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Abstract 
 
 
 

Recent developments in wireless networks and in miniaturization of 
powerful embedded devices have enabled the development of very small 
computing systems that are available all the time. In the literature, this type of 
computation has been called ubiquitous computing. Several applications of 
ubiquitous computing (including ones that cover life threatening situations) require 
fault tolerance, resilience and graceful degradation in response to different types of 
failures in the system. Several authors have focused on the development of 
middleware solutions to ease the design of ubiquitous computing applications. 
Others have addressed the application development field, but very few authors have 
addressed the relationship between middleware and application development.  

Data fusion is an important component of applications for systems that use 
correlated data from multiple sources to determine the state of a system. The fault 
tolerance and resilience of these applications will depend greatly on the data fusion 
framework. As the state of the system being monitored and available resources change, 
the general data fusion framework should change dynamically based on the current 
environment and available resources in the system. As a consequence, a general data 
fusion framework should provide some results of the data fusion to a module called the 
decision system. This module is responsible for sending feedback to the middleware, 
so the middleware can appropriately reconfigure the network. Based on the current data 
or variable, the decision system receives from the data fusion module, the decision 
system should automatically inform the middleware of the application’s new 
requirements (i.e., the application dynamically adjusts its Quality of Service 
requirements based on the current state of the system being monitored and informs the 
middleware of its current Quality of Service needs).  

In this thesis we address the problem of how to implement data fusion in 
sensor networks, taking into account fault tolerance, resilience, and graceful 
degradation in a ubiquitous computing environment. We think that to achieve these 
goals it is necessary to develop applications upon a dynamic data fusion 
architecture. To achieve this goal we have created a new data fusion architecture; 
developed a software infrastructure based on this architecture and applied to 
centralized and distributed implementations; and developed a communication 
approach between middleware and the application. All these tools are new in the 
literature and represent important contributions to the data fusion implementation 
in sensor networks field. Furthermore, the combination of these tools represent an 
important contribution to sensor networks applications development.  

As a proof of concept, we have developed a Personal Multi Parametric Heart 
Rate Monitor application based on sensor networks conception. The Personal Heart 
Rate Monitor consists of a body-worn sensor networks application powered by battery 
and connected by a wireless network. Therefore, resources such as channel 



 
 
 

 
bandwidth and node energy are limited, and must be managed efficiently. The 
developed system is based on the proposed tools to implement data fusion in sensor 
networks applications which dynamically adapts as the state of the person’s vital 
signals change and provide graceful degradation to resource changes. The Personal 
Multi Parametric Heart Rate Monitor developed demonstrated to be an important 
contribution to the medical field. It will be tested in a clinical trial to evaluate its 
impact in prevention and early diagnosis of diseases. 



 
 
 
 

Resumo 
 
 
 

Nos últimos anos o grande desenvolvimento dos sistemas de comunicação e 
a miniaturização e evolução tecnológica dos sistemas de hardware permitiram o 
desenvolvimento de novas aplicações. A área de redes de sensores é uma destas 
novas aplicações. As aplicações em rede de sensores se caracterizam pela presença 
de inúmeros sensores (nodos) de uma rede de comunicação sem fio, com limite de 
alcance do sinal e limitação de fonte de energia, pôr serem operados a bateria. Estes 
sensores têm capacidade de detectar ou medir algum fenômeno da natureza, 
processar e transmitir os dados ou a informação para outros sensores (nodos) até 
chegar em um ponto desta rede de tomada de decisão. Trata-se então 
primordialmente de um sistema distribuído com sérias restrições para 
implementação.  

O desenvolvimento destas aplicações exige os desenvolvimento de técnicas 
de tolerância à falhas e adaptação a novas condições ambientais com a finalidade 
de que o tempo de vida do sistema seja o mais longo possível. Diversos autores têm 
trabalhado no desenvolvimento de sistemas que suportem estas características. 
Alguns trabalhos estão na área de “middleware” e outros na área de 
desenvolvimento de aplicações. Poucos autores têm se preocupado com a interface 
aplicação-“middleware”.  

Nos últimos anos a área de fusão de dados também tem tido um grande 
crescimento pelas novas exigências das aplicações que estão sendo criadas e pelo 
aprimoramento e desenvolvimento de novas técnicas estatísticas e de inteligência 
artificial. Entretanto, pouco tem sido feito na área de arquitetura de fusão de dados, 
e na sua implementação em redes de sensores. Além disto, a interface aplicação - 
middleware nos parece ser altamente dependente da implementação de fusão de 
dados e de sua arquitetura.  

O presente trabalho se propõe a estudar o problema de como implementar 
fusão de dados em rede de sensores, levando em consideração a adaptação à falhas 
e mudanças no ambiente monitorado. Estes aspectos são determinantes para que o 
sistema possa degradar progressivamente, mas mantendo as necessidades exigidas 
pela aplicação (qualidade de serviço). Neste sentido, o presente trabalho propõe 
uma nova arquitetura de fusão de dados, dinâmica e adaptável a diferentes 
sistemas, sejam eles distribuídos ou centralizados e independente de contexto. 
Além disto, o desenvolvimento de um software para implementação centralizada e 
distribuída desta arquitetura associada ao desenvolvimento de uma linguagem para 
comunicação aplicação -“middleware” pôr meio da fusão de dados, vem completar 
o que achamos ser necessário para o desenho e desenvolvimento de uma aplicação 
em rede de sensores. Todas estas ferramentas também são importantes 
contribuições para a área de fusão de dados e redes de sensores. 



 
 
 

 
Como prova de conceito, desenvolvemos uma aplicação (protótipo) 

centralizada de um monitor multiparamétrico móvel para monitoração da 
freqüência cardíaca e simulamos uma implementação de fusão de dados em rede de 
sensores distribuída no corpo humana. Esta aplicação demonstrou ser uma 
importante contribuição na área de diagnóstico precoce e prevenção de 
enfermidades cardiovasculares. 
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Introduction 

 

Sensor Networks Applications Development 
 

A sensor networks application is characterized by a set of battery operated nodes 
(sensing units) linked by a network (usually wireless) to the decision system, also battery 
operated nodes (decision units). In some applications, both types of functionalities are 
executed by the same nodes. Sensor networks application needs a complex specification 
to achieve fault tolerance and resilience to its different functionalities in a ubiquitous 
computing environment. To achieve this goal, different aspects should be considered at 
the different levels: sensors, communication, application, data management, power 
management and ethical aspects: 

 
I. Sensors 

A. Multiple types of sensors 
B. Redundant and non redundant sensors 
C. Redundant and non redundant sensors’ functionalities 
D. Mobile and static sensors 
E. Battery operated sensors 
F. Wired and wireless sensors 
G. Smart or simple sensors 
H. Localization 

 
II. Communication 

A. Wireless communication 
B. Wired communication 
C. Low power compatible protocols 
D. Security 

 
III. Application 

A. Application development 
1. Centralized 
2. Distributed 

B. Different needs of the application (Quality of Service – QoS) 
1. Different coverage area 
2. Data metrics (Ex: accuracy and reliability) 
3. Set of sensors 

C. Multiple applications running simultaneously 
1. Transactions scheduling 
2. Applications’ priorities 

 
IV. Data management 

A. Data processing (DSP algorithms) 
B. Data Fusion algorithms 

1. Data reliability 
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2. Data accuracy 
3. Different levels of data fusion 
4. Data fusion optimal node 

C. Real time or not real time 
D. Data analysis 
E. Decision node 
F. Synchronization 
G. Positioning 
H. Security 

V. Power management 
A. Cost of communication 
B. Cost of sensing 
C. Cost of routing 
D. Cost of processing 
E. Sensor’s lifetime 
F. System’s lifetime 

 
VI. Ethical aspects 

 
Most of these aspects have been addressed individually by different authors (Sensor 

networks review articles), but a few articles have tried to address some of these different 
aspects collectively. The decisions taken for each item cannot be made independently of 
the system as a whole. One decision interferes in one or more item, and this interference 
must be considered to achieve the best performance of the system. Based on this, to 
achieve the goal of developing a real sensor networks application, different solutions 
should be applied. 

Multiple types of sensors can be deployed with or without restrictions. In a forest 
monitoring application the sensors are deployed in the environment from helicopters or 
planes. They can fall anywhere. In a body-worn sensor network, the body imposes 
restrictions for the sensors’ deployment, and most of the time it should be deployed 
manually. These applications are also suitable to compare the type of sensor used. In the 
forest monitoring application it is necessary to use smart sensors (sensors with sensing, 
processing, memory and wireless communication capability). In the body-worn 
application the sensors over the skin could be accessed easily and can also be wired. This 
difference allows the use of simple sensors or smart sensors, depending on the objective 
desired. As a consequence, the communication network can be wired or wireless. In the 
forest monitoring application, the communication network should be wireless. The use of 
smart sensors and wireless communication imposes restrictions related to the wireless 
communication complexity and the limited power resource of the sensors. 

In both types of applications it is desired to adapt to failures and different 
circumstances of the environment (resilience). There are two main options to achieve 
these goals. The first one is to employ redundant sensors in the application, so if one or 
more sensors fails, the redundant sensors can maintain the functionality for which they 
are responsible. The second option is to employ redundant sensors functionalities. In this 
case it is not necessary to use the same type of sensors, but sensors that have one or more 
functionalities in common. The second option is much better, because we can offer the 
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same fault tolerance and resilience specifications with a lower number of sensors, but 
they must be smart sensors that can be configured according to necessity. 

Another aspect related to the sensors that can impose great complexity for the system 
is the employment of mobile sensors. Although it is not common to employ mobile 
sensors in the forest application, it would be desirable to use some mobile sensors to 
solve some of the problems related to the random deployment (to achieve the desired 
coverage area, to link isolated sensors that are out from the network coverage area, etc). 
In the body-worn sensor networks application it is expected that mobile sensors will be 
employed to monitor the entire body using the blood flux or the gastrointestinal tract for 
example. In this case, the network topology changes all the time. This aspect increases 
the management complexity of the system. 

Sensor networks applications have some characteristics that may contribute to the 
large amount of complexity. For example, each node can only gather data from a limited 
physical area of the environment, data may be noisy, distributed processing of large 
amounts of sensor data, scalability, quality can be traded for system lifetime, and “Team-
work” (nodes can help each perform a larger sensing task). 

A common problem related to the sensor is positioning. It is important for same 
reasons that time synchronization is important. There are many different approaches in 
the literature to solving this problem, such as GPS. But GPS is overkill and an 
unattractive solution for energy reasons. Besides GPS, the sensor can find its own 
location by finding the center of mass of several beacon nodes that are heard, or finding 
its location through multiple measurements of angles of arrival of beacon nodes. The 
sensor can also have other nodes measure its location. The problem with these 
approaches is the small scale fading. 

The wireless network, by itself, is a great problem because the transmission media 
(air) is shared by all the nodes in the same coverage area. Problems such as collisions, 
congestion, and security are an open field of research. The sensors networks require a 
new wireless networking paradigm, characterized by autonomous operation, highly 
dynamic environments, and sensor nodes added/fail. The bandwidth is limited, and must 
be shared among all the nodes in the sensor network. Spatial reuse is essential and 
efficient local use of bandwidth is needed, with no end-to-end communication, 
redundancy in information, or events in the environment. As a consequence, distributed 
computation and communication protocols require energy-conserving communication 
(communication is the most energy-intensive). Based on these aspects, the protocols 
requirements include: low power (to maximize battery lifetime), low latency (to 
maximize quality), self-configuring (with no fixed infrastructure), ad hoc (nodes moving, 
environment changing), multi-hop (ensuring nodes can all communicate), and scalable (to 
accommodate varying numbers of nodes). 

Some authors have employed adaptive protocols exploiting high node density, 
turning off some sensors for long periods of time. The tradeoff must be balanced. Having 
many active nodes can be wasted energy due to idle power and having many sleeping 
nodes provides fewer routes to choose from and so route selection will likely be 
suboptimal. 

In sensor networks routing energy-efficiency is even more important than in ad-hoc 
protocols. This is the reason why lightweight protocols (little overhead) are preferable. 
Most ad hoc routing protocols use algorithms with the fewest hops. Power/energy-aware 



9 
 
 

routing may use different metrics, reduce power consumption, distribute energy load 
(maximizing network lifetime), may be tightly coupled with protocols from different 
layers, and take advantage of data fusion opportunities and overlaps with adaptive 
topology protocols. 

There are a great number of papers addressing application’s development in general, 
but few papers have addressed sensor networks application’s development. What makes 
it different from the usual applications from the distributed systems area is the wireless 
communication and the battery operated sensors. The following table 1 shows some of 
the differences between traditional applications and sensor networks applications. 

 
Table 1: comparison between traditional applications and sensor networks 

applications       
  
Traditional applications Sensor networks applications 
Users can update and May be impossible to update or maintain sensor nodes, due 
maintain devices   to sheer numbers as well as deployment locations 
Offer communication Communication is data-centric: end-user does not care that 
between two specific end- the data came from node X, only what the data describes 
users        

    
Goal: providing high QoS Goal: prolonging lifetime of the network 
bandwidth efficiency   – Requires energy conservation 

      –  Willing to give up performance in terms of 
       QoS or bandwidth efficiency 
   
Data are important  End user does not require all the data 

      – Data  from  neighboring  nodes  are  highly 
       correlated, making the data redundant 
      –  End user typically cares about a higher-level 
       description  of  events  occurring  in  the 
       environment nodes are monitoring 
      –  Network quality is often based on quality of 
       aggregate  data  set  rather  than  individual 
       signals 
Intermediate nodes do not Application-specific routing improves performance 
care what the data are     

    
Nodes are operating Sensor network application computation 
(mostly) independently  - May need to be distributed throughout network (e.g., 

     localized algorithms that achieve desired global result) 
     - May require hierarchical structure 
     - Enables computation / communication tradeoff 
     - Has three processing levels: node, local, and global  

 
Operate in (mostly) benign May be deployed in hostile or dangerous territory 
environments  
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We can develop centralized and distributed sensor networks applications. The 
distributed ones, in general, are more complex than the centralized. As we have 
mentioned before, these aspects make the application development a challenge. Besides 
the complexity of application development and implementation, during the runtime, the 
application needs (Quality of Service – QoS) which should be achieved by the system. 
Applications’ QoS may vary along time according to the coverage area and set of sensors 
necessary. Furthermore, the quality of the data characterized by its quality metrics 
(accuracy, reliability, noise to signal ratio, etc) should also be accomplished. 

Real scenarios have many applications, running simultaneously, sharing the wireless 
network and common resources of data. On the other hand, the bandwidth and sensors 
battery are limited. So, it is necessary to apply some metric to schedule the transactions 
(communication between data source and application) and to determine priorities among 
the applications. In general, real time and high risk applications have a greater priority. 

In relation to data management, different aspects should be considered such as data 
processing (DSP algorithms), data fusion algorithms and the different levels of data 
fusion, data analysis (real time or not real time), including the data fusion optimal node in 
distributed applications, decision node, synchronization, data transmission and access 
security. 

One of the most important aspects related to sensor networks application 
development is the power management. The power management approach should 
increase the sensors’ lifetime and as a consequence the system’s lifetime. To achieve 
these goals it should take into account that the cost of communication (transmission > 
reception) is greater than the cost of sensing and processing. 

Most sensor networks applications consider the goal of monitoring some type of 
environment. This raises the discussion of ethical aspects related to the invasiveness of 
the application and data privacy and security. These aspects increase when the 
application is related to personal data received from a body-worn sensor network. In this 
type of application, trials should be run to evaluate the personal and social influence of 
the technology. 

To address some of the problems described above, we have worked on different 
aspects and solutions. We consider that the combined use of the proposed solutions 
should be used as a base to build a sensor networks application. As a proof of concept, 
we have developed a body-worn sensor networks environment and prototype as a 
centralized monitoring system based on a PDA (Personal Digital Assistant). 

In the first chapter we describe some motivations for the development of data fusion 
algorithms in the sensor networks field. We also list some of the contributions of the 
present research and an overview of the thesis. 

In the second chapter we propose a data fusion architecture that is general enough to 
be employed in different types of sensor networks applications. It was designed in UML 
(Unified Modeling Language) and allows a dynamic model of different data fusion 
necessities. As previously mentioned, one of the most important characteristics of the 
sensor networks application is that it is data centric. So, the data fusion architecture and 
algorithms have a great influence on sensor networks application’s performance and 
implementation. Furthermore, communication is responsible for the highest cost in the 
sensor networks running cost. Consequently, the assumptions and decisions made on the 
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data management and data fusion have a great influence on system’s lifetime and 
performance. Our proposed architecture provides an infrastructure that can be applied in 
both distributed and centralized sensor networks implementation. 

In the third chapter we present the general aspects related to a body-worn sensor 
networks application development. It describes specific aspects related to the body 
sensing and different aspects that could be relevant to continuous health monitoring. 

The fourth chapter presents a centralized implementation of a body-worn sensor 
networks application for human body physiological monitoring. This software 
infrastructure is divided into three modules. The first module manages the sensors, the 
second module manages the data (data fusion architecture implemented for body-worn 
sensor networks), and the third one manages the decision to provide the Quality of 
Service required. All the modules are integrated to provide fault tolerance, resilience to 
the system’s functionalities in a ubiquitous computing environment. To accomplish the 
ethical and privacy aspects we developed a personal data base to store all the user data. 
This is responsible for the decision to open or not open the data base to the health care 
system. 

The fifth chapter presents the data fusion implementation in a distributed application. 
It proposes new algorithms based on the shortest path algorithm to find the optimal data 
fusion node. The experiments (simulation) are based on the assumption that the data 
comes from different sources (sensors) and the decision should be made in a decision 
node. To find the best data fusion optimal node we consider the cost of sensing, 
processing, transmission and reception (routing) using multiple hops paths. The 
integration of sensors management, data fusion architecture and application 
implementation was achieved by the development of a language to express in a sensors 
networks middleware all the necessary features. 

In chapter 6 we present the development of all the necessary aspects that should be 
considered to integrate these aspects into the middleware. We think that the technologies 
and solutions proposed can help application’s developers to build sensor networks 
applications compatible with fault tolerance and resilience of their functionalities in a 
ubiquitous computing environment. Although we have applied all the concepts to the 
body-worn sensor networks application, we think that they are generic enough to be 
applied in different types of sensor networks applications. 
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Chapter 1 
 

Motivations and Overview of the thesis 

 
In this chapter we are going to present some motivations for the development of 

data fusion algorithms in the sensor networks field, the problem we want to solve, the 
scientific contributions of the thesis, and an overview of the thesis. 

 
1.1. Motivations 

 
Sensor Networks are designed to sense the environment and to communicate 

without the necessity of the existence of any infrastructure or centralized administration. 
This can be implemented in a centralized or distributed approach (multiple hops may be 
needed for communication). These networks can function as stand alone wireless 
network, meeting direct communication needs, or as an addition to infrastructure based 
networks to extend or enhance their coverage. One of the parameters used to measure the 
sensor networks performance is based on the application Quality of Service (QoS) goals. 
As a consequence, sensor management and network optimization should consider the 
application QoS desired. Sensor networks are related with constraints at the application, 
sensor and network infra-structure sides. At the application level a dynamic QoS system 
should vary to achieve the application performance desired. At the sensor side, the 
sensor’s processing capacity, lifetime power supply, and deployment are the most 
important aspects to be considered. From the network point of view, bandwidth, 
distributed communication protocols, mobility, and the dynamic aspects of the network 
nodes (sensors) impose great problems to the communication optimization. Besides these 
aspects, all these features should be integrated at the system level, taking into account 
resilience and ubiquitous computing goals. 

The development of wireless network technology and improvements in sensors 
and embedded devices has enabled the convergence of mobile applications and 
embedded environments in the sensor networks field. One of the requirements of mobile 
embedded wireless devices is that they should be available at all times. In such systems, 
components can be inserted or excluded without stopping the entire system. In this type 
of system, power and bandwidth constraints should be considered. If the system is battery 
powered, each component of the system has a different lifetime, which is based on the 
battery capacity and the device’s power consumption. Power and bandwidth are limiting 
factors to resource use. 

All these problems should be addressed to guarantee that system performance 
degrades gracefully as resources are diminished. A home security system, robot 
navigation and a health monitoring system are examples of systems, where, based on data 
that come from sensors, a view of the environment is obtained and some decisions are 
made. The decisions made can be the control of an actuator (e.g., the wheels of the robot) 
or a change in the number and location of sensors (system’s reconfiguration). To achieve 
the last goal, some sensors can be turned on and other sensors can be turned off. To 
achieve the connection between the view of world and the system reconfiguration, we can 
classify the changes in environment over time as different states. The requirements of an 
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application may change according to the state of the environment and, consequently, 
different components (i.e., sensors) should be used accordingly. 

Dynamic systems usually share a similar architecture, sometimes consisting of 
three important modules: a dynamic network, middleware, and service suppliers and 
service consumers on the top of the middleware. A network is called dynamic when it can 
be reconfigured according to some system parameters. These parameters include 
scheduled transactions, power constraints of the network’s nodes and bandwidth 
distribution among transactions, as well as other aspects. 

Middleware is the software that connects service suppliers and service consumers. 
The connection between service suppliers and service consumers is called a transaction or 
an interaction. A service supplier is any type of network linked node (device or software) 
that can offer a service. Printers, sensors, databases, and applications are all examples of 
service suppliers. A service consumer is any type of network linked node (device or 
software) that requires a service from a service supplier. Actuators and applications are 
examples of service consumers. 

Applications can be service suppliers and service consumers simultaneously. For 
example, a blood pressure analyzer is a service consumer when it receives a blood 
pressure signal from a blood pressure sensor (service supplier), but it can also send the 
result of its analysis (acting as the service supplier) to a display (service consumer), 
advising the user that his blood pressure is abnormal. 

A dynamic system should be available all the time. To achieve this goal the 
system should be resilient, fault tolerant, and achieve all the Quality of Service (QoS) 
requirements specifications. Resilience is defined as an ability to recover from or adjust 
easily to changes in available resources, such as node failures, as well as changes in 
system state, such as a change from healthy to diseased. Resilience is a more general term 
than fault tolerance, which is the ability to recover or adapt to different types of failures, 
because it includes adaptation not related to failures, such as adapting the system to event 
detection in the environment. 

As a consequence of the fault tolerance and resilience goals, we can achieve 
graceful degradation, which is the ability to progressively decrease system functionality 
in the presence of a progressive decrease in available resources. Graceful degradation is 
necessary to achieve the goal of computing all the time with a certain QoS (i.e., 
Ubiquitous Computing). Although the definition of QoS changes in different scenarios, 
we will define QoS as the necessary requirements to achieve a specific goal. The specific 
goal can be: an adequate exchange of data in a transaction, a better use of the network 
bandwidth, a power management approach compatible with lower power consumption, a 
better view of the environment by an application, and so on. The necessary requirements 
to achieve these goals depend on the network characteristics - for example, the 
bandwidth, the service supplier and service consumer requirements, and the entire system 
application priorities. Therefore, to achieve the entire system QoS requirements, it is 
necessary to achieve the QoS requirements of all its components. 

We can find papers about the development of dynamic systems in three major 
areas: middleware, data fusion and distributed systems. As previously mentioned, 
middleware is the software that connects network components. Data fusion is a 
framework to manage data with the aim of obtaining information about the state of the 
system being monitored. Distributed systems study all the themes related to the use of 
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distributed components. Although these areas have been used in the development of 
dynamic systems, to the best of our knowledge, the data fusion implementation and its 
relationship to middleware, and the application in dynamic distributed systems has not 
been studied extensively. Furthermore, few researchers have considered the relationship 
between data fusion and middleware. 

The frameworks for data fusion available in the literature are restricted to specific 
areas like image processing and military applications. Even the taxonomy used in these 
applications is very specific. It is necessary to represent data fusion as a more general 
model that can be applied in different contexts. Based on these aspects, the development 
of a general data fusion framework concomitantly to a new taxonomy can help to achieve 
the aim of application-middleware communication for general data fusion systems. 
Application-middleware communication based on a data fusion framework is new and 
will help to achieve the goals of resilience and graceful degradation from the 
application’s perspective. The application module should communicate to a middleware 
and middleware should communicate to the network to solve the same problems from the 
system’s perspective. 

