

Federal University of Minas Gerais

Department of Computer Science

Data Fusion Implementation in Sensor
Networks Applied to Health Monitoring

by

Hervaldo Sampaio Carvalho MSc, MD

Advisor: Claudionor José Nunes Coelho Júnior

Co-Advisor: Wendi Heinzelman

Thesis defense as a Partial fulfillment
of the requirements for the degree of

Doctor of Science in Computer Science

at the Department of Computer Science

Federal University of Minas Gerais

January, 2005

	
©	 2005, Hervaldo Sampaio Carvalho
	 	 	 	 Todos os direitos reservados

Ficha catalográfica elaborada pela Biblioteca do ICEx - UFMG
	
 Carvalho, Hervaldo Sampaio

C331d Data fusion implementation in sensor networks applied
 to health monitoring / Hervaldo Sampaio Carvalho – Belo
 Horizonte, 2005.
 145 f.: il.; 29 cm.

 Tese (doutorado) - Universidade Federal de Minas
 Gerais – Departamento de Ciência da Computação.

 Orientador: Claudionor José Nunes Coelho Júnior
 Coorientador: Wendi Heinzelman

 1. Computação – Teses. 2. Arquitetura de computador.
 3. Sistemas operacionais distribuídos (Computadores).
 4. Redes de sensores sem fio. I. Orientador. II. Título.

CDU 519.6*22(043)

Thesis Supervisor

Claudionor José Nunes Coelho Jr
Adjunt Professor of Computer Science

Federal University of Minas Gerais,
Belo Horizonte (MG), Brazil

Thesis Supervisor

Wendi Heinzelman
Assistant Professor of Electrical and Computer Engineering

University of Rochester
Rochester (New York), USA

Acknowledgements

I would like to thank Professor Claudionor J. N. Coelho Júnior, my thesis

advisor and mentor for the last four years. Professor Claudionor is one of these
bright minds that always has a good point to improve an idea or to find a solution
for our problems. He has taught me that the world of science is more than papers
and research, patents and products are also included in this world. He has taught me
that behind a student there is a human being part of a family and society. It has
being a privilege to share my dreams and work with him.

I would like to thank Professor Wendi Heinzelman, my thesis co-advisor
and my mentor during the time I spent as a visiting faculty at the Center For Future
Health at the University of Rochester (NY-USA). Professor Wendi has been a
wonderful advisor, I would say an essential person to the conclusion of my thesis. I
thank her for the great number of hours she spent discussing and critiquing my
papers and ideas. I´m really greateful for all the support she gave me.

I began my PhD program with Professor Berthier Ribeiro-Neto as my co-
advisor and I finished my degree with a friend. Professor Berthier and his wife
were very important to me by the time I lived in Belo Horizonte. He helped me to
face day by day the hard times I had in the first two years.

I also would like to thank Professor Amy Murphy. I thank her for all the
time she spent discussing and critiquing my papers and ideas. I would like to thank
her for her friendship.

I would like to thank the opportunity and privilege to study at the
Department of Computer Science at the Federal University of Minas Gerais. There,
I found an auspicious and outstanding environment to learn and improve my
knowledge. At this department, I had the opportunity to study with Professors
Antonio Alfredo F. Loureiro, Antônio Otávio Fernandes, Clarindo Isaías Pereira da
Silva e Pádua, Geraldo Robson Mateus, Henrique Pacca L. Luna , José Marcos
Silva Nogueira, Mário Fernando Montenegro Campos, Newton José Vieira, Nívio
Ziviani, Rodolfo Sérgio Ferreira de Resende, Sérgio Vale Aguiar Campos, some of
the best Professors of Computer Science in Brazil.

I would like to thank some of the new friends I got at Belo Horizonte. I had
the opportunity to share my life and my studies with some of the most talented and
friendly students: Linnyer, Camillo, Pável, Júlio Conway, Gilberto, Autran,
Ilmério, Maria, Cristiane, and Paulo.

While at Rochester, Mark Perillo (a bright PhD student at UR) made a big
difference to my life and my learning process in Rochester. Mark, I really enjoyed
your friendship and support.

I would like to thank Professor Alice P. Pentland, Professor Philippe M.
Fauchet, Cecelia Horwitz, and Dolores Christensen for their support at the Center
For Future Health.

I would like to thank my wife Marly and my sister-in-law Edna for their

support and for the correction of the thesis format.
I would like to thank my sisters Cláudia and Jane for their support.
I would like to thank and to ask for excuses to my children Ana Luisa and

Carolina. I have been far away from them and I lost very important moments of
their lives and I wonder some day, they can understand my reasons.

I would like to thank my mother and my father. They have always given me
support and love in all moments of my life. Everything I have done and I have been
is the consequence of the infinite love they have given me.

Sometimes we believe in things that a few people believe

Sometimes we do things that a few people can do

Hervaldo.

Abstract

Recent developments in wireless networks and in miniaturization of
powerful embedded devices have enabled the development of very small
computing systems that are available all the time. In the literature, this type of
computation has been called ubiquitous computing. Several applications of
ubiquitous computing (including ones that cover life threatening situations) require
fault tolerance, resilience and graceful degradation in response to different types of
failures in the system. Several authors have focused on the development of
middleware solutions to ease the design of ubiquitous computing applications.
Others have addressed the application development field, but very few authors have
addressed the relationship between middleware and application development.

Data fusion is an important component of applications for systems that use
correlated data from multiple sources to determine the state of a system. The fault
tolerance and resilience of these applications will depend greatly on the data fusion
framework. As the state of the system being monitored and available resources change,
the general data fusion framework should change dynamically based on the current
environment and available resources in the system. As a consequence, a general data
fusion framework should provide some results of the data fusion to a module called the
decision system. This module is responsible for sending feedback to the middleware,
so the middleware can appropriately reconfigure the network. Based on the current data
or variable, the decision system receives from the data fusion module, the decision
system should automatically inform the middleware of the application’s new
requirements (i.e., the application dynamically adjusts its Quality of Service
requirements based on the current state of the system being monitored and informs the
middleware of its current Quality of Service needs).

In this thesis we address the problem of how to implement data fusion in
sensor networks, taking into account fault tolerance, resilience, and graceful
degradation in a ubiquitous computing environment. We think that to achieve these
goals it is necessary to develop applications upon a dynamic data fusion
architecture. To achieve this goal we have created a new data fusion architecture;
developed a software infrastructure based on this architecture and applied to
centralized and distributed implementations; and developed a communication
approach between middleware and the application. All these tools are new in the
literature and represent important contributions to the data fusion implementation
in sensor networks field. Furthermore, the combination of these tools represent an
important contribution to sensor networks applications development.

As a proof of concept, we have developed a Personal Multi Parametric Heart
Rate Monitor application based on sensor networks conception. The Personal Heart
Rate Monitor consists of a body-worn sensor networks application powered by battery
and connected by a wireless network. Therefore, resources such as channel

bandwidth and node energy are limited, and must be managed efficiently. The
developed system is based on the proposed tools to implement data fusion in sensor
networks applications which dynamically adapts as the state of the person’s vital
signals change and provide graceful degradation to resource changes. The Personal
Multi Parametric Heart Rate Monitor developed demonstrated to be an important
contribution to the medical field. It will be tested in a clinical trial to evaluate its
impact in prevention and early diagnosis of diseases.

Resumo

Nos últimos anos o grande desenvolvimento dos sistemas de comunicação e
a miniaturização e evolução tecnológica dos sistemas de hardware permitiram o
desenvolvimento de novas aplicações. A área de redes de sensores é uma destas
novas aplicações. As aplicações em rede de sensores se caracterizam pela presença
de inúmeros sensores (nodos) de uma rede de comunicação sem fio, com limite de
alcance do sinal e limitação de fonte de energia, pôr serem operados a bateria. Estes
sensores têm capacidade de detectar ou medir algum fenômeno da natureza,
processar e transmitir os dados ou a informação para outros sensores (nodos) até
chegar em um ponto desta rede de tomada de decisão. Trata-se então
primordialmente de um sistema distribuído com sérias restrições para
implementação.

O desenvolvimento destas aplicações exige os desenvolvimento de técnicas
de tolerância à falhas e adaptação a novas condições ambientais com a finalidade
de que o tempo de vida do sistema seja o mais longo possível. Diversos autores têm
trabalhado no desenvolvimento de sistemas que suportem estas características.
Alguns trabalhos estão na área de “middleware” e outros na área de
desenvolvimento de aplicações. Poucos autores têm se preocupado com a interface
aplicação-“middleware”.

Nos últimos anos a área de fusão de dados também tem tido um grande
crescimento pelas novas exigências das aplicações que estão sendo criadas e pelo
aprimoramento e desenvolvimento de novas técnicas estatísticas e de inteligência
artificial. Entretanto, pouco tem sido feito na área de arquitetura de fusão de dados,
e na sua implementação em redes de sensores. Além disto, a interface aplicação -
middleware nos parece ser altamente dependente da implementação de fusão de
dados e de sua arquitetura.

O presente trabalho se propõe a estudar o problema de como implementar
fusão de dados em rede de sensores, levando em consideração a adaptação à falhas
e mudanças no ambiente monitorado. Estes aspectos são determinantes para que o
sistema possa degradar progressivamente, mas mantendo as necessidades exigidas
pela aplicação (qualidade de serviço). Neste sentido, o presente trabalho propõe
uma nova arquitetura de fusão de dados, dinâmica e adaptável a diferentes
sistemas, sejam eles distribuídos ou centralizados e independente de contexto.
Além disto, o desenvolvimento de um software para implementação centralizada e
distribuída desta arquitetura associada ao desenvolvimento de uma linguagem para
comunicação aplicação -“middleware” pôr meio da fusão de dados, vem completar
o que achamos ser necessário para o desenho e desenvolvimento de uma aplicação
em rede de sensores. Todas estas ferramentas também são importantes
contribuições para a área de fusão de dados e redes de sensores.

Como prova de conceito, desenvolvemos uma aplicação (protótipo)

centralizada de um monitor multiparamétrico móvel para monitoração da
freqüência cardíaca e simulamos uma implementação de fusão de dados em rede de
sensores distribuída no corpo humana. Esta aplicação demonstrou ser uma
importante contribuição na área de diagnóstico precoce e prevenção de
enfermidades cardiovasculares.

Contents

List of figures... 1

List of tables... 4

Introduction: Sensor Networks Applications Development .. 6

Chapter 1:Motivations and Overview of the thesis ..12

1.1. Motivations ...12
1.2. Problem Statement ..16
1.3. Contributions ..17
1.4. Thesis Overview ..18

1.4.1. Introduction..18
1.4.2. Data Fusion ..19
1.4.3. System Architecture...20
1.4.4. A General Data Fusion Architecture..20
1.4.5. Centralized Data fusion implementation in sensor networks21
1.4.6. Distributed Data fusion implementation in sensor networks..................................21
1.4.7. Language for Middleware Application relationship...22
1.4.8. Conclusions..22

Chapter 2:A General Data Fusion Architecture ...24

2.1. Introduction...24
2.2. Literature review..24
2.3 Solution proposed: A General Data Fusion Architecture..27

2.3.1 Relationship between the Data Fusion Architecture and the Entire
System ..27

2.3.2. Data Fusion Taxonomy...28
2.3.3. The Data Fusion Architecture (DFA) ..29
2.3.4. The DFA placement...34
2.3.5. The DFA applied to different contexts ..35
2.3.6. Mapping different applications to the DFA..36

2.3.6.1 Military applications (E.g. sensing biological agents in a war area)36
2.3.6.2 Robot navigation...37
2.3.6.3 Geographical images application..37
2.3.6.4 Home security system..37
2.3.6.5 Bioterrorism detection system ...37
2.3.6.6 Health application...37

2.3.7. Discussion ..38

2.3.8. Conclusion ...39

Chapter 3: Body-Worn Sensor Networks for Health Monitoring.....................................40

3.1. Introduction...40
3.2. Related Work..41

3.2.1. System’s view ...42
3.2.1.1. A general software infrastructure for sensor networks applications..............42
3.2.1.2. Body-worn sensor networks software infra-structure applied for health

monitoring ...42
3.3. System Architecture..43
3.4. Network 44
3.5. Hardware infrastructure ...45

3.5.1 Sensors ...45
3.5.1.1. Types of Sensors..46
3.5.1.2. Number of Sensors..46
3.5.1.3. Sensor Redundancy...47
3.5.1.4. Sensor Placement ..47
3.5.1.5. Sensor Functionality ...47

3.5.2. Actuators ..47
3.5.2.1. Types of Actuators ..47
3.5.2.2. Number of Actuators ..48
3.5.2.3. Actuators’ Placement..48

3.6. Software Infrastructure...48
3.6.1 Agents ..48

3.6.1.1. Types of Agents ...48
3.6.1.2. Number of Agents ...48
3.6.1.3. Agents Functionality...49
3.6.1.4. Adaptive and Dynamic Resilience Agent ..49
3.6.1.5. Agents Placement ..51

3.6.2. Knowledge base and learning process...51
3.7. Health problems related to radio-frequency transmission..51
3.8. Conclusion ..51

Chapter 4: Centralized Body-Worn Sensor Network - The Personal Heart Rate
Monitoring Application ...52

4.1. Introduction...52
4.2. Problem Statement ..53
4.3. Solution Proposed: Implementation of Data Fusion Architecture for the Personal

Heart Rate Monitor System ...54
4.4. Data Fusion Applied to the PHRM ...57

4.4.1 Techniques for PHRM Data Fusion ..61

4.4.1.1 Techniques for low-level PHRM data fusion...61
4.4.1.2. Techniques for high-level PHRM variable fusion ...62

4.5. Evaluate Current Status...68
4.6. System Decision Module..69

4.6.1. System Fusion Reliability Requirement ..69
4.6.2 System Fusion Covering Area Requirement..71
4.6.3 Other Sensors Recommendation...72

4.7. The ECG Waves Recognizing System..73
4.8. Prototype ..74

4.8.1. Hardware ...74
4.8.2. Software...75

4.8.2.1. The PHRM software infrastructure..75
4.8.2.2. Software for signals visualization ..75

4.9. Experimental Results...78
4.10. Discussion and Conclusions...81

4.10.1. Discuss the prototype..81
4.10.2. Contributions ..82
4.10.3. Long Term Monitoring of Physiological Signals Clinical Trial82

Chapter 5: Data Fusion implementation in distributed sensor networks.......................84

5.1. Distributed Data Fusion Implementation ...85
5.2. Methodology...87

5.2.1. Objective ..87
5.2.2. Data Fusion expression definition ..87
5.2.3. Algorithms ...87

Chapter 6: Middleware Application relationship in sensor networks120

6.1 Introduction...120
6.2 Sensor Network Applications ...121

6.2.1. Medical Monitoring ..122
6.3 Sensor Network Management and Middleware Application Relationship

Approaches..122
6.3.1. Sensor Networks..122
6.3.2. Middleware ...123
6.3.3 Middleware for Sensor Networks...124

6.4. MILAN Project ...125
6.5 Middleware Application Relationship proposed..126

6.5.1 Application Performance ..126
6.5.2 Tradeoffs ..131

6.6. Discussion ...131
6.7. Conclusions...132

Conclusions ..133

Contributions ..136

References ..138

1

List of Figures

Figure 1: Network, middleware, and application.. 20
Figure 2: Centralized Data Fusion block diagram.. 21
Figure 3: Network, middleware, and application relationship.. 27
Figure 4: Temporal diagram showing the interaction among the sensors, the network, the
middleware, the application and the system... 28
Figure 5: Data Fusion Architecture based on UML... 30
Figure 6: Individual sensor, redundant sensor and pre-processing classes 31
Figure 7: Low Level Data Fusion Class .. 32
Figure 8: High Level Data Fusion Class.. 32
Figure 9: Mixture Level Data Fusion Class.. 33
Figure 10: Input manipulation classes.. 34
Figure 11a: Data fusion model placement: centralized
approach .. 34
Figure 11b: Data fusion model placement. Distributed approach ... 34
Figure 12: Different instances of the DFA. .. 36
Figure 13: Network, middleware and application relationship. ... 42
Figure 14: Body-Worn Sensor Networks Infrastructure... 43
Figure 15: Application’s block diagram .. 44
Figure 16: Network of sensors and actuators ... 44
Figure 17: Sensors module representation.. 45
Figure 18: Network, middleware, and application relationship ... 55
Figure 19: Temporal diagram showing the interaction among the sensors, the network,
the middleware, the application and the system.. 56
Figure 20: DFA applied to the Personal Heart Rate Monitor.. 57
Figure 21: Pre-processing, low-level data fusion, and data analysis .. 58
Figure 22: Heart rate variable redundancy.. 59
Figure 23: Combined high-level HR fusion ... 60
Figure 24: Variable fusion- the position and muscle activity ... 66
Figure 25: Pertinence function of normality and abnormality classes ... 67
Figure 26: Pertinence function of normal and abnormal .. 68
Figure 27: System diagram showing the data fusion module and the decision module 69
Figure 28: SFRR State Machine .. 70
Figure 29: SFCAR State Machine ... 71
Figure 30: Data and variable management ... 72
Figure 31: Acquisition board .. 74
Figure 32: PDA Zaurus... 75
Figure 33a: The main window of the monitoring system... 76
Figure 33b: The ECG screen... 76
Figure 34a: The landscape view of the ECG wave .. 76
Figure 34b: The the EMG screen... 76
Figure 35a: The Pulse oxymeter (blood oxygen saturation) view ... 77
Figure 35b: The blood pulse screen .. 77
Figure 36a: The Blood Pressure (Systolic and diastolic measurements) view 77
Figure 36b: The body’s temperature... 77

2

Figure 37: EPSM Wearable ECG Monitor... 80
Figure 38: Shortest path algorithm solution... 92
Figure 39: Approximate solution Hervaldo and Optimal node algorithms solutions (same 93
resulted graph) ...
Figure 40: Approximate solution Greedy... 94
Figure 41: Approximate solution Modified Greedy... 95
Figure 42: Results obtained from a network of 100 nodes... 96
Figure 43: Results obtained from a network of 250 nodes.. 96
Figure 44: Results obtained from a network of 500 nodes... 97
Figure 45: Computation cost of the optimal solution (1), Greedy (2), Modified Greedy
(3), approximate Hervaldo (4) and Optimal Node (5). .. 98
Figure 46: Computation cost of the approximate solution Greedy, Modified Greedy,
approximate Hervaldo and Optimal Node.. 98
Figure 47a: Example of data fusion path in different algorithms: approximate
Hervaldo... 99
Figure 47b: Example of data fusion path in different algorithms: Modified Greedy 99
Figure 47c: Example of data fusion path in different algorithms: Greedy 99
Figure 47d: Example of data fusion path in different algorithms: Optimal Node 99
Figure 48: Example of the worst case scenario in data fusion multiple paths 100
Figure 49: Examples of the worst and best case scenarios in data fusion multiple paths.... 100
Figure 50: Example of the 10 best shortest paths of the approximate solution Hervaldo.... 101
Figure 51: Example of the 10 best shortest paths between the (AB+CD) data fusion node
and destination node of the approximate solution Hervaldo.. 102
Figure 52: Example of a Network with 100 nodes and 10 different set of sensors. For
each set of sensors, we considered the 10 best paths (lowest communication cost) of the
approximate solution Hervaldo .. 103
Figure 53: Network with 500 nodes, 10 multiple paths combined to 10 multiple data
fusion nodes, for the shortest path, approximate Hervaldo, Approximate Optimal node
and approximate optimal node no sensor ... 104
Figure 54: Network with 500 nodes, and 10 multiple paths, for the shortest path,
approximate Hervaldo, Approximate Optimal node and approximate optimal node no
sensor.. 104
Figure 55: Network with 50 nodes, and 10 multiple paths combined to multiple DF
nodes between the last DF node and destination node for the shortest path, approximate
Hervaldo, Approximate Optimal node and approximate optimal node no sensor............... 105
Figure 56: Network with 50 nodes, and 10 multiple paths for the shortest path,
approximate Hervaldo, Approximate Optimal node and approximate optimal node no
sensor.. 106
Figure 57: Comparison between Aprox Hervaldo algorithm and Optimal Node algorithm
in a network with 500 nodes, multiple paths and multiple DF nodes................................... 107
Figure 58: Comparison between Aprox Hervaldo algorithm and Optimal Node algorithm
in a network with 500 nodes with multiple paths... 107
Figure 59: Comparison between Aprox Hervaldo algorithm and Optimal Node algorithm
in a network with 100 nodes with multiple paths multiple DF nodes.................................. 108
Figure 60: Comparison between Aprox Hervaldo algorithm and Optimal Node algorithm
in a network with 500 nodes with multiple paths... 108

3

Figure 61: Comparison between multiple paths multiple DF nodes, multiple paths,
average multiple paths, shortest path and average multiple paths multiple DF nodes
using Aprox Hervaldo algorithm in a network with 500 nodes with 10 paths..................... 109
Figure 62: Comparison between multiple paths multiple DF nodes, multiple paths,
average multiple paths, shortest path and average multiple paths multiple DF nodes
using Aprox Hervaldo algorithm in a network with 250 nodes with 10 paths..................... 110
Figure 63: Comparison between multiple paths multiple DF nodes, multiple paths,
average multiple paths, shortest path and average multiple paths multiple DF nodes
using Aprox Hervaldo algorithm in a network with 100 nodes with 10 paths..................... 110
Figure 64: Comparison between multiple paths multiple DF nodes, multiple paths,
average multiple paths, shortest path and average multiple paths multiple DF nodes
using Aprox Hervaldo algorithm in a network with 50 nodes with 10 paths....................... 111
Figure 65: Comparison between multiple paths multiple DF nodes, multiple paths,
average multiple paths, shortest path and average multiple paths multiple DF nodes
using Aprox Optimal Node algorithm in a network with 500 nodes and 10 paths.............. 111
Figure 66: Comparison between multiple paths multiple DF nodes, multiple paths,
average multiple paths, shortest path and average multiple paths multiple DF nodes
using Aprox Optimal Node algorithm in a network with 250 nodes and 10 paths.............. 112
Figure 67: Comparison between multiple paths multiple DF nodes, multiple paths,
average multiple paths, shortest path and average multiple paths multiple DF nodes
using Aprox Optimal Node algorithm in a network with 100 nodes and 10 paths.............. 112
Figure 68: Comparison between multiple paths multiple DF nodes, multiple paths,
average multiple paths, shortest path and average multiple paths multiple DF nodes
using Aprox Optimal Node algorithm in a network with 50 nodes and 10 paths................ 113
Figure 69: Comparison between multiple paths multiple DF nodes, multiple paths,
average multiple paths, shortest path and average multiple paths multiple DF nodes
using Aprox Optimal Node no sensor algorithm in a network with 500 nodes and 10
paths.. 113
Figure 70: Comparison between multiple paths multiple DF nodes, multiple paths,
average multiple paths, shortest path and average multiple paths multiple DF nodes
using Aprox Optimal Node no sensor algorithm in a network with 250 nodes and 10
paths.. 114
Figure 71: Comparison between multiple paths multiple DF nodes, multiple paths,
average multiple paths, shortest path and average multiple paths multiple DF nodes
using Aprox Optimal Node no sensor algorithm in a network with 100 nodes and 10
paths.. 114
Figure 72: Comparison between multiple paths multiple DF nodes, multiple paths,
average multiple paths, shortest path and average multiple paths multiple DF nodes
using Aprox Optimal Node no sensor algorithm in a network with 50 nodes and 10
paths.. 115
Figure 73: Comparison between multiple paths multiple DF nodes and multiple paths, in
a network with 100 nodes and communication cost DF cost of 4:1 using optimal node
algorithm... 116
Figure 74: Comparison between multiple paths multiple DF nodes and multiple paths, in
a network with 100 nodes and communication cost DF cost of 1:5 using optimal node
algorithm... 116

4

Figure 75: Overview of the interactions among Milan, the applications, and the sensors,
together with a partial API...125
Figure 76: Generic Component QoS ..127
Figure 77: Heart Monitor Application Component QoS graph ..128
Figure 78: Generic Performance graph..130
Figure 79: Heart Monitor application Performance graph ...130

5

List of tables

Table 1: comparison between traditional applications and sensor networks applications9
Table 2: Comparison of the proposed algorithm and available results in the literature.............. 73
Table 3: Sample, and bandwidth consumption of the ECG, Pulse Oximetry and Non
Invasive blood pressure signals .. 78
Table 4: Power consumption of a multi parametric unit .. 78
Table 5: Probability of patient’s monitoring states according to his risk .. 79
Table 6: Battery lifetime related to different monitoring sets and backlight.................................. 81
Table 7: Specified Application QoS ...131

6

Introduction

Sensor Networks Applications Development

A sensor networks application is characterized by a set of battery operated nodes
(sensing units) linked by a network (usually wireless) to the decision system, also battery
operated nodes (decision units). In some applications, both types of functionalities are
executed by the same nodes. Sensor networks application needs a complex specification
to achieve fault tolerance and resilience to its different functionalities in a ubiquitous
computing environment. To achieve this goal, different aspects should be considered at
the different levels: sensors, communication, application, data management, power
management and ethical aspects:

I. Sensors

A. Multiple types of sensors
B. Redundant and non redundant sensors
C. Redundant and non redundant sensors’ functionalities
D. Mobile and static sensors
E. Battery operated sensors
F. Wired and wireless sensors
G. Smart or simple sensors
H. Localization

II. Communication

A. Wireless communication
B. Wired communication
C. Low power compatible protocols
D. Security

III. Application

A. Application development
1. Centralized
2. Distributed

B. Different needs of the application (Quality of Service – QoS)
1. Different coverage area
2. Data metrics (Ex: accuracy and reliability)
3. Set of sensors

C. Multiple applications running simultaneously
1. Transactions scheduling
2. Applications’ priorities

IV. Data management

A. Data processing (DSP algorithms)
B. Data Fusion algorithms

1. Data reliability

7

2. Data accuracy
3. Different levels of data fusion
4. Data fusion optimal node

C. Real time or not real time
D. Data analysis
E. Decision node
F. Synchronization
G. Positioning
H. Security

V. Power management
A. Cost of communication
B. Cost of sensing
C. Cost of routing
D. Cost of processing
E. Sensor’s lifetime
F. System’s lifetime

VI. Ethical aspects

Most of these aspects have been addressed individually by different authors (Sensor

networks review articles), but a few articles have tried to address some of these different
aspects collectively. The decisions taken for each item cannot be made independently of
the system as a whole. One decision interferes in one or more item, and this interference
must be considered to achieve the best performance of the system. Based on this, to
achieve the goal of developing a real sensor networks application, different solutions
should be applied.

Multiple types of sensors can be deployed with or without restrictions. In a forest
monitoring application the sensors are deployed in the environment from helicopters or
planes. They can fall anywhere. In a body-worn sensor network, the body imposes
restrictions for the sensors’ deployment, and most of the time it should be deployed
manually. These applications are also suitable to compare the type of sensor used. In the
forest monitoring application it is necessary to use smart sensors (sensors with sensing,
processing, memory and wireless communication capability). In the body-worn
application the sensors over the skin could be accessed easily and can also be wired. This
difference allows the use of simple sensors or smart sensors, depending on the objective
desired. As a consequence, the communication network can be wired or wireless. In the
forest monitoring application, the communication network should be wireless. The use of
smart sensors and wireless communication imposes restrictions related to the wireless
communication complexity and the limited power resource of the sensors.

In both types of applications it is desired to adapt to failures and different
circumstances of the environment (resilience). There are two main options to achieve
these goals. The first one is to employ redundant sensors in the application, so if one or
more sensors fails, the redundant sensors can maintain the functionality for which they
are responsible. The second option is to employ redundant sensors functionalities. In this
case it is not necessary to use the same type of sensors, but sensors that have one or more
functionalities in common. The second option is much better, because we can offer the

8

same fault tolerance and resilience specifications with a lower number of sensors, but
they must be smart sensors that can be configured according to necessity.

Another aspect related to the sensors that can impose great complexity for the system
is the employment of mobile sensors. Although it is not common to employ mobile
sensors in the forest application, it would be desirable to use some mobile sensors to
solve some of the problems related to the random deployment (to achieve the desired
coverage area, to link isolated sensors that are out from the network coverage area, etc).
In the body-worn sensor networks application it is expected that mobile sensors will be
employed to monitor the entire body using the blood flux or the gastrointestinal tract for
example. In this case, the network topology changes all the time. This aspect increases
the management complexity of the system.

Sensor networks applications have some characteristics that may contribute to the
large amount of complexity. For example, each node can only gather data from a limited
physical area of the environment, data may be noisy, distributed processing of large
amounts of sensor data, scalability, quality can be traded for system lifetime, and “Team-
work” (nodes can help each perform a larger sensing task).

A common problem related to the sensor is positioning. It is important for same
reasons that time synchronization is important. There are many different approaches in
the literature to solving this problem, such as GPS. But GPS is overkill and an
unattractive solution for energy reasons. Besides GPS, the sensor can find its own
location by finding the center of mass of several beacon nodes that are heard, or finding
its location through multiple measurements of angles of arrival of beacon nodes. The
sensor can also have other nodes measure its location. The problem with these
approaches is the small scale fading.

The wireless network, by itself, is a great problem because the transmission media
(air) is shared by all the nodes in the same coverage area. Problems such as collisions,
congestion, and security are an open field of research. The sensors networks require a
new wireless networking paradigm, characterized by autonomous operation, highly
dynamic environments, and sensor nodes added/fail. The bandwidth is limited, and must
be shared among all the nodes in the sensor network. Spatial reuse is essential and
efficient local use of bandwidth is needed, with no end-to-end communication,
redundancy in information, or events in the environment. As a consequence, distributed
computation and communication protocols require energy-conserving communication
(communication is the most energy-intensive). Based on these aspects, the protocols
requirements include: low power (to maximize battery lifetime), low latency (to
maximize quality), self-configuring (with no fixed infrastructure), ad hoc (nodes moving,
environment changing), multi-hop (ensuring nodes can all communicate), and scalable (to
accommodate varying numbers of nodes).

Some authors have employed adaptive protocols exploiting high node density,
turning off some sensors for long periods of time. The tradeoff must be balanced. Having
many active nodes can be wasted energy due to idle power and having many sleeping
nodes provides fewer routes to choose from and so route selection will likely be
suboptimal.

In sensor networks routing energy-efficiency is even more important than in ad-hoc
protocols. This is the reason why lightweight protocols (little overhead) are preferable.
Most ad hoc routing protocols use algorithms with the fewest hops. Power/energy-aware

9

routing may use different metrics, reduce power consumption, distribute energy load
(maximizing network lifetime), may be tightly coupled with protocols from different
layers, and take advantage of data fusion opportunities and overlaps with adaptive
topology protocols.

There are a great number of papers addressing application’s development in general,
but few papers have addressed sensor networks application’s development. What makes
it different from the usual applications from the distributed systems area is the wireless
communication and the battery operated sensors. The following table 1 shows some of
the differences between traditional applications and sensor networks applications.

Table 1: comparison between traditional applications and sensor networks

applications

Traditional applications Sensor networks applications
Users can update and May be impossible to update or maintain sensor nodes, due
maintain devices to sheer numbers as well as deployment locations
Offer communication Communication is data-centric: end-user does not care that
between two specific end- the data came from node X, only what the data describes
users

Goal: providing high QoS Goal: prolonging lifetime of the network
bandwidth efficiency – Requires energy conservation

 – Willing to give up performance in terms of
 QoS or bandwidth efficiency

Data are important End user does not require all the data

 – Data from neighboring nodes are highly
 correlated, making the data redundant
 – End user typically cares about a higher-level
 description of events occurring in the
 environment nodes are monitoring
 – Network quality is often based on quality of
 aggregate data set rather than individual
 signals
Intermediate nodes do not Application-specific routing improves performance
care what the data are

Nodes are operating Sensor network application computation
(mostly) independently - May need to be distributed throughout network (e.g.,

 localized algorithms that achieve desired global result)
 - May require hierarchical structure
 - Enables computation / communication tradeoff
 - Has three processing levels: node, local, and global

Operate in (mostly) benign May be deployed in hostile or dangerous territory
environments

10

We can develop centralized and distributed sensor networks applications. The
distributed ones, in general, are more complex than the centralized. As we have
mentioned before, these aspects make the application development a challenge. Besides
the complexity of application development and implementation, during the runtime, the
application needs (Quality of Service – QoS) which should be achieved by the system.
Applications’ QoS may vary along time according to the coverage area and set of sensors
necessary. Furthermore, the quality of the data characterized by its quality metrics
(accuracy, reliability, noise to signal ratio, etc) should also be accomplished.

Real scenarios have many applications, running simultaneously, sharing the wireless
network and common resources of data. On the other hand, the bandwidth and sensors
battery are limited. So, it is necessary to apply some metric to schedule the transactions
(communication between data source and application) and to determine priorities among
the applications. In general, real time and high risk applications have a greater priority.

In relation to data management, different aspects should be considered such as data
processing (DSP algorithms), data fusion algorithms and the different levels of data
fusion, data analysis (real time or not real time), including the data fusion optimal node in
distributed applications, decision node, synchronization, data transmission and access
security.

One of the most important aspects related to sensor networks application
development is the power management. The power management approach should
increase the sensors’ lifetime and as a consequence the system’s lifetime. To achieve
these goals it should take into account that the cost of communication (transmission >
reception) is greater than the cost of sensing and processing.

