relations, it is guaranteed that every point will be placed in one and only
one set, thus creating a partition. This procedure, represented by C/E∗, is called the
quotient of C by E∗.

3.2. Definition of collision zones 37

Definition 6 The set Z of collision zones is defined as:

Z = C/E∗. (3.9)

In Section 3.2.1 it is shown how this quotient is implemented.
In addition, a collision stretch is considered as the collection of points in the

path of a given robot i1 in which if robot i1 is placed in one of those points, there
exists a configuration of a different robot i2, on its respective path, which might cause
a collision between i1 and i2. A collision stretch is the collection of points of a given
path Pi that are connected in C.

Definition 7 The set S of collision stretches is defined as:

S = C/E∗1. (3.10)

Take Figure 3.1 as an example. The set Z has two elements, the collision zone in
the top and the one in the bottom. The set S has four elements, two stretches in the
red path and two more in the blue path, they are the dashed stretches.

Finally, given the definition of the equivalence relation E∗, if the presence of more
than one robot in an element of Z is avoided, the multi-robot system is collision free.
The formulation in Section 3.3 will accomplish that.

3.2.1 Practical implementation

Now, the algorithms able to compute the collision zones in practice will be described.
First, it is considered that the curves Pi are represented by a collection of m points
(m = 1000 for example).

In order to compute the set C the impossibility of collisions between a pair of
paths is checked first. This can be done by comparing the extreme points in the x and
y directions (points with minimum and maximum values of the x and y coordinates) of
both paths. For each pair of paths for which the possibility of existence of intersection
points is verified, the algorithm checks the distance for each pair of points. If the dis-
tance between these points is smaller than a distance ρij the pair of points is considered
to belong to the collision set C. The distance ρij is defined as the sum of the radius of
the two robots. The complexity of the algorithm is then O(n2m2), in which n is the
number of paths and m is the number of points representing a path (m = 1000 in all
of the scenarios). This strategy allows the identification of all collision stretches. For
that, the small distance ε is defined such that it is bigger than the distance between

38 Chapter 3. Coordination strategy

every pair of consecutive points in a path Pi, i ∈ R. In addition, it is possible to
define connections between stretches with points that are close to each other. That is,
a collision stretch A is connected to a collision stretch B if there is a point in A that
is close to a point in B. With this information it is possible to define a graph whose
nodes are the collision stretches and the edges establish the connections between pairs
of stretches which are close to each other. Finally, Tarjan’s algorithm [Tarjan, 1972],
which is linear with the number of nodes (number of collision stretches), is then used
to find the connected components of this graph. Each component is equivalent to a
collision zone.

3.3 MILP formulation

The approach to solve Problem 1 is based on the formulation of a MILP problem, in
which constraints are used to model the features previously described. Each boundary
of the collision stretches will be extended by a length of ∆s. The objective function
will be the maximization of this enlargement ∆s. To the extended collision stretches
and corresponding extended collision zones will be given the names inflated collision
stretches and inflated collision zones, respectively.

In order to ensure a sustained synchronism for the strategy, the aimed average
speed to be performed at each segment is computed in a way that the robots are always
inside the next regions of uncertainty in the specified instants. This will be the solution
to the Problem 2.

Recall that R is the set of robots indexed by i and Pi is the path of robot i ∈ R.
Let E be the set of target points that are entrances of an inflated collision zone and O
the set of target points that are exits of an inflated collision zone. The set H is the
union of E and O, H = E ∪O. LetW(q), in which q ∈ E , be the set of the other target
points that are entrances of the collision zone in which q is entrance. Now, consider
the following functions:

• n(q) : H 7→ H is the “next point” function, which maps the target point q to
the next one on the path that contains q.

• p(q) : H 7→ H is the “previous point” function, which maps each target point
to the previous one on its path.

• f(i) : R 7→ H is the “first point” function, which maps each robot i to the
defined initial target point on its path.

• b(q) : H 7→ R is the function that maps each target point q to the associated
robot i.

3.3. MILP formulation 39

• L(q) : H 7→ R+ is the function that returns the length of the stretch of Pi, in
which i = b(q), from the boundary of the collision stretch near to q to the boundary of
the collision stretch near to n(q).

Now consider the following decision variables:

• r[q] ∈ R+: a half of the length of the region of uncertainty associated to the
target point q. It is also the distance from q to the boundary of its associated inflated
collision stretch.

• L[q] ∈ R+: the length of the segment of Pi, in which i = b(q), from the target
point q to n(q).

• ∆s ∈ R+: extra length to be added to each boundary of the collision stretches.

• C[i] ∈ R+: the desired time to be spent by a robot i to fulfill its periodic path
once.

• t[q, k] ∈ R: the desired time instant in which point q must be reached by the
associated robot i = b(q) in the k-th cycle of i. The index k ∈ Z is incremented every
cycle.

• T [q, k] ∈ R+: the desired time to be spent by a robot i = b(q) traveling from q

to n(q) in the k-th cycle.

Note that parenthesis are used on values that are known a priori and brackets
on decision variables that will be known only after the MILP solution.

In Fig. 3.3 the above definitions are represented by showing a scenario where the
path P1 (blue) intersects P2 (red). The target points are in green, and q1, q3, q5 and q7,
belong to E , while q2, q4, q6 and q8, belong to O. The collision stretches are in dashed
black and the collision zones are the stretches inside each gray polygon. The regions of
uncertainty are represented by the curved traces around the target points. The orange
arrows indicate the length ∆s. The lengths L(q) are exemplified for the points q4 and
q5, while the lengths L[q] are shown for the points q2 and q7. The lengths r[q] are
indicated for the points q5 and q6. Other examples are q2 = n(q1) and q8 = p(q5).

In the MILP formulation, the consideration of fixed paths and collision zones
allows a complete abstraction of the curves geometry and one has to consider only
their one dimensional lengths between the limit points and between the target points.
In fact, this is a very important feature of the formulation, since it leads to a very
reasonable execution time for the MILP solver.

40 Chapter 3. Coordination strategy

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

q1

q2

q3

q4

q5

q6

q7

q8
L[q2]

L[q7]

L(q4)

L(q5)
r[q5]

2r[q6] "s

"s

"s

"s

"s

"s

"s

"s

P2

P1

Figure 3.3. Illustration of the definitions made in Section 3.3.

3.3.1 Safety and periodicity

According to the definitions made, the time interval T [q, k] is

T [q, k] =

{
t[n(q), k]− t[q, k], if n(q) 6= f(b(q)),

t[n(q), k + 1]− t[q, k], if n(q) = f(b(q)).
(3.11)

In order to ensure that a robot enters an inflated collision zone only after all the
other robots have already left, the following constraints are defined

t[q1, k1]− t[q2, k2] ≥ T [q2, k2] if t[q1, k1] ≥ t[q2, k2],

t[q2, k2]− t[q1, k1] ≥ T [q1, k1] if t[q2, k2] ≥ t[q1, k1],

∀q1 ∈ E ; ∀q2 ∈ W(q1); k1, k2 ∈ Z. (3.12)

Figure 3.4 illustrates these constraints. The gray polygon is the collision zone,
and in order to keep it without the presence of two robots at the same time, one of the
two equations in (3.12) must be satisfied. The first equation means that robot 2 (red)
reaches point n(q2) (leaves the region) before robot 1 reaches point q1 (enters in the
region). The second one is symmetric, meaning that that robot 1 reaches point n(q1)

before robot 2 reaches point q2. Note that the definition in (3.11) was used to write
the instants the points n(q1) and n(q2) are reached.

Note that (3.12) is an infinite set of constraints. The periodicity and commen-
surability of the cycles will allow the limitation of the number of constraints in (3.12).

3.3. MILP formulation 41

-1000 -900 -800 -700 -600 -500 -400 -300 -200 -100
-500

-400

-300

-200

-100

0

100

t[q1; k1]

t[q2; k2]
q1

n(q1)

q2

n(q2)

r1

r2

Figure 3.4. Illustration of the safety constraints.

In order to make the cycles commensurable it is enough to force the cycle time of each
robot to be an integer multiple of a fundamental cycle time. Let C0 be the fundamental
cycle time and λ(i) ∈ N+ the integer multiplier for the robot i. Thus, the cycle time
C[i], of robot i, is given by

C[i] = λ(i)C0, ∀i ∈ R. (3.13)

In order to make the cycles periodic it is necessary to force every robot i reach
every target point periodically with a period equal to its cycle time. For that the
following equality constraint is considered, in which i = b(q)

t[q, k] = t[q, 0] + kC[i], ∀q ∈ H; k ∈ Z. (3.14)

The constraints in (3.13) and (3.14) imply

T [q, k] = T [q, 0], ∀q ∈ H; k ∈ Z. (3.15)

Based on these ideas of periodicity and commensurability, the next Lemma pro-
vides an important result which will allow the limitation of the number of constraints.

Lemma 1 Consider the following complementary constraints:

t[q1, 0]− t[q2, 0] + C0 ≥ T [q2, 0],

t[q2, 0]− t[q1, 0] + C0 ≥ T [q1, 0],

∀q1 ∈ E ; ∀q2 ∈ W(q1). (3.16)

42 Chapter 3. Coordination strategy

If the complementary conditions in (3.16) are satisfied then it is enough to consider
the constraints in (3.12) with k1 = k2 = 0 to guarantee safety for all cycles.

Proof: Using (3.14) and (3.15) to rewrite the inequality in (3.12) the following con-
straints are obtained

t[q1, 0]− t[q2, 0] + ∆kC0 ≥ T [q2, 0] if t[q1, 0]− t[q2, 0] + ∆kC0 ≥ 0,

t[q2, 0]− t[q1, 0]−∆kC0 ≥ T [q1, 0] if t[q2, 0]− t[q1, 0]−∆kC0 ≥ 0,

∀q1 ∈ E ; ∀q2 ∈ W(q1); ∆k ∈ Z. (3.17)

in which ∆k = k1λ(i1)− k2λ(i2), i1 = b(q1) and i2 = b(q2). Note that since k1, k2 ∈ Z
and λ(i1), λ(i2) ∈ N+ we can infer that ∆k ∈ Z. Considering the case in which ∆k ≥ 1

the first inequality in (3.16) implies that the first inequality in (3.17) is active. Then,
the first inequality in (3.16) implies that the active inequality in (3.17) is satisfied. The
symmetric effect happens when ∆k ≤ −1. In this case the second inequality in (3.16)
implies that the second inequality in (3.17) is both active and satisfied.

The only remaining case is then when ∆k = 0. Thus, if the conditions in (3.16)
are satisfied, safety can be guaranteed by satisfying (3.17) with ∆k = 0 which is the
same as (3.12) with k1 = k2 = 0. This concludes the proof. �

It is now necessary to rewrite the safety conditions in (3.12) in a format that can
be used in a MILP formulation. Let ξ be a very large positive number and B[q1, q2] ∈ N
be a binary variable (can only assume the values 0 or 1) for each pair of points q1, q2 ∈ E
associated to the same collision zone. Details on the usage of this large number when
dealing with this type of constraint can be found in Section 4.3 of [Bazaraa et al., 2011].
The safety constraints can be written as

t[q1, 0]− t[q2, 0] ≥ T [q2, 0]− ξB[q1, q2],

t[q2, 0]− t[q1, 0] ≥ T [q1, 0] + ξ(B[q1, q2]− 1),

∀q1 ∈ E ; ∀q2 ∈ W(q1). (3.18)

The binary variable is used to define which robot is going to be the first one to
enter in the region. Finally, it is also necessary to consider the variables t[q, k] for
k = 0 and for k = 1 if q = f(i), in which i = b(q). The unit value of k is necessary
in this case to allow the transitions between cycles, in other words, to account for the
completion of one cycle. The periodicity and commensurability can then be guaranteed

3.3. MILP formulation 43

by considering the following constraint

t[f(i), 1]− t[f(i), 0] = λ(i)C0, ∀i ∈ R. (3.19)

To conclude, the constraints that will be included in the MILP formulation to
guarantee safety, periodicity and commensurability are (3.16), (3.18) and (3.19), re-
spectively.

3.3.2 Average speed reference

In order to avoid the loss of synchronism due to the presence of uncertainty in the
speeds, reference values of the average speeds for the coming segments are computed
online at every instant t[q, k]. A speed value is given as reference to the robot so that
it can control itself in order to attempt to reach the next target point on time. The
computation is based on the estimate of the current position error. The idea behind
the strategy is that even in the presence of uncertainty, by computing these reference
values the robots will always be able to reach the region of uncertainty of the next
target point after the time interval T [q, k]. It is considered that the robots know the
time perfectly, which allows them to know the instants t[q, k]. At these instants, a
reference speed is computed with basis on the current position error and applied until
the next instant t[q, k].

Let e[q, k] be the position error of robot i = b(q) in the kth cycle at the instant
t[q, k]. It is the length of the sub-path of Pi that goes from the target point q to
the position of robot i at the instant t[q, k]. The error e[q, k] is positive if at the
instant t[q, k] the robot i has already traversed q and negative if i has not reached q
yet. Let ê[q, k] be a measurement of e[q, k] that has a measurement error in the range
[−U i

p, U
i
p]. It is considered that only the access to ê[q, k] = e[q, k] ± U i

p is available,
with the superscript i indicating the robot. Let V [q, k] be the average speed to be
performed by i in the stretch from q to n(q) on its kth cycle. The time i must spend to
go from q to n(q) is T [q, 0]. Thus, the average velocity can be simply defined by the
ratio between the distance i should travel, L[q]− e[q, k], and the time it should spend.
Since the exact error e[q, k] is not known, but only ê[q, k] is, the reference average
velocity is given by

V [q, k] =
L[q]− ê[q, k]

T [q, 0]
=
L[q]− e[q, k]∓ U i

p

T [q, 0]
, (3.20)

with U i
p representing an error of position measurement of i.

44 Chapter 3. Coordination strategy

Figure 3.5 illustrates the use of equation (3.20) at the instant t[q1, k], when a robot
must to compute a reference speed for the stretch between target points q1 and q2. The
error e[q1, k], represented in the figure, is negative. In the absence of uncertainties in
the time interval [t[q1, k], t[q2, k]], the robot would reach q2 exactly at instant t[q2, k].
In the presence of uncertainty, the robot will be, at instant t[q2, k], in the region of
uncertainty around point q2.

-20 -15 -10 -5 0 5 10 15 20

42

44

46

48

50

52

54

56

58

q2q1

e[q1; k]

L[q1]instant t[q1; k]

Figure 3.5. Illustration of the average speed computation.

Later, in Section 3.3.4, when the limits of acceleration are considered, the way
this average speed is reached will be defined given the robot model (3.1).