Based on the application-middleware communication described above, we need to 
achieve two specific goals. First, to specify an application development framework 
enabling the dynamic use of different data sources (data fusion framework), and second, 
based on the data fusion framework evaluation of the available data, a decision module 
should determine the current application’s needs (QoS) with respect to available 
components. The second goal is necessary to adapt the network as the state of the system 
being monitored changes. Although the use of a middleware to manage the interface 
between the application and the network components is not obliged, it eases the system’s 
management and allows scalability. 

The application development framework can be achieved by developing two 
integrated modules: a data fusion framework and a decision module. “Data fusion is 
defined as a formal framework in which it is expressed the means and tools for the 
alliance of data originating from different sources to achieve some view of the 
environment” [1]. This definition shows that data fusion is used to combine data 
(physical measures from the world) to describe the world. The fusion process depends on 
the model representation of the world. As an example, in a security system we can fuse a 
sound sensor data and an image from a camera to identify the presence of a person in a 
room. How the data is combined depends on how the person identified is modeled. In this 
case, we can obtain from the sound sensor the identification of human sound (voice) with 
some measure of confidence. Concurrently, we can obtain an image compatible with a 
person with another degree of confidence. We can fuse both data to increase the 
confidence that a person is present in the room (inference). As we can model the world in 
different ways, the data fusion process varies according to the model. 

Data fusion is the part of an application responsible for the management of 
different sources and types of data. If the data fusion framework manages data from 
different sources, we can design a data fusion framework that adapts to different 
situations of the environment (resilience), i.e., different states of the world, or different 
availability of the physical measures of the environment (fault tolerance and resilience). 
Data fusion is a well-researched area from the Artificial Intelligence and Systems fields 
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that recently was used to describe how data coming from different sensors could be 
merged in a sensor network [1][2]. 

The other part of the application to be developed is the decision module. The 
decision module is important to achieving the goal of adapting the network, i.e., changes 
in the nodes connected to the application, based on changes in the system’s state. The 
data fusion module processes data from different sources and achieves a view of the 
world, but this module does not interfere in the physical measures. It is used to evaluate 
the world based on the data available. To achieve resilience, fault tolerance and graceful 
degradation we need more than that. We need to choose the appropriate number and type 
of sensors compatible to each situation of the environment, according to the availability 
of the data sources and compatible with the power and bandwidth constraints of the 
system. In the case of a security system, based on the bandwidth cost of video 
transmission, we can turn on cameras only if the sound detects some problem. To achieve 
this goal we need a view of the world based only on the sound sensor. This can be 
provided by the data fusion module. The decision to turn on the camera is provided by 
the decision module. The decision module chooses the best set of physical measures of 
the world to improve or decrease the view of the environment. As a consequence, based 
on the view of the environment that comes from the data fusion, the decision module 
provides new application QoS requirements to the middleware. This QoS can include the 
new set of necessary sensors to have a better view of the system, an increase or decrease 
in the data rates of the sensors, as well as other changes. 

As a consequence of the data fusion framework integrated with the decision 
module, the application would change dynamically according to the environment and to 
the available resources in the system. The problem in achieving this goal is that the 
application is not aware of the availability of data sources in the system. This information 
is available at the network level, not at the application level. Therefore, we need 
something to connect the network to the application in a dynamic way. The connection of 
the network information (services available) with the application requirements is the role 
of the middleware. The decision module should analyze some results of the data fusion 
and automatically inform the middleware of the application’s new requirements. Given 
this information, the middleware matches the current needs of the application with the 
available sources of data and sends this information to the network for configuration of 
the connections between nodes. 

It is important to emphasize that both middleware and application should be 
compatible with fault tolerance, resilience and graceful degradation to achieve the 
ubiquitous computing aim. In the case that only middleware is compatible to these 
aspects, fault tolerance, resilience and graceful degradation goals will not be satisfied at 
the application level. The inverse is also true. Another important aspect is related to the 
application and middleware relationship. Even if both systems achieve graceful 
degradation, it is not enough. Middleware and application should communicate to each 
other in such a way that makes it possible to achieve the graceful degradation in the entire 
system. 
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1.2. Problem Statement 
 

An example of a dynamic, distributed system that could benefit from the data 
fusion framework and application-middleware communication described in the next 
section is a Personal Heart Rate Monitor. 

A multi parametric Personal Heart Rate Monitor (PHRM) is a wireless-based 
mobile dynamic system with the goal of monitoring the heart’s condition in healthy and 
diseased conditions. It provides a continuous monitoring of the subjects’ Heart Rate. The 
multi parametric PHRM consists of a body-worn sensor network powered by battery and 
connected by a wireless network. It is designed to use different types of physiological 
sensors to monitor the user’s heart rate: blood pressure, pulse oximeter, blood flow, 
arterial pulse, Electrocardiogram (ECG), Electromyogram (EMG), Electroencephalogram 
(EEG), and others. The use of all of these sensors will provide the evaluation of the heart 
rate in different conditions of the body. The heart rate varies according to body activity, 
temperature, blood pressure, position and so on. The PHRM evaluates the absolute and 
relative heart rate values in each condition. 

PHRM is a mobile system. In this case, bandwidth and power constraints should 
be considered. To achieve continuous monitoring in different conditions, the system 
should have reasonable autonomy. Node lifetime is inversely proportional to power 
consumption. To decrease the power consumption of the system components, it is 
necessary to adjust the use of sensors to the current necessity of the application. As an 
example, if the user is completely healthy (all data are in the normal range), we can 
decrease the number of sensors and turn off the sensors not in use. This approach 
increases the lifetime of the sensors and of the system overall. When an event is detected 
from the current available data (e.g., a high blood pressure) the system can turn on the 
sensors related to the event (i.e., ECG and pulse oximeter). This is called adaptation to 
environment changes. The system should also adapt to loss of available sensors 
(adaptation to the availability of system components). As a result, if we can adapt the 
system to all events occurred in the environment or at the sensors level, the system can be 
resilient, fault tolerant, and provide graceful degradation. Although there are different 
adaptation definitions in the literature, we will consider in the entire text the definition 
described in the scenario above. 

All the sensors will be connected by a wireless network on the body to an 
application on the top of a middleware. The discovery service will send the available 
sensors to the middleware, which will send the required data to the application. The data 
fusion framework will process and fuse the data to come up with a view of the heart’s 
health. Based on this view, the decision system will determine the current PHRM sensors 
necessity (application QoS). As an example, consider that the user is healthy and that all 
the data that come from the body are normal. Based on these aspects, the power 
management policy will turn off most of the sensors. The monitor will be based on one 
ECG lead and a blood flow sensor. Now, imagine that the system has just recognized an 
arrhythmia. As a result, the decision module will request that the middleware increase the 
number of leads of the ECG to 3 and ask for the blood pressure and pulse oximeter data. 
This information will be sent from the middleware to the network. The network will 
schedule the new transactions and will also be reconfigured according to the new 
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requirements of the system (assuming this is feasible, based on sensors available and 
bandwidth constraints). As a consequence, in the next step the PHRM application will 
receive data from 3 ECG leads, from the Blood pressure sensor and from the pulse 
oximeter sensor. 

We have developed a data fusion architecture for applications of a network-based 
dynamic system with the following characteristics: 

 
Components of the system can be inserted or excluded without stopping the 
entire system; 
The environment changes with time and so do the physical measures from it; 
The application’s necessity changes according to different states of the 
environment, and as a consequence, it can use or reuse components in the 
different states; 
The system is mobile and battery powered, so each component of the system 
has a different lifetime, bandwidth usage and power consumption; 
As a network-based system, bandwidth is limited and coverage area is 
variable. 

 
All of these problems will be addressed from the application perspective to 

make the system robust to the dynamic environment. 
The PHRM is from the class of network-based mobile dynamic systems powered 

by battery, where an application should adapt itself to different configurations of the 
system (data sources moving in and moving out), different states of the environment, and 
considering power and bandwidth constraints. As a consequence, the solution of these 
problems will solve the same problems in the class of related systems. Controlling Robots 
based on the environment and home security systems are two examples of this class of 
systems to which our framework should be applicable. 

We propose a solution to the problem of developing an application framework to 
manage data from different types of sensors to perform a Heart Rate Monitoring 
application in a Ubiquitous Computing environment. In this work, we will focus on the 
application’s framework (data fusion and decisions modules) while also considering the 
necessary middleware and network facilities to ensure resilience to changes in available 
resources and changes in the environment’s state. 

 
1.3. Contributions 

 
The contributions of this research include: 

 
A general data fusion architecture for mobile network-based 
dynamic monitoring systems; 
Algorithms for distributed data fusion implementation in sensor networks; 
Software infra-structure for centralized sensor networks to provide fault  
tolerance, resilience and QoS in dynamic environment; 
A language for application-middleware relationship;  
An ECG interpretation algorithm based on continuous variable 
compilation; Multi parametric-based body-worn heart rate monitor; 
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QoS based on system states and user (environment) states. 
Algorithm for distributed data fusion. 

 
1.4. Thesis Overview 

 
1.4.1. Introduction 

 
Sensor Networks are designed to sense the environment and to communicate 

without the necessity of existence of any infrastructure or centralized administration. It 
can be implemented in a centralized or distributed approach (multiple hops may be 
needed for communication). These networks can function as standalone wireless 
networks meeting direct communication needs, or as an addition to infrastructure based 
networks to extend or enhance their coverage. One of the parameters to measure the 
sensor networks performance is based on the application Quality of Service (QoS) goals. 
As a consequence, sensor management, and network optimization should consider the 
application QoS desired. 

Sensor networks are related with constraints at the application, sensor and 
network infra-structure sides. At the application level, a dynamic QoS system should vary 
to achieve the application performance desired. On the sensor side, the sensor’s 
processing capacity, power supplier lifetime, and deployment are the most important 
aspects to be considered. At the network point of view, bandwidth, distributed 
communication protocols, mobility and the dynamic aspects of the network nodes 
(sensors) impose great problems to the communication optimization. Besides these 
aspects all these features should be integrated at the system level taking into account 
resilience and ubiquitous computing goals. 

These different aspects should be considered in the design of sensors networks 
applications: 

 
Nodes deployment; 
Nodes Addressing; 
Nodes design; 
Routing; 
Security; 
Service Discovery; 
Network media: 802.11b, Bluetooth, UWB and Infrared; 
Network configuration and topology; 
Authentication, Authorization and Accounting; 
Data fusion; 
Power management; 
Sensors management; 
Optimization; 
Resilience and fault tolerance. 

 
Although data fusion is related as one item of this list, it is related to almost all the 

other items because it is a low level representation of the application’s quality of service. 
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In this thesis we are going to focus on data fusion implementation on sensor networks, 
considering some of the aspects described above. 

 
1.4.2. Data Fusion 

 
Data fusion is a formal framework used to express the convergence of data from 

different sources in which is expressed the means and tools for the alliance of data that 
originated from different sources. The US Department of Defense has defined data fusion 
as a multilevel, multifaceted process dealing with the automatic detection, association, 
correlation, estimation, and combination of data and information from single and multiple 
sources. The resulting information is more satisfactory to the user when fusion is 
performed rather than simply delivering the raw data. In data fusion, information may be 
of various types, ranging from numeric measurements to linguistic reports. Some data 
cannot be easily quantified, and their accuracy and reliability may be difficult to access. 

Sensor measurements have problems related to noise, errors and incompleteness. In 
addition, we often cannot have a complete view of the world based on data from only one 
sensor (incompleteness). Associated with sensor data use, we have to evaluate its 
reliability. Reliability attempts to represent how much confidence we have in the data that 
comes from the sensor. All of these aspects contribute to increasing the uncertainty in the 
system. Thus, we need a formal data fusion framework that represents and provides tools 
to manage all of these different problems. None of the frameworks described until now 
achieves this objective for different types of applications and scenarios. 

There are different levels of data fusion. We can have data fusion from one sensor 
(time series), redundant sensors, redundant variables, variables and systems. We can even 
fuse different levels of data. We can find different approaches in the literature to treat this 
problem. Some researchers use statistical analysis like mean, average, median, standard 
deviation, correlation and variance (the Kalman filter algorithm). Other researchers use 
heuristical approaches to manage the uncertainty, such as probabilistic models based on 
Bayesian networks or uncertainty sets, possibility models based on fuzzy logic and 
Dempster-Shafer theory, mathematical models, learning algorithms based on neural 
networks and evolutionary algorithms, and hybrid systems. Which approach to use 
depends on different aspects, such as the type of data, the requirements of the application, 
and the grade of reliability desired. 

Although there are different papers in the literature addressing the data fusion problem 
and the management of incomplete data, there is a lack of a better definition of the 
different levels of data processing and analysis that need fusion. Some papers address the 
fusion of signals, others address the uncertainty of high level data fusion using different 
methods, but none of them have tried to establish a formal framework that includes the 
different levels of data fusion. Besides this aspect, there is a need for a taxonomy that 
defines what is low and high level fusion. We present a formal framework based on UML 
(Unified Modeling Language) and describe a taxonomy that defines the different levels of 
data fusion. Next we discuss the data fusion implementation in distributed and centralized 
sensor networks scenarios. Finally, we present a sensor networks application of a body-
worn sensor network. We applied the framework and taxonomy described here to solve 
the dynamic management of data in a Personal Health Monitoring System (PHMS). Our 
framework can be applied to any of the class of problems characterized by 
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monitoring the environment using different types of sensors, such as a home security 
system, a military application in a war, control of robots based on the environment, etc. 

 
1.4.3. System Architecture 

 
This section shows the relationship of the data fusion with the whole system. We 

think that to achieve all the requirements to make a system available at all times we need 
to integrate the network, the service suppliers (data sources) and services consumers 
(applications). The application development can be divided into several integrated 
modules; in this paper we will address the data fusion and decision modules. 

A network-based system needs all of its components (network, middleware and 
application) to deal with dynamic changes in the availability of resources and changes in 
the environment. The system should adapt to the availability of sensors and their 
corresponding signals, and it should also adapt to changes in the measurements 
themselves.  

 
 

 Application 
 

 Data 
 

Data Fusion 
 Network  
 

 Middleware 
  

 
QoS 

 
Decision  
Module 
 

Figure 1: Network, middleware, and application 
 

Figure 1 shows a block diagram of a general system. The sensors (service suppliers) 
and the application (in this case service consumer) are nodes of the network. The 
middleware is the software that connects the sensors to the application through the 
network. The application has two integrated modules, the data fusion module and the 
decision module. The application sends its QoS requirements to the middleware, and the 
middleware sends the sensor data to the application. Next we present the data fusion 
architecture and discuss the distributed and centralized data fusion implementation. 

 
1.4.4. A General Data Fusion Architecture 

 
We have developed a data fusion architecture that can be applied for network-based 

dynamic distributed systems or conventional stand alone centralized systems. The 
following characteristics can co-exist in both systems: components of the system can be 
inserted or excluded without stopping the entire system; the environment changes with 
time, as do the physical measures from it; an application’s necessity changes according to 
different states of the environment, and as a consequence, it can use or reuse components 
in the different states; the system can be mobile and battery powered, so each component 
of the system has a different lifetime, bandwidth usage and power consumption. In the 
case of a network-based system, bandwidth is limited. All of these problems should be 
addressed from the application perspective to make the system robust to the dynamic 
environment. We think that some of these problems can be addressed at the data fusion 
module of the application. 
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1.4.5. Centralized Data fusion implementation in sensor networks 
 

Figure 2 shows the diagram of the software tool for applications development 
based on a body-worn sensor networks. The application is developed based on the data 
fusion module and the decision module. The data fusion module is based on the 
architecture proposed by the authors in [4] and shown in figure 1. It is responsible for the 
fusion of data from the same type of sources (redundant data) and data from different 
types of sources. The different levels of the data fusion system are composed by different 
types of agents responsible for processing and analyzing different types of data. The data 
fusion system provides dynamic software to represent the changes in the environment 
(body and environment where the body is placed), conditions of the sensors, and 
capability of the processing unit. This adaptability of the system is compatible with fault 
tolerance and ubiquitous computing. The decision module makes changes in the system 
to follow the new necessities. It is also responsible for the control of messages delivered 
and actuators, log and exchanges of information with other information systems (for 
example the electronic medical record). 
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Figure 2: Centralized Data Fusion block diagram 

 
 
 

We have applied this architecture to develop a centralized sensor networks 
application applied to the physiological signals monitoring. 

 
1.4.6. Distributed Data fusion implementation in sensor networks 

 
Data fusion is an important aspect related to the application development in a 

sensor networks environment. It is directly related to the application quality of service 
specifications and also related to different aspects of the sensor networks environment. 
Based on these aspects, different aspects should be considered in the data fusion 
implementation in sensor networks: 

 
1) Communication cost (receiving and transmitting)  

a. Influence of different sizes of data. If the data is higher than the packet, 
we need to add the number of necessary messages to send all the data; 
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2) Data fusion cost; 
3) Data fusion precedence; 
4) Sensing cost;  
5) Node capability: power, computation capability and functionalities capability 

b. All the nodes have the same capabilities; 
c. Heterogeneous nodes; 

6) Different data rates: it can determine the use of shortest or longest paths; 
7) Real time versus not real time: real time applications need a short path 

and smaller delays; 
8) Security: Adds overhead in the communication cost; 
9) System lifetime: how many paths can we use to provide a larger system’s 

lifetime? From the lifetime point of view, the use of as many paths as possible 
is useful; 

10) Data throughput: the shortest paths are related to a higher throughput than 
the larger paths; 

11) Transmission delay: the transmission delay is higher in the long paths than 
in the shortest paths; 

12) Time synchronization: it is easier to obtain on shortest paths 
synchronization than in the longest paths; 

13) Location integration:  
d. Scenario 1: any source, anywhere; 
e. Scenario 2: sources to be fused are near each other; 

14) Scalability: We can apply the algorithm to the entire network or divide 
the network in smaller domains represented by different destination nodes, 
and integrate the domains’ destination nodes to scale to the entire network; 

 
We have developed some algorithms to find the best optimal node to fuse the data 

from different sensors considering the aspects described above. 
 

1.4.7. Language for Middleware Application relationship 
 

We presents a language based on graphs on how an application can specify for 
middleware the set of sensors it will need during the run time. Furthermore, it specifies 
the metrics and the value of the metrics the application Quality of Service will determine 
during run time. Based on this information, middleware can determine the best set of 
sensors compatible with a longer system’s lifetime. 

Another very important aspect is related to the specification of the applications 
priorities and sensor management. They are related to the value specified to each 
application and the QoS. 
.  
1.4.8. Conclusions 

 
We presented some important features that should be considered in the data fusion 

implementation in sensor networks. It includes data fusion architecture, applications 
development tool (data fusion implementation and decision module), and a language for 
data application and middleware relationship. We have proposed general data fusion 
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architecture (DFA) described in a formal language of object representation (UML) that 
tries to represent different scenarios, specifications and features of a general data fusion 
system. It also allows a dynamic modification of the system according to different states 
of the environment or of the system. The DFA proposed is a good solution to the problem 
of developing an application framework to manage data from different types of sensors to 
perform different tasks in a ubiquitous computing environment. We have mapped the 
data management problem to different domains and applications to show that we can 
employ our data fusion architecture to diverse scenarios, including different contexts and 
domains. Based on the Data Fusion Architecture proposed we have developed algorithms 
to perform distributed data fusion and centralized data fusion systems considering 
different constraints imposed by the sensor networks environment. To achieve the fault 
tolerance and resilience goal we have developed a language for data fusion architecture 
and decision modules of the application integration to the middleware. Finally, we 
presented an infra-structure to a body-worn sensor networks application. As proof of 
concept we have developed a prototype of a Personal Heart Rate Monitoring system. 
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Chapter 2 

 

A General Data Fusion Architecture 
 

2.1. Introduction 
 

Recent developments in wireless networks and in miniaturization of powerful 
embedded devices have enabled the development of very small computing systems that 
are available at all times. In the literature, this type of computation has been called 
ubiquitous computing. Several applications of ubiquitous computing (including ones that 
cover life threatening situations) require fault tolerance, resilience and graceful 
degradation in response to different types of failures in the system. In this paper, we 
address the problem of how to develop applications, taking into account fault tolerance, 
resilience, and graceful degradation in a ubiquitous computing environment. We think 
that to achieve these goals it is also necessary to develop a data fusion model compatible 
with network-based distributed systems and stand alone systems. 

Data fusion is an important component of applications for systems that use 
correlated data from multiple sources to determine the state of a system. The fault 
tolerance and resilience of these applications will depend greatly on the data fusion 
framework. As the state of the system being monitored and available resources change, 
the general data fusion framework should change dynamically based on the current 
environment and available resources in the system. As a consequence, the data fusion 
framework should provide some results of the data fusion to a module called the decision 
system. This module is responsible for sending feedback to the middleware, so the 
middleware can appropriately reconfigure the network. Based on the current data or 
variable the decision system receives from the data fusion module, the decision system 
should automatically inform the middleware of the application’s new requirements (i.e., 
the application dynamically adjusts its Quality of Service requirements based on the 
current state of the system being monitored and informs the middleware of its current 
Quality of Service needs). 

In this chapter, we present a Data Fusion Architecture that we think is general 
enough to be applied in different contexts and applications. We also present the data 
fusion architecture proposed applied to different scenarios. 

 
Problem: which architecture to use? 

 

2.2. Literature review 
 

We have developed a data fusion architecture that can be applied for network-
based dynamic systems (distributed) or conventional stand alone (centralized) systems. 
The following characteristics can co-exist in both systems: components of the system can 
be inserted or excluded without stopping the entire system; the environment changes with 
time and so do the physical measures from it; application’s necessity changes according 
to different states of the environment, and as a consequence, it can use or reuse 
components in the different states; the system can be mobile and battery powered, so 
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each component of the system has a different lifetime, bandwidth usage and power 
consumption. In the case of a network-based system, bandwidth is limited. All of these 
problems should be addressed from the application perspective to make the system robust 
to the dynamic environment. We think that some of these problems can be addressed at 
the data fusion module of the application. 

Data fusion is a formal framework used to express the convergence of data from 
different sources in which is expressed the means and tools for the alliance of data 
originated from different sources [1]. The US Department of Defense has defined data 
fusion as a multilevel, multifaceted process dealing with the automatic detection, 
association, correlation, estimation, and combination of data and information from single 
and multiple sources [2]. The resulting information is more satisfactory to the user when 
fusion is performed rather than simply delivering the data [3]. In data fusion, information 
may be of various types, ranging from numeric measurements to linguistic reports. Some 
data cannot be easily quantified and their accuracy and reliability may be difficult to 
access. 

Sensor measurements have problems related to noise, errors and incompleteness. 
Noise is related to different types of interference. It is directly related to the sensor device 
and its environment. Errors can be related to systematic or random errors of the sensor 
device. In general, transducers do not operate in practical operation like they operate in 
theory or simulations. In addition, we often cannot have a complete view of the world 
based on data from only one sensor (incompleteness). Associated with sensor data use, 
we have to evaluate its reliability. Reliability attempts to represent how much confidence 
we have in the data that comes from the sensor. All of these aspects contribute to increase 
the uncertainty in the system. Thus, we need a formal data fusion framework that 
represents and provides tools to manage all of these different problems. None of the 
frameworks described until now achieve this objective for different types of applications 
and scenarios. 

There are different levels of data fusion. We can have data fusion from one sensor 
(time series), redundant sensors, redundant variables, variables and systems. We can even 
fuse different levels of data. We can find different approaches in the literature to treat this 
problem. Some researchers use statistical analysis like mean, average, median, standard 
deviation, correlation and variance (the Kalman Filter Algorithm) [4]. Other researchers 
use heuristical approaches to manage the uncertainty, such as probabilistic models based 
on Bayesian networks or uncertainty sets [5][15], possibility models based on fuzzy logic 
and Dempster-Shafer theory [4][6][17], mathematical models [7], learning algorithms 
based on neural networks and evolutionary algorithms [8], and hybrid systems [8]. Which 
approach to use depends on different aspects, such as the type of data, the requirements 
of the application, and the grade of reliability desired. 

E. Waltez and J. Llinas, cited by [9], have described important features related to 
the development of data fusion architectures: robustness and reliability, extended 
coverage in space and time, great data space dimension, reduced ambiguity, and a 
solution to information explosion. 

