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Abstract

This work investigates the Delaunay refinement for curved complexes. A mani-
fold complex is defined as an unambiguous representation for the geometric objects
required by a partial differential equation solver. The Chew’s and Ruppert’s De-
launay refinement algorithms, including an extension for curved complexes, are de-
scribed under a new and arbitrary dimensional perspective. A theorem for strongly
Delaunay simplicial complexes is extended to higher dimensions, as well as a funda-
mental theorem of the Bowyer-Watson algorithm is extended to intermediate dimen-
sions in the simplicial complex. Some implementation points are also addressed, as
the fan search in the incremental Delaunay simplicial complex update, and robust
predicates in arbitrary dimensions.






Resumo

Este trabalho investiga o refinamento Delaunay para complexos curvos. Um com-
plexo de manifold é definido como uma representacao tinica para objetos geométricos
requeridos na solucao de equacoes diferenciais parciais. Os algoritmos de Chew e
Ruppert, incluindo uma extensao para complexos curvos, sao descritos uma nova
perspectiva em dimensoes arbitrarias. Um teorema para complexos simpliciais forte-
mente Delaunay ¢ estendido para dimensoes superiores, assim como um teorema
fundamental do algoritmo de Bowyer-Watson ¢ estendido para dimensoes inter-
mediarias no complexo simplicial. Alguns pontos de implementacdao também sao
abordados, como uma busca em leque para atualizar de maneira incremental um
complexo simplicial de Delaunay, e predicados robustos em dimensoes arbitrarias.
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Resumo estendido

Introducao

Uma malha pode ser vista como uma particao de um dominio em elementos geral-
mente simples e de um mesmo tipo. Ela pode ser aplicada em diversos contextos,
como visualizacao grafica e interpolacao. Como foco de aplicacao de malhas neste
trabalho, estd o método de elementos finitos para solugoes de equagoes diferenciais
parciais. Este método é bem restritivo quanto aos requisitos de malha, de modo
outras aplicagoes devem ser capazes de usar o mesmo gerador de malhas.

Para que o método de elementos finitos funcione, a malha deve possuir as pro-
priedades topoldgicas definidas no conceito de complexo. Para que o método de
elementos finitos atinja uma solucao suficientemente precisa com o menor nimero
de elementos, existem diretivas gerais que um gerador de malhas deve satisfazer.
Primeiramente, um bom gerador de malhas deve ser capaz de gerar elementos nao
achatados, pois elementos achatados tendem a ser maus interpolantes e a gerar er-
ros numéricos (em alguns casos especiais ¢ interessante ter elementos achatados em
certas diregoes). Outro ponto é que um bom gerador de malha deve ser idealmente
capaz de gerar a malha com o menor niimero de elementos possivel, e refinar pos-
teriormente onde for necessario. Esse refinamento deve suportar boas gradacoes, de
modo que a densidade de elementos em uma regiao nao interfira significativamente
em outra com densidade diferente.

Quando se tem apenas um gerador de malhas que lida com geometrias planas, é
necessario fazer uma aproximacao linear da entrada antes de gerar a malha. Em um
contexto adaptativo, a informacao de como deve ser a aproximacao linear da entrada
nao ¢ conhecida a priori. Neste caso torna-se imprescindivel que o gerador de malhas
seja capaz de lidar com geometrias curvas, onde as aproximagoes das partes curvas
sao devidamente refinadas onde for necessario no decorrer do processo.

Dentre as estratégias para geracao de malhas, o refinamento Delaunay ocupa
lugar de destaque pela sua elegancia e garantias tedricas. Este trabalho estende o
refinamento Delaunay para complexos curvos de entrada em dimensoes arbitrarias.
Para tanto, sao estabelecidos dois teoremas principais. Um relacionado com o con-
ceito de fortemente Delaunay e que estabelece condigdes para que um simplexo
pertenca ao complexo simplicial Delaunay. Os algoritmos de Ruppert e de Chew
sao descritos sob o ponto de vista deste teorema. O segundo teorema é uma extensao
da idéia fundamental do algoritmo de Bowyer-Watson para insercao incremental em
um complexo simplicial Delaunay. Existem também contribuicoes na parte de imple-
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mentacgao, como a busca em leque, a avaliagao de predicados robustos em dimensoes
arbitrarias e a determinacao de um ponto de Voronoi sobre pecas curvas.

Definicao de dominios

Um PLC [Miller et al., 1996] (piecewise linear complex) define uma geometria for-
mada por partes lineares, como sugere o nome. Neste trabalho, esta definicao é
estendida para partes curvas como um k-complexo de variedades definido por uma
colecao de n-variedades, n = 0, ..., k, conectadas nao vazias e disjuntas entre si, onde
partes de mesma dimensao sao desconexas entre si (o prefixo em complexo e em va-
riedade representa a respectiva dimensao). As diferengas fundamentais na defini¢ao
de um k-complexo de variedades para a de um PLC é que as pecas passam a ser
variedades (potencialmente curvas), que k-pegas também podem ser definidas e que
as pecas sao conjuntos abertos ao invés de fechados.

Qualquer dominio pode ser particionado em um complexo de variedades de
maneira tnica, como ilustrado nas Figuras 1 e 2.

o\

Figure 1: Exemplo de um dominio bidimensional (esquerda) particionado em um
2-complexo de variedades (direita).

n=20 n=0,1,2

n=1 n=>0

Figure 2: Exemplo de um dominio tridimensional (esquerda) particionado em um
3-complexo de variedades (direita).

Um complexo de variedades C* é aquele onde todas a variedades membro sao
C*. A definicao de complexo de variedades garante que ele seja C°. Para atingir
complexos de variedades C* pode-se definir as partes onde a n-ésima derivada é
descontinua como variedades independentes, n < k, como ilustrado nas Figuras 3 e
4. Dessa maneira propriedades diferenciais sao descritas explicitamente no complexo
de variedades.

Uma variedade pode apresentar diversas topologias, como ilustrado na Figura
5. Estas caracteristicas topolégicas nao podem ser expressas de maneira explicita
no complexo de variedades, e assim devem ser identificadas de acordo com a repre-
sentacao das pecas. Para evitar tratar os diversos casos especiais, pode-se exigir que
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Figure 3: Exemplo de um dominio bidimensional (esquerda) particionado em um
2-complexo de variedades C* (direita).

Figure 4: Exemplo de um dominio tridimensional (esquerda) particionado em um
3-complexo de variedades C? (direita).

todas a pecas tenham a configuracao topologica de uma bola, particionando partes
que nao sejam se necessario.

B
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Figure 5: Exemplo de diferentes tipos de configuracoes topolégicas de 2-variedades.
Da esquerda para a direita: plano, tudo, esfera, toro and fita de Mobius.

Refinamento Delaunay

Um complexo simplicial pode ser definido como um complexo de variedades onde
cada peca é um simplexo e onde as facetas de cada simplexo também fazem parte
do complexo, como ilustrado na Figura 6.

Em 1934 Boris Delaunay [Delaunay, 1934] definiu um critério para complexos
simpliciais que implicaria em muitas propriedades interessantes. Neste critério, cada
simplexo do complexo simplicial possui uma bola circunscrita que nao possui nenhum
vértice em seu interior. Este complexo simplicial esta fortemente relacionado com
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Figure 6: Exemplo de um 2-complexo simplicial.

o diagrama de Voronoi definido por Georgy Voronoi em 1908 [Voronoi, 1908]. O
diagrama de Voronoi ¢ um complexo de células compostas por todos os pontos que
estao mais perto de um ponto do que qualquer outro ponto de um dado conjunto.

Considerando que cada k-peca do diagrama de Voronoi em R" esta equidistante a
exatamente n—k+1 pontos (caso degenerado se forem mais de n—k+1 pontos), entao
cada k-peca do diagrama de Voronoi estd unicamente relacionada com um (n — k)-
simplexo do respectivo complexo simplicial para o mesmo conjunto de pontos, como
ilustrado na Figura 7.

Figure 7: Diagrama de Voronoi e complexo simplicial de Delaunay para o mesmo
conjunto de pontos.

Em 1981 David Watson [Watson, 1981] provou que se uma k-peca, k > 0, do
diagrama de Voronoi é degenerada, entao existe pelo menos uma (< k)-peca degene-
rada. Dessa maneira, um Diagrama de Voronoi é degenerado se e somente se existir
pelo menos um vértice equidistante a mais de n + 1 pontos. Um complexo simpli-
cial de Delaunay dual a um diagrama de Voronoi nao degenerado é dito fortemente
Delaunay. Este complexo simplicial pode ser visto como aquele onde cada simplexo
membro possui uma bola circunscrita que nao contém nenhum outro vértice sobre
seu contorno ou em seu interior.

Pela unicidade do complexo simplicial fortemente Delaunay é provado neste tra-
balho que um k-complexo simplicial é fortemente Delaunay se e somente se o sub-
conjunto de n-simplexos é fortemente Delaunay, para um n € {1,...,k} tnico e
arbitrario. Isto equivale a dizer que se um n-simplexo possui pelo menos uma bola



CONTENTS 13

circunscrita vazia entao ele faz parte do complexo simplicial fortemente Delaunay,
caso contrario ele nao pode fazer parte. Esta propriedade é provada por Shewchuk
em sua tese [Shewchuk, 1997] apenas para k = 2 e utilizando uma outra estratégia.
Este teorema serd denominado daqui para frente de teorema do fortemente Delau-
nay.

Em 1987 William Frey [Frey, 1987] introduziu a inser¢do no circuncentro de
um simplexo, originando o refinamento Delaunay (ver Figura 8). Este refinamento
possui a propriedade de nao criar arestas menores caso forem escolhidos apenas
circuncentros de simplexos que possuem circunraio maior que sua menor aresta. Em
espaco bidimensionais, isto implica que este refinamento pode gerar garantidamente
triangulos com angulos diedros no intervalo [30°,120°]. Infelizmente em dimensées
maiores que a segunda nao é possivel definir limites em medidas de qualidade validas.

Figure 8: Refinamento Delaunay em uma triangulacao.

Utilizando a propriedade de nao criar menores arestas, Paul Chew propos em
1989 [Chew, 1989b] o primeiro algoritmo de refinamento Delaunay para complexos
lineares bidimensionais com garantias tedricas de qualidade. Este algoritmo pré-
segmenta a entrada de maneira que todos os vértices se encontram a uma distancia
[h, h\/3] entre si, e depois refina todos os tridngulos com circunraio maior que A, como
ilustrado na Figura 9. Sob o ponto de vista do teorema do fortemente Delaunay,
isto garante que os segmentos de entrada terao uma circuncirculo vazio através do
processo, e portanto farao parte da triangulacao. Este algoritmo pode ser estendido
para dimensoes arbitrarias de maneira direta, mas o processo de pré-segmentagao o
torna inviavel na maioria dos casos praticos.

Em 1994 Jim Ruppert [Ruppert, 1994] propos um algoritmo que nao necessitava
de pré-segmentacao da entrada, dando garantias tedricas de qualidade, gradacao e
tamanho para as triangulacoes. Sob o ponto de vista do teorema do fortemente
Delaunay, este algoritmo primeiro garante que cada aresta representando a entrada
terd um circulo diametral vazio (assim ela fara parte da triangulac@o), e depois refina
a triangulacao até que critérios sejam atingidos, como ilustrado na Figura 10. A
idéia fundamental é que as arestas representando a entrada sao refinadas caso seus
circulos diametrais sejam invadidos. A primeira etapa é denominada recuperacao
de facetas, e a segunda de refinamento. Este algoritmo pode ser estendido para
dimensoes arbitrarias de maneira direta e ainda continua pratico.

Em 2002 Charles Boivin e Ollivier-Gooch [Boivin and Ollivier-Gooch, 2002] pro-
puseram uma extensao do algoritmo de Ruppert para lidar com geometrias curvas
bidimensionais. Nesta estratégia, as curvas de entrada sao segmentadas de maneira
que cada subcurva apresente uma variagao angular nao maior que 7 /6, e de maneira
que os segmentos nao contenham nenhum ponto visivel em seu circulo diametral. A
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Figure 9: Malhas inicial (esquerda) e final (direita) geradas com o primeiro algoritmo

de Chew.

Figure 10: Malhas inicial (esquerda) e final (direita) geradas com o algoritmo de
Ruppert.

malha inicial gerada é entao refinada até atingir critérios de parada. O comporta-
mento deste algoritmo estd ilustrado na Figura 11. O refinamento considera o caso
especial onde a insercao de um né em um segmento causa a interceptacao com outro
segmento. Neste caso o segmento interceptado ¢é refinado ao invés do segmento que
o interceptou.

Para lidar com complexos curvos em dimensoes arbitrarias, este trabalho revisita
o algoritmo de Ruppert. Essa nova abordagem permite que a malha seja criada
dimensao por dimensao, e que o refinamento possa ser feito em qualquer dimensao
simultaneamente.

Primeiramente, a etapa de recuperacao de facetas pode ser feita de dimensoes
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Figure 11: Complexo curvo de entrada (acima-esquerda), malha inicial (acima-
direita), malha refinada para qualidade (abaixo-esquerda) e malha refinada para
melhor qualidade e precisao de representacao (abaixo-direita).

mais baixas para dimensoes mais altas. Antes de passar para a dimensao seguinte,
os simplexos da dimensao corrente sao refinados até que bolas circunscritas pré-
estabelecidas sejam vazias, garantindo que eles farao parte dos complexos simpliciais
de dimensao superior. Nesta construcao, cada peca do complexo de variedades define
apenas um espaco paramétrico cujas restrigoes e fronteiras sao dadas por pecas de
dimensao inferior. Esta etapa estd exemplificada na Figura 12.

Para a fase de refinamento, foi definido um teorema que garante que, apds a
insercao de novo um vértice, os novos simplexos que conformam a geometria irao
fazer parte do complexo simplicial Delaunay. Este teorema é uma generalizacao da
idéia fundamental do algoritmo de Bowyer-Watson [Bowyer, 1981, Watson, 1981]. A
idéia fundamental deste teorema é que apos a insercao de um novo vértice as arestas
conectadas a ele terao pelo menos uma bola circunscrita vazia, como exemplificado
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Figure 12: Alguns passos da recuperacao de facetas para um complexo de variedades
(esquerda).

na Figura 13. Assim, pelo teorema do fortemente Delaunay, elas farao parte do
complexo simplicial Delaunay juntamente com os respectivos simplexos de maior
dimensao formados. As bolas circunscritas vazias que garantem a presenca dos
novos simplexos podem nao ser as pré-estabelecidas, de modo que os vértices que
possivelmente invadirem estas bolas deverao ser removidos.

Figure 13: Se a bola diametral B do segmento ab é vazia, entao o subsegmento ac
também terd uma bola circunscrita vazia tangente a B em a desde que ¢ € B.

Implementacao

Cada peca do complexo de variedades é armazenada em um mesmo vetor e sua
posicao nele a identifica. Cada peca contém uma representacao paramétrica com
respectiva dimensao, as pegas vizinhas como ilustrado na Figura 14 (para a geragao
de malha é suficiente que sejam armazenados apenas os vizinhos de dimensao in-
ferior), e uma semente que serd usada para identificagdo de simplexos membros.

Para o armazenamento do complexo simplicial, é utilizada uma estrutura de
dados especifica para simplexos. Cada simplexo contém um ponteiro para cada um
de seus vértices, um ponteiro para o vizinho oposto a cada vértice (se o vizinho for de
dimensao imediatamente inferior o ponteiro é sinalizado com o bit especial down),
um ponteiro para cada simplexo de dimensao imediatamente superior conectado a
ele (dois ponteiros fixos, sendo que o segundo é sinalizado com o bit especial joint
caso forem mais de dois), e um ponteiro para a variedade que ele estd conformando
(ver Figura 15). Cada ponteiro é um indice para o vetor onde estd armazenado o
objeto apontado, o que facilita a leitura e a paralelizacdo. As principais diferencas
para as estruturas de dados apresentadas na literatura é que os vizinhos podem ser



CONTENTS 17

Figure 14: Estrutura de dados (direita) para o complexo de variedades (abaixo-
esquerda) para um dominio de entrada (acima-esquerda).

de dimensao imediatamente inferior, e que o ponteiro para a variedade conformada
¢é de obrigatéria presenca.

D
P

Figure 15: Estrutura de dados (direita) para o complexo simplicial (abaixo-esquerda)
homeomérfico a um complexo de variedades (acima-esquerda).

E utilizada uma versio estendida do algoritmo de Bowyer-Watson para fazer
a atualizacao do complexo simplicial Delaunay. Neste processo, a insercao de um
novo vértice gera uma cavidade, formada pelos simplexos invadidos, cujo contorno,
denominado horizonte, é conectado ao novo vértice para originar os novos simplexos.
Para atualizar os vizinhos dos simplexos do horizonte foi desenvolvida neste trabalho
uma busca em leque, a qual esta graficamente ilustrada na Figura 16. Nesta busca, a
faceta do simplexo do horizonte oposta ao vértice cujo vizinho relacionado se deseja
determinar, é o “vértice” do leque. A busca segue entao pelos vértices da cavidade
conectados ao “vértice” do leque.

O predicado que diz de qual lado estd um ponto em relacao a um hiperplano,
assim como aquele que diz se um ponto esta dentro ou fora da bola circunscrita de
um simplex, é dado pelo sinal do determinante de uma matriz. Pode-se escrever que
o sinal do determinante calculado com erros de arredondamento esta correto sempre
que

|A,| > anean, (1)
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v; = facet, (i)
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Figure 16: Representagao grafica da busca em leque.

onde A,, é a matriz do predicado na n-ésima dimensao, € é a precisao da maquina, e
a,, € o permanente dos valores absolutos de A,,. Os coeficientes a,, para o predicado
de orientagao em relacao ao hiperplano sao dados por

n
§(n—|—1)+n—1 (2)
e para o predicado de orientacao em relacao a bola sao dados por
n
§(n—|—1)+3n—|—2 (3)

Para calcular o ponto sobre uma n-peca equidistante aos vértices de um n-simplex
foi derivado neste trabalho um processo iterativo de Newton-Raphson dado por

Jr
b1 = T — T fx
s (4)
=1, — _ %% ce
g 2(cher)Teler " g
onde t € [0,1] é o vetor de parametros, k é a iteracao corrente, f(t) = [|c(t)||* é uma

fungao distancia, c(t) é a projecdo da n-peca no n-plano do n-simplex transladada
para o circuncentro, e f'(t) € R™ e ¢(t) € R™™ sao os respectivos gradientes (¢(¢)
contém como colunas os gradientes das componentes de ¢(?)).

Na Figura 17 estao malhas para um complexo curvo com 44 pegas refinadas sob
diversos critérios. A malha é refinada a cerca de 400 nés/segundo sobre a superficie,
e a cerca de 5.000 nds/segundo sobre o espago tridimensional. Uma particao do
3-complexo simplicial ¢ mostrada na Figura 18.