3.3.3 Uncertainty

If the reference value defined in (3.20) is used it is clear that in the absence of posi-
tion measurement error and uncertainty in the velocity in the interval from t[q, k] to
t[n(q), k] the robot i reaches n(q) exactly after an interval T [q, 0]. According to the
definitions made, the position error e[n(q), k] around the point n(q) must be in the
interval [−r[n(q)], r[n(q)]]. Therefore, the maximum distance (let’s say Dm) that i
may travel is defined by the sum of the ideal distance (let’s say Did = L[q] − e[q, k])
and r[n(q)]:

Dm = Did + r[n(q)]. (3.21)

The maximum traveled distance will happen when the velocity error is at the
highest possible value during the whole segment. Using the uncertainty model in (3.2)
it is possible to compute

Dm =
(
V [q, k] + U i

v + U i
%V [q, k]

)
T [q, 0]. (3.22)

Note that the cumulative position error due to U i
%v can always be written as

U i
%V [q, k]T [q, 0]. Using (3.20) into (3.22) and recalling that Did = L − e[q, k] it is

3.3. MILP formulation 45

possible to write

Dm = Did ∓ U i
p + U i

vT [q, 0] + U i
%

(
L[q]− e[q, k]∓ U i

p

)
. (3.23)

From (3.21) and (3.23), r[n(q)] is given by

r[n(q)] = ∓U i
p + U i

vT [q, 0] + U i
%

(
L[q]− e[q, k]∓ U i

p

)
. (3.24)

Note that the worst possible case, that is, when the robot will reach the border
of the uncertainty region, is when e[q, k] = −r[q] and the measurement error is −U i

p.
Considering this case, which may occur in one of the cycles, r[n(q)] becomes

r[n(q)] = U i
p + U i

vT [q, 0] + U i
%

(
L[q] + r[q] + U i

p

)
. (3.25)

Shifting q back to p(q), in order to formally define r[q] instead of r[n(q)], the
definition of the length of half of the uncertainty region is finally defined as

r[q] = U i
p + U i

vT [p(q), 0] + U i
%

(
L[p(q)] + r[p(q)] + U i

p

)
,

∀q ∈ H. (3.26)

The set of equality constraints in (3.26) shows that the region of uncertainty
around q is defined by the position uncertainty, by the time spent in the segment that
precedes q (when there is a constant velocity error) and by the length of the segment
that precedes q (when there is a velocity proportional error). Note that we could repeat
the discussion considering the minimum possible distance that the robot i may travel.
It would give us the same value of r[q], since the uncertainties are considered to be
symmetric. Note also that, theoretically, |e[q, k]| ≤ r[q] but |ê[q, k]| may be bigger than
r[q], more precisely |ê[q, k]| ≤ r[q] + U i

p.

Now, in order to avoid that a robot, due to the uncertainty, is inside a collision
zone when it should not be, a target point q must be placed at a distance r[q] away from
the boundary of the inflated collision zone (see Fig. 3.3). The region of uncertainty
will then be a sub-path of Pi with length 2r[q] centered at the target point q. With
these definitions, variables L[q] can be written as

L[q] =

{
L(q) + r[q] + r[n(q)] + 2∆s, if q ∈ E ,
L(q)− r[q]− r[n(q)]− 2∆s, if q ∈ O.

(3.27)

The constraint ∆s ≥ 0 is also added in order to avoid solutions with a decrease

46 Chapter 3. Coordination strategy

in the length of the collision stretches.

3.3.4 Acceleration limits

The approach that we are developing here relies on the fact that at each instant t[q, k]

the robot i = b(q) will be inside the region of uncertainty related to q and have its
speed command changed in order to fulfill the speed requirement for the next segment.
In order to take into account acceleration limits in the speed variation, this change is
assumed to evolve as described in (3.1) with time interval τi. Let Vi[q, k] and Vf [q, k]

be the initial and final velocities, respectively, of a robot in a segment from q to n(q)

and t∗ be the time that has passed since the instant t[q, k]. The velocity profile on the
segment (let’s say v(t∗)) is

v(t∗) =

{
Vi[q, k] + a[q, k]t∗, if 0 < t∗ ≤ τi,

Vf [q, k], if τi < t∗ ≤ T [q, 0],
(3.28)

in which a[q, k] is the used constant acceleration computed by the low-level controller
at the instant t[q, k] according to

a[q, k] =
Vf [q, k]− Vi[q, k]

τi
. (3.29)

Note that the acceleration may vary according to how drastically the speed is
supposed to change. The acceleration is limited by choosing high enough values for τi.
This acceleration time can then be defined a priori from the minimum and maximum
allowed speeds of the robot i, vimin and vimax, and minimum and maximum allowed
accelerations, aimin < 0 < aimax, also for the robot i

τi =
vimax − vimin

min(−aimin, aimax)
. (3.30)

The velocity Vf [q, k] has also to be computed by the low-level controller to be
used as a reference in order to make the robot move according to the desired average
speed defined in (3.20). This is simply done by evaluating the following integral∫ T [q,0]

0

v(t∗) dt∗ = V [q, k]T [q, 0]. (3.31)

3.3. MILP formulation 47

Using (3.28) in (3.31) and solving for Vf [q, k]

Vf [q, k] =
2V [q, k]T [q, 0]− Vi[q, k]τi

2T [q, 0]− τi
, (3.32)

in which Vi[q, k] is a measurement of the current velocity of the robot. Note that any
measurement error in Vi[q, k] can be accounted for in U i

v and U i
%.

3.3.5 Speed limits

Note that the acceleration limits, as described in the previous section, are satisfied
as long as Vf [q, k] is in the interval [vimin, v

i
max]. Thus, it is necessary to find a set

of constraints that implicitly limits the velocities Vf [q, k]. This will also limit Vi[q, k],
since this is the final velocity of the previous stretch. Being i = b(q), the objective is
to guarantee that:

vimin ≤ Vf [q, k] ≤ vimax, ∀q ∈ H, ∀k ∈ I. (3.33)

Using the result in (3.32) and the definition (3.20) into (3.33), and solving for
T [q, 0], the following constraints are obtained

T [q, k] ≥
L[q] + r[q] + U i

p

vimax
+
τi(v

i
max − Vi[q, k])

2vimax
,

T [q, k] ≤
L[q]− r[q]− U i

p

vimin
− τi(v

i
min − Vi[q, k])

2vimin
.

∀q ∈ H, ∀k ∈ I. (3.34)

Since the values of ê[q, k] used in (3.20) may vary each cycle, the worst cases are
considered, which correspond to r[q]+U i

p in the lower limit of Vf [q, k] and to −r[q]−U i
p

in the upper limit. The values of Vi[q, k] are not MILP decision variables because it
would lead to nonlinear equations. This fact can be checked by using (3.32) into the
speed constraint (3.34). It prevents the use of (3.34) directly as one of the constraints.
To deal with that, (3.34) is rewritten in a conservative form. For the lower limit of
T [q, k] = T [q, 0] the speed Vi[q, k] is replaced by vimin and for the upper limit vimax is
used. Finally, the final speed constraints are

L[q] + r[q] + U i
p

vimax
+
τi∆v

i

2vimax
≤ T [q, 0] ≤

L[q]− r[q]− U i
p

vimin
− τi∆v

i

2vimin
,

∀q ∈ H. (3.35)

48 Chapter 3. Coordination strategy

in which ∆vi = vimax − vimin.

Note that the limitation is on the velocity setpoint. It means, for example, that
a robot may travel with a speed higher than vimax if the setpoint has a very high value
and the speed uncertainty is such that the robot crosses this limit. A possible solution
for this is to decrease vimax by U i

v +U i
%vmax. The same can be done for the lower speed

limit, that is, vimin becomes vimin + U i
v + U i

%v
i
min. In the present work these correction

were not considered.

3.3.6 Final MILP problem

Model 1 below completely defines the MILP formulation that maximizes safety, i.e.,
∆s.

The convention constraint defines a time for the first robot to be on the first point
of its path. The symbol f(1) was used to represent the first objective point of the first
robot. It is used because the solution is invariant to shifts in the variables t[q, k].

Note that the conditional statements on the last two sets of constraints depend
on previously known values. Thus, binary variables are not necessary as in the safety
conditions.

The solution of the obtained final MILP formulation, more specifically the vari-
ables t[q, k], r[q], ∆s and C0, is the solution of Problem 1. Incorporated in the con-
straints, more precisely in the speed constraints, is the lower level control strategy
defined in Sections 3.3.2 and 3.3.4. In those sections, equations (3.20) and (3.32) are
the solution of Problem 2, that is, the reference speed for the robots, the lower level
controller. Problem 1 is then solved offline, while Problem 2 is solved online. In Sec-
tion 3.4.4 a method to solve Problem 2 offline is presented in the idealized case of null
uncertainties.

3.3. MILP formulation 49

Model 1 (MILP formulation)

max: ∆s

subject to:

Safety conditions:

t[q1, 0]− t[q2, 0] ≥ T [q2, 0]− ξB[q1, q2],

t[q2, 0]− t[q1, 0] ≥ T [q1, 0] + ξ(B[q1, q2]− 1),

∀q1 ∈ E ; ∀q2 ∈ W(q1).

Periodicity and commensurability of cycles:

t[f(i), 1]− t[f(i), 0] = λ(i)C0,

∀i ∈ R.

Speed constraints:

L[q] + r[q] + U i
p

vimax
+
τi (v

i
max − vimin)

2vimax
≤ T [q, 0] ≤

L[q]− r[q]− U i
p

vimin
− τi (v

i
max − vimin)

2vimin
,

∀q ∈ H; i = b(q).

Regions of uncertainty:

r[q] = U i
p + U i

vT [p(q), 0] + U i
%

(
L[p(q)] + r[p(q)] + U i

p

)
,

∀q ∈ H; i = b(q).

Complementary conditions:

t[q1, 0]− t[q2, 0] + C0 ≥ T [q2, 0],

t[q2, 0]− t[q1, 0] + C0 ≥ T [q1, 0],

∀q1 ∈ E ; ∀q2 ∈ W(q1).

Positivity of ∆s:

∆s ≥ 0.

Convention:

t[f(1), 0] = 0.

Time intervals:

T [q, 0] =

{
t[n(q), 0]− t[q, 0], if n(q) 6= f(i),

t[n(q), 1]− t[q, 0], if n(q) = f(i).

∀q ∈ H; i = b(q).

Segment lengths:

L[q] =

{
L(q) + r[q] + r[n(q)] + 2∆s, if q ∈ E ,
L(q)− r[q]− r[n(q)]− 2∆s, if q ∈ O.

∀q ∈ H.

50 Chapter 3. Coordination strategy

3.4 Discussion on the coordination solution

3.4.1 Alternative objective functions

In the formulation of previous section, any feasible solution with a positive ∆s is
enough, since the minimum distances, defined by the size of the collision zones, are
ensured by the safety constraints. This fact allows one to think about different ob-
jective functions, for example, the minimization of the base cycle time C0, as in
[Peng and Akella, 2003] and [Jufeng and Srinivas, 2005], in order to obtain a more fre-
quent data acquisition.

Another possibility is to maximize the time interval (let’s say ∆t) in which a
collision zone remains without any robot after the departure of the last one. This
would require simple modifications in the safety conditions, complementary condi-
tions and stretch lengths. In this case the formulation will be closer to the one in
[Gonçalves et al., 2013].

3.4.2 Absence of solution

Note that in constraint (3.35) it is not possible to ensure that the lower limit of T [q, 0]

is smaller than the upper limit. This means that it is not possible to ensure that

L[q] + r[q] + U i
p

vimax
+
τi∆v

i

2vimax
≤
L[q]− r[q]− U i

p

vimin
− τi∆v

i

2vimin
. (3.36)

By rearranging (3.36) the following is obtained

L[q] ≥
(
r[q] + U i

p

)
(vimax + vimin)

vimax − vimin
+
τi (v

i
max + vimin)

2
. (3.37)

The relation in (3.37) requires that the distance between the target points be
greater than a minimum value. Since neither L[q] nor r[q] are known before the solution
of the MILP problem, the feasibility of the problem can not be ensured. In practice
the stretches, including the collision ones, must be long enough in order to enable a
solution. The worst case consideration in (3.35) requires a minimum time for speed
changes from one limit to the other in every stretch. A very small length may turn this
scheme unfeasible. As the robots may not need to make this big change of speed every
time, the non feasibility in this case is then caused by the worst case consideration. The
variable size of the segments given by the variables r[q] and ∆s might help to deal with
this source of unfeasibility, but it may not be enough. Thus, given the conservative

3.4. Discussion on the coordination solution 51

simplification, it can be stated that the algorithm is incomplete, in the sense it can fail
to find a solution even when it exists.

In addition, even if a limit on acceleration is not considered (τi → 0), the problem
may still be unfeasible. When the scenario has many robots in a relatively small area
and the majority of the points on the paths are in collision, the set of constraints in
(3.18) may never be completely satisfied.

Another source of unfeasibility is related to the predefined values of λ(i). The
values of the λ(i) must be selected according to the lengths of the paths Pi and the
velocity of the robots. For example, suppose that robot i1 and robot i2 have the same
speed limits and the length of P1 is twice the length of P2. If we select λ(i1) = 1 and
λ(i2) = 2, we are requiring i1 to have an average speed along P1 four times the one i2
has along P2. Then, if vimax < 4vimin, the problem is unfeasible. Thus, the values of
the λ’s must be properly chosen.

3.4.3 Alternative approaches

The constraints in (3.16), as discussed in [Gonçalves et al., 2013], may be too conser-
vative, which might also lead to unfeasibility. The problem can be relaxed if these
constraints are replaced by

t[q1, 0]− t[q2, 0] + w(q1, q2)C0 ≥ T [q2, 0],

t[q2, 0]− t[q1, 0] + w(q1, q2)C0 ≥ T [q1, 0],

∀q1 ∈ E ; ∀q2 ∈ W(q1), (3.38)

in which w(q1, q2) ∈ N+ is defined a priori. The next Lemma extends Lemma 1 for the
case w(q1, q2) ≥ 1.

Lemma 2 If the complementary conditions in (3.38) are satisfied then it is enough
to consider the constraints in (3.17) with |∆k| < w(q1, q2) to guarantee safety for all
cycles.