Another important aspect of data fusion is related to system representation and the 
data fusion framework. Most of the papers published in this area are related to military 
applications and image processing. The military application field is mainly represented 
by the functional model developed by the Joint Director of Laboratories (JDL) from the 
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U.S. Department of Defense. Their functional model is represented by four levels. The 
first level is related to the identification and description of the objects; the second level 
represents an interactive process to fuse spatial and temporal entities relationships; the 
third level is associated with the combination of the activity and capacity of enemy forces 
to infer their force; and the fourth level is related with all other levels and is responsible 
for regulation of the fusion process [2]. Although this model has been applied in large 
scale projects related to military applications, it seems to be very specific to this field. 

The papers related to image processing are basically applied to two fields, robot 
navigation and geographical data. Durant presented a framework to integrate and to 
model coordination and control of robot systems [10] and Arnoud proposed architecture 
of sensors data fusion systems, emphasizing the benefits of providing high level fusion 
[4]. Clement and others described a specialist-based knowledge approach [11]. 
Matsuyama and McKeown worked with hierarchical descriptions of image fusion [12] 
[13]. Growe [14] developed a framework based on semantic nets representation using 
fuzzy membership function to determine whether fusion is possible. 

A few papers have addressed different domains. Dailey, among others, described 
data fusion applied to transportation [15]. Laskey and others, used Knowledge and Data 
Fusion in Probabilistic Networks applied to the medical diagnosis domain [16]. The 
authors describe the use of probabilistic networks to represent and model a medical 
diagnosis approach. They have shown that novel models of Bayesian networks can learn 
with new observations and that it should apply when we have complete or incomplete 
observations about the phenomenon. The use of probabilistic approaches can provide 
assumptions about the variables even when they are not measured. This is an important 
aspect related to fault tolerance and data incompleteness management. 

Although there are different papers in the literature addressing the data fusion 
problem and the management of incomplete data, there is a lack of a better definition of 
the different levels of data processing and analysis that need fusion. Some papers address 
the fusion of signals, others address the uncertainty of high level data fusion using 
different methods, but none of them have tried to establish a formal framework that 
includes the different levels of data fusion. Besides this aspect, there is no taxonomy that 
defines what is low and high level fusion. We present a formal framework based on UML 
(Unified Modeling Language) and describe a taxonomy that defines the different levels of 
data fusion. We applied the framework and taxonomy described here to solve the 
dynamic management of data in the Personal Health Monitoring System (PHMS), but 
this framework can be applied to any of the class of problems characterized by 
monitoring the environment using different types of sensors. Thus, if we solve the PHMS 
data fusion problem and we can map the PHMS to other applications like a home security 
system, a military application in a war, control of robots based on the environment and so 
on, the data fusion framework we developed can be applied in all these different 
applications. 
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2.3 Solution proposed: A General Data Fusion Architecture 
 

2.3.1 Relationship between the Data Fusion Architecture and the Entire System 
 

We think that to achieve all the requirements to make a system available all the 
time, we need to integrate the network, the service suppliers (data sources) and service 
consumers (applications). The application development can be divided in several 
integrated modules. We are going to address the Data fusion and decision modules.  

A network-based system needs all of its components (network, middleware and 
application) to be compatible with dynamic changes in the availability of resources and 
changes in the environment. The system should adapt to the availability of sensors and 
their corresponding signals, and it should also adapt to changes in the measurements. 
Figure 3 represents the system’s block diagram. The sensors (service suppliers) and the 
application (in this case service consumer) are nodes of the network. The middleware is 
the software that connects the sensors to the application through the network. The 
application has two integrated modules - the data fusion module and the decision module. 
The application sends its QoS requirements to the middleware, and the middleware sends 
the sensor data to the application.   

Sensors 
Application 

 
Data  

Data Fusion 
 
 

Network Middleware 
 

Decision  
Module  

QoS 
 
 

Figure 3: Network, middleware, and application relationship. 
 

Figure 4 shows the temporal diagram of the information exchange between the 
system’s components. When the system starts, middleware needs the QoS information 
from all the components (Service Suppliers, Network, Applications and from the entire 
system). After that, the network is configured, the transactions are scheduled and all the 
necessary connections (transactions) are matched by the middleware. Middleware starts 
to receive data and sends it to the application. The application data fusion module will 
process the data and pass a view of the world (environment) to the decision module. 
Based on this input, the decision module will determine the new requirements of the 
application (application QoS). Again the middleware matches the new application needs 
to the available resources and sends to the network the new set of connections. The 
network will be reconfigured and the entire process repeats in a cyclic way. 
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Figure 4: Temporal diagram showing the interaction among the sensors, the network, 
the middleware, the application and the system. 

 
Based on the type of system described above, we are going to present the data 

fusion architecture and the decision modules. 
 

2.3.2. Data Fusion Taxonomy 
 

There are three main types of data fusion: data oriented, task oriented (variable) 
and a mixture of data and variable fusion. The basic idea that divides the levels is the 
difference between data and variable. Data is a measurement of the environment that is 
generated by a sensor or other type of source. Variable is determined by the presence of 
one or more application tasks. In general, from one type of data, we can come up with 
one or more variables or tasks. For example, from the data from a camera we can obtain 
an image of a person (variable person), an animal image (variable animal) or an object 
(variable object). In this case, the application has the task of identifying the image of a 
person, an animal or an object. These tasks can be an intermediary or the main endpoint 
of the application. They will be intermediary when they are a necessary step to achieve 
another task, or to add redundancy and fault tolerance to the system. The variable 
determination can be achieved by using a data analysis algorithm or using some 
approach, such as neural networks, that takes the data as input and gives as an output the 
probability of being an image of a person, an animal image or an object image. So, what 
determines the three levels is whether the fusion process is made at the data level 
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(without any analysis), after the data has suffered process of analysis (at the variable 
level) or transformation to a task, or in a mixture level (fusion of data and variable). 

 
2.3.3. The Data Fusion Architecture (DFA) 

 
Sensors exist to measure physical variables, such as a temperature, heart rate, or 

blood pressure. A physical variable can be measured by several sensors (which we call 
redundant sensors), or by a single sensor (which we call an individual sensor). Individual 
sensors are unique in the system, and there is no reason to use multiple sensors of this 
type. Redundant sensors can co-exist with multiple sensors of the same type, and it is 
desirable to do so to achieve fault tolerance, increase the covering area, or meet other 
constraints. The system should be able to differentiate these types of sensors and the data 
that come from them. 

In general, before any data fusion can be performed, the signal that comes from 
the sensor should be pre-processed. The pre-processing can be as simple as an analog to 
digital conversion or as complex as the use of different Digital Signal Processing 
approaches. Different approaches and techniques should be applied to different types of 
signals before the data is useful for management: analog to digital conversion, error 
analysis, amplification, filtering, noise treatment, quantization, multiplexing, etc. 

After pre-processing, the data should be fused. We propose a 3-level data fusion 
framework based on both data and variables. Data is defined as the data that come from a 
sensor. Variable is defined as a type of data that is generated after some analysis of the 
raw sensor data. As a consequence of this differentiation, the data fusion can be classified 
as low level fusion of data, high level variable fusion and a mixture level fusion. When 
the data fusion is performed before some analysis, it is classified as low level. After some 
data analysis, it is classified as high level variable fusion. There are some situations 
where we can fuse data and variables. A mixture fusion level class was created to 
represent this class of fusion. Figure 3 shows the data flow from the sensors, pre-
processing unit and the data fusion framework, describing possible scenarios of data 
fusion represented in UML (Unified Modeling Language). 

The framework presented in figures 3, 4 and 5 is new because it explicitly defines 
the different possible levels of data fusion, including different approaches to manage the 
fusion process. Furthermore, it introduces a new taxonomy for data fusion classification 
based on the definitions of data and variable and how to combine and fuse them. The 
formal representation of a data fusion framework based on UML description is also new. 
Figure 3 shows the Data Fusion Architecture described in UML (Unified Modeling 
Language). The boxes represent classes and the arrows means the direction of possible 
data or variable flow. The number around the arrows represents the cardinality of the 
classes’ instances relationship. As an example, we have only one instance of any type of 
sensor at a time for one instance of a pre-processing class. Text inside brackets represents 
constrictions. Notes are simple explanations. 

The DFA shows that data comes from one sensor; it is pre-processed using 
operations from the pre-processing class and the pre-processed data is sent to the Low 
Level Data Fusion (LLDF); Each LLDF instance can receive one or more type of data as 
input and using any of its operation fuse them. This class can send its output (fused data) 
to another instance of the LLDF (multilevel LLDF), and/or to the data analysis, and/or 
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High Level Data Fusion (HLDF), and/or Variable interpretation, and/or Mixture level 
Data Fusion (MLDF) modules. The MLDF receives data from the LLDF and variable 
from the HLDF and its output (fused data/variable) goes back to the HLDF and/or it goes 
directly to the variable interpretation module. The data analysis module receives fused 
data, analyzing it using the appropriate algorithm to the received data and sends the 
resulted variables to different instances (one HLDF instance for each type of variable) of 
the HLDF module. At the HLDF, each HLDF variable instance performs the redundant 
variable fusion process and sends its resulted fused variable to another instance of the 
HLDF, and/or to the MLDF, and/or to the Variable Interpretation module. The Variable 
Interpretation (VI) module receives variables from different sources as input. It fuses all 
the views of the variable to provide as an output, single or multiple views about the 
sensed environment or data source. Its’ output goes to the decision system. The decision 
system takes all this information and decides about modifications on the environment 
sensing (application’s Quality of Service output), and/or control any actuator (actuator 
control), and/or change algorithms and data/variable flow in the data fusion model 
(control output goes to the LLDF, MLDF or HLDF).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Data Fusion Architecture based on UML. 
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Figure 6 shows the classes of the individual and redundant sensors, and pre-
processing classes. The class of individual sensors has attributes such as identification, 
type of sensor, data rates, power (lifetime), bandwidth requirement and the IEEE 1451.2 
sensor characteristics. The individual class functions are related to the sensor mode (on, 
off, sleep, idle) as well as data rate control and battery level. The redundant sensor class 
heritance the individual sensor class attributes and operations and adds the characteristics 
related to the sensor redundancy, such as covering area and related operations. The pre-
processing class includes different functions used to process analog and digital signals.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Individual sensor, redundant sensor and pre-processing classes. 
 
 

The low level data fusion class includes different approaches that can be used in 
different low data fusion scenarios and is described in Figure 7. Figure 8 shows possible 
approaches to manage variables in the high-level variable fusion. In general, it uses the 
same approach as the low-level data fusion, but applied to the fusion of variables. The 
specific variable application fusion management approach includes the different 
approaches based on uncertainty management tools like belief networks, neural networks, 
genetic algorithms, fuzzy logic, probability theory and many others. This will depend on 
the knowledge model applied. Figure 9 presents the class of an unusual but used form of 
data fusion, the fusion of row data with variables (Mixture Level Data Fusion class). 
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Figure 7: Low Level Data Fusion Class.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: High Level Data Fusion Class. 
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Figure 9: Mixture Level Data Fusion Class. 
 
 

Figure 10 describes the two main types of input manipulation classes. These 
classes can be used in any part of the data fusion architecture, including the different 
levels of fusion in the LLDF, HLDF and MLDF. To see an example of the different level 
inside the HLDF see the chapter 4 describing the Health monitoring application. The 
synchronized class requires that all the input should be processed at the same time. If 
these inputs arrive at different times, we need to use an algorithm or a rule to provide the 
synchronization. We can classify the synchronization process in hard and soft 
synchronization. The soft synchronization allows some flexibility in the time for 
synchronization. The hard process requires a tight input time stamp. One of the available 
ways is to synchronize the input manipulation based on the lowest input rate. Using this 
approach we solve the problem of synchronization but we still have problems related to 
the use of the higher input rates data. Are we going to use the current or the next value of 
the higher input rates? So, in some situations where hard synchronization is required, we 
will need an algorithm to deal with the calculation of the optimal time synchronization. If 
the synchronization is soft we can also employ some operations from the asynchronous 
class. We can combine the time series approach to the weighted sun of asynchronous 
input to manipulate the inputs. This is a powerful approach because it takes in account 
historic data and the weight of ach input in the final result. The asynchronous class 
describes different tools to manage asynchronous inputs. These approaches can consider 
or not the influence of the previous ones (historic inputs data) or weight the influence of 
each input. The weight used in this approach can be any type of characteristic that is 
important for the knowledge representation such as reliability, accuracy, covering area, 
and so on. 
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Figure 10: Input manipulation classes. 
 
 

2.3.4. The DFA placement: The proposed Data Fusion Architecture is compatible with 
centralized and distributed approaches. Figures 11a and 11b show examples of 
completely centralized and completely distributed scenarios. These are the extreme cases. 
We can also apply it to intermediary scenarios, depending on the system’s characteristics.  
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a) Completely centralized approach: all the data fusion functionalities are performed in a central unit.  
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b) Completely distributed approach: all the data fusion functionalities are available at the smart sensor. 
 
 
 

Figure 11: Data fusion model placement. 
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The first scenario described in Figure 11a is an example of conventional 
client/server system, where different sensors are attached to a central unit and this one 
performs all the necessary algorithms. The decision module makes decisions about the 
entire system behavior. The completely distributed approach has been applied to sensors 
network based on smart sensors and is described in Figure 11b. In this case, the decision 
module applies only to each sensor’s functionalities. In this case the HLDF is limited to 
the sensor’s view of the environment. 

As an example of the completely distributed approach, we can have a brief 
description about the use of a smart microphone network. Imagine that the smart 
microphone has a sound sensory device, whose capacity is dependent on the source to 
sensor distance. It also has a processor, memory capacity, wireless network capacity and 
all the available software to perform the data fusion functionalities. As a consequence, it 
is capable of filtering the noise of the captured sound (pre-process); performing a low 
level data fusion using a Kalman Filter [4] to perform time series data fusion; using an 
algorithm to identify human voice sound (probability of the captured sound to be human 
voice); calculating the sound evaluation reliability based on signal-noise evaluation; and 
combining this reliability value with the algorithm probability (high level data fusion). 
Now, it compares its result with the available results received from the neighborhood 
sensors. If its result is worse than some of the received results, it goes to an “idle” state 
and does not forward its result. Otherwise, if its result is the best human voice evaluation 
(highest reliability evaluation), it will continue in the “on” state and forward its result for 
the neighborhood sensors (propagate the information). These decisions are performed by 
the local decision module. This simple example shows that the data fusion architecture 
proposed is fully compatible with sensor networks of smart sensors. 

The DFA described in UML allows the configuration of different scenarios, 
including the use of mobile coding. The agent can migrate to the data source to perform 
any type of data manipulation at the data source. This approach adds several advantages, 
but the decrease in network traffic is one of the most important. 

 
2.3.5. The DFA applied to different contexts 

 
Depending on the type of application, the data fusion system can be based on 

single or redundant data and variables, distributed or centralized architecture, or single or 
multi-agents. If the system uses different types of sensors and one agent to perform each 
different signal analysis, it will be based on a multi-agents system. Both centralized and 
distributed systems, as well as intermediary systems, can use different combinations of 
single and redundant data/variable and single agent or multi-agents. Although the 
different aspects of the system will depend on how the application is designed, the data 
fusion architecture can be the same using the DFA. 

Figure 12 represents different instances of the DFA. Figure 12a represents the 
complete system with all the different features of the model. Figure 12b represents an 
instance of the model using the low and high level data fusion and is capable of create 
variables from data without making analysis of it. Figure 12c shows that in this instance 
the system does not use the mixture and high level data fusion. Figure 12d shows that this 
system can only process the data that comes from the sensors and make a decision. Figure 
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12e use the low and high level data fusion but needs one or more agents to analyze all the 
data to get variables. Figure 12f allows the creation of variables without data analysis. 

These different scenarios show that all the DFA instances have in common a data 
source, some interpretation of the measured environment (task or variable) and a 
decision. This is the general architecture of a system.  

 
 
 
 
 
 
 
 
 

a) b) c)  
 
 
 
 
 
 

 
d) e) f) 

 
Figure 12: Different instances of the DFA. 

 
2.3.6. Mapping different applications to the DFA: We are going to exemplify the use 
of the DFA in different domains and applications, such as military, robot navigation, 
geographical images analysis, home security system, bio terrorism detection system and 
health applications. 

 
2.3.6.1 Military applications (E.g. sensing biological agents in a war area): We can 
apply the DFM to a completely distributed and to a semi-distributed application. Imagine 
the use of smart biological agent sensors deployed in a war area (completely distributed 
approach). Using a similar approach described in the smart microphone example or using 
some information dissemination algorithms applied to sensor networks such as the one 
described by Kulik [18], we can propagate the information of a detected biological agent 
(data value above a threshold) in the area until it arrives at some point where war plans 
can be changed or modified (E.g.: remove troops from a contaminated area). We can 
imagine a semi-distributed approach where each soldier carries sensors that advise him, 
with some grade of confidence, when some biological agent is detected in the 
environment (model represented in figure 12d). As a result, each soldier can perform 
some action according to the different situations and hierarchy. We can also have a more 
complex system that has some sensors that detect biological agents in the environment 
and others that detect modifications in soldier’s bodies. A neural network can be applied 
using as input the data from these different sensors and giving as an output, the presence 
or lack of an infectious biological agent. In this case, we are using a low data fusion 
approach based on neural networks that directly determine a variable (without using an 
agent to perform data analysis). The DFA instance used here is represented in figure 12c. 
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2.3.6.2 Robot navigation: Imagine a robot, which based on different sensors, evaluates 
the environment and makes decision about its navigation. This robot can have an 
accelerometer sensor that detects the robot position (variable), an ultrasound sensor that 
determines the distance from the objects around to the robot (distance from object is 
another variable); this same ultrasound sensor can determine the form of the surface of 
the objects in the environment (variable object recognizing); Based on this variable the 
robot can control its wheels and navigate. All the system will use part of the DFA 
represented in figure 12e. 

 
2.3.6.3 Geographical images application: Imagine an application that, based on satellite 
images, wants to identify different buildings in a city. The application should process the 
satellite images, and using different types of algorithms, try first to identify buildings 
areas and after, among these areas, it should try to match to a certain building image. In 
this case, the application is using the figure 12e model with different levels of high level 
data fusion. 

 
2.3.6.4 Home security system: Imagine a home security application using different sets 
of sensors such as a sound sensor, video camera, ultrasound sensor, temperature sensor, 
smoke sensor, vibration sensor, and infra-red sensor. From the sound sensor we can 
determine if it is human voice, a broken window, an open door, or other types of sounds; 
from the camera we can obtain an image or presence of motion; from the infrared sensor 
we can detect motion, open door, open window; from the vibration sensor we can also 
detect motion, open door, broken window, open window; from the image we can 
determine whether it is compatible with a person, an animal, an object, an open door, a 
broken window, and so on. We can see from this example that the variable person can 
come from different types of sensors. All these processes have in common that the data 
coming from the sensor is processed, redundant data that can be fused at the low level 
data fusion, using an algorithm to extract the variable for each type of data and fusing the 
redundant variables in the high level fusion. If we fuse the variable person with the 
variable broken window we can come up with a new variable called intruder. This means 
that we are using a second level high level data fusion. We can also use a tool that based 
on the data from the smoke sensor (without analysis) and the image can create a new 
variable called fire (mixture level fusion). The entire example will use the model 
represented in figure 12a. 

 
2.3.6.5 Bioterrorism detection system: Imagine thousands of biosensors distributed in a 
city to detect the presence of Anthrax. This application is very simple: detection of the 
presence of Anthrax and determining the sensor’s localization. In this case, the 
application is using the figure 12d model. 

 
2.3.6.6 Health application: We have developed a health monitoring system based on 
multiple physiologic sensors (DFA Applied to the Personal Heath Rate Monitoring 
System) that will be presented in the chapter 3. The entire example will use the model 
represented in figure 12e. 
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2.3.7. Discussion 
 

We present a proposal of a general data fusion architecture described in a formal 
language of object representations (UML) that tries to represent different scenarios, 
specifications and features of a general data fusion system. We will show that we can 
employ our data fusion architecture in diverse scenarios, including different contexts and 
domains. As far as we know, this allows us to conclude that our model is compatible with 
most of the published applications using a data fusion model. 

In relation to the taxonomy employed, although a common taxonomy in data 
fusion is something difficult to achieve, as discussed in [9] by diverse authors, we have 
covered almost all the possible scenarios with our taxonomy. 

There are some papers in the fault tolerance related literature that use the 
terminology virtual sensors to represent what we call in the DFA redundant variables. 
Therefore, we can map the DFA to different models compatible with fault tolerance that 
employ the same aspect. The different approaches to choose one or more virtual sensors 
based on events, behavior, or other aspects, is included in the decision module. Besides 
this, the DFA also allows that every intermediary or final view of the sensing 
environment arrives at the Variable Interpretation. This aspect guarantees the presence of 
redundant views and provides a graceful degrading view of the environment. This means 
that even if the majority of the sensing units are finished, the system will still have a view 
of the environment, even if it is not the best. This aspect joined to fault tolerance and 
resilience is compatible with the ubiquitous objective. 

The Decision or control module is not a formal part of a data fusion framework. 
In general, it does things not formally related to the data fusion process, such as to control 
actuators or to modify the sensing capacity. But, if this module controls the data fusion 
process, it should be included as part of the data fusion model. In the DFA proposed in 
this paper, the decision module controls the fusion process in different ways, such as 
changing the data/variable flow, starting new instances of the different DFA modules that 
depend on different types of data and/or variables and changing algorithms to process or 
analyze the data. We have explicitly characterized how the fusion process can be 
controlled by itself. 

Most of the papers in the data fusion literature describe different tools to represent 
the knowledge, but very few papers have tried to establish a dynamic model that allows 
different configurations and different mechanisms to add or delete new features for the 
model. The DFA provides all these features to apply the same model in different 
contexts. Besides, we employed a well known language (UML) to represent the model. 
This fact can help different researches to apply the same model. This is one of the most 
important contributions of this paper. 

The JDL functional model is the most common used data fusion model in the 
literature, although outside the military domain it is not well accepted. It is not well 
accepted because it describes features for the data fusion that makes it difficult to apply 
in different domains. We can map the JDL model [2] to the DFA in the following way: 
the level 0 corresponds to the pre-processing module; the level 1 to the LLDF and data 
analysis until the point where the variables are generated; the level 3 is represented in the 
DFA by the HLDF and variable interpretation modules; level 4 is represented by the 



39 
 
 

decision module. All the functionalities provided by the JDL model are provided by the 
DFA, but the DFA is a more general and dynamic model than the JDL model. 

 

2.3.8. Conclusion 
 

We presented a general data fusion architecture described in a formal language of 
object representations (UML) that tries to represent different scenarios, specifications and 
features of a general data fusion system. It also allows a dynamic modification of the 
system according to different states of the environment or of the system. 

The Personal Heart Rate Monitor is from the class of network-based mobile 
dynamic systems powered by battery, where an application should adapt itself to different 
configurations of the system (data sources moving in and moving out), different states of 
the environment, and considering power and bandwidth constraints. The DFA proposed 
and applied to the PHMS showed to be a good solution to the problem of developing an 
application framework to manage data from different types of sensors to perform 
different tasks in a ubiquitous computing environment. We have mapped the data 
management problem of the PHMS to different domains and application and show that 
we can employ our data fusion architecture in diverse scenarios, including different 
contexts and domains. As far as we know, this allows us to conclude that our model is 
compatible with most of the published applications using a data fusion model and that we 
think the DFA can be employed with success at least in these compatible scenarios. 

In this work, we have focused on the application’s framework (data fusion and 
decisions modules) while also considering the necessary middleware and network 
facilities to ensure resilience to changes in available resources and changes in the 
environment’s state. As a future work, we are going to develop a dynamic 
communication approach between the application framework and the middleware on the 
top of a network. This will allow us to achieve improved quality of service of the entire 
system, mainly if it has more than one application running at the same time. 



