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Resumo

Em algumas aplicações de estimação de estados, o sistema dinâmico pode ser represen-

tado por um modelo híbrido que é determinado pela interação entre estados analógicos

e digitais (modos de operação). O problema de filtragem estocástica híbrida consiste

em fornecer estimativas para ambos estados analógicos e digitais a partir de uma se-

quência de medições amostradas ruidosas e um modelo híbrido. Para esses sistemas,

o filtro deve rastrear um número exponencialmente crescente de trajetórias possíveis,

o que configura um desafio prático para resolver esse problema. Portanto, soluções

aproximadas são comumente buscadas, procurando um compromisso entre precisão e

tempo de processamento do filtro.

Neste trabalho, investigam-se duas questões relacionadas à estimatição de estados

de sistemas híbridos. Primeiro, apresenta-se uma versão modificada do algoritmo de

múltiplos modelos e múltiplas hipóteses (M3H) para resolver de forma sub-ótima o

problema de estimação de estado para sistemas não lineares com saltos Markovianos.

Empregam-se métodos de redução de misturas Gaussianas como uma alternativa para

a fusão de hipóteses do M3H clássico. Portanto, informações de ambos os estados

analógicos e digitais são empregadas para fundir as hipóteses, enquanto que apenas

a informação do estado digital é empregada no método original. Como contribuição,

a abordagem proposta fornece um mecanismo eficaz para que os usuários explorem

o compromisso entre precisão e tempo de processamento do filtro. Os usuários esta-

belecem suas preferências definindo o número máximo de componentes da mistura.

A sintonia desse parâmetro na abordagem proposta é mais eficiente do que escolher a
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profundidade de fusão no M3H quando melhoria de precisão é requerida.

Em segundo lugar, considera-se o problema de estimação de estados para sistemas

híbridos com restrições de igualdade nos estados. Investigam-se casos especiais desse

problema para ambos sistemas lineares e não-lineares. Categoriza-se tal problema em

três grupos de acordo com a restrição de igualdade linear ou não linear, bem como com

a dependência da restrição no modo de operação. Para o caso de restrições de igual-

dade independentes do modo, apresentam-se as condições necessárias na inicialização

e dinâmica para o clássico algoritmo de múltiplos modelos interativos (IMM) para

produzir estimativas de estado satisfazendo uma restrição de igualdade linear para

sistemas lineares. No entanto, para sistemas lineares e não-lineares, as restrições de

igualdade dependentes do modo devem ser reforçadas ao longo do tempo. Apresenta-

se uma versão modificada do filtro IMM para impor a restrição de igualdade nas esti-

mativas de estado.
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Abstract

In some state estimation applications, the dynamic system can be represented by a

hybrid model that is determined by the interaction between analog and digital (mode)

states. The hybrid stochastic filtering problem is to provide estimates for both analog

and digital states from a sequence of noisy sample measurements and such hybrid

model. For these systems, the filter should track an exponentially increasing number

of possible trajectories, posing a practical challenge to solve this problem. Therefore,

approximate solutions are often pursued, trading off the filter precision for processing

time.

In this work, we investigate two issues related to the state estimation of hybrid

systems. First, we present a modified version of the multiple models and multiple hy-

potheses (M3H) algorithm to suboptimally solve the problem of state estimation for

Markov jump nonlinear systems. We employ Gaussian mixture reduction methods

as an alternative for the merging of hypotheses of the original M3H. Thus, informa-

tion from both the analog and digital states are employed to merge the hypotheses,

while only information from the digital state is employed in the original M3H method.

As a contribution, the proposed approach provides an effective mechanism for users

to explore the tradeoff between filter precision and processing time. Users set their

preferences by defining the maximum number of mixture components. Setting this

number in our proposed approach is more efficient than choosing the merging depth

in M3H when increased precision is demanded.

Second, we consider the problem of state estimation for hybrid systems with state
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equality constraints. We investigate special cases of this problem for both linear and

nonlinear systems. We categorize such a problem into three groups according to the

linear or nonlinear equality constraint as well as to the dependence of the constraint on

the operating mode. For the mode-independent equality constraints case, we present

the necessary conditions on the initialization and dynamics for the classical interacting

multiple models (IMM) algorithm to yield state estimates satisfying a linear equality

constraint for linear systems. However, for linear and nonlinear systems, the mode-

dependent equality constraints must be enforced along time. We present a modified

version of the IMM filter to enforce the equality constraint on the state estimates.
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Chapter 1

Introduction

1.1 Motivation and Overview of the Field

In recent years, research on the state estimation problem has increased considerably

due to numerous applications in areas such as engineering, computer science, geo-

physics, economics, biology, among others. Engineering problems that can be solved

using state estimation include vehicle tracking [Fortmann, T., Bar-Shalom, Y., Scheffe,

M., 1983], aircraft navigation systems [Nordlund, T., Gustafsson, F., 2001], fault detec-

tion and isolation [He, X., Wang, Z., Liu. Y., Zhou, D. H., 2013] and air traffic control

systems [Lymperopoulos, I., Lygeros, J., 2009]. Bayesian methods may be employed as

possible solutions to these problems and the most important algorithms are based on

the Kalman filter.

The Kalman filter (KF) has been used in the literature for state estimation for lin-

ear and Gaussian systems [Kalman, 1960], whereas, for nonlinear systems, Gaussian

approximation methods based on KF are generally used such as the extended Kalman

filter (EKF) [Jazwinski, A. H., 1970; Maybeck, P. S., 1979], the unscented Kalman fil-

ter (UKF) [Julier, S. J., Uhlmann, J. K., Durrant-Whyte, H. F., 2000], as well as particle
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MOTIVATION AND OVERVIEW OF THE FIELD

filtering methods (PF) [Arulampalam, M. S., Maskell, S., Gordon, N., Clapp, T., 2002].

In many state estimation applications, dynamical systems are described only by

analog states, for example, the estimation of aircraft position, speed or attitude [Bach

R., 1991; Blackman, S., Popoli, R., 1999]. In other cases, a dynamic system can be rep-

resented by a hybrid dynamic model whose behavior is determined by the interaction

between the analog state xk and the digital state mk. This type of model is known as a

hybrid system [Rong Li, X., 1996; Boers, Y., Driessen, H, 2000; Hwang, I. , Balakrishnan

H., Tomlin, C., 2006; Goebel, R., Sanfelice, R. G., Teel, A. R., 2009]. In the literature,

some authors refer to the analog state as the continuous state and the digital state as

the discrete state or operating mode.

In the literature it is relatively common to find research on control [Choi, H. H.,

2010; Liu, K., Yao, Y., Sun, D., Balakrishnan, V., 2012], identification [Juloski, A. Lj.,

Weiland, S., Heemels, W. P. M. H., 2005; Tian, Y., Floquet, T., Belkoura, L.,Perruquetti,

W., 2011] and state estimation of hybrid systems [Sigalov, D., Leiter, N., Kalish, N.,

Oshman, Y., 2012; Suzdaleva, E., Nagy, I., 2011]. Over the past few years, a number

of engineering applications was modeled as hybrid systems including, for instance,

target tracking [Li, X. R., 2000; Hallouzi, R., Verhaegen, M., Kanev, S., 2009; Zhang, L.,

Pan, Q., Chen, T., 2010], fault detection and isolation [Hofbaur, M. W., Williams, B. C.

, 2004], navigation systems using global navigation satellite systems [Liu, W., Hwang,

I., 2012] and air traffic control systems [Antsaklis, P. J., 2000], among others.

In order to verify the relevance of the state estimation problem for hybrid systems in

the world scenario, we present a research in the Web of Science platform to analyze the

number of publications that address this problem. Figure 1.1 shows that the research

on state estimation of hybrid systems has attracted large interest in recent years. In the

national scenario, it is possible to mention some applications, such as aircraft tracking

using a radar in air traffic control systems [Santana, P. H. R. Q. A., Menegaz, H. M.,

Borges G. A., Ishihara, J. Y., 2010] and the estimation of the downhole pressure of gas-

lifted oil wells [Teixeira, B.O. S., Barbosa, B. H. G., Gomes, L. P., Teixeira, A. F., Aguirre,

L. A., 2012].

The goal of the hybrid state estimation problem is to provide estimates for both

2
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Figure 1.1: Number of publications with the topic state estimation hybrid systems searched on the Web of
Science platform. Date: 12/01/2018. This research was refined considering the period from 2001-2018
and selecting the following research areas: engineering, computer science and automation control systems.

the analog states and the digital states from a sequence of noisy sampled measure-

ments, y1:k , {y1, . . . , yk}, and a hybrid stochastic dynamic model. The solution to

this problem may be obtained through the joint a posteriori probability density func-

tion (PDF), ρ (xk, mk|y1:k), of the analog and digital states. The main hurdle for solving

such a problem is that both the number of possible sequences of modes and the num-

ber of possible analog trajectories (and, consequently, the computational cost) grows

exponentially over time. This exponential growth in the number trajectories poses a

challenge in solving the hybrid state estimation problem. Approximate methods cir-

cumvent the exponential growth problem by managing the number of multiple hy-

potheses via different approaches. For example, trajectories may be merged when they

are similar and discarded when they are unlikely. Next, we present an example of the

problem of exponential growth of the number of hypotheses over time.

Example 1. Consider, for example, the time evolution of a dynamical system with a

digital state (mode) that can assume M = 3 possible values: white, black or gray, as

illustrated in Figure 1.2. Assume that the initial condition of the operating mode is

known at the time k = 0. At time k = 1, we have three possible operating modes

(Mk = 31). If we want to keep track of the system trajectory, since we do not know

which mode is active at k = 1, the possible modes give rise to another set of three

modes. Consequently, at time k = 2, we have nine possible operating modes and

the corresponding analog trajectories. At time k = 3, we have twenty-seven system

3
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k = 0 k = 1 k = 2 ... k

M0 M1 ...M2 Mk

k = 3

M3

IMM

M3H

(d = 1)

(d > 1)

Figure 1.2: Exponential growth of the possible discrete trajectories of a stochastic hybrid system with
three possible modes: white, black or gray. In the state estimation process, the IMM algorithm only
employs information from the previous time while the M3H algorithm employs a limited history of d
steps behind.

trajectories. �

Existing methods for state estimation in hybrid systems are based on the multiple-

model (MM) or Monte Carlo approaches. The estimator of MMs assumes that the

dynamic system can be characterized by a set of M models that capture the possible

operating modes of the system [Bar-Shalom, Y., Challa, S.,Blom, H. A., 2005]. The es-

timate provided by the MM estimator is achieved by running M filters (one for each

mode) in parallel and combining their estimates [Hofbaur, M. W., Williams, B. C. ,

2004]. Alternatively, particle filtering (PF) methods approximate the joint a posteri-

ori PDF of the hybrid system using sampled trajectories [Boers, Y., Driessen, H, 2000;
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Doucet, A., Gordon, N., Krishnamurthy, V., 2001; Koutsoukos, L., Williams, B., 2003].

The PF employs a set of particles with corresponding weights to provide estimates for

both analog and digital states. The Table 1.1 shows how the hybrid stochastic filtering

problem can be classified considering the type of dynamic model used to represent the

hybrid system, or the approaches employed to estimate the analog and digital states

and mode transitions of the system.

Several techniques based on MM approaches have been used to estimate the states

of hybrid systems such as the generalized pseudo-Bayesian (GPB) algorithm [Acker-

son, G. A., Fu, K. S., 1970], the detection and estimation method [Tugnait, J., 1982],

the residual correlation Kalman filter bank approach [Hanlon, P., Maybeck, P., 2000]

and the interacting multiple models (IMM) algorithm [Blom, H. A.P., Bar-Shalom, Y.,

1988; Mazor, E., Averbuch, A., Bar-Shalom, Y., Dayan, J., 1998]. These methods control

multiple hybrid estimates over time and require the running of a filter for each mode.

In particular, in order to address the exponential growth problem, the IMM algorithm

mixes the previous analog state estimates to generate new initial values for each filter

in the next time step. Other methods of adaptive MM estimator have been proposed

to reduce the number of hypotheses, so that they adapt the set of modes to a subset

of modes that are more likely to occur in a given scenario [Li, X. R., Bar-Shalom, Y.,

1996; Li, X. R., Zhi, X., Zhang, Y., 1999; Li, X. R., 2000]. In a more elaborate fashion, the

multiple models and multiple hypotheses filter (M3H) [Driessen, H., Boers, Y., 2001;

Boers, Y., Driessen, H, 2004] keeps a limited buffer of hypotheses by means of merging

and discarding hypotheses. In the M3H filter, merging occurs when two or more hy-

potheses share the same sequence of modes for the previous d time steps. In addition,

hypotheses are discarded whenever their likelihood is below a given threshold. The

IMM algorithm can be seen as a special case of the M3H algorithm with merging depth

d = 1 [Driessen, H., Boers, Y., 2001]; see Figure 1.2.
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In the context of hybrid stochastic filtering, it is necessary to describe in which way

occurs the transitions between the different digital dynamics. In the MM approach, we

consider the static and dynamic case for the transitions between the operating modes

of the system. In the first case, we assume that a dynamic system is composed of vari-

ous operating modes, but without a transition between them, while, in the second case,

we present a dynamic system with transitions between the operating modes [Ristic, B.,

Arulampalam, S., Gordon, N., 2004; Hofbaur, M. W., 2005]. Thus, the dynamic MM

approach considers that a dynamic system can be represented by several analog dy-

namics and that a certain switching logic chooses a given dynamics. Such systems are

called as switched systems [Liberzon, D., 2003; Margaliot, M., 2006; Goebel, R., Sanfe-

lice, R. G., Teel, A. R., 2009]. In the case of the dynamic MM approach, we consider

that the transitions between the operating modes of the system depend on the analog

state variable and/or the digital state variable. For example, in the investigations per-

formed by [Seah, C. E., Hwang, I., 2009; Hwang, I. , Balakrishnan H., Tomlin, C., 2006;

Benazera, E., Travé-Massuyès, L., 2009], the transitions between the modes depend on

the analog state of the system, whereas, in the studies developed by [Mazor, E., Aver-

buch, A., Bar-Shalom, Y., Dayan, J., 1998; Blom, H. A.P., Bar-Shalom, Y., 1988; Boers, Y.,

Driessen, H, 2004], the transitions between the modes depend only on the digital state

variable. The latter approach is known as Markovian jump systems (MJSs) [Costa, O.

L., Guerra, S., 2002].

In this work, we are interested in investigating the problem of state estimation of

hybrid systems, proposing approximate solutions to solve practical problems. This re-

search topic has been receiving increasing attention for a variety of applications in the

last years. In this sense, preliminary studies performed in the author’s Master disser-

tation allowed the possibility of applying hybrid stochastic filtering algorithms to the

problem of detection of the potential related to the imagination of the movement [Eras,

W. Y., Erazo-Costa, F. J., Tierra-Criollo, C. J., Teixeira, B. O., 2012; Eras-Herrera, W. Y.,

2012]. In that work, we employed an interactive bank based on the IMM estimator

with two Kalman filters (IBKF) in parallel.

In the next subsections, we justify the investigation of two problems in the field of

7
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state estimation of hybrid systems. First, we investigate an alternative method for the

merging step of the M3H algorithm to suboptimally solve the problem of state esti-

mation for Markov jump nonlinear systems. The proposed approach incorporates the

information from the analog state in performing the merging step, rather than using

only information from the digital states as in the M3H filter. Second, we address the

problem of state estimation for hybrid systems with equality constraints on the ana-

log states. In the literature, few works address the constrained state estimation for the

hybrid case. In this context, some issues are little explored in these investigations.

1.1.1 M3H with Gaussian Mixture Reduction

The hybrid stochastic filtering problem is to provide estimates for both analog and dig-

ital states from a sequence of noisy sample measurements and such hybrid model. For

these systems, the filter should track an exponentially increasing number of possible

trajectories, posing a practical challenge to solve this problem. Therefore, approximate

solutions are often pursued, trading off the filter precision for processing time. In par-

ticular, to address the exponential growth problem, the M3H algorithm merges the hy-

potheses with the same sequence of modes in the last d steps. Thus, only information

from the digital state is employed to merge the hypotheses.

In the context of Markov state transitions, the mode sequence provides no useful in-

formation to the task of predicting future states given that the current mode is known.

This suggests that one should merge hypotheses based on the current state (both ana-

log and digital) rather than based on the sequence of digital states. In the particular

case of Markov jump linear systems, where dynamics is linear and mode transition is

Markovian and independent of analog states [Costa, O.L.V., Fragoso, M.D., Marques,

R.P., 2006], the exact posterior probability is given by a Gaussian mixture. This sug-

gests that available techniques for reduction of Gaussian mixtures may be well suited

to perform the merging operation.

The Gaussian mixture reduction by clustering (GMRC) approach optimizes the pa-

rameters of the reduced mixture according to the integral quadratic distance (ISD) cri-

terion [Schieferdecker, D., Huber, M. F., 2009] and, to our knowledge, it is the best

8
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performing Gaussian mixture reduction method in approximation terms. Thus, we in-

vestigate the use of Gaussian reduction methods as an alternative for the merging step

of the M3H algorithm.

1.1.2 Constrained State Estimation

The Kalman filter provides optimal state estimates for linear and Gaussian systems.

However, additional information about the system in the form of state constraints may

be useful in improving the state estimates [Simon, D., 2010]. Various engineering appli-

cations regard dynamic systems satisfying certain constraints that arise from physical

laws, mathematical properties or geometric considerations. For instance, the tracking

of a ground vehicle in which the vehicle performs a constant velocity motion with a

fixed heading determined by the physical road the vehicle is on [Simon, D. J., 2006; Ko,

S., Bitmead, R.R., 2007; Teixeira, B. O. S., Chandrasekar, J., Palanthandalam-Madapusi,

H. J., Tôrres, L. A. B., Aguirre, L. A., Bernstein, D. S., 2008; Chao-Yang, J., Yong-An, Z.,

2013].

The problem of state estimation for non-hybrid linear and nonlinear constrained

systems has been widely discussed in the literature. As examples consider the scenar-

ios in which the dynamics and the disturbances are such that the state vector of the

system satisfies an inequality constraint [Rao, C. V., Rawlings, J. B., Lee, J. H., 2001]

or an equality constraint [Teixeira, B. O. S., Chandrasekar, J., Tôrres, L. A. B., Aguirre,

L. A., Bernstein, D. S., 2009]. The nonlinear Kalman filtering algorithms [Teixeira, B.

O. S., Tôrres, L. A. B., Aguirre, L. A., Bernstein, D. S., 2010; Kottakki, K. K., Bhushan,

M., Bhartiya, S., 2014] and the particle filtering (PF) methods [Shao, X., Huang, B.,

Lee, J. M., 2010; Ebinger, B., Bouaynaya, N., Polikar, R., Shterenberg, R., 2015] provide

approximate solutions for constrained state estimation.

For the hybrid systems case, few works address the problem of constrained state

estimation in the literature. For instance, recent works of [Mann, G., Hwang, I., 2013;

Kwon, C., Hwang, I., 2016] addresses this problem for linear hybrid systems. In this

work, we investigate the problem of state estimation for hybrid systems with state

equality constraints.

9
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1.2 Problem Statement

The discrete-time hybrid stochastic systems in this dissertation follow the general dy-

namic model given by

xk = fmk(xk−1, uk−1, wk−1, k− 1), (1.1)

πs|r = Pr{mk = s|mk−1 = r}, (1.2)

yk = hmk(xk, νk, k), (1.3)

where xk ∈ Rn is the analog state vector and mk ∈ M , {1, . . . , M} is the digital

state, where M is the number of operating modes of the system. The inputs are given

by uk ∈ Rp and the measurement vector is given by yk ∈ Rm. The functions fmk :

Rn ×Rp ×Rq ×N → Rn and hmk : Rn ×Rr ×N → Rm are, respectively, the time-

varying process and observation models with relation to the mode mk. All M pairs of

models (1.1) and (1.3) are assumed to be known. It is assumed that the process noise

wk ∈ Rq and the measurement noise νk ∈ Rr are mutually independent, white random

vectors with zero mean and with known covariance matrices Qmk and Rmk respectively.

It is assumed that the transition probability matrix (TPM) Π ∈ RM×M, whose elements

are given by πs|r, is known.

The hybrid stochastic filtering problem seeks to provide state estimates x̂k and m̂k

given by meaningful statistics (such as the mean or the mode) from the joint a posteriori

probability density function (PDF) of xk and mk given a sequence of noisy measure-

ments, y1:k , {y1, . . . , yk}, see Figure 1.3. The basis to the solution of this problem lies

in the following decomposition

ρ(xk, mk | y1:k) = ∑
all m1:k

ρ(xk | m1:k, y1:k)ρ(m1:k | y1:k) , (1.4)

where ρ (xk | m1:k, y1:k) is the a posteriori PDF of xk conditional on the mode sequence

m1:k and ρ (m1:k | y1:k) is the conditional probability mass function (PMF) of the mode.

Here the first term on the right-hand side of (1.4) may be computed by a classical

nonlinear filter given that the mode sequence is known. The second term is computed

applying Bayes’ rule to the result of the nonlinear filter. A key property that makes

this computation efficient is that mode transitions do not depend on the analog states.
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Hybrid stochastic filtering

System

Digital state
estimate

m̂k

Analog state
estimate

x̂k

uk yk

ẑk =

[
x̂k
m̂k

]

Figure 1.3: The hybrid stochastic filtering problem involves two steps: analog x̂k and digital m̂k state
estimates. The hybrid state vector estimate can be represented by ẑk ,

[
x̂T

k m̂T
k
]T . Adapted from

[Hofbaur, M. W., 2005].

Otherwise, one would have to integrate over the prior state distribution when applying

Bayes’ rule.

In addition, we consider a special case of the hybrid stochastic filtering mentioned

above. The problem of state estimation for hybrid systems with state equality con-

straints seeks to provide analog state vector xk that satisfy the equality constraint

gmk(xk, k) = dmk . (1.5)

where the function gmk : Rn ×N→ Rs, and dmk ∈ Rs, is assumed to be known.

1.3 Research Objectives

This work aims at investigating the problem of state estimation of hybrid systems,

proposing approximate solutions that attend the demands of practical problems. In

order to address the general research goal, the following specific objectives are identi-

fied:

1. To study the main methods of state estimation of hybrid systems presented in

Section 2.3. Compare suboptimal state estimation algorithms based on the multiple-

model and Monte Carlo approaches for hybrid systems.

11
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2. To investigate the use of Gaussian reduction methods to solve the exponential

growth problem in the number of hypotheses of the M3H algorithm. We also

want to explore the trade off between filter precision and processing time.

3. To investigate state estimation algorithms for hybrid systems with state equality

constraints. We want to discuss the special cases of hybrid constrained stochastic

filtering for both linear and nonlinear systems and categorize into groups accord-

ing to the linear or nonlinear equality constraints as well as to the dependence of

the constraints on the operating mode.

1.4 Thesis Outline

This thesis is organized in five chapters and one appendix described as follows. Chap-

ter 1 presents the introduction to the research topic, describing the motivation and jus-

tification of this study, formulating the problem, describing the general research goal

and specific objectives and enumerating the contributions of this thesis.

Chapter 2 provides a literature review on non-hybrid stochastic filtering methods

and approximate methods for state estimation in hybrid systems. First, we present

the state estimation methods for non-hybrid systems. KF is presented as the optimal

solution for linear and Gaussian systems. For the nonlinear systems, UKF and PF are

reviewed. In addition, we present constrained state estimation methods for linear and

nonlinear systems. Second, we discuss an approximate solution to the hybrid stochas-

tic filtering problem, in the particular case of Markov jump systems. Furthermore, we

review several techniques based on multiple models approaches such as the IMM and

M3H algorithms, and methods based on particle filtering.

