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Resumo

Em algumas aplicagdes de estimacdo de estados, o sistema dinamico pode ser represen-
tado por um modelo hibrido que é determinado pela interagdo entre estados anal6gicos
e digitais (modos de operacdo). O problema de filtragem estocastica hibrida consiste
em fornecer estimativas para ambos estados analégicos e digitais a partir de uma se-
quéncia de medi¢des amostradas ruidosas e um modelo hibrido. Para esses sistemas,
o filtro deve rastrear um ntimero exponencialmente crescente de trajetérias possiveis,
o que configura um desafio pratico para resolver esse problema. Portanto, solugdes
aproximadas sdo comumente buscadas, procurando um compromisso entre precisdo e

tempo de processamento do filtro.

Neste trabalho, investigam-se duas questdes relacionadas a estimati¢do de estados
de sistemas hibridos. Primeiro, apresenta-se uma versdao modificada do algoritmo de
miltiplos modelos e mltiplas hipéteses (M?H) para resolver de forma sub-6tima o
problema de estimagdo de estado para sistemas nao lineares com saltos Markovianos.
Empregam-se métodos de redugdo de misturas Gaussianas como uma alternativa para
a fusdo de hipéteses do M3H classico. Portanto, informacdes de ambos os estados
analdgicos e digitais sdo empregadas para fundir as hipéteses, enquanto que apenas
a informacao do estado digital é empregada no método original. Como contribuicao,
a abordagem proposta fornece um mecanismo eficaz para que os usudrios explorem
0 compromisso entre precisdo e tempo de processamento do filtro. Os usudrios esta-
belecem suas preferéncias definindo o nimero maximo de componentes da mistura.

A sintonia desse parametro na abordagem proposta é mais eficiente do que escolher a
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profundidade de fusdo no M®H quando melhoria de precisio é requerida.

Em segundo lugar, considera-se o problema de estimacao de estados para sistemas
hibridos com restri¢des de igualdade nos estados. Investigam-se casos especiais desse
problema para ambos sistemas lineares e ndo-lineares. Categoriza-se tal problema em
trés grupos de acordo com a restri¢do de igualdade linear ou nédo linear, bem como com
a dependéncia da restricdo no modo de operagao. Para o caso de restri¢des de igual-
dade independentes do modo, apresentam-se as condi¢des necessdrias na inicializa¢do
e dindmica para o clédssico algoritmo de multiplos modelos interativos (IMM) para
produzir estimativas de estado satisfazendo uma restricdo de igualdade linear para
sistemas lineares. No entanto, para sistemas lineares e nado-lineares, as restri¢des de
igualdade dependentes do modo devem ser refor¢adas ao longo do tempo. Apresenta-
se uma versdo modificada do filtro IMM para impor a restri¢do de igualdade nas esti-

mativas de estado.
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Abstract

In some state estimation applications, the dynamic system can be represented by a
hybrid model that is determined by the interaction between analog and digital (mode)
states. The hybrid stochastic filtering problem is to provide estimates for both analog
and digital states from a sequence of noisy sample measurements and such hybrid
model. For these systems, the filter should track an exponentially increasing number
of possible trajectories, posing a practical challenge to solve this problem. Therefore,
approximate solutions are often pursued, trading off the filter precision for processing

time.

In this work, we investigate two issues related to the state estimation of hybrid
systems. First, we present a modified version of the multiple models and multiple hy-
potheses (M®H) algorithm to suboptimally solve the problem of state estimation for
Markov jump nonlinear systems. We employ Gaussian mixture reduction methods
as an alternative for the merging of hypotheses of the original M®H. Thus, informa-
tion from both the analog and digital states are employed to merge the hypotheses,
while only information from the digital state is employed in the original MH method.
As a contribution, the proposed approach provides an effective mechanism for users
to explore the tradeoff between filter precision and processing time. Users set their
preferences by defining the maximum number of mixture components. Setting this
number in our proposed approach is more efficient than choosing the merging depth

in M®>H when increased precision is demanded.

Second, we consider the problem of state estimation for hybrid systems with state
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equality constraints. We investigate special cases of this problem for both linear and
nonlinear systems. We categorize such a problem into three groups according to the
linear or nonlinear equality constraint as well as to the dependence of the constraint on
the operating mode. For the mode-independent equality constraints case, we present
the necessary conditions on the initialization and dynamics for the classical interacting
multiple models (IMM) algorithm to yield state estimates satisfying a linear equality
constraint for linear systems. However, for linear and nonlinear systems, the mode-
dependent equality constraints must be enforced along time. We present a modified

version of the IMM filter to enforce the equality constraint on the state estimates.



Contents

List of Figures xi
List of Tables xii
List of Symbols xiii
List of Acronyms xvii
1 Introduction 1
1.1 Motivation and Overview of the Field . . . ... ... ... ........ 1
1.1.1  M3®H with Gaussian Mixture Reduction . . .. ... ........ 8

1.1.2 Constrained State Estimation . . . ... ... ... ......... 9

12 Problem Statement . . .. ... ... ... ... oo L 10

1.3 Research Objectives . . . . . ... ... .. ... ... . ... . ... ... 11

14 ThesisOutline . . . . . ... ... 12

1.5 Contributionsof thisWork . . . . .. ... ... ... ... ... ... 13

2 A Review on Non-Hybrid and Hybrid Stochastic Filtering Methods 15
2.1 Non-Hybrid Stochastic Filtering Methods . . . . ... .. ... ...... 16
2.1.1 Recursive Bayesian Approach . . . . ... .............. 16

2.1.2 State Estimation for Linear Systems . . . . ... ... ... .. .. 17

2.1.3 State Estimation for Nonlinear Systems . . . . .. ... ... ... 19

2.1.4 State Estimation for Equality Constrained Systems . . . . . . . .. 25

2.2 Steps of the Hybrid Stochastic Filtering Problem . . ... ... ... ... 31
221 AnalogState Estimate . . .. ... ............... ... 32

2.2.2 Digital State Estimate . . . . . .. ... ... ... .. ... ... 32

2.2.3 Limitation of the Hybrid Stochastic Filtering Problem . . . . . .. 34

2.3 Hybrid Stochastic Filtering Methods . . . . .. ... ... ......... 36
2.3.1 The Interacting Multiple-Model Algorithm . . .. ... ... ... 36

2.3.2 The Multiple-Model and Multiple Hypothesis Algorithm . . . . . 40

2.3.3 The Multiple-Hypothesis Mixing Filter . . . ... ... ... ... 45

234  ParticleFilters . . . . ... ... oo 51

X1



CONTENTS

2.3.5 Constrained Hybrid Methods . . . . . ... ... ... ....... 56
24 ConcludingRemarks . . . ... ...... .. ... ... .. ... 61
3 The Multiple-Model and Multiple Hypothesis Algorithm with Gaussian
Mixture Reduction 65
3.1 Problem Statement . . ... .......... ... . ... . 0 .. 66
3.2 M?3H using Gaussian Mixture Reduction . . . . .. ... .......... 66
3.3 Gaussian Mixture Reduction via Clustering . . . . ... ... ... ... .. 69
3.4 Simulated Example: Target Tracking usingaRadar . . . . . ... ... .. 74
34.1 Problem Description . . . ... .................... 74
3.4.2 Numerical Experiments on State Estimation. . . . . .. ... ... 76
35 ConcludingRemarks . . . ... ... ... ... . ... . . ... 82
4 Equality-constrained State Estimation for Hybrid Systems 85
4.1 Problem Statement . ... .. ... ... ... ... o oo L. 86
4.2 Linear and Mode-independentCase . . . .. ... ... .......... 87
43 Linear and Mode-dependentCase . . ... ................. 89
431 Constrained Filters . . . . ... ... ... ... ... ...... 90
43.2 Combining Constrained Filters and Constrained Combined Esti-
mates . . . ... 91
44 General NonlinearCase . . ... ... .................... 95
45 Simulated Examples . . ... ... .. ... . . L o L. 96
45.1 Linear and mode-independent equality constraint case: Water
tanksystem . .. ... .. ... ... ... L 96
45.2 Linear and mode-dependent equality constraint case: Tracking a
ground vehicle . . ... ... .. ... o Lo oL 100
45.3 General nonlinear case: Tracking a ground vehicle . . . . . .. .. 103
46 ConcludingRemarks . ... ... ... ... ... ... ...... 108
5 Conclusions and Future Work 111
51 Summary and Concluding Remarks . . ... .. .............. 111
5.1.1 M?3®H with Gaussian Mixture Reduction . . .. ........... 112
5.1.2 Constrained state estimation . . ... ... ... .......... 112
52 FutureWork . ... ... ... .. ... 113
Bibliography 117

xii



List of Figures

1.1

1.2

1.3

21
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
34
3.5
3.6

3.7

4.1
4.2
4.3
4.4
4.5

Number of publications with the topic estimation hybrid systems searched on

the Web of Science platform. . . . . ... ... ... ... ..o L. 3
Exponential growth of the possible discrete trajectories of a stochastic hy-

brid system with three possiblemodes. . . . . ... .. ... ... .. .... 4
The hybrid stochastic filtering problem . . . . . ... .. .. .......... 11
Diagram of the constrained innovation Kalman filter. . . . .. ... ... .. 28
Diagram of the steps of the hybrid stochastic filtering problem. . . . . . . . . 31
Diagram of the steps of the IMM algorithm . . . ... ... ... ....... 38
Evolution of the sequence of modes of hypotheses with merging depth d = 2. 42
Diagram of the steps of the M®H algorithm . . . ... ... .......... 43
Diagram of the steps of the MHMEF algorithm. . . ... .. ... ... ... .. 47
Diagram of the steps of the PF algorithm. . . . ... ... ... .. ... ... 54
Diagram of the steps of the CIHE algorithm . . . . .. ... ... ... ... .. 58
Diagram of the steps of the M°HR algorithm. . . . . . ... .......... 68
The Gaussian mixture reduction by clustering (GMRC) approach . . . . . . 70
Diagram GMRC approach . . . . ... ... ... .. ... ......... 71
Tracking the aircraft flight trajectory usingaradar . . . ... ... ... ... 78
Target velocity during the fligh . . ... ... . ... ... ... ...... 79
Mean normalized processing time and RMSE for M*HR and M>H algorithm

with different merging depth. . . . . .. ... ... ... oo 0L 81
Mean processing time and RMSE using the M®HR (1 step) and M°H. . ... 82
Diagram of the CIMM algorithm. . . . . ... ...... ... .. .. ...... 90
Coupled water tanks system. . . . .. .. ... ... .. ........ ..., 97
Water tank system. . . ... .. ... ... L 99
Tracking a ground vehicle . . . .. ... ... .. ... ... . ... . ..., 104
Tracking a nonlinear ground vehicle . . . ... ... ... .. ... ...... 107

xiil



List of Tables

1.1

21
3.1

4.1

Research of the ten main bibliographical references that address the prob-
lem of hybrid stochastic filtering. . . . . . ... ... ... .. ... ...... 6

Hybrid stochastic filtering methods. . . . .. ... ... .. ... ... .... 62

Mean processing time, RMSE, and frequency of error in digital state using
the IMM, M°Hand MPHR filter. . . . ... .................... 80

Mean processing time and RMSE using CIHE, CIMM;, CIMM, and classical
IMM. .. 102

Xiv



List of Symbols

N nonnegative integers;

R real numbers;

€ is an element of;

£ equals by definition;

AT transpose of A;

Al inverse of A;

diag(A) diagonal of A;

N(A) null space of A;

Pr(a) projector with range N (A);
) Dirac-delta function at x;

sin(x), cos(x), tan(x) sine, cossine, and tangent of x;

p(x|y) conditional probability density function of x given y;

p(x | m,y) probability density function of x conditional on the mode m given y;
p(m|y) conditional probability mass function of x given m;

E[] mathematical expectation;

k discrete-time index;

T sampling interval;

XV



f
h

8

Ak-1, Br-1, Gr-1, Ck
Dy_q and dy_4

Xk

My

Up—1

dynamic or process nonlinear model in state space;
observation nonlinear model in state space;
nonlinear equality state constraint function;
matrices of the linear model in state space;
matrix and vector of the linear equality state constraint;
analog state vector;

digital state;

input vector;

process noise vector;

measurements or output vector;
measurement noise vector;

augmented state vector;

cost function of x;

state estimate;

sth a priori state estimate of the filter bank;
sth a posteriori state estimate of the filter bank;
output estimate;

constrained state estimate;

projected state estimate;

mode estimate;

sth a priori probability of modes;

sth a posteriori probability of modes;
transition probability matrix;

sth innovation of the filter bank;

likelihood function of innovation;

error covariance matrix;

innovation covariance matrix;
cross-covariance matrix;

constrained error covariance matrix;

projected error covariance matrix;

XVi



X1
UT

augmented error covariance matrix;
process noise covariance matrix;
measurement noise covariance matrix;
Kalman gain;

jth column of the sigma-point matrix Xj_4;

unscented transform function.

Xvii






List of Acronyms

CIMM Equality-constrained interacting multiple models;

EKF Extended Kalman filter;

KF Kalman filter;

IMM  Interacting multiple model;

IMMy Interacting multiple model with projected initial condition;
ISE  Integral squared error;

MAP Maximum a posteriori;

MM  Multiple model;

M3H  Multiple model multiple hypothesis;

M3HR Multiple model multiple hypothesis with Gaussian mixture reduction;
MCMC Markov chain Monte Carlo;

MHMF Multiple-hypothesis mixing filter;

MJS Markov jump system;

MMSE Minimum mean-square error;

PDF Probability density function;

PF Particle filter;

PMF Probability mass function;

GRMC Gaussian mixture reduction via clustering;

TPM Transition probability matrix;

UKF Unscented Kalman filter;

XiX






Chapter 1

Introduction

1.1 Motivation and Overview of the Field

In recent years, research on the state estimation problem has increased considerably
due to numerous applications in areas such as engineering, computer science, geo-
physics, economics, biology, among others. Engineering problems that can be solved
using state estimation include vehicle tracking [Fortmann, T., Bar-Shalom, Y., Scheffe,
M., 1983], aircraft navigation systems [Nordlund, T., Gustafsson, E., 2001], fault detec-
tion and isolation [He, X., Wang, Z., Liu. Y., Zhou, D. H., 2013] and air traffic control
systems [Lymperopoulos, 1., Lygeros, J., 2009]. Bayesian methods may be employed as
possible solutions to these problems and the most important algorithms are based on
the Kalman filter.

The Kalman filter (KF) has been used in the literature for state estimation for lin-
ear and Gaussian systems [Kalman, 1960], whereas, for nonlinear systems, Gaussian
approximation methods based on KF are generally used such as the extended Kalman
filter (EKF) [Jazwinski, A. H., 1970; Maybeck, P. S., 1979], the unscented Kalman fil-
ter (UKF) [Julier, S. J., Uhlmann, J. K., Durrant-Whyte, H. E,, 2000], as well as particle

1



MOTIVATION AND OVERVIEW OF THE FIELD

tiltering methods (PF) [Arulampalam, M. S., Maskell, S., Gordon, N., Clapp, T., 2002].

In many state estimation applications, dynamical systems are described only by
analog states, for example, the estimation of aircraft position, speed or attitude [Bach
R., 1991; Blackman, S., Popoli, R., 1999]. In other cases, a dynamic system can be rep-
resented by a hybrid dynamic model whose behavior is determined by the interaction
between the analog state x; and the digital state m. This type of model is known as a
hybrid system [Rong Li, X., 1996; Boers, Y., Driessen, H, 2000; Hwang, I. , Balakrishnan
H., Tomlin, C., 2006; Goebel, R., Sanfelice, R. G., Teel, A. R., 2009]. In the literature,
some authors refer to the analog state as the continuous state and the digital state as

the discrete state or operating mode.

In the literature it is relatively common to find research on control [Choi, H. H.,
2010; Liu, K., Yao, Y., Sun, D., Balakrishnan, V., 2012], identification [Juloski, A. Lj.,
Weiland, S., Heemels, W. P. M. H., 2005; Tian, Y., Floquet, T., Belkoura, L.,Perruquetti,
W., 2011] and state estimation of hybrid systems [Sigalov, D., Leiter, N., Kalish, N.,
Oshman, Y., 2012; Suzdaleva, E., Nagy, 1., 2011]. Over the past few years, a number
of engineering applications was modeled as hybrid systems including, for instance,
target tracking [Li, X. R., 2000; Hallouzi, R., Verhaegen, M., Kanev, S., 2009; Zhang, L.,
Pan, Q., Chen, T., 2010], fault detection and isolation [Hofbaur, M. W., Williams, B. C.
, 2004], navigation systems using global navigation satellite systems [Liu, W., Hwang,

L., 2012] and air traffic control systems [Antsaklis, P. J., 2000], among others.

In order to verify the relevance of the state estimation problem for hybrid systems in
the world scenario, we present a research in the Web of Science platform to analyze the
number of publications that address this problem. Figure 1.1 shows that the research
on state estimation of hybrid systems has attracted large interest in recent years. In the
national scenario, it is possible to mention some applications, such as aircraft tracking
using a radar in air traffic control systems [Santana, P. H. R. Q. A., Menegaz, H. M.,
Borges G. A, Ishihara, J. Y., 2010] and the estimation of the downhole pressure of gas-
lifted oil wells [Teixeira, B.O. S., Barbosa, B. H. G., Gomes, L. P, Teixeira, A. F,, Aguirre,
L. A, 2012].

The goal of the hybrid state estimation problem is to provide estimates for both

2



MOTIVATION AND OVERVIEW OF THE FIELD
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Figure 1.1: Number of publications with the topic state estimation hybrid systems searched on the Web of
Science platform. Date: 12/01/2018. This research was refined considering the period from 2001-2018
and selecting the following research areas: engineering, computer science and automation control systems.

the analog states and the digital states from a sequence of noisy sampled measure-
ments, Y.« = {y1,...,Yx}, and a hybrid stochastic dynamic model. The solution to
this problem may be obtained through the joint a posteriori probability density func-
tion (PDF), p (xx, mg|y1.x), of the analog and digital states. The main hurdle for solving
such a problem is that both the number of possible sequences of modes and the num-
ber of possible analog trajectories (and, consequently, the computational cost) grows
exponentially over time. This exponential growth in the number trajectories poses a
challenge in solving the hybrid state estimation problem. Approximate methods cir-
cumvent the exponential growth problem by managing the number of multiple hy-
potheses via different approaches. For example, trajectories may be merged when they
are similar and discarded when they are unlikely. Next, we present an example of the

problem of exponential growth of the number of hypotheses over time.

Example 1. Consider, for example, the time evolution of a dynamical system with a
digital state (mode) that can assume M = 3 possible values: white, black or gray, as
illustrated in Figure 1.2. Assume that the initial condition of the operating mode is
known at the time k = 0. At time k = 1, we have three possible operating modes
(MF = 31). If we want to keep track of the system trajectory, since we do not know
which mode is active at k = 1, the possible modes give rise to another set of three
modes. Consequently, at time k = 2, we have nine possible operating modes and

the corresponding analog trajectories. At time k = 3, we have twenty-seven system

3
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MO Ml M2 M3 N Mk

k=0 k=1 k=2 k=3 k
IMM (d = 1)

MPH(d > 1)

Figure 1.2: Exponential growth of the possible discrete trajectories of a stochastic hybrid system with
three possible modes: white, black or gray. In the state estimation process, the IMM algorithm only
employs information from the previous time while the M>H algorithm employs a limited history of d
steps behind.

trajectories. A

Existing methods for state estimation in hybrid systems are based on the multiple-
model (MM) or Monte Carlo approaches. The estimator of MMs assumes that the
dynamic system can be characterized by a set of M models that capture the possible
operating modes of the system [Bar-Shalom, Y., Challa, S.,Blom, H. A., 2005]. The es-
timate provided by the MM estimator is achieved by running M filters (one for each
mode) in parallel and combining their estimates [Hofbaur, M. W., Williams, B. C. ,
2004]. Alternatively, particle filtering (PF) methods approximate the joint a posteri-
ori PDF of the hybrid system using sampled trajectories [Boers, Y., Driessen, H, 2000;

4
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Doucet, A., Gordon, N., Krishnamurthy, V., 2001; Koutsoukos, L., Williams, B., 2003].
The PF employs a set of particles with corresponding weights to provide estimates for
both analog and digital states. The Table 1.1 shows how the hybrid stochastic filtering
problem can be classified considering the type of dynamic model used to represent the
hybrid system, or the approaches employed to estimate the analog and digital states
and mode transitions of the system.

Several techniques based on MM approaches have been used to estimate the states
of hybrid systems such as the generalized pseudo-Bayesian (GPB) algorithm [Acker-
son, G. A., Fu, K. S,, 1970], the detection and estimation method [Tugnait, J., 1982],
the residual correlation Kalman filter bank approach [Hanlon, P., Maybeck, P., 2000]
and the interacting multiple models (IMM) algorithm [Blom, H. A.P., Bar-Shalom, Y.,
1988; Mazor, E., Averbuch, A., Bar-Shalom, Y., Dayan, J., 1998]. These methods control
multiple hybrid estimates over time and require the running of a filter for each mode.
In particular, in order to address the exponential growth problem, the IMM algorithm
mixes the previous analog state estimates to generate new initial values for each filter
in the next time step. Other methods of adaptive MM estimator have been proposed
to reduce the number of hypotheses, so that they adapt the set of modes to a subset
of modes that are more likely to occur in a given scenario [Li, X. R., Bar-Shalom, Y.,
1996; Li, X. R., Zhi, X., Zhang, Y., 1999; Li, X. R., 2000]. In a more elaborate fashion, the
multiple models and multiple hypotheses filter (M3H) [Driessen, H., Boers, Y., 2001;
Boers, Y., Driessen, H, 2004] keeps a limited buffer of hypotheses by means of merging
and discarding hypotheses. In the M>H filter, merging occurs when two or more hy-
potheses share the same sequence of modes for the previous d time steps. In addition,
hypotheses are discarded whenever their likelihood is below a given threshold. The
IMM algorithm can be seen as a special case of the M®H algorithm with merging depth
d = 1 [Driessen, H., Boers, Y., 2001]; see Figure 1.2.
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MOTIVATION AND OVERVIEW OF THE FIELD

In the context of hybrid stochastic filtering, it is necessary to describe in which way
occurs the transitions between the different digital dynamics. In the MM approach, we
consider the static and dynamic case for the transitions between the operating modes
of the system. In the first case, we assume that a dynamic system is composed of vari-
ous operating modes, but without a transition between them, while, in the second case,
we present a dynamic system with transitions between the operating modes [Ristic, B.,
Arulampalam, S., Gordon, N., 2004; Hofbaur, M. W., 2005]. Thus, the dynamic MM
approach considers that a dynamic system can be represented by several analog dy-
namics and that a certain switching logic chooses a given dynamics. Such systems are
called as switched systems [Liberzon, D., 2003; Margaliot, M., 2006; Goebel, R., Sanfe-
lice, R. G., Teel, A. R, 2009]. In the case of the dynamic MM approach, we consider
that the transitions between the operating modes of the system depend on the analog
state variable and/or the digital state variable. For example, in the investigations per-
formed by [Seah, C. E., Hwang, 1., 2009; Hwang, I. , Balakrishnan H., Tomlin, C., 2006;
Benazera, E., Travé-Massuyes, L., 2009], the transitions between the modes depend on
the analog state of the system, whereas, in the studies developed by [Mazor, E., Aver-
buch, A., Bar-Shalom, Y., Dayan, J., 1998; Blom, H. A.P,, Bar-Shalom, Y., 1988; Boers, Y.,
Driessen, H, 2004], the transitions between the modes depend only on the digital state
variable. The latter approach is known as Markovian jump systems (MJSs) [Costa, O.