40 
 
 

Chapter 3 

 

Body-Worn Sensor Networks for Health Monitoring 
 

Many medical events can be diagnosed and possibly prevented by continuous 
clinical monitoring of patients. Several signals can be monitored. Each set of signals 
should be chosen according to the expected result. This end point can be cardiovascular 
events, infections, hormonal disturbances and so on. The set including the 
electrocardiogram, non-invasive blood pressure measure, pulse oximetry and vascular 
Doppler evaluation can detect almost all sudden cardio-respiratory events for example. 
Mobile intelligent clinical monitoring systems based on body-worn sensor networks 
provide mobility and out of hospital monitoring. It seems to be important health care 
equipment, to be used in the follow-up of high risk patients in out of hospital situations 
and to monitor “healthy” persons to prevent medical events. The characteristics of local 
diagnosis and actuation permit an improvement and advance in the diagnosis and 
emergency decision support. Besides these aspects, the connection to a central 
monitoring, ambulance service, assistant physicians, and the personal database and 
electronic record make it possible a complete integration of the system with a health care 
system. These goals can be achieved in a remote manner, by wire line or wireless 
connection. 

 
3.1. Introduction 

 
The evolution of wireless network devices and microchips such as MEMS (Micro 

Electro Mechanical Systems) brought to reality the sensor networks applications [33]. 
Among the different types of applications, the body-worn sensor networks application is 
characterized by a small coverage area, limitations on the number of sensors deployed, 
specific areas for sensor deployment, risk and benefit concerns, and specific sensor’s 
functionalities and characteristics. 

The sensors deployment can be classified as invasive, non-invasive and semi 
invasive. In the invasive deployment the sensor is inserted in some part of the organism 
through some invasive procedure. The non invasive deployment indicates that the sensor 
is deployed over the surface of the body without any type of invasiveness of the body. 
The semi invasive deployment is characterized by the deployment of the sensor in the 
oral tract (month and gastrointestinal tube), urinary tract, reproductive tract, or in the 
eyes, nose or ears. 

All the different types of deployment should consider aspects such as usability, 
interaction between the sensor’s material and the biological environment, power supplier 
and battery lifetime, biological effects of the electromagnetic waves, and the health, 
social and economical impact of the technology employment. 

The network coverage should consider the entire body. Some sensors are static 
and some are mobile. For example, a sensor that is swollen and goes through the 
gastrointestinal tract is a mobile sensor. 
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3.2. Related Work 

 
Some authors have proposed mobile clinical monitoring systems based on a 

multiparametric wearable computer [41] or an electrocardiogram mobile device [42]. 
Both systems addressed the necessity of using specialized agents and were applied to non 
invasive measures based on Holter ECG monitoring or other devices. 

 
In spite of the great development of digital signal processing devices [26], some 

of the biological signal processing still needs some analog pre-processing. The 
electrocardiogram is an example. This increases the size of the system. As a consequence, 
the development of mobile monitoring systems needs to consider the important aspect of 
usability. Actually, there have been great improvements in sensor technology due to 
nanotechnology applications to sensors manufacturing and battery improvement [35]. 
Power consumption is one of the great mobile applications’ problems. The cost and size 
decrease have provided an extraordinary improvement in the study and development of 
sensing systems. The state of the art in biological sensors is the MEMS (Micro Electrical 
Mechanical Sensors) sensors. Some of these micro sensors are based on nanotechnology  
[33]. It has the capacity of capturing many types of biological signals, to make some 
restricted data processing and to transmit it to a wireless network. Scientists have 
developed biochemistry sensors that measure substances like glucose, oxygen, and 
carbonic gas; mechanical sensors that can be used to measure biological pressures and 
movement amplitude; and accelerator sensors that can be used to measure position and 
flux, and so on. This improvement brings a world of ideas to biomedical applications of 
sensor systems. Other authors have discussed general micro sensors network algorithms 
[25][30] and applied them to biomedical applications [19], where the authors discussed 
general biomedical applications and specifically discussed the artificial retina. 

There are many ways of actuation in biomedical applications. The systems can 
send messages to the user (patient or not) as an advisor or as a remembrance agent, to a 
health system as an emergency call or to transmit an ECG signal to the patient’s assistant 
physician, or to control drug infusion pumps and others medical devices. But the most 
promising applications are in the development of artificial organs. The artificial pancreas 
is an example of an artificial organ. It monitors the glucose level by a MEMS sensor and 
when necessary, a micro pump, connected thought a wireless channel, administrates 
insulin. Another promising application is The Personal Physician. It would be a 
monitoring system to prevent or to provide early diagnosis of many diseases. As a 
consequence, it can advise the person when something wrong was detected, such as a 
malignant cell or a high blood pressure. 

Many authors have addressed cooperation in multi-agent systems 
[20][21][22][23][31][32][27][29], but few of them have tried to establish a general 
biological based architecture. Some have proposed a hormone based system [38], others 
have proposed systems based on behavior [39] and imitation [40]. Many authors have 
also addressed the radio-frequency transmission problems [36], and there is an official 
recommendation guideline to avoid radio-frequency medical devices interference. 

The Biomedical Multi-Agent Monitoring Systems [27][28] and [29] design 
includes some important problems in mobile, wireless and multi-agent applications. 



42 
 
 

Besides this, there are others problems related to the biomedical application such as 
sensors sizes restriction, sensors placement restrictions, bio-compatibility of materials, 
biological radio-frequency influence and so on. All the solutions to these problems must 
consider the biological compatibility, networks and power limitations. 

 
3.2.1. System’s view 

 
The body-worn sensor networks infrastructure is based on the general system’s 

architecture described in chapter 2. Furthermore, it presents the general infrastructure of 
the body-worn sensor networks applied for health monitoring. 

 
3.2.1.1. A general software infrastructure for sensor networks applications 

 
The general infrastructure built is described in figure 13. Figure 13 shows the 

relationship between the different blocks of software to develop an integrated solution for 
different types of applications. The middleware software connects the processing and 
analysis infra-structure to the light part of the middleware that is attached to the sensors 
[43, 44]. The processing and analysis infra-structure is composed of the network stack, 
operational system and the application software. The application software is divided into 
data fusion module and decision module [45]. 
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Figure 13: Network, middleware and application relationship 

 
3.2.1.2. Body-worn sensor networks software infra-structure applied for health 
monitoring 

 
The body-worn infrastructure (dotted line) includes the data management block, 

Objective Symptoms Review, Automatic Information Assistant, Local log and local 
database, sensors and actuators. The body-worn module communicates with the Web-
based Electronic Patient Record, external actuators, Digital libraries and to a personal 
database at home (smart home). 

The data management module is composed by the data fusion and decision 
modules. The data fusion module is implemented based on the general Data Fusion 
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Architecture (DFA) described in chapter 2. The data management module receives as 
input different types of data, such as symptoms, physiological data, and user’s health 
(medical) data. It generates outputs such as control to sensors and actuators. It also 
generates outputs as queries for digital libraries. Finally, the data management module is 
responsible for sending data and variables for the local database and log, and for the 
personal database at home. The automatic Information Assistant receives as input 
documents from the digital libraries as a result of the queries elaborated by the data 
management module. It has been described in [46][47][48][49][50][51].  
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Figure 14: Body-Worn Sensor Networks Infrastructure 
 

3.3. System Architecture 
 

The system architecture is composed by the hardware and software components 
joined by the network infrastructure. 

 
The application development: Figure 14 shows the diagram of the software tool for 
applications development based on a body-worn sensor networks. The application is 
developed based on the data fusion module and the decision module. The data fusion 
module is based on the architecture proposed by the authors in [45]. It is responsible for 
the fusion of data from the same type of sources (redundant data) and data from different 
types of sources. The different levels of the data fusion system are composed by different 
types of agents responsible to process and analysis different types of data. The data 
fusion system provides dynamic software to represent the changes in the environment 
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(body and environment where the body is placed), conditions of the sensors, and 
capability of the processing unit. This adaptability of the system is compatible with fault 
tolerance and ubiquitous computing. The decision module makes changes in the system 
to follow the new necessities. It is also responsible for the control of messages delivered 
and actuators, log and exchanges of information with other information systems (for 
example the electronic medical record) (figure 15). 
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Figure 15: Application’s block diagram 

 
 

3.4. Network 

 
The monitoring system is covered by a wireless network that connects the sensors 

and agents, agents and agents, and agents and actuators. These components are related to 
each other in the following manner: sensors are connected to the nearest agent that is 
connected to the other agents by a network of agents. These agents are connected to the 
actuators by a network of agents and actuators. Figure 16 summarizes these networks. In 
these systems data and control are based on broadcast messages.  
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Figure 16: Network of sensors and actuators 
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The system design includes the integration of hardware and software components 
thought a wired and wireless network. This includes the development of multi agents 
system, health knowledge based, learning algorithms and cooperation; fault tolerance 
approach including power management and network management. All these aspects 
should be considered because the biomedical application includes certain specifics that 
sometimes completely change the usual approach to solving the problem. 

To achieve the goal of developing a body-worn sensor network we need to use 
sensors, intelligent agents to manage the information and actuators to return some 
decision to the user or the system (figure 17). Sensors and agents have the following 
characteristics: type (specialization), number, body placement, and functionality. The 
number and types of the actuators depend on the kind of answer the system should return 
to the user or to itself. The communication can occur in a wired or wireless network. In a 
mobile environment, power and network problems should be considered in system 
design. Besides these aspects, in biomedical applications it is necessary to take into 
account the biologic compatibility of the system.  
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Figure 17: Sensors module representation 

 
 

3.5. Hardware infrastructure 

  
Wired or  Wireless  
Transmission 

 

 
The hardware infrastructure is mainly related to the sensors and actuators. Besides 

this, depending on the application, it can be necessary to add processing units along the 
network coverage area. Intelligent agents can be embedded into these devices to process 
the raw data that comes from the sensors, or embedded in the sensors itself. 

 
3.5.1 Sensors 

 
There are some characteristics that should be considered when developing a body-

worn sensor networks application, such as sensors functionalities, size and placement, 
biocompatibility, and lifetime. Different types of biomedical sensors can be used in the 
body-worn sensor networks. The sensors can be used to measure physical variables such 
as pressure, movement, temperature, electrical activity, and flow. The sensors can also be 
used to measure chemical substances in the fluids of the organism (sweat, blood, urine, 
saliva, etc). Some sensors deployed in the gastrointestinal tract can take pictures from the 
gastrointestinal mucosa, measure the PH, measure the tonus of the sphincters, or detect 
the presence of bacteria and parasites. These measurements can also be done in the 
genital and urinary tracts. 
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The sensors deployed over the surface of the body should be compatible with the 
movements of the muscles and joints. So, the size and placement are related to the size of 
the areas compatible with no restrictions to movement and positions. The article of 
Gemperle [37] describes in great details the different areas of the body surface 
compatible with a better usability. The sensors deployed using the semi -invasive 
approach should consider the PH of the area, the presence of microorganisms, the local 
habitat and the movement of the tract. The size and placement of sensors deployed in an 
invasive approach will depend on the local where it will be inserted (blood vessels, brain 
cortex, abdominal cavity, etc). Furthermore, the interaction of the sensor material with 
the biological environment determines the biocompatibility of the material. This is a great 
problem for the invasive and semi-invasive sensors. 

Although great progress has been achieved though the development of cardiac 
pacemakers, it is a challenge to develop invasive sensors for long term use. Different 
concerns are related to long term use: battery lifetime, material degradation and fault, and 
interaction between sensor and body. On the other hand, the battery of the non-invasive 
sensors can be exchanged or powered easily. Some sensor characteristics adapted to 
body-worn sensor networks. 

 
3.5.1.1. Types of Sensors: The types of sensors used are related to the system needs. The 
number of monitoring variables depends on many aspects: clinical necessity in a patient 
based system, number of variables in which we are interested in a preventive monitoring, 
and technologies employed to develop the system. Several biological variables can be 
measured and consequently monitored. There are biochemistry markers, fluids dynamics, 
gases distribution, volumetric changes, movement detection and electrical activity 
variables that can be measured. The problem is that many of them can only be monitored 
in an invasive manner. So, if the system is non-invasive it is necessary to restrict the 
monitoring system to the variables that are important to the context and can be measured 
in this way. In this case, specific biomedical devices like Electrocardiogram, ECG Holter 
monitoring, non invasive Blood Pressure devices, Pulse Oximetry and others, can be used 
isolated or in a wearable computer application. Another solution compatible with 
mobility is the technology such as nanotechnology-based micro sensors. The type of 
sensor devices has an important influence in the amount of mobility and usability of the 
system. 

 
3.5.1.2. Number of Sensors: The number of sensors depends on the variable to be 
measured and the level of redundancy necessary to the development of a fault tolerant 
approach. If the variable is the Blood Pressure (BP), sensors can be placed in any arterial 
system (mainly arms and legs). BP measured in a specific place, is valid for the entire 
organism. In the case of the electrocardiogram (ECG) depends on the number of leads 
used. Generally, it varies from eighteen derivations to one. More than twelve derivations 
are used only in static ECG evaluation. Monitoring systems commonly use twelve or less 
derivations. Twelve derivations use ten sensors or at least ten electrodes. Pulse oximetry 
usually needs only one sensor. Blood flux should be measured at least in the main artery 
of members (brachial, femoral), head (carotid) and aorta. Oxygen measurements should 
be done at the artery and vein. Ideally, it should be done in the heart (right ventricle) or in 
the pulmonary artery. Since it is an invasive measure, it can only be measured in a mobile 
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manner if the patient needs an artificial cardiac pacemaker and if it uses an oxygen sensor 
together with its ECG electrode. If oxygen can be measured in both places it brings great 
monitoring advantage to evaluate circulatory function. The oxygen consumption (VO2) 
can be calculated. Carbonic gas (CO2) is measured in an artery (arterial concentration) or 
in the expired air (capnography). In both cases it uses only one sensor. Biochemistry 
markers like Lactate, myoglobin, troponin, glucose and others need one sensor each 
placed in a vein (blood contact). Heart rate can be derived from the more accurate ECG, 
or from pulse oximetry data. Respiratory frequency and amplitude can be measured in 
superior abdomen, thorax, supraclavicular area or neck with specific sensors. 
Electromyography (EMG - muscles electrical activity) should be done near the muscles 
we want to monitor. The goal of monitoring body movements and identification of 
exercise activities would be achieved if sensors were placed in muscles of the limbs, 
neck, thorax and back. The region’s combination of these sensors can diagnose the type 
of exercise the user is practicing. Electroencephalogram (EEG or measure of cerebral 
activity) is captured by placing electrodes or sensors on the head. Positioning sensors 
should be placed in the limbs, thorax and head. The association of these positions can 
determine body positions standing, sitting or lying. 

 
3.5.1.3. Sensor Redundancy: One of the most important fault tolerant problem 
approaches is to increase the number of sensors above the necessary numbers determined 
by the parameters described above. The redundant sensors should be placed in different 
areas of the body when the physiology permits. This would take advantage of the agent’s 
distribution and improves the fault tolerance of the system. 

 
3.5.1.4. Sensor Placement: Macro sensors, like specialized devices, (HOLTER, pulse 
Oximetry), need to be placed on the body (skin). Micro sensors need to be implanted if 
the user will use it for a long period of time and the technology is adequate for long use. 

 
3.5.1.5. Sensor Functionality: A sensor as a device can be either a sensor and transmitter 
unit (relay sensor), or can be a sensor, transmitter and a processing unit as well. The 
signal processing must be done in some part of the system and can be placed at the 
sensors level or at others devices, depending on many factors like power and network 
management, sensors size, sensor placement and complexity of the processing unit. 
Because of power and size limitations, if the sensors have some processing function, it 
may involve the analog pre-processing, analog to digital conversion and digital signal 
processing. 

 
3.5.2. Actuators: an actuator is any type of device that executes a system’s decision. The 
actuator can be inserted into the body, or be on the body’s surface. Furthermore, an 
actuator can stay near the user in the network coverage area. 

 
3.5.2.1. Types of Actuators: An actuator could either display messages such as warnings 
or take some preventive action; a telephone call to an assistant physician, user family or 
an emergency unit; one or more infusion pumps may control the infusion of drugs; an 
artificial device may control some body function like an artificial cardiac pacemaker; it 
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can also be an artificial organ such as an Artificial Heart or an Insulin Pump (Artificial 
Pancreas). 

 
3.5.2.2. Number of Actuators: In general, only one unit of each kind is necessary. An 
exception is the infusion pump, since the number is limited by necessity, such as venous 
drugs. More than one type of actuators can be used in the same application. 

 
3.5.2.3. Actuators’ Placement: This depends on the type of actuator. If it is an artificial 
organ it will be placed inside or on the body. If it is an infusion pump, it will be placed 
around the patient. If it is a display, it can be a display joined to the body (wearable 
display) or a TV or Computer video in the room. 

 
3.6. Software Infrastructure 

 
3.6.1 Agents: An agent is a software component that is responsible for processing or 
analyzing some type of data. For each signal or piece of information a large knowledge 
base to process and make a decision (actuation decision) is necessary, making mandatory 
the development of specialized agents, such as the Blood Pressure agent; the ECG agent; 
the EEG agent; the Oxygen agent; the EMG agent; the blood flux agent, the 
remembrance agent; and so on. A single user may be connected to several agents. The 
number of processing units will depend on the coverage area of the wireless channel 
(centimeters to meters) and whether we are using smart sensors or not. In the case of 
multiple processing units, it would be better to distribute a certain number of device 
agents on the body: at least one for each limb, one for the abdomen, another to the thorax, 
one for the neck and head, and another for the back. There are different approaches 
proposed in the literature for multiple agent systems [23].  

The agent’s devices would do almost all the signal processing work and network 
transmission. These functions would cause a great increase in power consumption. As 
there are as many agents as there are variables, the agents’ functions are determined by its 
specialization. Some of the variables monitored need an intensive processing and 
transmission rate. There are some variables that are discrete signals and others that are 
continuous. Some of the signal characteristics complicate or simplify its processing and 
evaluation. Some agents have special functions, such as to modulate or to regulate other 
agents’ functions. 

 
3.6.1.1. Types of Agents: For each signal or piece of information a large knowledge base 
to process and make a decision (actuation decision) is necessary, making mandatory the 
development of specialized agents, such as the Blood Pressure agent; the ECG agent; the 
EEG agent; the Oxygen agent; the EMG agent; the blood flux agent, the remembrance 
agent and so on. 

 
3.6.1.2. Number of Agents: A single user may be connected to several agents. In the 
case of micro sensor-based systems, it would be better to distribute a certain number of 
device agents on the body: at least one for each limb, one for the abdomen, another to the 
thorax, one for the neck and head, and another for the back. Since power consumption of 
transmission is related to the reachable area, this distribution decreases the sensors power 
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consumption. The use of multiple receptors for the micro sensors wireless signal may 
help to decrease the power consumption. The micro sensors need to send a signal to a 
limited area. This will also help to identify the sensor’s location in case it is mobile. 

 
3.6.1.3. Agents Functionality: The agent’s devices would do almost all the signal 
processing work and network transmission. These functions would cause a great increase 
in power consumption. As there are as many agents as there are variables, the agents’ 
functions are determined by its specialization. Some of the variables monitored need an 
intensive processing and transmission rate. There are some variables that are discrete 
signals and others that are continuous. Some of the signal characteristics complicate or 
simplify it’s processing and evaluation. Some agents have special functions, such as to 
modulate or to regulate other agents’ functions.  

The Electrocardiography, electromyography and electroencephalography are the 
most power and network bandwidth consumption monitoring variable. ECG will need a 
pre-processing unit responsible for the signal amplification, analog to digital conversion, 
potential comparison, digital filtering, and digital signal processing like FFT. The agent 
ECG will be responsible for ECG analysis and diagnosis, heart rate variability evaluation, 
compression, data encryption, and local storing of the ECG data. As its processing work 
is intensive, and needs to be a real time decision device, we are developing a hardware 
agent based on a FPGA. This can bring the advantage of personalized algorithms to the 
patients’ necessity. It can advise users about problems, make a phone call to an 
emergency unit in critical situations like malignant arrhythmias, or modulate other 
agent’s functions. 

The Blood Pressure Agent is responsible for the detection of abnormal blood 
pressure measures, detection of error measures, circadian variability and possible control 
of infusion pump or advising use of drugs for High or low Blood Pressures. The Pulse 
Oximetry Agent is responsible for the oxygen blood saturation measure, arterial pulse 
rate and pulse analysis, including variability and error corrections. It regulates others 
agents. The Blood Flux Agent is responsible by blood flux analysis and error correction. 
It regulates other agents. The Respiratory Agent is responsible for the respiratory rate and 
amplitude (inspired volume) analyses, and error correction. It can control a respiratory 
machine or advise the user about respiratory problems. The Heart Rate Agent compares 
the heart rate from ECG and the Pulse rate from Pulse oximetry. It evaluates the rates 
abnormalities, corrects errors and controls a pacemaker or advises the user about 
problems. The Gas Agent detects Oxygen and Carbonic Gas abnormalities, errors and 
modulates other agents. The Metabolic Agent detects lactate abnormalities and regulates 
others agents. The Lesion Detection Agent (Myoglobin and Troponin) detects abnormal 
levels of substances and advises the user about it. The Remembrance Agent reminds the 
user about preventive actions, times to take medicine pills and other applications. The 
Resilience Agent detects system failures and makes decisions based on a previous 
knowledge based approach. The Electronic Stethoscope Agent identifies heart sound 
problems and advises the user about it. It modulates other agents. 

 
3.6.1.4. Adaptive and Dynamic Resilience Agent: This agent is responsible for the 
management of the services utility, having as the main objective function the power 
management and as secondary goal the network traffic optimization. These are very 
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important goals in the mobile applications in critical situations like health care services 
and vital signals monitoring. The mobile environment has power supply problems and 
possible failures with network connectivity. Many papers in this area have addressed 
these problems from the hardware point of view. This paper emphasizes the great 
importance of application participation in the power supply management. Most of the 
time, it is assumed that the application is necessary all the time, but the reality is that 
when the battery power goes down, the applications stops independently of what has been 
assumed before. So, instead of have a complete stop in the application, the power 
management supply agent can decide what to turn off before the system is completely 
off. This goal can be achieved considering some premises: not all the system is 
completely critical and we almost always are able to choose in different situations what is 
most important. It is clear that in certain situations we need all the monitoring aspects. 
But this kind of patient needs in hospital care or at least an ambulance care. The mobile 
care is transitory and the power supply would not be a problem. 

This class of agents would be responsible for the progressive decrease in the 
transmissions and monitoring level through the following decisions: decrease in the 
frequency of data sampling; decrease in the number of sensors (first the redundancy and 
after the absolute and relative decrease); knowledge based priorities and situations for 
turning off the parts of the monitoring system; priorities of functions like data processing, 
interpretation, transmission, saving and compression; decisions of compressing and 
saving data in critical situations (like saving only abnormal data). 

A distributed system can have failures in many parts. Sensor failure will not bring 
great problems because of the presence of sensors’ redundancy. Agent failure would have 
the problem of losing the sensors signal from its covering area. One of the solutions 
would be to amplify the nearest agent network covering to receive the sensors signals, but 
this is not good for the power management system. But as the agent’s battery can be 
easily changed, it can be an adequate solution. Besides this, the system is prepared to 
substitute agent functionality. The absence of messages from the disturbed agent is a 
signal to another agent to assume its’ functionality. This occurs after a timeout that 
depends on the signal frequency of sampling. The order of substituting agents is 
established previously by the relationship among the agents. The agent most dependent 
on the other is the first on the list and so on. If the first substituting agent fails, after 
another timeout, the second agent tries to assume its functionality. If an agent doesn’t 
receive many signals at some time, continuously, it concludes that it is its’ own failure. It 
needs to advise the others that it became “sick”. The sickness of an agent is transmitted to 
all the other agents. This is important to avoid more than one agent controlling an 
actuator. If the agent processing fails, but there is no transmission failure, it would be 
tolerated because other agents would assume its functionality. In this case it would not be 
necessary to amplify the nearest covering network, because this functionality is 
preserved. Actuators problems must be diagnosed. If this does not occur, the agent may 
try to increase or decrease its objective function to achieve the necessity of the system. 
What would not happen? This problem would not be interpreted by others agents as an 
agent problem, because they would receive messages from it. An actuator problem cannot 
be resolved by the system. The only thing it does is to detect the actuator problem. 
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3.6.1.5. Agents Placement: Agents can be embedded into the sensors or it can be placed 
in larger devices than sensors on the body’s surface. This will facilitate the agent’s device 
battery and placement change. It can be placed in any place on the body surface 
according to Gemperle. He and Cols have studied possible body positions for wearable 
devices, considering body movements and muscle activity [37]. 