The next two chapters present the contributions of this thesis. Chapter 3 presents a

modified version of the M3H algorithm. We use Gaussian reduction methods as an al-

ternative for the merging step of the M3H algorithm. We present a simulated example

to illustrate the application of the proposed approach. Next, Chapter 4 considers the

problem of state estimation for hybrid systems with state equality constraints. We in-

vestigate three special cases of practical interest of this problem. We present a modified

12



CONTRIBUTIONS OF THIS WORK

version of the IMM filter to enforce the equality constraint on the state estimates. We

present three simulated examples illustrate the application of the proposed method.

Finally, concluding remarks and suggestions of continuity are discussed in Chapter

5.

1.5 Contributions of this Work

This thesis presents two contributions in the field of state estimation of hybrid sys-

tems. First, we employ an alternative method for the merging step of the M3H algo-

rithm. Second, we investigate special cases of state estimation for hybrid systems with

state equality constraints. We summarize each contribution and cite the corresponding

thesis chapters as follows:

1. M3H with Gaussian mixture reduction (Chapter 3):

• We present a modified version of the multiple models and multiple hypothe-

ses (M3H) algorithm to suboptimally solve the problem of state estimation

for Markov jump nonlinear systems. We employ Gaussian reduction meth-

ods as an alternative for the merging step of the M3H algorithm. In our

method, information from both the analog, x̂k, and digital, m̂k, estimates at

time k are employed to define a metric to merge and eliminate hypotheses.

This comes as an extension of the original M3H, that only uses the informa-

tion of the mode sequence, m̂k−d:k, from time k − d to time k to merge the

hypotheses.

• We provide an effective mechanism for users to explore the tradeoff be-

tween filter precision and processing time. Users may set their preferences

by defining the maximum number of mixture components Nm. Likewise,

a similar tradeoff may be observed for M3H by manipulating the merging

depth d. A target tracking problem is used to illustrate the application of

this algorithm.

13
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• Publication related to this contribution: [Eras-Herrera, W. Y., Mesquita, A.

R., Teixeira, B. O. S., 2017].

2. Constrained state estimation (Chapter 4):

• We address the problem of state estimation for hybrid systems with state

equality constraints. We investigate special cases of this problem for both

linear and nonlinear systems. We categorize such a problem into three groups

according to the linear or nonlinear equality constraint as well as to the de-

pendence of the constraint on the operating mode mk.

• We present two suboptimal algorithms for equality constrained state esti-

mation for hybrid systems. For the mode-independent equality constraints

case, we present the necessary conditions on the initialization and dynamics

for the classical interacting multiple models (IMM) algorithm to yield state

estimates satisfying a linear equality constraint for linear systems. However,

for linear and nonlinear systems, the mode-dependent equality constraints

must be enforced along time. We present a modified version of the IMM

filter to enforce the equality constraint on the state estimates. We compare

these algorithms by means of two examples, namely, a water tank system

in which the sum of the levels of the two tanks is constrained so that mass

is conserved, and the tracking of a ground vehicle in which the vehicle per-

forms a constant velocity motion with a fixed heading.

• Manuscript to be submitted [Eras-Herrera, W. Y., Mesquita, A. R., Teixeira,

B. O. S., 2018].
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Chapter 2

A Review on Non-Hybrid and Hybrid

Stochastic Filtering Methods

In this chapter, we review the theoretical and technical bases for the state estimation

in non-hybrid and hybrid systems. First, we present the state estimation methods for

non-hybrid systems and we review the constrained state estimation methods for non-

hybrid systems in Section 2.1. Then, we discuss the need to find an approximate so-

lution to the state estimation problem of hybrid systems and we review the recursive

solution for hybrid systems under the structure of Markov jump systems in Section 2.2.

Finally, in Section 2.3, we present several hybrid stochastic filtering methods. We cat-

egorize this suboptimal solution into two groups, namely, multiple-model approaches

and particle filtering methods.
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2.1 Non-Hybrid Stochastic Filtering Methods

2.1.1 Recursive Bayesian Approach

Consider the discrete-time non-hybrid linear system given by

xk = f (xk−1, uk−1, wk−1, k− 1), (2.1)

yk = h(xk, νk, k− 1), (2.2)

where xk ∈ Rn is the state vector, uk−1 ∈ Rp is the input vector and yk ∈ Rm is the

measurement vector. The functions f : Rn ×Rp ×Rq ×N → Rn and h : Rn ×Rr ×

N → Rm are, respectively, the process and observation models. These models (2.1)

and (2.2) are assumed to be known. It is assumed that the process noise wk ∈ Rq and

the measurement noise νk ∈ Rr are mutually independent, white random vectors with

zero mean and with known covariance matrices Qk and Rk respectively.

The state estimation problem consists of finding a recursive estimate x̂k for the state

xk of a dynamic system from a set of measurements y1:k , {y1, . . . , yk} and a dynamic

model. The recursive Bayesian approach estimates the a posteriori probability density

function ρ(xk|y1:k) recursively along time using a set of measurements y1:k and a dy-

namic model. This PDF incorporates all the statistical information characterizing a

complete solution to the state estimation problem. We employ the recursive Bayesian

approach to obtain the a posteriori PDF ρ(xk|y1:k) of the state vector. The a posteriori

PDF can be obtained in two steps: the forescast step and the data-assimilation step [Bar-

Shalom Y., Li X. R., Kirubarajan T., 2001; Simon, D. J., 2006; Candy, J.V., 2009]. These

steps are described below.

In the forescast step is obtained the a priori PDF p(xk|y1:k−1) of the vector of states xk

using the Chapman-Kolmogorov equation given by

ρ(xk|y1:k−1) =
∫

ρ(xk|xk−1)ρ(xk−1|y1:k−1)dxk−1, (2.3)

where ρ(xk−1|y1:k−1) is the a priori PDF in time k− 1, ρ(xk|xk−1) is the PDF of the state

transition obtained using the process model (2.1).
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In the data-assimilation step, the information yk is incorporated to update the a priori

PDF ρ(xk|y1:k−1) using Bayes’ theorem. This PDF is given by

ρ(xk|y1:k) =
ρ(yk|xk)ρ(xk|y1:k−1)

ρ(yk|y1:k−1)
, (2.4)

where p(yk|xk) is the likelihood funtion of innovations, p(xk|y1:k−1) is the a priori PDF

in time k obtained in the forescast step and p(yk|y1:k−1) is a normalization constant.

The a posteriori PDF p(xk|y1:k) obtained using the equations (2.3) and (2.4) provides

an optimal state estimate following some optimality criterion, for instance, the mini-

mum mean-square-error (MMSE) state estimator or the maximum a posteriori (MAP)

estimator, respectively, described by

x̂MMSE
k , E {xk|y1:k} , (2.5)

x̂MAP
k , arg max

xk

ρ(xk|y1:k). (2.6)

In this section, we present some stochastic filtering techniques described in the lit-

erature. The Kalman filter algorithm is presented as an optimal solution for the state

estimation problem of linear and Gaussian systems [Kalman, 1960]. However, particle

filtering methods [Arulampalam, M. S., Maskell, S., Gordon, N., Clapp, T., 2002] and

Gaussian approximation methods based on the KF such as the unscented Kalman filter

[Julier, S. J., Uhlmann, J. K., Durrant-Whyte, H. F., 2000] can be used as suboptimal al-

gorithms for the state estimation problem of nonlinear systems. These algorithms are

described below.

2.1.2 State Estimation for Linear Systems

Consider as a special case of (2.1)-(2.2) the time-varying discrete-time linear system

given by

xk = Ak−1xk−1 + Bk−1uk−1 + wk−1, (2.7)

yk = Ckxk + vk, (2.8)

where Ak−1 ∈ Rn×n, Bk−1 ∈ Rn×p and Ck ∈ Rm×n are assumed to be known.
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The Kalman filter

The Kalman filter (KF) is the optimal recursive state estimator for such linear and Gaus-

sian system [Bar-Shalom Y., Li X. R., Kirubarajan T., 2001]. This algorithm makes two

assumptions: Gaussianity and linearity. The first assumption states that the a posteri-

ori PDF can be represented by a Gaussian, p(xk|y1:k) = N
(
x̂k, Pxx

k
)
, being completely

characterized by two parameters, the mean and covariance [Kalman, 1960], whereas

the second assumption states that the process and observation models, described in

the equations (2.1) e (2.2), are known linear functions and wk−1 and νk are assumed

to be white, Gaussian, zero-mean, and mutually independent with known covariance

matrices Qk and Rk , respectively [Ho, Y.C., Lee, R.C.K., 1964]. The KF comprises two

steps: the forescast step and the data-assimilation step. The KF algorithm is described as

follows.

Algorithm 2.1.1. The Kalman filter [Kalman, 1960]

Initialize the filter with the state estimate x̂0 and the corresponding covariance matrix Pxx
0 =

E[(x0 − x̂0)(x0 − x̂0)
T].

1. Forescast step. Obtain the a priori state estimate x̂k|k−1 and the covariance matrix Pxx
k|k−1

from the information x̂k−1 and Pxx
k−1. This step is given by

x̂k|k−1 = Ak−1x̂k−1 + Bk−1uk−1, (2.9)

Pxx
k|k−1 = Ak−1Pxx

k−1AT
k−1 + Qk−1, (2.10)

ŷk = Ck x̂k|k−1, (2.11)

Pyy
k = CkPxx

k|k−1CT
k + Rk, (2.12)

Pxy
k = Pxx

k|k−1CT
k , (2.13)

where Pyy
k is the innovation covariance matrix and Pxy

k is the cross covariance matrix.

These matrices are given by Pxx
k|k−1,E[(xk − x̂k|k−1)(xk − x̂k|k−1)

T], Pyy
k ,E[(yk − ŷk)

(yk − ŷk)
T] and Pxy

k ,E[(xk − x̂k|k−1)(yk − ŷk)
T].

2. Data-assimilation step. Incorporate the information of a new measurement yk, and obtain
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the a posteriori state estimate x̂k and the covariance matrix Pxx
k . This step is given by

Kk = Pxy
k (Pyy

k )−1, (2.14)

x̂k = x̂k|k−1 + Kk(yk − ŷk), (2.15)

Pxx
k = Pxx

k|k−1 − KkPyy
k KT

k . (2.16)

where Kk is the Kalman gain matrix and Pxx
k ,E[(xk − x̂k)(xk − x̂k)

T]. Increment k and

return to step 1.

The notation x̂k|k−1 indicates an estimate of x̂k at time k based on information avail-

able up to and including time k− 1. Note that, for convenience of notation, we employ

the notation k|k − 1 in this Section to discriminate the estimates of the two steps of

Kalman filtering algorithms. However, this notation is not used in hybrid filtering

algorithms.

2.1.3 State Estimation for Nonlinear Systems

The solution to the state estimation problem for nonlinear systems, (2.1)-(2.2), faces the

challenge that the a posteriori PDF p(xk|y1:k) cannot be completely characterized by its

mean x̂k and covariance Pxx
k [Daum F., 2005]. Hence suboptimal algorithms are em-

ployed to circumvent this problem. Some approaches approximate the a posteriori PDF

from a small set of samples. For instance, the unscented Kalman filter uses a small

number of samples chosen deterministically to approximate the mean and covariance

of the random variables, whereas the particle filter uses a large number of random

samples (Monte Carlo) to approximate the PDFs of the random variables. These ap-

proaches are described below.

The Unscented Kalman filter

The unscented Kalman filter (UKF) provides a suboptimal recursive solution to the

state estimation problem for nonlinear systems [Julier, S.J., Uhlmann, J.K., 2004]. We

present here the UKF following the proposed systematization in [Menegaz, H.M.T.,
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Ishihara, J.Y., Borges, G.A., Vargas, A.N., 2015]. The UKF employs the unscented trans-

formation (UT), that approximates the posterior mean ŷ ∈ Rm and covariance matrix

Pyy ∈ Rm×m of a random vetor y obtained from the nonlinear transformation

y = h(x1, x2, c). (2.17)

where x1 and x2 are a priori independent random vectors, with mean x̂1 ∈ Rn
1 and

x̂2 ∈ Rn
2 and covariance matrices Px1x1 , Px2x2 ∈ Rn×n and c is a deterministic vector,

are assumed to be known.

Now, we define the augmented state vector x̃ ∈ Rñ, ñ = n1 + n2 as

x̃ ,

x1

x2

 , (2.18)

and the augmented covariance matrix Px̃x̃ ∈ Rñ×ñ as

Px̃x̃ ,

 Px1x1 0n1×n2

0n2×n1 Px2x2

 . (2.19)

UT is based on a set of deterministically chosen samples known as sigma points

Xj ∈ Rñ and associated weights γj, j = 1, . . . , 2ñ. The UT algorithm is described as

follows.

Algorithm 2.1.2. Unscented transform [Menegaz, H.M.T., Ishihara, J.Y., Borges, G.A., Var-

gas, A.N., 2015]

1. Choose the sigma points Xj and associated weights γj as

X = ˆ̃x11×2ñ +
√

ñ
[
(Px̃x̃)1/2 − (Px̃x̃)1/2

]
, (2.20)

γj =
1

2ñ
, (2.21)

where Xj is the jth column of the matrix X ∈ Rñ×2ñ, (.)1/2 is the Cholesky square root

and 11×2ñ ∈ R1×2ñ is the matrix with elements equal to 1. The sigma points (2.20) can

be partitioned as X x1

X x2

 , X . (2.22)
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where X x1 and X x2 ∈ Rn×2ñ. Then, each sigma point Xj is propagated through h

yielding

Yj = h
(
X x1

j ,X x2
j , c

)
. (2.23)

2. Obtain the state estimate ŷ and covariances Pyy and Pxy from (2.23) as

ŷ =
2ñ

∑
j=1

γjYj, (2.24)

Pyy =
2ñ

∑
j=1

γj
[
Yj − ŷ

] [
Yj − ŷ

]T , (2.25)

Px1y =
2ñ

∑
j=1

γj

[
X x1

j − x̂1

] [
Yj − ŷ

]T . (2.26)

In this work, for simplicity, we define the unscented transformation as the function UT

comprising the set of equations (2.20)-(2.26), that is,

[
ŷ, Pyy

k , Px1y
k

]
= UT

(
ˆ̃x, Px̃x̃, c, h

)
where x̃k−1 and Px̃x̃

k−1 are given by (2.18) and (2.19), respectively.

The UKF comprises two steps: the forescast step and the data-assimilation step. The

UKF algorithm is described as follows.

Algorithm 2.1.3. The unscented Kalman filter [Teixeira, B. O. S., Chandrasekar, J., Tôrres, L.

A. B., Aguirre, L. A., Bernstein, D. S., 2009]

Initialize the filter with the state estimate x̂0 and the corresponding covariance matrix Pxx
0 =

E[(x0 − x̂0)(x0 − x̂0)
T].

1. Forecast step. Obtain the a priori state estimate x̂k|k−1 and the covariance matrix Pxx
k|k−1[

x̂k|k−1, Pxx
k|k−1, 0

]
= UT

(
ˆ̃xk−1, Px̃x̃

k−1, uk−1, f
)

, (2.27)[
ŷk, Pyy

k , Pxy
k

]
= UT

(
ˆ̃xk|k−1, Px̃x̃

k|k−1, 0, h
)

. (2.28)
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where UT refers to Algorithm 2.1.2, where the augmented state vectors and covariance

matrices of the equations (2.27) and (2.28) are respectively given by

ˆ̃xk−1 ,

 x̂k−1

wk−1

 , Px̃x̃
k−1 ,

Pxx
k−1 0n×q

0q×n Qk−1

 , ñ = n + q. (2.29)

ˆ̃xk|k−1 ,

x̂k|k−1

vk

 , Px̃x̃
k|k−1 ,

Pxx
k|k−1 0n×r

0r×n Rk

 , ñ = n + r. (2.30)

2. Data-assimilation step. Obtain the a posteriori state estimate x̂k and its corresponding

covariance matrix Pxx
k

Kk = Pxy
k (Pyy

k )−1, (2.31)

x̂k = x̂k|k−1 + Kk(yk − ŷk), (2.32)

Pxx
k = Pxx

k|k−1 − KkPyy
k KT

k . (2.33)

Increment k and return to step 1.

Particle Filtering Methods

The particle filter (PF) has been used to estimate the states of nonlinear systems [Aru-

lampalam, M. S., Maskell, S., Gordon, N., Clapp, T., 2002]. The PF is classified as a

Bayesian method implemented by means of Monte Carlo (MC) simulations [Doucet,

A., Johansen, A. M., 2008]. The Sequential Monte Carlo (SMC) approach uses a set of

particles with their associated weights to represent the a posteriori PDF p(xk|y1:k). In

particle filtering algorithms, the main limitation of this approach is to sample the true

probability distribution p(x) from a set of particles, xi
k ∼ p(x). Thus, the sampling

method can be used to generate weight particles from a candidate distribution q(x)

which approximates the distribution p(x), that is, xi
k ∼ q(x). The sequential impor-

tance sampling (SIS) algorithm is a Monte Carlo method that uses importance sam-

pling to approximate the a posteriori PDF [Ristic, B., Arulampalam, S., Gordon, N.,

2004].

The particle filters considers that the a posteriori PDF p(xk|y1:k) can be character-

ized by discrete random measurements
{

xi
k, wi

k
}N

i=1, where xi
k, i = 1, . . . , N is a set of
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particles with associated weights wi
k, i = 1, . . . , N. Thus, the a posteriori PDF can be

approximated by

p(xk|y1:k) ≈
N

∑
i=1

wi
kδ
(

xk − xi
k

)
, (2.34)

where δ(.) is the Dirac delta function and the weights wi
k are chosen using the princi-

ple of importance sampling [Gustafsson, F., 2010]. These weights are calculated recur-

sively as follows

wi
k = wi

k−1
p(yk|xi

k)p(xk|xi
k−1)

q(xk|xi
k−1, yk)

, (2.35)

where p(yk|xi
k) is the likelihood function of innovations, p(xk|xi

k−1) is the a priori prob-

ability and q(xk|xi
k−1, yk) is the candidate distribution. The main limitation of particle

filtering methods using importance sampling is the growth of the weight variance over

time generating an effect known as particle degeneration [Candy, J.V., 2009]. That is,

after a number of iterations, most of the weights tend to zero, resulting in particles of

no significance for the distribution to be represented. Thus, the effective number of

particles Neff is a measure that quantifies the degeneracy of the particles. This number

is given by

N̂eff =
1

∑N
i=1(w

i
k)

2
(2.36)

where N̂eff is the estimate of the effective number of particles. We employ a resampling

step to circumvent the problem of particle degeneration. The resampling preserves the

particles with large weights (high probability), whereas the particles with low weights

are eliminated [Chen, Z., 2003]. The resampling involves a mapping of the random

measurements
{

xi
k, wi

k
}

to the random measurements
{

xi∗
k , 1

N

}
with uniform weights.

The new set of particles
{

xi∗
k
}N

i=1 is generated by resampling of the approximate dis-

crete representation of p(xk|y1:k), see equation (2.34). The criterion used to apply the

resampling is N̂eff < Nthreshold, where Nthreshold is a threshold chosen by the user [Ris-

tic, B., Arulampalam, S., Gordon, N., 2004].

The different approaches based on the particle filters can be considered as special

cases of the SIS algorithm. These special cases are derived from the SIS algorithm by
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varying the choice of the candidate distribution and/or the resampling step. Thus,

there are several particle filter algorithms that solve the state estimation problem for

nonlinear systems, such as bootstrap particle filter, auxiliary, regularized, MCMC, with

annealing, among others [Doucet, A., de Freitas, J.F., Gordon, N., 2001]. Different meth-

ods of resampling can be used in particle filters such as resampling: multinomial, resid-

ual and systematic, among others [Carpenter, J., Clifford, P., Fearnhead, P., 1999; Liu,

J.S., Chen, R., 1998; Kitagawa, G., 1996].

The generic PF comprises four steps: the particle generation step, the weight calcu-

lation step, the resampling step and combining the estimates step. The PF algorithm is

described as follows.

Algorithm 2.1.4. Particle filters [Arulampalam, M. S., Maskell, S., Gordon, N., Clapp, T.,

2002]

Initialize the set of particles and their associated weights,
{

xi
0, wi

0
}N

i=1.

1. Particle generation. Generate a set of particles with uniform weights
{

xi
k, 1

N

}N

i=1
from

the candidate distribution q(xk|xi
k−1, yk) which approximates the a posteriori PDF p(xk|y1:k).

In the case of the bootstrap particle filter, the transition probability is used as the candidate

distribution, q
(
xk|xi

k−1, yk
)
= p

(
xk|xi

k−1

)
. The particles are given by

xi
k ∼ q

(
xk|xi

k−1, yk

)
, (2.37)

2. Weight calculation. Incorporate the information of a new measurement yk to calculate

the importance weights of each particle. For the bootstrap particle filter, the weights are

obtained using the likelihood function p(yk|xi
k) (2.35) and then normalize the particle

weights. This step is defined by

w̃i
k = wi

k−1p(yk|xi
k), (2.38)

wi
k =

w̃i
k

∑N
i=1 w̃i

k

, (2.39)

3. Particle resampling. Perform the resampling process when the effective number of parti-

cles is less than the resampling threshold, N̂eff < Nthreshold.
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4. Combining the estimates. Obtain the state estimate x̂k|k and the covariance matrix Pxx
k|k

x̂k =
N

∑
i=1

wi
kxi

k, (2.40)

Pxx
k =

N

∑
i=1

wi
k

(
xi

k − x̂k|k

) (
xi

k − x̂k|k

)T
. (2.41)

Increment k and return to step 1.

2.1.4 State Estimation for Equality Constrained Systems

The Kalman filter provides optimal state estimates for linear and Gaussian systems.

However, additional information about the system in the form of state constraints

may be useful for improving the state estimates [Simon, D., 2010]. There are many

constraints: equality, inequality or interval, linear or nonlinear, time invariant or time

varying.

Many algorithms have been developed for constrained state estimation. These al-

gorithms can be categorized into five classes: the measurement-augmented approach

[Tahk, M., Speyer, J. L. , 1990], the estimate projection approach [Simon, D., Chia, T.,

2002], the projected sigma-point approach [Vachhani, P., Narasimhan, S., Rengaswamy,

R., 2006], the quadratic programming approach [Rao, C. V., Rawlings, J. B., Mayne, D.

Q., 2003] and the truncated probability density function approach [Simon, D. J., 2006].

The investigation developed by [Teixeira, B. O. S., Aguirre, L. A., Tôrres, L. A. B., 2010]

presents a comparative view of these approaches.

The Kalman filter with Projected Initial Condition

Consider the time-invariant linear system given by

xk = Axk−1 + Buk−1 + wk−1, (2.42)

yk = Cxk + vk, (2.43)

Assume that, in addition, the state vector xk satisfies the equality constraint

Dxk = d. (2.44)
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The necessary conditions for the classical Kalman filter to provide state estimates

satisfying the equality constraint (2.44) are presented in [Teixeira, B. O. S., Chandrasekar,

J., Tôrres, L. A. B., Aguirre, L. A., Bernstein, D. S., 2009]. The next result presents suf-

ficient conditions for the state vector of the linear time-invariant (LTI) system charac-

terized by A, B, and C to satisfy the equality constraint (2.44). In this case, we say that

the dynamics is compatible with the equality constraint [Rong Li, X., 2016].

