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By nature, all men long to know. 
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Abstract 

 

This dissertation addresses the application of meshless techniques to a number of problems 

occurring in Electrical Engineering. These meshless methods are relatively new and innovative 

when compared to more traditional approaches like finite element, finite difference and moment 

methods. As a consequence, problems from many different areas are nowadays being attacked 

through the meshless procedures for the first time. Probably in the near future they will occupy 

a prominent place among the tools analysts, engineers, physicists and mathematicians resort to 

when faced by situations whose solution is not possible through analytical methods. However, 

lots of work and research still need to be done. In this dissertation, many aspects of the meshless 

methods in contexts such those of electrostatics, electromagnetic wave scattering and quantum 

mechanics will be clarified. Particular attention is paid to the implementation of the Meshless 

Local Petrov-Galerkin (MLPG) method, and to its variant, the Local Boundary Integral 

Equation (LBIE) method. Problems dealing with the scattering of waves by conducting and 

dielectric cylinders, photonic crystals, capacitors, and numerical solutions of Schrödinger 

equation (energy levels) are all addressed in detail. Themes like shape functions, integral 

equations, partial differential equations, boundary and interface conditions, boundary value and 

eigenvalue problems in two and three dimensions, among others, will be discussed in the pages 

to follow. The purpose of this dissertation is to expose and illustrate the concepts from meshless 

analysis that could serve as a basis for future works. By the end of the text, it is expected that a 

substantial insight into the mechanisms of meshless methods be gained by the reader. 
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Resumo 

 

Esta dissertação versa sobre a aplicação de técnicas sem malha a vários problemas ocorrentes 

em Engenharia Elétrica. Esses métodos são relativamente novos e inovadores quando 

comparados com abordagens mais tradicionais como elementos finitos, diferenças finitas e o  

método dos momentos. Consequentemente, problemas de diversas áreas estão atualmente sendo 

atacados pelos métodos sem malha pela primeira vez. Provavelmente, no futuro eles ocuparão 

um lugar proeminente entre as ferramentas que analistas, engenheiros, físicos e matemáticos 

recorrerão quando se depararem com situações e problemas cuja solução seja impossível de ser 

encontrada através de métodos analíticos. Entreatanto, muito trabalho e pesquisa ainda precisam 

ser feitos. Nesta dissertação, muitos aspectos dos métodos sem malha em contextos tais como 

eletrostática, espalhamento de ondas eletromagnéticas e mecânica quântica serão clarificados. 

Atenção particular é devotada à implementação do método MLPG (Meshless Local Petrov-

Galerkin), e de uma sua variante, o método LBIE (Local Boundary Integral Equation). 

Problemas que lidam com o espalhamento de ondas por cilindros condutores bem como 

dielétricos, cristais fotônicos, capacitores e com a solução numérica da equação de Schrödinger 

(níveis de energia) serão todos tratados detalhadamente. Temas tais como funções de forma, 

equações integrais, equações diferenciais parciais, condições de contorno e interface, problemas 

de valor de contorno e problemas de autovalores em duas e três dimensões, entre outros, serão 

discutidos nas próximas páginas. O propósito da presente dissertação é expor e ilustrar 

conceitos da análise meshless que poderiam servir de base para trabalhos futuros. Ao final do 

texto, é esperado que o leitor tenha ganhado um insight substancial no que diz respeito aos 

mecanismos por detrás dos métodos sem malha. 
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Resumo Estendido 

 

Introdução 

s métodos sem malha (geralmente referenciados pelas expressões meshless ou meshfree) 

são uma família de procedimentos computacionais destinados à solução numérica de 

equações diferenciais parciais. Operacionalmente, tais métodos realizam as mesmas tarefas que 

métodos mais tradicionais, como o método de elementos finitos (FEM) e o método de 

diferenças finitas (FDTD), entre outros. Isto é, dada uma equação diferencial parcial, os 

métodos sem malha são aptos (ou pelo menos deveriam ser) a fornecer uma solução numérica 

para essa equação, da maneira mais acurada possível. Mas esses métodos resolvem equações de 

uma maneira bastante peculiar, baseando-se numa característica tão distinta que ela acabou por 

dar nome à inteira família de métodos: a completa ausência de malhas. 

Mas o que viria a ser isso? O que seria uma malha? De maneira bastante informal (e 

sem qualquer intenção de expor definições e raciocínios rigorosos), uma malha seria uma 

subdivisão do domínio no qual uma dada equação deve ser resolvida. Uma equação diferencial 

deve ser satisfeita num domínio  , i.e., uma porção limitada do espaço uni, bi ou tridimensional. 

Ao se resolver essa equação num computador, os métodos tradicionais “quebram” o domínio   

numa coleção de pedaços menores. O domínio pode ser subdividido de maneira regular, como 

no caso do FDTD, dando origem a uma malha estruturada, ou de maneira irregular (mas 

obviamente obedecendo a critérios específicos), originando uma malha irregular, prática comum 

no FEM. 

Os métodos sem malha, por outro lado, não trabalham com subdivisões do domínio. 

Uma vez que   é definido, espalha-se sobre ele um conjunto de   pontos (chamados de nós), 

aos quais se associam certas funções, conhecidas como funções de forma (ou de base). A 

solução da equação para qualquer ponto      é então calculada como uma soma ponderada de 

funções de forma calculadas em   . Em suma, isso seria a essência dos métodos sem malha. Não 

parece muito complicado, mas há um longo caminho a percorrer para se achar os pesos da soma 

ponderada citada acima. Há diversas maneiras de se calculá-los, cada uma dando origem a um 

diferente método (estamos a falar de uma família de métodos). Alguns são mais formidáveis do 

que outros, é claro, mas todos compartilham dessa mesma filosofia, que, aliás, é o tema do 

capítulo 2 dessa dissertação. 

Os primeiros estudos a respeito dos métodos sem malha datam do início da última 

década. Ainda estão na sua “infância”, e ainda há muitos desafios que precisam ser explorados 

[Liu, 2003]. Praticamente todos eles são oriundos do campo da Mecânica Computacional, onde 

foram inicialmente (e ainda têm sido) aplicados a problemas de elasticidade, hidrodinâmica e 

mecânica dos sólidos, entre outros. Em Eletromagnetismo Computacional, por outro lado, os 

métodos sem malha são praticamente desconhecidos, mas este cenário está começando a mudar. 

O 
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Dentre os membros da família, um em particular, o EFG (Element-Free Galerkin) tem sido 

empregado com sucesso [Parreira et al., 2006], [Bottauscio et al., 2006] e [Manzin e Bottauscio, 

2008]. Entretanto, o EFG não é considerado como um método “verdadeiramente” sem malha 

pelo fato de depender de um procedimento que lembra muito uma divisão de domínio (e 

portanto uma malha!) durante o processo de cálculo [Liu, 2003]. Principalmente por causa 

disso, o principal objetivo desse trabalho é dissecar um outro método, o MLPG (Meshless Local 

Petrov-Galerkin), e tentar encontrar o maior número possível de aplicações a problemas 

tradicionais da engenharia elétrica. O MLPG, desenvolvido inicialmente por S. Atluri [Atluri 

and Shen, 2002] é verdadeiramente sem malha, e utiliza informações relativas à vizinhança de 

cada nó para se chegar à solução geral do problema. Ele parte do local (a versão do MLPG 

explorada neste trabalho emprega vizinhanças circulares em 2D e esféricas em 3D) para o 

global. Uma abordagem muito interessante, que será explicada um pouco mais nas próximas 

linhas (e no restante do trabalho).  

 

 

Funções de Forma 

 

De acordo com o que foi explicado acima, a principal noção que permeia os métodos 

sem malha é a aproximação da solução por uma soma ponderada de funções de forma 

(associadas a nós espalhados pelo domínio, e não a elementos). Dado um ponto    pertencente ao 

domínio  , tem-se: 

              

           
 

                                                                 

em que: 

   é a versão discretizada (i.e., representada como uma soma de funções de forma) da solução   

da equação diferencial parcial       a ser resolvida numericamente (   é um operador 

diferencial e   uma função conhecida, não necessariamente contínua); 

          representa o conjunto de nós que são aptos a influenciar o ponto   ; 

       representa uma função de forma associada ao nó   calculada em   ;  

    é o parâmetro nodal, i.e., o peso associado ao nó  . 

A noção geométrica associada à equação (1) acima é mostrada na Fig.3.1. 

 

Dentre as propriedades que as funções de forma devem satisfazer, estão: 

1 - Devem ser de suporte compacto (i.e., possuem valor diferente de zero apenas na vizinhança 

do nó ao qual está associada). Isso garante que somente os nós mais próximos do ponto    onde 

se deseja calcular    contribuem com a soma ponderada (1). Essa característica leva 

naturalmente a sistemas lineares cujas matrizes são esparsas, de maneira análoga ao FEM; 

2 - Todas as funções de forma que influenciam um ponto    devem satisfazer a partição da 

unidade, i.e.,  
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e também a propriedade da reprodução do campo linear: 

               

           
 

                                                              

               

           
 

                                                              

               

           
 

                                                              

As expressões (2) – (5) informam que as funções de forma conseguem aproximar uma função 

linear de maneira exata, i.e., se é sabido de antemão que a solução de uma equação diferencial é 

linear, então o erro cometido ao se aproximar a função   pela sua versão discretizada    é zero. 

 

Há diferentes maneiras de se calcular as funções de forma   . E aqui talvez resida o 

ponto fraco dos métodos sem malha. As funções de forma não possuem expressão analítica. 

Diferentemente do FEM, onde as funções de base    são conhecidas no interior de cada 

elemento, os métodos sem malha requerem a aplicação de métodos numéricos para sua 

determinação. Na abordagem meshless, pode-se dizer que o custo computacional para se 

construir uma malha não-estruturada é transferido para o cômputo das funções de forma.  

Na quase totalidade dos problemas avaliados neste trabalho, a aproximação MLS 

(Moving Least Squares) foi empregada [Liu, 2003]. Funções de forma RPIM [Liu, 2003] foram 

empregadas apenas uma vez, na seção 5.4). 

As funções de forma MLS se apoiam basicamente na geometria da distribuição nodal 

(i.e., posição dos nós no domínio  ) e no domínio de influência associado aos nós: 

 Cada nó é associado a um número real (problemas unidimensinais), a um par ordenado 

(bidimensionais), ou a uma trinca ordenada (tridimensionais), que localiza o nó no 

interior (ou na fronteira) do domínio  ; 

 As funções de forma são capazes de influenciar (i.e., são diferentes de zero) apenas uma 

região na vizinhança de cada nó (apenas uma outra maneira de se dizer que as funções 

de forma são de suporte compacto). Há uma certa liberdade na escolha da forma dessas 

regiões. Neste trabalho, elas são círculos em 2D e esferas em 3D. 

Portanto, para cada nó   (índice que varia de 1 a  , número total de nós espalhados por  ) 

localizado em       , tem-se uma uma função de forma        que assume valores diferentes de 

zero na região 
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em que    é o raio da região (circular ou esférica)   . Visto que apenas os pontos      que se 

situam no interior de    podem ser influenciados pelo nó  ,    recebe o nome de domínio de 

influência associado ao nó  . 

Uma vez que a noção de influência tornou-se mais precisa através de (2), uma 

interpretação mais refinada de (1) seria: Dado o ponto    no qual se deseja calcular   , toma-se 

toda a população nodal (índices   de 1 a  ) e considera-se apenas aqueles para os quais       

(i.e., o nó   influencia   ). Esses nós formam o conjunto          . Mas e se porventura 

houvesse um ponto    para o qual             ? Como se poderia construir uma aproximação 

para       ? Na verdade, tal cenário é inconsistente; o ponto    estaria dentro de um ‘buraco de 

cobertura’. Se a abordagem meshless deve ter algum sentido para todos os pontos do domínio  , 

precisa-se garantir que 

        

 

   

                                                                     

i.e., os domínios de influência de todos os nós devem formar uma cobertura para o domínio   (e 

para a sua fronteira   ). 

O processo para se calcular as funções de forma MLS é longo e tedioso. O Capítulo 3 é 

quase inteiramente devotado a ele. Nesta breve introdução, é suficiente dizer que, dado um 

ponto    no qual se deseja calcular as funções de forma, tem-se: 

                                                                                 

em que  

                                                                                 

(        significa o primeiro elemento do conjunto          ,         o segundo, e assim 

por diante, até o número de nós   que influenciam o ponto   ; uma descrição detalhada do que 

realmente está por trás de             e       é dada no Capítulo 3, Seção 1). O procedimento 

para se calcular as funções de forma pode ser encarado como uma ‘caixa-preta’, i.e., informa-se 

as coordenadas do ponto    e obtém-se como resultado um conjunto de funções de forma (5) 

pronto a ser utilizado em aproximações de    como em (1). O custo computacional associado é 

elevado, visto que, para cada ponto onde se deseja calcular as funções de forma, é fundamental 

o emprego de um algoritmo de busca (p.ex., baseado em KdTrees), além de inversões matriciais 

(apenas a aproximação MLS precisa de matrizes invertidas; tal procedimento é desnecessário no 

RPIM). O processo para o cálculo das derivadas parciais também pode ser considerado como 

uma ‘caixa-preta’. Neste caso, os cálculos vão um pouco mais além, e o procedimento retorna 

vetores como em (5), mas contendo os valores das derivadas das funções de forma associadas 

aos nós que influenciam o ponto    (Capítulo 3, Seção 3). 

Entretanto, há vantagens em se empregar a aproximação MLS. As funções de forma assim 

obtidas e suas derivadas são suaves, mesmo quando se empregam apenas termos lineares na 

base (no vetor  ; no Capítulo 3, Seção 1, há uma discussão mais detalhada). Uma típica função 

de forma MLS pode ser vista na Figura 3.7, enquanto suas derivadas estão ilustradas nas Figuras 

3.12 e 3.13. 
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Equações Integrais de Espalhamento Eletromagnético: Uma Primeira 

Aplicação para as Funções de Forma MLS 

 

Embora os métodos sem malha terem sido originalmente propostos como uma 

alternativa ao método dos elementos finitos (FEM), que busca a solução de equações 

diferenciais parciais, a primeira oportunidade neste trabalho de aplicação das funções de forma 

veio de um campo totalmente diferente, a saber, da análise do espalhamento de ondas 

eletromagnéticas através de equações integrais.  

As equações integrais da teoria eletromagnética geralmente são resolvidas através do 

método dos momentos (MoM) [Balanis, 1989], [Harrington, 1968]. Neste trabalho, o MoM foi 

adaptado de tal modo a empregar as funções de forma MLS no processo de discretização.  

Na análise do espalhamento de ondas por objetos condutores (a única categoria aqui 

considerada), busca-se uma maneira de se determinar as correntes equivalentes    que são 

induzidas na superfície do condutor, representado por    (embora de acordo com o Capítulo 1 o 

mesmo símbolo também seja empregado para a fronteira do domínio onde uma equação 

diferencial deve ser resolvida, não há nenhum problema em empregá-lo também na abordagem 

via equações integrais, uma vez que    aqui representa a ‘fronteira’, ou o contorno do objeto 

condutor, onde circulam as correntes equivalentes). Para problemas bidimensionais e 

polarização TM
z
, tem-se 

               
      

   

 
        
  

  
                                                    

                                    
  

 
     

     
  

  
                                 

A equação (6) é a equação integral do campo elétrico (EFIE), e (7) é a equação integral do 

campo magnético (MFIE). Os campos incidentes   
      (componente  ) e           são funções 

conhecidas, assim como a geometria da superfície    do condutor (em problemas 2D, uma 

curva fechada em   ). Uma completa dedução de (6) e (7) a partir das equações de Maxwell é 

dada na Seção 4.1.2. 

O processo que leva à solução de (6) e (7) pode ser sucintamente descrito por: 

 Espalha-se nós por todo o contorno   ; 

 Uma vez que as posições nodais tenham sido estabelecidas, constrói-se funções de 

forma MLS de acordo com o procedimento ‘caixa-preta’ (seção anterior); 

 Aproxima-se a densidade de corrente        por uma soma ponderada de funções de 

forma [à maneira de (1)]: 
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 Substitui-se (8) em (6) e/ou (7) e realiza-se as integrações numéricas ao longo de   . 

Isso leva a um sistema linear cujas incógnitas são os parâmetros nodais     e cujo vetor é 

uma função do campo incidente (e portanto conhecido). 

A qualidade dos resultados obtidos depende da geometria do condutor. Tal método se 

revelou preciso quando aplicado ao problema de espalhamento por um cilindro circular 

condutor perfeito. Entretanto, quando a seção reta do cilindro possui ‘lados’ (um quadrado, por 

exemplo), o método falha miseravelmente, porque a aproximação MLS não consegue produzir 

as funções de forma. Se os nós estiverem distribuídos ao longo de um lado do quadrado (de 

modo que uma de suas coordenadas,   ou  , tenha um valor fixo), a matriz   em (4) torna-se 

singular, o que impede que seja invertida. 

Uma maneira de se contornar esse problema seria o emprego de um outro método para a 

construção de funções de forma, e que fosse apto a produzir resultados aceitáveis quando os nós 

estivessem distribuídos ao longo de uma linha (ou lado). A Seção 4.3 lida com o método IMLS 

(Improved Moving Least Squares), que emprega uma espécie de ortogonalização de Gram-

Schmidt para a construção de funções para a base do MLS (vetor  ). O procedimento IMLS não 

necessita de inversão de matrizes, e produz bons resultados longe das quinas do cilindro 

condutor. O IMLS falha próximo aos vértices (ou quinas), o que resulta em um desempenho não 

muito satisfatório. 

Entretanto, há uma maneira de se resolver as equações integrais (6) e (7) através de 

funções de forma MLS, tanto para geometrias circulares quanto para as que contém lados. A 

idéia é construir as funções de forma ao longo de uma linha, e depois definir uma transformação 

que mapeia os pontos dessa linha a pontos do contorno   . Esse processo funciona muito bem 

(Seção 4.4), e a ele foi dado o nome de rubber band technique, pelo fato de se parecer com o ato 

de esticar uma tira de borracha (que supostamente conteria as funções de forma) ao longo do 

contorno   . 

 

 

O Método MLPG (Meshless Local Petrov-Galerkin) 

 

O MLPG é o ponto central do presente trabalho, particularmente a sua aplicação a 

problemas de espalhamento eletromagnético. Esse método foi desenvolvido por S. Atluri [Atluri 

e Shen, 2002], inicialmente para a resolução de problemas modelados por equações diferenciais 

parciais em Mecânica Computacional. Esse método é considerado ‘verdadeiramente’ sem 

malha, uma vez que requer a integração de formas fracas apenas em domínios locais, na 

vizinhança de cada nó. 

Em problemas de espalhamento de ondas eletromagnéticas monocromáticas em duas 

dimensões, as equações a serem resolvidas geralmente assumem a forma 

   
 

     
                                                                         

em que       representa a componente   do campo elétrico ou magnético (dependendo da 

polarização), enquanto       e       representam parâmetros materiais (permeabilidade 

magnética ou permissividade elétrica, também de acordo com a polarização). O termo   se 
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refere ao número de onda no espaço livre, e       é um termo que representa as fontes 

(excitação). 

No MLPG, a equação (9), que envolve derivadas de segunda ordem da função  , não é 

resolvida diretamente; ela precisa ser antes colocada sob uma outra forma, a forma fraca, que 

envolve apenas derivadas de primeira ordem (enquanto (9) é conhecida como a forma forte do 

problema). Entretanto, a construção da forma fraca de (9) requer a introdução de um outro tipo 

de função, as funções de teste  . O processo geral de solução da equação (9) via MLPG pode ser 

descrito como: 

 Espalha-se   nós através de todo o domínio  ; 

 A cada um dos   nós se associa uma função de forma MLS   ; 

 A cada um dos   nós se associa uma função de teste   . As funções de teste também 

devem ser de suporte compacto (assim como as funções de forma). A região na 

vizinhança do nó   sobre a qual    é diferente de zero é chamada de domínio de teste   ; 

 Constrói-se a forma fraca de (9), usualmente uma expressão integral envolvendo   e  . 

A forma fraca é imposta   vezes, cada uma das quais devendo ser integrada em   ; 

 Em cada instância da forma fraca obtida de (9), substitui-se   pela aproximação (1). Tal 

procedimento leva a um sistema linear cuja matriz é esparsa, e cujas incógnitas são os 

parâmetros nodais    . 

Na versão do MLPG empregada neste trabalho, uma típica função de teste associada ao nó   é 

tal que 

                                                                                

                                                                                      

Em duas dimensões,    é dada por 

       
 

  
   

  

        
                                                             

E em três dimensões, 

       
 

  
 

 

        
 

 

  
                                                          

em que    é o raio do domínio de teste   , que deve obrigatoriamente ser um círculo em 

problemas 2D (e esferas em problemas 3D), nessa versão apenas, conhecida como MLPG4 ou 

Local Boundary Integral Equation Method (LBIE). 

No que diz respeito à forma fraca, há pelo menos duas maneiras de obtê-las: o método 

dos resíduos ponderados ou através da segunda identidade de Green. Uma vez que a forma fraca 

tenha sido obtida, ela requer a incorporação das condições de contorno, especificadas sobre a 

fronteira   . Como se trata de problemas de espalhamento, busca-se condições que representem 

o campo espalhado se afastado do objeto (outward travelling waves), i.e., as condições devem 

satisfazer, pelo menos num sentido aproximado, a condição de Sommerfeld: 
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em que   
  representa a componente   do campo elétrico espalhado (as condições para o campo 

magnético   
  são análogas). Neste trabalho, foram empregadas as condições de contorno de 

radiação (Radiation Boundary Conditions - RBC) de Bayliss-Turkel de primeira (Seção 5.5) e 

de segunda ordem (Seção 5.3). 

As condições de radiação podem ser impostas de duas maneiras: Diretamente na forma 

fraca (Seção 5.3) ou através do método da colocação (Seção 5.5). A primeira alternativa 

apresenta um desafio maior, visto que interseções entre o domínio   e os domínios de teste    

dos nós próximos a    precisam ser encontradas. Já a segunda é muito simples de ser 

implementada, o que a torna mais eficiente. Ainda existe uma maneira de se lidar com (14), mas 

que não emprega RBC’s aproximadas. Trata-se do método de expansão em autofunções, ou 

método Unimoment (Seção 5.4). Tal método foi originalmente proposto para a solução de 

problemas de espalhamento via elementos finitos [Chang e Mei, 1976]. Entretanto, ele foi aqui 

modificado de modo a incorporar o MLPG4/LBIE no lugar do FEM, com resultados bastante 

favoráveis. 

 

 

Condições de Interface 

 

Uma outra questão abordada neste trabalho diz respeito às condições de interface, que 

devem ser impostas quando algum parâmetro material [função       em (9)] é descrito por uma 

função descontínua. Essa questão é particularmente importante na análise do espalhamento de 

ondas eletromagnéticas com polarização TE
z
. Para essa polarização, e se o domínio   for 

caracterizado por dois (ou mais) materiais com diferentes permissividades, ao longo da interface 

entre os dois materiais, as derivadas normais do campo magnético satisfazem à relação 

 

  
 

   
 

  
 

 

  
 

   
 

  
                                                                  

em que   
  representa o campo magnético de uma lado da interface, enquanto   

  é o campo do 

outro lado;   
  é a permissividade relativa de um lado da interface, enquanto   

  é a 

permissividade do outro lado. As derivadas em (15) são tomadas na direção normal à interface 

que separa os meios de permissividades diferentes. Não há uma maneira de inserir (15) 

diretamente na expressão para a forma fraca de (9). Entretanto, a Seção 5.5.1 apresenta um 

procedimento muito conveniente de tratar esse problema. As condições de interface são 

impostas diretamente no sistema matricial, via colocação, de um modo similar ao qual as 

condições de fronteira são impostas no contorno   . A idéia por trás desse procedimento foi 

inspirada por [Li et al., 2003]. Resultados adicionais da aplicação dessa técnica a um problema 

tridimensional de eletrostática podem ser vistos na Seção 6.1. 

 

 

Problemas de Autovalor: Cristais Fotônicos 

 

Na análise de cristais fotônicos, há grande interesse na determinação da estrutura de 

bandgap. Tal estrutura diz respeito às frequências com as quais ondas eletromagnéticas (luz) 

podem se propagar no interior do cristal. A determinação das frequências que dão origem a 
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modos propagantes é um problema de autovalor; para cristais bidimensionais e assumindo 

ondas incidentes com polarização TM
z
, o problema a ser resolvido é: 

          
 

 
 
 

                                                               

sujeito às condições de contorno 

                                                                                       

   

  
                    

   

  
                                                           

em que     é um vetor ligado às transformações de simetria do cristal (lattice vector).  O 

problema (16)-(18) deve ser resolvido numa célula unitária  . (Os cristais fotônicos são 

estruturas periódicas. A menor unidade que, quando transladada dá origem ao cristal original, é 

geralmente chamada de célula unitária). Neste trabalho, considerou-se apenas células unitárias 

quadradas. As condições (17) e (18), impostas na fronteira de uma célula quadrada    

significam que o campo em um lado é igual ao campo no lado oposto, multiplicado por um fator 

de fase (no qual o vetor      é o vetor de Bloch). O mesmo vale para a derivada normal do campo 

elétrico. 

 Para se resolver o problema (16) – (18), o campo elétrico    geralmente é representado 

como o produto de duas funções (teorema de Bloch): 

                                                                                             

onde       é agora uma função periódica na célula unitária, i.e.,  

                                                                                       

  

  
         

  

  
                                                                         

A substituição de (19) em (16) dá origem a uma nova equação diferencial: 

                     
 
   

 

 
 
 

                                                      

 A transformação gerada pela aplicação do teorema de Bloch torna as coisas mais 

simples. Ao invés de se resolver o problema (16) – (18), resolve-se (20) – (22). A vantagem é 

que agora procura-se uma função       que seja periódica na célula unitária, sem qualquer 

referência a fatores de fase. Neste trabalho, uma maneira muito engenhosa de lidar com as 

condições (20) e (21) foi encontrada: o emprego de funções de forma periódicas, i.e., que 

atendam às mesmas condições de periodicidade (20) – (21). Como resultado, essas condições de 

contorno não precisam ser impostas; elas já estão embutidas nas funções de forma   usadas na 

aproximação de      . A construção de funções de forma periódicas é amplamente discutida na 

Seção 6.2, bem como a forma fraca de (22) e as matrizes que figuram no problema de autovalor 

associado. A partir daí, se obtém a estrutura de banda (bandgap structure) sem muito esforço. 
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Algumas Aplicações do MLPG em Mecânica Quântica 

 

No mesmo espírito das seções anteriores, busca-se aqui soluções para problemas de 

autovalor provenientes da equação de Schrödinger em 2 e 3 dimensões 

 
  

  
                                                                       

Basicamente, dada uma distribuição de energia potencial       (      ), as Seções 7.2 e 7.3 

ilustram como encontrar os níveis de energia (autovalores)  . Todo o tratamento teórico é 

apresentado com detalhe, particularmente as estratégias para a construção da forma fraca da 

equação de Schrödinger a partir de (23). Comparações com os resultados de soluções analíticas 

demonstram a aplicabilidade do MLPG em problemas de mecânica quântica. O procedimento 

para construção de funções de forma periódicas do Capítulo 6 é aqui estendido com facilidade 

para três dimensões, para a resolução de um problema de determinação da estrutura de banda de 

sólidos (similar ao problema 2D para cristais fotônicos). Os resultados concordam muito bem 

com aqueles provenientes de um outro método numérico [Jun, 2004]. 

 Por fim, a última seção do Capítulo 7 faz referência às primeiras incursões no emprego 

do MLPG4/LBIE em problemas dependentes do tempo. O objetivo é resolver a equação de 

Schrödinger não-linear dependente do tempo 

 
        

  
                                                                  

Na abordagem aqui empregada, a derivada temporal é discretizada através de um procedimento 

via diferenças finitas. Além disso, ao termo não-linear  é dispensado um tratamento especial, 

baseado em iterações (predictor-corrector). Os resultados concordam muito bem com as 

soluções analíticas, e revelam que o MLPG4/LBIE também funciona corretamente ao ser 

aplicado a problemas que dependam do tempo. 

 

 

Conclusões 

 

O trabalho aqui apresentado cumpriu o seu papel de demonstrar a aplicabilidade dos 

métodos sem malha a vários problemas de interesse para a engenharia elétrica. Procurou-se 

demonstrar com clareza como os métodos funcionam. O custo de tal empreitada refletiu-se em 

exposições talvez demasiado longas, principalmente naquelas referentes à construção das 

formas fracas.  

 Partimos da definição de equações diferenciais, e o que representa um domínio no 

espaço. A partir daí, toda a idéia (ou filosofia) que permeia os métodos sem malha foi 

apresentada de uma maneira um tanto didática, através de uma analogia com a eletrostática (na 

qual as cargas eram representadas por nós, e os potenciais por elas produzido pela ação das 

funções de forma). Uma vez que o básico foi apresentado, todo o restante do trabalho é 

dedicado a refinar as ideias expostas aqui no Capítulo 2. 



xxi 
 

 A construção das funções de forma é o tema do Capítulo 3. A aproximação MLS foi 

dissecada de uma maneira particularmente incisiva, com páginas e mais páginas demonstrando 

o processo por trás das funções de forma MLS. Apesar de poder ser encarado como um 

procedimento caixa-preta, muito insight pode ser obtido caso se conheça com detalhe como 

essas funções de forma são calculadas. O Capítulo 3 também faz uma breve referência às 

funções de forma RPIM, visto que são empregadas apenas uma única vez em todo o trabalho. 

 Uma vez que as funções de forma – componentes básicos na aproximação dos campos – 

foram definidas, prosseguiu-se na aplicação dessas funções ao processo de discretização de 

equações integrais do espalhamento eletromagnético. Os resultados foram muito bons, 

superando em precisão o método dos momentos, que é tradicionalmente empregado nessa 

categoria de problemas. Além disso, o Capítulo 4 discute as principais falhas do MLS na 

construção de funções de forma para objetos ‘quadrados’. Após muita discussão, uma maneira 

extremamente simples para resolver os problemas do MLS é apresentada ao final do capítulo. 

 O Capítulo 5, que trata de todo o desenvolvimento do MLPG aplicado a problemas de 

espalhamento, é o ponto central do trabalho. Diferentes estratégias para lidar com a imposição 

das condições de contorno foram abordadas. O método da colocação assume aí um destaque, em 

vista da facilidade com a qual pode ser efetivamente empregado.  

 Com a experiência dos capítulos anteriores, procede-se então a novas áreas de aplicação 

do MLPG a problemas tridimensionais (nos quais o método da colocação uma vez mais se 

revelou fundamental) e a problemas de autovalor provenientes da análise de cristais fotônicos e 

da mecânica quântica. Esse material, tema dos últimos dois capítulos, conclui a dissertação. 

 A principal intenção deste trabalho foi mostrar como o MLPG pode ser aplicado a 

problemas de espalhamento eletromagnético. O restante deve ser encarado como ‘subprodutos’ 

(byproducts), que foram obtidos à medida em que o tema principal era desenvolvido. Muitos 

temas foram aqui tratados pela primeira vez, e particular atenção foi devotada à exposição 

detalhada dos métodos. Isso levou, como já afirmado, a discussões um tanto prolongadas e a 

deduções que à primeira vista poderiam parecer desnecessárias. Mas isso já estava previsto; uma 

das intenções que tive ao produzir esse trabalho é que ele também servisse como uma espécie 

referência, onde tudo (ou quase) o que eu tivesse explorado sobre os métodos sem malha 

estivesse contido.  

 Uma vez que a aplicabilidade dos métodos sem malha a problemas foi demonstrada 

com sucesso, o próximo passo é o refinamento desses métodos. Resultados sobre erros, taxas de 

convergência e, sobretudo, comparações extensivas com o método dos elementos finitos, 

constarão na agenda dos trabalhos futuros. A fronteira foi aberta, e agora pode-se vislumbrar 

vários temas a serem abordados, como 

 Problemas que envolvam grandezas vetoriais, e não apenas escalares; 

 Problemas não-lineares (principalmente aqueles relacionados à não-linearidade de 

certos cristais fotônicos); 

 Outras maneiras de se resolver problemas dependentes do tempo; 

 Uso de PML’s (Perfectly Matched Layers) ao invés de condições de radiação (RBCs’); 

 Esquemas mais eficientes para a integração numérica das formas fracas (de crucial 

importância ao se lidar com problemas grandes, que envolvam centenas de milhares de 

nós); 
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 Um tratamento matemático mais rigoroso (descrição mais detalhada dos espaços de 

funções e operadores que figuram nos métodos sem malha). 

 O futuro dos métodos meshless parece ser promissor em engenharia elétrica. Em vista 

da grande área que ainda resta para ser explorada, tudo indica que os próximos anos trarão 

surpresas agradáveis. 
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Chapter 1 

Introduction 
 

1.1 Preview 

 

HIS work is concerned with the application of meshless (or meshfree) methods to situations 

relevant to Electrical Engineering. As broad as this scope may appear at first, there is some 

kind of thread which links problems from contexts so different to each other like Electrostatics 

and Quantum Mechanics. It is just because of this issue that I have been able to investigate so 

many problems from different domains. After the reader finishes reading the text that I now lay 

before him, he will probably see this common link with his own eyes. 