Proof: Remember that ∆k = k1λ(i1)−k2λ(i2) and since k1, k2 ∈ Z and λ(i1), λ(i2) ∈
N+, we have ∆k ∈ Z. Then, considering the case in which ∆k ≥ w(q1, q2) the first
inequality in (3.38) implies that the first inequality in (3.17) is active. Then the first
in (3.38) implies that the active inequality in (3.17) is satisfied. The symmetric effect
happens when ∆k ≤ −w(q1, q2). In this case the second inequality in (3.38) implies
that the second inequality in (3.17) is both active and satisfied. The only case left is
the one in which |∆k| < w(q1, q2). This concludes the proof. �

52 Chapter 3. Coordination strategy

In summary, in order to relax Model 1, the complementary conditions therein
should be replaced by the ones in (3.38). As a consequence, the safety condi-
tions in Model 1 should be replaced by a subset of constraints in (3.17) such that
|∆k| < w(q1, q2). Lemma 2 provides a sufficient condition on the values of |∆k|. The
following Lemma shows that not necessarily all ∆k such that |∆k| < w(q1, q2) should
be considered in the safety constraints.

Lemma 3 If the constraints in (3.38) are used, the values of ∆k to be considered in
(3.17) must be such that |∆k|/d ∈ N, in which d = gcd(λ(i1), λ(i2)), gcd denoting the
greatest common divisor.

Proof: If d = gcd(λ(i1), λ(i2)), |∆k| can be written as:

|∆k| = |k1λ(i1)− k2λ(i2)| = d

∣∣∣∣k1
λ(i1)

d
− k2

λ(i2)

d

∣∣∣∣ . (3.39)

The term that multiplies d belongs to N. Thus all possible values of |∆k| are integer
multiples of d. This concludes the proof. �

This approach is useful when there is a set of λ(i) with discrepant values. In this
same scope, another strategy that may be used is to consider that the shortest paths,
the ones that require the selection of smaller λ(i), are transformed in multiple paths.
For example, if there are two robots, i1 and i2, initially with λ(i1) = 2 and λ(i2) = 1,
it is possible to consider that the path of i2 (P2) is composed by two laps. Each target
point of its path will be transformed in two, one for each lap. In this new situation it
is possible to consider λ(i1) = λ(i2) = 1. This approach can not give a solution worse
than the previous one, since now the robot i2 will be allowed to execute two laps with
different speed profiles, having more freedom to find a better solution.

3.4.4 Speed profile along the paths

In principle it is not possible to define a robot’s speed (average, initial and final) in the
segments of its path because it is always varying in order to preserve the synchronism.
However, it is possible to do it if the uncertainty is disregarded. Suppose that a solution
for the MILP problem is already available and the uncertainty is null. The average
speed for a segment that starts in a target point q of the path of a given robot is
V [q] = L[q]/T [q, 0], since the position error is null. Now, consider (3.32) rewritten in

3.4. Discussion on the coordination solution 53

the following way

aqVi[q, 0] + Vi[n(q), 0] = bq, in which:

aq =
τi

2T [q, 0]− τi
, bq =

2V [q, 0]T [q, 0]

2T [q, 0]− τi
, i = b(q). (3.40)

Note that in (3.40) the fact that Vf [q, 0] = Vi[n(q), 0] was used and the cycle
counter k was replaced by 0, since in the null error case these velocities do not vary
between cycles. From the set of equations in (3.40) the following linear system is
obtained 

1 0 . . . an

a1 1 . . . 0
...
0 . . . an−1 1



Vi[q1, 0]

Vi[q2, 0]
...

Vi[qn, 0]

 =


bn

b1

...
bn−1

 , (3.41)

in which n is the number of objective points in a single path. The system in (3.41) can
be written as

A Vi = B. (3.42)

Theorem 1 Let A be a matrix with the form of the first matrix in the left of (3.41).
If 0 < τi < T [q, 0] <∞ for any q, then A is nonsingular.

Proof: The determinant of A, represented by |A|, defined by using Laplace’s formula
in the first line is

|A| = 1 + (−1)n+1an · |A1n|. (3.43)

The matrix A1n is upper triangular, thus its determinant is given by

|A1n| =
n−1∏
q=1

aq. (3.44)

Replacing (3.44) into (3.43), |A| becomes

|A| = 1 + (−1)n+1 ·
n∏
q=1

aq. (3.45)

Since 0 < τi < T [q, 0] < ∞ it is clear that according to (3.40), the values of the
elements aq in A are such that 0 < aq < 1. Thus, from (3.45), |A| is always different

54 Chapter 3. Coordination strategy

from 0 and A is nonsingular. �

Since A is nonsingular, a solution for Vi can be easily found by Vi = A−1B.
With that the result Vi and (3.1) Problem 2 can be solved offline by generating a cyclic
trajectory for each robot. A method to implement the solution of Problem 1 would be
the use of a controller to track the obtained trajectory, which will be parametrized on
time. Considering δv = 0 and δ% = 0, this controller would have to keep a tracking
error smaller than r[q] = U i

p in order to ensure safety.

Chapter 4

Control strategy

This chapter is dedicated to the development of a control strategy able to guide a
fixed wing UAV along a prespecified path. It will allow the implementation of the
coordination strategy developed in Chapter 3.

4.1 Control problem statement

The control problem addressed in this chapter aims to establish a control law for a
fixed-wing UAV such that it converges to and circulates a closed curve in a given
direction. The objective is to apply this control strategy to control each robot i ∈ R
along the curve Pi. The application of the control strategy to different robots has
absolutely no relation. Thus, in this chapter the sub-index i, indicating the robot,
will be suppressed. It will be assumed that a closed curve P is the limit-cycle of an
artificial vector field Φ defined in R2 or R3 space. This vector field should determine
the reference to the controller.

Recall that, from Section 2.2.1, a reference model can be considered for the fixed-
wing UAV if low level controllers are used to impose this dynamics. Thus, as done in
[Jesus et al., 2013] and [Olavo et al., 2018], the following reference model is considered

ẋ = v cos(θ), (4.1a)

ẏ = v sin(θ), (4.1b)

ż = τ−1
z (−z + zc) + uz, (4.1c)

θ̇ = τ−1
θ (−θ + θc) + uω, (4.1d)

v̇ = τ−1
v (−v + vc) + ua, (4.1e)

55

56 Chapter 4. Control strategy

where x, y and z are the Cartesian coordinates of the center of mass of the UAV,
θ is the yaw angle, and v is the forward speed in the xy plane with respect to the
ground. The control inputs of altitude, yaw angle and forward velocity are zc, θc and
vc, respectively. The time constants, all strictly positive, associated to z, θ, and v are
τz, τθ and τv, respectively. The terms uz, uω and ua are additive uncertainties with
absolute value limited by Uz, Uω and Ua, respectively, i.e.

|uz| ≤ Uz, |uω| ≤ Uω, |ua| ≤ Ua. (4.2)

Uncertainties may account for differences between the simplified model (4.1) and the
real system and also for measurement and actuation errors. Besides, the following
constraints are added to the model in (4.1)

|zc − z| ≤ τzv
z
max, (4.3a)

|θc − θ| ≤ τθωmax, (4.3b)

vmin ≤ vc ≤ vmax, (4.3c)

in which vzmax is the maximum absolute value of the velocity in z, ωmax is the maximum
turning rate, and vmax > vmin > 0 are the minimum and maximum forward speeds.
Note that vmin > 0, which represents the necessity of the airplane to maintain its
aerodynamic lift.

The control problem addressed in this work can be stated as follows:

Problem 3 Find a set of control laws, for zc, θc and vc, which obey the actuation con-
straints (4.3) and make the fixed-wing UAV, subject to bounded uncertainties, described
by (4.1) and (4.2), converge to a neighborhood of a stable limit-cycle associated with a
given guidance vector field.

4.2 Control design

The key idea to control the model (4.1) is to orient the UAV heading angle with the
vector field. Intuitively, by orienting the UAV its non-holonomic constraint is respected,
and it will be able to follow the field’s integral lines. Thus, a control law for the turning
ratio ω(t) ≡ θ̇, when uω = 0, is first developed. It will enable the orientation of the
UAV with the field. In the sequence, control laws for forward speed and vertical motion
are designed. Next, an analysis when the disturbances are present is performed.

4.2. Control design 57

Through the development of the controllers, the interest is only on the orientation
of the vector fields. Then the normalized field is considered. Note that convergence
properties are not affected by any positive normalization, as proved in [Wu et al., 2018].
Let Φ̂ ≡ [Φ̂x Φ̂y 0]T ≡ Φ̂(x, y, z) ∈ R3 be a horizontal field (no component in the z
direction) normalized with the xy components of Φ. Let also Φ̂z ≡ Φ̂z(x, y, z) ∈ R be
the vertical component of Φ scaled accordingly. Formally, the definition is

Φ̂ =
1√

Φ2
x + Φ2

y

 Φx

Φy

0

 , Φ̂z =
Φz√

Φ2
x + Φ2

y

(4.4)

The definition of the normalized and projected field Φ̂ will be very important to control
the angle θ. Its necessity is intuitive since θ is a rotation around z world axis, being
independent of the z component of Φ.

4.2.1 Heading control

Let θf (p) be the orientation of the vector field at point p, i.e., θf ≡ atan2(Φy,Φx),
where atan2 is the four quadrant arc tangent function. This definition allows to com-
pute the robot’s orientation error θ̄ ≡ θ̄(p, θ) as θ̄ = θf − θ with θ̄ ∈ (−π, π]. Disregard
for now the uncertainty uω and consider the time-derivative of the error θ̄, which is

˙̄θ(t) = θ̇f (x, y, z)− ω(t). (4.5)

If θ̄ is stabilized at the origin, the UAV will be oriented with the field and will follow
its integral lines. The proof that the stabilization of θ̄ leads to convergence of p to P
will be performed in Subsection 4.2.4. Now, consider the following Lyapunov candidate
function:

Vθ(θ̄) = 1− cos(θ̄), −π < θ̄ < π. (4.6)

Note that Vθ(0) = 0 and Vθ(θ̄) > 0 ∀ θ̄ 6= 0. The time-derivative of (4.6) is given by

V̇θ(θ̄) = sin(θ̄) ˙̄θ = sin(θ̄)
[
θ̇f (x, y, z)− ω

]
. (4.7)

In order to define a stabilizing control law ω, it is necessary to compute θ̇f (p). Then,
consider the following theorem.

58 Chapter 4. Control strategy

Theorem 2 Let p(t) = [x(t) y(t) z(t)]T ∈ R3 be an arbitrary trajectory, and Φ(p) :

R3 → R3 be a vector field such that Φ(p) = [Φx(p) Φy(p) Φz(p)]T . Consider Φx, Φy

and Φz continuous and differentiable functions with respect to x, y and z. Assume that
Φx(t) ≡ Φx(p(t)), Φy(t) ≡ Φy(p(t)), and that the function θf is defined as θf (t) ≡
atan2(Φy(t),Φx(t)). Then, the time-derivative θ̇f (t) throughout the trajectory p(t) is
given by

θ̇f (t) =
(

Φ̂x∇Φ̂T
y − Φ̂y∇Φ̂T

x

)
ṗ, (4.8)

in which Φ̂ = [Φ̂x Φ̂y 0]T = [Φx Φy 0]T (Φ2
x + Φ2

y)
−0.5 is the field projected onto the local

horizontal plane and normalized. The vectors ∇Φ̂x and ∇Φ̂y are the gradients of Φ̂x

and Φ̂y, respectively, with respect to x, y and z.

Proof: First, note that the function θf can be computed from Φ̂ in (4.4). In order to
verify this property it is enough to observe that any normalization factor cancels inside
the atan function. Then the time-derivative of θf can be computed based on Φ̂ as

θ̇f (t) =
d

dt
atan

(
Φ̂y

Φ̂x

)
=

˙̂
ΦyΦ̂x − ˙̂

ΦxΦ̂y

Φ̂2
x + Φ̂2

y

. (4.9)

Note that the derivatives of the functions atan and atan2 are equivalent. Note also
that Φ̂2

x + Φ̂2
y = 1. Replacing it in (4.9) and applying the chain rule to compute the

time-derivatives, (4.9) becomes

θ̇f (t) =
(
∇Φ̂T

y ṗ
)

Φ̂x −
(
∇Φ̂T

x ṗ
)

Φ̂y. (4.10)

By isolating ṗ, equation (4.10) can be written as in (4.8). This concludes the proof. �
Note that Theorem 2 provides the value of θ̇f for any smooth vector field in

R3 and for any direction the UAV is moving. This result enables the strategy to be
applicable to 3 dimensional paths. Now, replacing (4.8) into (4.7), a stabilizing control
law is given by

ω(t) =
(

Φ̂x∇Φ̂T
y − Φ̂y∇Φ̂T

x

)
ṗ + kp sin(θ̄), (4.11)

in which kp > 0. Given uω = 0, the control law in (4.11) yields,

V̇θ(θ̄) = −kp sin(θ̄)2. (4.12)

Since for −π < θ̄ < π the function V̇θ(θ̄) < 0 ∀ θ̄ 6= 0, (4.6) is indeed a Lyapunov

4.2. Control design 59

function, and the control law in (4.11) ensures asymptotically stability of the robot’s
orientation error at the origin.

It is important to emphasize that for θ̄ ∼ π the function V̇θ(θ̄) = 0. In fact,
the system admits an equilibrium point at θ̄ ∼ π. However, this equilibrium point is
unstable, since Vθ(θ̄) has its maximum value at θ̄ = π and V̇θ(π − ε) < 0 for any ε

arbitrarily small. Since θ̄ ∈ S1, it is impossible to establish a continuous control law
that stabilizes θ̄ at 0, for which there is no other equilibrium point at any θ̄ 6= 0.

Now, limits for ω(t) will be found given maximum values of the field derivatives.
Consider a positive scalar M such that ||∇Φ̂x|| ≤ M and ||∇Φ̂y|| ≤ M . Note that in
(4.11), Φ̂x = cos(θf) and Φ̂y = sin(θf). Then, by using triangular inequality in (4.11)
the following is obtained

|ω(t)| ≤ | cos(θf)− sin(θf)|M‖ṗ‖+ |kp sin(θ̄)|. (4.13)

The maximum norm of the difference of trigonometric functions is
√

2, thus

|ω(t)| ≤
√

2M ||ṗ||+ kp. (4.14)

Note that
√

2M‖ṗ‖+ kp >
√

2M‖ṗ‖ > 0. It is now necessary to impose that the right
side of (4.14) to be less than ωmax, thus, a sufficient condition that ensures constraint
(4.3b) is

0 ≤
√

2M‖ṗ‖max
ωmax − kp

≤ 1, (4.15)

where ‖ṗ‖max is the maximum speed the UAV may reach, that is, ‖ṗ‖max =√
(vmax)2 + (vzmax)

2. Note that to control θ, it is required that the vector field itself
obeys condition (4.15) in order to (4.3b) be satisfied.