L., Guerra, S., 2002].

In this work, we are interested in investigating the problem of state estimation of
hybrid systems, proposing approximate solutions to solve practical problems. This re-
search topic has been receiving increasing attention for a variety of applications in the
last years. In this sense, preliminary studies performed in the author’s Master disser-
tation allowed the possibility of applying hybrid stochastic filtering algorithms to the
problem of detection of the potential related to the imagination of the movement [Eras,
W. Y., Erazo-Costa, F. ]J., Tierra-Criollo, C. J., Teixeira, B. O., 2012; Eras-Herrera, W. Y.,
2012]. In that work, we employed an interactive bank based on the IMM estimator
with two Kalman filters (IBKF) in parallel.

In the next subsections, we justify the investigation of two problems in the field of
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MOTIVATION AND OVERVIEW OF THE FIELD

state estimation of hybrid systems. First, we investigate an alternative method for the
merging step of the M®H algorithm to suboptimally solve the problem of state esti-
mation for Markov jump nonlinear systems. The proposed approach incorporates the
information from the analog state in performing the merging step, rather than using
only information from the digital states as in the M°H filter. Second, we address the
problem of state estimation for hybrid systems with equality constraints on the ana-
log states. In the literature, few works address the constrained state estimation for the

hybrid case. In this context, some issues are little explored in these investigations.

1.1.1 M?3H with Gaussian Mixture Reduction

The hybrid stochastic filtering problem is to provide estimates for both analog and dig-
ital states from a sequence of noisy sample measurements and such hybrid model. For
these systems, the filter should track an exponentially increasing number of possible
trajectories, posing a practical challenge to solve this problem. Therefore, approximate
solutions are often pursued, trading off the filter precision for processing time. In par-
ticular, to address the exponential growth problem, the M®H algorithm merges the hy-
potheses with the same sequence of modes in the last d steps. Thus, only information
from the digital state is employed to merge the hypotheses.

In the context of Markov state transitions, the mode sequence provides no useful in-
formation to the task of predicting future states given that the current mode is known.
This suggests that one should merge hypotheses based on the current state (both ana-
log and digital) rather than based on the sequence of digital states. In the particular
case of Markov jump linear systems, where dynamics is linear and mode transition is
Markovian and independent of analog states [Costa, O.L.V., Fragoso, M.D., Marques,
R.P, 2006], the exact posterior probability is given by a Gaussian mixture. This sug-
gests that available techniques for reduction of Gaussian mixtures may be well suited
to perform the merging operation.

The Gaussian mixture reduction by clustering (GMRC) approach optimizes the pa-
rameters of the reduced mixture according to the integral quadratic distance (ISD) cri-

terion [Schieferdecker, D., Huber, M. F,, 2009] and, to our knowledge, it is the best

8



MOTIVATION AND OVERVIEW OF THE FIELD

performing Gaussian mixture reduction method in approximation terms. Thus, we in-
vestigate the use of Gaussian reduction methods as an alternative for the merging step

of the M®H algorithm.

1.1.2 Constrained State Estimation

The Kalman filter provides optimal state estimates for linear and Gaussian systems.
However, additional information about the system in the form of state constraints may
be useful in improving the state estimates [Simon, D., 2010]. Various engineering appli-
cations regard dynamic systems satisfying certain constraints that arise from physical
laws, mathematical properties or geometric considerations. For instance, the tracking
of a ground vehicle in which the vehicle performs a constant velocity motion with a
tixed heading determined by the physical road the vehicle is on [Simon, D. J., 2006; Ko,
S., Bitmead, R.R., 2007; Teixeira, B. O. S., Chandrasekar, J., Palanthandalam-Madapusi,
H.J., Torres, L. A. B., Aguirre, L. A., Bernstein, D. S., 2008; Chao-Yang, J., Yong-An, Z.,
2013].

The problem of state estimation for non-hybrid linear and nonlinear constrained
systems has been widely discussed in the literature. As examples consider the scenar-
ios in which the dynamics and the disturbances are such that the state vector of the
system satisfies an inequality constraint [Rao, C. V., Rawlings, J. B., Lee, J. H., 2001]
or an equality constraint [Teixeira, B. O. S., Chandrasekar, J., Torres, L. A. B., Aguirre,
L. A., Bernstein, D. S., 2009]. The nonlinear Kalman filtering algorithms [Teixeira, B.
O. S, Torres, L. A. B., Aguirre, L. A., Bernstein, D. S., 2010; Kottakki, K. K., Bhushan,
M., Bhartiya, S., 2014] and the particle filtering (PF) methods [Shao, X., Huang, B.,
Lee, J. M., 2010; Ebinger, B., Bouaynaya, N., Polikar, R., Shterenberg, R., 2015] provide
approximate solutions for constrained state estimation.

For the hybrid systems case, few works address the problem of constrained state
estimation in the literature. For instance, recent works of [Mann, G., Hwang, ., 2013;
Kwon, C., Hwang, 1., 2016] addresses this problem for linear hybrid systems. In this
work, we investigate the problem of state estimation for hybrid systems with state

equality constraints.



PROBLEM STATEMENT

1.2 Problem Statement

The discrete-time hybrid stochastic systems in this dissertation follow the general dy-

namic model given by

X = fo (o1, g1, w1,k = 1), (1.1)
Ty = Pr{mg =s|m_ =7}, (1.2)
Ve = hmk(xk/ Vk, k)/ (13)

where x; € R" is the analog state vector and m; € M = {1,...,M} is the digital
state, where M is the number of operating modes of the system. The inputs are given
by u, € IR and the measurement vector is given by v, € R™. The functions f, :
R" x RP x RT x N — R" and hy,, : R" x R" x N — R are, respectively, the time-
varying process and observation models with relation to the mode my. All M pairs of
models (1.1) and (1.3) are assumed to be known. It is assumed that the process noise
wy € R7 and the measurement noise v, € R” are mutually independent, white random
vectors with zero mean and with known covariance matrices Q,,, and R,;,, respectively.
It is assumed that the transition probability matrix (TPM) IT € RM*M whose elements
are given by 7t;),, is known.

The hybrid stochastic filtering problem seeks to provide state estimates £ and i
given by meaningful statistics (such as the mean or the mode) from the joint a posteriori
probability density function (PDF) of x; and my given a sequence of noisy measure-
ments, V1.x = {y1,...,yx}, see Figure 1.3. The basis to the solution of this problem lies
in the following decomposition

o mi | yie) = Y, p(x | myge yra)p(mig | yix) (1.4)

all my
where p (X | M1, y1.¢) is the a posteriori PDF of xj conditional on the mode sequence
my and p (myx | y1.x) is the conditional probability mass function (PMF) of the mode.
Here the first term on the right-hand side of (1.4) may be computed by a classical
nonlinear filter given that the mode sequence is known. The second term is computed
applying Bayes’ rule to the result of the nonlinear filter. A key property that makes

this computation efficient is that mode transitions do not depend on the analog states.
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Figure 1.3: The hybrid stochastic filtering problem involves two steps: analog %x and digital 1 state

estimates. The hybrid state vector estimate can be represented by 2, = [£] m{] T Adapted from

[Hofbaur, M. W., 2005].

Otherwise, one would have to integrate over the prior state distribution when applying
Bayes’ rule.

In addition, we consider a special case of the hybrid stochastic filtering mentioned
above. The problem of state estimation for hybrid systems with state equality con-

straints seeks to provide analog state vector x; that satisfy the equality constraint
gmk (xk, k) — dmk. (1.5)

where the function g, : R”" x N — R®, and d,,, € R®, is assumed to be known.

1.3 Research Objectives

This work aims at investigating the problem of state estimation of hybrid systems,
proposing approximate solutions that attend the demands of practical problems. In
order to address the general research goal, the following specific objectives are identi-

fied:

1. To study the main methods of state estimation of hybrid systems presented in
Section 2.3. Compare suboptimal state estimation algorithms based on the multiple-

model and Monte Carlo approaches for hybrid systems.

11
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2. To investigate the use of Gaussian reduction methods to solve the exponential
growth problem in the number of hypotheses of the M®H algorithm. We also

want to explore the trade off between filter precision and processing time.

3. To investigate state estimation algorithms for hybrid systems with state equality
constraints. We want to discuss the special cases of hybrid constrained stochastic
tiltering for both linear and nonlinear systems and categorize into groups accord-
ing to the linear or nonlinear equality constraints as well as to the dependence of

the constraints on the operating mode.

1.4 Thesis Outline

This thesis is organized in five chapters and one appendix described as follows. Chap-
ter 1 presents the introduction to the research topic, describing the motivation and jus-
tification of this study, formulating the problem, describing the general research goal
and specific objectives and enumerating the contributions of this thesis.

Chapter 2 provides a literature review on non-hybrid stochastic filtering methods
and approximate methods for state estimation in hybrid systems. First, we present
the state estimation methods for non-hybrid systems. KF is presented as the optimal
solution for linear and Gaussian systems. For the nonlinear systems, UKF and PF are
reviewed. In addition, we present constrained state estimation methods for linear and
nonlinear systems. Second, we discuss an approximate solution to the hybrid stochas-
tic filtering problem, in the particular case of Markov jump systems. Furthermore, we
review several techniques based on multiple models approaches such as the IMM and
M?H algorithms, and methods based on particle filtering.

The next two chapters present the contributions of this thesis. Chapter 3 presents a
modified version of the M®H algorithm. We use Gaussian reduction methods as an al-
ternative for the merging step of the M®H algorithm. We present a simulated example
to illustrate the application of the proposed approach. Next, Chapter 4 considers the
problem of state estimation for hybrid systems with state equality constraints. We in-

vestigate three special cases of practical interest of this problem. We present a modified

12
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version of the IMM filter to enforce the equality constraint on the state estimates. We
present three simulated examples illustrate the application of the proposed method.

Finally, concluding remarks and suggestions of continuity are discussed in Chapter

1.5 Contributions of this Work

This thesis presents two contributions in the field of state estimation of hybrid sys-
tems. First, we employ an alternative method for the merging step of the M®H algo-
rithm. Second, we investigate special cases of state estimation for hybrid systems with
state equality constraints. We summarize each contribution and cite the corresponding

thesis chapters as follows:

1. M®H with Gaussian mixture reduction (Chapter 3):

e We present a modified version of the multiple models and multiple hypothe-
ses (M®H) algorithm to suboptimally solve the problem of state estimation
for Markov jump nonlinear systems. We employ Gaussian reduction meth-
ods as an alternative for the merging step of the M°H algorithm. In our
method, information from both the analog, £, and digital, 17, estimates at
time k are employed to define a metric to merge and eliminate hypotheses.
This comes as an extension of the original M®H, that only uses the informa-
tion of the mode sequence, y_ 4, from time k — d to time k to merge the

hypotheses.

e We provide an effective mechanism for users to explore the tradeoff be-
tween filter precision and processing time. Users may set their preferences
by defining the maximum number of mixture components Np,. Likewise,
a similar tradeoff may be observed for M°H by manipulating the merging
depth d. A target tracking problem is used to illustrate the application of
this algorithm.

13
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e Publication related to this contribution: [Eras-Herrera, W. Y., Mesquita, A.

R., Teixeira, B. O. S., 2017].
2. Constrained state estimation (Chapter 4):

e We address the problem of state estimation for hybrid systems with state
equality constraints. We investigate special cases of this problem for both
linear and nonlinear systems. We categorize such a problem into three groups
according to the linear or nonlinear equality constraint as well as to the de-

pendence of the constraint on the operating mode 1.

e We present two suboptimal algorithms for equality constrained state esti-
mation for hybrid systems. For the mode-independent equality constraints
case, we present the necessary conditions on the initialization and dynamics
for the classical interacting multiple models (IMM) algorithm to yield state
estimates satisfying a linear equality constraint for linear systems. However,
for linear and nonlinear systems, the mode-dependent equality constraints
must be enforced along time. We present a modified version of the IMM
filter to enforce the equality constraint on the state estimates. We compare
these algorithms by means of two examples, namely, a water tank system
in which the sum of the levels of the two tanks is constrained so that mass
is conserved, and the tracking of a ground vehicle in which the vehicle per-

forms a constant velocity motion with a fixed heading.

e Manuscript to be submitted [Eras-Herrera, W. Y., Mesquita, A. R., Teixeira,
B.O.S., 2018].
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Chapter 2

A Review on Non-Hybrid and Hybrid
Stochastic Filtering Methods

In this chapter, we review the theoretical and technical bases for the state estimation
in non-hybrid and hybrid systems. First, we present the state estimation methods for
non-hybrid systems and we review the constrained state estimation methods for non-
hybrid systems in Section 2.1. Then, we discuss the need to find an approximate so-
lution to the state estimation problem of hybrid systems and we review the recursive
solution for hybrid systems under the structure of Markov jump systems in Section 2.2.
Finally, in Section 2.3, we present several hybrid stochastic filtering methods. We cat-
egorize this suboptimal solution into two groups, namely, multiple-model approaches

and particle filtering methods.
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2.1 Non-Hybrid Stochastic Filtering Methods

2.1.1 Recursive Bayesian Approach

Consider the discrete-time non-hybrid linear system given by

Xk = f(xk—lluk—llwk—llk_]‘)/ (21)
ye = hxg v k—1), (2.2)

where x; € R" is the state vector, u;_1 € R? is the input vector and y; € R is the
measurement vector. The functions f : R” x R? x RTx N — R" and h : R" x R" X
IN — RR™ are, respectively, the process and observation models. These models (2.1)
and (2.2) are assumed to be known. It is assumed that the process noise wy € R7 and
the measurement noise v, € R" are mutually independent, white random vectors with
zero mean and with known covariance matrices Qy and Ry respectively.

The state estimation problem consists of finding a recursive estimate £ for the state
x; of a dynamic system from a set of measurements ;.4 = {y1,...,yx} and a dynamic
model. The recursive Bayesian approach estimates the a posteriori probability density
function p(xg|y1.x) recursively along time using a set of measurements y.x and a dy-
namic model. This PDF incorporates all the statistical information characterizing a
complete solution to the state estimation problem. We employ the recursive Bayesian
approach to obtain the a posteriori PDF p(xy|yy1.x) of the state vector. The a posteriori
PDF can be obtained in two steps: the forescast step and the data-assimilation step [Bar-
Shalom Y., Li X. R., Kirubarajan T., 2001; Simon, D. J., 2006; Candy, J.V., 2009]. These
steps are described below.

In the forescast step is obtained the a priori PDF p(xx|y1.4_1) of the vector of states xj

using the Chapman-Kolmogorov equation given by

o(xkly1x—1) = /P(xk|xk—1)P(xk—1|]/1:k—1)dxk—1z (2.3)

where p(x_1|y1.k_1) is the a priori PDF in time k — 1, p(xx|xx_1) is the PDF of the state

transition obtained using the process model (2.1).
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In the data-assimilation step, the information yy is incorporated to update the a priori

PDF p(x|y1.x—1) using Bayes’ theorem. This PDF is given by

(yilxx) o (xkly1x-1) 74
o(Ykly1x-1) @4

p(xelyrg) = 2

where p(yk|xy) is the likelihood funtion of innovations, p(xx|y1.x_1) is the a priori PDF
in time k obtained in the forescast step and p(yx|y1.x_1) is a normalization constant.
The a posteriori PDF p(xy|y1.x) obtained using the equations (2.3) and (2.4) provides
an optimal state estimate following some optimality criterion, for instance, the mini-
mum mean-square-error (MMSE) state estimator or the maximum a posteriori (MAP)

estimator, respectively, described by

MSE £ B {xilyru} 2.5)
02 argmax p(xely) 26
k

In this section, we present some stochastic filtering techniques described in the lit-
erature. The Kalman filter algorithm is presented as an optimal solution for the state
estimation problem of linear and Gaussian systems [Kalman, 1960]. However, particle
tiltering methods [Arulampalam, M. S., Maskell, S., Gordon, N., Clapp, T., 2002] and
Gaussian approximation methods based on the KF such as the unscented Kalman filter
[Julier, S. J., Uhlmann, J. K., Durrant-Whyte, H. E., 2000] can be used as suboptimal al-
gorithms for the state estimation problem of nonlinear systems. These algorithms are

described below.

2.1.2 State Estimation for Linear Systems

Consider as a special case of (2.1)-(2.2) the time-varying discrete-time linear system

given by

Xy = Ag_1Xg-1+ By 11+ wi_1, (2.7)

vk = Cexp+ o, (2.8)

where A;p_1 € R"™", B,_; € R"*? and C;, € R™*" are assumed to be known.
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The Kalman filter

The Kalman filter (KF) is the optimal recursive state estimator for such linear and Gaus-
sian system [Bar-Shalom Y., Li X. R., Kirubarajan T., 2001]. This algorithm makes two
assumptions: Gaussianity and linearity. The first assumption states that the a posteri-
ori PDF can be represented by a Gaussian, p(xi|y1x) = N (%, Pi*), being completely
characterized by two parameters, the mean and covariance [Kalman, 1960], whereas
the second assumption states that the process and observation models, described in
the equations (2.1) e (2.2), are known linear functions and wy_1 and v, are assumed
to be white, Gaussian, zero-mean, and mutually independent with known covariance
matrices Qy and Ry , respectively [Ho, Y.C., Lee, R.C.K., 1964]. The KF comprises two
steps: the forescast step and the data-assimilation step. The KF algorithm is described as

follows.

Algorithm 2.1.1. The Kalman filter [Kalman, 1960]

Initialize the filter with the state estimate Xy and the corresponding covariance matrix Py* =

E[(x0 — %0) (x0 — %0)].

1. Forescast step. Obtain the a priori state estimate %y ;_y and the covariance matrix P]f‘i_l

om the information X;_q and P;**,. This step is given b
k—1 pisg Y

Rk—1 = Ar—1%k—1 + Br_11k—1, (2.9)
M = AP AL+ Qe (2.10)
I = Cfypro1, (2.11)
PY = G Cf + Ry, (2.12)
pY = ,f|’,§_1c,"f, (2.13)

where P,f Y is the innovation covariance matrix and Pky is the cross covariance matrix.

These matrices are given by Pﬁ_léE[(xk — Rppe—1) (xk — J%k|k_1)T], PkyyéE[(yk — 7x)

A X A A~
(v& — )] and PV 2E[ (% — 1) (v — 90) 7).
2. Data-assimilation step. Incorporate the information of a new measurement yy, and obtain

18
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the a posteriori state estimate % and the covariance matrix P[~. This step is given by

K, = PY(PY)H, (2.14)
e = Fgro1 + Kelye — i), (2.15)
P = P, -~ KPIKL. (2.16)

where Ky is the Kalman gain matrix and P**=E[(x; — %) (xx — £)T]. Increment k and

return to step 1.

]

The notation £;;_; indicates an estimate of £ at time k based on information avail-
able up to and including time k — 1. Note that, for convenience of notation, we employ
the notation k|k — 1 in this Section to discriminate the estimates of the two steps of
Kalman filtering algorithms. However, this notation is not used in hybrid filtering

algorithms.

2.1.3 State Estimation for Nonlinear Systems

The solution to the state estimation problem for nonlinear systems, (2.1)-(2.2), faces the
challenge that the a posteriori PDF p(xi|y1.x) cannot be completely characterized by its
mean £; and covariance P* [Daum F., 2005]. Hence suboptimal algorithms are em-
ployed to circumvent this problem. Some approaches approximate the a posteriori PDF
from a small set of samples. For instance, the unscented Kalman filter uses a small
number of samples chosen deterministically to approximate the mean and covariance
of the random variables, whereas the particle filter uses a large number of random
samples (Monte Carlo) to approximate the PDFs of the random variables. These ap-

proaches are described below.

The Unscented Kalman filter

The unscented Kalman filter (UKF) provides a suboptimal recursive solution to the
state estimation problem for nonlinear systems [Julier, S.J., Uhlmann, J.K., 2004]. We

present here the UKF following the proposed systematization in [Menegaz, H.M.T.,
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Ishihara, J.Y., Borges, G.A., Vargas, A.N., 2015]. The UKF employs the unscented trans-
formation (UT), that approximates the posterior mean §§ € R™ and covariance matrix

P¥ ¢ R™*™ of a random vetor y obtained from the nonlinear transformation
y = h(x1,x2,¢). (2.17)

where x; and x; are a priori independent random vectors, with mean £; € Rf and
%, € R} and covariance matrices P*1*1, P22 ¢ R"*" and c is a deterministic vector,
are assumed to be known.

Now, we define the augmented state vector & € R”, #i = ny + ny as

X
g2 |7, (2.18)
X2

and the augmented covariance matrix PXX € R"*" as

X1X1
Pfo"& A P 01’11 XMy

(2.19)

X2 X
Oi’lin’ll P 272

UT is based on a set of deterministically chosen samples known as sigma points
X; € R" and associated weights 7j, j = 1,...,27.. The UT algorithm is described as

follows.

Algorithm 2.1.2. Unscented transform [Menegaz, H.M.T., Ishihara, ].Y., Borges, G.A., Var-
gas, A.N., 2015]

1. Choose the sigma points X; and associated weights vy; as

X = flion + Vi [(PHV2 = (P12 (2.20)
1
v = 27 (2.21)

where X; is the jth column of the matrix X € R™?", (.)1/2 is the Cholesky square root
and 1127 € RY? is the matrix with elements equal to 1. The sigma points (2.20) can
be partitioned as

R

A

N (2.22)
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where X¥ and X*2 € R™?", Then, each sigma point X is propagated through h
yielding
Vi =h(%9,2%c). (2.23)

2. Obtain the state estimate 1 and covariances PYY and P*Y from (2.23) as

2i1
9=3_7Y (2.24)
j=1
2i1
Py = Z% 7 1Y -9 [V -9)", (2.25)
j=
2i1
Py =Y [ 3| [V -9]T (2.26)
j=1

In this work, for simplicity, we define the unscented transformation as the function UT

comprising the set of equations (2.20)-(2.26), that is,
[9, Y, ;Y] = UT (%, PX,c, h)

where Xy_q and PF*, are given by (2.18) and (2.19), respectively.