In writing this text, I strived to write it in a language as simple as possible. I tried to explain 

everything in words, down to the smallest details. In addition to this, this work is self-contained, 

insofar as I make no attempt to find out how methods other than those derived from the 

meshless framework would solve a certain kind of problem. As a consequence, the reader does 

not have to know how the Finite Element Method (FEM) or the Method of Moments (MoM) 

actually work in order to provide a solution to a given problem.  

The purpose of this work is twofold. Firstly, it is the dissertation I shall submit to UFMG 

Electrical Engineering Graduate Program in order to earn a Master’s degree. The other reason 

for my writing such a work is because I want to make some kind of reservoir, in which I would 

place everything concerning meshless methods I could put my hands on. So I want to assemble 

lots of things together, knowledge distilled from my reading of many papers and books related 

to mathematics, physics and engineering viewed from the viewpoint of the meshless techniques. 

I really do not want this to get lost, as the time passes and these ideas will no longer be fresh in 

my memory. Everything gathered at a single place and explained in a simple language. This is 

the sort of work I wish I had read when I first came to know about meshfree methods, two years 

ago. And now here it is. 

This work moves around the numerical solution of problems described either by differential or 

by integral equations. I deal chiefly with the implementation of the meshless techniques applied 

to such problems. This is not a work on numerical analysis, in which the application of tools 

from Functional Analysis is of utmost importance. I shall deal with such advanced subjects 

(rigorous analysis of convergence rates, derivation of upper and lower bounds for solutions, 

theorems, stability of solutions, normed spaces and so on) in a future work. The reason why I 

have somehow postponed that is simple. Many of the techniques described in this work are here 

applied to problems from Electrical Engineering for the first time. There was no book or paper I 

could resort to in order to find something dealing with meshless methods in Electromagnetism 

in a simple way. So I had to begin from the scratch. I compare it to the sowing of a field. In 

order for it to produce something, the herbs must be removed, the soil be revolved, the seeds 

must be watered. All of this has to be carried out before the plants begin to bear fruit; actually, 

even before they are born! So with this work, which aims at cleaning the terrain for the 

development of future sophisticated applications and more rigorous mathematical analyses. In 

T 
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order to investigate more advanced characteristics and implications of a method, we’d better 

figure out if the method works correctly first! 

 

 

1.2  Some information on the development of meshless methods 
 

The meshless methods comprise a large class of numerical procedures whose seminal 

idea underlying all its members is, as its name indicates, to be able to build numerical solutions 

to differential equations defined in a certain geometrical domain without the need of setting up a 

mesh or a grid in this domain. There are resemblances with FEM, to which meshfree methods 

aim to be an alternative. The most patent ones are: the operation with weak forms (the 

differential equation is converted into an integral expression involving the function to be 

approximated and test functions), the use of compactly supported shape functions, and the 

integration of the weak forms in local domains, which leads to global sparse matrices. The most 

striking difference from FEM is the complete absence of an underlying mesh; as there is no 

mesh, the concept of element loses its meaning. So the classical idea of an element with its 

‘connectivity array’ linking nodes to edges is totally absent in the context of the meshless 

approach. This new technology offers the possibility of releasing the analyst from the burden of 

setting up an adequate mesh in favor of a more simplistic scenario, wherein only a simple cloud 

of nodes spread throughout the domain is necessary. 

The first studies concerning the use of meshfree techniques were reported in the early past 

decade. These methods are in their infancy, and many challenges concerning them remain to be 

explored [Liu, 2003]. Meshless methods have successfully been applied in Computational 

Mechanics. Their use in areas such as Elastostatics and Hydrodynamics is well developed. In 

Computational Electromagnetics, otherwise, there are some appearances. Some papers dealing 

with meshless methods in Electrical Engineering are [Maréchal, 1998], [Cingoski et al., 1998], 

[Viana and Mesquita, 1999],  [Parreira et al., 2006], [Bottauscio et al., 2006] and [Manzin and 

Bottauscio, 2008]. However, in all these works (except [Viana and Mesquita, 1999]), a method 

called Element-Free Galerkin (EFG) is employed. EFG is not regarded as a true meshless 

method, because background cells are necessary to perform the numerical integrations [Liu, 

2003].  

On the other hand, a different method, called Meshless Local Petrov-Galerkin (MLPG), unlike 

EFG, is a true meshless method. The numerical integrations are carried out within certain local 

domains, which dismisses the use of any kind of background cells. MLPG was devised by S. 

Atluri within the framework of Mechanics [Atluri and Shen, 2002].  MLPG employs two kinds 

of functions, shape functions and test functions, which belong to two different function spaces. 

The shape functions are constructed numerically through procedures common to other meshless 

methods, whereas there are many choices available to the test functions. There are reports on the 

application of MLPG5 (the test function is a Heaviside function) to solve 2D electrostatic 

problems [Fonseca et al., 2008]. Soares Jr. also solves problems concerning electromagnetic 

wave propagation in time-domain through MLPG, in which two choices for the test function 

have been taken: Heaviside step functions and Gaussian weight functions [Soares, 2009]. Y. Yu 

and Z. Chen, otherwise, use a meshless method whose formulation is quite different from 

MLPG (in fact, it resembles a time-domain finite-difference approach, based on collocation) in 

order to solve time-domain electromagnetic problems [Yu and Chen, 2009], [Yu and Chen, 

2010]. In this work, we are particularly interested in MLPG4, whose test function is a solution 
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to Green’s problem for Laplace’s equation (reasons behind this choice will be addressed in later 

chapters). 

 

1.3 Survey of the chapters 
 

In this work, the meshless methods are going to be applied to a myriad of different 

problems. I decided to organize the information in seven chapters, as follows: 

Chapter 1 – Introduction  

A brief note stating the purposes of this work , and an account on the development of meshless 

methods. A list of publications is also provided. 

Chapter 2 – The Philosophy of Meshless Methods 

This chapter attempts to describe, in a rather informal way, the main ideas behind the meshless 

methods. 

 

Chapter 3 – Shape Functions: The Building Blocks 

It shows how the shape functions are constructed. These functions are fundamental to the 

meshless methods, because they are used to approximate the solution to the problems. They lack 

analytical expressions, and therefore some numerical schemes must be employed in order to 

build them. The Moving Least Squares (MLS) approximation is discussed in detail. 

Chapter 4 – MLS Shape Functions and Integral Equations: A “Meshless Method of Moments”   

This chapter describes the use of shape functions from the meshless methods in the 

discretization of integral equations. The theory of electromagnetic wave scattering is briefly 

revised. The chapter then illustrates how to discretize the electric field (EFIE) and magnetic 

field (MFIE) integral equations. Three different ways of doing that are analyzed. 

Chapter 5 – The Meshless Local Petrov-Galerkin (MLPG) Method in Electromagnetic Wave 

Scattering 

It deals with the implementation of MLPG to the differential equations arising in 

electromagnetic wave scattering. Both polarizations TM
z
 and TE

z
 are considered. Furthermore, 

there is an extensive discussion on the different ways to impose boundary conditions. The issue 

concerning the numerical treatment of the interface between two different materials (material 

discontinuity) is given its due attention. 

Chapter 6 – The MLPG Method and other Applications: Three-Dimensional Electrostatics and 

Photonic Bandgap Crystals 

This chapter extends the ideas developed in Chapter 5 to three-dimensional problems in 

Electrostatics. It also deals with eigenvalue problems, when the band structure of photonic 

crystals is considered. A handy procedure for constructing periodical shape functions is 

developed. 
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Chapter 7 – Some Extensions of MLPG to Quantum Mechanics 

A little account on elementary Quantum Mechanics is provided at the beginning of the chapter, 

which then proceeds with the analytical solution of a problem (the quantum harmonic 

oscillator). This particular problem will be used as a basis for comparison with the numerical 

MLPG solutions. Two and three-dimensional problems illustrated by the time-independent 

Schrödinger equation are considered. The situation regarding the band structure of a three-

dimensional crystal is also taken into account. The technique used to construct the periodic 

shape functions in Chapter 6 is extended here to three-dimensions. The last section of this 

chapter deals with the Nonlinear Schrödinger equation (NLS), whose characteristics – it is time-

dependent and nonlinear – pose a challenge to MLPG4. 
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Chapter 2 

 The Philosophy of Meshless Methods 

 
HIS work is concerned with the solution of physical models arising in the fields of classical 

electrodynamics and quantum mechanics. The language through which these models are 

expressed is, in the vast majority of situations, the language of partial differential equations 

(PDE’s). Given the quantity we are interested in (e.g., scalar potentials, electric and magnetic 

fields, wavefunctions), a PDE expresses a relation among the derivatives of this quantity. Let us 

call   a certain quantity.   is represented as a function of space variables (     ) and possibly 

of time  . Then a physical law, codified in the language of partial differential equations, reads 

as: 

                                              

 

                                    

i.e., as a sum of terms each one of which is a product between a derivative of   and a factor  . 

These factors    can be real (or complex) numbers, functions of space and time (space, time or 

both) or even functions that, in addition to space and time also depend on the value of the 

function   (a feature that characterizes nonlinear equations). The partial derivatives    run 

through all independent variables involved in the equation: 

  

  
 
  

  
 
  

  
 
   

   
 
   

   
 
   

   
 
   

    
    

  

  
 
   

   
                                             

The derivative of highest order defines the order of the PDE. In this work, we shall deal with 

second-order PDE’s (i.e., the derivative of highest order is the second one). 

A PDE is stated at a domain, which is nothing else than a region of space. If this region is 

limited, we call it a bounded domain. Otherwise, if this region does not have a limit, the domain 

is referred to as an unbounded one. We are relying on an intuitive basis here. It should be 

noticed that what defines a domain is the range of the independent variables involved in the 

problem. If a problem is described by a PDE in three independent variables (  ,    and   ) we 

can define the domain as a subset of   . Let us call   this domain. Then     .   is a set of 

ordered triples (        ) whose elements satisfy a criterion. At first sight, it appears to be no 

connection to a physical region. But when we are interested in physical laws, the independent 

variables in the associated PDE are generally the space variables ( ,  , and  ). Then in 

specifying the domain of interest, we can state a criterion like this: 

Let   be the set of ordered triples (     ), i.e., points in space, which are located inside a 

conducting sphere whose center is (     ) and whose radius is     units. 

Or like this one: 

Let   be the set of ordered triples (     ) whose values are taken from an external source (e.g., 

a drawing, or a file). 

T 



7 
 

Again on intuitive grounds, we already have the notion of what it is for something to be the 

boundary of the domain  . It is a place where the domain literally “ends”. From a more 

technical perspective, a boundary of   is a set of points which also satisfies a criterion. It is: A 

point    is said to belong to the boundary of   if we can take a neighborhood of   , it does not 

matter how small it is, that is not entirely contained in  . Or, there are both interior and exterior 

points for every neighborhood of   . The boundary of   is represented as   . If the domain is 

unbounded, we consider as though its boundary were theoretically located at the infinite. 

Usually this is expressed as       ,       ,       . But this is of no 

interest for us here: whenever a problem of this kind appears, we try to reduce the original 

unbounded domain to a bounded one. When we do this, we are truncating the domain, because 

it is by far easier to work with bounded domains rather than with unbounded ones. 

The boundary    is of utmost importance because in order to solve a PDE, we must know how 

our quantity   behaves over there. Later on we will come back to this issue. 

Recapitulating: We picked up a quantity of interest (to us), considered it as a function   of space 

(and possibly time) and, through mathematics, we found out a PDE describing how   is related 

to its derivatives. We then chose a domain   where we want the solution of   to be calculated, 

and finally got the boundary    together with information on the behavior of   over there. The 

next step amounts to nothing else than solving this PDE. But how? 

There are many ways to solve a PDE, depending on the problem and on the equation under 

consideration. Some methods are able to express the solution of the PDE directly through a 

formula involving only the independent variables (an expression of the type             , 

which allows for the determination of   at         and at time   by just plugging the values of 

 ,  ,   and   into   and by carrying out the required operations). Others express   as a series, 

i.e., an infinite sum of terms which depend upon          . These are the analytical methods, 

and the solutions for   derived from them are the analytical solutions. There are still other 

methods that express   as the integral of a function   (multiplied by other function, the source 

term) over some portion of the domain  . This is the method based on Green’s functions.  

The analytical methods work well only for a small number of cases. They do a great job in 

equations stated at ‘regular’ domains (by ‘regular’ is meant domains akin to simple figures, like 

squares, circles, cubes, parallelepipeds, spheres). It should be noticed that there are a handful of 

analytical methods aimed at solving PDE’s: separation of variables, integral transforms, change 

of variables and superposition of solutions are just some examples. The problem with these 

methods is that, in addition to be applicable only on regular domains, in order to get the solution 

to the original PDE, one has to solve related subsequent partial or ordinary differential 

equations. But this sometimes can be quite a cumbersome task. For example, if one tries to 

solve Laplace’s equation in cylindrical coordinates, one has to solve first Bessel’s differential 

equation. But if the domain is not regular, how could these subsequent differential equations be 

solved (e.g., Laplace’s equation in a cylinder whose cross-section is neither a circle nor a 

rectangle)? A similar problem also happens when one tries to apply the method based on 

Green’s functions. In order to find Green’s function  , other PDE must be solved, in which the 

source term         is substituted by a Dirac delta function. The same issue all over again: the 

solution to this new problem is usually cumbersome, end even impossible to solve analytically 

depending on the domain. 
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It seems that, although the analytical solutions are useful and provide insight into the form of   

(by just seeing the form of   a skilled mathematician can deduce some important facts about the 

solution, like the behavior near the boundary, maxima and minima, how the solution decays 

with time, etc.), they can be obtained only for simple problems. The problems Science and 

Engineering are interested in are often by far more complicated: difficult PDE’s, large and 

complex domains (some of them time-varying) and nonlinear problems constitute examples of 

cases where it would be virtually impossible to obtain analytical solutions. So, how to deal with 

these questions? 

The answer to this problem is not a brand new one: numerical techniques. In situations where 

the tools of analysis often fail, mathematicians often turn to numerical algorithms in order to 

find approximate solutions to complex problems. In what regards partial differential equations, 

their study began systematically by Euler, d’Alembert, Lagrange and Laplace in the XVIII 

century, as a tool in the description of the mechanics of continuous media and in the analytical 

study of models in the physical science. In the XIX century, a large number of methods for 

solving PDE’s were devised, which enhanced much of the Physics of the time (the solution of 

physical models), in addition to stimulate other areas of mathematics, like differential geometry, 

topology and analysis. In the 20
th
 century, the digital computers came to the fore, and the 

scientific computing, which is concerned to the calculation of numerical solutions to PDE’s 

(among other things), became one of the main features of modern technology [Brezis and 

Browder, 1998]. 

Nowadays, there is a multitude of these so-called methods of scientific computing aimed at 

finding numerical solutions to PDE’s. Each one has its peculiar features, its advantages and its 

drawbacks. Meshless methods constitute a family of such methods, and it is a particular 

member, the MLPG, that this work will be focused on. 

Given a domain  , we begin by spreading nodes throughout it. Nodes are simple points – a 

coordinate     in one-dimensional, ordered pairs       in two-dimensional or ordered triples 

        in three-dimensional problems. Figure 1 illustrates this: over there we can see many 

nodes scattered across  , and some at the boundary   . A general feature shared by meshless 

methods is that there is no need for this nodal arrangement to be uniform. The nodes can be 

spread in any way; even random distributions can be used. It is a common practice – based 

somehow on intuitive grounds – to place more nodes where the solution or its derivatives are 

expected to vary in a sudden way, e.g., near the edges of    (if any) or near the interfaces 

between two regions characterized by different material properties. This looks rather obvious: 

the better the resolution, the better is the precision of the results. Actually, this can be proved 

through convergence studies, but as said earlier, this is not the main objective of the present 

work.  

Now, suppose we want to find the value of the function   at a point    . Let the coordinates 

of   be represented by     (i.e.,         for 1D,            for 2D and               for 

3D problems). But, as we have not solved the problem yet, there is no way to calculate this. The 

only data we can rely on at this stage is an unsolved differential equation and a set of nodes 

spread throughout  . So let us take the nodes only and see what we can do with them. Let us 

also assume another function    so that 
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Fig.2.1. A geometrical domain   and its boundary   , in which there are many scattered nodes. Eight nodes act upon 

point     . Nodes located too far away from point   are unable to transmit their influence to it. 

                                                                              

because the set of nodes is the only information we have access to other than the unsolved 

differential equation. Well, the real function   does not depend on the nodes, as it is the solution 

to an equation that has been derived from physical laws. Physical laws do not know of nodes, 

that are nothing else than a mathematical notion. So, in trying to find the function   at  , we 

have to give up calculating the real value of  . We now take a leap of faith, and hope that there 

could be some resemblance between the real   and the node-dependent function   , i.e., we 

approximate   by   : 

                                                                               

If there are   nodes spread throughout the domain   (and   ), then    would theoretically 

depend on all nodes: 

                                     

 

   

                                        

Keep Fig.2.1 in mind; we shall now proceed to form an analogy between “something dependent 

on node  ” and electrical charges. Suppose that at the location of each node   in Fig.2.1 (point 

   ), there is an electrical charge   . Given these charges, we want to calculate the resulting 

electric potential at point     . From electrostatics, we know that the electric potential at 

     is the sum of the contributions from all charges involved in the problem, and that the 

potential produced by a charge at a point is inversely proportional to the distance between the 

charge and the point, or 
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where   is a function dependent on the charge’s location     and on the point    (where the 

potential shall be calculated), and   is the electric permittivity (suppose the charges to be in the 

vacuum, just to keep things simple). In the analogy, each node, instead of a charge   , is 

associated to a number    , called the nodal parameter (which, differently from electrical 

charges, could be a complex number). So we can write (2.5) as 

     

 

   

                                                                             

Equation (2.7) above tells us that    at      is given by the sum of the contributions of all 

nodes from   (             is “the thing dependent on node  ”). It is as though each node had a 

“charge    ” and were able to extend its influence until      through the function          . This 

picture seems nice but, if there are many nodes in  , then we need to take into account all   

nodes of the domain each time we want to calculate    at a point   . We can improve the 

situation if we modify the way a node is able to influence other points. Let us make a guess. 

What about if the function           that governs the nodal influence were chosen in such a way 

that, instead of influencing all space, like an electric charge does, a node at     could influence 

only a small neighborhood around    ? The obvious consequence is that the point      would 

be influenced only by neighbor nodes. Nodes located too far away from      could then be 

disregarded. Therefore we can rewrite (2.7) as 

        

           
 

                                                                     

where           is the set of the closest nodes to the point    (whose number of elements is 

obviously smaller than  ) and      is the modified function that governs the nodal influence. 

Back to the analogy with electric charges, we can assume functions              differing from 

          (in (6)) in two points: 

First:              does not extend throughout space indefinitely, but is a compactly supported 

function. It is able to carry the influence from node   only to those points    located in a region 

surrounding    . These influenced points    comprise a set   , called the influence domain 

associated to node  . Outside the influence domain,               . 

Second:              does not blow up when       . Otherwise, it takes on a finite maximum 

value there, and then decays to zero at the boundary of the influence domain   . 

So, if              is able to carry the influence from a node     only to those points    

sufficiently close, then we are done: only few neighbor nodes are needed in the computation of 

   at   . These functions              satisfying both observations above are called shape 

functions (or basis functions) and are written as: 
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Fig.2.2. Node   is able to influence only the surrounding circular region, which is called its influence domain. It is 

represented by    and its boundary by    . Likewise for node  , and for all other nodes in the domain   (whose 

influence domains are not represented in this figure). 

where        stands for the shape function   associated to node   (located at    ) evaluated at a 

point   . The function    calculated at    then reads: 

              

           
 

                                                               

Table I below sums up the analogy between electric charges and nodes. Electric charges act 

together to produce a potential, as do nodes when calculating a function at a point. It is as if the 

nodes had been assigned a special kind of charge that is able to influence only their 

surroundings, instead of the whole space. 

TABLE I 

ANALOGY BETWEEN NODES AND ELECTRIC CHARGES 

Electrostatics Meshless approximation 

Electric charges at     Nodes at     
Charge magnitude    Nodal parameter     

Influence from a charge at     extends 

indefinitely. 

Influence from a node     extends to the 

neighborhood    only. 

The charges determine the electrostatic 

potential   at    
The nodes determine the function    at   . 

 

So the nodes of the domain are able to extend their influence to neighboring regions only. In 

meshless methods, all   nodes must share the following property: it is mandatory for each one 

of the nodes in the domain to have an associated influence domain   (according to Fig.2.2). 



12 
 

  
Fig.2.3. The union of all influence domains must cover the domain   (and its boundary   ). 

There are no specific forms that these domains have to satisfy, but squares and circles (or cubes 

or spheres in 3D problems) are usually employed. In what regards the influence of the nodes 

over the domain  , the following fundamental proposition must hold: 

Proposition 2.1 The union of all   influence domains   must cover the whole domain   (and 

its boundary   ). Or: 

     

 

   

                                                                             

Figure 2.3 shows us what (2.11) means. Another way to state this proposition is to say that no 

holes can be left behind in the covering of   by the  ’s. We saw earlier that the shape functions 

are compactly supported, i.e., they do not carry the influence from the nodes to every part of the 

domain. Let us suppose a scenario in which the proposition stated above does not hold, i.e., 

there is a hole. We have then a picture like that depicted in Fig.2.4. If we want to find    at a 

point in this hole, say,   , we see straightforwardly that no node extends its influence until this 

point. This is the same as to say that there are no neighbor nodes influencing point   , or: 

                                                                                     

and therefore, the sum in (2.10) is meaningless. So it becomes impossible to find an 

approximation for    like (2.10). This situation is quite odd, because we want    everywhere 

inside (and at the boundary of) the domain  . For that reason, we must make sure that the 

aforementioned proposition is satisfied. 
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Fig.2.4. It is impossible for a function    to be calculated at point   , as no node is able to extend its influence domain 

  until there.  

A point of concern is that related to the intersection of the influence domains associated to two 

neighboring nodes. Take a look at Fig.2.5, and suppose we want to find out    at point   . The 

influence domains   of the 3 nodes that influence    overlap with each other. But in meshless 

methods, overlapping of influence domains is freely allowed. The 3 nodes in Fig.2.5 act on 

point   , or, equivalently, point    belongs to each one of the 3 influence domains that extend 

until   . So, we have another proposition valid in meshless methods: 

Proposition 2.2 Influence domains of neighboring nodes can freely overlap, i.e., if   and   are 

two nodes, it may occur that 

                                                                                 

By now, the main feature of meshless approximation should be apparent. If someone wants to 

calculate    at a point   , than he first have to find all neighbor nodes that influence   . This is a 

set of nodes hereby represented by          .           can be structured in such a way that it 

returns the set of the closest nodes that influence point   . Once this set is determined, then we 

proceed to the application of (2.10). But there are two questions of vital interest here, which 

seem to have been overrun. The first: What about the values of the nodal parameters    ? 

Equation (2.10) is a weighted sum, but we do not know anything about the weights. How could 

it be that way? The second: How do we calculate the shape functions   ? 

Answer to the first: At this stage, we are at no position to tell this. We must wait until Chapter 5, 

which explains the method that shall be used to figure out the values of the nodal parameters 

(MLPG). But let us give a quick general picture about how they are obtained. It suffices to say 

that they are found through the solution of a linear system, and that, in order to set up this linear 

system one must rely on the application of formula (2.10) to the given differential equation 

many times, besides some more little calculations. It now becomes clear how important 

expression (2.10) is. It is extensively used throughout the process of finding   . 
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Fig.2.5. Nodes  ,   and   extend their influence domain until point   . There is no problem with the overlapping of 

neighboring influence domains. 

Answer to the second: The shape functions lack analytical expressions. Given a node   (located 

at    ) and a point    where a shape function must be calculated, there is no formula   that takes 

the values of the coordinates of     and    and returns the value of the shape function. In other 

words, there is no way to express        as                 . Numerical procedures must be 

relied upon in order to find out the shape functions. Curiously, the shape function associated to 

node   evaluated at    also depends on the relative positions of neighboring nodes. There is a 

little bit of strangeness in the behavior of the shape functions; back to our analogy with electric 

charges, it is as though the influencing functions   depended on the neighbor charges. Or, as 

though the manner an electric charge influences a point depended on the relative positions of 

neighboring charges. Notwithstanding this issue, shape functions work very well in the 

approximating process. In the next chapter, we will be concerned to the numerical construction 

of these shape functions. 

Let us finish this chapter with an overall view of the procedures for finding the solution to the 

differential equation, with the tools we have thus far. We expect to add (and refine) the steps in 

the next table as we move on. 

 

THE MESHLESS PROCEDURE IN A NUTSHELL 

Given a differential equation and a domain where it shall be solved: 

First Step Set up the domain   and its boundary   . 

Second Step Spread   nodes throughout the domain   and at its boundary    as 

well. 
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Chapter 3 

Shape Functions: The Building Blocks 

 

S the last chapter made explicit, the shape functions play a fundamental role in the task of      

finding an approximation    for a function   (which is the solution to a differential 

equation). Indeed, whenever we want to know    at a point   , we need first to determine a set 

of shape functions    calculated at    (according to equation 2.10). This chapter looks for a 

solution to one of the questions raised earlier: How do we calculate   ? 

Despite occupying such a prominent position in the meshless analysis of PDE’s, the shape 

functions are not calculated directly. There are no expressions that return the value of these 

functions at some point    in the domain. They must be determined numerically. Furthermore, a 

shape function associated to a node depends on the information concerning neighbor nodes. 

This is quite an odd situation: we have to rely on approximated things ( ) in order to calculate 

approximate functions (  ). But, curiously enough, the method based on these shape functions 

proved to be a success. It is able to solve a PDE in the same way as FEM does, but without a 

mesh. The basis functions employed in FEM are really far simpler to deal with, but they happen 

to rely on a mesh in order to be constructed. It is known that to set up an adequate mesh 

sometimes reveals to be a rather difficult process, especially when it comes to 3D problems. In 

meshless methods, otherwise, there is just a cloud of nodes spread throughout the domain. There 

are neither meshes nor elements. But this extra ease comes in at the expense of a harsh 

numerical process in constructing the shape functions. 

So, the challenge is to devise suitable shape functions using only scattered nodes without any 

connectivity among them. The development of effective methods for constructing shape 

functions is one of the hottest areas of research in the field of meshless methods. But we are not 

going to address these questions in this work. A thorough discussion of the different 

requirements and methods intended to find shape functions can be found in [Liu, 2003]. 

We have used two different approaches for constructing the shape functions. One of them, the 

Moving Least Squares approximation (MLS from now on) has been employed in almost the 

totality of the solved problems. In only one situation we have made use of the other, called the 

Radial Point Interpolation Method with Polynomial Reproduction (RPIM-PR), and, because of 

that, it will not be addressed here. Information on this particular method can be found in [Liu, 

2003]. Both methods produce shape functions with their own features, which may be harnessed 

differently (e.g., the RPIM-PR interpolates a solution, whereas the MLS does not). It is 

reasonable at this point to mention a compulsory condition that the shape functions must satisfy, 

regardless of the method employed to build them: the partition of unity. Given any point    in 

the domain, the sum of the shape functions acting on    must be 1, or 

             

           
 

                                                               

A 
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It means that the shape functions are able to approximate exactly the constant function     (if 

we take equation (2.10) and substitute all nodal parameters     by 1, condition (1) above ensures 

that        equals 1 throughout the closure    of the domain  ,        ). 

There are some other requirements that are not “compulsory” for example, we could want the 

shape functions to obey the reproduction of the linear field conditions. This is expressed as, 

assuming the coordinates to be represented in Cartesian coordinates [        for a point    and 

           for a node at    ]: 

               

           
 

                                                               

               

           
 

                                                               

               

           
 

                                                               

Expressions (3.1), (3.2), (3.3) and (3.4) point out that the shape functions are able to 

approximate exactly any linear function (i.e., any linear function can be exactly approximated at 

any point    in the domain, or, more clearly, the expression (2.10) is exact whenever it happens 

to be applied to a linear function  ). 

It seems that there is a plenty of room to explore here. Other features can still be added to the 

shape functions, usually features that are natural to the problem being solved. This is a point 

that deserves much attention, as it can simplify matters in an astonishing way. As an example, if 

the solution is required to have periodic boundary conditions on   , things can be arranged in 

such a way that the numerical shape functions come out to be periodic. The boundary conditions 

then do not need to be imposed anymore: the periodicity has been embedded in the shape 

functions. Needless to say, the solution becomes simpler than imposing boundary conditions 

throughout   . In Chapter 6, which describes the meshless analysis of photonic crystals, this 

technique is used extensively. This process of enriching shape functions is akin to what 

sometimes happens in FEM. There, if we define vector basis functions      such that         , 

then the solution expressed as a sum of basis functions will also exhibit a zero divergent. This is 

formidable when one is trying to find solutions to solenoidal fields. But enough of these details. 

Let us now concentrate on how the shape functions are constructed. 

 

3.1 The Moving Least Squares (MLS) Approximation 

Once we have got the nodes spread throughout  , each node is identified with an index, 

which is just a number used to label that node. Given a nodal distribution, there are different 

ways to ascribe indices to nodes. If the indices are represented by natural numbers, and the 

nodes by points in the real space, which are nothing else than ordered pairs (  ) or ordered 

triples (  ), then we can talk about different numbering schemes. A numbering scheme is a 

relation between indices and points, or a mapping between natural numbers (indices of the  
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Fig.3.1. The set          , whose elements stand for nodes are able to extend their influence domains until   . 

nodes) and real vectors (the coordinates of the nodes, represented by vectors in    or   ). If we 

have a total of   scattered nodes, we can set up a map   that associates a vector to each index  ,  

i.e., we can set up a map        or       , if that is the case. The index   runs from   to 

 , and the real vectors comprise the coordinate set of all   nodes. Summing up, we can say 

that, given a node whose index is  , their coordinates are given by              (or      

          ). The map   can be established in many ways, and there is some research going on 

which aims to determine which numbering scheme is the most efficient. This is outside the 

scope of this work, but it suffices to say here that different numbering schemes lead to matrices 

with different sparsity patterns, and this has an impact on the numerical solution of the final 

linear system. References [Liu, 2003] and [Yavari et al., 2001] address this issue. 

Given a point   , if we want to calculate the approximated function    at   , expression (2.10) is 

needed (restated here for convenience): 

              

           
 

                                                               

Let us bear Fig.3.1 in mind. There we can see 5 nodes acting on point   , which is the same as to 

say that the set           has 5 elements. Let us suppose that their indices are 3, 7, 11, 23 and 

40. Then 

                                                                                    

The MLS approximation assumes that the function    at    can be expressed as a sum of 

products, where each product is formed by 2 factors which depend on   . We can state a 

proposition: 
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Proposition 3.1 (The MLS Approximation) The function    evaluated at point    is given by a 

sum of products, each one formed by two factors dependent on   . Mathematically: 

                    

 

   

                                                                 

At first sight, this looks strange. We affirmed that    is given by (3.5), where neither the   ’s 

nor the    ’s are known, and now proposition 3.1 assumes    to be given by an entirely different 

way, with no mention to shape functions at all. It seems that we have two ways of 

approximating   , and at this point, we have no clue whatsoever about what the   ’s, the    ’s, 

the   ’s and the   ’s are. We are left with four unknown terms.  

As mentioned in Chapter 1, the nodal parameters    are the last things to be determined in the 

meshless solution of a problem. They are the unknowns of the final linear system, and can be 

used to approximate    [through (5)] only after the problem is entirely solved. So it is 

meaningless to rely upon them at this stage. Remember: we have not even defined the shape 

functions yet! What MLS approximation does, is essentially to assume that the   ’s are known 

functions of   . These known   ’s are called basis functions, and are generally represented by 

monomials. If the point    has coordinates      , then 

         

                                                                                       

                                        

High order monomials (e.g., third order, fourth order, etc.) can also be employed. If    

       : 

         

                                                                                       

                                                                                 

If we assemble all monomial basis functions into a vector  , then we can speak of a polynomial 

basis      : 

                                                                                    

A remarkable feature of MLS is that, if we assume that we know the monomial basis functions 

      , then we can find the shape functions       . This is achieved through the interplay of 

(3.5) and (3.7). Let us see how it can be accomplished. 

After we have found all nodes acting on   , we form slightly different MLS approximations for 

  : for each node            , we substitute the monomial terms calculated at node  ’s 

location      for those calculated at   , i.e., we form the approximation 
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The unknown terms        are left untouched (still being calculated at   ). According to the 

situation depicted in Fig.3.1, we have a set of 5 “modified” approximations. They are: 

                  
              

               
               

                                   

Well, to each influencing node   we have an associated “modified” approximation           . It 

seems pointless to build a set of approximations such as (3.12). We are interested in only one 

approximation, and the MLS formed a set   of approximations! There is a feeling that 

something has gone wrong here, but it has not. We are only halfway there. Let us proceed and 

consider the nodal parameters    ’s. Remember that, although we said earlier that it could be 

meaningless to employ the nodal parameters at this point, they actually do have some use here. 