 
3.6.2. Knowledge base and learning process: The knowledge-based system can be 
divided in two components. One is related to normality or abnormality classification of 
the signals. Each agent has the knowledge related to the signal for which it is responsible. 
The data are pre-processed in a fuzzy system based on the descriptive statistics of normal 
population. They give the amount of abnormality or normality of the objective function 
of the agent. Since the signal varies in a range, when it is not in the expected range (over 
or under), the system tries to make it return to normal range. The other component is an 
embedded mathematical modeling of the interactive process among agents. The agent 
decision process suffers influence from other agents. This influence is modeled in a 
mathematical function based on differential equations. So, the learning process is the 
result from the interaction between the mathematical modeling and the fuzzy logic 
evaluation. 

 
3.7. Health problems related to radio-frequency transmission 

 
There are three possible problems related to radio frequency and humans: 

biological effects of electromagnetic waves; compatibility of radio-frequency transmitters 
and medical devices; electromagnetic interference in hospital environments. The Council 
of Scientific Affairs recommends that wireless devices should stay as far as possible from 
medical devices [36]. While experimental studies have suggested that serious adverse 
effects related to specific power levels are great, clinical reports suggest that it is rare. 
The diversity of radio-frequency sources and its broad spectrum of frequencies make it 
difficult to predict the biological risks. Experimental studies of the long time biological 
effects of low radio-frequency transmission must be done. 

 
3.8. Conclusion 

 
We have presented a description of general body-worn sensor networks built in a 

network of micro sensors, agents and actuators. The system was designed considering 
and optimizing power management and wireless network problems to achieve the 
resilience and ubiquitous computing goals. Furthermore, some specific aspects related to 
the health and body-worn sensor networks application were considered. 

We also introduced the concept of a resilience agent. This type of agent was more 
complex than a fault tolerant agent. It included the fault tolerant agent’s functionalities 
added adaptability to new circumstance without failures. Besides this, it considered 
clinical aspects to decide about power consumption and Network optimization. 
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Chapter 4 

 

Centralized Body-Worn Sensor Networks - The Personal 

Heart Rate Monitoring Application 

 
4.1. Introduction 

 
The development of wireless network technology and improvements in sensors 

and embedded devices have enabled the convergence of mobile applications and 
embedded environments. One of the requirements of mobile embedded wireless devices 
is that they should be available at all times. In such systems, components can be inserted 
or excluded without stopping the entire system. In this type of system, power and 
bandwidth constraints should be considered. If the system is battery powered, each 
component of the system has a different lifetime, which is based on the battery capacity 
and the device’s power consumption. Power and bandwidth are limiting factors to 
resource use. All these problems should be addressed, to guarantee that system 
performance degrades gracefully as resources are diminished. A health monitoring 
system is one example of these systems, where, based on data that come from sensors, a 
view of the environment is obtained and some decisions are taken. The decisions taken 
can be the control of an actuator (e.g., infusion pump of a medicine) or a change in the 
number and location of sensors (system’s reconfiguration). To achieve the last goal, some 
sensors can be turned on and other sensors can be turned off. To achieve the connection 
between the view of world and the system reconfiguration, we can classify the 
environment changes over time as different states. The requirements of an application 
may change according to the state of the environment, and as a consequence, different 
components (i.e., sensors) should be used accordingly. These systems are classified as 
dynamic systems.  

A dynamic system should be available all the time. To achieve this goal, the 
system should be resilient, fault tolerant, and achieve all the Quality of Service (QoS) 
requirements specifications. Resilience is defined as an ability to recover from, or adjust 
easily to, changes in available resources, such as node failures, as well as changes in 
system state, such as a change from healthy to diseased. Resilience is a more general term 
than fault tolerance, which is the ability to recover or adapt to different types of failures, 
because it includes adaptation not related to failures, such as adapting the system to event 
detection in the environment. As a consequence of the fault tolerance and resilience 
goals, we can achieve graceful degradation, which is the ability to progressively decrease 
system functionality in the presence of a progressive decrease in available resources. 
Graceful degradation is necessary to achieve the goal of computing all the time with a 
certain QoS (i.e., Ubiquitous Computing). Although the definition of QoS changes in 
different scenarios, we will define QoS as the necessary requirements to achieve a 
specific goal. The specific goal can be: an adequate exchange of data in a transaction, a 
better use of the network bandwidth, power management approach compatible with lower 
power consumption, a better view of the environment by an application, etc. 
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4.2. Problem Statement 
 

A multi parametric Personal Heart Rate Monitor (PHRM) is a wireless-based 
mobile dynamic system with the goal of monitoring the heart’s condition in healthy and 
disease conditions. It provides a continuous monitoring of the subjects’ Heart Rate. The 
multi parametric PHRM consists of a body-worn sensor network powered by battery and 
connected by a wireless network. It is designed to use different types of physiological 
sensors to monitor the user’s heart rate: blood pressure, pulse oximeter, blood flow, 
arterial pulse, Electrocardiogram (ECG), Electromyogram (EMG), Electroencephalogram 
(EEG), and others. The use of all of these sensors will provide the evaluation of the heart 
rate in different conditions of the body. The heart rate varies according to body activity, 
temperature, blood pressure, position and so on. The PHRM evaluates the absolute and 
relative heart rate values in each condition. 

PHRM is a mobile system. In this case, bandwidth and power constraints should 
be considered. To achieve continuous monitoring in different conditions, the system 
should have reasonable autonomy. Node lifetime is inversely proportional to power 
consumption. To decrease the power consumption of the system components, it is 
necessary to adjust the use of sensors to the current necessity of the application. As an 
example, if the user is completely healthy (all data are in the normal range), we can 
decrease the number of sensors and turn off the sensors not in use. This approach 
increases the lifetime of the sensors and of the system overall. When an event is detected 
from the current available data (e.g., a high blood pressure), the system can turn on the 
sensors related to the event (i.e., ECG and pulse oximeter). This is called adaptation to 
environment changes. The system should also adapt to loss of available sensors 
(adaptation to the availability of system components). As a result, if we can adapt the 
system to all events occurring in the environment or at the sensors level, the system can 
be resilient, fault tolerant, and provide graceful degradation. Although there are different 
adaptation definitions in the literature, we will consider in the entire text the definition 
described in the scenario above. 

All the sensors will be connected by a wireless network on the body to an 
application on the top of a middleware. The discovery service will send the available 
sensors to the middleware, which will send the required data to the application. The data 
fusion framework will process and fuse the data to come up with a view of the heart’s 
health. Based on this view, the decision system will determine the current PHRM sensors 
necessity (application QoS). As an example, consider that the user is healthy and that all 
the data that come from the body are normal. Based on these aspects, the power 
management policy will turn off most of the sensors. The monitor will be based on one 
ECG lead and a blood flow sensor. Now, imagine that the system has just recognized an 
arrhythmia. As a result, the decision module will request that the middleware increase the 
number of leads of the ECG to 3 and ask for the blood pressure and pulse oximeter data. 
This information will be sent from the middleware to the network. The network will 
schedule the new transactions and will also be reconfigured according to the new 
requirements of the system (assuming this is feasible, based on sensors available and 
bandwidth constraints). As a consequence, in the next step the PHRM application will 
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receive data from 3 ECG leads, from the Blood pressure sensor and from the pulse 
oximeter sensor. 

We will develop a data fusion framework for applications of a network-based 
dynamic system with the following characteristics: 

 
• Components of the system can be inserted or excluded without stopping 

the entire system;  
• The environment changes with time and so do the physical measures from 

it;  
• Application’s necessity changes according to different states of the 

environment, and as a consequence, it can use or reuse components in the 
different states;  

• The system is mobile and battery powered, so each component of the 
system has a different lifetime, bandwidth usage and power consumption.  

• As a network-based system, bandwidth is limited and coverage area is 
variable. 

 
All of these problems will be addressed from the application perspective to make 

the system robust to the dynamic environment. 
The PHRM is from the class of network-based mobile dynamic systems powered 

by battery, where an application should adapt itself to different configurations of the 
system (data sources moving in and moving out), different states of the environment, and 
considering power and bandwidth constraints. As a consequence, the solution of these 
problems will solve the problems related to the body-worn sensor networks. 

We propose a solution to the problem of developing an application framework to 
manage data from different types of sensors to perform a Heart Rate Monitoring 
application in a Ubiquitous Computing environment. In this work, we will focus on the 
application’s framework (data fusion and decisions modules). 

 

4.3. Solution Proposed: Implementation of Data Fusion Architecture for 
the Personal Heart Rate Monitor System 

 
A network-based Personal Heart Rate Monitor (PHRM) system needs all of its 

components (network, middleware and application) compatible with dynamic changes in 
the availability of resources and changes in the environment. The PHRM system should 
adapt to the availability of sensors and their corresponding signals, and it should also 
adapt to changes in the measurements. Figure 18 represents the PHRM’s block diagram. 
The sensors (service suppliers) and the application PHRM (in this case service consumer) 
are nodes of the network. The middleware is the software that connects the sensors to the 
heart rate monitoring application through the network. Middleware is connected to the 
sensors and applications. The application has two integrated modules, the data fusion 
module and the decision module. The application sends its QoS requirements to the 
middleware, and the middleware sends the sensor data to the application. 
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Figure 18: Network, middleware, and application relationship. 
 

Figure 19 shows the temporal diagram of the information exchange between the 
system’s components. When the system starts, middleware needs the QoS information 
from all the components (Service Suppliers, Network, Applications and from the entire 
system). After that, the network is configured, the transactions are scheduled and all the 
necessary connections (transactions) are matched by the middleware. Middleware starts 
to receive data and sends it to the application. The application data fusion module will 
process the data and pass a view of the world (environment) to the decision module. 
Based on this input, the decision module will determine the new requirements of the 
application (application QoS). Again the middleware matches the new application needs 
to the available resources and sends to the network the new set of connections. The 
network will be reconfigured and the entire process repeats in a cyclic way. 

Consider an example. When the PHRM starts, the middleware should receive 
from the network all the available sensors and the bandwidth constraint (network QoS); 
from the application it receives information as to what type of sensors to connect 
(application’s QoS). In this case we will start the system with all the available sensors; 
from the sensors it receives the data rate, battery power level and power consumption 
(sensor’s QoS). If there are 2 or more applications in the system, the system should send 
to middleware the relative priorities of the applications (system’s QoS). Based on all this 
information, middleware will match the services (sensor’s data) available to the 
application needs, to create feasible sets. Feasible sets of sensors are defined as the set of 
sensors that achieves the current QoS requirements of the application. Middleware will 
choose one of these feasible sets to optimize the tradeoff between application 
performance and resource use, and it sends the chosen feasible set to the network. The 
network will schedule the transactions and set up all the necessary connections. In this 
case, the application will receive all the available data from the sensors. Now the data 
fusion framework will fuse the input data and give to the decision module the grade of 
normality or abnormality of each one of the signals used as input. Based on these 
evaluations, the decision module will determine the new necessity of the application. If 
all the data are normal, it will decrease the number of sensors to a lower level of 
monitoring. Again, the middleware matches the new application needs to the available 
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sensors and sends to the network the selected feasible set (now only part of the available 
sensors). In the next step the network will reschedule the transactions. Now the network 
needs to be reconfigured to close the connections that are not necessary anymore (at least 
temporarily). The data fusion receives the new set of signals and the system continues in 
a cyclic process.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 19: Temporal diagram showing the interaction among the sensors, the network, 
the middleware, the application and the system. 

 
 
 

We have described the data fusion framework and the decision modules in chapter 
2. The Data Fusion framework manages data from different types of sensors to perform 
the PHRM in a Ubiquitous Computing environment. Figure 20 represents one instance of 
the proposed data fusion framework applied to the Personal Heart Rate Monitor. 
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Figure 20: DFA instance applied to the Personal Heart Rate Monitor 
 
 
 
 
 
 
 

4.4. Data Fusion Applied to the PHRM 
 
 
 

The heart rate is the result of the electrical activation of the heart, resulting in 
mechanical contraction of the cardiac muscle. The ventricular contraction results in 
dynamic changes in blood flow and blood pressure, as well as deformation of the arterial 
wall (arterial pulse). As a consequence of these physiological aspects, we can measure 
the heart rate directly by analyzing the cardiac electrical activity or we can measure it 
indirectly by analyzing the homodynamic changes. The Electrocardiogram (ECG) is the 
graphical representation of the electrical activity of the heart. From the ECG analysis we 
can obtain the heart rate and an ECG diagnosis. The latter includes, among other aspects, 
a determination of whether the ECG is normal or abnormal and what abnormality is 
present (ischemia, infarct, arrhythmia, cardiac chambers enlargement, and other 
abnormalities). The heart rate monitor is a simple device that is based on one ECG lead to 
determine the heart rate (commonly used in exercise evaluations). The homodynamic 
changes can be evaluated through the blood flow and arterial pulse. Different 
cardiovascular and respiratory exams use the blood flow and the arterial pulse variables 
to determine the blood oxygen saturation (Pulse Oximeter), Blood Pressure (Blood 
pressure device), and Blood Flow (Doppler). As a consequence, these devices can obtain 
an indirect measure of the heart rate among other variables. 

As defined before, data fusion is classified in three different levels: low level data 
fusion, high level data fusion and mixture level data/variable fusion. The Blood pressure 
signal can be fused before any analysis (low data fusion). After the Blood pressure signal 
is analyzed, we can come up with two different variables: the blood pressure and the 
heart rate. The heart rate can be measured not only through the analysis of a Blood 
pressure signal, but it can be also measured from an ECG, blood flow or pulse oximeter 
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analysis. As a consequence, we can have the variable Heart Rate from different types of 
sensors (redundant variable from different types of sensors). If we want to fuse all the 
heart rate variables, we are going to use the high level variable fusion approach. So the 
data analysis defines the low and high level of the data fusion system. In the heart rate 
monitoring applications we do not fuse data with variables (mixture level data/variable 
fusion), but in some applications it is possible. 

Figures 21, 22 and 23 show the application of the data fusion framework 
presented before, applied to the multi parametric PHRM application. Figure 21 shows an 
example of the use of an individual sensor, pre-processing, low-level data fusion and data 
interpretation classes. The different types and positions of the ECG electrodes generates 
after a pre-processing period that includes among others functions the signal 
amplification; use of a high pass filter (0.5 Hz); use of a low pass filter (25 Hz); use of a 
notch filter (60Hz); multiplexing; and use of an analog to digital converter. The 
multiplexing function generates the four types of ECG with different number of leads. 
The low level ECG fusion module only forwards the data. This occurs because the 
management of the redundancy in the ECG data from different leads needs a signal 
interpretation. The ECG interpretation module will be presented in a different topic and is 
an important contribution of this work. It is responsible for recognizing the ECG 
waveforms and evaluating the grade of normality or abnormality of each wave 
independently and the sequence of waves in a continuous monitoring. The ECG signal 
interpretation generates two different variables, the heart rate and the ECG diagnosis.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21: Pre-processing, low-level data fusion, and data analysis. 
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Figure 22: Heart rate variable redundancy. 

 
 
 
 
 

Figure 22 shows the heart rate variable management. We can measure the variable 
heart rate from different types of sensors. We can measure it from a Pulse Oximeter 
sensor (PO), from a Blood Pressure sensor (BP), from an ECG system (ECG), from a 
specific heart rate measuring device (HR) and from a Blood Flow sensor (BF). Each 
sensor has a different reliability to measure the heart rate. The ECG system has the 
highest reliability and the Pulse Oximeter has the lowest reliability. Based on power 
constraints and the system’s request for certain reliabilities, the middleware can request 
from the network a specific set of sensors and present that data to the application. If the 
application has requested a HR measure with the highest reliability, middleware would 
present the ECG data to the application (which has reliability of 1). The ECG signal 
would be pre-processed. Then, an ECG interpreter module (ECG Interpreter) would 
analyze the ECG data and provide to the Heart Rate high level fusion (HR Fusion), the 
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variable (HR) with a reliability value (R), the ECG Diagnosis high-level fusion (ECG-
Diagnosis Fusion), and the variable ECG Diagnosis with a reliability value (R) (figure 
21). Depending on the system’s state, the application can receive and use data from more 
than one type of sensor. 

Redundant variables come from different sensors with different reliabilities and 
from different locations. Variable is defined as a triple composed by the measured 
variable, the sensor reliability to measure that specific variable and the sensors 
placement. For example, the measurement of the heart rate using one Pulse Oximeter 
placed on the left arm (LA) has a reliability value of 0.7. So, the triple would be 
represented as (PO-HR value, 0.7, LA). Some of these variables can be objective 
variables (numeric measures) and others can be subjective (linguistic variables). For 
example, the measure of the heart rate based on an ECG is an objective measurement. 
Subjective variable is inferred from a set of interpreted variables. They are subjective 
assumptions on a specific condition, such as whether the heart rate is high or low based 
on the knowledge that the blood pressure is low. Subjective assumptions are defined as a 
triple composed by the variable V, its reliability measure R (which is very low due to 
subjective evaluation) and zero, because it is not related to any location (V,R,0). 

At the High Level HR Fusion module, we can fuse redundant disposable heart 
rate data (HR1 to HR5) and the very low reliability HR predicted data from Blood 
Pressure, Blood Flow, Body Activity, Oxygen and Respiratory Rate Interpreted Variables 
(HR6 to HR10). So, based on the quantity and quality of disposable data, the HR fuser 
module can perform different procedures.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 23: Combined high-level HR fusion. 

 
Figure 23 shows the combined high-level heart rate fusion. The heart rate is 

combined with the blood pressure and results in the Blood Pressure-Heart Rate fusion 
variable. At the same time, the Muscle Activity is combined with the Body Position 
resulting in the Body Activity variable. The next step is the fusion of the Blood Pressure-
Heart Rate variable with the Body activity variable resulting in the Blood Pressure-Heart 
Rate-Body Activity variable. The output of each fusion level goes to the System Decision 
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module. This provides input redundancy to the system decision and guarantees that some 
decision can be taken in the case of failure of a fusion module. 

Each fusion level evaluates the current heart rate value, isolated or joined to other 
variables. The current heart rate value has two types of analysis: static and dynamic. The 
first is related to normal and abnormal interpretation of the variable according to each 
body’s situations. The dynamic evaluation is related to changes in the body’s state. The 
question is whether the amount of variable increase or decrease is normal or abnormal. 
To achieve the static and dynamic evaluations, the interpreter should use a reference 
table, where heart rate is correlated with the subject’s age, to evaluate the expected heart 
rate basal level. This is very important because the basal heart rate of a child 1 month old 
is near 140 beats per minute, while the basal HR value of a man 60 years old is around 60 
to 70 beats per minute. These reference values are useful in static evaluations, but HR 
Interpretation should consider dynamic situations. In these cases HR interpretation will 
occur in each fusion level, if they are available (Blood Pressure-Heart Rate, Blood 
Pressure-Heart Rate-Body Activity) to obtain a heart rate interpretation based on the 
body’s state. As an example, we can consider the case where the body is exercising. In 
this case, the HR interpretation should consider whether the heart rate is compatible with 
this situation. 

 
4.4.1 Techniques for PHRM Data Fusion 

 
In this section we discuss some techniques that we will use to fuse the data in the 

low-level data fusion and in the high-level variable fusion. 
 

4.4.1.1 Techniques for low-level PHRM data fusion 
 

The low-level PHRM data fusion includes the fusion of data from one sensor, 
fusion of time series data from each redundant sensor’s data, and fusion of redundant 
sensors’ data. 

 
a) Fusion of data from one sensor: In this case we will forward the triple: data value, 
reliability value and sensor’s location. No data fusion will be applied, the value is passed 
through. 

 
b) Fusion of time series data from a redundant sensor’s data: For this operation we 
use a Kalman Filter [4] [14]. We are trying to determine an estimate of a variable (current 
estimate) from measured data and previous estimates. 

 
State Estimate actualization: 

 
Current estimate = previous estimate + Kalman gain * (current measure – previous 
estimate) (1) 

 
Kalman gain (K) = variance of the previous measure/ (variance of the previous measure + 
variance of the current measure) (2) 
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c) Fusion of redundant sensors’ data: Our approach will be based on descriptive 
statistics of the data. If the data has a Gaussian distribution, we can use average ± 1SD. 
Otherwise, we will use median ± 10 percent. These ranges are based on normal expected 
differences in measuring the same variable along the body. We should work with the 
following tradeoff: if we increase the range, we will not detect problems immediately 
after they occur, but we will have excluded most of the sensor noise and measuring error 
problems. If we decrease the range, we will be able to detect problems as soon as they 
occur, but we will have problems excluding noise and measurement error. Therefore, this 
range depends on the sensors’ reliabilities and on body’s signals variability.  

The redundant sensor data should be compared if it is in the range (average ± 1SD 
or median ± 10 percent). If all data are in the range, the system will forward the average 
or median. If one or more redundant data are out of the range, they are called outliers and 
the system should forward the average or median plus the outlier values and address of 
the outliers. The average or median will be analyzed by its specific agent. The outliers 
should be studied to differentiate if there is noise due to sensor error or if they are correct 
measures indicating an abnormality. If the outliers indicate abnormalities, we can turn on 
redundant sensors (if available) that cover the same area (increase area coverage 
reliability). Another approach is the use of different types of sensors that can give an idea 
if there are other abnormalities in the focused area (increase variable reliability). So, if 
the redundant sensors’ data of the same area are in the range and there are no other 
abnormalities in data of the same area, we conclude that the outlier was caused by sensor 
error. Otherwise, we should increase the reliability of the area and probably of the system 
because of what the outlier may indicate. 

It may be helpful to consider the blood flow example. Imagine that we have 6 
redundant blood flow sensors. One sensor is placed at the extreme of each limb, another 
sensor is placed at the abdominal aorta artery and the last one is placed at the carotid 
artery. In general, the same measures in different places of the body vary by less than 10 
percent of their values. This means that all the data that come from the blood flow 
sensors should be in a 10% variability range. Now imagine that the data that come from 5 
of the sensors are in the range and the sixth value is below the others and out of the range. 
We should evaluate whether the outlier is a real measure or whether it is an incorrect 
measure. If it is a real measure this means that the blood flow for that place decreased 
(problem detected). If it is an incorrect measure, it should be discarded. We may use data 
from the blood pressure sensor at the same locality as the outlier measurement come from 
to determine whether the blood flow data is accurate at that location. If the blood pressure 
value is below the range of the other blood pressure values, the blood flow data is a real 
value and the patient has a problem. 

This approach is very different from other applications, in which several methods 
have been employed to decrease estimation error by eliminating data outliers, i.e., data 
that lie outside a specific confidence interval like 0.95 or 0.99. In our case, an outlier 
should be investigated because it can be an earlier signal of a disease. 