O

The UKF comprises two steps: the forescast step and the data-assimilation step. The

UKEF algorithm is described as follows.

Algorithm 2.1.3. The unscented Kalman filter [Teixeira, B. O. S., Chandrasekar, J., Torres, L.
A. B., Aguirre, L. A., Bernstein, D. S., 2009]

Initialize the filter with the state estimate Xy and the corresponding covariance matrix PJ* =

E[(X() — 3?0)()(0 — on)

T].

1. Forecast step. Obtain the a priori state estimate Xy _q and the covariance matrix Pl

klk—1
(g1, P 1,0] = UT (%1, B i1, ), (227)
96 Y, PY) = UT (fip1, P4, 0,h) (2.28)
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where UT refers to Algorithm 2.1.2, where the augmented state vectors and covariance

matrices of the equations (2.27) and (2.28) are respectively given by

5 X1 iz PEry Ouxg |
Xp_q = , P A TR T, i=n+q. (2.29)
_wk,1 qun Q-1
X . PXr 0
2 A klk—1 % A klk—1 nxr ~
Xklk—1 = , Pk|k_1 = | ,i=n+r. (2.30)
| Tk rxn Ry

2. Data-assimilation step. Obtain the a posteriori state estimate % and its corresponding

covariance matrix P,fx

K, = PY(PY)1, (2.31)
B = fppo1 T Kelye — 9x), (2.32)
P = P, — KPKL. (2.33)

Increment k and return to step 1.

Particle Filtering Methods

The particle filter (PF) has been used to estimate the states of nonlinear systems [Aru-
lampalam, M. S., Maskell, S., Gordon, N., Clapp, T., 2002]. The PF is classified as a
Bayesian method implemented by means of Monte Carlo (MC) simulations [Doucet,
A., Johansen, A. M., 2008]. The Sequential Monte Carlo (SMC) approach uses a set of
particles with their associated weights to represent the a posteriori PDF p(x¢|y1.4). In
particle filtering algorithms, the main limitation of this approach is to sample the true
probability distribution p(x) from a set of particles, x. ~ p(x). Thus, the sampling
method can be used to generate weight particles from a candidate distribution g(x)
which approximates the distribution p(x), that is, x; ~ g(x). The sequential impor-
tance sampling (SIS) algorithm is a Monte Carlo method that uses importance sam-
pling to approximate the a posteriori PDF [Ristic, B., Arulampalam, S., Gordon, N.,
2004].

The particle filters considers that the a posteriori PDF p(xi|y1.x) can be character-

N

i_1r where x;,i = 1,...,N is a set of

ized by discrete random measurements {x!, w! }
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particles with associated weights w;'(,i = 1,...,N. Thus, the a posteriori PDF can be

approximated by
N . .
p(xXely1x) = ) wié (xk - Xi) , (2.34)
i=1

where §(.) is the Dirac delta function and the weights w! are chosen using the princi-
ple of importance sampling [Gustafsson, F,, 2010]. These weights are calculated recur-
sively as follows

i P(I/k|xi)r’(xk\xi,1)

w, = wj,_ . , (2.35)
S TEA P S

where p(y|x!) is the likelihood function of innovations, p(xi|xi_,) is the a priori prob-
ability and g(xg|x}_;, yx) is the candidate distribution. The main limitation of particle
tiltering methods using importance sampling is the growth of the weight variance over
time generating an effect known as particle degeneration [Candy, J.V., 2009]. That is,
after a number of iterations, most of the weights tend to zero, resulting in particles of
no significance for the distribution to be represented. Thus, the effective number of
particles Ne¢ is a measure that quantifies the degeneracy of the particles. This number
is given by

Rt =

Y1 (w;'()z

where N is the estimate of the effective number of particles. We employ a resampling

(2.36)

step to circumvent the problem of particle degeneration. The resampling preserves the
particles with large weights (high probability), whereas the particles with low weights
are eliminated [Chen, Z., 2003]. The resampling involves a mapping of the random
measurements {x!, w! } to the random measurements {x;{*, %} with uniform weights.
The new set of particles {xi* }fil is generated by resampling of the approximate dis-
crete representation of p(xx|y1.x), see equation (2.34). The criterion used to apply the
resampling is Nett < Nihreshold, Where Nipreshold is a threshold chosen by the user [Ris-
tic, B., Arulampalam, S., Gordon, N., 2004].

The different approaches based on the particle filters can be considered as special

cases of the SIS algorithm. These special cases are derived from the SIS algorithm by
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varying the choice of the candidate distribution and/or the resampling step. Thus,
there are several particle filter algorithms that solve the state estimation problem for
nonlinear systems, such as bootstrap particle filter, auxiliary, regularized, MCMC, with
annealing, among others [Doucet, A., de Freitas, ].E.,, Gordon, N., 2001]. Different meth-
ods of resampling can be used in particle filters such as resampling: multinomial, resid-
ual and systematic, among others [Carpenter, J., Clifford, P, Fearnhead, P., 1999; Liu,
J.S., Chen, R., 1998; Kitagawa, G., 1996].

The generic PF comprises four steps: the particle generation step, the weight calcu-
lation step, the resampling step and combining the estimates step. The PF algorithm is

described as follows.

Algorithm 2.1.4. Particle filters [Arulampalam, M. S., Maskell, S., Gordon, N., Clapp, T.,
2002]

Initialize the set of particles and their associated weights, {x{,wy}._;.

, N
1. Particle generation. Generate a set of particles with uniform weights {x;c, %} ) from
1=
the candidate distribution q(xi|x,_,,yx) which approximates the a posteriori PDF p(xi|y1.x).
In the case of the bootstrap particle filter, the transition probability is used as the candidate

distribution, q (x|xt_,yx) = p (xk|xt_,). The particles are given by
xi~ q (wlxve) (237)

2. Weight calculation. Incorporate the information of a new measurement yy to calculate
the importance weights of each particle. For the bootstrap particle filter, the weights are
obtained using the likelihood function p(y|x.) (2.35) and then normalize the particle
weights. This step is defined by

D = wi_p(yelxg), (2.38)
. il
k
wy = —, (2.39)
Zil\ilw;c

3. Particle resampling. Perform the resampling process when the effective number of parti-

cles is less than the resampling threshold, Neff < Niireshold-
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4. Combining the estimates. Obtain the state estimate Xy and the covariance matrix P,fﬁ

N . .
B = ) wixg, (2.40)
i=1

z

. . . T
P = Y wh (o — ) (xh— Fe) - (2.41)
i=1

Increment k and return to step 1.

2.1.4 State Estimation for Equality Constrained Systems

The Kalman filter provides optimal state estimates for linear and Gaussian systems.
However, additional information about the system in the form of state constraints
may be useful for improving the state estimates [Simon, D., 2010]. There are many
constraints: equality, inequality or interval, linear or nonlinear, time invariant or time
varying.

Many algorithms have been developed for constrained state estimation. These al-
gorithms can be categorized into five classes: the measurement-augmented approach
[Tahk, M., Speyer, J. L., 1990], the estimate projection approach [Simon, D., Chia, T,
2002], the projected sigma-point approach [Vachhani, P., Narasimhan, S., Rengaswamy,
R., 2006], the quadratic programming approach [Rao, C. V., Rawlings, ]. B., Mayne, D.
Q., 2003] and the truncated probability density function approach [Simon, D. J., 2006].
The investigation developed by [Teixeira, B. O. S., Aguirre, L. A., Torres, L. A. B., 2010]

presents a comparative view of these approaches.
The Kalman filter with Projected Initial Condition

Consider the time-invariant linear system given by

Xy = Axgq+ Bug 1+ wgq, (2.42)
yr = Cxp+ oy, (2.43)

Assume that, in addition, the state vector x; satisfies the equality constraint
Dx, =d. (2.44)
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The necessary conditions for the classical Kalman filter to provide state estimates
satisfying the equality constraint (2.44) are presented in [Teixeira, B. O.S., Chandrasekar,
J., Torres, L. A. B., Aguirre, L. A., Bernstein, D. S., 2009]. The next result presents suf-
ticient conditions for the state vector of the linear time-invariant (LTI) system charac-
terized by A, B, and C to satisfy the equality constraint (2.44). In this case, we say that
the dynamics is compatible with the equality constraint [Rong Li, X., 2016].

Lemma 2.1.1. [[Teixeira, B. O. S., Chandrasekar, |., Torres, L. A. B., Aguirre, L. A., Bernstein,
D. S., 2009], Proposition 3.1] For the non-hybrid LTI system with matrices A, B, and C,

assume that

DQ = Osxq/ (2.45)
DA = D, (2.46)
DBup 1 = Ogy1. (2.47)

Then, for all k > 1, the equality state constraint (2.44) is verified, where d = Dxy.

The next result presents the sufficient conditions on the initialization and dynamics
for the Kalman filter to yield estimates £ (2.15) and P;* (2.16) satisfying DX, = d and
DPF* = Osxp.

Proposition 2.1.1. [[Teixeira, B. O. S., Chandrasekar, |., Torres, L. A. B., Aguirre, L. A.,
Bernstein, D. S., 2009], Proposition 4.3] For LTI dynamic systems, assume that the conditions
of Lemma 2.1.1 hold and that the initial estimates satisfy DXy = d and DPJ* = Ogxy. Then,
the classical Kalman filter yields estimates, Xy (2.15) and P}* (2.16) satisfying DX = d and
DP = Ogxn, Vk.

Remark 2.1.1. In order to initialize the KF such that D£g = d and DPy* = Osx, are verified,

one may choose arbitrary values Xo and Py* and project them by

X0 = pN(D)fo—l—d_, (2.48)
P = PP (2.49)

where d = DT(DDT)~1d is an offset and the projector is given by
Pr(p) = Inxn — WDT(DWDT)~'D. (2.50)
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If W = I,xn, then the projector is orthogonal.

The Equality-constrained Kalman Filter

Consider again the time-varying linear system given by the equations

Xp = Ap—1Xg—1 + Br_qup—1 +wi_q,
v = Cixg+ oy,

Assume that the state vector x; is known to satisfy the time-varying equality con-

straint
Dkxk = dk. (2.51)

The equality-constrained Kalman filter (ECKF) projects the state estimate £ given
by (2.15) onto the hyperplane defined by (2.51) by means of the projection step [Simon,
D., Chia, T., 2002; Teixeira, B. O. S., Chandrasekar, J., Torres, L. A. B., Aguirre, L. A.,
Bernstein, D. S., 2009]. The ECKF algorithm is described as follows.

Algorithm 2.1.5. The equality-constrained Kalman filter [Simon, D., Chia, T., 2002]
Initialize the filter with the state estimate Xy and the corresponding covariance matrix Py™ and

the parameters of the equality constraint Dy and dy.
1. Perfom steps 1 to 2 of the KF filter (Algorithm 2.1.2) with ﬁk_lzﬁlf_l and Pi‘flzpﬁq.

2. Projection step. Obtain the constrained state estimate 3?5 and the covariance matrix P]f P

dp = Dy, (2.52)
p¥ = DW.Df, (2.53)
P = w.Df, (2.54)
KY = PP, (2.55)

where %y is given by (2.15) and Wy € R™"*" is assumed to be positive definite and is often

set to Wy = P*, where P~ is given by (2.16). Then £ and P, are given by
2 = o+ K (d—dy), (2.56)
PP = pr— KE(PI)(KD)T (2.57)
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g(xk bk —1) =dy 4

ac .
forescast step and Tklk—1 o “k
roiection method . data-assimilation step — =
PIo) Pher L= P

CIKF

Figure 2.1: Diagram of the constrained innovation Kalman filter. The projection step is incorporated
during the forecast step.

Increment k and return to step 1.

The Constrained Innovation Kalman filter

The constrained innovation Kalman filter (CIKF) [Mann, G., Hwang, 1., 2013] enforces
the equality constraint (2.51) by projecting the unconstrained state prediction onto the
constraint hyperplane. The equality constraint on state estimate is incorporated during
the forecast step, see Figure 2.1. The CIKF comprises two steps: the forescast and projec-

tion step and the data-assimilation step. The CIKF algorithm is described as follows.

Algorithm 2.1.6. The constrained innovation Kalman filter [Mann, G., Hwang, 1., 2013]
Initialize the filter with the state estimate Xy and the corresponding covariance matrix Py™ and

the parameters of the equality constraint Dy and dy.

1. Forescast and projection step. Obtain the a priori constrained state estimate ’21C<| (1 and

the covariance matrix Pﬁil

’21C<|k—1 - Ak—lﬁli—1 + Br—1Ug—1—

Ji (Dx (Ak—1%5_q + Br_qu_1) — d), (2.58)

Sy = (1= kD) (A BES AL +Qer) U= D', (259)
Uk = Cifye_rs (2.60)
PV = CeP G+ Ry, (2.61)
P = PG (2.62)
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where J, = W-ID] (DyW~1D]) ! Wisa positive definite matrix. For details on the
equations (2.58)-(2.59), see [Mann, G., Hwang, 1., 2013].

2. Data-assimilation step. Obtain the a posteriori constrained state estimate X and its

corresponding covariance matrix Pp*c

K. = PY (P, (2.63)
fe = o T Ky — 9x), (2.64)
PP = PS, — KePUKg (2.65)

Increment k and return to step 1.

O
The Equality-constrained Unscented Kalman Filter
Consider again the nonlinear discrete-time system given by the equations
X = f(Xeo1, g1, Wi, k= 1),
Yk = h(xe vk —1),
Now assume that the state vector x; satisfies the nonlinear equality constraint
g(xx, k) = dx. (2.66)

The algorithms based on the unscented transformation provide suboptimal solu-
tions to the equality-constrained state estimation problem for nonlinear systems. These
approaches do not guarantee that the nonlinear equality constraint (2.66) is exactly sat-
isfied, but they provide approximate solutions.

The equality-constrained unscented Kalman filter (ECUKEF) yields state estimates
that approximately satisfy the nonlinear equality constraint (2.66) [Teixeira, B. O. S.,
Chandrasekar, J., Torres, L. A. B., Aguirre, L. A., Bernstein, D. S., 2009]. In this case,
the projection step of ECKF given by (2.52)-(2.57) is extended to the nonlinear case by

means of UT, which is given by
[cik, pid, P,fd} = UT (%, P¥,0,g). (2.67)
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where the state estimate £ € R" and the covariance matrix P* € R"*" are given by
(2.32) and (2.33), respectively. From (2.67), K and P P are given by (2.55), (2.56)
and (2.57), respectively. The ECUKF algorlthm is descrlbed as follows.

Algorithm 2.1.7. The equality-constrained unscented Kalman filter [Teixeira, B. O. S., Chan-
drasekar, J., Torres, L. A. B., Aguirre, L. A., Bernstein, D. S., 2009]
Initialize the filter with the state estimate Xy and the corresponding covariance matrix Py™ and

the parameters of the equality constraint g(xy, k) and dy.

1. Forecast step. Obtain the a priori state estimate Ry, _q and the corresponding covariance

matrix P,f‘i 1
[£k|k—1rplf‘i_110] = UT (J%k—ll P]ffl/ uk_l,f> ’ (2.68)
[0, PV, PY] = UT (&1, Py, h), (2.69)

where Xy_q and PF* | are respectively given by

~P xXxXp

x . P 0

N I a | k=1 Ynxq

Xp_1 = , P = , (2.70)
Wi—1 qun Qk—1

2. Data-assimilation step. Obtain the a posteriori state estimate £y and the corresponding

covariance matrix P,fx

Ke = PP, (2.71)
B = R+ Kelye — Jx), (2.72)
P = R, - KPIKL, (2.73)

3. Projection step. Obtain the constrained state estimate 3?5 and the covariance matrix P]f P

i PP = UT (2, P,0,9), (2.74)
KP = PP, (2.75)
2 = fH+K(d—dy), (2.76)
PP = P — K (P (KP)T. (2.77)

Increment k and return to step 1.
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2.2 Steps of the Hybrid Stochastic Filtering Problem

In this work, we address approximate solutions to the state estimation problem of hy-
brid systems. In the particular case of Markov jump systems, where the mode tran-
sitions at time k are assumed to be independent of mg_1 and x(.x given the current
mode 1. The solution to this problem may be obtained through the joint a posteriori
PDF of x; and my (1.4) given a sequence of noisy measurements, the whose equation is
repeated here for convenience, that is,

o m | yie) = Y, p(xe | myge yra)e(mag | i)

all 1y
where p (xi | M.k, y1.%) is the a posteriori PDF of x; conditional on the mode m; and
p (myx | y1.x) is the conditional probability mass function (PMF) of the mode sequence
my.. Figure 2.2 shows how the two terms of the right-hand side of (1.4) are obtained.

The approaches used to treat each term of the joint a posteriori PDF are presented below.

p(myx_1 | Y1x-1) p(x-1 | ml;k—l/]/l:k—lki
' Management
prlt:/([:l(i)geizon of hypotheses
o1 | Yis1) p(xk—1 | ”Il:krylzkl)
l Forescast
step
Mode o(xk | Mg, Y1k—1)
correction e
P - Data—asstselrnllatlon
p(mix | yax) ' i
Analog stat
prediction and correction
o(xk | Mg, Y1)
Combination
o (X, 1y | Yr:x)
Digital state Analog state

-~ > €«

Figure 2.2: Diagram of the steps of the hybrid stochastic filtering problem shows how the two terms of
the right-hand side of (1.4) are obtained.
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2.2.1 Analog State Estimate

From the first PDF of (1.4), p(xx | m1.4, y1.), it is possible to estimate the analog state
of the hybrid system. This PDF can be obtained using a filter bank (FB), for example.
The FB is based on the dynamic MM approach [Hide C., 2004] and is classified as a
Bayesian method in [Mehra R.K., 1972]. The filter bank is compounded by a set of fil-
ters that runs in parallel. Different algorithms can be used to compose each bank filter
[[Bar-Shalom Y., Li X. R., Kirubarajan T., 2001], p. 441-465], [Chaer W. S., Bishop R. H.,
Ghosh J., 1997; Mazor, E., Averbuch, A., Bar-Shalom, Y., Dayan, J., 1998]. For example,
for linear systems, we employ the Kalman (KF) filter [Kalman, 1960], whereas, for non-
linear systems, we employ Gaussian approximation methods based on the KF as the
extended Kalman filter (EKF) [Jazwinski, A. H., 1970; Maybeck, P. S., 1979] and the un-
scented Kalman filter (UKF) [Julier, S. J., Uhlmann, J. K., Durrant-Whyte, H. F., 2000],
as well as particle filtering methods [Arulampalam, M. S., Maskell, S., Gordon, N.,
Clapp, T., 2002]. With relation to particle filtering, there are several algorithms based
on this method, for example, particle filters: Bootstrap, auxiliary, regularized, Markov
chain Monte Carlo (MCMC), with annealing, among others [Doucet, A., de Freitas, J.F,,
Gordon, N., 2001; Boers, Y., Driessen, H, 2000].

In this work, we employ the unscented Kalman filter to compose the bank because
such a filter uses a statistical linearization technique that uses a reduced number of
samples chosen deterministically [Lefebvre, T., Bruyninckx, H., De Schutter, J., 2002].
In the case of the Extended Kalman filter we employ an analytical linearization of the
system model. Thus, the UKF approach is presented as a more efficient algorithm
to estimate the states of nonlinear systems [Simon, D. J., 2006]. The KF, UKF and PF

approaches are reviewed in Section 2.1.

2.2.2 Digital State Estimate

The second term of (1.4) estimates the digital state of the hybrid system. For such, the

conditional PMF of the mode, p(m1 | y1.1), is obtained using the Bayes’ theorem given
by
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P (Yelmik, Yie—1) p (x| yre—1) p(Y1:x-1)
myq. . = !
o(mix | yix) 0 (Vlyik—1) p(y1x—1)
o (Yklmig yik—1) p (mix|yie—1) (2.78)

o (Vklyrx—1) ’

where p (yx|m1.x, y1.6—1) is the likelihood function of innovations, p (m1.x|y1.x_1) is the
discrete modal probability and p (yx|y1.x—1) is a normalization constant. The elements
of the equation (2.78) are analyzed as follows. We consider that the likelihood function
of innovations is a measure that quantifies the difference between the current observa-
tion yx, and the estimated observation ;. This measure is given (at least approximately,

if non-Gaussian) by

1
(27r)"vdet (P

1 _
o (Yklmig yix—1) = \/ exp _E(ﬂk)T(Pkyy) i (2.79)
where 7 = Yk — Jx is the innovation and ng is the innovation covariance matrix. For

the second term of (2.78), the modal probability is defined by

p (milyre—1) = 7P (M1g—1]y1x-1), (2.80)

where TTj); is the transition probability of the mode my_; = i to the mode m; = j and
p(myx_1|Y1:k—1) is the a priori probability of the modes. The third term of the equation
(2.78), p (yx|y1:k_1), is independent of x; and mj and can be eliminated in the process
of normalization of probabilities [Bar-Shalom, Y., Challa, S.,Blom, H. A., 2005; Ristic,
B., Arulampalam, S., Gordon, N., 2004; Hofbaur, M. W., 2005].

Transitions between modes

In the context of hybrid stochastic filtering is necessary to describe the way in which
the occurrence of transitions between different digital dynamics. We consider that the
transitions between the operating modes of the system depend on the analog state vari-
able and/or the digital state variable. For example, in the investigations performed by
[Seah, C. E., Hwang, 1., 2009; Hwang, I. , Balakrishnan H., Tomlin, C., 2006; Benazera,

E., Travé-Massuyes, L., 2009], the transitions between modes depend on the analog
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state of the system, whereas, in the studies developed by [Mazor, E., Averbuch, A.,
Bar-Shalom, Y., Dayan, J., 1998; Blom, H. A.P., Bar-Shalom, Y., 1988; Boers, Y., Driessen,
H, 2004], the transitions between modes depend only on the digital state variable. The

types of mode transitions of the system can be illustrated in the example below.

Example 2. Consider the dynamic system given by a bouncing ball under the action of
acceleration of gravity. This system has two analog states, the position and the velocity
of the ball, and the digital states are the jumping count. In this system, the transitions
between modes depend on the digital state variable because the mode transition occurs
when the ball touches the ground. On the other hand, we consider the dynamic system
of heating a house. This system has an analog state, the temperature of the house, and
two operating modes controlled by a thermostat, natural cooling and forced heating.
Depending on the preset maximum and minimum temperature limits, the thermostat
switches the heater on and off. In this system, the transitions between modes depend

on the analog state variable. O

In this work, we consider that the mode transitions are independent of analog
states. A hybrid system with such property is known in the literature as a discrete-
time Markov jump system. Thus, we assume that the transitions between modes are
modeled by a Markov chain and occur according to the transition probability matrix

I1, as defined in Section 1.2.