Lemma 2.1.1. [[Teixeira, B. O. S., Chandrasekar, J., Tôrres, L. A. B., Aguirre, L. A., Bernstein,

D. S., 2009], Proposition 3.1] For the non-hybrid LTI system with matrices A, B, and C,

assume that

DQ = 0s×q, (2.45)

DA = D, (2.46)

DBuk−1 = 0s×1. (2.47)

Then, for all k ≥ 1, the equality state constraint (2.44) is verified, where d = Dx0.

The next result presents the sufficient conditions on the initialization and dynamics

for the Kalman filter to yield estimates x̂k (2.15) and Pxx
k (2.16) satisfying Dx̂k = d and

DPxx
k = 0s×n.

Proposition 2.1.1. [[Teixeira, B. O. S., Chandrasekar, J., Tôrres, L. A. B., Aguirre, L. A.,

Bernstein, D. S., 2009], Proposition 4.3] For LTI dynamic systems, assume that the conditions

of Lemma 2.1.1 hold and that the initial estimates satisfy Dx̂0 = d and DPxx
0 = 0s×n. Then,

the classical Kalman filter yields estimates, x̂k (2.15) and Pxx
k (2.16) satisfying Dx̂k = d and

DPxx
k = 0s×n, ∀k.

Remark 2.1.1. In order to initialize the KF such that Dx̂0 = d and DPxx
0 = 0s×n are verified,

one may choose arbitrary values x̄0 and P̄xx
0 and project them by

x̂0 = PN (D) x̄0 + d̄, (2.48)

Pxx
0 = PN (D)P̄

xx
0 , (2.49)

where d̄ = DT(DDT)−1d is an offset and the projector is given by

PN (D) , In×n −WDT(DWDT)−1D. (2.50)
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If W = In×n, then the projector is orthogonal.

The Equality-constrained Kalman Filter

Consider again the time-varying linear system given by the equations

xk = Ak−1xk−1 + Bk−1uk−1 + wk−1,

yk = Ckxk + vk,

Assume that the state vector xk is known to satisfy the time-varying equality con-

straint

Dkxk = dk. (2.51)

The equality-constrained Kalman filter (ECKF) projects the state estimate x̂k given

by (2.15) onto the hyperplane defined by (2.51) by means of the projection step [Simon,

D., Chia, T., 2002; Teixeira, B. O. S., Chandrasekar, J., Tôrres, L. A. B., Aguirre, L. A.,

Bernstein, D. S., 2009]. The ECKF algorithm is described as follows.

Algorithm 2.1.5. The equality-constrained Kalman filter [Simon, D., Chia, T., 2002]

Initialize the filter with the state estimate x̂0 and the corresponding covariance matrix Pxx
0 and

the parameters of the equality constraint Dk and dk.

1. Perfom steps 1 to 2 of the KF filter (Algorithm 2.1.2) with x̂k−1=x̂p
k−1 and Pxx

k−1=Pxxp
k−1.

2. Projection step. Obtain the constrained state estimate x̂p
k and the covariance matrix Pxxp

k

d̂k = Dk x̂k, (2.52)

Pdd
k = DkWkDT

k , (2.53)

Pxd
k = WkDT

k , (2.54)

Kp
k = Pxd

k (Pdd
k )−1, (2.55)

where x̂k is given by (2.15) and Wk ∈ Rn×n is assumed to be positive definite and is often

set to Wk = Pxx
k , where Pxx

k is given by (2.16). Then x̂p
k and Pxxp

k are given by

x̂p
k = x̂k + Kp

k (d− d̂k), (2.56)

Pxxp
k = Pxx

k − Kp
k (Pdd

k )(Kp
k )

T. (2.57)
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data-assimilation step
Pc

k|k−1

x̂c
k|k−1

Pc
k

x̂c
k

projection method

g(xk, k− 1) = dk−1

CIKFyk

forescast step and

Figure 2.1: Diagram of the constrained innovation Kalman filter. The projection step is incorporated
during the forecast step.

Increment k and return to step 1.

The Constrained Innovation Kalman filter

The constrained innovation Kalman filter (CIKF) [Mann, G., Hwang, I., 2013] enforces

the equality constraint (2.51) by projecting the unconstrained state prediction onto the

constraint hyperplane. The equality constraint on state estimate is incorporated during

the forecast step, see Figure 2.1. The CIKF comprises two steps: the forescast and projec-

tion step and the data-assimilation step. The CIKF algorithm is described as follows.

Algorithm 2.1.6. The constrained innovation Kalman filter [Mann, G., Hwang, I., 2013]

Initialize the filter with the state estimate x̂0 and the corresponding covariance matrix Pxx
0 and

the parameters of the equality constraint Dk and dk.

1. Forescast and projection step. Obtain the a priori constrained state estimate x̂c
k|k−1 and

the covariance matrix Pxxc
k|k−1

x̂c
k|k−1 = Ak−1x̂c

k−1 + Bk−1uk−1−

Jk
(

Dk
(

Ak−1x̂c
k−1 + Bk−1uk−1

)
− dk

)
, (2.58)

Pxxc
k|k−1 = (I − JkDk)

(
Ak−1Pxxc

k−1AT
k−1 + Qk−1

)
(I − JkDk)

T , (2.59)

ŷk = Ck x̂c
k|k−1, (2.60)

Pyy
k = CkPxxc

k|k−1CT
k + Rk, (2.61)

Pxy
k = Pxxc

k|k−1CT
k , (2.62)
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where Jk = W−1DT
k
(

DkW−1DT
k
)−1, W is a positive definite matrix. For details on the

equations (2.58)-(2.59), see [Mann, G., Hwang, I., 2013].

2. Data-assimilation step. Obtain the a posteriori constrained state estimate x̂c
k and its

corresponding covariance matrix Pxxc
k

Kk = Pxy
k (Pyy

k )−1, (2.63)

x̂c
k = x̂c

k|k−1 + Kk(yk − ŷk), (2.64)

Pxxc
k = Pxxc

k|k−1 − KkPyy
k KT

k . (2.65)

Increment k and return to step 1.

The Equality-constrained Unscented Kalman Filter

Consider again the nonlinear discrete-time system given by the equations

xk = f (xk−1, uk−1, wk−1, k− 1),

yk = h(xk, νk, k− 1),

Now assume that the state vector xk satisfies the nonlinear equality constraint

g(xk, k) = dk. (2.66)

The algorithms based on the unscented transformation provide suboptimal solu-

tions to the equality-constrained state estimation problem for nonlinear systems. These

approaches do not guarantee that the nonlinear equality constraint (2.66) is exactly sat-

isfied, but they provide approximate solutions.

The equality-constrained unscented Kalman filter (ECUKF) yields state estimates

that approximately satisfy the nonlinear equality constraint (2.66) [Teixeira, B. O. S.,

Chandrasekar, J., Tôrres, L. A. B., Aguirre, L. A., Bernstein, D. S., 2009]. In this case,

the projection step of ECKF given by (2.52)-(2.57) is extended to the nonlinear case by

means of UT, which is given by[
d̂k, Pdd

k , Pxd
k

]
= UT (x̂k, Pxx

k , 0, g) . (2.67)
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where the state estimate x̂k ∈ Rn and the covariance matrix Pxx
k ∈ Rn×n are given by

(2.32) and (2.33), respectively. From (2.67), Kp
k , x̂p

k and P̂xxp
k are given by (2.55), (2.56)

and (2.57), respectively. The ECUKF algorithm is described as follows.

Algorithm 2.1.7. The equality-constrained unscented Kalman filter [Teixeira, B. O. S., Chan-

drasekar, J., Tôrres, L. A. B., Aguirre, L. A., Bernstein, D. S., 2009]

Initialize the filter with the state estimate x̂0 and the corresponding covariance matrix Pxx
0 and

the parameters of the equality constraint g(xk, k) and dk.

1. Forecast step. Obtain the a priori state estimate x̂k|k−1 and the corresponding covariance

matrix Pxx
k|k−1 [

x̂k|k−1, Pxx
k|k−1, 0

]
= UT

(
ˆ̃xk−1, Px̃x̃

k−1, uk−1, f
)

, (2.68)[
ŷk, Pyy

k , Pxy
k

]
= UT

(
ˆ̃xk−1, Px̃x̃

k−1, c, h
)

, (2.69)

where ˆ̃xk−1 and Px̃x̃
k−1 are respectively given by

ˆ̃xk−1 ,

 x̂p
k−1

wk−1

 , Px̃x̃
k−1 ,

Pxxp
k−1 0n×q

0q×n Qk−1

 , (2.70)

2. Data-assimilation step. Obtain the a posteriori state estimate x̂k and the corresponding

covariance matrix Pxx
k

Kk = Pxy
k (Pyy

k )−1, (2.71)

x̂k = x̂k|k−1 + Kk(yk − ŷk), (2.72)

Pxx
k = Pxx

k|k−1 − KkPyy
k KT

k , (2.73)

3. Projection step. Obtain the constrained state estimate x̂p
k and the covariance matrix Pxxp

k[
d̂k, Pdd

k , Pxd
k

]
= UT (x̂k, Pxx

k , 0, g) , (2.74)

Kp
k = Pxd

k (Pdd
k )−1, (2.75)

x̂p
k = x̂k + Kp

k (d− d̂k), (2.76)

Pxxp
k = Pxx

k − Kp
k (Pdd

k )(Kp
k )

T. (2.77)

Increment k and return to step 1.
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2.2 Steps of the Hybrid Stochastic Filtering Problem

In this work, we address approximate solutions to the state estimation problem of hy-

brid systems. In the particular case of Markov jump systems, where the mode tran-

sitions at time k are assumed to be independent of m0:k−1 and x0:k given the current

mode mk. The solution to this problem may be obtained through the joint a posteriori

PDF of xk and mk (1.4) given a sequence of noisy measurements, the whose equation is

repeated here for convenience, that is,

ρ(xk, mk | y1:k) = ∑
all m1:k

ρ(xk | m1:k, y1:k)ρ(m1:k | y1:k) ,

where ρ (xk | m1:k, y1:k) is the a posteriori PDF of xk conditional on the mode mk and

ρ (m1:k | y1:k) is the conditional probability mass function (PMF) of the mode sequence

m1:k. Figure 2.2 shows how the two terms of the right-hand side of (1.4) are obtained.

The approaches used to treat each term of the joint a posteriori PDF are presented below.

ρ(xk | m1:k, y1:k)

ρ(m1:k | y1:k)

Mode

correction

Analog state

Data-assimilation

Forescast

Management

Combination

prediction

Mode

of hypotheses

prediction and correction

step

step

ρ(m1:k−1 | y1:k−1)

ρ(m1:k | y1:k−1)
ρ(xk−1 | m1:k, y1:k−1)

ρ(xk | m1:k, y1:k−1)

ρ(xk, mk | y1:k)

ρ(xk−1 | m1:k−1, y1:k−1)

yk

Digital state Analog state

Figure 2.2: Diagram of the steps of the hybrid stochastic filtering problem shows how the two terms of
the right-hand side of (1.4) are obtained.
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2.2.1 Analog State Estimate

From the first PDF of (1.4), ρ(xk | m1:k, y1:k), it is possible to estimate the analog state

of the hybrid system. This PDF can be obtained using a filter bank (FB), for example.

The FB is based on the dynamic MM approach [Hide C., 2004] and is classified as a

Bayesian method in [Mehra R.K., 1972]. The filter bank is compounded by a set of fil-

ters that runs in parallel. Different algorithms can be used to compose each bank filter

[[Bar-Shalom Y., Li X. R., Kirubarajan T., 2001], p. 441-465], [Chaer W. S., Bishop R. H.,

Ghosh J., 1997; Mazor, E., Averbuch, A., Bar-Shalom, Y., Dayan, J., 1998]. For example,

for linear systems, we employ the Kalman (KF) filter [Kalman, 1960], whereas, for non-

linear systems, we employ Gaussian approximation methods based on the KF as the

extended Kalman filter (EKF) [Jazwinski, A. H., 1970; Maybeck, P. S., 1979] and the un-

scented Kalman filter (UKF) [Julier, S. J., Uhlmann, J. K., Durrant-Whyte, H. F., 2000],

as well as particle filtering methods [Arulampalam, M. S., Maskell, S., Gordon, N.,

Clapp, T., 2002]. With relation to particle filtering, there are several algorithms based

on this method, for example, particle filters: Bootstrap, auxiliary, regularized, Markov

chain Monte Carlo (MCMC), with annealing, among others [Doucet, A., de Freitas, J.F.,

Gordon, N., 2001; Boers, Y., Driessen, H, 2000].

In this work, we employ the unscented Kalman filter to compose the bank because

such a filter uses a statistical linearization technique that uses a reduced number of

samples chosen deterministically [Lefebvre, T., Bruyninckx, H., De Schutter, J., 2002].

In the case of the Extended Kalman filter we employ an analytical linearization of the

system model. Thus, the UKF approach is presented as a more efficient algorithm

to estimate the states of nonlinear systems [Simon, D. J., 2006]. The KF, UKF and PF

approaches are reviewed in Section 2.1.

2.2.2 Digital State Estimate

The second term of (1.4) estimates the digital state of the hybrid system. For such, the

conditional PMF of the mode, ρ(m1:k | y1:k), is obtained using the Bayes’ theorem given

by
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ρ(m1:k | y1:k) =
ρ (yk|m1:k, y1:k−1) p (m1:k|y1:k−1) p(y1:k−1)

ρ (yk|y1:k−1) p(y1:k−1)
,

=
ρ (yk|m1:k, y1:k−1) p (m1:k|y1:k−1)

ρ (yk|y1:k−1)
, (2.78)

where ρ (yk|m1:k, y1:k−1) is the likelihood function of innovations, p (m1:k|y1:k−1) is the

discrete modal probability and ρ (yk|y1:k−1) is a normalization constant. The elements

of the equation (2.78) are analyzed as follows. We consider that the likelihood function

of innovations is a measure that quantifies the difference between the current observa-

tion yk, and the estimated observation ŷk. This measure is given (at least approximately,

if non-Gaussian) by

ρ (yk|m1:k, y1:k−1) =
1√

(2π)ny det(Pyy
k )

exp
[
−1

2
(ηk)

T(Pyy
k )−1ηk

]
, (2.79)

where ηk , yk − ŷk is the innovation and Pyy
k is the innovation covariance matrix. For

the second term of (2.78), the modal probability is defined by

p (m1:k|y1:k−1) = πj|i p(m1:k−1|y1:k−1), (2.80)

where πj|i is the transition probability of the mode mk−1 = i to the mode mk = j and

p(m1:k−1|y1:k−1) is the a priori probability of the modes. The third term of the equation

(2.78), ρ (yk|y1:k−1), is independent of xk and mk and can be eliminated in the process

of normalization of probabilities [Bar-Shalom, Y., Challa, S.,Blom, H. A., 2005; Ristic,

B., Arulampalam, S., Gordon, N., 2004; Hofbaur, M. W., 2005].

Transitions between modes

In the context of hybrid stochastic filtering is necessary to describe the way in which

the occurrence of transitions between different digital dynamics. We consider that the

transitions between the operating modes of the system depend on the analog state vari-

able and/or the digital state variable. For example, in the investigations performed by

[Seah, C. E., Hwang, I., 2009; Hwang, I. , Balakrishnan H., Tomlin, C., 2006; Benazera,

E., Travé-Massuyès, L., 2009], the transitions between modes depend on the analog
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state of the system, whereas, in the studies developed by [Mazor, E., Averbuch, A.,

Bar-Shalom, Y., Dayan, J., 1998; Blom, H. A.P., Bar-Shalom, Y., 1988; Boers, Y., Driessen,

H, 2004], the transitions between modes depend only on the digital state variable. The

types of mode transitions of the system can be illustrated in the example below.

Example 2. Consider the dynamic system given by a bouncing ball under the action of

acceleration of gravity. This system has two analog states, the position and the velocity

of the ball, and the digital states are the jumping count. In this system, the transitions

between modes depend on the digital state variable because the mode transition occurs

when the ball touches the ground. On the other hand, we consider the dynamic system

of heating a house. This system has an analog state, the temperature of the house, and

two operating modes controlled by a thermostat, natural cooling and forced heating.

Depending on the preset maximum and minimum temperature limits, the thermostat

switches the heater on and off. In this system, the transitions between modes depend

on the analog state variable. �

In this work, we consider that the mode transitions are independent of analog

states. A hybrid system with such property is known in the literature as a discrete-

time Markov jump system. Thus, we assume that the transitions between modes are

modeled by a Markov chain and occur according to the transition probability matrix

Π, as defined in Section 1.2.

2.2.3 Limitation of the Hybrid Stochastic Filtering Problem

The main hurdle of solving the hybrid stochastic filtering problem is that both the

number of possible sequences of modes and the number of possible analog trajectories

(and, consequently, the computational cost) grow exponentially over time, as shown in

Figure 1.2. In order to analyze this question, we employ the first PDF of the equation
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(1.4) at the time k− 1 using the Total Probability Theorem2 given by

ρ(xk−1|m1:k=j, y1:k−1) =
M

∑
i=1

ρ(xk−1|m1:k−1=i, m1:k=j, y1:k−1)

p(m1:k−1=i|m1:k=j, y1:k−1), (2.81)

where the two terms in the equation (2.81) are described below. In the first term, the

mode mk is independent of xk−1 if m1:k−1 is known, then this term can be rewritten as

ρ(xk−1|m1:k−1=i, m1:k=j, y1:k−1) = ρ(xk−1|m1:k−1=i, y1:k−1), (2.82)

where ρ(xk−1|m1:k−1=i, y1:k−1) is a posteriori PDF of xk−1 conditional on the mode

m1:k−1. In the second term of the equation (2.81), p(m1:k−1=i|m1:k=j, y1:k−1) is the

conditional probability of the mode. Using Bayes’ Theorem, this probability can be

expressed as

p(m1:k−1=i|m1:k=j, y1:k−1) =
p(m1:k=j|m1:k−1=i, y1:k−1)p(m1:k−1=i|y1:k−1)

p(m1:k=j|y1:k−1)
,

= πj|i
p(m1:k−1=i|y1:k−1)

p(m1:k=j|y1:k−1)
, (2.83)

where p(m1:k=j|m1:k−1=i, y1:k−1) = πj|i. Finally, the equations (2.82) and (2.83) are

replaced in (2.81) yielding

ρ(xk−1|m1:k=j, y1:k−1) =
M

∑
i=1

wi
kρ(xk−1|m1:k−1=i, y1:k−1), (2.84)

where

wi
k , πj|i

p(m1:k−1=i|y1:k−1)

p(m1:k=j|y1:k−1)
. (2.85)

In the equation (2.84), the PDF ρ(xk−1|m1:k−1=i, y1:k−1) is a sum of M weighted

PDFs. This sum of PDFs is related to a tree of possible mode sequences due to the

lack of knowledge of the transitions between modes of the system (Figure 1.2). As a
2The Total Probability Theorem can be defined for conditional probabilities such as

P(A|C) =
n

∑
s=1

P(A|C ∩ Bs)P(Bs|C),

where Bs are events that partition a sample space and C is an event independent of Bs.
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consequence, the number of parameters required to characterize the a posteriori PDF

grows exponentially over time [Ristic, B., Arulampalam, S., Gordon, N., 2004]. To cir-

cumvent this practical limitation, hybrid stochastic filtering methods employ different

mechanisms to yield approximate solutions.

2.3 Hybrid Stochastic Filtering Methods

Several techniques have been used to estimate the states of hybrid systems, such as

the interacting multiple-model (IMM) algorithm [Blom, H. A.P., Bar-Shalom, Y., 1988],

the multiple-model and multiple-hypothesis (M3H) algorithm [Driessen, H., Boers, Y.,

2001; Boers, Y., Driessen, H, 2004], the multiple-hypothesis mixing filter (MHMF) [San-

tana, P. H. R. Q. A., Menegaz, H. M., Borges G. A., Ishihara, J. Y., 2010], the bootstrap

particle filter, [Boers, Y., Driessen, H, 2000], the Rao-Blackwellized particle filter [Hen-

deby, G., Karlsson, R., Gustafsson, F., 2010], and the combination of the IMM approach

with the particle filter (IMMPF) [Wang, X., Xu, M., Wang, H., Wu, Y., Shi, H., 2012].

Some of these approaches are reviewed below.

2.3.1 The Interacting Multiple-Model Algorithm

The Interacting Multiple-Model (IMM) filter provides an approximate recursive solu-

tion to the state estimation problem for unconstrained hybrid systems [Blom, H. A.P.,

Bar-Shalom, Y., 1988]. The IMM approach has been one of the main approaches to

estimate states of hybrid systems [Blom, H. A.P., Bar-Shalom, Y., 1988; Mazor, E., Aver-

buch, A., Bar-Shalom, Y., Dayan, J., 1998]. In order to address the exponential growth

problem, the IMM algorithm mixes the previous analog state estimates to generate new

initial values for each filter in the next time step. For such, we approximate (2.82) as

ρ(xk−1|m1:k−1 = s, y1:k−1)) ' N
(

x̂s
k−1, Pxx,s

k−1

)
, (2.86)

where N represents a Gaussian distribution with mean x̂s
k−1 and its corresponding

covariance, Pxx,s
k−1 , s = 1, . . . , M. Thus, we replace the approximation of the equation
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(2.86) into (2.84) yielding

ρ (xk−1|m1:k, y1:k) '
M

∑
s=1

ws
kN

(
x̂s

k−1, Pxx,s
k−1

)
. (2.87)

The IMM is a five-step algorithm: the mode probability prediction step, the mixing of

estimates step, the analog state prediction and correction step, the mode probability correc-

tion step and the combining the estimates step, as shown in Figure 2.3. In this algorithm,

the two terms of the right-hand side of (1.4) are treated as follows. The first term,

ρ(xk | m1:k, y1:k), is addressed in the mixing of estimates and in the prediction and correc-

tion of estimates steps, whereas, the second term, ρ(m1:k | y1:k), is processed in the mode

probability prediction step and updated in the mode probability correction step. We assume

that the analog state estimates are obtained from the weighted combination of the re-

cursive estimates of the filter bank, whereas, the digital state estimate is obtained as

being the most likely a posteriori mode.

Figure 2.3 summarizes the IMM algorithm in five recursive steps. In the first step of

the IMM, the a priori probability of the mode, ws
k−1, s = 1, . . . , M, are obtained. In the

second step, the previous state vector estimates x̂r
k−1, the matrix covariance Pxx,r

k−1 and

the mixing probabilities µ
s|r
k−1, r = 1, . . . , M, are mixed to generate new initial values for

each filter, the state vector estimates x̄s
k−1 and the corresponding covariance P̄xx,s

k−1. In

the third step, the filter bank provides the estimate of the state vector x̂s
k, the covariance

matrix Pxx,s
k , the innovation ηs

k , ys
k − ŷs

k and the innovation covariance matrix Pyy,s
k .

In the fourth step, the a posteriori probability of the mode γs
k, is obtained using Bayes’

theorem. In the fifth step, the estimates provided by the filter bank and the a posteriori

probability of the mode are combined to obtain the estimate of the state vector x̂k, and

associated covariance Pxx
k at time k. The IMM algorithm is described as follows.
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Algorithm 2.3.1. The interacting multiple-model filter [Blom, H. A.P., Bar-Shalom, Y., 1988]

Initialize each sth filter with the state estimate x̂s
0 and corresponding covariance Pxx,s

0 , and the

mode probability γs
0, s = 1, . . . , M.