Finally, given equations (4.1d) and (4.11) it is possible to define the control θc as

θc = τθ

(
Φ̂x∇Φ̂T

y − Φ̂y∇Φ̂T
x

)
ṗ + τθkp sin(θ̄) + θ. (4.16)

4.2.2 Velocity control

Note that the control law ω, defined in (4.11), considers the velocity v(t) in the vector ṗ.
This allows a decay of the Lyapunov function Vθ that is not dependent on v, (see (4.12)).
This decoupling between v(t) and ω(t) allows the definition of independent references
for v(t). Thus, consider a velocity profile vr(t), such that vmin ≤ vr(t) ≤ vmax, to be
followed by the UAV. Consider for now a null uncertainty, ua = 0, and let a = v̇ be

60 Chapter 4. Control strategy

the acceleration in the horizontal plane. Let v̄ = vr − v be defined as the error in the
forward velocity. The following control law is proposed

a(t) = v̇r + kvv̄, (4.17)

in which kv > 0. Consider a Lyapunov candidate function given by Vv = 1
2
v̄2 =

1
2
(vr − v)2. Its derivative with respect to time is

V̇v = (vr − v) (v̇r − v̇) . (4.18)

Assuming for now ua = 0 it is possible to impose v̇ = a. Given that, the replace-
ment of (4.17) into (4.18) yields

V̇v = −kv (vr − v)2 ≤ 0. (4.19)

Since V̇v ≤ 0, Vv is indeed a Lyapunov function and v = vr is an equilibrium
point. Finally, with a(t) defined in (4.17) and the dynamics in (4.1e), the control law
for vc is defined as

vc = τvv̇r + τvkvv̄ + v. (4.20)

4.2.3 Altitude control

The dynamics of the height, z, in model (4.1) is completely decoupled from others. In
(4.4) Φ̂z was defined according to the normalization factor ‖[Φx Φy]‖. Then, in order to
make the UAV follow the field’s integral lines, it is necessary to scale a desired velocity
ṽz to Φ̂z with the same factor that ‖[ẋ ẏ]‖ is scaled to ‖[Φ̂x Φ̂y]‖. Since ‖[Φ̂x Φ̂y]‖ = 1,
ṽz is defined as

ṽz = ‖ [ẋ ẏ] ‖ Φ̂z = v Φ̂z. (4.21)

The computation in (4.21) may still result in |ṽz| > vzmax. Then, the following satura-
tion function is defined

vz =

{
ṽz, if |ṽz| ≤ vzmax,

vzmaxṽz|ṽz|−1, if |ṽz| > vzmax.
(4.22)

Note that, assuming feasibility for the path P , it is ensured that the saturation in
(4.22) is inactive for p ∈ P . Also, a formal convergence proof is still necessary when the

4.2. Control design 61

saturation is considered. Nonetheless, in practice, the convergence is always reached.
Finally, according to (4.1c) the height control is defined as

zc = τzvz + z. (4.23)

4.2.4 Disturbance analysis

If the uncertainty uω is considered and the control law (4.11) is assumed, the function
V̇θ in (4.12) becomes

V̇θ = −kp sin(θ̄)2 − sin(θ̄)uω. (4.24)

Assuming the maximum value |uω| = Uω and applying the triangle inequality in
(4.24), the following is true

V̇θ ≤ | sin(θ̄)|
(
−kp| sin(θ̄)|+ Uω

)
. (4.25)

Consider γ = asin(Uωk
−1
p) < π/2. From (4.25) it is clear that, for an infinitesimal

ε > 0, we have |θ̄| = γ + ε =⇒ V̇θ < 0. Then, the following invariant set for θ̄ can be
defined

Iθ =
{
θ̄ ∈ S1 | |θ̄| ≤ γ

}
. (4.26)

Note that for Iθ be bounded it is necessary that kp > Uω. Otherwise γ is not defined
as a real number and Iθ = S1. Note also that if π − |θ̄| < γ, V̇θ can be positive,
however, this condition is unstable. Formally, convergence can be ensured for every
initial condition |θ̄(0)| < π − γ. Nonetheless, in practice convergence happens for all
initial conditions.

Now, the influence of the uncertainty ua in the velocity control will be considered.
Assuming the control law (4.17), the time derivative of the function Vv in (4.19) becomes

V̇v = −kv (vr − v)2 − (vr − v)ua. (4.27)

Given the limit |ua| ≤ Ua, an upper bound for V̇v is

V̇v ≤ |vr − v| (−kv |vr − v|+ Ua) . (4.28)

Consider µ = Uak
−1
v . From (4.28) it is clear that if v̄ ≥ µ then V̇v ≤ 0. Thus,

in the presence of the uncertainty ua, the following invariant set for the error v̄ can be

62 Chapter 4. Control strategy

established

Iv = {v̄ ∈ R | |v̄| ≤ µ} . (4.29)

It is important to emphasize that it is interesting to have µ significantly smaller
than vr, that is µ� vr. From the definition of µ, the property µ� vr can be obtained
by selecting kv such that kv � Uav

−1
r .

Now, let ζ ≡ Uz and v̄z = vz − ż. Given (4.23) and (4.1c) the following invariant
set can be directly inferred

Iz = {v̄z ∈ R | |v̄z| ≤ ζ} . (4.30)

The sets Iψ, Iv and Iz define maximum absolute values, γ, µ and ζ, for the
orientation error θ̄, the forward velocity error v̄ and the vertical velocity error v̄z,
respectively. It is now necessary to define how these bounds reflect in the value of
the field’s potential function P . In other words, the objective is to verify if ultimate
boundedness in θ̄, v̄ and v̄z implies in ultimate boundedness in the function P . For
that, consider the following Lemma.

Lemma 4 Let w1, w2, w3 ∈ R3 vectors such that

wT1 w3 = A, (4.31a)

wT2 w3 ≥ B, (4.31b)

||w1|| = ||w2|| = ||w3|| = 1, (4.31c)

in which −1 ≤ A ≤ 0, 0 ≤ B ≤ 1 are constants. Then

wT1 w2 ≤ AB +
√

1− A2
√

1−B2. (4.32)

Proof: Let r = wT1 w2 and consider a matrix Q defined as Q = w1w
T
1 − w2w

T
2 . Re-

garding the Euclidean norm of Qw3 the following is true

||Qw3||2 ≤ ||Q||2||w3||2 = ||Q||2. (4.33)

Since ‖w1‖ = ‖w2‖ = 1, one can show that the eigenvalues of Q are 0,
√

1− r2

and −
√

1− r2. And since Q is symmetric its Euclidean norm is the greatest absolute
value of its eigenvalues, thus, ||Q|| =

√
1− r2. The norm of Qw3 can also be written

as ||Qw3||2 = ||
(
w1w

T
1 − w2w

T
2

)
w3||2 = (wT1 w3)2 + (wT2 w3)2 − 2(wT1 w3)(wT2 w3)r, and

4.2. Control design 63

from (4.33) one can write

(wT1 w3)2 + (wT2 w3)2 − 2(wT1 w3)(wT2 w3)r ≤ 1− r2. (4.34)

Using A = wT1 w3 and defining C = wT2 w3, (4.34) can be written as

r2 − 2ACr + A2 + C2 − 1 ≤ 0. (4.35)

The solution of inequality (4.35) is

r ≤ AC +
√

1− A2
√

1− C2. (4.36)

Since A ≤ 0 and C ≥ B ≥ 0 we conclude that AC ≤ AB and
√

1− C2 ≤
√

1−B2.
By applying these facts to (4.36) and recalling that r = wT1 w2 the result in (4.32) is
finally proven. �

Consider also the following Remark.

Remark 1 For functions f1(s), f2(s), g1(s) and g2(s) > 0 and a set S we have that:

min
s∈S

(f1(s) + f2(s)) ≥ min
s∈S

f1(s) + min
s∈S

f2(s). (4.37)

min
s∈S

g1(s)

g2(s)
≥ mins∈S g1(s)

maxs∈S g2(s)
. (4.38)

Let the vector Ψ be the desired velocity for the UAV in the ideal case. In this
case v = ‖ẋ ẏ‖ = vr, θ = θf and the velocity in z is computed according to (4.21).
This vector can be written as

Ψ =

 vr cos(θf)

vr sin(θf)

vrΦ̂z

 = vr

 cos(θf)

sin(θf)

Φz(1− Φ2
z)
−0.5

 =
vr√

1− Φ2
z

Φ. (4.39)

Note that the scaling factor
√

Φ2
x + Φ2

y =
√

1− Φ2
z.

The vector ṗ, which is the actual velocity of the UAV, can be written as the
vector Ψ disturbed by the errors θ̄, v̄ and v̄z as below

ṗ =

 (vr + v̄) cos(θf − θ̄)
(vr + v̄) sin(θf − θ̄)

(vr + v̄)Φz(1− Φ2
z)
−0.5 + v̄z

 = (vr + v̄)

 cos(θf − θ̄)
sin(θf − θ̄)

Φz(1− Φ2
z)
−0.5 + v̄z

vr+v̄

 . (4.40)

64 Chapter 4. Control strategy

The norms of the vectors Ψ and ṗ are

||Ψ|| = vr√
1− Φ2

z

,

||ṗ|| = (vr + v̄)

√
1 +

Φ2
z

1− Φ2
z

+ 2
Φz√

1− Φ2
z

v̄z
(vr + v̄)

+
v̄2
z

(vr + v̄)2

= (vr + v̄)

√
1

1− Φ2
z

+ 2
Φz√

1− Φ2
z

v̄z
(vr + v̄)

+
v̄2
z

(vr + v̄)2
.

(4.41)

Now consider the following definitions

w1 =
∇P
‖∇P‖

, w2 =
ṗ

‖ṗ‖
, w3 =

Ψ

‖Ψ‖
= Φ (4.42)

The function Ṗ can be written as

Ṗ = ∇P T ṗ = ||∇P || ||ṗ||
(
∇P
||∇P ||

)T
ṗ

||ṗ||
= ||∇P || ||ṗ|| wT1 w2 (4.43)

The quantity wT1 w3 can be computed as

wT1 w3 =
∇P TΨ

‖∇P‖ ‖Ψ‖
=
∇P TΦ

‖∇P‖
. (4.44)

Given Property 1, in Section 2.2.2, wT1 w3 in (4.44) can be written as

wT1 w3 =
G(P)‖∇P‖
‖∇P‖

= G(P) = A. (4.45)

Note that since G(P) ≤ 0, A ≤ 0, and since ||w1|| = ||w2|| = 1 , −1 ≤ A ≤ 0.

Now, given (4.39) and (4.40), the quantity wT2 w3 can be written as

wT2 w3 =
ṗTΨ

‖ṗ‖ ‖Ψ‖

=
(
v2
r + vrv̄

) cos(θ̄) + Φ2
z (1− Φ2

z)
−1

+ Φz (1− Φ2
z)
−0.5 v̄z

vr+v̄

v2r+vr v̄√
1−Φ2

z

√
1

1−Φ2
z

+ 2 Φz√
1−Φ2

z

v̄z
(vr+v̄)

+ v̄2z
(vr+v̄)2

=
cos(θ̄) + Φ2

z (1− Φ2
z)
−1

+ Φz (1− Φ2
z)
−0.5 v̄z

vr+v̄

1√
1−Φ2

z

√
1

1−Φ2
z

+ 2 Φz√
1−Φ2

z

v̄z
(vr+v̄)

+ v̄2z
(vr+v̄)2

. (4.46)

4.2. Control design 65

Multiplying the numerator and the denominator of (4.46) by (1− Φ2
z) it is rewrit-

ten as

wT2 w3 =
(1− Φ2

z) cos(θ̄) + Φ2
z + Φz

√
1− Φ2

z
v̄z
vr+v̄√

1 + 2Φz

√
1− Φ2

z
v̄z

(vr+v̄)
+ (1− Φ2

z)
v̄2z

(vr+v̄)2

. (4.47)

In order to use Lemma 4 it is necessary to find a lower bound B for wT2 w3 in
(4.47). For that, we will use the limits |θ̄| ≤ γ, |v̄z| ≤ ζ, v̄ ≤ µ and |Φz| ≤ 1 will be
used to successively lower bound (4.46). Starting with the bound |θ̄| ≤ γ one can write

wT2 w3 ≥
(1− Φ2

z) cos(γ) + Φ2
z + Φz

√
1− Φ2

z
v̄z
vr+v̄√

1 + 2Φz

√
1− Φ2

z
v̄z

(vr+v̄)
+ (1− Φ2

z)
v̄2z

(vr+v̄)2

. (4.48)

In order to use the bound |Φz| ≤ 1, consider s = Φz, S = {s | |s| ≤ 1}, g1(s)

as the numerator of (4.48) and g2(s) as the denominator of (4.48). We will then use
(4.38) to find a lower bound for (4.48). The minimum value of g1(s) is found by using
(4.37) with f1(s) = (1− s2) cos(γ) + s2 and f2(s) = s

√
1− s2 v̄z

vr+v̄
. Then, the following

is obtained

wT2 w3 ≥
cos(γ)− 1

2

∣∣∣ v̄z
vr+v̄

∣∣∣√
1 +

∣∣∣ v̄z
vr+v̄

∣∣∣+ v̄2z
(vr+v̄)2

. (4.49)

Note that the extreme points of s
√

1− s2 occur at s = ±1
2
.

Now, considering the bound |v̄z| ≤ Uz = ζ, let s = v̄z and S = {s | |s| ≤ ζ}.
Applying (4.38) with g1(s) and g2(s) as the numerator and denominator of (4.49),
respectively, the following bound is obtained

wT2 w3 ≥
cos(γ)− 1

2
ζ

|vr+v̄|√
1 + ζ

|vr+v̄| + ζ2

(vr+v̄)2

. (4.50)

Finally, considering the bound |v̄| ≤ µ ≤ vr, let s = v̄ and S = {s | |s| ≤ µ}.
Once more, applying (4.38) with g1(s) and g2(s) as the numerator and denominator of
(4.50), respectively, the following new bound is obtained

wT2 w3 ≥
cos(γ)− 1

2
ζ

vr−µ√
1 + ζ

vr−µ + ζ2

(vr−µ)2

. (4.51)

66 Chapter 4. Control strategy

The lower bound B is finally defined as the right hand side of (4.51) in the
following way

B =
(vr − µ) cos(γ)− 1

2
ζ√

(vr − µ)2 + ζ (vr − µ) + ζ2

. (4.52)

Now, the following theorem can be stated.

Theorem 3 Let γ ≤ π/2 and ζ ≤ 2 (vr − µ) cos(γ). Then, there exists χ ≥ 0 such
that cos(χ) = B and the set

I =
{
p ∈ R3 | P (p) ≤ G−1(− sin(χ))

}
(4.53)

is positively invariant.