2.2.3 Limitation of the Hybrid Stochastic Filtering Problem

The main hurdle of solving the hybrid stochastic filtering problem is that both the
number of possible sequences of modes and the number of possible analog trajectories
(and, consequently, the computational cost) grow exponentially over time, as shown in

Figure 1.2. In order to analyze this question, we employ the first PDF of the equation
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(1.4) at the time k — 1 using the Total Probability Theorem? given by

M

p(xk_1|mix=j, y1ix—1) = Y_ p(Xk_1|myp_1=1, m1x=j, y1.k—1)
i=1

p(myg—1=i|mi=j, Yy1:x—1), (2.81)

where the two terms in the equation (2.81) are described below. In the first term, the

mode my is independent of x;_1 if mq.,_1 is known, then this term can be rewritten as

o(Xk—1|m1k—1=1, M=}, Y1:6-1) = P(Xk—1|M1:k—1=1, Y1:—1), (2.82)

where p(xx_1|myx_1=i,Yy1_1) is a posteriori PDF of x;_; conditional on the mode
mix_1. In the second term of the equation (2.81), p(myx_1=i|mix=j,y14_1) is the
conditional probability of the mode. Using Bayes” Theorem, this probability can be

expressed as

: . p(myg=jlmye—1=1, y14-1) P (M14-1=1|Y1:6-1)
M1k_1=1\M1.+=71,Y1-k— = ; ’
p(myg—1=i|mi=j, Y1:k—1) (M= ly1_1)
p(myg_1=i|y1.4—1)
= Tl - , 2.83
j p(mix=jly1.—1) ( )

where p(myx=j|mix_1=i,y1.x—1) = 77;- Finally, the equations (2.82) and (2.83) are

replaced in (2.81) yielding
M .
o(X1lmg=j,y1x-1) = Y wip(X_1|mix—1=0Y1.x-1), (2.84)
i=1
where

i & o PUmga=ilyie )
I p (mya=jlyr—1)

(2.85)

In the equation (2.84), the PDF p(x_1|m1.x_1=i,y1.4_1) is a sum of M weighted
PDFs. This sum of PDFs is related to a tree of possible mode sequences due to the

lack of knowledge of the transitions between modes of the system (Figure 1.2). As a

2The Total Probability Theorem can be defined for conditional probabilities such as

P(AIC) = Y. P(AIC N B,)P(B(C),
s=1

where Bs are events that partition a sample space and C is an event independent of B;.

35



HYBRID STOCHASTIC FILTERING METHODS

consequence, the number of parameters required to characterize the a posteriori PDF
grows exponentially over time [Ristic, B., Arulampalam, S., Gordon, N., 2004]. To cir-
cumvent this practical limitation, hybrid stochastic filtering methods employ different

mechanisms to yield approximate solutions.

2.3 Hybrid Stochastic Filtering Methods

Several techniques have been used to estimate the states of hybrid systems, such as
the interacting multiple-model (IMM) algorithm [Blom, H. A.P., Bar-Shalom, Y., 1988],
the multiple-model and multiple-hypothesis (M>H) algorithm [Driessen, H., Boers, Y.,
2001; Boers, Y., Driessen, H, 2004], the multiple-hypothesis mixing filter (MHMF) [San-
tana, P. H. R. Q. A., Menegaz, H. M., Borges G. A., Ishihara, J. Y., 2010], the bootstrap
particle filter, [Boers, Y., Driessen, H, 2000], the Rao-Blackwellized particle filter [Hen-
deby, G., Karlsson, R., Gustafsson, F., 2010], and the combination of the IMM approach
with the particle filter IMMPF) [Wang, X., Xu, M., Wang, H., Wu, Y., Shi, H., 2012].

Some of these approaches are reviewed below.

2.3.1 The Interacting Multiple-Model Algorithm

The Interacting Multiple-Model (IMM) filter provides an approximate recursive solu-
tion to the state estimation problem for unconstrained hybrid systems [Blom, H. A.P,,
Bar-Shalom, Y., 1988]. The IMM approach has been one of the main approaches to
estimate states of hybrid systems [Blom, H. A.P,, Bar-Shalom, Y., 1988; Mazor, E., Aver-
buch, A., Bar-Shalom, Y., Dayan, J., 1998]. In order to address the exponential growth
problem, the IMM algorithm mixes the previous analog state estimates to generate new

initial values for each filter in the next time step. For such, we approximate (2.82) as

p(xialmig 1 = s,y11) 2 N (50,575, (2.86)

where A represents a Gaussian distribution with mean %} , and its corresponding

covariance, P]ffls ,8 =1,..., M. Thus, we replace the approximation of the equation
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(2.86) into (2.84) yielding

M
o (i lm yia) = Y wiN (350, B ) - (2.87)
s=1

The IMM is a five-step algorithm: the mode probability prediction step, the mixing of
estimates step, the analog state prediction and correction step, the mode probability correc-
tion step and the combining the estimates step, as shown in Figure 2.3. In this algorithm,
the two terms of the right-hand side of (1.4) are treated as follows. The first term,
p(xx | myx, y1.x), is addressed in the mixing of estimates and in the prediction and correc-
tion of estimates steps, whereas, the second term, p (1. | y1.x), is processed in the mode
probability prediction step and updated in the mode probability correction step. We assume
that the analog state estimates are obtained from the weighted combination of the re-
cursive estimates of the filter bank, whereas, the digital state estimate is obtained as
being the most likely a posteriori mode.

Figure 2.3 summarizes the IMM algorithm in five recursive steps. In the first step of
the IMM, the a priori probability of the mode, wy_1,8 =1,..., M, are obtained. In the
second step, the previous state vector estimates £] ,, the matrix covariance P;] and

r . « e
| 1+t =1,..., M, are mixed to generate new initial values for

the mixing probabilities yi
each filter, the state vector estimates ¥, ; and the corresponding covariance P*]. In
the third step, the filter bank provides the estimate of the state vector 92;;, the covariance
matrix P;*°, the innovation 77{ £ y — 9 and the innovation covariance matrix P;””.
In the fourth step, the a posteriori probability of the mode 7}, is obtained using Bayes’
theorem. In the fifth step, the estimates provided by the filter bank and the a posteriori

probability of the mode are combined to obtain the estimate of the state vector £y, and

associated covariance P} at time k. The IMM algorithm is described as follows.
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Algorithm 2.3.1. The interacting multiple-model filter [Blom, H. A.P., Bar-Shalom, Y., 1988]
Initialize each sth filter with the state estimate 5 and corresponding covariance Py*, and the

mode probability v§,s = 1,..., M.

1. Mode probability prediction. Obtain the a priori probability of the modes w; ,,s =

1,..., M, and obtain the mixing probabilities y;‘il,

r
slr 7ts|r’)/k_1

Mg = , (2.88)
! Wy

where 71y, is given by (1.2) and vy;_, is the r-th a posteriori probability of the modes,
r =1,..., M. The a priori probability of the modes is given by
M
wi = r—z1 T\ Vh1- (2.89)
2. Mixing of estimates. Obtain the mixed estimates X, | and P;7, s = 1,..., M from
the interaction of the M filters by mixing the previous state vector estimates X | and

covariance matrix P,] with the respective mixing probabilities ],1211,

M

TR DN THA A (2.90)
r=1

5 M s|r T

B = Loy [P+ ($ -5 (B -5 @o
r=1

3. Analog state prediction and correction. For each estimate X,_,, run a filter to estimate
the state vector 9?,5{, the covariance matrix P,z‘x's , the innovation 17;, and the innovation

covariance matrix Pg Y. Each s-th filter is given by

{5 B PP =
Filter (x,i_l, PXS e, fhs, Qs, Rs) , (2.92)

where each “Filter” uses one of the M possible pairs of stochastic models fs, hs, Qs and

Rs. In principle, any filter algorithm with prediction-correction structure can be used.

4. Mode probability correction. Obtain the a posteriori probability <y} of each estimate using

the Bayes’ theorem as follows:

s ps (1) wi _
N o= S, (2.93)
Y1 Pr(ﬁk)wkq
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where wy,_, is given by (2.89) and ps(17) is the likelihood function of innovations, given

(at least approximately, if non-Gaussian) by

S 1 1 S S\—=1_s
ps(r) = = exp [_E(nk)T(PZy )| (2.94)
(2mr)™ P

5. Combining the estimates. Combine the M estimates to obtain the state estimate X and

its corresponding covariance P* at time k as

M
2= Y 7%, (2.95)
s=1
M T
P =Yook [P+ (8- %0 (5 - 20T (296)
s=1

and obtain the estimate 1i1 as being the most likely mode a posteriori. Increment k and

return to step 1.

O

Recent work [Santana, P. H. R. Q. A., Borges G. A, Ishihara, J. Y., 2010] illustrates a
modified version of the IMM algorithm. In this work, the transition probability matrix

correction step, I, is incorporated after the fifth step of the classical IMM algorithm.

2.3.2 The Multiple-Model and Multiple Hypothesis Algorithm

The multiple models and multiple hypotheses (M>H) filter provides an approximate
solution to the state estimation problem of hybrid systems [Driessen, H., Boers, Y.,
2001; Boers, Y., Driessen, H, 2004]. In order to address the exponential growth problem,
the M®H keeps a limited buffer of hypotheses by means of merging and discarding
hypotheses. In the M®H filter, merging occurs when 2 or more hypotheses share the
same sequence of modes for the previous d time steps. In addition, hypotheses are
discarded whenever their likelihood is below a given threshold. The IMM algorithm
can be seen as a special case of the M®H algorithm with merging depth d = 1, see
Figure 1.2. Note that, the merging depth d is a tuning parameter.

At this point, we define the buffer of hypotheses H; = {H}, r =1,...,N}, N < M,

where each hypothesis H is defined by a tuple (1fi_ ., £}, P;™") composed, respec-
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tively, of a sequence of the last d modes, a mean vector and a covariance matrix for the

analog state PDF and the hypothesis probability p; = p(HY).

The M>H is a six-step algorithm: the hypotheses probability prediction step, the hy-
potheses merging step, the hypotheses pruning step, the analog state prediction and correc-
tion step, the hypotheses probability correction step and the combining the estimates step,
as shown in Figure 2.5. In this algorithm, the two terms of the right-hand side of (1.4)
are treated as follows. The first term, p(xy | 1.4, Y1.%), is addressed in the prediction and
correction of estimates step, whereas, the second term, p(m1.x | y1.x), is processed in the
hypotheses probability prediction step and updated in the hypotheses probability correction
step. In addition, the M®H approach incorporates the hypotheses merging and hypotheses
pruning steps instead of the mixing of estimates step in the IMM approach. We assume
that the analog state estimates are obtained from the weighted combination of the re-
cursive estimates of the filter bank, whereas, the digital state estimate is obtained as

being the most likely a posteriori mode.

Figure 2.5 summarizes the M®H algorithm in six recursive steps. In the first step
of M®H, the s-th sequences of modes 7§ ., is propagated one step ahead into all
possible future sequences and the resulting a priori probabilities fi; are obtained, as
illustrated in the example provided in Figure 2.4. In the second step, from the set of
resulting hypotheses, those hypotheses with the same sequence of modes in the last
d steps are merged (see Figure 2.4). Note that the number of hypotheses grows by a
factor of M in the propagation step. The merging step may reduce this number up
to M times and guarantees this number is upper bounded by M“. In the third step,
the following criteria for hypothesis pruning are considered: i) the hypotheses with
probability lower than the elimination threshold given by 0 < ¢ < 1 are eliminated
and ii) the number of hypotheses is kept under Npmax by eliminating hypotheses in
increasing order of probability. The threshold € and Nmax are tuning parameters to be
chosen by the user. In the fourth step, the filter bank provides the estimate of the state
vector £}, the covariance matrix P, ", the innovation 73, and the innovation covariance
matrix Pky Y associated with each one of the hypothesis H} € Hj. In this step, a filter

is run for each one of the N, hypothesis. In the fifth step, the a posteriori probability
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of the sequence of modes p;, is obtained from (7} _ ) using Bayes’ theorem. In the
sixth step, the estimates provided by the filter bank and the a posteriori probability of
the hypotheses are combined. The M®H algorithm is described as follows.

Example 3. Consider the temporal evolution of a dynamical system with a digital state
(mode) that can assume M = 2 possible values: white or black, as illustrated in Figure
2.4. We assume that the merging depth is d = 2. In the propagation of the hypotheses
at the time k — 2, we have four hypotheses. At time k — 1, we have eight hypotheses,
while at the time k, we have sixteen possible hypotheses of the system. Note that, the
hypotheses H} and H;® are merged because they have the same sequence of modes (in

red). ]

IS = (il ., =111}
HI5 |

Figure 2.4: Evolution of the sequence of modes of hypotheses from time k — d to time k for a system
with two operating modes: white (0) and black (1). The binary code of each hypothesis represents the
sequence of modes. The merging depthis d = 2. p(siz}_ ) is the probability of the sequence of modes.
In this illustrative example, the hypotheses HY and H}® are merged because they have the same sequence
of modes (in red). The dashed line (- -) indicate the hypothesis probability correction (step 5).
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Algorithm 2.3.2. The multiple models and multiple hypotheses filter [Boers, Y., Driessen, H,
2004]

Initialize the initial buffer of hypotheses Ho and the initial hypothesis probability p? and set
the tuning parameters as follows: the merging depth d and the pruning threshold € and the

maximum number of hypotheses Nmax.

1. Hypotheses probability prediction. For all Hy | € Hy_q, generate all sequences 1y, ;.
such that . | = W, 1, M} =jands = (r—=1)M+j,j=1,...,M; store
e

the new hypotheses in a buffer Hy = {(1h_,,, %;_, P.7)} and update their a priori

probability to

Pk = T(iPk—1/ (2.97)
where i = 1.

2. Hypotheses merging. Merge the hypotheses from H with identical sequences 1t} _ ;. by
keeping that one with the largest a priori probability p}. Normalize the probabilities of

the remaining hypotheses.

3. Hypotheses pruning. Discard the hypotheses Hy from buffer Hy with pi, < e. Next, if
the size of the resulting buffer of hypotheses is larger than Nmax, the less likely hypotheses
are eliminated to comply with the desired maximum size. Normalize the probabilities of

the remaining hypotheses.

4. Analog state prediction and correction. For each hypothesis H;, € Hy, run a filter to
estimate the state vector 9?,5(, the covariance matrix P]fx’s, the innovation 17;, and the inno-

; - L PYYS S (45 65 DXXS o ic o
vation covariance matrix P”” and make H} = (1i}_ ., %3, P, "). Each filter is given

by
(25, PX, 5 PY*} = Filter <9€,ﬁ71, PSS, £ s, Qs, RS> , (2.98)

Here each “Filter” uses one of the M possible pairs of stochastic models fs, hs, Qs and
RS'
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5. Hypotheses probability correction. Obtain the a posteriori probability p; of hypothesis

H;, using the Bayes’ theorem as follows:

vio= ol (2.99)

Lijen, o (1) Py

where ps (1) is the likelihood function of innovations, given (at least approximately, if

non-Gaussian) by

S 1 1 S 5\ — s
ps(11p) = Tt {—2(771()T(P13y )| (2.100)
(27r)m | P

6. Combining the estimates. Combine the estimates from the buffer of hypothesis to obtain

the mean and covariance of the corresponding Gaussian mixture

f= Y pidl, (2.101)
HZGHk

P = Y [P (8- %) (520 (2102)
HiEHk

and return X and P} as the state estimate and its corresponding covariance at time k
and the estimate 11 as being the most likely mode a posteriori. Increment k and return to

step 1.

2.3.3 The Multiple-Hypothesis Mixing Filter

The Multiple-hypothesis mixing filter (MHMF) provides state estimates for hybrid sys-
tems. This approach proposes to improve the performance of hybrid stochastic filter-
ing through the ability to track multiple hypotheses. The main features of the MHMF
approach are the generalization of the mixing of estimates step of the IMM algorithm
considering d > 1, and the correction of the transition probability matrix (TPM) [San-
tana, P. H. R. Q. A., Menegaz, H. M., Borges G. A, Ishihara, J. Y., 2010]. To update the
TPM is used the Quasi-Bayesian algorithm [Jilkov, V., Li, X., 2004].
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The MHMEF approach generalizes the mixing of estimates step of the IMM algorithm
considering d > 1. This step is treated as follows. First, we consider that in the mixing
of estimates step of the classical IMM the merging depth is d = 1. This step is given by

the equation (2.87), repeated here for convenience,
M

p(xealmig = j,y1a1) = Y wip(xeamige—1 = i, y1x-1), (2.87)
i=1

where w;{ is given into (2.85) and p(xx_1|my.x_1 = i, y14_1) is given in (2.86). Consider
now that the mixing of estimates step of the IMM (2.87) can be modified. Then, we

assume that p(xx_1|my.x_1 = i, y1.4_1) is given by

Md
p(xx_1lmix_1 =i, y16-1) = Y p(Xk—1lmin—1 = i, Hi 1, y1:4-1)
s=1
p(Hp_{|mix—1 = i, Y1:4-1), (2.103)

where H;_, is a particular hypothesis being tracked between two mixing steps of esti-

mates. The second term of the equation (2.103) is given by

p(mig—1 = i|H{_1, y1ix—1) p(H;_;y1:-1)
p(myg—1 = i|y14-1) '

p(Hi_q|mig—1 =i, y14-1) = (2.104)

The MHMEF is a seven-step algorithm: the hypotheses probability prediction step, the
hypotheses pruning step, the mixing of hypotheses step, the analog state prediction and cor-
rection step, the hypotheses probability correction step, the combining the estimates step and
the transition probability matrix correction step, as shown in Figure 2.6. In this algorithm,
the two terms of the right-hand side of (1.4) are treated as follows. The first term,
p(xx | M1k, Y1), is addressed in the hypotheses merging and prediction and correction of
estimates steps, whereas the second term, p(m | y1.¢), is processed in the hypotheses

probability prediction step and updated in the hypotheses probability correction step.
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Figure 2.6 summarizes the MHMEF algorithm in seven recursive steps. In the first
step of MHMTF, the s-th sequences of modes 71}, is propagated one step ahead into
all possible future sequences and the resulting a priori probabilities p; are obtained.
In the second step, the hypotheses with probability lower than the elimination thresh-
old given by 0 < & < 1 are eliminated. In the third step, the previous state vec-
tor estimates £_,, the matrix covariance P,”7 and the mode probability predictions
wy_q,v = 1,..., M, are mixed to generate new initial values for each filter, the state
vector estimates £; ; and the corresponding covariance P;*7. In the fourth step, the
filter bank provides the estimate of the state vector J?i, the covariance matrix P]f % the
innovation 17;, and the innovation covariance matrix P]fy # associated to each one of
the hypothesis H; € Hj. In this step, a filter is run for each one of the N, hypothesis.
In the fifth step, the a posteriori probability of the sequence of modes pj, is obtained
from f(rit;_ ;) using Bayes’ theorem. In the sixth step, the estimates provided by the
tilter bank and the a posteriori probability of the hypotheses are combined. In the sev-

enth step, the estimation of the transition probability matrix, I, is obtained using the

Quasi-Bayesian algorithm. The MHMEF algorithm is described as follows.

Algorithm 2.3.3. The multiple-hypothesis mixing filter [Santana, P. H. R. Q. A., Menegaz,
H. M., Borges G. A., Ishihara, ]. Y., 2010]

Initialize the initial buffer of hypotheses Ho, the initial hypothesis probability pY, the inicial
transition probability matrix 11y, and set the tuning parameters as follows: the merging depth

d and the pruning threshold e and the maximum number of hypotheses Nmax.

1. Hypotheses probability prediction. For all Hy | € Hjy_1, generate all sequences 1t _ ;..

such that . | = Wy, 1, M} =jands = (r =1)M+j,j =1,...,M; store

the new hypotheses in a buffer Hy = {(5_,,, %1, P. )} and update their a priori

probability to
Pr = 70(iPk—1/ (2.105)
where i = 1it_;.

2. Hypotheses pruning. Discard the hypotheses H;}, from buffer H; with p; < e. Normalize
the probabilities of the remaining hypotheses.
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3. Mixing of hypotheses. Use the state vector estimates %, _,, the covariance matrix P,
the probability of the modes estimate, <y _,, and the probability of the mode sequence, pi,
to obtain the estimates of the state vector, £, and the covariance matrix P, for the s

filter, s = 1,..., M. For such, the probability of mixing the hypotheses, w;._, is given
by

Ao

Wy, = % (2.106)
R

cs = Y plmug = jIH}, yiu—1) A4, (2.107)
s=1

wherer =1,...,Mes =1,...,R. The mixture of hypotheses is given by

M

o= Y w5y, (2.108)
r=1
n(Hg_y)

X1 = Z xk 1P( Hll<—1|m1:k71:i/y1:k—1); (2.109)
Hi 1) l .

k-1 = Z szx (Hi_q1lmik—1 =i, y1-1), (2.110)

. o < ~ T
Py = Z W1 [Alrc—l + (%o — %) (f — 5 ] ;o (2110)
r=1
where n(Hy_, ) is the number of hypotheses at timek — 1, e p(H! r_1Mik—1 = i, Y1k—1)

is given by (2.104).

4. Analog state prediction and correction. For each hypothesis H;, € Hy, run a filter to
estimate the state vector J?i, the covariance matrix P,fx’s, the innovation 17;, and the inno-

vation covariance matrix P"” and make H} = (#§_,,, %3, PX™°). Each filter is given
by

(£, X%, s, PV} = Filter (xk RS £, QS,RS> ) (2.112)
Here each “Filter” uses one of the M possible pairs of stochastic models fs, hs, Qs and Rs.

5. Hypotheses probability correction. Obtain the a posteriori probability pj of hypothesis
H} using the Bayes’ theorem:

rp = ps(ﬂk)p"j — (2.113)
ZH,{er 0i () i
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where ps(1x) is the likelihood function of innovations, given (at least approximately, if

non-Gaussian) by

1 1 5\ —
e e [0 ] e
2 P

6. Combining the estimates. Combine the estimates from the buffer of hypothesis to obtain

the mean and covariance of the corresponding Gaussian mixture

f= Y pial, (2.115)
HZEHk

B = Y pp [P (8- %) (8- 20T (2.116)
HieHy

and return X and P} as the state estimate and its corresponding covariance at time k

and the estimate 1i1 as being the most likely mode a posteriori.