Most sensor networks applications consider the goal of monitoring some type of
environment. This raises the discussion of ethical aspects related to the invasiveness of
the application and data privacy and security. These aspects increase when the
application is related to personal data received from a body-worn sensor network. In this
type of application, trials should be run to evaluate the personal and social influence of
the technology.

To address some of the problems described above, we have worked on different
aspects and solutions. We consider that the combined use of the proposed solutions
should be used as a base to build a sensor networks application. As a proof of concept,
we have developed a body-worn sensor networks environment and prototype as a
centralized monitoring system based on a PDA (Personal Digital Assistant).

In the first chapter we describe some motivations for the development of data fusion
algorithms in the sensor networks field. We also list some of the contributions of the
present research and an overview of the thesis.

In the second chapter we propose a data fusion architecture that is general enough to
be employed in different types of sensor networks applications. It was designed in UML
(Unified Modeling Language) and allows a dynamic model of different data fusion
necessities. As previously mentioned, one of the most important characteristics of the
sensor networks application is that it is data centric. So, the data fusion architecture and
algorithms have a great influence on sensor networks application’s performance and
implementation. Furthermore, communication is responsible for the highest cost in the
sensor networks running cost. Consequently, the assumptions and decisions made on the

11

data management and data fusion have a great influence on system’s lifetime and
performance. Our proposed architecture provides an infrastructure that can be applied in
both distributed and centralized sensor networks implementation.

In the third chapter we present the general aspects related to a body-worn sensor
networks application development. It describes specific aspects related to the body
sensing and different aspects that could be relevant to continuous health monitoring.

The fourth chapter presents a centralized implementation of a body-worn sensor
networks application for human body physiological monitoring. This software
infrastructure is divided into three modules. The first module manages the sensors, the
second module manages the data (data fusion architecture implemented for body-worn
sensor networks), and the third one manages the decision to provide the Quality of
Service required. All the modules are integrated to provide fault tolerance, resilience to
the system’s functionalities in a ubiquitous computing environment. To accomplish the
ethical and privacy aspects we developed a personal data base to store all the user data.
This is responsible for the decision to open or not open the data base to the health care
system.

The fifth chapter presents the data fusion implementation in a distributed application.
It proposes new algorithms based on the shortest path algorithm to find the optimal data
fusion node. The experiments (simulation) are based on the assumption that the data
comes from different sources (sensors) and the decision should be made in a decision
node. To find the best data fusion optimal node we consider the cost of sensing,
processing, transmission and reception (routing) using multiple hops paths. The
integration of sensors management, data fusion architecture and application
implementation was achieved by the development of a language to express in a sensors
networks middleware all the necessary features.

In chapter 6 we present the development of all the necessary aspects that should be
considered to integrate these aspects into the middleware. We think that the technologies
and solutions proposed can help application’s developers to build sensor networks
applications compatible with fault tolerance and resilience of their functionalities in a
ubiquitous computing environment. Although we have applied all the concepts to the
body-worn sensor networks application, we think that they are generic enough to be
applied in different types of sensor networks applications.

12

Chapter 1

Motivations and Overview of the thesis

In this chapter we are going to present some motivations for the development of

data fusion algorithms in the sensor networks field, the problem we want to solve, the
scientific contributions of the thesis, and an overview of the thesis.

1.1. Motivations

Sensor Networks are designed to sense the environment and to communicate

without the necessity of the existence of any infrastructure or centralized administration.
This can be implemented in a centralized or distributed approach (multiple hops may be
needed for communication). These networks can function as stand alone wireless
network, meeting direct communication needs, or as an addition to infrastructure based
networks to extend or enhance their coverage. One of the parameters used to measure the
sensor networks performance is based on the application Quality of Service (QoS) goals.
As a consequence, sensor management and network optimization should consider the
application QoS desired. Sensor networks are related with constraints at the application,
sensor and network infra-structure sides. At the application level a dynamic QoS system
should vary to achieve the application performance desired. At the sensor side, the
sensor’s processing capacity, lifetime power supply, and deployment are the most
important aspects to be considered. From the network point of view, bandwidth,
distributed communication protocols, mobility, and the dynamic aspects of the network
nodes (sensors) impose great problems to the communication optimization. Besides these
aspects, all these features should be integrated at the system level, taking into account
resilience and ubiquitous computing goals.

The development of wireless network technology and improvements in sensors
and embedded devices has enabled the convergence of mobile applications and
embedded environments in the sensor networks field. One of the requirements of mobile
embedded wireless devices is that they should be available at all times. In such systems,
components can be inserted or excluded without stopping the entire system. In this type
of system, power and bandwidth constraints should be considered. If the system is battery
powered, each component of the system has a different lifetime, which is based on the
battery capacity and the device’s power consumption. Power and bandwidth are limiting
factors to resource use.

All these problems should be addressed to guarantee that system performance
degrades gracefully as resources are diminished. A home security system, robot
navigation and a health monitoring system are examples of systems, where, based on data
that come from sensors, a view of the environment is obtained and some decisions are
made. The decisions made can be the control of an actuator (e.g., the wheels of the robot)
or a change in the number and location of sensors (system’s reconfiguration). To achieve
the last goal, some sensors can be turned on and other sensors can be turned off. To
achieve the connection between the view of world and the system reconfiguration, we can
classify the changes in environment over time as different states. The requirements of an

13

application may change according to the state of the environment and, consequently,
different components (i.e., sensors) should be used accordingly.

Dynamic systems usually share a similar architecture, sometimes consisting of
three important modules: a dynamic network, middleware, and service suppliers and
service consumers on the top of the middleware. A network is called dynamic when it can
be reconfigured according to some system parameters. These parameters include
scheduled transactions, power constraints of the network’s nodes and bandwidth
distribution among transactions, as well as other aspects.

Middleware is the software that connects service suppliers and service consumers.
The connection between service suppliers and service consumers is called a transaction or
an interaction. A service supplier is any type of network linked node (device or software)
that can offer a service. Printers, sensors, databases, and applications are all examples of
service suppliers. A service consumer is any type of network linked node (device or
software) that requires a service from a service supplier. Actuators and applications are
examples of service consumers.

Applications can be service suppliers and service consumers simultaneously. For
example, a blood pressure analyzer is a service consumer when it receives a blood
pressure signal from a blood pressure sensor (service supplier), but it can also send the
result of its analysis (acting as the service supplier) to a display (service consumer),
advising the user that his blood pressure is abnormal.

A dynamic system should be available all the time. To achieve this goal the
system should be resilient, fault tolerant, and achieve all the Quality of Service (QoS)
requirements specifications. Resilience is defined as an ability to recover from or adjust
easily to changes in available resources, such as node failures, as well as changes in
system state, such as a change from healthy to diseased. Resilience is a more general term
than fault tolerance, which is the ability to recover or adapt to different types of failures,
because it includes adaptation not related to failures, such as adapting the system to event
detection in the environment.

As a consequence of the fault tolerance and resilience goals, we can achieve
graceful degradation, which is the ability to progressively decrease system functionality
in the presence of a progressive decrease in available resources. Graceful degradation is
necessary to achieve the goal of computing all the time with a certain QoS (i.e.,
Ubiquitous Computing). Although the definition of QoS changes in different scenarios,
we will define QoS as the necessary requirements to achieve a specific goal. The specific
goal can be: an adequate exchange of data in a transaction, a better use of the network
bandwidth, a power management approach compatible with lower power consumption, a
better view of the environment by an application, and so on. The necessary requirements
to achieve these goals depend on the network characteristics - for example, the
bandwidth, the service supplier and service consumer requirements, and the entire system
application priorities. Therefore, to achieve the entire system QoS requirements, it is
necessary to achieve the QoS requirements of all its components.

We can find papers about the development of dynamic systems in three major
areas: middleware, data fusion and distributed systems. As previously mentioned,
middleware is the software that connects network components. Data fusion is a
framework to manage data with the aim of obtaining information about the state of the
system being monitored. Distributed systems study all the themes related to the use of

14

distributed components. Although these areas have been used in the development of
dynamic systems, to the best of our knowledge, the data fusion implementation and its
relationship to middleware, and the application in dynamic distributed systems has not
been studied extensively. Furthermore, few researchers have considered the relationship
between data fusion and middleware.

The frameworks for data fusion available in the literature are restricted to specific
areas like image processing and military applications. Even the taxonomy used in these
applications is very specific. It is necessary to represent data fusion as a more general
model that can be applied in different contexts. Based on these aspects, the development
of a general data fusion framework concomitantly to a new taxonomy can help to achieve
the aim of application-middleware communication for general data fusion systems.
Application-middleware communication based on a data fusion framework is new and
will help to achieve the goals of resilience and graceful degradation from the
application’s perspective. The application module should communicate to a middleware
and middleware should communicate to the network to solve the same problems from the
system’s perspective.

Based on the application-middleware communication described above, we need to
achieve two specific goals. First, to specify an application development framework
enabling the dynamic use of different data sources (data fusion framework), and second,
based on the data fusion framework evaluation of the available data, a decision module
should determine the current application’s needs (QoS) with respect to available
components. The second goal is necessary to adapt the network as the state of the system
being monitored changes. Although the use of a middleware to manage the interface
between the application and the network components is not obliged, it eases the system’s
management and allows scalability.

The application development framework can be achieved by developing two
integrated modules: a data fusion framework and a decision module. “Data fusion is
defined as a formal framework in which it is expressed the means and tools for the
alliance of data originating from different sources to achieve some view of the
environment” [1]. This definition shows that data fusion is used to combine data
(physical measures from the world) to describe the world. The fusion process depends on
the model representation of the world. As an example, in a security system we can fuse a
sound sensor data and an image from a camera to identify the presence of a person in a
room. How the data is combined depends on how the person identified is modeled. In this
case, we can obtain from the sound sensor the identification of human sound (voice) with
some measure of confidence. Concurrently, we can obtain an image compatible with a
person with another degree of confidence. We can fuse both data to increase the
confidence that a person is present in the room (inference). As we can model the world in
different ways, the data fusion process varies according to the model.

Data fusion is the part of an application responsible for the management of
different sources and types of data. If the data fusion framework manages data from
different sources, we can design a data fusion framework that adapts to different
situations of the environment (resilience), i.e., different states of the world, or different
availability of the physical measures of the environment (fault tolerance and resilience).
Data fusion is a well-researched area from the Artificial Intelligence and Systems fields

15

that recently was used to describe how data coming from different sensors could be
merged in a sensor network [1][2].

The other part of the application to be developed is the decision module. The
decision module is important to achieving the goal of adapting the network, i.e., changes
in the nodes connected to the application, based on changes in the system’s state. The
data fusion module processes data from different sources and achieves a view of the
world, but this module does not interfere in the physical measures. It is used to evaluate
the world based on the data available. To achieve resilience, fault tolerance and graceful
degradation we need more than that. We need to choose the appropriate number and type
of sensors compatible to each situation of the environment, according to the availability
of the data sources and compatible with the power and bandwidth constraints of the
system. In the case of a security system, based on the bandwidth cost of video
transmission, we can turn on cameras only if the sound detects some problem. To achieve
this goal we need a view of the world based only on the sound sensor. This can be
provided by the data fusion module. The decision to turn on the camera is provided by
the decision module. The decision module chooses the best set of physical measures of
the world to improve or decrease the view of the environment. As a consequence, based
on the view of the environment that comes from the data fusion, the decision module
provides new application QoS requirements to the middleware. This QoS can include the
new set of necessary sensors to have a better view of the system, an increase or decrease
in the data rates of the sensors, as well as other changes.

As a consequence of the data fusion framework integrated with the decision
module, the application would change dynamically according to the environment and to
the available resources in the system. The problem in achieving this goal is that the
application is not aware of the availability of data sources in the system. This information
is available at the network level, not at the application level. Therefore, we need
something to connect the network to the application in a dynamic way. The connection of
the network information (services available) with the application requirements is the role
of the middleware. The decision module should analyze some results of the data fusion
and automatically inform the middleware of the application’s new requirements. Given
this information, the middleware matches the current needs of the application with the
available sources of data and sends this information to the network for configuration of
the connections between nodes.

It is important to emphasize that both middleware and application should be
compatible with fault tolerance, resilience and graceful degradation to achieve the
ubiquitous computing aim. In the case that only middleware is compatible to these
aspects, fault tolerance, resilience and graceful degradation goals will not be satisfied at
the application level. The inverse is also true. Another important aspect is related to the
application and middleware relationship. Even if both systems achieve graceful
degradation, it is not enough. Middleware and application should communicate to each
other in such a way that makes it possible to achieve the graceful degradation in the entire
system.

16

1.2. Problem Statement

An example of a dynamic, distributed system that could benefit from the data
fusion framework and application-middleware communication described in the next
section is a Personal Heart Rate Monitor.

A multi parametric Personal Heart Rate Monitor (PHRM) is a wireless-based
mobile dynamic system with the goal of monitoring the heart’s condition in healthy and
diseased conditions. It provides a continuous monitoring of the subjects’ Heart Rate. The
multi parametric PHRM consists of a body-worn sensor network powered by battery and
connected by a wireless network. It is designed to use different types of physiological
sensors to monitor the user’s heart rate: blood pressure, pulse oximeter, blood flow,
arterial pulse, Electrocardiogram (ECG), Electromyogram (EMG), Electroencephalogram
(EEG), and others. The use of all of these sensors will provide the evaluation of the heart
rate in different conditions of the body. The heart rate varies according to body activity,
temperature, blood pressure, position and so on. The PHRM evaluates the absolute and
relative heart rate values in each condition.

PHRM is a mobile system. In this case, bandwidth and power constraints should
be considered. To achieve continuous monitoring in different conditions, the system
should have reasonable autonomy. Node lifetime is inversely proportional to power
consumption. To decrease the power consumption of the system components, it is
necessary to adjust the use of sensors to the current necessity of the application. As an
example, if the user is completely healthy (all data are in the normal range), we can
decrease the number of sensors and turn off the sensors not in use. This approach
increases the lifetime of the sensors and of the system overall. When an event is detected
from the current available data (e.g., a high blood pressure) the system can turn on the
sensors related to the event (i.e., ECG and pulse oximeter). This is called adaptation to
environment changes. The system should also adapt to loss of available sensors
(adaptation to the availability of system components). As a result, if we can adapt the
system to all events occurred in the environment or at the sensors level, the system can be
resilient, fault tolerant, and provide graceful degradation. Although there are different
adaptation definitions in the literature, we will consider in the entire text the definition
described in the scenario above.

All the sensors will be connected by a wireless network on the body to an
application on the top of a middleware. The discovery service will send the available
sensors to the middleware, which will send the required data to the application. The data
fusion framework will process and fuse the data to come up with a view of the heart’s
health. Based on this view, the decision system will determine the current PHRM sensors
necessity (application QoS). As an example, consider that the user is healthy and that all
the data that come from the body are normal. Based on these aspects, the power
management policy will turn off most of the sensors. The monitor will be based on one
ECG lead and a blood flow sensor. Now, imagine that the system has just recognized an
arrhythmia. As a result, the decision module will request that the middleware increase the
number of leads of the ECG to 3 and ask for the blood pressure and pulse oximeter data.
This information will be sent from the middleware to the network. The network will
schedule the new transactions and will also be reconfigured according to the new

17

requirements of the system (assuming this is feasible, based on sensors available and
bandwidth constraints). As a consequence, in the next step the PHRM application will
receive data from 3 ECG leads, from the Blood pressure sensor and from the pulse
oximeter sensor.

We have developed a data fusion architecture for applications of a network-based
dynamic system with the following characteristics:

Components of the system can be inserted or excluded without stopping the
entire system;
The environment changes with time and so do the physical measures from it;
The application’s necessity changes according to different states of the
environment, and as a consequence, it can use or reuse components in the
different states;
The system is mobile and battery powered, so each component of the system
has a different lifetime, bandwidth usage and power consumption;
As a network-based system, bandwidth is limited and coverage area is
variable.

All of these problems will be addressed from the application perspective to

make the system robust to the dynamic environment.
The PHRM is from the class of network-based mobile dynamic systems powered

by battery, where an application should adapt itself to different configurations of the
system (data sources moving in and moving out), different states of the environment, and
considering power and bandwidth constraints. As a consequence, the solution of these
problems will solve the same problems in the class of related systems. Controlling Robots
based on the environment and home security systems are two examples of this class of
systems to which our framework should be applicable.

We propose a solution to the problem of developing an application framework to
manage data from different types of sensors to perform a Heart Rate Monitoring
application in a Ubiquitous Computing environment. In this work, we will focus on the
application’s framework (data fusion and decisions modules) while also considering the
necessary middleware and network facilities to ensure resilience to changes in available
resources and changes in the environment’s state.

1.3. Contributions

The contributions of this research include:

A general data fusion architecture for mobile network-based
dynamic monitoring systems;
Algorithms for distributed data fusion implementation in sensor networks;
Software infra-structure for centralized sensor networks to provide fault
tolerance, resilience and QoS in dynamic environment;
A language for application-middleware relationship;
An ECG interpretation algorithm based on continuous variable
compilation; Multi parametric-based body-worn heart rate monitor;

18

QoS based on system states and user (environment) states.
Algorithm for distributed data fusion.

1.4. Thesis Overview

1.4.1. Introduction

Sensor Networks are designed to sense the environment and to communicate

without the necessity of existence of any infrastructure or centralized administration. It
can be implemented in a centralized or distributed approach (multiple hops may be
needed for communication). These networks can function as standalone wireless
networks meeting direct communication needs, or as an addition to infrastructure based
networks to extend or enhance their coverage. One of the parameters to measure the
sensor networks performance is based on the application Quality of Service (QoS) goals.
As a consequence, sensor management, and network optimization should consider the
application QoS desired.

Sensor networks are related with constraints at the application, sensor and
network infra-structure sides. At the application level, a dynamic QoS system should vary
to achieve the application performance desired. On the sensor side, the sensor’s
processing capacity, power supplier lifetime, and deployment are the most important
aspects to be considered. At the network point of view, bandwidth, distributed
communication protocols, mobility and the dynamic aspects of the network nodes
(sensors) impose great problems to the communication optimization. Besides these
aspects all these features should be integrated at the system level taking into account
resilience and ubiquitous computing goals.

These different aspects should be considered in the design of sensors networks
applications:

Nodes deployment;
Nodes Addressing;
Nodes design;
Routing;
Security;
Service Discovery;
Network media: 802.11b, Bluetooth, UWB and Infrared;
Network configuration and topology;
Authentication, Authorization and Accounting;
Data fusion;
Power management;
Sensors management;
Optimization;
Resilience and fault tolerance.

Although data fusion is related as one item of this list, it is related to almost all the

other items because it is a low level representation of the application’s quality of service.

19

In this thesis we are going to focus on data fusion implementation on sensor networks,
considering some of the aspects described above.

1.4.2. Data Fusion

Data fusion is a formal framework used to express the convergence of data from

different sources in which is expressed the means and tools for the alliance of data that
originated from different sources. The US Department of Defense has defined data fusion
as a multilevel, multifaceted process dealing with the automatic detection, association,
correlation, estimation, and combination of data and information from single and multiple
sources. The resulting information is more satisfactory to the user when fusion is
performed rather than simply delivering the raw data. In data fusion, information may be
of various types, ranging from numeric measurements to linguistic reports. Some data
cannot be easily quantified, and their accuracy and reliability may be difficult to access.

Sensor measurements have problems related to noise, errors and incompleteness. In
addition, we often cannot have a complete view of the world based on data from only one
sensor (incompleteness). Associated with sensor data use, we have to evaluate its
reliability. Reliability attempts to represent how much confidence we have in the data that
comes from the sensor. All of these aspects contribute to increasing the uncertainty in the
system. Thus, we need a formal data fusion framework that represents and provides tools
to manage all of these different problems. None of the frameworks described until now
achieves this objective for different types of applications and scenarios.

There are different levels of data fusion. We can have data fusion from one sensor
(time series), redundant sensors, redundant variables, variables and systems. We can even
fuse different levels of data. We can find different approaches in the literature to treat this
problem. Some researchers use statistical analysis like mean, average, median, standard
deviation, correlation and variance (the Kalman filter algorithm). Other researchers use
heuristical approaches to manage the uncertainty, such as probabilistic models based on
Bayesian networks or uncertainty sets, possibility models based on fuzzy logic and
Dempster-Shafer theory, mathematical models, learning algorithms based on neural
networks and evolutionary algorithms, and hybrid systems. Which approach to use
depends on different aspects, such as the type of data, the requirements of the application,
and the grade of reliability desired.

Although there are different papers in the literature addressing the data fusion problem
and the management of incomplete data, there is a lack of a better definition of the
different levels of data processing and analysis that need fusion. Some papers address the
fusion of signals, others address the uncertainty of high level data fusion using different
methods, but none of them have tried to establish a formal framework that includes the
different levels of data fusion. Besides this aspect, there is a need for a taxonomy that
defines what is low and high level fusion. We present a formal framework based on UML
(Unified Modeling Language) and describe a taxonomy that defines the different levels of
data fusion. Next we discuss the data fusion implementation in distributed and centralized
sensor networks scenarios. Finally, we present a sensor networks application of a body-
worn sensor network. We applied the framework and taxonomy described here to solve
the dynamic management of data in a Personal Health Monitoring System (PHMS). Our
framework can be applied to any of the class of problems characterized by

20

monitoring the environment using different types of sensors, such as a home security
system, a military application in a war, control of robots based on the environment, etc.

1.4.3. System Architecture

This section shows the relationship of the data fusion with the whole system. We

think that to achieve all the requirements to make a system available at all times we need
to integrate the network, the service suppliers (data sources) and services consumers
(applications). The application development can be divided into several integrated
modules; in this paper we will address the data fusion and decision modules.

A network-based system needs all of its components (network, middleware and
application) to deal with dynamic changes in the availability of resources and changes in
the environment. The system should adapt to the availability of sensors and their
corresponding signals, and it should also adapt to changes in the measurements
themselves.

 Application

 Data

Data Fusion
 Network

 Middleware

QoS

Decision
Module

Figure 1: Network, middleware, and application

Figure 1 shows a block diagram of a general system. The sensors (service suppliers)
and the application (in this case service consumer) are nodes of the network. The
middleware is the software that connects the sensors to the application through the
network. The application has two integrated modules, the data fusion module and the
decision module. The application sends its QoS requirements to the middleware, and the
middleware sends the sensor data to the application. Next we present the data fusion
architecture and discuss the distributed and centralized data fusion implementation.

1.4.4. A General Data Fusion Architecture

We have developed a data fusion architecture that can be applied for network-based

dynamic distributed systems or conventional stand alone centralized systems. The
following characteristics can co-exist in both systems: components of the system can be
inserted or excluded without stopping the entire system; the environment changes with
time, as do the physical measures from it; an application’s necessity changes according to
different states of the environment, and as a consequence, it can use or reuse components
in the different states; the system can be mobile and battery powered, so each component
of the system has a different lifetime, bandwidth usage and power consumption. In the
case of a network-based system, bandwidth is limited. All of these problems should be
addressed from the application perspective to make the system robust to the dynamic
environment. We think that some of these problems can be addressed at the data fusion
module of the application.

21

1.4.5. Centralized Data fusion implementation in sensor networks

Figure 2 shows the diagram of the software tool for applications development
based on a body-worn sensor networks. The application is developed based on the data
fusion module and the decision module. The data fusion module is based on the
architecture proposed by the authors in [4] and shown in figure 1. It is responsible for the
fusion of data from the same type of sources (redundant data) and data from different
types of sources. The different levels of the data fusion system are composed by different
types of agents responsible for processing and analyzing different types of data. The data
fusion system provides dynamic software to represent the changes in the environment
(body and environment where the body is placed), conditions of the sensors, and
capability of the processing unit. This adaptability of the system is compatible with fault
tolerance and ubiquitous computing. The decision module makes changes in the system
to follow the new necessities. It is also responsible for the control of messages delivered
and actuators, log and exchanges of information with other information systems (for
example the electronic medical record).

 Interpreted

Data
Fusion data

 data

 module

sensors

Decision

 Module

agents

 Control

 Control

 Control Actuator

Figure 2: Centralized Data Fusion block diagram

We have applied this architecture to develop a centralized sensor networks
application applied to the physiological signals monitoring.

1.4.6. Distributed Data fusion implementation in sensor networks

Data fusion is an important aspect related to the application development in a

sensor networks environment. It is directly related to the application quality of service
specifications and also related to different aspects of the sensor networks environment.
Based on these aspects, different aspects should be considered in the data fusion
implementation in sensor networks:

1) Communication cost (receiving and transmitting)

a. Influence of different sizes of data. If the data is higher than the packet,
we need to add the number of necessary messages to send all the data;

22

2) Data fusion cost;
3) Data fusion precedence;
4) Sensing cost;
5) Node capability: power, computation capability and functionalities capability

b. All the nodes have the same capabilities;
c. Heterogeneous nodes;

6) Different data rates: it can determine the use of shortest or longest paths;
7) Real time versus not real time: real time applications need a short path

and smaller delays;
8) Security: Adds overhead in the communication cost;
9) System lifetime: how many paths can we use to provide a larger system’s

lifetime? From the lifetime point of view, the use of as many paths as possible
is useful;

10) Data throughput: the shortest paths are related to a higher throughput than
the larger paths;

11) Transmission delay: the transmission delay is higher in the long paths than
in the shortest paths;

12) Time synchronization: it is easier to obtain on shortest paths
synchronization than in the longest paths;

13) Location integration:
d. Scenario 1: any source, anywhere;
e. Scenario 2: sources to be fused are near each other;

14) Scalability: We can apply the algorithm to the entire network or divide
the network in smaller domains represented by different destination nodes,
and integrate the domains’ destination nodes to scale to the entire network;

We have developed some algorithms to find the best optimal node to fuse the data

from different sensors considering the aspects described above.

1.4.7. Language for Middleware Application relationship

We presents a language based on graphs on how an application can specify for
middleware the set of sensors it will need during the run time. Furthermore, it specifies
the metrics and the value of the metrics the application Quality of Service will determine
during run time. Based on this information, middleware can determine the best set of
sensors compatible with a longer system’s lifetime.

Another very important aspect is related to the specification of the applications
priorities and sensor management. They are related to the value specified to each
application and the QoS.
.
1.4.8. Conclusions

We presented some important features that should be considered in the data fusion

implementation in sensor networks. It includes data fusion architecture, applications
development tool (data fusion implementation and decision module), and a language for
data application and middleware relationship. We have proposed general data fusion

23

architecture (DFA) described in a formal language of object representation (UML) that
tries to represent different scenarios, specifications and features of a general data fusion
system. It also allows a dynamic modification of the system according to different states
of the environment or of the system. The DFA proposed is a good solution to the problem
of developing an application framework to manage data from different types of sensors to
perform different tasks in a ubiquitous computing environment. We have mapped the
data management problem to different domains and applications to show that we can
employ our data fusion architecture to diverse scenarios, including different contexts and
domains. Based on the Data Fusion Architecture proposed we have developed algorithms
to perform distributed data fusion and centralized data fusion systems considering
different constraints imposed by the sensor networks environment. To achieve the fault
tolerance and resilience goal we have developed a language for data fusion architecture
and decision modules of the application integration to the middleware. Finally, we
presented an infra-structure to a body-worn sensor networks application. As proof of
concept we have developed a prototype of a Personal Heart Rate Monitoring system.

24

Chapter 2

A General Data Fusion Architecture

2.1. Introduction

Recent developments in wireless networks and in miniaturization of powerful
embedded devices have enabled the development of very small computing systems that
are available at all times. In the literature, this type of computation has been called
ubiquitous computing. Several applications of ubiquitous computing (including ones that
cover life threatening situations) require fault tolerance, resilience and graceful
degradation in response to different types of failures in the system. In this paper, we
address the problem of how to develop applications, taking into account fault tolerance,
resilience, and graceful degradation in a ubiquitous computing environment. We think
that to achieve these goals it is also necessary to develop a data fusion model compatible
with network-based distributed systems and stand alone systems.

Data fusion is an important component of applications for systems that use
correlated data from multiple sources to determine the state of a system. The fault
tolerance and resilience of these applications will depend greatly on the data fusion
framework. As the state of the system being monitored and available resources change,
the general data fusion framework should change dynamically based on the current
environment and available resources in the system. As a consequence, the data fusion
framework should provide some results of the data fusion to a module called the decision
system. This module is responsible for sending feedback to the middleware, so the
middleware can appropriately reconfigure the network. Based on the current data or
variable the decision system receives from the data fusion module, the decision system
should automatically inform the middleware of the application’s new requirements (i.e.,
the application dynamically adjusts its Quality of Service requirements based on the
current state of the system being monitored and informs the middleware of its current
Quality of Service needs).

In this chapter, we present a Data Fusion Architecture that we think is general
enough to be applied in different contexts and applications. We also present the data
fusion architecture proposed applied to different scenarios.

Problem: which architecture to use?

2.2. Literature review

We have developed a data fusion architecture that can be applied for network-
based dynamic systems (distributed) or conventional stand alone (centralized) systems.
The following characteristics can co-exist in both systems: components of the system can
be inserted or excluded without stopping the entire system; the environment changes with
time and so do the physical measures from it; application’s necessity changes according
to different states of the environment, and as a consequence, it can use or reuse
components in the different states; the system can be mobile and battery powered, so

25

each component of the system has a different lifetime, bandwidth usage and power
consumption. In the case of a network-based system, bandwidth is limited. All of these
problems should be addressed from the application perspective to make the system robust
to the dynamic environment. We think that some of these problems can be addressed at
the data fusion module of the application.

Data fusion is a formal framework used to express the convergence of data from
different sources in which is expressed the means and tools for the alliance of data
originated from different sources [1]. The US Department of Defense has defined data
fusion as a multilevel, multifaceted process dealing with the automatic detection,
association, correlation, estimation, and combination of data and information from single
and multiple sources [2]. The resulting information is more satisfactory to the user when
fusion is performed rather than simply delivering the data [3]. In data fusion, information
may be of various types, ranging from numeric measurements to linguistic reports. Some
data cannot be easily quantified and their accuracy and reliability may be difficult to
access.

Sensor measurements have problems related to noise, errors and incompleteness.
Noise is related to different types of interference. It is directly related to the sensor device
and its environment. Errors can be related to systematic or random errors of the sensor
device. In general, transducers do not operate in practical operation like they operate in
theory or simulations. In addition, we often cannot have a complete view of the world
based on data from only one sensor (incompleteness). Associated with sensor data use,
we have to evaluate its reliability. Reliability attempts to represent how much confidence
we have in the data that comes from the sensor. All of these aspects contribute to increase
the uncertainty in the system. Thus, we need a formal data fusion framework that
represents and provides tools to manage all of these different problems. None of the
frameworks described until now achieve this objective for different types of applications
and scenarios.

There are different levels of data fusion. We can have data fusion from one sensor
(time series), redundant sensors, redundant variables, variables and systems. We can even
fuse different levels of data. We can find different approaches in the literature to treat this
problem. Some researchers use statistical analysis like mean, average, median, standard
deviation, correlation and variance (the Kalman Filter Algorithm) [4]. Other researchers
use heuristical approaches to manage the uncertainty, such as probabilistic models based
on Bayesian networks or uncertainty sets [5][15], possibility models based on fuzzy logic
and Dempster-Shafer theory [4][6][17], mathematical models [7], learning algorithms
based on neural networks and evolutionary algorithms [8], and hybrid systems [8]. Which
approach to use depends on different aspects, such as the type of data, the requirements
of the application, and the grade of reliability desired.

E. Waltez and J. Llinas, cited by [9], have described important features related to
the development of data fusion architectures: robustness and reliability, extended
coverage in space and time, great data space dimension, reduced ambiguity, and a
solution to information explosion.

Another important aspect of data fusion is related to system representation and the
data fusion framework. Most of the papers published in this area are related to military
applications and image processing. The military application field is mainly represented
by the functional model developed by the Joint Director of Laboratories (JDL) from the

26

U.S. Department of Defense. Their functional model is represented by four levels. The
first level is related to the identification and description of the objects; the second level
represents an interactive process to fuse spatial and temporal entities relationships; the
third level is associated with the combination of the activity and capacity of enemy forces
to infer their force; and the fourth level is related with all other levels and is responsible
for regulation of the fusion process [2]. Although this model has been applied in large
scale projects related to military applications, it seems to be very specific to this field.

The papers related to image processing are basically applied to two fields, robot
navigation and geographical data. Durant presented a framework to integrate and to
model coordination and control of robot systems [10] and Arnoud proposed architecture
of sensors data fusion systems, emphasizing the benefits of providing high level fusion
[4]. Clement and others described a specialist-based knowledge approach [11].
Matsuyama and McKeown worked with hierarchical descriptions of image fusion [12]
[13]. Growe [14] developed a framework based on semantic nets representation using
fuzzy membership function to determine whether fusion is possible.

A few papers have addressed different domains. Dailey, among others, described
data fusion applied to transportation [15]. Laskey and others, used Knowledge and Data
Fusion in Probabilistic Networks applied to the medical diagnosis domain [16]. The
authors describe the use of probabilistic networks to represent and model a medical
diagnosis approach. They have shown that novel models of Bayesian networks can learn
with new observations and that it should apply when we have complete or incomplete
observations about the phenomenon. The use of probabilistic approaches can provide
assumptions about the variables even when they are not measured. This is an important
aspect related to fault tolerance and data incompleteness management.