They are unknown quantities, which contributes for rendering the procedure a little bit more 

obscure. Let us ignore this fact for a while and, given that each node   has its associated nodal 

parameter, we can form differences between the “modified” approximations and the    ’s. Let   

now be given by 

                                                                                      

where each element of the set is represented by   . According to the situation of Fig.3.1, we 

have 5 such differences, whose indices   involved are expressed in (3.6). If we can form 

differences, then we can form squares of differences. In modifying the   ’s again, we get: 

                                   
 
                                                   

We are left with a set of real numbers, each of which represents a value dependent on points    

and    .  Adding still more complexity, we multiply each number in (3.14) by a weight function 

 , whose magnitude depends on the relative position of points    and    . This function must 

satisfy two criteria. First: The closer the distance between    and     is, the greater   becomes, 

until it reaches a maximum when       . Second: If the distance between    and     is larger than 

a given value   , then    . Our new set of real numbers is: 

                      
        

  
                  

 
                                    

The weight function  , sometimes called window function, can be chosen from a number of 

possibilities [Liu, 2003]. Some of them employed in this work are the cubic spline: 

      
                           

                          
                                       

                                         

and also the quartic spline: 

                             
                                     

                                               

The parameter    is somehow related to the size of node  ’s influence domain   . If we consider 

the influence domains to be circles in two-dimensional and spheres and three-dimensional 

problems, then    is the radius of   . Figure 3.2 illustrates this: For a point   located at    : 
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Fig.3.2. If the distance between node   (located at    ) and a point   (located at    ) is smaller than   , then point   

belongs to node  ’s influence domain   . 

We can define the influence domain    of a node   as a set of points whose distances to     are 

less than or equal to   : 

 

                                                                                   

where  

                
        

                                             

in two dimensions and 

                
        

        
                                   

in three dimensions. 

There is a certain freedom in defining the radii of the influence domains. It is possible for each 

node to have a different value for  , but, according to proposition 1.2, they must be taken so that 

the union of all  ’s cover the computational domain   (and its boundary   ) entirely. 

Let us get back to expression (3.15). In order to fully specify our set of numbers, we plug (3.11) 

into (3.15): 

                       
        

  
                 

 

   

     

 

                                  

To recapitulate: we took a point   , found the set of all nodes extending their influence domains 

until    [i.e., the set          ], and for each node   in          , we formed an expression    

through (3.22) [which depends on   ,     and on monomials        ]. The nodal parameters     are 

unknown. In the next step, we sum up the elements of   and hope that something interesting 

happens: 
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The weight function   is positive, according to (3.16) and (3.17), and the second term also, 

since it is the square of a quantity (the difference between            and    ). So we have a sum 

of positive terms, and therefore,   is always greater than (or equal) to zero. As said earlier, the 

nodal parameters will be determined only at the final stage of the meshless analysis, after the 

final linear system is solved. They have no role to play here. If we concentrate our attention on 

the unknown terms   ’s, we can express (3.23) as 

                      
        

  
                 

 

   

     

 

                    

              

 

i.e.,   is a function of the unknown terms                . Because    is known (the point at 

which we want to calculate the shape functions) as well as the location of the influencing nodes 

(points    ) and the monomial basis terms   , we can regard   as a function of the terms 

        (all calculated at   ).Then 

                 
        

  
             

 

   

     

 

                    

              

 

Equation (3.25) tells us that there is a map which associates a real number to a vector in   . In 

other words,   is a real functional. The vector in    is nothing else than the unknown terms 

       assembled together: 

                                                                                 

As we take different points   , we get different vectors       and therefore, different numbers 

    . 

Once we choose a point   , how do we find the coefficients of the vector       ? Remember that 

  is always greater than (or equal to) zero. No matter what values for the   ’s we plug into 

(3.25), we always get a positive number. So it is reasonable to suppose the existence of a set of 

numbers   ’s that, once plugged into (3.25), makes   assume its smallest value. So it seems that 

we have just found our answer: the coefficients of the vector   are those that minimize the 

functional  . Looking at (3.25) as a function of several variables, we can find the   ’s if, for 

each   , we impose         . We can state this proposition through a conditional structure: 

              
  

   
                                                           

i.e., for all natural numbers  , if   is less than or equal to   (the number of monomial terms in 

     ) then         . 
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Let us make explicit how to evaluate the   ’s. It is a rather lengthy procedure, but it is at the 

same time quite a beautiful one. It is worth being described in detail. Beginning with    , we 

have 

  

   
                                                                                  

Substituting (3.25) for  : 

 

   
    

        

  
             

 

   

     

 

              

                            

As the weight function   is independent of   , the derivative operator can be moved through it: 

   
        

  
  

 

   
            

            

 

   

     

 

                                

The chain rule of derivation: 

   
        

  
              

 

   

     

            

 

   
           

 

   

                  

When deriving the innermost term, it should be noticed that   is a dummy variable. Therefore,   

can be freely substituted by another index, like  . We get: 

   
        

  
              

 

   

     

            

                                 

Factoring out the number ‘2’ and rearranging the terms: 

   
        

  
 

           

                 

 

   

    
        

  
 

           

                      

In order to prevent the notation from becoming cluttered, the weight function   will henceforth 

be represented differently: 

  
        

  
                                                                       

Let us consider the left side of (3.33) first. Expanding it, we get: 

       

           

                          

  

 
  

                                          

Moving the factor         into the vector that collects the   ’s, there follows: 
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The same reasoning applies to     (got from         ): 

       

           

                                 

  

 
  

                                  

And likewise to     (got from         ): 

       

           

                                 

  

 
  

                                 

We can gather the information concerning the left side of (3.33) for       and thence form 

a matrix: 

       

           

 
                             

   
                             

  

  

 
  

                              

The set of influencing nodes           has   nodes. However, in the summation expressed 

above, the index   does not run from   to  . As we saw earlier, there is a numbering scheme 

relating indices and nodes. In the scenario of Fig.3.1,   would take on the values from the set 

              , according to (3.6). Let us consider here an uppercase index   that runs from   to 

 .   is related to   in such a way that, when    , then    ; when    , then    , and so 

forth. Rewriting (3.39): 

       

 

   

 
                             

   
                             

  

  

 
  

                                   

Ignoring for now the vector            , the matrix multiplying it can be written as (after the 

summation on   has been carried out): 

       

 
                                                                                       

   
                                                                                       

  

This is a     matrix. The element in line   (     ) and column   (     ) is 

given by 

                                                                      

Or in matrix form (This is a tricky step. Each element     of matrix (3.41) is going to be 

represented by a product of matrices. Beware!): 
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If an element     is given by (3.43) above, then one can see that the whole matrix, which we 

will be called       reads: 

       
               

   
               

  
        

   
        

  
               

   
               

              

If we call 

   
               

   
               

                                                          

and 

       

         

         
    
         

                                                    

then matrix       can be written as 

                                                                                

  is a     matrix, and   is a diagonal     matrix. Consequently,       is a     matrix, 

as expected. So for       if we make         , we get   expressions like (3.33). If we 

take the left sides of each one of these expressions and assemble into a matrix, we get the matrix 

 . This is the meaning of matrix  . 

Let us get back now to the right side of (3.33). It is restated here for convenience: 

   
        

  
 

           

                                                                  

Remember that we have arrived at this result by first considering the case in which    . 

Rewriting (3.48) above and considering the index   instead of   (as explained earlier): 

                                 
   

 
   

                                                  

The case for     would read (got from         ) 

                                 
   

 
   

                                                  

The case in which     (got from         ) can be determined likewise: 
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Assembling the expressions from       [(3.49), (3.50), and (3.51)] together into a matrix, 

we get: 

 

                                        

                                        
    

                                        

  

   

   

 
   

                       

If we express this as        , where       is a     matrix, one verifies that it can be written as 

       

                      

                      
    

                      

  

         

         
    
         

                  

But if we take a look at (3.45) and (3.46), we conclude that 

                                                                                  

Expression (3.52) above is therefore equal to 

                                                                                    

where 

                                                                                      

is a vector collecting all nodal parameters involved. 

So for each   in (3.27), we get an expression like (3.33) (which was obtained from the case 

   ). For all   such that       we get a linear system [from (3.40), (3.41), (3.44) and 

(3.55)]: 

      

  

 
  

                                                                            

or, invoking (3.26): 

                                                                                      

which means that 

                                                                                        

We are almost there. We just have to remember two little things. First, if we take the 

fundamental “meshless approximation rule” (equation (3.5), restated again here): 
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and rewrite it using the indices   instead of  , we get 

                         

 

   

                                                      

where                                is a vector that collects the shape functions from all 

influencing nodes and    is a vector of nodal parameters [according to (3.56)]. 

Second, if we take the MLS approximation rule (equation (3.7), restated here again) 

                    

 

   

                                                               

And rewrite it using (3.10) and (3.26), we get 

                                                                                      

From (3.61) and (3.63) there follows 

                                                                                     

But we already know vector      ; it is given by (3.59). Therefore 

                                                                                     

In comparing both sides of equation (3.65) above, we finally arrive at the shape functions: 

                                                                                

Given a point   , equation (3.66) shows how to calculate the shape functions associated to each 

one of the   nodes influencing   . The last step is a translation from the indices   (which range 

from   to  ) to the real indices   (  elements of the set          ). In the scenario depicted in 

Fig.1, expression (3.66) would provide a vector of shape functions whose subscripts are the true 

indices of the influencing nodes, i.e.,  

                                                                                      

We have seen in the last pages that many calculations are necessary in order to get the shape 

functions. But when it comes to their numerical implementation, one need not consider all that 

has been said so far concerning the  ’s. The process of calculating the shape functions at a point 

   boils down to carrying out the matrix operations described by (3.66). One begins by first 

finding which nodes extend their influence domains until   .  

There are some ways in which such a task can be done, but in this work a KdTree-based search 

algorithm has been employed (the advantages of doing so are explained in [Parreira
2
 et al., 

2006]). The coordinates of all nodes in the domain   are plugged into a tree (a sort of data 

structure). Given a point   , one can then request the algorithm to return all neighbor nodes to   . 

In other words, the search algorithm determines the set          . The version of this algorithm 

employed in this work is very quick, even if thousands of nodes are scattered throughout  . The 

impact of the speed in computing neighbor nodes on the CPU time performance has not been 

evaluated, because this kind of analysis would take us too far afield from the main theme of this 
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work. But it remains to be investigated in the future, when more detailed studies concerning the 

computational cost of meshless methods will be carried out.   

Once the indices of the neighbor nodes are found, one then proceeds to the evaluation of (3.66). 

The polynomial basis       is found through (3.10). The matrices       and       are calculated 

via matrices   and       (3.45 and 3.46). It can be seen that the whole procedure relies on 

calculations 

 
Fig.3.3. The procedure for finding which nodes influence point    and their associated shape functions calculated at    

can be written in a simple piece of code, which resembles a kind of “black box”. 

involving matrices      ,   and      , which by their turn depend on the coordinates of the 

point    and on those of the influencing nodes. So everything amounts to mixing together the 

information concerning the coordinates of the nodes. After some calculations, one gets the 

shape functions  ’s. 

Summing up, one can regard the implementation of shape functions as a “black box” procedure. 

The algorithm that determines the neighbor nodes (KdTree) and the numerical procedures for 

manipulating the matrices      ,  , and       can all be assembled together in a separate piece 

of code (like a script in MATLAB). This black box takes in a point    and returns the set of 

shape functions associated to all neighbor nodes that influence    (together with their global 

indices, of course) calculated at   . This is illustrated in Fig.3.3, for the scenario depicted in 

Fig.3.1. 

 

Observation: Needless to say, given a point   , only the shape functions whose indices are 

members of the set           will be different from zero. This is a direct consequence from the 

fact that the shape functions are compactly supported. Nodes located too far away from    are 

unable to extend their influence domains over there, and therefore, their associated shape 

functions are zero at   . Mathematically, this can be expressed as: 

                                                                                  

where the index   runs from   to the total number of nodes scattered throughout  , the 

antecedent of the conditional states that node   is not a neighbor to   , and the consequent says 

that the shape function associated to node   is zero at   . In the scenario of Fig.3.1, as 

                        , it means that, for example,          , because             . 
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3.1.1 Examples of MLS shape functions 

It is now time to have a glance at how MLS shape functions look like. The first example 

illustrates the  ’s calculated for one-dimensional problems. The domain   is a straight line, 

extending from 0 to 1, or,        . We took 11 nodes equally distributed across  , i.e., 

                           . The influence domains of the nodes (  ) are set up in 

such a way that      , where   is the distance between two adjacent nodes (i.e., the 

internodal distance, equal to 0.1). Figures 3.4 and 3.5 illustrates the domain   and the MLS 

shape functions, respectively. 

 

 

Fig.3.4. A one-dimensional domain   extending from     to    . Eleven nodes have been equally scattered 

between the two extreme points. 

 
Fig.3.5. Eleven shape functions associated to the eleven nodes of Fig. 4. 

The second example deals with two-dimensional shape functions, in which the domain   is now 

supposed to be a square,              . Nodes are scattered throughout   (and throughout 

its boundary    as well), as in Fig.3.6. We can take a symmetrical distribution, say, 21 nodes 

along the  -direction and 21 along the  -direction. This amounts to       nodes in the 

domain. Suppose we want to evaluate the shape function associated to a node located at a node 

whose coordinates are            . The index of this node could be, for example, 287 

(remember, different numbering schemes would lead to different global indices for the nodes). 

So we want to evaluate     . 
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The first step is to define the size of the influence domains. We have employed      , where 

  is the internodal distance. This value has been employed for all nodes in   (this is not 

necessary, but it is simpler to write the code in this way). In the second step, we choose a square 

region larger than the influence domain     . This region is a sort of ‘window’ that will display 

the shape function     . If      is to be seen in its entirety, the window should be centered at 

     , and its sides should be larger than     . As the third step, we scan all this window, i.e., we 

set up a fine grid of ‘observation’ points   . To each one of these points   , we apply the black 

box procedure, and verify if there is some value ascribed to node 287. Explaining in detail, it 

means that: 

(1) We take a    and apply the black box procedure. This returns the set of shape functions 

influencing   . 

(2) We verify if some of the influencing nodes is node     (the black box procedure 

determines the set          ; we have just to look for 287 in the list of influencing 

nodes). 

(3) In the case that (2) turns out to be true, we ascribe the value      to point   . Otherwise, 

     is made equal to zero (this is an equivalent way of saying that              ). 

(4) We return to (1) applied to a different point    of the window and repeat the procedure. 

 

This process is carried out for all observation points in the window region. It is obvious that, for 

those    far from      ,      will be zero there. This is what it means for any function to be 

compactly supported. As    gets closer to      , the shape function assumes higher values, until it 

reaches its peak when         . After we are done with this, we are ready to behold the 

graphical form of the MLS shape function associated to node 287. It is beautifully depicted in 

Fig.3.7. 

 

 
Fig.3.6. A square domain              , in which a nodal arrangement of 441 nodes (     ) has been set up. 



30 
 

 
Fig.3.7. A MLS shape function associated to a node located at (0.55, 0.65). 

Observation #1: Of course that such amount of work is not necessary in the meshless analysis 

of a problem. Only if someone is interested in the graphical forms of shape functions that he (or 

she) must perform all the aforementioned steps. 

 

Observation #2: As it is impossible to visualize the shape functions constructed for three-

dimensional problems, they are not illustrated here. But there is nothing special regarding them. 

They are constructed in the same way as two-dimensional shape functions are. All there is to do 

in order to find   at a point    is to make use of a KdTree-based search algorithm that supports 

points described by triples of real numbers [i.e., points like        ] and of the three-

dimensional analogues of matrices      ,  , and      . 

 

3.1.2 Some remarks regarding the MLS shape functions 

 The shape functions in Figs.3.5 and 3.7 have been constructed using only linear terms in 

the vector      , i.e.,              for the one-dimensional and                for the two-

dimensional case. These figures reveal that the MLS shape functions are bell-shaped, despite the 

fact of employing only linear terms. This is in stark contrast with the FEM shape functions, 

which resembles triangles (one-dimensional) and pyramids (two-dimensional), if only linear 

terms are used. The extra degree of smoothness comes from the window function      [(16) 

and (17)]. If the shape functions are smooth, then their first derivatives are continuous. This 

feature turns out to be a great advantage when one in interested in the derivatives of the 

approximated function   . For instance, if the electrostatic potential is approximated by MLS 

shape functions, then the electric field is approximated by continuous functions (the first 

derivatives of the shape functions). The issue concerning the derivatives of the shape functions 

will be addressed a little bit later in this chapter (Section 3.3). 

It can also be seen from Figs.3.5 and 3.7 that the MLS shape functions do not satisfy the 

Kronecker delta criterion, i.e., given two neighbor nodes   and  : 
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The most obvious consequence of (3.69) is that the nodal parameters (the   ’s) are not the values 

of the approximated function    at the nodes, i.e., for a node  : 

                                                                                            

Let us see the impact this characteristic has on the meshless analysis via MLS shape functions. 

The approximated function    is approximated as (3.5) (restated again below): 

              

           
 

                                                                     

If we number the nodes differently (as explained earlier), we get: 

              

 

    

                                                                             

where the index   now runs from 1 to   (the number of nodes in          ). If the shape 

functions were to obey the Kronecker delta property, we would find that (after requiring    to 

be calculated at a node  ); 

                

 

    

        

 

   

                                                            

i.e., the approximated function at a node         would be equal to the nodal parameter 

associated to that node    . This has a little impact when one deals with a problem in which 

Dirichlet boundary conditions are imposed at some portion of the global boundary   . The 

consequence from the fact that MLS shape functions do not obey the Kronecker delta property 

will be treated later (Section 5.5), in the discussion of boundary conditions and collocation 

methods. 

The last remark on MLS shape functions has to do with the matrix      , described by 3.47). 

According to (3.66), this matrix needs to be inverted in order to find the shape functions 

influencing a point   . Can we take for granted that       will always be non-singular, i.e., able 

to be inverted? The answer is negative. Sometimes, depending on the nodal distribution and on 

other factors, we can get singular matrices, which prevent us from getting the shape functions. 

This is a strong drawback of the MLS approximation.  

According to [Liu, 2003], given a point   , one of the requirements for avoiding the singularity 

of the   matrices is to make sure that the number of nodes influencing    (i.e.,  ), should be 

much greater than the number of monomial terms in the vector       (i.e.,  ). In other words, 

one must guarantee that 

                                                                                        

There is a lot more to say about this, as the nodal distribution (topology) also has an influence 

on this issue. However, in the next chapter we will present a situation in which singular   

matrices occur frequently, and the ways we have found to overcome this issue. 
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3.2 Calculating the Derivatives of Shape Functions 

 
 If the shape functions themselves lack analytical expressions, so their derivatives. In the 

next lines we shall proceed to lay down methods for calculating first order derivatives of both 

MLS and RPIM-PR shape functions.  

 

3.2.1 MLS Shape Functions 

 We follow a way suggested by G. R. Liu [Liu, 2003]. From (3.66) (restated below) we 

can express the     vector of shape functions as 

                                                                                

We write this as 

                                                                               

where       is a     vector. Or: 

                                                                                

Right multiplying both sides by      : 

                                                                                

Taking the transpose at both sides: 

                       
 
                                                        

Or: 

                                                                                  

We must remember that, according to (3.47), 

                                                                         

And therefore its transpose is given by 

                   
 

                                                   

However, according to (3.46),       is a diagonal matrix, and therefore it is equal to its own 

transpose:             . From this follows: 

                                                                          

Equation (3.80) then writes 
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From now on, a subscript   will be a sign that we are calculating the partial derivatives with 

respect to  the coordinate  . If we take (3.84): 

                                                                              

Finally 

                                                                              

Expression (3.76) then allows us to calculate the derivatives of the shape functions: 

         
                                                                     

As the matrices       and  (  ) depend on matrices   and      , and because   does not 

depend on   , the derivatives        and        can be calculated according to       . So almost 

everything boils down to calculating       , which is no more than to calculate the derivatives 

of window functions   (3.17) whose arguments are expressions (3.20) [or (3.21)] divided by the 

radius of the influence domain. 

The first partial derivatives of MLS shape functions with respect to all directions/coordinates 

can therefore be summarized as: 

 

 
       

  
 
       

  
  

       

  
    

                                                   

 
       

  
 
       

  
  

       

  
    

                                                   

 
       

  
 
       

  
  

       

  
    

                                                   

where the subscripts   and   refer to a derivative with respect to   and  , respectively. Figure 

3.8 shows the derivatives for the one-dimensional shape functions from Fig.3.5, whereas Figs. 

3.9 and 3.10 depict    and    for the MLS shape function of Fig.3.7. 
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Fig.3.8. Derivative with respect to   for the one-dimensional shape functions of Fig.3.5. 

 

Fig.3.9. Partial derivative with respect to   for the MLS shape function of Fig.3.7. 

 
Fig.3.10. Partial derivative with respect to   for the MLS shape function of Fig.3.7. 
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Observation: The matrix calculations regarding the derivatives of shape functions [(3.88) -

(3.90)] can be put into the same piece of code as that one used to calculate the shape functions 

themselves. This adds one more output to the black box in Fig.3.3.  

 

Concluding Remarks 

This is all we deemed necessary to know about shape functions in order to accomplish 

this work. Chapter 3 illustrated as carefully as possible the numerical procedure for constructing 

these functions through the MLS approximation. Now we know how to do this, our table can be 

updated. 

 

THE MESHLESS PROCEDURE IN A NUTSHELL 

Given a differential equation and a domain where it shall be solved: 

First Step Set up the domain   and its boundary   . 

Second Step Spread   nodes throughout the domain   and at its boundary    as 

well. 

Third Step  To each node  , define the radius of its influence domain    (for 

the use in the MLS shape functions); 

 Make sure the influence domains cover the computational domain 

entirely. 

Fourth Step Numerical construction of the shape functions. 
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Chapter 4 

MLS Shape Functions and Integral Equations: A 

“Meshless Method of Moments” 

 

FTER becoming acquainted with the topic on the construction of MLS shape functions, 

thoroughly explained in the last chapter, it is now time for us to seek some interesting 

applications for them.  

The first kind of problem to which we had the opportunity to apply MLS shape functions is 

concerned to the scattering of electromagnetic waves. In scattering analyses, we suppose a pre-

existing field, called the incident field, to be disturbed by some sort of object, the scatterer. The 

role to be played by the scatterer is to produce another field, called the scattered field, which is 

combined with the incident field in order to produce a total field.  

In this work, however, we are not so much concerned to the physics behind scattering 

phenomena. Our attention will be shifted towards the mathematical models employed in the 

description of such phenomena. Given a physical problem (i.e., a scattering problem), we are 

interested solely in its abstracted mathematical form. In what regards physical descriptions, it 

suffices to say here that the underlying framework came entirely from Classical 

Electrodynamics (i.e., no quantum or relativistic accounts have been included in the models). 

For a detailed explanation of the physics of scattering phenomena, the reader can take a look at 

the references [Jackson, 1998], [Harrington, 2001], [Balanis, 1989] and [Rothwell and Cloud, 

2001]. 

Once the mathematical form has been abstracted from the physical description, the next step 

aims at answering the question: How do we solve the mathematical problem? 

The answer depends on how the problem has been translated from the physical realm to the 

“mathematical realm”. In what regards scattering phenomena, there are at least two ways in 

which the mathematical forms can be stated. Either differential equations or integral equations 

can be used for such a task. Both forms are equivalent, since they are derived from Maxwell 

equations (through different ways, obviously) and produce the same results. If one is interested 

in details, much insight on the mechanism of these two mathematical forms can be gained by 

reading Chapters 2 and 3 from the book by Mittra [Peterson et al., 1998]. Chapter 2 discusses 

how to formulate scattering problems through integral equations, whereas Chapter 3 deals with 

differential equations. 

In this chapter, we show how to solve, through meshless analysis, the 2D scattering problems 

expressed by integral equations. Such an attempt looks strange at first sight, since according to 

Chapter 1, meshless methods are an alternative to FEM in what regards problems described by 

PDE’s, not by integral equations. The most well-known method that deals with integral 

equations is the Method of Moments (MoM). What we are going to lay before the reader is, 

above all, how to employ the MoM with the meshless shape functions (intended to substitute 

those of FEM). As strange as it may appear, this strategy works well for a number of cases, 

except for those in which there are problems related to the singularity of the   matrices arising 

A 
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in the MLS approximation (according to Chapter 3). This issue happens if the scatterer has a flat 

side (like a square). Many attempts to overcome this issue were made. One of them, which 

resorts to a variant of the MLS, called IMLS (where the “I” stands for improved) substitutes 

some sort of orthogonal functions for the monomials in the vector      . However, IMLS did 

not work quite satisfactorily, with some undesirable oscillations coming in and disturbing the 

solution. But in the meanwhile, we have found so simple a way to deal with flat-side scatterers 

that it looks a little bit childish. Indeed, it somehow resembles the action of a stretching a rubber 

band. The details of this naïve procedure follow by the end of this chapter. 

We would like to emphasize that the content of this chapter is to be considered just as a 

kind of test, intended to verify the applicability of the MLS shape functions. The meshless 

analysis of integral equations once was the direction our entire work would follow. But along 

the way we shifted our interest to the differential formulations in which meshless analysis was 

originally aimed to be employed, and then we stuck to them.  

 

4.1 A Brief on Maxwell’s Equations and Scattering Theory 

 
 In this section, we present the basic equations that are going to be the subject of our 

analysis. After stating Maxwell’s equations, we derive the integral equations governing the 

scattering phenomena. More detailed discussion on this process can be found in [Peterson et al., 

1998] and [Balanis, 1989]. 

 

4.1.1 Maxwell’s Equations and Interface Conditions. Time and Frequency Domains. 

 The dynamics of the fields (  ,     ,     ,     ) is governed by Maxwell’s equations (written in 

SI units): 

            
           

  
                                                              

                       
           

  
                                                              

                                                                                    

                                                                             

where    is the electric field intensity (volts/meter),      is the magnetic field intensity 

(amperes/meter),      is the electric flux density (coulombs/square meter),      is the magnetic flux 

density (webers/square meters),    is the electric current density (amperes/square meter) and   is 

the electric charge density (coulombs/cubic meter). All quantities depend on the spatial 

coordinates    and on the time  . The fields are related to each other through the constitutive 

relations (which depend on the material media involved): 
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In the general case, the quantities   ,    and    map vectors into vectors, so they are tensors that 

depend on space and time. However, for the purposes of this work, it suffices to consider them 

as scalars ( ,  ,  ) that at most depend on the spatial coordinates    (we are not going to deal 

with time-varying media, at least for now). The first quantity   is called the electric permittivity 

(farads/meter), and the second ( ) is the magnetic permeability (henries/meter). The third 

quantity ( ) is the electric conductivity (siemens/meter), and is linked the capacity of the 

medium to produce a conduction current in the presence of a field   . In the situations coming 

from the scattering analysis carried out in this work, there are no references to this kind of 

current (also represented by        ). Whenever a    appears in the equations to follow, it is 

related to an electric current density that arises from other sorts of mechanism, like the matching 

of tangential components of the magnetic field at the interface between two media characterized 

by different material properties (induced currents). 

The fields (unless stated otherwise) exist in a three-dimensional space. Let a region   in the 

space be filled in such a way that two sub-regions (   and   ) characterized by different 

material properties are separated by a surface  . For example, let us suppose   to be a cube 

                      . We can take                         (the bottom half) 

and                        (the upper half). The surface   that separates both sub-

regions is the plane                 at    . To each point    in the surface  , we can 

ascribe a unit normal vector   , that happens to be equal to    for this example. If we assume that 

the sub-region    is characterized by the parameters (  ,   ,   ) and    by (  ,   ,   ), then the 

boundary conditions to be satisfied by the fields are: 

Media with finite conductivities (no sources      or  ) 

                                                                                       

                                                                                           

                                                                                        

                                                                                        

Equation (4.8) above tells us that the tangential components of the electric field    are 

continuous across the interface  . The second equation (4.9) expresses the same for the 

magnetic field     , as long as there are no currents flowing along   or neither of the media is a 

perfectly electric conductor (PEC). Equation (4.10) says that the normal components of the 

electric flux density      are continuous across  , as long as neither    nor    are filled with 

perfectly electric conductor materials and there are no electric charges on  . Finally, (4.11) 

states the continuity of the normal components of the magnetic flux density     . 

 

 



39 
 

Media with infinite conductivities (eventually with sources      or  ) 

Continuing our example, let us suppose that the medium in    is a PEC. Therefore, there are no 

fields inside this sub-region, and the interface conditions now read: 

                                                                                     

                                                                                        

                                                                                       

                                                                                      

The second equation (4.13) tells us about a surface current density that must flow along the 

surface of a PEC (sub-region   ). The magnetic field cannot “die” suddenly when one travels 

from the exterior (  ) to the interior (  ) of a PEC; a surface current density     

(ampères/meter) must be the measure of the discontinuity of     . Equation (4.14) states that a 

surface charge density    (coulombs/square meter) must exist on the surface in order to account 

for the discontinuity of the electric flux density     . 

Throughout this work, we are going to be concerned with electromagnetic fields whose 

temporal dependency is characterized by a sinusoidal behavior. They oscillate with a frequency 

  (measured in Hertz), which means that they come back to their original configuration each 

      seconds. The functions that describe fields that behave in such a way are usually 

separable, i.e., they are written as a product of two terms, the first of which depends on the 

spatial coordinates    only, whereas the second term depends on time   solely. The term 

governing the temporal dependency is given by     , where       is the angular frequency 

(radians/second) and       . So the quantities   ,     ,     ,     ,    and   read as: 

                                                                                       

                                                                                          

                                                                                          

                                                                                         

                                                                                      

                                                                                    

As the space-dependent quantities    ,     ,     ,    ,    and   may assume complex values, and in 

addition to their being multiplied by a complex term     , we must arrange so that the physical 

fields they describe come out as real quantities (i.e., described by real numbers). This is 

accomplished by taking the real part of the expression obtained from the product between the 

spatial and temporal terms (4.16) - (4.21). In Maxwell’s equations (4.1) and (4.2), there appear 

some derivatives with respect to time. If we substitute equations (4.16) - (4.21) above in 

Maxwell’s equations (4.1) - (4.4) and manipulate the real part       and time-derivative         

operators, we find a new set of equations, in which the quantities   ,     ,     ,     ,   ,   are replaced 
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by    ,     ,     ,    ,   ,   and the time derivative is changed to a product with the term   . The new 

equations, whose terms are said to be in the frequency domain, are therefore written as 

                                                                                      

                                                                                               

                                                                                  

                                                                             

The set of equations above are easier to deal with than the set (4.1) - (4.4), as there are no 

references to time derivatives. However, care must be taken when one is solving for the real 

fields. As soon as one gets the complex fields    ,     ,     ,     (sometimes they are said to be in 

phasor form), the real fields   ,     ,     ,      are obtained from them through a multiplication by 

     and through the extraction of the real part (action of the      ), as shown in (4.16) - (4.19). 

Observation: If the temporal variations are different from     , there are other techniques one 

can resort to.  In the case the parameters   and   do not depend on the fields (linear problems), 

some kind of Fourier analysis can be employed. The sources    and   are decomposed into 

components, each one depending on an angular frequency  . These components are separately 

plugged into the equations (4.16) - (4.21). After the fields are solved for every component, they 

are summed up in order to form the total field. Needless to say this is quite a cumbersome 

process, as many components may be required to describe the fields with a reasonable accuracy. 

Instead of going through this large amount of work, numerical methods are often employed in 

order to tackle these situations (e.g., when one wants to find the fields produced by a pulse of 

current). 

In the frequency domain, the boundary conditions remain unaltered: 

Media with finite conductivities (no sources    or  ) 

                                                                                    

                                                                                      

                                                                                     

                                                                                   

Media with infinite conductivities (eventually with sources    or  ) 

If medium   is a PEC: 
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From now on, we will assume only fields with temporal variations dependent on     , and 

therefore only equations stated in the frequency domain are going to be considered. 

 

4.1.2 Scattering Theory 

 When studying scattering phenomena, we begin by specifying a spatial region   (two or 

three-dimensional) in which there are elements relevant to our analysis. These elements are the 

incident fields and an object, called the scatterer. In the problems we are going to solve, we 

assume that none of the quantities involved depend on coordinate  , i.e., given a three-

dimensional space (rectangular coordinates  ,   and  ), neither the fields nor the parameters ( , 

 ) are functions of  . The region   we are interested in is then the plane   , and the scatterer is 

an infinite cylinder. The parameters associated to the region   are those of the vacuum, i.e., 

                 F/m and              H/m. Although the procedure 

developed in this chapter could also be applied to homogeneous dielectric scatterers (the method 

of moments applied to homogeneous dielectric scatterers, Chapter 2 of [Peterson et al., 1998]), 

we will assume only PEC scatterers. The analysis of scattering by dielectric objects is postponed 

to later chapters, wherein a different method has been employed in their solution.  

The incident fields are given, i.e., the expression governing them at all points          of the 

region   must be known at beforehand. These fields are produced by sources located elsewhere 

(where or how they are actually produced is irrelevant to our analysis). If we write the incident 

fields (and their associated sources) by a superscript   (for incident), then we can represent this 

situation schematically in Fig.4.1: 

 
Fig.4.1. Sources    and     located elsewhere produce the incident field. 

The role to be played by the scatterer is to somehow disturb (or scatter) the incident field. Inside 

a PEC, the fields must vanish. As the incident fields must not “die” abruptly at the surface of the 

scatterer, Nature arranged things in such a way to bring about current and charge densities 

induced on the surface of the PEC. This is reflected in the interface conditions (4.31) - (4.32). 