7. Transition probability matrix correction. Use the quasi-Bayesian algorithm to estimate
the transition probability matrix, T1, from a sequence of noisy measurements [Jilkov, V.,
Li, X., 2004]. We assume that the TPM whose row is given by row;(I1y), where row
means the i-th row of Iy, can be modeled by a Dirichlet distribution. In this algorithm,

we assume that the probability of the mode is given by

Piko1 = p(myg = jITTx_1, Yrx—1), (2.117)
1 = [pig.--pamp] (2.118)

wherei,j =1,..., M. The likelihood function of innovations is given by

Mg = pyelmix = j, T 1, y1a—1), (2.119)
Ax = Mg Amgds (2.120)
e (2.121)

0F Ih 1A
We assume that the Dirichlet distribution is defined by
Kik = [D‘l\i,k . --‘Xj|i,k} / (2.122)

50



HYBRID STOCHASTIC FILTERING METHODS

where j is the j-th column of Iy, i,j = 1,..., M. In the initialization step, we assume

the following conditions

aip = [“1|i,o x -“M|i,0} , (2.123)
M
Yo = Yo (2.124)
j=1
. 1
o = ——wp, (2.125)
7i,0
if the a priori information of the TPM is unknown, we can choose a;g = [1,...1], as

a consequence, 7o) = % Finally, the recursive estimate of the transition probability

matrix, 1y, is given by

M
gix = Y 147y [/\j,k—ﬁgkfl/\k,], i=1,..., M, (2.126)

j=1

M 0 :

],k—lgz,k

R = Xip—1+ , (2.127)
l ]; ! Y 181k

Mo
frix = & . 2.128
1,k Jg k”_’)’i,O ik ( )

Increment k and return to step 1.

2.3.4 Particle Filters

The particle filter (PF) approach has been used to estimate states of hybrid systems.

Particle filtering methods approximate the joint a posteriori PDF of the hybrid system

using sampled trajectories [Boers, Y., Driessen, H, 2000; Doucet, A., Gordon, N., Kr-
ishnamurthy, V., 2001; Koutsoukos, L., Williams, B., 2003]. The PF employs a set of

particles with corresponding weights to provide estimates for both analog and digital

states. One of the limitations of particle filtering is the choice of the candidate distribu-

tion, q(xg|xt_,,y¢),i=1,..., N, that represents the true joint a posteriori PDF.

In the hybrid stochastic filtering, the PF approximates a joint a posteriori PDF of xj

and my, p(xx, mg | y1.¢). In this case, the PF provides the estimates of the analog and

digital states. On the other hand, to deal with the non-hybrid stochastic filtering, the
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PF aims to generate an approximation of the a posteriori PDF of xi, p (x|y1.). In this
case, the PF only provides the analog state estimate. A brief review on particle filtering
in the non-hybrid context is presented in Section 2.1.3. We recommend to read section

2.1.3 before reading this Section.

Among the various particle filtering algorithms, we employ the bootstrap particle
filter with systematic resampling, for being the most feasible algorithm compared to
other PF approaches due to its simplicity and performance [Candy, J.V., 2009]. The
bootstrap particle filter employs the state transition PDF, p (x|xi ;),i =1,...,N, as
a candidate distribution. In the filtering process, this approach uses a high number of
particles, implying a high computational cost [Ristic, B., Arulampalam, S., Gordon, N.,

2004; Gustafsson, E., 2010].

The particulate filter can be considered as a hybrid stochastic filtering algorithm,
in which both analog and digital state estimates are obtained [Boers, Y., Driessen, H,
2000; Doucet, A., Gordon, N., Krishnamurthy, V., 2001; Koutsoukos, L., Williams, B.,
2003]. Alternatively, some particle filtering methods combine the particle filter and the
interacting multiple-model estimator (IMMPF) to estimate the analogue and digital
state, respectively [Boers, Y., Driessen, H., 2003; Hendeby, G., Karlsson, R., Gustafs-
son, E, 2010; Kawamoto, K., 2010; Wang, X., Xu, M., Wang, H., Wu, Y., Shi, H., 2012].
Thus, the IMMPF approach treats the two terms of (1.4) as follows: the analog state
estimate is obtained from a filter bank composed of particle filters, whereas the digital
state estimate is obtained using the Bayes Theorem, as described in Section 2.2. In the
Rao-Blackwellized particle filter case, the first term of (1.4) is obtained employing the
Kalman filter bank, whereas the second term is obtained using the particle filter [Hen-
deby, G., Karlsson, R., Gustafsson, F., 2010]. Details of the equations of the IMMPF
and Rao-Blackwellized algorithms are not presented in this work but can be found in
[Wang, X., Xu, M., Wang, H., Wu, Y,, Shi, H., 2012; Hendeby, G., Karlsson, R., Gustafs-
son, E., 2010].

The PF approach proposed by [Doucet, A., Gordon, N., Krishnamurthy, V., 2001]
divides the hybrid stochastic filtering problem into four steps: the particle generation

step, the weight calculation step and the particle resampling step and the combining the
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estimates step, as shown in Figure 2.7. At this point, we assume that a particle, x;, and

the particle mode, my, are defined by z = [xlf mﬂ T. Thus, the set of particles with

N

;_1» where N is the number of

their respective modes and weights is given by {z, w;c}
particles.

Figure 2.7 summarizes the PF algorithm in four recursive steps. In the first step,
we generate a set of particles with their respective modes from the candidate dis-
tribution, {Z;(_l}fil. In this step, we assume that the particle weights are uniform,
{w;'cfl = % }j\il In the second step, the information of a new measurement, vy, is in-
corporated to calculate the importance weights of each particle, {w! }fil In the third
step, we performed the resampling process from random measures {z_,, w;'cfl }f\il to
random measures {z;;, w}{}f\il when the effective number of particles, N, is less than
the threshold chosen by the user, Nireshold- In this step, the particles with higher proba-
bility are preserved. In the fourth step, the set of particles and their respective weights,
{z;;, w};}il, are combined to obtain the analog state estimate, £, and the correspond-

ing covariance P and the mode estimate 71 is obtained as being the most likely a

posteriori mode. The PF algorithm is described as follows.
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Algorithm 2.3.4. Particle filters [Doucet, A., Gordon, N., Krishnamurthy, V., 2001]
Initialize the set of particles with their respective modes and associated weights ,{z}, wé}fil
and set the tuning parameters as follows: the number of particles N and the the resampling

threshold Nireshold-

1. Particle generation. Generate a set of particles with their respective modes, {z! 1}Z v
from the candidate distribution, q(x|x. |, yx). In particular, the bootstrap particle filter
employs the state transition PDE, p (x|x._,), as the distribution candidate. This step is

given by

Zho1~ o (%elxi ). (2.129)

where p (x¢|x._,) is obtained using the process model (1.1). Note that, the particle

N
. , i1
weights are uniform, {wkfl = N}'—l'

2. Weight calculation. Incorporate the information of a new measurement, yy, to calcu-
late the importance weights of each particle. In the bootstrap particle filter case, the
weights are obtained using the likelihood function, p(yk|x};) and then normalize the par-

ticle weights. This process is given by

@ = wip(velxp), (2.130)

. Wt

wh, = e, (2.131)
Zz 104

3. Particle resampling. Perform the resampling process from random measurements
; . N . _iN .
{zi_1 wi_y},_, to random measurements {z},w;},_, when the effective number of
particles, Nz, is less than the threshold chosen by the uset, Nipyesnoa- For such, we employ
the systematic resampling method. This method selects the most important particles (high
probability) to generate the random measurements {z}'{, w;{}fil with uniform weights.

First, a uniform distribution is generated, U (O, %) Then, an integer less than 1 is

selected. This number corresponds to the reference value of the distribution. From this
reference the distribution is divided into intervals uniformly. The resampling process
is performed until the effective number of particles, Neg, is less than the resampling

threshold, Niimiar- The details of the equations in the systematic resampling method are
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not presented in this work but can be found in [Arulampalam, M. S., Maskell, S., Gordon,
N., Clapp, T., 2002].

4. Combining the estimates. Combine the set of particles and their respective weights,
{z;'(, w;'(}il, to obtain the analog state estimate, Xy, and the associated covariance matrix

PF*. These estimates are given by

B = Y wix, (2.132)
i=1
- I i o\
P = Z W, (xk - xk) (xk - xk) : (2.133)

i=1

Increment k and return to step 1.

2.3.5 Constrained Hybrid Methods

The hybrid stochastic filtering problem is to provide estimates for both analog and
digital states from a sequence of noisy sample measurements and such hybrid model.
However, additional information about the system in the form of state constraints may
be useful for improving the state estimates.

Existing methods for constrained state estimation in hybrid systems are based on
the multiple-model or Monte Carlo. Some methods based on MM approaches are
presented in [Pannetier, B., Benameur, K., Nimier, V., Rombaut, M., 2005; Zhang, M.,
Knedlik, S., Loffeld, O., 2008; Mann, G., Hwang, 1., 2013; Kwon, C., Hwang, 1., 2016]
Alternatively, particle filtering method is presented in [Kravaritis, G.., Mulgrew, B.,
2008].

Some investigations address the problem of equality-constrained state estimation
in hybrid systems. For instance, in the study developed by [Mann, G., Hwang, I,
2013], the constrained innovation hybrid estimator (CIHE) is proposed to address the
problem of equality-constrained state estimation for linear hybrid systems using the
IMM approach. The proposed approach considers that the equality constraint vary
with the operating mode. The CIHE algorithm is described as follows.
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The CIHE is a six-step algorithm: the mode probability prediction step, the mixing of
estimates step, the analog state prediction and correction step, the mode probability correction
step, the combining the estimates step and the mode transition probability correction step, as
shown in Figure 2.8. In this algorithm, the two terms of the right-hand side of (1.4) are
treated as follows. The first term, p(xx | 714, y1.%), is addressed in the estimate mixing
and the filter bank steps, whereas, the second term, p(myx | y1.¢), is processed in the
mode probability prediction step and updated in the mode probability correction step. We
assume that the analog state estimates are obtained from the weighted combination of
the recursive estimates of the filter bank, whereas, the digital state estimate is obtained
as being the most likely a posteriori mode.

Figure 2.8 summarizes the CIHE algorithm in six recursive steps. In the first step of
the CIHE, the a priori probability of the mode, w}_,,s = 1,..., M, are obtained. In the
second step, the previous state vector estimates £}° ;, the matrix covariance P, " and
the mode probability predictions w;_,,7 = 1, ..., M, are mixed to generate new initial
values for each filter, the state vector estimates £;° ; and the corresponding covariance
P]f X 15 €. In the third step, the filter bank provides the estimate of the state vector £7¢, the
covariance matrix P;™*, the innovation 7 and the innovation covariance matrix P}*"".
In the fourth step, the a posteriori probability of the mode 73, is obtained using Bayes’
theorem. In the fifth step, the estimates provided by the filter bank and the a posteriori
probability of the mode are combined to obtain the estimate of the state vector £, and
associated covariance P;*¢ at time k. In the sixth step, the mode transition probabilities
7jj;, are obtained using the stochastic linear guard conditions. The CIHE algorithm is

described as follows.
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Algorithm 2.3.5. The CIHE filter with state equality constraint [Mann, G., Hwang, I., 2013]
Initialize each sth filter with the state vector estimate £}, the covariance matrix Py™*, the mode

probability vj,s = 1,..., M and the initial transition probability matrix, I1o.

1. Mode probability prediction. Obtain the a priori probability of the modes w; ,,s =

1,..., M, and obtain the mixing probabilities yi‘il,

T
slr TCs1r V-1

ulr = ) (2.134)
! (A

where 11, is given by (1.2) and 7y;_, is the r-th a posteriori probability of the mode,
r =1,..., M. The a priori probability of the modes is given by

M
Wi =Y TV (2.135)

r=1

2. Mixing of estimates. Obtain the mixed estimates ;¢ | and P}, s = 1,..., M from

the interaction of the M filters by mixing the previous state vector estimates X;° | and

covariance matrix P)[“ with the respective mixing probabilities yi'ﬁl,

M

B = Lo, (2.136)
r=1

B =Y m [Plﬁ’lrc + (B —5) (B —5) ] : (2.137)
r=1

3. Analog state prediction and correction. For each estimate Xi° |, run a filter to estimate
the state vector £}, the covariance matrix P]z‘x’sc, the innovation 13, and the innovation

covariance matrix ng *. Each s-th filter is given by
{ £, Plzcx,sc’ 75, P{%S} = Constrained Filter <32,Sf_1, P;ff’fc, Vi, fs hs, Qs, RS> , (2.138)

Here each “Constrained Filter” uses one of the M possible pairs of stochastic models fs,
hs, Qs and Rs. Note that in the CIHE, the filter bank consists of constrained innovation
Kalman filter (CIKF). The CIKF enforces the equality constraint (4.5) on state estimate
during the forecast step, see Section 2.1.4.

4. Mode probability correction. Obtain the a posteriori probability <y} of each estimate using
the Bayes’ theorem as follows:

S S
o= b U1k (2.139)

Mol
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where w;,_,, is given by (2.135) and ps(n3) is the likelihood function of innovations,

given (at least approximately, if non-Gaussian) by

S 1 1 S S5\ — s
os (1) = = exp {_E(ﬂk)T(Plzly )| (2.140)
(2m)m | PP

5. Combining the estimates. Combine the M estimates to obtain the state estimate X} and

its corresponding covariance P at time k

5 =) 7 (2.141)

Mz

s=1

B = Yok B (3 - %) (5 - 2D 2142)
s=1
and obtain the estimate 1i1 as being the most likely mode a posteriori.

6. Mode transition probability correction. Use the stochastic linear guard conditions to
estimate the mode transition probabilities, T\ [Seah, C. E., Hwang, 1., 2009]. The
evolution of the mode is a Markov chain described by a analog state dependent mode
transition matrix

Iy, = Ty, (2.143)
where 7T, ., is the mode transition probability conditioned on the analog state xy given
by

Tes|rx, = Pr { [x,z HT] ! € Gsy|lmy_q = r} . (2.144)
where 6 € © is a random variable that models uncertainties in Gs, represents the guard

conditions associated with the mode transition from mode my_1 = r to mode my = s,

which partitions out the analog state. The stochastic linear guard conditions are given by

Xk Xk
Gsr = | xx € X,0 € O, Ly, <0 (2.145)
6 6
where Ly, € RM*" js the matrix defining the inequality and 0 is a Gaussian random

vector with mean 8 and covariance Lg.

From (2.145), the mode transition probability (2.144) can be rewritten as

arC PXX,T’C 0

X
Mg =P | O Lg | 71 | 5Ly | ! LT (2.146)

jli s|r

s 0 T

s|r
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where ®(, fi, L) denotes the Gaussian cumulative density function with mean fi and

covariance X. Increment k and return to step 1.

]

In a recent work, [Kwon, C., Hwang, 1., 2016] presents a simplified version of con-
strained stochastic filtering algorithm for linear hybrid systems, in which the road map
information employed by the equality constraint is useful for improving the state es-
timation process. Likewise, [Mann, G., Hwang, 1., 2012] considers the constrained
stochastic filtering problem for linear hybrid systems. This approach addresses air-

craft taxiway conformance-monitoring problem.

24 Concluding Remarks

The hybrid stochastic filtering problem is to provide estimates for both analog and
digital states from a sequence of noisy sample measurements and such hybrid model.
The solution to this problem is given by the joint a posteriori PDF of the analog state, xy,
and digital, my. This joint a posteriori PDF can be divided into two parts, the first term
on the right-hand side of (1.4) may be computed by a classical nonlinear filter given
that the mode sequence is known. The second term is computed applying Bayes’ rule
to the result of the nonlinear filter.

In this chapter, we present approximate solutions to the hybrid stochastic filtering
problem. In the particular case of Markov jump linear systems where dynamics is
linear and mode transition is Markovian and independent of analog states. Thus, we
present some hybrid stochastic filtering methods such as the IMM approach, the M3H
approach, PF methods and the combination of some of these approaches.

The IMM approach is the main approach that addresses the problem of estimation
of states of hybrid systems. The IMM algorithm mixes the previous analog state esti-
mates to generate new initial values for each filter in the next time step, to circumvent
the problem of exponential growth of possible hypotheses. However, this method con-
trol multiple hybrid estimates over time and require the running of a filter for each

mode.
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Alternatively, the M®H algorithm keeps a limited buffer of hypotheses by means of
merging and discarding hypotheses to address the exponential growth problem. In the
M?H filter, merging occurs when two or more hypotheses share the same sequence of
modes for the previous d time steps. In addition, hypotheses are discarded whenever
their likelihood is below a given threshold. The hypotheses with the same sequence
of modes in the last d steps are merged. The merging step employs only information
from the digital state.

The MHME filter proposes the generalization of the mixing of estimates step of the
IMM algorithm considering the merging depth d > 1, and the correction of the transi-
tion probability matrix. This approach addresses the tracking of multiple hypotheses
between two instants of mixture of estimates. In this approach, the correction of TPM

avoids inaccurate estimates of the analog and digital state vector.

On the other hand, particle filtering methods approximate the joint a posteriori PDF
of the hybrid system using sampled trajectories. The PF employ a set of particles with
corresponding weights to provide estimates for both analog and digital states. How-
ever, the PF has limitations such as the use of high number of particles implying a high
computational cost and the choice of the candidate distribution causing an imprecise
approximation of the joint a posteriori PDF. Some particle filtering methods combine the
particle filter with other approaches to address the hybrid stochastic filtering problem
such as the IMMPF approach and the Rao-Blackwellized filter.

Table 2.1: Hybrid stochastic filtering methods. We present the approaches employed to obtain estimates
for both the analog state, £k, and digital state, 71y, in each of the methods. To estimate the analog state is
employed a Kalman filter bank (KFB), the particle filter bank (PFB), the particle filter (PF) or Constrained
Kalman filter bank (CKFB), whereas to estimate the digital state is used the Bayes’ theorem (BT) or the
particle filter.

A A

by 1
Methods KFB | PFB \kPF [ CKFB | TB \kPF
IMM * *
M3H * *
MHMEF * *
PF * *
IMMPEFE * *
Rao-Blackwellized PF | % *
CIHE * *
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Constrained state estimation methods for hybrid systems incorporate additional
information about the system in the form of state constraints to improve the state es-
timates. The CIHE algorithm addresses the problem of equality-constrained state esti-
mation for linear hybrid systems, whose equality constraints vary with the operating
mode. This approach employs a filter bank based on the IMM estimator. The filter
bank uses constrained Kalman filters.

The hybrid stochastic filtering methods employ different approaches to obtain esti-
mates for both the analog state, £x, and digital state, ;. Table 2.1 shows how each of
these methods provides estimates of the analog and digital state. In these methods, to
estimate the analog state is employed a filter bank composed of Kalman filters or par-
ticle filters, whereas to estimate the digital state is used the Bayes’ theorem or particle

filtering.
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Chapter 3

The Multiple-Model and Multiple
Hypothesis Algorithm with Gaussian

Mixture Reduction

The present chapter adresses the problem of state estimation for Markov jump systems.
First, Section 3.1 defines this problem. In Section 3.2, we present a modified version of
the multiple models and multiple hypotheses (M>H) algorithm to suboptimally solve
the problem of state estimation for Markov jump nonlinear systems. Then, we investi-
gate the use of Gaussian mixture reduction methods as an alternative for the merging
step of the M?H algorithm in Section 3.3. Finally, in Section 3.4, the proposed approach
is compared to classical M>H by means of one example. The contribution presented in
this chapter was published in [Eras-Herrera, W. Y., Mesquita, A. R., Teixeira, B. O. S.,
2017].
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3.1 Problem Statement

We consider discrete-time hybrid stochastic system given by (1.1)-(1.3), whose equa-

tions are repeated here for convenience, that is,

X = fum (Xp—1, Uk—1, Wg—1,k — 1),

Ty = Pr{mk = S|mk—1 = 1’}, 3.1)

Ve = hmk (xk/ Vi, k)

We assume that the transition probability matrix (TPM) IT € RM*M whose el-
ements are given by 7, is known. Mode transitions at time k are assumed to be
independent of m,_1 and xp.x given the current mode my, i.e., transition probabili-
ties depend only on the current mode and not on the process history or on the analog
state. A hybrid system with such properties is known in the literature as a discrete-time
Markov jump system (M]S).

The solution to this problem may be obtained through the joint a posteriori PDF (1.4),
of the analog and digital states. In the case of linear dynamics and linear observations,
the first term of (1.4) is simply the density of a Gaussian PDF. Since the second term
does not depend on x;, we conclude that the marginal posterior density of x; is a
Gaussian mixture. Unfortunately, the number of components of this mixture is as large

as MF.

3.2 MPH using Gaussian Mixture Reduction

We investigate the use of Gaussian reduction methods as an alternative for the merging
step of the M?H algorithm. The Gaussian mixture reduction by clustering (GMRC)
approach [Schieferdecker, D., Huber, M. E,, 2009] is used here to reduce the number of
hypotheses propagated from the hypothesis probability prediction step of the M®H. The
proposed approach is here called M®H using Gaussian mixture reduction (M*HR). In
our method, information from both the analog, £x, and digital, 7i;, estimates at time k

are employed to define a metric to merge and eliminate hypotheses. This comes as an
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extension of the original M®H, that only uses the information of the mode sequence,
1_ gk, from time k — d to time k to merge the hypotheses.

We now redefine hypotheses as components of a Gaussian mixture (where the
mode history no longer plays a role): I§ = (75,15, £, P7°) comprised, respectively,
of a hypothesis probability, an operating mode, a mean vector and a covariance matrix
for the analog state PDF.

Figure 3.1 shows that the proposed M®H filter has the same form of the original
M3H except for the replacement of the merging step by the GMRC algorith. The M*HR
algorithm is composed of six recursive steps. In the first step of MPHR, the a priori
probabilities i} are obtained. In the second step, the GMRC approach is used here to
reduce the number of hypotheses. In this work, we propose an alternative method for
the hypotheses merging step (orange) of the M®H, see Figure 3.1. In the third step, the
hypotheses with probability lower than the elimination threshold givenby 0 < e <1
are eliminated. The threshold ¢ is a tuning parameter to be chosen by the user. In the
fourth step, the filter bank provides the estimate of the state vector £}, the covariance
matrix P,f ** the innovation 174, and the innovation covariance matrix Pky Y5 associated
to each one of the hypothesis I} € Z;. In the fifth step, the a posteriori probability p},
is obtained from p; using Bayes’ theorem. In the sixth step, the estimates provided by
the filter bank and the a posteriori probability of the hypotheses are combined. Note
that the two terms of the right-hand side of (1.4) are treated as follows. The first term,
p(xx | myk, y1.x), is addressed in the prediction and correction of estimates step, while the
second term, p(my | Y1), is processed in the hypothesis probability prediction step and

updated in the hypothesis probability correction step.
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3.3 Gaussian Mixture Reduction via Clustering

Following an approach similar to [Crouse, D., Willett, P., Svensson, L., Svensson, D.,
Guerriero, M., 2011] that employs a clustering algorithm to perform Gaussian mixture
reduction for smoothed state estimation avoiding track coalescence, we apply here
the Gaussian mixture reduction via clustering (GMRC) approach [Schieferdecker, D.,
Huber, M. F,, 2009] to the hypotheses merging step of the M®H algorithm.