 
4.4.1.2. Techniques for high-level PHRM variable fusion 

 
There are many different situations that can occur in high-level fusion. We will 

look at each one in turn. 
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a) No sensor data (HR1 to HR5): This means that we do not have measured heart rate 
data available. If there are available interpreted variables, HR Fuser can predict HR value 
using an approach based on a knowledge-based probability system. This prediction has a 
very low reliability value and is very subjective. We should compare this predicted HR 
value with the last time series fusion HR, R values stored. For example, we can predict 
the heart rate value based on the interpretation of the body activity. If the body activity 
interpretation says that the body is exercising, we can predict the value of the heart rate, 
but with a very low reliability value. If none of the interpreted variables (Blood pressure, 
body activity, temperature, etc.) are available, the HR Fuser cannot forward any HR, R 
values. 

 
b) Only one type of data from sensors (HR1 to HR5): If only one data comes from the 
sensors (HR1 to HR5), HR Fuser will use HR, R from a single data source. It should 
compare this value with the last time series fusion HR, R values stored. For example, if 
the HR fuser receives the heart rate from only the ECG (ECG_HR), it will use only this 
value to evaluate the heart rate. To decrease the error, we will use the time series fusion 
approach. 

 
c) High-level HR Fuser receives data from redundant sensors of the same type (two 
or more data of the same type HR1 to HR5): This can occur in the case of the low 
level HR fuser forwarding the median and one or more outliers. This means that the 
outlier is not in the normal range expected (if the data has a parametric distribution, 
average ± SD, otherwise median ± 10%). HR Fuser will evaluate whether the outlier data 
is an incorrect measure or an abnormality. If it is an incorrect measure, HR Fuser will use 
the median or average and discard the outlier. If not, it will send the information of an 
abnormal HR measure in the sensor location to the decision system. Based on this 
information the decision system will make a decision based on the sensors’ covering area. 
For example, if the HR fuser receives two values of the HR from the blood flow sensors, 
one is the heart rate average of all blood flow sensors in the range (median ± 10%); the 
second one is the HR measure from the right arm blood flow sensor that is an outlier. The 
HR fuser must decide whether the outlier is an incorrect HR measure or if there is any 
problem in the right arm. To achieve this goal, the system should compare all the 
available data from the right arm. If there are no other available data in that area, the 
decision system can ask middleware to turn on sensors in that area. Otherwise, if all the 
different data that come from the right arm are normal, the system considers the HR 
measure from the right arm blood flow sensors as an incorrect measure and discards it. If 
all the different data that come from the right arm are abnormal, the system considers the 
HR measure from the right arm blood flow sensors as an abnormal value, indicating that 
some problem has occurred in the right arm blood flow homodynamic. 

 
d) Fusion of redundant variables’ data: If HR Fuser receives data from different types 
of sensors (HR1 to HR 5), it will use one of the following procedures: it can choose the 
highest reliability data or it can fuse the redundant variable by applying equations 3, 4 
and 5 described below. In addition to redundant data fusion, the HR fuser can perform 
time series fusion based on mathematical approaches like Kalman Filter (equations 1 and 
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2). These two results (Kalman filter predictor and current data fusion) should be 
compared. If the error (difference between the results) is not large, HR Fuser will forward 
the HR, R obtained from the redundant data fusion approach. For example, depending on 
the QoS heart rate reliability value requested by the decision system, middleware can 
provide data to the data fusion module from more than one data source (e.g., heart rate 
from blood pressure and pulse oximeter). In this case, the high level HR fuser has to 
manage redundant variables from different sources. As the reliability values of both data 
are similar, we can use the approach to sum them up using equations 3, 4 and 5. If the HR 
fuser receives data from the ECG and Blood pressure, the reliability of the HR from the 
ECG is higher. In this case we can use the approach of taking the highest reliability value 
(in this case, the HR from the ECG). 

When we have several measures from a variable with different reliabilities, we 
must devise a way to combine or fuse them in a numeric way. To fuse objective 
(numeric) data, we can use the following approach: as each variable has a different 
reliability, we should weight its value to use a statistical approach to fuse the data. 
Equation 3 is a normalized approach to fuse objective data. 

n 
(VVi * RELIABILITYi) 

 
i=1  

 

 (3) 
 

 n  
 

 
where n is the number of redundant variables to be fused, VV is the Variable Value and 
RELIABILITY is the VV reliability value (weight). 

 
The objective of fusing linguistics data can be achieved using tools that can 

transform linguistic data to numeric data. To achieve this goal, we should be able to make 
some correlation between linguistic terms and numeric data. This can be done using 
probability theory, set operations or membership functions of Fuzzy Logic. Then we 
follow the same approach for the objectives measures. 

 
n 

(VLVi * LRELIABILITYi) 
 

i=1  
 

 (4) 
 

 n  
 

 
where n is the number of redundant linguistic variables to be fused, VLV is the Variable 
Linguistic Value and LRELIABILITY is the VLV reliability value (weight). 

If the system has both types of variable values, we can make a fusion of objective 
and subjective values using the equation 5.  
 n        n      

 

 (VVi * RELIABILITYi) n    (VLVi * LRELIABILITYi) n   
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+    
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              (5) 
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65 
 
 

Equation 5 is a normalized sum of the objective and subjective values. This 
approach was chosen because it takes in account the normalized weight of each variable 
in the final variable value. 

The output of the High Level HR Fusion is the Heart Rate fused data with its 
resulting reliability (HR, R), or current heart rate value. This variable will be interpreted 
and used by the Heart Rate Decision System, or it can be one of the inputs to another 
High-Level Variable Fusion (figure 22). 

 
e) Fusion of different variables: We will consider the example of a body monitoring 
activity system. This system is based on two different types of sensors: accelerometers 
and electromyograph. Accelerometers can give an idea about activity, but they provide 
higher reliability in characterizing position. The electromyogram (EMG) is the muscles 
electrical activity recorded by an electromyograph. The EMG can give an idea about the 
body’s position, but it provides higher reliability in evaluating muscle activity. The 
body’s overall activity is related to both position and muscle activities. A person can be 
lying down and exercising and standing up without exercising. So, to determine the state 
of the body, it is necessary to create a complex system to represent the knowledge of both 
variables body position and muscle activity.  

Figure 24 is a proposed approach to solve the body’s activity fusion problem. It is 
based on a finite state machine that represents different states of the computation. The 
accelerometer sensors can give three basic states: laying down (LD), sitting (S) and 
standing up (SU). Depending on the electromyogram evaluation we can have 5 different 
levels of muscle activity: non exercise (NE), mild exercise (ME), moderate exercise 
(MoE), strong exercise (SE) and muscles fatigue (FE). The state machine has three 
starting states representing the three main states of the body’s positions. From each 
combination of position and muscle activity we have transitions that generate an output to 
the system. The transitions are represented by the muscle activity evaluation and position. 
Let us consider the following example. The subject starts the evaluation lying down with 
no exercise followed by a stand-up position with mild exercise and then the laying down 
position with no exercise. We start the automata at the LD state, go to the LD-NE state, 
go to the SU-ME, and go to LD-NE state. At each transition between the states, the 
automata generate output to the system representing the level of the body’s activity. 

The level of the body activity will be combined with the current value of the heart 
rate (output of the HR high-level fusion) to have a new evaluation of the heart rate based 
on the change in the body’s activity. In this case, the heart rate evaluation will be based 
on the relative change of the heart rate in comparison to the last body activity level. For 
example, if in the LD-NE state the heart rate is equal to 60, when the body changes to the 
SU-ME state, we should evaluate if the amount of increase in the heart rate value was 
what was expected or not. 

The management of accelerometers and electromyography data is complex and 
needs the development of different algorithms to analyze the sensors’ data. This part of 
the system is important to evaluate the heart rate. To achieve this last goal, we are going 
to simulate the different states of body activity. 
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Figure 24: Variable fusion- the position and muscle activity 
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f) System’s fusion: In the case of the heart rate monitoring system, one of the main goals 
is to evaluate if the heart rate is normal or abnormal according to different body 
conditions. Normal, in this case, means that the results are not compatible with diseases 
and are related with a low risk of developing new ones. So, considering the functions 
covered by the monitoring system, it should fuse all the information available to decide if 
the heart rate is normal or abnormal. More generally, if we evaluate the cardiovascular 
system through the ECG, blood pressure, blood flow and heart rate; the respiratory 
system through oxygen measures, respiratory frequency and volume evaluations; muscle 
activity through the EMG; metabolic evaluations through glucose and lactate measures; 
and cerebral activity through EEG evaluations, we should evaluate the output from all the 
systems available to decide if the organism is normal or not. So, the overall world 
reliability depends on the system reliabilities, which depend on variables’ and 
consequently sensor’s reliabilities. As we are not going to work with all these variables, 
the world view will be based on the variables available.  

To achieve the system fusion goal, we will use fuzzy logic. Fuzzy inference 
theory has been applied in many different domains [17]. The following example 
describes how we can integrate subsystems’ information to achieve the world view of 
normality or abnormality. We can build a membership function based on Fuzzy Logic to 
evaluate the subsystem grade of normality and abnormality (figure 25). We can divide the 
normality and abnormalities into different classes that represent different levels. Figure 
25 represents the membership functions of these classes. The Y axis represents the grade 
of pertinence (µ) and the X axis represents a set of classes: 1= Strong low abnormality; 2 
= moderate low abnormality; 3 = mild very low abnormality; 4 = low indecision; 5 = 
normal range; 6 = high indecision; 7 = mild high abnormality; 8 = moderate high 
abnormality; and 10 = Strong high abnormality. 
.  

 
 

µ=1 
 
 
 
 
 
 
 
 
 
 
 
 

1 2 3 4 5 6 7 8 9 10 Classes 
 
 
 

Figure 25: Pertinence function of normality and abnormality classes. 
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The values in the X axis that determine a class’s limits depend on the variable to 
be analyzed. In the Heart Rate example, we can define that a heart rate below 30 
beats/min is class number 1, a heart rate between 20 and 40 would be class number 2 or 
that a heart rate above 180 is class number 7. Let us imagine the patient has a heart rate of 
25. If we go to the fuzzy membership function we would find a µ = a to class 1 and µ= b 
to class 2. All other classes would have µ= 0. Now we would have to use an aggregation 
function that can be as simple as a rule based function, to fuse these two classes in the 
range between -1 and +1 that represents a new pertinence function of the two classes, 
normal and abnormal. Figure 26 represents these classes. Based on this, the defuzification 
process will generate a number between -1 and 1 that represents the pertinence function 
of the classes normal and abnormal. 

The evaluation described above is related to static analysis. We should make 
another kind of evaluation that is related to dynamic response to different stimulus. The 
difference is that the X axis in this case would represent the percentage of decrease or 
increase from basal levels after the stimulus. This kind of analysis is more accurate, but 
we must have experimental results to build the classes.  

 
 
 

1 
 
 
 
 
 
 
 

-1 0 +1 
abnormal normal 

 
Figure 26: Pertinence function of normal and abnormal. 

 
4.5. Evaluate Current Status 

 
As a consequence of the fuzzy logic pertinence function approach, each variable 

will be classified as normal or abnormal with different levels of pertinence (figure 26). 
We will concatenate the variable value (HR) with its reliability R and its evaluation 
(Evaluation). Therefore, the result of each data fusion level is a triple (HR, R, 
evaluation). This information goes to the Evaluate Current Status module to fuse all the 
evaluations from the different data fusion modules (figure 27). In this module, the 
variable evaluation will be classified as an event using a rule-based approach. The event 
will be classified as a High Risk (HR) event, a Moderate Risk (MR) event, a Low Risk 
(LR) event or a Negligible Risk (NR) event. 

The output of the HR Evaluate Current Status module is the triple (IVHR, R, 
Event), i.e., Interpreted Variable Heart Rate (IVHR) with a Reliability value R and with 
an evaluation (Event). This output reflects the grade of normality or abnormality of the 
heart rate variable from each level of the data fusion module. Depending on the triple 
(IVHR, R Event) evaluation, the system can send the result of this evaluation to an 



69 
 
 

actuator or to the Decision module. We can use different types of actuators, such as a 
display device, a phone line, the Internet (e-mail), or a Voice Adviser System using 
previously stored voiced sentences. To determine the current application QoS 
requirements, the triple (Variable, Reliability, Event) is sent to the system decision 
module, which will be described next.  

 
 

           Mixture level Fusion         
 

                          
 

                          
 

                          
 

                          
 

          
 

 Low level Fusion      Data interpretation      High level Fusion  
 

                          
 

Data Fusion   HR, R    HR, R  
 

 HR, R                
 Module                        
 

           Evaluate Current Status        
 

                          
 

     Current evaluation (IVHR, R, Event)  
 

                
 

System Fusion    System Fusion Covering    Other Sensors  
 System Reliability Requirement    Area Requirement    Recommendation  
 

                       
 Decision                        

 

                       
 Module                        
  

 
Current system’s needs:  
QoS requirement 

 
Figure 27: System diagram showing the data fusion module and the decision module. 

 
 

4.6. System Decision Module 
 

The System Decision module receives from the Evaluate Current Status module a 
triple: the Interpreted Variable Heart Rate (IVHR), its reliability R and the result of the 
evaluation (Event). The System Decision module includes the System Fusion Reliability 
Requirement (SFRR), the System Decision Covering Area Requirement (SDCAR) and 
the Other Sensors Recommendation (OSR) sub modules (figure 27). These sub modules 
determine the new reliability, the new covering area and the new other sensors 
recommendation necessities for each variable. Based on this information, the decision 
module will send to middleware the current system’s needs (QoS requirement). 

 
4.6.1. System Fusion Reliability Requirement 

 
The System Fusion Reliability Requirement (SFRR) sub module is the part of the 

System Decision module that is responsible for evaluating the system’s necessity in terms 
of types of sensors and their reliabilities. Based on the triple (IVHR, R, Event), this 
system can evaluate the new HR reliability needed by the application. We will use 
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discrete values to represent the range of reliability values as well as the event 
classification. 

 
Events: 

 
1. High Risk (HR) 
2. Moderate Risk (MR) 
3. Low Risk (LR) 
4. Negligible Risk (NR) 

 

 
Reliabilities States: 

 
1. value = 1.00 
2. value   0.75 
3. value   0.50 
4. value   0.25 

 
Based on these evaluations we can have the following state machine to manage 

the variables evaluation and the associated risk with the variables reliability requirements 
(Figure 28). Each variable needs to have its own state machine.  

 
 

  HR   

  HR MR  

  HR  LR 

  MR   
R =1.00 MR R=0.75 R =0.50 R =0.25 
  LR   

NR 
 

NR 
 

LR  
NR 

 
Figure 28: SFRR State Machine. 

 
If the current reliability state is 0.25, and an event was detected and classified as a 

low risk event, the current reliability state would change to the reliability state equal to 
0.50. For example, imagine that all the data that came from the available sensors are in 
the normal range and that the user is healthy. Based on this evaluation, the current 
reliability state would start at the 0.25 reliability state. If no event is detected, it remains 
in the same state. However, if a high risk arrhythmia is detected (high risk event), the 
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new current reliability state would be 1.00. This means that the decision system will 
require a new set of sensors to achieve the new variable reliability requirement (reliability 
equal to 1.00). 

 
4.6.2 System Fusion Covering Area Requirement 

 
The System Fusion Covering Area Requirement (SFCAR) sub module is called 

when an outlier is identified. It decides the new covering area requirements. It does not 
apply to the heart rate from the ECG, but can be applied to the other sensors. 

We will use discrete values to represent the range of covering area values as well 
as the presence of an outlier event evaluation. 

 
Event of the outlier: 

 
1. High Risk (HR) 
2. Moderate Risk (MR) 
3. Low Risk (LR) 
4. Negligible Risk (NR) 

 
Covering Area States (CA): 

 
1. value = 1.00 
2. value   0.75 
3. value   0.50 
4. value   0.25 

 
Based on these evaluations we can have the following state machine to manage 

the variables covering area and the associated risk with the outlier (figure 29). Again, 
each variable needs to have its own state machine.   
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 HR  LR 
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NR 
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Figure 29: SFCAR State Machine. 
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If the current covering area state is 0.25 and an outlier’s event was detected and 
classified as a low risk event, the current reliability state would change to the covering 
area state equal to 0.50. For example, imagine that all the data that come from the 
available sensors are in the normal range and that the user is healthy. Based on this 
evaluation, the current covering area state would start at the 0.25 covering area state. If 
no outlier is detected, it remains in the same state. But, if an outlier is detected and 
classified as a high risk event (e.g., a very low blood flow in the right arm), the new 
current covering area state would be 1.00. This means that the decision system will 
require a new set of sensors to achieve the new variable covering area requirement 
(covering area equal to 1.00). 

 
4.6.3 Other Sensors Recommendation 

 
The other sensors recommendation sub module is very important. It determines 

the influence of one variable over the others. For example, imagine that the current blood 
pressure value has just dropped down and the current heart rate value is inside the normal 
range. Based on current (HR, R) values, the HR Interpreter would decide to maintain the 
current HR reliability or even decrease it. However, based on the current (BP, V) values, 
the BP Interpreter would conclude that the blood pressure is very low, and it would 
increase the BP reliability and recommend an increment in the HR and O reliabilities. As 
a consequence, a conflict is established. Based on the principle that recommendations of 
increase reliability predominate over decrease recommendations, the System Fusion 
Reliability Requirement would decide to increase the HR reliability. The same approach 
should be applied to the System Covering Area Requirement. The System’s Sensors 
Reliability & Covering Area requirement is achieved through the concatenation of the 
system’s reliability needs with the system’s covering area needs.  
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Figure 30: Data and variable management. 

 
Figure 30 summarizes the basic principle of the system. The data fusion module 

receives data and evaluates the current data/variable value. Its output (current evaluation) 
goes to the System Decision module where, based on the current evaluation, the current 
QoS requirement, such as variable’s covering area (CA) and reliability (R) values will be 
determined. This new QoS information will be sent to the middleware. The middleware 
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will appropriately reconfigure the network to meet the new requirements, and the new set 
of sensor’s data will be sent to the fusion system for analysis. 

 
4.7. The ECG Waves Recognizing System 

 
We have developed an automatic ECG recognizer and analyzer system based on a 

sequence of automatons. First the signal is segmented and each wave and ECG segment 
are identified and classified by a five level logarithm approximation automaton. Each end 
state of this automaton generates a word that represents the cardiac cycle. The set of 
words constitute the language of the ECG. This language is interpreted by another 
automaton that is responsible for the identification of ECG abnormalities both in a static 
condition like a conventional ECG, or in continuous monitoring. The first automaton 
works on the ECG samples, whereas the second one works on the output of the first 
automaton. We have verified the algorithm by a formal verification algorithm using the 
Model Checking Algorithm (Verus formalism). 

The developed system is able to recognize and analyze ECG signals in static and 
continuous (dynamic) conditions. It is based on a sequence of specialized automatons to 
recognize each ECG wave and segment isolated or in sequence in normal and abnormal 
conditions. We showed the systems’ efficacy using the MIT-BIH ECG database. The 
automaton developed was able to recognize 96% of the “P” waves, 100% of the “QRS” 
waves and 98% of the “T” waves. It was also able to recognize 96% of all ECG intervals 
and segments (table 2). 

 
Table 2: Comparison of the proposed algorithm and available results in the 

literature. 
 

     

Wave P QRS T Segment    or 
    Interval 

Algorithm     
Ours 100 100 98 96 

     

Literature < 96 100 100 ? 

     
      

 
? = not available data. 

 
The fact that it is a real time algorithm and was implemented in a reconfigurable 

hardware permits its use in critical situations as a conventional ECG analyzer or in 
continuous monitoring as Holter equipment or a Web based system. Thus, the 
reconfigurable characteristic provides the ability to change the hardware configuration by 
choosing the best and most suitable algorithm to the patient in a remote manner. 

The ability to recognize abnormal patterns compared to normal ECG patterns or 
patient baseline ECG provides the ability to store the patient baseline ECG and the 
different patterns recognized in the continuous monitoring. This is a very efficient 
compression method since it does not have the problem of signal reconstitution and stores 
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only what is really very important. This saves power and is very important in mobile 
applications of biological signals monitoring. 

The proposed methodology for formal verification of the electrocardiographic 
waves and wave sequences recognizing system by the Verus model checker has shown 
good results in identifying some faults and giving more reliability to the system. The 
application of the methodology has permitted the system to recognize other waves in the 
electrocardiographic module, re-designing the actual wave recognizing automata and 
designing the wave sequence recognizing automata, leading to a real contribution in the 
biomedical system implementation. 

 
4.8. Prototype 

 
We have developed our first prototype based on hardware from the market. Our 

platform is based on the PROCOMP device (Thought Technology Ltd., Montreal, 
Quebec, Canada) and the PDA Zaurus (Sharp). The software was developed in C 
language to guarantee performance and low power. The PDA is connected through a 
wireless connection (IEEE 802.11b) to a base station. 

 
4.8.1. Hardware 

 
We have built a prototype composed by an acquisition board sold by PROCOMP 

(figure 31) and the PDA Zaurus 5500 (Sharp) (figure 32). The PROCOMP device is 
composed by multiple sensors (EEC, surface EMG, ECG, Temperature, Skin 
conductance, and Blood pulse) connected to a wearable board composed of an AD 
converter, amplifiers and filters. The Procomp device is an 8 channel, multi-modality 
encoder that has all the power and flexibility for real -time, computerized biofeedback 
and data acquisition in a clinical setting. The first two sensor channels provide ultimate 
signal fidelity (2048 samples per second) for viewing RAW EEG, EMG and EKG 
signals. The remaining six channels (256 samples/sec) can be used with any combination 
of sensors, including EEG, EKG, RMS EMG, skin conductance, heart rate, blood volume 
pulse, respiration, goniometry, force, and voltage input. ProComp offers internal, user-
activated calibration to ensure that you can always obtain the highest quality signal, 
without the costly downtime associated with factory re-calibration. It is powered by four 
alkaline “AA” batteries. The signals are sent to a serial port in the PDA through a optical 
fiber cable.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 31: Acquisition board 
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The PDA Zaurus has the following characteristics: StrongARM(1) SA-1110, 
206MHz1 , Linux2 based embedded OS (Embedix 3) Qtopia, Personal Java4 , Reflective 
TFT LCD with Front Light (touch sensitive panel supported), 3.5" with 240x320 pixel, 
65,536 colors, 64MB SDRAM 16MB FLASH ROM, Touch Panel, QWERTY keyboard 
with a slide cover, 1 compact Flash Card5 slot, 1 SD card slot (no copyright protection 
feature), Serial/USB (via docking station port, IR port, Stereo headphone jack included, 
mono-audio input (via audio jack), buzzer / alarm, Calendar, Address Book, To-Do, and 
Memo, POP3, SMTP, IMAP4, Equiv. HTML 4.0, and is powered by a replaceable 
lithium-ion battery.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 32: PDA Zaurus 
 
 
 
 
 
 
 

4.8.2. Software 
 

4.8.2.1. The PHRM software infrastructure: developed in “C” based on thread 
technology to represent the “parallel” processing, analysis, fusion and decision of the 
available data and variables. 

 
4.8.2.2. Software for signals visualization: The signals can be visualized on the PDA 
screen using a “C’ language software based on QTopia interface. The figures below show 
some examples of the signals and the interface of the system. The user can use the 
keyboard or the touch screen to start the system and visualize the signals together or 
separately. 
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a)   b) 
 

Figure 33: The main window of the monitoring system (a) and the 
ECG screen (b) 

 
Figure 33a shows the interface of the monitoring system. The user can choose to see 
the ECG (electrocardiogram), EMG (Electromyogram), Blood pressure, pulse 
frequency, SPO2 (oxygen saturation), and temperature. The user can also choose to 
see the signal in landscape and portrait. The settings bottom allows the user to choose 
some characteristics of the image, such as position and checkered background to 
represent the millivolts in the vertical and milliseconds in the horizontal perspective 
applied to the ECG analysis. Figures 33b and 34a show examples of the 
electrocardiogram in portrait and landscape views.  

 

a)   b) 

 
Figure 34: The landscape view of the ECG wave (a) and the EMG screen (b). 
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Figure 34b shows an example of the electromyogram signal. Figures 35a shows 
the pulse oxymeter (blood oxygen saturation) view and figure 35b the blood pulse 
frequency screen with theirs respective data tables. Figure 36a shows the Blood Pressure 
(Systolic and diastolic measurements) view and figure 36b shows the body’s temperature 
view with their respective data tables. 

 

a)   b)  
 

Figure 35: The Pulse oxymeter (blood oxygen saturation) view (a) and 
the blood pulse screen (b).  

 
 

a)   b) 
 

Figure 36: The Blood Pressure (systolic and diastolic measurements) 
view (a) and the body’s temperature (b). 
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4.9. Experimental Results 
 

1) Evaluation of power consumption of the System’s components: measurement, 
processing and transmission. 

 
Objective: to obtain real measurements about the power consumption of some parts of 
the system. 

 
Methodology: we have used a prototype of a wearable computer used to monitor the 
ECG and pulse oxymeter signals. We could evaluate separated the different parts of the 
system to calculate the power consumption. These results can be used as a reference to 
the same hardware used, because these measurements can very from different hardware. 

 
Results: 

 

 
Table 3: Sample, and bandwidth consumption of the ECG, Pulse 
Oximetry and Non Invasive blood pressure signals.  

 
 

 sampling bits bandwidth  
EKG     

12 1000 16 192000  
3 1000 16 48000  
3 250 16 6000  
1 250 16 2000  

Oximetry 0.5 8 4  
NIBP 0.0033 8 0.03  

     

 
Table 3 shows the bandwidth necessary to run a 16 bits ECG and 8 bits Pulse 

oxymeter and Non invasive blood pressure. The ECG is a continuous signal, and the 
bandwidth consumption is greater than the other discrete signals. 