However, these induced current and charge densities are sources, and, according to Maxwell’s 

equations, they must generate electromagnetic fields. If we call them scattered fields, then we 

can label them by a superscript   (for scattered) and draw the scheme of Fig.4.2: 
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Fig.4.2. The scattered field is produced by sources    and     induced on the PEC surface. 

So the real scenario is depicted in Fig.4.3. The scattered fields produced by the induced current 

and charge densities add up to the incident fields, in order to produce a total field. The scattered 

fields are unknown, as their sources are. In order to find     ,      ,       and     , we must find     and 

   first. However, these sources depend on no factors other than the geometry of the scatterer. 

And to make things simpler, the induced charge    does not need to be found. Only the induced 

current     must be. Once the current flowing along the scatterer surface is found, we are finally 

able to calculate the scattered fields. The most important part is therefore the determination of 

the current density    . Let us proceed to see how the equations governing it look like. 

 
Fig.4.3. The scattered fields     ,       combine on order to produce a total field    ,      equal to zero inside   and equal to 

                      outside  . 

As the sources     and    produce the fields     ,      ,       and      in the vacuum, where     , 

    ,             
  and            

 , the equations (4.22) - (4.25) can be written as (omitting 

the dependency on   ): 
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Because the magnetic field intensity is solenoidal, it can be written as a curl of some vector 

           [Harrington, 2001]: 

                                                                                     

The vector    is called the magnetic vector potential. Substituting (4.38) above in (4.34), we get 

                                                                                    

As the field             is irrotational, it can be written as a gradient of some scalar function   

(because of the vector identity        ). If        , then obviously           . In 

Electrostatics it is customary to take the electric field as the negative of the electric potential. 

Following this trend, we can express             as the negative of a modified electric 

potential  : 

                                                                                     

Substituting (4.38) in (4.35): 

                   
                                                               

From the vector identity 

                                                                               

we get 

                       
                                                            

However, (4.40) tells us that                . Equation (4.43) above is then written as: 

                                                                              

As          , where        is the wavenumber (radians/meter) and   is the wavelength 

(meters). Rewriting (4.44): 

                                                                              

According to Helmholtz’s theorem, a vector field is unambiguously specified whenever  its curl 

and its divergent are both known. The curl of    is determined (4.38), so we are left with the task 

of choosing     . There is some freedom on the choice of     , but most books dealing with 

this subject [Balanis, 1989], seem to agree on a condition known as Lorenz gauge: 

                                                                                  

which leads to an expression for     : 

                                                                                 

Finally, the equation for the vector    now becomes 
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The current density     along with suitable boundary radiation conditions suffice for the 

determination of   . The radiation conditions which the vector    is required to satisfy are those 

that resemble those of an outward propagating wave, i.e., a wave that moves away from the 

PEC scatterer. If such conditions are employed, then the derived fields      and       are shown to 

be in accordance with Sommerfeld’s boundary conditions, which truly describe the behavior of 

scattered fields. There is a discussion of this subject in the Chapter 2 of [Harrington, 2001]. If 

   is known, then the vector potential    can be found everywhere as: 

           

  

     
 

  
  

                                                               

Equation (4.49) holds true only for two-dimensional problems (the kind of problem we are 

dealing with). The potential vector and the current density both have the same direction. The 

integration is to be carried out at where the current     exists, i.e., at the perimeter (boundary)    

of the PEC cross-section  . The term   
   

               is the Green’s function associated to 

the partial differential equation (4.48), i.e., if     were equal to a Dirac delta located at    , then 

the potential vector    at any point    would be given by   
   

              . Equation (4.49) 

actually represents a convolution between the current distribution     and Green’s function 

(stated above). Given a point   , (4.49) means that the potential vector    at    depends on the 

contribution of each point     where a current density     is known to exist. Representing the 

points    and     by Cartesian coordinates, (4.49) can be rewritten as 

               
 

  
           
  

  
                                                     

where          is the Euclidean distance between    and    : 

                                                                             

The function   
   

 that appears in (4.49) - (4.50) is a special function; it is known as zero-order 

Hankel function of the second type. For a detailed account of its properties, see [Balanis, 1989], 

and [Peterson et al., 1998]. It suffices to say here that this function represents an outward 

travelling wave, i.e., a wave that propagates away from the PEC scatterer, and that it is defined 

as a combination of Bessel functions: 

  
                                                                                

where       is the zero-order Bessel function of the first kind and       is the zero-order Bessel 

function of the second type (which is singular at    ). 

Once the potential vector    is known from the current density     through (4.49), then the 

scattered magnetic field can be found as            (4.38). The potential   comes from the 

Lorenz gauge condition (4.46): 
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Finally, the scattered electric field is recovered from (4.40): 

             
 

    
              

 

   
                                       

Observation: From the expression for   , it can be easily verified that      really satisfies 

Sommerfeld’s radiation conditions. Just to keep things simple, let us assume that the current 

density     is a Dirac delta placed at the origin of the Cartesian plane          , and that it is 

pointed towards the    direction, i.e.,             . Under these circumstances, (4.49) becomes 

                
 

  
  

                                                                  

The scattered electric field      is derived from (4.54) above (   is not a function of  ). 

             
 

    
  

   

  
               

   

 
  

   
                      

So the  -component of the electric field is  

  
   

   

 
  

   
                                                                     

where        is the distance from point    to the origin. For two-dimensional problems, 

Sommerfeld’s radiation condition reads 

   
   

   
 

  
      

                                                              

Inserting (4.57) into (4.58): 

   
   

   
 

  
      

   

 
  

   
                                                   

Ruling out        we get 

   
   

   
 

  
      

                                                           

Expanding (4.60): 

   
   

   
   

       

  
     

                                                       

The derivative of Bessel functions of any type   and order   [including Hankel functions, as 

they are linear combinations of Bessel functions of first and second types, according to (4.52)] 

are given by [Balanis, 1989]: 
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The derivative of the Hankel function can then be found after substituting   by     ,   by 0,   

by   and the partial derivative by a total derivative (because   
   

     is a function of   only): 

   
   

       
   

         
   

                                                

There is an asymptotic for the Hankel functions when their argument   is large [Balanis, 1989]: 

  
   

     
 

  
                                                                

After some manipulations we arrive at: 

   
   

   
 

   
                                                          

 

   
   

 
  

 
                                                                

However,        , and the term in parentheses is zero. As the term depending on   is a 

complex exponential (unit modulus), we finally obtain an identity    . This means that the 

scattered electric field      derived from    satisfies Sommerfeld’s radiation condition, as 

required. 

As we are now equipped with the machinery of vector potentials and boundary conditions, we 

are ready to derive the integral equations that are going to be solved through a meshless method. 

This is the theme of the next section. 

 

4.1.3 Integral Equations 

As said earlier, we are dealing with three-dimensional problems in which there is a 

“privileged” direction along which no variable depends upon – the  -direction. The geometry of 

the scatterer does not varies with  , which means that it has a constant cross-section. Neither do 

the parameters   and  . These facts allow the original problem to be simplified. Actually, only 

what regards the plane    is worth any consideration (any plane will serve our purposes, as 

long as they are all perpendicular to the  -axis; planes     ,    ,    , etc. are all 

equivalent in this context). 

In this scenario, there are two configurations the electromagnetic fields      and       can be in. 

One of them, called TM
z
, has 3 field components:   ,    and   . In TM

z
, the electric field 

(both incident and scattered) points towards the  -direction, i.e., it is parallel to the PEC 

cylinder. The magnetic field lies in the    plane. The other configuration, TE
z
, is also 

characterized by 3 components:   ,    and   . In TE
z
, the magnetic field instead is parallel to 

the PEC cylinder.  



47 
 

The integral equations describing the fields in either TM
z
 or TE

z
 configurations differ from each 

other. Actually, there is some resemblance among them [Peterson et al., 1998]. When one is 

interested in “mixed fields” (6 components, 3 for the electric and 3 for the magnetic fields), then 

the problem is broken up into two parts: one deals with the TM
z
 configuration (3 components) 

and with the TE
z
 configuration (the other 3 components) separately. After the solutions from 

both parts are available, they are added up in order to find the answer to the original “mixed” 

problem. 

In this work, we are concerned with the TM
z
 configuration only. We derive the integral 

equations for the electromagnetic fields and then solve them for PEC scaterers. The integral 

equations for the TE
z
 configuration are similar to their TM

z
 counterpart. The duality principle 

can take one from the TM
z
 equations to the TE

z
 equations and from them back to the TM

z
 

(although other quantities like the electric vector potential    and the magnetic current density      

come up to the scene) [Peterson et al., 1998]. 

The TM
z
 configuration is characterized by the fact that the current density induced on the PEC 

surface flows along the  -direction (i.e., it is directed parallel to the unit vector   , but does not 

vary with  , neither in magnitude nor in phase). Or 

                                                                                          

The expression for the vector potential    (4.49) becomes 

               
 

  
       

     
  

  
   

                                             

Inserting (4.49) above in the expression (4.54) for the scattered electric field     : 

           
 

  
       

     
  

  
                                                                                      

 
 

   
    

 

  
       

     
  

  
                   

      
   

 
       

     
  

  
                                                                                               

 
 

    
 

 

  
      

     
  

  
                   

The last step is justified due to the fact that the second term inside the parentheses in (4.69) is a 

vector whose unique component points towards   . This allow us to substitute      for   . As 

    
      does not depend on  , we can move      and place it just before   

               

(i.e., the only term that depends on the observation coordinates    and on the source coordinates 

    as well). 
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But 

  
   

              
   

                                                         

Therefore 

 

  
  

   
            

 

  
  

   
                                                  

So the expression for      in the TM
z
 configuration boils down to the first term 

          
   

 
       

     
  

  
   

                                                            

There are two unknowns in (74), namely      and     
     . One more relation is needed in order 

to solve it. The extra information is provided by the incident electric field      (known) and the 

boundary condition (4.30), restated below: 

                                                                                            

In equivalent two-dimensional problems with PEC scatterers, the interface between two media   

is just the perimeter (or contour) of the scatterer cross-section   . The total field in the medium 

external to the PEC (      is given by the sum of the incident and scatterer fields (         ). So 

(4.75) is rewritten as 

                                                                                       

The normal    to the interface   becomes a vector everywhere perpendicular to   . In this case, 

   happens to be a unit vector on the    plane (plane of the cylinder cross-section). 

As explained earlier, in TM
z
 configuration, the electric field is required to point towards    only 

(there is only one component for the electric field, i.e.,   ). Therefore, in TM
z
 analysis, incident 

fields with a  -component solely will be regarded. Just to remember, if the incident field 

happens to have other component in the    plane, it is treated with other equations, derived 

from the TE
z
 configuration. So we assume the incident field to be 

                       
           

                                                    

Substituting (4.74) and (4.77) into (4.76), we get 

                  
      

   

 
       

     
  

  
                                    

Extracting the unit vector    from the innermost parentheses: 
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As    is perpendicular to   , the vector product       points toward a vector    tangent to    at 

every point      . Then 

               
      

   

 
     

     
  

  
   

                                           

The term in the right side is the null vector   . As the product between the scalar 0 and any 

vector      (particularly for        ) is the null vector    (i.e.,         ), we conclude that the term 

inside the innermost parentheses must be equal to zero, which leads us to 

               
      

   

 
        
  

  
                                                   

Equation (4.81) above is the Electric Field Integral Equation (EFIE). It states that for any point 

at   ,   
  is given by an integral over    of the induced current density    multiplied by the 

Hankel function   
   

. Once    is found, the scattered electric field      at any point    can be 

calculated through (4.74). The magnetic scattered field       is found by first determining the 

potential vector    and then taking           : 

      
 

  
         

     
  

  
                                                         

The integral equation (4.81) is not the only one that can be derived for the TM
z
 configuration. 

Had we begun our analysis from the magnetic fields, we would get a different equation that, 

differently from EFIE, does not relate the current density to the incident electric field, but to the 

incident magnetic field instead. This equation is called the Magnetic Field Integral Equation 

(MFIE). Let us proceed to verify how it is found out. 

The boundary condition for the magnetic field (when the other medium is a PEC) is given by 

(31) (repeated here): 

                                                                                     

The interface   is the contour   , and the total external magnetic field       is the sum of the 

incident and scattered fields. Then 

                                                                                   

This means than the tangential component of the total magnetic field at    is equal to the surface 

current density evaluated at   . Rewriting (4.84): 
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In the TM
z
 configuration,     is given by (4.67). The scattered magnetic field       is substituted by 

     in order to find 

                                                                                  

After considering the expression for    (4.50): 

                                
 

  
            

     
  

  
   

                         

Taking the unit vector    outside the integral: 

                                
 

  
            

     
  

  
                           

A simple calculation shows us that 

       
 

  
   

 

  
                                                                        

Substituting: 

       

                                
 

  
      

 

  
   

 

  
      

     
  

  
                  

As the derivatives are taken in respect to the observation coordinates (  and  ), and as the 

current density    does not depend on them (they depend on the source coordinates    and    

instead), we are allowed to place them just before the Hankel function   
   

: 

                                                                                                                                           

 
 

  
           

     
 

    

  
                         

     
  

 

  
  

                   

Writing the vector        as 

                                                                             

So that its modulus is                 , (4.91) becomes 

                                                                                                                                           

 
 

  
           

     
 

    

  
                  

     
  

 

  
  

            

From the chain rule for differentiation it follows that 
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and likewise for    
   

       . Substituting this in (4.93): 

                                                                                                                                           

 
 

  
           

     
  

   
   

    

     

     

  
           

     
  

   
   

    

     

     

  
     

From the expression (4.62) concerning the derivative of Hankel functions: 

   
   

    

     
    

   
                                                                

Then 

                                                                                                                                           

 
 

  
           

     
  

    
   

     
     

  
           

     
  

    
   

     
     

  
     

The remaining derivatives are calculated as 

     

  
 

                    

  
  

      

                
  

      

 
          

     

  
 

                    

  
  

      

                
  

      

 
          

After retaining the terms in common and moving the unit vectors    and   , (4.97) becomes 

                                                                                                                                         

 
 

  
         

     
  

    
            

      

 
    

      

 
      

Placing the wavenumber   outside the integral, and moving the normal vector   , we get 

        

                                
 

  
     

     
  

  
              

      

 
   

      

 
     

Writing the normal vector             , the vector product is 

       
      

 
   

      

 
   

      
     

                  

                                         

   

      

 
   

      

 
    

 

 
                                

where the dot   stands for the scalar product between two vectors. Simplifying further: 
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In (4.103) above,                    is a radial unit vector, i.e., a unit vector whose direction 

is the same as that of a line joining the origin       to point         . The integral equation 

(4.101) becomes 

                                
 

  
     

     
  

  
                                        

which can be written as 

                                   
  

 
     

     
  

  
   

                                   

The terms in the right side of (4.105) point towards the  -direction only, and so does the term in 

the left, as it can be easily verified. Indeed, in the TM
z
 configuration, the magnetic field lies in 

the plane   , i.e., it is written as                . Cross-multiplying it with the normal vector 

   we readily discover that the term in the left side          really points towards    as well: 

              

      
     

  
   

  

         
      

                                    

Bearing this observation in mind, we write the final form the MFIE shall assume: 

                                    
  

 
     

     
  

  
   

                            

Now that we are in possession of both EFIE and MFIE, let us proceed to their numerical 

evaluation. 

 

4.2 Meshless Analysis of Integral Equations. MLS Shape functions. 

 
 Because we are dealing with PEC’s only, our region of interest reduces to the perimeter 

of the scatterer’s cross-section. This looks reasonable, insofar as there are no fields inside a 

perfect conductor. As we know at beforehand that the fields are zero within the scatterer, then 

this region is summarily excluded from our analysis. An inspection at EFIE (4.81) and MFIE 

(4.107) reveals that the unknown current density is confined to the surface of the PEC only, 

which in equivalent two-dimensional problems happens to be a contour (the perimeter of the 

scatterer’s cross-section). So there is no reason in considering the exterior region to the PEC 

(vacuum, or free space) either.  

Commentary: From the last section, it can be seen that we had to go through a rather lengthy 

process in order to find out the integral equations governing the scattering of incoming waves. 

The information about induced current densities, the exterior medium and the scattered waves’ 

sense of propagation (outward, as indicated by the Hankel functions of the second type) are all 

codified in two equations, namely, the EFIE and the MFIE. However, the situation depicted is a 
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relatively simple scattering problem - scattering by PEC objects. Had the problem involved 

media other than free space and dielectric objects, for example, other complications would arise, 

and the process of finding the integral equations would be more complex. Usually, one would 

have to use equivalence theorems in order to substitute objects for currents flowing along their 

surfaces, and there would appear artificial constructs like magnetic current densities       

[Peterson et al., 1998]. Needless to say, the deduction of the integral equations could become 

much more complicated to that exposed in the last pages. One would end up with a pair of 

coupled equations in two unknowns (    and      ). To make things worse, if there were many 

scatterers in the region, each one of them would have its associated current densities (   and     ) 

flowing along their surfaces (after applying equivalence theorems [Peterson et al., 1998]). As 

beautiful as the mathematical deduction of these integral equations can appear, no one could 

deny the huge effort carried out by the analyst in order to find them. However, although the 

integral equations look a little bit frightening, there is nothing more to do with them other than 

discretize them. Their solution is not that complicated; all we have to do is to approximate the 

unknown    (or      or both) by an expansion in shape functions. The burden of the work relies 

almost entirely on the analyst’s shoulders. All that is left to the computer is to perform the 

numerical integrations out from the discretization process and to assemble (and solve) the 

resulting linear system. The purpose of this commentary is to point out that this complication in 

obtaining the integral equations is one of the reasons we gave up in pursuing further research in 

this area and decided to prioritize the approach based in differential equations. We are not 

saying that there are no difficulties associated with the differential approach – there are 

challenges as well – but it seems to explore more the processing power of the computer than the 

analytical skills of the programmer. When solving a scattering problem using FEM or MLPG, 

for example, all is needed is the knowledge of the governing differential equation and the 

boundary conditions. There is no need to resort to induced current densities or to equivalence 

theorems. Not even a knowledge of Hankel functions is required! This extra facility proves to 

be fundamental when it comes to the solution of problems related to the scattering of a wave by 

many bodies, as in the analysis of photonic crystals (Chapter 5). 

Let   stand for the scatterer’s cross-section. Its perimeter is then represented by   . In addition 

to this, let     ,       be the incident field coming from the left (Fig.4.4. It could impinge on the 

PEC from whatever direction, but without loss of generality, it is represented graphically as a 

wave coming from the left). As the current density    (TMz polarization) exists only in   , we 

need to build shape functions that exist only in    also. The first step is to spread nodes along 

   (Fig.4.4).  

Each node is characterized by its two Cartesian coordinates   and  . If we spread a total of   

nodes, then from the index set 

                                                                              

we can state the set of nodes (points) in    
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Fig.4.4. Nodes 11, 12, 13 and 14 extend their influence domains until point   . This is the same as saying that 

                       . The figure illustrates the scatterer’s cross-section; therefore, the induced current 

density    which flows along the  -axis cannot be drawn.  

i.e., the set   is formed by all those points in the contour    which have an associated index  . 

As only the   points located at     are arbitrarily chosen by the programmer, the number of 

elements in   is  . An obvious observation is that nodes located at some location     should 

have a unique index  : 

                                                                              

i.e., a single node could not be labeled by two different indices   and  : 

                                                                   

This proposition means that for each point    in the set   (set of nodes) there is an index      is 

associated to, and that there is not another index   different from      is associated to. Although 

this may seem obvious, it has tremendous consequences in the numerical solution of the integral 

equations. The contour    is a closed curve. It means that it can be described by a 

parametrization     : 

                                                                              

or to each value of the parameter   (ranging from     to       ) is associated a point    in 

  : 

                                                                               

where                     . However, in order to exactly describe a closed curve, the 

initial and final points must be equal: 

                                                                            

When spreading nodes along   , one must be sure we do not ascribe different indices to the 

endpoint (characterized either by     or by       ). If this is ever done, to the same 

location (the endpoint), two different nodes (two different indices) will be ascribed. This 
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violates the proposition (4.111) and as a result, the resulting matrix will have two linearly 

dependent lines (actually, equal to each other, since the points for different indices have the 

same coordinates and therefore, the same values for any function dependent on them). The 

matrix will then be singular, which makes impossible the solution of the final linear system. 

After the nodes have been spread, the next step is to determine their influence domains. Just to 

remember, according to explained in Chapter 2, each node   must have its associated influence 

domain   . In this context, 

                                                                            

where    is the radius of node  ’s influence domain. Also, the collection (union) of all influence 

domains must cover the entire region of interest (in this case, just the contour   ): 

         

   

                                                            

This ensures that, to each point    in   , there is at least one node which extends its influence 

domain until   . Let   be the set of all influence domains   , i.e.,   is a family of sets whose 

elements are the influence domains    (sets of points): 

                                                                 

This claim can be stated as 

                                                                          

If (4.118) above holds for all   , then there are no holes left in   , and therefore the current 

density    can be approximated everywhere. Usually a single point    is influenced by many 

nodes, i.e., many nodes extend their influence domains until   . In Chapter 2, we called the set of 

indices whose associated influence domains included point    as the set of neighbor nodes 

influencing   , represented as          : 

                                                                              

In Fig.4.4, it is shown the set of four nodes influencing a given point    [(          

             ]. 

According to Chapter 3, in order to build MLS shape functions, a monomial basis   is required. 

We employ here a basis formed by linear terms only: 

                                                                                

Once the monomial basis is chosen, in order to find the nodes influencing    and their associated 

shape functions, all there is to do is to go through the series of matrix calculations involving the 

matrices   and      . The process illustrating the construction of the MLS shape functions will 

not be repeated here; the detailed information is available in Section 3.1. It suffices only to 

remember that it is a black box procedure. Given a point   , you feed this information into the 

black box and recover all influencing nodes along with the shape functions calculated at   . 
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However, there is one more requirement: the curve describing the contour    is parametrized in 

such a way that its endpoints coincide, i.e.,                 . This means that both 

endpoints amount to the same physical location, and as expected, the physical quantity of 

interest – the current density    – must assume the same value at both endpoints as well: 

                                                                               

Things would be enormously simplified if this feature were embedded in the shape functions 

used to approximate    (yes, the current density is approximated by MLS shape functions, as the 

direction this discussion is taking will soon make explicit), i.e., 

                                                                        

where    is the shape function associated to node  . We have found a way to make the shape 

functions obey (4.122) above. However, it will be explained in the worked example below. 

 

4.2.1 Worked example: Scattering of a     plane wave by a PEC circular cylinder 

The first problem which we tried to solve through meshless techniques was that 

concerned to the scattering of a plane wave by a PEC circular cylinder. The reason for such a 

choice is that this problem has analytical solution (i.e., there is an expression for   ), which 

provided us a means to verify whether the numerical experiments are working suitably or not. 

As we are dealing with a curve    in two dimensions, it can be described by a single 

degree of freedom, i.e., only one parameter   suffices for describing all points in   . In the case 

of a circular PEC cylinder,    is a circumference and the parameter   happens to be the polar 

angle   (Fig.4.5).  

 
Fig.4.5. Scattering by a PEC circular cylinder. The contour    is the circumference     (polar coordinates). The 

parameter   that describes the curve    is the polar angle  . 

Because every point in    is situated at a distance   away from the origin, they can be written 

in polar coordinates as 

                                                         

i.e., the  -coordinate is given by       and the  -coordinate is given by      . The radius of 

the cylinder is therefore given by  . 
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Inserting the values for   and   above in the monomial basis   (4.120), we have: 

                                                                       

The nodes have been spread uniformly throughout    (this is not mandatory; a different nodal 

distribution could have been used). All influence domains   have the same radius (again, each 

influence domain could have its own value for the radius, but we preferred the simpler 

approach). These radii are chosen in such a way that a node is able to influence two other nodes 

ahead of it, and two nodes behind it. So given a point   , all nodes influencing    and their 

associated shape functions   are calculated through the MLS procedure outlined in Chapter 3 

(matrices  ,      ,  , etc.). Figure 4.6 illustrates a set of 10 shape functions associated to 10 

nodes equally spread along   . As it can be seen, the parameter (polar angle  ) varies from 0 to 

  , as indicated. In order to produce Fig.4.6, many points    have been spread throughout   , 

and to each one of them the set of influencing nodes (         ) along with the shape functions 

calculated at    have been determined. This process is akin to that used in producing the pictures 

for the two-dimensional MLS shape functions explained in chapter 2. Lots of information can 

be retrieved from Fig.4.6. First, the shape functions are compactly supported, being different 

from zero only at a certain region around the associated node. Second, to each point    there are 

3 to 4 nodes influencing it. Of course that, if the influence domains were larger, nodes distant 

from    would be able to extend their influence until   , what would lead to a greater amount of 

influencing nodes. Third, each shape function attains the maximum at its associated node, 

decays to zero at the first neighbor node, assume negative values and decays to zero at the 

second neighbor node. So the influence domain of a node acts on points located at distances 

smaller than the distance of two nodes ahead of the node (and two nodes behind the node as 

well). Finally, and surprisingly enough, we observe that the shape functions obey the Kronecker 

delta property. The MLS shape functions usually do not satisfy it (according to Chapter 3), but 

this behavior is likely due to the presence of trigonometric terms in the basis  . Tests have been 

carried out, and the property of partition of unity proved to hold true everywhere in   . The 

obtained shape functions are therefore suitable to be used in the meshless discretization process. 

 
Fig.4.6. A set of 10 shape functions, associated to 10 nodes uniformly spread along   . 

The next step is to approximate the unknown function    by an expansion in shape functions. 

For all points in   , the current density    at    is expressed as: 
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where the index   runs through all nodes influencing   . As nodes located far from    do not 

contribute to the sum above, we can take all indices (from 1 to the number of nodes  ): 

                          

 

   

                                                    

We are now ready to deal the integral equations. The EFIE (restated below) is  

               
      

   

 
        
  

  
                                         

According to (4.108), we have   unknowns in our problem, the   nodal parameters          . 

So we need   instances of the equation above, each one enforced at a different point   . Nothing 

seems more natural than taking the location of each node   as observation points, i.e., we take   

equations, each one enforced at    : 

             
         

   

 
        
  

  
                                         

where the superscript   in (4.127) that used to stand for the incident field has been replaced by 

‘inc’, in order not to be confused by the index  . Substituting (4.126) for    we find 

             
   

 
        
  

  
                       

 

   

  
                         

As the indices   and   both run from 1 to  , the set of equations above can be written as a linear 

system: 

                                                                                    

where the coefficients of the     matrix       are given by 

   
     

   

 
        
  

  
                                                            

the  th component of the     unknown vector    is the nodal parameter     and the  th 

component of the     vector      is the incident electric field calculated at node  ’s location: 

  
      

                                                                             

The nodal parameters are solved through the solution of the linear system (4.130): 

                                                                                   

Once the vector    is found, the problem is finally solved. The current density at a given point    

in    is given by (4.125), i.e., one must first find which nodes influence    [the set          ] 
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along with the influencing shape functions, and then add them up (weighted by the nodal 

parameters). 

If the problem is not electrically large, i.e., if the radius   of the cylinder is smaller than the 

wavelength   of the incident field, only the EFIE suffices for the solution. Otherwise, there 

appears some problems concerned to resonances. These problems arise out of the discretization 

process, and an extensive discussion on this topic would lead us too far astray from the purposes 

of this work. A thorough account of this phenomenon is found in [Peterson et al., 1998]. It can 

be shown that the spurious solutions introduced by the resonances can be eliminated altogether 

by resorting to two extra steps: 

 After discretizing the EFIE, do the same with the MFIE; 

 Performing a weighted sum of the solutions provided by the EFIE and by the MFIE. 

The MFIE is (restated below) 

                                    
  

 
        
  

  
   

                                  

Some issues concerning the discontinuity of the magnetic field at    allows extra information 

to be extracted from the integral appearing in (4.134). The MFIE is usually written as 

                             
 

 
       

  

 
         
      

  
                                

where the integration is no longer carried out at the closed curve   . A small segment of    

curve centered at the observation point    – represented by     – is removed from the curve when 

the integration is performed. The result of this is that there appears a     coefficient 

multiplying       . The derivation of (4.135) from (4.134) is presented in [Balanis, 1989]. We 

just take it for granted here.  

Enforcing   instances of the MFIE at the   observation points (location of each node  ) we get 

(after substituting ‘inc’ for ‘i’ in the left side): 

                              
 

 
        

  

 
         
       

  
                                   

where            and        . Inserting the expansion in shape functions (4.126) wherever    

appears we arrive at 

        

        
 

 
        

  

 
         
       

  
                   

 

   

                         

As in the case for the EFIE, we can arrange this set of equations into a linear system 

                                                                                   

The coefficients of the     matrix       are given by 



60 
 

   
     

 

 
        

  

 
         
       

  
   

                                        

the  th component of the     unknown vector    is again the nodal parameter     and the  th 

component of the     vector      is the expression below involving the incident magnetic 

field calculated at node  ’s location: 

  
                                                                                   

The current density    free from spurious solutions is therefore given by a linear combination of 

solutions provided by both EFIE (4.130) and MFIE (4.138): 

                                                                       

                                                                       

This meshless discretization of integral equations worked well. In our simulation, we considered 

a relatively large cylinder whose radius   is equal to 10 wavelengths, or      . In this 

scenario, applying only the EFIE does not provide accurate results, because of the issue 

regarding the spurious solutions. The combined equations above (4.142) therefore must be used. 

The incident field is a plane wave of unit amplitude (    ) coming from the left: 

  
          

            
                                                         

This field becomes           in the contour   . The components   and   for the incident 

magnetic field can easily be retrieved from Maxwell’s equations (Faraday law:          

         
   ). The frequency of the incident wave was set equal to    Hz. After spreading 250 

nodes uniformly along   , we got the result illustrated by Figs.4.7 and 4.8, which show a 

comparison between the numerical and analytical results for the surface current density modulus 

(amplitude) and phase. The expression for the analytic solution is [Balanis, 1989]: 

                             
   

     
    

    

  
       

   

    

                               

In order to verify the convergence of the method, we defined the following norm to be used as a 

measure of the error between the numerical and analytical solutions: 

      
 

   
              

            
 
 
  

  

                                         

We run several cases, the number of nodes varying from 10 to 600. The numerical solution 

begins to converge when the number of nodes equals 100. Besides solving the problem through 

the aforementioned meshless technique, we have also solved the same problem numerically 

through the method of moments (MoM) with pulse expansion and impulse testing functions 

(point-matching). Figure 4.9 shows the error norm (4.145) for the meshless approach and for 

MoM as a function of  , where   is the distance between two consecutive nodes along the 

circular contour   .  
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Fig.4.7. The modulus of   . Comparison between the numerical and analytical solutions. 

 
Fig.4.8. Phase of    . Comparison between the numerical and analytical solutions. 

A linear regression applied to the rectilinear portion of the graph (abscissa between 0.8 and 1.1) 

shows that the convergence rates are approximately 3.07 for the meshless method and 2.66 for 

MoM. 

 

4.3 Meshless Analysis of Integral Equations. IMLS Shape functions. 

 
 The MLS shape functions did a nice job when solving the problem for a circular 

cylinder, but, could they also be applied to non-circular geometries? Depending on the shape of 

the scatterer cross-section, the answer is no. The reason is that sometimes we get  -matrices 

which are singular, what prevents them from being inverted (Chapter 3). Consequently, the 

shape functions calculated at a given point cannot be found. This phenomenon occurs for 

scatterers whose cross-section possesses a flat side, like a square or a rectangle. Let us illustrate  
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Fig.4.9. Convergence of the error norm for the messless approach and for a MoM analysis employing pulse 

expansion functions and point-matching. 

what happens if one tries to construct MLS shape functions for a square, i.e., the PEC contour 

   is a square. 

Suppose we want to calculate the shape functions influencing a point    located in the midst of 

the upper face   . After spreading the nodes along   , we determine which of them extend 

their influence domains until   , i.e., we find the set          . The black box procedure for 

doing that relies on the matrices   and       (Section 3.1), repeated here for convenience: 

   
               

   
               

                                                            

       

         

         
    
         

                                                      

If we employ a linear basis                             
          , than a curious fact can 

be seen. As Fig.410 indicates, all nodes in           lies on the line   . So their  -coordinates 

are all equal to a given value, say,    . When we fill in the values for the matrix   (4.146), 

we see that all elements in the first column are equal to   as expected, and also that all elements 

in third column are equal to  . Consequently,   has two constant columns (the first, whose 

elements are 1 and the third). As the third column is a multiple of the first,   has two linearly 

dependent columns. The matrix   is given by (Section 3.1) 

                                                                                  

Because   is diagonal (3.46), the product (4.148) has two linearly dependent columns as well. 

Therefore,   is singular. 
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Fig.4.10. All nodes influencing    (inside the dashed circle) have the same  -coordinate. A particular nodal 

configuration such as this one leads to singular  -matrices in the traditional MLS procedure. 

One way to solve that is to make the nodal influence domains bigger than the side of the 

rectangle, in order to assure that inside this domain there will be points distributed along two 

adjacent sides, i.e., whatever the point    may be, the set           will always have nodes from 

more than one side of the square. By doing this, both   and   will vary,   will no longer have 

two linearly dependent columns and   shall not be singular. But this does not seem to be a 

reasonable approach: one sees that as the influence domains become larger, the local perspective 

of the method is destroyed. 