1. Mode probability prediction. Obtain the a priori probability of the modes ws
k−1, s =

1, . . . , M, and obtain the mixing probabilities µ
s|r
k−1,

µ
s|r
k−1 =

πs|rγr
k−1

ws
k−1

, (2.88)

where πs|r is given by (1.2) and γr
k−1 is the r-th a posteriori probability of the modes,

r = 1, . . . , M. The a priori probability of the modes is given by

ws
k−1 ,

M

∑
r=1

πs|rγr
k−1. (2.89)

2. Mixing of estimates. Obtain the mixed estimates x̄s
k−1 and P̄xx,s

k−1, s = 1, . . . , M from

the interaction of the M filters by mixing the previous state vector estimates x̂r
k−1 and

covariance matrix Pxx,r
k−1 with the respective mixing probabilities µ

s|r
k−1,

x̄s
k−1 =

M

∑
r=1

µ
s|r
k−1x̂r

k−1, (2.90)

P̄xx,s
k−1 =

M

∑
r=1

µ
s|r
k−1

[
Pxx,r

k−1 +
(
x̂r

k−1 − x̄s
k−1
) (

x̂r
k−1 − x̄s

k−1
)T
]

. (2.91)

3. Analog state prediction and correction. For each estimate x̄s
k−1, run a filter to estimate

the state vector x̂s
k, the covariance matrix Pxx,s

k , the innovation ηs
k, and the innovation

covariance matrix Pyy,s
k . Each s-th filter is given by{

x̂s
k, Pxx,s

k , ηs
k, Pyy,s

k

}
=

Filter
(

x̄s
k−1, P̄xx,s

k−1, ys
k, fs, hs, Qs, Rs

)
, (2.92)

where each “Filter” uses one of the M possible pairs of stochastic models fs, hs, Qs and

Rs. In principle, any filter algorithm with prediction-correction structure can be used.

4. Mode probability correction. Obtain the a posteriori probability γs
k of each estimate using

the Bayes’ theorem as follows:

γs
k =

ρs(ηs
k)w

s
k−1

∑M
r=1 ρr(ηr

k)w
r
k−1

, (2.93)
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where ws
k−1 is given by (2.89) and ρs(ηs

k) is the likelihood function of innovations, given

(at least approximately, if non-Gaussian) by

ρs(η
s
k) =

1√
(2π)m|Pyy,s

k |
exp
[
−1

2
(ηs

k)
T(Pyy,s

k )−1ηs
k

]
. (2.94)

5. Combining the estimates. Combine the M estimates to obtain the state estimate x̂k and

its corresponding covariance Pxx
k at time k as

x̂k =
M

∑
s=1

γs
k x̂s

k, (2.95)

Pxx
k =

M

∑
s=1

γs
k

[
Pxx,s

k + (x̂s
k − x̂k) (x̂s

k − x̂k)
T
]

. (2.96)

and obtain the estimate m̂ as being the most likely mode a posteriori. Increment k and

return to step 1.

Recent work [Santana, P. H. R. Q. A., Borges G. A., Ishihara, J. Y., 2010] illustrates a

modified version of the IMM algorithm. In this work, the transition probability matrix

correction step, Πk, is incorporated after the fifth step of the classical IMM algorithm.

2.3.2 The Multiple-Model and Multiple Hypothesis Algorithm

The multiple models and multiple hypotheses (M3H) filter provides an approximate

solution to the state estimation problem of hybrid systems [Driessen, H., Boers, Y.,

2001; Boers, Y., Driessen, H, 2004]. In order to address the exponential growth problem,

the M3H keeps a limited buffer of hypotheses by means of merging and discarding

hypotheses. In the M3H filter, merging occurs when 2 or more hypotheses share the

same sequence of modes for the previous d time steps. In addition, hypotheses are

discarded whenever their likelihood is below a given threshold. The IMM algorithm

can be seen as a special case of the M3H algorithm with merging depth d = 1, see

Figure 1.2. Note that, the merging depth d is a tuning parameter.

At this point, we define the buffer of hypothesesHk , {Hr
k, r = 1, . . . , N}, N < M,

where each hypothesis Hr
k is defined by a tuple (m̂r

k−d:k, x̂r
k, Pxx,r

k ) composed, respec-
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tively, of a sequence of the last d modes, a mean vector and a covariance matrix for the

analog state PDF and the hypothesis probability pr
k , p(Hr

k).

The M3H is a six-step algorithm: the hypotheses probability prediction step, the hy-

potheses merging step, the hypotheses pruning step, the analog state prediction and correc-

tion step, the hypotheses probability correction step and the combining the estimates step,

as shown in Figure 2.5. In this algorithm, the two terms of the right-hand side of (1.4)

are treated as follows. The first term, ρ(xk | m1:k, y1:k), is addressed in the prediction and

correction of estimates step, whereas, the second term, ρ(m1:k | y1:k), is processed in the

hypotheses probability prediction step and updated in the hypotheses probability correction

step. In addition, the M3H approach incorporates the hypotheses merging and hypotheses

pruning steps instead of the mixing of estimates step in the IMM approach. We assume

that the analog state estimates are obtained from the weighted combination of the re-

cursive estimates of the filter bank, whereas, the digital state estimate is obtained as

being the most likely a posteriori mode.

Figure 2.5 summarizes the M3H algorithm in six recursive steps. In the first step

of M3H, the s-th sequences of modes m̂s
k−d:k, is propagated one step ahead into all

possible future sequences and the resulting a priori probabilities p̃s
k are obtained, as

illustrated in the example provided in Figure 2.4. In the second step, from the set of

resulting hypotheses, those hypotheses with the same sequence of modes in the last

d steps are merged (see Figure 2.4). Note that the number of hypotheses grows by a

factor of M in the propagation step. The merging step may reduce this number up

to M times and guarantees this number is upper bounded by Md. In the third step,

the following criteria for hypothesis pruning are considered: i) the hypotheses with

probability lower than the elimination threshold given by 0 ≤ ε ≤ 1 are eliminated

and ii) the number of hypotheses is kept under Nmax by eliminating hypotheses in

increasing order of probability. The threshold ε and Nmax are tuning parameters to be

chosen by the user. In the fourth step, the filter bank provides the estimate of the state

vector x̂s
k, the covariance matrix Pxx,s

k , the innovation ηs
k, and the innovation covariance

matrix Pyy,s
k , associated with each one of the hypothesis Hs

k ∈ Hk. In this step, a filter

is run for each one of the Np hypothesis. In the fifth step, the a posteriori probability
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of the sequence of modes ps
k, is obtained from p̃(m̂s

k−d:k) using Bayes’ theorem. In the

sixth step, the estimates provided by the filter bank and the a posteriori probability of

the hypotheses are combined. The M3H algorithm is described as follows.

Example 3. Consider the temporal evolution of a dynamical system with a digital state

(mode) that can assume M = 2 possible values: white or black, as illustrated in Figure

2.4. We assume that the merging depth is d = 2. In the propagation of the hypotheses

at the time k− 2, we have four hypotheses. At time k− 1, we have eight hypotheses,

while at the time k, we have sixteen possible hypotheses of the system. Note that, the

hypotheses H8
k and H16

k are merged because they have the same sequence of modes (in

red). �

k− 2 k
H1

k

H2
k

H4
k

H3
k

H5
k

H6
k

H8
k =

{
m̂8

k−d:k = 111
}

H7
k

H9
k

H10
k

H12
k

H11
k

H13
k

H14
k

H16
k =

{
m̂16

k−d:k = 111
}

H15
k

p(m̂1
0)

p(m̂2
0)

p̃(m̂1
k−2)

p̃(m̂2
k−2)

p̃(m̂3
k−2)

p̃(m̂4
k−2)

k− 1

p(m̂4
k−2)

p(m̂3
k−2)

p(m̂2
k−2)

p(m̂1
k−2)

Figure 2.4: Evolution of the sequence of modes of hypotheses from time k − d to time k for a system
with two operating modes: white (0) and black (1). The binary code of each hypothesis represents the
sequence of modes. The merging depth is d = 2. p̃(m̂s

k−d:k) is the probability of the sequence of modes.
In this illustrative example, the hypotheses H8

k and H16
k are merged because they have the same sequence

of modes (in red). The dashed line (- -) indicate the hypothesis probability correction (step 5).
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Algorithm 2.3.2. The multiple models and multiple hypotheses filter [Boers, Y., Driessen, H,

2004]

Initialize the initial buffer of hypotheses H0 and the initial hypothesis probability p0
k and set

the tuning parameters as follows: the merging depth d and the pruning threshold ε and the

maximum number of hypotheses Nmax.

1. Hypotheses probability prediction. For all Hr
k−1 ∈ Hk−1, generate all sequences m̂s

k−d:k

such that m̂s
k−d:k−1 = m̂r

k−d:k−1, m̂s
k = j and s = (r − 1)M + j, j = 1, . . . , M; store

the new hypotheses in a buffer Hk = {(m̂s
k−d:k, x̂r

k−1, Pxx,r
k−1 )} and update their a priori

probability to

p̃s
k = πj|i p

r
k−1, (2.97)

where i = m̂r
k−1.

2. Hypotheses merging. Merge the hypotheses from Hk with identical sequences m̂s
k−d:k by

keeping that one with the largest a priori probability p̃s
k. Normalize the probabilities of

the remaining hypotheses.

3. Hypotheses pruning. Discard the hypotheses Hs
k from buffer Hk with p̃s

k < ε. Next, if

the size of the resulting buffer of hypotheses is larger than Nmax, the less likely hypotheses

are eliminated to comply with the desired maximum size. Normalize the probabilities of

the remaining hypotheses.

4. Analog state prediction and correction. For each hypothesis Hs
k ∈ Hk, run a filter to

estimate the state vector x̂s
k, the covariance matrix Pxx,s

k , the innovation ηs
k, and the inno-

vation covariance matrix Pyy,s
k and make Hs

k = (m̂s
k−d:k, x̂s

k, Pxx,s
k ). Each filter is given

by

{
x̂s

k, Pxx,s
k , ηs

k, Pyy,s
k

}
= Filter

(
x̂s

k−1, Pxx,s
k−1 , ys

k, fs, hs, Qs, Rs

)
, (2.98)

Here each “Filter” uses one of the M possible pairs of stochastic models fs, hs, Qs and

Rs.
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5. Hypotheses probability correction. Obtain the a posteriori probability ps
k of hypothesis

Hs
k using the Bayes’ theorem as follows:

ps
k =

ρs(ηs
k) p̃s

k

∑H j
k∈Hk

ρj(η
j
k) p̃j

k

, (2.99)

where ρs(ηk) is the likelihood function of innovations, given (at least approximately, if

non-Gaussian) by

ρs(η
s
k) =

1√
(2π)m|Pyy,s

k |
exp
[
−1

2
(ηs

k)
T(Pyy,s

k )−1ηs
k

]
. (2.100)

6. Combining the estimates. Combine the estimates from the buffer of hypothesis to obtain

the mean and covariance of the corresponding Gaussian mixture

x̂k = ∑
Hs

k∈Hk

ps
k x̂s

k, (2.101)

Pxx
k = ∑

Hs
k∈Hk

ps
k

[
Pxx,s

k + (x̂s
k − x̂k) (x̂s

k − x̂k)
T
]

. (2.102)

and return x̂k and Pxx
k as the state estimate and its corresponding covariance at time k

and the estimate m̂ as being the most likely mode a posteriori. Increment k and return to

step 1.

2.3.3 The Multiple-Hypothesis Mixing Filter

The Multiple-hypothesis mixing filter (MHMF) provides state estimates for hybrid sys-

tems. This approach proposes to improve the performance of hybrid stochastic filter-

ing through the ability to track multiple hypotheses. The main features of the MHMF

approach are the generalization of the mixing of estimates step of the IMM algorithm

considering d > 1, and the correction of the transition probability matrix (TPM) [San-

tana, P. H. R. Q. A., Menegaz, H. M., Borges G. A., Ishihara, J. Y., 2010]. To update the

TPM is used the Quasi-Bayesian algorithm [Jilkov, V., Li, X., 2004].
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The MHMF approach generalizes the mixing of estimates step of the IMM algorithm

considering d > 1. This step is treated as follows. First, we consider that in the mixing

of estimates step of the classical IMM the merging depth is d = 1. This step is given by

the equation (2.87), repeated here for convenience,

ρ(xk−1|m1:k = j, y1:k−1) =
M

∑
i=1

wi
kρ(xk−1|m1:k−1 = i, y1:k−1), (2.87)

where wi
k is given into (2.85) and ρ(xk−1|m1:k−1 = i, y1:k−1) is given in (2.86). Consider

now that the mixing of estimates step of the IMM (2.87) can be modified. Then, we

assume that ρ(xk−1|m1:k−1 = i, y1:k−1) is given by

ρ(xk−1|m1:k−1 = i, y1:k−1) =
Md

∑
s=1

ρ(xk−1|m1:k−1 = i, Hs
k−1, y1:k−1)

p(Hs
k−1|m1:k−1 = i, y1:k−1), (2.103)

where Hs
k−1 is a particular hypothesis being tracked between two mixing steps of esti-

mates. The second term of the equation (2.103) is given by

p(Hs
k−1|m1:k−1 = i, y1:k−1) =

p(m1:k−1 = i|Hs
k−1, y1:k−1)p(Hs

k−1|y1:k−1)

p(m1:k−1 = i|y1:k−1)
. (2.104)

The MHMF is a seven-step algorithm: the hypotheses probability prediction step, the

hypotheses pruning step, the mixing of hypotheses step, the analog state prediction and cor-

rection step, the hypotheses probability correction step, the combining the estimates step and

the transition probability matrix correction step, as shown in Figure 2.6. In this algorithm,

the two terms of the right-hand side of (1.4) are treated as follows. The first term,

ρ(xk | m1:k, y1:k), is addressed in the hypotheses merging and prediction and correction of

estimates steps, whereas the second term, ρ(m1:k | y1:k), is processed in the hypotheses

probability prediction step and updated in the hypotheses probability correction step.
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Figure 2.6 summarizes the MHMF algorithm in seven recursive steps. In the first

step of MHMF, the s-th sequences of modes m̂s
k−d:k, is propagated one step ahead into

all possible future sequences and the resulting a priori probabilities p̃s
k are obtained.

In the second step, the hypotheses with probability lower than the elimination thresh-

old given by 0 ≤ ε ≤ 1 are eliminated. In the third step, the previous state vec-

tor estimates x̂r
k−1, the matrix covariance Pxx,r

k−1 and the mode probability predictions

wr
k−1, r = 1, . . . , M, are mixed to generate new initial values for each filter, the state

vector estimates x̂s
k−1 and the corresponding covariance Pxx,s

k−1 . In the fourth step, the

filter bank provides the estimate of the state vector x̂s
k, the covariance matrix Pxx,s

k , the

innovation ηs
k, and the innovation covariance matrix Pyy,s

k , associated to each one of

the hypothesis Hs
k ∈ Hk. In this step, a filter is run for each one of the Np hypothesis.

In the fifth step, the a posteriori probability of the sequence of modes ps
k, is obtained

from p̃(m̂s
k−d:k) using Bayes’ theorem. In the sixth step, the estimates provided by the

filter bank and the a posteriori probability of the hypotheses are combined. In the sev-

enth step, the estimation of the transition probability matrix, Π̂k, is obtained using the

Quasi-Bayesian algorithm. The MHMF algorithm is described as follows.

Algorithm 2.3.3. The multiple-hypothesis mixing filter [Santana, P. H. R. Q. A., Menegaz,

H. M., Borges G. A., Ishihara, J. Y., 2010]

Initialize the initial buffer of hypotheses H0, the initial hypothesis probability p0
k, the inicial

transition probability matrix Π0, and set the tuning parameters as follows: the merging depth

d and the pruning threshold ε and the maximum number of hypotheses Nmax.

1. Hypotheses probability prediction. For all Hr
k−1 ∈ Hk−1, generate all sequences m̂s

k−d:k

such that m̂s
k−d:k−1 = m̂r

k−d:k−1, m̂s
k = j and s = (r − 1)M + j, j = 1, . . . , M; store

the new hypotheses in a buffer Hk = {(m̂s
k−d:k, x̂r

k−1, Pxx,r
k−1 )} and update their a priori

probability to

p̃s
k = πj|i p

r
k−1, (2.105)

where i = m̂r
k−1.

2. Hypotheses pruning. Discard the hypotheses Hs
k from bufferHk with p̃s

k < ε. Normalize

the probabilities of the remaining hypotheses.
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HYBRID STOCHASTIC FILTERING METHODS

3. Mixing of hypotheses. Use the state vector estimates x̂r
k−1, the covariance matrix Pxx,r

k−1 ,

the probability of the modes estimate, γr
k−1, and the probability of the mode sequence, p̃s

k,

to obtain the estimates of the state vector, x̂s
k−1, and the covariance matrix Pxx,s

k−1 for the s

filter, s = 1, . . . , M. For such, the probability of mixing the hypotheses, wr
k−1, is given

by

wr
k−1 =

π̂j|iγ
r
k−1

cs
, (2.106)

cs =
R

∑
s=1

p(m1:k = j|Hs
k, y1:k−1) p̃(m̂s

k−d:k), (2.107)

where r = 1, . . . , M e s = 1, . . . , R. The mixture of hypotheses is given by

x̂s
k−1 =

M

∑
r=1

wr
k−1x̃r

k−1, (2.108)

x̃r
k−1 =

n(He
k−1)

∑
l=1

x̂l
k−1p(Hl

k−1|m1:k−1 = i, y1:k−1), (2.109)

4r
k−1 =

n(He
k−1)

∑
l=1

Pxx,l
k−1 p(Hl

k−1|m1:k−1 = i, y1:k−1), (2.110)

Pxx,s
k−1 =

M

∑
r=1

wr
k−1

[
4r

k−1 +
(
x̃r

k−1 − x̂s
k−1
) (

x̃r
k−1 − x̂s

k−1
)T
]

, (2.111)

where n(He
k−1) is the number of hypotheses at time k− 1, e p(Hl

k−1|m1:k−1 = i, y1:k−1)

is given by (2.104).

4. Analog state prediction and correction. For each hypothesis Hs
k ∈ Hk, run a filter to

estimate the state vector x̂s
k, the covariance matrix Pxx,s

k , the innovation ηs
k, and the inno-

vation covariance matrix Pyy,s
k and make Hs

k = (m̂s
k−d:k, x̂s

k, Pxx,s
k ). Each filter is given

by {
x̂s

k, Pxx,s
k , ηs

k, Pyy,s
k

}
= Filter

(
x̂s

k−1, Pxx,s
k−1 , ys

k, fs, hs, Qs, Rs

)
, (2.112)

Here each “Filter” uses one of the M possible pairs of stochastic models fs, hs, Qs and Rs.

5. Hypotheses probability correction. Obtain the a posteriori probability ps
k of hypothesis

Hs
k using the Bayes’ theorem:

ps
k =

ρs(ηs
k) p̃s

k

∑H j
k∈Hk

ρj(η
j
k) p̃j

k

, (2.113)

49



HYBRID STOCHASTIC FILTERING METHODS

where ρs(ηk) is the likelihood function of innovations, given (at least approximately, if

non-Gaussian) by

ρs(η
s
k) =

1√
(2π)m|Pyy,s

k |
exp
[
−1

2
(ηs

k)
T(Pyy,s

k )−1ηs
k

]
. (2.114)

6. Combining the estimates. Combine the estimates from the buffer of hypothesis to obtain

the mean and covariance of the corresponding Gaussian mixture

x̂k = ∑
Hs

k∈Hk

ps
k x̂s

k, (2.115)

Pxx
k = ∑

Hs
k∈Hk

ps
k

[
Pxx,s

k + (x̂s
k − x̂k) (x̂s

k − x̂k)
T
]

. (2.116)

and return x̂k and Pxx
k as the state estimate and its corresponding covariance at time k

and the estimate m̂ as being the most likely mode a posteriori.

7. Transition probability matrix correction. Use the quasi-Bayesian algorithm to estimate

the transition probability matrix, Π̂k, from a sequence of noisy measurements [Jilkov, V.,

Li, X., 2004]. We assume that the TPM whose row is given by rowi(Πk), where row

means the i-th row of Πk, can be modeled by a Dirichlet distribution. In this algorithm,

we assume that the probability of the mode is given by

µi,k−1 , p(m1:k = j|Π̂k−1, y1:k−1), (2.117)

θk−1 = [µ1,k . . . µM,k]
T , (2.118)

where i, j = 1, . . . , M. The likelihood function of innovations is given by

λi,k , p(yk|m1:k = j, Π̂k−1, y1:k−1), (2.119)

Λk = [λ1,k . . . λM,k]
T , (2.120)

ηi,k =
µi,k−1

θT
k−1Π̂k−1Λk

. (2.121)

We assume that the Dirichlet distribution is defined by

αi,k =
[
α1|i,k . . . αj|i,k

]
, (2.122)
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where j is the j-th column of Πk, i, j = 1, . . . , M. In the initialization step, we assume

the following conditions

αi,0 =
[
α1|i,0 . . . αM|i,0

]
, (2.123)

γi,0 =
M

∑
j=1

αj|i,0, (2.124)

π̂i,0 =
1

γi,0
αi,0, (2.125)

if the a priori information of the TPM is unknown, we can choose αi,0 = [1, . . . 1], as

a consequence, π̂i,0 = 1
M . Finally, the recursive estimate of the transition probability

matrix, Π̂k, is given by

gi,k =
M

∑
j=1

1 + ηi,k

[
λj,k − π̂T

i,k−1Λk,
]

, i = 1, . . . , M, (2.126)

αi,k =
M

∑
j=1

αj,k−1 +
αj,k−1gi,k

∑M
l=1 αl,k−1gl,k

, (2.127)

π̂i,k =
M

∑
j=1

1
k + γi,0

αj,k. (2.128)

Increment k and return to step 1.

2.3.4 Particle Filters

The particle filter (PF) approach has been used to estimate states of hybrid systems.

Particle filtering methods approximate the joint a posteriori PDF of the hybrid system

using sampled trajectories [Boers, Y., Driessen, H, 2000; Doucet, A., Gordon, N., Kr-

ishnamurthy, V., 2001; Koutsoukos, L., Williams, B., 2003]. The PF employs a set of

particles with corresponding weights to provide estimates for both analog and digital

states. One of the limitations of particle filtering is the choice of the candidate distribu-

tion, q(xk|xi
k−1, yk), i = 1, . . . , N, that represents the true joint a posteriori PDF.

In the hybrid stochastic filtering, the PF approximates a joint a posteriori PDF of xk

and mk, ρ(xk, mk | y1:k). In this case, the PF provides the estimates of the analog and

digital states. On the other hand, to deal with the non-hybrid stochastic filtering, the
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PF aims to generate an approximation of the a posteriori PDF of xk, ρ (xk|y1:k). In this

case, the PF only provides the analog state estimate. A brief review on particle filtering

in the non-hybrid context is presented in Section 2.1.3. We recommend to read section

2.1.3 before reading this Section.