 
Table 4: Power consumption of a multi parametric unit.  

 
 Power Consumption of Multiparametric Unit    
Component +5V  -5V  +12V  -12V  
 Max   Avg   Max Avg Max Avg Max Avg  
Acquisition 80 76   46 46 5 5 
Oximetry 187 158 4 3     
Blood Pressure 400 50       
Processing+Comm 600 360       
TOTAL 1307 644 4 3 46 46 5 5  
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Table 4 describes the power consumption of the acquisition, pulse oxymeter, 
blood pressure and processing plus communication components. The results showed that 
computation and communication are the most power consumption components. 

 
Conclusion: communication is the main source of power consumption in a wearable 
device used for monitoring biological signals. 

 
2) Experimental design: Based on specialist knowledge we conducted an experiment 
that identifies the use of the Electrocardiogram monitoring in an Intensive Care Unit 
(ICU). The system has the capability to monitor the electrocardiogram using one, two or 
three leads. 

 
Table 5 represents this knowledge: The level of monitoring (number of leads 

used) is related to the patients risk of cardiovascular events. The higher the risk, the 
higher the necessity of improve the monitoring system. The contrary is also true, the low 
risk patient most of the time can be monitored by one lead ECG. 

 
 
 
 
 

Table 5: Probability of patient’s monitoring states according to his risk: 
 
 

QoS of Monitoring 1 channel 3 channel 12 
 

  channel 
 

Patient State    
 

    
 

Normal patient 97% 2, 9% 0, 1% 
 

    
 

Patient with low risk disease 95% 4, 75% 0, 25% 
 

    
 

Patient with medium risk 40% 59, 5% 0, 5% 
 

disease    
 

    
 

Patient with high risk disease 30% 65% 5% 
 

    
  

 
Methodology: we employed the classification described bellow to choose the level of 
monitoring related to the patients risk. 

 
Patient with normal EKG 

1 channel / 300Hz, delayed by 30 sec 
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Patient with low risk abnormalities in EKG 
3 channels / 300Hz, delayed by 5 sec 

 
Patient with high risk abnormalities in EKG 12 

channels / 1000Hz, delayed by 1 sec 
 

Results: Figure 37 shows the power state machine of the experiment. It describes the 
power consumption in the different states (1 to 12 leads) and the transitions (patients 
risk). If we monitor the patient all the time with one lead ECG the power consumption is 
lower than monitoring all the time using an ECG 12 leads monitor. It is clear that based 
on clinical variables such as the patients risk we can save power and adapt the system to 
the patients benefit. This is a great improvement for a wearable monitoring device where 
power is limited.  

 
 

Low risk event 12 channels No event 
 

        
 

    
1000 Hz / 1s 

    
 

    P =1450 mW     
 

  High risk 
 

 High risk  
 

     event 
 

No event   
 3 channels    1 channel 
 

300 Hz / 5s     300 Hz / 30s 
 

    
 P = 364.5 

mW    P = 60.8 mW 
 

    Low risk event     
 

 
 

EPSM Wearable ECG Monitor 

 
Figure 37: EPSM Wearable ECG Monitor 

 
Conclusions: it is possible to use clinical evaluation to determine variable that can help 
to adapt the system to increase its lifetime. 

 
2) System’s lifetime related to the visualization of each signal in the Zaurus SL-5500 

 
Objective: To measure the power consumption of the different biomedical signals on the 
screen of the PDA Zaurus SL-5500. 

 
Procedure: The power consumption of the Zaurus SL-5500 using the ROM 3.10 version 
cannot be made directly. One bug in the power management system makes impossible the 
use of a software that directly measures the power consumption. To measure the power 
consumption we had to develop a software that writes the time each 30 seconds. So the 
last written time is the last time the system was functioning. The procedure is described 
below: 
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1. Power the battery. 
2. Turn off the power supply and start the signal window that we want to 

measure the power consumption. 
3. Run the signal monitor until the Zaurus’ battery goes down. 
4. To avoid interruptions in the monitoring program it was necessary to turn 

off the automatic stat of the PDA. It was achieved using the software qpe-
suspendapplet. The use of a screen saver was also avoided. 

5. As the control is made every 30 seconds, this is the precision of the 
measurement. 

 
Results: The results described in table 6 shows that the backlight is the most 

power consuming component. It is necessary to turn it off to increase the system lifetime. 
On the other hand, the signal visualization is compromised whether we turn it off or not. 
Continuous variables such as ECG, EMG and EEG are related to lower lifetime. Discrete 
variables such as oxygen saturation and blood pressure are related to a longer lifetime. As 
a consequence, the system’s lifetime is directly related to the sample frequency of the 
monitored signal.   

Table 6: Battery lifetime related to different monitoring sets and backlight. 
 

Signal Backlight FPS Time 
   (minutes) 

None 100% 0 111 
 Turn off 0 596 

ECG 100% 30 73 
 100% 30 86 
 100 % Maxi 71 
 Turn off mum ≈300 

EMG 100% 30 81 
 100% 30 83 

Blood 100% 1 101 
Pressure Turn off 1 590 

 
Conclusion: The backlight is the most power consuming component. Excluding 

the backlight component, the system’s lifetime is directly related to the signal’s sample 
frequency. 

 
4.10. Discussion and Conclusions 

 
4.10.1. Discuss the prototype: The PHRM is new system that takes into consideration 
that it is very difficult to analyze one body variable independently. In the case of the heart 
rate, without knowing the user age, underlying diseases, level of body activity, whether 
he is sleeping or awake, it is very difficult to conclude whether the measured heart rate is 
normal or abnormal. Nowadays, all of the available systems do not consider this wild 
view of the physiological monitoring and interpretation. Another aspect that makes the 
developed system new is the fact that it takes into account aspects such as fault tolerance 
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and ubiquitous computing determined by not only the hardware, but also determined by 
the application’s necessity (Application’s quality of Service). In this aspect, the presence 
of a middleware can help to manage the hardware point of view together with the 
application point of view, optimizing this relationship and the system life time. 

The nearest system presented in the current literature is the Total Heart project 
developed by the Macmaster University. This system is a mobile device developed to 
achieve low power consumption of its components. It is composed by a sensor board for 
the ECG attached to a processing and analysis system based on neural networks to detect 
events locally in the mobile device. The PHRM is a more complete system because it can 
changes the number of leads according to the user necessity. Furthermore, the PHRM is 
able to correlate the heart rate with other signals and users characteristics, such as the 
level of body activity, blood pressure, body position and underlying medical conditions. 
Besides this, the PHRM considers the power management from the systems point of 
view, changing the components status (on or off) according to the quality of service of 
the application (heart rate monitoring).  

There are other systems that only record the ECG (Holter machines) using 
different media such as tapes, flash memory or smart cards. None of theses systems have 
local processing and analysis. Although all these systems are mobile, all the data 
management is made offline. The same type of device is described for blood pressure, 
blood glucose measurement and oxygen saturation evaluations. Some systems used for 
biofeedback are composed of multiple sensors, but the data management is also made 
offline.  

Based on these aspects, The PHRM is the first heart rate monitoring system that 
considers multiple correlations with the user’s health variables to help the user in the 
monitoring of his health. To achieve this goal the general data fusion architecture applied 
showed that it is a reasonable approach to provide dynamic management of data and 
variables from different sources. Besides this, the developed system is fault tolerant to 
failures and compatible with ubiquitous availability.  

It is our intention to substitute in the next generation of the prototype micro 
sensors by nanosensors in the direction of a body-worn sensor networks. 

 
4.10.2. Contributions 

 
A body-worn heart rate monitoring system; 
The ECG Waves Recognizing System; 
Algorithm for surface electromyogram interpretation; 
Algorithm for body’s activity evaluation; 

Algorithm for correlation between signals and clinical medical 
evaluation (symptoms and signals); 

Algorithm for sleep/awake evaluation; 
Power state machine based on clinical variable and level of 

monitoring (number of leads of the ECG); 
 

Future work: We are now starting a clinical trial described below: 
 

4.10.3. Long Term Monitoring of Physiological Signals Clinical Trial 
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Institutions: 
 

University of Brasilia Hospital, School of Medicine, University of Brasilia, DF- 
Brazil 

Center For Future Health, University of Rochester Medical Center, Rochester, 
NY-U.S.A. 

 
 
 

Motivation: 
 

1) Chronic diseases such as cardiovascular diseases, cancer and degenerative 
diseases are the most common cause of mortality and morbidity in United 
States and Brazil. Morbidity prevention and decrease mortality of chronic 
diseases can have a great impact in the health care system in both countries. 

2) Lack of long term physiological data studies 
3) Lack of good correlation between data gathered in laboratory studies and data 

gathered at home. 
4) Available infra structure: Smart Home and Mobile Monitor. 

 
Hypothesis: 

 
Long term physiological monitoring during daily activities can predict and 

provide early detection of morbidity conditions. 
 

Main objectives: 
 

Correlate physiological data with daily activities 
 

Secondary objectives: 
 

1) Development of machine learning tools to analyze physiological data. 
2) Development of a software infrastructure to provide long term physiological 

monitoring compatible with all the constraints inherent to mobile and wireless 
monitoring. 

3) Public database of physiological data 
Human–machine interaction studies 
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Chapter 5 

 

Data Fusion implementation in distributed sensor networks 

 
The benefits provided by distributed data fusion of sensor data are widely 

accepted: enhanced targeting and area coverage accuracy; increased situational 
awareness; greater confidence in tracking and association; reduced false alarms and 
improved application space management. Some authors have been working in this field. 
Durrant-Whyte and Stevens [86] have described three constraints that characterize 
distributed data fusion: 

 
1. There is no single central fusion center; no one node should be central to the 
successful operation of the network. 
2. There is no common communication facility; nodes cannot broadcast results 
and communication must be kept on a strictly node-to-node basis. 
3. Sensor nodes do not have any global knowledge of sensor network topology; 
nodes should only know about connections in their own neighborhood. 

 
Based on these premises, distributed data fusion depends on three aspects: sensor 

role and management [92][ 83] , wireless communication and data fusion path or data 
dissemination. 

 
1) Sensor role: and management 

 
Different aspects should be considered at this topic: 

 
- Sensing the environment 
- Computation capability 
- Relay: receive/transmission capability without processing 
- Data fusion capability: 

o Different levels of data fusion, data analysis and variable interpretation 
- Decision: 

o Change sensor mode:  
o Change data fusion 
model o Control actuators  

- Mobility 
 

2) Communication: all the aspects related to wireless communication 
 

3) Information dissemination algorithms and data path (optimal node data fusion): 
 

Wendi et all have shown that data aggregation increases the system’s lifetime and 
decrease power consumption in power aware sensor networks [102]. Since this initial 
paper many different aspects related to distributed data fusion such as information 
dissemination, data fusion techniques, optimal data fusion node, data fusion and system’s 
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lifetime, accuracy, coverage area, have been addressed by different authors. Some of 
them have considered the node mobility and code mobility [87][91], where mobile agent 
adopts a new computing model in which data stay at the local site, while the execution 
code is moved to the data sites. The problem of how to fuse data from multiple sensors in 
order to make a more accurate estimation of the environment has been studied by other 
authors [88][89][90][96][97]. Most of the time sensors can have different levels of 
energy, in these cases the load balance should be considered [93]. Many authors have 
worked on data dissemination and association [94][63][18][101], and data fusion 
middleware [95]. A few papers have addressed the optimal data fusion node problem. 
[99][100]. Our work addressed the optimal data fusion path problem, which is related to 
the optimal data fusion node problem. 

Mohin et all [99] worked on .”the problem of choosing fusion nodes in a 
heterogenous wireless sensor network, operating in a terrain with blockages, where some 
sort of data fusion or data management can be performed to optimize some defined 
network performance metrics”. Their main contribution is related to the definition of 
centroide. Centroide is the best node to perform data fusion in the local area network. The 
problerm is that to determine the centróide node the algorithjm used does not take into 
account that the data source can be in different parts of the environment (out from the 
local network). It also does not take into account the sensing, communication (receive 
and transmission), and data fusion computation cost that are very important aspects to 
evaluate the system´s lifetime. Furthermore, their simulation includes networks with 20 
nodes. We have showed in our research that the different algorithms have different 
performance according to different network densities. In this aspect, our approach takes 
into account all these variables and the simulations varied from low network densities 
(network with 50 nodes) to high density networks with 1000 nodes. 

Konstantinos et all [100] described approaches to solve the maximum lifetime 
data gathering problem in sensor networks, with and without data aggregation. Although 
their solution based on the maximum flow algorithm can be used as a reference for the 
maximum lifetime of a sensor networks application, they didn’t consider the sensors 
individually. As a consequence, They didn’t consider the tradeoff between the total cost 
(communication, sensing and data fusion computation) and system’s lifetime. It does not 
solve the problem of finding data fusion path for data from different source sensing units. 

We consider that the data fusion capability such as different levels of data fusion, 
data analysis and variable interpretation, as well as the decision (change sensor mode, 
change data fusion model, and actuators control) can also be part of the sensors 
functionalities (smart sensors). Furthermore, each tool, parametric and non parametric 
statistical approach [98] as well as soft computing approaches (neural networks, fuzzy 
logic, genetic algorithms, etc), performed to achieved pre-processing or data fusion has 
different computation cost. In addition, the data path can be found based on the data 
source nodes, possible data fusion nodes, and destination node for the fused data or 
information 

 
Problem to solve: what is the best path to fuse data from data source (sensing node) to 
send the fused data or information to some destination node, i.e., how to find the optimal 
(s) data fusion node (s)? 
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Body-worn sensor networks distributed data fusion problem: In the body-worn 
sensor networks environment the sensors are distributed along the body on the surface 
(skin), inside organs such as lungs and heart, or inside the vascular system or gastro 
intestinal system involved by the blood and food bolus respectively. Considering that a 
network is composed of smart sensors with sensing, relay and data fusion capability, how 
can we determine the best path to achieve the data fusion goal, i.e. fused data should 
arrive in a pre-defined base station, considering sensing cost, data pre-processing and 
data fusion computation and transmission cost?  

The approach to this problem should consider: 
 

1. Tradeoff: total cost (sensing, computation, and communication) versus system 
lifetime. 

2. Total cost: once the total cost of computation is the same independent of the 
workload balance, what determines the total cost is the communication cost plus 
the sensing cost plus de total computation (pre-processing and data fusion 
techniques). Based on this, the relaxed pairs shortest path can be employed to 
optimize the communications cost. 

3. System´s lifetime: the DF path choice is determined by the available power in 
each node. In this case the system might want to use a high cost path, but that will 
increase the system lifetime. In this case all possible DF paths should be used. 

 
5.1. Distributed Data Fusion Implementation 

 
Most sensor networks applications will run in a distributed scenario. In this case, 

the data fusion has to be done in a distributed way. How to fuse distributed data taking 
into account different aspects that should be considered in this type of application, such 
as the available resource in terms of node’s energy and sensing capability. 

Data fusion is an important aspect related to the application development in a 
sensor networks environment. It is directly related to the application quality of service 
specifications and also related to different aspects of the sensor networks environment. 
Based on these aspects, different aspects should be considered in the data fusion 
implementation in sensor networks: 

 
1) Communication cost (receiving and transmiting)  

f. Influence of different sizes of data. If the data is higher than the packet, we 
need to add the number of necessary messages to send all the data. 

2) Data fusion cost: 
3) Data fusion precedence:  
4) Sensing cost  
5) Node capability: power, computation capability and functionalities capability 

g. All the nodes have the same capabilities. 
h. Heterogeneous nodes 

6) Different data rates: it can determine the use of shortest or longest paths. 
7) Real time versus not real time: real time applications need a short path and 

smaller delays. 
8) Security: Adds overhead in the communication cost. 
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9) System lifetime: how many paths can we use to provide a larger system’s 
lifetime? From the lifetime point of view, the use of as many paths as possible is 
useful. 

10) Data throughput: the shortest paths are related to a higher throughput than the 
larger paths. 

11) Transmission delay: the transmission delay is higher in the longer paths than in 
the shortest paths. 

12) Time synchronization: it is easier to obtain synchronization on the shortest paths 
than on the longest paths. 

13) Location integration:  
i. Scenario 1: any source, anywhere. 
j. Scenario 2: sources to be fused are near from each other. 

14) Scalability: We can apply the algorithm to the entire network or divide the 
network in smaller domains represented by different destination nodes. We can 
then integrate the domain’s destination nodes to scale to the entire network. 

 
 

We have developed some algorithms to find the best optimal node to fuse the data 
from different sensors considering some of the aspects described above. 

 
5.2. Methodology 

 
5.2.1. Objective: Given a data fusion expression, determine the best data fusion nodes 
(path) based on communication cost, sensing capability and system’s lifetime to fuse the 
data from the data source nodes to the destination node. 

 
5.2.2. Data Fusion expression definition 

 
- All the operations are inside a parenthesis; 
- All opened parenthesis have a corresponding closed parenthesis; 
- The operator + means fusion of data; 
- The operands represent the data sources; 
- The operations inside parenthesis have precedence over non parenthesis 

operations. 
 

Ex: DF expression = ((A + B) + (C + D)) = (AB + CD) = ABCD; 
DF expression = ( (A1 + A2 + A3 +A4 +A5) + B + C) = (A + B + C) = ABC 

 
5.2.3. Algorithms 

 
Brute force algorithm: Test all the ways to get the data to each possible DF node and 
combine the cost of each combination. This is an exponential problem (NP complete). 

 
Optimal solution: Use the shortest path algorithm to get the data to each possible DF 
node and combine the cost of each combination. This is an approximation of the brute 
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force algorithm but still a very hard problem (quadratic as a function of the number of 
nodes in the network). 

 
Approximate solutions: We are going to employ different approximate heuristics based 
algorithms to find a sub optimal solution with a lower computation cost than the optimal 
solution. 

 
• Greedy solution: 
• Approximate Greedy solution: 
• Optimal Node: 
• Optimal node plus intermediate nodes (Hervaldo) 

 
Algorithms for the tests: 

 
Notation: A = 1, B = 2, C = 3, D = 4 and destination node = dst.  

 
 
 
 

/////Calculate all pairs shortest path and store in a table////// 
 

for dst = 1:num_sensors, 
%disp(dst); 
[paths, total_cost] = find_shortest_path(dst, cost); 
cost_table(dst, :) = total_cost; 
path_table(dst, 1:size(paths,1), 1:size(paths,2)) = 

paths; end;  
////////////////////////////////////////////////////////////  

 
 
 
 

1) Optimal Algorithm: evaluate all the shortest path 

solutions for fusion_point12 = 1:num_sensors, 
 

cost12 = cost_table(src1, fusion_point12) + cost_table(src2, 
fusion_point12); for fusion_point34 = 1:num_sensors, 

cost34 = cost_table(src3, fusion_point34) + cost_table(src4, 
fusion_point34); for fusion_point1234 = 1:num_sensors,  

cost1234 = cost_table(fusion_point12, fusion_point1234) + cost_table(fusion_point34, 
fusion_point1234) + cost_table(fusion_point1234, dst);  

cost_final = cost12 + cost34 + cost1234; 
if (cost_final < optimal_cost), 

optimal_fusion_point12 = fusion_point12; 
optimal_fusion_point34 = fusion_point34; 
optimal_fusion_point1234 = fusion_point1234; 
optimal_cost = cost_final; 

end;  
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end; 
end; 

end;  
 
 

2) Calculate the greed solution: evaluate the best fusion nodes by dividing the 
evaluation in parts (A + B) , (C + D), (AB + CD + destination). 
/// Evaluate the fusion point for A and B// 
for fusion_point12 = 1:num_sensors,  

cost12 = cost_table(src1, fusion_point12) + cost_table(src2, 
fusion_point12); if (cost12 < greed_cost12), 

greed_fusion_point12 = 
fusion_point12; greed_cost12 = cost12; 

end; 
end; 
### Evaluate the fusion point for C and D#### 
for fusion_point34 = 1:num_sensors,  

cost34 = cost_table(src3, fusion_point34) + cost_table(src4, 
fusion_point34); if (cost34 < greed_cost34), 

greed_fusion_point34 = 
fusion_point34; greed_cost34 = cost34; 

end; 
end; 
####Evaluate the fusion point for AB and CD and destination node#### 
for fusion_point1234 = 1:num_sensors,  
cost1234 = cost_table(greed_fusion_point12, fusion_point1234) + 
cost_table(greed_fusion_point34, fusion_point1234) + cost_table(fusion_point1234, dst); 

if (cost1234 < greed_cost1234), 
greed_fusion_point1234 = fusion_point1234; 
greed_cost1234 = cost1234;  

end; 
end; 

 
greed_total_cost = greed_cost12 + greed_cost34 + greed_cost1234;  

 
 
 
 
 

3) Calculate the modified greed solution (considering the destination node): evaluate 
the best fusion nodes by dividing the evaluation in parts (A + B) , (C + D), (AB + CD 
+ destination). The difference from this algorithm to the greedy solution is that this 
one considers the destination node to calculate de (A + B) and (C + D) fusion nodes. 

 
/// Evaluate the fusion point for A and B//  
for fusion_point12 = 1:num_sensors, 
cost12 = cost_table(src1, fusion_point12) + cost_table(src2, fusion_point12) +  
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cost_table(fusion_point12, dst);  
if (cost12 < part_cost12), 

part_fusion_point12 = fusion_point12; 
part_costdest = cost_table(fusion_point12, dst); 
part_cost12 = cost12; 

end; 
end; 
part_cost12 = part_cost12 - part_costdest; 
part_costdst = 0; 

 
### Evaluate the fusion point for C and D#### 
for fusion_point34 = 1:num_sensors,  
cost34 = cost_table(src3, fusion_point34) + cost_table(src4, fusion_point34) + 
cost_table(fusion_point34, dst); 

if (cost34 < part_cost34), part_fusion_point34 = 
fusion_point34; part_costdest = 
cost_table(fusion_point34, dst); part_cost34 = 
cost34; 

end; 
end; 
part_cost34 = part_cost34 - part_costdest; 

 
####Evaluate the fusion point for AB and CD and destination node#### 
for fusion_point1234 = 1:num_sensors,  
cost1234 = cost_table(part_fusion_point12, fusion_point1234) + 
cost_table(part_fusion_point34, fusion_point1234) + cost_table(fusion_point1234, dst); 

if (cost1234 < part_cost1234), 
part_fusion_point1234 = fusion_point1234; 
part_cost1234 = cost1234; 

end; 
end; 

 
part_total_cost = part_cost12 + part_cost34 + part_cost1234;  

 
 

4) Approximate solution Hervaldo: calculate the best fusion point (ABCDdst node) 
for all the involved nodes (A, B, C, D, and destination). Now calculate the best fusion 
node to fuse A and B to ABCDdst node and C and D to the ABCDdst node. 

 
####Evaluate the fusion point for A, B, C, D and destination node### 
for fusion_point1234 = 1:num_sensors,  
cost1234 = cost_table(src1, fusion_point1234) + cost_table(src2, fusion_point1234) + 
cost_table(src3, fusion_point1234) + cost_table(src4, fusion_point1234) + 
cost_table(fusion_point1234, dst); 

if (cost1234 < Aprox_cost1234), 
Aprox_fusion_point1234 = fusion_point1234;  
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Aprox_cost1234 = cost1234; 
end; 

end;  
### Evaluate the fusion point for A and B to the fusion point ABCD and 
destination####  
for fusion_point12 = 1:num_sensors, 
cost12 = cost_table(src1, fusion_point12) + cost_table(src2, fusion_point12) + 
cost_table(fusion_point12, Aprox_fusion_point1234); 

if (cost12 < Aprox_cost12), 
Aprox_fusion_point12 = 
fusion_point12; Aprox_cost12 = cost12; 

end; 
end; 
### Evaluate the fusion point for C and D to the fusion point ABCD and 
destination####  
for fusion_point34 = 1:num_sensors, 
cost34 = cost_table(src3, fusion_point34) + cost_table(src4, fusion_point34) + 
cost_table(fusion_point34, Aprox_fusion_point1234); 

if (cost34 < Aprox_cost34), 
Aprox_fusion_point34 = fusion_point34; 
Aprox_cost34 = cost34; 

end; 
end;  
Aprox_total_cost = Aprox_cost12 

 
+ 

 
Aprox_cost34 

 
+  

cost_table(Aprox_fusion_point1234, dst);  
 

Software for simulations: We have used the MATLAB and the MATLAB network 
toolbox. 