Although there are different papers in the literature addressing the data fusion
problem and the management of incomplete data, there is a lack of a better definition of
the different levels of data processing and analysis that need fusion. Some papers address
the fusion of signals, others address the uncertainty of high level data fusion using
different methods, but none of them have tried to establish a formal framework that
includes the different levels of data fusion. Besides this aspect, there is no taxonomy that
defines what is low and high level fusion. We present a formal framework based on UML
(Unified Modeling Language) and describe a taxonomy that defines the different levels of
data fusion. We applied the framework and taxonomy described here to solve the
dynamic management of data in the Personal Health Monitoring System (PHMS), but
this framework can be applied to any of the class of problems characterized by
monitoring the environment using different types of sensors. Thus, if we solve the PHMS
data fusion problem and we can map the PHMS to other applications like a home security
system, a military application in a war, control of robots based on the environment and so
on, the data fusion framework we developed can be applied in all these different
applications.

27

2.3 Solution proposed: A General Data Fusion Architecture

2.3.1 Relationship between the Data Fusion Architecture and the Entire System

We think that to achieve all the requirements to make a system available all the
time, we need to integrate the network, the service suppliers (data sources) and service
consumers (applications). The application development can be divided in several
integrated modules. We are going to address the Data fusion and decision modules.

A network-based system needs all of its components (network, middleware and
application) to be compatible with dynamic changes in the availability of resources and
changes in the environment. The system should adapt to the availability of sensors and
their corresponding signals, and it should also adapt to changes in the measurements.
Figure 3 represents the system’s block diagram. The sensors (service suppliers) and the
application (in this case service consumer) are nodes of the network. The middleware is
the software that connects the sensors to the application through the network. The
application has two integrated modules - the data fusion module and the decision module.
The application sends its QoS requirements to the middleware, and the middleware sends
the sensor data to the application.

Sensors
Application

Data

Data Fusion

Network Middleware

Decision
Module

QoS

Figure 3: Network, middleware, and application relationship.

Figure 4 shows the temporal diagram of the information exchange between the
system’s components. When the system starts, middleware needs the QoS information
from all the components (Service Suppliers, Network, Applications and from the entire
system). After that, the network is configured, the transactions are scheduled and all the
necessary connections (transactions) are matched by the middleware. Middleware starts
to receive data and sends it to the application. The application data fusion module will
process the data and pass a view of the world (environment) to the decision module.
Based on this input, the decision module will determine the new requirements of the
application (application QoS). Again the middleware matches the new application needs
to the available resources and sends to the network the new set of connections. The
network will be reconfigured and the entire process repeats in a cyclic way.

28

Figure 4: Temporal diagram showing the interaction among the sensors, the network,
the middleware, the application and the system.

Based on the type of system described above, we are going to present the data

fusion architecture and the decision modules.

2.3.2. Data Fusion Taxonomy

There are three main types of data fusion: data oriented, task oriented (variable)
and a mixture of data and variable fusion. The basic idea that divides the levels is the
difference between data and variable. Data is a measurement of the environment that is
generated by a sensor or other type of source. Variable is determined by the presence of
one or more application tasks. In general, from one type of data, we can come up with
one or more variables or tasks. For example, from the data from a camera we can obtain
an image of a person (variable person), an animal image (variable animal) or an object
(variable object). In this case, the application has the task of identifying the image of a
person, an animal or an object. These tasks can be an intermediary or the main endpoint
of the application. They will be intermediary when they are a necessary step to achieve
another task, or to add redundancy and fault tolerance to the system. The variable
determination can be achieved by using a data analysis algorithm or using some
approach, such as neural networks, that takes the data as input and gives as an output the
probability of being an image of a person, an animal image or an object image. So, what
determines the three levels is whether the fusion process is made at the data level

29

(without any analysis), after the data has suffered process of analysis (at the variable
level) or transformation to a task, or in a mixture level (fusion of data and variable).

2.3.3. The Data Fusion Architecture (DFA)

Sensors exist to measure physical variables, such as a temperature, heart rate, or

blood pressure. A physical variable can be measured by several sensors (which we call
redundant sensors), or by a single sensor (which we call an individual sensor). Individual
sensors are unique in the system, and there is no reason to use multiple sensors of this
type. Redundant sensors can co-exist with multiple sensors of the same type, and it is
desirable to do so to achieve fault tolerance, increase the covering area, or meet other
constraints. The system should be able to differentiate these types of sensors and the data
that come from them.

In general, before any data fusion can be performed, the signal that comes from
the sensor should be pre-processed. The pre-processing can be as simple as an analog to
digital conversion or as complex as the use of different Digital Signal Processing
approaches. Different approaches and techniques should be applied to different types of
signals before the data is useful for management: analog to digital conversion, error
analysis, amplification, filtering, noise treatment, quantization, multiplexing, etc.

After pre-processing, the data should be fused. We propose a 3-level data fusion
framework based on both data and variables. Data is defined as the data that come from a
sensor. Variable is defined as a type of data that is generated after some analysis of the
raw sensor data. As a consequence of this differentiation, the data fusion can be classified
as low level fusion of data, high level variable fusion and a mixture level fusion. When
the data fusion is performed before some analysis, it is classified as low level. After some
data analysis, it is classified as high level variable fusion. There are some situations
where we can fuse data and variables. A mixture fusion level class was created to
represent this class of fusion. Figure 3 shows the data flow from the sensors, pre-
processing unit and the data fusion framework, describing possible scenarios of data
fusion represented in UML (Unified Modeling Language).

The framework presented in figures 3, 4 and 5 is new because it explicitly defines
the different possible levels of data fusion, including different approaches to manage the
fusion process. Furthermore, it introduces a new taxonomy for data fusion classification
based on the definitions of data and variable and how to combine and fuse them. The
formal representation of a data fusion framework based on UML description is also new.
Figure 3 shows the Data Fusion Architecture described in UML (Unified Modeling
Language). The boxes represent classes and the arrows means the direction of possible
data or variable flow. The number around the arrows represents the cardinality of the
classes’ instances relationship. As an example, we have only one instance of any type of
sensor at a time for one instance of a pre-processing class. Text inside brackets represents
constrictions. Notes are simple explanations.

The DFA shows that data comes from one sensor; it is pre-processed using
operations from the pre-processing class and the pre-processed data is sent to the Low
Level Data Fusion (LLDF); Each LLDF instance can receive one or more type of data as
input and using any of its operation fuse them. This class can send its output (fused data)
to another instance of the LLDF (multilevel LLDF), and/or to the data analysis, and/or

30

High Level Data Fusion (HLDF), and/or Variable interpretation, and/or Mixture level
Data Fusion (MLDF) modules. The MLDF receives data from the LLDF and variable
from the HLDF and its output (fused data/variable) goes back to the HLDF and/or it goes
directly to the variable interpretation module. The data analysis module receives fused
data, analyzing it using the appropriate algorithm to the received data and sends the
resulted variables to different instances (one HLDF instance for each type of variable) of
the HLDF module. At the HLDF, each HLDF variable instance performs the redundant
variable fusion process and sends its resulted fused variable to another instance of the
HLDF, and/or to the MLDF, and/or to the Variable Interpretation module. The Variable
Interpretation (VI) module receives variables from different sources as input. It fuses all
the views of the variable to provide as an output, single or multiple views about the
sensed environment or data source. Its’ output goes to the decision system. The decision
system takes all this information and decides about modifications on the environment
sensing (application’s Quality of Service output), and/or control any actuator (actuator
control), and/or change algorithms and data/variable flow in the data fusion model
(control output goes to the LLDF, MLDF or HLDF).

Figure 5: Data Fusion Architecture based on UML.

31

Figure 6 shows the classes of the individual and redundant sensors, and pre-
processing classes. The class of individual sensors has attributes such as identification,
type of sensor, data rates, power (lifetime), bandwidth requirement and the IEEE 1451.2
sensor characteristics. The individual class functions are related to the sensor mode (on,
off, sleep, idle) as well as data rate control and battery level. The redundant sensor class
heritance the individual sensor class attributes and operations and adds the characteristics
related to the sensor redundancy, such as covering area and related operations. The pre-
processing class includes different functions used to process analog and digital signals.

Figure 6: Individual sensor, redundant sensor and pre-processing classes.

The low level data fusion class includes different approaches that can be used in
different low data fusion scenarios and is described in Figure 7. Figure 8 shows possible
approaches to manage variables in the high-level variable fusion. In general, it uses the
same approach as the low-level data fusion, but applied to the fusion of variables. The
specific variable application fusion management approach includes the different
approaches based on uncertainty management tools like belief networks, neural networks,
genetic algorithms, fuzzy logic, probability theory and many others. This will depend on
the knowledge model applied. Figure 9 presents the class of an unusual but used form of
data fusion, the fusion of row data with variables (Mixture Level Data Fusion class).

32

Figure 7: Low Level Data Fusion Class.

Figure 8: High Level Data Fusion Class.

33

Figure 9: Mixture Level Data Fusion Class.

Figure 10 describes the two main types of input manipulation classes. These
classes can be used in any part of the data fusion architecture, including the different
levels of fusion in the LLDF, HLDF and MLDF. To see an example of the different level
inside the HLDF see the chapter 4 describing the Health monitoring application. The
synchronized class requires that all the input should be processed at the same time. If
these inputs arrive at different times, we need to use an algorithm or a rule to provide the
synchronization. We can classify the synchronization process in hard and soft
synchronization. The soft synchronization allows some flexibility in the time for
synchronization. The hard process requires a tight input time stamp. One of the available
ways is to synchronize the input manipulation based on the lowest input rate. Using this
approach we solve the problem of synchronization but we still have problems related to
the use of the higher input rates data. Are we going to use the current or the next value of
the higher input rates? So, in some situations where hard synchronization is required, we
will need an algorithm to deal with the calculation of the optimal time synchronization. If
the synchronization is soft we can also employ some operations from the asynchronous
class. We can combine the time series approach to the weighted sun of asynchronous
input to manipulate the inputs. This is a powerful approach because it takes in account
historic data and the weight of ach input in the final result. The asynchronous class
describes different tools to manage asynchronous inputs. These approaches can consider
or not the influence of the previous ones (historic inputs data) or weight the influence of
each input. The weight used in this approach can be any type of characteristic that is
important for the knowledge representation such as reliability, accuracy, covering area,
and so on.

34

Figure 10: Input manipulation classes.

2.3.4. The DFA placement: The proposed Data Fusion Architecture is compatible with
centralized and distributed approaches. Figures 11a and 11b show examples of
completely centralized and completely distributed scenarios. These are the extreme cases.
We can also apply it to intermediary scenarios, depending on the system’s characteristics.

 Low Level High

 Data Pre- Data Variable Decision

 Data Level

Sensor Processing Analysis Interpretation Module

 Fusion Variable

 Fusion

Mixture Level Data Central unit
Fusion

a) Completely centralized approach: all the data fusion functionalities are performed in a central unit.

 Low Level High

 Data Pre- Data Variable Decision

 Data Level

Sensor Processing Analysis Interpretation Module

 Fusion Variable

 Fusion

Mixture Level Data Smart Sensor
Fusion

b) Completely distributed approach: all the data fusion functionalities are available at the smart sensor.

Figure 11: Data fusion model placement.

35

The first scenario described in Figure 11a is an example of conventional
client/server system, where different sensors are attached to a central unit and this one
performs all the necessary algorithms. The decision module makes decisions about the
entire system behavior. The completely distributed approach has been applied to sensors
network based on smart sensors and is described in Figure 11b. In this case, the decision
module applies only to each sensor’s functionalities. In this case the HLDF is limited to
the sensor’s view of the environment.

As an example of the completely distributed approach, we can have a brief
description about the use of a smart microphone network. Imagine that the smart
microphone has a sound sensory device, whose capacity is dependent on the source to
sensor distance. It also has a processor, memory capacity, wireless network capacity and
all the available software to perform the data fusion functionalities. As a consequence, it
is capable of filtering the noise of the captured sound (pre-process); performing a low
level data fusion using a Kalman Filter [4] to perform time series data fusion; using an
algorithm to identify human voice sound (probability of the captured sound to be human
voice); calculating the sound evaluation reliability based on signal-noise evaluation; and
combining this reliability value with the algorithm probability (high level data fusion).
Now, it compares its result with the available results received from the neighborhood
sensors. If its result is worse than some of the received results, it goes to an “idle” state
and does not forward its result. Otherwise, if its result is the best human voice evaluation
(highest reliability evaluation), it will continue in the “on” state and forward its result for
the neighborhood sensors (propagate the information). These decisions are performed by
the local decision module. This simple example shows that the data fusion architecture
proposed is fully compatible with sensor networks of smart sensors.

The DFA described in UML allows the configuration of different scenarios,
including the use of mobile coding. The agent can migrate to the data source to perform
any type of data manipulation at the data source. This approach adds several advantages,
but the decrease in network traffic is one of the most important.

2.3.5. The DFA applied to different contexts

Depending on the type of application, the data fusion system can be based on

single or redundant data and variables, distributed or centralized architecture, or single or
multi-agents. If the system uses different types of sensors and one agent to perform each
different signal analysis, it will be based on a multi-agents system. Both centralized and
distributed systems, as well as intermediary systems, can use different combinations of
single and redundant data/variable and single agent or multi-agents. Although the
different aspects of the system will depend on how the application is designed, the data
fusion architecture can be the same using the DFA.

Figure 12 represents different instances of the DFA. Figure 12a represents the
complete system with all the different features of the model. Figure 12b represents an
instance of the model using the low and high level data fusion and is capable of create
variables from data without making analysis of it. Figure 12c shows that in this instance
the system does not use the mixture and high level data fusion. Figure 12d shows that this
system can only process the data that comes from the sensors and make a decision. Figure

36

12e use the low and high level data fusion but needs one or more agents to analyze all the
data to get variables. Figure 12f allows the creation of variables without data analysis.

These different scenarios show that all the DFA instances have in common a data
source, some interpretation of the measured environment (task or variable) and a
decision. This is the general architecture of a system.

a) b) c)

d) e) f)

Figure 12: Different instances of the DFA.

2.3.6. Mapping different applications to the DFA: We are going to exemplify the use
of the DFA in different domains and applications, such as military, robot navigation,
geographical images analysis, home security system, bio terrorism detection system and
health applications.

2.3.6.1 Military applications (E.g. sensing biological agents in a war area): We can
apply the DFM to a completely distributed and to a semi-distributed application. Imagine
the use of smart biological agent sensors deployed in a war area (completely distributed
approach). Using a similar approach described in the smart microphone example or using
some information dissemination algorithms applied to sensor networks such as the one
described by Kulik [18], we can propagate the information of a detected biological agent
(data value above a threshold) in the area until it arrives at some point where war plans
can be changed or modified (E.g.: remove troops from a contaminated area). We can
imagine a semi-distributed approach where each soldier carries sensors that advise him,
with some grade of confidence, when some biological agent is detected in the
environment (model represented in figure 12d). As a result, each soldier can perform
some action according to the different situations and hierarchy. We can also have a more
complex system that has some sensors that detect biological agents in the environment
and others that detect modifications in soldier’s bodies. A neural network can be applied
using as input the data from these different sensors and giving as an output, the presence
or lack of an infectious biological agent. In this case, we are using a low data fusion
approach based on neural networks that directly determine a variable (without using an
agent to perform data analysis). The DFA instance used here is represented in figure 12c.

37

2.3.6.2 Robot navigation: Imagine a robot, which based on different sensors, evaluates
the environment and makes decision about its navigation. This robot can have an
accelerometer sensor that detects the robot position (variable), an ultrasound sensor that
determines the distance from the objects around to the robot (distance from object is
another variable); this same ultrasound sensor can determine the form of the surface of
the objects in the environment (variable object recognizing); Based on this variable the
robot can control its wheels and navigate. All the system will use part of the DFA
represented in figure 12e.

2.3.6.3 Geographical images application: Imagine an application that, based on satellite
images, wants to identify different buildings in a city. The application should process the
satellite images, and using different types of algorithms, try first to identify buildings
areas and after, among these areas, it should try to match to a certain building image. In
this case, the application is using the figure 12e model with different levels of high level
data fusion.

2.3.6.4 Home security system: Imagine a home security application using different sets
of sensors such as a sound sensor, video camera, ultrasound sensor, temperature sensor,
smoke sensor, vibration sensor, and infra-red sensor. From the sound sensor we can
determine if it is human voice, a broken window, an open door, or other types of sounds;
from the camera we can obtain an image or presence of motion; from the infrared sensor
we can detect motion, open door, open window; from the vibration sensor we can also
detect motion, open door, broken window, open window; from the image we can
determine whether it is compatible with a person, an animal, an object, an open door, a
broken window, and so on. We can see from this example that the variable person can
come from different types of sensors. All these processes have in common that the data
coming from the sensor is processed, redundant data that can be fused at the low level
data fusion, using an algorithm to extract the variable for each type of data and fusing the
redundant variables in the high level fusion. If we fuse the variable person with the
variable broken window we can come up with a new variable called intruder. This means
that we are using a second level high level data fusion. We can also use a tool that based
on the data from the smoke sensor (without analysis) and the image can create a new
variable called fire (mixture level fusion). The entire example will use the model
represented in figure 12a.

2.3.6.5 Bioterrorism detection system: Imagine thousands of biosensors distributed in a
city to detect the presence of Anthrax. This application is very simple: detection of the
presence of Anthrax and determining the sensor’s localization. In this case, the
application is using the figure 12d model.

2.3.6.6 Health application: We have developed a health monitoring system based on
multiple physiologic sensors (DFA Applied to the Personal Heath Rate Monitoring
System) that will be presented in the chapter 3. The entire example will use the model
represented in figure 12e.

38

2.3.7. Discussion

We present a proposal of a general data fusion architecture described in a formal
language of object representations (UML) that tries to represent different scenarios,
specifications and features of a general data fusion system. We will show that we can
employ our data fusion architecture in diverse scenarios, including different contexts and
domains. As far as we know, this allows us to conclude that our model is compatible with
most of the published applications using a data fusion model.

In relation to the taxonomy employed, although a common taxonomy in data
fusion is something difficult to achieve, as discussed in [9] by diverse authors, we have
covered almost all the possible scenarios with our taxonomy.

There are some papers in the fault tolerance related literature that use the
terminology virtual sensors to represent what we call in the DFA redundant variables.
Therefore, we can map the DFA to different models compatible with fault tolerance that
employ the same aspect. The different approaches to choose one or more virtual sensors
based on events, behavior, or other aspects, is included in the decision module. Besides
this, the DFA also allows that every intermediary or final view of the sensing
environment arrives at the Variable Interpretation. This aspect guarantees the presence of
redundant views and provides a graceful degrading view of the environment. This means
that even if the majority of the sensing units are finished, the system will still have a view
of the environment, even if it is not the best. This aspect joined to fault tolerance and
resilience is compatible with the ubiquitous objective.

The Decision or control module is not a formal part of a data fusion framework.
In general, it does things not formally related to the data fusion process, such as to control
actuators or to modify the sensing capacity. But, if this module controls the data fusion
process, it should be included as part of the data fusion model. In the DFA proposed in
this paper, the decision module controls the fusion process in different ways, such as
changing the data/variable flow, starting new instances of the different DFA modules that
depend on different types of data and/or variables and changing algorithms to process or
analyze the data. We have explicitly characterized how the fusion process can be
controlled by itself.

Most of the papers in the data fusion literature describe different tools to represent
the knowledge, but very few papers have tried to establish a dynamic model that allows
different configurations and different mechanisms to add or delete new features for the
model. The DFA provides all these features to apply the same model in different
contexts. Besides, we employed a well known language (UML) to represent the model.
This fact can help different researches to apply the same model. This is one of the most
important contributions of this paper.

The JDL functional model is the most common used data fusion model in the
literature, although outside the military domain it is not well accepted. It is not well
accepted because it describes features for the data fusion that makes it difficult to apply
in different domains. We can map the JDL model [2] to the DFA in the following way:
the level 0 corresponds to the pre-processing module; the level 1 to the LLDF and data
analysis until the point where the variables are generated; the level 3 is represented in the
DFA by the HLDF and variable interpretation modules; level 4 is represented by the

39

decision module. All the functionalities provided by the JDL model are provided by the
DFA, but the DFA is a more general and dynamic model than the JDL model.

2.3.8. Conclusion

We presented a general data fusion architecture described in a formal language of
object representations (UML) that tries to represent different scenarios, specifications and
features of a general data fusion system. It also allows a dynamic modification of the
system according to different states of the environment or of the system.

The Personal Heart Rate Monitor is from the class of network-based mobile
dynamic systems powered by battery, where an application should adapt itself to different
configurations of the system (data sources moving in and moving out), different states of
the environment, and considering power and bandwidth constraints. The DFA proposed
and applied to the PHMS showed to be a good solution to the problem of developing an
application framework to manage data from different types of sensors to perform
different tasks in a ubiquitous computing environment. We have mapped the data
management problem of the PHMS to different domains and application and show that
we can employ our data fusion architecture in diverse scenarios, including different
contexts and domains. As far as we know, this allows us to conclude that our model is
compatible with most of the published applications using a data fusion model and that we
think the DFA can be employed with success at least in these compatible scenarios.

In this work, we have focused on the application’s framework (data fusion and
decisions modules) while also considering the necessary middleware and network
facilities to ensure resilience to changes in available resources and changes in the
environment’s state. As a future work, we are going to develop a dynamic
communication approach between the application framework and the middleware on the
top of a network. This will allow us to achieve improved quality of service of the entire
system, mainly if it has more than one application running at the same time.

40

Chapter 3

Body-Worn Sensor Networks for Health Monitoring

Many medical events can be diagnosed and possibly prevented by continuous
clinical monitoring of patients. Several signals can be monitored. Each set of signals
should be chosen according to the expected result. This end point can be cardiovascular
events, infections, hormonal disturbances and so on. The set including the
electrocardiogram, non-invasive blood pressure measure, pulse oximetry and vascular
Doppler evaluation can detect almost all sudden cardio-respiratory events for example.
Mobile intelligent clinical monitoring systems based on body-worn sensor networks
provide mobility and out of hospital monitoring. It seems to be important health care
equipment, to be used in the follow-up of high risk patients in out of hospital situations
and to monitor “healthy” persons to prevent medical events. The characteristics of local
diagnosis and actuation permit an improvement and advance in the diagnosis and
emergency decision support. Besides these aspects, the connection to a central
monitoring, ambulance service, assistant physicians, and the personal database and
electronic record make it possible a complete integration of the system with a health care
system. These goals can be achieved in a remote manner, by wire line or wireless
connection.

3.1. Introduction

The evolution of wireless network devices and microchips such as MEMS (Micro

Electro Mechanical Systems) brought to reality the sensor networks applications [33].
Among the different types of applications, the body-worn sensor networks application is
characterized by a small coverage area, limitations on the number of sensors deployed,
specific areas for sensor deployment, risk and benefit concerns, and specific sensor’s
functionalities and characteristics.

The sensors deployment can be classified as invasive, non-invasive and semi
invasive. In the invasive deployment the sensor is inserted in some part of the organism
through some invasive procedure. The non invasive deployment indicates that the sensor
is deployed over the surface of the body without any type of invasiveness of the body.
The semi invasive deployment is characterized by the deployment of the sensor in the
oral tract (month and gastrointestinal tube), urinary tract, reproductive tract, or in the
eyes, nose or ears.

All the different types of deployment should consider aspects such as usability,
interaction between the sensor’s material and the biological environment, power supplier
and battery lifetime, biological effects of the electromagnetic waves, and the health,
social and economical impact of the technology employment.

The network coverage should consider the entire body. Some sensors are static
and some are mobile. For example, a sensor that is swollen and goes through the
gastrointestinal tract is a mobile sensor.

41

3.2. Related Work

Some authors have proposed mobile clinical monitoring systems based on a

multiparametric wearable computer [41] or an electrocardiogram mobile device [42].
Both systems addressed the necessity of using specialized agents and were applied to non
invasive measures based on Holter ECG monitoring or other devices.

In spite of the great development of digital signal processing devices [26], some

of the biological signal processing still needs some analog pre-processing. The
electrocardiogram is an example. This increases the size of the system. As a consequence,
the development of mobile monitoring systems needs to consider the important aspect of
usability. Actually, there have been great improvements in sensor technology due to
nanotechnology applications to sensors manufacturing and battery improvement [35].
Power consumption is one of the great mobile applications’ problems. The cost and size
decrease have provided an extraordinary improvement in the study and development of
sensing systems. The state of the art in biological sensors is the MEMS (Micro Electrical
Mechanical Sensors) sensors. Some of these micro sensors are based on nanotechnology
[33]. It has the capacity of capturing many types of biological signals, to make some
restricted data processing and to transmit it to a wireless network. Scientists have
developed biochemistry sensors that measure substances like glucose, oxygen, and
carbonic gas; mechanical sensors that can be used to measure biological pressures and
movement amplitude; and accelerator sensors that can be used to measure position and
flux, and so on. This improvement brings a world of ideas to biomedical applications of
sensor systems. Other authors have discussed general micro sensors network algorithms
[25][30] and applied them to biomedical applications [19], where the authors discussed
general biomedical applications and specifically discussed the artificial retina.

There are many ways of actuation in biomedical applications. The systems can
send messages to the user (patient or not) as an advisor or as a remembrance agent, to a
health system as an emergency call or to transmit an ECG signal to the patient’s assistant
physician, or to control drug infusion pumps and others medical devices. But the most
promising applications are in the development of artificial organs. The artificial pancreas
is an example of an artificial organ. It monitors the glucose level by a MEMS sensor and
when necessary, a micro pump, connected thought a wireless channel, administrates
insulin. Another promising application is The Personal Physician. It would be a
monitoring system to prevent or to provide early diagnosis of many diseases. As a
consequence, it can advise the person when something wrong was detected, such as a
malignant cell or a high blood pressure.

Many authors have addressed cooperation in multi-agent systems
[20][21][22][23][31][32][27][29], but few of them have tried to establish a general
biological based architecture. Some have proposed a hormone based system [38], others
have proposed systems based on behavior [39] and imitation [40]. Many authors have
also addressed the radio-frequency transmission problems [36], and there is an official
recommendation guideline to avoid radio-frequency medical devices interference.

The Biomedical Multi-Agent Monitoring Systems [27][28] and [29] design
includes some important problems in mobile, wireless and multi-agent applications.

42

Besides this, there are others problems related to the biomedical application such as
sensors sizes restriction, sensors placement restrictions, bio-compatibility of materials,
biological radio-frequency influence and so on. All the solutions to these problems must
consider the biological compatibility, networks and power limitations.

3.2.1. System’s view

The body-worn sensor networks infrastructure is based on the general system’s

architecture described in chapter 2. Furthermore, it presents the general infrastructure of
the body-worn sensor networks applied for health monitoring.

3.2.1.1. A general software infrastructure for sensor networks applications

The general infrastructure built is described in figure 13. Figure 13 shows the

relationship between the different blocks of software to develop an integrated solution for
different types of applications. The middleware software connects the processing and
analysis infra-structure to the light part of the middleware that is attached to the sensors
[43, 44]. The processing and analysis infra-structure is composed of the network stack,
operational system and the application software. The application software is divided into
data fusion module and decision module [45].

 Processing Infra-structure

M Application

M

 Data

Data Fusion

Network

M

 Middleware

Decision Module

M

 M QoS

Figure 13: Network, middleware and application relationship

3.2.1.2. Body-worn sensor networks software infra-structure applied for health
monitoring

The body-worn infrastructure (dotted line) includes the data management block,

Objective Symptoms Review, Automatic Information Assistant, Local log and local
database, sensors and actuators. The body-worn module communicates with the Web-
based Electronic Patient Record, external actuators, Digital libraries and to a personal
database at home (smart home).

The data management module is composed by the data fusion and decision
modules. The data fusion module is implemented based on the general Data Fusion

43

Architecture (DFA) described in chapter 2. The data management module receives as
input different types of data, such as symptoms, physiological data, and user’s health
(medical) data. It generates outputs such as control to sensors and actuators. It also
generates outputs as queries for digital libraries. Finally, the data management module is
responsible for sending data and variables for the local database and log, and for the
personal database at home. The automatic Information Assistant receives as input
documents from the digital libraries as a result of the queries elaborated by the data
management module. It has been described in [46][47][48][49][50][51].

 Body-Worn PHMS

 PHM Data Management
 WEB-Based
 User’s Health Data

EPR

 Objective symptoms

 Symptoms Data Fusion

 Review

 Physiological Module

 Sensors data

 Control

 Control

 Actuators

 Control
 Actuators Decision

 Data or Variable
 Smart Module

Home Query

Digital

libraries Documents Automatic

 Information

 Local Log Local Store

 Assistant

Figure 14: Body-Worn Sensor Networks Infrastructure

3.3. System Architecture

The system architecture is composed by the hardware and software components
joined by the network infrastructure.

The application development: Figure 14 shows the diagram of the software tool for
applications development based on a body-worn sensor networks. The application is
developed based on the data fusion module and the decision module. The data fusion
module is based on the architecture proposed by the authors in [45]. It is responsible for
the fusion of data from the same type of sources (redundant data) and data from different
types of sources. The different levels of the data fusion system are composed by different
types of agents responsible to process and analysis different types of data. The data
fusion system provides dynamic software to represent the changes in the environment

44

(body and environment where the body is placed), conditions of the sensors, and
capability of the processing unit. This adaptability of the system is compatible with fault
tolerance and ubiquitous computing. The decision module makes changes in the system
to follow the new necessities. It is also responsible for the control of messages delivered
and actuators, log and exchanges of information with other information systems (for
example the electronic medical record) (figure 15).

 Interpreted

Data
Fusion data

 data

 module

sensors

Decision

 Module

agents

 Control

 Control

 Control Actuator

Figure 15: Application’s block diagram

3.4. Network

The monitoring system is covered by a wireless network that connects the sensors

and agents, agents and agents, and agents and actuators. These components are related to
each other in the following manner: sensors are connected to the nearest agent that is
connected to the other agents by a network of agents. These agents are connected to the
actuators by a network of agents and actuators. Figure 16 summarizes these networks. In
these systems data and control are based on broadcast messages.

Sensor

Actuator

Agent

Figure 16: Network of sensors and actuators

45

The system design includes the integration of hardware and software components
thought a wired and wireless network. This includes the development of multi agents
system, health knowledge based, learning algorithms and cooperation; fault tolerance
approach including power management and network management. All these aspects
should be considered because the biomedical application includes certain specifics that
sometimes completely change the usual approach to solving the problem.

To achieve the goal of developing a body-worn sensor network we need to use
sensors, intelligent agents to manage the information and actuators to return some
decision to the user or the system (figure 17). Sensors and agents have the following
characteristics: type (specialization), number, body placement, and functionality. The
number and types of the actuators depend on the kind of answer the system should return
to the user or to itself. The communication can occur in a wired or wireless network. In a
mobile environment, power and network problems should be considered in system
design. Besides these aspects, in biomedical applications it is necessary to take into
account the biologic compatibility of the system.

 Wireless Transmission

Physiologic Sensors Local Agents

 signals

Wireless Transmission

Wireless

 Transmission

Central Monitoring Remote Actuator system

Agents

Figure 17: Sensors module representation

3.5. Hardware infrastructure

Wired or Wireless
Transmission

The hardware infrastructure is mainly related to the sensors and actuators. Besides

this, depending on the application, it can be necessary to add processing units along the
network coverage area. Intelligent agents can be embedded into these devices to process
the raw data that comes from the sensors, or embedded in the sensors itself.

3.5.1 Sensors

There are some characteristics that should be considered when developing a body-

worn sensor networks application, such as sensors functionalities, size and placement,
biocompatibility, and lifetime. Different types of biomedical sensors can be used in the
body-worn sensor networks. The sensors can be used to measure physical variables such
as pressure, movement, temperature, electrical activity, and flow. The sensors can also be
used to measure chemical substances in the fluids of the organism (sweat, blood, urine,
saliva, etc). Some sensors deployed in the gastrointestinal tract can take pictures from the
gastrointestinal mucosa, measure the PH, measure the tonus of the sphincters, or detect
the presence of bacteria and parasites. These measurements can also be done in the
genital and urinary tracts.

46

The sensors deployed over the surface of the body should be compatible with the
movements of the muscles and joints. So, the size and placement are related to the size of
the areas compatible with no restrictions to movement and positions. The article of
Gemperle [37] describes in great details the different areas of the body surface
compatible with a better usability. The sensors deployed using the semi -invasive
approach should consider the PH of the area, the presence of microorganisms, the local
habitat and the movement of the tract. The size and placement of sensors deployed in an
invasive approach will depend on the local where it will be inserted (blood vessels, brain
cortex, abdominal cavity, etc). Furthermore, the interaction of the sensor material with
the biological environment determines the biocompatibility of the material. This is a great
problem for the invasive and semi-invasive sensors.

Although great progress has been achieved though the development of cardiac
pacemakers, it is a challenge to develop invasive sensors for long term use. Different
concerns are related to long term use: battery lifetime, material degradation and fault, and
interaction between sensor and body. On the other hand, the battery of the non-invasive
sensors can be exchanged or powered easily. Some sensor characteristics adapted to
body-worn sensor networks.

3.5.1.1. Types of Sensors: The types of sensors used are related to the system needs. The
number of monitoring variables depends on many aspects: clinical necessity in a patient
based system, number of variables in which we are interested in a preventive monitoring,
and technologies employed to develop the system. Several biological variables can be
measured and consequently monitored. There are biochemistry markers, fluids dynamics,
gases distribution, volumetric changes, movement detection and electrical activity
variables that can be measured. The problem is that many of them can only be monitored
in an invasive manner. So, if the system is non-invasive it is necessary to restrict the
monitoring system to the variables that are important to the context and can be measured
in this way. In this case, specific biomedical devices like Electrocardiogram, ECG Holter
monitoring, non invasive Blood Pressure devices, Pulse Oximetry and others, can be used
isolated or in a wearable computer application. Another solution compatible with
mobility is the technology such as nanotechnology-based micro sensors. The type of
sensor devices has an important influence in the amount of mobility and usability of the
system.