Uma anélise por histogramas dos angulos diedros foi feita para uma malha re-
finada pela maior aresta (Figura 19), para uma malha refinada por precisao de
representagao de geometria e razao menor aresta e circunraio (Figura 20), e para
uma malha refinada por precisao de representacao de geometria e menor angulo
diedro (Figura 21). Note a presenca de slivers na malha refinada pela maior aresta
e na malha refinada pela razao menor aresta e circunraio.
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Figure 17: Malhas para o complexo curvo (acima-esquerda): sem refinamento com
26 n6s (acima-direita), refinada aleatoriamente mantendo £/R > 1/v/2 com 801 nés
(meio-esquerda), refinada pela maior aresta com 729 nés (meio-direita), e refinada
para representacdo precisa da geometria de entrada mantendo ¢/R > 1/4/2 com
2006 nos (abaixo).

Conclusao

A geracao de malhas para complexos curvos é rapida, especialmente se considerado
que raramente um ponto ¢é inserido nas partes curvas durante o refinamento (e.g. re-
finamento uniforme). A qualidade e a gradagao do complexo simplicial refinado para
um complexo curvo apresentam um comportamento bem semelhante as observadas
para complexos lineares.
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Figure 18: Particao de um 3-complexo simplicial homeomérfico a um complexo
curvo.
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Figure 19: Histograma de angulos diedros de triangulos e tetraedros de um 3-
complexo simplicial refinado pela maior aresta.

O maior gargalo no desempenho do refinamento Delaunay em dimensoes tipica-
mente maiores que 4 é a avaliacao de predicados robustos. A manutencao das filas
de refinamento e a prépria avaliagao dos critérios de refinamento consomem também
um tempo razoavel de processamento.
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Figure 20: Histograma de angulos diedros de triangulos e tetraedros de um 3-
complexo simplicial refinado para representagao precisa mantendo (/R > 1/ V2.
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Figure 21: Histograma de angulos diedros de triangulos e tetraedros de um 3-
complexo simplicial refinado para representacao precisa mantendo angulos diedros
acima de 15°.
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Chapter 1

Introduction

Defining roughly in a single sentence, a mesh is a partition of a geometric object
into small pieces of simple shapes. Concrete illustrative examples are a honey comb,
a mosaic, a spider’s web, or a woven - that suggests the name (see Figure 1.1).

Figure 1.1: Illustrative examples of meshes: honey comb, mosaic, spider’s web and
woven.

A mesh embues simplicity to the geometric object it represents. The locality of
its elements enables approximating assumptions inside their domain. For example,
each piece in a mosaic may be considered to own a single color. Furthermore, the
definition of shapes and connectivity as simple entities is the key for the development
of a simple general mathematical framework, that is fundamental in computational
applications. For example, a woven arrangement may represent any shape of cloth
and provide uniform local features to it.

Numerous applications may be cited for meshes. A graphical engine uses meshes
to represent complex geometric objects, so that shading models, projective transfor-
mations or ray tracing may be fast cast on them. Meshes may interpolate nonuni-
form samples of a function or a shape using their nodal connectivity. This work
emphasizes on the investigation of a mesh generator algorithm for use in numerical
methods to solve partial differential equations, like the finite element method. The
requirements are very strict in this class of application, so that many of its mesh
concepts are useful in other classes.

In focus in this thesis as a mesh generator, is the Delaunay refinement algo-
rithm, that has theoretical guarantees on size, grading and quality supporting its
good performance in practice. This algorithm generates simplicial meshes and most
theoretical guarantees consider piecewise linear complex inputs. The main theme
and results are in the extension of this algorithm for piecewise curved complexes.

23
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1.1 Good meshes and mesh generators

Elements are the basis of a mesh. A good mesh have elements with properties and
placement inside the domain that satisfy the problem requirements. A good mesh
generator must be able to generate good meshes in a sufficient flexible process.

Lying in the context of numerical methods to solve partial differential equations,
a mesh of the problem domain is used to create an interpolating function over
it. Typically, physical properties are assigned to disjoint regions of the domain,
boundary conditions are set on some lower dimensional parts of the domain, and
then the ruling partial differential equations are forced to be satisfied within each
element with boundary conditions defined by neighbor elements. The nodal values
of the interpolating function are then given by a global system of linear equations.

An output mesh must conform the input features of the domain it represents or
approximates (see Figure 1.2). Hence, each subset required in the problem domain
must have a representative version in the mesh. If an input piece is linear, then an
exact representation must be in the mesh. However, if an input piece is curved, then
a homeomorphic approximate representation must be in the mesh, considering that
the mesh elements are linear like simplices or boxes.

R~
BN = a
iy 4' N\O
: yﬁ%‘k’“ A
>
V]

Figure 1.2: Triangular mesh of the Brazilian territory and surface triangular mesh
of a dolphin.

Connectivity is also a key in numerical methods for partial differential equation
solutions. It must hold general enough to represent any input domain connectivity,
but it must be simple enough to allow a systematic and computationally efficient
interactivity within the neighbors of each element. The most used connectivity con-
straints for meshes are the basis of the well known definition of simplicial complexes.

Output meshes can be required to be finer in some regions and coarser in others,
so that the interpolating function accurately approximates the problem solution
with fewer elements (see Figure 1.2, where an accurate boundary representation is
achieved). Hence, refinement and grading must be supported by the mesh generator.
A quasi-uniform mesh is in Figure 1.3¢ and a grading mesh is in Figure 1.3d, for the
same input piecewise linear complex. This feature is known as grading optimality.

Refining a mesh is usually cheaper than coarsening. In a general context, only
the problem solution can say correctly where the mesh must be finer. Thus a good
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mesh generator must be able to generate meshes not too finer than the coarsest
possible mesh for an input domain. Where and when the mesh will be refined must
be under user control. For instance, a mesh generator whose coarsest mesh is the
one in Figure 1.3c is worse than the one that is able to generate the one in Figure
1.3b. This feature is known as size optimality.

(a) (b)
(©) (d)

Figure 1.3: Some examples of meshes for the same input geometry (left).

Due to numerical and interpolation errors, elements are required to look as round
as possible. Two too close vertices, in relation to other vertices in the element,
increase machine roundoff errors. A vertex too close to a facet, in relation to the
facet size, is very likely to cause high interpolation errors and gradients in a linear
interpolation. For instance, the mesh shown in Figure 1.3a is worse than the one
in Figure 1.3b. This feature is known as mesh quality. Grading optimality and
mesh quality are conflicting objectives. Nonetheless very good tradeoffs are possible
in practice. There are specific problems where skinny elements aligned to the flow
direction lead to much improved results. These anisotropic meshes deserve and have
received attention, but they will not be discussed in this text.

Every aforementioned desirable property for meshes is unlikely to be better at-
tained by a structured mesh than by an unstructured one. Even though, because of
its simplicity, faster generation and point location, some applications still justify the
usage of structured meshes. Simplicity and speed are always desirable in algorithms,
as long as all requirements are satisfied.

1.2 Why curved complexes?

Inputting only piecewise linear complexes requires any curved object in the domain
to be firstly approximated by flat objects. This breaks the mesh generation into two
well defined steps. However, because it is a requirement of the mesh generator, the
conversion is sometimes considered to be a modeling task. Treating curved objects
like real curved objects during the mesh generation makes clear what is modeling
and what is meshing. The geometric model will only have to answer questions made
by the mesh generator.

A worse drawback of pre-meshing an input is that the output mesh size becomes
predefined by the input. If the input is overrefined, the output will have more
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elements than necessary. If the input is underrefined, any point insertion on it
will consider the linear version of it, not the curved one. Furthermore, if the mesh
generation is refined according to an adaptive strategy using the problem solution,
any size guess will not be reasonable (otherwise the term adaptive is not applicable)
and input remeshing will eventually be inevitable.

Another important point is that the input is a constraint. If skinny elements
are in the input, they will have to be also in the output mesh. That could happen
even if the curved objects did not feature any small angle between their facets.
Unfortunately, only 2-dimensional meshes are not prone to this.

The best feature achieved by a mesh generator for curved complex inputs is
coarser output meshes. Where and when the mesh will be refined is user defined.
However, the input will never be exactly represented in the mesh, so that the curved
model must always be queried, and even detecting the moment to query the curved
model spends time.

1.3 State of the art

Since its beginning in 1987 with the circumcenter point insertion [Frey, 1987], many
extensions have been proposed to conform the Delaunay mesh refinement to geomet-
ric objects. The most remarkable ones are the Chew’s 1st algorithm [Chew, 1989b],
Ruppert’s algorithm [Ruppert, 1994] and Chew’s 2nd algorithm [Chew, 1993]. All
of them have been developed for the triangulation of planar straight line graphs,
and the latter two were extended for the tetrahedralization of piecewise linear
complexes in Shewchuk’s thesis [Shewchuk, 1997]. Recent studies have been pub-
lished on triangulations [Boivin and Ollivier-Gooch, 2002] and tetrahedralizations
[Borovikov et al., 2005, Cheng et al., 2007b| for curved geometric objects. Never-
theless, mesh generation for this kind of input is still a wide open problem. A brief
history up to the current stage is given next.

The nowadays known as Delaunay condition for simplicial complexes was pro-
posed in 1934 by Boris Delaunay [Delaunay, 1934]. The first Delaunay triangulation
algorithm was curiously published, unaware of their realization, by Frederick et al.
[Frederick et al., 1970]. In 1977 Lawson [Lawson, 1977] proposed the flip Delaunay
triangulation incremental algorithm and proved that it maximizes the minimum
angle. In 1981 Bowyer and Watson [Bowyer, 1981, Watson, 1981] published an n-
dimensional Delaunay incremental algorithm based on cavities. A generalized con-
cept of Delaunay triangulation was introduced by Lee in 1978 [Lee, 1978], which was
named constrained Delaunay triangulation by Paul Chew in 1989 [Chew, 1989a].
In 1998 Shewchuk [Shewchuk, 1998] proposed a definition for constrained Delau-
nay simplicial complexes and stated a condition for their existence in higher di-
mensions. Chew also introduced in 1993 a Delaunay criterion over curved surfaces
[Chew, 1993], which was generalized in 1994 by Edelsbrunner and Shah [Edelsbrunner and Shah, 1994].
Chen and Bishop [Chen and Bishop, 1997] proposed a Delaunay criteria for curved
surfaces based on maps from circles to ellipses in the parametric space of a surface.

The first provably good conforming Delaunay refinement algorithm was proposed
by Chew in 1989 [Chew, 1989b], where all triangles are guaranteed to have angles
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in the range [30°,120°], where the lower bound is only violated near small input
angles. In this algorithm, the input piecewise linear complex must be segmented to
the edge length range [h, hv/3] and the output mesh is quasi-uniform, as shown in
Figure 1.4.
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Figure 1.4: Initial (left) and final mesh with 2293 triangles (right) generated by
Chew’s first algorithm.

In 1994 Ruppert [Ruppert, 1994] proposed the first conforming Delaunay refine-
ment algorithm with theoretical guarantees on quality, grading and size. In this
new algorithm, the input piecewise linear complex do not need to be segmented,
because the missing edges in the initial Delaunay triangulation are recovered in a
former stage. After edge recovery, new vertices are added to the conforming edges as
needed, as shown in Figure 1.5. Ruppert proved that all triangles in the final mesh
can have angles in the range [20.7°,138.6°] (arcsin/2/4 ~ 20.7°), latter on proved
to be [26.45°,127.1°] (arcsin2~7/% a 26.45°) by Miller et al. [Miller et al., 2003],
and still hold grading and size optimality. However, all input angles must be
larger than 90°, which was latter proven to be 60° by Shewchuk [Shewchuk, 1997],
and latter on to be about 36.53° (arctan[(sin 36.53°)/(2 — cos 36.53°) ~ 26.45°) by
Miller et al. [Miller et al., 2003]. To handle small input angles ¢ < 60°, Shewchuk
[Shewchuk, 2000] proposed a strategy that terminates with angles in the range
[arcsin[sin(¢/2)/v/2], ™ — 2arcsin[sin(¢/2)/v/2]], but without grading nor size op-
timality guarantees. Miller et al. [Miller et al., 2003] also introduced a strat-
egy for treating small input angles ¢ < 36.53°, so that the output mesh angles
range is [arctan[(sin ¢)/(2 — cos ¢)], min{137.1°, 7 — 2arctan|(sin ¢)/(2 — cos ¢)}]
(7 — 2arcsin[(v/3 — 1)/2] ~ 137.1°), keeping the grading optimality (see Figure 1.6)
with analysis considering the input piece linear complex containing its own convex
hull boundary (slightly more restrictive). Moreover, both strategies for small input
angles generates new small angles only nearby them. Shewchuk [Shewchuk, 1997]
also extends Ruppert’s algorithm to tetrahedralizations which terminates for short-
est edge length to circumradius ratios ¢/ R no smaller than 1/2 with grading theoret-
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ical guarantees (see Figure 1.7), but without quality nor size guarantees. The algo-
rithm requires input dihedral angles greater than 60° between input edges, greater
than 69.3° (arccos v/2/4 =~ 69.3°) between input edges and planes, and greater than
90° between input planes. Shewchuk also conjectured that, in higher dimensions,
Ruppert’s algorithm terminates for £/R < 2(=9/2 with good grading.

Figure 1.5: Initial (left) and final mesh with 426 triangles (right) generated by
Ruppert’s algorithm.

S —————

Figure 1.6: Input piecewise linear complex with small angles (left) and respective
mesh (right) created with Ruppert’s algorithm.

In parallel to Ruppert’s work, Chew [Chew, 1993] proposes in 1993 a second
algorithm that is very similar but slightly better and generates a constrained De-
launay triangulation. Shewchuk [Shewchuk, 1997] saw that this new algorithm
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Figure 1.7: Input piecewise linear complex (left) and cut on the final tetrahedral
mesh (right) generated by Ruppert’s algorithm.

has the same basis of Ruppert’s algorithm by replacing the diametral circles by
lenses, and considering the constrained triangulation. This algorithm guarantees
output angles in the range [26.57°,126.9°] (arcsin1/v/5 ~ 26.57°), [28.6°,122.8°]
with Miller et al. analysis [Miller et al., 2003], and requires the same input angle
constraints as Ruppert’s algorithm. The second Chew’s algorithm for tetrahedral-
izations [Shewchuk, 1997] terminates for shortest edge length to circumradius ratios
no smaller than v/6/4 ~ 0.6124 with grading guarantees. Shewchuk also conjectured
that, in higher dimensions, Chew’s second algorithm terminates for /R < ,/3/24
with good grading.

In 2002 Boivin and Ollivier-Gooch [Boivin and Ollivier-Gooch, 2002] extended
Ruppert’s Delaunay triangulation algorithm for curved boundaries, which was latter
fixed and simplified by Gosselin and Ollivier-Gooch [Gosselin and Ollivier-Gooch, 2007].
The fundamental idea of this strategy is to create an initial Delaunay triangulation
just fine enough to allow a fast refinement, as shown in Figure 1.8. According
to Gosselin and Ollivier-Gooch, the subsegments in the initial triangulation can-
not contain any visible vertex in their diametral lenses, and the angular variation of
their subcurves should be less than 7/6. Quality, grading and size optimality follows
straightforwardly from Chew’s second algorithm because a piecewise linear approxi-
mation of the input is in the triangulation. Borovikov et al. [Borovikov et al., 2005]
proposed an intricate conforming constrained Delaunay tetrahedralization algorithm
based on a Delaunay property in the parametric space of curved manifolds (input
surfaces). Most ideas of this algorithm are empirical and its theoretical guaran-
tees were not deeply investigated. Cheng et al. [Cheng et al., 2007b] proposed a
different approach with theoretical guarantees based on conditions established by
Edelsbrunner and Shah [Edelsbrunner and Shah, 1994] for homeomorphism between
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Figure 1.8: Input curved complex (top-left), initial mesh with 14 triangles (top-
right), mesh refined for quality with 80 triangles (bottom-left) and mesh refined for
boundary accuracy with 284 triangles (bottom-right).

a manifold and the restricted Delaunay simplicial complex for samples over it. The
algorithm was latter simplified [Cheng et al., 2007a] to one that guarantees an out-
put homeomorphic restricted simplicial complex as samples on input get denser.

A guaranteed quality Voronoi refinement algorithm for anisotropic triangular
mesh generation was proposed by Labelle and Shewchuk [Labelle and Shewchuk, 2003],
and extended for domains with curves by Yokosuka and Imai [Yokosuka and Imai, 2006].

The first provably good mesh generation algorithm was introduced in 1988 by
Baker et al. [Baker et al., 1988]. Bern et al. [Bern et al., 1990] proposed the first
algorithm for conforming triangulations based on quadtrees with quality, grading
and size optimality guarantees (see Figure 1.9 for an example without boundary
conformity, and with an unbalanced quadtree). All output angles are guaranteed to
lie in the range [18.43° 90°] (arctan1/3 ~ 18.43°) and the output mesh is notori-
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ously axis aligned. This algorithm was generalized in 2000 to higher dimensions by
Mitchell and Vavasis [Mitchell and Vavasis, 2000].
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Figure 1.9: Triangular mesh (right) generated from the quadtree decomposition

(left).

Some approaches to mesh generation are physically based on particle simulation,
usually with analogy to bubble packing [Yamakawa and Shimada, 2000] or spring
network [Persson, 2005]. They start with a crude mesh and improve the quality
forcing equilibrium or finding the minimum entropy point. The high quality output
meshes, as the example shown in Figure 1.10 from the mesh generator for implicit
geometries developed by Persson [Persson, 2005], are extremely well graded and
sized. Such a great result comes at a price and is limited. The points must be well
distributed from the beginning, otherwise a local minimum may trap the algorithm.
The update is expensive because all vertices must be moved in every iteration, and
the number of iterations is theoretically unbounded. It is not natural to conform
boundaries separating sub-domains or any lower dimensional object other than the
domain contour. They usually use the Delaunay criterion on their connectivity
scheme. All these features essentially define this approach as a mesh optimization
process for interior points, where there are no guarantees to reach good results for
arbitrary input geometries, but start meshes will not get worse.

1.4 Main results and overview of the thesis

The geometrical input for a Delaunay refinement algorithm is usually given by a
piecewise linear complex (PLC) or, recently, by piecewise smooth complex (PSC).
The former one deals with non-curved complexes, and the latter one deals with
a subset of general curved complexes. A general domain definition is introduced
in this work as a natural extension of the piecewise linear complex: the manifold
complex. For any given set, it is proven that there is a unique manifold complex
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Figure 1.10: Initial (left) and final (right) mesh generated by physical simulation.

representation. Some differential and topological properties for a manifold complex
are sketched, as well as its computational representation.

Shewchuk has proven in his thesis that a triangulation is strongly Delaunay if
there exists a circumcircle, for every edge, that contains no other vertex of the
triangulation other than the edge endpoints. In this work this theorem for strongly
Delaunay simplicial complexes is extended to higher dimensions by stating that
a simplicial complex is strongly Delaunay iff codimensional simplices are strongly
Delaunay, for any single dimension.

With the theorem just stated at hands, the Chew’s and Ruppert’s algorithms are
revisited and presented in the point of view of protecting balls. Under this perspec-
tive a Delaunay refinement algorithm for curved complexes arises more naturally.

A generalization of the fundamental idea of the Bowyer-Watson algorithm is
the basis of the generalization of the Ruppert’s and Chew’s second algorithm for
dealing with manifold complexes. This extension is presented as a theorem and
guarantees that simplices representing input pieces will be part of the simplicial
complex throughout the meshing process. It is proposed a feasible algorithm with
expected theoretical guarantees on termination and quality.