 

In order to deal with this situation, we decided to try another method for constructing MLS 

shape functions, called Improved Moving Least Squares (IMLS) approximation. At the time 

when this part of the work was carried out, the only paper addressing this technique we had 

access to was [Peng and Cheng, 2009]. The main characteristic of IMLS is that inversions of 

matrices are not necessary for calculating the shape functions. Hence, they can always be 

obtained, regardless of the geometry of the problem. 

 

The IMLS shape functions are calculated as follows. Given a point    in   , we find          . 

Now comes the novelty: the basis   is no more given by           , but it is calculated 

recursively. Suppose any two functions defined for all    in   ,       and      . The first step is 

to define a kind of inner product between these functions: 

        

 

   

 
        

  
                                                            

The index   runs from 1 to the number   of nodes in           (they are not the global indices, 

as explained in section 3.1), and   is the window function. In the IMLS, it is required that the 

terms of the basis   be orthogonal to each other, only at the nodal points. The orthogonality 

condition is assured through the property              : 

           
        

  
                 

      
      

 
 

   

                            

Bearing in mind the orthogonality at the nodal points, one forms the basis   by requiring its first 

term to be equal to the unity everywhere, i.e. 
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Fig.4.11. Non-circular cross sections (      ). 

                                                                                       

 

The next terms are formed recursively: 

             
         

       
                 

   

   

                                 

where   is the radial distance from the given point    (i.e.,         ). If we go through the 

same process involving matrices      ,      ,   and       (expressions 3.45, 3.46, 3.47, 3.54, 

3.55 and 3.58 from Chapter 3), working out the product of the matrix elements  (in the same 

way as done in Chapter 3) and recalling the orthogonality conditions (4.150), the following 

linear system is obtained: 

 
         

   
         

  
      

 
      

   
      

 
      

                                        

This system, when solved for   gives: 

 
      

 
      

  

 
 
 
 
 

 

       
  

   

  
 

        
 
 
 
 

 
      

 
      

                                        

Calling this new matrix        and as                         , we have for the coefficients 
 : 

                                                                                

which is an expression analogous to (3.59), but requires no matrix inversion. Once the inner 

products are always positive and different from zero,    is always nonsingular, thus providing 

correct values for the coefficients  . Expression (4.155) above is then substituted back in (3.63), 

and a comparison with (3.61) makes explicit the expression for the shape functions: 
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In order to verify the feasibility of the IMLS method, we applied it to two cross-sectional 

geometries that could be “pathological” from the viewpoint of the MLS method, i.e., scatterers 

with flat sides (Fig.4.11). The parameter   was set equal to     , where   is the wavelength. 

These problems illustrate the scattering of a TM
z
 plane wave of unit amplitude propagating in 

the direction   (     ). As these problems are not electrically large, only the EFIE suffices for 

their solution [solution provided by the system (4.130)]. 

The results of Figs.4.12 and 4.13 show that the meshless approach via IMLS shape functions 

provides reasonable results when compared to MoM, as long as the points of interest lie far 

away from the edges, where theoretically predicted singularities in the surface current density 

occur. We found that the IMLS shape functions go through strong peaks near the edges, thus 

providing very poor results there.  

 
Fig.4.12. Normalized current density amplitude (    

 ) along the perimeter section ABCD of Fig. 11a. 

 
Fig.4.13. Normalized current density amplitude (    

 ) along the perimeter section ABCDEF of Fig. 11b. 

Commentary: This IMLS approach has not worked very well in the analyzed situations. 

Although the  -matrices are not singular, which allows the meshless analysis to be extended to 

cases involving flat-side scatterers, the peaks exhibited seem to jeopardize the precision of the 

solution near the edges. It is known that the solutions really blow up there, but even so, there is 

a feeling that things could have been better. We expect to find out reasons behind this behavior 
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in the future. By now, we can only speculate. In [Peng and Cheng, 2009], the IMLS procedure 

was applied to “full” two-dimensional problems, i.e., problems stated in a region  , and it 

seems that everything has gone on accordingly. However, in the cases we are studying, we have 

to restrict the nodal distribution to the contour    only. Maybe using that machinery of inner 

products defined for two degrees of freedom (coordinates   and  ), whereas the curve    can 

be adequately described by only one degree of freedom (a parameter  ), is what influenced the 

results in a negative way. In thinking about this, we soon came to realize that it really looks silly 

to employ the information provided by both coordinates   and   in the numerical construction 

of the shape functions. We have found that if the process is based on the parameter   (used to 

describe the points of   ) rather than relying on points         , the problems regarding the 

singular  -matrices and the oscillations both vanish. In the next section we exploit a new and 

much simpler way to deal with the kind of problem we are trying to solve. It is so simple that it 

looks rather childish. 

 

4.4 Meshless Analysis of Integral Equations. The “rubber band” 

technique. 

 
The method for constructing MLS shape functions which is going to be described is 

based in two steps: 

 Construct periodic MLS shape functions in a one-dimensional interval  ; 

 Take this interval as if it were a rubber band (or a kind of belt) and stretch it along the 

desired contour   . 

 

This method had its origin in our struggle to answer the question: How do we construct 

consistent MLS shape functions for two-dimensional problems whose nodes exist along a 

contour    only? Probably it will not be found in textbooks or papers dealing with meshless 

methods, because it was tailored for a specific situation (discretization of integral equations 

through meshless shape functions). Let us examine the details, as we show the application of 

this technique to the analysis of the TM
z
 scattering by an object whose contour is indicated in 

Fig.4.11b. 

 

The parameter   describing    ranges from 0 to  , where   is the perimeter (total length) of the 

curve    (equal to     for this case): 

                                                                             

(Remember,     and     amount to the same physical location, and therefore the equality is 

excluded. We must take     instead of    ). We now must construct MLS shape functions 

on this one-dimensional interval  . However, if we apply the traditional MLS procedure, we get 

shape functions like those depicted in Fig.3.5 of Chapter 3, i.e., functions that are not periodic in 

 . This most important step on deriving periodic MLS shape functions is addressed now. Let the 

basis   be composed of periodic functions in  : 
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This basis is periodic in the sense that          . We found that the periodicity of the basis 

is not sufficient to yield periodic shape functions in  . In the traditional MLS procedure, the 

distance between a point   and a node   in    is given by       . We modified this by 

considering also the complementary distance          and by taking the smallest of them: 

                                                                                   

Figure 4.14 illustrates what (4.159) above means. The node   is located close to the beginning of 

the interval (i.e.,    ), whereas the point   lies by the end of   (i.e.,    ). In the traditional 

MLS approach, the shape function    associated to node   (at   ) would not be able to influence 

point  , because it is too far away. But it should, because the points   and    are physically close 

to each other! Remember, the points     and     amount to the same physical point. The 

traditional MLS shape function    “die” at    . It does not “extend its leg” until point   

because this point does not belong to node  ’s influence domain. Here one can see the 

fundamental role played by the complementary distance. When it is considered, the point   is 

now considered to be an element of   , and node   is now able to extend its influence until point 

  (through the other way around).  

 
Fig.4.14. A node located at    is unable to extend its influence domain    until the point  . But it should, because they 

are physically close to each other. When an expression that takes the complementary distance into account is 

employed in the numerical calculation of the shape functions, this problem is solved. The influence domain    now 

includes point   (the portion of the interval denoted by the dashed line has now been incorporated in   ). 

The result of implementing both modifications (4.158) and (4.159) in the MLS numerical 

procedure is found in Fig.4.15. 

Because the interval   is nothing more than a piece of a straight line, pathological shape 

functions will never appear. This is the simplest kind of interval, and one must be sure that 

singular  -matrices and oscillations are unlikely to occur (as long as only well behaved 

functions are incorporated into the basis  ). The fact that the shape functions assume negative 

values is probably due to the inclusion of trigonometric terms in the basis   (4.158). 

Observation: The inclusion of trigonometric terms in the basis has been motivated by the 

earlier work on the scattering by a circular cylinder. However, the periodicity there was assured 

because we used two parameters (values for   and  ) and Euclidean distance in the calculation 

of the shape functions. Therefore, a point close to the endpoint (   ) would be automatically 

influenced by a node close to the origin (   ). The situation is quite different here, as the 

shape functions relies on a single parameter (value for  ). The periodicity must be enforced 

through the inclusion of the complementary distance. 

Once the periodic shape functions are constructed, we must map each point   in the interval to a 

point in the contour   . There is a map   
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Fig.4.15. A set 10 shape functions constructed via the rubber band technique. For the scatterer of Fig.4.11b, the 

parameter   ranges from 0 to    , where       . The simulation employed waves of frequency    Hz, which 

amounts to       meter, and therefore          meter. Because the scatterer is symmetric with respect to the a 

horizontal line     (Fig.4.11b), only a half of the problem was shown in Fig.4.13 (which explains            , 

the final abscissa there). 

that relates a parameter   to a point    in   , or: 

                                                                             

The action of the map is quite like if the shape functions were built in a rubber band, which is 

stretched and wrapped around the contour   . Hence the name we decided to call this 

technique. Because the stretchings occur only in the horizontal direction, and never in the 

vertical one, the amplitudes of the shape functions are preserved. So they will never assume 

high values (towards infinity), maintaining their original range of values. Another useful 

comparison that conveys the same idea is this: we construct the shape functions along a belt (the 

interval  , whose length is  ) which a person then wears around his waist (the contour   ). The 

whole procedure is summarized as follows: 

 Define an interval   ranging from 0 to   (total length of   ); 

 Spread nodes along   (at points   ); 

 Incorporate (4.158) and (4.159) into the MLS procedure and construct the periodic shape 

functions in the interval   first; 

 Trough the map  , associate each value of the parameter   to a point in the perimeter of the 

scatterer cross-section (  ).  

So to each point   , there is an associated parameter   which by its turn is associated to a set of 

influencing nodes          (nodes whose shape functions extend their influence until  ). Once 

we are done with this process, we discretize the EFIE in the usual way. The result is seen in 

Fig.4.16 below, where the peaks from Fig.4.13 have disappeared. 
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Fig.4.16. The scattering of a plane wave by the object depicted in Fig.4.11b. The problem has been solved through 

shape functions numerically constructed through the rubber-band technique.  

Concluding Remarks 

This is all we have done concerning the analysis of the scattering integral equations 

through meshless shape functions. Despite of its experimental character, much was learned. We 

now move on and delve into an authentic meshless method, the Meshless Local Petrov-Galerkin 

method. As this chapter is a little bit disconnected from the main theme of this work, i.e., the 

solution of differential equations, our table describing the overall procedures is left unchanged. 

 

THE MESHLESS PROCEDURE IN A NUTSHELL 

Given a differential equation and a domain where it shall be solved: 

First Step Set up the domain   and its boundary   . 

Second Step Spread   nodes throughout the domain   and at its boundary    as 

well. 

Third Step  To each node  , define the radius of its influence domain   ; 

 Make sure the influence domains cover the computational domain 

entirely. 

Fourth Step Numerical construction of the shape functions. 

 

 

 

 

 



70 
 

Chapter 5 

The Meshless Local Petrov-Galerkin (MLPG) Method 

in Electromagnetic Wave Scattering 

 

HE Meshless Local Petrov-Galerkin Method (MLPG, from now on), is a true meshless 

method aimed at solving partial differential equations. It shares some resemblances with 

FEM, as both deal with weak forms (i.e., the original PDE of a given order is restated as an 

integral expression involving lower-order derivatives) and sparse stiffness matrices. In this 

work, and particularly in this chapter, we are going to study second-order PDE’s, stated at two-

dimensional regions   (also called the computational domain). The problems are “fully” two-

dimensional, meaning that nodes are spread throughout the region   and along its boundary    

as well (Differently from the last chapter, where we had considered nodes along    only!). 

The MLPG is based in a differential approach (like FEM), rather than an integral approach (as 

developed in the last chapter). This means that we begin to work with the differential equation 

and, after converting it quickly to a weak form, we are ready to perform the numerical 

integrations and assemble the global matrix. When it comes to be used in the study of 

electromagnetic wave scattering (the subject of this work), the most striking difference is that all 

that lengthy development of integral equations dealing with potential vectors, equivalent 

sources and Hankel functions is utterly unnecessary. Either for simple problems like the 

scattering by a single dielectric cylinder or for more complex situations involving scattering by 

dozens of objects, the formulation of the problem remains the same.  

Electromagnetic wave propagation and scattering are modeled by Helmholtz differential 

equation, a second order PDE which is derived from Maxwell’s equations. In the kind of 

problems we are concerned with, the scatterers are no longer PEC materials, but dielectric ones. 

We also are not going to deal with magnetic materials, what is not an oversimplification, 

because the mathematical form of a problem describing the scattering of the electric fields by 

dielectric materials and that of a problem describing the scattering of magnetic fields by 

magnetic materials are similar. They are dual problems. Difficulties arise when there are 

“mixed” situations, like the scattering of magnetic fields by dielectric materials or their dual 

counterpart (electric fields and magnetic materials). We address this delicate situation, which 

translates in the form of certain interface conditions that the fields must satisfy, by the end of 

this chapter. Let us now take a quick look at Helmholtz equations. 

 

5.1 Helmholtz Equations 

Considering again only temporal variations of the type     , Maxwell’s equations 

become: 

                                                                                     

                                                                                              

T 
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Since we are dealing with isotropic materials, the constitutive equations become 

                                                                                              

                                                                                              

In these studies, there are no role to be played neither by the charge density   nor by the relative 

permeability   . Therefore, we make     and     . In addition to this, the problems we are 

going to solve also do not take into account any real current density   . However, we leave this 

term in (5.2) just to illustrate the application of MLPG to situations involving sources (Section 

5.5). The    in (5.5) is the relative dielectric permittivity, and it is assumed to be 1 at any point 

   in the free space. Our new set of equations is 

                                                                                         

                                                                                                    

                                                                            

                                                                           

Applying the curl operator (  ) to both sides of (5.7) we get (omitting the dependency on    by 

now): 

                                                                          

Substituting (5.8) for        we arrive at 

                                                                         

Because of the vector identity                      and of (5.9), we can rewrite (5.12) as 

                    . In the TM
z
 polarization (field components given by   ,    and   ), our 

quantity of interest is   . Therefore we have the scalar Helmholtz equation for the electric field: 

                                                                           

The TE
z
 polarization (field components   ,    and   ) are treated best when there is a single 

scalar equation for   . As    is a nonzero function, we rewrite (5.8) as 

 

  
       

 

  
                                                                            

Taking the curl from both sides: 
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Substituting (5.7) for      : 

   
 

  
           

 

  
                                                                       

We have 

   
 

  
         

 
 

 
 

  
 
 

  

   

  
  

 

  
 
 

  

   

  
 
   

 
 

    
 

  
    

                      

and  

        
 
 
  

                                                                           

If we allow the current    to have only components    and    [in the case of a component    ever 

appears, then it gives origin to a TM
z
 field and therefore are treated through (5.13)], the term 

          has only a  -component. Therefore, equating the  -components of (5.16) we arrive 

at the scalar Helmholtz equation for the magnetic field: 

   
 

  
               

 

  
                                                   

However, in the subsequent problems, there we will never assume any current    for the TE
z
 

polarization, and then (5.19) above amounts to 

   
 

  
                                                                              

It is worthwhile to note that Helmholtz equations for both polarizations can be written as 

   
 

     
                                                                       

For TM
z
 polarization,   is the  -component of the electric field   ,   is the relative magnetic 

permeability    (equal to 1 everywhere) and   is the relative electric permittivity   . For TE
z
 

polarization,   is the z-component of the magnetic field   ,   is the relative electric permittivity 

   and   is the relative magnetic permeability    (equal to 1 everywhere). In both cases,   is the 

free-space wavenumber (      ,   is the free-space wavelength), and   is the source term. 

 

5.2 General Features of MLPG 

Our domain of interest is represented by a two-dimensional region   along with its 

boundary   . Differently from what was developed in the last chapter, the contour of the 

scatterer does not coincide with   . In the majority of cases, the scatterer will be located 

entirely within  . Given this region  , what really indicates if a point    is inside a scatterer   is 
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the value of the relative permittivity    calculated at   . Usually, the scatterers are immersed in a 

medium whose properties resemble those of the free space (at least in this work). So we can say 

that: 

                                                                             

i.e., if         , then the point    is located in the interior of a scatterer. Another way of 

looking at (5.22) above is that a scatterer   is a set of points in the domain whose permittivity is 

different from 1. In (22),        . 

After we define our domain  , with different regions standing for the scatterer   (Fig. 5.1), the 

next step is to spread nodes throughout the computational domain. 

 
Fig.5.1. The computational domain   and the global boundary   . The scatterer is represented by the region  , 

whose boundary is   . 

Figure 5.2 illustrates a nodal distribution. If we spread   nodes throughout   , we take indices 

from the set of integers 

                                                                              

and associate a node to each one of them 

                                                                           

 
Fig.5.2 A nodal distribution set up in the domain of Fig.5.1. 
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According to what has been said earlier, to each node   we define an MLS influence domain    

(with radius   ): 

                                                                             

which is the support of node  ’s shape function   . Besides that, the union of all influence 

domains    must cover the computational domain   entirely, i.e., given the family   of 

influence domains  

                                                                 

then 

         

   

                                                           

A particular feature of MLPG is that this method employs two kinds of domains. In addition to 

the influence domains  , there are the test domains, also called sub-domains, and represented by 

 . To each node  , we associate a test domain   , i.e., there is also a family   of test domains 

                                                                

The test domains, unlike the influence domains, do not necessarily cover the whole 

computational domain   . The reasons for that shall be explained later. The purpose of 

introducing test domains is that they are the field upon which another different function acts, 

called the test function   .  

The Helmholtz equation (5.21) holds everywhere in  : 

             
 

     
                                                         

In order to solve (5.29), we convert it from a second-order differential equation which holds 

everywhere in   to a set of   integral expressions holding in each one of the test domains   . 

These integral expressions are known as weak forms. We get a weak form for the test domain    

by first multiplying (5.29) by the test function    and integrating over   : 

                
 

     
                                

    

                

The function       is expanded in shape functions as  

             

           
 

                                                               

After that, from the interplay of indices   and  , we get a linear system whose matrix (stiffness 

matrix) is sparse, which can be readily solved. In essence, this is the MLPG method. Let us now 

take a closer look at the details of how such a task is accomplished. 
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In the version of MLPG employed in this work, the test domains are required to be circles (two-

dimensional problems) or spheres (three-dimensional problems): 

                                                                                   

The radii   of the test domains usually differ from each other. They are not constrained to be all 

equal or to assume the same value as the radii of the influence domains. So each node   has an 

associated influence domain (  , radius   ) and an associated test domain (  , radius   ). 

According to Chapter 2, the influence domain is related to a kind of “charge” a node has and 

whose combined influences are used to calculate the function of interest ( ). The test domain 

can also be related to some sort of “charge”, which produces a field (described by the test 

function) that by its turn is not used to approximate anything. It is a kind of field entirely 

particular to the node, whose sole purpose is to restrict the differential equation to a region 

around the node only. It is because of this particularity that the test domains can overlap with 

each other. For two neighbor nodes   and  : 

                                                                             

The meaning of (5.33) is expressed in Fig. 5.3. 

 

Fig.5.3 Node  ’s test domain    has a radius   , whereas    has a radius   . If       is greater than the distance 

between the nodes              , then the test domains overlap with each other. Just imagine tracing two circles in 

the figure above. Take a compass, place its needle at the point     and trace a circumference with radius   . Do the 

same with point     and radius   . The two resulting circles will clearly overlap. 

This is in stark contrast with FEM, where the integrations of the weak forms are traditionally 

carried out in non-overlapping elements, i.e., triangles (two-dimensional problems) and 

tetrahedrons (three-dimensional problems).  

As we said earlier, in each test domain    subsists a test function   . There is a lot of freedom in 

what test function one can choose [Atluri and Shen, 2002]. In this work, we decided to use the 

solution to Green’s problem for the Laplace’s equation as the test function. In addition to this, 

we also require the test function    to vanish at the test domain boundary    . Our test function 

is then characterized by 

                 
                                                                       

and 
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The reason for such a choice is that if the medium is homogeneous in respect to the parameter 

      in (5.21) (like what happens for the relative permittivity    in the TM
z
 scattering), the 

resulting weak form (5.30) can be simplified. The solution to (5.34) and (5.35) is 

       
 

  
   

  

        
                                                               

for two-dimensional problems and 

       
 

  
 

 

        
 

 

  
                                                            

for three-dimensional problems. When the test functions (5.36) or (5.37) are employed, the 

method we are studying is referred to as MLPG4 or Local Boundary Integral Equation Method 

(LBIE) [Atluri and Shen, 2002]. 

 

So, given a domain  , the first steps of MLPG4 are: 

 Spread nodes throughout   ; 

 To each node  , associate an influence domain    with radius   ; 

 Make sure that the “no-hole” condition is satisfied 

      

   

 

 Construct a shape function (MLS) associated to each node   (whose compact support is   ); 

 To each node, associate a test domain    with radius   ; 

 Define a test function    acting on   . 

Having defined the basic steps, lets us move on and take a look at how MLPG4 is actually 

employed in electromagnetic wave scattering problems. 

 

5.3 Intersecting test domains and Radiation Boundary Conditions (RBC) 

 
We are interested here in the problem of the TM

z
 scattering of an incoming wave by a 

dielectric cylinder whose arbitrary cross-section is represented by  . For reasons that shall 

become clearer as our discussion evolves, the dielectric is surrounded by a circular boundary, as 

depicted in Fig.5.4. The bulk of the computational domain   includes both regions where the 

relative permittivity is equal to 1 (free space) and where it assumes other values (inside the 

scatterer). The equation describing the problem is 
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Fig.5.4 The dielectric scatterer   is located inside the computational domain  . The TMz incident wave comes from 

the left. 

(as there are no current whatsoever in   ). After all steps discussed hitherto have been completed 

(nodes, domains, influence and test functions), we now derive the weak forms for (5.38). For 

the sake of generality, let us study here the most difficult case, i.e., that of a node   whose test 

domain    intersects the global boundary   , as illustrated by Fig. 5.5. 

 
Fig.5.5. The problem domain   and the global boundary   . The irregular shaded area   is the scatterer cross-

section, characterized by a relative permittivity   . Node  ’s (located at    ) test domain    (the circle around    ) does 

not intersect   . The situation is different for node  , as its test domain intersects the global boundary.    is a circle 

centered in    . Because the region limited by the dashed curve is outside the computational domain, it is summarily 

excluded. So we are left with the task of finding the intersection between   and   . This new region where the weak 

form is imposed is limited by the curves       (blue) and       (red).  

The second Green’s identity for scalar fields is 
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If we substitute the electric field    for the function   and the test function    for the function   

we get: 

                                          

    

  
       

   

  
   

    

              
 

 

where the information concerning      came from (5.38) and that regarding      came from 

(5.34). According to Fig. 5.5, the integrations are to be performed at the intersection between 

the test domain    and the computational domain  : 

                                                                        

The factor   in (5.40) arises in the integration of the delta function. It is equal to 1 for every     

(location of node  ) inside the domain; however, if     is exactly at the global boundary  , then   

is proportional to the internal angle at     (for example, if     were located at the corner of a 

square,   would be    ; were it to be located at wedge with internal angle equal to   radians,   

would be     ). For a circular boundary,   is approximately equal to    . Because    is 

composed of two parts, we work out expression (5.40), which becomes 

                                       

    

  
       

   

  
  

          

         
    

 

    

    

  
       

   

  
  

          

 

The second line integral is zero, because it depends on    evaluated at a portion of     (5.35). 

So we obtain: 

                                       

    

  
  

     

                                           
    

 

    

    

  
       

   

  
  

          

 

Because the last two line integrals are evaluated at a portion of the global boundary   ,    and 

       are respectively the Dirichlet and Neumann conditions prescribed at the global 

boundary    (if they were known). So we get  

                                       

    

  
  

     

                                             
    

 

    
     

    

  
      

     

   

  
   

This is the weak form that each node   in the problem gives rise to. If   happens to be an interior 

node whose test domain does not intersect    (like     in Fig. 5.5), there is no integration along 

the global boundary, and therefore the terms which depend on    are discarded. 

As it can be seen, in (5.44) there is no information about the incident field   
   . Besides that, 

there is no information about the boundary conditions that must be imposed on   . A kind of 
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radiation boundary condition (RBC) has to be employed in order to provide this missing 

information. 

RBC’s are imposed in a contour located a certain distance away from the scatterer. In Fig.5.5, 

the irregular shaded area represents the cross-section   of the scatterer, which is composed of a 

dielectric material with relative permittivity   . The circular line corresponding to the global 

boundary    is the contour along which the RBC shall be imposed. It is seen that the global 

boundary comprises a certain space of the exterior medium (  ) surrounding the scatterer. 

This type of boundary conditions is needed because the formulation based on Helmholtz 

differential equation only is not able to distinguish between outward-looking and inward- 

looking solutions. Strictly speaking, when a scattering problem is solved through (5.38), there is 

no means to distinguish between the two linearly independent solutions which represent waves 

coming onto the scatterer (like those represented by the zero-order Hankel functions of the first 

type in analytical solutions,   
   

) and going away from the scatterer (represented by Hankel 

functions of the second type,   
   
). In other words, RBC’s simulate the Sommerfeld boundary 

conditions: 

   
   

   
 

  
      

                                                                     

where   
  is the scattered field. 

As discussed in [Peterson et al., 1998], RBC’s can be exact, i.e., they simulate (5.45) exactly in 

a finite radius. But this approach is nonlocal; i.e., the normal derivative of the field at one point 

of the global boundary depends on an integral of the tangential field along the whole boundary. 

When exact RBC’s are imposed at a finite distance, the aforementioned integral leads to fully 

populated matrices, thus making no sense in using them. To overcome this problem, a number 

of approximate RBC’s were developed in the past. One of them is the second-order Bayliss-

Turkel RBC, suited for circular global boundaries. The Bayliss-Turkel conditions are obtained 

from an asymptotic expansion of the scattered field   
  [Peterson et al., 1998]. Using polar 

coordinates       to locate a point at the global boundary   , they are 

   
 

  
 

   
 

  
        

        
    

 

   
                                              

where the coefficients    and    are given in terms of the finite boundary radius: 

      
    

 
   

  
    

  
 

  

                                                           

and 

      

  
    

  
 

  

                                                                   

Adding the term    
       at both sides of (5.46):  
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Noting that    is the sum of the incident and scattered fields (i.e.,      
      

 ), adding and 

subtracting the following term at the right side 

       
          

    
   

   
                                                   

there follows 

   

  
              

    

   
     

                                           

where     
     is a function of the incident field: 

    
     

   
   

  
        

         
    

   

   
                                    

Substituting (5.51) in (5.44) we get 

                                       

    

  
  

     

                                     
    

 

   
     

    

  
      

     

              
    

   
     

        

This expression can be further simplified; the second derivative with respect to   can be 

replaced by a simpler term. As the line integral in which it figures is evaluated along a portion 

of the global boundary where the radius   is a constant, all terms are functions of the   solely. 

After some manipulations, which involve integration by parts, and reorganizing (5.54), we get 

the final expression: 

                                      

    

  
  

     

                                                
    

 

     

    

  
          

   

  

   

  
 

     

        
        

     

 

If the incident field is a plane wave coming from the left: 

  
                 

                                                   

expression (5.52) becomes: 

    
                           

                                  

In order to discretize the weak form (5.54), we express the electric field    as a weighted sum of 

shape functions: 
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If we number the nodes differently (as explained in Section 3.1): 

                              

 

   
 

                                                             

where the index   now runs from 1 to   (the number of nodes in          ). After inserting 

(5.58) in (5.54) we get 

                                        

    

  
  

         

 

 

   

                                  

       

    

  
          

   

  

   

  
 

     

   

 

   

         
        

     

 

The form of the final linear system has now become apparent. It is 

                                                                                        

where the elements of the stiffness matrix   are 

                                  

    

  
  

         

                                                   

     

    

  
          

   

  

   

  
 

     

   

and the components of the source vector   are 

        
        

     

                                                               

Observation #1: According to (5.36), the test functions    are characterized by a singularity at 

      . So care must be taken when performing the numerical integrations. One must make sure 

that none of the points used in the Gaussian integration coincides with    . 

Observation #2: The derivatives of the shape functions with respect to the polar angle that 

describes the global boundary    are actually quite easy to calculate. Remember that the MLS 

procedure is a black box that returns the values of the shape functions and of their derivatives at 

any point we specify (Section 3.1). So for a point    in   , we are given the values for        

and       . We also know that for a point    in the global boundary, it is represented by the 

vector                          where   is the radius of   . The derivative we are 

looking for can actually be retrieved from the chain rule for differentiation: 
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Observation #3: The element located at the  th row and at the  th column is given by (5.61). It 

can be seen that the integrations are carried out at the test domain (and at its boundary) 

associated to node  . If the shape function    is unable to influence any point in   , then     will 

be zero. Hence  

                                                                              

i.e., whenever the intersection between the test domain    and the influence domain    is the 

null set, the element     will be zero. Therefore, the matrix   will be sparse, as the influence 

domains    associated to nodes located far away from node   are unable to extend their 

influence domains until any point in   . Figure 5.6 below illustrates the intersection between    

and   . 

 
Fig.5.6 Two nodes   and   in the computational domain  . Node   is able to act on node  ’s test domain, because 

     . The element     of the stiffness matrix is calculated taking into account the interaction between nodes   and 

 . When evaluating the integrals numerically, Gaussian points are spread throughout the test domain    (red points). 

The integrals are then approximated by sums of expressions calculated at these points. Node  ’s shape function    is 

able to influence some of them (because they are located inside the influence domain   ). Were node   located further 

away from node   in such a way that        , then obviously      . Thus the fact that matrix   is sparse 

becomes evident. 

Once the nodal parameters are found, the total field    can be calculated everywhere in the 

domain through application of (5.57). To verify the precision of the method, we have applied it 

to the scattering analysis of a plane wave by a dielectric circular cylinder, a problem which is 

known to possess analytical solution [Balanis, 1989]. The global boundary is a circumference 

located at a distance 1.5 times greater than the cylinder radius. The results we have got are very 

precise, which can still be improved by adding more nodes or refining the numerical integration 

schemes. Figures 5.7 and 5.8 show the amplitude and phase for the scattering of a unit plane 

wave by a circular dielectric cylinder of radius      and relative permittivity          

(complex permittivity, which simulates a lossy dielectric). The total electric field    has been 

calculated along the dashed line that passes through the center of the cylinder. Approximately 

300 nodes have been spread across the domain   (considering its boundary    as well). 
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Fig.5.7. Electric field calculated along the dashed line (modulus). Dimension   is normalized with respect to the 

cylinder radius. 

 

Fig.5.8. Electric field calculated along the dashed line (phase). Dimension   is normalized with respect to the cylinder 

radius. 

 

5.4 Intersecting test domains and Eigenfunction Expansions 

(Unimoment) 

 
When solving Helmholtz differential equation stated in a domain  , we found out that, 

in order to correctly simulate outward travelling waves, some sort of radiation boundary 

condition (RBC) had to be imposed on the global boundary   . The main point of concern is 

that the boundary    must be imposed at a certain distance away from the scatterer (object upon 

which the wave impinges). As a consequence, a region surrounding the scatterer must also be 
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taken into account when solving Helmholtz equation. The size of the problem therefore 

becomes larger. This issue also happens if someone tries to use the Finite Element Method 

(FEM) in this formulation. Figure 9 below illustrates what has just been said. 

 
Fig.5.9. The scatterer (shaded region) must be surrounded by a layer of air, what causes the global boundary    to be 

placed away from it.  

In Fig.5.9, the scatterer is represented by a shaded region. A circular contour    is placed away 

from the scatterer. The region in which the problem must be solved corresponds to all the 

interior of   , i.e., the domain  . The drawback with this formulation is that the radiation 

boundary conditions that simulate outward travelling waves are not exact, i.e., they are 

approximate. And, to make things worse, the further from the scatterer they are placed, the more 

precise they are. So if one wants accurate results, then one must place the boundary    far away 

from the scatterer. The question is that, as    is placed further and further away, the interior 

region   becomes larger and larger. In order to describe   appropriately, if MLPG is used, more 

nodes must be spread and the process must be carried out at a larger area. This is a waste of 

computational resources, because in problems of this sort, the electric (or magnetic field) close 

to the scatterer is what really matters. It seems to be no reason to calculate things that are not 

going to be used at all.  

Looking for another formulation for the scattering problem, we have found that a hybrid method 

could do well without relying on radiation boundary conditions. So we blended the meshless 

LBIE (MLPG4) with eigenfunction expansions in order to correctly describe outward travelling 

waves.  

The procedure that are going to be our object of study is a “meshless variant” of Unimoment 

method, which was devised by K. Mei [Chang and Mei, 1976] as a hybrid method intended to 

solve the scattering fields by dielectric bodies in unbounded domains. In two-dimensional 

analyses, the main idea is to set up a mathematical circle around the scatterer, thus splitting the 

problem into two regions: an interior and an exterior. The fields in the exterior region are 

expressed as a sum of Hankel functions, representing outward-travelling waves. The fields in 

the interior, by their turn, are given by a sum of solutions obtained through FEM. Once these 

interior solutions are formed, one imposes the continuity of the fields and of their normal 

derivatives along the mathematical circle, matching both problems at this boundary. The 

solutions of the interior and the exterior problems may then be expressed as sum of modal 

solutions, with Hankel functions in the exterior and numerical basis functions in the interior. 
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In the “meshless variant” of Unimoment method, instead of FEM, one uses the Meshless Local 

Petrov-Galerkin (MLPG) as a tool for calculating the numerical solutions to the interior 

problem. There are some advantages for doing this. Furthermore, the main feature of the hybrid 

method is that, as radiation boundary conditions are not imposed, the circle that divides the 

domain can be brought closer to the scatterer. 