3.5.1.2. Number of Sensors: The number of sensors depends on the variable to be
measured and the level of redundancy necessary to the development of a fault tolerant
approach. If the variable is the Blood Pressure (BP), sensors can be placed in any arterial
system (mainly arms and legs). BP measured in a specific place, is valid for the entire
organism. In the case of the electrocardiogram (ECG) depends on the number of leads
used. Generally, it varies from eighteen derivations to one. More than twelve derivations
are used only in static ECG evaluation. Monitoring systems commonly use twelve or less
derivations. Twelve derivations use ten sensors or at least ten electrodes. Pulse oximetry
usually needs only one sensor. Blood flux should be measured at least in the main artery
of members (brachial, femoral), head (carotid) and aorta. Oxygen measurements should
be done at the artery and vein. Ideally, it should be done in the heart (right ventricle) or in
the pulmonary artery. Since it is an invasive measure, it can only be measured in a mobile

47

manner if the patient needs an artificial cardiac pacemaker and if it uses an oxygen sensor
together with its ECG electrode. If oxygen can be measured in both places it brings great
monitoring advantage to evaluate circulatory function. The oxygen consumption (VO2)
can be calculated. Carbonic gas (CO2) is measured in an artery (arterial concentration) or
in the expired air (capnography). In both cases it uses only one sensor. Biochemistry
markers like Lactate, myoglobin, troponin, glucose and others need one sensor each
placed in a vein (blood contact). Heart rate can be derived from the more accurate ECG,
or from pulse oximetry data. Respiratory frequency and amplitude can be measured in
superior abdomen, thorax, supraclavicular area or neck with specific sensors.
Electromyography (EMG - muscles electrical activity) should be done near the muscles
we want to monitor. The goal of monitoring body movements and identification of
exercise activities would be achieved if sensors were placed in muscles of the limbs,
neck, thorax and back. The region’s combination of these sensors can diagnose the type
of exercise the user is practicing. Electroencephalogram (EEG or measure of cerebral
activity) is captured by placing electrodes or sensors on the head. Positioning sensors
should be placed in the limbs, thorax and head. The association of these positions can
determine body positions standing, sitting or lying.

3.5.1.3. Sensor Redundancy: One of the most important fault tolerant problem
approaches is to increase the number of sensors above the necessary numbers determined
by the parameters described above. The redundant sensors should be placed in different
areas of the body when the physiology permits. This would take advantage of the agent’s
distribution and improves the fault tolerance of the system.

3.5.1.4. Sensor Placement: Macro sensors, like specialized devices, (HOLTER, pulse
Oximetry), need to be placed on the body (skin). Micro sensors need to be implanted if
the user will use it for a long period of time and the technology is adequate for long use.

3.5.1.5. Sensor Functionality: A sensor as a device can be either a sensor and transmitter
unit (relay sensor), or can be a sensor, transmitter and a processing unit as well. The
signal processing must be done in some part of the system and can be placed at the
sensors level or at others devices, depending on many factors like power and network
management, sensors size, sensor placement and complexity of the processing unit.
Because of power and size limitations, if the sensors have some processing function, it
may involve the analog pre-processing, analog to digital conversion and digital signal
processing.

3.5.2. Actuators: an actuator is any type of device that executes a system’s decision. The
actuator can be inserted into the body, or be on the body’s surface. Furthermore, an
actuator can stay near the user in the network coverage area.

3.5.2.1. Types of Actuators: An actuator could either display messages such as warnings
or take some preventive action; a telephone call to an assistant physician, user family or
an emergency unit; one or more infusion pumps may control the infusion of drugs; an
artificial device may control some body function like an artificial cardiac pacemaker; it

48

can also be an artificial organ such as an Artificial Heart or an Insulin Pump (Artificial
Pancreas).

3.5.2.2. Number of Actuators: In general, only one unit of each kind is necessary. An
exception is the infusion pump, since the number is limited by necessity, such as venous
drugs. More than one type of actuators can be used in the same application.

3.5.2.3. Actuators’ Placement: This depends on the type of actuator. If it is an artificial
organ it will be placed inside or on the body. If it is an infusion pump, it will be placed
around the patient. If it is a display, it can be a display joined to the body (wearable
display) or a TV or Computer video in the room.

3.6. Software Infrastructure

3.6.1 Agents: An agent is a software component that is responsible for processing or
analyzing some type of data. For each signal or piece of information a large knowledge
base to process and make a decision (actuation decision) is necessary, making mandatory
the development of specialized agents, such as the Blood Pressure agent; the ECG agent;
the EEG agent; the Oxygen agent; the EMG agent; the blood flux agent, the
remembrance agent; and so on. A single user may be connected to several agents. The
number of processing units will depend on the coverage area of the wireless channel
(centimeters to meters) and whether we are using smart sensors or not. In the case of
multiple processing units, it would be better to distribute a certain number of device
agents on the body: at least one for each limb, one for the abdomen, another to the thorax,
one for the neck and head, and another for the back. There are different approaches
proposed in the literature for multiple agent systems [23].

The agent’s devices would do almost all the signal processing work and network
transmission. These functions would cause a great increase in power consumption. As
there are as many agents as there are variables, the agents’ functions are determined by its
specialization. Some of the variables monitored need an intensive processing and
transmission rate. There are some variables that are discrete signals and others that are
continuous. Some of the signal characteristics complicate or simplify its processing and
evaluation. Some agents have special functions, such as to modulate or to regulate other
agents’ functions.

3.6.1.1. Types of Agents: For each signal or piece of information a large knowledge base
to process and make a decision (actuation decision) is necessary, making mandatory the
development of specialized agents, such as the Blood Pressure agent; the ECG agent; the
EEG agent; the Oxygen agent; the EMG agent; the blood flux agent, the remembrance
agent and so on.

3.6.1.2. Number of Agents: A single user may be connected to several agents. In the
case of micro sensor-based systems, it would be better to distribute a certain number of
device agents on the body: at least one for each limb, one for the abdomen, another to the
thorax, one for the neck and head, and another for the back. Since power consumption of
transmission is related to the reachable area, this distribution decreases the sensors power

49

consumption. The use of multiple receptors for the micro sensors wireless signal may
help to decrease the power consumption. The micro sensors need to send a signal to a
limited area. This will also help to identify the sensor’s location in case it is mobile.

3.6.1.3. Agents Functionality: The agent’s devices would do almost all the signal
processing work and network transmission. These functions would cause a great increase
in power consumption. As there are as many agents as there are variables, the agents’
functions are determined by its specialization. Some of the variables monitored need an
intensive processing and transmission rate. There are some variables that are discrete
signals and others that are continuous. Some of the signal characteristics complicate or
simplify it’s processing and evaluation. Some agents have special functions, such as to
modulate or to regulate other agents’ functions.

The Electrocardiography, electromyography and electroencephalography are the
most power and network bandwidth consumption monitoring variable. ECG will need a
pre-processing unit responsible for the signal amplification, analog to digital conversion,
potential comparison, digital filtering, and digital signal processing like FFT. The agent
ECG will be responsible for ECG analysis and diagnosis, heart rate variability evaluation,
compression, data encryption, and local storing of the ECG data. As its processing work
is intensive, and needs to be a real time decision device, we are developing a hardware
agent based on a FPGA. This can bring the advantage of personalized algorithms to the
patients’ necessity. It can advise users about problems, make a phone call to an
emergency unit in critical situations like malignant arrhythmias, or modulate other
agent’s functions.

The Blood Pressure Agent is responsible for the detection of abnormal blood
pressure measures, detection of error measures, circadian variability and possible control
of infusion pump or advising use of drugs for High or low Blood Pressures. The Pulse
Oximetry Agent is responsible for the oxygen blood saturation measure, arterial pulse
rate and pulse analysis, including variability and error corrections. It regulates others
agents. The Blood Flux Agent is responsible by blood flux analysis and error correction.
It regulates other agents. The Respiratory Agent is responsible for the respiratory rate and
amplitude (inspired volume) analyses, and error correction. It can control a respiratory
machine or advise the user about respiratory problems. The Heart Rate Agent compares
the heart rate from ECG and the Pulse rate from Pulse oximetry. It evaluates the rates
abnormalities, corrects errors and controls a pacemaker or advises the user about
problems. The Gas Agent detects Oxygen and Carbonic Gas abnormalities, errors and
modulates other agents. The Metabolic Agent detects lactate abnormalities and regulates
others agents. The Lesion Detection Agent (Myoglobin and Troponin) detects abnormal
levels of substances and advises the user about it. The Remembrance Agent reminds the
user about preventive actions, times to take medicine pills and other applications. The
Resilience Agent detects system failures and makes decisions based on a previous
knowledge based approach. The Electronic Stethoscope Agent identifies heart sound
problems and advises the user about it. It modulates other agents.

3.6.1.4. Adaptive and Dynamic Resilience Agent: This agent is responsible for the
management of the services utility, having as the main objective function the power
management and as secondary goal the network traffic optimization. These are very

50

important goals in the mobile applications in critical situations like health care services
and vital signals monitoring. The mobile environment has power supply problems and
possible failures with network connectivity. Many papers in this area have addressed
these problems from the hardware point of view. This paper emphasizes the great
importance of application participation in the power supply management. Most of the
time, it is assumed that the application is necessary all the time, but the reality is that
when the battery power goes down, the applications stops independently of what has been
assumed before. So, instead of have a complete stop in the application, the power
management supply agent can decide what to turn off before the system is completely
off. This goal can be achieved considering some premises: not all the system is
completely critical and we almost always are able to choose in different situations what is
most important. It is clear that in certain situations we need all the monitoring aspects.
But this kind of patient needs in hospital care or at least an ambulance care. The mobile
care is transitory and the power supply would not be a problem.

This class of agents would be responsible for the progressive decrease in the
transmissions and monitoring level through the following decisions: decrease in the
frequency of data sampling; decrease in the number of sensors (first the redundancy and
after the absolute and relative decrease); knowledge based priorities and situations for
turning off the parts of the monitoring system; priorities of functions like data processing,
interpretation, transmission, saving and compression; decisions of compressing and
saving data in critical situations (like saving only abnormal data).

A distributed system can have failures in many parts. Sensor failure will not bring
great problems because of the presence of sensors’ redundancy. Agent failure would have
the problem of losing the sensors signal from its covering area. One of the solutions
would be to amplify the nearest agent network covering to receive the sensors signals, but
this is not good for the power management system. But as the agent’s battery can be
easily changed, it can be an adequate solution. Besides this, the system is prepared to
substitute agent functionality. The absence of messages from the disturbed agent is a
signal to another agent to assume its’ functionality. This occurs after a timeout that
depends on the signal frequency of sampling. The order of substituting agents is
established previously by the relationship among the agents. The agent most dependent
on the other is the first on the list and so on. If the first substituting agent fails, after
another timeout, the second agent tries to assume its functionality. If an agent doesn’t
receive many signals at some time, continuously, it concludes that it is its’ own failure. It
needs to advise the others that it became “sick”. The sickness of an agent is transmitted to
all the other agents. This is important to avoid more than one agent controlling an
actuator. If the agent processing fails, but there is no transmission failure, it would be
tolerated because other agents would assume its functionality. In this case it would not be
necessary to amplify the nearest covering network, because this functionality is
preserved. Actuators problems must be diagnosed. If this does not occur, the agent may
try to increase or decrease its objective function to achieve the necessity of the system.
What would not happen? This problem would not be interpreted by others agents as an
agent problem, because they would receive messages from it. An actuator problem cannot
be resolved by the system. The only thing it does is to detect the actuator problem.

51

3.6.1.5. Agents Placement: Agents can be embedded into the sensors or it can be placed
in larger devices than sensors on the body’s surface. This will facilitate the agent’s device
battery and placement change. It can be placed in any place on the body surface
according to Gemperle. He and Cols have studied possible body positions for wearable
devices, considering body movements and muscle activity [37].

3.6.2. Knowledge base and learning process: The knowledge-based system can be
divided in two components. One is related to normality or abnormality classification of
the signals. Each agent has the knowledge related to the signal for which it is responsible.
The data are pre-processed in a fuzzy system based on the descriptive statistics of normal
population. They give the amount of abnormality or normality of the objective function
of the agent. Since the signal varies in a range, when it is not in the expected range (over
or under), the system tries to make it return to normal range. The other component is an
embedded mathematical modeling of the interactive process among agents. The agent
decision process suffers influence from other agents. This influence is modeled in a
mathematical function based on differential equations. So, the learning process is the
result from the interaction between the mathematical modeling and the fuzzy logic
evaluation.

3.7. Health problems related to radio-frequency transmission

There are three possible problems related to radio frequency and humans:

biological effects of electromagnetic waves; compatibility of radio-frequency transmitters
and medical devices; electromagnetic interference in hospital environments. The Council
of Scientific Affairs recommends that wireless devices should stay as far as possible from
medical devices [36]. While experimental studies have suggested that serious adverse
effects related to specific power levels are great, clinical reports suggest that it is rare.
The diversity of radio-frequency sources and its broad spectrum of frequencies make it
difficult to predict the biological risks. Experimental studies of the long time biological
effects of low radio-frequency transmission must be done.

3.8. Conclusion

We have presented a description of general body-worn sensor networks built in a

network of micro sensors, agents and actuators. The system was designed considering
and optimizing power management and wireless network problems to achieve the
resilience and ubiquitous computing goals. Furthermore, some specific aspects related to
the health and body-worn sensor networks application were considered.

We also introduced the concept of a resilience agent. This type of agent was more
complex than a fault tolerant agent. It included the fault tolerant agent’s functionalities
added adaptability to new circumstance without failures. Besides this, it considered
clinical aspects to decide about power consumption and Network optimization.

52

Chapter 4

Centralized Body-Worn Sensor Networks - The Personal

Heart Rate Monitoring Application

4.1. Introduction

The development of wireless network technology and improvements in sensors

and embedded devices have enabled the convergence of mobile applications and
embedded environments. One of the requirements of mobile embedded wireless devices
is that they should be available at all times. In such systems, components can be inserted
or excluded without stopping the entire system. In this type of system, power and
bandwidth constraints should be considered. If the system is battery powered, each
component of the system has a different lifetime, which is based on the battery capacity
and the device’s power consumption. Power and bandwidth are limiting factors to
resource use. All these problems should be addressed, to guarantee that system
performance degrades gracefully as resources are diminished. A health monitoring
system is one example of these systems, where, based on data that come from sensors, a
view of the environment is obtained and some decisions are taken. The decisions taken
can be the control of an actuator (e.g., infusion pump of a medicine) or a change in the
number and location of sensors (system’s reconfiguration). To achieve the last goal, some
sensors can be turned on and other sensors can be turned off. To achieve the connection
between the view of world and the system reconfiguration, we can classify the
environment changes over time as different states. The requirements of an application
may change according to the state of the environment, and as a consequence, different
components (i.e., sensors) should be used accordingly. These systems are classified as
dynamic systems.

A dynamic system should be available all the time. To achieve this goal, the
system should be resilient, fault tolerant, and achieve all the Quality of Service (QoS)
requirements specifications. Resilience is defined as an ability to recover from, or adjust
easily to, changes in available resources, such as node failures, as well as changes in
system state, such as a change from healthy to diseased. Resilience is a more general term
than fault tolerance, which is the ability to recover or adapt to different types of failures,
because it includes adaptation not related to failures, such as adapting the system to event
detection in the environment. As a consequence of the fault tolerance and resilience
goals, we can achieve graceful degradation, which is the ability to progressively decrease
system functionality in the presence of a progressive decrease in available resources.
Graceful degradation is necessary to achieve the goal of computing all the time with a
certain QoS (i.e., Ubiquitous Computing). Although the definition of QoS changes in
different scenarios, we will define QoS as the necessary requirements to achieve a
specific goal. The specific goal can be: an adequate exchange of data in a transaction, a
better use of the network bandwidth, power management approach compatible with lower
power consumption, a better view of the environment by an application, etc.

53

4.2. Problem Statement

A multi parametric Personal Heart Rate Monitor (PHRM) is a wireless-based
mobile dynamic system with the goal of monitoring the heart’s condition in healthy and
disease conditions. It provides a continuous monitoring of the subjects’ Heart Rate. The
multi parametric PHRM consists of a body-worn sensor network powered by battery and
connected by a wireless network. It is designed to use different types of physiological
sensors to monitor the user’s heart rate: blood pressure, pulse oximeter, blood flow,
arterial pulse, Electrocardiogram (ECG), Electromyogram (EMG), Electroencephalogram
(EEG), and others. The use of all of these sensors will provide the evaluation of the heart
rate in different conditions of the body. The heart rate varies according to body activity,
temperature, blood pressure, position and so on. The PHRM evaluates the absolute and
relative heart rate values in each condition.

PHRM is a mobile system. In this case, bandwidth and power constraints should
be considered. To achieve continuous monitoring in different conditions, the system
should have reasonable autonomy. Node lifetime is inversely proportional to power
consumption. To decrease the power consumption of the system components, it is
necessary to adjust the use of sensors to the current necessity of the application. As an
example, if the user is completely healthy (all data are in the normal range), we can
decrease the number of sensors and turn off the sensors not in use. This approach
increases the lifetime of the sensors and of the system overall. When an event is detected
from the current available data (e.g., a high blood pressure), the system can turn on the
sensors related to the event (i.e., ECG and pulse oximeter). This is called adaptation to
environment changes. The system should also adapt to loss of available sensors
(adaptation to the availability of system components). As a result, if we can adapt the
system to all events occurring in the environment or at the sensors level, the system can
be resilient, fault tolerant, and provide graceful degradation. Although there are different
adaptation definitions in the literature, we will consider in the entire text the definition
described in the scenario above.

All the sensors will be connected by a wireless network on the body to an
application on the top of a middleware. The discovery service will send the available
sensors to the middleware, which will send the required data to the application. The data
fusion framework will process and fuse the data to come up with a view of the heart’s
health. Based on this view, the decision system will determine the current PHRM sensors
necessity (application QoS). As an example, consider that the user is healthy and that all
the data that come from the body are normal. Based on these aspects, the power
management policy will turn off most of the sensors. The monitor will be based on one
ECG lead and a blood flow sensor. Now, imagine that the system has just recognized an
arrhythmia. As a result, the decision module will request that the middleware increase the
number of leads of the ECG to 3 and ask for the blood pressure and pulse oximeter data.
This information will be sent from the middleware to the network. The network will
schedule the new transactions and will also be reconfigured according to the new
requirements of the system (assuming this is feasible, based on sensors available and
bandwidth constraints). As a consequence, in the next step the PHRM application will

54

receive data from 3 ECG leads, from the Blood pressure sensor and from the pulse
oximeter sensor.

We will develop a data fusion framework for applications of a network-based
dynamic system with the following characteristics:

• Components of the system can be inserted or excluded without stopping

the entire system;
• The environment changes with time and so do the physical measures from

it;
• Application’s necessity changes according to different states of the

environment, and as a consequence, it can use or reuse components in the
different states;

• The system is mobile and battery powered, so each component of the
system has a different lifetime, bandwidth usage and power consumption.

• As a network-based system, bandwidth is limited and coverage area is
variable.

All of these problems will be addressed from the application perspective to make

the system robust to the dynamic environment.
The PHRM is from the class of network-based mobile dynamic systems powered

by battery, where an application should adapt itself to different configurations of the
system (data sources moving in and moving out), different states of the environment, and
considering power and bandwidth constraints. As a consequence, the solution of these
problems will solve the problems related to the body-worn sensor networks.

We propose a solution to the problem of developing an application framework to
manage data from different types of sensors to perform a Heart Rate Monitoring
application in a Ubiquitous Computing environment. In this work, we will focus on the
application’s framework (data fusion and decisions modules).

4.3. Solution Proposed: Implementation of Data Fusion Architecture for
the Personal Heart Rate Monitor System

A network-based Personal Heart Rate Monitor (PHRM) system needs all of its

components (network, middleware and application) compatible with dynamic changes in
the availability of resources and changes in the environment. The PHRM system should
adapt to the availability of sensors and their corresponding signals, and it should also
adapt to changes in the measurements. Figure 18 represents the PHRM’s block diagram.
The sensors (service suppliers) and the application PHRM (in this case service consumer)
are nodes of the network. The middleware is the software that connects the sensors to the
heart rate monitoring application through the network. Middleware is connected to the
sensors and applications. The application has two integrated modules, the data fusion
module and the decision module. The application sends its QoS requirements to the
middleware, and the middleware sends the sensor data to the application.

Sensors

55

Application

Data
Data Fusion

Network Middleware (M)

Decision
Module

QoS

Figure 18: Network, middleware, and application relationship.

Figure 19 shows the temporal diagram of the information exchange between the
system’s components. When the system starts, middleware needs the QoS information
from all the components (Service Suppliers, Network, Applications and from the entire
system). After that, the network is configured, the transactions are scheduled and all the
necessary connections (transactions) are matched by the middleware. Middleware starts
to receive data and sends it to the application. The application data fusion module will
process the data and pass a view of the world (environment) to the decision module.
Based on this input, the decision module will determine the new requirements of the
application (application QoS). Again the middleware matches the new application needs
to the available resources and sends to the network the new set of connections. The
network will be reconfigured and the entire process repeats in a cyclic way.

Consider an example. When the PHRM starts, the middleware should receive
from the network all the available sensors and the bandwidth constraint (network QoS);
from the application it receives information as to what type of sensors to connect
(application’s QoS). In this case we will start the system with all the available sensors;
from the sensors it receives the data rate, battery power level and power consumption
(sensor’s QoS). If there are 2 or more applications in the system, the system should send
to middleware the relative priorities of the applications (system’s QoS). Based on all this
information, middleware will match the services (sensor’s data) available to the
application needs, to create feasible sets. Feasible sets of sensors are defined as the set of
sensors that achieves the current QoS requirements of the application. Middleware will
choose one of these feasible sets to optimize the tradeoff between application
performance and resource use, and it sends the chosen feasible set to the network. The
network will schedule the transactions and set up all the necessary connections. In this
case, the application will receive all the available data from the sensors. Now the data
fusion framework will fuse the input data and give to the decision module the grade of
normality or abnormality of each one of the signals used as input. Based on these
evaluations, the decision module will determine the new necessity of the application. If
all the data are normal, it will decrease the number of sensors to a lower level of
monitoring. Again, the middleware matches the new application needs to the available

56

sensors and sends to the network the selected feasible set (now only part of the available
sensors). In the next step the network will reschedule the transactions. Now the network
needs to be reconfigured to close the connections that are not necessary anymore (at least
temporarily). The data fusion receives the new set of signals and the system continues in
a cyclic process.

Figure 19: Temporal diagram showing the interaction among the sensors, the network,
the middleware, the application and the system.

We have described the data fusion framework and the decision modules in chapter
2. The Data Fusion framework manages data from different types of sensors to perform
the PHRM in a Ubiquitous Computing environment. Figure 20 represents one instance of
the proposed data fusion framework applied to the Personal Heart Rate Monitor.

57

Figure 20: DFA instance applied to the Personal Heart Rate Monitor

4.4. Data Fusion Applied to the PHRM

The heart rate is the result of the electrical activation of the heart, resulting in
mechanical contraction of the cardiac muscle. The ventricular contraction results in
dynamic changes in blood flow and blood pressure, as well as deformation of the arterial
wall (arterial pulse). As a consequence of these physiological aspects, we can measure
the heart rate directly by analyzing the cardiac electrical activity or we can measure it
indirectly by analyzing the homodynamic changes. The Electrocardiogram (ECG) is the
graphical representation of the electrical activity of the heart. From the ECG analysis we
can obtain the heart rate and an ECG diagnosis. The latter includes, among other aspects,
a determination of whether the ECG is normal or abnormal and what abnormality is
present (ischemia, infarct, arrhythmia, cardiac chambers enlargement, and other
abnormalities). The heart rate monitor is a simple device that is based on one ECG lead to
determine the heart rate (commonly used in exercise evaluations). The homodynamic
changes can be evaluated through the blood flow and arterial pulse. Different
cardiovascular and respiratory exams use the blood flow and the arterial pulse variables
to determine the blood oxygen saturation (Pulse Oximeter), Blood Pressure (Blood
pressure device), and Blood Flow (Doppler). As a consequence, these devices can obtain
an indirect measure of the heart rate among other variables.

As defined before, data fusion is classified in three different levels: low level data
fusion, high level data fusion and mixture level data/variable fusion. The Blood pressure
signal can be fused before any analysis (low data fusion). After the Blood pressure signal
is analyzed, we can come up with two different variables: the blood pressure and the
heart rate. The heart rate can be measured not only through the analysis of a Blood
pressure signal, but it can be also measured from an ECG, blood flow or pulse oximeter

58

analysis. As a consequence, we can have the variable Heart Rate from different types of
sensors (redundant variable from different types of sensors). If we want to fuse all the
heart rate variables, we are going to use the high level variable fusion approach. So the
data analysis defines the low and high level of the data fusion system. In the heart rate
monitoring applications we do not fuse data with variables (mixture level data/variable
fusion), but in some applications it is possible.

Figures 21, 22 and 23 show the application of the data fusion framework
presented before, applied to the multi parametric PHRM application. Figure 21 shows an
example of the use of an individual sensor, pre-processing, low-level data fusion and data
interpretation classes. The different types and positions of the ECG electrodes generates
after a pre-processing period that includes among others functions the signal
amplification; use of a high pass filter (0.5 Hz); use of a low pass filter (25 Hz); use of a
notch filter (60Hz); multiplexing; and use of an analog to digital converter. The
multiplexing function generates the four types of ECG with different number of leads.
The low level ECG fusion module only forwards the data. This occurs because the
management of the redundancy in the ECG data from different leads needs a signal
interpretation. The ECG interpretation module will be presented in a different topic and is
an important contribution of this work. It is responsible for recognizing the ECG
waveforms and evaluating the grade of normality or abnormality of each wave
independently and the sequence of waves in a continuous monitoring. The ECG signal
interpretation generates two different variables, the heart rate and the ECG diagnosis.

Figure 21: Pre-processing, low-level data fusion, and data analysis.

59

Figure 22: Heart rate variable redundancy.

Figure 22 shows the heart rate variable management. We can measure the variable
heart rate from different types of sensors. We can measure it from a Pulse Oximeter
sensor (PO), from a Blood Pressure sensor (BP), from an ECG system (ECG), from a
specific heart rate measuring device (HR) and from a Blood Flow sensor (BF). Each
sensor has a different reliability to measure the heart rate. The ECG system has the
highest reliability and the Pulse Oximeter has the lowest reliability. Based on power
constraints and the system’s request for certain reliabilities, the middleware can request
from the network a specific set of sensors and present that data to the application. If the
application has requested a HR measure with the highest reliability, middleware would
present the ECG data to the application (which has reliability of 1). The ECG signal
would be pre-processed. Then, an ECG interpreter module (ECG Interpreter) would
analyze the ECG data and provide to the Heart Rate high level fusion (HR Fusion), the

60

variable (HR) with a reliability value (R), the ECG Diagnosis high-level fusion (ECG-
Diagnosis Fusion), and the variable ECG Diagnosis with a reliability value (R) (figure
21). Depending on the system’s state, the application can receive and use data from more
than one type of sensor.

Redundant variables come from different sensors with different reliabilities and
from different locations. Variable is defined as a triple composed by the measured
variable, the sensor reliability to measure that specific variable and the sensors
placement. For example, the measurement of the heart rate using one Pulse Oximeter
placed on the left arm (LA) has a reliability value of 0.7. So, the triple would be
represented as (PO-HR value, 0.7, LA). Some of these variables can be objective
variables (numeric measures) and others can be subjective (linguistic variables). For
example, the measure of the heart rate based on an ECG is an objective measurement.
Subjective variable is inferred from a set of interpreted variables. They are subjective
assumptions on a specific condition, such as whether the heart rate is high or low based
on the knowledge that the blood pressure is low. Subjective assumptions are defined as a
triple composed by the variable V, its reliability measure R (which is very low due to
subjective evaluation) and zero, because it is not related to any location (V,R,0).

At the High Level HR Fusion module, we can fuse redundant disposable heart
rate data (HR1 to HR5) and the very low reliability HR predicted data from Blood
Pressure, Blood Flow, Body Activity, Oxygen and Respiratory Rate Interpreted Variables
(HR6 to HR10). So, based on the quantity and quality of disposable data, the HR fuser
module can perform different procedures.

Figure 23: Combined high-level HR fusion.

Figure 23 shows the combined high-level heart rate fusion. The heart rate is

combined with the blood pressure and results in the Blood Pressure-Heart Rate fusion
variable. At the same time, the Muscle Activity is combined with the Body Position
resulting in the Body Activity variable. The next step is the fusion of the Blood Pressure-
Heart Rate variable with the Body activity variable resulting in the Blood Pressure-Heart
Rate-Body Activity variable. The output of each fusion level goes to the System Decision

61

module. This provides input redundancy to the system decision and guarantees that some
decision can be taken in the case of failure of a fusion module.

Each fusion level evaluates the current heart rate value, isolated or joined to other
variables. The current heart rate value has two types of analysis: static and dynamic. The
first is related to normal and abnormal interpretation of the variable according to each
body’s situations. The dynamic evaluation is related to changes in the body’s state. The
question is whether the amount of variable increase or decrease is normal or abnormal.
To achieve the static and dynamic evaluations, the interpreter should use a reference
table, where heart rate is correlated with the subject’s age, to evaluate the expected heart
rate basal level. This is very important because the basal heart rate of a child 1 month old
is near 140 beats per minute, while the basal HR value of a man 60 years old is around 60
to 70 beats per minute. These reference values are useful in static evaluations, but HR
Interpretation should consider dynamic situations. In these cases HR interpretation will
occur in each fusion level, if they are available (Blood Pressure-Heart Rate, Blood
Pressure-Heart Rate-Body Activity) to obtain a heart rate interpretation based on the
body’s state. As an example, we can consider the case where the body is exercising. In
this case, the HR interpretation should consider whether the heart rate is compatible with
this situation.

4.4.1 Techniques for PHRM Data Fusion

In this section we discuss some techniques that we will use to fuse the data in the

low-level data fusion and in the high-level variable fusion.

4.4.1.1 Techniques for low-level PHRM data fusion

The low-level PHRM data fusion includes the fusion of data from one sensor,
fusion of time series data from each redundant sensor’s data, and fusion of redundant
sensors’ data.

a) Fusion of data from one sensor: In this case we will forward the triple: data value,
reliability value and sensor’s location. No data fusion will be applied, the value is passed
through.

b) Fusion of time series data from a redundant sensor’s data: For this operation we
use a Kalman Filter [4] [14]. We are trying to determine an estimate of a variable (current
estimate) from measured data and previous estimates.

State Estimate actualization:

Current estimate = previous estimate + Kalman gain * (current measure – previous
estimate) (1)

Kalman gain (K) = variance of the previous measure/ (variance of the previous measure +
variance of the current measure) (2)

62

c) Fusion of redundant sensors’ data: Our approach will be based on descriptive
statistics of the data. If the data has a Gaussian distribution, we can use average ± 1SD.
Otherwise, we will use median ± 10 percent. These ranges are based on normal expected
differences in measuring the same variable along the body. We should work with the
following tradeoff: if we increase the range, we will not detect problems immediately
after they occur, but we will have excluded most of the sensor noise and measuring error
problems. If we decrease the range, we will be able to detect problems as soon as they
occur, but we will have problems excluding noise and measurement error. Therefore, this
range depends on the sensors’ reliabilities and on body’s signals variability.

The redundant sensor data should be compared if it is in the range (average ± 1SD
or median ± 10 percent). If all data are in the range, the system will forward the average
or median. If one or more redundant data are out of the range, they are called outliers and
the system should forward the average or median plus the outlier values and address of
the outliers. The average or median will be analyzed by its specific agent. The outliers
should be studied to differentiate if there is noise due to sensor error or if they are correct
measures indicating an abnormality. If the outliers indicate abnormalities, we can turn on
redundant sensors (if available) that cover the same area (increase area coverage
reliability). Another approach is the use of different types of sensors that can give an idea
if there are other abnormalities in the focused area (increase variable reliability). So, if
the redundant sensors’ data of the same area are in the range and there are no other
abnormalities in data of the same area, we conclude that the outlier was caused by sensor
error. Otherwise, we should increase the reliability of the area and probably of the system
because of what the outlier may indicate.

It may be helpful to consider the blood flow example. Imagine that we have 6
redundant blood flow sensors. One sensor is placed at the extreme of each limb, another
sensor is placed at the abdominal aorta artery and the last one is placed at the carotid
artery. In general, the same measures in different places of the body vary by less than 10
percent of their values. This means that all the data that come from the blood flow
sensors should be in a 10% variability range. Now imagine that the data that come from 5
of the sensors are in the range and the sixth value is below the others and out of the range.
We should evaluate whether the outlier is a real measure or whether it is an incorrect
measure. If it is a real measure this means that the blood flow for that place decreased
(problem detected). If it is an incorrect measure, it should be discarded. We may use data
from the blood pressure sensor at the same locality as the outlier measurement come from
to determine whether the blood flow data is accurate at that location. If the blood pressure
value is below the range of the other blood pressure values, the blood flow data is a real
value and the patient has a problem.