During the implementation small contributions take place. A data structure
for manifold complexes is given under the mesher requirements, and a triangle like
data structure is derived to store the simplicial complex. The fan search in the
simplicial complex update in a incremental algorithm is also introduced. A Newton-
Raphson iterative algorithm is derived to find a Voronoi point over a curved surface.
Robust predicates are generalized to arbitrary dimensions. Many results are given
on Delaunay refinement algorithms. The Delaunay high performance is verified,
achieving speeds of about 50,000 nodes/second in 2-dimensional meshes, and 10,000
nodes/second in 3-dimensional meshes in a single processor computer.



Chapter 2

Domain representation

In the finite element method, the partial differential equations are discretely solved
over a bounded domain S C R", as shown in Figure 2.1, which may be disconnected
and contain lower dimensional parts. Disconnected parts may represent indepen-
dent problems, or may be virtually connected through boundary conditions. Lower
dimensional parts represent thin objects, where a suitable formulation is applied.

Q O\

Figure 2.1: A bounded domain in R? where the finite element method is applied
(left) and some subsets inside it (right).

The set S must be represented by a collection of subsets (see Figure 2.1). These
subsets are assigned to physical properties, or boundary conditions... or whatever
the problem requires. This chapter defines an unambiguous partition of S, in order
to guarantee a nice representation of its features.

2.1 Manifold complex

Before defining the fundamental idea of the domain partition - the manifold com-
plex -, some basic definitions and concepts are first introduced to let the text self-
contained and to ease comprehension.

Definition 1 (disjoint) Two sets are disjoint iff they have no element in common.

Definition 2 (cover) The cover of set aS is a collection of nonempty non-duplicated
subsets whose union s S.

Definition 3 (partition) A partition of a set'S is any cover of S in which subsets
are pairwise disjoint.

33



34 CHAPTER 2. DOMAIN REPRESENTATION

Definition 4 (neighborhood) A neighborhood of a point p is any set containing
a ball centered at p and with radius € > 0.

The neighborhood of a point introduces into a set the very simple, but also very
important, concept of open and closed.

Definition 5 (open set) A set is open iff any point in it has a neighborhood lying
in the set.

Definition 6 (closed set) A set is closed iff any point outside it has a neighborhood
disjoint from the set.

Definition 7 (closure) The closure of a set is the smallest closed set containing
it.

Definition 8 (boundary) The boundary of a set S is the intersection between the
closure of S and the closure of the complement of S.

The idea of open sets brings to small scales the concept of infinite, like in the
definition of limits. The infinitely far is where anything beyond makes no difference
but there is always something beyond. The infinitely close is where anything in
between makes no difference but there is always something in between. When the
boundaries of a set are taken away, what remains includes something infinitely close
to it, which characterizes an open set.

Definition 9 (topological space) A topological space is a set X together with a
collection of open subsets T that satisfies the conditions

1. 0eT
2. XeT
3. The intersection of a finite number of sets in T is also in T .

4. The union of an arbitrary number of sets in T is also in T .

The union of an arbitrary number of closed sets can get infinitely close to a
point, which defines an open set. However, the union of an arbitrary number of
open sets will never lead to a closed set. A similar analysis is valid for intersection,
where the intersection between two sets is the complement of the union of their
complementary sets. Hence, the union of the complement of an arbitrary number of
open sets (i.e. union of closed sets complementary to the intersection of open sets)
can get infinitely close to a point, whose complement defines a closed set. However,
the intersection of an arbitrary number of closed sets will never lead to an open set.

When refereing to a neighborhood of a point in a set or a topological space, the
neighborhood is subtended to be its intersection with them, which is the same as
neighborhood relative to them.
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k=3 k=2 k=1 k=0

Figure 2.2: Examples of k-manifolds projected on the plane.

Definition 10 (k-manifold) A k-manifold is a topological space where there is a
neighborhood around every point that is topologically the same as an open k-ball.

The definition of boundary of a manifold follows straightforwardly from the defi-
nition of boundary of a set. The boundary of a k-manifold is not part of it, by defini-
tion. This induces a natural partition of a set into n-manifold pieces, n = k, ..., 1, 0.
It is interesting to note that there are manifolds without boundaries, like a circle or
a torus, called closed manifolds.

The partition of a set using k-manifolds in R"™ is not unique when the neighbor-
hood of a point is topologically the same as the union of more than two distinct
half open k-balls (see Figure 2.3). This only happens when k£ < n and it is closely
related to the connectivity between subsets.
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Figure 2.3: Example of a set in R? with a junction point and its different partitions

into n-manifolds, n = 0, 1, 2.

0

n=

Definition 11 (connected) Two sets are connected iff there is at least one element
in a set that lies in the closure of the other set.

A set is connected iff it cannot be partitioned into two disconnected nonempty
subsets. Notice that the definition also applies to the connectivity between discon-
nected sets. Joint and connected have different meanings, as well as disjoint and
disconnected. With this last concept, it is possible to define a manifold complex.

Definition 12 (manifold k-complex) A manifold k-complez is a collection of
nonempty connected pairwise disjoint n-manifolds, n = 0, ..., k, where pieces of the
same dimension are pairwise disconnected.

A collection of disjoint sets - the domain with its features - can be element-wise
partitioned into a manifold complex, as shown in Figures 2.4 and 2.5. The name
complex is used for a collection of subsets. Each element in this collection is a
piece, so that a manifold is a special instance of a piece. The specification of the
n-dimensionality of a piece is denoted by n-piece, as used in n-manifold.
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o\

Figure 2.4: Example of a 2-dimensional domain (left) partitioned into a manifold
2-complex (right).

N

Figure 2.5: Example of a 3-dimensional domain (left) partitioned into a manifold
3-complex (right).

n=0 n=0,1,2

n=1 n=0

Definition 13 (junction degree) The junction degree of an n-manifold X in a
manifold k-complex M is the mazimum number of disjoint (n + 1)-submanifolds in
M that contain X in their closure.

Notice that a single manifold can have up to 2 disjoint submanifolds containing
the same lower dimensional manifold in their closure. Each (n + 1)-submanifold
counted up is called a wing of the junction n-manifold. Two manifolds are incident
iff their closure are joint.

Theorem 1 The partition of a set in R* into a manifold k-complex is unique.

Proof. For k-manifolds, there are no partition ambiguities. For n-manifolds
where n < k, all locations where the neighborhood is not topologically an n-ball are
glued together into lower dimensional subsets, which will be also subject to parti-
tion. This partition scheme goes on until O-dimensional pieces, where there is no
connectivity and, thus, no partition ambiguities. O

In a manifold complex, each lower dimensional k-manifold connected to a higher
dimensional n-manifold, n > k, is a facet of S. If S has boundaries, then it is
delimited by lower dimensional facets.

The concept of open sets played an important role in the definition of manifold
complexes. However, it makes no difference in computational representations of
open or closed sets, since the missing piece must also be described in open sets.
Manifold complexes may represent open, closed or half-open domains, simply by
marking the pieces that are not in the domain.

2.1.1 Differential properties

In order to define differential properties of manifold complexes, derivatives on man-
ifolds must be defined first.



2.1. MANIFOLD COMPLEX 37

Definition 14 (continuous function) A function f is continuous at a point x
iff for any € > 0 there exists a § > 0 such that |f(zo) — f(x)| < € for any x in the
netghborhood of xo within a radius 9.

Definition 15 (C* function) A function f is k-continuous, denoted by C*, iff its
k derivative is continuous.

Definition 16 (homeomorphism) A function ¢ : X — Y, between two topological
spaces X and Y, is a homeomorphism iff it is a bijection and continuous in both
directions.

Definition 17 (C* n-manifold) An n-manifold is k-continuous, denoted by C*,
iff there is a C* homeomorphism ¢ : U + V, between the neighborhood U of any
point in it and an open subset of the n-dimensional Euclidean space V C R™.

A manifold complex is C* if all its manifold pieces are C*. The definition of a
manifold complex guarantees that it is C°. To make it C* for k > 1, all points where
the [-th derivative is not continuous, [ < k, must become pieces of the complex (see
Figures 2.6 and 2.7).

o . .
OOOO ..a.
o OO Q ° ..
O\ : . O\
o L[]
n=2 n=0 n=0,1,2

Figure 2.6: Example of a 2-dimensional domain (left) partitioned into a C'' manifold
2-complex (right).

o A —

Figure 2.7: Example of a 3-dimensional domain (left) partitioned into a C' manifold
3-complex (right).

Differential discontinuities occur only in m-pieces in R™ where m < n. Thus,
their locations are p-pieces where p <m = p <n — 2.

The C* continuity of a manifold complex may serve to store locations of discon-
tinuities. Otherwise, important features in C', or even C?, discontinuities are very
likely to be smoothed during the mesh generation.
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2.1.2 Topological properties

There are several possible topological configurations for a single piece, like the sur-
face examples in Figure 2.8. In this figure, parallel edges join one another with the
orientation indicated with arrows, so that each letter corresponds to a distinct point.

B
A B
1 A
c

L L L L L

A B A B A A A B
- Nl Y FA
— » > [ l
A B C A A A B A

Figure 2.8: Example of different kinds of topological configurations of 2-manifold
pieces. From left to right: plane, pipe, sphere, torus and Mobius strip.

Homeomorphism, homotopy, contractibility, genus and orientability are impor-
tant invariants observed in topological configurations.

Definition 18 (homeomorphic) Two sets are homeomorphic iff there exists a
homeomorphism between them.

Definition 19 (homotopic) Two maps f,g: X — Y are homotopic iff there is a
continuous map F : X x [0,1] — Y such that F(z,0) = f(z) and F(z,1) = g(x).

Definition 20 (homotopy equivalent) Two spaces X andY are homotopy equiv-
alent iff there are continuous maps f : X — Y and g : Y — X such that the com-
position f o g is homotopic to the identity map of Y and g o f is homotopic to the
wdentity map of X.

Less formally speaking, two sets are homotopy equivalent if one can be continu-
ously deformed into the other. Homeomorphic is stricter than homotopy equivalent.
Every set X homeomorphic to Y is also homotopy equivalent to Y, but a set X ho-
motopy equivalent to Y is not necessarily homeomorphic to Y. For example, a circle
is homotopy equivalent to a torus, but not homeomorphic to. A disk is homotopy
equivalent to its center, but a circle is not.

Definition 21 (contractible) A set in R™ is contractible iff it is homotopy equiv-
alent to one of its points.
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Definition 22 (genus) The genus of an n-manifold is the largest number of nonin-
tersecting simple closed (n—1)-manifolds that can be drawn on it without separating
it.

An n-manifold is simple closed iff it is homeomorphic to an n-hypersphere. The
genus of a manifold is a special kind of hole. For instance, a sphere has genus 0 and
a torus has genus 1. Any submanifold of R? has genus 0, since an attempt to draw a
closed curve on it will separate the enclosing points (even when a hole is enclosed).
Analogously, any n-manifold in R™ has genus 0.

Definition 23 (orientable) An n-manifold is orientable iff it has a partition of
open n-balls where each one has the same orientation of its neighbors.

The sense of orientation is the same right or left handedness used in differential
geometry or vector algebra. A famous example of a non-orientable manifold is the
Mébius strip (right most example in Figure 2.8). The orientability of a piece is also
inherited by the mesh elements that represent it.

The topology of a piece is not explicitly represented in the manifold complex.
Thus, it must be identified according to the representation of a piece in the complex.
Topological properties are essential to create an initial mesh homeomorphic to an
input manifold complex.

2.1.3 Flat complex

The Delaunay refinement algorithms were originally developed for PLC (short for
piecewise linear complex) inputs [Miller et al., 1996]. It is also used the name PSLG
(short for planar straight line graph), which is a PLC in the 2-dimensional space.
The flat complex is defined next as a natural special case of a manifold complex,
but representing the same pieces as PSLG and PLC.

Definition 24 (linear combination) A linear combination of a set of wvectors,

columns of a matriz V = [vy,...,vp] € R™* s a weighted sum of its elements V),
A € RF.

Definition 25 (affine combination) An affine combination of a set of vectors,
columns of a matriz V = [vy,...,vp] € R™F s a weighted sum of its elements V),

A€ R¥, where 328 A = 1.

Definition 26 (linearly independent) A set of vectors is linearly independent iff
no element in it may be expressed as a linear combination of the others.

Definition 27 (affinely independent) A set of vectors is affinely independent iff
no element in it may be expressed as an affine combination of the others.
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Definition 28 (k-flat) A k-flat is the set of all affine combinations of a set of k+1
affinely independent vectors.

Definition 29 (flat k-complex) A flat k-complex is a manifold k-complex where
each n-manifold piece is contained in an n-flat, for all n € {0, ..., k}.

A flat k-complex is an open piecewise linear complex where member k-pieces are
also defined. They represent exactly the same type of domains, but the new named
definition was stated to avoid confusion with the “open” qualifier or the presence of
k-pieces, and also to emphasize it as a natural special case of a manifold complex.

2.2 Representation of pieces

The representation of pieces may be divided into implicit and parametric, which are
complementar in several aspects.

Definition 30 (implicit representation) Let P be a k-piece in R™. An implicit
representation for P is defined by P = {p € R" | f(p) =0, f:R"+— R}.

Definition 31 (parametric representation) Let P be a k-piece in R". A para-
metric representation for P is defined by P = {p € R* | p = f(u), f:[0,1]* — R"}.

Let P be the set of points that compose a piece of a complex. Implicit represen-
tations define distances from P (in the sense that they are null only on the piece,
so that they are not necessarily distance functions), and parametric representations
define member points of P. The conversion between these two representations is not
always simple, which create boundaries between them.

An implicit representation is suitable to answer questions on membership points
of a piece: e.g. f =0 means “on the piece”, f < 0 means “in one side of the piece”
and f > 0 means “in the other side of the piece”. It is also easy to project a point
onto the piece if the function is an Euclidean distance function: the gradient of the
function tells the direction of the closest point on the piece, and the function value
tells the step length to get there. Furthermore, Boolean operations can be trivially
applied by taking minimum or maximum between two distance functions operands.
In mesh generation context, the distance function value itself is very worthy to size
control.

A parametric representation is very suitable to fast generate points on the piece
it represents. Furthermore, it is very intuitive to model objects with it, specially
free shape ones. The parametric space, as shown in Figure 2.9, is very handful to
deal with mapping to a known Cartesian coordinate system. In mesh generation
context, it is useful to localize features of the pieces, like boundaries or topological
features .



2.3. MEASURES ON DOMAINS 41

Figure 2.9: Parametric space of a 2-piece in R3.

2.3 Measures on domains

Again, in order to let this text self-contained and also to ease comprehension, some
basic concepts will be introduced before defining important measures on domains
used in a mesh generation context. These metrics are useful to quantify the quality,
grading and size optimality of meshes.

2.3.1 Distance

The most basic measure on a domain is the distance to a piece of it. The distance
between two sets is the shortest distance between one member point of each set. The
usual distance function between two points, denoted by dist(p, ¢), is the Euclidean
norm, denoted by ||p — ¢||,, which is adopted as default. Since a norm is also used
to describe length or size, the notation dist(p,q) = |lp—¢l| = |p—q| = |pq| is
abstracted. A distance function is formally defined as a path integration in a metric
space. When the path is omitted, it subtends to be the one with the smallest
distance.

Definition 32 (metric) A real valued function f(p,q) between two points p,q € S
15 a metric i S iff

1. f(p,q) > 0 (nonnegative)

2. f(p,q) < f(p,s)+ f(s,q), Vs €S (triangle inequality)
3. f(p.q) = f(q,p) (symmetric)

4- flp,a) =0 iff p=gq

If the last condition in definition 32 is f(p,q) = 0 if p = ¢ (notice that now the
function may vanish when p # ¢), then the function is called a pseudometric. A set
that has a metric is called a metric space.

Figure 2.10 shows the level curves of the distance function for a set. Dis-
tance functions are basic, many other metrics are derived from them. Persson
[Persson, 2005] uses distance functions to represent pieces in its mesh generator
for implicit geometries, so that any point can be easily projected on the geometry
contour.

Definition 33 (geodesic distance) The geodesic distance g(p, q) between two points
p,q €S in a setS is the length of the shortest path in S linking p and q.
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Figure 2.10: Contour curves of the distance function (right) to a set (left).

2.3.2 Medial axis

Amenta and Bern [Amenta and Bern, 1998] have used the medial axis to reconstruct
shapes with theoretical guarantees.

Definition 34 (medial axis) The medial azis of a set'S is the the set of all points
that are equidistant to at least two points in S.

Figure 2.11: Medial axis (right) of a set (left).

The medial axis (see Figure 2.11) is closely related to the Voronoi diagram of
a point set. If a point p is closest to two points on a curve, it lies on the edge
of their respective Voronoi cells. If p is closest to more than two points, it lies on
a vertex of their respective Voronoi cells. Contiguous parts of the curve leads to
contiguous parts of the medial axis, by infinitesimal analysis. Hence, the medial
axis is composed by the small edges of the Voronoi diagram if sample points on the
curve are enough close. This algorithm was used to create the medial axis shown in
Figure 2.11. A similar analysis is valid in higher dimensions.

When the curve is not smooth, the medial axis has spurious edges meeting the
non-smooth points, since the bisectrix of two incident segments is equidistant to
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both. Similarly, the medial axis will get closer to the curve where the curvature is
greater. This analysis also generalizes to higher dimensions.

2.3.3 Local feature size

A local feature size is any function that quantifies the size of a geometry in any
point. It is commonly used in mesh generation and shape reconstruction to state
theoretical guarantees.

Ruppert [Ruppert, 1994] proposed a local feature size function (see Figure 2.12)
for a flat complex and proved that it yields planar meshes within a constant factor
of the optimal size. Shewchuk [Shewchuk, 1997] used the same measure to prove
grading bounds for tetrahedralizations.

Definition 35 (local feature size) The local feature size of a point p relative to
a flat k-complex F in R", denoted by lfsx(p), is the radius of the smallest n-ball
centered at p that intersects two non-incident pieces of F.

Figure 2.12: Local feature size at the disks centers p;, 1 = 0, ..., 4, graphically repre-
sented by the respective radius.

Theorem 2 (1-Lipschitz [Ruppert, 1994]) The local feature size is 1-Lipschitz.

Proof. The n-ball B of radius r = lfsz(p) centered at p intersects two non-incident
pieces of F, by definition of local feature size. The ball of radius ' = r + ||¢ — p||
centered at ¢ contains B and thus intersects the same two disjoint pieces of F as B
does. Hence

Ifsr(q) < 7' =71+ |q—pl =lsz(p) + |l¢ — pl (2.1)

and, since the same analysis is valid for p in relation to ¢,

fsr(q) — lsx(p)|
lg — pll

1 (2.2)
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Figure 2.13: Level curves of the local feature size (right) for a manifold complex
with 3 pieces (left).

The local feature size can be extended to manifold complexes by stating that it
is the radius of the ball that intersects two non-incident pieces or that contains a
whole (> 1)-piece. This new definition (see Figure 2.13 for an illustrative example)
also leads to a 1-Lipschitz function.