Proof: First, from (4.45) −1 ≤ A ≤ 0. Note also that since ζ ≤ 2 (vr − µ) cos(γ),
which is a very gentle constraint in practical cases where ζ, µ � vr, then 0 ≤ B ≤ 1.
Thus, there exists χ ≥ 0 such that cos(χ) = B. Now, let D = ||∇P || ||ṗ|| > 0. Then,
using equations (4.43), (4.42), (4.45) and (4.52) it is possible to apply Lemma 4 and
write

Ṗ ≤ D
(
AB +

√
1− A2

√
1−B2

)
. (4.54)

Having in mind that A ≤ 0, the condition to have Ṗ ≤ 0 can be written as

−AB ≥
√

1− A2
√

1−B2. (4.55)

Using B = cos(χ) inequality in (4.55) can be written as

−A√
1− A2

≥
√

1− cos(χ)2

cos(χ)
=

sin(χ)√
1− sin(χ)2

. (4.56)

From (4.56) it is clear that −A ≥ sin(χ) implies Ṗ ≤ 0. Using the definition of A in
(4.45) the condition is

−G(P) ≥ sin(χ) ≡ G(P) ≤ − sin(χ). (4.57)

Now, since the function G(P) is decreasing, G−1 exists, and applying G−1 to
both sides of the second inequality of (4.57) the following sufficient condition on P is

4.3. Field’s Singularities 67

obtained in order to have Ṗ ≤ 0

P ≥ G−1 (− sin(χ)) . (4.58)

Finally, from (4.58) it is clear that if p /∈ I then Ṗ ≤ 0. Thus the set I is
positively invariant. This concludes the proof. �

In conclusion, Theorem 3 states that when bounded uncertainties uω, ua and uz
are present, the function P , which encodes the distance from the curve P , admits an
ultimate bound. Now, next Corollary formalizes the statement made in Subsection
4.2.1, that is, getting oriented with the field, in the absence of uncertainties, implies in
convergence to the target curve.

Corollary 1 In the absence of uncertainties, that is: Uω=0, Ua=0, Uz=0, the UAV
converges asymptotically to the curve P.

Proof: Given the definitions of γ, µ and ζ, it occurs that Uω = 0, Ua = 0 and Uz = 0

imply γ = 0, µ = 0 and ζ = 0, respectively. Using these facts to compute B in (4.52)
it is easy to obtain B = 1. Since B = 1, χ = 0, sin(χ) = 0 and I becomes

I =
{
p ∈ R3 | P ≤ G−1 (0)

}
=
{
p ∈ R3 | P = 0

}
= P . (4.59)

Since, in the absence of uncertainties, the invariant set I collapses to the target curve
P , asymptotic convergence in the absence of uncertainties has been proven. �

4.3 Field’s Singularities

In order to compute the control law (4.11), it is necessary to perform operations, to com-
pute gradients of field’s components, over a normalized vector field. This normalization
necessarily creates a discontinuity point in the interior of a planar closed curve, fact that
is a direct consequence of the Brouwer fixed-point Theorem [Khamsi and Kirk, 2011].
The values of the field derivatives go to infinity as we approach the singularity point,
which generates extremely high ω(t) commands, making it impossible to respect (4.15).
In this section a strategy to handle this problem is presented. It is formally de-
fined in R2, but will be extended to R3. Without loss of generality, let ps = 0 be
the singularity point. Consider a ball of radius Ω around the singularity, that is,
BΩ = {p ∈ R2 : ‖p−ps‖ ≤ Ω}. The strategy consists in the establishment of ω(t) = 0

inside the ball. In this way, while the UAV is in BΩ, it will continue on a rectilinear
trajectory.

68 Chapter 4. Control strategy

Let us define some variables based on Figure 4.1. The circle represents BΩ. Let
β ∈ S1 be an angular coordinate to the border of the ball BΩ defined as B̄Ω. Consider
also the function φ(β) : S1 → S1 that associates to each local β in B̄Ω a value φ(β) ∈ S1.
This function is equivalent to the orientation θf at B̄Ω. Defining pβ ∈ B̄Ω such that
pβ = [Ω cos(β), Ω sin(β)]T , the function φ(β) is formally defined as:

φ(β) = atan2 (Φy(pβ),Φx(pβ)) . (4.60)

A function δ(β) : S1 → S1, in which δ(β) = φ(β) − β, is also defined. Let
β1, β2 ∈ S1 be coordinates relative to the intersections of a straight line path of the
UAV with B̄Ω. This path is parallel to the vector [cos(θ) sin(θ)]T , and the intersections
occur at instants t1 and t2 > t1.

-1 -0.5 0 0.5 1 1.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1

-2

"-

?1

/1
?2/2

3

+

Figure 4.1. Definitions for Theorem 4. In blue is the straight line with orienta-
tion θ. In red are vectors with orientations β1 and β2. In green are vectors with
orientations φ(β1) and φ(β2).

Evidently, it is not possible to ensure that the Lyapunov function Vθ in (4.6)
will decrease while the UAV is inside BΩ. However, Theorem 4 establishes sufficient
conditions to ensure that the value of the Lyapunov function in the instant t2 is smaller
than its value in the instant t1.

Theorem 4 Consider that Vθ(ti) is the evaluation of the function 1 − cos (φ(βi)− θ)
at the intersections of the straight line with B̄Ω at βi, i = 1, 2. If

d∗φ

dβ
(β) > 0, ∀ β ∈ S1, (4.61a)

cos(δ(β)) > 0, ∀ β ∈ S1, (4.61b)

4.3. Field’s Singularities 69

then

Vθ(t2) < Vθ(t1), ∀ β1, β2 ∈ S1, (4.62)

in which the derivative in (4.61a) is defined as

d∗φ

dβ
(β) = lim

∆β→0

sin(φ(β + ∆β)− φ(β))

∆β
. (4.63)

Proof: First, it is important to mention that the definition in (4.63) is only a for-
malization of the derivative of φ(β) with respect to β. Remember that sin(x) → x as
x→ 0.

Now, let ∆Vθ be the variation function defined as ∆Vθ = Vθ(t2)−Vθ(t1), in other
words, how much is the increase of Vθ. Thus ∆Vθ = cos(φ(β1) − θ) − cos(φ(β2) − θ).
Without loss of generality consider that the angle β2 is written as

β2 = β1 + ∆β = β1 +

∫ β1+∆β

β1

dβ, (4.64)

in which ∆β ∈ [0, 2π] is the angle that goes from β1 to β2 in the counter clock-
wise direction. The integral definition in (4.64) is made to avoid displacements of
more than 2π between β1 and β2. To simplify the notation consider φi = φ(βi)

and δi = δ(βi), i = 1, 2. Using the trigonometric property cos(A)−cos(B) =

−2 sin((A−B)/2) sin((A+B)/2), the condition ∆Vθ < 0 can be written as

∆Vθ = −2 sin

(
φ1 − φ2

2

)
sin

(
φ1 + φ2 − 2θ

2

)
< 0, (4.65)

which after using φ1 = δ1 + β1 and φ2 = δ2 + β2 = δ2 + β1 + ∆β becomes

∆Vθ = 2 sin

(
φ2 − φ1

2

)
sin

(
δ1 + δ2 + 2β1 + ∆β − 2θ

2

)
< 0, (4.66)

Using the fact that ∆β ∈ [0, 2π], according to (4.64), “β2 > β1 informally”, a geometric
analysis in Figure 4.1 allows the inference of

2β1 + ∆β − 2θ = −π. (4.67)

Using this relation in (4.66) and using sin(A − π/2) = − cos(A), the condition for

70 Chapter 4. Control strategy

having ∆Vθ < 0 can be written as

sin

(
φ2 − φ1

2

)
cos

(
δ1 + δ2

2

)
> 0, (4.68)

Now it will be shown that (4.61) implies the veracity of (4.68). The condition
(4.61b) implies that −π/2 < δ1, δ2 < π/2. Thus the cosine in (4.68) is positive. Now
it is necessary to show that the sine is also positive. Rewriting φ2 as an integral from
β1 to β2, the sine in (4.68) can be written as

sin

(
1

2

∫ β1+∆β

β1

d∗φ

dβ
(β′)dβ′

)
> 0, (4.69)

If ∆β = 0, the integral in 4.69 is 0. Since the function φ(β) is continuous, the value of
the integral at ∆β = 2π must be an integer multiple of 2π. However, if the value of the
integral is any multiple different from 2π itself, condition (4.61b) would be violated.
Thus, if ∆β = 2π the value of the integral is also 2π. The condition (4.61a) ensures
that the integral is a crescent function of ∆β. Thus, the integral only assume values
in between 0 and 2π and, consequently, the argument of the sine function lies between
0 and π. Evidently, the sine is positive, which concludes the proof. �

Theorem 4 is directly applicable only for fields in R2 space. For fields in R3, it
is common that the normalized and projected fields admit singularities at the z axis.
In this case, ω = 0 and vz = 0 can be set inside a cylinder of radius Ω. In this case,
(4.62) can be ensured if (4.61), computed from the normalized and projected field, is
respected for all z.

A more generic formal strategy for dealing with singularities in R3 that are not
only on the z axis, or in R2 that are not a single point, is still needed.

This treatment of field’s singularities closes this chapter. The control strategy
developed here can be directly used to control multiple UAVs, each one in a specific
prespecified path, as in the scenario addressed in Chapter 3.

Chapter 5

Results

In this chapter the results of the developed coordination and control strategies will be
presented. The results that allow the analysis of the multi-robot coordination strategy
will be shown first, and the results associated to the fixed-wing UAV control strategy
are presented in the sequence. At the end, results that combine the two strategies will
be presented.

An additional video with more results and some animations is available at https:
//www.youtube.com/watch?v=UNPZ6HSMwqI&feature=youtu.be.

5.1 Coordination strategy

This section focus on the presentation of results relative to the coordination strategy
developed in Chapter 3.

5.1.1 Simulated experiments

In order to illustrate the coordination approach an example with eight robots was
solved. At this point, instead of considered fixed-wing UAVs, differential drive robots
are going to be used in the simulation. The considered scenario is illustrated in Fig.
5.1, where the position of the target points derived from the solution are already shown
together with the corresponding regions of uncertainty. The robots 1, 2, 3, 4, 5, 6, 7

and 8 travel, in the counterclockwise direction, along the curves in blue, red, green,
magenta, orange, dark green, clear blue and brown, respectively. The map is 16m×8m.

Note that there are 14 collision zones. The 2 regions in the right part of the
image were actually 4 according to mathematical definition in Section 3.2. However,

71

https://www.youtube.com/watch?v=UNPZ6HSMwqI&feature=youtu.be
https://www.youtube.com/watch?v=UNPZ6HSMwqI&feature=youtu.be

72 Chapter 5. Results

-8 -6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

q1

q2

q3

q4

q5

q6

Figure 5.1. Scenario used for a simulation of the coordination strategy. Collision
stretches are the ones in thick black. Inflated collision zones, represented by the
gray polygons, are composed of the segments therein. Target points are in black
and the regions of uncertainty are between the black curved traces. Robots are
represented by arrows indicating their motion direction and circles indicating their
sizes.

in order to avoid very short stretches, which could lead to unfeasibility according to
Section 3.4.2, they were merged.

The cycle time multipliers were defined as λ(1) = 1, λ(2) = 2, λ(3) = 2, λ(4) = 2,
λ(5) = 2, λ(6) = 2, λ(7) = 1, λ(8) = 1, according to the lengths of the paths, and
the approach in Section 3.4.3 was used with w(q1, q2) = 2 ∀ q1, q2. The uncertainties
considered were the velocity proportional uncertainty of U i

% = 0.07 ∀i and the position
uncertainty of U i

p = 0.05m ∀i. All the robots were assumed to be circles with 0.30m

of diameter, thus ρij = 0.3 was set for all pairs (i, j) ∈ R2. The velocities of the
robots were limited between 0.08m/s and 0.30m/s and τi = 1.5s,∀i was chosen. The
objective function was max : ∆s. Using the solver lp_solve [Berkelaar et al., 2004],
the MILP problem itself was solved in an Intel CORETM i7 processor with a 2.6GHz
clock in 28.2ms average. The solution provided a basic cycle time of C0 = 45.90s and
an enlargement ∆s = 0.129m. Tab. 5.1 shows the results found for robot 1 with the
average speeds computed based on a null position error. The units are s, m/s and m.
The points q are indicated in Fig. 5.1.

The Robot Operating System, ROS [Quigley et al., 2009], was used to command
the robots in a simulation using Gazebo [Koenig and Howard, 2004] with eight iCreate
differential drive robot models. In order to make the robots follow the desired curves the
vector field based technique [Gonçalves et al., 2010] was used together with feedback
linearization [Yun and Yamamoto, 1992]. In order to simulate uncertainty, a random
velocity error of 4% was introduced every instant t[q, k]. The experiment lasted 240

5.1. Coordination strategy 73

Table 5.1. Results for robot 1 in the simulation of Figure 5.1

Point t[q, 0] T [q, 0] L[q] V [q, 0] r[q]
q1 0.00 6.78 1.66 0.245 0.16
q2 6.78 12.50 1.70 0.136 0.18
q3 19.28 6.77 1.63 0.241 0.19
q4 26.05 6.11 1.44 0.235 0.18
q5 32.16 8.03 2.03 0.252 0.17
q6 40.19 5.71 1.29 0.226 0.21

minutes and the robots were kept synchronized. This time is equivalent to around 312

laps for the robots in the shorter paths, λ(i)=1, and 156 laps for the robots in the
longer paths, λ(i)=2.

5.1.2 Timing analysis

In order to analyze the performance of the coordination strategy, the scenario in Fig.
5.2 was considered. In this figure there are 48 paths filling a rectangular area. The
number of each path was placed near its center. The algorithms were applied to
different numbers of robots in this scenario, varying from 2 up to 48, considering the
order indicated by the numbers.

-25 -20 -15 -10 -5 0 5 10 15 20 25

-15

-10

-5

0

5

10

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Figure 5.2. Scenario used for the timing analysis.

The following four different parts of the strategy were analyzed:

• Scenario time: consider the time spent for computing a polynomial interpolation
with 16 points; finding a representation of the curve with 1000 points; computing the

74 Chapter 5. Results

points in the collision set C; partitioning C in the collision zones; and computing the
lengths L(q).

• Matrices time: consider the time for creating the matrices representing the
constraints for the MILP formulation.

• MILP time: time spent by the functions lp_maker and mxlpsolve, from
lp_solve library [Berkelaar et al., 2004].