This approach is very different from other applications, in which several methods
have been employed to decrease estimation error by eliminating data outliers, i.e., data
that lie outside a specific confidence interval like 0.95 or 0.99. In our case, an outlier
should be investigated because it can be an earlier signal of a disease.

4.4.1.2. Techniques for high-level PHRM variable fusion

There are many different situations that can occur in high-level fusion. We will

look at each one in turn.

63

a) No sensor data (HR1 to HR5): This means that we do not have measured heart rate
data available. If there are available interpreted variables, HR Fuser can predict HR value
using an approach based on a knowledge-based probability system. This prediction has a
very low reliability value and is very subjective. We should compare this predicted HR
value with the last time series fusion HR, R values stored. For example, we can predict
the heart rate value based on the interpretation of the body activity. If the body activity
interpretation says that the body is exercising, we can predict the value of the heart rate,
but with a very low reliability value. If none of the interpreted variables (Blood pressure,
body activity, temperature, etc.) are available, the HR Fuser cannot forward any HR, R
values.

b) Only one type of data from sensors (HR1 to HR5): If only one data comes from the
sensors (HR1 to HR5), HR Fuser will use HR, R from a single data source. It should
compare this value with the last time series fusion HR, R values stored. For example, if
the HR fuser receives the heart rate from only the ECG (ECG_HR), it will use only this
value to evaluate the heart rate. To decrease the error, we will use the time series fusion
approach.

c) High-level HR Fuser receives data from redundant sensors of the same type (two
or more data of the same type HR1 to HR5): This can occur in the case of the low
level HR fuser forwarding the median and one or more outliers. This means that the
outlier is not in the normal range expected (if the data has a parametric distribution,
average ± SD, otherwise median ± 10%). HR Fuser will evaluate whether the outlier data
is an incorrect measure or an abnormality. If it is an incorrect measure, HR Fuser will use
the median or average and discard the outlier. If not, it will send the information of an
abnormal HR measure in the sensor location to the decision system. Based on this
information the decision system will make a decision based on the sensors’ covering area.
For example, if the HR fuser receives two values of the HR from the blood flow sensors,
one is the heart rate average of all blood flow sensors in the range (median ± 10%); the
second one is the HR measure from the right arm blood flow sensor that is an outlier. The
HR fuser must decide whether the outlier is an incorrect HR measure or if there is any
problem in the right arm. To achieve this goal, the system should compare all the
available data from the right arm. If there are no other available data in that area, the
decision system can ask middleware to turn on sensors in that area. Otherwise, if all the
different data that come from the right arm are normal, the system considers the HR
measure from the right arm blood flow sensors as an incorrect measure and discards it. If
all the different data that come from the right arm are abnormal, the system considers the
HR measure from the right arm blood flow sensors as an abnormal value, indicating that
some problem has occurred in the right arm blood flow homodynamic.

d) Fusion of redundant variables’ data: If HR Fuser receives data from different types
of sensors (HR1 to HR 5), it will use one of the following procedures: it can choose the
highest reliability data or it can fuse the redundant variable by applying equations 3, 4
and 5 described below. In addition to redundant data fusion, the HR fuser can perform
time series fusion based on mathematical approaches like Kalman Filter (equations 1 and

64

2). These two results (Kalman filter predictor and current data fusion) should be
compared. If the error (difference between the results) is not large, HR Fuser will forward
the HR, R obtained from the redundant data fusion approach. For example, depending on
the QoS heart rate reliability value requested by the decision system, middleware can
provide data to the data fusion module from more than one data source (e.g., heart rate
from blood pressure and pulse oximeter). In this case, the high level HR fuser has to
manage redundant variables from different sources. As the reliability values of both data
are similar, we can use the approach to sum them up using equations 3, 4 and 5. If the HR
fuser receives data from the ECG and Blood pressure, the reliability of the HR from the
ECG is higher. In this case we can use the approach of taking the highest reliability value
(in this case, the HR from the ECG).

When we have several measures from a variable with different reliabilities, we
must devise a way to combine or fuse them in a numeric way. To fuse objective
(numeric) data, we can use the following approach: as each variable has a different
reliability, we should weight its value to use a statistical approach to fuse the data.
Equation 3 is a normalized approach to fuse objective data.

n
(VVi * RELIABILITYi)

i=1

 (3)

 n

where n is the number of redundant variables to be fused, VV is the Variable Value and
RELIABILITY is the VV reliability value (weight).

The objective of fusing linguistics data can be achieved using tools that can

transform linguistic data to numeric data. To achieve this goal, we should be able to make
some correlation between linguistic terms and numeric data. This can be done using
probability theory, set operations or membership functions of Fuzzy Logic. Then we
follow the same approach for the objectives measures.

n

(VLVi * LRELIABILITYi)

i=1

 (4)

 n

where n is the number of redundant linguistic variables to be fused, VLV is the Variable
Linguistic Value and LRELIABILITY is the VLV reliability value (weight).

If the system has both types of variable values, we can make a fusion of objective
and subjective values using the equation 5.
 n n

 (VVi * RELIABILITYi) n (VLVi * LRELIABILITYi) n

 i =1 i =1

∗ RELIABILITYi

+
∗ LRELIABILITYi

 n i =1 n i =1

 (5)

 n n

 RELIABILITYi + LRELIABILITYi

 i =1 i =1

65

Equation 5 is a normalized sum of the objective and subjective values. This
approach was chosen because it takes in account the normalized weight of each variable
in the final variable value.

The output of the High Level HR Fusion is the Heart Rate fused data with its
resulting reliability (HR, R), or current heart rate value. This variable will be interpreted
and used by the Heart Rate Decision System, or it can be one of the inputs to another
High-Level Variable Fusion (figure 22).

e) Fusion of different variables: We will consider the example of a body monitoring
activity system. This system is based on two different types of sensors: accelerometers
and electromyograph. Accelerometers can give an idea about activity, but they provide
higher reliability in characterizing position. The electromyogram (EMG) is the muscles
electrical activity recorded by an electromyograph. The EMG can give an idea about the
body’s position, but it provides higher reliability in evaluating muscle activity. The
body’s overall activity is related to both position and muscle activities. A person can be
lying down and exercising and standing up without exercising. So, to determine the state
of the body, it is necessary to create a complex system to represent the knowledge of both
variables body position and muscle activity.

Figure 24 is a proposed approach to solve the body’s activity fusion problem. It is
based on a finite state machine that represents different states of the computation. The
accelerometer sensors can give three basic states: laying down (LD), sitting (S) and
standing up (SU). Depending on the electromyogram evaluation we can have 5 different
levels of muscle activity: non exercise (NE), mild exercise (ME), moderate exercise
(MoE), strong exercise (SE) and muscles fatigue (FE). The state machine has three
starting states representing the three main states of the body’s positions. From each
combination of position and muscle activity we have transitions that generate an output to
the system. The transitions are represented by the muscle activity evaluation and position.
Let us consider the following example. The subject starts the evaluation lying down with
no exercise followed by a stand-up position with mild exercise and then the laying down
position with no exercise. We start the automata at the LD state, go to the LD-NE state,
go to the SU-ME, and go to LD-NE state. At each transition between the states, the
automata generate output to the system representing the level of the body’s activity.

The level of the body activity will be combined with the current value of the heart
rate (output of the HR high-level fusion) to have a new evaluation of the heart rate based
on the change in the body’s activity. In this case, the heart rate evaluation will be based
on the relative change of the heart rate in comparison to the last body activity level. For
example, if in the LD-NE state the heart rate is equal to 60, when the body changes to the
SU-ME state, we should evaluate if the amount of increase in the heart rate value was
what was expected or not.

The management of accelerometers and electromyography data is complex and
needs the development of different algorithms to analyze the sensors’ data. This part of
the system is important to evaluate the heart rate. To achieve this last goal, we are going
to simulate the different states of body activity.

LD

S

SU

66

LD-NE

LD-ME

LD-MoE

LD-SE

LD-FE

S-NE

S-ME

S-MoE

S-SE

S-FE

SU-NE

SU-ME

SU-MoE

SU-SE

SU-FE

Figure 24: Variable fusion- the position and muscle activity

67

f) System’s fusion: In the case of the heart rate monitoring system, one of the main goals
is to evaluate if the heart rate is normal or abnormal according to different body
conditions. Normal, in this case, means that the results are not compatible with diseases
and are related with a low risk of developing new ones. So, considering the functions
covered by the monitoring system, it should fuse all the information available to decide if
the heart rate is normal or abnormal. More generally, if we evaluate the cardiovascular
system through the ECG, blood pressure, blood flow and heart rate; the respiratory
system through oxygen measures, respiratory frequency and volume evaluations; muscle
activity through the EMG; metabolic evaluations through glucose and lactate measures;
and cerebral activity through EEG evaluations, we should evaluate the output from all the
systems available to decide if the organism is normal or not. So, the overall world
reliability depends on the system reliabilities, which depend on variables’ and
consequently sensor’s reliabilities. As we are not going to work with all these variables,
the world view will be based on the variables available.

To achieve the system fusion goal, we will use fuzzy logic. Fuzzy inference
theory has been applied in many different domains [17]. The following example
describes how we can integrate subsystems’ information to achieve the world view of
normality or abnormality. We can build a membership function based on Fuzzy Logic to
evaluate the subsystem grade of normality and abnormality (figure 25). We can divide the
normality and abnormalities into different classes that represent different levels. Figure
25 represents the membership functions of these classes. The Y axis represents the grade
of pertinence (µ) and the X axis represents a set of classes: 1= Strong low abnormality; 2
= moderate low abnormality; 3 = mild very low abnormality; 4 = low indecision; 5 =
normal range; 6 = high indecision; 7 = mild high abnormality; 8 = moderate high
abnormality; and 10 = Strong high abnormality.
.

µ=1

1 2 3 4 5 6 7 8 9 10 Classes

Figure 25: Pertinence function of normality and abnormality classes.

68

The values in the X axis that determine a class’s limits depend on the variable to
be analyzed. In the Heart Rate example, we can define that a heart rate below 30
beats/min is class number 1, a heart rate between 20 and 40 would be class number 2 or
that a heart rate above 180 is class number 7. Let us imagine the patient has a heart rate of
25. If we go to the fuzzy membership function we would find a µ = a to class 1 and µ= b
to class 2. All other classes would have µ= 0. Now we would have to use an aggregation
function that can be as simple as a rule based function, to fuse these two classes in the
range between -1 and +1 that represents a new pertinence function of the two classes,
normal and abnormal. Figure 26 represents these classes. Based on this, the defuzification
process will generate a number between -1 and 1 that represents the pertinence function
of the classes normal and abnormal.

The evaluation described above is related to static analysis. We should make
another kind of evaluation that is related to dynamic response to different stimulus. The
difference is that the X axis in this case would represent the percentage of decrease or
increase from basal levels after the stimulus. This kind of analysis is more accurate, but
we must have experimental results to build the classes.

1

-1 0 +1
abnormal normal

Figure 26: Pertinence function of normal and abnormal.

4.5. Evaluate Current Status

As a consequence of the fuzzy logic pertinence function approach, each variable

will be classified as normal or abnormal with different levels of pertinence (figure 26).
We will concatenate the variable value (HR) with its reliability R and its evaluation
(Evaluation). Therefore, the result of each data fusion level is a triple (HR, R,
evaluation). This information goes to the Evaluate Current Status module to fuse all the
evaluations from the different data fusion modules (figure 27). In this module, the
variable evaluation will be classified as an event using a rule-based approach. The event
will be classified as a High Risk (HR) event, a Moderate Risk (MR) event, a Low Risk
(LR) event or a Negligible Risk (NR) event.

The output of the HR Evaluate Current Status module is the triple (IVHR, R,
Event), i.e., Interpreted Variable Heart Rate (IVHR) with a Reliability value R and with
an evaluation (Event). This output reflects the grade of normality or abnormality of the
heart rate variable from each level of the data fusion module. Depending on the triple
(IVHR, R Event) evaluation, the system can send the result of this evaluation to an

69

actuator or to the Decision module. We can use different types of actuators, such as a
display device, a phone line, the Internet (e-mail), or a Voice Adviser System using
previously stored voiced sentences. To determine the current application QoS
requirements, the triple (Variable, Reliability, Event) is sent to the system decision
module, which will be described next.

 Mixture level Fusion

 Low level Fusion Data interpretation High level Fusion

Data Fusion HR, R HR, R

 HR, R
 Module

 Evaluate Current Status

 Current evaluation (IVHR, R, Event)

System Fusion System Fusion Covering Other Sensors
 System Reliability Requirement Area Requirement Recommendation

 Decision

 Module

Current system’s needs:
QoS requirement

Figure 27: System diagram showing the data fusion module and the decision module.

4.6. System Decision Module

The System Decision module receives from the Evaluate Current Status module a
triple: the Interpreted Variable Heart Rate (IVHR), its reliability R and the result of the
evaluation (Event). The System Decision module includes the System Fusion Reliability
Requirement (SFRR), the System Decision Covering Area Requirement (SDCAR) and
the Other Sensors Recommendation (OSR) sub modules (figure 27). These sub modules
determine the new reliability, the new covering area and the new other sensors
recommendation necessities for each variable. Based on this information, the decision
module will send to middleware the current system’s needs (QoS requirement).

4.6.1. System Fusion Reliability Requirement

The System Fusion Reliability Requirement (SFRR) sub module is the part of the

System Decision module that is responsible for evaluating the system’s necessity in terms
of types of sensors and their reliabilities. Based on the triple (IVHR, R, Event), this
system can evaluate the new HR reliability needed by the application. We will use

70

discrete values to represent the range of reliability values as well as the event
classification.

Events:

1. High Risk (HR)
2. Moderate Risk (MR)
3. Low Risk (LR)
4. Negligible Risk (NR)

Reliabilities States:

1. value = 1.00
2. value 0.75
3. value 0.50
4. value 0.25

Based on these evaluations we can have the following state machine to manage

the variables evaluation and the associated risk with the variables reliability requirements
(Figure 28). Each variable needs to have its own state machine.

 HR

 HR MR

 HR LR

 MR
R =1.00 MR R=0.75 R =0.50 R =0.25
 LR

NR

NR

LR
NR

Figure 28: SFRR State Machine.

If the current reliability state is 0.25, and an event was detected and classified as a

low risk event, the current reliability state would change to the reliability state equal to
0.50. For example, imagine that all the data that came from the available sensors are in
the normal range and that the user is healthy. Based on this evaluation, the current
reliability state would start at the 0.25 reliability state. If no event is detected, it remains
in the same state. However, if a high risk arrhythmia is detected (high risk event), the

71

new current reliability state would be 1.00. This means that the decision system will
require a new set of sensors to achieve the new variable reliability requirement (reliability
equal to 1.00).

4.6.2 System Fusion Covering Area Requirement

The System Fusion Covering Area Requirement (SFCAR) sub module is called

when an outlier is identified. It decides the new covering area requirements. It does not
apply to the heart rate from the ECG, but can be applied to the other sensors.

We will use discrete values to represent the range of covering area values as well
as the presence of an outlier event evaluation.

Event of the outlier:

1. High Risk (HR)
2. Moderate Risk (MR)
3. Low Risk (LR)
4. Negligible Risk (NR)

Covering Area States (CA):

1. value = 1.00
2. value 0.75
3. value 0.50
4. value 0.25

Based on these evaluations we can have the following state machine to manage

the variables covering area and the associated risk with the outlier (figure 29). Again,
each variable needs to have its own state machine.

 HR

 MR
 HR

 HR LR

 MR
CA =1.00 MRCA =0.75 CA =0.50 CA =0.25
 LR

NR

NR

LR
NR

Figure 29: SFCAR State Machine.

72

If the current covering area state is 0.25 and an outlier’s event was detected and
classified as a low risk event, the current reliability state would change to the covering
area state equal to 0.50. For example, imagine that all the data that come from the
available sensors are in the normal range and that the user is healthy. Based on this
evaluation, the current covering area state would start at the 0.25 covering area state. If
no outlier is detected, it remains in the same state. But, if an outlier is detected and
classified as a high risk event (e.g., a very low blood flow in the right arm), the new
current covering area state would be 1.00. This means that the decision system will
require a new set of sensors to achieve the new variable covering area requirement
(covering area equal to 1.00).

4.6.3 Other Sensors Recommendation

The other sensors recommendation sub module is very important. It determines

the influence of one variable over the others. For example, imagine that the current blood
pressure value has just dropped down and the current heart rate value is inside the normal
range. Based on current (HR, R) values, the HR Interpreter would decide to maintain the
current HR reliability or even decrease it. However, based on the current (BP, V) values,
the BP Interpreter would conclude that the blood pressure is very low, and it would
increase the BP reliability and recommend an increment in the HR and O reliabilities. As
a consequence, a conflict is established. Based on the principle that recommendations of
increase reliability predominate over decrease recommendations, the System Fusion
Reliability Requirement would decide to increase the HR reliability. The same approach
should be applied to the System Covering Area Requirement. The System’s Sensors
Reliability & Covering Area requirement is achieved through the concatenation of the
system’s reliability needs with the system’s covering area needs.

M

 Current evaluation

 I

 data

 D Data Fusion Module

 D

L System’s Decision Module

E

W QoS: variables reliability and covering area necessities
A
R
E

Figure 30: Data and variable management.

Figure 30 summarizes the basic principle of the system. The data fusion module

receives data and evaluates the current data/variable value. Its output (current evaluation)
goes to the System Decision module where, based on the current evaluation, the current
QoS requirement, such as variable’s covering area (CA) and reliability (R) values will be
determined. This new QoS information will be sent to the middleware. The middleware

73

will appropriately reconfigure the network to meet the new requirements, and the new set
of sensor’s data will be sent to the fusion system for analysis.

4.7. The ECG Waves Recognizing System

We have developed an automatic ECG recognizer and analyzer system based on a

sequence of automatons. First the signal is segmented and each wave and ECG segment
are identified and classified by a five level logarithm approximation automaton. Each end
state of this automaton generates a word that represents the cardiac cycle. The set of
words constitute the language of the ECG. This language is interpreted by another
automaton that is responsible for the identification of ECG abnormalities both in a static
condition like a conventional ECG, or in continuous monitoring. The first automaton
works on the ECG samples, whereas the second one works on the output of the first
automaton. We have verified the algorithm by a formal verification algorithm using the
Model Checking Algorithm (Verus formalism).

The developed system is able to recognize and analyze ECG signals in static and
continuous (dynamic) conditions. It is based on a sequence of specialized automatons to
recognize each ECG wave and segment isolated or in sequence in normal and abnormal
conditions. We showed the systems’ efficacy using the MIT-BIH ECG database. The
automaton developed was able to recognize 96% of the “P” waves, 100% of the “QRS”
waves and 98% of the “T” waves. It was also able to recognize 96% of all ECG intervals
and segments (table 2).

Table 2: Comparison of the proposed algorithm and available results in the

literature.

Wave P QRS T Segment or
 Interval

Algorithm
Ours 100 100 98 96

Literature < 96 100 100 ?

? = not available data.

The fact that it is a real time algorithm and was implemented in a reconfigurable

hardware permits its use in critical situations as a conventional ECG analyzer or in
continuous monitoring as Holter equipment or a Web based system. Thus, the
reconfigurable characteristic provides the ability to change the hardware configuration by
choosing the best and most suitable algorithm to the patient in a remote manner.

The ability to recognize abnormal patterns compared to normal ECG patterns or
patient baseline ECG provides the ability to store the patient baseline ECG and the
different patterns recognized in the continuous monitoring. This is a very efficient
compression method since it does not have the problem of signal reconstitution and stores

74

only what is really very important. This saves power and is very important in mobile
applications of biological signals monitoring.

The proposed methodology for formal verification of the electrocardiographic
waves and wave sequences recognizing system by the Verus model checker has shown
good results in identifying some faults and giving more reliability to the system. The
application of the methodology has permitted the system to recognize other waves in the
electrocardiographic module, re-designing the actual wave recognizing automata and
designing the wave sequence recognizing automata, leading to a real contribution in the
biomedical system implementation.

4.8. Prototype

We have developed our first prototype based on hardware from the market. Our

platform is based on the PROCOMP device (Thought Technology Ltd., Montreal,
Quebec, Canada) and the PDA Zaurus (Sharp). The software was developed in C
language to guarantee performance and low power. The PDA is connected through a
wireless connection (IEEE 802.11b) to a base station.

4.8.1. Hardware

We have built a prototype composed by an acquisition board sold by PROCOMP

(figure 31) and the PDA Zaurus 5500 (Sharp) (figure 32). The PROCOMP device is
composed by multiple sensors (EEC, surface EMG, ECG, Temperature, Skin
conductance, and Blood pulse) connected to a wearable board composed of an AD
converter, amplifiers and filters. The Procomp device is an 8 channel, multi-modality
encoder that has all the power and flexibility for real -time, computerized biofeedback
and data acquisition in a clinical setting. The first two sensor channels provide ultimate
signal fidelity (2048 samples per second) for viewing RAW EEG, EMG and EKG
signals. The remaining six channels (256 samples/sec) can be used with any combination
of sensors, including EEG, EKG, RMS EMG, skin conductance, heart rate, blood volume
pulse, respiration, goniometry, force, and voltage input. ProComp offers internal, user-
activated calibration to ensure that you can always obtain the highest quality signal,
without the costly downtime associated with factory re-calibration. It is powered by four
alkaline “AA” batteries. The signals are sent to a serial port in the PDA through a optical
fiber cable.

Figure 31: Acquisition board

75

The PDA Zaurus has the following characteristics: StrongARM(1) SA-1110,
206MHz1 , Linux2 based embedded OS (Embedix 3) Qtopia, Personal Java4 , Reflective
TFT LCD with Front Light (touch sensitive panel supported), 3.5" with 240x320 pixel,
65,536 colors, 64MB SDRAM 16MB FLASH ROM, Touch Panel, QWERTY keyboard
with a slide cover, 1 compact Flash Card5 slot, 1 SD card slot (no copyright protection
feature), Serial/USB (via docking station port, IR port, Stereo headphone jack included,
mono-audio input (via audio jack), buzzer / alarm, Calendar, Address Book, To-Do, and
Memo, POP3, SMTP, IMAP4, Equiv. HTML 4.0, and is powered by a replaceable
lithium-ion battery.

Figure 32: PDA Zaurus

4.8.2. Software

4.8.2.1. The PHRM software infrastructure: developed in “C” based on thread
technology to represent the “parallel” processing, analysis, fusion and decision of the
available data and variables.

4.8.2.2. Software for signals visualization: The signals can be visualized on the PDA
screen using a “C’ language software based on QTopia interface. The figures below show
some examples of the signals and the interface of the system. The user can use the
keyboard or the touch screen to start the system and visualize the signals together or
separately.

76

a) b)

Figure 33: The main window of the monitoring system (a) and the
ECG screen (b)

Figure 33a shows the interface of the monitoring system. The user can choose to see
the ECG (electrocardiogram), EMG (Electromyogram), Blood pressure, pulse
frequency, SPO2 (oxygen saturation), and temperature. The user can also choose to
see the signal in landscape and portrait. The settings bottom allows the user to choose
some characteristics of the image, such as position and checkered background to
represent the millivolts in the vertical and milliseconds in the horizontal perspective
applied to the ECG analysis. Figures 33b and 34a show examples of the
electrocardiogram in portrait and landscape views.

a) b)

Figure 34: The landscape view of the ECG wave (a) and the EMG screen (b).

77

Figure 34b shows an example of the electromyogram signal. Figures 35a shows
the pulse oxymeter (blood oxygen saturation) view and figure 35b the blood pulse
frequency screen with theirs respective data tables. Figure 36a shows the Blood Pressure
(Systolic and diastolic measurements) view and figure 36b shows the body’s temperature
view with their respective data tables.

a) b)

Figure 35: The Pulse oxymeter (blood oxygen saturation) view (a) and
the blood pulse screen (b).

a) b)

Figure 36: The Blood Pressure (systolic and diastolic measurements)
view (a) and the body’s temperature (b).

78

4.9. Experimental Results

1) Evaluation of power consumption of the System’s components: measurement,
processing and transmission.

Objective: to obtain real measurements about the power consumption of some parts of
the system.

Methodology: we have used a prototype of a wearable computer used to monitor the
ECG and pulse oxymeter signals. We could evaluate separated the different parts of the
system to calculate the power consumption. These results can be used as a reference to
the same hardware used, because these measurements can very from different hardware.

Results:

Table 3: Sample, and bandwidth consumption of the ECG, Pulse
Oximetry and Non Invasive blood pressure signals.

 sampling bits bandwidth
EKG

12 1000 16 192000
3 1000 16 48000
3 250 16 6000
1 250 16 2000

Oximetry 0.5 8 4
NIBP 0.0033 8 0.03

Table 3 shows the bandwidth necessary to run a 16 bits ECG and 8 bits Pulse

oxymeter and Non invasive blood pressure. The ECG is a continuous signal, and the
bandwidth consumption is greater than the other discrete signals.

Table 4: Power consumption of a multi parametric unit.

 Power Consumption of Multiparametric Unit
Component +5V -5V +12V -12V
 Max Avg Max Avg Max Avg Max Avg
Acquisition 80 76 46 46 5 5
Oximetry 187 158 4 3
Blood Pressure 400 50
Processing+Comm 600 360
TOTAL 1307 644 4 3 46 46 5 5

79

Table 4 describes the power consumption of the acquisition, pulse oxymeter,
blood pressure and processing plus communication components. The results showed that
computation and communication are the most power consumption components.

Conclusion: communication is the main source of power consumption in a wearable
device used for monitoring biological signals.

2) Experimental design: Based on specialist knowledge we conducted an experiment
that identifies the use of the Electrocardiogram monitoring in an Intensive Care Unit
(ICU). The system has the capability to monitor the electrocardiogram using one, two or
three leads.

Table 5 represents this knowledge: The level of monitoring (number of leads

used) is related to the patients risk of cardiovascular events. The higher the risk, the
higher the necessity of improve the monitoring system. The contrary is also true, the low
risk patient most of the time can be monitored by one lead ECG.

Table 5: Probability of patient’s monitoring states according to his risk:

QoS of Monitoring 1 channel 3 channel 12

 channel

Patient State

Normal patient 97% 2, 9% 0, 1%

Patient with low risk disease 95% 4, 75% 0, 25%

Patient with medium risk 40% 59, 5% 0, 5%

disease

Patient with high risk disease 30% 65% 5%

Methodology: we employed the classification described bellow to choose the level of
monitoring related to the patients risk.

Patient with normal EKG

1 channel / 300Hz, delayed by 30 sec

80

Patient with low risk abnormalities in EKG
3 channels / 300Hz, delayed by 5 sec

Patient with high risk abnormalities in EKG 12

channels / 1000Hz, delayed by 1 sec

Results: Figure 37 shows the power state machine of the experiment. It describes the
power consumption in the different states (1 to 12 leads) and the transitions (patients
risk). If we monitor the patient all the time with one lead ECG the power consumption is
lower than monitoring all the time using an ECG 12 leads monitor. It is clear that based
on clinical variables such as the patients risk we can save power and adapt the system to
the patients benefit. This is a great improvement for a wearable monitoring device where
power is limited.

Low risk event 12 channels No event

1000 Hz / 1s

 P =1450 mW

 High risk

 High risk

 event

No event
 3 channels 1 channel

300 Hz / 5s 300 Hz / 30s

 P = 364.5

mW P = 60.8 mW

 Low risk event

EPSM Wearable ECG Monitor

Figure 37: EPSM Wearable ECG Monitor

Conclusions: it is possible to use clinical evaluation to determine variable that can help
to adapt the system to increase its lifetime.

2) System’s lifetime related to the visualization of each signal in the Zaurus SL-5500

Objective: To measure the power consumption of the different biomedical signals on the
screen of the PDA Zaurus SL-5500.

Procedure: The power consumption of the Zaurus SL-5500 using the ROM 3.10 version
cannot be made directly. One bug in the power management system makes impossible the
use of a software that directly measures the power consumption. To measure the power
consumption we had to develop a software that writes the time each 30 seconds. So the
last written time is the last time the system was functioning. The procedure is described
below:

81

1. Power the battery.
2. Turn off the power supply and start the signal window that we want to

measure the power consumption.
3. Run the signal monitor until the Zaurus’ battery goes down.
4. To avoid interruptions in the monitoring program it was necessary to turn

off the automatic stat of the PDA. It was achieved using the software qpe-
suspendapplet. The use of a screen saver was also avoided.

5. As the control is made every 30 seconds, this is the precision of the
measurement.

Results: The results described in table 6 shows that the backlight is the most

power consuming component. It is necessary to turn it off to increase the system lifetime.
On the other hand, the signal visualization is compromised whether we turn it off or not.
Continuous variables such as ECG, EMG and EEG are related to lower lifetime. Discrete
variables such as oxygen saturation and blood pressure are related to a longer lifetime. As
a consequence, the system’s lifetime is directly related to the sample frequency of the
monitored signal.

Table 6: Battery lifetime related to different monitoring sets and backlight.

Signal Backlight FPS Time
 (minutes)

None 100% 0 111
 Turn off 0 596

ECG 100% 30 73
 100% 30 86
 100 % Maxi 71
 Turn off mum ≈300

EMG 100% 30 81
 100% 30 83

Blood 100% 1 101
Pressure Turn off 1 590

Conclusion: The backlight is the most power consuming component. Excluding

the backlight component, the system’s lifetime is directly related to the signal’s sample
frequency.

4.10. Discussion and Conclusions

4.10.1. Discuss the prototype: The PHRM is new system that takes into consideration
that it is very difficult to analyze one body variable independently. In the case of the heart
rate, without knowing the user age, underlying diseases, level of body activity, whether
he is sleeping or awake, it is very difficult to conclude whether the measured heart rate is
normal or abnormal. Nowadays, all of the available systems do not consider this wild
view of the physiological monitoring and interpretation. Another aspect that makes the
developed system new is the fact that it takes into account aspects such as fault tolerance

82

and ubiquitous computing determined by not only the hardware, but also determined by
the application’s necessity (Application’s quality of Service). In this aspect, the presence
of a middleware can help to manage the hardware point of view together with the
application point of view, optimizing this relationship and the system life time.

The nearest system presented in the current literature is the Total Heart project
developed by the Macmaster University. This system is a mobile device developed to
achieve low power consumption of its components. It is composed by a sensor board for
the ECG attached to a processing and analysis system based on neural networks to detect
events locally in the mobile device. The PHRM is a more complete system because it can
changes the number of leads according to the user necessity. Furthermore, the PHRM is
able to correlate the heart rate with other signals and users characteristics, such as the
level of body activity, blood pressure, body position and underlying medical conditions.
Besides this, the PHRM considers the power management from the systems point of
view, changing the components status (on or off) according to the quality of service of
the application (heart rate monitoring).

There are other systems that only record the ECG (Holter machines) using
different media such as tapes, flash memory or smart cards. None of theses systems have
local processing and analysis. Although all these systems are mobile, all the data
management is made offline. The same type of device is described for blood pressure,
blood glucose measurement and oxygen saturation evaluations. Some systems used for
biofeedback are composed of multiple sensors, but the data management is also made
offline.

Based on these aspects, The PHRM is the first heart rate monitoring system that
considers multiple correlations with the user’s health variables to help the user in the
monitoring of his health. To achieve this goal the general data fusion architecture applied
showed that it is a reasonable approach to provide dynamic management of data and
variables from different sources. Besides this, the developed system is fault tolerant to
failures and compatible with ubiquitous availability.

It is our intention to substitute in the next generation of the prototype micro
sensors by nanosensors in the direction of a body-worn sensor networks.

4.10.2. Contributions

A body-worn heart rate monitoring system;
The ECG Waves Recognizing System;
Algorithm for surface electromyogram interpretation;
Algorithm for body’s activity evaluation;

Algorithm for correlation between signals and clinical medical
evaluation (symptoms and signals);

Algorithm for sleep/awake evaluation;
Power state machine based on clinical variable and level of

monitoring (number of leads of the ECG);

Future work: We are now starting a clinical trial described below:

4.10.3. Long Term Monitoring of Physiological Signals Clinical Trial

83

Institutions:

University of Brasilia Hospital, School of Medicine, University of Brasilia, DF-
Brazil

Center For Future Health, University of Rochester Medical Center, Rochester,
NY-U.S.A.

Motivation:

1) Chronic diseases such as cardiovascular diseases, cancer and degenerative
diseases are the most common cause of mortality and morbidity in United
States and Brazil. Morbidity prevention and decrease mortality of chronic
diseases can have a great impact in the health care system in both countries.

2) Lack of long term physiological data studies
3) Lack of good correlation between data gathered in laboratory studies and data

gathered at home.
4) Available infra structure: Smart Home and Mobile Monitor.

Hypothesis:

Long term physiological monitoring during daily activities can predict and

provide early detection of morbidity conditions.

Main objectives:

Correlate physiological data with daily activities

Secondary objectives:

1) Development of machine learning tools to analyze physiological data.
2) Development of a software infrastructure to provide long term physiological

monitoring compatible with all the constraints inherent to mobile and wireless
monitoring.