A common definition of local feature size for curved geometries used in shape
reconstruction is the distance to the medial axis. With this definition, Amenta and
Bern [Amenta and Bern, 1998] proved that sample points S C F, from a smooth
curve or surface F, spaced a constant factor of the local feature size, is guaranteed
to be reconstructed to a homeomorphic simplicial complex. Since the reconstructed
shape is a homeomorphic mesh for the unknown F, the sampling condition also
guarantees the existence of a homeomorphic mesh to F. However, this condition is
much stricter than necessary when F is known. Similarly to the previous definition,
the distance to the medial axis is also 1-Lipschitz.

2.4 Conclusions

The main result of this chapter is the definition of manifold complex, together with
its properties. Its definition as a collection of open sets makes all connected pieces
to a piece to lie in its boundary. One could make an equivalent definition in terms
of closed sets. Some intersection properties are lost in the definition as open sets
since all pieces are disjoint.

In mesh generation the local feature size is ideally used to provide a measure of
the coarsest mesh possible for an input geometry. For curved manifold complexes
this measure is not well defined since there is no bound on how far it is from the
coarsest possible simplicial complex. In this case the local feature size is usually
degenerated to the coarsest mesh size according to the capabilities of the algorithm.



Chapter 3

Delaunay refinement

3.1 Basic concepts

3.1.1 Simplicial complex

Definition 36 (simplicial k-complex) A simplicial k-complex is a manifold k-complex
or, more specifically, a flat k-complex where all n-pieces are open n-simplices, n =
0,1,....,k, and all open j-simplicial facets of a n-simplex are in the complex, j =
0,1,...,n.

./. P O/o Cp) .... :'.
n=2 n=1 n=0

Figure 3.1: Example of a simplicial 2-complex (left) decomposed into its n-
dimensional pieces.

Usually a simplicial k-complex is defined as a collection IC of closed n-simplices,
n=20,1,...,k, where

1. every facet of a simplex in K is also in KC;
2. a nonempty intersection of any two simplices in K is a facet of each of them.

In this text the definition as a collection of open n-simplices was employed to treat
a simplicial k-complex as a natural special case of a manifold k-complex. Hence, a
simplicial k-complex from a mesh generator must be an approximate partition of a
manifold k-complex, or a finer partition of a flat k-complex.

3.1.2 Delaunay

In 1934, Boris Delaunay [Delaunay, 1934] introduced a condition for simplicial com-
plexes that leaded to many interesting properties. It asserts that no vertices lie

45
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inside a circumscribed ball of any element in the simplicial complex, as shown in
Figure 3.2, known as the empty ball property. This is the basis of the Delaunay
refinement and will be defined next under several aspects.

Figure 3.2: Example of a Delaunay triangulation (left) and a non Delaunay trian-
gulation (right) for the same set of vertices.

Definition 37 (Delaunay simplicial complex [Delaunay, 1934]) A simplicial
complexr S is Delaunay iff there exists an open circumscribed ball for every simplex
S € § that contains no vertices.

Definition 38 (strongly Delaunay simplicial complex) A simplicial complex
S is strongly Delaunay iff there exists a closed circumscribed ball for every simplex
S € S that contains no vertices other than the vertices of S.

A Delaunay simplicial complex always exists for a set of points in R™, but it is
not unique when more than n + 1 points lie in a common closed n-ball. In turns, a
strongly Delaunay simplicial complex does not exist when more than n 4+ 1 points
in R™ lie in a common closed n-ball, but it is always unique.

3.1.3 Voronoi

In 1908 Georgy Voronoi [Voronoi, 1908] introduced the concept of partitioning a set
into closest points to each point of a set.

Definition 39 (Voronoi cell) A Voronoi cell V of a point p € S C R" is the set
of all points that are closer to p than to any other point in S, i.e. V=V, = {x €

R™ | ||z —p|| < |z —qll, Vg €S,q# p}.

Definition 40 (Voronoi flat complex) The Voronoi flat complex of a point set
S C R" is a flat n-complex that contains the Voronoi cells of all elements in S as

n-flat manifolds and their boundary partitioned into lower dimensional flat mani-
folds.

The Voronoi flat complex Vp of a point set P € R™ is commonly known as Voronoi
diagram. It is closely related to a Delaunay simplicial complex of P, as shown in
Figure 3.3. For any two distinct points in P, the set of equidistant points to both is



3.1. BASIC CONCEPTS 47

Figure 3.3: Voronoi diagram and Delaunay triangulation for the same set of points.

a (n—1)-flat. Conversely, every (n—1)-flat in V is equidistant to two distinct points
in P. Following the sequence, every k-flat in V is equidistant to at least n — k + 1
points in P, k = 0,1, ...,n. (More than two distinct points can lie in the boundary of
the same (> 1)-ball. Hence the limit of n — k + 1 points is obviously tight iff every
point in a k-flat is equidistant to exactly n — k + 1.)

Definition 41 (fully Delaunay simplicial complex) Let D be a simplicial com-
plex and VY be the Voronoi flat complex of the vertices in D. Then D is fully Delaunay
iff it 1s Delaunay and every k-piece in V is equidistant to exactly n — k + 1 vertices
in D.

Every n-simplex of a fully Delaunay simplicial complex D is uniquely related to
a vertex of the Voronoi flat complex Vp of P because the set of points closest to
n+ 1 affinely independent points in R™ is a single point. Analogously, every (n— k)-
simplex in D is uniquely related to a k-piece in V. So there is a duality relationship
between Voronoi flat complexes and Delaunay simplicial complexes.

Theorem 3 ([Watson, 1981]) Let P € R? be a set of points. If a subset A of
n + 2, points in P lie in a common (n — 1)-hypersphere, where n < d, then there
exists a subset B of n + 3 points in P that lie in a common n-hypersphere.

Proof. Since a (n — 1)-hypersphere is a cross-section of an n-hypersphere, any
point added to A will lie in a common n-hypersphere with A. O

Corollary 1 A simplicial complex is fully Delaunay iff it is strongly Delaunay.

The definition of fully Delaunay was given only to clarify the intrinsic property
of a strongly Delaunay simplicial complex. Since they are completely equivalent,
only the latter will be used henceforth.
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Theorem 4 (strongly Delaunay) A simplicial complex D in R? is strongly De-
launay iff the sub-collection of n-simplices in D is strongly Delaunay, for a single
arbitrary n.

Proof. By definition, all n-simplices, for a given n, in a Delaunay simplicial com-
plex have the empty ball property. To prove the converse implication, consider the
Voronoi flat complex V for the vertex set of D. If the simplicial complex is strongly
Delaunay, every vertex of )V is uniquely related to a d-simplex of D. Suppose, by
contradiction, a (d — 1)-simplex not in D has the empty ball property. Then grow
this ball until another vertex is met. The resulting d-simplex must be uniquely
related to a vertex in V, which cannot be true since it is not in D. By induction,
every k-piece of V is uniquely related to a (d — k)-simplex of D. Then grow this ball
until another vertex is met. The resulting (d — k)-simplex must be uniquely related
to a k-piece in V), which cannot be true since it is not in D. 0

Shewchuk [Shewchuk, 1997] has proven in his thesis the strongly Delaunay the-
orem for n = 2 using a different approach.

3.1.4 Conforming Delaunay

Definition 42 (conforming Delaunay simplicial complex) A simplicial com-
plex S is conforming Delaunay to a flat complex F iff S is Delaunay and each piece
of F is a union of pieces in S.

In a conforming Delaunay simplicial complex of F, the vertices of F are aug-
mented by additional vertices, called Steiner points, so that its simplices conforms F
and are Delaunay. Edelsbrunner and Tan [Edelsbrunner and Tan, 1993] show that
any flat 2-complex F can be triangulated with no more than O(m?n) augmenting
vertices, where m is the number of edges in F, and n is the number of vertices in

F.

3.1.5 Constrained Delaunay

Definition 43 (visible) A point p € RY is visible from another point ¢ € R? in
respect to a (d — 1)-piece S contained in a (d — 1)-flat F iff either the line segment
pq does not intersect the closure of S, or pq lies in F.

Definition 44 (constrained Delaunay simplicial complex) A simplicial com-
plex S 1s constrained Delaunay upon a flat complex F iff it has no vertices not in
F, each piece of F is a union of pieces in S, and there exists an open circumscribed
ball for every simplex S € S that contains no vertices visible from S in respect to F.

Unlike conforming Delaunay simplicial complexes, constrained Delaunay sim-
plicial complexes do not allow any augmenting vertex. Because of this, some flat
k-complexes, for £ > 3, do not have any constrained simplicial complex, like the
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Schénhardt’s polyhedron [Schénhardt, 1928], as shown in Figure 3.4. Furthermore,
they are not necessarily Delaunay (see Figure 3.5). Their definition is an extension
of the Delaunay condition when the input contains not only vertices but also higher
dimensional flat pieces. A simplicial complex can be conforming constrained.

Figure 3.4: Schonhardt’s polyhedron (right) is created by rotating one end of a
triangular prisma (left).

Figure 3.5: Constrained Delaunay triangulation (right) for the input vertices p and
q, and segment ab (left). The point ¢ is allowed to lie in the circumcircle of the
triangle Apab because ab occludes ¢ from any point in the interior of Apab.

The concept of constrained Delaunay was first introduced by Lee [Lee, 1978],
but it was named by Chew [Chew, 1989a]. Shewchuk [Shewchuk, 1998] proposed
the definition 44 for higher dimensions and proved that it exists if the n-simplices,
for all n < d — 2, are strongly Delaunay for a flat d-complex in R

3.1.6 Weighted Delaunay

Definition 45 (weighted point) A weighted point is the ordinate pairp = (p, P%) €
R™ x R.

The notation p = (p, P?), where a hat identifies a weighted point and a small
and a capital letter represent its respective ordinates, will be adopted henceforth.

The second ordinate is defined squared so that P is imaginary when P? < 0.

Definition 46 (weighted distance) The weighted distance between two weighted

points p and q is [[p — dll = +/llp — alF — P~ Q2

From the definition of weighted distance, a weighted point p is interpreted as
a ball centered at p with radius P. To clarify this, consider the weighted points
p = (p,0) and ¢ = (¢, Q?) (see Figure 3.6). Let also ¢ be a tangent point on ¢ of
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Figure 3.6: Geometric representation of a weighted point ¢. The weighted distance
to p = (p,0) is |[p — t|| when Q? > 0, and ||p — s|| when Q* < 0.

a line that goes through p, and s be the point on ¢ so that the line segment ¢s is
orthogonal to pg. The weighted distance between p and ¢ is |[p — ¢|| when Q% > 0,
and ||p — s|| when Q* < 0.

If the respective balls of two weighted points are joint, then the weighted distance
between them is imaginary. A geometric interpretation of the weighted distance
between two weighted points with non null weights is given in Figure 3.7. Geometric
interpretation for other weighted points follows similarly.
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Figure 3.7: Geometric representation of two weighted points. The weighted distance
between them is ||t — ¢|| when P% Q2 > 0.

Two weighted points p and ¢ are orthogonal when the weighted distance between
them vanishes. This can be visualized in Figure 3.6, by replacing the null weight
P by ||p —t]] when Q* > 0 (or by ||p — s|| when Q? < 0), so that [[p—g|| = 0. A
weighted point is said to be orthogonal to a set of weighted points if it is orthogonal
to every element in it.

Definition 47 (orthoball) An orthoball for a set of weighted points V = {4, ..., 0y }
15 a ball whose interpretation as a weighted point is orthogonal to V.

Definition 48 (weighted Delaunay simplicial complex) A simplicial complex
1s weighted Delaunay iff there exists an open orthoball for every simplex in it that
contains no vertices.

3.1.7 Restricted Delaunay

Definition 49 (restricted Delaunay simplicial complex) A simplicial complex
15 restricted Delaunay to a topological space X iff every piece of the dual Voronoi flat
complex intersects X.
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Figure 3.8: Geometric representation of an orthocircle for weighted points with
positive weights.

The definition 49 was given by Edelsbrunner and Shah [Edelsbrunner and Shah, 1994]
(see Figure 3.9), as a generalization of the Delaunay condition over curved surfaces
proposed by Chew [Chew, 1993]. The Chew’s criterion is the emptiness of the open
circumscribed ball with center on the surface, for every triangle in the mesh.

Figure 3.9: Delaunay simplicial complex (right) restricted to a set.

Theorem 5 (nerve [Leray, 1945]) If the intersection between a set S and the
Voronoi cell of each point p € P is either empty or contractible, then the restricted
Delaunay simplicial complex of P restricted to S is homotopy equivalent to S.

A graphical representation of the nerve theorem is given by Figures 3.9 (where
the condition is not verified) and 3.10 (where the condition is verified).

The restricted Delaunay simplicial complex concept in R? is closely related to
the medial axis, as shown in Figure 3.11.

3.1.8 Homeomorphic

Definition 50 (homeomorphic simplicial complex) A simplicial complex S is
homeomorphic to a manifold complex F iff every manifold M in F is homeomorphic
to a union of simplices in S with all vertices lying in M.

Note that a homeomorphic simplicial complex also requires the vertices of sim-
plices to lie in the pieces they represent. The coarsest homeomorphic simplicial
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Figure 3.10: A restricted Delaunay simplicial complex (right) that is homotopy
equivalent to its restricting set.

Figure 3.11: Voronoi diagram of point samples on a curve. The set of edges from
the Voronoi diagram that intersects the curve (left) is complementar to the one that
approximates the medial axis of the curve (right).

complex of an input manifold complex must be considered as reference for size op-
timality (see Figure 3.12). This is consistent with the size optimality defined for a
flat complex input, which is a special case of a manifold complex.

005 %

4 4

A A A F

Figure 3.12: Example of coarsest homeomorphic simplicial complexes for several
manifold complexes.
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Theorem 6 (topological ball property [Edelsbrunner and Shah, 1994]) Let
S C R™ be a set of points over a compact d-manifold X, Dg be the Delaunay simpli-
cial n-complex of S, and Vs be the Voronoi flat n-complex of S. If the intersection
with X of the dual Voronoi (n — d + k)-piece of any (d — k)-simplex in Ds, k < d,
15 either empty or homeomorphic to a k-ball, then the Delaunay simplicial complex
Ds restricted to X is homeomorphic to X.

Size optimal does not mean best representation of the input pieces, but that
it is represented in the coarsest manner. Optimal sampling points for best rep-
resentation of Lipschitz surfaces have been proposed by Boissonnat and Oudot
[Boissonnat and Oudot, 2007] with theoretical guarantees. It may serve as refine-
ment criteria if one desires this kind of output simplicial complex. This emphasizes
why the coarsest simplicial complex is always desirable.

3.2 Delaunay refinement

The Delaunay refinement is based on the point insertion in the circumcenter of a
simplex [Frey, 1987], preserving the Delaunay property of the simplicial complex
(see Figure 3.13).

Figure 3.13: Fundamental idea of the Delaunay refinement.

Theorem 7 (termination) Let ¢ be the minimum edge length of a simplex and R
its circumradius. If the point insertion is only in the circumcenter of simplices with
{ < R, then the Delaunay refinement will lead to a simplicial complex with ¢ > R
for every element.

Proof. The point insertion in the circumcenter of a simplex S cannot create edges
with length smaller than R, since the open circumscribed ball of S is empty by the
Delaunay property. Thus ¢/ > R > ( for every new edge created with length ¢ and
a simplex with ¢ < R. No creation of smaller edges cannot hold forever while new
nodes are inserted, implying that ¢ > R will hold true for every element after some
iterations. U

The termination theorem of the Delaunay refinement implies that every triangle
will have internal angles in the interval [30°,120°] in a simplicial 2-complex. This
comes from the relation ¢ = 2R sin f between an angle 6 and its opposite edge length
¢ in a triangle (see Figure 3.14), which for ¢ = R leads to sinf = 1/2 = 6 = 30°.
Note in Figure 3.14 that, since the triangles Arcq and Arcp are isosceles, Zreq =
7 —2(0+ ) and Lrep = — 263. Thus oo = Lrep — Zreq = 26.



o4 CHAPTER 3. DELAUNAY REFINEMENT

Figure 3.14: Properties between a triangle and its circumcircle: a = 26 (left) and

(/R = 2sin6 (right).

The ratio ¢/ R as a quality measure, i.e. distance to a regular simplex, works well
for triangles, but it fails for n-simplices when n > 3. An example of this failure is
the 3-simplex sliver, shown in Figure 3.15. In 1999, Cheng et al. [Cheng et al., 1999
proved the existence of a sliver free weighted Delaunay tetrahedralization for any
Delaunay tetrahedralization, without moving or adding any vertex.

Figure 3.15: The flat tetrahedron (sliver) on the left has the same ¢/ R ratio of the
one in the right.

3.3 Delaunay refinement for flat complexes

The Chew’s first algorithm for quality quasi-uniform conforming Delaunay simplicial
complex output; the Ruppert’s algorithm for quality, optimum size and grading
conforming Delaunay simplicial complex output; and the Chew’s second algorithm
for quality, optimum size and grading conforming constrained Delaunay simplicial
complex output; are the most remarkable Delaunay refinement algorithms for flat
complex inputs. They are depicted next.

3.3.1 Chew’s first algorithm

Chew’s first algorithm [Chew, 1989b] follows straightforwardly from the Delaunay
refinement. It was proposed for flat 2-complexes as the first provably good quality
Delaunay refinement algorithm. The fundamental idea is to segment all input edges
to a length h and then apply the Delaunay refinement to the resulting vertices until
no more simplex with circumradius greater than h lasts. Assuming the vertices are
at least h away from each other in the beginning, no edge lengths smaller than h
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will be in the final triangulation, so that all input edges will be conformed, as shown
in Figure 3.16. Any procedure that guarantees that a simplex is part of a simplicial
complex is called protection.

Figure 3.16: If the distance between any two points is at least h, then any two points
a and b that are h away from each other will have an empty diametral circle.

After the segmentation process all edge lengths must be in the range [h, L]. To
establish the upper bound L, consider a worst case regular k-simplex in R™ with
edge length L (see Figure 3.17). Because no simplex whose circumradius is less than
h will be selected for refinement, consider the closest point p lying h away from the
vertices v;, © = 0,1,...,k, of the k-simplex. The circumcenter g of the n-simplex
containing p and the k-simplex must be inside the n-balls of radius h centered at
the k-simplex vertices, so that it will not be selected for refinement and the (k+1)-
simplex formed by the vertices v; and p has an empty ball (by the strongly Delaunay
theorem this ensures that the simplex is in the Delaunay simplicial complex). The
limit is when ¢ is also h away from the vertices, where h? = (h/2)? + R} and Ry is
the smallest circumradius of the k-simplex (see relations (A.13)). Thus

3(k+1)
L=h 3.1
ok (3.1)
VO L: .'-..Vl

Figure 3.17: Worst case in the edge protection of the Chew’s first algorithm.

Within input angles smaller than 60° at a vertex p, it is impossible to place
vertices h away from each other, as shown in Figure 3.18. Under this situation,
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segmenting vertices that do not satisfy the h distance in a small input angle at p
can be placed exactly on hyperspheres centered at p with radius ¢h, for integer 7, so
that the open diametral balls of the conforming segments contains no vertex.

Figure 3.18: Input angles smaller than 60° at a vertex p makes it impossible to place
vertices h away from each other during the segmentation process.

Any simplex with an edge of length greater than 2h has a circumradius greater
than h and will be selected for refinement. Thus, in the final simplicial complex,
all edge lengths will be in the range [h, 2h], where the lower bound is only violated
within small input angles. Hence, the output conforming simplicial complex is quasi-
uniform. Notice also that not even the Chew’s algorithm itself would be able to
generate the input pre-discretization which is required to be in the range [h, L].