Among the various particle filtering algorithms, we employ the bootstrap particle

filter with systematic resampling, for being the most feasible algorithm compared to

other PF approaches due to its simplicity and performance [Candy, J.V., 2009]. The

bootstrap particle filter employs the state transition PDF, ρ
(
xk|xi

k−1

)
, i = 1, . . . , N, as

a candidate distribution. In the filtering process, this approach uses a high number of

particles, implying a high computational cost [Ristic, B., Arulampalam, S., Gordon, N.,

2004; Gustafsson, F., 2010].

The particulate filter can be considered as a hybrid stochastic filtering algorithm,

in which both analog and digital state estimates are obtained [Boers, Y., Driessen, H,

2000; Doucet, A., Gordon, N., Krishnamurthy, V., 2001; Koutsoukos, L., Williams, B.,

2003]. Alternatively, some particle filtering methods combine the particle filter and the

interacting multiple-model estimator (IMMPF) to estimate the analogue and digital

state, respectively [Boers, Y., Driessen, H., 2003; Hendeby, G., Karlsson, R., Gustafs-

son, F., 2010; Kawamoto, K., 2010; Wang, X., Xu, M., Wang, H., Wu, Y., Shi, H., 2012].

Thus, the IMMPF approach treats the two terms of (1.4) as follows: the analog state

estimate is obtained from a filter bank composed of particle filters, whereas the digital

state estimate is obtained using the Bayes Theorem, as described in Section 2.2. In the

Rao-Blackwellized particle filter case, the first term of (1.4) is obtained employing the

Kalman filter bank, whereas the second term is obtained using the particle filter [Hen-

deby, G., Karlsson, R., Gustafsson, F., 2010]. Details of the equations of the IMMPF

and Rao-Blackwellized algorithms are not presented in this work but can be found in

[Wang, X., Xu, M., Wang, H., Wu, Y., Shi, H., 2012; Hendeby, G., Karlsson, R., Gustafs-

son, F., 2010].

The PF approach proposed by [Doucet, A., Gordon, N., Krishnamurthy, V., 2001]

divides the hybrid stochastic filtering problem into four steps: the particle generation

step, the weight calculation step and the particle resampling step and the combining the
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estimates step, as shown in Figure 2.7. At this point, we assume that a particle, xk, and

the particle mode, mk, are defined by zk ,
[
xT

k mT
k
]T. Thus, the set of particles with

their respective modes and weights is given by
{

zi
k, wi

k
}N

i=1, where N is the number of

particles.

Figure 2.7 summarizes the PF algorithm in four recursive steps. In the first step,

we generate a set of particles with their respective modes from the candidate dis-

tribution,
{

zi
k−1

}N
i=1. In this step, we assume that the particle weights are uniform,{

wi
k−1 = 1

N

}N

i=1
. In the second step, the information of a new measurement, yk, is in-

corporated to calculate the importance weights of each particle,
{

wi
k−1

}N
i=1. In the third

step, we performed the resampling process from random measures
{

zi
k−1, wi

k−1

}N
i=1 to

random measures
{

zi
k, wi

k
}N

i=1 when the effective number of particles, N̂eff, is less than

the threshold chosen by the user, Nthreshold. In this step, the particles with higher proba-

bility are preserved. In the fourth step, the set of particles and their respective weights,{
zi

k, wi
k
}N

i=1, are combined to obtain the analog state estimate, x̂k, and the correspond-

ing covariance Pxx
k and the mode estimate m̂ is obtained as being the most likely a

posteriori mode. The PF algorithm is described as follows.
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Algorithm 2.3.4. Particle filters [Doucet, A., Gordon, N., Krishnamurthy, V., 2001]

Initialize the set of particles with their respective modes and associated weights ,
{

zi
0, wi

0
}N

i=1

and set the tuning parameters as follows: the number of particles N and the the resampling

threshold Nthreshold.

1. Particle generation. Generate a set of particles with their respective modes,
{

zi
k−1

}N
i=1,

from the candidate distribution, q(xk|xi
k−1, yk). In particular, the bootstrap particle filter

employs the state transition PDF, ρ
(
xk|xi

k−1

)
, as the distribution candidate. This step is

given by

zi
k−1 ∼ ρ

(
xk|xi

k−1

)
, (2.129)

where ρ
(
xk|xi

k−1

)
is obtained using the process model (1.1). Note that, the particle

weights are uniform,
{

wi
k−1 = 1

N

}N

i=1
.

2. Weight calculation. Incorporate the information of a new measurement, yk, to calcu-

late the importance weights of each particle. In the bootstrap particle filter case, the

weights are obtained using the likelihood function, p(yk|xi
k) and then normalize the par-

ticle weights. This process is given by

w̃i
k−1 = wi

k−1p(yk|xi
k), (2.130)

wi
k−1 =

w̃i
k−1

∑N
i=1 w̃i

k−1

, (2.131)

3. Particle resampling. Perform the resampling process from random measurements{
zi

k−1, wi
k−1

}N
i=1 to random measurements

{
zi

k, wi
k
}N

i=1 when the effective number of

particles, N̂eff, is less than the threshold chosen by the user, Nthreshold. For such, we employ

the systematic resampling method. This method selects the most important particles (high

probability) to generate the random measurements
{

zi
k, wi

k
}N

i=1 with uniform weights.

First, a uniform distribution is generated, U
(

0, 1
N

)
. Then, an integer less than 1 is

selected. This number corresponds to the reference value of the distribution. From this

reference the distribution is divided into intervals uniformly. The resampling process

is performed until the effective number of particles, Neff, is less than the resampling

threshold, Nlimiar. The details of the equations in the systematic resampling method are
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not presented in this work but can be found in [Arulampalam, M. S., Maskell, S., Gordon,

N., Clapp, T., 2002].

4. Combining the estimates. Combine the set of particles and their respective weights,{
zi

k, wi
k
}N

i=1, to obtain the analog state estimate, x̂k, and the associated covariance matrix

Pxx
k . These estimates are given by

x̂k =
N

∑
i=1

wi
kxi

k, (2.132)

Pxx
k =

N

∑
i=1

wi
k

(
xi

k − x̂k

) (
xi

k − x̂k

)T
. (2.133)

Increment k and return to step 1.

2.3.5 Constrained Hybrid Methods

The hybrid stochastic filtering problem is to provide estimates for both analog and

digital states from a sequence of noisy sample measurements and such hybrid model.

However, additional information about the system in the form of state constraints may

be useful for improving the state estimates.

Existing methods for constrained state estimation in hybrid systems are based on

the multiple-model or Monte Carlo. Some methods based on MM approaches are

presented in [Pannetier, B., Benameur, K., Nimier, V., Rombaut, M., 2005; Zhang, M.,

Knedlik, S., Loffeld, O., 2008; Mann, G., Hwang, I., 2013; Kwon, C., Hwang, I., 2016]

Alternatively, particle filtering method is presented in [Kravaritis, G.., Mulgrew, B.,

2008].

Some investigations address the problem of equality-constrained state estimation

in hybrid systems. For instance, in the study developed by [Mann, G., Hwang, I.,

2013], the constrained innovation hybrid estimator (CIHE) is proposed to address the

problem of equality-constrained state estimation for linear hybrid systems using the

IMM approach. The proposed approach considers that the equality constraint vary

with the operating mode. The CIHE algorithm is described as follows.
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The CIHE is a six-step algorithm: the mode probability prediction step, the mixing of

estimates step, the analog state prediction and correction step, the mode probability correction

step, the combining the estimates step and the mode transition probability correction step, as

shown in Figure 2.8. In this algorithm, the two terms of the right-hand side of (1.4) are

treated as follows. The first term, ρ(xk | m1:k, y1:k), is addressed in the estimate mixing

and the filter bank steps, whereas, the second term, ρ(m1:k | y1:k), is processed in the

mode probability prediction step and updated in the mode probability correction step. We

assume that the analog state estimates are obtained from the weighted combination of

the recursive estimates of the filter bank, whereas, the digital state estimate is obtained

as being the most likely a posteriori mode.

Figure 2.8 summarizes the CIHE algorithm in six recursive steps. In the first step of

the CIHE, the a priori probability of the mode, ws
k−1, s = 1, . . . , M, are obtained. In the

second step, the previous state vector estimates x̂rc
k−1, the matrix covariance Pxx,rc

k−1 and

the mode probability predictions wr
k−1, r = 1, . . . , M, are mixed to generate new initial

values for each filter, the state vector estimates x̂sc
k−1 and the corresponding covariance

Pxx,sc
k−1 . In the third step, the filter bank provides the estimate of the state vector x̂sc

k , the

covariance matrix Pxx,sc
k , the innovation ηs

k and the innovation covariance matrix Pyy,s
k .

In the fourth step, the a posteriori probability of the mode γs
k, is obtained using Bayes’

theorem. In the fifth step, the estimates provided by the filter bank and the a posteriori

probability of the mode are combined to obtain the estimate of the state vector x̂c
k, and

associated covariance Pxxc
k at time k. In the sixth step, the mode transition probabilities

πj|i, are obtained using the stochastic linear guard conditions. The CIHE algorithm is

described as follows.
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Algorithm 2.3.5. The CIHE filter with state equality constraint [Mann, G., Hwang, I., 2013]

Initialize each sth filter with the state vector estimate x̂s
0, the covariance matrix Pxx,s

0 , the mode

probability γs
0, s = 1, . . . , M and the initial transition probability matrix, Π0.

1. Mode probability prediction. Obtain the a priori probability of the modes ws
k−1, s =

1, . . . , M, and obtain the mixing probabilities µ
s|r
k−1,

µ
s|r
k−1 =

πs|rγr
k−1

ws
k−1

, (2.134)

where πs|r is given by (1.2) and γr
k−1 is the r-th a posteriori probability of the mode,

r = 1, . . . , M. The a priori probability of the modes is given by

ws
k−1 ,

M

∑
r=1

πs|rγr
k−1. (2.135)

2. Mixing of estimates. Obtain the mixed estimates x̄sc
k−1 and P̄xx,sc

k−1 , s = 1, . . . , M from

the interaction of the M filters by mixing the previous state vector estimates x̂rc
k−1 and

covariance matrix Pxx,rc
k−1 with the respective mixing probabilities µ

s|r
k−1,

x̄sc
k−1 =

M

∑
r=1

µ
s|r
k−1x̂rc

k−1, (2.136)

P̄xx,sc
k−1 =

M

∑
r=1

µ
s|r
k−1

[
Pxx,rc

k−1 +
(
x̂rc

k−1 − x̄sc
k−1
) (

x̂rc
k−1 − x̄sc

k−1
)T
]

. (2.137)

3. Analog state prediction and correction. For each estimate x̄sc
k−1, run a filter to estimate

the state vector x̂sc
k , the covariance matrix Pxx,sc

k , the innovation ηs
k, and the innovation

covariance matrix Pyy,s
k . Each s-th filter is given by{

x̂sc
k , Pxx,sc

k , ηs
k, Pyy,s

k

}
= Constrained Filter

(
x̂sc

k−1, Pxx,sc
k−1 , ys

k, fs, hs, Qs, Rs

)
, (2.138)

Here each “Constrained Filter” uses one of the M possible pairs of stochastic models fs,

hs, Qs and Rs. Note that in the CIHE, the filter bank consists of constrained innovation

Kalman filter (CIKF). The CIKF enforces the equality constraint (4.5) on state estimate

during the forecast step, see Section 2.1.4.

4. Mode probability correction. Obtain the a posteriori probability γs
k of each estimate using

the Bayes’ theorem as follows:

γs
k =

ρs(ηs
k)w

s
k−1

∑M
r=1 ρr(ηr

k)w
r
k−1

, (2.139)
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where ws
k−1, is given by (2.135) and ρs(ηs

k) is the likelihood function of innovations,

given (at least approximately, if non-Gaussian) by

ρs(η
s
k) =

1√
(2π)m|Pyy,s

k |
exp
[
−1

2
(ηs

k)
T(Pyy,s

k )−1ηs
k

]
. (2.140)

5. Combining the estimates. Combine the M estimates to obtain the state estimate x̂c
k and

its corresponding covariance Pxxc
k at time k

x̂c
k =

M

∑
s=1

γs
k x̂sc

k , (2.141)

Pxxc
k =

M

∑
s=1

γs
k

[
Pxx,sc

k + (x̂sc
k − x̂c

k) (x̂sc
k − x̂c

k)
T
]

. (2.142)

and obtain the estimate m̂ as being the most likely mode a posteriori.

6. Mode transition probability correction. Use the stochastic linear guard conditions to

estimate the mode transition probabilities, πs|r, [Seah, C. E., Hwang, I., 2009]. The

evolution of the mode is a Markov chain described by a analog state dependent mode

transition matrix

Πxk = πs|r,xk
, (2.143)

where πs|r,xk
is the mode transition probability conditioned on the analog state xk given

by

πs|r,xk
= Pr

{[
xT

k θT
]T
∈ Gs,r|mk−1 = r

}
. (2.144)

where θ ∈ Θ is a random variable that models uncertainties in Gs,r represents the guard

conditions associated with the mode transition from mode mk−1 = r to mode mk = s,

which partitions out the analog state. The stochastic linear guard conditions are given by

Gs,r =


 xk

θ

 | xk ∈ X, θ ∈ Θ, Ls|r

 xk

θ

 6 0

 (2.145)

where Ls|r ∈ RM×n is the matrix defining the inequality and θ is a Gaussian random

vector with mean θ̄ and covariance Σθ.

From (2.145), the mode transition probability (2.144) can be rewritten as

πs|r,xk
= Φ

0; Ls|r

 x̂rc
k−1

θs|r

 ; Lj|i

 Pxx,rc
k−1 0

0 Σθs|r

 LT
s|r

 (2.146)
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where Φ(µ, µ̄, Σ) denotes the Gaussian cumulative density function with mean µ̄ and

covariance Σ. Increment k and return to step 1.

In a recent work, [Kwon, C., Hwang, I., 2016] presents a simplified version of con-

strained stochastic filtering algorithm for linear hybrid systems, in which the road map

information employed by the equality constraint is useful for improving the state es-

timation process. Likewise, [Mann, G., Hwang, I., 2012] considers the constrained

stochastic filtering problem for linear hybrid systems. This approach addresses air-

craft taxiway conformance-monitoring problem.

2.4 Concluding Remarks

The hybrid stochastic filtering problem is to provide estimates for both analog and

digital states from a sequence of noisy sample measurements and such hybrid model.

The solution to this problem is given by the joint a posteriori PDF of the analog state, xk,

and digital, mk. This joint a posteriori PDF can be divided into two parts, the first term

on the right-hand side of (1.4) may be computed by a classical nonlinear filter given

that the mode sequence is known. The second term is computed applying Bayes’ rule

to the result of the nonlinear filter.

In this chapter, we present approximate solutions to the hybrid stochastic filtering

problem. In the particular case of Markov jump linear systems where dynamics is

linear and mode transition is Markovian and independent of analog states. Thus, we

present some hybrid stochastic filtering methods such as the IMM approach, the M3H

approach, PF methods and the combination of some of these approaches.

The IMM approach is the main approach that addresses the problem of estimation

of states of hybrid systems. The IMM algorithm mixes the previous analog state esti-

mates to generate new initial values for each filter in the next time step, to circumvent

the problem of exponential growth of possible hypotheses. However, this method con-

trol multiple hybrid estimates over time and require the running of a filter for each

mode.
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Alternatively, the M3H algorithm keeps a limited buffer of hypotheses by means of

merging and discarding hypotheses to address the exponential growth problem. In the

M3H filter, merging occurs when two or more hypotheses share the same sequence of

modes for the previous d time steps. In addition, hypotheses are discarded whenever

their likelihood is below a given threshold. The hypotheses with the same sequence

of modes in the last d steps are merged. The merging step employs only information

from the digital state.

The MHMF filter proposes the generalization of the mixing of estimates step of the

IMM algorithm considering the merging depth d > 1, and the correction of the transi-

tion probability matrix. This approach addresses the tracking of multiple hypotheses

between two instants of mixture of estimates. In this approach, the correction of TPM

avoids inaccurate estimates of the analog and digital state vector.

On the other hand, particle filtering methods approximate the joint a posteriori PDF

of the hybrid system using sampled trajectories. The PF employ a set of particles with

corresponding weights to provide estimates for both analog and digital states. How-

ever, the PF has limitations such as the use of high number of particles implying a high

computational cost and the choice of the candidate distribution causing an imprecise

approximation of the joint a posteriori PDF. Some particle filtering methods combine the

particle filter with other approaches to address the hybrid stochastic filtering problem

such as the IMMPF approach and the Rao-Blackwellized filter.

Table 2.1: Hybrid stochastic filtering methods. We present the approaches employed to obtain estimates
for both the analog state, x̂k, and digital state, m̂k, in each of the methods. To estimate the analog state is
employed a Kalman filter bank (KFB), the particle filter bank (PFB), the particle filter (PF) or Constrained
Kalman filter bank (CKFB), whereas to estimate the digital state is used the Bayes’ theorem (BT) or the
particle filter.

Methods x̂k m̂k
KFB PFB PF CKFB TB PF

IMM ? ?
M3H ? ?
MHMF ? ?
PF ? ?
IMMPF ? ?
Rao-Blackwellized PF ? ?
CIHE ? ?
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Constrained state estimation methods for hybrid systems incorporate additional

information about the system in the form of state constraints to improve the state es-

timates. The CIHE algorithm addresses the problem of equality-constrained state esti-

mation for linear hybrid systems, whose equality constraints vary with the operating

mode. This approach employs a filter bank based on the IMM estimator. The filter

bank uses constrained Kalman filters.

The hybrid stochastic filtering methods employ different approaches to obtain esti-

mates for both the analog state, x̂k, and digital state, m̂k. Table 2.1 shows how each of

these methods provides estimates of the analog and digital state. In these methods, to

estimate the analog state is employed a filter bank composed of Kalman filters or par-

ticle filters, whereas to estimate the digital state is used the Bayes’ theorem or particle

filtering.

63





Chapter 3

The Multiple-Model and Multiple

Hypothesis Algorithm with Gaussian

Mixture Reduction

The present chapter adresses the problem of state estimation for Markov jump systems.

First, Section 3.1 defines this problem. In Section 3.2, we present a modified version of

the multiple models and multiple hypotheses (M3H) algorithm to suboptimally solve

the problem of state estimation for Markov jump nonlinear systems. Then, we investi-

gate the use of Gaussian mixture reduction methods as an alternative for the merging

step of the M3H algorithm in Section 3.3. Finally, in Section 3.4, the proposed approach

is compared to classical M3H by means of one example. The contribution presented in

this chapter was published in [Eras-Herrera, W. Y., Mesquita, A. R., Teixeira, B. O. S.,

2017].
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3.1 Problem Statement

We consider discrete-time hybrid stochastic system given by (1.1)-(1.3), whose equa-

tions are repeated here for convenience, that is,

xk = fmk(xk−1, uk−1, wk−1, k− 1),

πs|r = Pr{mk = s|mk−1 = r}, (3.1)

yk = hmk(xk, νk, k).

We assume that the transition probability matrix (TPM) Π ∈ RM×M, whose el-

ements are given by πs|r, is known. Mode transitions at time k are assumed to be

independent of m0:k−1 and x0:k given the current mode mk, i.e., transition probabili-

ties depend only on the current mode and not on the process history or on the analog

state. A hybrid system with such properties is known in the literature as a discrete-time

Markov jump system (MJS).

The solution to this problem may be obtained through the joint a posteriori PDF (1.4),

of the analog and digital states. In the case of linear dynamics and linear observations,

the first term of (1.4) is simply the density of a Gaussian PDF. Since the second term

does not depend on xk, we conclude that the marginal posterior density of xk is a

Gaussian mixture. Unfortunately, the number of components of this mixture is as large

as Mk.

3.2 M3H using Gaussian Mixture Reduction

We investigate the use of Gaussian reduction methods as an alternative for the merging

step of the M3H algorithm. The Gaussian mixture reduction by clustering (GMRC)

approach [Schieferdecker, D., Huber, M. F., 2009] is used here to reduce the number of

hypotheses propagated from the hypothesis probability prediction step of the M3H. The

proposed approach is here called M3H using Gaussian mixture reduction (M3HR). In

our method, information from both the analog, x̂k, and digital, m̂k, estimates at time k

are employed to define a metric to merge and eliminate hypotheses. This comes as an
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extension of the original M3H, that only uses the information of the mode sequence,

m̂k−d:k, from time k− d to time k to merge the hypotheses.

We now redefine hypotheses as components of a Gaussian mixture (where the

mode history no longer plays a role): Is
k , ( p̃s

k, m̂s
k, x̂s

k, Pxx,s
k ) comprised, respectively,

of a hypothesis probability, an operating mode, a mean vector and a covariance matrix

for the analog state PDF.

Figure 3.1 shows that the proposed M3H filter has the same form of the original

M3H except for the replacement of the merging step by the GMRC algorith. The M3HR

algorithm is composed of six recursive steps. In the first step of M3HR, the a priori

probabilities p̃s
k are obtained. In the second step, the GMRC approach is used here to

reduce the number of hypotheses. In this work, we propose an alternative method for

the hypotheses merging step (orange) of the M3H, see Figure 3.1. In the third step, the

hypotheses with probability lower than the elimination threshold given by 0 ≤ ε ≤ 1

are eliminated. The threshold ε is a tuning parameter to be chosen by the user. In the

fourth step, the filter bank provides the estimate of the state vector x̂s
k, the covariance

matrix Pxx,s
k , the innovation ηs

k, and the innovation covariance matrix Pyy,s
k , associated

to each one of the hypothesis Is
k ∈ Ik. In the fifth step, the a posteriori probability ps

k,

is obtained from p̃s
k using Bayes’ theorem. In the sixth step, the estimates provided by

the filter bank and the a posteriori probability of the hypotheses are combined. Note

that the two terms of the right-hand side of (1.4) are treated as follows. The first term,

ρ(xk | m1:k, y1:k), is addressed in the prediction and correction of estimates step, while the

second term, ρ(m1:k | y1:k), is processed in the hypothesis probability prediction step and

updated in the hypothesis probability correction step.
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3.3 Gaussian Mixture Reduction via Clustering

Following an approach similar to [Crouse, D., Willett, P., Svensson, L., Svensson, D.,

Guerriero, M., 2011] that employs a clustering algorithm to perform Gaussian mixture

reduction for smoothed state estimation avoiding track coalescence, we apply here

the Gaussian mixture reduction via clustering (GMRC) approach [Schieferdecker, D.,

Huber, M. F., 2009] to the hypotheses merging step of the M3H algorithm.

The GMRC optimizes the parameters of the reduced mixture according to the inte-

gral quadratic distance (ISD) [Scott, 1999] criterion and, to our knowledge, it is the best

performing Gaussian mixture reduction method in approximation terms. In M3H, in-

stead of grouping hypotheses by their mode history, we look only at the current mode

of each hypothesis and group them according to the analog state. Using the GMRC

approach, our filter reduces all hypotheses with the same current mode mk to a set of

Nm hypotheses, where Nm is a tunning parameter, thus making up for a total of NmM

hypotheses. An example is presented as follows.