Given a scatterer with its characteristic cross section (shaded region in Fig.5.9), we set up a 

circumference    surrounding it, thus dividing the space in two domains: the exterior (region I) 

and the interior (region II). The scatterer is to be entirely located inside region II, as in Fig.5.10.  

 

 
Fig.5.10. The circular boundary    divides the domain in two regions: exterior (I) and interior (II). Region I (light 

blue) is related to the free space (air) only. The approximation there is made through a sum of Hankel functions. 

Region II (light green) encompasses the scatterer   and a small layer of air around it. The approximation is expressed 

as a sum of numerical basis (modal) functions   . The solutions in both regions are to be matched in   . The shaded 

area represents the cylinder cross-section. 

For a TM
z
 incident wave, in which the electric field has only the  -component, we can write (in 

polar coordinates   and  ): 

 

 

  
         

           
                                                      

for the total field in region I, as a sum of the incident and scattered fields. The scattered field   
  

is expressed as an infinite sum of Hankel functions of the second type; but only those whose 

index vary from –  to   will be taken into account: 

  
            

           

 

    

                                                    

where the coefficients    remain to be evaluated. The wavenumber         is related to the 

exterior medium. The total field in region II is expressed by a sum of numerical basis functions: 
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where    are coefficients to be determined and    are the numerical basis functions, or ‘modal 

solutions’. 

 

The next step is to impose the continuity of the total field along both sides of the mathematical 

boundary   . Supposing this boundary to be located at a radius    , we arrive at two 

conditions: 

                       
          

        
                                                              

                 
   

       

  
 

   
     

  
 

   
      

  
                                                   

From the above expressions one sees that the infinite sum was replaced by a finite sum, with 

terms whose indices range from –  to  , and there are no clue about the form of the numerical 

solutions   . They will then assumed to be solutions to the homogeneous Helmholtz equation: 

                                                                                 

where the relative permittivity    can be a function of position,       . Now comes one of the 

main features of the method: for each  , the Helmholtz equation (5.70) shall be subject to a 

characteristic Dirichlet condition enforced at the boundary    (   ). A linearly independent 

set of Dirichlet conditions is set up, i.e., for each  , one chooses the associated condition from 

the set 

                                                                                

So, for a given  , taking (5.70) together with the associated Dirichlet condition      one finds 

the interior solution    throughout the interior domain (region II). After doing that for   ranging 

form –  to  , the whole set of ‘modal’ interior solutions is formed. The equations (5.68) and 

(5.69) are then taken into account; when they are finally solved, the coefficients    and    of the 

field expansions are determined. The total interior field is thus given by (5.67). 

 

In order to enforce (5.68) and (5.69) at the boundary    , we multiply these equations by a test 

function and integrate along the    (as the radius is constant, it boils down to an integration in 

the polar angle  ). Taking the test function as      , where   ranges from –  to  , keeping in 

mind that the numerical basis functions    vary as      at the boundary, and resorting to the 

identity 

                                
      
     

 
  

 

  

 

                         

we arrive at two expressions relating the coefficients    and   . After some manipulations, these 

expressions can be put in matrix form: 
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where each of the square submatrices   has the size       , and       and    are vectors 

whose size is also       . The total system therefore has the size       .       and    

are diagonal matrices. Their elements are given by 

                                                                                

            
   

                                                               

              
       

  
 

   

                                                 

   is a full matrix with elements: 

            

  
 
   

  

 

                                                           

The indices range from        and       . The vectors   and    have components: 

          
    

   

  

 

                                                                 

           
   

  
 
   

  

 

                                                                

The coefficients of the modal expansions (5.66) and (5.67) are given by the vectors    

           and              , solutions to (5.72). 

The procedure for solving Helmholtz equation (5.70) is the same as that one employed in the last 

section. The only difference is that Dirichlet boundary conditions are employed instead of 

radiation boundary conditions. After spreading the nodes throughout the computational domain, 

setting up the influence and test domains, and defining the shape and test functions, we take 

Green’s second identity (5.39) and substitute    for   and    for  , thus obtaining 

                                          

    

  
       

   

  
   

    

             
 

 

Illustrating again the most difficult case for a node whose test domain    intersects the global 

boundary   , i.e., letting the integration region   be defined by (5.41), restated here for 

convenience: 

                                                                          

Working out expression (5.81): 

                                      

    

  
       

   

  
  

          

        
    

 

    

    

  
       

   

  
  

          

 

The second line integral is zero, as it depends on    evaluated at a portion of     (5.35): 
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The term    (in the second line integral) actually stands for the Dirichlet condition on   . It is 

one of the elements from the set (5.71), namely,      . So, after rearranging the terms, the 

weak form (5.83) assumes its final form: 

                                      

    

  
       

   

  
  

          

            
    

 

        
    

  
  

     

 

Looking for a discretized version of (5.84), we express the modal solution    as a weighted 

sum of shape functions: 

                              

           
 

   
 

                                               

Numbering the nodes differently (as explained in Section 3.1): 

                              

 

   
 

   
 

                                                 

where the index   now runs from 1 to   (the number of nodes in          ). After inserting 

(5.86) in (5.84) we get 

                                       

    

  
       

   

  
  

              

 

 

   

   
 

  

        
    

  
  

     

                                                              

The form of the final linear system is readily retrieved: 

   
 

  
  

                                                                              

where the elements of the stiffness matrix  
 

 are given by 

    
 

                              

    

  
       

   

  
  

              

             

and the components of the vector  
 

 are 
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So in order to find the      modal solutions   , we need to apply the MLPG process      

times: 

              
 

     
  

                                                    

For each set of nodal parameters   
 

,    is calculated at a point    through (5.85). This is not a 

strong drawback as it could appear. If the nodal distributions are the same for all      

problems, the stiffness matrices  
 

 will all be equal to each other. Only the vectors  
 

 will 

undergo a change, as each one of them depends on a different Dirichlet condition. 

Observation #1: The normal derivative of the shape functions that appears in the last line 

integral of (5.89) is easily calculated for a circular boundary   . We can form the gradient     

through the derivatives in rectangular coordinates that have been given us through the black box 

procedure described in Chapter 3. The unit normal to    is                 . So what we 

are looking for is no more than a simple directional derivative: 

   

  
           

   

  
   

   

  
                                                  

In order to verify the precision of the method, we applied it to the analysis of the scattering of a 

plane wave by a dielectric circular cylinder, a problem which is known to possess analytical 

solution [Balanis, 1989]. The results obtained are shown in Figs.5.11 and 5.12, which show the 

amplitude and phase for the scattering of a TM
z
 plane wave of unit amplitude by a cylinder with 

radius      and relative permittivity     . Approximately 340 nodes have been spread over 

the domain   (although coarser results begin to appear when only 91 nodes are spread). 

Observation #2: The implementation of the meshless variant of the Unimoment method is the 

only time in this work where the RPIM-PR process for constructing the shape functions has 

been employed (details in [Liu, 2003]). 

 

 
Fig.5.11. Electric field calculated along the dashed line (modulus). Dimension   is normalized with respect to the 

cylinder radius. Figure taken from reference [7] (see page Chapter 1, page 5). 
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Fig.5.12. Electric field calculated along the dashed line (phase). Dimension   is normalized with respect to the 

cylinder radius. Figure taken from reference [7] (see page Chapter 1, page 5). 

 

5.5 The Collocation Method 

 
In the discussion of the MLPG exposed in the last two sections, we saw that the weak 

forms are integrated in a local domain around each node  : 

                                                                       

Although the method proved to be successful, no one could deny the extra difficulty provided 

by the task of finding the intersections between    and  . As the situations studied thus far these 

domains happened to be simple circles, the procedure employed to determine (5.93) was 

relatively easy. By just resorting to polar angle solved the issue.  

However, this problem gets serious when the computational domains have forms different from 

the circle. For example, if    were a square, than the region   for a node   situated close to    

would look like the figure depicted in Fig.5.13. 

It has now become clear how cumbersome this task would be. Furthermore, such a procedure 

would have to be performed for all nodes whose test domains intersect the global boundary   . 

As the boundary conditions come into the problem through the data specified on   , we must 

find a way to deal with these conditions without the boring procedures of finding intersections 

between    and  . 

The solution we have found to solve this issue is commonly used in FEM. It is called 

collocation method, and the boundary conditions are imposed at the nodes directly, without 

relying on weak forms. In order to implement this method, the test domains shall not cross the 

global boundary   .  
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Fig.5.13. If the computational domain    were a square, then for a node like that one depicted close to the upper left 

corner, the associated weak form would have to be integrated in the region   (yellow). However, there seems to be no 

advantage in dealing with integrations carried out in non-regular regions such as this one depicted here. Trying to 

solve this issue is the main motivation behind the collocation method. 

Although for a node   we usually took the same value for the radii of the influence and test 

domains (i.e.,      ), things must be different now: as the location of a node gets closer and 

closer to the global boundary   , its corresponding test domain is gradually diminished, until it 

eventually vanishes when the node is located exactly on   . The influence domains remain the 

same. This is so important in the implementation of the collocation method that it deserves to be 

stated as a proposition:  

Proposition 4.1 As the location of a node   gets closer and closer to the global boundary   , 

the radius    of its corresponding test domain    is gradually diminished, until it eventually 

vanishes when the node is located exactly on   . The influence domains    remain the same. 

The radius of the test domain   is calculated as 

                                                                                       

where    is the distance from the node   (located at    ) to the global boundary   . 

Figure 5.14 illustrates the meaning of this proposition. Node   is located relatively far from    

(     ), and the radii of its associated influence and test domains are equal (     ). Node   is 

closer to the global boundary (     ). Therefore, we choose      , i.e., the test domain    

just touches   . Node   lies exactly on the global boundary, and than     . So we choose 

    . Note that although the test domains of the nodes   and   had their test domains 

diminished, their influence domains remained unaltered, i.e., they are able to influence (through 

their associated shape functions    and   ) any point within the dashed circumferences. 
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Fig.5.14. Nodes  ,  ,   and their associated influence (  ,      ) and test domains (  ,      ). The influence 

domains of nodes   and   extend throughout the regions inside the dashed circumferences. 

Observation #1: To recapitulate, we scattered   nodes throughout our region of interest  . The 

indices vary from 1 to  : 

                                                                                

Each node   is located at a point     

                                                                              

and has an associated influence domain    (radius   ) 

                                                                                 

along with a test domain    (radius   ) 

                                                                                

We can then speak of a family   of   influence domains 

                                                                      

and of a family   of   test domains 

                                                                      

The test domains must cover the whole computational domain   ; it is a requirement that 
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In the method outlined in sections 4.2 and 4.3, as the influence and test domains had the same 

radii, then, by extension (5.101) above was satisfied by the family of test domains 

         

   

                                                                    

However, because in the collocation procedure the test domains are diminished and even 

disappear (reduce to a point for nodes lying on   ), (5.102) no longer remains true. Working 

out the symbols that appear in (5.102), it can be restated as 

                  

   

                                                                  

i.e., if    is a point of the set   , then it is a point of the set formed by the union of test domains 

from the family  . This means that there is at least one test domain    from the family   of 

which    is an element: 

                                                                                  

As this proposition does not hold true for the collocation method, it must be false: 

                                                                                   

From the equivalence relations between the negations of the universal and existential quantifiers 

  and  : 

                                                                                   

where   is a proposition that depends on the variable  , (5.105) can be rewritten as 

                                                                                  

From the equivalent expression of implication 

                                                                                  

where   is the disjunction (OR) connective. Moving the negation sign inside the parentheses, 

and recalling DeMorgan’s law (  is the conjunction (AND) connective) 

                                                                                 

Finally 

                                                                                  

Proposition (5.110) above means that, when using the collocation method, there could be a point 

   in the computational domain    for which there is not any test domain from the family   that 

contains   . This generally occurs for points that happen to be located close to the global  
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Fig.5.15. A domain   and some nodes scattered throughout it. The test domains associated to each node are 

represented by the circles (those of the interior nodes located farther to the right are not shown). When the collocation 

method is employed, some regions close to the global boundary    (light blue) remain outside of any test domain in 

the family  . The interior of the domain is entirely covered by the test domains, but points like    ,     and     are not. 

Despite the tiny regions uncovered by the test domains, the results we have got are actually quite precise.   

boundary. Figure 5.15 illustrates this. There it can be seen that there is no test domain including 

a points such as    ,     and    . As more and more nodes are added to the problem, the set of 

points that are outside any test domain gets smaller and smaller. 

The collocation method represents an advantage, rather than a drawback, because it releases the 

analyst from the tedious task of finding intersections between domains. The method we are 

illustrating in this section is actually a hybrid MLPG method. The MLPG4 employs test 

domains for all nodes and therefore has to deal with the issue of intersections. The MLPG2 uses 

collocation for all nodes, dismissing any kind of test domain [Atluri and Shen, 2002]. However, 

it is generally less precise than MLPG4. What we have done here was to use the good 

characteristics of both methods. In interior nodes, where its precision is better, we employed 

MLPG4. In the other hand, for nodes located on the global boundary, where MLPG4 ceases to 

be attractive, we resorted to MLPG2 (collocation scheme). 

We are again to deal with Helmholtz equation (5.29), restated for convenience: 

             
 

 
                                                              

In order to find the weak forms for (5.111), we take the weighted residual method instead of 

Green’s second identity. However, when dealing with the collocation scheme, only the nodes 

situated in the interior of   are considered (nodes whose test domains at most touch the global 

boundary). If there are   nodes, and if    are interior and    lie on    (such that       

 ) then 

                   
 

 
           

                                      
      

 

Applying the following vector identity (where   is a scalar function and    a vector function) 
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to the first term at the left side of (5.112), and then the two-dimensional version of the 

Divergence Theorem we arrive at  

                   
 

 
  

  

     

    
 

 
      

  

      
                          

    

 

Because the test function    vanishes at the boundary of the test domain     [according to 

(5.35)], the term involving the line integral is disregarded. The weak form then reads: 

                     
 

 
      

  

      
                                     

    

 

We already know how to discretize (5.115), i.e., we take 

                             

           
 

                                                   

Numbering the nodes differently (as explained in Section 3.1): 

                             

 

   
 

                                                                 

Substituting (5.117) in (5.115) 

               
 

 
       

  

      
        

  

 

 

   

                             
  

 

From (5.118), we can extract the form of the linear system: 

                                                                                      

where the elements of the matrix    are given by 

   
   

 

 
       

  

      
        

  

                                           

and the elements of the vector    are 

  
                                                                              

  

 

Because the points inside    (those used for the numerical integration) can be influenced by 

nodes from the interior of the domain and from those lying at the global boundary as well, any 

one of the   nodes can theoretically contribute to the integrals in (5.120) and (5.121) (of course 

that the contribution from the distant nodes would be zero). Therefore, each one of the 

expressions in (5.118) gives rise to a linear equation in   unknowns (the coefficients are listed 

in (5.120) and (5.121)). It does not take much effort to realize that the linear system (5.119) is 
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incomplete, i.e., it has    equations and         unknowns.    is a      matrix, and 

   is a      vector. The extra    relations come from the boundary nodes. 

The information concerning the boundary conditions at    comes into the problem through the 

boundary nodes. But, as we have just seen, these nodes are not assigned any kind of test 

domain. A simple scheme that requires no integration whatsoever is a meshless collocation 

scheme, based on the approximation described by (5.116). Let us suppose that a node   (the 

index   counts the number of boundary nodes, i.e.,       ) whose coordinates are 

           ),  lies at a portion of the global boundary    where the boundary conditions are 

(expressed in general form): 

                
      

  
                                                              

where the coefficients       and       are given functions of the position    along   , and       

is a known function of    . In (5.122) three types of boundary conditions are embedded: if 

Dirichlet conditions are assumed, then         and        ; otherwise, if Neumann 

conditions are assumed, then         and        . In treating Robin conditions,         

and        . Thence based on (5.116) and for each node   located at       , there follows: 

                                   
        

  
                                         

Expanding (5.123) we have    nodal equations: 

                          

            

        
        

  
    

            

                

where the global index   runs through all nodes whose influence domains include point    . In 

Fig.5.27 (page 110), there are 5 influencing nodes whose global indices are 2, 5, 21, 30 and   

(since the distance from node   to     is zero, the window function   centered at     is exactly 

1 at    ). The         is the shape function associated to the influencing node   evaluated at the 

point    ,             is the normal derivative of the shape function associated to node   

evaluated at    , and     is the nodal parameter associated to the influencing node   (unknown). 

This meshless collocation procedure renders the imposition of boundary conditions elegant and 

fairly simple; neither finding intersections between domains nor performing numerical 

integrations is necessary. 

As theoretically all nodes (from the interior and from the boundary as well) are able to extend 

their influence domain until    , each expression in (5.124) is actually a linear equation in   

unknowns. They can be written in a linear system as 

                                                                                  

The element in line   and column   (as long as             ) of the matrix    is given by 

the left side of (5.124). All other elements are zero. The  th component of the vector    is the 

right side of (5.124). 

Because the matrix    is     , and the vector    is     , the linear systems (5.119) and 

(5.125) can be assembled together into a     system: 
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From (5.126), the nodal parameters    are finally retrieved. Let us proceed and take a look at 

some worked examples. Just for the sake of developing further insight on the application of 

MLPG with the collocation method, the next three figures (Figs. 5.16, 5.17 and 5.18) illustrate, 

in this order: A circular computational domain    with some nodes, the same domain covered by 

the influence domains and    again packed with test domains associated to the nodes. 

 
Fig.5.16. The sequence of steps in the implementation of MLPG4 and the collocation method. First: The nodes are 

spread throughout the computational domain   and its boundary   . 

 

Fig.5.17. Second: The influence domains   are associated to each node so that they cover the domain    entirely (the 

‘no-hole’ condition). 

The first example deals with the task of finding the electric field    inside a cavity excited by a 

line of current, i.e., one is interested in Green’s problem: 
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Fig.5.18. Third: The family of test domains   ascribed to the nodes. They are arranged in such a way that they just 

touch the global boundary   , thus avoiding any kind of intersection. The boundary conditions are imposed through 

the collocation scheme, and the weak forms are ready to be enforced at the circular test domains. It is really far easier 

to perform numerical integrations in simple circles rather than in regions like that depicted in Fig.5.5. 

Equation (5.127) is to be solved inside a square region               where       and 

the condition      is imposed along the global boundary   . The current source (the Dirac 

delta function) is located at                  . A total of 1796 nodes have been spread 

across the computational domain, and each node influences, approximately, 16 other nodes. 

Figures 5.19 and 5.20 compare the analytical solution (Fig. 5.19) (which can be found in the 

chapter 5 of [Duffy, 2001]) to the numerical (Fig. 5.20) one provided by MLPG4/LBIE.  

 

Fig.5.19. Analytical solution to Green’s problem (5.127). The whole domain   is shown. 
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Fig.5.20. MLPG4/LBIE numerical solution to Green’s problem (5.127). The whole domain   is shown. 

The second problem addresses the TM
z
 scattering of a plane wave by a dielectric circular 

cylinder. The incident field is   
        , and the frequency is 1 GHz. The scatterer is 

modeled by circle   (boundary   ) of a given radius, within which the relative electric 

permittivity has a given value. In order to deal with scattered fields, a first order Bayliss-Turkel 

radiation boundary condition (RBC) [Jin, 1993] is imposed at a circumference placed away 

from the scatterer. As explained earlier, there is an air (or free space) layer between the scatterer 

surface    and the circumference where the RBC conditions are imposed, i.e., the global 

boundary    (   and    are concentric circumferences).   

Because we employ a first order RBC, the radius of    was chosen three times larger than the 

radius of the scatterer. According to (5.13), the function                everywhere, 

whereas            between    and   , and          within   . Besides that, the 

excitation term       (i.e., the current   ) is zero everywhere. The first order RBC employed is 

[Jin, 1993]: 

   
 

  
      

 

   
   

                                                          

where   
  is the scattered field and    is the radius of   . As we are interested in the total field 

  , we substitute      
    

  in (5.128) and thus find a boundary condition for   : 

   

  
      

 

   
      

   
 

  
      

 

   
   

                                  

A comparison with (5.122) then reveals that                ,        , and       

   
                   

 , which is a known expression, since the incident field   
  is given. 

We performed two simulations, in each one of which we compared the numerical results 

regarding the modulus and the phase of the electric field to the analytical solutions [Balanis, 

1989]. In simulation 1, the scatterer’s radius is       and its relative permittivity is      

  ; the total number of nodes spread across the computational domain is 189. In simulation 2, 

the scatterer’s radius is         and its relative permittivity is        , whereas the total  
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Fig.5.21. The electric field phasor (modulus). The abscissa   is measured along a horizontal line passing through the 

center of the cylinder. This value is then normalized to the cylinder radius   (i.e., normalized distance =    ). 

 

Fig.5.22. The electric field phasor (phase). The abscissa   is measured along a horizontal line passing through the 

center of the cylinder. This value is then normalized to the cylinder radius   (i.e., normalized distance =    ). 

number of nodes is 626. These simulations show good concordance when compared to the 

analytical solutions, as shown in Figures 5.21 and 5.22, which plot the solutions along a 

horizontal line passing through the center of the cylinder. 

 

The third problem deals with the flow of light down a photonic crystal. A two-dimensional 

photonic bandgap crystal is a periodic array of dielectric structures, the most remarkable 

property of which is that it is able to select what wavelengths can actually propagate through it. 

This phenomenon can be verified if one sketches the crystal’s dispersion curve, where it is seen 

that certain wavelengths inside an interval cannot propagate (there are no modes supporting 

these wavelengths). The ‘forbidden’ wavelengths form a bandgap, i.e., every incoming wave 

whose wavelength falls inside the bandgap is unable to propagate through the crystal. There is a 
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wide range of applications concerning these photonic bandgap crystals; details about the theory 

underlying them can be found in [Joannopoulos et al., 2008] and [Skorobogaty and Yang, 

2009]. 

Let it be a periodic array of dielectric circular rods, whose relative electric permittivity is    

 . The relative permittivity of the medium surrounding these rods is 1. Each of these rods has a 

radius  , here normalized to 1. Besides that, the distance between a rod and its neighbor is also 

 . (It should be kept in mind that this structure is three-dimensional; it is a collection of 

cylindrical dielectric rods placed side by side, forming a kind of ‘forest’ immersed in a medium 

where     . Because no magnitude depends upon  , we are concerned here only with the 

cross section of this structure.) Simulations show that a wave whose wavenumber    is 1 

(        ) falls within a bandgap, and then is unable to propagate along this structure 

[Tsukerman, 2005]. Now, given a photonic crystal and an incoming wave unable to propagate 

through it, if some rods are removed from the structure, forming a path, then this incoming 

wave will be able to propagate only within the ‘carved’ path. Thus the incoming wave (usually 

light) can be guided along a path through the crystal. 

The photonic crystal studied in this work has also been analyzed in [Tsukerman, 2005], which 

employed FEM and another technique (FLAME) in order to get the numerical results. Given a 

periodic structure, we removed some rods, forming a L-shaped path as it can be seen in Fig. 

5.23, which shows the whole computational domain  .  

 
Fig.5.23. The photonic crystal, with some removed rods, forming an L-shaped path. 

We have studied what happens to an incident TM
z
 plane wave   

        , where     , as it 

impinges upon this structure. The differential equation to be solved is (5.111), where       

     everywhere, and            outside the rods and            inside each rod. 

There is no current density (excitation term  ). According to [Tsukerman, 2005] and 

[Tsukerman, 2008], for bandgap operation and in order to eliminate errors due to imperfect 

absorbing boundary conditions, Dirichlet conditions corresponding to the incident field have 

been imposed on the whole global boundary (i.e.,           
              on   ). Figure 

5.24 shows the real part of the electric field along the dashed line in Fig. 5.23. The concordance 

between the results provided by LBIE/MLPG4 and FEM is excellent. However, according to  
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Fig.5.24. The real part of the electric field along the line    , (        ). 

 

[Tsukerman, 2005], while FEM uses more than 100 000 degrees of freedom (DoF) to attain this 

result (in addition to the task of setting up a mesh), our meshless method uses 2700 DoF (1 DoF 

per node).  

 

Figures 5.25 and 5.26 show the real and imaginary parts of the electric field across the whole 

computational domain, where the bending of the flow of light can be clearly observed. The 

incoming wave whose wavenumber      enters the crystal through the ‘carved’ path formed 

by the removed rods. Once there, the only way available for this wave is to follow this path until 

the end, as it cannot ‘leak’ into the bulk of the crystal, because in this region there are no 

conditions for propagation (the wavenumber      falls within a bandgap). Thus the photonic 

crystal herein described is able to bend the flow of light in 90º, in a completely lossless way (the 

dielectric rods do not absorb radiation, since they are lossless). There is a great concordance 

between Fig.5.26 and the figure 17 of [Tsukerman, 2005], both depicting the imaginary part of 

   throughout the computational domain.  

Through this example the MLPG4/LBIE has proven to be an efficient method. This problem 

actually deals with the scattering of a plane wave by dozen of objects. If the integral approach 

from chapter 3 had been employed here, we would have to find equivalent currents flowing at 

the boundary of each scatterer in Fig. 5.23. Needless to say that the amount of required work 

would be formidable.  

 

5.5.1 Interface conditions and the TE
z
 polarization 

Care must be taken when dealing with problems in which some material property 

[described by the function       in (5.111)] is discontinuous across an interface. This is so 

because the shape functions are smooth (i.e., the functions themselves and their derivatives are 

continuous). Shape functions inherit the order of continuity from the window function   (in this 
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work, a       function,   being the nodal influence domain). In electromagnetic wave 

scattering analysis,  

 

Fig.5.25. The MLPG4 numerical result for the electric field across the whole computational domain  : The real part. 

 

Fig.5.26. The MLPG4 numerical result for the electric field across the whole computational domain  : The 

imaginary part. It can be verified from the last two figures (this one and Fig.5.25) that the light propagates only 

within the path formed by the removed rods. 

when the unknown function   is the electric field    (TM
z
 polarization) and when there are no 

magnetic materials inside the domain   (               everywhere), one knows that    

must be continuous across the interface between two dielectric media (        
  at one side 

and         
  at the other side). This poses no problem when expressing the electric field as an 

expansion like (5.116) (  replaced by   ), because the shape functions are known to be smooth 

and thus able to reproduce the continuity of   . But there is a small issue when it comes to TE
z 
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polarization: the magnetic field    experiences a discontinuity in its normal derivative across 

the interface between two dielectric media: 

 

  
 

   
 

  
 

 

  
 

   
 

  
                                                                     

where   
  is the magnetic field at one side of the interface and   

  is the field at the other side. 

The function              (in (5.111), where   now represents   , as in (5.20)) is 

discontinuous across an interface, and there is not a direct way of inserting (5.130) at the 

governing equation (5.20). If one tries to solve (5.111) without giving this issue its due 

attention, only an approximate solution for    will be attained (i.e., smoother than the real one), 

since the shape functions used to represent the magnetic field are smooth, and thus unable to 

reproduce a discontinuity such as (5.130) by themselves. In order to deal with this issue 

concerning material discontinuities in TE
z 
polarization, we employ a technique described in [Li 

et al., 2003]. 

Let us assume that the problem in question is characterized by a relative permittivity    which is 

piecewise homogeneous: each sub-region   has a relative permittivity    
. In Fig. 5.27, there are 

two such sub-regions, each one with its value for the relative permittivity, separated by an 

interface  .  

 

Fig.5.27. A computational domain wherein there is a material discontinuity at the interface  , which divides   in two 

regions:    (green) and    (orange). A double layer of nodes is placed along  .    and    are dual nodes. The 

boundary     of test domain associated to node   just touches the interface  . The nodes inside its influence domain 

and located at the other side of   (inside the dashed portion of the larger circumference centered at  ) are not 

influenced by  . 

Nodes from one region do not influence the other, even if their influence domains extend over 

there (in Fig. 5.27, node P lies in region 2; so, nodes from region 1 lying inside the dashed curve 

are not influenced by this node, even if they are located theoretically within the influence 

domain of P). Moreover, the test domains assigned to interior nodes from one region just 

touches the interface   (interior circle associated to node P). Now, in addition to interior nodes 

and to boundary nodes, this situation demands a new kind of node: an interface node. Along the 

interface   a double layer of nodes is placed, i.e., nodes lying at the interface are doubled: each 
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interface node is actually considered equivalent to two nodes, one belonging to region 1 and the 

other to region 2. Each interface node has its dual; they are placed at exactly the same location, 

but are two distinct entities, to each one being assigned a nodal parameter and thus a row in the 

global stiffness matrix (Fig. 5.27, nodes    and   ). A restriction is then imposed: node    

influences (and is influenced by) only nodes from region 1; and node    influences (and is 

influenced by) only nodes from region 2. No test domains are assigned to interface nodes at all: 

a meshless collocation scheme, like the one described eralier, is enforced at each dual interface 

node, one dealing with interface conditions on the function itself (  ) and the other with 

conditions on the normal derivative (      ).  

After we spread    (where the ‘d’ stands for discontinuity) nodes along the interface   (which 

actually gives rise to     unknowns, since the nodes at   are doubled) we must apply a 

collocation method (related to TE
z
 interface conditions) to each one of the “double nodes”. 

For each interface double node   lying at    , we have 

                     
        

         
     

                                         

                   
 

  
 

   
 

  
 

 

  
 

       
  

  
 

 

  
 

       
  

  
 

 

  
 

   
 

  
                           

 

The nodes influencing    
  are actually those ones that influence location     and lie in region 1 

(  ), i.e., they are the nodes whose indices are elements of the set 

                                                                                

where        actually means that            (relative permittivity of the material constituting 

region 1). Analogously,  

                                                                              

In (5.133) and (5.134), the set   is given by (5.23). 

 

Expression (5.131) therefore means 

                      
    

            

    

                                              

whereas (5.132) means 

          
 

  
   

        

  
   

    

 
 

  
   

        

  
   

    

                                   

The index   runs through all nodes from region 1 whose influence domains include point     (in 

Fig.5.27, they are depicted inside the semicircle surrounding    ), and   through all nodes from 

region 2 whose influence domains include point     (nodes inside the semicircle surrounding    ). 

So, through the collocation scheme, that small issue concerning interface conditions in TE
z
 

polarization has been solved. To each double node lying on the interface  , we get two linearly 

independent equations (in the nodal parameters   ), provided by (5.135) and (5.136). Numerical 
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integrations do not need to be used at all: Simple nodal equations such as (5.135) and (5.136) 

are able to impose the discontinuity condition expressed by (5.130). 

The fourth problem studied is similar to the second, but takes the TE
z
 polarization into account. 

The incident magnetic field is   
        , and the frequency is also 1 GHz. As far as 

 

 

Fig.5.28. A portion of the computational domain. First figure: The global boundary   , the scatterer  , and the 

scatterer’s boundary   , which coincides with the air-dielectric interface  . Some interior nodes, boundary nodes 

(three little squares at   ) and also the double layer of interface nodes (small points at  ) are shown. Second figure: 

A profusion of test domains covering the computational domain. The problem is broken up into two sub-regions: one 

between    and   , and the other within the scatterer  . Only the interior nodes of both sub-regions are assigned test 

domains, which can be seen just touching the interface   or the global boundary    (if this is the case). 

boundary conditions are concerned, the same treatment dispensed to TM
z
 polarization is 

employed here; (5.129) is still valid, but the electric field is substituted by the magnetic field, 

i.e.,    has been substituted by    and   
  by   

 . The difference between the two polarizations 

lies in the fact that there is a discontinuity in the normal derivative of   , as explained earlier. 
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This issue is solved through a subdivision of the computational domain, wherein the nodes from 

one sub-region do not influence the nodes from the other, and through a double layer of nodes 

placed along the interface between these sub-regions. In this problem, one sub-region is the air 

layer between    and   , where [according to (5.111)]               , whereas the other 

sub-region is the interior of the scatterer (circular region  ), where         . The function 

               everywhere (as there are no magnetic materials). Figure 5.28 illustrates the 

test domains from both regions; it is clearly seen that nodes from one side of    do not extend 

their test domains to the other side.  

We performed two simulations: in simulation 1, the scatterer’s radius is       and its relative 

permittivity is     ; the total number of nodes spread throughout the computational domain 

amounts to 494. In simulation 2, the scatterer’s radius is        and its relative permittivity is 

             , whereas the total number of nodes is 759. The concordance between 

numerical and analytical solutions is again very good, as Figures 5.29 and 5. 30 indicate. These 

simulations show that the meshless collocation procedure proved to be quite handy in treating 

the interface conditions. 

 
Fig.5.29. The magnetic Field phasor (modulus). The abscissa   is measured along a horizontal line passing through 

the center of the cylinder. This value is then normalized to the cylinder radius   (i.e., normalized distance =    ). 
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Fig.5.30. The magnetic Field phasor (phase). The abscissa   is measured along a horizontal line passing through the 

center of the cylinder. This value is then normalized to the cylinder radius   (i.e., normalized distance =    ). 