3.3.2 Ruppert’s algorithm

Ruppert [Ruppert, 1994] proposed a Delaunay refinement algorithm for triangula-
tions, latter extended for tetrahedralizations by Shewchuk [Shewchuk, 1997], where
the input is refined throughout the refinement instead of being pre-segmented. The
fundamental idea is to guarantee that the minimum circumscribed ball of lower di-
mensional simplices are empty (see Figure 3.19). Hence, lower dimensional simplices
conforming the input will have at least one empty circumscribed ball and, according
to the strongly Delaunay theorem, they will be part of the conforming Delaunay
simplicial complex.

\ \
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Figure 3.19: Protection of lower dimensional simplices by minimum circumscribed

disk (left) and ball (right).
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If a new vertex v lies inside the protecting ball of a simplex, then v is said to
encroach upon that simplex. Whenever a new vertex encroaches upon a (d — 1)-
simplex, it is rejected for refinement, and the circumcenter of that (d — 1)-simplex
is elected for insertion. This recursive insertion attempt can go on until 1-simplices.
Under this scheme, the Ruppert’s algorithm can be split up into two major steps:
recovery and refinement.

During the recovery, all input pieces are recursively meshed from lower to higher
dimensional ones until every simplex has an empty minimum circumscribed ball.
Every flat containing a piece defines a parametric space for its own mesh. The
circumcenter of a simplex is elected for insertion if its protecting ball is not empty.
Once all simplices of a piece are protected, they are guaranteed to be in the simplicial
complex. Hence, after the recovery step, the simplicial complex is guaranteed to
conform the input flat complex, and the input flat complex may be discharged since
it is exactly represented in the simplicial complex.

During the refinement, new vertices are inserted in the conforming simplicial
complex until specified output features are attained. Usually bounds on quality or
edge length are the features supported by theory. The circumcenter of a d-simplex
is elected for insertion if it does not satisfy the requirements.

Small angles

If two input edges are incident in small angle, then the algorithm may stuck in
an infinite encroachment, as shown in Figure 3.20. The largest angle 6§ where this
problem is verified is when the point ¢ lies in the pole of the diametral circle of vp,
so that p’ lies in the pole of the diametral circle of vg, and ¢ lies in the pole of the
diametral circle of vp'... and therefore 6 = 45°.

Figure 3.20: The point ¢ encroaches upon vp, which is split at p’, which encroaches
upon vq, which is split at ¢'...

To solve this problem Ruppert proposed a modified segment splitting using con-
centric shells, as shown in Figure 3.21. The first split of an input segment is at
its midpoint. The subsequent splits are at its intersection with concentric circles
(shells) nearest to its midpoint. The concentric shells have radius r2’, where i is in-
teger and r is a small constant. This modified split synchronizes adjacent segments
splits and prevents the infinite encroachment.

Skinny triangles constrained by small input angles must not be elected for refine-
ment because there is no way to get rid of them. Miller et al. [Miller et al., 2003]
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Figure 3.21: Concentric shells used to split segments. The first split of an input
segment is at its midpoint, and the subsequent splits are at its intersection with the
concentric shell nearest to its midpoint.

proposed a modified refinement selection which detects this situation. Let a and b
be vertices of a skinny triangle Aacbh lying on distinct input incident edges. The tri-
angle is only selected for refinement if ¢ is an input vertex and the angle Zacb > 60°
(see Figure 3.22). Notice that this modified refinement allows new small angles (i.e.
skinny triangles not constrained by the input) to appear inside small input angles.
Fortunately, its implementation is simple and it always terminates.

a!
/ m
a
<60°
c b el p b

Figure 3.22: The triangle Aabc on the left can be selected for refinement, while the
triangles Aabe, Aaba’ and Aa’b’b on the right cannot.

Shewchuk [Shewchuk, 2002] has shown a counterexample where skinny triangles
- consider anyone with a dihedral angle smaller than 6 - appear outside an small
input angle ¢ next to a large input angle (see Figure 3.23), whenever any skinny
triangle not constrained by the input can be selected for refinement. In this case,
other skinny triangles pop up outside the small input angle, which unleashes an
endless refinement towards the small input angle. Therefore, there always exists an
input planar graph where no meshing algorithm can triangulate it without creating
new angles smaller than 6.

Theorem 8 (grading [Mitchell, 1994]) If triangles incident are incident in a
common node p have no angle smaller than 0, then the ratio b/a, b > a, between
two opposite edges, with respective lengths a and b, along a line containing p is

g < (2cos0)™?, 0 e [0,7/3] (3.2)

and the limit is tight when /0 is integer.
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¢
A
7\4

Figure 3.23: Shewchuk’s counterexample that shows skinny triangles near, but out-
side, small input angles. These triangles can be selected for refinement, but other
skinny triangles will take place.

Proof. The largest ratio b/a occurs when all triangles are isosceles with two
angles 6, one of them incident to p, as shown in Figure 3.24. The length ratio be-
tween the largest edge and one of the edges of an isosceles triangle with minimum
angle 0 is 2cosf. Since there may be up to 7/6 adjacent triangles incident to p,
b/a < (2cos0)™?. 0O

a b

Figure 3.24: Configuration for maximum ratio b/a for triangles with no angle larger
than 6.

The grading theorem quantifies the maximum grading allowed in a triangulation
with no angle smaller than 6, i.e. the trade off between grading and quality. For
0 = 30° the grading is smaller than 27, but for § = 20° the grading can be as large
as 292 (see Figure 3.25).

Let three input segments intersect at an input vertex o, the points p and r share
the same concentric shell so that |po| = |ro| = b, Zpor = ¢ so that Apor is the only
skinny triangle, p and ¢ lie on the middle segment so that Zpgr > 6 and |pq| = a (see
Figure 3.26). The lower bound for the ratio a/b is given by the grading theorem,
considering the fan from ¢ to o with vertex on p. The upper bound for the ratio
a/b is given the relation between Apor and Apgr, where |pr| = 2bsin(¢/2) and the
height of Apgr is asinf = |pr|sin[(m — ¢)/2 — 60]. Notice that the greater 6 is, the
less will be a. Hence a

3 > (2cosf)~™/0 (3.3a)
sin ¢ sin(6 + ¢)

< +cosp—1=

a
b~ tand

—1 (3.3b)

sin 6
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Figure 3.25: Maximum grading allowed in triangulations with no angle larger than

6.

which cannot be simultaneously satisfied for (see Figure 3.27)

¢ < arcsin{[(2cos0) ™% + 1]sinf} — 0 (3.4)

S
=

Q

<~Q

Figure 3.26: Geometric configurations for lower (left) and upper (right) bounds for
the ratio a/b.

3.3.3 Chew’s second algorithm

Chew’s second algorithm [Chew, 1993] is equivalent to Ruppert’s algorithm by re-
placing the minimum circumscribed balls by 30° lenses (see Figure 3.28) and using
conforming constrained Delaunay simplicial complexes, as shown by Shewchuk in
his thesis [Shewchuk, 1997]. An n-lens is formed by joining two caps of n-balls. The
minimum circumscribed n-lens for an (n — 1)-simplex has the simplex vertices lying
in its joint, and for a (< n — 2)-simplex the respective (< n — 1)-lens is rotated
around the flat containing the simplex. When an encroachment occurs, all vertices
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Figure 3.27: By Shewchuk’s counterexample, there always exists a planar graph with
an angle ¢ that cannot be triangulated without creating new angles smaller than 6.
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Figure 3.29: When a insertion point encroaches a diametral lens, all points lying
inside the respective diametral circle are removed before inserting the segment mid-
point.

inside the encroached circumscribed ball are removed before adding a new vertex at
its center, as shown in Figure 3.29.
Some properties of lenses are given next.

Theorem 9 (extended Thales) The angle Zapb, formed by a point p lying in the
boundary of the diametral lens of the line segment ab, is ™ — 0, where 6 is the angle
at which the lens meet ab.
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Proof. Let a’ = a—p and b’ = b—p for a line segment ab, and ¢ be the circumcenter
of the triangle Aabp. Whenever p lies in the boundary of the diametral lens of ab the
triangles Aacp and Abcp become isosceles (see Figure 3.30), so that Zacp = 7 — 2«
and Zbcp = m — 23. Since ZLacp + Lbcp = 260, Zapb=a+ [ =m—6. O

od
AY

Figure 3.30: Proof of the extended Thales theorem a + f = m — 0 (left), and its
corollary v = 6/2 (right).

Corollary 2 The angle Zpab = 0/2 when p lies in the lens pole.

Proof. When p lies in the lens pole, the triangle Apab becomes isosceles (see
Figure 3.30). Hence m — 6 + 2y = m and hence Zpab =~ =60/2. O

3.4 Delaunay refinement for manifold complexes

The first issue that comes up on Delaunay refinement for manifold complexes is
how to state the Delaunay criterion over curved manifolds. One could think about
it as the ball emptiness using the geodesic distance over the manifold as metric.
This is equivalent to a Delaunay refinement on a parametric space for the manifold
where the Euclidean distance on parametric space equals the geodesic distance on
the domain space. Even if such a convenient parametric space was defined, good
quality, size or grading bounds would not necessarily imply in good bounds in the
domain space. This would only hold true with guarantees when the mesh becomes
finer enough to consider approximation bounds between the Euclidean and geodesic
distances.

3.4.1 Boivin-Gooch’s algorithm

In 2002 Boivin and Ollivier-Gooch [Boivin and Ollivier-Gooch, 2002] derived a Rup-
pert Delaunay refinement algorithm for manifold 2-complexes, which was revised by
Gosselin and Ollivier-Gooch [Gosselin and Ollivier-Gooch, 2007].

In this algorithm the input is firstly sampled so that the total angular variation
of each subcurve is less than 7/6. This ensures that the subcurve lies inside the
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diametral 30° lens of its respective subsegment. Furthermore, any diametral lens of
a bisected subsegment lies inside the subsegment diametral circle (see Figure 3.31).

Figure 3.31: As p gets closer to a through the 15° lens, the subsegment lens tends
to touch the diametral circle.

From the initial sampling condition, the vertex and segment sets are augmented
so that the diametral circle of each segment e does not contain any vertex visible
from the interior of e (see Figure 3.32). A constrained triangulation is then created
with the augmented vertex and segment sets.
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Figure 3.32: The interior of the segment ab cannot see the vertex v (left), and can
see the vertex v (right). Testing only the visibility from a and b is sufficient to
guarantee a correct sampling condition.

The refinement then proceeds similarly to Chew’s second algorithm. Whenever
a subsegment lens is encroached, the respective subcurve is split up by placing a new
vertex on it that is equidistant to its endpoints. If this insertion causes a crossover
(see Figure 3.33), the crossed subsegment is split up instead.

Figure 3.33: The split up of a subsegment could cross over another one.

3.4.2 Cheng-Dey-Ramos’s algorithm

Cheng, Dey and Ramos proposed a Delaunay refinement algorithm guided by viola-
tions of the conditions established in the topological ball property theorem [Cheng et al., 2007b].
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In a first step, all input vertices and samples on input curves are weighted such
that, for any two adjacent points p and ¢ in this set, the Voronoi face V,, dual to
the edge pq is the only face that intersects pg, and intersects it only once. This
guarantees that all vertices on input curves will be part of the weighted restricted
Delaunay simplicial complex. However, no other vertices can be inserted in the
curves during refinement. The refinement proceeds firstly in the surfaces, and then
in the volumes.

Let D be a simplicial 3-complex and M be a manifold 3-complex. The violations
of the conditions established in the topological ball property theorem detected by
Cheng-Dey-Ramos’s algorithm are (see Figure 3.34)

i. The Voronoi edge V; dual to a triangle ¢t € D intersects the 2-manifold M € M
more than once. The farthest intersection point x from the vertices of ¢ is
inserted in D.

ii. The normal angular deviation inside V,, N M from the normal at a point p
in a 2-manifold M € M, where V,, is the Voronoi cell of p, is greater than
6 € (0,7/6). A point z where the deviation is # is inserted in D.

iii. An edge pq restricted to a 2-manifold M € M where p € M and ¢ € M, or p
and ¢ are in the boundary of Ml but are non-adjacent. A point in V,, N M is
inserted in D.

iv. The triangles restricted to a 2-manifold M € M incident to a point p € M do
not form a topological disk. The point x € V; N M farthest from the vertices
of a triangle ¢ incident to p is inserted in D.

Figure 3.34: Graphical representation of the four kind topological violations, respec-
tively from left to right, detected in a simplicial complex by Cheng-Dey-Ramos’s
algorithm.

The detection of violations is computationally expensive and hard to implement.
It was latter simplified by Cheng et al. [Cheng et al., 2007a] so that a single violation
condition is checked (see Figure 3.35)

i. The triangles restricted to a 2-manifold M € M incident to a point p € M
do not form a topological disk with all vertices lying in M, or p belongs to
the boundary of M and it is connected to a non-adjacent vertex. The point

x € V; N M farthest from the vertices of a triangle ¢ incident to p is inserted
in D.
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Figure 3.35: Graphical representation of the disk conditions where they are violated
(left) and where they are satisfied (right).

3.4.3 Ruppert’s algorithm revisited

A Delaunay refinement algorithm can be stated in two steps. The first step, named
facet recovery, creates a homeomorphic simplicial complex to the input, so that
minimal requirements are satisfied for the second step, named refinement, which
incrementally add new vertices to the simplicial complex. Nevertheless, refinement
is also used using the facet recovery step.

During the facet recovery step, homeomorphic representations in the simplicial
complex are created from lower to higher dimensional pieces of the input manifold
complex (see Figure 3.36). Each input piece has a parametric space where vertices
of incident lower dimensional pieces can be projected onto. In this point of view,
a piece defines only a parametric space, and the incident lower dimensional pieces
define its boundaries, trimmings or simply constraints. As soon as a mesh is created
for a piece - without any additional vertex because lower dimensional simplices are
already protected -, every simplex outside the piece is removed. The mesh over a
piece is refined until the strongly Delaunay theorem is verified, and new vertices can
be inserted in incident pieces as needed.

Figure 3.36: Some recovery steps (right) for the manifold complex input (left).

As long as the split point ¢ of a segment ab lies inside the diametral ball of ab, the
subsegment ac (and also bc) will also have an empty circumscribed ball as shown in
Figure 3.37. This guarantees that the subsegments will also be part of the simplicial
complex after ab is split. This property is the fundamental idea of the refinement
and will be extended to higher dimensional simplices next.

Theorem 10 (protecting ball) Let D be a Delaunay simplicial complex and C C
D be the subset of k-simplices that contain a vertex p € D in their circumscribed
balls B. Each k-simplex formed by connecting p to a (k—1)-simplex in the boundary
of |JC will also have a circumscribed ball whose interior contains no vertex in D.
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Figure 3.37: If the diametral ball B of the segment ab is empty, then the subsegment
ac will also have an empty circumscribed ball which is tangent to B at a whenever
ceB.

Proof. By the strongly Delaunay theorem, it is sufficient to prove that every
edge incident to p has an empty circumscribed ball (i.e. pq is strongly Delaunay).
For each edge pq, let B € B be a circumscribed ball that goes through ¢. Since
the interior of B contains no vertex in D, the interior of the ball tangent to B at ¢
that goes through p will not contain either, as long as p € B. Hence pq is strongly
Delaunay. O

The protecting ball theorem is the fundamental idea of the Bowyer-Watson incre-
mental algorithm [Bowyer, 1981, Watson, 1981]. Notice, however, that this theorem
is valid for every sub-dimension of the simplicial complex.

As long as a new vertex of a k-piece encroaches upon any established empty
circumscribed ball of a k-simplex representing it, the refinement will work properly.
This condition must be satisfied throughout the refinement.

One may question how the refinement can work considering that there exists
infinite many circumscribed balls for k-simplices in RY, k < d. Let B be an empty
circumscribed ball established for a k-simplex S. If B is encroached by the new
vertex, then the sub-simplices will be Delaunay by the protecting ball theorem. If
B is not encroached by the new vertex, then B will remain empty and S will still be
Delaunay. Notice that this is true even if there exists circumscribed balls encroached
and not encroached by the new vertex for the same k-simplex S.

The circumscribed ball chosen to remain empty throughout the Delaunay refine-
ment is the one whose center lies in the simplex flat, or the one whose center lies on
the respective curved piece. After inserting a vertex, these balls may not be empty,
so that any vertex lying inside them must be removed.

The algorithm just described here behaves like the Ruppert’s refinement algo-
rithm when the input is a flat complex. Because an approximate flat complex is
kept for a input curved manifold complex, it is expected that all termination and
quality guarantees are asymptotically inherit from Ruppert’s algorithm (unfortu-
nately quality guarantees fail in dimensions greater than two). However the point
insertions are in the curved pieces, so that the introduction of small features must
be further analyzed in order to state any kind of grading and size guarantees.

Alternatively, the existence of an initial constrained simplicial complex of each
piece is guaranteed by Shewchuk’s theorem [Shewchuk, 1998] as long as the strongly
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Delaunay theorem is verified for lower dimensional pieces. Combining constrained
simplicial complexes with lenses reduces the mesh cardinality.

Degeneracies

When the endpoints of a curve segment are connected by another curve or line
segment, as shown in Figure 3.38, the initial simplicial complex would be degenerate
to two vertices doubly connected. Notice that the initial line segments are not
encroached, and hence they are not split up. To avoid this situation, the curve
segment could be split up in two.

/ ) /

/ X /

Figure 3.38: Degenerate (top) and non-degenerate (bottom) curves in manifold com-
plexes.

In higher dimensions, this kind of degeneracy may occur in many distinct topo-
logical configurations, as shown in the examples in Figure 3.39.

Figure 3.39: Degenerate surfaces in manifold complexes.

3.5 Conclusions

Two new theorems for Delaunay refinement algorithms were introduced in this chap-
ter. The first one, the strongly Delaunay theorem, allows a new point of view of
Chew’s and Ruppert’s algorithms using protecting balls. The second one, the pro-
tecting ball theorem, allows an incremental point insertion in the simplicial complex
conforming an input manifold complex.

The extension of Ruppert’s algorithm to deal with curved manifold complexes
inputs lacks theoretical guarantees on grading and size optimality.

The main problem in the Delaunay refinement in dimensions greater than two
is handling small input angles. The concentric shells works well for small angles
between input segments in any dimension, but for small dihedral angles between
higher dimensional pieces there is no good approach. The best treatment of this
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kind of small input angle up to now is to pre-segment with protecting weighted
points. However pre-segmentation constrains the output mesh refinement.

The extended Ruppert’s algorithm protects any n-simplex in R%, n < d—1, with
an empty circumscribed ball. This protection can be relaxed to n < d — 2 by using
constrained Delaunay simplicial complexes as in Chew’s second algorithm, which
reduces the mesh cardinality.



Chapter 4

Implementation

An implementation of the Delaunay refinement algorithm for curved complexes was
coded in C++ using the standard template library (STL). A description of its main
data structures and algorithms is given next, as well as some meshing and timing
results.