3) Public database of physiological data
Human–machine interaction studies

84

Chapter 5

Data Fusion implementation in distributed sensor networks

The benefits provided by distributed data fusion of sensor data are widely

accepted: enhanced targeting and area coverage accuracy; increased situational
awareness; greater confidence in tracking and association; reduced false alarms and
improved application space management. Some authors have been working in this field.
Durrant-Whyte and Stevens [86] have described three constraints that characterize
distributed data fusion:

1. There is no single central fusion center; no one node should be central to the
successful operation of the network.
2. There is no common communication facility; nodes cannot broadcast results
and communication must be kept on a strictly node-to-node basis.
3. Sensor nodes do not have any global knowledge of sensor network topology;
nodes should only know about connections in their own neighborhood.

Based on these premises, distributed data fusion depends on three aspects: sensor

role and management [92][83] , wireless communication and data fusion path or data
dissemination.

1) Sensor role: and management

Different aspects should be considered at this topic:

- Sensing the environment
- Computation capability
- Relay: receive/transmission capability without processing
- Data fusion capability:

o Different levels of data fusion, data analysis and variable interpretation
- Decision:

o Change sensor mode:
o Change data fusion
model o Control actuators

- Mobility

2) Communication: all the aspects related to wireless communication

3) Information dissemination algorithms and data path (optimal node data fusion):

Wendi et all have shown that data aggregation increases the system’s lifetime and
decrease power consumption in power aware sensor networks [102]. Since this initial
paper many different aspects related to distributed data fusion such as information
dissemination, data fusion techniques, optimal data fusion node, data fusion and system’s

85

lifetime, accuracy, coverage area, have been addressed by different authors. Some of
them have considered the node mobility and code mobility [87][91], where mobile agent
adopts a new computing model in which data stay at the local site, while the execution
code is moved to the data sites. The problem of how to fuse data from multiple sensors in
order to make a more accurate estimation of the environment has been studied by other
authors [88][89][90][96][97]. Most of the time sensors can have different levels of
energy, in these cases the load balance should be considered [93]. Many authors have
worked on data dissemination and association [94][63][18][101], and data fusion
middleware [95]. A few papers have addressed the optimal data fusion node problem.
[99][100]. Our work addressed the optimal data fusion path problem, which is related to
the optimal data fusion node problem.

Mohin et all [99] worked on .”the problem of choosing fusion nodes in a
heterogenous wireless sensor network, operating in a terrain with blockages, where some
sort of data fusion or data management can be performed to optimize some defined
network performance metrics”. Their main contribution is related to the definition of
centroide. Centroide is the best node to perform data fusion in the local area network. The
problerm is that to determine the centróide node the algorithjm used does not take into
account that the data source can be in different parts of the environment (out from the
local network). It also does not take into account the sensing, communication (receive
and transmission), and data fusion computation cost that are very important aspects to
evaluate the system´s lifetime. Furthermore, their simulation includes networks with 20
nodes. We have showed in our research that the different algorithms have different
performance according to different network densities. In this aspect, our approach takes
into account all these variables and the simulations varied from low network densities
(network with 50 nodes) to high density networks with 1000 nodes.

Konstantinos et all [100] described approaches to solve the maximum lifetime
data gathering problem in sensor networks, with and without data aggregation. Although
their solution based on the maximum flow algorithm can be used as a reference for the
maximum lifetime of a sensor networks application, they didn’t consider the sensors
individually. As a consequence, They didn’t consider the tradeoff between the total cost
(communication, sensing and data fusion computation) and system’s lifetime. It does not
solve the problem of finding data fusion path for data from different source sensing units.

We consider that the data fusion capability such as different levels of data fusion,
data analysis and variable interpretation, as well as the decision (change sensor mode,
change data fusion model, and actuators control) can also be part of the sensors
functionalities (smart sensors). Furthermore, each tool, parametric and non parametric
statistical approach [98] as well as soft computing approaches (neural networks, fuzzy
logic, genetic algorithms, etc), performed to achieved pre-processing or data fusion has
different computation cost. In addition, the data path can be found based on the data
source nodes, possible data fusion nodes, and destination node for the fused data or
information

Problem to solve: what is the best path to fuse data from data source (sensing node) to
send the fused data or information to some destination node, i.e., how to find the optimal
(s) data fusion node (s)?

86

Body-worn sensor networks distributed data fusion problem: In the body-worn
sensor networks environment the sensors are distributed along the body on the surface
(skin), inside organs such as lungs and heart, or inside the vascular system or gastro
intestinal system involved by the blood and food bolus respectively. Considering that a
network is composed of smart sensors with sensing, relay and data fusion capability, how
can we determine the best path to achieve the data fusion goal, i.e. fused data should
arrive in a pre-defined base station, considering sensing cost, data pre-processing and
data fusion computation and transmission cost?

The approach to this problem should consider:

1. Tradeoff: total cost (sensing, computation, and communication) versus system
lifetime.

2. Total cost: once the total cost of computation is the same independent of the
workload balance, what determines the total cost is the communication cost plus
the sensing cost plus de total computation (pre-processing and data fusion
techniques). Based on this, the relaxed pairs shortest path can be employed to
optimize the communications cost.

3. System´s lifetime: the DF path choice is determined by the available power in
each node. In this case the system might want to use a high cost path, but that will
increase the system lifetime. In this case all possible DF paths should be used.

5.1. Distributed Data Fusion Implementation

Most sensor networks applications will run in a distributed scenario. In this case,

the data fusion has to be done in a distributed way. How to fuse distributed data taking
into account different aspects that should be considered in this type of application, such
as the available resource in terms of node’s energy and sensing capability.

Data fusion is an important aspect related to the application development in a
sensor networks environment. It is directly related to the application quality of service
specifications and also related to different aspects of the sensor networks environment.
Based on these aspects, different aspects should be considered in the data fusion
implementation in sensor networks:

1) Communication cost (receiving and transmiting)

f. Influence of different sizes of data. If the data is higher than the packet, we
need to add the number of necessary messages to send all the data.

2) Data fusion cost:
3) Data fusion precedence:
4) Sensing cost
5) Node capability: power, computation capability and functionalities capability

g. All the nodes have the same capabilities.
h. Heterogeneous nodes

6) Different data rates: it can determine the use of shortest or longest paths.
7) Real time versus not real time: real time applications need a short path and

smaller delays.
8) Security: Adds overhead in the communication cost.

87

9) System lifetime: how many paths can we use to provide a larger system’s
lifetime? From the lifetime point of view, the use of as many paths as possible is
useful.

10) Data throughput: the shortest paths are related to a higher throughput than the
larger paths.

11) Transmission delay: the transmission delay is higher in the longer paths than in
the shortest paths.

12) Time synchronization: it is easier to obtain synchronization on the shortest paths
than on the longest paths.

13) Location integration:
i. Scenario 1: any source, anywhere.
j. Scenario 2: sources to be fused are near from each other.

14) Scalability: We can apply the algorithm to the entire network or divide the
network in smaller domains represented by different destination nodes. We can
then integrate the domain’s destination nodes to scale to the entire network.

We have developed some algorithms to find the best optimal node to fuse the data
from different sensors considering some of the aspects described above.

5.2. Methodology

5.2.1. Objective: Given a data fusion expression, determine the best data fusion nodes
(path) based on communication cost, sensing capability and system’s lifetime to fuse the
data from the data source nodes to the destination node.

5.2.2. Data Fusion expression definition

- All the operations are inside a parenthesis;
- All opened parenthesis have a corresponding closed parenthesis;
- The operator + means fusion of data;
- The operands represent the data sources;
- The operations inside parenthesis have precedence over non parenthesis

operations.

Ex: DF expression = ((A + B) + (C + D)) = (AB + CD) = ABCD;
DF expression = ((A1 + A2 + A3 +A4 +A5) + B + C) = (A + B + C) = ABC

5.2.3. Algorithms

Brute force algorithm: Test all the ways to get the data to each possible DF node and
combine the cost of each combination. This is an exponential problem (NP complete).

Optimal solution: Use the shortest path algorithm to get the data to each possible DF
node and combine the cost of each combination. This is an approximation of the brute

88

force algorithm but still a very hard problem (quadratic as a function of the number of
nodes in the network).

Approximate solutions: We are going to employ different approximate heuristics based
algorithms to find a sub optimal solution with a lower computation cost than the optimal
solution.

• Greedy solution:
• Approximate Greedy solution:
• Optimal Node:
• Optimal node plus intermediate nodes (Hervaldo)

Algorithms for the tests:

Notation: A = 1, B = 2, C = 3, D = 4 and destination node = dst.

/////Calculate all pairs shortest path and store in a table//////

for dst = 1:num_sensors,
%disp(dst);
[paths, total_cost] = find_shortest_path(dst, cost);
cost_table(dst, :) = total_cost;
path_table(dst, 1:size(paths,1), 1:size(paths,2)) =

paths; end;
//

1) Optimal Algorithm: evaluate all the shortest path

solutions for fusion_point12 = 1:num_sensors,

cost12 = cost_table(src1, fusion_point12) + cost_table(src2,
fusion_point12); for fusion_point34 = 1:num_sensors,

cost34 = cost_table(src3, fusion_point34) + cost_table(src4,
fusion_point34); for fusion_point1234 = 1:num_sensors,

cost1234 = cost_table(fusion_point12, fusion_point1234) + cost_table(fusion_point34,
fusion_point1234) + cost_table(fusion_point1234, dst);

cost_final = cost12 + cost34 + cost1234;
if (cost_final < optimal_cost),

optimal_fusion_point12 = fusion_point12;
optimal_fusion_point34 = fusion_point34;
optimal_fusion_point1234 = fusion_point1234;
optimal_cost = cost_final;

end;

89

end;
end;

end;

2) Calculate the greed solution: evaluate the best fusion nodes by dividing the
evaluation in parts (A + B) , (C + D), (AB + CD + destination).
/// Evaluate the fusion point for A and B//
for fusion_point12 = 1:num_sensors,

cost12 = cost_table(src1, fusion_point12) + cost_table(src2,
fusion_point12); if (cost12 < greed_cost12),

greed_fusion_point12 =
fusion_point12; greed_cost12 = cost12;

end;
end;
Evaluate the fusion point for C and D####
for fusion_point34 = 1:num_sensors,

cost34 = cost_table(src3, fusion_point34) + cost_table(src4,
fusion_point34); if (cost34 < greed_cost34),

greed_fusion_point34 =
fusion_point34; greed_cost34 = cost34;

end;
end;
####Evaluate the fusion point for AB and CD and destination node####
for fusion_point1234 = 1:num_sensors,
cost1234 = cost_table(greed_fusion_point12, fusion_point1234) +
cost_table(greed_fusion_point34, fusion_point1234) + cost_table(fusion_point1234, dst);

if (cost1234 < greed_cost1234),
greed_fusion_point1234 = fusion_point1234;
greed_cost1234 = cost1234;

end;
end;

greed_total_cost = greed_cost12 + greed_cost34 + greed_cost1234;

3) Calculate the modified greed solution (considering the destination node): evaluate
the best fusion nodes by dividing the evaluation in parts (A + B) , (C + D), (AB + CD
+ destination). The difference from this algorithm to the greedy solution is that this
one considers the destination node to calculate de (A + B) and (C + D) fusion nodes.

/// Evaluate the fusion point for A and B//
for fusion_point12 = 1:num_sensors,
cost12 = cost_table(src1, fusion_point12) + cost_table(src2, fusion_point12) +

90

cost_table(fusion_point12, dst);
if (cost12 < part_cost12),

part_fusion_point12 = fusion_point12;
part_costdest = cost_table(fusion_point12, dst);
part_cost12 = cost12;

end;
end;
part_cost12 = part_cost12 - part_costdest;
part_costdst = 0;

Evaluate the fusion point for C and D####
for fusion_point34 = 1:num_sensors,
cost34 = cost_table(src3, fusion_point34) + cost_table(src4, fusion_point34) +
cost_table(fusion_point34, dst);

if (cost34 < part_cost34), part_fusion_point34 =
fusion_point34; part_costdest =
cost_table(fusion_point34, dst); part_cost34 =
cost34;

end;
end;
part_cost34 = part_cost34 - part_costdest;

####Evaluate the fusion point for AB and CD and destination node####
for fusion_point1234 = 1:num_sensors,
cost1234 = cost_table(part_fusion_point12, fusion_point1234) +
cost_table(part_fusion_point34, fusion_point1234) + cost_table(fusion_point1234, dst);

if (cost1234 < part_cost1234),
part_fusion_point1234 = fusion_point1234;
part_cost1234 = cost1234;

end;
end;

part_total_cost = part_cost12 + part_cost34 + part_cost1234;

4) Approximate solution Hervaldo: calculate the best fusion point (ABCDdst node)
for all the involved nodes (A, B, C, D, and destination). Now calculate the best fusion
node to fuse A and B to ABCDdst node and C and D to the ABCDdst node.

####Evaluate the fusion point for A, B, C, D and destination node###
for fusion_point1234 = 1:num_sensors,
cost1234 = cost_table(src1, fusion_point1234) + cost_table(src2, fusion_point1234) +
cost_table(src3, fusion_point1234) + cost_table(src4, fusion_point1234) +
cost_table(fusion_point1234, dst);

if (cost1234 < Aprox_cost1234),
Aprox_fusion_point1234 = fusion_point1234;

91

Aprox_cost1234 = cost1234;
end;

end;
Evaluate the fusion point for A and B to the fusion point ABCD and
destination####
for fusion_point12 = 1:num_sensors,
cost12 = cost_table(src1, fusion_point12) + cost_table(src2, fusion_point12) +
cost_table(fusion_point12, Aprox_fusion_point1234);

if (cost12 < Aprox_cost12),
Aprox_fusion_point12 =
fusion_point12; Aprox_cost12 = cost12;

end;
end;
Evaluate the fusion point for C and D to the fusion point ABCD and
destination####
for fusion_point34 = 1:num_sensors,
cost34 = cost_table(src3, fusion_point34) + cost_table(src4, fusion_point34) +
cost_table(fusion_point34, Aprox_fusion_point1234);

if (cost34 < Aprox_cost34),
Aprox_fusion_point34 = fusion_point34;
Aprox_cost34 = cost34;

end;
end;
Aprox_total_cost = Aprox_cost12

+

Aprox_cost34

+

cost_table(Aprox_fusion_point1234, dst);

Software for simulations: We have used the MATLAB and the MATLAB network
toolbox.

Simulations assumptions:

1. Network of different number of nodes: networks simulated from 50 nodes to 1000

nodes.
2. Randomized nodes distribution (each trial): for each trial, the nodes distribution in

the field was randomized.
3. Randomized data sources (sensors): for each trial, the nodes responsible for the

data sources (sensing units) in the field were randomized.
1. Randomized destiny nodes: for each trial, the node assigned as the node destiny

for the fused data (destiny node) in the field was randomized.

Figure notations:
1. data source (sensor) represented by a blue triangle
2. Destiny node: blue circle
3. Data fusion nodes A + B and C + D: small red circles
4. Data Fusion node: (A+B) + (C+D): large red circle

92

5. OBS: each sensor node must be a different randomized one. This means that each
sensor can only sense one variable each time. There are no restrictions about the
other nodes (data fusion and destiny nodes). They are defined by the algorithm
employed.

Example:

The following figures 38, 39, 40 e 41 represent examples of the different solutions

obtained from the employment of the different algorithms to capture the data from the
data sources (sensors) and to find the best routes to perform data fusion and send the
resulted data to the destination node. Note that all the solutions are based on the same set
of sensors and destination node positions, but presenting different solutions to perform
data fusion.

Figure 38: Shortest path algorithm solution

93

Figure 39: Approximate solution Hervaldo and Optimal node
algorithms solutions (same resulted graph)

94

Figure 40: Approximate solution Greedy

95

Figure 41: Approximate solution Modified Greedy

4) Results of Simulations:

1) We have compared the optimal solution against the approximate solutions to find
the optimal data fusion node (s) to fuse the data from 4 different sources and to
send the fused data to a destination node. We have employed the shortest path
algorithm described by Dijkstra.

a. Comparison among the different algorithms based on communication cost:

optimal, approximate based on greedy solution, modified greedy,
Approximate Hervaldo , and one optimal node algorithm.

96

Network with 100 nodes (200 simulations)

C
om

m
un

ic
at

io
n

co
st

 (m
ea

n)

29

28

27

26

25

24

23

22 1

Optimal Greedy Modified greedy Aprox Hervaldo Optimal node

algorithms

Figure 42: Results obtained from a network of 100 nodes

Network with 250 nodes (291 simulations)

C
om

un
ic

at
io

n
co

st
 (m

ea
n

±
SD

)

 27

 26.0 ± 6.3

 26

 25

 24

 23.4 ± 5.1

 22.8 ± 5.4
 23

 22.3 ± 5.1

22.0 ± 5.0

 22

 21

 20

Optimal

Greedy

Modified greedy1

Aprox Hervaldo

One optimal node

Algorithms

Figure 43: Results obtained from a network of 250 nodes

97

SD
)

C
om

m
un

ic
at

io
n

co
st

 (m
ea

n
+

Network with 500 nodes (500 simulations)

 26

 25.4 ± 6.3

 25

 24

 22.9 ± 5.1

 23

 22.3 ± 5.3

 21.9 ± 5.1

 22 21.6 ± 5.0

21

20

19

 Optimal Greedy Modified Greedy1 Aprox. Hervaldo Optimal node

Algorithms

Figure 44: Results obtained from a network of 500 nodes

The results obtained from the simulations in different network densities (100 to
500 nodes) showed that the approximate solution named Hervaldo, Modified Greedy,
Optimal node and Greedy are the best alternatives to the optimal solution (figures 42, 43
e 44). As a conclusion, The approximate solution Hervaldo is the best approximate
solution and as a consequence, the nearest solution to the optimal solution.

b. Comparison among the different algorithms based on computation cost
(running time): optimal, approximate based on greedy solution, modified
greedy, approximate Hervaldo, and one optimal node.

98

Figure 45: Computation cost of the optimal solution (1), Greedy (2),
Modified Greedy (3), approximate Hervaldo (4) and Optimal Node (5).

Comparison of computation cost among the
approximate algorithms

R
el

at
iv

e
R

un
ni

ng
 ti

m
e

1.2

1

0.8

0.6

0.4

0.2

0
1

Algorithms

 Greedy
 Modified Greedy

 Aprox. Hervaldo
 Optimal node

Figure 46: Computation cost of the approximate solution Greedy, Modified
Greedy, approximate Hervaldo and Optimal Node.

99

The results obtained from the computation cost simulations showed that the
approximate solutions are less expensive than the optimal solution (figure 45). The
comparison of the computation cost among the aproximate solutions showed that the
Greedy, modified Greedy and Hervaldo have the same computation cost. The
computation cost of the optimal node is only 20% (1/5) of the other approximate
solutions (figure 46). As a conclusion, The optimal node solution has the lowest
computation cost. .

As a result of the simulations considering the communication cost and the
computation cost, the best alternatives to the optimal solution are the approximate
Hervaldo and the optimal node solution.

c. Comparison among the different approximate algorithms based on DF

path lifetime: approximate based on greedy solution, modified greedy, one
optimal node, and Approximate Hervaldo.

a) b)

c) d)

Figure 47: Example of data fusion path in different algorithms: approximate
Hervaldo (a), Modified Greedy (b), Greedy (c), and Optimal Node (d).

100

Figure 48: Example of the worst case scenario in data fusion multiple paths.

Figure 49: Examples of the worst and best case scenarios in data
fusion multiple paths.

Figure 47 shows examples of data fusion paths from different algorithms. Notice
that all the algorithms have different data fusion paths to solve the same data fusion
expression ((A+B) + (C+D) and to send the data fusion result to the destination node.
Figures 48 and 49 show that multiple data fusion paths can have good or bad results. If a
node is a sensing unit and data fusion node simultaneously, its energy will drain earlier.
So, the worst case scenario is the situation where the same nodes act as sensing units and
data fusion node or destination node. .The best data fusion multiple paths solutions is

101

characterized by the use of different nodes to act as sensing units, data fusion nodes and
destination nodes. If the system uses more nodes with approximately the same
communication cost, the system’s lifetime will be greater.

As a conclusion, the sensor networks application designer should balance
minimum cost and maximum lifetime: The goal is to achieve the minimum
communication and data fusion cost, and to maximize the system’s lifetime.

So, the question is how to increase the number of paths. One of the ways is to
vary the data fusion nodes (figure 50). As we are employing the shortest path, whether
we choose the best 10 shortest paths, we might be varying the data fusion node. Another
way is to use multiple DF nodes between the optimal DF node and destination node
(figure 51).

Multiple optimal DF nodes (best 10 shortest paths)

Figure 50: Example of the 10 best shortest paths of the approximate
solution Hervaldo.

102

Multiple DF nodes between the optimal DF node and destination node

Figure 51: Example of the 10 best shortest paths between the (AB+CD) data
fusion node and destination node of the approximate solution Hervaldo.

103

Network with 100 nodes, 10 different set of sensors, for each set of sensors 10 paths.

Figure 52: Example of a Network with 100 nodes and 10 different set of
sensors. For each set of sensors, we considered the 10 best paths (lowest
communication cost) of the approximate solution Hervaldo.

Figure 52 shows that network density should be considered in the design of sensor

networks applications. A network with a hundred nodes and ten sensors as source of data
will use almost all nodes to perform 10 distributed data fusion paths to each combination
of sensors and destination node. This result shows that the number of network’s nodes is
a limiting factor to increasing the system’s lifetime.

Another aspect that should be considered is the communication data fusion cost
tradeoff. If the data fusion computation cost is higher than the communication cost, in
general it is better to increase the number of paths and data fusion nodes. On the contrary,
it is better to use the fewest number of paths.

In the next simulations we are going to perform the balance of the communication
cost and data fusion cost in the different algorithms. As the optimal node and Hervaldo’s
solution were considered the best approximate solutions, from this point to the end we are
going to consider only these algorithms in comparison to the optimal solution (shortest
path).

d. Comparison of system’s lifetime among the best different approximate

algorithms based on multiple DF paths: One optimal node considering
destination node and not considering destination node (aprox. Optimal DF
node no sensor), and Approximate Hervaldo.

104

Comparison among the aproximatew

algorithms based on the Multiple paths multiple
DF nodes (Network with 500 nodes)

Li
fe

tim
e

 200

150 Shortest path

100 Aprox.Hervaldo

50 Aprox. Optimal DF node

0

 Aprox. Optimal DF node

4:1 2:1 1:1 1:1.5 1:2 1:3 1:5

 no sensor

 Communication cost: DF cost

Figure 53: Network with 500 nodes, 10 multiple paths combined to 10 multiple
data fusion nodes, for the shortest path, approximate Hervaldo, Approximate
Optimal node and approximate optimal node no sensor.

Comparison among the aproximate algorithms
based on the multiple paths (network with 500

nodes)

Li
fe

tim
e

 160

140 Shortest path

120

100

 Aprox. Hervaldo
 80

60

40

Aprox. Optimal DF node

 20

0 Aprox. Optimal DF node

4:1 2:1 1:1 1:1.5 1:2 1:3 1:5 no sensor

Communication cost: DF cost

Figure 54: Network with 500 nodes, and 10 multiple paths, for the shortest
path, approximate Hervaldo, Approximate Optimal node and approximate
optimal node no sensor.

105

Figures 53 and 54 try to answer the question. Is it good to increase the number
of nodes between the last data fusion node (AB+CD) and the destination node? The
hypothesis considers that whether the data fusion cost is greater than the
communication cost, it would be good to increase the number of DF nodes. The
results showed that the use of the combination multiple paths and multiple nodes
increase the system’s lifetime. This increase is greater in the algorithms that vary
the nodes in the different paths. The 10 shortest paths in the shortest path algorithm
use almost the same nodes. On the other hand, the approximate solution based on
the best node not considering the destination node achieves the best system’s
lifetime because it creates more paths with different nodes. So-, perhaps considering
only the system’s lifetime, the shortest path is not the best solution to achieve the
optimal data fusion nodes to solve the data fusion expression.

Comparison among the approximate algorithms
based on the multiple paths multiple DF nodes

(network with 50 nodes)

Li
fe

tim
e

 140

120
Shortest path

100

80 Aprox. Hervaldo

 60

40 Aprox. Optimal DF node

20

0

 Aprox. Optimal DF node

4:1 2:1 1:1 1:1.5 1:2 1:3 1:5

 no sensor

 Communication cost: DF cost

Figure 55: Network with 50 nodes, and 10 multiple paths combined to multiple
DF nodes between the last DF node and destination node for the shortest path,
approximate Hervaldo, Approximate Optimal node and approximate optimal
node no sensor.

106

Comparison among the aproximate
algorithms based on the multiple paths

(network with 50 nodes)

Li
fe

tim
e

140

120 Shortest path

100

80 Aprox. Hervaldo

60

40 Optimal DF node

20

0

 Optimal DF node no

4:1 2:1 1:1 1:1.5 1:2 1:3 1:5

 sensor

Communication cost: DF

cost

Figure 56: Network with 50 nodes, and 10 multiple paths for the shortest path,
approximate Hervaldo, Approximate Optimal node and approximate optimal
node no sensor.

The result of figures 55 and 56 show the same results as the figures 53 and 54.
The use of the combination multiple paths and multiple nodes increase the system’s
lifetime. This increase is greater in the algorithms that vary the nodes in the different
paths. It also shows that the network density is proportional to system’s lifetime if the
number of sensing units and DF nodes are constant. A network with 50 nodes will have a
lower system’s lifetime than a network with 500 nodes

e. Comparison of lifetime among the different approximate algorithms based
on multiple DF paths considering 10, 50 and 100 paths: approximate based
on greedy solution, modified greedy, one optimal node, and Approximate
Hervaldo.

107

Comparison between the Aprox. Hervaldo and
Optimal node algorithms based on the multiple

paths multiple DF nodes (network with 500 nodes)

Li
fe

tim
e

1600
1400
1200
1000
800
600
400
200

0
4:1 4:1 1:5 1:5

communication cost: DF cost

 10 paths
 50 paths
 100 paths

Figure 57: Comparison between Aprox Hervaldo algorithm and Optimal Node
algorithm in a network with 500 nodes, multiple paths and multiple DF nodes.

Comparison between the Aprox. Hervaldo and
Optimal node algorithms based on the multiple

paths (network with 500 nodes)

Li
fe

tim
e

500

400

300

200

100

0
4:1 4:1 1:5 1:5

Communication cost: DF cost

 10 paths
 50 paths
 100 paths

Figure 58: Comparison between Aprox Hervaldo algorithm and Optimal Node
algorithm in a network with 500 nodes with multiple paths.

Figures 57 and 58 show the comparison between Approximate Hervaldo and

Optimal node algorithms in network of 500 nodes, but varying the communication DF

108

cost and the number of paths. In figure 58 the simulation applied multiple paths multiple
DF nodes between the AB+CD DF node and destination node, while the figure 59 only
considered multiple paths. The results showed that the optimal node algorithm is better
than Hervaldo’s algorithm. Therefore, there is a great increase in system’s lifetime to add
DF nodes between the AB+CD DF node and destination node. The increment in the
number of paths also increases the system’s lifetime. When the communication cost is
higher than the DF cost, the system’s lifetime is higher.

Comparison between the Aprox. Hervaldo and
Optimal node algorithms based on the multiple

paths multiple DF nodes (network with 100 nodes)

Li
fe

tim
e

700
600
500
400
300
200
100

0
4:1 4:1 1:5 1:5

Communication cost: DF cost

 10 paths
 50 paths
 100 paths

Figure 59: Comparison between Aprox Hervaldo algorithm and Optimal Node
algorithm in a network with 100 nodes with multiple paths multiple DF nodes.

Comparison between the Aprox. Hervaldo and
Optimal node algorithms based on the multiple

paths (network with 100 nodes)

Li
fe

tim
e

500
400

300

200

100

0
4:1 4:1 1:5 1:5

Communication cost: DF cost

 10 paths
 50 paths
 100 paths

Figure 60: Comparison between Aprox Hervaldo algorithm and Optimal Node
algorithm in a network with 500 nodes with multiple paths.

109

Figures 59 and 60 show that the difference between the approximate algorithm
remain the same in a network with 100 nodes. It also shows that to decrease the network
density decrease the system’s lifetime.

f. Comparison of the system’s lifetime among the different algorithms based
on multiple DF paths considering the communication cost and Data fusion
cost ratio and varying the number of paths: approximate solutions based
on Approximate Hervaldo, one optimal node, and one optimal node
without sensors.

Network with 500 nodes, 10 paths, 1000
simulations (Aprox. Hervaldo)

Li
fe

tim
e

 160

140 Multiple paths multiple

120
DF nodes

100
Multiple paths

80 Average multiple paths

60

40

20
Shortest path

0

4:1 2:1 1:1 1:1.5 1:2 1:3 1:5

Average multiple paths

 multiple DF nodes

Communication cost: DF
cost

Figure 61: Comparison between multiple paths multiple DF nodes, multiple
paths, average multiple paths, shortest path and average multiple paths multiple
DF nodes using Aprox Hervaldo algorithm in a network with 500 nodes with
10 paths.

110

Network with 250 nodes, 10 paths and 500
simulations (Aprox. Hervaldo)

Li
fe

tim
e

140 Multiple paths multiple

120

100 DF nodes

80
Multiple paths

60 Average multiple paths

40

 20

 0 Shortest path

4:1 2:1 1:1 1:1.5 1:2 1:3 1:5

 Average multiple paths

 Communication cost: Data Fusion

 multiple DF nodes

 cost

Figure 62: Comparison between multiple paths multiple DF nodes, multiple
paths, average multiple paths, shortest path and average multiple paths multiple
DF nodes using Aprox Hervaldo algorithm in a network with 250 nodes with
10 paths.

Network with 100 nodes, 10 paths, 200
simulations (Aprox. Hervaldo)

Li
fe

tim
e

 140

120 Multiple paths multiple

100
DF nodes

80
Multiple paths

60 Average multiple paths

40

 20

 0 Shortest path

4:1 2:1 1:1 1:1.5 1:2 1:3 1:5

 average multiple paths

 Communication cost: Data Fusion

 multiple DF nodes

 cost

Figure 63: Comparison between multiple paths multiple DF nodes, multiple
paths, average multiple paths, shortest path and average multiple paths multiple
DF nodes using Aprox Hervaldo algorithm in a network with 100 nodes with
10 paths.

111

Network with 50 nodes, 10 paths, 100 simulations
(Aprox. Hervaldo)

Li
fe

tim
e

 120

100 Multiple paths multiple

DF nodes

80
Multiple paths

60 Average multiple paths

40

 20

Shortest path

0

4:1 2:1 1:1 1:1.5 1:2 1:3 1:5

Average mul;tiple paths

 multiple DF nodes

 Coomunication cost: DF cost

Figure 64: Comparison between multiple paths multiple DF nodes, multiple
paths, average multiple paths, shortest path and average multiple paths multiple
DF nodes using Aprox Hervaldo algorithm in a network with 50 nodes with 10
paths.

Li
fe

tim
e

200

150

100

50

0

Network with 500 nodes, 10 paths, 1000
simulations (Aprox. Optimal node)

 Multiple paths multiple

 DF nodes

Multiple paths

 Average multiple paths

 Shortest path

4:1 2:1 1:1 1:1.5 1:2 1:3 1:5

Average multiple paths

 multiple DF nodes

Communication cost: DF
cost

Figure 65: Comparison between multiple paths multiple DF nodes, multiple
paths, average multiple paths, shortest path and average multiple paths multiple
DF nodes using Aprox Optimal Node algorithm in a network with 500 nodes
and 10 paths.

112

Li
fe

tim
e

160
140
120
100
80
60
40
20

0

Network with 250 nodes, 10 paths, 500
simulations (Aprox. Optimal DF node)

 Multiple paths multiple

DF nodes

 Multiple paths

 Average multiple paths

 Shortest path

4:1 2:1 1:1 1:1.5 1:2 1:3 1:5

Average multiple paths

 multiple DF nodes

Communication cost: DF
cost

Figure 66: Comparison between multiple paths multiple DF nodes, multiple
paths, average multiple paths, shortest path and average multiple paths multiple
DF nodes using Aprox Optimal Node algorithm in a network with 250 nodes
and 10 paths.

Network with 100 nodes, 10 paths and 200
simulations (Aprox. Optimal DF node)

Li
fe

tim
e

 140

 Multiple paths multiple

120 DF nodes

100 Multiple paths

80

60 Average multiple paths

40

20 Shortest path

0

4:1 2:1 1:1 1:1.5 1:2 1:3 1:5

Average multiple paths

 multiple DF nodes

Communication cost: DF
cost

Figure 67: Comparison between multiple paths multiple DF nodes, multiple
paths, average multiple paths, shortest path and average multiple paths multiple
DF nodes using Aprox Optimal Node algorithm in a network with 100 nodes
and 10 paths.

113

Network with 50 nodes, 10 paths, 100 simulations
(Aprox. Optimal DF node)

Li

fe
tim

e

120 Multiple paths multiple

100 DF nodes

80 Multiple paths

60 Average multiple paths

40

20 Shortest path

0

4:1 2:1 1:1 1:1.5 1:2 1:3 1:5

Average multiple paths

 multiple DF nodes

Communication cost: DF
cost

Figure 68: Comparison between multiple paths multiple DF nodes, multiple
paths, average multiple paths, shortest path and average multiple paths multiple
DF nodes using Aprox Optimal Node algorithm in a network with 50 nodes
and 10 paths.