Example 4. Consider the hybrid system with M = 3 possible operating modes, il-

lustrated in Figure 3.2, we have the original set of hypotheses Ik = {I1
k , . . . , IN

k },

N = 27, each one of the white, black and gray balls represents one of these 27 hypothe-

ses. The GMRC is employed to obtain the reduced set of these hypotheses, yielding

Ir
k = { Ĩ1

k , . . . , ĨNm M
k }, where we chose Nm = 3. �

We now consider that the set of all N possible hypotheses at time k is defined by

Ik , {I1
k , . . . , IN

k }. We see that the hypotheses set Ik represents a Gaussian mixture

with N components, yielding the PDF

ρ(xk|Ik) ,
N

∑
s=1

p̃s
kN

(
x̂s

k, Pxx,s
k

)
, (3.2)

with weights p̃s
k, means x̂s

k and covariance matrices Pxx,s
k , s = 1, . . . , N, where N ac-

counts for the Gaussian PDF as in (2.100). Similarly, the desired reduced set of hy-

potheses Ir
k represents a Gaussian mixture with NmM components, yielding the PDF

ρ(xk|Ir
k) ,

Nm M

∑
r=1

p̄r
kN

(
ˆ̄xr
k, P̄xx,r

k

)
, (3.3)
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Ĩ2
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Ĩ6
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Ĩ5
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Ĩ4
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Figure 3.2: The Gaussian mixture reduction by clustering (GMRC) approach is employed in this
example to obtain the reduced set of hypotheses of the stochastic hybrid system with M = 3
possible operating modes: white, black and gray. Ik = {I1

k , . . . , I27
k } indicates the original

set of hypotheses, each hypothesis is represented by a white, black or gray ball. Note that,
this coloring is related to the last mode in each sequence corresponding to each hypothesis.
I r

k = { Ĩ1
k , . . . , ĨNm M

k } indicates the reduced set of hypotheses. The number of hypotheses for
each mode is Nm = 3 in this example. The centroids of the Gaussian components are illustrated
by the × red marks.

with weights p̄r
k, mean ˆ̄xr

k and covariance matrix P̄xx,r
k , r = 1, . . . , NmM.

In order to obtain the parameters p̄r
k, ˆ̄xr

k, P̄xx,r
k of the reduced mixture ρ(xk|Ir

k) that

maximizes its similarity to the original mixture ρ(xk|Ik), we seek to minimize the ISD

metric given by

J(Ir
k) ,

∫
[ρ(xk|Ik)− ρ(xk|Ir

k)]
2 dxk,

=
∫

ρ(xk|Ik)
2 − 2ρ(xk|Ik)ρ(xk|Ir

k) + ρ(xk|Ir
k)

2dxk,

=JNN − 2JNNm + JNmNm , (3.4)
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Figure 3.3: Diagram GMRC approach. The GMRC comprises three main sub-steps: the prepro-
cessing step, the clustering step and the refinement step.

where

JNN ,
∫

ρ(xk|Ik)
2dxk,

JNNm ,
∫

ρ(xk|Ik)ρ(xk|Ir
k)dxk,

JNmNm ,
∫

ρ(xk|Ir
k)

2dxk. (3.5)

In some texts, the ISD metric is referred to as integral square error (ISE) [Williams, 2003].

For details on the ISD, the reader is referred to ([Williams, 2003], pp. 3-19 - 3-23).

The GMRC approach comprises three basic sub-steps: the preprocessing step, the

clustering step and the refinement step, as illustrated in Figure 3.3. In the first step, the

initial reduced set with Nm components is obtained as Ip
k using the greedy Runnalls’

algorithm. In the second step, the k-means clustering algorithm (with maximum num-

ber of iterations imax) is employed to obtain the reduced set of possible hypotheses Ic
k .

In the third step, iterative optimization over the ISD metric is performed to refine Ic
k ,

yielding Ir
k. The GMRC algorithm is described as follows.

Algorithm 3.3.1. Gaussian mixture reduction by clustering algorithm [Schieferdecker, D.,

Huber, M. F., 2009]

Initialize the tuning parameters as follows: the merging depth d and the pruning threshold ε

and the maximum number of hypotheses Nmax.

1. Preprocessing step. The initial reduced set of hypotheses Ip
k , is obtained applying the

greedy Runnalls’ algorithm to the hypotheses set Ik. The greedy Runnalls’ algorithm
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minimizes an upper bound on the Kullback-Leibler (KL) divergence between the origi-

nal set of N hypotheses and the reduced set of Nm hypotheses [Runnalls, A. R., 2007].

Initially, the merged hypotheses I
mi,j
k are obtained from the combination of all possible

hypotheses pairs {Ii
k, I j

k}, ∀i, j of the N hypotheses. Each merged hypothesis is defined by

I
mi,j
k , {pm, x̂m, Pm}, whose elements are given by

pm ,pi + pj, (3.6)

x̂m ,
1

pm

[
pi x̂i

k + pj x̂
j
k

]
, (3.7)

Pm ,
[

pi

pm

[
Pxx,i

k +
(

x̂i
k − x̂m

) (
x̂i

k − x̂m

)T
]
+

pj

pm

[
Pxx,j

k +
(

x̂j
k − x̂m

) (
x̂j

k − x̂m

)T
]]

, (3.8)

where pm is the probability, x̂m is the state estimate and Pm is the associated covariance

matrix and pi = p̃(Ii
k) and pj = p̃(I j

k). Next, the measure of dissimilarity Dp
i,j is obtained

for each pair of the N hypotheses as

Dp
i,j =

1
2

(
pm log [|Pm|]− pi log

[
|Pxx,i

k |
]
− pj log

[
|Pxx,j

k |
])

. (3.9)

A new mixture is then created by replacing, in the original mixture, the pair with smallest

dissimilarity by its merged hypothesis. This reduces the number of components by one.

This procedure is then applied recursively to the resulting mixtures until the mixture size

is Nm.

2. Clustering step. The reduced set of hypotheses Ic
k is obtained using the k-means cluster-

ing algorithm as in [Crouse, D., Willett, P., Pattipati, K., Svensson, L., 2011] initialized

with the Nm cluster centers from Ip
k . The first step in the k-means algorithm is to asso-

ciate each component Is ∈ Ik to the closest cluster center in Ir ∈ I c
k . To this purpose, we

use the KL divergence as a pseudodistance as follows

Dc
s,r = trace

[
(P̄xx,r

k )−1
(

Pxx,s
k − P̄xx,r

k + (x̂s
k − ˆ̄xr

k) (x̂s
k − ˆ̄xr

k)
T
)]

+ log
( |P̄xx,r

k |
|Pxx,s

k |

)
, (3.10)

where x̂s
k and ˆ̄xr

k are the state estimate and Pxx,s
k and P̄xx,r

k , s = 1, . . . , N, r = 1, . . . , Nm,

are the associated covariance matrices of Is ∈ Ik and Ir ∈ I c
k , respectively. Thus, Ic

k is
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obtained from the merging of hypotheses associated with each of the Nm centroids. The

merged hypotheses for a given cluster Cr are

pc , ∑
s∈Cr

ps
k, (3.11)

x̂c ,
1
pc

∑
s∈Cr

ps
k x̂s

k, (3.12)

Pc , ∑
s∈Cr

ps
k

pc

[
Pxx,s

k + (x̂s
k − x̂c) (x̂s

k − x̂c)
T
]

. (3.13)

This step is performed until the stop criterion given by the maximum number of iter-

ations, imax, is reached. At the end of this step, we have the reduced set of hypotheses

Ic
k = {I1

k , . . . , INm
k }.

3. Refinement step. Starting from the reduced set Ic
k , we search the parameter space ( p̄r

k, ˆ̄xr
k, P̄xx,r

k )

for a local minimum of the ISD, thus yielding the refined set of hypotheses Ir
k. The gradi-

ent of the ISD distance metric is used to obtain these parameters as

∇J(I r
k) = −2∇JNNm +∇JNmNm , (3.14)

Note that, since the element JNN in (3.4) does not depend on the parameter of the reduced

set I r
k, it was discarded. The parameters of Ir

k are then obtained through a two-stage

optimization algorithm. We minimize in the parameters ˆ̄xr
k and P̄xx,r

k employing a Quasi

Newton method, whereas the optimization of parameter p̄r
k is treated as a quadratic pro-

gramming problem (see [Crouse, D., Willett, P., Pattipati, K., Svensson, L., 2011] for

details). At the end of this step, we have the refined set of hypotheses Ir
k , {I1

k , . . . , INm
k }.

Increment k and return to step 1.

Remark 3.3.1. Whereas the analog filter bank runs in linear time in the number of components

NmM, Runnalls’, k-means and the refinement step are quadratic in NmM. In contrast, the

original M3H may be implemented in linear time in the number of hypotheses. Despite this

apparent disadvantage, our results show that it is only prevalent when low precision is required

from the filter. When higher precision is demanded, M3HR will need less components than

M3H to control the approximation error in the merging step.
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Remark 3.3.2. Alternatively, West’s algorithm can also be used in the preprocessing step of

GMRC yielding the so-called GMRC-West algorithm. Simulation results from [Schieferdecker,

D., Huber, M. F., 2009] show that, the processing time of the GMRC-West is faster than the

original GMRC; however, error performance can be worse compared to the original GMRC that

uses the Runnall’s algorithm in the preprocessing step.

3.4 Simulated Example: Target Tracking using a Radar

Mixture reduction techniques have already been applied in the context of target track-

ing [Salmond, D.J, 1990; Williams, 2003; Crouse, D., Willett, P., Svensson, L., Svensson,

D., Guerriero, M., 2011]. However, in this domain of application, the digital states cor-

respond exclusively to observation models. Here we extend these techniques to the

dynamics as well, thus comprising the full hybrid system. Although, the application

example in this work also addresses the problem of target tracking under multiple dy-

namic models, our approach is applicable to general hybrid systems under the struc-

ture of Markov jump systems.

3.4.1 Problem Description

We now consider the target tracking problem of [Boers, Y., Driessen, H, 2004]. Let an

aircraft have three operating modes, mk ∈M = {1, 2, 3}, where mk = 1 corresponds to

a straight maneuver with constant velocity and altitude, mk = 2 corresponds to a cir-

cular maneuver (coordinated turn) and mk = 3 corresponds to an accelerated straight

line maneuver. Let dx, dy and dz be the position components, vx, vy and vz be the linear

velocity components, ω be the angular velocity on the x-y plane and az be the accela-

ration along the z-axis. Our goal is to obtain estimates for both the digital state (mode)

m̂k and analog state x̂k with corresponding covariance Pxx
k .

For mk = 1, the linear process model f1 is given by
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xk =



1 0 0 T 0 0 0
0 1 0 0 T 0 0
0 0 1 0 0 T 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


xk−1 +



1
2 asT2 0 0

0 1
2 asT2 0

0 0 1
2 asT2

asT 0 0
0 asT 0
0 0 asT
0 0 0


wk−1, (3.15)

where xk =
[

dx dy dz vx vy vz ω
]T

, T = 5 s is the sampling period. The

process noise modeling disturbing accelerations, wk−1 ∼ N (0, Qmk), is assumed to be

a zero-mean white noise with covariance Qmk that depends on the operating mode.

The acceleration parameter is set to as =1.5 m/s2.

For mk = 2, the nonlinear process model f2 is given by

xk =



1 0 0 sin(ωk−1T)/ωk−1 (cos(ωk−1T)− 1)/ωk−1 0 0
0 1 0 (1− cos(ωk−1T))/ωk−1 sin(ωk−1T)/ωk−1 0 0
0 0 1 0 0 T 0
0 0 0 cos(ωk−1T) − sin(ωk−1T) 0 0
0 0 0 sin(ωk−1T) cos(ωk−1T) 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


xk−1+

Gk−1wk−1, (3.16)

where

Gk−1 =



ca −sa 0 0 0 0 0
sa ca 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 ca −sa 0 0
0 0 0 sa ca 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 Lk−1





1
2 alongT2 0 0

0 1
2 alatT2 0

0 0 1
2 avertT2

alongT 0 0
0 alatT 0
0 0 avertT
0 alat 0


,

where xk =
[

dx dy dz vx vy vz ω
]T

, ca, cos(atan2(vy,k−1, vx,k−1)),

sa, sin(atan2(vy,k−1, vx,k−1)) and Lk−1 = 1√
(vx,k−1)2+(vy,k−1)2+(vz,k−1)2 . For the coordi-

nated turn model, we set along =15 m/s2 for the longitudinal acceleration, avert =15

m/s2 for the vertical acceleration and alat =20 m/s2 for the lateral acceleration.

For mk = 3, the linear process model f3 is given by
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xk =



1 0 0 T 0 0 0
0 1 0 0 T 0 0
0 0 1 0 0 T 1

2 T2

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 T
0 0 0 0 0 0 1


xk−1 +



1
2 aazT2 0 0

0 1
2 aazT2 0

0 0 1
2 aazT2

aazT 0 0
0 aazT 0
0 0 aazT
0 0 aaz


wk−1, (3.17)

where xk =
[

dx dy dz vx vy vz az

]T
, aaz =20 m/s2. Note that, for mk = 1, 2,

az = 0 and, for mk = 3, ω = 0.

For all operating modes, the nonlinear observation model h is given by

yk =



√
d2

x,k + d2
y,k + d2

z,k

atan
(

dy,k
dx,k

)
atan

(
dz,k√

d2
x,k+d2

y,k

)
dx,kvx,k+dy,kvy,k+dz,kvz,k√

d2
x,k+d2

y,k+d2
z,k


+ νk, (3.18)

where the components of y are the radar measurements for range, bearing, eleva-

tion and Doppler speed. The measurement noise, vk ∼ N (0, Rmk), is assumed to be

zero-mean white noise with constant covariance Rmk = diag([202, (8 × 10−3)2, (8 ×

10−3)2, 102]). We assume that the transition probability matrix is given by

Π =

 0.96 0.02 0.02
0.02 0.96 0.02
0.02 0.02 0.96

 . (3.19)

We also assume the aircraft starts from x0 =
[

100000 0 2000 −400 0 0 −0.1
]T

,

with a coordinated turn (m0 = 2). That is, the aircraft starts at about 100 km from the

radar with constant altitude of 2000 m. The aircraft is flying inbound at a speed of 400

m/s and an angular velocity of 0.1 rad/s.

3.4.2 Numerical Experiments on State Estimation

For M3H, we set the merging depth d = 3, the pruning threshold ε = 0.01 and Nmax =

27. In M3HR, we set the reduced hypotheses number Nm = 3. The filter bank of
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the M3H and M3HR algorithms is composed by three unscented Kalman filters (UKF)

[Menegaz, H.M.T., Ishihara, J.Y., Borges, G.A., Vargas, A.N., 2015]. We performed 50

distinct realizations using IMM, M3H and M3HR in a desktop Dell Inspiron Intel Core

i3 with 3.2 GHz processor and 4GB RAM memory running Matlab. We also tested

M3H with partial execution of GMRC, for example, executing only up to the first step

or up to the second one.

a) Comparison within a single realization

We begin by presenting results for the tracking of a single target trajectory. Figure 3.4

shows the simulation results for one realization of the target tracking problem using

the original M3H and the modified M3HR. Figure 3.4a shows the aircraft flight tra-

jectory. Figure 3.4b shows that, after the merging step, the proposed approach M3HR

(black line) reduces the number of hypotheses more significantly than does the original

algorithm M3H (red line).

Figure 3.4c shows that M3HR was more accurate in the estimation of the operating

modes. For example, in the mid-plot from about time t = 240s until time t = 300s,

we observe that the mode 2 (circular maneuver) is correctly estimated by M3HR while

M3H wrongly detects that mode 3 is active. Figure 3.4d shows that the M3H yields

erroneous estimates for the operating mode more often than M3HR. Figure 3.4e shows

the estimated aircraft position coordinates from radar measurements using the M3HR

(black line) and M3H (red line) approaches. We observe that M3HR yields more accu-

rate estimates for the position compared to M3H estimates. Finally, Figure 3.4f illus-

trates the error estimates for the position coordinate dx using both M3HR (black line)

and M3H (red line). Note that, in addition to yielding a smaller error, M3HR provides

uncertainty estimates (plus and minus three standard deviations) consistent with the

true position.
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Figure 3.4: Tracking the aircraft flight trajectory using a radar: (a) true aircraft trajectory, (b) number of

hypotheses after the merging step using M3HR (- -) and M3H (—), (c) probability of the modes: mode

1 (–+–) using M3HR (blue) and M3H (light blue), mode 2 (—×—) using M3HR (red) and M3H (pink) and

mode 3 (—◦—) using M3HR (green) and M3H (yellow) and the black vertical line indicate actual mode

transitions, (d) estimate of the digital state using M3HR (- -) and M3H (—) in comparison with the true

value (–+–), (e) estimates of the position coordinates using M3HR (—•—) and M3H (—◦—) in comparison

with the measurements (×) and the true position (+) and (f) estimation error of the position component

dx using M3HR (- -) and M3H (—) algorithm. The dotted line (- -) indicate plus and minus three standard

deviations around the error estimates.
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Figure 3.5: Target velocity during the flight: x, y, and z linear velocity components and angular
velocity. The estimate of the analog state using M3HR(—•—) is compared to the true value (–+–).
The vertical lines indicate mode transition times.

Figure 3.5 illustrates how the operating modes influence the variations of some

components of the analog state. For example, we observe that mode 2 differs from

other modes by variations in the linear velocity components from time t = 130s to t =

300s, whereas mode 3 yields larger values for the angular velocity from time t = 425s

to t = 505s. Thus, because the operating modes correlate strongly with the analog

states, it is natural to expect that the use of information from both analog and digital

states may improve the error in the merging step.

b) Comparison over multiple realizations

Overall performance was assessed averaging the results from 50 distinct process real-

izations. Table 3.1 compares the mean processing time per sampling period, TCPU, and

RMSE (regarding position coordinates only). We see that M3H provides more accurate

position estimates than IMM; however, the processing time of M3H is twice that of

IMM. These results are in accordance with the results of [Boers, Y., Driessen, H, 2004].
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Table 3.1: Mean processing time to run each algorithm from time k − 1 to time k, TCPU, RMSE (for
position coordinates) and frequency of error in digital state estimates for 50 distinct realizations using
the IMM, M3H and M3HR filter. We consider three scenarios for the merging step of M3HR, where the
M3HR (1-step) uses only the preprocessing step, M3HR (2-step) uses the preprocessing and clustering
step and M3HR (3-step) uses preprocessing, clustering and refinement step.

Algorithms TCPU RMSE for % Mode
(ms) positon (m) error

IMM 1.9 523 12.3
M3H 3.9 497 11.6
M3HR (1-step) 5.8 437 4.8
M3HR (2-step) 6.5 435 4.5
M3HR (3-step) 7.5 430 4.1

Compared to M3H, the full M3HR reduces the RMSE index by approximately 14% but

with a processing time over twice than of M3H. On the other hand, M3HR truncated

in the first step yields approximately the same improvement in accuracy but with the

processing time 24% smaller compared to the full M3HR. This suggests a diminishing

returns property, in which most of the benefit from using GMRC is collected right in

the first step. Moreover, we observe that the M3HR misses the active mode in 4.1% of

times compared to 11.6% of M3H, as shown in Table 3.1.

This diminishing returns property is further evinced in Figure 3.6, where we eval-

uate how the filter performance is influenced by i) the variation of the measurement

noise levels and ii) the variation in the three steps of the GMRC algorithm employed

in the merging step of M3HR. By rescaling the measurement noise covariance Rmk , we

choose three different values of signal to noise ratio (SNR), 10, 20 and 30dB. From Fig-

ure 3.6a, we observe an increase of about 16% in the position RMSE for the largest noise

level (10 dB) using M3H compared to M3HR (3 step). Note that, for smaller measure-

ment noise levels, 20 dB and 30 dB, the M3HR(3 step) yields estimates about, respec-

tively, 34% and 55% more accurate than M3H. A similar analysis is valid for RMSE for

velocity; see Figure 3.6b.

In regard to performance changes with the variation in the three steps of GMRC.

Figure 3.6 shows that M3HR (3-step) yields position estimates only 1% more accurate

than M3HR (1-step). In addition, the M3HR (1-step) reduces processing time by ap-

proximately 24% in comparison to M3HR (3-step). We conclude that employing the
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Figure 3.6: Mean normalized processing time, TCPU, and RMSE (for position coordinates) for
50-run Monte Carlo simulation for M3HR and M3H algorithm with different merging depth:
(a) position and (b) velocity. The variation of the measurement noise levels are 10 dB (�), 20 dB
(�) and 30 dB (◦). The variation of the three scenarios for the merging step of M3HR are M3H
(1 step) (black line), M3HR (2 step) (green line) and M3HR (3 step) (red line) compared to M3H
(blue line).

three steps of GMRC in the merging step of M3HR may not pay off depending on the

application, as the 1-step version might already provide satisfying improvement.

c) Comparison over different time-precision tradeoffs

Our main results come from comparing M3H and M3HR over different user prefer-

ences regarding processing time and filter approximation error. We restrict the com-

parison to M3HR (1 step) since it had a more satisfying performance in the experiments

above. We compare the performance of M3HR (1 step) and M3H using different values

of Nm = 1, 2, 3, 4, 5 (�), and merging depth, d = 2, 3, 4, 5, 6, 7, 8 (◦).

Results, shown in Figure 3.7, indicate that the performance of M3HR dominates

that of M3H in all cases when the user demands RMSE below 525 m. As a conclusion,

we see that M3HR adds improved flexibility to the user who can now choose over a
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Figure 3.7: Mean processing time, TCPU, and position RMSE for 50 distinct realizations using the M3HR
(1 step) (black line) and M3H (blue line) algorithms. The values of number of components of the Gaus-
sian mixture are 1, 2, 3, 4, 5 (�) and of merging depth are 2, 3, 4, 5, 6, 7, 8 (◦). The values for each
algorithm are shown above from left to right.

larger range of RMSE. It is worth noticing that very little improvement is gained by

M3H increasing the merging depth beyond d = 5. This highlights how little extra

information is encoded in the mode history to help estimate analog states, which was

our initial motivation for proposing M3HR.

3.5 Concluding Remarks

In this chapter we present a modified version of the multiple models and multiple hy-

potheses (M3H) algorithm to suboptimally solve the problem of state estimation for

Markov jump nonlinear systems. In particular, the M3H algorithm merges the hy-

potheses with the same sequence of modes in the last d steps. Thus, only information

from the digital state is employed to merge the hypotheses.

In the context of Markov state transitions, the mode sequence provides no useful in-
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formation to the task of predicting future states given that the current mode is known.

This suggests that one should merge hypotheses based on the current state (both ana-

log and digital) rather than based on the sequence of digital states. Thus, the reduction

of Gaussian mixtures may be well suited to perform the merging operation.

Then, we use Gaussian reduction methods as an alternative for the merging step of

the original M3H algorithm. We employ the Gaussian mixture reduction by clustering

(GMRC) approach to merge and eliminate hypotheses. Thus, information from both

the analog and digital states is used to merge the hypotheses, while only information

from the digital state is employed in the original method. Numerical results suggest

that the proposed approach M3HR provides improvement in the accuracy of analog

and digital state estimates compared with M3H algorithm.

In addition, the M3HR provides an effective mechanism for users to explore the

tradeoff between filter precision and processing time. Users set their preferences by

defining the maximum number of mixture components Nm. Likewise, a similar trade-

off may be observed for M3H by manipulating the merging depth d. Our numerical

results indicate that manipulating Nm in M3HR is more efficient than choosing d in

M3H when increased precision is demanded. That is, for the same processing time,

improved accuracy was observed for M3HR.
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Chapter 4

Equality-constrained State Estimation

for Hybrid Systems

In this chapter, we address the problem of state estimation for hybrid systems with

state equality constraints. A literature review on this topic is presented in Section 2.3.5.

This work deals with the extension of constrained stochastic filtering methods for the

hybrid case. A brief review of these methods in the non-hybrid context is provided in

Section 2.1.4. It is recommended to read it before reading this Section.