4.1 Data structures

There are many data structures available in the literature designed to represent ge-

ometric objects, including the winged-edge [Baumgart, 1975], the double connected

edge list (DCEL for short) [Muller and Preparata, 1978, the half-edge [Weiler, 1985]

(awkwardly, now it is more commonly known as DCEL), and the quad-edge [Guibas and Stolfi, 198!
data structures, as well as their extensions to higher dimensions and curved pieces.

The former three data structures fully support facet holes and orientable manifolds,

and the quad-edge fully supports any manifold but not facet holes (refer to Kettner’s

paper [Kettner, 1999] for a more complete comparison).

A data structure derived almost straightforwardly from a manifold complex is im-
plemented to represent it. This data structure is simple and allows an efficient access
by the Delaunay refinement algorithm, but do not consider any modeling require-
ment. To represent a simplicial complex, it is used an extension of the triangle-based
data structure [Shewchuk, 1997], which considers the features of a unique type of
element: the simplex. The main peculiarities of the implemented data structure
lies in the signaling, which allows a single neighbor pointer to indicate either a co-
dimensional or a lower dimensional simplex, and that allows junction simplices to
be given explicitly in the data structure. Both data structures are given in details
next.

4.1.1 Data structures for manifold complexes

The data structure for manifold complexes stores the input domain that will be
accessed throughout the mesh generation. These data structures must answer the
queries from the mesh generator as fast as possible. Memory usage is not a main
concern on these data structures.

69
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Figure 4.1: Data structure (right) for the manifold complex (bottom-left) for the
input domain (top-left).

All pieces are stored in the same container and the position on it identifies each
one. Each piece contains the indices of all pieces connected to it, as shown in Figure
4.1. This connectivity information is separated in containers according to the di-
mensionality of the neighbor. By the definition of manifold complex, co-dimensional
pieces cannot access each other directly. They must use lower dimensional pieces or
higher dimensional ones for this end. A joint n-piece in R¥, n < k — 2, has more
than two (n + 1)-pieces as neighbors.

Each n-piece in R* where n < k contains a representation of its member points
that will be used to answer queries from the mesh generator. For n = k, this
representation can be simplified to a single point inside the k-piece, which will be
used to label simplices by a flood bounded by lower dimensional simplices. Holes
in the domain do not need to be represented, as well as the external set (composed
by all the neighborhood of infinite), since any simplex not flood will be removed.
Actually, any (> 2)-piece also keeps a point on it, so that trimmed places can be
correctly removed. Notice that each piece instantiates a topological space, so that
its boundaries may let to be represented by lower dimensional neighbors.

The parametric representation is more suitable to represent pieces than the im-
plicit one, due to easier free modeling, and topological or differential features identi-
fication. Furthermore, the map to the parametric space is very convenient in many
situations, like storing the coordinates of the points on lower dimensional pieces.
However additional representations can be held within the same piece, as long as
they speed up answering queries.

The aforementioned data structure for manifold complexes is basic and com-
plete for the proposed Delaunay refinement algorithm for curved complexes. More
complex data structures may be required by a modeler.

4.1.2 Data structures for simplicial complexes

The massive data of a mesh generator comes from the simplicial complex. The
number of records not only increases storage, but also the number of reads and
writes to a slower mass storage memory (other than cache). Some compact rep-
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resentations, not in the current implementation, are designed for storing on disk
[Szymczak and Rossignac, 2000] with highest compressing rates (e.g. 1byte/tetrahedron),
or on main memory [Blandford et al., 2003] with lower compressing rates (e.g. 7.5bytes/tetrahedror
but allowing dynamic queries and updates.
A specialized and generalized version of the triangle-based data structure is im-
plemented, as shown in 4.2, and it will be depicted next.

D
P

Figure 4.2: Data structure (right) for the simplicial complex (bottom-left) homeo-
morphic to the manifold complex (top-left).

An n-simplex is only stored if it is part of a homeomorphic representation of an
input n-piece (see Figure 4.2). Each n-simplex in the data structure contains the
index of the n-piece it represents, called label index.

The connectivity data is stored apart from the vertices coordinates. Each n-
simplex in the data structure contains the indices of its n+ 1 vertices. These indices
are kept as integer numbers, instead of pointers, to ease comprehension, debug and
parallelization of the code and signalization and compression of the data, without
any relevant performance loss. The orientation of the simplices are also represented
in the connectivity, so that the indices ordering matters. The adopted n-simplex
in R™ numbering convention is shown in Figure 4.3, where the determinant of the
vectors from the local vertex 0 to the other 1,...,n vertices is positive.

Figure 4.3: Numbering scheme convention for an n-simplex in R"™.

The n + 1 neighbors indices of each n-simplex are also stored to speed up and
case updates of the data structure during the Delaunay refinement. The ' neighbor
of an n-simplex shares the (n — 1)-facet opposite to the i* node of the simplex, as in
the local numbering of facets shown in Figure 4.3. Notice that the local node, facet
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and neighbor numbering are all the same for any n-simplex. When the neighbor
is a lower dimensional simplex, the down bit of the neighbor index is set to one.
Because the data structure is representing a simplicial complex homeomorphic to a
manifold complex, every n-simplex always has n + 1 neighbors except 0-simplices
that have none.

Each (n—1)-simplex in the data structure contains indices for each of the two n-
simplices sharing it, called parent indices. When a parent is not part of the complex,
its respective index is set to null. If an n-simplex in a simplicial k-complex, n < k—2,
is part of a junction n-piece, then it has more than two parents. In this case, the
first index contains one of the parents and the second parent index is set to the
joint index with the joint bit set to one. The other incident parents must be found
through the simplicial complex connectivity.

In the data structure just described, an n-simplex can only access (n + 1) or
(n — 1)-simplices. To not break the data structure when an n-simplex is connected
to an (n+2)-simplex but not to any (n+1)-simplex, a single wing among the complete
set of wings (see Figure 4.4) is kept to allow n-simplices and (n + 2)-simplices access
each other through them.

Figure 4.4: Complete set of wings for an orphan O-simplex (left) and an orphan
1-simplex (right).

The overall number ¢ of indices required for the data structure to store ¢, n-
simplices representing a simplicial k-complex, n < k, is

k—1
c=dco+[2(k+1)+ ey + Y [2(i+1) +3]e;, k>1 (4.1)

i=1

Updating simplicial complexes

The Delaunay refinement algorithm is intrinsically incremental, so that the data
structure must efficiently allow insertion of one vertex at a time where it is needed.
The implemented incremental update was an extension of the Bowyer-Watson algo-
rithm [Bowyer, 1981, Watson, 1981] to conforming constrained Delaunay simplicial
complexes, which also easily generalizes to higher dimensions. The fundamental idea
of this algorithm is to remove simplices whose circumballs encloses the new vertex,
creating what is called cavity, and then connect the new vertex to the facets of the
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cavity boundary, which is called horizon. Notice that once the cavity simplices are
marked, the remaining task is exclusively a connectivity update (see Figure 4.5).

In a first step, a complete set of facets of the cavity simplices is created, and each
facet in it is classified as horizon, twin or encroached, as shown in Figure 4.5. A
twin facet has both parents as cavity simplices, whereas a horizon facet has a single
one. An encroached facet is a lower dimensional facet that is encroached by the
new vertex (notice that if no encroachment occurs, it is a horizon facet). The facet
is easily classified by checking its parents, which in turn are set from the neighbor
indices of the cavity simplices.

Figure 4.5: Complete set of facets of the cavity and their classification as horizon
h, twin ¢ or encroached e (left), and the resulting mesh after connection of the new
vertex p to the horizon facets (right).

After facet classification, the connectivity (including ordering) of the resulting
mesh follows straightforwardly by connecting the new vertex to the horizon facets.
Unfortunately, the neighborhood of the new elements does not. The neighbor of
cach (n — 1)-facet v; opposite to a node i of a horizon n-facet f (see Figure 4.6) is
set by searching through elements e; sharing v;, until another horizon facet or an
encroached facet is met. This kind of search will be henceforth called fan-search.

v; = facet, (i)

Q)

2?”

Figure 4.6: Graphical representation of the fan-search used to set the neighborhood
of the horizon facets.

In the fan-search, the local index pg in eq is initialized to i, and ¢ to the vertex
opposite to f, as shown in Figure 4.6. Then, while the neighbor opposite to p;
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belongs to the cavity, e;4; is set to the neighbor opposite to p;, pj;1 is set to the
position of the node ¢; in e;j;; connectivity, and ¢;;1 is set to the position of e; in
ej+1 neighborhood.

The fan-search is also straightforwardly useful to search for parents of a joint
simplex, or the complete set of wings of a simplex.

If the neighbor of a horizon facet is also a horizon facet, then the respective
elements created with the new vertex will be also neighbors. If the neighbor is an
encroached facet instead (see Figure 4.5), then the neighbor is a lower dimensional
simplex. In this case, the neighbor of the lower dimensional simplex opposite to g;
is stored in order to restore the correct lower dimensional facet index created in the
recursive simplicial complex update.

The update scheme preserves the orientation of co-dimensional simplices repre-
senting the same co-dimensional piece. However, if co-dimensional simplices are part
of a non-orientable piece, and indeed both orientations are observed on the subset
being updated, the update will still work because the numbering scheme is local for
each simplex, but the orientation of new simplices would obviously be undefined or,
more precisely, each new simplex will have the same orientation of the parent of its
respective horizon facet.

When inserting a new vertex v on a curved piece, one of the parents of the
simplex S that represents the curved piece may not contain the new vertex v in
its circumscribed ball, as shown in Figure 4.7. In this case, the simplex S must be
considered a horizon facet.

Tel_eC

Figure 4.7: During split of the line segment ab at ¢ the circumcircle of the incident
triangle to ab does not enclose ¢, but the diametral circle of ab does.

4.2 Memory management

The label, nodal, neighbor and parent indices are stored in separated containers
indexed by the simplex dimension. This pool of data allows block memory alloca-
tions and is suitable to separately manage the containers’ data (e.g. rendering or
discharging).

A design pattern used to preserve the data index after updates on data containers
is shown in Figure 4.8. FEvery element deleted from the data container has its
respective index pushed into a recycle bin stack. New data is appended to the
container end if the recycle bin is empty, otherwise it is placed on the position
indicated by the top index popped from the stack. Because the number of delete
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elements removed from the simplicial complex during updates is bounded in practice,
not many stack memory allocations are requested. Only just after facet recovery, a
larger amount of elements are removed from the simplicial complex. Hence, every
element in the container has its index (respective position in the container) preserved
after updates, the elements are kept contiguous in memory, and memory can be
allocated in large blocks instead of element-wise small pieces. Nonetheless, the
container will eventually be copied to a larger memory free area.

C

i1

2 |o\[w)
o

10

15

Figure 4.8: Recycle bin design pattern for the memory management of a data con-
tainer C' by a recycle bin stack S.

4.3 Delaunay refinement

4.3.1 Facet recovery

The facet recovery step creates an initial simplicial k-complex homeomorphic to
the input manifold k-complex. The facet recovery starts from 0-pieces and goes to
k-pieces. An initial mesh is created for each piece. Before proceeding to the next
dimension of pieces, the initial meshes are refined in order to guarantee an empty
circumscribed ball for each (> 1)-simplex representing a (> 1)-piece. The 0-pieces
are simply converted into vertices in the simplicial complex.

The inicial mesh for a piece is a Delaunay triangulation over its respective mani-
fold space. An initial mesh in the k-piece domain is created (usually the rectangular
domain [0, 1]%), and incident vertices to the piece, already part of the simplicial com-
plex, are inserted one by one in the mesh. Since the boundary of the piece becomes
well defined after all incident vertices are inserted, the extra outer simplices are
removed by flooding from the respective seed of the piece. The update algorithm
of the simplicial complex used in the refinement is the same as the one used in the
facet recovery.

4.3.2 Refinement

The refinement is done in two steps using an extended Bowyer-Watson algorithm
[Bowyer, 1981, Watson, 1981]. First, lists of simplices encroached upon by the in-
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sertion point p are created, depicted in Algorithm 1, which define a cavity. Then
the cavity is remeshed by a connectivity update, depicted in Algorithm 2.

Algorithm 1 Encroachment lists.

Input: a manifold complex M, a simplicial k-complex D homeomorphic to M, a point p
and a seed n-simplex in list L,, encroached upon by p.

Output: lists L;, i = Nmin, ---, Pmax, Of encroached i-simplices.

01. going.down « true
02. Nyin <N

03. Npax <— N

04. loop

05. any.encroachment «— false

06. ifn>1

07. 10

08. while i < size of L,

09. for every neighbor v; of L, ;

10. if v; is not null

11. if v; is a lower dimensional simplex
12. if going.down and p encroaches upon v;
13. any.encroachment < true

14. p < split point on the (n — 1)-piece represented by v;
15. push v; into L,

16. clear L,

17. 1 —1

18. break

19. else

20. if p encroaches upon v; and v; is not in L,
21. push v; into L,

22. 1—i+1

23.  if going.down and any.encroachment

24. n—n-—1

25. Nmin < NMmin — 1

26.  else

27. going.down « false

28. ifn==%k

29. break

30. push all non-null parents of L,, into L4
31. if L4+ is empty

32. break

33. n«—n+1

34. Nmax < N

Many refinement criteria may be used to select an insertion point. The imple-
mented ones were:
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Algorithm 2 Cavity remesh.

Input: a simplicial k-complex D, a point p and lists L;, i = e,...,k, of i-simplices
encroached upon by p.

Output: a simplicial k-complex D containing p.

01. H « complex set of facets of n-simplices in L,

02. classify elements of H as twin, encroached or horizon facets

03. allocate space for n-simplices in D, one for each horizon facet in H

04. search for neighbors of horizon facets in H

05. ife<n

06.  recursive call of cavity remesh on L,,_1

07.  relink encroached neighbors of horizon facets to the new (n — 1)-simplices
08. set up new n-simplices by connecting p to the horizon facets in H

e Minimum ratio /R between the minimum edge length ¢ and the circumradius
R of an n-simplex. This criterion is natural for the Delaunay refinement and
it is related to the quality of an n-simplex, despite this quality measure fails
for n > 3.

e Maximum edge length of an n-simplex. This criterion controls the mesh size
or uniformity of the simplicial complex.

e Maximum distance between the circumcenter on the simplex flat and the cir-
cumcenter on the piece. This criterion controls the accuracy of the linear
approximation of the simplicial complex relative to the input manifold com-
plex.

The new elements are pushed or not into priority queues according to their
refinement criteria measures after every update of the simplicial complex. The
priority is higher for elements whose measure is farther from the threshold. The
refinement priority usually reduces the final simplicial complex cardinality.

Edges that are incident to the cavity are split up if they are encroached upon
by the just inserted vertex. KEdges of the simplicial complex are split up accord-
ing to concentric shells at the input vertices. This was implemented by rounding
the subsegment length to the nearest power of two (since in IEEE 754 standard a
floating point number is represented in the canonical form +1.[significand bits| x
gtexponent bits thig may be done by zeroing the significand bits and adding one to the
exponent if the first significand bit is one).

4.4 Predicates

4.4.1 Encroached lenses

The encroached lenses predicate checks whether a point lies inside an n-lens. An
n-lens is composed by joining the two external parts of an n-ball symmetrically
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sliced by two parallel hyperplanes equidistant to the origin. The intersection of an
n-lens and the k-flat F that contains its forming k-simplex S, is the circumscribed
ball of S in F. When k < n — 2, the (k + 1)-lens of S is rotated around F to build
the n-lens. All this symmetry allows writing the encroached lenses predicate based
on the simplex circumcenter ¢, the circumradius r and the angle 6 in which the
hypersphere cap meets F. Let p be the query for the lens predicate, ¢ = p—c, ¢, the
component of g on F, ¢, the distance from p to F (see Figure 4.9). The encroached
lenses predicate is

2

sin? @ (4.2)
2rq, < (r* — ¢*) tan 6

(4 i) +at <
n tan 6 @& =

To avoid a square root in the predicate (4.2), it can be rewritten as

¢ <r? (4.3a)
4r2qt < (r* — ¢*)*tan? @ (4.3b)
and for 1-simplices the second inequality (4.3b) can be written as
4[q27"2 — (7" F)z] < (q2 = 7"2)2 tan® 6 (4.4)
/’/ - . p

Figure 4.9: Construction of the predicate inside/outside lenses.

Notice that the first inequality (4.3a) is the predicate for minimum circumscribed
ball, which is simpler and can be evaluated without ¢, and 6.
By the extended Thales theorem, the predicate for a 1-simplex can be simplified

to
a-b<0 (4.52)
- b)2
(a2 >2 > cos® (4.5b)
|al” 0]

where a = vg — p, b = v; — p, and vyv; is the 1-simplex. Notice that the first
inequality (4.5a) is the predicate for diametral ball, which is simpler and can be
evaluated without 6.
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4.4.2 Robust predicates

A common geometric predicate tells which side a point v, lies relatively to an ori-
ented (n — 1)-hyperplane in R" that goes through points vg, ..., v,—1. It can be
written as the sign of the determinant

(v1 —vo)"
A, = : (4.6)

(v — v) 7

The update of the simplicial complex is based on whether a point v, lies inside
or outside the circumscribed n-ball of an n-simplex in R™ with vertices vy, ..., v,. It
can be written as the sign of the determinant

(v1 — UO)T o1 — ’UOH2

B, = : A7
(Vn — UO)T an - U0||2 ( )

(Vn41 — UO)T |Uns1 — U0||2

If this predicate is not evaluated correctly, then the Delaunay property may not
hold and the refinement will fail. Unfortunately, roundoff errors during computa-
tions let such errors occur. The exact arithmetic adopted here is the same used by
Shewchuk [Shewchuk, 1997].

A floating-point number is represented as +significand x 2F¢Ponent in processors,
where the significand is a p-bit binary number. The p bits of the significand may be
not enough to store the result of an exact arithmetic operation. Hence each number is
expressed as an arbitrary precision expansion e = e;+e+... [Priest, 1991] where the
components e; are floating-point numbers with a p-bit significand. The components
are also nonoverlapping (e.g. 1100 and 11 are nonoverlapping, whereas 1101 and
10 overlap) and ordered by increasing magnitude (x; is the smallest), so that the
largest component is an approximation of the expansion value and has its sign.
Exact arithmetic operations over component expansions are given in Shewchuk’s

thesis [Shewchuk, 1997].

The p-bit addition @, subtraction ©, and multiplication ® are assumed to be
performed with exact rounding (e.g. as in IEEE 754 standard). This means that the
nearest p-bit floating-point value = to the exact result x is always produced. Under
this assumption, the roundoff error of the result & of any p-bit operation is at most
€ |Z| and e|z|, where € is the machine epsilon and z is the exact result.

The determinant A, is

Ay = V1p — Vo
= U1y O Vog +e |U1m o U0$| (48)
= 1211 + €|A1|
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so that the sign of A, is correct whenever

‘Al‘ > 6|lUlsc S 'UOz‘
— (14 ) ® |1, © s (19)
=(e+e) @

which is always true.