Network with 500 nodes, 10 paths, 1000
simulations (Aprox. Optimal DF node without

sensor)

Li
fe

tim
e

 200

Multiple paths multiple

150 DF nodes

Multiple paths

 100

50 Average multiple paths

 Shortest path
 0

4:1 2:1 1:1 1:1.5 1:2 1:3 1:5

 Average multiple paths

 Communication cost: DF cost multiple DF nodes

Figure 69: Comparison between multiple paths multiple DF nodes, multiple
paths, average multiple paths, shortest path and average multiple paths multiple
DF nodes using Aprox Optimal Node no sensor algorithm in a network with
500 nodes and 10 paths.

114

Network with 250 nodes, 10 paths, 500
simulations (Aprox. Optimal DF node

without sensor)

Li

fe
tim

e

 200

Multiple paths multiple

 DF nodes

150 Multiple paths

100

50 Average multiple paths

 Shortest path
 0

4:1 2:1 1:1 1:1.5 1:2 1:3 1:5

 Average multiple paths

 Communication cost: DF cost multiple DF nodes

Figure 70: Comparison between multiple paths multiple DF nodes, multiple
paths, average multiple paths, shortest path and average multiple paths multiple
DF nodes using Aprox Optimal Node no sensor algorithm in a network with
250 nodes and 10 paths.

Network with 100 nodes, 10 paths, 200

simulations (Aprox. Optimal DF node without
sensor)

Li
fe

tim
e

140

Multiple paths multiple

120
DF nodes

100 Multiple paths

80

60 Average multiple paths

 40

 20

 Shortest path
 0

4:1 2:1 1:1 1:1.5 1:2 1:3 1:5

 Average multiple paths

 Communication cost: DF cost multiple DF nodes

Figure 71: Comparison between multiple paths multiple DF nodes, multiple
paths, average multiple paths, shortest path and average multiple paths multiple
DF nodes using Aprox Optimal Node no sensor algorithm in a network with
100 nodes and 10 paths.

115

Network with 50 nodes, 10 paths, 100 simulations
(Aprox. Optimal DF node without sensor)

Li
fe

tim
e

 140

120 Multiple paths multiple

100
DF nodes

 Multiple paths

80

60 Average multiple paths

 40

20 Shortest path

0

4:1 2:1 1:1 1:1.5 1:2 1:3 1:5

Average multiple paths

 multiple DF nodes

Communication cost: DF
cost

Figure 72: Comparison between multiple paths multiple DF nodes, multiple
paths, average multiple paths, shortest path and average multiple paths multiple
DF nodes using Aprox Optimal Node no sensor algorithm in a network with 50
nodes and 10 paths.

Figures 61 to 72 show that in all algorithms tested the network based on multiple

paths multiple DF nodes is much better than the options multiple paths, average multiple
paths, shortest path (better communication cost) and average multiple paths multiple DF
nodes. These differences are greater when we increase the communication data fusion
cost ratio. The comparison among the algorithms showed that the Approximate Optimal
DF Node without sensor is slighter better than the Optimal DF node and much better than
the Hervaldo’s algorithm.

g. Compare the lifetime of first 10 paths, 20 to 30, 30 to 40, 50 to 60, 60 to

70, 70 to 80, 80 to 90 and 90 to 100 in different network densities.

116

Comparison of the different shortest path
ranges (communication cost: DF cost = 4:1) in a

network with 100 nodes

Li
fe

tim
e

370 360
350
340
330
320
310
300
290

 0 0 0 0 0
 1 3 5 7 9

- - - - -

2

4

6

 81

1 1 1 1

Shortest paths range

 Mulktiple paths
multiple DF nodes
 Multiple paths

Figure 73: Comparison between multiple paths multiple DF nodes and multiple
paths, in a network with 100 nodes and communication cost DF cost of 4:1
using optimal node algorithm.

Comparison of the different shortest path
ranges (communication cost: DF cost = 1:5) in a

network with 100 nodes

Li
fe

tim
e

200

150

 100

 50

0

 0 0 0 0 0

1 3 5 7 9

- - - - - 1 1 1 1

 21 4 6 8

Shortest path range

 Multiple paths
multiple DF nodes
 multiple paths

Figure 74: Comparison between multiple paths multiple DF nodes and multiple
paths, in a network with 100 nodes and communication cost DF cost of 1:5
using optimal node algorithm.

The hypothesis tested and showed in figures 73 and 74 is that to use long paths

can be better than to use the shortest paths. To test this hypothesis we evaluated the best

117

100 paths divided in ranges of ten. The results showed that it not favorable to use longest
paths to increase system’s lifetime in low density networks. It should be tested in high
density networks.

How to employ the algorithms discussed in this chapter in real problems? In the
next section we describe how to employ the Distributed Data Fusion Algorithm in a
sensor networks application.

Distributed Data Fusion Algorithm: With the algorithm described below we can
employ anyone of the approximate algorithms tested (greedy, modified greedy, one
optimal node, and approximate Hervaldo). The algorithms will be different in the number
of fusion nodes and how to calculate them (step 5 of the algorithm).

1) Destination node or destination nodes broadcast the data fusion expression.
2) Sensors read the expression and broadcast their positions (GPS?) whether they are

participating in the expression. .
3) Find the optimal fusion node: each node of the network evaluate the distance

(number of hopes) from the participating sensors and destination sensor to itself.
4) Each node broadcast its distance cost.
5) Each node builds an ordered vector of shortest paths.
6) Two options:

a. Based on its data rates each participating sensor sends its data to the fusion
point. It controls the data rate, the rotating of the fusion points (multiple
paths), but it cannot control the rotation of redundant sensors. The fusion
node can control the fusion point (multiple data fusion point’s paths).

b. Each destination node pulls the data fusion node and the data fusion node
pulls the participating sensors. This approach allows the rotation of fusion
nodes, participating sensors, sensors mode, and control the sensors’ data
rates, but the approach is related to an overhead of communication and
control.

Conclusions:

To achieve the goal of performing data fusion in an optimal node in distributed
sensor networks, we have implemented different algorithms already described in the
literature (shortest path) and greedy algorithm. The other algorithms are adaptations of
these algorithms. The suboptimal´s algorithms (hervaldo’s algorithm and optimal node
algorithm) showed to be the algorithms with best performance and acceptable cost.

The results obtained from the simulations in different network densities (100 to
500 nodes) showed that the approximate solution named Hervaldo, Modified Greedy,
Optimal node and Greddy as the best alternatives to the optimal solution. In conclusion,
the approximate solution Hervaldo is the best approximate solution and as a consequence,
the nearest solution to the optimal solution.

The results obtained from the computation cost simulations showed that the
approximate solutions are less expensive than the optimal solution. The comparison of
the computation cost among the aproximate solutions showed that the Greedy, modified

118

Greedy and Hervaldo have the same computation cost. The computation cost of the
optimal node is only 20% (1/5) of the other approximate solutions. As a conclusion, the
optimal node solution has the lowest computation cost. As a result of the simulations
considering the communication cost and the computation cost, the best alternatives to the
optimal solution are the approximate Hervaldo and the optimal node solution.

Multiple data fusion paths can have good or bad results. If a node is a sensing unit
and data fusion node simultaneously, its energy will drain earlier and the system´s
lifetime will be shorter. So, the worst case scenario is the situation where the same nodes
act as sensing units and data fusion node or destination node. The best data fusion
multiple paths solutions is characterized by the use of different node to act as sensing
units, data fusion nodes and destination nodes. If the system uses more nodes with
approximately the same communication cost, the system’s lifetime will be greater. As a
conclusion, the sensor networks application designer should balance minimum cost and
maximum lifetime: The system´s goal is to achieve the minimum communication and
data fusion cost, and to maximize the system’s lifetime.

Network density should be considered in the design of sensor networks
applications. A network with a hundred nodes and ten sensors as source of data will use
almost all nodes to perform 10 distributed data fusion paths to each combination of
sensors and destination node. This result shows that the number of network nodes is a
limiting factor to increase the system’s lifetime.

Another aspect that should be considered is the communication data fusion cost
tradeoff. If the data fusion computation cost is higher than the communication cost, in
general it is better to increase the number of paths and data fusion nodes. To the contrary
is better to use the fewest number of paths.

The use of the combination multiple paths and multiple nodes increase the
system’s lifetime. This increase is greater in the algorithms that vary the nodes in the
different paths. The 10 shortest paths in the shortest path algorithm use almost the same
nodes. On the other hand, the approximate solution based on the best node not
considering the destination node achieves the best system’s lifetime because it creates
more paths with different nodes. So, considering the system’s lifetime, the shortest path is
not the best solution to achieve the optimal data fusion nodes to solve the data fusion
expression. Besides this, network density is proportional to the system’s lifetime if the
number of sensing units and DF nodes are constant. A network with 50 nodes will have a
lower system’s lifetime than a network with 500 nodes.

The optimal node algorithm is better than Hervaldo’s algorithm. Therefore, there
is a great increase in system’s lifetime to add DF nodes between the (AB+CD) DF node
and destination node. The increment in the number of paths also increases the system’s
lifetime. When the communication cost is higher than the DF cost, the system’s lifetime
is higher.

In all algorithms tested, the network based on multiple paths multiple DF nodes is
much better than the options multiple paths, average multiple paths, shortest path (better
communication cost) and average multiple paths multiple DF nodes. These differences
are greater when we increase the communication data fusion cost ratio. The comparison
among the algorithms showed that the Approximate Optimal DF Node without sensor is
slighter better than the Optimal DF node and much better than the Hervaldo’s algorithm.

119

The hypothesis that to use long paths can be better than using shortest paths was
evaluated by testing the performance of the Optimal Node algorithm in the best 100 paths
divided in ranges of ten. The results showed that it not favorable to use longest paths to
increase system’s lifetime in low density networks. It should be tested in high density
networks.

As a future work we are planning to compare the number of hopes of first 10
paths, 20 to 30, 30 to 40, 50 to 60, 60 to 70, 70 to 80, 80 to 90 and 90 to 100 in different
network densities; compare the result using heterogeneous nodes; simulate a network
with multiple sensors of the same type and rotation among them; simulate a network with
multiple sensors of the same type and rotation among them. Compare the number of
paths influence on system’s lifetime; compare between shortest paths and longest paths:
number of hopes, system’s lifetime, delay, throughput, data rates and time
synchronization.

120

Chapter 6

Middleware Application relationship in sensor networks

6.1 Introduction

For several decades, distributed computing has been both an enabling and a
challenging environment in which to build applications. Initially, the major difficulty in
implementing such systems was simply exchanging data across distances and among
heterogeneous components. Today these problems are essentially solved, and research is
turning its focus to higher level concerns, such as improved fault tolerance through
replication, optimal data access via distributed object placement, and methods of enabling
high level communication abstractions such as event dispatching and remote invocation.
The end result of this research into distributed systems is an expanding set of middleware
platforms that reside above the operating system and below the application, abstracting
lower level functionality such as network connectivity and providing a high-level
coordination interface to the application programmer.

Often the combination of characteristics from the environment and application
drive the design of the middleware. For example, consider the new class of applications
for sensor networks with the following features:

Inherent distribution. The sensors are distributed throughout a physical space, and
are primarily connected wirelessly;
Dynamic availability of data sources. Either mobility through space, addition of
new sensors, or loss of existing sensors causes the set of available sensors to
change over time;
Constrained application quality of service demands. Sensor network applications
require a minimum quality of service (QoS), and this level must be maintained
over an extended period of time. There may be many ways to achieve the QoS
(e.g., different sensors may offer data or services that meet the applications©QoS
requirements). Furthermore, the required QoS and the means of meeting this QoS
can change over time, as the state of the application or the availability of sensors
changes;
Resource limitations. Both network bandwidth and sensor energy are constrained.
This is especially true when considering battery powered sensors and wireless
networks;
Cooperative applications. Sensor network applications share available resources
(e.g., sensor energy, channel bandwidth, etc.) and either cooperate to achieve a
single goal, or, at the very least, do not compete for these limited resources.

One unique feature of sensor network applications with these properties is that

simply responding to the changing environment is insufficient to achieve the required
QoS over time. Instead, the applications must be proactive, actively affecting the
network. Most existing middleware systems do not support such a proactive approach
with respect to the network, leaving reactivity as the only choice and sacrificing

121

application quality over time. We believe that a middleware that enables applications to
affect the network and the sensors themselves is needed to support this new and growing
class of applications for sensor networks.

This chapter presents an overview of the related research in the areas of sensor
networks and middleware, highlighting how existing approaches to the management of
sensor networks could benefit from a middleware abstraction and showing that existing
middleware does not meet the specification needs of all sensor network applications.
Based on this observation, we propose a new middleware for sensor networks called
Milan (Middleware Linking Applications and Networks). Milan allows sensor network
applications to specify their quality needs and adjusts the network characteristics to
increase application lifetime while still meeting those quality needs. Specifically, Milan
receives information from the individual applications about their QoS requirements over
time and how to meet these QoS requirements using different combinations of sensors,
the overall system about the relative importance of the different applications, and the
network about available sensors and resources such as sensor energy and channel
bandwidth. Combining this information, Milan continuously adapts the network
configuration (e.g., specifying which sensors should send data, which sensors should be
routers in multi -hop networks, which sensors should play special roles in the network,
etc.) to meet the applications©needs while maximizing application lifetime.

Next we will describe several sensor network applications that could benefit from
a middleware like Milan that proactively affects different characteristics of the network,
and in section 6.3 we will discuss existing sensor network management and middleware
approaches. In section 6.4 we will describe Milan and show how the design of a health
monitor sensor application can be simplified using Milan.

6.2 Sensor Network Applications

As stated in the introduction, sensor network applications represent a new class of

applications that are:
data driven, meaning that the applications collect and analyze data from the
environment, and depending on redundancy, noise, and properties of the
sensors themselves, the applications can assign a quality level to the data, and

state based, meaning that the application©s needs with respect to sensor data
can change over time based on previously received data. Typically sensors are

battery-operated, meaning they have a limited lifetime during which they
provide data to the application. A challenge of the design of sensor networks

is how to maximize network lifetime while meeting application quality of
service (QoS) requirements.

For these types of applications, the needs of the application should dictate which
sensors are active and the role they play in the network topology. To further illustrate this
point, we discuss some specific sensor network applications and how they can benefit
from this form of interaction. Next we will give a brief description of the test bed
application for the middleware application relationship proposed.

122

6.2.1. Medical Monitoring

As an example of a sensor networks application, consider a personal health
monitor application running on a PDA that receives and analyzes data from a number of
sensors (e.g., ECG, EMG, blood pressure, blood flow, pulse oxymeter). The monitor
reacts to potential health risks and records health information in a local database.
Considering that most sensors used by the personal health monitor will be battery
operated and use wireless communication, it is clear that this application can benefit from
intelligent sensor management that provides energy-efficiency as well as a way to
manage QoS requirements, which may change over time with changes in the patient©s
state. For example, higher quality might be required for certain health-related variables
during high stress situations such as a medical emergency, and lower quality during low
stress situations such as sleep. Next we will present a review of the related literature
(section 6.3) and describe the middleware application relationship approach employed in
the Milan architecture (section 6.4).

6.3 Sensor Network Management and Middleware Application
Relationship Approaches

There has been considerable research into the development of low-level protocols

to support sensor networks as well as high-level middleware systems to support the
development of distributed computing applications by hiding environmental
complexities. A recent trend includes the combination of these into middleware designed
for sensor networks. In this section, we describe these developments and explain why
they are insufficient for the unique style of many sensor network applications.

6.3.1. Sensor Networks

One of the distinguishing characteristics of sensor networks is their reliance on

non-renewable batteries, despite their simultaneous need to remain active as long as
possible. Therefore, initial work has been done to create network protocols tailored to
sensor networks that extend network lifetime considering the energy constraints of the
individual sensors. Some protocols make use of low-level node collaboration to reduce
the energy cost of data transfer by aggregating data locally rather than sending all raw
data to the application. For example, with LEACH [52], nodes form local clusters and all
data within a cluster are aggregated by the cluster-head node before being transmitted to
the base station. This limited form of low-level collaboration is also found in the query-
based technique of Directed Diffusion [53], in which nodes collaborate to set up routes as
interests for particular data are disseminated through the network. Another approach to
reducing energy dissipation is to turn nodes o_ whenever possible. As idle power can
often be significant, this approach can greatly extend application lifetime. MAC-level
protocols, such as PAMAS [54] and S -MAC [55] use this technique to reduce energy
dissipation in the MAC protocol, often trading o_ latency in packet delivery for energy
efficiency. Topology control protocols such as ASCENT [56], Span [57], and STEM [58]
use a similar technique of turning on and off sensors to maximize network lifetime while

123

keeping the network fully connected. Other topology control protocols such as Lint [59]
aim to determine the minimum transmitting power necessary for a fully connected
network, whereas protocols such as those described in [60, 61] determine the optimal
transmitting power to minimize overall energy dissipation. In addition to the above two
techniques, considerable energy can be saved by tailoring the routing protocol to the
characteristics of sensor networks, including the energy constraints of the sensors, the
data-driven nature of these networks, and the many-to-one, many-to-some, or many- to-
many collection of the data. Sensor network routing protocols such as Rumor Routing
[62], Directed Diffusion [53] and SPIN [63] provide lightweight, data-centric solutions
tailored to typical sensor network traffic patterns. Although these protocols are effective
in extending the lifetime of sensor networks, the gap between the protocol and the
application is often too large to allow the protocols to be effectively used by application
developers.

6.3.2. Middleware

Middleware has often been useful in traditional systems for bridging the gap

between the operating system (a low-level component) and the application, easing the
development of distributed applications. Because wireless sensor networks share many
properties with traditional distributed systems, it is natural to consider distributed
computing middleware for use in sensor networks. One of the most common middleware
systems, Corba [64], hides the location of remote objects, simplifying the application©s
interactions with these remote objects by allowing all operations to appear local.
Although this could be applied to sensor networks to provide access to the sensor data, by
hiding the location of the object (e.g., the sensor), the context information (e.g., the
location) of the sensor is similarly lost. Additionally, by providing individual sensor
access through objects, the potential energy savings by aggregation is lost. Jini©s [65]
service discovery protocol and leasing mechanisms allow client applications to discover
services and manage client-server connections as the set of available services changes.
Service discovery is useful for dynamic sensor networks to know what sensors and/or
services are available; however, access to services remains object-based, similar to
Corba. The Lime middleware [66] focuses on a different API (application programming
interface), namely a shared memory scheme for mobile ad hoc components through a
Linda-like tuple space [67]. Neither Jini nor Lime considers the limited energy
constraints of sensor networks, and their supporting protocols are heavyweight when
compared to protocols tailored to sensor networks.

Some middleware acknowledge the changing properties of wireless networks and
attempt to modify their own behavior to match the conditions detected within the
network. For example, both Limbo [68] and FarGo [69] reorder data exchanges or
relocate components to respond to changing network conditions such as bandwidth
availability or link reliability. At a lower level, Mobiware [70] supports various levels of
quality of service by adapting streams within the network with active filters deployed in
the routers. Other middleware systems provide hooks to allow the applications to adapt.
For example, applications built on the Odyssey platform [71] can register for notification
of changes in the underlying network data rate. Similarly, the Spectra [72] component of
Aura [73] monitors the network conditions and the accessible computation resources,

124

deciding where computation should be performed based on the network transmission
required to complete them as well as the expense of the computation on mobile versus
fixed nodes. These advances are applicable to wireless sensor networks; however, they do
not integrate any of the specific data aggregation protocols of sensor networks, nor do
they consider the details of the low-level wireless protocols.

Among existing distributed computing middleware, QoS-Aware Middleware [74]
provides the closest example of a middleware that can support sensor network
applications. This middleware is responsible for managing local operating system
resources based on application requirements specified to the middleware. The
application©s QoS information is compiled into a QoS profile to guide the middleware in
making resource use decisions.

6.3.3 Middleware for Sensor Networks

Recently, much work has targeted the development of middleware specifically

designed to meet the challenges of wireless sensor networks, focusing on the long-lived
and resource-constrained aspects of these systems. Both the Cougar [85] and SINA [75]
systems provide a distributed database interface to the information from a sensor network
with database-style queries. Power is managed in Cougar by distributing the query among
the sensor nodes to minimize the energy consumed to collect the data and calculate the
query result. To support the database queries, SINA incorporates low-level mechanisms
for hierarchical clustering of sensors for efficient data aggregation as well as protocols
that limit the re-transmission of similar information from geographically proximate
sensor nodes. AutoSec [76], Automatic Service Composition, manages resources in a
sensor network by providing access control for applications so that qualities of service
requests are maintained. This approach is similar to middleware for standard networks
because resource constraints are met on a per-sensor basis, but the techniques for
collecting the current resource utilization are tailored to the sensor network. DSWare [77]
provides a similar kind of data service abstraction as AutoSec, but instead of the service
being provided by a single sensor, it can be provided by a group of geographically close
sensors. Therefore, DSWare can transparently manage sensor failures as long as enough
sensors remain in an area to provide a valid measurement. While these middleware for
sensor networks focus on the form of the data presented to the user applications, Impala
[78], designed for use in the ZebraNet project, considers the application itself, exploiting
mobile code techniques to change the functionality of the middleware executing at a
remote sensor. The key to energy efficiency for Impala is for the sensor node applications
to be as modular as possible, enabling small updates that require little transmission
energy.

Although each of these middlewares is designed for efficient use of the wireless
sensor network, they largely ignore the properties of the network itself. In other words,
most of these approaches do not attempt to change the properties of the network in order
to manage energy, and they are not flexible enough to support different protocol stacks or
different applications©QoS requirements.

125

6.4. MILAN Project

As the summary of related work in the previous section shows, most sensor
network research has focused on designing new network-level protocols (e.g., MAC
layer, routing layer, topology control, etc.), without considering existing standards or how
applications use the protocols. We argue that sensor network applications may be built on
top of existing protocols, and thus some coordination framework is needed to leverage
the exibility that exists in both standardized and non-standardized network protocols.
However, to make these protocols more useful, application designers would benefit from
a middleware that encapsulates the protocols, providing a high-level interface. Although
the middleware discussed provide reasonable APIs, they either invent their own energy
management protocols or provide limited mechanisms to adapt to the constraints of the
wireless network. We argue that additional savings can be achieved if the middleware
varies the actual parameters of the network over time while simultaneously meeting the
requirements of the application, thereby increasing the lifetime of the network.

We are developing a new middleware named MILAN (Middleware Linking
Applications and Networks) that receives a description of application requirements,
monitors network conditions, and optimizes sensor and network configurations to
maximize application lifetime. To accomplish these goals, applications represent their
requirements to Milan through specialized graphs that incorporate state-based changes in
application needs. Based on this information, Milan makes decisions about how to
control the network, as well as the sensors themselves, to balance application QoS and
energy efficiency, lengthening the lifetime of the application.

Figure 75: Overview of the interactions among Milan, the
applications, and the sensors, together with a partial API.

126

Figure 75 shows an overview of the interactions among Milan, the applications,
and the sensors, together with a partial API. This figure makes a distinction between the
network plug-ins and the core of Milan, emphasizing the separation of computation that
is specific to the selected network type, versus the computation that always occurs, but
the API specifies only the application and sensor level operations. To make the
description of the Milan API and the network plug-in abstraction more concrete, we use
the personal health monitor application from section 6.2 as a running example. For more
details about the MILAN project see [84].

6.5 Middleware Application Relationship proposed

The middleware application relationship can be achieved through the employment

of two graphs. The first graph represents the sensors’ accuracy to determine a certain
variable and/or the accuracy resulting from the data fusion process. The second graph is
based on the different states that an application can assume over time. These two graphs
represent the knowledge-based application’s Quality of Service necessity in different
situations (states). This QoS system is named application performance. The middleware
should manage the tradeoff among the different components of the entire system
(network bandwidth, sensor management, application performance and life time, fault
tolerance, among other factors).

6.5.1 Application Performance

Many sensor network applications are designed to receive data input from

multiple sensors and to adapt as the available sensors change over time, either as new
sensors come within range, or as sensors go offline when they move away or run out of
energy. We assume that application performance can be described by the QoS of different
variables of interest to the application, where the QoS of the different variables depends
on which sensors provide data to the application. Sometimes two or more sensors can
constitute a virtual sensor to provide a specific QoS to the application. A generic
component QoS graph is showed in figure 76. We can have n sensors related to n virtual
sensors with a cardinality of zero to n. So, the QoS can be provided to the application
directly from a sensor or from the virtual sensor that is a set of two or more sensors. As
an example, in the personal health monitor, variables such as blood pressure, respiratory
rate, and heart rate may be determined based on measurements obtained from any of
several sensors [79]. Each sensor has a certain QoS in characterizing each of the
application©s variables. For example, a blood pressure sensor directly measures blood
pressure, so it provides a quality (accuracy) of 1.0 in determining this variable. Quality is
mapped to a specific reliability in determining the variable from the sensor©s data, with
1.0 corresponding to 100% reliability. In addition, the blood pressure sensor can
indirectly measure other variables such as heart rate, so it provides some quality,

127

although less than 1.0, in determining these variables. The component QoS graph of the
heart monitor is showed in figure 77.

 Virtual

Sensor 1

 Variable 1

Sensor 1

 Variable 2

 Sensor 2 Virtual

 Sensor 2

 Sensor 3 Variable 3

 Virtual

Sensor ...

Sensor ...

 Variable ...

 Sensor n

 Virtual Variable n

 Sensor n

Figure 76: Generic Component

128

 Respiratory rate
 ECG

.8

1 .8 1
 .2

.4 .6

 .8

ECG ECG ECG ECG
1 lead 3 leads 5 leads 12 leads

ECG 1

 Heart rate

 .9

 .7

Position Sensor Blood Flow Blood Pressure

 .8 .8

 1 1

 .6

1

 Blood flow Blood pressure

Position

.8

Respiratory rate

.8

Pulse Oximetry

.7
.9

Oxygen

1

1

Activity O2 measure

 EMG

Figure 77: Heart Monitor Application Component QoS graph.

129

The quality of the heart rate measurement would be improved through high-level
fusion of the blood pressure measurements with data from additional sensors such as a
blood flow sensor. In order to determine how to best serve the application, Milan must
know (1) the variables of interest to the application, (2) the required QoS for each
variable, and (3) the level of QoS that data from each sensor or set of sensors can provide
for each variable. Note that all of these may change based on the application©s current
state. During initialization of the application, this information is conveyed from the
application to Milan via \State-based Variable Requirements" and \Sensor QoS" graphs.
Examples of these graphs are shown in figures 78 and 79, respectively. Figure 78, an
abstract State-based Variable Requirements Graph, shows the required QoS for each
variable of interest based on the current state of the system and the variables of interest to
the application, where these states are based on the application©s analysis of previously
received data. For a particular state (a combination of system state (level A) and variable
state (level B)), the State-based Variable Requirements Graph defines the required QoS
for each relevant variable. Because variables (level C) can be named in multiple variable
states (level B), Milan must extract the maximum QoS for each selected variable to
satisfy the requirements for all variable states. Figure 79 shows the State-based Variable
Requirements Graph for the personal health monitor. This application has two states - a
system state that includes the patient©s overall stress level, as well as multiple states for
each variable that can be monitored.

The State-based Variable Requirements Graph specifies to Milan the
application©s minimum acceptable QoS for each variable (e.g., blood pressure,
respiratory rate, etc.) based on the current state of the patient. For example, the figure
shows that when a patient is in a medium stress state and the blood pressure is low, the
blood oxygen level must be monitored with a quality level of :7 and the blood pressure
must be monitored with a quality level of :8. For a given application, the QoS for each
variable can be satisfied using data from one or more sensors. The application specifies
this information to Milan through the Sensor QoS Graph, figure 76. When multiple
sensors are combined to provide a certain quality level to the variable, we refer to this as
a single “virtual sensor". Figure 77 shows the Sensor QoS Graph for the personal health
monitor. This graph illustrates the important variables to monitor when determining a
patient©s condition and indicates the sensors that can provide at least some quality to the
measurement of these variables. Each line between a sensor (or virtual sensor) and a
variable is labeled with the quality that the sensor (or virtual sensor) can provide to the
measurement of that variable. For example, using data from a blood pressure sensor, the
heart rate can be determined with a .7 quality level, but combining this with data from a
blood flow sensor increases the quality level to 1:0. Given the information from these
graphs as well as the current application state, Milan can determine which sets of sensors
satisfy all of the application©s QoS requirements for each variable. These sets of sensors
define the application feasible set FA, where each element in FA is a set of sensors that
provides QoS greater than or equal to the application-specified minimum acceptable QoS
for each specified variable. For example, in the personal health monitor, for a patient in
medium stress with a high heart rate, normal respiratory rate, and low blood pressure, the
application feasible sets in FA that Milan should choose to meet the specified application
QoS are shown in Table 7. Milan must choose which element of FA should be provided
to the application. This decision depends on network-level information.

130

 System State

A Ss=1 Ss=2 ... Ss=L

 P1 State P2 State

P1 P1 ... P1 P2 ... P2
 B S =1 S =2 S =M S =1 S =N

 q2 q3

 q1

q4 q5

C Ca Cb ... Cc

Figure 78: Generic Performance graph

No

Stress

High
Stress

Low Med.
Stress Stress

Blood Heart BloodPressure RespiratoryRate Heart Rate

Pressure Rate

 High/ High/ High
 High Normal Low Normal Normal

Normal Normal Low Low (+ECG)

 0.3
 0.3 0.3
 0.3 0.3 0.8 0.3 0.8 0.7 0.8 0.8

 0.8 0.3 0.3

 0.3

 0.3 0.1 1.0

Resp. Blood Heart Blood ECG
Bloo

d
 Blood Heart Blood Blood

 Rate O2 Rate O2 diag.

Pres
s

 Press Rate Press O2

Figure 79: Heart Monitor application Performance graph

131

Table 7: Specified application QoS

Set Sensors
1 Blood Flow and Respiratory Rate
2 Blood Flow and ECG 3 leads
3 Pulse Oxymeter, Blood Pressure, ECG (1

 lead), Respiratory Rate
4 Pulse Oxymeter, Blood Pressure, ECG (3

 lead),
5 Oxygen Measurement, Blood Pressure,

 ECG (1 lead), Respiratory Rate
6 Oxygen Measurement, Blood Pressure,

 ECG (3 lead)

6.5.2 Tradeoffs

Among the elements in F, Milan chooses an element fi that represents the best
performance/cost tradeoff. How should “best" be defined? This depends on the
application. Milan framework supports any method of deciding how to choose an element
of F. In most sensor network applications, we want to allow the application to last as long
as possible using the limited energy of each of the sensors. Simple approaches to
choosing sensor sets may yield the set fi that consumes the least power or that will run for
the maximum lifetime before the first sensor dies. However, if we want to ensure that the
application can run at the required QoS level as long as possible, we should instead
optimize the total lifetime by intelligently choosing how long to use each feasible sensor
set [83]. In some cases, there are multiple ways to schedule sensors so that the same total
network lifetime is achieved. In these cases, we may want to maximize the average
quality of the sensor sets over time. For some applications, the goal may be to maximize
some combination of lifetime and quality. Milan is flexible enough to incorporate any of
these or other optimization criteria. It is performed the tradeoff computation occurring in
the core Milan component. After the computation is complete and the first set of sensors
is chosen, the Milan core informs the plug-in of the selection, and the plug-in configures
the network accordingly, using information about the role each sensor should play.

6.6. Discussion

Fault tolerance and resilience: The middleware application relationship is a
powerful tool to provide fault tolerance and resilience to fails and adaptation of
the system to new states of the application. If the application provides to
middleware more than one possible way to provide one service, the system can

132

choose which one is better. Furthermore, if one way fails, the system can provide
the same service by the other set of sensors.
Ubiquitous computing aspect: The approach that provides fault tolerance and
resilience to the system allows to build a ubiquitous computing environment. The
application specifies to the system the way it accepts a graceful degradation along
the decrement in available resources. This concept allows the application to run
until the QoS can be provided by the entire system. It is part of the application
designer job to specify an application that is compatible with graceful
degradation. We have specified a language represented by the different graphs to
represent the resilience and graceful degradation of the application.

6.7. Conclusions

Current research trends suggest the power of middleware to ease the application

development task in complex environments. While conventional middleware operates
above the networking layer, for sensor network applications that rely on multiple and
varying sensors, it is not a viable approach to manage the network completely
independently of the needs of the application. We have argued that the needs of the
application should be integrated with the management of the network into a single,
unified middleware system. Through this tight coupling, the middleware can trade
application performance for network cost, while still retaining the separation between the
policy specifying how to react to a dynamic environment (obtained from the application)
and the mechanisms to implement the policy (performed in the middleware). We have
shown that Milan, a sensor network middleware that we are developing to meet these
goals, can aid the development of sensor network applications.

133

Conclusion

We have presented a general data fusion architecture described in a formal
language of object representations (UML) that tries to represent different scenarios,
specifications and features of a general data fusion system. It also allows a dynamic
modification of the system according to different states of the environment or of the
system.

We have also described general body-worn sensor networks built in a network of
micro sensors, agents and actuators. The system was designed considering and
optimizing power management and wireless network problems to achieve the resilience
and ubiquitous computing goals. Furthermore, some specific aspects related to the health
and body-worn sensor network application were considered. We have also introduced the
concept of a resilience agent. This type of agent was more complex than a fault tolerant
agent, and it included the fault tolerant agent’s functionalities added adaptability to new
circumstances without failures. Moreover, it considered clinical aspects to decide about
power consumption and network optimization.