In Section 4.2, we investigate the mode-independent equality constraints case for

linear systems. Then, we extend the necessary conditions for the Kalman filter yielding

state estimates that satisfy the equality constraint to the hybrid case. In Section 4.3,

we consider the mode-dependent equality constraints case for linear systems. Then,

we present two different possibilities to enforce an equality constraint along time. In

Section 4.4, we investigate the mode-dependent equality constraints case for nonlinear

systems. Then, we discuss approaches that provide approximate solutions. Finally,

in Section 4.5, these algorithms are compared to the classical IMM by means of three

examples.
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4.1 Problem Statement

We consider the discrete-time hybrid stochastic system given by (1.1)-(1.3), whose

equations are repeated here for convenience,

xk = fmk(xk−1, uk−1, wk−1, k− 1),

πs|r = Pr{mk = s|mk−1 = r},

yk = hmk(xk, νk, k).

In addition, we assume that the analog state vector xk is known to satisfy the equality

constraint

gmk(xk, k) = dmk , (4.1)

where the function gmk : Rn ×N → Rs, and dmk ∈ Rs, is assumed to be known. Note

that, in the general case, such constraint may vary with both time k and operating

mode mk.

The hybrid constrained stochastic filtering problem seeks to provide state estimates x̂k

and m̂k given by meaningful statistics (such as the mean or the mode) from the joint

a posteriori PDF of xk and mk (1.4) given a sequence of noisy sampled measurements,

y1:k, and a hybrid stochastic dynamic model. In this chapter, the analog state estimates

must satisfy the constraint (4.1).

Next we define special cases of the general hybrid constrained stochastic filtering

problem that are investigated in this work.

Problem 1. Assume that (1.1)-(1.3) is a linear hybrid system given by

xk = Amk xk−1 + Bmk uk−1 + wk−1, (4.2)

yk = Cmk xk + νk. (4.3)

where Amk ∈ Rn×n, Bmk ∈ Rn×p and Cmk ∈ Rm×n are assumed to be known for all pos-

sible modes mk. Also, assume that the state vector xk satisfies the mode-independent equality

constraint

Dxk = d, (4.4)
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where D ∈ Rs×n and d ∈ Rs×1 are assumed to be known. Our goal is to obtain state estimates

x̂k and m̂k satisfying Dx̂k = d, ∀k.

Problem 2. Consider the linear hybrid system given by (4.2)-(4.3), whose state vector xk sat-

isfies the mode-dependent equality constraint

Dmk xk = dmk . (4.5)

where Dmk ∈ Rs×n and dmk ∈ Rs×1 correspond to the equality constraint for the mode active

at the time k. Our goal is to obtain state estimates x̂k and m̂k satisfying Dmk x̂k = dmk , ∀k.

Note that, for the problems 1 and 2, the matrices Amk , Bmk and Cmk are constant for

a given operating mode mk. These matrices are time homogeneous in the sense that

they do not depend directly on k.

Problem 3. Consider the nonlinear hybrid system (1.1)-(1.3), whose state vector xk satisfies

the mode-dependent nonlinear equality constraint (1.5). Our goal is to obtain state estimates

x̂k and m̂k satisfying gmk(xk, k) = dmk , ∀k.

4.2 Linear and Mode-independent Case

For the non-hybrid case, [Teixeira, B. O. S., Chandrasekar, J., Tôrres, L. A. B., Aguirre, L.

A., Bernstein, D. S., 2009] present the sufficient conditions for the conventional Kalman

filter to yield state estimates that satisfy the equality constraint. The authors prove that

if the system obeys a condition of compatibility of the dynamics with the equality

constraint (Lemma 2.1.1), then the conventional Kalman filter is able deal with time-

invariant equality-constrained systems as long as a proper initialization is performed,

see Proposition 2.1.1. In this case, we consider that the dynamics are compatible with

the equality constraint when the dynamics remain in the hyperplane defined by the

equality constraint. In other words, there is such compatibility when the conditions in

Lemma 2.1.1 are verified [Rong Li, X., 2016].
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Assumption 4.2.1 (Compatibility of contraints and dynamics). Lemma 2.1.1 is extended

to the hybrid case. [[Teixeira, B. O. S., Chandrasekar, J., Tôrres, L. A. B., Aguirre, L. A.,

Bernstein, D. S., 2009], Proposition 3.1] present sufficient conditions for the non-hybrid linear

time-invariant system to be compatible with the equality constraint. In this work, we consider

that all those conditions are valid for all operating modes of the system, that is,

Dmk Qmk = 0s×q, (4.6)

Dmk Amk = Dmk , (4.7)

Dmk Bmk uk−1 = 0s×1. (4.8)

where the matrices of the system Amk , Bmk , the noise covariance matrix Qmk and the equality

constraint Dmk are assumed to be known.

The next proposition extends Proposition 2.1.1 for linear hybrid systems with mode-

independent equality constraints, see Problem 1. Specifically, we present the necessary

conditions for the classical IMM algorithm to yield state estimates satisfying (4.4) for

all k ≥ 1 and (almost) all noise realizations.

Proposition 4.2.1. Consider the IMM algorithm 2.3.1 initialized with x̂r
0 and P̂xx,r

0 , for r =

1, . . . , M, given by (2.48) and (2.49) as in Remark 2.1.1 and applied to the scenario of Problem

1. Assume that the conditions in Assumption 4.2.1 hold for all M mode-dependent linear

process models (4.2). Then, for all k ≥ 1,

(i) the mixed estimates, x̄s
k−1 (2.90) and P̄xx,s

k−1 (2.91) satisfy Dx̄s
k−1 = d and DP̄xx,s

k−1 = 0s×n,

(ii) the filter estimates, x̂s
k and Pxx,s

k (2.92) satisfy Dx̂s
k = d and DPxx,s

k = 0s×n, and

(iii) the combined estimates, x̂k (2.95) and Pxx
k (2.96) satisfy Dx̂k = d and DPxx

k = 0s×n.

Proof. Suppose that part (ii) is true at time k-1 such that the filter estimates satisfy that

Dx̂r
k−1 = d and DPxx,r

k−1 = 0s×n, multiplying (2.90) by D yields

Dx̄s
k−1 =

M

∑
r=1

µ
s|r
k−1Dx̂r

k−1,

=
M

∑
r=1

µ
s|r
k−1d = d

M

∑
r=1

µ
s|r
k−1 = d, (4.9)
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where ∑M
r=1 µ

s|r
k−1 = 1. Using (4.9) and multiplying (2.91) by D yields

DP̄xx,s
k−1 =

M

∑
r=1

µ
s|r
k−1

[
DPxx,r

k−1 +
(

Dx̂r
k−1 − Dx̄s

k−1
)

.
(

Dx̂r
k−1 − Dx̄s

k−1
)T
]

,

=
M

∑
r=1

µ
s|r
k−1

[
0s×n + (d− d) (d− d)T

]
= 0s×n. (4.10)

Then we prove part (i) at time k− 1.

For the M Kalman filter estimates, we decompose this filter given by (2.92) in two

steps. First, given (4.9)-(4.10) and multiplying (2.9)-(2.10) by D, we obtain x̂s
k|k−1 and

Pxx,s
k|k−1 satisfying Dx̂s

k|k−1 = d and DPxx,s
k|k−1 = 0s×n. Second, given Dx̂s

k|k−1 = d and

DPxx,s
k|k−1 = 0s×n using (2.12)-(2.16), we obtain x̂s

k and Pxx,s
k satisfying Dx̂s

k = d and

DPxx,s
k = 0s×n such that part (ii) is proved at time k. By induction, provided that the

filter estimates satisfy the constraints at time 0, we have proved (i) and (ii) for all k≥ 0,

then by induction the part (i) and (ii) are true for all k.

Finally, for the combined estimates, multiply (2.95)-(2.96) by D and use part (ii) to

obtain (iii) at time k.

Henceforth, whenever the IMM filter (Section 2.3.1) is properly initialized as in Re-

mark 2.1.1 in order to satisfy the equality constraint (4.4), it is referred to as IMM with

projected initial condition (IMM0). However, it is important to point out that this is

only possible for models that are compatible with the equality constraint.

4.3 Linear and Mode-dependent Case

Consider now Problem 2. In this case, we consider that the process and observation

models (4.2)-(4.3) are constant for a given mode mk and the equality constraint (4.5) is

a function of the active mode.

For Problem 2, the classical IMM does not guarantee that (4.5) is satisfied for all

k ≥ 1. In this work, the proposed approach is a modified version of the IMM fil-

ter to provide state estimates, x̂p
k and Pxxp

k , that satisfy the equality constraint (4.5);

see Figure 4.1. The proposed approach is here called equality-constrained interacting

multiple models (CIMM). We investigate two algorithms based on the IMM filter that
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Figure 4.1: Diagram of the CIMM1 algorithm. The CIMM1 is a modified version of the classical
IMM filter for to obtain state estimates satisfying the equality constraint. CIHE (•) and CIMM1
(�) differ in the step of the filter where the equality constraints are enforced. The classical IMM
has a similar structure except for cases where constraints are used. For both approaches, the
first and second terms of the right-hand side of (1.4) are respectively shown in green and in
blue.

enforce the equality constraint (4.5) on the state vector that vary with the mode mk.

These algorithms differ in the step of the IMM filter where the equality constraints are

enforced. We consider the following cases: (i) using equality-constrained filters and (ii)

using an additional step after the combined estimates and the case (i). The two cases

are presented in Sections 4.3.1 and 4.3.2, respectively.

4.3.1 Constrained Filters

In the first case, we employ the approach used in [Mann, G., Hwang, I., 2013]. This

work addresses the constrained stochastic filtering problem for linear hybrid systems.

This approach is called constrained innovation hybrid estimator (CIHE). The CIHE

provides state estimates that satisfy the equality constraint (4.5).

The CIHE employs the IMM algorithm whose filter bank is composed by equality-
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constrained filters, reviewed in Section 2.1.4, where the state vector x̄s
k−1 and the corre-

sponding covariance P̄xx,s
k−1 are replaced by the constrained state estimates x̄p,s

k−1 and the

covariance P̄xxp,s
k−1 at time k−1 and the filter return the constrained state estimates x̂p,s

k

and its corresponding covariance Pxxp,s
k at time k. Note that the equality-constrained

filters are employed to yield estimates x̂p,s
k and Pxxp,s

k (2.92) satisfying (4.5). In fact, such

procedure does not guarantee that (4.5) is satisfied in the combining the estimates step of

IMM because the estimates provided by the filter bank that satisfy different equality

constraints are combined.

The CIHE employs equality-constrained filters to enforce the equality constraint

(4.5) on the state vector; see marker • in Figure 4.1. For convenience, we review the

CIHE algorithm [Mann, G., Hwang, I., 2013] in this section as follows.

Algorithm 4.3.1. Constrained innovation hybrid estimator [Mann, G., Hwang, I., 2013]

Initialize each sth filter with x̄p,s
0 , P̄xxp,s

0 , γs
0, s = 1, . . . , M and the parameters of the linear

equality constraints Dmk and dmk .

1. Perform steps 1 to 2 of the IMM filter (Algorithm 2.3.1).

2. Replace x̄s
k−1 by x̄p,s

k−1 and P̄xx,s
k−1 by P̄xxp,s

k−1 in (2.92) and obtain the constrained state es-

timates x̂p,s
k and Pxxp,s

k that satisfy the equality constraint (4.5) using the Constrained

innovation Kalman filter algorithm; see Section 2.3.5 for details.

3. Perform steps 4 to 5 of the IMM filter.

4.3.2 Combining Constrained Filters and Constrained Combined

Estimates

Now, an issue concerning whether or not it is necessary to enforce the same constraint

in others steps of IMM filter arises in the second case. We investigate the use of an

additional step after the combined estimates step of the IMM filter to obtain constrained

state estimates x̂p
k and Pxxp

k that satisfy the equality constraint (4.5).
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The proposed approach is called equality-constrained IMM (CIMM1). The CIMM1

algorithm projects the combined estimate x̂k of the IMM filter given by (2.95) onto some

of the hyperplanes defined by the linear equality constraint (4.5) by means of a projec-

tion step. Also, the CIMM1 employs a filter bank composed by equality-constrained

filters. Note that, for the filter estimates, we consider that even if each process model

(4.2) is compatible with the equality constraint (4.5), we do not guarantee that the ini-

tial condition satisfies such constraint after a mode transition. Thus, it is necessary to

enforce (4.5) after the data-assimilation step (in both x̂p,s
k and Pxxp,s

k (2.92)). Likewise, we

consider that it is necessary to use the projecting the estimates step to obtain combined

estimates, x̂k (2.95) and Pxx
k (2.96), that satisfy the equality constraint (4.5). The CIMM1

employs the prediction and correction of estimates step and the projecting the estimates step

to enforce the equality constraint (4.5) on the state vector; see marker � in Figure 4.1.

In the projection step, we investigate how to choose the equality constraint (4.5)

associated with each operating mode to be enforced to obtain the constrained state

estimate x̂p
k and corresponding covariance Pxxp

k . We present two proposals to choose

an equality constraint. First, we chose the equality constraint (4.5) associated with the

most likely mode a posteriori. Next, we project the combined estimates, x̂k and Pxx
k ,

in this equality constraint using the equations (2.52)-(2.57). The projected estimate is

given by

i = arg max
s

(γs
k), (4.11)

{x̂p
k , Pxxp

k } = Projectioni (x̂k, Pxx
k , Di, di) , (4.12)

where γs
k, x̂k and Pxx

k are given by (2.93), (2.95) and (2.96), respectively, and each “Pro-

jection” uses the projection step of ECKF (Algorithm 2.1.5) with the corresponding

equality constraint. However, for the first proposal, consider the case in which, during

the transition between modes, the modes probabilities, γs
k, are approximately equal. In

this case, this first proposal does not look very appealing. Alternatively, we project the

combined estimate, x̂k (2.95) and Pxx
k (2.96), in each one of the equality constraints (4.5).

Next, we choose the final constrained estimate, x̂p
k and Pxxp

k , as the projected estimate

closest to the combined estimate x̂k (2.95). In this work, the proposed approach CIMM1
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employs the second approach to choose an equality constraint as detailed next.

Figure 4.1 summarizes the CIMM1 algorithm in six recursive steps. The proposed

CIMM1 filter has the same form of the original IMM except for the replacement of the

Kalman filers by the equality-constrained filters in the analog state prediction and cor-

rection step and the additional projection step after the combining the estimates step. In

the CIMM1 filter, the six step are: the mode probability prediction step, the mixing of es-

timates step, the analog state prediction and correction step, the mode probability correction

step, the combining the estimates step and the projecting the estimates. In this algorithm,

the two terms of the right-hand side of (1.4) are treated as follows. The first term,

ρ(xk | m1:k, y1:k), is addressed in the mixing of estimates and the prediction and correction

of estimates steps, whereas, the second term, ρ(m1:k | y1:k), is processed in the mode prob-

ability prediction step and updated in the mode probability correction step. We assume that

the analog state estimates are obtained from the weighted combination of the recursive

estimates of the filter bank, whereas, the digital state estimate is obtained as being the

most likely a posteriori mode. The CIMM1 algorithm is described as follows.

Algorithm 4.3.2. CIMM1 filter

Initialize each sth filter with the state vector estimate x̄p,s
0 , the covariance matrix P̄xx,s

0 , the

mode probability γs
0, s = 1, . . . , M and the parameters of the linear equality constraints Dmk

and dmk .

1. Perform steps 1 to 2 of the IMM filter (Algorithm 2.3.1).

2. Replace x̄s
k−1 by x̄p,s

k−1 and P̄xx,s
k−1 by P̄xxp,s

k−1 in (2.92) and obtain the constrained state es-

timates x̂p,s
k and Pxxp,s

k that satisfy the equality constraint (4.5) using constrained state

estimation methods for linear systems.

3. Compute γs
k, x̂k and Pxx

k according to equations (2.93)-(2.96).

4. Projecting the estimates. First, project the combined estimates, x̂k (2.95) and Pxx
k (2.96),

according to the equality constraints (4.5) yielding x̆p,s
k and P̆xxp,s

k by means of the or-
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thogonal projector PN (Dmk )
given by (2.50) as

x̆p,s
k = PN (Dmk )

x̂k, (4.13)

P̆xxp,s
k = PN (Dmk )

Pxx
k , (4.14)

where x̆p,s
k , P̆xxp,s

k , s = 1, . . . , M. Next, choose the projected estimate, x̆p,s
k , closest to the

combined estimate x̂k (2.95) and Pxx
k (2.96) to obtain the constrained state estimate x̂p

k

and Pxxp
k as

s∗ = arg min
s

||x̂k−x̆p,s
k ||

2,

x̂p
k = x̆p,s∗

k , (4.15)

Pxxp
k = P̆xxp,s∗

k (4.16)

Increment k and return to step 1.

The next proposition shows that the constrained state estimate x̂p
k given by (4.15)

minimizes the mean-squarded error satisfying at least one of the equality constraint

(4.5). Then, the CIMM1 algorithm to yield state estimates satisfying (4.5).

Proposition 4.3.1. Consider Problem 2 and let p(xk) denote the a posteriori probability density

for xk provided by the IMM filter as the Gaussian mixture:

p(xk) =
M

∑
s=1

γs
kN (x̆p,s

k , P̆xxp,s
k ).

where γs
k is given by (2.93), x̆p,s

k and P̆xxp,s
k are given by (4.13) and (4.14), respectively. Then,

x̂p
k given in (4.15) is the state estimate that minimizes the mean-squared error subject to the

satisfaction of at least one equality constraint, i.e., (4.17)

x̂p
k = arg min

x̄k :Dmk x̄k=dmk for some mk

Ep

[
||xk−x̄k||2

]
(4.17)

Proof. Recalling that E[‖X− a‖2] = Var(X) + ‖E[X]− a‖2, for a constant a, we have that

arg min
x̄k :Dmk x̄k=dmk

Ep

[
||xk−x̄k||2

]
=Varp(xk) + min

mk
min

x̄k
Ep[‖xk − x̄k‖2]

x̄k :Dmk x̄k=dmk

(4.18)

=Varp(xk) + min
mk
‖Ep[xk]−PN (Dmk )

Ep[xk]‖2 (4.19)
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Note that (4.19) has the same form of (4.15). In the last term on the right-hand side of (4.19),

we have used the fact that the Euclidean norm minimizer is given by the orthogonal projection.

From this we have that the minimum in (4.17) is achieved by the minimizer in (4.15).

4.4 General Nonlinear Case

We now consider Problem 3. We discuss an approach that provides approximate solu-

tions to the equality constrained state estimation problem for nonlinear systems. These

approaches do not guarantee that the nonlinear equality constraint (1.5) is exactly sat-

isfied, but they provide approximate solutions.

This case is more complicated because the problem is nonlinear and the linear al-

gebra tools used before only work in an approximate form. In this case, we obtain

the nonlinear extension of CIMM1 (Algorithm 4.3.2), here called CIMM2, to solve this

problem. That is, we use constrained state estimation methods for nonlinear systems,

for example the equality-constrained unscented Kalman filter (ECUKF) (Section 2.1.4),

during the prediction and correction of estimates step and the projecting the estimates. We

replace the equations of the prediction and correction of estimates step given by (2.92) and

the projecting the estimates step given by (4.15) by the equations of the ECUKF whose

forecast step is given by (2.67), (2.55)-(2.57) and the data-assimilation step is given by

(2.14)-(2.16). The nonlinear CIMM2 algorithm is described as follows.

Algorithm 4.4.1. CIMM2 filter

Initialize each sth filter with the state vector estimate x̄p,s
0 , the covariance matrix P̄xxp,s

0 , the

mode probability γs
0, s = 1, . . . , M and the parameters of the nonlinear equality constraints

gmk(xk, k) and dmk .

1. Perform steps 1 to 2 of the IMM filter (Algorithm 2.3.1).

2. Prediction and correction of estimates. Use constrained state estimation methods for

nonlinear systems (such as the ECUKF given by Algorithm ??) to obtain x̂p,s
k and Pxxp,s

k

where the nonlinear equality constraints (1.5) is approximately satisfied.

95



SIMULATED EXAMPLES

3. Perform steps 4 to 5 of the IMM filter.

4. Perform step 4 of the CIMM1 algorithm using constrained state estimation methods for

nonlinear systems. Increment k and return to step 1.

4.5 Simulated Examples

For the three case studies we discuss next, we performed 100 distinct realizations using

the proposed approaches and the classical IMM in a desktop Dell Inspiron Intel Core

i3 with 3.2 GHz processor and 4GB RAM memory running Matlab.

4.5.1 Linear and mode-independent equality constraint case: Water

tank system

Problem description

Consider the water tank system of [Mann, G., Hwang, I., 2013] to illustrate an appli-

cation of Problem 1. From Figure 4.2, note that it comprises two tanks coupled by one

on-off valve. The tank 1 has a water input q1 provided by the pump 1. Water flow q2

flows from tank 1 to tank 2 and is manipulated by the valve V1. Therefore, the reconfig-

urable system has two operating modes, mk ∈ M = {1, 2}, representing, respectively,

the closed and open status of the valve. Our goal is to estimate the digital state (valve

position), m̂k, and the analog states (water level), x̂k with corresponding covariance

matrix, Pxx
k .

Let xk =
[

h1,k h2,k

]T
be the analog state vector associated to the reconfigurable

tank system, where h1 and h2 are water levels in tanks 1 and 2, respectively. The process

model for the mode mk = 1 (closed valve) is given by

xk =

[
1 0
0 1

]
xk−1 +

[
T 0
−T 0

]
uk−1 + wk−1. (4.20)

where T = 0.5 s is the sampling period and uk−1 =
[

q1 q2

]T
, q1=1 m/s and q2=2

m/s for both modes. The process noise, wk−1 ∼ N (0, Qk−1), is assumed to be a zero-
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Figure 4.2: Water tank system consisting of two coupled tanks that are controlled by one on-off valve.
The pump 1 provides water for the tank 1 and the tank 1 provides water for the tank 2. The level of the
tank 1 is measured by the sensor LT1. Adapted from [Mann, G., Hwang, I., 2013].

mean white noise with covariance Qk−1 = 0.125

 1 1

1 1

 for both modes. The process

model for mk = 2 (opened valve) is given by

xk =

[
1 0
0 1

]
xk−1 +

[
T −T
−T T

]
uk−1 + wk−1. (4.21)

Note that, the models associated with modes 1 and 2 are compatible with the equality

constraint (4.22) because they satisfy the conditions of Lemma 2.1.1.

In addition, we assume that the state vector satisfies the equality constraint (4.4) for

both modes, whose parameters are assumed to be known and are given by

D =
[

1 1
]

, d = 26, (4.22)

that is, the mass conservation is observed, meaning that the sum of the levels of the

two tanks remain constant.

The observation model for both modes is given by

yk =
[

1 0
]

xk + νk, (4.23)
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where the measurement noise, vk ∼ N (0, Rk), is assumed to be zero-mean white noise

with constant covariance and Rk = 0.2. We assume that the transition probability

matrix is given by

Π =

[
0.9 0.1
0.1 0.9

]
. (4.24)

We also assume the water level starts from x0 =
[

20 6
]T

. In order to test the

robustness of our filtering strategy, the actual simulated systems had state-dependent

transitions rather than following the Markov jump process in (4.24). These transitions

are given by the on-off controller (LC1) as: for mode 1, h1 ≤ h̄ − ε then the valve is

closed and, for the mode 2, h1 ≥ h̄ + ε then the valve is opened, where we set h̄ = 10

m and ε = 0.5. Note that, the level h1 of the first tank initially causes the valve V1 to

open and to remain open until h1 = h̄− ε.