• Placement time: time spent to find the position of the target points given the
solution of the MILP.

In Fig. 5.3 the execution times described above are presented for different num-
bers of robots, from 2 to 48. The graph corresponds to an average of 50 executions for
each number of robots.

5 10 15 20 25 30 35 40 45

Number of robots

0

0.5

1

1.5

2

2.5

3

E
x
ec

u
ti
on

ti
m

e
(s

)

Timing Analysis

scenario
matrices
MILP
positions

Figure 5.3. Execution time of the algorithms. Scenario of Fig. 5.2

In Fig. 5.4 the size of the problem, regarding number of constraints and number of
variables, is presented. The variables were separated in real and binary ones, while the
constraints in equality and inequality ones. Note that the number of binary variables
is 246 for 48 robots. It is clear that the evolution of the number of constraints and
variables has a linear pattern with respect to the number of robots.

5 10 15 20 25 30 35 40 45

Number of robots

0

500

1000

1500

2000

C
ou

n
t

Problem size

real variables
integer variables
inequality constraints
equality constraints

Figure 5.4. Number of variables and constraints. Scenario of Fig. 5.2

In Fig. 5.5 a box plot of the total time of the coordination strategy is presented.
For each number of robots, 50 executions were performed. Note that the variance of
the data is very low, which is expected, since the method is deterministic.

5.2. Vector field control validation 75

1

2

3

4

5

6

7

E
x
ec

u
ti
on

ti
m

e
(s

)

Box plot of total time

Number of robots

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Figure 5.5. Box plot of the total time of the coordination strategy applied to
the scenario of Fig. 5.2.

It is important to mention that, specifically for the simple scenario of Figure 5.2,
there is a straightforward solution, which is all robots executing the same trajectory
with respect to their respective ellipses. However, the objective of the scenario is to
perform a timing analysis only.

5.2 Vector field control validation

This section focuses on the presentation of results relative to the control strategy
developed in Chapter 4.

5.2.1 Simulated experiments

To illustrate the operation of the developed controllers, simulations were performed.
The complete model of a UAV presented in Chapter 2 of [Stevens et al., 2015] with the
parameters of the Aerosonde UAV in Appendix E.2 of [Beard and McLain, 2012] were
considered. The aircraft model has 6 degrees of freedom, 12 states and atmospheric
disturbances are incorporated. Random additive disturbances (measurement and ac-
tuation) were added in order to validate the robustness of the approach. The low level
controllers from [Olavo et al., 2018] were used. The results will be shown separately
for 2 and 3 dimensions.

Regarding the model in (4.1), based on [Olavo et al., 2018], the following pa-
rameters were considered for the UAV: vmin = 18m/s, vmax = 28m/s, vzmax = 3m/s,
τz = 20s, τθ = 28s and τv = 20s.

The developed controller was used to make a UAV traverse a curve defined by
α(x, y) = ax4 + bx2y2 + cy4 − 1 = 0. The values of the parameters were a = 6, b = 0,

76 Chapter 5. Results

c = 18, for x and y in km. The following functions were also defined: P = (1/2)α2,
and G = −(2/π) atan(2

√
P). The height was set to 200m. The disturbances on the

measured θ and actuated θc were band limited values up to 0.56rad. In order to account
for these disturbances and the model error, Uθ = 0.06rad/s was set. Then, kp = 0.18

and kv = 0.15 were also set. Uv was set to 0.3m/s. The radius of the ball BΩ was set
to Ω = 0.2km and was enough to validate the condition of Theorem 4 and to validate
the restriction on (4.15).

In Figure 5.6 it is possible to see the normalized vector field and also the trajectory
executed by the UAV with initial condition [x y]T = [−0.3 0]Tkm and θ = π/6. Note
that the aircraft passed through BΩ and then converged to the path in black. The
invariant set I, defined in Section 4.2.4 is the region between the blue curves.

-1 -0.5 0 0.5 1

East Position (km)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

N
or

th
P
o
si
ti
o
n

(k
m

)

Trajectory

Aircraft
Target

Figure 5.6. Numerical simulation. The UAV’s trajectory, in red, converges to a
generic path and remains inside the bounds, represented by the blue curves.

In Figure 5.7 it is possible to see the decay of the Lyapunov function Vθ. The
blue/yellow dashed trace is related to the time the UAV was traversing BΩ. At this
time Vθ increases, but the overall effect is ∆Vθ < 0. In the bottom is the field’s original
potential function P , which increases at the beginning when the UAV is not oriented,
but, as Vθ decays, P also decays, in agreement with the analysis in Subsection 4.2.4.
The dashed red lines in Figure 5.7 are the coresponding ultimate bounds.

In Figure 5.8 the evolution of, from top to bottom, height, forward speed and bank
angle can be seen. The height stabilized at 200m. The speed followed a trapezoidal
reference respecting the ultimate bounds shown in red. Despite not considered here,
the low level controllers were able to track the desired ω(t) without reaching the safe
limits for the bank angle.

5.2. Vector field control validation 77

0 50 100 150 200 250 300

t(s)

0

0.5

1

1.5

2

V
3

Lyapunov function V3

0 50 100 150 200 250 300

t(s)

0

0.2

0.4

P

Field potential function P

Figure 5.7. In the top is the Lyapunov function Vθ. The dashed blue/yellow
trace is associated with the time the UAV was inside BΩ. In the bottom is the field
potential function P . The dashed lines are the corresponding ultimate bounds.

0 50 100 150 200 250 300

t (s)

190

200

210

z
(m

)

Altitude

Aircraft
Reference Model

0 50 100 150 200 250 300

t (s)

15

20

25

30

v
(m

=s
)

Horizontal speed

Aircraft
Reference
Bounds

0 50 100 150 200 250 300

t (s)

-50

0

50

?
(d

eg
:)

Bank Angle

Bank angle
Safety limits

Figure 5.8. Performance of the UAV in the simulation of Figure 5.6. From top
to bottom: height z; ground speed v(t); and bank angle.

For the 3 dimensional simulations, the basic functions α1 = z+ c (a−2x2 − 1) and
α2 = a−2x2 + b−2y2− 1 were considered. The values of the parameters were a = 600m,
b = 400m and c = 50m. Note that the value of c is limited given vzmax. Then P =

(1/2)10−5α2
1 +(1/2)α2

2, and G = −(2/π) atan(3
√
P) were chosen. The curve defined by

α1 and α2 was shifted to an altitude of 250m. The same disturbances on θ and θc were
applied. The limits Uθ = 0.06rad/s, Uz = 0.3m/s and Uv = 0.3m/s were considered.
The controller gains were kp = 0.2 and kv = 0.1. The singularity was treated by
considering a cylinder with radius Ω = 0.2km. Figure 5.9 shows the trajectory executed
by the simulated UAV with initial condition [x y z]T = [0.1 0.1 0.05]Tkm and θ = 0.

78 Chapter 5. Results

The set point speed was vr = 23m/s, constant. The invariant set I corresponds to the
region inside the tube in transparent blue.

0.6

0.1

Trajectory

0.2

0.4 0.4

H
ei
gh

t
(k

m
)

0.3

0.20.2

East Position (km)

0

North Position (km)

0
-0.2

-0.2
-0.4

-0.4 -0.6

Aircraft
Target

Figure 5.9. Simulation considering a “saddle like” path in R3. In red is the
trajectory followed by the UAV, which converges to the blue tube.

Figure 5.10 shows the decay of Vθ in the top and of P in the bottom. Note again
that, when the UAV was inside a cylinder of radius Ω, the function Vθ also decreased.

0 50 100 150 200 250 300

t(s)

0

0.2

0.4

0.6

0.8

V
3

Lyapunov function V3

0 50 100 150 200 250 300

t(s)

0

0.2

0.4

0.6

0.8

P

Field potential function P

Figure 5.10. Functions Vθ and P associated to the 3 dimensional simulation.

Figure 5.11 shows the evolution of z and v and bank angle. The height z is
varying since the curve is not planar. Note the actuation of the saturation function in
the signal for vz that happens when the UAV is way below the curve, making it climb
with a constant rate. It is possible to observe that the velocity v increases when the
UAV is losing height due to the coupling in the model used for simulation. The bank
angle was kept in the safety limits.

5.2. Vector field control validation 79

0 50 100 150 200 250 300

t (s)

0

200

400

z
(m

)

Altitude

Aircraft
Reference Model

0 50 100 150 200 250 300

t (s)

15

20

25

30

v
(m

=s
)

Horizontal speed

Aircraft
Reference
Bounds

0 50 100 150 200 250 300

t (s)

-50

0

50

?
(d

eg
:)

Bank Angle

Bank angle
Safety limits

Figure 5.11. Performance of the UAV in the simulation of Figure 5.9.

In Figure 5.12 the trajectories of a UAV following a circle with radius 500m are
shown for different initial conditions. In this case, no additional disturbance was added
in the simulation. The initial conditions were the same as the ones in Figure 2.9, when
the control strategy in [Olavo et al., 2018] was used. It is possible to see that, by using
the current approach, the UAV reaches the target circle more rapidly. In other words,
the distance traveled until UAV reaches the curve and circulates it is shorter.

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

East Position (km)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

N
o
rt

h
P
o
si
ti
o
n

(k
m

)

Trajectories for di,erent initial conditions

Figure 5.12. Results obtained according to the control strategy presented in
this work. The initial conditions are the same as in Figure 2.9.

80 Chapter 5. Results

5.3 Coordination and control

This section presents results of the multi-robot coordination strategy of Chapter 3, in
which the control strategy of Chapter 4 was used to control the robots.

5.3.1 Multiple airplanes simulation

The scenario illustrated in Figure 5.13 was considered in a simulation, on Simulink,
with the whole closed loop system, i.e. the complete model of the UAV and the low
level PID controllers. The UAVs 1, 2 and 3 are in blue, red and green, respectively.
Each elliptical path was described by the following equations

α1 = z − 200,

α2 =
[cos(d)(x− cx) + sin(d)(y − cy)]2

a2
+

[sin(d)(x− cx)− cos(d)(y − cy)]2

b2
− 1.

The surface α1 = 0 is a horizontal plane at the height z = 200m and the surface α2 = 0

is an elliptical cylinder with center at [cx, cy]
T with semi axis a and b rotated by an

angle d.

-800 -600 -400 -200 0 200 400 600 800

x (m)

-600

-400

-200

0

200

400

600

y
(m

)

q1

q2
q3

q4

q5

q6 q7

q8

Figure 5.13. Scenario of the simulation with UAVs’ realistic model. The inflated
collision zones, target points and regions of uncertainty are placed as in Fig. 5.1.

The controller developed in Chapter 4 was used with the functions P =

(1/2)10−5α2
1 + (1/2)α2

2, and G = −(2/π) atan(4
√
P). The considered gains were

kp = 0.2 and kv = 0.1. Given the sizes of the ultimate bounds found numerically
according to equation (4.53), and pictured in Figure 5.9, the safe distance ρij was
defined according to ρij = 100m ∀ (i, j) ∈ R2.

5.3. Coordination and control 81

We also considered λ(1) = 2, λ(2) = 1, λ(3) = 1 and, again, w(q1, q2) = 2 ∀ q1, q2.
The choices of the λ’s were due to the length of the curves, which are 4.31km, 2.32km

and 2.32km for the blue, red and green paths, respectively. The uncertainties considered
were the velocity uncertainty of U i

v = 1.5m/s ∀i and the position uncertainty of U i
p =

10m ∀i. The velocities of the robots were limited between 18m/s and 28m/s. Given the
limits of acceleration amax = −amin = 1.25m/s2 the constant τi was defined according
to equation (3.30) such that τi = 8s ∀i. The objective function was max : ∆s. The
solution provided a basic cycle time of C0 = 96.71s and an extra enlargement of the
collision zones of ∆s = 98.02m. Tab. 5.2 shows the results found for robot 1 with the
average speeds computed based on a null position error. The points q are indicated in
Fig. 5.13.

Table 5.2. Results for robot 1 in the experiment of Figure 5.13

Point t[q, 0] (s) T [q, 0] (s) L[q] (m) V [q, 0] (m/s) r[q] (m)
q1 0.00 18.70 430.1 23.0 43.5
q2 18.70 24.06 521.1 21.7 38.1
q3 42.76 31.12 690.7 22.2 46.1
q4 73.88 22.19 514.5 23.2 56.7
q5 96.07 18.66 429.1 23.0 43.3
q6 114.72 24.04 520.8 21.7 38.0
q7 138.77 32.32 689.6 21.3 46.1
q8 171.09 22.34 516.9 23.1 58.5

Figure 5.14 represents the block diagram of the developed controllers. In the
top right is the guidance vector field controller developed in Chapter 4. It receives a
reference velocity given by the block in the bottom center. This block receives the plan
given by the MILP solution and generates reference velocities to the UAV in order to
keep it synchronized. The block in the left inserts uncertainties in the measurements.

The experiment lasted 15 minutes, or 900 seconds, and the airplanes were kept
synchronized all the time. This time corresponds to more than 9 laps for the UAVs
in the shorter paths (red and green) and more than 4 laps for the UAV in the longer
path (blue). The normalized position errors (e[q, k]/r[q]) of the three robots are in the
histograms of Fig. 5.15. Note that there is no occurrence of a normalized error with
absolute value bigger than the unit, meaning |e[q, k]| < r[q]. It shows that the UAVs
were always inside the correct regions of uncertainty in the required instants.

Figure 5.16 shows in the top the reference velocity computed for the UAV 1 (blue
one) and the velocity that it executed. In the bottom the velocity error is shown.

82 Chapter 5. Results

Figure 5.14. Block diagram in Simulink representing the controllers developed
in this work.

-1 -0.5 0 0.5 1
e[q,k]

0

2

4

6

8

10

12

14

O
cc

u
re

n
ce

s

Normalized errors for UAV 1

-1 -0.5 0 0.5 1
e[q,k]

0

2

4

6

8

10

12

14

O
cc

u
re

n
ce

s

Normalized errors for UAV 2

-1 -0.5 0 0.5 1
e[q,k]

0

2

4

6

8

10

12

14

O
cc

u
re

n
ce

s

Normalized errors for UAV 3

Figure 5.15. Histogram of the normalized position errors at the instants t[q, k]
for robots 1, 2 and 3, in the Simulink simulation.

Note that the speed profile is not perfectly periodic due to the online computation of
reference speeds in order to preserve synchronism.