The GMRC optimizes the parameters of the reduced mixture according to the inte-
gral quadratic distance (ISD) [Scott, 1999] criterion and, to our knowledge, it is the best
performing Gaussian mixture reduction method in approximation terms. In M®H, in-
stead of grouping hypotheses by their mode history, we look only at the current mode
of each hypothesis and group them according to the analog state. Using the GMRC
approach, our filter reduces all hypotheses with the same current mode m to a set of
Ny, hypotheses, where Ny, is a tunning parameter, thus making up for a total of N, M

hypotheses. An example is presented as follows.

Example 4. Consider the hybrid system with M = 3 possible operating modes, il-
lustrated in Figure 3.2, we have the original set of hypotheses Z; = {Il,. . .,Ilﬁ\’ },
N = 27, each one of the white, black and gray balls represents one of these 27 hypothe-
ses. The GMRC is employed to obtain the reduced set of these hypotheses, yielding

={I,..., f,ﬁ\lmM}, where we chose N, = 3. 0

We now consider that the set of all N possible hypotheses at time k is defined by
Iy = {I},...,IN}. We see that the hypotheses set Z; represents a Gaussian mixture

with N components, yielding the PDF

N
o(x¢|Zi) = Z (25, PF™), (3.2)

with weights f;, means #; and covariance matrices P,fx’s ,s=1,...,N, where N ac-
counts for the Gaussian PDF as in (2.100). Similarly, the desired reduced set of hy-

potheses Z; represents a Gaussian mixture with Ny M components, yielding the PDF

o(x|Z}) & Z N (%, 1Y, (3.3)
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Figure 3.2: The Gaussian mixture reduction by clustering (GMRC) approach is employed in this
example to obtain the reduced set of hypotheses of the stochastic hybrid system with M = 3
possible operating modes: white, black and gray. Z; = {I,..., ¥} indicates the original
set of hypotheses, each hypothesis is represented by a white, black or gray ball. Note that,
this coloring is related to the last mode in each sequence corresponding to each hypothesis.
o ={L,..., T,i\[mM } indicates the reduced set of hypotheses. The number of hypotheses for
each mode is Ny, = 3 in this example. The centroids of the Gaussian components are illustrated
by the x red marks.

with weights f}, mean X} and covariance matrix P;*", r = 1,..., Ny M.

In order to obtain the parameters pf, X}, P{"" of the reduced mixture p(x|Z;) that
maximizes its similarity to the original mixture p(xx|Z;), we seek to minimize the ISD

metric given by

1@ 2 [ lp(alT) — plud T dx,
= [ p(xkIZ0)? = 20wl T)p (3¢ T5) + p (x4l T v,

=JNN — 2/NNm + INmNms (3.4)
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Figure 3.3: Diagram GMRC approach. The GMRC comprises three main sub-steps: the prepro-
cessing step, the clustering step and the refinement step.

where

NN é/P(X1<|Ik)20lxk,
Tt 2 [ (x| To)p (v T,

NN = / o (x| ZE)*dxy. (3.5)

In some texts, the ISD metric is referred to as integral square error (ISE) [Williams, 2003].
For details on the ISD, the reader is referred to ([Williams, 2003], pp. 3-19 - 3-23).

The GMRC approach comprises three basic sub-steps: the preprocessing step, the
clustering step and the refinement step, as illustrated in Figure 3.3. In the first step, the
initial reduced set with N, components is obtained as I}: using the greedy Runnalls’
algorithm. In the second step, the k-means clustering algorithm (with maximum num-
ber of iterations /%) is employed to obtain the reduced set of possible hypotheses Zj.
In the third step, iterative optimization over the ISD metric is performed to refine Z¢,

yielding Z;. The GMRC algorithm is described as follows.

Algorithm 3.3.1. Gaussian mixture reduction by clustering algorithm [Schieferdecker, D.,
Huber, M. F., 2009]
Initialize the tuning parameters as follows: the merging depth d and the pruning threshold €

and the maximum number of hypotheses Nmax.

1. Preprocessing step. The initial reduced set of hypotheses I+, is obtained applying the
greedy Runnalls” algorithm to the hypotheses set Iy. The greedy Runnalls’ algorithm
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minimizes an upper bound on the Kullback-Leibler (KL) divergence between the origi-
nal set of N hypotheses and the reduced set of Ny, hypotheses [Runnalls, A. R., 2007].
Initially, the merged hypotheses I,zn "I are obtained from the combination of all possible
hypotheses pairs {I., I,];}, Vi, ] of the N hypotheses. Each merged hypothesis is defined by

I;n"ff 2 {pm, £m, Pm}, whose elements are given by

Pm =pi + pj, (3.6)
1 N N
- [pixk + p]-xi] , (3.7)

a | Pi xx,i i - i . \T
Pm

% [P,f"’f + <x{( - aem) (x{{ - aem) T” , (3.8)

m

[I>

Xm

where pm is the probability, Xy, is the state estimate and Py, is the associated covariance

matrixand p; = p(I;) and p; = ﬁ(I{;). Next, the measure of dissimilarity Df,]. is obtained

for each pair of the N hypotheses as

DF = 5 (pmlog[|Pal] — pilog [|B™] — pylog [IB7]]). (39)

A new mixture is then created by replacing, in the original mixture, the pair with smallest
dissimilarity by its merged hypothesis. This reduces the number of components by one.
This procedure is then applied recursively to the resulting mixtures until the mixture size

1S Nm.

2. Clustering step. The reduced set of hypotheses I¢ is obtained using the k-means cluster-
ing algorithm as in [Crouse, D., Willett, P., Pattipati, K., Svensson, L., 2011] initialized
with the Ny, cluster centers from Ilf . The first step in the k-means algorithm is to asso-
ciate each component Is € Iy to the closest cluster center in I, € Iy To this purpose, we

use the KL divergence as a pseudodistance as follows

D5, = trace | (B (PP — PP+ (3 — ) (55— ) ) |
|pxx,r|
+ log (—';x,s ) , (3.10)
[P

where £5 and X}, are the state estimate and P, and P, s =1,...,N,r =1,..., Nn,

are the associated covariance matrices of Is € Ii and I, € Iy, respectively. Thus, If is
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obtained from the merging of hypotheses associated with each of the Ny, centroids. The

merged hypotheses for a given cluster C, are

pe= ) Pi (3.11)
seC,

NN s

22— Y Pl (3.12)
Pec seC,

A p_i XX,S S as _ aT

P.= )] PP+ (2 — %) (R — %) | (3.13)

seCy Pc

This step is performed until the stop criterion given by the maximum number of iter-
ations, i™®, is reached. At the end of this step, we have the reduced set of hypotheses

Nm
e ={1},..., I;™}.

3. Refinement step. Starting from the reduced set I, we search the parameter space (py, X7, P.")
for alocal minimum of the ISD, thus yielding the refined set of hypotheses L;. The gradi-

ent of the ISD distance metric is used to obtain these parameters as

VI(Z) = —2VINNg + VNN (3.14)

Note that, since the element Jny in (3.4) does not depend on the parameter of the reduced
set Iy, it was discarded. The parameters of I; are then obtained through a two-stage
optimization algorithm. We minimize in the parameters X}, and P;*" employing a Quasi
Newton method, whereas the optimization of parameter pj is treated as a quadratic pro-
gramming problem (see [Crouse, D., Willett, P., Pattipati, K., Svensson, L., 2011] for
details). At the end of this step, we have the refined set of hypotheses Tt = {I1, ..., I,i\]m }.

Increment k and return to step 1.

]

Remark 3.3.1. Whereas the analog filter bank runs in linear time in the number of components
NuM, Runnalls’, k-means and the refinement step are quadratic in Ny, M. In contrast, the
original M®H may be implemented in linear time in the number of hypotheses. Despite this
apparent disadvantage, our results show that it is only prevalent when low precision is required
from the filter. When higher precision is demanded, M3HR will need less components than

M?3H to control the approximation error in the merging step.
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Remark 3.3.2. Alternatively, West's algorithm can also be used in the preprocessing step of
GMRC yielding the so-called GMRC-West algorithm. Simulation results from [Schieferdecker,
D., Huber, M. F., 2009] show that, the processing time of the GMRC-West is faster than the
original GMRC; however, error performance can be worse compared to the original GMRC that

uses the Runnall’s algorithm in the preprocessing step.

3.4 Simulated Example: Target Tracking using a Radar

Mixture reduction techniques have already been applied in the context of target track-
ing [Salmond, D.J, 1990; Williams, 2003; Crouse, D., Willett, P., Svensson, L., Svensson,
D., Guerriero, M., 2011]. However, in this domain of application, the digital states cor-
respond exclusively to observation models. Here we extend these techniques to the
dynamics as well, thus comprising the full hybrid system. Although, the application
example in this work also addresses the problem of target tracking under multiple dy-
namic models, our approach is applicable to general hybrid systems under the struc-

ture of Markov jump systems.

3.4.1 Problem Description

We now consider the target tracking problem of [Boers, Y., Driessen, H, 2004]. Let an
aircraft have three operating modes, m; € M = {1,2,3}, where m; = 1 corresponds to
a straight maneuver with constant velocity and altitude, m; = 2 corresponds to a cir-
cular maneuver (coordinated turn) and mj = 3 corresponds to an accelerated straight
line maneuver. Let dy, dy and d; be the position components, vy, v, and v; be the linear
velocity components, w be the angular velocity on the x-y plane and a, be the accela-
ration along the z-axis. Our goal is to obtain estimates for both the digital state (mode)

1y and analog state £, with corresponding covariance P}*.

For my = 1, the linear process model f; is given by
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X =

DO DO DO OO

00TO0O00O [ T2 0 0
100TO0O 0 3aT> 0
0100TO 0 0 asT?
001000 |x+| aT 0 0
000100 0 aT 0
000010 0 0 aT
000001, 0 0 0

Wk —1, (315)

T
where x; = [dx dy d; vx vy v, a)] , T = 5sis the sampling period. The

process noise modeling disturbing accelerations, wy_1 ~ N (0, Qum, ), is assumed to be

a zero-mean white noise with covariance Q,, that depends on the operating mode.

The acceleration parameter is set to a; =1.5 m/s?.

For my = 2, the nonlinear process model f; is given by

Xk

SO OO O
[N eNoleoll )

0
0
1
0
0
0
0

(0 0

Gr—1Wg—1,

where

ca
sa
0

0
0
0
| 0

where x; = [ dy

sa= sin(atan2(v,

k—1,0xk—1)) and Li_4

sin(wg_1T)/wg_1
(1 —cos(wg1T))/wy1
0
cos(wy_1T)
sin(wg_1T)
0
0
—sa 0 O 0O 0 O
ca 0 O 0O 0 O
O 1.0 O 0 O
0O 0 ca —sa 0 O
0O 0 sa ca 0 O
O 00 O 1 0
0O 0 0 0 0 L

dy d; vx vy v

(cos(wi—1T) = 1)/ wi—1
sin(wy_1T)/wg1
0
—sin(wy_1T)
cos(wy_1T)
0
0
17T %alongTz 0
0 %alath
0 0
LllongT 0
0 Apar T
0 0
L 0 Aat

1

Xk-1+

ORr OO HHOO
_ O OO o oo

(3.16)

0
0

% Avert T2
0 ,
0

Avert T
0

} caZ= cos (atan2(vyk—1,Vxk-1)),

\/(ka 1)2+( y,k71)2+(vz,k71)2

. For the coordi-

nated turn model, we set Along =15 m /s? for the longitudinal acceleration, ayert =15

m/s? for the vertical acceleration and a;,; =20 m/s? for the lateral acceleration.

For mj = 3, the linear process model f3 is given by
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(1 00T 00 0 ] [ 1a,:T2 0 0

0100TO0 O 0 la.T2 0

00100 T iT? 0 0 5a,.T?
Xx=]000100 0 |x1+]| a,T 0 0 | wp1, (317

000010 O 0 a,:T 0

000001 T 0 0 2. T

(000000 1 | |0 0 oz ]

T
where x;, = [ dy dy d, vy vy U, 4z } , 4, =20 m/s%. Note that, for mp = 1,2,
a, = 0and, form, =3, w = 0.

For all operating modes, the nonlinear observation model / is given by

i 2 2 2
\/dx,k +d2 b d2,
atan <%}’i>
Y = atan d. + Vg, (3.18)
47y

x,k
dx,kvx,k+dy,kvy,k+dz,kvz,k

2 2 2
\/dx,k+dy,k+dz,k

where the components of y are the radar measurements for range, bearing, eleva-

tion and Doppler speed. The measurement noise, v, ~ N (0, Ry,), is assumed to be
zero-mean white noise with constant covariance R, = diag([20?, (8 x 107%)2, (8 x

107%)2,10%]). We assume that the transition probability matrix is given by

0.96 0.02 0.02
I = | 002 09 002 |. (3.19)
0.02 0.02 0.96

T
We also assume the aircraft starts from xo = | 100000 0 2000 —400 0 0 —-0.1 | ,

with a coordinated turn (m = 2). That is, the aircraft starts at about 100 km from the
radar with constant altitude of 2000 m. The aircraft is flying inbound at a speed of 400

m/s and an angular velocity of 0.1 rad/s.

3.4.2 Numerical Experiments on State Estimation

For M®H, we set the merging depth d = 3, the pruning threshold € = 0.01 and Nyax =
27. In MPHR, we set the reduced hypotheses number Ny, = 3. The filter bank of
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the M®H and M3HR algorithms is composed by three unscented Kalman filters (UKF)
[Menegaz, HM.T,, Ishihara, ].Y., Borges, G.A., Vargas, A.N., 2015]. We performed 50
distinct realizations using IMM, M®H and M®HR in a desktop Dell Inspiron Intel Core
i3 with 3.2 GHz processor and 4GB RAM memory running Matlab. We also tested
M3H with partial execution of GMRC, for example, executing only up to the first step

or up to the second one.

a) Comparison within a single realization

We begin by presenting results for the tracking of a single target trajectory. Figure 3.4
shows the simulation results for one realization of the target tracking problem using
the original M®H and the modified M®HR. Figure 3.4a shows the aircraft flight tra-
jectory. Figure 3.4b shows that, after the merging step, the proposed approach M®HR
(black line) reduces the number of hypotheses more significantly than does the original

algorithm M®H (red line).

Figure 3.4c shows that M*HR was more accurate in the estimation of the operating
modes. For example, in the mid-plot from about time ¢t = 240s until time t = 300s,
we observe that the mode 2 (circular maneuver) is correctly estimated by M®HR while
M3H wrongly detects that mode 3 is active. Figure 3.4d shows that the M?H yields
erroneous estimates for the operating mode more often than M3HR. Figure 3.4e shows
the estimated aircraft position coordinates from radar measurements using the M*HR
(black line) and M3H (red line) approaches. We observe that M>HR yields more accu-
rate estimates for the position compared to M?H estimates. Finally, Figure 3.4f illus-
trates the error estimates for the position coordinate d, using both MHR (black line)
and M®H (red line). Note that, in addition to yielding a smaller error, M*HR provides
uncertainty estimates (plus and minus three standard deviations) consistent with the

true position.
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Figure 3.4: Tracking the aircraft flight trajectory using a radar: (a) true aircraft trajectory, (b) number of
hypotheses after the merging step using M®HR (- -) and M®H (—), (c) probability of the modes: mode
1 (—+) using M®HR (blue) and M3H (light blue), mode 2 (—<-) using M®HR (red) and M®H (pink) and
mode 3 (—e—) using M3HR (green) and M3H (yellow) and the black vertical line indicate actual mode
transitions, (d) estimate of the digital state using M®HR (- -) and M®H (—) in comparison with the true
value (), (e) estimates of the position coordinates using M3HR (—e-) and M®H (—e-) in comparison
with the measurements ( x ) and the true position (+) and (f) estimation error of the position component

dy using M3HR (- -) and M®H (—) algorithm. The dotted line (- -) indicate plus and minus three standard

deviations around the error estimates.
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Figure 3.5: Target velocity during the flight: x, y, and z linear velocity components and angular
velocity. The estimate of the analog state using M°HR(—e—) is compared to the true value (—).
The vertical lines indicate mode transition times.

Figure 3.5 illustrates how the operating modes influence the variations of some
components of the analog state. For example, we observe that mode 2 differs from
other modes by variations in the linear velocity components from time t = 130s to t =
300s, whereas mode 3 yields larger values for the angular velocity from time t = 425s
tot = 505s. Thus, because the operating modes correlate strongly with the analog
states, it is natural to expect that the use of information from both analog and digital

states may improve the error in the merging step.

b) Comparison over multiple realizations

Overall performance was assessed averaging the results from 50 distinct process real-
izations. Table 3.1 compares the mean processing time per sampling period, Tcpy, and
RMSE (regarding position coordinates only). We see that M®H provides more accurate
position estimates than IMM; however, the processing time of M3H is twice that of

IMM. These results are in accordance with the results of [Boers, Y., Driessen, H, 2004].
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Table 3.1: Mean processing time to run each algorithm from time k — 1 to time k, Tcpy, RMSE (for
position coordinates) and frequency of error in digital state estimates for 50 distinct realizations using
the IMM, M®H and M?HR filter. We consider three scenarios for the merging step of MHR, where the
M3HR (1-step) uses only the preprocessing step, M®HR (2-step) uses the preprocessing and clustering
step and M3HR (3-step) uses preprocessing, clustering and refinement step.

Algorithms Tcpu | RMSE for | % Mode
(ms) | positon (m) | error
IMM 1.9 523 12.3
M3H 3.9 497 11.6
M3HR (1-step) | 5.8 437 4.8
M3HR (2-step) | 6.5 435 4.5
M3HR (3-step) | 7.5 430 4.1

Compared to M>H, the full M*HR reduces the RMSE index by approximately 14% but
with a processing time over twice than of M®H. On the other hand, M3HR truncated
in the first step yields approximately the same improvement in accuracy but with the
processing time 24% smaller compared to the full MHR. This suggests a diminishing
returns property, in which most of the benefit from using GMRC is collected right in
the first step. Moreover, we observe that the M>HR misses the active mode in 4.1% of

times compared to 11.6% of M®H, as shown in Table 3.1.

This diminishing returns property is further evinced in Figure 3.6, where we eval-
uate how the filter performance is influenced by i) the variation of the measurement
noise levels and ii) the variation in the three steps of the GMRC algorithm employed
in the merging step of M®HR. By rescaling the measurement noise covariance R, we
choose three different values of signal to noise ratio (SNR), 10, 20 and 30dB. From Fig-
ure 3.6a, we observe an increase of about 16% in the position RMSE for the largest noise
level (10 dB) using M®H compared to M?HR (3 step). Note that, for smaller measure-
ment noise levels, 20 dB and 30 dB, the M®HR(3 step) yields estimates about, respec-
tively, 34% and 55% more accurate than M>H. A similar analysis is valid for RMSE for
velocity; see Figure 3.6b.

In regard to performance changes with the variation in the three steps of GMRC.
Figure 3.6 shows that M®HR (3-step) yields position estimates only 1% more accurate
than M3HR (1-step). In addition, the M>HR (1-step) reduces processing time by ap-
proximately 24% in comparison to M?HR (3-step). We conclude that employing the

80



SIMULATED EXAMPLE: TARGET TRACKING USING A RADAR

(a)

0 — A S S S—v—

6 § § 1¢ § §
f; 600 |f--mmmeeee e boeeeeees -6-5---?---; ------------ 6 fl-E-;--;- --------- 12-6-'-4-3-; ---------

5 : z /o g
2R Y I et S TN TN .. —

! ! . \ !

: 296 ® 292 ! & 287

200 i | i i |

3 4 5 6 7 8

(b)

800 : : : : :

a = | | | |

~ ' ' ' '
T L e A preseeeee

Eu’ ! 526’ 524 »521

q : a I | a a
Tl EE N U /) I VA SN I

H \ 1 \ H

' : 251 : :
200 __________________i__________________E_ ____________ 5 ___Qi____________2__4_?__2. ________ ?.2_4__6__,: _________

i i i i i

3 4 5 6 7 8

Tcpy(ms)

Figure 3.6: Mean normalized processing time, Tcpy, and RMSE (for position coordinates) for
50-run Monte Carlo simulation for M®HR and M3H algorithm with different merging depth:
(a) position and (b) velocity. The variation of the measurement noise levels are 10 dB (¢), 20 dB
(0) and 30 dB (o). The variation of the three scenarios for the merging step of M°HR are M*H
(1 step) (black line), M3HR (2 step) (green line) and M3HR (3 step) (red line) compared to M3H
(blue line).

three steps of GMRC in the merging step of M°HR may not pay off depending on the

application, as the 1-step version might already provide satisfying improvement.

¢) Comparison over different time-precision tradeoffs

Our main results come from comparing M°H and M>HR over different user prefer-
ences regarding processing time and filter approximation error. We restrict the com-
parison to M®HR (1 step) since it had a more satisfying performance in the experiments
above. We compare the performance of MHR (1 step) and M>H using different values
of Nm =1,2,3,4,5 (1), and merging depth, d = 2,3,4,5,6,7,8 (o).

Results, shown in Figure 3.7, indicate that the performance of M3HR dominates
that of M®H in all cases when the user demands RMSE below 525 m. As a conclusion,

we see that MPHR adds improved flexibility to the user who can now choose over a
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Figure 3.7: Mean processing time, Tcpy, and position RMSE for 50 distinct realizations using the M®HR
(1 step) (black line) and M3H (blue line) algorithms. The values of number of components of the Gaus-
sian mixture are 1, 2, 3, 4, 5 (1J) and of merging depth are 2, 3, 4, 5, 6, 7, 8 (o). The values for each
algorithm are shown above from left to right.

larger range of RMSE. It is worth noticing that very little improvement is gained by
M3H increasing the merging depth beyond d = 5. This highlights how little extra
information is encoded in the mode history to help estimate analog states, which was

our initial motivation for proposing M3HR.

3.5 Concluding Remarks

In this chapter we present a modified version of the multiple models and multiple hy-
potheses (M>H) algorithm to suboptimally solve the problem of state estimation for
Markov jump nonlinear systems. In particular, the M®H algorithm merges the hy-
potheses with the same sequence of modes in the last 4 steps. Thus, only information
from the digital state is employed to merge the hypotheses.