 

Concluding Remarks 
 

This chapter illustrated the whole procedure one has to go through in order to solve a 

differential equation employing the MLPG method. Although the examples are concerned to 

electromagnetic wave scattering, the same approach can be extended to differential equations 

modeling other kinds of phenomena. Our table describing the overall process thus can be 

completed: 

 

 

THE MESHLESS PROCEDURE IN A NUTSHELL 

Given a differential equation and a domain where it shall be solved: 

First Step Set up the domain   and its boundary   . 

Second Step Spread   nodes throughout the domain   and at its boundary    as 

well. 

Third Step  To each node  , define the radius of its influence domain   ; 

 Make sure the influence domains cover the computational domain 

entirely. 

Fourth Step Numerical construction of the shape functions. 

Fifth Step  For each node  , define the test domains    (radius   ); 

 Define the test functions accordingly. 

Sixth Step Choose the way boundary conditions shall be dealt with: either 

through intersecting domains or through the collocation scheme. 

Seventh Step State the weak forms (Green’s second identity or weighted residual 

method). 

Eighth Step  Numerical integration of the weak forms; 

 Assembling of the final linear system. 

Ninth Step Solution of the final linear system and determination of the nodal 

parameters   . 
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Chapter 6 

The MLPG Method and other Applications: Three-

Dimensional Electrostatics and Photonic Bandgap 

Crystals 

 

HIS short chapter deals with other applications of MLPG relevant to Electrical Engineering 

that have not been included in the last chapter (which focused exclusively on scattering). 

We explore two different areas: 3D Electrostatics and photonic crystals. The reason behind such 

a choice is given by the fact that both aforementioned areas provide problems mathematically 

distinct from what was discussed in the last chapter.  

In what concerns Electrostatics, we deal with Poisson’s equation stated in three-dimensional 

domains   . The main difference is that the test domains are now spheres instead of circles. The 

true efficacy of imposing boundary conditions through the collocation method is verified, as the 

issue of finding intersections between three-dimensional domains would render the 

implementation of MLPG ridiculously difficult.  

The photonic crystals actually comprise too large an area of study, and we therefore highlight 

here only the most basic problem of finding their band structure. The true interest is in the 

application of MLPG to eigenvalue problems arising from the analysis of which frequencies can 

propagate through a given crystal.  

As the main concepts associated with shape functions and the whole structure of MLPG have 

been laid down in earlier chapters, we now take a more direct approach to the subject, without 

delving too much on details.  

 

6.1 Electrostatics 

 
We are interested in the solutions to Poisson’s equation 

                                                                                    

where the function   represents the electrostatic scalar potential (volts),   is the electric 

permittivity (farads/meter) and   is the electric charge density (coulombs/cubic meter). 

Equation (6.1) is stated in a three-dimensional domain   and the quantities   and   are both 

allowed to vary with position           . 

After spreading nodes and defining the influence and test domains, we proceed to find the weak 

form for (6.1). As the boundary conditions are dealt with by the collocation scheme, all test 

domains are those associated to interior nodes and therefore are simple spheres (according to 

Section 5.5). So if   nodes have been spread throughout the computational domain, and    of 

which are located in the interior of   , the weighted residual method gives us 

T 
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If we take the vector identity 

                                                                                   

where   is a scalar-valued and    a vector-valued function, and associate   with the test function 

   and    with    , we get 

                     
  

                
  

      
  

                      

From the Divergence Theorem 

                  
   

                                                           

where    is a vector-valued function and    is the outward unit normal to the closed three-

dimensional surface   , the first volume integral is rewritten as 

                      
   

              
  

      
  

                      

However, the test function    is zero at any point located in the boundary of the test domain   . 

Therefore, we get the weak form (for each interior node  ): 

                      
  

      
  

                                             

Expressing the electrostatic potential   as a sum of shape functions: 

                             

           
 

                                                 

or (according to a new numbering scheme, as explained earlier in Section 3.1): 

                             

 

   
 

                                                               

Substituting (6.9) in (6.7) 

                        
  

 

 

   

          
  

                                 

The form of the (still incomplete) linear system is retrieved from (6.10) as        , where 
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and 

  
        

  

                                                                      

If the medium is homogeneous (  is constant throughout the computational domain), we write 

(6.1) as 

         
     

 
                                                                         

This is also the case if   is piecewise constant, i.e., the computational domain    is divided in 

regions    each one of the which is characterized by a constant permittivity   . Therefore, we 

can employ Green’s second identity for scalar fields 

                  
  

  
  

  

  
   

   

                                   

in order to get the weak forms. By associating   with the electrostatic potential and   with the 

test function    we get 

                              
 

 
 

    

     
   

  
      

  

     

        
   

 

where we used                 (from the definition of   ) and           [from (6.13)]. 

The last surface integral in (6.15) is zero, because it depends on    evaluated on the surface    , 

which by definition is zero. The weak form then reads 

                      
   

  
  

   

    

 

   

                                               

The linear system based on the weak form above is described by [after the same reasoning 

described in (6.11) and (6.12)] 

   
             

   

  
  

   

                                                               

  
     

 

   

                                                                                

When the incomplete      linear system [(6.11) - (6.12) or (6.17) - (6.18)] is formed, we now 

turn to the boundary conditions. We must apply the collocation scheme to each one of the    

nodes spread throughout   . If a node   lies in a portion of    where a Dirichlet condition 

     is to be imposed, we have 
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Otherwise, if a Neumann condition    is imposed: 

 
   

  
        

            

                 

            

                               

Figure 1 illustrates this. Had the node      been located in a part of    where a Dirichlet 

condition is imposed, then, from                                 we have a linear equation 

on the nodal parameters 

                                                                                    

                                                                                            

In the case a Neumann condition is imposed 

    

  
           

    

  
           

    

  
           

    

  
           

    

  
           

 
    

  
                                                                                     

 
Fig.6.1. Node 40 located on    is influenced by a set of other nodes. 

Observation: As the MLS shape functions do not satisfy Kronecker’s delta property, the row in 

the global matrix   that equation (6.21) gives rise to contains values different from zero at 

elements outside the main diagonal (for example, because           is different from zero, so is 

      ). Had RPIM-PR been used, then (6.21) would be substituted by a single term:      

         (because these shape functions interpolate the solution). 

So from the    boundary nodes we get    linear equations like (6.21) (Dirichlet) or (6.22) 

(Neumann), which are assembled in a      matrix 
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Equations (6.11) and (6.23) are finally assembled into the final     linear system: 

  
 

        
 

                                                                           

From (6.24), one retrieves the nodal parameters   . The solution is then expressed for every    in 

   through (6.8). 

 

The first problem analyzed is that of a homogeneous dielectric sphere (    ) with unit radius 

(   ) and no charge density inside (   , which reduces to solving Laplace’s equation), 

subject to the Dirichlet condition                   V on   . Figure 6.2 shows the 

potential along a path C defined in spherical coordinates as                     . 

The analytical solution is 

               
 

 
 
 

           
 

 
                                                 

where   ,   and    are the Legendre polynomials. 

 
Fig.6.2. Solution to Laplace’s equation stated in a spherical domain. 

 

The second problem investigated takes a non-homogeneous unit cube (                and 

       ), whose relative permittivity is 1.5 in the inferior half and 15 in the superior half 

(Figure 6.3). A charge density   is present in the inferior half (              and a surface 

charge density          at the interface.  



114 
 

 

Fig.6.3.A non-homogeneous cube. The permittivities are different for both halves of the cube. Dirichlet conditions 

are imposed at top and bottom faces, whereas Neumann conditions are stated at the lateral faces. There is a 

volumetric charge density   in the lower half, in addition to a surface charge density    at the interface separating 

both regions. 

Homogeneous Neumann conditions              were imposed at lateral faces, while 

Dirichlet conditions       and      were imposed at top and bottom faces, respectively. 

Figure 6.4 shows the potential along a path defined as                     . 

 

Fig.6.4.Eletrostatic potential for a non-homogeneous unit cube. 

When solving this problem, in addition to interior and boundary nodes, a layer of interface 

double nodes had to placed along the plane that separates the regions of different permittivities, 

i.e., the portion of the plane       that lies inside the computational domain   (     , 

      and      ). These nodes are treated exactly in the same way as described in 

Section 5.5.1. The only difference is that now there is a surface   (plane) of discontinuity 

instead of a curve (line)  . Each dual node generates a new linear equation to the system, and 

nodes from one side of the discontinuity do not influence points in the other side. So for each 

double interface node   (supposing there are    of them, which generates     unknowns) the 

interface conditions for the electrostatic problem are: 

 The continuity condition: 
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When expressed for each interface node, (6.26) becomes 

                        
        

                                                 

 The condition on the normal derivative (normal to the interface  , which in this 

example happens to be     ): 

                  

   

  
   

   

  
                                                 

For each interface node: 

                     

      
  

  
   

      
  

  
                                      

The nodes influencing    
  are actually those ones that influence location     and lie in 

region 1 (    lower half of the cube), i.e., they are the nodes whose indices are 

elements of the set 

                                                                     

Analogously,  

                                                                    

where                     (ranges from 1 to the number of nodes in the problem). 

Equations (6.27) and (6.29) then become 

                                         

        

                                           

                     
        

  
       

        

  
           

        

                        

 

6.2 Eigenvalue Problems and Photonic Crystals 

 
  We now turn our attention to eigenvalue problems. The examples to which we are going 

to apply the MLPG method come from the field of photonic bandgap crystals.  

A two-dimensional crystal is an array of dielectric structures, periodic in the   and   directions. 

Given a pattern, which stands for a two-dimensional region characterized by a permittivity 

      , it is replicated indefinitely (for the purposes of analysis) throughout the plane   , as 

illustrated by Fig.6.5. 
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Fig.6.5. A single cell (in the left) is characterized by a permittivity       , which generally is 1 in the blue region and 

assumes a different value inside the light orange region. This region (in this case a pentagon) actually stands for the 

cross-section of a dielectric cylinder. The cell is replicated indefinitely along directions   and  , which generates a 

periodic array (i.e., the crystal). 

One of the main characteristic these structures exhibit is that they allow only radiation with 

certain wavelengths to propagate through it. Waves whose wavelength falls off certain “bands” 

are blocked. This characteristic and others make them attractive for a myriad of applications in 

modern technology. A beam of light can even be bent in 90 degrees within a crystal, as we were 

able to show in Section 5.5. 

The theoretical treatment of the photonic crystals is vast and complex, and it constitutes an area 

of research by its own. But because in this work we are dealing with the numerical 

implementation of MLPG, we are not going to go deep into the theory behind these crystals. 

Further information on the theoretical underpinnings of photonic crystals can be found in 

[Joannopoulos et al., 2008] and [Skorobogaty and Yang, 2009]. 

The objective of our analysis is to find out what wavelengths are actually ‘forbidden’. In order 

to do so, we begin from the differential equation describing the phenomenon, find a suitable 

weak form and solve the resultant generalized eigenvalue problem of the type         , 

where   and   are square matrices. The eigenvalues are represented by  . In this kind of 

problem, we deal with two matrices, instead of a matrix   and a vector  , as in the case for 

boundary value problems. However, the greatest novelty to be employed in the solution of these 

problems is a set of periodic shape functions. The boundary conditions for this sort of problems 

are periodic ones; so we found a way to build periodic shape functions. If we discretize the 

weak forms through these periodic shape functions, the boundary conditions do not need to be 

imposed anymore. Let us take a look at how such a process is carried out. 

According to Fig.6.5, the unit cell (a single two-dimensional pattern) generates the crystal as it 

is translated indefinitely. Because this structure is periodic, the analysis amounts to a single cell. 

So for the purposes of eigenvalue analysis, the computational domain   is the unit cell (Fig.6.5).  

Observation: We are dealing with two-dimensional problems (no quantity depends on the  -

direction), and therefore, Fig.6.5 actually represents the cross section of the structure. The 

dielectric body   is a cylinder whose cross section is that one depicted in Fig.6.5.  So the whole 

crystal resembles a ‘forest’ of dielectric bars (or cylinders). We are concerned with what 
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happens in a cut only, i.e., in a plane    constant. This problem is quite like that one describing 

the scattering of a wave by many cylinders (it really can be seen as a scattering problem). 

For TM
z
 polarization, the PDE describing the  -component of the electric field is (assuming no 

magnetic materials anywhere) 

           
                                                                    

Because the wavenumber    in free space is   
         and the velocity of light is given by 

         (also in free space), (6.34) can be rewritten as 

          
 

 
 
 

                                                                 

Equation (6.35) holds true in every point of the computational domain  . The boundary 

conditions stated in the boundary of the unit cell    are 

                                                                                         

   

  
                    

   

  
                                                             

where     is the lattice vector. Expressions (6.36) and (6.37) mean that the value of the field (and 

its derivatives) in a given point    of the crystal translated by     (resulting in the point       ) is 

equal to the field at    multiplied by an exponential factor. When it comes to a single cell   only, 

they mean that the field at one side is equal to the field at the opposite side multiplied by an 

exponential factor (the same holds for the derivatives). The vector              is the Bloch 

vector. If the unit cell   is a square whose side is  , the components of the Bloch vector vary as 

            and            . Under these conditions, the cell is assumed to be 

the square domain                             and the lattice vector is            . 

The boundary conditions (6.36) and (6.37) therefore read as  

                                                                                

                                

   

  
               

   

  
                                                                   

   

  
               

   

  
                                                                   

In order to avoid working with the Bloch-periodic boundary conditions (6.36)-(6.38), the Bloch 

theorem [Tsukerman, 2008] is employed 

                                                                                               

where       is a periodic function  
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When (6.39) is substituted back in (6.36)-(6.37), the dependency on the exponential fator has 

been dropped. We are now left with a problem on      . After the function   is found, the 

original electric field is recovered through (6.39). The periodic boundary conditions for   are 

                                                                              

                     

  

  
         

  

  
                                                                          

  

  
         

  

  
                                                                           

From the viewpoint of numerical implementation, it seems that the boundary conditions (6.42) 

are easier to deal with than conditions (6.38). Looking for the partial differential equation that 

governs  , it is derived from the substitution of (6.39) in (6.35). The result is equivalent to 

changing the   operator by         [Tsukerman, 2008]. Therefore we get 

                     
 
   

 

 
 
 

                                                        

This is the PDE we are going to solve through MLPG.  

At this point, we turn to the standard procedure of spreading nodes, defining the domains and 

the shape functions (in addition to the test functions). The weak form for (6.43) is obtained 

through the weighted residual method (explained earlier). For each node   (out of  ), we 

multiply (6.43) by the test function    and integrate over the test domain   : 

             
                          

 
  

    

  

  
 

 
 
 

                     
  

 

Employing (6.3), the two-dimensional analogue of (6.5) and the fact that the test function 

     in at    , we arrive at the weak form 

                                       
 
     

    

 
 

 
 
 

               
  

       

Given the line of reasoning we have been following, one may think there is something wrong 

with expression (6.45). The index   ranges from 1 to  , which means that the (6.45) are 

imposed for all nodes, for those located in the interior of   and for those lying in the boundary 

as well. And the boundary conditions, how do they come into the problem? 

We have found a way of dealing with periodic boundary conditions such as (6.42) that allows 

them not to be imposed at all. Furthermore, besides not imposing any kind of boundary 

conditions (neither intersecting domains or collocation schemes are ever considered), the 



119 
 

integrations are carried out in simple circular domains   . There is a manner of constructing 

periodic shape functions we have come across [Jun et al., 2003] which modifies the MLS 

procedure a little bit. However, in this work we try another way of building them. The approach 

we develop here is somehow naïve, and it is based on operations regarding the indices of the 

nodes. In this naïve approach, the MLS procedure is left untouched. The same black box 

procedure described in Chapter 3 is applied here. 

Let us clarify the reason why periodic shape functions can dismiss the imposition of boundary 

conditions. Bearing in mind the conditions (6.42)   must satisfy, if we find a shape function    

satisfying the same conditions, then we write 

                                                                             

                       

           

  
 

            

  
                                                             

           

  
 

            

  
                                                              

If we find other shape function    satisfying (6.42): 

                                                                              

                       

           

  
 

            

  
                                                              

           

  
 

            

  
                                                              

It does not take much effort to realize that a linear combination of shape functions      

     also will satisfy conditions (6.42): 

                                                                      

                                                                            

  

           

  
   

           

  
   

            

  
   

            

  
                       

  

           

  
   

           

  
   

            

  
   

            

  
                       

A linear combination of   shape functions therefore also satisfies (6.42). This is the 

fundamental result we have been expecting for. Let us write it as 
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Expressions (6.49) mean that a linear combination of periodic shape functions will also be 

periodic. Because in MLPG we approximate the function   by a linear combination of shape 

functions, we can therefore rest assured that the approximated solution   will satisfy (6.42) as 

well. This little explanation served the purpose of showing that the periodicity of the solution 

required by the problem has been transferred to the shape functions (building blocks) used to 

approximate it. Once we guarantee the shape functions are periodic, so will be a linear 

combination of them. Let us now verify how these special shape functions are constructed. 

Given a unit cell (which is our computational domain)  , we spread   nodes throughout it. To 

each node we ascribe an index from the set    

                                                                                

To each node we also associate an influence domain    (satisfying the no-hole condition, as said 

in the last chapters). In addition to the influence domains, we associate test domains to all 

nodes, but now with a difference. They are equal to the influence domains, i.e., they are all 

circles: 

                                                                              

In this approach, there is no need to worry either about the intersections      or about 

collocation schemes. However, if we take a node close to    in such a way that there are points 

in    that lie outside  , how are they to be treated? The next step is to exactly replicate the unit 

cell and its nodal distribution 8 times, so that our domain   is now surrounded by other 8 cells 

(Fig.6.6), forming an extended domain  : 

 
Fig.6.6. The extended domain  , which is no more than a layer of 8 extra cells around the unit cell  . The nodal 

distributions inside each one of the 9 cells must be exactly the same. 
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In order to deal with the extra nodes, an extended numbering scheme is required. Because there 

are now    nodes, the indices are elements of the set 

                                                                       

Each node in the extended domain   has its associated influence and test domains: 

                                                                                

However, although the problem seems to have become larger, it actually has not. Even with    

nodes in  , we use them only for the construction of the shape functions. We are concerned 

only with the   nodes lying in  . In the extended domain of Fig.6.7, the nodes in the upper left 

cell are to be numbered from 1 to  ; those in the cell in its right from     to   ; the nodes in 

the upper right cell from      to   , and so on, until the lower right cell, whose nodes are 

numbered from      to   . In this scheme, the nodes in the innermost cell (which happens 

to be our true computational domain  ) are numbered from      to   . In order to build the 

periodic shape functions for the nodes in   (those which really interest us), we just take their 

influence domains (eventually they extend to regions outside  , but the purpose of the extra 

layer of cells surrounding   is to precisely allow this to occur naturally) and apply the normal 

MLS procedure, but taking into account all nodes in  , not only those in  . The final step is to 

map the indices back to the unit cell  . Let us restate all that was said hitherto concerning these 

periodic shape functions thorough an example. 

Just to remember, in the MLS approximation, if one wants to calculate the shape functions at a 

point   , what one has to do amounts to finding out which nodes influence    (nodes from the set 

         ) and to plugging their coordinates (together with those of   ) in certain matrices. After 

some calculations (the black box procedure), one ends up with a vector   whose elements are 

the shape functions associated to the influencing nodes evaluated at the desired point   .  

Let us suppose that the problem is stated in a cell  . In this cell, we set up a nodal distribution. 

We then surround this cell with other 8 cells, and in each one of these extra cells, we assume a 

nodal distribution identical to that set up in   (i.e., we replicate it throughout). The situation is 

depicted in Fig.6.7: nine cells, each one with the same nodal distribution within. This array of 

nine cells form an extended domain  , in the middle of which our original cell is situated. We 

then proceed to ascribe a global index   to each one of the nodes in  . If there are, say, 100 

nodes in the original cell  , then in   the nodes in the first cell (top left) vary from 1 to 100; in 

the second cell (top middle), from 101 to 200, in the third (top right), from 201 to 300, and so 

on. The nodes in the innermost cell   vary from 401 to 500. Just to note: we use this bunch of 

extra nodes only when calculating the shape functions; as far as the problem (6.42)-(6.43) is 

concerned, only the innermost cell   and its nodes are considered. 

Now in order to produce the periodic shape functions, nodes that occupy the same position 

within each cell throughout the 9 cells are considered equivalent. For example, nodes 2 (top left 

cell), 102 (top middle cell), 202 (top right cell), and so on, amounts to the same entity. It is as if 

the 9 nodes with global indices (2, 102, 202,  , 802) were all equivalent to each other. As a 

result of the equivalence, each node in the extended domain   can be mapped to a node inside 

 . This is carried out through a new index scheme:  
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where   is a node’s global index (in  ),   is the number of nodes inside a cell, and   is the 

node’s global index mapped to the innermost cell  . Clearly 

                                                                                 

Observation: When   is some multiple of  , in order to avoid    , we ascribe   the correct 

value   whenever this occurs. So we guarantee the original range (from 1 to  ).  

Figure 6.7 illustrates this: suppose we want to calculate   associated to node 431 (located close 

to the left edge) at   . 

 
Fig.6.7. The extended domain of Fig.6. We are interested in the shape function associated to the node 431, located 

close to the left edge of the unit cell  . The value of   calculated for node 330 (outside  ) is transferred to its 

equivalent node inside  , node 430. Nodes 330 and 430 (global indices in  ) both have index 30 in the new index 

scheme (Fig.6.8). 

Given   , we apply the MLS procedure considering also nodes from neighbor cells. This is 

accounted for by the global index scheme. For example, in the global scheme, the nodes 

influencing    are  

                                                                              

Nodes 330, 340 and 350 come from a neighbor cell. So information concerning these 6 nodes is 

fed into the matrices of the MLS approximation (black box procedure), and we get a vector 

whose elements are the shape functions (                             ) evaluated at   . 

Now it is time to find the equivalent indices: the influencing nodes at    are then (30, 40, 50, 21, 

31, 41). They are obtained through (6.54): 

                                                                                

The equivalent scenario is illustrated in Fig.6.8. 

A subtlety should be noticed: in Fig.6.7, nodes 340 and 440 are both equivalent (equivalent 

index     ), but the correct distance to be taken is the shorter distance from    to node 340, 

and not from    to 440. Just manipulating indices in this way avoids the issue of having to figure 

out the correct distance between points and nodes. In this way, the correct node 340 has been 

taken into account, and not 440. 

The desired   can be seen throughout   by taking a set of points    covering  , and 

subsequently applying the procedure we have just described to each   . The result is shown in   
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Fig.6.8. The indices referred back to the unit cell  . The indices now range from 1 to 100, as required. 

Fig.6.9, where it can be seen that we indeed got a periodic shape function. The same profile is 

obtained at the left and right edges, i.e.,                 and                        . 

 

Fig.6.9. A periodic shape function (in  ) associated to a node close to the left edge of   (431 in the global scheme, 

equivalent to 31 in the new scheme). 

More periodic shape functions (associated to different nodes of the unit cell  ) are show in 

Figures 6.10 and 6.11. 

Figures 6.9, 6.10 and 6.11 reveal that according to expected, besides being periodic, the shape 

functions are also compactly supported (the domain of influence is somewhat more complicated 

than just a circular region around a node), which gives rise to sparse matrices. Now that we 

know how to numerically construct periodic shape functions, let us return to the weak forms 

(6.45). 

The weak forms (6.45) are stated for each node   in the computational domain  . Because 

     , we can just replace it by   (as it actually stands for a dummy variable). Rewriting the 

weak forms: 

                                       
 
     

    

 
 

 
 
 

               
  

       

Representing the function   by an expansion in periodic shape functions: 



124 
 

 

Fig.6.10. A shape function associated to a node located close to the left bottom vertex of  . It is beginning to extend 

its influence to regions opposed to the bottom line (      ). 

 

Fig.6.11. A shape function associated to a node located close to            . It extends its influence across the 4 

vertices of  . 

                            

 
 

                                                           

where the indices   are obtained from the set           considered in the context of the 

extended domain (all    nodes) and from the subsequent application of (6.54). Substituting 

(6.59) in (6.58) we get 
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So we can retrieve the matrix system 

                                                                                     

where the sparse     matrices   and   have their elements specified by 

                                     
 
     

    

                           

              
  

                                                                 

Expression (6.61) is a generalized eigenvalue problem. The eigenvalues                are  

    
  

 
 
 

                                                                       

Once the eigenvalues are calculated, the frequencies    of the propagating modes         

are finally obtained. 

Thus far, the values for the Bloch vectors      are unknown. We know that its components vary 

according to             and            . In order to verify the propagating 

modes for a given Bloch vector, we pick up a value for      (both components), plug it into (6.62), 

solve (6.61) and retrieve the eigenvalues (6.64). If we are dealing with a range of Bloch vectors, 

then we pick up another value for      and repeat the procedure. We must do this for all values of 

     we are interested in. In solid-state physics, there are some values for      that receive special 

names. They are 

                                                                                 

                                                                                  

                                                                              

In our simulations, we considered three ranges of values for     . The first links   to  , i.e., the 

component    ranges from   to     and     . The second links   to  , i.e.,        and 

   ranges from   to    . The third links   back to  , i.e.,    and    both range from     to 0. 

More on these values can be found in [Joannopoulos et al., 2008]. 

The unit cell is normalized with respect to  , i.e.,    . We performed simulations for many 

different permittivity profiles, i.e., for crystals whose dielectric bars have different cross 

sections (both in the value of   and in the geometric shape). When we considered circles, we 

obtained the correct prediction that waves with     would be unable to propagate through a 

crystal. We used this result in the example dealing with the propagation of light down photonic 

crystals shown in the last chapter. So the MLPG can be used in at least two stages in the 

analysis of photonic crystals: in the determination of the band structure (eigenvalue problem)  
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Fig.6.12. The profile of a crystal formed by dielectric veins (red). There are 9 cells in this figure. 

and in the propagation of light when some bars are removed (boundary value problem). We 

considered also the profile of dielectric veins illustrated by Fig.6.12. 

Figure 6.12 shows the extended domain   for this problem. That figure actually illustrates 9 

cells. The computational domain   refers only to the innermost cell (as discussed earlier). The 

blue regions are characterized by     , whereas the red grating (veins) has        and 

thickness equivalent to       . Figure 6.13 shows the resulting band structure (frequencies 

normalized to       ) for this crystal calculated through MLPG and compared to results in 

[Joannopoulos et al., 2008]. 

 

Fig.6.13. Band structure (frequencies normalized to       ) for the crystal formed by dielectric veins. Blue lines: 

MLPG4, Red balls: [Joannopoulos et al., 2008]. At the inset, the light blue regions are characterized by     , 

whereas the grating (veins) has       . The region inside the white square is the unit cell  . 
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Concluding Remarks 

 
Through the examples studied in this chapter, MLPG has proved to work well for three-

dimensional and eigenvalue problems. Because the overall procedure has remained unchanged, 

with only some slight modifications concerning the calculation of periodic shape functions, we 

therefore just repeat here our table describing the implementation of MLPG method. 

 

THE MESHLESS PROCEDURE IN A NUTSHELL 

Given a differential equation and a domain where it shall be solved: 

First Step Set up the domain   and its boundary   . 

Second Step Spread   nodes throughout the domain   and at its boundary    as 

well. 

Third Step  To each node  , define the radius of its influence domain   ; 

 Make sure the influence domains cover the computational domain 

entirely. 
Fourth Step Numerical construction of the shape functions. 

Fifth Step  For each node  , define the test domains    (radius   ); 

 Define the test functions accordingly. 
Sixth Step Choose the way boundary conditions shall be dealt with: either 

through intersecting domains or through the collocation scheme. 

Seventh Step State the weak forms (Green’s second identity or weighted residual 

method). 

Eighth Step  Numerical integration of the weak forms; 

 Assembling of the final linear system. 
Ninth Step Solution of the final linear system and determination of the nodal 

parameters   . 
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Chapter 7 

Some Extensions of MLPG to Quantum Mechanics 

 

N this last chapter, we investigate the extension of MLPG to problems arising in quantum 

mechanics, particularly those related to computing the energy of quantum states. The PDE 

that MLPG will be applied to is Schrödinger’s equation. The procedures used to solve this 

equation are the same as those illustrated in the last chapter. After the discretization process is 

completed, we arrive at a generalized eigenvalue problem (like that which appeared in the 

problems concerned to the photonic crystals), which is readily solved. This is the case for the 

majority of situations studied here, except for the last, which deals with a boundary value 

problem. Schrödinger’s equation is solved in two and three-dimensional domains, and we 

compare the results to analytical solutions (benchmark) whenever possible. Everything 

described in this chapter is the result of the initial studies made by the author regarding 

numerical methods and quantum mechanics, a theme he intends to explore further in the future. 

Although this is a work which deals with the numerical solution of PDE’s, it is important to lay 

down some theoretical concepts, just for the sake of gaining some insight into the subject. There 

are many good books on quantum mechanics, some of which are those listed by the references: 

[Philips, 2003], [Zettili, 2009] and [Shankar, 1994]. 

 

7.1 Theoretical Motivation  

 

7.1.1 Overview 

 A quantum system is described by a mathematical entity called the wavefunction  . For 

example, particles with a given mass moving in a region of space where there is some potential 

energy distribution (caused by whatever agent, like electric fields, magnetic fields, etc.) form a 

quantum system, described by a certain wavefunction  . This is so powerful a concept that 

everything in the small scale seems to fall under its influence, e.g., the behavior of molecules, 

the movement of electrons inside a nanoelectronic device, atomic and subatomic particles, are 

all described by a suitable wavefunction  . It is actually one of the postulates of quantum 

mechanics: The state of a quantum system is specified by an entity like   (sometimes called the 

state vector, which lives in a Hilbert space  ), which contains all information about the system. 

How this information is retrieved is stated in another postulate: A physically observable 

quantity   is associated to an operator    (Hermitian) whose eigenvectors (  ) (or 

eigenfunctions) form a complete basis (for the space  ). If someone tries to measure the value 

for the quantity   in a system described by  , he will get one of the eigenvalues    of the 

operator   : 

                                                                                     

Immediately after the measurement, the state of the system changes from   (which could be a 

linear combination of the eigenvectors   ) to the state    (associated to the eigenvalue   ) with 

I 
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a certain probability   . There are much more to be said about eigenvectors, eigenvalues and 

probabilities, but let us restrict the discussion to the lines above, otherwise we are in risk of 

being led too far away from the main topic (the numerical solution of PDE’s). 

We have not yet made explicit what the wavefunction   depends on. It actually depends on the 

space (coordinates  ,   and  ) and on the time  . Such dependence is usually written as        , 

where               . 

The energy   of the system is an observable, and therefore is associated to an operator   . 

Actually, it is represented by   , and it is called the Hamiltonian operator: 

    
  

  
                                                                        

where       ,   is the Planck’s constant (               J.s),   is the mass of the 

particle and   is the potential energy distribution. In (7.2), the quantum system described by   

is composed of a single particle. In the cases that shall be studied, the potential energy does not 

vary with time. So we write (7.2) as 

    
  

  
                                                                          

However, in order to retrieve the energy of the quantum system, we do not apply    to        . 

In quantum mechanics, there is a fundamental connection between the energy and the evolution 

of a quantum state. This relation is expressed as: 

             
        

  
                                                                

Expression (7.4) is the celebrated time-dependent Schrödinger’s equation, where   is the 

imaginary number    . This equation is so important that it is expressed as another postulate 

of quantum mechanics. In order to find the energy states, we begin by rewriting (7.4) as 

 
  

  
                         

        

  
                                         

We look for separable solutions of the type                  . Substituting this in (7.5) and 

dividing by          , we find 

 

     
  

  

  
                      

 

    

     

  
                             

Equation (7.6) is true only if both sides are equal to a constant (because one depends on    only 

and the other on   only). Let this constant be called  . So we arrive at two equations 

     

  
  

 

  
       

 

 
                                                        

 
  

  
                                                                          

The solution to (7.7) is easily found as 
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However, from the inspection of the units appearing in the exponential, we verify that   must 

have the units of energy (the reduced Planck’s constant in the denominator has units of joule  

 second, the term   is the time in seconds and the imaginary unit is dimensionless; therefore, as 

the whole term in the exponential must also be dimensionless,   is measured in joules).   is 

actually the value of energy we are looking for. Making    , (7.8) is rewritten as 

 
  

  
                                                                         

or 

  
  

  
                                                                     

which is an eigenvalue equation. This is the energy eigenvalue equation or time-independent 

Schrödinger equation. There are many eigenfunctions        and eigenvalues    which satisfy 

(7.11). When (7.11) is solved, we can express the original wavefunction as 

                                                                                

It can be found that wavefunctions corresponding to states of different energy are orthogonal to 

each other, i.e., for    , we have       and          , where the brackets correspond 

to an inner product defined in  : 

           
                                                               

The integration in (7.13) is to be carried out over all space. If (7.13) is satisfied, then         

also will (the exponential terms involving the time are taken out of the integral, which is carried 

out in regard to the spatial coordinates; we are then left with an integral like (7.13), which is 

zero). The wavefunctions    (eigenfunctions of   ) usually are normalized, which means that 

one makes 

           
                                                             

(Again, if (7.14) is satisfied, then           holds true as well). Because the function 

         actually stands for a probability density, the expectation value of the energy is 

                                                                         

i.e., if our state is described by  , the expected, or average value of the energy we get from the 

measurement process is given by (7.15). The actual, or real value someone gets is an eigenvalue 

   of   , which can be measured with a probability   . When we consider all possible outcomes 

   together with their probabilities   , we perform a weighted sum (or integration) and obtain 

an expression like (7.15). The result     is not measured, it is just some kind of average. 
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If the quantum system is described by a wavefunction      which is an eigenfunction of   , 

we say it is in a state of definite energy, i.e., the result of the measurement process is certain to 

be    when   is an eigenfunction of   . To see this, we first take (7.15) with     : 

       
                                       

 
                                    

    
                                     

                  

      
                  

after considering expressions (7.11) (applied to   ), (7.12) and (7.14). 