State estimation

The filter bank of the classical IMM and IMM0 (see Proposition 4.2.1) algorithms is

composed by two Kalman filters (KF). We performed 100 distinct realizations using

the classical IMM and IMM0 in a desktop Dell Inspiron Intel Core i3 with a 3.2 GHz

processor and a 4GB RAM memory running Matlab.

a) Comparison over multiple realizations

We begin by presenting results for multiple realizations of the water tank system.

Overall performance was assessed averaging the results from 100 distinct process re-

alizations. We obtain RMSE indices of 0.25 m and 0.11 m, respectively, for the water

levels estimates using the classical IMM and IMM0 (see Proposition 4.2.1) filters, with

each filter bank being composed by two KFs. In this case, the IMM0 provides more

accurate estimates of approximately 14 cm for the water levels of tanks 1 and 2 than

does the classical IMM. We observe that the additional information regarding the initial

condition provided by the equality constraint is helpful to improve the IMM estimates.
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Figure 4.3: Water tank system: (a) analog state estimate using the IMM0 (- -) in comparison
with the true value (—), (b) probability of the mode estimates: mode 1 (–+–) and mode 2 (—×—)
using the IMM0 algorithm and (c) constraint error, ec

k = d− Dx̂k, using the IMM0 (–+–) and the
classical IMM (-�-).

b) Comparison within a single realization

Figure 4.3 shows the simulation results for one realization of the water tank system

using the IMM0. Figure 4.3a shows the estimate of the water level in tanks 1 (green)

and 2 (black) compared to the true water level of the tanks. Regarding the water level
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estimates, the IMM0 yields more accurate estimates than classical IMM. Note that, ini-

tially the water level of the first tank is decreasing until the level reaches h̄− ε whereas

the water level of the second tank is increasing until the level reaches h̄ + ε. The water

level in the tanks is controlled by the valve that switches the position on and off such

that h1 ≈ h̄. Figure 4.3b shows the probability associated to each estimated operating

mode. Figure 4.3c shows that the combined estimates, x̂k (2.95) using the IMM0 guar-

antee that the equality constraint (4.4) is satisfied. However, the classical IMM does

not yield estimates that satisfy the equality constraint.

4.5.2 Linear and mode-dependent equality constraint case: Tracking

a ground vehicle

In a recent work, [Mann, G., Hwang, I., 2013] adresses the problem of hybrid stochastic

filtering with mode-dependent equality constraints. However, in their simulated re-

sults, we observe that the numerical example illustrates the mode-independent equal-

ity constraints case (Problem 1). As illustrated in Section 4.5.1, we know that, for this

example, the IMM0 algorithm (Proposition 4.2.1) can be used and it is not necessary

to apply the CIHE approach (Algorithm 4.3.1). Next, we investigate a ground vehi-

cle tracking application in the hybrid context considering that the equality constraints

vary with the mode mk.

Problem description

To illustrate Problem 2, we now consider the problem of tracking a ground vehi-

cle moving in straight roads [Teixeira, B. O. S., Chandrasekar, J., Palanthandalam-

Madapusi, H. J., Tôrres, L. A. B., Aguirre, L. A., Bernstein, D. S., 2008]. Let the ground

vehicle have two operating modes, mk ∈ M = {1, 2}, where mk = 1 corresponds

to a fixed heading θ1 = 45◦ and mk = 2 corresponds to a heading θ2 = −45◦. Let

xk =
[

px py vx vy

]T
be the analog state vector referring to the vehicle trajectory,

where px and py are the components of the position and vx and vy are the components

of the velocity. Our goal is to obtain estimates for both the digital state, m̂k, and analog

states, x̂k with corresponding covariance matrix, Pxx
k .
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The linear process models for the ground vehicle as a function of mk are given by

xk =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 xk−1 +


0
0

T sin θmk
T cos θmk

 uk−1 + wk−1, (4.25)

where T=2 s is the sampling period and uk−1 is the commanded acceleration, which

is alternatively set to ±1 m/s2, as if the vehicle were accelerating and decelerating in

traffic. The process noise, wk−1 ∼ N (0, Qmk), is assumed to be a zero-mean white noise

with covariance Qmk that depends on the operating modes and it is given by

Qmk = 10


sθ scθ 0 0
scθ cθ 0 0
0 0 sθ scθ

0 0 scθ cθ

 , (4.26)

where sθ = sin2 θmk , cθ = cos2 θmk , scθ = sin θmk cos θmk . Note that, the models as-

sociated with modes 1 and 2 are compatible with the equality constraint (4.27). In

addition, we assume that the state vector satisfies the equality constraint (4.5) for each

mode, whose parameters are assumed to be known and are given by

Dmk =
[

0 0 1 − tan θmk

]
, dmk = 0, (4.27)

that is, the ground vehicle performs a constant velocity motion with a fixed heading.

The observation model for all modes is given by

yk =

[
1 0 0 0
0 1 0 0

]
xk + νk. (4.28)

where the measurement noise, νk ∼ N (0, Rk), is assumed to be zero-mean white noise

with constant covariance Rk = diag([400, 400]). We assume that the transition proba-

bility matrix is given by

Π =

[
0.9 0.1
0.1 0.9

]
. (4.29)

Simulated data are generated with the ground vehicle starting from

x0 =
[

500 (500/ tan θ1) 30 (30/ tan θ1)

]T
for the mode m0 = 1.
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State estimation

We performed 100 distinct realizations using the CIHE and CIMM1 algorithms in a

desktop Dell Inspiron Intel Core i3 with a 3.2 GHz processor and a 4GB RAM memory

running Matlab.

a) Comparison over multiple realizations

We begin by presenting results for multiple realizations of the ground vehicle track-

ing. Overall performance was assessed averaging the results from 100 distinct process

realizations. We compare the processing time, TCPU, and RMSE of the position and

velocity coordinates using the CIHE and CIMM1 algorithms.

Table 4.1 compares the processing time per sampling period, TCPU, and RMSE ob-

tained from a 100 distinct realizations using the CIHE and CIMM1 algorithms. We see

that CIMM1 provides more accurate estimates by approximately 13% and 19%, respec-

tively, for the position and the velocity than CIHE; however, the processing time of

CIMM1 is 20% larger compared to CIHE.

Table 4.1: Mean processing time to run each algorithm from time k − 1 to time k, TCPU, and RMSE for
100 distinct realizations using CIHE [Mann, G., Hwang, I., 2013], CIMM1, CIMM2 and classical IMM
[Blom, H. A.P., Bar-Shalom, Y., 1988].

Algorithms TCPU RMSE for RMSE for
(ms) position (m) velocity (m/s)

Linear and mode-dependent case (Section 4.5.2)
CIHE 1.1 8.25 6.97
CIMM1 1.3 7.18 5.64
General nonlinear case (Section 4.5.3)
IMM 0.9 8.91 5.18
CIMM2 1.4 6.92 3.46

b) Comparison within a single realization

Figure 4.4 shows the simulation results for one realization of the ground vehicle track-

ing system using the CIHE and CIMM1 approaches. Figure 4.4a shows the vehicle

position estimates using the CIHE (blue line) and CIMM1 (green line). Note that, the
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vehicle moves at a constant velocity with fixed heading θ1. After 25 s, it changes the

direction of the velocity, then the vehicle moves at a constant velocity with fixed head-

ing θ2 for 25 s. Figure 4.4b shows the probability for each estimated operating mode.

For example, from kT = 2 s until kT = 52 s, we observe that the mode 1 is estimated

at 97% compared to the 3% that corresponds to the vehicle executing the mode 2 us-

ing the CIHE and CIMM1. Figure 4.4c shows that the constraines estimates, x̂p
k , (4.15)

guarantee that the equality constraint (4.5) is satisfied for each mode using the CIMM1.

For the CIHE and classical IMM, the state estimates x̂k (2.95) does not guarantee that

(4.5) is satisfied for all k.

4.5.3 General nonlinear case: Tracking a ground vehicle

Problem description

We now modify the vehicle tracking problem of Section 4.5.2 as in [Xu, L., Rong Li, X.,

Liang, Y., Duan, Z., 2017] to illustrate Problem 3.

To illustrate this application, we consider the linear process models for the first

mode, mk = 1, corresponding to the vehicle with fixed heading θ = 45◦ given by

xk =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 xk−1 +


0
0

T sin θ
T cos θ

 uk−1 + wk−1, (4.30)

where T=2 s is the sampling period and uk−1 is the commanded acceleration, which

is alternatively set to ±1 m/s2, as if the vehicle were accelerating and decelerating in

traffic. The process noise, wk−1 ∼ N (0, Q1), is assumed to be a zero-mean white noise

with covariance

Q1 = 10


sθ scθ 0 0
scθ cθ 0 0
0 0 sθ scθ

0 0 scθ cθ

 , (4.31)

where sθ = sin2 θ, cθ = cos2 θ, scθ = sin θ cos θ. In addition, for mk = 1, we assume

that the state vector satisfies the linear equality constraint (4.5), whose parameters are

assumed to be known and are given by
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Figure 4.4: Tracking a ground vehicle: (a) estimates of the position coordinates using the CIHE (- -) and
CIMM1 (-�-) in comparison with the true value (—), (b) probability of the modes: mode 1 and mode 2
using the CIHE and CIMM1 and (c) constraint error, ep

k = d− Dx̂p
k using the CIMM1 and ep

k = d− Dx̂k
using the CIHE and IMM.
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Dmk =
[

0 0 1 − tan θmk

]
, dmk = 0, (4.32)

that is, the ground vehicle performs a constant velocity motion with a fixed heading.

The process models for the second mode, mk = 2, corresponds to the vehicle with

constant speed. The process model for this mode is

xk =


px,k−1 + Tvx,k−1
py,k−1 + Tvy,k−1

vx,k−1s/sa
k

vy,k−1s/sa
k

+ wk. (4.33)

where s = 15 m/s and sa
k =

√
(vx,k−1)2 + (vy,k−1)2. The process noise, wk−1 ∼

N (0, Q2), is assumed to be a zero-mean white noise with covariance

Q2 = 102


T3

3 0 T2

2 0
0 T3

3 0 T2

2
T2

2 0 T 0
0 T2

2 0 T

 . (4.34)

In addition, for mk = 2, we assume that the state vector satisfies the nonlinear

equality constraint (1.5) and is given by

v2
x + v2

y = s2. (4.35)

that is, the vehicle moves with a constant speed s.

The observation model for all modes is given by

yk =

[
1 0 0 0
0 1 0 0

]
xk + νk. (4.36)

where the measurement noise, νk ∼ N (0, Rk), is assumed to be zero-mean white noise

with constant covariance for each mode given by R1 = diag([400, 400]) and R2 =

diag([1225, 1225]). We assume that the transition probability matrix is given by

Π =

[
0.9 0.1
0.1 0.9

]
. (4.37)

We also assume the vehicle starts from x0 =
[

500 (500/ tan θ) 30 (30/ tan θ)

]T

for the mode m0 = 1.
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[Kwon, C., Hwang, I., 2016] present a simplified version of the vehicle tracking

problem to illustrate an application of Problem 3. This example shows that the road

map information can be used to enforce an equality constraint on the state vector for

linear systems.

For simplicity, we use two operating modes where in the first mode, the process

model is linear and in the second mode, the process model is nonlinear. However,

different mathematical models of target motion can be used for maneuvering target

tracking, for instance, constant velocity models, constant turn models and accelerated

models. We suggest the following reference for more details on such models [Rong Li,

X., Jilkov, V. P., 2003].

State estimation

In this example, the filter bank of the CIMM2 algorithm is composed by one equality-

constrained Kalman filter (ECKF) and equality-constrained unscented Kalman filter

(ECUKF). Note that, the equality constraint is linear for the first mode whereas the

equality constraint is nonlinear for the second mode. Then, for each mode, different

constrained state estimation methods are employed in the filter bank. We performed

100 distinct realizations using the CIMM2 and IMM algorithms in a desktop Dell Insp-

iron Intel Core i3 with a 3.2 GHz processor and a 4GB RAM memory running Matlab.

a) Comparison over multiple realizations

We begin by presenting results for multiple realizations of the ground vehicle track-

ing. Overall performance was assessed averaging the results from 100 distinct process

realizations. We compare the processing time, TCPU, and RMSE of the position and

velocity coordinates using the classical IMM and CIMM2 algorithms.

Table 4.1 compares the TCPU and RMSE obtained from a 100 distinct realizations

using the classical IMM and CIMM2 algorithms, where the filter bank of the CIMM2

is composed of two filters, namely ECKF and ECUKF for modes 1 and 2, respectively.

We observe that CIMM2 reduces RMSE by approximately 22% and 33%, respectively,
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for the position and the velocity compared with the classical IMM; however, the pro-

cessing time of CIMM2 is 1.6 times larger than of IMM.
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Figure 4.5: Tracking a ground vehicle: (a) analog state estimate using the CIMM2 (- -) and IMM
(· · · ) in comparison with the true value (—), (b) probability of the mode estimates: mode 1
(–+–) and mode 2 (—×—) using the IMM and CIMM2. The vertical lines indicate mode transition
times. (c) constraint error, ep

k = dmk − gmk(xk, k), using the CIMM2 (–+–) and IMM (—).
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b) Comparison within a single realization

Figure 4.5 shows the simulation results for one realization of the ground vehicle track-

ing system using the IMM and CIMM2. In Figure 4.5a, note that the vehicle performs

a constant velocity motion with fixed heading θ and, after some time, the vehicle is

moving with constant speed. Figure 4.5b shows the probability for each estimated op-

erating mode using the IMM and CIMM2. For example, from kT = 2 s until kT = 150

s, we observe that the mode 1 (dark blue line) is estimated during 80% of the time

compared to the 20% that corresponds to the vehicle executing the mode 2 (light blue

line) using the CIMM2. After the mode transition, we observe that the mode 2 is esti-

mated at 65% compared to the 35% of the mode 1 for 150 s. After this time interval, the

modes are alternated. However, the classic IMM wrongly detects that mode 1 (black

line) is active for almost all k. Note that, the IMM shows no transition between modes.

Figure 4.5c shows that the constrained estimates, x̂p
k (4.15), do not guarantee that the

nonlinear equality constraint (1.5) is exactly satisfied. We observe that the constraint is

approximately satisfied using the CIMM2. For the classical IMM, the state estimates x̂k

(2.95) does not satisfy (1.5) for all k.

4.6 Concluding Remarks

In this chapter we discuss the problem of state estimation for hybrid linear and non-

linear systems with state equality constraints. We show three special cases of practical

interest of this problem. We categorized such a problem according to the linear or non-

linear character of the equality constraint as well as to the dependence of the constraint

on the operating mode.

For the mode-independent equality constraint case, we present the sufficient con-

ditions on the initialization and dynamics for the classical interacting multiple mod-

els (IMM) algorithm to yield state estimates satisfying a linear equality constraint for

hybrid linear time-invariant systems. Then, the IMM with projected initial condition

(IMM0) is presented as the approximate solution for this problem. We compare these

algorithms by means of an examples of a water tank system in which the sum of the
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levels of the two tanks is constrained so that mass is conserved.

We investigate the scenario in which the mode-dependent time-varying linear equal-

ity constraints must be enforced along time for linear and nonlinear systems. In such

cases, the equality constraints are different for each operating mode. For this reason,

it is necessary to enforce these constraints along time. For such, we propose two algo-

rithms as an approximate solution to the state estimation problem for the linear and

nonlinear cases. For linear systems, the proposed CIMM1 filter is a modified version of

the IMM algorithm to yield state estimates satisfying a linear mode-dependent equality

constraint. For nonlinear systems, we investigate the scenario in which the nonlinear

equality constraint may vary with time and operational mode. For nonlinear systems,

the proposed CIMM2 filter to yields state estimates such that the nonlinear equality

constraints are approximately satisfied. We illustrate the application of the proposed

approaches by means of an example of tracking a ground vehicle in which the vehi-

cle performs a constant velocity motion with a fixed heading or in which the vehicle

moves with a constant speed.

Numerical results suggest that the proposed approaches provide improvement in

the accuracy of analog and digital state estimates. The proposed approaches IMM0,

CIMM1 and CIMM2 have a smaller estimation error for the analog and digital state

compared to the CIHE (special case of CIMM1) [Mann, G., Hwang, I., 2013] and IMM

filters. Moreover, the proposed approaches CIMM1 and CIMM2 have required only a

slightly longer processing time. The IMM0 filter has a same processing time than the

IMM filter because the proper initialization of IMM0 is done before the state estimation

process.
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Chapter 5

Conclusions and Future Work

5.1 Summary and Concluding Remarks

Hybrid systems are dynamic systems whose behavior is determined by the interaction

between analog and digital states. The hybrid stochastic filtering problem consists in

providing estimates for both analog and digital states from a sequence of noisy sample

measurements and the knowledge of such hybrid model. The main hurdle for these

systems is that both the number of possible sequences of modes and the number of

possible analog trajectories grow exponentially over time, posing a practical challenge

to solve this problem.

Approximate methods for state estimation in hybrid systems are based on multi-

ple models (MM) and Monte Carlo approaches. The estimator of MMs assumes that

the dynamic system can be characterized by a set of M models that capture the pos-

sible operating modes of the system. The estimate provided by the MM estimator is

achieved by running M filters in parallel and combining their estimates. Alternatively,

particle filtering (PF) methods approximate the joint a posteriori PDF of the hybrid sys-

tem using sampled trajectories. The PF employs a set of particles with corresponding
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weights to provide estimates for both analog and digital states.

In this work, we addressed the problem of state estimation for discrete-time Markov

jump systems. In such systems, the digital state transitions are governed by a Markov

chain and transition probabilities depend only on the current mode and not on the

analog state of the system.

5.1.1 M3H with Gaussian Mixture Reduction

We considered the problem of state estimation for Markov jump systems. In the M3H

filter, the issue of the exponential growth of the number of possible trajectories is

tackled by merging hypotheses with similar digital state trajectories. An alternative

method for the merging step of the M3H algorithm was discussed and investigated in

this work. The proposed M3HR filter leverages techniques from the theory of Gaussian

mixture reduction to reduce the approximation error in the merging step. In this way,

rather than using only the information from the mode sequence as in the M3H filter,

we also incorporate the information from the analog state estimate in performing the

merging step.

Numerical results in a target tracking example suggest that the M3HR provides im-

provement in the accuracy of analog and digital state estimates. In particular, most of

the improvement is due to the first of three steps of the proposed algorithm. This mo-

tivated the study of abbreviated versions of the algorithm. In summary, when higher

precision is demanded from the filter, this abbreviated M3HR outperforms the original

M3H in both estimation error and processing time. As a consequence, M3HR presents

itself as a filtering strategy that offers the user the flexibility of operating efficiently

with different constraints on processing time and precision. The same could not be

said of M3H with more stringent precision constraints.

5.1.2 Constrained state estimation

We addressed the problem of state estimation for hybrid linear and nonlinear systems

with state equality constraints. We divided such a problem into three groups according

to the linear or nonlinear equality constraint as well as to the dependence of the con-
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straint on the operating mode mk. First, we addressed the mode-independent equality

constraints case for linear systems. We presented sufficient conditions on the initial-

ization and dynamics for the classical interacting multiple models (IMM) algorithm to

yield state estimates satisfying a linear equality constraint for linear systems. Then,

the IMM with projected initial condition (IMM0) is presented as the approximate so-

lution for this problem. We compared two algorithms by means of an example of a

water tank system in which the sum of the levels of the two tanks is constrained so

that mass is conserved. We verified that the IMM0 yields state estimates satisfying the

linear equality constraint.

Second, we addressed the mode-dependent equality constrained case for linear sys-

tems. In this case, we considered that the equality constraint vary with the mode mk

and for this reason the equality constraint must be enforced along time. Then, we

presented a modified version of the IMM filter (CIMM3) to enforce the linear mode-

dependent equality constraint on the state estimates for linear systems. We illustrated

the application of the proposed approach by means of an example of tracking a ground

vehicle in which the vehicle performs a constant velocity motion with a fixed heading

determined by the physical road the vehicle is on. We verified that the CIMM3 yields

state estimates satisfying the linear equality constraint.

Third, we investigated the mode-dependent equality constrained case for the non-

linear systems. In this case, we considered that the equality constraint may vary with

time k and mode mk. Then, we employed the CIMM3 algorithm as approximate so-

lution of this problem. We compared two algorithms by means of an example similar

to the vehicle tracking problem in which the vehicle moves with a constant speed. We

verified that the CIMM3 provides state estimates satisfying a linear equality constraint,

whereas the nonlinear equality constraint is approximately satisfied.

5.2 Future Work

Some issues for future investigation are presented from the results presented so far. We

summarize these suggestions for future work as follows:

113



FUTURE WORK

1. In Section 3.3 we investigate the use of Gaussian mixture reduction methods as

an alternative for the merging step of the M3H algorithm. Using the Gaussian

mixture reduction by clustering approach, the proposed approach M3HR reduces

all hypotheses with the same current mode to a set of Nm hypotheses, where Nm is

a tunning parameter, thus making up the maximum number of NmM hypotheses.

We suggest the investigation of strategies to dynamically adapt the maximum

number of components in order to further improve the processing time versus

error tradeoff.

2. Suboptimal algorithms to adress the problem of state estimation for hybrid sys-

tems with state equality constraints are presented in Chapter 4. These algorithms

consider that the mode transition probabilities depend only on the current mode

and not on the analog state. However, the use of models whose mode transitions

depend on the analog state is reported in [Mann, G., Hwang, I., 2013; Kwon, C.,

Hwang, I., 2016] for the hybrid constrained stochastic filtering problem. We sug-

gest the use of guard conditions to estimate the mode transition probabilities in

the proposed algorithms IMM0 and CIMM3.

3. The optimal estimation problem in networked control systems where the control

signal is sent through a lossy channel is presented in [Lin, H., Su, H., Shu, Z., Wu,

Z., Xu, Y., 2016]. The use of hybrid models to characterize the behavior of loss

of information during the data transmission in communication networks can be

investigated. For instance, when the controller does not receive the acknowledg-

ment from the actuator, the controller does not know whether the sent signal has

been applied or not, only knows a probability of this occurring. We suggest treat-

ing the networked control systems as a new example of application for hybrid

stochastic filtering.

4. In this thesis, we address the problem of state estimation for discrete-time Markov

jump systems. We suggest the investigation of the state estimation problem for a

general class of continuous-time stochastic hybrid systems, which is a more gen-

eral yet challenging problem than the discrete-time hybrid estimation problem.
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In the literature, researches in state estimation for continuous-time stochastic hy-

brid systems are relatively limited [Liu, W., Hwang, I., 2014].

5. We address the problem of state estimation for hybrid systems with state equality

constraints in Chapter 4. We suggest the use of both equality constraints and

inequality constraints in hybrid constrained stochastic filtering methods [Cheng,

Y., Singh, T., 2007], which are outside the scope of this thesis.

6. Finally, a suboptimal approach to the fixed-interval smoothing problem for hy-

brid systems with Markov jumps is presented in [Blom, H., Bar-Shalom, Y., 1990;

Helmick, R. E., Blair, W. D., Hoffman, S. A., 1995]. This smoothing algorithm is

based on Interacting multiple model filter. We suggest the use of our proposed

approach M3HR to address the same problem.
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