The effect of the term e|f~11| can be minimized by concluding that the sign is
correct whenever

|A;] > €| A
= 62\1211\

- 4.10
) (4.10)

The determinant A, is

Ay = (le - Uo:c)(’UQy - on) - (Uly - ’UOy)(’UQz - ’UOz)
— {1ty — sty
= (1 = elta])(f2 &= efta]) — (5 £ elfs) (£a = efta])
= 11ty & (2¢ + )|t1ta| — [tsts £ (2¢ + €2)|tsts]]
= t5 & (2 + )|ts| — [te = (2¢ + €%)|tg]]
= 15 & e|ts| = (2¢ + €)(|ts| = €|ts]) — [t6 & €lts| £ (2¢ + €%)(|ts| £ €|ts])]
o+ (3 + 3 + )|is| — [fs + (3¢ + 36 + €[] (4.11)
=15 —ts + (3 + 3¢ + ) (5] + |t6])
= Ay + €| Ag| £ (3¢ + 32 + %) (|t5] + |L6])
= Ay % (4e + 362 + ) (|E5| + |ts])
= Ay £ (de + 3¢ + E)(1+ ) @ (Ifs] @ [{s)
= Ay + (4e + 112 + 116 + 5 + €) @ (|T5]| @ |£6])

so that the sign of A, is correct whenever

|[Az| > (e + 16¢%) @ [[v1e © vos| @ |vy © oy | & 1, © voy| @ |V © Vo] (4.12)
= (4e + 16€*) @ ay '
where the coefficient was rounded up to the next p-bit floating-point value. Since
the coefficient must be a p-bit value, it is useless to track terms smaller than €
as long as they do not exceed €. Notice that the order in which operations are
performed matters when computing As.

The effect of the term e|f~12| can be minimized by concluding that the sign is
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correct whenever

|Ay| > (3¢ + 36 + ) (|ts| + |Ts]) + €| Ay

= (3¢ + 662 + 4€® + ) (|Ts| + |t6]) + €2| A3

= (e + 66> + 7€ + Te* + 4® + &) (|t5] + |Tg|) + €3] Ay

= (3e + 6€% + 8¢%)(|t5| + |Z6|) (4.13)
= (3e + 66 +86%) (1 + €)@ (|ts] @ |ts])

= (3e + 12¢* + 23¢* + 22¢* + 8¢%) @ (|t5] @ |ts])

= (3e + 16€*) ® g

where the coefficient was rounded up to the next p-bit floating-point value.

The error bounds for the determinants |A;| and |A,| are given by a coefficient
times the permanent «,, of absolute value of the matrix elements. This generalizes
straightforwardly for higher dimensions. The coefficient can be deduced from the
expansion by minors, so that each additional dimension includes 1 multiplication
and n subtractions roundoff errors. Hence

ap = Ap—1+n+1
=ap o2+ (n—1)4+n+2
=ap3+(n—2)+Mn—-1)+n+3

n (4.14)
=a + (ZZ) +n—1

=2

= g(n +1)+n—-1
whose first numbers are
1,4,8,13,19, 26, 34,43, 53, 64... (4.15)
and the sign of A, is correct when
|A,| > anear, (4.16)

The error bound for B, follows similarly. The expansion by minors for the
column of squared norms shows that B, has the a, roundoff operations of the
minor determinant, plus n + 2 roundoff operations for the norm, plus n + 1 roundoff
operations for the weighted sum. Hence

b, =a,+2n+3

4.17
:g(n+1)+3n+2 (4.17)

whose first numbers are

6,11,17,24,32,41,51,62, 74, 87... (4.18)
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and the sign of B, is correct when
| Bn| > bne (4.19)

where (3, is the permanent of absolute value of the matrix elements.

The error bounds (4.10) and (4.13) (first given by Shewchuk [Shewchuk, 1997])
are tighter than the generalized equation (4.17). The coefficients are valid as long as
the higher order terms do not exceed €, which fortunately occurs only in dimensions
higher than the ones where meshing is still practical (n ~ 5). Gaussian elimination
would speed up very much the predicates and improve the error bounds because of
its symmetry. However it includes divisions in its computation, which cannot be
evaluated exactly. A division-less computation would overflow or underflow very
easily.

The exact arithmetic is used only when the error bounds are not verified in the
approximate computation, which is a subset of the exact computation when using
component expansion. Shewchuk [Shewchuk, 1997] gives error bounds for some other
intermediate results.

4.5 Projections onto pieces

Throughout mesh generation, the Delaunay refinement queries a d-piece to find the
point on it that is equidistant to d + 1 points on it, as shown in Figure 4.10.

Figure 4.10: Graphical representation of the projection onto a curve (left) and onto
a surface (right).

Let c(t) : [0,1]% — R? be the ortogonal projection of an affinely invariant
parametrization of a d-piece (e.g. a Bézier, a b-spline or a NURBS depicted in
Appendix B) on the d-flat that contains a d-simplex. Let the circumcenter ¢ of the
d-simplex be the origin for ¢(t).

Since the piece parametrization is affinely invariant, the set of parameters t*,
where lies the point ¢* equidistant to the vertices of the simplex, is the same where
c(t*) = 0. Define the function

F(t) = lle()]’ (4.20)

which contains a unique minimum whenever the projection ¢(t) is a bijection (Figure
4.11).

Let ci(t) : [0,1]¢ — R? denote the partial derivative dc(t)/0t;, i = 0,1,....,d — 1,
and ¢(t) : [0, 1]¢ — R4 be the matrix containing ¢}(¢) as rows. Then let ¢, = c(t,)
and ¢, = ¢(t) for short. (Notice that t;, € R? denotes an instance of parameters,
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OO 1 t

Figure 4.11: Graphical representation of the parametric space (left) and the respec-
tive projection onto the 2-flat containing a triangle (right).

and not the k™ parameter, and so is ¢; and ¢} This is quite dubious, but eases
notation.) The derivative (gradient) f’(¢) at t; of the function f(¢) is given by

By the Taylor expansion around
F() = fo+ Ji' (= tx) + Ot (4.22)

we define an algorithm that iteratively sets ¢ =t +Af}. (step towards f;) so that
the linear approximation of f(t) at t; vanishes f(¢x4+1) = 0. Hence

Ftisr) = fu+ fi (trpr — i)
= fi+ fiT (e + AL — t) (4.23)
= fi t A fi=0

so that
Jr
thor =ty — —7— fi
ook (4.24)
cley, ,

which is a kind of Newton-Raphson iterative update. This algorithm is guaranteed
to converge only if f(¢) is convex.

4.6 Practical performance

4.6.1 Robust n-dimensional predicates

The predicates of orientation and ball containment were tested for random point
sets and point sets near the sign transition. The results in Figure 4.12 show that
predicates for n = 5 are impractical. Surprisingly, for odd dimensions greater than
4, the inexact computation of the orientation predicate is almost always sufficient.
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4.6.2 Meshing point clouds

When meshing a point cloud using the Bowyer-Watson algorithm by inserting an
arbitrary point at a time, most of the meshing time is spent on locating a simplex
that contains the new vertex in its circumscribed ball. This point location is not
part of the Delaunay refinement, since the simplex elected to be split up has the new
vertex as circumcenter. In order to test the refinement without the point location
step, a point insertion in the barycenter of a randomly chosen simplex was adopted
since the simplex circumcenter could eventually lie outside the simplicial complex as
shown in Figure 4.13. This unconstrained meshing was timed for several dimensions,
as shown in Figure 4.14.

Figure 4.13: The barycenter b of the triangle ¢ always lies inside ¢, but the circum-
center ¢ may lie outside t.

nodes/second

dimension

Figure 4.14: Meshing timings for inserting points in the barycenter of randomly
chosen simplices.
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4.6.3 Meshing small input angles

When an input 2-dimensional geometry contain small angles, the curve segments are
split accordingly concentric shells at input vertices in order to guarantee an empty
circumcircle for every line segment representing the input. Whenever a segment
is split at a small angle, it may force another segment to be split up in order to
guarantee an empty circumcircle. Furthermore, two close curved segments are split
up such that they do not intersect each other. In Figure 4.15 are meshes for an
input geometry where two curved segments meet at a small angle.
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Figure 4.15: Meshing a star (top-left) to a homeomorphic triangulation with 279
nodes (top-right), after uniform refinement with 403 nodes (bottom-left), and after
refinement for quality and geometry accuracy with 660 nodes (bottom-right).
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4.6.4 Meshing an n-ball

Meshing an n-dimensional ball starting from an n-simplex and electing the circum-
center of a random element for refinement in each iteration (see Figure 4.16) is one
of the highest performance contexts for the mesh generator. The respective timings
for each dimension is given in Figure 4.17.

\ >
NN
Wﬂg’

Figure 4.16: Meshing a disk (top) and a ball (bottom) with 400 vertices each,
starting from a triangle and a tetrahedron, respectively.

nodes/second
N
T
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Figure 4.17: Time (in nodes/second) spent on meshing an n-ball.
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4.6.5 Meshing a surface

During facet recovery of an input geometry in 3-dimensional space, all piecewise sur-
faces are meshed separately and then joint into the mesh. In Figure 4.18 are meshes
for a single curved 2-piece with boundary refined under many criteria. The surface
is a NURBS defined over a rectangular domain [0, 1], whose boundary is composed
by 4 vertices and 4 curves. The mesh is refined at about 950 nodes/second except
when the refinement is for mesh accuracy, which is at about 140 nodes/second.

Figure 4.18: Meshes for the input surface (top-left): without any refinement (top-
right), randomly refined while keeping ¢/R > 1/+/2 (middle-left), uniformly refined
by maximum edge length (middle-right), and refined for accurate input geometry
representation while keeping £/R > 1/v/2 (bottom).
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4.6.6 Meshing a junction

A junction n-piece has more than two parent (n + 1)-pieces. It is represented as a
particular case in the data structure. During the refinement, every parent is triggered
as part of the cavity when the respective junction simplex is refined. In Figure 4.19
are meshes for junction line segment containing three curved wings refined under
many criteria. The mesh is refined at about 13,000 nodes/second.
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Figure 4.19: Meshes for the input junction (top-left): without any refinement with
17 nodes (top-right), randomly refined while keeping ¢/R > 1/4/2 with 500 nodes
(middle-left), uniformly refined by maximum edge length with 646 nodes (middle-

right), and refined for accurate input geometry representation while keeping ¢/ R >
1/+/2 with 334 nodes (bottom).
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4.6.7 Meshing a non-orientable manifold

In a simplicial complex homeomorphic to a non-orientable manifold there is no way
to orient the conforming simplices so that all neighbors have the same orientation.
The mesh generator must be insensitive to orientation in order to mesh this kind of
input. The implemented Delaunay refinement algorithm can mesh non-orientable
manifolds and in Figure 4.20 are meshes for a Mobius strip refined under many
criteria. The input manifold 2-complex splits up the Mobius strip into eight 2-
pieces, so that topology information comes intrinsically.
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Figure 4.20: Meshes for the input Mdbius strip (top-left): without any refinement
with 16 nodes (top-right), randomly refined while keeping ¢/R > 1/v/2 with 318
nodes (middle-left), uniformly refined by maximum edge length with 229 nodes
(middle-right), and refined for accurate input geometry representation while keeping
(/R > 1/+/2 with 345 nodes (bottom).
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4.6.8 Meshing a piecewise linear complex

In Figure 4.21 are meshes for an input piecewise linear complex with 142 pieces
refined under many criteria. The mesh is refined at about 5,000 nodes/second.
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Figure 4.21: Meshes for the input piecewise linear complex (top-left): without any
refinement with 112 nodes (top-right), randomly refined while keeping £/R > 1/v/2
with 800 nodes (bottom-left), uniformly refined by maximum edge length with 1047
nodes (bottom-right).
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4.6.9 Meshing a piecewise curved complex

In Figure 4.22 are meshes for an input piecewise curved complex with 44 pieces
refined under many criteria. The mesh is refined at about 400 nodes/second over
the surface, and about 5,000 nodes/second over the 3-dimensional space. A slice of
the simplicial 3-complex is shown in Figure 4.23.

HOKY AVAYANN
!%%4%%&‘ AVAR Rl
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Figure 4.22: Meshes for the input piecewise curved complex (top-left): without any
refinement with 26 nodes (top-right), randomly refined while keeping ¢/R > 1/v/2
with 801 nodes (middle-left), uniformly refined by maximum edge length with 729
nodes (middle-right), and refined for accurate input geometry representation while
keeping ¢/R > 1/+/2 with 2006 nodes (bottom).

A dihedral angle analysis was performed for a refinement driven by the maximum
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Figure 4.23: Slice of a simplicial 3-complex homeomorphic to an input piecewise
curved complex.

edge length (Figure 4.24), by geometry approximation and minimum shortest edge
circumradius ratio (Figure 4.25), and by geometry approximation and minimum
dihedral angle (Figure 4.26). Notice the presence of slivers for the uniform refinement
and the refinement based on the minimum shortest edge circumradius ratio.
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Figure 4.24: Histogram for dihedral angles of triangles and tetrahedra of a simplicial
3-complex refined by maximum edge length.



94 CHAPTER 4. IMPLEMENTATION
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Figure 4.25: Histogram for dihedral angles of triangles and tetrahedra of a simplicial
3-complex refined for accurate input geometry representation while keeping ¢/ R >

1/v/2.
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Figure 4.26: Histogram for dihedral angles of triangles and tetrahedra of a simplicial
3-complex refined for accurate input geometry representation while keeping dihedral
angles above 15°.

4.7 Conclusions

The practical performance of a Delaunay refinement outstrips theoretical state-
ments. For instance, the algorithm usually terminates for minimum angles of about
33° for manifold 2-complexes, where a bound of 26.45° is expected. Furthermore,
the Delaunay refinement algorithm is very fast, being able to insert about 50,000
nodes/second for manifold 2-complexes in R? and about 5,000 nodes/second for
manifold 3-complexes in R3.
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The current implementation of the Delaunay algorithm for manifold complexes
lacks some points like fast point location to detected encroachment during facet
recovery. Even though it was possible to verify that a Delaunay refinement algorithm
for curved manifold complexes is practical, specially in a case where point insertion in
curved pieces are rarely performed (e.g. uniform refinement or random refinement).

The main bottle neck of the implemented Delaunay refinement algorithm for
higher dimensions (typically greater than 3) lies in the “in ball” predicates evalua-
tion. The predicate determinant should be further investigated to attempt to find
feasible faster exact algorithms.
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Appendix A

Simplices and balls

Simplices and balls are basic sets for many geometric concepts. The key of their
importance is simplicity with handful properties. They are briefly addressed next.

Definition 51 (convex combination) A convex combination of a set of vectors,
columns of a matriz V = vy, ...,vx] € R™F s a weighted sum of its elements V),

A €[0,1)%, where Y, A = 1.

Definition 52 (convex hull) The convex hull of a set P, denoted conv(P), is the
set of all convexr combinations of the elements in P.

Definition 53 (k-simplex) A k-simplex is the convex hull of k + 1 affinely inde-
pendent points.

A k-simplex, as shown in Figure A.1, can only be defined in R™ where n > k,
since for n < k the points are necessarily affinely dependent.

k=
Figure A.1: Graphical representation of the projection of k-simplices on the plane.

All facets of a simplex are lower dimensional simplices (see Figure A.1). This
induces a natural partition of a simplex into a collection of simplices.

Theorem 11 (simplex partition) An n-simplex may be partitioned into a flat

o ) open k-simplices, for all k € {0,...,n}.

n-complex with < P

Proof. The convex hull of any subset of the simplex vertices P is a lower dimen-
sional simplex, since any point in it is a convex combination of P where the weights
of the missing vertices are null. Hence, any combination of £+ 1 of the n+1 vertices
in P is also a simplex. O

97
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Definition 54 (k-ball) A k-ball is the set By, of all points in R* that lies at most
r away from a point c, i.e. By, ={x € R* | |lz — || < r}.

. /
k=0 k=1 k=2 k=3

Figure A.2: Graphical representation of the projection of k-balls on the plane.

The abstract definition 54 of a ball depends on a distance function denoted by
a norm. It is subtended to be the L-2 norm (see Figure A.2), unless otherwise
specified.

Definition 55 (circumscribed ball) The circumscribed ball of a simplex is the
one whose boundary goes through all the vertices of it.

A circumscribed n-ball for a k-simplex (see Figure A.3) is unique for n = k, but
there are infinitely many for n > k. The minimum circumscribed n-ball for a k-
simplex has its center lying the the k-flat that contains the k-simplex. The minimum
circumscribed ball for a 1-simplex is called diametral ball, and for a 2-simplex it is
called equatorial ball.

A circumscribed n-ball is not always the minimum enclosing n-ball for a k-
simplex, even when n = k. For instance, in Figure A.3 the circumradius R is larger
than the minimum enclosing radius a.

Figure A.3: Some parameters of a triangle: circumradius R, inradius r, height A
and minimum enclosing radius a.

Enforcing the boundary of an n-ball to go through the n + 1 vertices v, of an

n-simplex, k = 0, ..., n, leads to a system of linear equations
lor = e|” = R

loell* = 20k - ¢ + |le]* = R (A.1)

20 - ¢+ R* — |le|* = [|vgl” '

QUk - C+ 200 = ||Uk||2



99

where ¢y = (R? — ||c||")/2, ¢ is the circumcenter and R is the circumradius, so that
the circumcenter ¢ can be written as

-1 2 2
(vo — va)" [voll” = [[vall

c= = : : (A.2)
(Un-1 = vn)" [on—1ll* = l[onl|*

The minimum circumscribed n-ball of an (n — 1)-simplex can calculated by
adding, to the system of equations, the equation of the hyperplane containing the
simplex. The same is valid for n-balls circumscribing lower dimensional simplices,

where linearly independent hyperplane equations can be added to complete the sys-
tem.

Definition 56 (height) The height relative to a vertex v of a k-simplex is the
distance from v to the (k —1)-flat that contains the opposite (k — 1)-simplicial facet.
Definition 57 (inscribed ball) The inscribed ball of a simplex is the one whose

boundary touches all the faces of it.

The content V' of an n-simplex is the integration of a scaled (n — 1)-simplicial
facet IF;, with content A;, along the height h; (see Figure A.3) relative to the opposite

vertex v;, i € {0,...,n},
h; n—1
V= / A; (ﬁ) dh
0 hi (A.3)

— 2 A,
n

Now let p be a point in an n-simplex S and let h; denote its relative height to
each (n — 1)-facet of S with content A;. The content of S can be written as

"1
V=>" ~ Ahi (A.4)
=0

When p lies at the same height to any facet, all heights h; become the inradius
r and p becomes the incenter ¢

r = 27:7‘/14 (A5a)
i=0 £t
o= 2izo Aiti (A.5b)

a Z?:o A

The inscribed n-ball of an n-simplex is always the maximum n-ball contained in
it.

When a point is expressed as signed distances from the lines containing the edges
of a triangle it is in a trilinear coordinates system. Analogously, when a point is
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expressed as signed distances from the planes containing the triangular faces of a
tetrahedron it is in a quadriplanar coordinates system. Naturally, the center of a
inscribed ball is where all its trilinear (quadriplanar, or their generalization to higher
dimensions) ordinates are the same.

When a point is expressed as signed contents relative to the n-simplices formed
with the (n — 1)-facets of an n-simplex it is in a barycentric coordinates system.
Barycentric coordinates are closely related to trilinear or quadriplanar coordinates,
as heights are closely related to contents.

The content V' of an n-simplex is given by

(01 — UO)T

V= - : (A.6)
(v, — vg)T

where the sign of the determinant is dependent on the order of the vertices wv;,
i =0,...,n. This sign is related to which side of an n-simplex (n — 1)-facet a point
lies.