5.3.2 Multiple real robots experiment

A problem for a scenario with three robots was also solved and implemented by using
real e-puck robots [Mondada et al., 2009]. These differentially driven robots are not,
of course, fixed-wing UAVs, however they can be represented by a very similar model,
given below

ẋ = vc cos(θ), (5.1a)

ẏ = vc sin(θ), (5.1b)

θ̇ = ω, (5.1c)

5.3. Coordination and control 83

0 100 200 300 400 500 600 700 800 900

t (s)

18

20

22

24

26

28

S
p
ee

d
s
(m

/
s)

Speed of the blue UAV

Reference velocity
Executed velocity
Bounds

0 100 200 300 400 500 600 700 800 900

t (s)

-0.5

0

0.5

S
p
ee

d
er

ro
r
(m

/
s)

Error in the speed of the blue UAV

Speed error

Figure 5.16. In the top are the reference velocity and performed velocity of the
blue UAV in the Simulink simulation. In the bottom is the error between the
velocities.

in which x, y and θ are the already known Cartesian coordinates and yaw angle. For
these robots it is reasonable to assume that the forward velocity and the turning rate
are input commands. Thus, in model (5.1), vc and ω represents the inputs of the model.
The control law for the forward velocity becomes vc = vr and for the turning ratio is
given by equation (4.11) directly.

The Robot Operating System was used to command the robots. A computer
vision system was used to detect the position and orientation of the robots, which
had markers on their top. The position, orientation and velocity of the robots used in
the computations were obtained by using these data into an Extended Kalman Filter
[Thrun et al., 2005]. The heading controller gain was set to kp = 1. Fig. 5.17 is
a frame of the camera used in the vision system with the drawing of overlaid path
curves. The inflated collision zones, the target points and the regions of uncertainty
are drawn according to the solution of the MILP. The robots 1, 2 and 3 travel, in
counterclockwise direction, the curves in blue, red and green, respectively.

We considered λ(1) = 2, λ(2) = 1, λ(3) = 1 and, again, w(q1, q2) = 2 ∀ q1, q2. The
uncertainties considered were the velocity proportional uncertainty of U i

% = 0.10 ∀i and
the position uncertainty of U i

p = 0.03m ∀i. The robots were assumed to be squares
with 0.075m of side length and the safe distance ρij was defined as their diagonal, i.e.,
ρ = 0.106 ∀ (i, j) ∈ R2. The velocities of the robots were limited between 0.05m/s and
0.13m/s, and τi was defined as τi = 1.2s,∀i. The objective function was max : ∆s.
Using the same solver, the problem was solved in 17ms average. The solution provided
a basic cycle time of C0 = 24.31s and an extra enlargement of the collision zones of
∆s = 0.040m. Tab. 5.3 shows the results found for robot 1 with the average speeds
computed based on a null position error. Units in s, m/s and m. The points q are

84 Chapter 5. Results

q1

q2

q3

q4

q5

q6

q7

q8

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

800

900

Figure 5.17. Scenario of the actual robot experiment post printed on a frame
of the camera system.

indicated in Fig. 5.17.

Table 5.3. Results for robot 1 in the experiment of Figure 5.17

Point t[q, 0] (s) T [q, 0] (s) L[q] (m) V [q, 0] (m/s) r[q] (m)
q1 0.00 4.33 0.39 0.090 0.09
q2 4.33 4.89 0.48 0.097 0.08
q3 9.22 9.77 0.73 0.074 0.09
q4 18.99 5.32 0.50 0.094 0.11
q5 24.31 4.31 0.39 0.090 0.09
q6 28.62 6.35 0.48 0.075 0.08
q7 34.97 8.33 0.73 0.087 0.09
q8 43.30 5.32 0.50 0.094 0.11

The experiment lasted 25 minutes and the robots were kept synchronized all the
time. This time corresponds to 62 laps for the robots in the shorter paths (red and
green) and 31 laps for the robot in the longer path (blue). The normalized position
errors (e[q, k]/r[q]) of the three robots are in the histograms of Fig. 5.18.

5.4 Summary of results

The results presented in this chapter show the efficiency of both the coordination and
the control strategies developed in this dissertation. The coordination of several robots
was computed in very reasonable time and the computation of average speeds was able
to keep the robots synchronized in simulated and real world scenarios. The control

5.4. Summary of results 85

-1 0 1

normalized errors

0

20

40

60

80

O
cc

ur
re

nc
es

Normalized errors robot 1

-1 0 1

normalized errors

0

10

20

30

40

50

60

O
cc

ur
re

nc
es

Normalized errors robot 2

-1 0 1

normalized errors

0

20

40

60

80

O
cc

ur
re

nc
es

Normalized errors robot 3

Figure 5.18. Histogram of the normalized position errors at the instants t[q, k]
for robots 1, 2 and 3, in the e-puck experiment.

strategy showed to be efficient and robust. It was also shown how the coordination
and the control can be successfully used together to control multiple UAVs according
to a coordinated plan of velocity profiles.

Chapter 6

Conclusion

6.1 Final considerations

This work presented a methodology to coordinate and control a group of fixed-wing
UAVs along predefined paths that have intersection points which each other. The
proposed solution is divided in two stages. The coordination stage is responsible for
planning the speed of the robots along their respective paths and the control stage is
responsible for computing input signals so that a UAV is stabilized on its respective
path. The methodology and all of its stages were validated with several simulations
and a real robot experiment.

The coordination strategy is developed by structuring a MILP formulation of the
problem. Physical properties of the fixed-wing UAVs are taken into account in order to
easy the task of the next stage. Those are regarded to minimum and maximum forward
velocities and accelerations, robots with finite size and uncertainties in the positions
and velocities. The centralized approach shows to be scalable, since scenarios with up
to 48 robots were solved within 8 seconds.

The control strategy responsible for guiding each UAV along its predefined path
is developed upon a vector field based strategy. Control laws were computed in order
to make a UAV converge to the integral lines of a vector field, which in turns, con-
verge to the desired curve. The control laws are designed, using Lyapunov Theory,
upon a reference model, whose dynamics is imposed to the aircraft by lower level PID
controllers. The controller is robust, since uncertainties in the reference model are
considered to account for imperfections of the lower level controllers. Issues regarding
singularity points of the vector fields were also formally treated. The control strategy
showed to be efficient to guide the UAVs to the paths and perform the coordinated
solution provided by the previous stage. Simulations with a complex aircraft model

87

88 Chapter 6. Conclusion

were performed in order to prove the theoretical results.
The coordination strategy and the control strategy were used together to perform

a simulation with 3 fixed wing UAVs following, each one, an ellipse. The complete model
of the airplane was used, testifying the robustness of the whole system. In addition,
an experiment with 3 actual robots was performed to demonstrate the robustness of
the method in a real scenario.

Despite the efficiency of the coordination-control strategy presented here, it has
some issues that must be recalled. In order to consider acceleration limits, conservative
constraints were included in the MILP formulation. This showed to be a source of
unfeasiblility when the lengths of the segments are small.

An initialization strategy for the multiple UAVs start following their paths with
synchronism was not developed in this work. It would be essential to implement the
strategy in a real world scenario with fixed-wing UAVs. A strategy to recharge the
batteries of the UAVs was also not developed, and it would also be important to a
real world implementation, since we are dealing with persistent motion. Regarding the
control strategy, a formal convergence proof when the saturation in the vertical velocity
happens was not presented. Also, the strategy lacks a method to tackle singularities
in the vector field when they are not on the z axis only.

6.2 Future works

Regarding the coordination strategy it could be extended in order to provide a planning
for a group of robotic manipulators that have to execute independent tasks periodi-
cally and in the same environment. An idea would be to represent the paths in the
joint space, to avoid multiple configurations, and compute the collision zones in the
3D workspace. Such improvement extends even more the applicability of the results,
since manipulators executing periodic tasks are widely used in several assembly lines.
Another extension would be the development of a closed loop coordination strategy
that can be applied when the cycles of the robots are neither periodic nor commen-
surable. Such strategy would require an optimization problem to be constantly solved
online, since collisions that may happen in the future would not be predictable given
the absence of periodicity.

Regarding the control strategy, possible extensions would be the consideration of
time varying vector fields and more complex reference models, for example, those who
consider the dynamics of the roll angle.

Bibliography

[Abichandani et al., 2013] Abichandani, P., Benson, H. Y., and Kam, M. (2013). Ro-
bust communication connectivity for multi-robot path coordination using mixed
integer nonlinear programming: Formulation and feasibility analysis. In Robotics
and Automation (ICRA), 2013 IEEE International Conference on, pages 3600–3605.
ISSN 1050-4729.

[Abichandani et al., 2015] Abichandani, P., Torabi, S., Basu, S., and Benson, H.
(2015). Mixed integer nonlinear programming framework for fixed path coordi-
nation of multiple underwater vehicles under acoustic communication constraints.
IEEE Journal of Oceanic Engineering, 40(4):864–873. ISSN 0364-9059.

[Alessandretti and Aguiar, 2017] Alessandretti, A. and Aguiar, A. P. (2017). A planar
path-following model predictive controller for fixed-wing unmanned aerial vehicles.
In 2017 11th International Workshop on Robot Motion and Control (RoMoCo), pages
59–64. ISSN .

[Alonso-Mora et al., 2012] Alonso-Mora, J., Breitenmoser, A., Beardsley, P., and Sieg-
wart, R. (2012). Reciprocal collision avoidance for multiple car-like robots. In 2012
IEEE International Conference on Robotics and Automation, pages 360–366. ISSN
1050-4729.

[Alotaibi and Al-Rawi, 2016] Alotaibi, E. T. S. and Al-Rawi, H. (2016). Push and
spin: A complete multi-robot path planning algorithm. In 2016 14th Int. Conf. on
Control, Automation, Robotics and Vision (ICARCV), pages 1–8. ISSN .

[Altché et al., 2016] Altché, F., Qian, X., and de La Fortelle, A. (2016). Time-optimal
coordination of mobile robots along specified paths. In 2016 IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), pages 5020–5026. ISSN .

89

90 Bibliography

[Ambrosino et al., 2009] Ambrosino, G., Ariola, M., Ciniglio, U., Corraro, F., Lellis,
E. D., and Pironti, A. (2009). Path generation and tracking in 3-D for UAVs. IEEE
Transactions on Control Systems Technology, 17(4):980–988. ISSN 1063-6536.

[Andersen and Kristiansen, 2017] Andersen, T. S. and Kristiansen, R. (2017). Path-
following in three dimensions using quaternions for a fixed-wing UAV. In 2017 IEEE
26th International Symposium on Industrial Electronics (ISIE), pages 1117–1122.
ISSN .

[Avellar et al., 2015] Avellar, G. S. C., Pereira, G. A. S., Pimenta, L. C. A., and Iscold,
P. (2015). Multi-UAV routing for area coverage and remote sensing with minimum
time. Sensors, 15(11):27783. ISSN 1424-8220.

[Bazaraa et al., 2011] Bazaraa, M. S., Jarvis, J. J., and Sherali, H. D. (2011). Linear
programming and network flows. John Wiley & Sons, 4th edition.

[Beard and McLain, 2012] Beard, R. W. and McLain, T. W. (2012). Small unmanned
aircraft: Theory and practice. Princeton University Press.

[Berkelaar et al., 2004] Berkelaar, M., Eikland, K., and Notebaert, P. (2004).
lp_solve 5.5, Open source (Mixed-Integer) Linear Programming system.
http://lpsolve.sourceforge.net/5.5/.

[Borkar et al., 2016] Borkar, A., Sinha, A., Vachhani, L., and Arya, H. (2016).
Collision-free trajectory planning on lissajous curves for repeated multi-agent cover-
age and target detection. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1417–1422.

[Ceccarelli et al., 2008] Ceccarelli, N., Di Marco, M., Garulli, A., and Giannitra-
pani, A. (2008). Collective circular motion of multi-vehicle systems. Automatica,
44(12):3025--3035.

[Clark et al., 2003] Clark, C. M., Rock, S. M., and Latombe, J. C. (2003). Motion
planning for multiple mobile robots using dynamic networks. In 2003 IEEE Int.
Conf. on Robotics and Automation (ICRA), volume 3, pages 4222–4227. ISSN 1050-
4729.

[de Marina et al., 2017] de Marina, H. G., Kapitanyuk, Y. A., Bronz, M., Hatten-
berger, G., and Cao, M. (2017). Guidance algorithm for smooth trajectory tracking
of a fixed wing uav flying in wind flows. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 5740–5745. ISSN .

Bibliography 91

[Deb et al., 2002] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197. ISSN 1089-778X.

[den Berg and Overmars, 2005] den Berg, J. P. V. and Overmars, M. H. (2005). Pri-
oritized motion planning for multiple robots. In 2005 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), pages 430–435. ISSN 2153-0858.

[Frew et al., 2013] Frew, E. W., Argrow, B., Lawrence, D., Elston, J., and Stachura,
M. (2013). Unmanned aircraft systems for communication and atmospheric sensing
missions. In 2013 American Control Conference, pages 1482–1487. ISSN 0743-1619.

[Frew and Lawrence, 2012] Frew, E. W. and Lawrence, D. (2012). Tracking expand-
ing star curves using guidance vector fields. In 2012 American Control Conference
(ACC), pages 1749–1754. ISSN 0743-1619.

[Frew et al., 2008] Frew, E. W., Lawrence, D. A., and Morris, S. (2008). Coordinated
standoff tracking of moving targets using Lyapunov guidance vector fields. Journal
of guidance, control, and dynamics, 31(2):290--306.

[Gonçalves et al., 2006] Gonçalves, E. N., Palhares, R. M., Takahashi, R. H. C., and
Mesquita, R. C. (2006). New approach to robust D-stability analysis of linear time-
invariant systems with polytope-bounded uncertainty. IEEE Transactions on Auto-
matic Control, 51(10):1709–1714. ISSN 0018-9286.

[Gonçalves et al., 2010] Gonçalves, V. M., Pimenta, L. C. A., Maia, C. A., Dutra, B.
C. O., and Pereira, G. A. S. (2010). Vector fields for robot navigation along time-
varying curves in n-dimensions. IEEE Transactions on Robotics, 26(4):647–659.
ISSN 1552-3098.

[Gonçalves et al., 2013] Gonçalves, V. M., Pimenta, L. C. A., Maia, C. A., and Pereira,
G. A. S. (2013). Coordination of multiple fixed-wing UAVs traversing intersecting
periodic paths. In Robotics and Automation (ICRA), 2013 IEEE International Con-
ference on, pages 849–854. ISSN 1050-4729.

[Hull, 2007] Hull, D. G. (2007). Fundamentals of airplane flight mechanics. Springer.

[Jesus et al., 2013] Jesus, T. A., Pimenta, L. C. d. A., Tôrres, L. A. B., and Mendes,
E. M. A. M. (2013). On the coordination of constrained fixed-wing unmanned aerial
vehicles. Journal of Control, Automation and Electrical Systems, 24(5):585--600.
ISSN 2195-3899.