In the context of Markov state transitions, the mode sequence provides no useful in-
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formation to the task of predicting future states given that the current mode is known.
This suggests that one should merge hypotheses based on the current state (both ana-
log and digital) rather than based on the sequence of digital states. Thus, the reduction
of Gaussian mixtures may be well suited to perform the merging operation.

Then, we use Gaussian reduction methods as an alternative for the merging step of
the original M®H algorithm. We employ the Gaussian mixture reduction by clustering
(GMRC) approach to merge and eliminate hypotheses. Thus, information from both
the analog and digital states is used to merge the hypotheses, while only information
from the digital state is employed in the original method. Numerical results suggest
that the proposed approach M?HR provides improvement in the accuracy of analog
and digital state estimates compared with M®H algorithm.

In addition, the M®HR provides an effective mechanism for users to explore the
tradeoff between filter precision and processing time. Users set their preferences by
defining the maximum number of mixture components Np,. Likewise, a similar trade-
off may be observed for M®H by manipulating the merging depth d. Our numerical
results indicate that manipulating Ny, in M®HR is more efficient than choosing d in
M3H when increased precision is demanded. That is, for the same processing time,

improved accuracy was observed for M?HR.
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Chapter 4

Equality-constrained State Estimation

for Hybrid Systems

In this chapter, we address the problem of state estimation for hybrid systems with
state equality constraints. A literature review on this topic is presented in Section 2.3.5.
This work deals with the extension of constrained stochastic filtering methods for the
hybrid case. A brief review of these methods in the non-hybrid context is provided in

Section 2.1.4. It is recommended to read it before reading this Section.

In Section 4.2, we investigate the mode-independent equality constraints case for
linear systems. Then, we extend the necessary conditions for the Kalman filter yielding
state estimates that satisfy the equality constraint to the hybrid case. In Section 4.3,
we consider the mode-dependent equality constraints case for linear systems. Then,
we present two different possibilities to enforce an equality constraint along time. In
Section 4.4, we investigate the mode-dependent equality constraints case for nonlinear
systems. Then, we discuss approaches that provide approximate solutions. Finally,
in Section 4.5, these algorithms are compared to the classical IMM by means of three

examples.
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4,1 Problem Statement

We consider the discrete-time hybrid stochastic system given by (1.1)-(1.3), whose

equations are repeated here for convenience,

X = fum (o1, Ug—1, W1,k — 1),

Ty, = Pr{mg=slm_1=r},
yk = hmk(xk,vk,k).

In addition, we assume that the analog state vector x; is known to satisfy the equality

constraint

gmk(xk/ k) - dmk/ (41)

where the function g, : R" x N — IR®, and d;,,, € R®, is assumed to be known. Note
that, in the general case, such constraint may vary with both time k and operating
mode m;.

The hybrid constrained stochastic filtering problem seeks to provide state estimates £
and 1 given by meaningful statistics (such as the mean or the mode) from the joint
a posteriori PDF of x; and my (1.4) given a sequence of noisy sampled measurements,
Y1k, and a hybrid stochastic dynamic model. In this chapter, the analog state estimates
must satisfy the constraint (4.1).

Next we define special cases of the general hybrid constrained stochastic filtering

problem that are investigated in this work.

Problem 1. Assume that (1.1)-(1.3) is a linear hybrid system given by
Xp = AmXp—1 + Bumlig—1 + wi_1q, (4.2)
Ve = kaxk + Vg. (43)

where Ay, € R, By, € R"P and Cy, € R™" are assumed to be known for all pos-
sible modes my. Also, assume that the state vector xy satisfies the mode-independent equality

constraint
ka = d, (4-4)
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where D € R®*" and d € RR®*! are assumed to be known. Our goal is to obtain state estimates

Rk and 1iy satisfying D%y = d, Vk.

Problem 2. Consider the linear hybrid system given by (4.2)-(4.3), whose state vector xj sat-

isfies the mode-dependent equality constraint
Dy xx = dp, . (4.5)

where Dy, € R¥*™ and d,,, € R®*! correspond to the equality constraint for the mode active

at the time k. Our goal is to obtain state estimates £ and 1y satisfying Dy, Xy = dy,, Vk.

Note that, for the problems 1 and 2, the matrices A, , By, and Cy,, are constant for
a given operating mode my. These matrices are time homogeneous in the sense that

they do not depend directly on k.

Problem 3. Consider the nonlinear hybrid system (1.1)-(1.3), whose state vector xj satisfies
the mode-dependent nonlinear equality constraint (1.5). Our goal is to obtain state estimates

Ry and 1y satisfying gm, (X, k) = dp,, Vk.

4.2 Linear and Mode-independent Case

For the non-hybrid case, [Teixeira, B. O.S., Chandrasekar, J., Torres, L. A. B., Aguirre, L.
A., Bernstein, D. S., 2009] present the sufficient conditions for the conventional Kalman
filter to yield state estimates that satisfy the equality constraint. The authors prove that
if the system obeys a condition of compatibility of the dynamics with the equality
constraint (Lemma 2.1.1), then the conventional Kalman filter is able deal with time-
invariant equality-constrained systems as long as a proper initialization is performed,
see Proposition 2.1.1. In this case, we consider that the dynamics are compatible with
the equality constraint when the dynamics remain in the hyperplane defined by the
equality constraint. In other words, there is such compatibility when the conditions in

Lemma 2.1.1 are verified [Rong Li, X., 2016].
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Assumption 4.2.1 (Compatibility of contraints and dynamics). Lemma 2.1.1 is extended
to the hybrid case. [[Teixeira, B. O. S., Chandrasekar, |., Torres, L. A. B., Aguirre, L. A.,
Bernstein, D. S., 20091, Proposition 3.1] present sufficient conditions for the non-hybrid linear
time-invariant system to be compatible with the equality constraint. In this work, we consider

that all those conditions are valid for all operating modes of the system, that is,

Dkamk = Osxq, (4~6)
Dy Am, = Dy, 4.7)
Dy Bmyik—1 = 0Osx1- (4.8)

where the matrices of the system Ay,, By, the noise covariance matrix Qp,, and the equality

constraint Dy, are assumed to be known.

The next proposition extends Proposition 2.1.1 for linear hybrid systems with mode-
independent equality constraints, see Problem 1. Specifically, we present the necessary
conditions for the classical IMM algorithm to yield state estimates satisfying (4.4) for

all k > 1 and (almost) all noise realizations.

Proposition 4.2.1. Consider the IMM algorithm 2.3.1 initialized with £} and Py™", for r =
1,..., M, given by (2.48) and (2.49) as in Remark 2.1.1 and applied to the scenario of Problem
1. Assume that the conditions in Assumption 4.2.1 hold for all M mode-dependent linear
process models (4.2). Then, for all k > 1,

(i) the mixed estimates, %, (2.90) and P} (2.91) satisfy DX, | = d and DP;] = Osxp,
(ii) the filter estimates, £5 and P"° (2.92) satisfy DX} = d and DP.° = Ogxy,, and
(iii) the combined estimates, X (2.95) and P]fx (2.96) satisfy DXy = d and DP,fx = Osxs.

Proof. Suppose that part (ii) is true at time k-1 such that the filter estimates satisfy that
D%}, =dand DP] = Osx,, multiplying (2.90) by D yields

M
Dx , = ), P‘i‘ilD’elrc—lr
r=1
M s|r M s|r
= 2 Vk—ld =d Z Hpq = d, 4.9)
r=1 r=1

88



LINEAR AND MODE-DEPENDENT CASE

where Y1 Vk ; = 1. Using (4.9) and multiplying (2.91) by D yields
DR} = >: iy [DP] + (D%, - D%_y) . (D, - D),

= Z ' [Osxn + (d—d) (d— d)T] = Os5n- (4.10)

r=1
Then we prove part (i) at time k — 1.

For the M Kalman filter estimates, we decompose this filter given by (2.92) in two
klk— 14 and
M1 = = d and
DP;TI‘(s | = Osxy using (2.12)-(2.16), we obtain £} and Py’ satisfying D%} = d and
DP™* = 0sxp such that part (i) is proved at time k. By induction, provided that the

steps. First, given (4.9)-(4.10) and multiplying (2.9)-(2.10) by D, we obtain %

P]?";(Sl satisfying D, ; = d and DP]Q’;(S . = Osxn. Second, given D£;

tilter estimates satisfy the constraints at time 0, we have proved (i) and (ii) for all k> 0,
then by induction the part (i) and (ii) are true for all k.

Finally, for the combined estimates, multiply (2.95)-(2.96) by D and use part (ii) to
obtain (iii) at time k. O

Henceforth, whenever the IMM filter (Section 2.3.1) is properly initialized as in Re-
mark 2.1.1 in order to satisfy the equality constraint (4.4), it is referred to as IMM with
projected initial condition (IMMy). However, it is important to point out that this is

only possible for models that are compatible with the equality constraint.

4.3 Linear and Mode-dependent Case

Consider now Problem 2. In this case, we consider that the process and observation
models (4.2)-(4.3) are constant for a given mode mj and the equality constraint (4.5) is
a function of the active mode.

For Problem 2, the classical IMM does not guarantee that (4.5) is satisfied for all
k > 1. In this work, the proposed approach is a modified version of the IMM fil-
ter to provide state estimates, J?E and P,Z(Xp, that satisfy the equality constraint (4.5);
see Figure 4.1. The proposed approach is here called equality-constrained interacting

multiple models (CIMM). We investigate two algorithms based on the IMM filter that
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Figure 4.1: Diagram of the CIMM; algorithm. The CIMM; is a modified version of the classical
IMM filter for to obtain state estimates satisfying the equality constraint. CIHE (e) and CIMM;
(W) differ in the step of the filter where the equality constraints are enforced. The classical IMM
has a similar structure except for cases where constraints are used. For both approaches, the

first and second terms of the right-hand side of (1.4) are respectively shown in green and in
blue.

enforce the equality constraint (4.5) on the state vector that vary with the mode my.
These algorithms differ in the step of the IMM filter where the equality constraints are
enforced. We consider the following cases: (i) using equality-constrained filters and (ii)
using an additional step after the combined estimates and the case (i). The two cases

are presented in Sections 4.3.1 and 4.3.2, respectively.

4.3.1 Constrained Filters

In the first case, we employ the approach used in [Mann, G., Hwang, L., 2013]. This
work addresses the constrained stochastic filtering problem for linear hybrid systems.
This approach is called constrained innovation hybrid estimator (CIHE). The CIHE

provides state estimates that satisfy the equality constraint (4.5).

The CIHE employs the IMM algorithm whose filter bank is composed by equality-
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constrained filters, reviewed in Section 2.1.4, where the state vector X}, and the corre-
sponding covariance P} are replaced by the constrained state estimates ¥}, and the
covariance PXI;’S at time k—1 and the filter return the constrained state estimates £ a
and its corresponding covariance P, P at time k. Note that the equality-constrained
tilters are employed to yield estimates J?,E”S and P; P (2.92) satisfying (4.5). In fact, such
procedure does not guarantee that (4.5) is satisfied in the combining the estimates step of
IMM because the estimates provided by the filter bank that satisfy different equality
constraints are combined.

The CIHE employs equality-constrained filters to enforce the equality constraint
(4.5) on the state vector; see marker e in Figure 4.1. For convenience, we review the

CIHE algorithm [Mann, G., Hwang, 1., 2013] in this section as follows.

Algorithm 4.3.1. Constrained innovation hybrid estimator [Mann, G., Hwang, 1., 2013]
Initialize each sth filter with Xg’s, PSXP’S, Y8 = 1,..., M and the parameters of the linear

equality constraints Dy, and d,, .

1. Perform steps 1 to 2 of the IMM filter (Algorithm 2.3.1).

,S

2. Replace % _, by x| and P by PN in (2.92) and obtain the constrained state es-
timates J?E'S and P, P that satisfy the equality constraint (4.5) using the Constrained

innovation Kalman filter algorithm; see Section 2.3.5 for details.

3. Perform steps 4 to 5 of the IMM filter.

4.3.2 Combining Constrained Filters and Constrained Combined

Estimates

Now, an issue concerning whether or not it is necessary to enforce the same constraint
in others steps of IMM filter arises in the second case. We investigate the use of an
additional step after the combined estimates step of the IMM filter to obtain constrained

state estimates 325 and P]j *P that satisfy the equality constraint (4.5).
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The proposed approach is called equality-constrained IMM (CIMM;). The CIMM;
algorithm projects the combined estimate £ of the IMM filter given by (2.95) onto some
of the hyperplanes defined by the linear equality constraint (4.5) by means of a projec-
tion step. Also, the CIMM; employs a filter bank composed by equality-constrained
filters. Note that, for the filter estimates, we consider that even if each process model
(4.2) is compatible with the equality constraint (4.5), we do not guarantee that the ini-
tial condition satisfies such constraint after a mode transition. Thus, it is necessary to
enforce (4.5) after the data-assimilation step (in both JEE’S and P]Z( *P®(2.92)). Likewise, we
consider that it is necessary to use the projecting the estimates step to obtain combined
estimates, £ (2.95) and P”* (2.96), that satisfy the equality constraint (4.5). The CIMM;
employs the prediction and correction of estimates step and the projecting the estimates step
to enforce the equality constraint (4.5) on the state vector; see marker Bl in Figure 4.1.

In the projection step, we investigate how to choose the equality constraint (4.5)
associated with each operating mode to be enforced to obtain the constrained state
estimate 325 and corresponding covariance P,z( *P_ We present two proposals to choose
an equality constraint. First, we chose the equality constraint (4.5) associated with the
most likely mode a posteriori. Next, we project the combined estimates, £; and P,
in this equality constraint using the equations (2.52)-(2.57). The projected estimate is
given by

i = argmax(7};), (4.11)

S
X

(%%, PP} = Projection, (%, P, D;, d;), (4.12)

where 7}, £x and P are given by (2.93), (2.95) and (2.96), respectively, and each “Pro-
jection” uses the projection step of ECKF (Algorithm 2.1.5) with the corresponding
equality constraint. However, for the first proposal, consider the case in which, during
the transition between modes, the modes probabilities, 7}, are approximately equal. In
this case, this first proposal does not look very appealing. Alternatively, we project the
combined estimate, £ (2.95) and P (2.96), in each one of the equality constraints (4.5).
Next, we choose the final constrained estimate, JEE and P]f P as the projected estimate

closest to the combined estimate £ (2.95). In this work, the proposed approach CIMM;

92



LINEAR AND MODE-DEPENDENT CASE

employs the second approach to choose an equality constraint as detailed next.

Figure 4.1 summarizes the CIMM; algorithm in six recursive steps. The proposed
CIMM; filter has the same form of the original IMM except for the replacement of the
Kalman filers by the equality-constrained filters in the analog state prediction and cor-
rection step and the additional projection step after the combining the estimates step. In
the CIMM,; filter, the six step are: the mode probability prediction step, the mixing of es-
timates step, the analog state prediction and correction step, the mode probability correction
step, the combining the estimates step and the projecting the estimates. In this algorithm,
the two terms of the right-hand side of (1.4) are treated as follows. The first term,
p(xx | myk, Y1), is addressed in the mixing of estimates and the prediction and correction
of estimates steps, whereas, the second term, p(my.x | y1.¢), is processed in the mode prob-
ability prediction step and updated in the mode probability correction step. We assume that
the analog state estimates are obtained from the weighted combination of the recursive
estimates of the filter bank, whereas, the digital state estimate is obtained as being the

most likely a posteriori mode. The CIMM; algorithm is described as follows.

Algorithm 4.3.2. CIMM,; filter

Initialize each sth filter with the state vector estimate fg's, the covariance matrix ng’s, the
mode probability v§,s = 1,..., M and the parameters of the linear equality constraints D,

and dyy, .

1. Perform steps 1 to 2 of the IMM filter (Algorithm 2.3.1).

2. Replace % _, by x| and P by P, Y in (2.92) and obtain the constrained state es-
timates J?k’s and P,?Xp’s that satisfy the equality constraint (4.5) using constrained state

estimation methods for linear systems.
3. Compute i, X and P according to equations (2.93)-(2.96).

4. Projecting the estimates. First, project the combined estimates, X (2.95) and P (2.96),

according to the equality constraints (4.5) yielding if’s and 15; *P* by means of the or-
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thogonal projector Py D) given by (2.50) as

= PN (D) % (4.13)

PP = P o, B (4.14)

where JEE S, P,z( P g = 1,..., M. Next, choose the projected estimate, XE’S, closest to the

combined estimate %y (2.95) and P} (2.96) to obtain the constrained state estimate J?]}:

and P; *P s

st = argmm || 2e—37° |2,

=0, (4.15)
PP = PP (4.16)

Increment k and return to step 1.
O

The next proposition shows that the constrained state estimate 325 given by (4.15)
minimizes the mean-squarded error satisfying at least one of the equality constraint

(4.5). Then, the CIMM; algorithm to yield state estimates satisfying (4.5).

Proposition 4.3.1. Consider Problem 2 and let p(xy) denote the a posteriori probability density
for xy provided by the IMM filter as the Gaussian mixture:

Z ')’kN 56};{75, xxps).

where 7y}, is given by (2.93), X k * and P P are given by (4.13) and (4.14), respectively. Then,
xk given in (4.15) is the state estimate that minimizes the mean-squared error subject to the
satisfaction of at least one equality constraint, i.e., (4.17)
2= arg min E, [ka—kaz} (4.17)
fk:Dmkfk:dmk for some my,
Proof. Recalling that E[|| X — a||?] = Var(X) + ||E[X] — al|?, for a constant a, we have that
. - 2] o .y
argmin E, [ka—ka } =Vary(x) + minmin E,[||x; — %||7] (4.18)
kaDmkfk:dmk iy Xk

fkiDmkfk:dmk

=Vary(xi) + n?nlkn |Ep[xk] — 7DJ\/(Dmk)Ep ] [I7 (4.19)
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Note that (4.19) has the same form of (4.15). In the last term on the right-hand side of (4.19),
we have used the fact that the Euclidean norm minimizer is given by the orthogonal projection.

From this we have that the minimum in (4.17) is achieved by the minimizer in (4.15).

4.4 General Nonlinear Case

We now consider Problem 3. We discuss an approach that provides approximate solu-
tions to the equality constrained state estimation problem for nonlinear systems. These
approaches do not guarantee that the nonlinear equality constraint (1.5) is exactly sat-
isfied, but they provide approximate solutions.

This case is more complicated because the problem is nonlinear and the linear al-
gebra tools used before only work in an approximate form. In this case, we obtain
the nonlinear extension of CIMM; (Algorithm 4.3.2), here called CIMMj, to solve this
problem. That is, we use constrained state estimation methods for nonlinear systems,
for example the equality-constrained unscented Kalman filter (ECUKF) (Section 2.1.4),
during the prediction and correction of estimates step and the projecting the estimates. We
replace the equations of the prediction and correction of estimates step given by (2.92) and
the projecting the estimates step given by (4.15) by the equations of the ECUKF whose
forecast step is given by (2.67), (2.55)-(2.57) and the data-assimilation step is given by
(2.14)-(2.16). The nonlinear CIMM; algorithm is described as follows.

Algorithm 4.4.1. CIMM,), filter
Initialize each sth filter with the state vector estimate flg’s, the covariance matrix Pg *PE the

mode probability v3,s = 1,..., M and the parameters of the nonlinear equality constraints

Sy (Xi, k) and dy,,.
1. Perform steps 1 to 2 of the IMM filter (Algorithm 2.3.1).

2. Prediction and correction of estimates. Use constrained state estimation methods for
nonlinear systems (such as the ECUKF given by Algorithm ??) to obtain J?k’s and P]f A

where the nonlinear equality constraints (1.5) is approximately satisfied.
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3. Perform steps 4 to 5 of the IMM filter.

4. Perform step 4 of the CIMM; algorithm using constrained state estimation methods for

nonlinear systems. Increment k and return to step 1.

4.5 Simulated Examples

For the three case studies we discuss next, we performed 100 distinct realizations using
the proposed approaches and the classical IMM in a desktop Dell Inspiron Intel Core
i3 with 3.2 GHz processor and 4GB RAM memory running Matlab.

4.5.1 Linear and mode-independent equality constraint case: Water

tank system
Problem description

Consider the water tank system of [Mann, G., Hwang, 1., 2013] to illustrate an appli-
cation of Problem 1. From Figure 4.2, note that it comprises two tanks coupled by one
on-off valve. The tank 1 has a water input g; provided by the pump 1. Water flow g,
flows from tank 1 to tank 2 and is manipulated by the valve V;. Therefore, the reconfig-
urable system has two operating modes, m; € M = {1,2}, representing, respectively,
the closed and open status of the valve. Our goal is to estimate the digital state (valve
position), 7, and the analog states (water level), £, with corresponding covariance
matrix, P

Let x; = [ hix hoy } ! be the analog state vector associated to the reconfigurable
tank system, where i1 and h; are water levels in tanks 1 and 2, respectively. The process

model for the mode m; = 1 (closed valve) is given by

10 T 0
X = [ 0 1 ] X1+ [ T 0 ] Up_1 + Wp_1. (4.20)

T
where T = 0.5 s is the sampling period and u;_ 1 = [ 92 } , 71=1 m/s and g,=2

m/s for both modes. The process noise, wy_1 ~ N(0,Qx_1), is assumed to be a zero-
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Figure 4.2: Water tank system consisting of two coupled tanks that are controlled by one on-off valve.
The pump 1 provides water for the tank 1 and the tank 1 provides water for the tank 2. The level of the
tank 1 is measured by the sensor LT1. Adapted from [Mann, G., Hwang, 1., 2013].

11
mean white noise with covariance Q;_; = 0.125 for both modes. The process
11

model for my = 2 (opened valve) is given by

10 T -T
X = { 0 1 } Xk—1+ { T T } Up_1 + Wp_1. (4.21)

Note that, the models associated with modes 1 and 2 are compatible with the equality
constraint (4.22) because they satisfy the conditions of Lemma 2.1.1.
In addition, we assume that the state vector satisfies the equality constraint (4.4) for

both modes, whose parameters are assumed to be known and are given by
D:[l 1],d:26, (4.22)

that is, the mass conservation is observed, meaning that the sum of the levels of the
two tanks remain constant.
The observation model for both modes is given by
e = [ 10| m+u (4.23)
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where the measurement noise, v, ~ N (0, Ry), is assumed to be zero-mean white noise
with constant covariance and Ry = 0.2. We assume that the transition probability

matrix is given by

09 0.1
= [0.1 0.9}' (4.24)

We also assume the water level starts from xy = [ 20 6 }T. In order to test the
robustness of our filtering strategy, the actual simulated systems had state-dependent
transitions rather than following the Markov jump process in (4.24). These transitions
are given by the on-off controller (LC1) as: for mode 1, h; < h — € then the valve is
closed and, for the mode 2, h; > I + € then the valve is opened, where we set h =10
m and € = 0.5. Note that, the level h; of the first tank initially causes the valve V; to

open and to remain open until iy = i — €.