A.1 Regular simplex

A regular simplex is the one with constant distance L (edge length) between any
pair of its vertices v; and v, i.e. a simplex where

lvi —vjll = L, Vi#j (A7)

A regular n-simplex can be iteratively built, starting from a O-simplex, by adding
a new vertex equidistant to the (i—1)-simplex vertices to create a i-simplex, as shown
in Figure A.4 and described in Algorithm 3 in full details. In this procedure, every
new vertex is placed h; orthogonally away from the centroid c¢;_; of the previous
(1 — 1)-simplex S;_;. Since the distance from ¢;_; to any vertex of S;_; is the
circumscribed radius R; 1, and from the new vertex v;,; is the edge length L,

hi = /L% — B2, (A.8)

and, similarly, the distance from ¢;_; to any facet of S;_; is the inscribed radius r;_1,
and from the new vertex v;, is the height h; 1,

hi =\ h?fl - TZ'Qfl (Ag)

After each vertex insertion, the centroid ¢; of the new i-simplex S; is placed at
the origin of the coordinate system. Taking this into consideration, S; only needs to
be centered along the new ordinate of the coordinate system, where 7 vertices are
in zero, and the new vertex is in h;. By definition, the inscribed and circumscribed
radii are

hi
Ty = - 1
Z; (A.10)
Ri — ‘
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<Y

Figure A.4: Iterative construction of a regular simplex.

Algorithm 3 Generation of regular n-simplices.
Input: simplex dimension n and edge length L.
Qutput: vertices v;,7 = 1,...,n + 1 of a regular n-simplex.

1. R0<—O
2. fori«—1ton

3. hi<_‘/L2_Ri271

hi
4. T < er_l
5. forj«—1toq
6. Vi< —Ty
8. (% — O,...,RZ'
+1 1 g }
and thus R
g A1l
i (A1)

which is a very interesting simple relation between these radii of a regular i-simplex.
The content V,, of an n-simplex is the integration of a scaled (n — 1)-simplex

along its height A,
h n—1
([ h
Vi :/ (_) Va—1dh
AN

han

- n—1
n

" h (A.12)

:H7
1 n
:ﬁqhi

The inscribed radius r,, circumscribed radius R,,, height h,, and content V,, of a
regular n-simplex may be rewritten as a function of the edge length L and dimension
n (see Figure A.5) as

(A.13a)
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n
R, =L, ,/]——— A.13b
2(n+1) ( )
1
ho = L] 25 (A.13¢)
2n
n Vn+1
V,=1L Y (A.13d)
or by recurrence relations
n—1
= Tp_ A14
Tn = Ta-1 \[ T ( a)
R,=R L (A.14Db)
n — Idln—1 1 _ 1/712 .
1
hn = hn—l 1-— ﬁ (A14C)
n+1
=V,1 L A.14d
V% v% 1 2n3 ( )

0.8 1

0.6

Py

T
S

0.4 4

0.2 i

Figure A.5: Variation of inradius r,, circumradius R,, height h, and content V,, of
a unit edge length regular n-simplex.

The dihedral angle between (n — 1)-facets of a regular simplex is given by

o = arctan (

i ) = arctan vVn? — 1 (A.15)

T'n—1

which tends to 90° as n goes to infinite.



Appendix B

Parametrization by control points

The parametrization by control points started with the parallel works of Paul de
Casteljau and Pierre Bézier, motivated by the creation of an exact geometric model
of a car [Farin, 2002]. The fundamental idea of this approach is to use points as pa-
rameters, so that each one controls the shape of the object according to its position.

The first algorithm proposed to blend points into pieces (curves, surfaces, ...) was
proposed by Paul de Casteljau [de Casteljau, 1959, de Casteljau, 1963] in technical
reports, depicted in Figure B.1. Consider the sequence of points qq, ..., ¢, at iteration
k = 0. For a curve parameterized by ¢ € [0, 1], the de Casteljau algorithm iteratively
reduces the sequence of points by setting ¢; x+1 = ¢ix + t(qiv16 — Gig), 1 =0, ...,n —
k — 1, until the sequence becomes a single point after k& = n iterations. Paul de
Casteljau wrote those pieces in the form

cft) = > £t (B.)

where f;(t) : R™ +— R are the Bernstein polynomials [Bernstein, 1912] and ¢; €
R? are the control points for the m-piece. These polynomials were used by Sergi
Bernstein to prove that any continuous function can be uniformly approximated
by a polynomial inside a closed interval to any degree of accuracy, known as the
Weierstrass’s approximation theorem.

9 q;

o o o =] o =]
U \\/: \\\ \v’: \\\ I \\//

AY ! N ! \ !
\ ! \ ! \ ! \‘\j
\ ! \ \ ! 1
b----4 N1 bB-N_4 b4

9 L)

t=1/4 t=2/4 t=3/4

Figure B.1: Geometric representation of the de Casteljau algorithm for the control
points qo, q1, q2,q3 at t = 1/4,2/4,3/4, which leads to the 4 line segments approxi-
mation (right) for the full precision curve (left).

Pierre Bézier reached the same pieces as did de Casteljau, but he published his
work [Bézier, 1966, Bézier, 1967]. Forrest saw that the pieces proposed by Bézier
could be written using Bernstein polynomials [Forrest, 1972], which popularized
them. The de Casteljau work was only recognized in the late seventies.
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The function f;(¢) in (B.1) is called blending function, and there are many blend-
ing functions other than Bernstein polynomials. Good blending functions induce
handful properties into the resulting pieces. These properties include starting and
ending in control points, containment in the convex hull of the control points, closure
under affine or perspective transformations, control over k-derivative continuity, or
range of control of a control point.

The modern theory of splines started in 1946 by Isaac Schoenberg [Schoenberg, 1946]
in his work on approximation theory. In 1972 they were written in the form (B.1)
by de Boor [de Boor, 1972] and Cox [Cox, 1972], in parallel works. In 1974 the
Bézier pieces were proven to be a special case of b-splines by Gordon and Riesenfeld
|Gordon and Riesenfeld, 1974].

Other examples of parametrization by control points are the Overhauser curves
[Overhauser, 1968] (also known as cubic Catmull-Rom splines) that interpolate all
control points, the Ball’s rational cubic [Ball, 1974] that represents conic sections
exactly, and the parametric cubic [Timmer, 1980] that enforces the curve to go
through the internal segment midpoint.

The Bézier and b-spline pieces will be depicted in the next sections.

B.1 Bézier

The Bézier curves (see Figure B.2) are defined as
i=0

where ¢; are the control points, n is the curve degree and B; ,(t) are the Bernstein
polynomials (see Figure B.3)

Bin(t) = ——— t'(1 —t)"" (B.3)

\ ’

\

v conv{q07 sty q7 \ /I
u] 0 Y

Figure B.2: Example of a Bernstein-Bézier curve of degree n = 7.

The Bernstein polynomial B;,(t) can be seen as the probability of picking exact
1 white balls in n draws from an urn containing a fraction of ¢t white balls and 1 —¢
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B; (1)

in

t t t

Figure B.3: Bernstein polynomials of degree n = 1,2, 3.
black balls. This makes trivial to prove some useful properties, like the partition of

unit N
> Bialt) =1 (B.4)
=0

which states that the Bernstein-Bézier curve c(t), t € [0, 1], lies in the convex hull
of the control points (see Figure B.2), or the fixed point property

1, ifi=0
t=0 = B,0)=4{ '
’ 0, ifi##0
(B.5)
1, ifi=
t=1 = B,t)=4_ """
’ 0, ifi#n
so that ¢(0) = qo and ¢(1) = ¢, (see Figure B.2).
The derivative of B;,(t) is given by
n! . o ‘
/ _ gi—1rq1 g \n—1i 1 s _ p\n—i—1/__
Bi,(t) = FToRn [t (1 —=8)" "+t (n—i)(1—1) (—1)]
—1 ‘ —1)! 4 4
=n (7’L ) tz 1(1 t)nfz — - (7’L : ) tz(l o t)nfzfl (BG)
(1 —D)l(n —1q)! i'ln—1—1)!
=n [Bi1n1(t) = Bina(t)]
and thus the Bézier curve derivative is a lower degree Bézier curve
= B,(t)g
i=0
=n Z [Bi—1n-1(t) = Bin-1(t)] ¢
i=0
n—1
=n |Bo1n1(t)q0 — Bun-1(t)gn + Z Bin-1(1)(gi+1 — @) (B.7)
i=0
n—1
=N ZBZTL 1 QH—I_QZ)
n—1
Bin-

=0
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where

4 = n(Giy1 — @) (B.8)
which, together with the fixed point property, leads to the nice tangent property at
fixed points (see Figure B.2)

/ 0) = r_ .
(1) = gp1 = 1(dn = Gn-1)
B.2 B-spline
The b-splines (short for basis splines, see Figure B.4) are defined as
c(t) = Nipult)gi, t € [tp, tmp) (B.10)
=0

where N;, ,(t) are the basis functions (see Figure, B.5) defined by the recurrence
relation

t— U;
Ni,p,u(t) =

Uiypy1 — T
———— Nip-1u(l) + ————— Niy1p1(t B.11
Uip — Ui 1+(f) Uipr1 — Uit +o-talt) ( )
where

1, if u; <t <y
i0u(t) = { ! (B.12)

0, otherwise

and the knot vector u = [ug, Uy, ..., U] € [0,1]™! is a nondecreasing sequence, and
p = m —n — 1 is the degree of the b-spline. The knots u,1, ..., Um—p—1 are called
internal knots. When the knot values are equally spaced, the b-spline is said to be
uniform.

/F‘%

Figure B.4: Example of a b-spline curve of degree p = 3.

Each basis polynomial N;, ,(t) is nonzero through p 4+ 1 knot subintervals in
[Up, Up—p), and there are p + 1 nonzero polynomials in each knot subinterval in
[Up, Up—p) (see Figure B.5). These properties define a range for the effect of a
control point, which is a very nice feature, specially in freeform modeling of complex
geometries. Furthermore, the partition of unity holds true

Z Nip(t) =1, Vt € [ujuipq), Yi=p,...m—p—1 (B.13)

Jj=i—p
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1 p=1 1 p=2 1 p=3
=0\ i=1 i=2 [\i=3 i=1
i=0 /\ i=2 i=0 i=1
Nyl / \
0 1 0 1 0 1

t t t

Figure B.5: Basis polynomials of degree p = 1,2,3 for the same knot vector u =
[0,0.2,0.45,0.55,0.8, 1] (notice that no curve is defined for p = 3, since [uy, Up,—p) 1S

empty).

for each subinterval in [u,, u,,—,), so that the b-spline curve lies in the convex hull
of its control points. Actually, this property is stronger. Fach subsegment [u;, ;1)
lies in the convex hull of the subset of control points ¢;—, ..., g;.

The derivative of N;,,(t) is given by

(t = ) Nipr(t) + Nip1a(®) | Wispr = ONG1p1,0(t) = Nivap1u(t)

/ o i,p—1,u
Ni,p,u(t) -
Uitp — Uj WUjgp+1 — Uit

P 4
= ——— Nip-1,4(t) — Nit1,p-1,u(l
iy — 1y i1 (t) v i Vet (t)
(B.14)
and thus the b-spline curve derivative is a lower degree b-spline curve
C,(t) - Z Nz,,p,u(t)ql
=0
p—1ut)  Niyip-1u(?)
=pY [t a0 ],
Uitp — Ui ui+p+1 — Uit
Nop—1.u(l Nog1p-1.u( qiv1 — G
_ [ 0,p 1,()q0_ +1,p—1, n_'_ZNZJerlU #
Up — Ug Um, — Um—p WUitp+1 — Ui+l
_ < qi+1 — q;
N0
n—1
= Z Ni,pfl,u/(wq
i=0
(B.15)
where
di+1 — i
¢ =p %
Uipp — Uy (B.16)
U =g, ooy Uy 1]

A b-spline curve is p — k times differentiable (CP~*) at a k duplicate knot, and
smooth (C*) elsewhere. Whenever u; = ujy = ... = Ujip1, k > p and j €
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{p+1,...,m—2p} (k duplicate internal knot), the fixed point property

lim c(t) = g;
=y (B.17)
c(Us) = gk

and the tangent property

thH{ d(t) =p(g; — qj-1)/(w; — uj1)
o (B.18)
m c(t) = p(@jrr—p+1 = Gr—p) /(Wi — ;)

—U.;
tu]

holds true. Notice that the curve is not continuous if £ > p. Thus, the derivative
control points g; together with the knots u; must be removed whenever v, = u;.
The b-spline degree does not change after this removal.

A b-spline curve does not necessarily start at ¢y and end at ¢,. To enforce this, the
first and last knots must be p+1 duplicate, so that c(ug) = qo and limy_,,,, ¢(t) = ¢y.

Under this condition, a b-spline is said to be clamped and the tangent property

d(uo) = p(a1 — o)/ (ups1 — 1)
lim ¢(t) = p(gn — gn-1)/(Um-1 — Um—p—1)

t—Um

(B.19)

holds true.
The b-spline curve is a generalization of the Bernstein-Bézier curve, since N; () =
B, »(t) whenever u = [0,...,0,1, ..., 1] and n = p. Indeed, they have many properties
1 1

P+ p+

in common.

Similarly to the Bézier curve, a b-spline curve can be evaluated by reducing a
sequence of points. This is called the de Boor’s algorithm. Consider the sequence
of points gj_p, ..., g; at iteration k = 0, so that the parameter ¢ € [u;,u;11). The de
Boor’s algorithm iteratively reduces the sequence of points by setting

b — Uitgt1

Qi1 = Qi + (Gis1p — QGig), i=37—p,j—k—=1  (B.20)
Uitp+1 — Witk+1

until the sequence becomes a single point after k = p iterations.

B.2.1 Nonuniform rational b-splines

A NURBS (short for nonuniform rational b-splines) is defined by

n

c(t) = Ripuwt)ai, t € [up, ) (B.21)

=0
where w is a weight vector and
_ Ni,p,u(t)wi
> io Nipu(t)wi

Ri,p,u,w(t) (B22)
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The rational basis function of a NURBS curve R; ., (f) is a partition of unit
(denominator is a normalization factor), thus it lies in the convex hull of its control
points.

The perspective projection of a NURBS is also a NURBS. To clarify this intrinsic
feature of a NURBS, consider the homogeneous coordinate system. By convention,
the Cartesian coordinates are given by the perspective projection of the homoge-
neous coordinates onto w = 1, where w is the distance from the perspective vertex
(see Figure B.6). Thus, a point & in homogenous coordinates is mapped to a point
q in Cartesian coordinates by

X wr
w
o= 7= | o= (B.23)
1 w

X

Figure B.6: Geometric representation in a Cartesian coordinate system of the ho-
mogeneous coordinate system as projections on a plane.

Since the last ordinate of ¢ is always 1, the Cartesian coordinates are lower dimen-
sional than their respective homogeneous coordinates. A b-spline in homogeneous

coordinates is given by
n

e(t) = 3 Nipult)h, (B.24)

1=0

Each component of ¢(t) may be evaluated independently since the basis N; (%)
is a scalar real value. Hence, expressing the same ¢(t) in cartesian coordinates

izo Nip,u(t) i _ > ico Nipu(Hwigi
Z:’L:O Ni,pvu(wwi Z:'L:o Ni,p,u(t>wz’

leads to (B.21). Note that a NURBS may be evaluated by b-splines in homogeneous
coordinates.

c(t) = (B.25)

The weight was introduced to the NURBS to provide a natural way to apply
perspective transformations to a b-spline. Furthermore, the higher weight w; is, the
more effective will be its respective control point ¢;. This extra degree of freedom
allows NURBS to represent any conical section exactly.
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The derivative of a NURBS curve in cartesian coordinates is given by

/ - Z?:() Ni,p,u(t)hi '
‘ (t> B {2?0 Ni,p,u(t)wi:|
_[a®] B.26
Lw} (B.26)
cn(t)ew(t) — cnlt)c, (1)
2 (t)

and thus it is possible to evaluate NURBS derivatives by keeping track of the re-
spective b-spline derivatives in homogeneous coordinates.
The NURBS becomes a common b-spline curve whenever w = [1, ..., 1], where

Ri,p,u,w(t) - Ni,p,u(t)'

B.3 Higher dimensional pieces

B.3.1 Rectangular like

A curve parameterized by control points can be generalized to higher dimensions
using the tensor product. For instance, a Bézier d-piece is given by

c(t)=> a 1:[ By, (tr), t€10,1]" (B.27)

7

a b-spline d-piece (see Figure B.7) is given by

e(t) = 3" [ Nowpo (1) (B.28)

i

and a NURBS d-piece is given by

_ d—1

> it Ty Niwprue (t)

C(t) = . a1 S = Z di H Rik,pk,uk (tk) (B'29)
Zi wi Hk:o Niyo i (k) i k=0

where
1€ {O, 1, ...,no} X ..o X {O, 1, ...,nd,l} (B?)O)

defines a rectangular control grid (see Figure B.8).

Let ¢),(t) denote the partial derivative Oc(t)/0t, and e;, € {0, 1}? denote a vector
with 1 in the k' position and 0 elsewhere. The partial derivatives of a rectangular
Bézier d-piece are given by

ck(t) = ny Z(Cmek ~ ) Bip—1(tx) [ [ Biy o, () (B.31)

i#k

The partial derivatives of a b-spline d-piece follow similarly.
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Figure B.7: Control polygon (left) and respective b-spline surface (right).

90 912 9 43

a0 91 921 0

400 910 9 4930

Figure B.8: Numbering scheme for the rectangular control polygon for n = 3 x 2.

B.3.2 Simplicial like

A Bézier curve can be extended to a Bézier d-piece by

c(t)=> Bia(t)g, tel[0,1*ie{0,1,.. n}* (B.32)

where the Bernstein polynomial B; ,,(t) of degree n is generalized to the multinomial
distribution

d )
t k
By(t) = nt Uiz’ (B.33)

and where the constraints

d
Zik =n (B.34a)

>t = (B.34b)

makes the control grid look like a d-simplex (see Figures B.9 and B.10).
By convention, t; and i4 are considered the dependent variables, given by

d—1

ig=n— Z i (B.35a)

k=0

ta=1-Y ty (B.35b)
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9030 903

9003 9102 9201 9300 900 910 0 30

Figure B.9: Numbering scheme for the simplicial control polygon for n = 3 (left),
and its simplified version (right) where the last index is omitted since it is completely
defined by the other ones.

Figure B.10: Control polygon (left) and respective Bézier surface (right).

Let ¢, (t) denote the partial derivative dc(t)/0ty, and e, € {0,1}%*! denote a
vector with 1 in the k™ position and 0 elsewhere. The partial derivatives of a
simplicial Bézier d-piece are given by lower degree Bézier d-pieces

cp(t) =n Z Bin-1(t)(ite, — @) (B.36)

Consider an urn containing balls where ¢, k = 0,...,d, is the fraction of the
color k in d + 1 possible colors. Let also ix, k = 0, ..., d, count the number of balls of
color k. The extended Bernstein polynomial B;,(t) can be seen as the probability
of picking exact ¢ balls in n draws from the urn. This makes trivial to prove the
partition of unit, fixed point, or tangent properties, just like in Bézier curves.
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