The expectation value of the energy squared (  ) is given by the application of the Hamiltonian 

twice: 

        
                                        

 
                               

    
                                      

                     

     
                  

    
                 

  

So when measuring the energy the variance is             
    

   . The uncertainty    

(in this case the standard deviation) is also zero. Therefore, when     , the outcome of 

measurement process would be   . 

So far, so good. More complicated solutions arise when the system is in a state described by 

more than one eigenfunction of   , for example, a state characterized by 2 eigenfunctions 

        
 

  
       

        
 

  
       

                                            

or, more generally, when there are many eigenfunctions involved   

           

       

                                                                 

States described by linear combinations of eigenfunctions like (7.18) and (7.19) usually have an 

uncertainty    associated to the process of measuring the energy  . However, we are not going 

to consider such issues in this work. 

From the brief discussion above it became clear that much information can be retrieved from the 

quantum system through the eigenvalues and eigenfunctions of   . The analysis of a quantum 

system usually involves steps such as the solution of time-independent Schrödinger equation 

(7.11), the construction of an orthonormal basis for  , the incorporation of time-dependent 

terms like in (7.12) and the application of many operators to   in order to retrieve some 

properties from the system under study. In addition to   , there are operators for position, 
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momentum of a particle, angular momentum, etc., which sometimes are combined in such a 

way to provide a means to retrieve a myriad of information regarding the quantum system. 

There are other formalisms in which quantum mechanics is developed, but in that one exposed 

here the solution of time-independent Schrödinger equation (7.11) is really fundamental. And it 

is precisely this equation that we intend to solve numerically through MLPG. Before we move 

on and begin to consider the details of the implementation, lets us take a look at the analytical 

solution to a particular problem that will be used as a basis for comparison with some of the 

MLPG numerical solutions. 

 

7.1.2 Analytical solution to the harmonic oscillator potential 

 

This problem is concerned to a particle of mass   under the action of a potential energy 

distribution of the type  

      
 

 
                                                                          

where   is the angular frequency (radians/second). If we insert (20) in time-independent 

Schrödinger equation (7.10) we get 

 
  

  
        

 

 
                                                           

The boundary condition   must satisfy is 

   
      

                                                                              

We begin by analyzing the one-dimensional case 

 
  

  

      

   
 

 

 
                                                           

From (7.9) we learned that      must be dimensionless. So the unit of energy is proportional to 

the units of   divided by the units of  . Because   is given by rad/s (time in the denominator), 

we express the energy as 

                                                                                    

in units of joules, as expected.   is just a dimensionless real number. From the traditional 

formula for the kinetic energy         (or from the famous Einstein’s equation      ) 

we can play with the units 

                   
    

    
                                                     

From which we see that 
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or 

     
     

         
                                                                   

The rationalized Planck’s constant   has the dimensions of    , the mass   is measured in    

and the angular frequency   has the dimensions of      . Therefore, we can express the 

distance   (in meters) as 

    
 

  
                                                                             

where   is a dimensionless real number. Substituting (7.22) and (7.26) in (7.21) we find 

 
      

   
                                                                       

where   is now a function of  .  

We shall now deal with the some manipulation of operators. We begin by finding out what 

   
 

  
    

 

  
   stands for: 

   
 

  
    

 

  
      

 

  
     

  

  
                                           

      
  

  
 

     

  
 

   

   
  

   

   
      

  

  
 

     

  
 

The first two terms in the right side of (7.28) is actually (7.27), and from  

     

  
    

  

  
                                                                     

So we can write (7.28) as 

   
 

  
    

 

  
                                                                

Now we investigate    
 

  
    

 

  
  : 

   
 

  
    

 

  
      

 

  
     

  

  
                                             

      
  

  
 

     

  
 

   

   
  

   

   
     

  

  
 

     

  
 

From (7.27) and (7.29) we arrive at 
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We can verify that (7.30) is true if        and    
 

  
    . However, this implies that 

  

  
                                                                                 

which produces a solution of the type             (where   is just an integration constant), 

which does not go to zero when   (and therefore  ) assumes large values. So we try (7.32). It is 

satisfied if       and    
 

  
    . This implies that 

  

  
                                                                                

which gives rise to an acceptable solution             . So our first eigenvalue is        

and our first eigenfunction is              . To find the second eigenvalue, we take (7.30) 

(restated below and regarding the first pair eigenvalue-eigenfunction) 

   
 

  
    

 

  
                                                           

and apply the operator    
 

  
  to both sides of it: 

   
 

  
    

 

  
    

 

  
             

 

  
                                

which we rewrite as 

   
 

  
    

 

  
     

 

  
                

 

  
                             

Let us represent the function expressed within parentheses of   (i.e.,   
 

  
    

 

  
   

        ). But this is quite similar to (7.32) applied to a function  , i.e., the function   is an 

eigenfunction of    
 

  
    

 

  
  and must have its associated eigenvalue  : 

   
 

  
    

 

  
                                                           

Comparing (7.37) and (7.38), we find that       . So we have found our second eigenvalue 

        together with our second eigenfunction         
 

  
   . To find the third 

eigenvalue, we take (7.30) again (now restated for the second eigenvalue-eigenfunction pair) 

   
 

  
    

 

  
                                                              

Operating with    
 

  
 : 

   
 

  
    

 

  
     

 

  
                

 

  
                               

If we represent the term inside the parameters by  : 
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which again resembles (7.32). So   is also an eigenfunction of (7.32): 

   
 

  
    

 

  
                                                                  

Comparing (7.41) and (7.42) we retrieve the third eigenvalue as          , and the third 

eigenfunction as         
 

  
   . The process goes on indefinitely, and more eigenvalues 

and eigenfunctions can be obtained. There is a remaining issue concerning the fact if    is really 

the lowest eigenvalue. It is. This can be proved either from physical grounds (Heisenberg’s 

uncertainty principle implies that the energy of an oscillator cannot be less than        , 

which by its turn implies than    cannot be less than    ) or from mathematical arguments 

(through the application of other operator that takes an eigenfunction    and returns     , and 

that returns 0 when applied to   ). The eigenvalues and eigenfunctions for the harmonic 

oscillator are summarized in the table I below. 

TABLE I 

EIGENVALUES AND EIGENFUNCTIONS FOR THE ONE-DIMENSIONAL HARMONIC OSCILLATOR 

Energy (dimensionless) Energy (J) Eigenfunction (        ) 

                             

                     
      

 

  
    

                     
      

 

  
       

 

  
 
 

   

                       
      

 

  
 
 

   

 

We now turn to (7.21) stated in higher dimensions. In two-dimensions, we have (for a level  ) 

 
  

  
 

  

   
 

  

           
 

 
                                              

We can rewrite (7.43) as 

                                                                               

where 

     
  

  

  

   
 

 

 
                                                               



136 
 

     
  

  

  

   
 

 

 
                                                                 

Expressions (7.45) and (7.46) are one-dimensional Hamiltonians. If we seek for separable 

solutions, i.e., solutions of the form 

                  
      

                                                       

where    
    is an eigenfunction of     and    

    is an eigenfunction of    , i.e., 

      
       

   
                                                              

      
       

   
                                                             

we have 

       

                            
      

        
   

      
       

   
      

      

     
    

    
      

                  

So the eigenvalues for the two-dimensional harmonic oscillator in a level   are 

      
    

                                                               

For one-dimensional problems, the energies for an oscillator in level    are given by the last 

line of table I: 

   
     

 

 
                                                                          

   
     

 

 
                                                                          

Therefore 

                                                                                 

where        . The energy levels for the two-dimensional oscillator, i.e., there are more than 

one configuration corresponding to the same energy. This does not happen for the first level 

    (because the only way for   to be zero occurs if        ). The degeneracies begin 

to show up in the second level     (either               or              ). For    , 

there are 3 degenerate states (             ,               or              ), and so 

on. 

The situation for three-dimensional oscillators is similar, with the exception that there is an 

extra term  
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in the Hamiltonian    which is now represented by 

                                                                                

The energy levels are now given by the addition of (7.52), (7.53) and a similar term coming 

from     (    
            ): 

             
 

 
                                                         

The number of degenerate states for a level   (three-dimensional oscillator) is 

            . 

Now that we have gained some insight into the basics of quantum mechanics and have 

discovered the analytical expressions for the eigenvalues of the Hamiltonian corresponding to 

the harmonic oscillator, let us proceed and verify if MLPG is able to provide the same results. 

 

7.2 Two-dimensional examples 

 
We are interested in the problem described by the two-dimensional time-independent 

Schrödinger equation stated in the infinite domain                    : 

 
  

  
 

  

   
 

  

           
 

 
                                             

The boundary condition is 

   
      

                                                                         

i.e., the wavefunction   must vanish when the independent variables   and   assume large 

values. Schrödinger’s equation (7.58) is stated in SI units. However, as the reduced Planck’s 

constant   is so small a quantity, we rewrite (7.58) in Hartree atomic units, which is suitable for 

numerical simulation. In this new system of units, the mass of the electron   and reduced 

Planck’s constant   take on the value 1: 

 
 

 
 

  

   
 

  

           
 

 
                                                  

The unit of time in Hartee atomic units is                 s. If we consider a particle 

(electron) oscillating with a frequency 1 in Hartree atomic units, i.e., if     (which actually 

corresponds to       radians per second) our equation becomes 

 
 

 
 

  

   
 

  

           
 

 
                                              

or 
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where            . When solving this problem numerically, we cannot consider the 

domain   as an infinite region such as                  . We therefore restrict 

the computational domain   to a finite square region                  , and 

impose homogeneous Dirichlet boundary conditions on it:  

                                                                                     

We are now at the point to apply the already familiar MLPG process to the problem (7.62) -

(7.63). First,   nodes are spread throughout the computational domain    (square region). 

Second, we find the weak forms associated to the PDE (7.62), through Green’s second identity. 

Lastly, wed discretize the weak forms, assemble everything in a matrix system and solve it. 

We solved this problem in the two different ways: by considering the intersection of the test 

domains    with   and by imposing the boundary conditions (7.63) through the collocation 

method. Taking Green’s second identity 

                  
  

  
  

  

  
                                         

   

 

we substitute   by  ,   by the test function    and the region   by  

                                                                        

where we assume the most difficult case of a node whose test domain intersects the boundary 

  . Because                (from the definition) we get 

                                            
    

                                             
    

 

   
   

  
      

  

                                 

   

Working out the domains in the line integrals at the right side of (7.66): 

                                            
    

                                             
    

 

   
   

  
     

   

  
  

          

    

  

  
      

  

            

 

The second line integral is zero, as it depends on   evaluated at a portion of   , which is zero 

[by (7.63)]. The third line integral also vanishes, because it depends on    evaluated at     

(which is zero, according to the definition of a test function   ). So our weak form becomes 

       

                        
   

  
   

     

   

  

       

                    
    

 
    

 

Approximating the wavefunction by an expansion in shape functions 
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If we number the nodes differently (as explained in Chapter 3): 

                             

 

   
 

                                                             

we get 

                            

   

  
   

     

   

   

       

           
    

 

 

   

           

             
    

 

 

   

    

From (7.71) we retrieve the matrix system 

                                                                                     

where the coefficients of the     matrices   and   are 

                     

   

  
   

     

   

   

       

           
    

                           

             
    

                                                              

Expression (7.72) is a generalized eigenvalue problem. The eigenvalues                are 

the energies   , which are readily available after (7.72) is solved. 

Observation: As we used an approach in which the intersections of the test domains with   

have to be found (7.65), the radii of test domains    were assumed to be equal to the radii of the 

influence domains   . In the collocation method, the radii of the test domain gets smaller the 

closer they are to the boundary    (as explained in Chapter 3). 

When imposing the boundary conditions through the collocation method, we proceed as 

follows. Supposing the   nodes are numbered in such a way that the first    correspond to 

interior nodes and the last         to nodes lying on   , we impose the weak form (7.68) 

to each one of them. Because there are no intersections, the matrices are somehow simplified: 
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Matrices   and   are     . As they are not square matrices, the problem  

                                                                                     

is incomplete. Then we take each one of the    boundary nodes (indices ranging from      

to  ) and apply the collocation procedure. This returns    linear relations of the type 

                                        

 

   

                                           

The index   runs from 1 to   just to make explicit that potentially any node can influence    . 

However, the majority of the terms         are zero, only the nodes close to     (whose indices are 

elements of the set           ) are actually different from zero. If each node in the boundary 

gives rise to a relation like (7.78), and because any shape function    (associated to node   

located at    ) calculated exactly at     is different from zero, we can express the nodal parameter 

    of a boundary node   as a function of the other nodes: 

                                  
 

       
           

 

   
   

                           

We take expression (7.79) associated to node      (first boundary node) and substitute in 

matrices   and  . We get         matrices    and    in which the nodal parameter 

       is absent. We now take (7.79) associated to node      (second boundary node) and 

substitute in matrices    and   , getting         matrices     and     in which the nodal 

parameter        is absent. This process is repeated for all boundary nodes, until the nodal 

parameter associated to them are eliminated from   and  . We finally get two square       

matrices   and   which allow our eigenvalue problem to be written as 

                                                                                     

The matrix system (7.80) is readily solved and the energies are retrieved. 

The next table illustrates the results we have obtained from both implementations of MLPG4, 

compared to the analytical solutions. 

According to (7.54), the energies for the two-dimensional harmonic oscillator at level   given 

by are         in SI units. Because in Hartree atomic units     and     (in the case 

studied), the energy levels are therefore given by       . From table II, we conclude that 

both implementations of MLPG method provided correct values. MLPG were able even to 

account for the degenerate levels. 
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TABLE II 

ENERGY LEVELS FOR THE TWO-DIMENSIONAL HARMONIC OSCILLATOR. COMPARISON BETWEEN 

THE ANALYTICAL VALUES AND THOSE PROVIDED BY MLPG METHOD (BOTH 

IMPLEMENTATIONS) 

Level   Analytical Intersecting domains Collocation 

0 1 0.9993 0.9993 

1 2 1.9985, 1.9985 1.9986, 1.9986 

2 3 2.9976, 2.9978, 2.9979 2.9977, 2.9978, 2.9979 

3 4 3.9970, 3.9970, 3.9988 

3.9988 

3.9968, 3.9968, 3.9970 

3.9970 

4 5 4.9955, 4.9988, 4.9998 

5.0045, 5.0046 

4.9957, 4.9957, 4.9957 

4.9960, 4.9960 

5 6 5.9961, 5.9961, 6.0100 

6.0100, 6.0211, 6.0211 

5.9944, 5.9944, 5.9947 

5.9947, 5.9950, 5.9950 

  

It is really interesting, and even beautiful, the fact that things derived from highly abstract 

grounds (or ‘theoretical’) like the manipulation of operators described in earlier pages actually 

coincide with others arrived at by purely numerical (or ‘practical’) means.  

After the problem for the two-dimensional harmonic oscillator has been solved, we applied the 

same procedure to another case, the Henon-Heiles potential  

       
 

 
                        

  

 
                                      

TABLE III 

ENERGY LEVELS FOR THE HENON-HEILES POTENTIAL 

Energy Method 1
*
 Method 2

*
 Intersecting  MLPG Collocation MLPG 

   0.9978 0.9986 0.9979 0.9979 

   1.9879 1.9901 1.9886, 1.9886 1.9887, 1.9887 

   2.9512 2.9562 2.9541 2.9541 

   2.9815 2.9853 2.9830, 2.9833 2.9831, 2.9832 

   3.9176 3.9259 3.9239, 3.9242 3.9229, 3.9229 

   3.9749 3.9822 3.9801 3.9794 

   3.9783 3.9856 3.9833 3.9827 

   4.8572 4.8700 4.8714 4.8663 

   4.8880 4.8986 4.8973, 4.9016 4.8946, 4.8948 

   4.9749 4.9860 4.9842, 4.9861 4.9823, 4.9823 

   5.7993 5.8174 5.8236, 5.8286 5.8124, 5.8139 

   5.8497 5.8679 5.8767 5.8632 

   5.8642 5.8812 5.8887 5.8765 

   5.9753 5.9912 5.9946, 5.9948 5.9864, 5.9866 

 

Table III shows the results of both implementations of MLPG4 and those provided by other 

numerical methods (the asterisk* refers to results taken from [Kalogiratou et al., 2005]). From 

this, it becomes apparent that MLPG worked well when applied to this particular case also. 



142 
 

7.3 Three-dimensional examples 

 

We are again interested in time-independent Schrödinger equation expressed in Hartree 

atomic units 

 
 

 
                                                                                 

together with homogeneous Dirichlet conditions  

                                                                                  

As the problems are now stated in three dimensions, we shall not deal with the issue concerning 

the intersection between test domains and  . We enforce the weak forms at the test domains for 

interior nodes only. The boundary conditions are treated through the same collocation scheme 

as that illustrated in the last section. In order to get the weak forms, we apply the weightd 

residual method, i.e., We take each interior node   (there are    of them, out of  ), multiply the 

residual of (7.82) by the test function    and integrate over the test domain   : 

                                             
    

                  

In deriving (7.84), we had in mind the property that      at    , what allows us to get rid of a 

surface integral appearing in the process. Other weak forms for (7.84) could be obtained through 

Green’s second identity for the two functions   and   . Experience teaches us that (7.84) gives 

rise to an incomplete linear system of the type          whose      matrices   and   

have their coefficients given by 

                                                                     
  

       

             
  

                                                               

From now on everything is now quite akin to what has been done in the last section. The 

collocation procedure is enforced at each one of the    boundary nodes, which generates    

relations among   variables. These relations are substituted back in   and  , and through some 

eliminations, new       square matrices   and   are obtained. Finally, we get a generalized 

eigenvalue problem         , which is solved for the  ’s. 

 

The first example is the quantum harmonic oscillator. The sides of the cubic domain have been 

set to 9 a.u., and the potential energy is              . The level   has energy given by (7.57) 

            
                                                                 

Multiple values for    account for degenerate states. The nodal distribution is depicted in Fig. 

7.1, and the results are shown in table IV. 
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Fig.7.1. 1864 nodes in the cubic domain   concerned to the three-dimensional harmonic oscillator problem. Each 

interior node (blue) is ascribed a test domain   where the weak forms are integrated. The boundary nodes (red) 

contribute with extra relations through the collocation procedure. 

 

TABLE IV 

FIRST EIGENVALUES FOR THE THREE-DIMENSIONAL HARMONIC OSCILLATOR  

Level   Analytical MLPG4/LBIE 

0 1.5 1.4962 

1 2.5 2.4934; 2.4956; 2.4956 

2 3.5 3.4902; 3.4902; 3.4949; 3.4984; 3.5029; 3.5035 

3 4.5 4.4856; 4.4911; 4.4927; 4.4958; 4.4958; 4.5031; 4.5031; 4.5151; 

4.5257; 4.5257 

4 5.5 5.4867; 5.4867; 5.4900; 5.4907; 5.4953; 5.5053; 5.5053; 5.5087; 

5.5242; 5.5242; 5.5295; 5.5301; 5.5722; 5.5932; 5.5939 

 

The second example is concerned to those levels that can exist inside a spherical infinite 

square well, i.e.,         for        and   otherwise. The radius   of the spherical region 

has been set to 5 a.u. and homogeneous Dirichlet conditions have also been employed on  Γ. 

The allowed energy levels (in a.u.) are given by      
     , where     are the  -th zeros of 

the spherical Bessel functions   . The nodal distribution is depicted in Fig.7.2, and the results 

are shown in table V. 
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Fig.7.2. 1868 nodes for the spherical domain of the second example. 

TABLE V 

FIRST EIGENVALUES FOR THE SPHERICAL INFINITE SQUARE WELL 

n p Analytical MLPG4/LBIE 

0 0 0.1974 0.1966 

1 0 0.4038 0.4018; 0.4023; 0.4025 

2 0 0.6643 0.6606; 0.6607; 0.6614; 0.6623; 0.6632 

0 1 0.7896 0.7864 

3 0 0.9766 0.9687; 0.9725; 0.9728; 0.9730; 0.9730; 0.9733; 0.9747 

1 1 1.1936 1.1878; 1.1890; 1.1895 

4 0 1.3391 1.3294; 1.3301; 1.3314; 1.3333; 1.3349           

1.3350; 1.3355; 1.3355; 1.3379 

 

The third example comes from solid-state physics, and deals with the calculation of the 

electronic band structure of solids. The potential energy       is periodic in the three-

dimensional space, i.e., it replicates itself within each region called a unit cell. 

For the purposes of analysis, if this array of cells is taken to be infinite, the problems need to be 

solved only for a unique cell. The strong form is then imposed at a cell   as: 

                                                                             

In (7.88), Schrödinger’s equation (7.6) has been written using Rydberg atomic units (this system 

differs from Hartree’s in what regards the mass of the electron;    is taken as 1). The boundary 

conditions at    are 
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     is a vector called the Bloch vector, and     is the lattice vector. For a cubic cell, the boundary 

conditions expressed in (7.89)-(7.90) mean that   at a face is equal to   at the opposite face 

multiplied by an exponential term. If we invoke Bloch theorem: 

                                                                                       

where       is a periodic function over a cell, we get a new strong form on      : 

                                                                               

The boundary conditions now are given by 

                                                                                   

          

  
 

      

  
                                                                

The boundary conditions stated in (7.93)-(7.94) mean that for a cubic cell,       at a face equals 

      at the opposite face. As the function   will be expanded in shape functions, it is interesting 

if this periodicity were transferred to the  ’s: boundary conditions would be unnecessary. From 

what we have been discussing so far it is evident that this problem is the three-dimensional 

equivalent to that one related to the calculation of band structure of photonic crystals. The 

extension of the procedure employed in chapter 5 to three-dimensional problems is: We take a 

cubic cell  , set up a nodal distribution and replicate it throughout the 26 cells surrounding    

We form a global numbering scheme, do all the MLS calculations as if we were dealing with a 

larger problem and then map the global indices back to  . These new periodic shape functions 

behave in such a way that a linear combination of them will also be periodic in a cell. Then the 

approximated   will also be periodic. Conclusion: The boundary conditions need not be 

imposed. Just take a cell  , spread some nodes, attach a spherical test domain    to each node   

and enforce the weak form at them: 

       

                                                                 
    

    

         
  

 

The weak forms (7.95) came from the weighted residual method. After substituting   by an 

expansion in shape functions, one gets a generalized eigenvalue problem of the form     

    , where 
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In this example,   is a cube whose side   is 3 a.u., and the potential energy       is the three-

dimensional Kronig-Penney potential: 

                                                                               

       
       
        

       

where          and          . The eigenvalues (Rydberg a.u.) calculated as functions of      

are shown in Fig.7.3. The Bloch vector      varies from         (point Γ) to              (point 

 ). A total of 729 (9x9x9) nodes has been employed in the analysis, and a good concordance 

can be verified when the LBIE solutions are compared to the results provided by another 

numerical method [Jun, 2004]. 

 
Fig.7.3. The electronic band structure for the third example (Kronig-Penney model). Blue line: MLPG4/LBIE 

method. Red balls: results taken from [Jun, 2004]. 

 

7.4 A nonlinear boundary value problem 

 
We now turn our attention to boundary value problems, here illustrated by the two-

dimensional nonlinear Schrödinger (NLS) equation. This equation appears in some contexts of 

quantum theory, and in other areas as well, as in the propagation of electromagnetic waves in 

nonlinear media. We employ a time-difference approximation and a predictor-corrector scheme 

(to deal with the nonlinearity) in conjunction with MLPG4 in order to find the numerical 

solutions.  

Let   be the computational domain. The NLS reads as 

 
        

  
                                                                     

The initial and boundary conditions are 
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where            ,      ,         and   are known functions,           , and   

is a positive real number. The time interval is  

                                                                            

 [Dehgan and Mirzaei, 2008] solve this problem through MLPG5, a meshless method whose test 

function   is a Heaviside step function instead of a function like  

       
 

  
   

  

        
                                                                

and having the properties 

            
                                                                       

and 

                                                                                  

which characterizes MLPG4. Furthermore, [Dehgan and Mirzaei, 2008] do not use the 

collocation method when treating Neumann boundary conditions; intersections have to be found 

there. In order to solve (7.99), we must take some approximations. 

First, a discretization in time.   is no longer represented by (7.104), but by 

                                                                       

i.e.,                      , and    is the time step. We then use the shorthand          

          to denote the wavefunction calculated at the instant    .  

Second, whenever the wavefunction in continuous time   appears in (7.99), it is substituted by 

                                                                              

where      . 

Third, the time derivative is approximated by 

        

  
   

                   

  
                                                    

Fourth, the function         in (7.99) is taken at the instant        : 

                                                                                      

Fifth, in order to apply a predictor-corrector scheme (to be explained later), the nonlinearity is 

“approximated”, i.e., the   inside the nonlinear term is approximated by    :  
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Inserting all these approximations at (7.99), we get a strong form: 

          
 

  
                            

 
                                                        

              
 

  
                              

 
                  

Expression (7.112) is organized in such a way that, if we know   at time step  , then   at time 

step     can be known. After spreading    interior nodes throughout   and    at   , we 

proceed to get a weak form for (7.112). We take each interior node  , its test function    and its 

test domain    (these test domains cannot intersect the global boundary:        ). A weak 

form coming from Green’s second identity is: 

                                              
   

     

                                     

   
 

  
                

 
 

  

   
                             

   

     

       

   
 

  
                        

 
    

     
  

 

After substituting  

                 
     

 

                                                          

we get a matrix   (   rows and   columns) and a vector   (   elements) whose elements are 

                
   

     

       
 

  
                

 
 

  

                      

                        
   

     

                                                                                 

   
 

  
                        

 
    

      
  

 

The nodal parameters from the previous iteration    
   

 are known, so whenever      needs to be 

calculated in (7.116), we just employ 

               
   

 

                                                            

The other    equations come from the collocation at each boundary node. This information can 

be assembled in a matrix   (   rows and   columns) and a vector   (   rows). If the 

boundary conditions are expressed in a general way as 
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then we have, for each boundary node   (there being    of them) the time step    : 

        

                              

                      

 

   
     

                
        

  
 

   
     

  

                   

 The elements of   and   are therefore given by 

                                        
        

  
                           

                                                                              

Assembling the matrices   and   together into a     matrix   

   
 
 

                                                                           

and the vectors   and   into a     vector   

   
 
 

                                                                            

 we form a system: 

                                                                            

where the matrix   and the vector   depends on the time   and on the “approximated”  term 

   . The predictor-corrector scheme works as follows, assuming that the nodal parameters for 

the last iteration       are known: 

First estimate for        :                  

First estimate for     :            

Calculate   and  .  

Next estimate for        :                

Next estimate for     :                           

Calculate   and   (with new     ) 

Next estimate for        :                

Next estimate for     :                           

Calculate   e   (with new     ) 
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Next estimate for        :                

  

Repeat   times until 

                          

So 

                  

where   is some established error. 

We applied this time-domain LBIE to the NLS problem (7.99) in which 

                

                                

             

    

                     

               

        

The analytical solution to this problem is  

                                                                          

In the simulations, the index   varies from 1 to 20 (20 time steps), and we have got again a good 

concordance between the numerical and analytical solutions. Figure 7.4 shows the nodes spread 

throughout   , Fig.7.5 illustrates the set of influence domains   covering the computational 

domain entirely, and Fig.7.6 depicts the set of test domains   ascribed to the interior nodes only. 

The results of the simulation are shown in Fig.7.7 (real and imaginary parts). 
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Fig.7.4. Nodes spread throughout the computational domain   . 

 

 
Fig.7.5. The domain covered by the circular influence domains  . 
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Fig.7.6. A collection of test domains   (ascribed to the interior nodes only). 

 

 

Fig.7.7.(a). Real part of the solution to NLS at 3 time steps (out of 20) along the line      . 285 nodes have been 

scattered throughout  . 
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Fig.7.7.(b) Imaginary part of the solution to NLS at 3 time steps (out of 20) along the line      . 285 nodes have 

been scattered throughout  . 

 

Concluding Remarks 

 
This chapter focused on applications of MLPG to some problems in quantum 

mechanics. The same ideas from earlier chapters have been successfully employed here. The 

collocation procedure developed in Chapter 5 is an excellent tool in the solution of three-

dimensional Schrödinger’s equation, and the scheme we devised for constructing periodic shape 

functions for photonic crystals is able to be extended to three dimensions with ease. The novelty 

is the treatment of time-dependent and nonlinear problems which, as these preliminary studies 

make clear, could also be solved by MLPG4/LBIE. The solution did not deviate from the 

analytical results as the time steps evolved. It therefore shows that, at least for the example 

studied in Section 7.4, MLPG4/LBIE is stable. Further studies dealing with the stability and 

other ways of approaching the nonlinear term will be the theme for future works. 
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Chapter 8 

Conclusions 

 

8.1 Summary 

his dissertation has fulfilled its purpose of demonstrating the applicability of meshfree 

methods to many problems relevant to electrical engineering. I sought to demonstrate with 

as much detail as possible how the methods work. The cost of such a job is reflected in rather 

long expositions, particularly in those relative to the construction of weak forms. 

We began from the definition of differential equations, and from what a domain represents. 

From this point on, the whole idea (or philosophy) permeating the meshless methods is exposed 

in an instructive way, through an analogy with electrostatics (in which the charges are 

represented by the nodes, and the electrostatic potentials by the shape functions). Once the 

basics have been presented, the rest of the work is dedicated to the refinement of the ideas 

shown here in Chapter 2. 

The construction of the shape functions is the theme of Chapter 3. The MLS approximation is 

dissected in a particularly incisive way, with pages and more pages showing the process behind 

the MLS shape functions. Despite the fact it could be seen as a black box procedure, much 

insight can be gained if one knows how these shape functions are calculated. Chapter 3 also 

makes a brief reference to the RPIM shape functions, since they are employed only once in the 

entire work. 

Once the shape functions – basic components in the approximation of the fields – have been 

defined, the following pages proceeded in the application of these functions to the discretization 

of the integral equations arising in electromagnetic wave scattering. The results are very good, 

outperforming the method of moments (traditionally employed in this category of problems) in 

precision. Moreover, Chapter 4 discusses the main drawbacks from MLS in the construction of 

shape functions for ‘flat-sided’ objects. After much discussion, an extremely simple way of 

solving the problems from the MLS approach is presented by the end of the chapter. 

Chapter 5, which deals with the development of MLPG applied to scattering problems, is the 

central point in this work. Different strategies for treating the imposition of boundary conditions 

are exposed here with detail. Particular attention is paid to the method of collocation, because of 

the ease with which it can be employed to effectively enforce boundary conditions. 

Equipped with the experience of the previous chapters, one now proceeds to new areas of 

application of MLPG to three-dimensional problems (in which the collocation method once 

more reveals its force) and to eigenvalue problems coming from the analysis of photonic 

crystals and quantum mechanics. This material, which comprises the last two chapters, 

concludes the dissertation.  

 

 

T 
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8.2 Future Work 

 
The original intent of this work was to show how MLPG could be applied to problems 

in electromagnetic wave scattering. All the rest is a kind of ‘byproduct’ (an invaluable source of 

experience, by the way), that was obtained as one gradually advanced along the lines of the 

main theme. Many topics have been treated here for the first time, and particular attention has 

been paid to the detailed exposition of the methods. Such an approach led, as said earlier, to 

somehow long discussions and to deductions that at first sight could be deemed unnecessary. 

However, this was predicted from the outset; one of the intentions I had in producing this work 

is that it could also serve as some kind of reference, in which everything (or almost everything) 

I had explored concerning meshfree is collected. 

Once the applicability of the meshless methods has been successfully demonstrated, the next 

step is the refinement of these methods. Results concerning errors, convergence rates, and above 

all, extensive comparisons with finite element methods, must be addressed in future works. The 

frontier has been opened, and now one can see at a glance many themes to be approached, like: 

 Problems involving vector quantities; 

 Non-linear problems (mainly those related to the non-linearity of certain photonic 

crystals); 

 Different ways of solving time-dependent problems; 

 The use of PML’s (Perfectly Matched Layers) instead of boundary radiation conditions 

(RBC’s); 

 More efficient schemes in the numerical integration of weak forms (fundamental in 

large problems, dealing with hundreds of thousands of nodes); 

 A more rigorous mathematical treatment (detailed description of the function spaces 

and operators appearing in meshless methods). That would inevitably lead to works 

more mathematical in character. 

 

The future of meshfree methods in electrical engineering seems to be promising. In view of the 

huge area that still needs to be explored, the actual state of affairs indicates that the next years 

will bring a mouthful of pleasant surprises. 
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