State estimation

The filter bank of the classical IMM and IMM (see Proposition 4.2.1) algorithms is
composed by two Kalman filters (KF). We performed 100 distinct realizations using
the classical IMM and IMMj in a desktop Dell Inspiron Intel Core i3 with a 3.2 GHz
processor and a 4GB RAM memory running Matlab.

a) Comparison over multiple realizations

We begin by presenting results for multiple realizations of the water tank system.
Overall performance was assessed averaging the results from 100 distinct process re-
alizations. We obtain RMSE indices of 0.25 m and 0.11 m, respectively, for the water
levels estimates using the classical IMM and IMMj (see Proposition 4.2.1) filters, with
each filter bank being composed by two KFs. In this case, the IMM, provides more
accurate estimates of approximately 14 cm for the water levels of tanks 1 and 2 than
does the classical IMM. We observe that the additional information regarding the initial

condition provided by the equality constraint is helpful to improve the IMM estimates.
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Figure 4.3: Water tank system: (a) analog state estimate using the IMMj (- -) in comparison
with the true value (—), (b) probability of the mode estimates: mode 1 (——) and mode 2 (—<—)

using the IMMj algorithm and (c) constraint error, ¢f = d — D%y, using the IMM, (—-) and the
classical IMM (-.-).

b) Comparison within a single realization

Figure 4.3 shows the simulation results for one realization of the water tank system
using the IMMj. Figure 4.3a shows the estimate of the water level in tanks 1 (green)

and 2 (black) compared to the true water level of the tanks. Regarding the water level
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estimates, the IMM) yields more accurate estimates than classical IMM. Note that, ini-
tially the water level of the first tank is decreasing until the level reaches i — € whereas
the water level of the second tank is increasing until the level reaches /i + €. The water
level in the tanks is controlled by the valve that switches the position on and off such
that iy ~ h. Figure 4.3b shows the probability associated to each estimated operating
mode. Figure 4.3c shows that the combined estimates, £ (2.95) using the IMM, guar-
antee that the equality constraint (4.4) is satisfied. However, the classical IMM does

not yield estimates that satisfy the equality constraint.

4.5.2 Linear and mode-dependent equality constraint case: Tracking

a ground vehicle

In a recent work, [Mann, G., Hwang, 1., 2013] adresses the problem of hybrid stochastic
filtering with mode-dependent equality constraints. However, in their simulated re-
sults, we observe that the numerical example illustrates the mode-independent equal-
ity constraints case (Problem 1). As illustrated in Section 4.5.1, we know that, for this
example, the IMMj algorithm (Proposition 4.2.1) can be used and it is not necessary
to apply the CIHE approach (Algorithm 4.3.1). Next, we investigate a ground vehi-
cle tracking application in the hybrid context considering that the equality constraints

vary with the mode m.

Problem description

To illustrate Problem 2, we now consider the problem of tracking a ground vehi-
cle moving in straight roads [Teixeira, B. O. S., Chandrasekar, J., Palanthandalam-
Madapusi, H. J., Torres, L. A. B., Aguirre, L. A., Bernstein, D. S., 2008]. Let the ground
vehicle have two operating modes, m, € M = {1,2}, where m; = 1 corresponds
to a fixed heading 6; = 45° and m; = 2 corresponds to a heading 6, = —45°. Let
Xk = | px py Ux Uy ]T be the analog state vector referring to the vehicle trajectory,
where p, and p, are the components of the position and vy and v, are the components
of the velocity. Our goal is to obtain estimates for both the digital state, 11;, and analog

states, £ with corresponding covariance matrix, P;*.
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The linear process models for the ground vehicle as a function of my are given by

1 0T O 0
01 0T

Xk = 001 0 Xk—1 + T sin Gmk Uk + Wi—1, (425)
00 01 T cos Oy,

where T=2 s is the sampling period and uj_; is the commanded acceleration, which
is alternatively set to =1 m/s?, as if the vehicle were accelerating and decelerating in
traffic. The process noise, wy_1 ~ N (0, Qu, ), is assumed to be a zero-mean white noise

with covariance Q,, that depends on the operating modes and it is given by

sg scg 0 O

scg cg 0O O
Qm, =10 0 0 , (4.26)

Sg  SCp
0 0 scp ¢

where sy = sin? O, co = cos? Om,, scg = sinby, cosby,. Note that, the models as-

sociated with modes 1 and 2 are compatible with the equality constraint (4.27). In

addition, we assume that the state vector satisfies the equality constraint (4.5) for each

mode, whose parameters are assumed to be known and are given by

that is, the ground vehicle performs a constant velocity motion with a fixed heading.

The observation model for all modes is given by

0100
where the measurement noise, v, ~ N (0, Ry), is assumed to be zero-mean white noise

yk:[l 00 O}xk—l—vk. (4.28)

with constant covariance Ry = diag([400,400]). We assume that the transition proba-

bility matrix is given by

0.9 0.1
= {0.1 0.91' (4.29)

Simulated data are generated with the ground vehicle starting from

T
X0 = [ 500 (500/tanf;) 30 (30/tan6;) ] for the mode mgy = 1.
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State estimation

We performed 100 distinct realizations using the CIHE and CIMM; algorithms in a
desktop Dell Inspiron Intel Core i3 with a 3.2 GHz processor and a 4GB RAM memory

running Matlab.

a) Comparison over multiple realizations

We begin by presenting results for multiple realizations of the ground vehicle track-
ing. Overall performance was assessed averaging the results from 100 distinct process
realizations. We compare the processing time, Tcpy, and RMSE of the position and
velocity coordinates using the CIHE and CIMM; algorithms.

Table 4.1 compares the processing time per sampling period, Tcpy, and RMSE ob-
tained from a 100 distinct realizations using the CIHE and CIMM); algorithms. We see
that CIMM; provides more accurate estimates by approximately 13% and 19%, respec-
tively, for the position and the velocity than CIHE; however, the processing time of
CIMM,; is 20% larger compared to CIHE.

Table 4.1: Mean processing time to run each algorithm from time k — 1 to time k, Tcpy, and RMSE for

100 distinct realizations using CIHE [Mann, G., Hwang, 1., 2013], CIMM;, CIMM, and classical IMM
[Blom, H. A.P., Bar-Shalom, Y., 1988].

Algorithms | Tcpy | RMSE for RMSE for
(ms) | position (m) | velocity (m/s)

Linear and mode-dependent case (Section 4.5.2)

CIHE 1.1 8.25 6.97
CIMM; 1.3 7.18 5.64
General nonlinear case (Section 4.5.3)

IMM 0.9 8.91 5.18
CIMM, 1.4 6.92 3.46

b) Comparison within a single realization

Figure 4.4 shows the simulation results for one realization of the ground vehicle track-
ing system using the CIHE and CIMM; approaches. Figure 4.4a shows the vehicle
position estimates using the CIHE (blue line) and CIMM; (green line). Note that, the
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vehicle moves at a constant velocity with fixed heading 6;. After 25 s, it changes the
direction of the velocity, then the vehicle moves at a constant velocity with fixed head-
ing 0, for 25 s. Figure 4.4b shows the probability for each estimated operating mode.
For example, from kT = 2 s until kT = 52 s, we observe that the mode 1 is estimated
at 97% compared to the 3% that corresponds to the vehicle executing the mode 2 us-
ing the CIHE and CIMM,;. Figure 4.4c shows that the constraines estimates, 925, (4.15)
guarantee that the equality constraint (4.5) is satisfied for each mode using the CIMM;.
For the CIHE and classical IMM, the state estimates £ (2.95) does not guarantee that
(4.5) is satisfied for all k.

4.5.3 General nonlinear case: Tracking a ground vehicle
Problem description

We now modify the vehicle tracking problem of Section 4.5.2 as in [Xu, L., Rong Li, X,
Liang, Y., Duan, Z., 2017] to illustrate Problem 3.
To illustrate this application, we consider the linear process models for the first

mode, my = 1, corresponding to the vehicle with fixed heading 6 = 45° given by

1 0T O 0
01 0 T 0

Xk = 001 0 Xk—1 + T sin 6 Uk_1 + Wk—1, (430)
00 01 T cos @

where T=2 s is the sampling period and uj_; is the commanded acceleration, which
is alternatively set to =1 m/s?, as if the vehicle were accelerating and decelerating in
traffic. The process noise, wy_1 ~ N (0, Q1), is assumed to be a zero-mean white noise

with covariance

sg scg 0 O

. scg cg 0O O

Sp SCy

0 0 scg ¢
where sy = sin?6, ¢y = cos? 6, scy = sinf cosb. In addition, for m;, = 1, we assume
that the state vector satisfies the linear equality constraint (4.5), whose parameters are

assumed to be known and are given by
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Figure 4.4: Tracking a ground vehicle: (a) estimates of the position coordinates using the CIHE (- -) and
CIMM; (-.-) in comparison with the true value (—), (b) probability of the modes: mode 1 and mode 2
using the CIHE and CIMM; and (c) constraint error, e,f =d- D)?E using the CIMM; and e,f =d— Dx
using the CIHE and IMM.
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Dp,=[0 0 1 —tanby, |, dy, =0, (4.32)

that is, the ground vehicle performs a constant velocity motion with a fixed heading.
The process models for the second mode, m; = 2, corresponds to the vehicle with

constant speed. The process model for this mode is

Prj—1+ TOx k1
Py,k—l + Tvy,k—l

X = Wk 4.33
k vx,k—ls/si + Wi ( )
Uy k—18/5}
where s = 15 m/s and s} = \/(Ux,k_l)z + (vyk—1)?. The process noise, wy_1 ~

N (0, Q2), is assumed to be a zero-mean white noise with covariance

Z o 2 o
Jomooz
Q, =10 3 2 (4.34)
? Z 0 T 0 '
0o T o T

In addition, for m; = 2, we assume that the state vector satisfies the nonlinear

equality constraint (1.5) and is given by

v+ vi = 52, (4.35)
that is, the vehicle moves with a constant speed s.

The observation model for all modes is given by

1000
Yr = 0100 Xk + Vg. (4.36)

where the measurement noise, v, ~ N (0, Ry), is assumed to be zero-mean white noise
with constant covariance for each mode given by Ry = diag([400,400]) and R, =
diag([1225,1225]). We assume that the transition probability matrix is given by

0.9 0.1
m = {0_1 0.9}. (4.37)

T
We also assume the vehicle starts from xg = [ 500 (500/tanf) 30 (30/tanf)

for the mode mgy = 1.
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[Kwon, C., Hwang, 1., 2016] present a simplified version of the vehicle tracking
problem to illustrate an application of Problem 3. This example shows that the road
map information can be used to enforce an equality constraint on the state vector for
linear systems.

For simplicity, we use two operating modes where in the first mode, the process
model is linear and in the second mode, the process model is nonlinear. However,
different mathematical models of target motion can be used for maneuvering target
tracking, for instance, constant velocity models, constant turn models and accelerated
models. We suggest the following reference for more details on such models [Rong Li,

X., Jilkov, V. P, 2003].

State estimation

In this example, the filter bank of the CIMM, algorithm is composed by one equality-
constrained Kalman filter (ECKF) and equality-constrained unscented Kalman filter
(ECUKEF). Note that, the equality constraint is linear for the first mode whereas the
equality constraint is nonlinear for the second mode. Then, for each mode, different
constrained state estimation methods are employed in the filter bank. We performed
100 distinct realizations using the CIMM, and IMM algorithms in a desktop Dell Insp-
iron Intel Core i3 with a 3.2 GHz processor and a 4GB RAM memory running Matlab.

a) Comparison over multiple realizations

We begin by presenting results for multiple realizations of the ground vehicle track-
ing. Overall performance was assessed averaging the results from 100 distinct process
realizations. We compare the processing time, Tcpy, and RMSE of the position and

velocity coordinates using the classical IMM and CIMM), algorithms.

Table 4.1 compares the Tcpy and RMSE obtained from a 100 distinct realizations
using the classical IMM and CIMM, algorithms, where the filter bank of the CIMM,
is composed of two filters, namely ECKF and ECUKEF for modes 1 and 2, respectively.
We observe that CIMM, reduces RMSE by approximately 22% and 33%, respectively,
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for the position and the velocity compared with the classical IMM; however, the pro-

cessing time of CIMMj; is 1.6 times larger than of IMM.
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Figure 4.5: Tracking a ground vehicle: (a) analog state estimate using the CIMMj (- -) and IMM

(---) in comparison with the true value (—), (b) probability of the mode estimates: mode 1

(—) and mode 2 (—<—) using the IMM and CIMM,. The vertical lines indicate mode transition

times. (c) constraint error, e,’f = dm, — m, (X, k), using the CIMM, (—) and IMM (—).
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b) Comparison within a single realization

Figure 4.5 shows the simulation results for one realization of the ground vehicle track-
ing system using the IMM and CIMM,. In Figure 4.5a, note that the vehicle performs
a constant velocity motion with fixed heading 0 and, after some time, the vehicle is
moving with constant speed. Figure 4.5b shows the probability for each estimated op-
erating mode using the IMM and CIMM,. For example, from kT = 2 s until kT = 150
s, we observe that the mode 1 (dark blue line) is estimated during 80% of the time
compared to the 20% that corresponds to the vehicle executing the mode 2 (light blue
line) using the CIMM,. After the mode transition, we observe that the mode 2 is esti-
mated at 65% compared to the 35% of the mode 1 for 150 s. After this time interval, the
modes are alternated. However, the classic IMM wrongly detects that mode 1 (black
line) is active for almost all k. Note that, the IMM shows no transition between modes.
Figure 4.5c shows that the constrained estimates, 3?5 (4.15), do not guarantee that the
nonlinear equality constraint (1.5) is exactly satisfied. We observe that the constraint is
approximately satisfied using the CIMM,. For the classical IMM, the state estimates £
(2.95) does not satisfy (1.5) for all k.

4.6 Concluding Remarks

In this chapter we discuss the problem of state estimation for hybrid linear and non-
linear systems with state equality constraints. We show three special cases of practical
interest of this problem. We categorized such a problem according to the linear or non-
linear character of the equality constraint as well as to the dependence of the constraint
on the operating mode.

For the mode-independent equality constraint case, we present the sufficient con-
ditions on the initialization and dynamics for the classical interacting multiple mod-
els (IMM) algorithm to yield state estimates satisfying a linear equality constraint for
hybrid linear time-invariant systems. Then, the IMM with projected initial condition
(IMM)y) is presented as the approximate solution for this problem. We compare these

algorithms by means of an examples of a water tank system in which the sum of the
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levels of the two tanks is constrained so that mass is conserved.

We investigate the scenario in which the mode-dependent time-varying linear equal-
ity constraints must be enforced along time for linear and nonlinear systems. In such
cases, the equality constraints are different for each operating mode. For this reason,
it is necessary to enforce these constraints along time. For such, we propose two algo-
rithms as an approximate solution to the state estimation problem for the linear and
nonlinear cases. For linear systems, the proposed CIMM| filter is a modified version of
the IMM algorithm to yield state estimates satisfying a linear mode-dependent equality
constraint. For nonlinear systems, we investigate the scenario in which the nonlinear
equality constraint may vary with time and operational mode. For nonlinear systems,
the proposed CIMM,, filter to yields state estimates such that the nonlinear equality
constraints are approximately satisfied. We illustrate the application of the proposed
approaches by means of an example of tracking a ground vehicle in which the vehi-
cle performs a constant velocity motion with a fixed heading or in which the vehicle
moves with a constant speed.

Numerical results suggest that the proposed approaches provide improvement in
the accuracy of analog and digital state estimates. The proposed approaches IMMj,
CIMM; and CIMM,; have a smaller estimation error for the analog and digital state
compared to the CIHE (special case of CIMM;) [Mann, G., Hwang, 1., 2013] and IMM
filters. Moreover, the proposed approaches CIMM; and CIMM, have required only a
slightly longer processing time. The IMM filter has a same processing time than the
IMM filter because the proper initialization of IMMj is done before the state estimation

process.
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Chapter 5

Conclusions and Future Work

51 Summary and Concluding Remarks

Hybrid systems are dynamic systems whose behavior is determined by the interaction
between analog and digital states. The hybrid stochastic filtering problem consists in
providing estimates for both analog and digital states from a sequence of noisy sample
measurements and the knowledge of such hybrid model. The main hurdle for these
systems is that both the number of possible sequences of modes and the number of
possible analog trajectories grow exponentially over time, posing a practical challenge
to solve this problem.

Approximate methods for state estimation in hybrid systems are based on multi-
ple models (MM) and Monte Carlo approaches. The estimator of MMs assumes that
the dynamic system can be characterized by a set of M models that capture the pos-
sible operating modes of the system. The estimate provided by the MM estimator is
achieved by running M filters in parallel and combining their estimates. Alternatively,
particle filtering (PF) methods approximate the joint a posteriori PDF of the hybrid sys-

tem using sampled trajectories. The PF employs a set of particles with corresponding
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weights to provide estimates for both analog and digital states.

In this work, we addressed the problem of state estimation for discrete-time Markov
jump systems. In such systems, the digital state transitions are governed by a Markov
chain and transition probabilities depend only on the current mode and not on the

analog state of the system.

5.1.1 M?Z?H with Gaussian Mixture Reduction

We considered the problem of state estimation for Markov jump systems. In the M3H
filter, the issue of the exponential growth of the number of possible trajectories is
tackled by merging hypotheses with similar digital state trajectories. An alternative
method for the merging step of the M®H algorithm was discussed and investigated in
this work. The proposed M®HR filter leverages techniques from the theory of Gaussian
mixture reduction to reduce the approximation error in the merging step. In this way,
rather than using only the information from the mode sequence as in the M>H filter,
we also incorporate the information from the analog state estimate in performing the
merging step.

Numerical results in a target tracking example suggest that the M>HR provides im-
provement in the accuracy of analog and digital state estimates. In particular, most of
the improvement is due to the first of three steps of the proposed algorithm. This mo-
tivated the study of abbreviated versions of the algorithm. In summary, when higher
precision is demanded from the filter, this abbreviated M>HR outperforms the original
M?H in both estimation error and processing time. As a consequence, M®HR presents
itself as a filtering strategy that offers the user the flexibility of operating efficiently
with different constraints on processing time and precision. The same could not be

said of M®H with more stringent precision constraints.

5.1.2 Constrained state estimation

We addressed the problem of state estimation for hybrid linear and nonlinear systems
with state equality constraints. We divided such a problem into three groups according

to the linear or nonlinear equality constraint as well as to the dependence of the con-
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straint on the operating mode my. First, we addressed the mode-independent equality
constraints case for linear systems. We presented sufficient conditions on the initial-
ization and dynamics for the classical interacting multiple models (IMM) algorithm to
yield state estimates satisfying a linear equality constraint for linear systems. Then,
the IMM with projected initial condition (IMMj) is presented as the approximate so-
lution for this problem. We compared two algorithms by means of an example of a
water tank system in which the sum of the levels of the two tanks is constrained so
that mass is conserved. We verified that the IMM) yields state estimates satisfying the

linear equality constraint.

Second, we addressed the mode-dependent equality constrained case for linear sys-
tems. In this case, we considered that the equality constraint vary with the mode m
and for this reason the equality constraint must be enforced along time. Then, we
presented a modified version of the IMM filter (CIMM3;) to enforce the linear mode-
dependent equality constraint on the state estimates for linear systems. We illustrated
the application of the proposed approach by means of an example of tracking a ground
vehicle in which the vehicle performs a constant velocity motion with a fixed heading
determined by the physical road the vehicle is on. We verified that the CIMM3 yields
state estimates satisfying the linear equality constraint.

Third, we investigated the mode-dependent equality constrained case for the non-
linear systems. In this case, we considered that the equality constraint may vary with
time k and mode my. Then, we employed the CIMM3 algorithm as approximate so-
lution of this problem. We compared two algorithms by means of an example similar
to the vehicle tracking problem in which the vehicle moves with a constant speed. We
verified that the CIMMj; provides state estimates satisfying a linear equality constraint,

whereas the nonlinear equality constraint is approximately satisfied.

5.2 Future Work

Some issues for future investigation are presented from the results presented so far. We

summarize these suggestions for future work as follows:
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1. In Section 3.3 we investigate the use of Gaussian mixture reduction methods as
an alternative for the merging step of the M?H algorithm. Using the Gaussian
mixture reduction by clustering approach, the proposed approach M®HR reduces
all hypotheses with the same current mode to a set of N, hypotheses, where Ny, is
a tunning parameter, thus making up the maximum number of N,;, M hypotheses.
We suggest the investigation of strategies to dynamically adapt the maximum
number of components in order to further improve the processing time versus

error tradeoff.

2. Suboptimal algorithms to adress the problem of state estimation for hybrid sys-
tems with state equality constraints are presented in Chapter 4. These algorithms
consider that the mode transition probabilities depend only on the current mode
and not on the analog state. However, the use of models whose mode transitions
depend on the analog state is reported in [Mann, G., Hwang, 1., 2013; Kwon, C.,,
Hwang, 1., 2016] for the hybrid constrained stochastic filtering problem. We sug-
gest the use of guard conditions to estimate the mode transition probabilities in

the proposed algorithms IMM( and CIMM3.

3. The optimal estimation problem in networked control systems where the control
signal is sent through a lossy channel is presented in [Lin, H., Su, H., Shu, Z., Wu,
Z., Xu, Y., 2016]. The use of hybrid models to characterize the behavior of loss
of information during the data transmission in communication networks can be
investigated. For instance, when the controller does not receive the acknowledg-
ment from the actuator, the controller does not know whether the sent signal has
been applied or not, only knows a probability of this occurring. We suggest treat-
ing the networked control systems as a new example of application for hybrid

stochastic filtering.

4. In this thesis, we address the problem of state estimation for discrete-time Markov
jump systems. We suggest the investigation of the state estimation problem for a
general class of continuous-time stochastic hybrid systems, which is a more gen-

eral yet challenging problem than the discrete-time hybrid estimation problem.
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In the literature, researches in state estimation for continuous-time stochastic hy-

brid systems are relatively limited [Liu, W., Hwang, 1., 2014].

. We address the problem of state estimation for hybrid systems with state equality
constraints in Chapter 4. We suggest the use of both equality constraints and
inequality constraints in hybrid constrained stochastic filtering methods [Cheng,

Y., Singh, T., 2007], which are outside the scope of this thesis.

. Finally, a suboptimal approach to the fixed-interval smoothing problem for hy-
brid systems with Markov jumps is presented in [Blom, H., Bar-Shalom, Y., 1990;
Helmick, R. E., Blair, W. D., Hoffman, S. A., 1995]. This smoothing algorithm is
based on Interacting multiple model filter. We suggest the use of our proposed

approach M®HR to address the same problem.
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