The Personal Heart Rate Monitor is from the class of network-based mobile
dynamic systems powered by battery, where an application should adapt itself to different
configurations of the system (data sources moving in and moving out), different states of
the environment, and consider power and bandwidth constraints. We propose a solution
for the problem of developing an application framework to manage data from different
types of sensors to perform a Heart Rate Monitoring application in a Ubiquitous
Computing environment. In this paper, we have focused on the application’s framework
(data fusion and decision modules) while also considering the necessary middleware and
network facilities to ensure resilience to changes in available resources and in the
environment at state. As a consequence, the solution for these problems may solve the
same problems in the class of related systems. Controlling Robots based on the
environment and home security systems are two examples of this class of systems to
which our framework should also be applicable.

The PHRM is a new system that takes into consideration that it is very difficult to
analyze one body variable independently. In the case of the heart rate, without knowing
the user age, underlying diseases, level of body activity, sleeping state and alert, it is very
difficult to conclude whether the measured heart rate is normal or abnormal. Nowadays,
available systems do not consider this wild view of physiological monitoring and
interpretation. Another aspect that makes the developed system new is the fact that it
takes into account aspects such as fault tolerance and ubiquitous computing determined
by not only the hardware, but also by the necessity of the application (Application’s
Quality of Service). In this aspect, the presence of a middleware can help to manage the
hardware point of view together with the application point of view, optimizing this
relationship and the system life time.

Based on these aspects, the PHRM is the first heart rate monitoring system that
considers multiple correlations with the user’s health variables to help the user in the
monitoring of his health. To achieve this goal, the general data fusion architecture applied
showed that it is a reasonable approach to provide dynamic management of data and

134

variables from different sources. Besides the developed system is fault tolerant to failures
and compatible with ubiquitous availability.

To achieve the goal of performing data fusion in an optimal node in distributed
sensor networks, we have implemented different algorithms already described in the
literature (shortest path) and greedy algorithm. The other approximate algorithms are
adaptations of the greedy algorithm. The suboptimal´s algorithms (Hervaldo’s algorithm
and optimal node algorithm) showed to be the algorithms with better performance and
acceptable cost. The results obtained from the computation cost simulations showed that
the approximate solutions are less expensive than the optimal solution. The comparison
of the computation cost among the aproximate solutions showed that the Greedy,
modified Greedy and Hervaldo’s algorithms have the same computation cost. The
computation cost of the optimal node is only 20% (1/5) of the other approximate
solutions. As a conclusion, the optimal node solution has the lowest computation cost. As
a result of the simulations considering the communication cost and the computation cost,
the best alternatives to the optimal solution are the approximate Hervaldo’s algorithms
and the optimal node solution.

Multiple data fusion paths can have positive or negative results. If a node is a
sensing unit and data fusion node simultaneously, its energy will drain earlier and the
system´s lifetime will be shorter. So, the worst case scenario is the situation where the
same nodes act as sensing units and data fusion or destination node. The best data fusion
multiple paths solutions are characterized by the use of different nodes to act as sensing
units, data fusion nodes and destination nodes. If the system uses more nodes at
approximately the same communication cost, the system’s lifetime will be longer.
Consequently, the sensor network application designer should balance minimum cost and
maximum lifetime. The system´s goal is to achieve the minimum communication and
data fusion cost, and to maximize the system’s lifetime.

Network density should be considered in the design of sensor network
applications. A network with a hundred nodes and ten sensors as source of data will use
almost all nodes to perform 10 distributed data fusion paths to each combination of
sensors and destination node. This result shows that the number of network nodes is a
limiting factor to the increase of the system’s lifetime. Another aspect that should be
considered is the communication data fusion cost tradeoff. If the data fusion computation
cost is higher than the communication cost, in general it is better to increase the number
of paths and data fusion nodes. On the other hand, it is better to use the fewest number of
paths.

The use of combination multiple paths and multiple nodes increases the system’s
lifetime. This increase is greater in the algorithms that vary the nodes in different paths.
The 10 shortest paths in the shortest path algorithm use almost the same nodes. In the
other hand, the approximate solution based on the best node not considering the
destination node achieves the best system’s lifetime because it creates more paths with
different nodes. So, considering the system’s lifetime, the shortest path is not the best
solution to achieve the optimal data fusion nodes to solve the data fusion expression.
Furthermore, network density is proportional to system’s lifetime if the number of
sensing units and DF nodes are constant. A network with 50 nodes will have a shorter
system’s lifetime than a network with 500 nodes.

135

In all algorithms tested the network based on multiple paths and multiple DF
nodes is much better than the options of multiple paths, average multiple paths, shortest
path (better communication cost) and average multiple paths and multiple DF nodes.
These differences are greater when we increase the communication data fusion cost ratio.
The comparison among the algorithms showed that the Approximate Optimal DF Node
without sensor is slightly better than the Optimal DF node and much better than
Hervaldo’s algorithm.

The hypothesis of using long paths can be better than the one of using shortest
paths this was evaluated by testing the performance of the Optimal Node algorithm in the
best 100 paths divided in ranges of ten. The results showed that it is not favorable to use
longest paths to increase system’s lifetime in low density networks. It should be tested in
high density networks.

Current research trends suggest the power of middleware to ease the application
development task in complex environments. While conventional middleware operates
above the networking layer, for sensor network applications that rely on multiple and
varying sensors, it is not a viable approach to manage the network completely regardless
of the needs of the application. We have discussed that the needs of the application
should be integrated with the management of the network into a single, unified
middleware system. Through this tight coupling, the middleware can trade application
performance for network cost, while still retaining the separation between the policy
specifying how to react to a dynamic environment (obtained from the application) and the
mechanisms to implement the policy (performed in the middleware). We have shown that
Milan, a sensor network middleware that we are developing to meet these goals, can aid
the development of sensor network applications.

The general data fusion architecture proposed can be represented at middleware
level in different ways. We have shown a solution represented by graph theory that seems
to be a reasonable approach to guarantee resilience of the system’s functions to achieve
the ubiquitous computing goal. Our model also considers the possibility of integration of
the different aspects from different applications running at the same time.

The data fusion architecture, data fusion techniques such as Kalman Filter, power
state machine, and middleware application relationship are powerful tools to provide fault
tolerance and resilience to failure and adaptation of the system to new states of the
application. If the application provides to middleware in more than one possible way (set
of sensors) to provide one service, the system can choose which one is better.
Furthermore, if one way fails, the system can provide the same service through the other
set of sensors.

The approach that provides fault tolerance and resilience to the system allows to
build a ubiquitous computing environment. The application specifies to the system the
way it accepts a graceful degradation along the decrease in available resources. This
concept allows the application to run until the application´s QoS can be provided by the
entire system. It is part of the application designer job to specify an application that is
compatible with graceful degradation. We have specified a language represented by
different graphs to demonstrate the resilience and graceful degradation of the application.

136

Contributions (scientific production related to the thesis)

Patent:

1. Coelho Jr, Claudionor J. N.; Andrade, Luiz Cláudio Gil; Conway, Júlio C. D. ;
Carvalho, Hervaldo Sampaio; Fernandes, Antônio O.; Silva Jr, Diógenes C.
da; Pinho, Antônio L. Monitor Biológico Multiparamétrico Usável, 2000.
Patente: Modelo Industrial n. PI0001075-8, “Monitor Biológico
Multiparamétrrico Usável”, 17 de abril de 2000 Brasil (depósito).

Journal Articles:

1. Wendi B. Heinzelman, Amy L. Murphy, Hervaldo S. Carvalho, Mark A.

Perillo. Middleware to Support Sensor Networks Applications. IEEE Network
18(1): 6-14, 2004.

International Conferences:

1. H.S. Carvalho, Wendi B. Heinzelman, Amy L. Murphy, Coelho Jr,
Claudionor J. N. A General Data Fusion Architecture. IEEE Information
Fusion 2003. Proceedings Of the 6th International Conference of Information
Fusion, Australia, July 8-11, 2003, volume 2, pages 1465-1472.

2. H.S. Carvalho, Amy L. Murphy,Wendi B. Heinzelman, Coelho Jr, Claudionor
J. N. Network Based Distributed Systems Middleware. Proceedings of the
International Conference on IEEE/ACM Middleware 2003 (1st International
Workshop on Middleware for Pervasive and Ad-Hoc Computing), Rio de
Janeiro, June, 2003, pg 22-30.

3. H.S. Carvalho, Coelho Jr, Claudionor J. N., Wendi B. Heinzelman, Amy L.
Murphy. Body-Worn Sensor Networks Applied for Health Monitoring.
Proceedings of the IEEE 30th International Conference on Computers in
Cardiology, Greece, September, 2003.

4. Ana Luiza de Almeida Pereira Zuquim, Antônio Alfredo F. Loureiro,
Claudionor J. N. Coelho Jr, Marcos Augusto M. Vieira, Luiz Felipe Menezes,
Alex Borges Vieira, Antonio O. Fernandes, Diógenes Cecílio da Silva Jr, José
M. da Mata, José Augusto Nacif, Hervaldo S. Carvalho. Efficient Power
Management in Real-Time Embedded Systems. ETFA 2003, 16-19 September
2003, Lisbon, Portugal.

5. Hervaldo Sampaio Carvalho, Berthier Ribeiro-Neto, Claudionor J. N. Coelho
Jr. Evidence Based Cardiovascular Information Retrieval. 14th World
Congress of Cardiology, Austrália, 05 to 09 May, 2002. (session Computers in
Cardiology). Abstract Published in the Journal of the American College of
Cardiology supplement 2002.

6. Julio C. D. Conway, Claudionor José Nunes Coelho Jr, Diógenes C. da Siolva,
Antônio O. Fernandes, Luis C. G. Andrade, Hervaldo S. Carvalho. Wearable

137

Computer as a Multiparametric Monitor for Physiological Signals. IEEE
BIBE 2000, 236-242.

7. Claudionor José Nunes Coelho Jr, Antônio O. Fernandes, Julio C. D. Conway,
Fabio L. Correa Jr Hervaldo S. Carvalho, Jose M. Mata. A Biomedical
Wearable Device for Remote Monitoring of Physiological Signals. SPG 2003.

8. Hervaldo S. Carvalho, Claudionor José Nunes Coelho Jr, Antonio Otávio
Fernandes, José Augusto Nacif. FPGA Based Electrocardiographic Diagnosis.
APCMBE, Singapore, 2002 (paper identification: conf1a-345).

9. Claudionor José Nunes Coelho Jr, Hervaldo S. Carvalho, Julio C. D. Conway,
Diógenes C. da Siolva, Antônio O. Fernandes, Jose M. da Mata. Mobile
Monitoring of Physiological Signals Technologies and Applications. Punta
Arenas, Chile, 2001.

10. Hervaldo S. Carvalho, Claudionor José Nunes Coelho Jr, Diógenes C. da
Silva Jr, Antonio Otávio Fernandes. A Multiparametric Cardiac Controller
System. Proceedings of the II Latin American Congress of Artificial Organs
and Biomaterials, Belo Horizonte – Brazil, 5-8 December, 2001 (paper
identification: BRMG051). Best paper of the conference.

Brazilian Conferences:

1. R. S. Ortis, H. S. Carvalho, A. F. Rocha, Coelho Jr., C. J. N., Nascimento, F. A.O.

Monitorização de Sinais Biomédicos em Assistentes Pessoais Digitais. VIII
Congresso Brasileiro de Informática em Saúde. Ribeirão Preto, SP, Brazil,
Novembro de 2004 (aceppted paper for oral presentation). Paper will be published
in the conference proceedings.

2. Hervaldo S. Carvalho, Claudionor J. N. Coelho Jr, Wendi B. Heinzelman.
Gerenciamento de Informações Médicas do Paciente. Proceedings of the VIII
Congresso Brasileiro de Informática em Saúde. Natal, RN, Brazil, Novembro de
2002 (Paper identification: D1S 1440).

3. Hervaldo S. Carvalho , Julio C. D. Conway, Luis C. G. Andrade, Diógenes C. da
Siolva, Antônio O. Fernandes, Claudionor José Nunes Coelho Jr. Computadores
Usáveis Dedicados a Monitoração Multiparamétrica de Sinais Biológicos.
Proceedings of the VI Congresso Brasileiro de Informática em Saúde. São Paulo,
SP, Brazil, 14-18 de Outubro de 2000 (Second best Paper conference).

International Research (Visiting Faculty at The Center For Future Health)

Institution: Center For Future Heath, University of Rochester Medical
Center, University of Rochester, Rochester, NY, USA

Advisor: Wendi B. Heinzelman. Dept of Electrical and Computer
Engineer, University of Rochester, Rochester, NY, USA

Co-advisor: Amy Murphy. Dept of Computer Science, University of
Rochester, Rochester, NY, USA.

138

References

[1] Wald L., A European proposal for terms of reference in data fusion. International

Archives of Photogrammetry and Remote Sensing, Vol. XXXII, Part 7, 651-654,
1998, or Wald L., Some terms of reference in data fusion. IEEE Transactions on
Geosciences and Remote Sensing, 37, 3, 1190-1193, 1999.

[2] U.S. Department of defense, data Fusion Sub panel of the Joint Directors of
Laboratories, Technical Panel for C3, “Data Fusion lexicon,”1991.

[3] Wald L., The present achievements of the EARSeL - SIG "Data Fusion". In
Proceedings of the EARSeL Symposium, held in Dresden, Germany, June 2000.

[4] Ankur Jaim, Edward Y. Chang. Adaptive Sampling for Sensor Networks.
ww.cs.ucsb.edu/~ankurj/directory/jcdmsn04.pdf at 22/01/2005.

[5] A. Singhal and C. Brown. Dynamic Bayes net approach to multimodal sensor
fusion. Proceedings of the SPIE - The International Society for Optical
Engineering, 3209:2--10, October, 1997.

[6] Chen T. M. & Luo, R.C. Multilevel Multiagent Based Team Decision Fusion for
Autonomous Tracking System. Machine Intelligence & Robotic Control, 1(2),
63-69 (1999).

[7] M. M. Kokar, J. A. Tomasik and J. Weyman. A Formal Approach to Information
Fusion. Proceedings of the Second International Conference on Information
Fusion (Fusion©99), Vol.I, pp.133-140, July 1999.

[8] Myers J.W., Laskey K.B., DeJong, K.A. Learning Bayesian Networks from
Incomplete Data using Evolutionary Algorithms. In Proceedings of The Genetic
and Evolutionary Computation Conference. 1999. Orlando, Fl.

[9] http://www.data-fusion.org/ at 22/01/2005.
[10] Durrant, H.F. W. Integration. Coordination and Control Multi-sensor Robot

Systems. Kluwer Academic Publishers, 1988.
[11] Clement, V., Giraudon, G., Houzelle, S., Sadakly, F., 1993. Interpretation of

Remotely Sensed Images in a Context of Multisensor Fusion Using a
Multispecialist Architecture. IEEE Trans. On Geoscience and remote Sensing,
vol. 31, No 4, pp. 779-791.

[12] Matsuyama, T., Hwang, V. S.-S., 1990. Sigma: A Knowledge-Based Aerial
Image Understanding System, Plenum Press, New York, 277p.

[13] McKeown, D., Wilson, A., McDermott, J., 1985. Rule Based Interpretation of
Aerial Imagery, IEEE Trans. On Pattern Analysis and Machine Intelligence, vol.
22(2), pp. 231-243.

[14] Growe, S. Knowledge Based Interpretation of Multisensor and Multitemporal
Remote Sensing Images. http://www.data-
fusion.org/ps/sig/meeting/Spain99ps/growe.pdf at 01/22/2005

139

[15] Dailey, D.J., Ham, P., Lin, P-J. It’s Data Fusion. Technical Report. Washington
State Department of Transportation (USA), September, 1996.

[16] Laskey, K. B., Mahoney, S. M. Knowledge and Data Fusion in Probabilistic
Networks. PhD thesis.
http://ite.gmu.edu/~klaskey/papers/KDFML_Laskey_Mahoney.pdf at
01/22/2005.

[17] Carvalho, H.S. Computerized System based on Fuzzy Logic to Evaluate

Autonomic Nervous System Based on Multiple Tests. Master Degree Thesis.
University of Brasilia, Brazil, 1996.

[18] J. Kulik, W. Heinzelman, and H. Balakrishnan, "Negotiation-Based Protocols for
Disseminating Information in Wireless Sensor Networks,©Wireless Networks,
Vol. 8, 2002, pp. 169-185.

[19] L. Schwiebert, S.K.S. Gupta, J. Weinmann. Research Challenges in Wireless
Networks of Biomedical Sensors. ACM Sigmobile 2001.

[20] H. L. Younes. Current Tools for Assisting Intelligent Agents in Real-Time
Decision Making. Master Degree Thesis. Royal Institute of Technology, School
of Electrical Engineering and Information Technology1998.

[21] U. Chajewska et al. Utility Elicitation as a Classification Problem. http://smi-
web.stanford.edu/projects/panda/ at 01/22/2005.

[22] O. Buffet, A. Dutech, F. Charpillet. Incremental Reinforcement Learning for

Designing Multi-Agent Systems. Agents’01 ACM 2001.

[23] P. Sarkar. A Brief History of Cellular Automata. ACM Computing Surveys. Vol
32, No 1:83-107, march 2000.

[24] K. Inoue, S. E. Chick, C. Chen. An Empirical Evaluation of Several Methods to
Select the Best System. ACM Transactions on Modeling and Computer
Simulation, vol. 9, no 4: 381-407, october 1999.

[25] G. J. Pottie and W. J. Kaiser. Wireless Integrated Network Sensors.
Communications of the ACM, vol. 43 No 5: 51-58, May 2000.

[26] G. Borriello and R. Want. Embedded Computation Meets the World Wide Web.
Communications of the ACM, vol. 43 No 5: 59-66, May 2000.

[27] R. R. Kampfner. Dynamics and Information processing in adaptive systems.
BioSystems 46 (1998) 153-162.

[28] Z. Duan, M. Holcombe, A. Bell. A logic for biological systems. BioSystems 55
(2000) 91-105.

[29] M. He and H. Leung. An Agent Bidding Strategy Based on Fuzzy Logic in a
Continuous Double Auction. Agents’01, ACM 2001.

[30] W. B. Heinzelman, A. P. Chandrakasan, H. Balakrihman. An Application-
Specific Protocol Architecture for Wireless Micro sensor Networks.

[31] L. Chen, K. Bechkoun and G. Clapworthy. A Logical Approach to High-Level
Agent Control. Agents’01 ACM 2001.

140

[32] B. B. Werger and M. J. Mataric. From Insect to Internet: Situated Control for
Networked Robot Teams.

[33] MEMS and Micromachining in the new Millennium: Biomedical Applications
AidSurgery,Diagnosis,DrugDeliveryandMore.
http://www.manufacturingcenter.com/dfx/archives/0899/899mem.asp at
01/22/2005.

[34] R. Jain. The Art of Computer Systems Performance analysis, techniques for
Experimental Design, Measurement, Simulation, and Modeling. John Wiley &
Sons, INC, 1991.

[35] M.Bhardwaj, T. Garnett and A. P. Chandrakasan. Upper Bounds on the Lifetime
of Sensor Networks. http://www-mtl.mit.edu/research/icsystems/uamps at
01/22/2005.

[36] Report 4 of the Council on Scientific Affairs. Use of Wireless Radio-Frequency
Devices in Hospital. http://www.ama-assn.org/ama/pub/article/2036-2918.html at
01/22/2005

[37] F. Gemperle, C. Kasabach, J. Stivoric, M. Bauer and R. Martin. Design of
Wearability. Second International Symposium on Wearable Computers, ISWC
98, Pittsburgh, PA, 1998.

[38] W. Shen, Y. Lu and P. Will. Hormone-Based Control for Self-Reconfigurable
Robots. Agents 2000.

[39] L. F. Lago-Fernández, M. ª Sánchez-Montanés and S. López-Buedo. A
Biologically Inspired Autonomous Robot that Learns Approach-Avoidance
Behaviors. Agents 2000.

[40] A. Billard and M. J. Mataric. A biologically inspired robotic model for learning
by imitation. Agents 2000.

[41] Julio C. D. Conway, Claudionor José Nunes Coelho Jr, Diógenes C. da Siolva,
Antônio O. Fernandes, Luis C. G. Andrade, Hervaldo S. Carvalho. Wearable
Computer as a Multiparametric Monitor for Physiological Signals. IEEE BIBE
2000, 236-242.

[42] Hu, Y.H.; Palreddy, S.; Tompkins, W.J. A patient-adaptable ECG beat classifier
using mixture of experts approach. IEEE Trans Biomed Eng 1997 Sep;
44(9):891-900.

[43] H.S. Carvalho, Amy L. Murphy,Wendi B. Heinzelman, Coelho Jr, Claudionor J.
N. Network Based Distributed Systems Middleware. Proceedings of the
International Conference on IEEE/ACM Middleware 2003 (1st International
Workshop on Middleware for Pervasive and Ad-Hoc Computing), Rio de
Janeiro, June, 2003, pg 22-30.

[44] Wendi B. Heinzelman, Amy L. Murphy, Hervaldo S. Carvalho, Mark A. Perillo.
Middleware to Support Sensor network Applications. IEEE Network 18(1): 6-14,
2004.

141

[45] HS. Carvalho, W. Heinzelman, A. Murphy and C. Coelho, "A General Data
Fusion Architecture," Proceedings of the 6th International Conference on
Information Fusion (Fusion 2003), July 2003.

[46] H.S. Carvalho, Coelho Jr, Claudionor J. N., Wendi B. Heinzelman, Amy L.
Murphy. Body-Worn Sensor Networks Applied for Health Monitoring.
Proceedings of the IEEE 30th International Conference on Computers in
Cardiology, Greece, September, 2003.

[47] Hervaldo Sampaio Carvalho, Berthier Ribeiro-Neto, Claudionor J. N. Coelho Jr.

Evidence Based Cardiovascular Information Retrieval. 14th World Congress of
Cardiology, Australia, 05 to 09 May, 2002. (session Computers in Cardiology).
Abstract Published in the Journal of the American College of Cardiology
supplement 2002.

[48] Claudionor José Nunes Coelho Jr, Antônio O. Fernandes, Julio C. D. Conway,
Fabio L. Correa Jr Hervaldo S. Carvalho, Jose M. Mata. A Biomedical Wearable
Device for Remote Monitoring of Physiological Signals. SPG 2003.

[49] Claudionor José Nunes Coelho Jr, Hervaldo S. Carvalho, Julio C. D. Conway,
Diógenes C. da Siolva, Antônio O. Fernandes, Jose M. da Mata. Mobile
Monitoring of Physiological Signals Technologies and Applications. Punta
Arenas, Chile, 2001.

[50] Hervaldo S. Carvalho, Claudionor José Nunes Coelho Jr, Diógenes C. da Silva
Jr, Antonio Otávio Fernandes. A Multiparametric Cardiac Controller System.
Proceedings of the II Latin American Congress of Artificial Organs and
Biomaterials, Belo Horizonte – Brazil, 5-8 December, 2001 (paper identification:
BRMG051).

[51] Hervaldo S. Carvalho, Claudionor J. N. Coelho Jr, Wendi B. Heinzelman.
Gerenciamento de Informações Médicas do Paciente. Proceedings of the VIII
Congresso Brasileiro de Informática em Saúde. Natal, RN, Brazil, Novembro de
2002 (Paper identification: D1S 1440).

[52] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-E_cient
Communication Protocol for Wireless Micro sensor Networks. IEEE
Transactions on Wireless Communication, 1(4):660{670, Oct. 2002.

[53] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Di_usion: A Scalable
and Robust Communication Paradigm for Sensor Networks. Proceedings of
ACM Mobicom ©00), Aug. 2000.

[54] S. Singh and C. Raghavendra. PAMAS: Power Aware Multi-Access Protocol
with Signalling for Ad Hoc Networks. ACM Computer Communication Review,
28(3):5{26, July 1998.

[55] Y. Wei, J. Heidemann, and D. Estrin. An Energy-E_cient MAC Protocol for
Wireless Sensor Networks. In Proceedings of the 21st International Annual Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM
2002), June 2002.

142

[56] A. Cerpa and D. Estrin. ASCENT: Adaptive Self-Configuring Sensor Network
Topologies. In Twenty-First International Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2002), June 2002.

[57] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An Energy-E_cient
Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless
Networks. ACM Wireless Networks, 8(5), September 2002.

[58] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava. Optimizing Sensor
Networks in the Energy-Latency-Density Design Space. IEEE Transactions on
Mobile Computing, 1(1):70{80, January 2002.

[59] R. Ramanathan and R. Rosales-Hain. Topology Control of Multihop Wireless
Networks Using Transmit Power Adjustment. In Proceedings of the Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM
2000), pages 404{413, March 2000.

[60] E. Lloyd, R. Liu, M. Marathe, R. Ramanathan, and S. Ravi. Algorithmic Aspects
of Topology Control Problems for Ad Hoc Networks. In Processings of the Third
ACM International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc 2002), pages 123{134, June 2002.

[61] V. Rodoplu and T. Meng. Minimum Energy Mobile Wireless Networks. IEEE
Journal on Selected Areas in Communications, 17(8):1333{1344, August 1999.

[62] D. Braginsky and D. Estrin. Rumor Routing Algorithm for Sensor Networks. In
Proceedings of the First ACM International Workshop on Wireless Sensor
Networks and Applications, 2002.

[63] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive Protocols for
Information Dissemination in Wireless Sensor Networks. In Proc. of the 5th
Annual ACM/IEEE Int. Conference on Mobile Computing and Networking
(MobiCom ©99), pages 174{185, August 1999.

[64] Object Management Group. The Common Object Request Broker: Architecture
and Specification Revision 2.2. 492 Old Connecticut Path, Framingham, MA
01701, USA, 1998.

[65] K. Edwards. Core JINI. Prentice Hall, 1999.
[66] A.L. Murphy, G.P. Picco, and G.-C. Roman. Lime: A Middleware for Physical

and Logical Mobility. In Proceedings of the 21st International Conference on
Distributed Computing Systems, pages 524{533, April 2001.

[67] D. Gelernter. Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80{112, January 1985.

[68] N. Davies, S. Wade, A. Friday, and G. Blair. Limbo: A tuple space based
platform for adaptive mobile applications. In Proceedings of the International
Conference on Open Distributed Processing/Distributed Platforms (ICODP/ICDP
©97), Toronto, Canada, May 1997.

143

[69] O. Holder, I. Ben-Shaul, and H. Gazit. System Support for Dynamic Layout of
Distributed Applications. In Proceedings of the 19th International Conference on
Distributed Conputing, pages 403{411, 1999.

[70] A.T. Campbell. Mobiware: QOS aware middleware for mobile multimedia
communications. In Proceedings of the 7th IFIP International Conference on
High Performance Networking (HPN), White Plains, New York, USA, April
1997.

[71] B. D. Noble and M. Satyanarayanan. Experience with Adaptive Mobile
Applications in Odyssey. Mobile Networks and Applications, 4(4):245{254,
1999.

[72] J. Flinn, D. Narayanan, and M. Satyanarayanan. Self-tuned remote execution for
pervasive computing. In Proceedings of the Eighth IEEE HotOs Conference,
Elmau/Oberbayern, Germany, May 2001.

[73] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project Aura: Toward
distractionfree pervasive computing. IEEE Pervasive Computing, April {June
2002.

[74] K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li. QoS-Aware Middleware for
Ubiquitous and Heterogeneous Environments. IEEE Communications Magazine,
39(11), 2001.

[75] C. Jaikaeo, C. Srisathapornphat, and C.-C. Shen. Querying and Tasking in Sensor
Networks. In SPIE©s 14th Annual International Symposium on
Aerospace/Defense Sensing, Simulation, and Control (Digitization of the
Battlespace V), Orlando, Florida, April 24{28 2000.

[76] Q. Han and N. Venkatasubramanian. Autosec: An integrated middleware
framework for dynamic service brokering. IEEE Distributed Systems Online,
2(7), 2001.

[77] S. Li, S. Son, and J. Stankovic. Event detection services using data service
middleware in distributed sensor networks. In Proceedings of the 2nd
International Workshop on Information Processing in Sensor Networks, April
2003.

[78] T. Liu and M. Martonosi. Impala: A middleware system for managing
autonomic, parallel sensor systems. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP©03), June 2003.

[79] J.C.D. Conway, C.J.N. Coelho, D.C. da Silva, A.O. Fernandes, L.C.G. Andrade,
and H.S. Carvalho. Wearable Computer as a Multi-parametric Monitor for
Physiological Signals. In Proceedings of the IEEE International Symposium on
Bioinformatics and Bioengineering (BIBE), pages 236{242, 2000.

[80] S. Avancha, A. Joshi, and T. Finin. Enhanced Service Discovery in Bluetooth.
IEEE Computer, 35(6):96{99, June 2002.

[81] Service Location Protocol (SLP). http://www.ietf.org/html.charters/svrloc-
charter.html at 01/22/2005.

144

[82] S. L. Dockstader and A. M. Tekalp. Multiple Camera Tracking of Interacting and
Occluded Human Motion. Proceedings of the IEEE, 89(10):1441{1455, Oct.
2001.

[83] Mark Perillo and Wendi Heinzelman. Simple Approaches for Providing
Application QoS Through Intelligent Sensor Management. Elsevier Ad Hoc
Networks Journal, 1(2-3):235{246, 2003).

[84] W. Heinzelman, A. Murphy, H. Carvalho and M. Perillo, "Middleware to
Support Sensor Network Applications," IEEE Network Magazine Special Issue,
Jan. 2004.

[85] P. Bonnet, J. Gehrke, and P. Seshadri. Querying the physical world. IEEE
Personal Communication, 7:10{15, October 2000.

[86] Data Fusion in Decentralised Sensing Networks. Hugh Durrant-Whyte and Mike
Stevens. www.arofe.army.mil/Conferences/ Intelligent_Abstract/5DDurrant-
Whyte.pdf at 01/22/2005.

[87] H. Qi, X. Wang, S. S. Iyengar, K. Chakrabarty, "Multisensor data fusion in
distributed sensor networks using mobile agents," Information Fusion, TuC2-11-
16, Canada, August, 2001.

[88] D. N. Jayasimha, S. S. Iyengar, and R. L. Kashyap. Information integration and
synchronization in distributed sensor networks. IEEE Trans. Syst., Man Cybern.,
SMC-21(21):1032–1043, Sept./Oct. 1991.

[89] A. Knoll and J. Meinkoehn. Data fusion using large multi-agent networks: an
analysis of network structure and performance. In Proceedings of the
International Conference on Multisensor Fusion and Integration for Intelligent
Systems (MFI), pages 113– 120, Las Vegas, NV, Oct. 2-5 1994. IEEE.

[90] L. Prasad, S. S. Iyengar, R. L. Kashyap, and R. N Madan. Functional
characterization of sensor integration in distributed sensor networks. IEEE Trans.
Syst., Man, Cybern., SMC-21, Sept./Oct. 1991.

[91] H. Qi, S. S. Iyengar, and K. Chakrabarty. Multiresolution data integration using
mobile agents in distributed sensor networks. IEEE Transactions on SMC: C,
2000.

[92] Improved data fusion through intelligent sensor management. .I.Smith,
C.R.Angell, M.L.Hernandez,W.J.Oxford. Proceedings of SPIE Vol. #5096, April
2003.

[93] J. Watts, S. Taylor, "A Practical Approach to Dynamic Load Balancing," IEEE
Transactions on Parallel and Distributed System, Vol. 9, pp. 235-248, 1998.

[94] K.C. Chang and Y. Bar-Shalom, “ Joint Probabilistic Data Association in
Distributed Sensor Networks,” IEEE Trans. Autom. Contr. AC-31, pp. 889-897,
1986.

[95] Andy Franz, Radek Mista, David Bakken, Curtis Dyreson, Murali Medidi2. Mr.
Fusion1: A Programmable Data Fusion Middleware Subsystem with a Tunable
Statistical Profiling Service. Proceedings of the International Conference on

145

Dependable Systems and Networks (DSN-2002) IEEE/IFIP, June 23-26, 2002,
Washington, DC.

[96] Hall, D. and Llinas, J. “Handbook of Multidata Sensor Fusion”, CRC Press,

2001.
[97] Walz, E. and Llinas, J. “Multisensor Data Fusion”, Artech House, Boston, 1990.
[98] Bing Ma. Approaches for Multisensors Data Fusion. Doctor of Philosophy

dissertation. Electrical Engineering: Systems, The University of Michigan, 2001.
[99] Mohin Ahmeda, Son Daoa, Gregory Pottieb, Srikanth Krishnamurthyc, and

Randy Katzd. On the Optimal Selection of Nodes to Perform Data Fusion in
Wireless Sensor Networks. Proceedings of SPIE -- Volume 4396 Battlespace
Digitization and Network-Centric Warfare, Raja Suresh, Editor, August 2001,
pp. 53-64.

[100]Konstantinos Kalpakis, Koustuv Dasgupta, and Parag Namjoshi, "Maximum

Lifetime Data Gathering and Aggregation in Wireless Sensor Networks". In the
Proceedings of the 2002 IEEE International Conference on Networking
(ICN©02), Atlanta, Georgia, August 26-29, 2002. pp. 685-696.

[101]Maurice Chu, Horst Haussecker, and Feng Zhao. Scalable Information-Driven

Sensor Querying and Routing for ad hoc Heterogeneous Sensor Networks.
Xerox Palo Alto Research Center Technical Report P2001-10113, May 2001.

[102]W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, "An Application-

Specific Protocol Architecture for Wireless Microsensor Networks,©IEEE
Transactions on Wireless Communications, Vol. 1, No. 4, October 2002, pp.
660-670.