92 Bibliography

[Jufeng and Srinivas, 2005] Jufeng, P. and Srinivas, A. (2005). Coordinating multi-
ple robots with kinodynamic constraints along specified paths. The International
Journal of Robotics Research, 24(4):295–310.

[Kamel et al., 2017] Kamel, M., Alonso-Mora, J., Siegwart, R., and Nieto, J. (2017).
Robust collision avoidance for multiple micro aerial vehicles using nonlinear model
predictive control. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 236–243. ISSN 2153-0866.

[Kamra and Ayanian, 2015] Kamra, N. and Ayanian, N. (2015). A mixed integer pro-
gramming model for timed deliveries in multirobot systems. In 2015 IEEE Interna-
tional Conference on Automation Science and Engineering (CASE), pages 612–617.
ISSN 2161-8070.

[Kapitanyuk et al., 2017] Kapitanyuk, Y. A., Proskurnikov, A. V., and Cao, M. (2017).
A guiding vector-field algorithm for path-following control of nonholonomic mobile
robots. IEEE Transactions on Control Systems Technology, PP(99):1–14. ISSN
1063-6536.

[Keller et al., 2017] Keller, J., Thakur, D., Likhachev, M., Gallier, J., and Kumar,
V. (2017). Coordinated path planning for fixed-wing uas conducting persistent
surveillance missions. IEEE Transactions on Automation Science and Engineering,
14(1):17–24. ISSN 1545-5955.

[Khamsi and Kirk, 2011] Khamsi, M. A. and Kirk, W. A. (2011). An introduction to
metric spaces and fixed point theory, volume 53. John Wiley & Sons.

[Koenig and Howard, 2004] Koenig, N. and Howard, A. (2004). Design and use
paradigms for gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), volume 3, pages 2149–2154 vol.3. ISSN .

[Kunen, 2009] Kunen, K. (2009). The foundations of mathematics. College Publica-
tions London.

[Lawrence et al., 2007] Lawrence, D., Frew, E., and Pisano, W. (2007). Lyapunov
vector fields for autonomous uav flight control. In AIAA Guidance, Navigation and
Control Conference and Exhibit, page 6317.

[Liang et al., 2015] Liang, Y., Jia, Y., Du, J., and Zhang, J. (2015). Vector field
guidance for three-dimensional curved path following with fixed-wing UAVs. In
2015 American Control Conference (ACC), pages 1187–1192. ISSN 0743-1619.

Bibliography 93

[Lin and Saripalli, 2015] Lin, Y. and Saripalli, S. (2015). Sense and avoid for unmanned
aerial vehicles using ADS-B. In 2015 IEEE International Conference on Robotics
and Automation (ICRA), pages 6402–6407. ISSN 1050-4729.

[Mathew et al., 2013] Mathew, N., Smith, S. L., and Waslander, S. L. (2013). A graph-
based approach to multi-robot rendezvous for recharging in persistent tasks. In 2013
IEEE International Conference on Robotics and Automation, pages 3497–3502. ISSN
1050-4729.

[Mitchell et al., 2015] Mitchell, D., Corah, M., Chakraborty, N., Sycara, K., and
Michael, N. (2015). Multi-robot long-term persistent coverage with fuel con-
strained robots. In 2015 IEEE International Conference on Robotics and Automation
(ICRA), pages 1093–1099. ISSN 1050-4729.

[Mondada et al., 2009] Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C.,
Klaptocz, A., Magnenat, S., Zufferey, J.-C., Floreano, D., and Martinoli, A. (2009).
The e-puck, a robot designed for education in engineering. In Proceedings of the
9th conference on autonomous robot systems and competitions, pages 59–65. IPCB:
Instituto Politécnico de Castelo Branco.

[Nelson et al., 2007] Nelson, D. R., Barber, D. B., McLain, T. W., and Beard, R. W.
(2007). Vector field path following for miniature air vehicles. IEEE Transactions on
Robotics, 23(3):519–529. ISSN 1552-3098.

[Oettershagen et al., 2014] Oettershagen, P., Melzer, A., Leutenegger, S., Alexis, K.,
and Siegwart, R. (2014). Explicit model predictive control and L1-navigation strate-
gies for fixed-wing UAV path tracking. In 22nd Mediterranean Conference on Control
and Automation, pages 1159–1165. ISSN .

[Olavo et al., 2018] Olavo, J. L. G., Jesus, T. A., Pimenta, L. C. A., Thums, G. D.,
Torres, L. A. B., and Palhares, R. M. (2018). Robust guidance strategy for target
circulation by controlled UAV. IEEE Transactions on Aerospace and Electronic
Systems, PP(99):1–1. ISSN 0018-9251.

[Otte and Correll, 2014] Otte, M. and Correll, N. (2014). Any-com multi-robot path-
planning with dynamic teams: Multi-robot coordination under communication con-
straints. In Experimental Robotics, pages 743--757. Springer.

[Palacios-Gasós et al., 2016] Palacios-Gasós, J. M., Montijano, E., Sagues, C., and
Llorente, S. (2016). Multi-robot persistent coverage using branch and bound. In
2016 American Control Conference (ACC), pages 5697–5702.

94 Bibliography

[Park et al., 2007] Park, S., Deyst, J., and How, J. P. (2007). Performance and Lya-
punov stability of a nonlinear path following guidance method. Journal of Guidance,
Control, and Dynamics, 30(6):1718--1728.

[Pelizer et al., 2017] Pelizer, G. V., da Silva, N. B. F., and Branco, K. R. L. J. (2017).
Comparison of 3d path-following algorithms for unmanned aerial vehicles. In 2017
International Conference on Unmanned Aircraft Systems (ICUAS), pages 498–505.
ISSN .

[Peng and Akella, 2003] Peng, J. and Akella, S. (2003). Coordinating the motions of
multiple robots with kinodynamic constraints. In Robotics and Automation (ICRA),
2003 IEEE International Conference on, pages 4066–4073 vol.3. ISSN 1050-4729.

[Quigley et al., 2009] Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., and Ng, A. Y. (2009). ROS: an open-source robot operating
system. In ICRA Workshop on Open Source Software.

[Quintero et al., 2015] Quintero, S. A. P., Copp, D. A., and Hespanha, J. P. (2015).
Robust uav coordination for target tracking using output-feedback model predic-
tive control with moving horizon estimation. In 2015 American Control Conference
(ACC), pages 3758–3764. ISSN 0743-1619.

[Ren and Atkins, 2005] Ren, W. and Atkins, E. (2005). Nonlinear trajectory tracking
for fixed wing uavs via backstepping and parameter adaptation. In AIAA Guidance,
Navigation, and Control Conference and Exhibit, page 6196.

[Rezende et al., 2018a] Rezende, A. M. C., Gonçalves, V. M., Raffo, G. V., and Pi-
menta, L. C. A. (2018a). Controle de VANT de asa fixa com campos vetoriais
arbitrários. In 2018 SBA Congresso Brasileiro de Automática (CBA2018), pages
1–8.

[Rezende et al., 2018b] Rezende, A. M. C., Gonçalves, V. M., Raffo, G. V., and Pi-
menta, L. C. A. (2018b). Robust fixed-wing UAV guidance with circulating artificial
vector fields. In 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5892–5899. ISSN 2153-0866.

[Richards and How, 2004] Richards, A. and How, J. (2004). Decentralized model pre-
dictive control of cooperating UAVs. In Decision and Control, 2004. CDC. 43rd
IEEE Conference on, volume 4, pages 4286–4291 Vol.4. ISSN 0191-2216.

Bibliography 95

[Richards and How, 2002] Richards, A. and How, J. P. (2002). Aircraft trajectory plan-
ning with collision avoidance using mixed integer linear programming. In Proceedings
of the 2002 American Control Conference (IEEE Cat. No.CH37301), volume 3, pages
1936–1941 vol.3. ISSN 0743-1619.

[Rufli et al., 2013] Rufli, M., Alonso-Mora, J., and Siegwart, R. (2013). Reciprocal col-
lision avoidance with motion continuity constraints. IEEE Transactions on Robotics,
29(4):899–912. ISSN 1552-3098.

[Scherer and Rinner, 2016] Scherer, J. and Rinner, B. (2016). Persistent multi-uav
surveillance with energy and communication constraints. In 2016 IEEE International
Conference on Automation Science and Engineering (CASE), pages 1225–1230.

[Schwarting et al., 2017] Schwarting, W., Alonso-Mora, J., Pauli, L., Karaman, S., and
Rus, D. (2017). Parallel autonomy in automated vehicles: Safe motion generation
with minimal intervention. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 1928–1935. ISSN .

[Solovey and Halperin, 2017] Solovey, K. and Halperin, D. (2017). Efficient sampling-
based bottleneck pathfinding over cost maps. In 2017 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), pages 2003–2009. ISSN .

[Soltero et al., 2011] Soltero, D. E., Smith, S. L., and Rus, D. (2011). Collision avoid-
ance for persistent monitoring in multi-robot systems with intersecting trajectories.
In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3645–3652. ISSN 2153-0858.

[Spensieri et al., 2016] Spensieri, D., Carlson, J. S., Ekstedt, F., and Bohlin, R. (2016).
An iterative approach for collision free routing and scheduling in multirobot stations.
IEEE Transactions on Automation Science and Engineering, 13(2):950–962. ISSN
1545-5955.

[Stevens et al., 2015] Stevens, B. L., Lewis, F. L., and Johnson, E. N. (2015). Aircraft
control and simulation: dynamics, controls design, and autonomous systems. John
Wiley & Sons.

[Sujit et al., 2014] Sujit, P. B., Saripalli, S., and Sousa, J. B. (2014). Unmanned aerial
vehicle path following: A survey and analysis of algorithms for fixed-wing unmanned
aerial vehicless. IEEE Control Systems, 34(1):42–59. ISSN 1066-033X.

96 Bibliography

[Surynek, 2009] Surynek, P. (2009). An application of pebble motion on graphs to
abstract multi-robot path planning. In 2009 21st IEEE Int. Conf. on Tools with
Artificial Intelligence, pages 151–158. ISSN 1082-3409.

[Surynek, 2014] Surynek, P. (2014). Solving abstract cooperative path-finding in
densely populated environments. Computational Intelligence, 30(2):402--450.

[Tang et al., 2017] Tang, S., Thomas, J., and Kumar, V. (2017). Safe navigation of
quadrotor teams to labeled goals in limited workspaces. In Kulić, D., Nakamura, Y.,
Khatib, O., and Venture, G., editors, 2016 International Symposium on Experimental
Robotics, pages 586--598, Cham. Springer International Publishing.

[Tarjan, 1972] Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM
journal on computing, 1(2):146--160.

[Thrun et al., 2005] Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic robotics.
MIT press.

[Thums, 2012] Thums, G. D. (2012). Sintonia PID Robusta Multi-malha para Veıculos
Aéreos Nao Tripulados. PhD thesis, Universidade Federal de Minas Gerais.

[Van Den Berg et al., 2011] Van Den Berg, J., Guy, S. J., Lin, M., and Manocha, D.
(2011). Reciprocal n-body collision avoidance. In Robotics research, pages 3--19.
Springer.

[Van Den Berg et al., 2010] Van Den Berg, J., Snoeyink, J., Lin, M., and Manocha,
D. (2010). Centralized path planning for multiple robots: Optimal decoupling into
sequential plans. In 2010 Robotics: Science and systems, volume 5, pages 137--144.

[Wagner et al., 2012] Wagner, G., Kang, M., and Choset, H. (2012). Probabilistic
path planning for multiple robots with subdimensional expansion. In 2012 IEEE
Int. Conf. on Robotics and Automation (ICRA), pages 2886–2892. ISSN 1050-4729.

[Wallar et al., 2015] Wallar, A., Plaku, E., and Sofge, D. A. (2015). Reactive motion
planning for unmanned aerial surveillance of risk-sensitive areas. IEEE Transactions
on Automation Science and Engineering, 12(3):969–980. ISSN 1545-5955.

[Wu et al., 2018] Wu, C., Chen, J., Jeltsema, D., and a. C. Dai (2018). Guidance vector
field encoding based on contraction analysis. In 2018 European Control Conference
(ECC), pages 282–287. ISSN .

Bibliography 97

[Yu and Rus, 2015] Yu, J. and Rus, D. (2015). Pebble motion on graphs with rotations:
Efficient feasibility tests and planning algorithms. In Algorithmic Foundations of
Robotics XI, pages 729--746. Springer.

[Yun and Yamamoto, 1992] Yun, X. and Yamamoto, Y. (1992). On feedback lineariza-
tion of mobile robots. University of Pennsylvania Department of Computer and
Information Science Technical Reports No. MS-CIS-92-45.

[Zhang et al., 2010] Zhang, M., Shen, Y., Wang, Q., and Wang, Y. (2010). Dynamic
artificial potential field based multi-robot formation control. In Instrumentation and
Measurement Technology Conference (I2MTC), 2010 IEEE, pages 1530–1534. ISSN
1091-5281.

[Čáp et al., 2015] Čáp, M., Novák, P., Kleiner, A., and Selecký, M. (2015). Prioritized
planning algorithms for trajectory coordination of multiple mobile robots. IEEE
Transactions on Automation Science and Engineering, 12(3):835–849. ISSN 1545-
5955.

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	Introduction
	Multi-agent systems
	Aerial robots
	Contributions
	Publications

	Dissertation structure

	Related works
	Multi-robot coordination
	Collision free motion
	MILP formulations for multi-robot systems
	Other approaches to the multi-robot coordination
	Multi-robot systems with cyclic tasks
	Coordination strategy in this work

	Robot control strategies
	Fixed-wing UAV reference model
	Vector fields
	Guidance vector field strategies
	Control strategy in this work

	Coordination strategy
	Multi-robot problem statement
	Speed model
	Uncertainty model

	Definition of collision zones
	Practical implementation

	MILP formulation
	Safety and periodicity
	Average speed reference
	Uncertainty
	Acceleration limits
	Speed limits
	Final MILP problem

	Discussion on the coordination solution
	Alternative objective functions
	Absence of solution
	Alternative approaches
	Speed profile along the paths

	Control strategy
	Control problem statement
	Control design
	Heading control
	Velocity control
	Altitude control
	Disturbance analysis

	Field's Singularities

	Results
	Coordination strategy
	Simulated experiments
	Timing analysis

	Vector field control validation
	Simulated experiments

	Coordination and control
	Multiple airplanes simulation
	Multiple real robots experiment

	Summary of results

	Conclusion
	Final considerations
	Future works

	Bibliography