 
Simulations assumptions: 

 
1. Network of different number of nodes: networks simulated from 50 nodes to 1000 

nodes. 
2. Randomized nodes distribution (each trial): for each trial, the nodes distribution in 

the field was randomized. 
3. Randomized data sources (sensors): for each trial, the nodes responsible for the 

data sources (sensing units) in the field were randomized. 
1. Randomized destiny nodes: for each trial, the node assigned as the node destiny 

for the fused data (destiny node) in the field was randomized. 
 

Figure notations:  
1. data source (sensor) represented by a blue triangle 
2. Destiny node: blue circle 
3. Data fusion nodes A + B and C + D: small red circles 
4. Data Fusion node: (A+B) + (C+D): large red circle 
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5. OBS: each sensor node must be a different randomized one. This means that each 
sensor can only sense one variable each time. There are no restrictions about the 
other nodes (data fusion and destiny nodes). They are defined by the algorithm 
employed. 

 
Example: 

 
The following figures 38, 39, 40 e 41 represent examples of the different solutions 

obtained from the employment of the different algorithms to capture the data from the 
data sources (sensors) and to find the best routes to perform data fusion and send the 
resulted data to the destination node. Note that all the solutions are based on the same set 
of sensors and destination node positions, but presenting different solutions to perform 
data fusion.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 38: Shortest path algorithm solution 
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Figure 39: Approximate solution Hervaldo and Optimal node 
algorithms solutions (same resulted graph) 
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Figure 40: Approximate solution Greedy 
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Figure 41: Approximate solution Modified Greedy 
 
 
 

4) Results of Simulations: 
 

1) We have compared the optimal solution against the approximate solutions to find 
the optimal data fusion node (s) to fuse the data from 4 different sources and to 
send the fused data to a destination node. We have employed the shortest path 
algorithm described by Dijkstra. 

 
a. Comparison among the different algorithms based on communication cost: 

optimal, approximate based on greedy solution, modified greedy, 
Approximate Hervaldo , and one optimal node algorithm. 
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Network with 100 nodes (200 simulations) 
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Figure 42: Results obtained from a network of 100 nodes  
 
 
 
 

Network with 250 nodes (291 simulations) 
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Figure 43: Results obtained from a network of 250 nodes 
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Network with 500 nodes (500 simulations) 
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Figure 44: Results obtained from a network of 500 nodes 

 
 
 
 

The results obtained from the simulations in different network densities (100 to 
500 nodes) showed that the approximate solution named Hervaldo, Modified Greedy, 
Optimal node and Greedy are the best alternatives to the optimal solution (figures 42, 43 
e 44). As a conclusion, The approximate solution Hervaldo is the best approximate 
solution and as a consequence, the nearest solution to the optimal solution. 

 
 

b. Comparison among the different algorithms based on computation cost 
(running time): optimal, approximate based on greedy solution, modified 
greedy, approximate Hervaldo, and one optimal node. 
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Figure 45: Computation cost of the optimal solution (1), Greedy (2), 
Modified Greedy (3), approximate Hervaldo (4) and Optimal Node (5).  
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Figure 46: Computation cost of the approximate solution Greedy, Modified 
Greedy, approximate Hervaldo and Optimal Node. 
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The results obtained from the computation cost simulations showed that the 
approximate solutions are less expensive than the optimal solution (figure 45). The 
comparison of the computation cost among the aproximate solutions showed that the 
Greedy, modified Greedy and Hervaldo have the same computation cost. The 
computation cost of the optimal node is only 20% (1/5) of the other approximate 
solutions (figure 46). As a conclusion, The optimal node solution has the lowest 
computation cost. . 

As a result of the simulations considering the communication cost and the 
computation cost, the best alternatives to the optimal solution are the approximate 
Hervaldo and the optimal node solution. 

 
c. Comparison among the different approximate algorithms based on DF 

path lifetime: approximate based on greedy solution, modified greedy, one 
optimal node, and Approximate Hervaldo.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c) d) 
 
 

Figure 47: Example of data fusion path in different algorithms: approximate 
Hervaldo (a), Modified Greedy (b), Greedy (c), and Optimal Node (d). 
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Figure 48: Example of the worst case scenario in data fusion multiple paths.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 49: Examples of the worst and best case scenarios in data 
fusion multiple paths. 

 
 

Figure 47 shows examples of data fusion paths from different algorithms. Notice 
that all the algorithms have different data fusion paths to solve the same data fusion 
expression ((A+B) + (C+D) and to send the data fusion result to the destination node. 
Figures 48 and 49 show that multiple data fusion paths can have good or bad results. If a 
node is a sensing unit and data fusion node simultaneously, its energy will drain earlier. 
So, the worst case scenario is the situation where the same nodes act as sensing units and 
data fusion node or destination node. .The best data fusion multiple paths solutions is 
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characterized by the use of different nodes to act as sensing units, data fusion nodes and 
destination nodes. If the system uses more nodes with approximately the same 
communication cost, the system’s lifetime will be greater. 

As a conclusion, the sensor networks application designer should balance 
minimum cost and maximum lifetime: The goal is to achieve the minimum 
communication and data fusion cost, and to maximize the system’s lifetime. 

So, the question is how to increase the number of paths. One of the ways is to 
vary the data fusion nodes (figure 50). As we are employing the shortest path, whether 
we choose the best 10 shortest paths, we might be varying the data fusion node. Another 
way is to use multiple DF nodes between the optimal DF node and destination node 
(figure 51). 

 
 

Multiple optimal DF nodes (best 10 shortest paths)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 50: Example of the 10 best shortest paths of the approximate 
solution Hervaldo. 
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Multiple DF nodes between the optimal DF node and destination node  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 51: Example of the 10 best shortest paths between the (AB+CD) data 
fusion node and destination node of the approximate solution Hervaldo. 
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Network with 100 nodes, 10 different set of sensors, for each set of sensors 10 paths.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 52: Example of a Network with 100 nodes and 10 different set of 
sensors. For each set of sensors, we considered the 10 best paths (lowest 
communication cost) of the approximate solution Hervaldo. 

 
Figure 52 shows that network density should be considered in the design of sensor 

networks applications. A network with a hundred nodes and ten sensors as source of data 
will use almost all nodes to perform 10 distributed data fusion paths to each combination 
of sensors and destination node. This result shows that the number of network’s nodes is 
a limiting factor to increasing the system’s lifetime.  

Another aspect that should be considered is the communication data fusion cost 
tradeoff. If the data fusion computation cost is higher than the communication cost, in 
general it is better to increase the number of paths and data fusion nodes. On the contrary, 
it is better to use the fewest number of paths. 

In the next simulations we are going to perform the balance of the communication 
cost and data fusion cost in the different algorithms. As the optimal node and Hervaldo’s 
solution were considered the best approximate solutions, from this point to the end we are 
going to consider only these algorithms in comparison to the optimal solution (shortest 
path). 

 
d. Comparison of system’s lifetime among the best different approximate 

algorithms based on multiple DF paths: One optimal node considering 
destination node and not considering destination node (aprox. Optimal DF 
node no sensor), and Approximate Hervaldo. 
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Figure 53: Network with 500 nodes, 10 multiple paths combined to 10 multiple 
data fusion nodes, for the shortest path, approximate Hervaldo, Approximate 
Optimal node and approximate optimal node no sensor.  
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Figure 54: Network with 500 nodes, and 10 multiple paths, for the shortest 
path, approximate Hervaldo, Approximate Optimal node and approximate 
optimal node no sensor. 
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Figures 53 and 54 try to answer the question. Is it good to increase the number 
of nodes between the last data fusion node (AB+CD) and the destination node? The 
hypothesis considers that whether the data fusion cost is greater than the 
communication cost, it would be good to increase the number of DF nodes. The 
results showed that the use of the combination multiple paths and multiple nodes 
increase the system’s lifetime. This increase is greater in the algorithms that vary 
the nodes in the different paths. The 10 shortest paths in the shortest path algorithm 
use almost the same nodes. On the other hand, the approximate solution based on 
the best node not considering the destination node achieves the best system’s 
lifetime because it creates more paths with different nodes. So-, perhaps considering 
only the system’s lifetime, the shortest path is not the best solution to achieve the 
optimal data fusion nodes to solve the data fusion expression.  

 
 
 
 
 

Comparison among the approximate algorithms 
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(network with 50 nodes) 
 
 
 

 

Li
fe

tim
e 

 
 
 

                        
 140                         
 

                        
 

120                        
Shortest path  

100                         
 

80                        Aprox. Hervaldo 
 

                        
 60                         
 

40                        Aprox. Optimal DF node 
 

20                         
 

0                        
 

   Aprox. Optimal DF node 
 

4:1 2:1 1:1 1:1.5 1:2 1:3 1:5    
 

                        no sensor 
 

           

    Communication cost: DF cost       
  

 
 

 
Figure 55: Network with 50 nodes, and 10 multiple paths combined to multiple 
DF nodes between the last DF node and destination node for the shortest path, 
approximate Hervaldo, Approximate Optimal node and approximate optimal 
node no sensor. 
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Figure 56: Network with 50 nodes, and 10 multiple paths for the shortest path, 
approximate Hervaldo, Approximate Optimal node and approximate optimal 
node no sensor. 

 
 
 
 
 

The result of figures 55 and 56 show the same results as the figures 53 and 54. 
The use of the combination multiple paths and multiple nodes increase the system’s 
lifetime. This increase is greater in the algorithms that vary the nodes in the different 
paths. It also shows that the network density is proportional to system’s lifetime if the 
number of sensing units and DF nodes are constant. A network with 50 nodes will have a 
lower system’s lifetime than a network with 500 nodes 

 
 

e. Comparison of lifetime among the different approximate algorithms based 
on multiple DF paths considering 10, 50 and 100 paths: approximate based 
on greedy solution, modified greedy, one optimal node, and Approximate 
Hervaldo. 
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Comparison between the Aprox. Hervaldo and 
Optimal node algorithms based on the multiple 

paths multiple DF nodes (network with 500 nodes) 
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Figure 57: Comparison between Aprox Hervaldo algorithm and Optimal Node 
algorithm in a network with 500 nodes, multiple paths and multiple DF nodes.  
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Figure 58: Comparison between Aprox Hervaldo algorithm and Optimal Node 
algorithm in a network with 500 nodes with multiple paths. 

 
Figures 57 and 58 show the comparison between Approximate Hervaldo and 

Optimal node algorithms in network of 500 nodes, but varying the communication DF 



108 
 
 

cost and the number of paths. In figure 58 the simulation applied multiple paths multiple 
DF nodes between the AB+CD DF node and destination node, while the figure 59 only 
considered multiple paths. The results showed that the optimal node algorithm is better 
than Hervaldo’s algorithm. Therefore, there is a great increase in system’s lifetime to add 
DF nodes between the AB+CD DF node and destination node. The increment in the 
number of paths also increases the system’s lifetime. When the communication cost is 
higher than the DF cost, the system’s lifetime is higher.  
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Figure 59: Comparison between Aprox Hervaldo algorithm and Optimal Node 
algorithm in a network with 100 nodes with multiple paths multiple DF nodes.  
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Figure 60: Comparison between Aprox Hervaldo algorithm and Optimal Node 
algorithm in a network with 500 nodes with multiple paths. 
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Figures 59 and 60 show that the difference between the approximate algorithm 
remain the same in a network with 100 nodes. It also shows that to decrease the network 
density decrease the system’s lifetime. 

 
 

f. Comparison of the system’s lifetime among the different algorithms based 
on multiple DF paths considering the communication cost and Data fusion 
cost ratio and varying the number of paths: approximate solutions based 
on Approximate Hervaldo, one optimal node, and one optimal node 
without sensors.  
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Figure 61: Comparison between multiple paths multiple DF nodes, multiple 
paths, average multiple paths, shortest path and average multiple paths multiple 
DF nodes using Aprox Hervaldo algorithm in a network with 500 nodes with 
10 paths. 
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Network with 250 nodes, 10 paths and 500  
simulations (Aprox. Hervaldo) 

 
 
 
 
 

Li
fe

tim
e 

 
 
 

                
 

140                Multiple paths multiple 
 

120                
 

100                DF nodes 
 

80                
Multiple paths 

 

60                Average multiple paths 
 

40                 
 

               
 20                
 

               
 0                Shortest path 
 

4:1 2:1 1:1 1:1.5 1:2 1:3 1:5    
 

      
 

      Average multiple paths 
 

   Communication cost: Data Fusion    
 

               multiple DF nodes 
 

                 

       cost          
  

 

 
Figure 62: Comparison between multiple paths multiple DF nodes, multiple 
paths, average multiple paths, shortest path and average multiple paths multiple 
DF nodes using Aprox Hervaldo algorithm in a network with 250 nodes with 
10 paths.  

 
 
 
 
 

Network with 100 nodes, 10 paths, 200  
simulations (Aprox. Hervaldo) 

 
 
 
 
 

Li
fe

tim
e 

 
 
 

                
 140                

 
               

 

120                Multiple paths multiple 
 

100                
DF nodes 

 

80                
Multiple paths  

60                Average multiple paths 
 

40                 
 

               
 20                
 

               
 0                Shortest path 
 

4:1 2:1 1:1 1:1.5 1:2 1:3 1:5    
 

      
 

      average multiple paths 
 

   Communication cost: Data Fusion    
 

               multiple DF nodes 
 

                 

       cost          
  

 
 

Figure 63: Comparison between multiple paths multiple DF nodes, multiple 
paths, average multiple paths, shortest path and average multiple paths multiple 
DF nodes using Aprox Hervaldo algorithm in a network with 100 nodes with 
10 paths. 
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Network with 50 nodes, 10 paths, 100 simulations  
(Aprox. Hervaldo) 
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Figure 64: Comparison between multiple paths multiple DF nodes, multiple 
paths, average multiple paths, shortest path and average multiple paths multiple 
DF nodes using Aprox Hervaldo algorithm in a network with 50 nodes with 10 
paths.  
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Figure 65: Comparison between multiple paths multiple DF nodes, multiple 
paths, average multiple paths, shortest path and average multiple paths multiple 
DF nodes using Aprox Optimal Node algorithm in a network with 500 nodes 
and 10 paths. 
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Figure 66: Comparison between multiple paths multiple DF nodes, multiple 
paths, average multiple paths, shortest path and average multiple paths multiple 
DF nodes using Aprox Optimal Node algorithm in a network with 250 nodes 
and 10 paths.  
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Figure 67: Comparison between multiple paths multiple DF nodes, multiple 
paths, average multiple paths, shortest path and average multiple paths multiple 
DF nodes using Aprox Optimal Node algorithm in a network with 100 nodes 
and 10 paths. 
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Network with 50 nodes, 10 paths, 100 simulations  
(Aprox. Optimal DF node) 
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Figure 68: Comparison between multiple paths multiple DF nodes, multiple 
paths, average multiple paths, shortest path and average multiple paths multiple 
DF nodes using Aprox Optimal Node algorithm in a network with 50 nodes 
and 10 paths.  
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Figure 69: Comparison between multiple paths multiple DF nodes, multiple 
paths, average multiple paths, shortest path and average multiple paths multiple 
DF nodes using Aprox Optimal Node no sensor algorithm in a network with 
500 nodes and 10 paths. 
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Network with 250 nodes, 10 paths, 500 
simulations (Aprox. Optimal DF node 

without sensor) 
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Figure 70: Comparison between multiple paths multiple DF nodes, multiple 
paths, average multiple paths, shortest path and average multiple paths multiple 
DF nodes using Aprox Optimal Node no sensor algorithm in a network with 
250 nodes and 10 paths.  
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Figure 71: Comparison between multiple paths multiple DF nodes, multiple 
paths, average multiple paths, shortest path and average multiple paths multiple 
DF nodes using Aprox Optimal Node no sensor algorithm in a network with 
100 nodes and 10 paths. 
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Network with 50 nodes, 10 paths, 100 simulations  
(Aprox. Optimal DF node without sensor) 
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Figure 72: Comparison between multiple paths multiple DF nodes, multiple 
paths, average multiple paths, shortest path and average multiple paths multiple 
DF nodes using Aprox Optimal Node no sensor algorithm in a network with 50 
nodes and 10 paths. 

 
Figures 61 to 72 show that in all algorithms tested the network based on multiple 

paths multiple DF nodes is much better than the options multiple paths, average multiple 
paths, shortest path (better communication cost) and average multiple paths multiple DF 
nodes. These differences are greater when we increase the communication data fusion 
cost ratio. The comparison among the algorithms showed that the Approximate Optimal 
DF Node without sensor is slighter better than the Optimal DF node and much better than 
the Hervaldo’s algorithm. 

 
g. Compare the lifetime of first 10 paths, 20 to 30, 30 to 40, 50 to 60, 60 to 

70, 70 to 80, 80 to 90 and 90 to 100 in different network densities. 
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Comparison of the different shortest path 
ranges (communication cost: DF cost = 4:1) in a 

network with 100 nodes 
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Figure 73: Comparison between multiple paths multiple DF nodes and multiple 
paths, in a network with 100 nodes and communication cost DF cost of 4:1 
using optimal node algorithm.  

 
 
 
 
 

Comparison of the different shortest path 
ranges (communication cost: DF cost = 1:5) in a 
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Figure 74: Comparison between multiple paths multiple DF nodes and multiple 
paths, in a network with 100 nodes and communication cost DF cost of 1:5 
using optimal node algorithm. 

 
The hypothesis tested and showed in figures 73 and 74 is that to use long paths 

can be better than to use the shortest paths. To test this hypothesis we evaluated the best 
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100 paths divided in ranges of ten. The results showed that it not favorable to use longest 
paths to increase system’s lifetime in low density networks. It should be tested in high 
density networks. 

How to employ the algorithms discussed in this chapter in real problems? In the 
next section we describe how to employ the Distributed Data Fusion Algorithm in a 
sensor networks application. 

 
Distributed Data Fusion Algorithm: With the algorithm described below we can 
employ anyone of the approximate algorithms tested (greedy, modified greedy, one 
optimal node, and approximate Hervaldo). The algorithms will be different in the number 
of fusion nodes and how to calculate them (step 5 of the algorithm).  

1) Destination node or destination nodes broadcast the data fusion expression. 
2) Sensors read the expression and broadcast their positions (GPS?) whether they are 

participating in the expression. . 
3) Find the optimal fusion node: each node of the network evaluate the distance 

(number of hopes) from the participating sensors and destination sensor to itself. 
4) Each node broadcast its distance cost. 
5) Each node builds an ordered vector of shortest paths. 
6) Two options: 

a. Based on its data rates each participating sensor sends its data to the fusion 
point. It controls the data rate, the rotating of the fusion points (multiple 
paths), but it cannot control the rotation of redundant sensors. The fusion 
node can control the fusion point (multiple data fusion point’s paths). 

b. Each destination node pulls the data fusion node and the data fusion node 
pulls the participating sensors. This approach allows the rotation of fusion 
nodes, participating sensors, sensors mode, and control the sensors’ data 
rates, but the approach is related to an overhead of communication and 
control. 

 
 
 
 

Conclusions: 
 

To achieve the goal of performing data fusion in an optimal node in distributed 
sensor networks, we have implemented different algorithms already described in the 
literature (shortest path) and greedy algorithm. The other algorithms are adaptations of 
these algorithms. The suboptimal´s algorithms (hervaldo’s algorithm and optimal node 
algorithm) showed to be the algorithms with best performance and acceptable cost. 

The results obtained from the simulations in different network densities (100 to 
500 nodes) showed that the approximate solution named Hervaldo, Modified Greedy, 
Optimal node and Greddy as the best alternatives to the optimal solution. In conclusion, 
the approximate solution Hervaldo is the best approximate solution and as a consequence, 
the nearest solution to the optimal solution. 

The results obtained from the computation cost simulations showed that the 
approximate solutions are less expensive than the optimal solution. The comparison of 
the computation cost among the aproximate solutions showed that the Greedy, modified 
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Greedy and Hervaldo have the same computation cost. The computation cost of the 
optimal node is only 20% (1/5) of the other approximate solutions. As a conclusion, the 
optimal node solution has the lowest computation cost. As a result of the simulations 
considering the communication cost and the computation cost, the best alternatives to the 
optimal solution are the approximate Hervaldo and the optimal node solution. 

Multiple data fusion paths can have good or bad results. If a node is a sensing unit 
and data fusion node simultaneously, its energy will drain earlier and the system´s 
lifetime will be shorter. So, the worst case scenario is the situation where the same nodes 
act as sensing units and data fusion node or destination node. The best data fusion 
multiple paths solutions is characterized by the use of different node to act as sensing 
units, data fusion nodes and destination nodes. If the system uses more nodes with 
approximately the same communication cost, the system’s lifetime will be greater. As a 
conclusion, the sensor networks application designer should balance minimum cost and 
maximum lifetime: The system´s goal is to achieve the minimum communication and 
data fusion cost, and to maximize the system’s lifetime. 

Network density should be considered in the design of sensor networks 
applications. A network with a hundred nodes and ten sensors as source of data will use 
almost all nodes to perform 10 distributed data fusion paths to each combination of 
sensors and destination node. This result shows that the number of network nodes is a 
limiting factor to increase the system’s lifetime. 

Another aspect that should be considered is the communication data fusion cost 
tradeoff. If the data fusion computation cost is higher than the communication cost, in 
general it is better to increase the number of paths and data fusion nodes. To the contrary 
is better to use the fewest number of paths. 

The use of the combination multiple paths and multiple nodes increase the 
system’s lifetime. This increase is greater in the algorithms that vary the nodes in the 
different paths. The 10 shortest paths in the shortest path algorithm use almost the same 
nodes. On the other hand, the approximate solution based on the best node not 
considering the destination node achieves the best system’s lifetime because it creates 
more paths with different nodes. So, considering the system’s lifetime, the shortest path is 
not the best solution to achieve the optimal data fusion nodes to solve the data fusion 
expression. Besides this, network density is proportional to the system’s lifetime if the 
number of sensing units and DF nodes are constant. A network with 50 nodes will have a 
lower system’s lifetime than a network with 500 nodes. 

The optimal node algorithm is better than Hervaldo’s algorithm. Therefore, there 
is a great increase in system’s lifetime to add DF nodes between the (AB+CD) DF node 
and destination node. The increment in the number of paths also increases the system’s 
lifetime. When the communication cost is higher than the DF cost, the system’s lifetime 
is higher. 

In all algorithms tested, the network based on multiple paths multiple DF nodes is 
much better than the options multiple paths, average multiple paths, shortest path (better 
communication cost) and average multiple paths multiple DF nodes. These differences 
are greater when we increase the communication data fusion cost ratio. The comparison 
among the algorithms showed that the Approximate Optimal DF Node without sensor is 
slighter better than the Optimal DF node and much better than the Hervaldo’s algorithm. 



119 
 
 

The hypothesis that to use long paths can be better than using shortest paths was 
evaluated by testing the performance of the Optimal Node algorithm in the best 100 paths 
divided in ranges of ten. The results showed that it not favorable to use longest paths to 
increase system’s lifetime in low density networks. It should be tested in high density 
networks. 

As a future work we are planning to compare the number of hopes of first 10 
paths, 20 to 30, 30 to 40, 50 to 60, 60 to 70, 70 to 80, 80 to 90 and 90 to 100 in different 
network densities; compare the result using heterogeneous nodes; simulate a network 
with multiple sensors of the same type and rotation among them; simulate a network with 
multiple sensors of the same type and rotation among them. Compare the number of 
paths influence on system’s lifetime; compare between shortest paths and longest paths: 
number of hopes, system’s lifetime, delay, throughput, data rates and time 
synchronization. 
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Chapter 6 

 

Middleware Application relationship in sensor networks 

 

6.1 Introduction 
 

For several decades, distributed computing has been both an enabling and a 
challenging environment in which to build applications. Initially, the major difficulty in 
implementing such systems was simply exchanging data across distances and among 
heterogeneous components. Today these problems are essentially solved, and research is 
turning its focus to higher level concerns, such as improved fault tolerance through 
replication, optimal data access via distributed object placement, and methods of enabling 
high level communication abstractions such as event dispatching and remote invocation. 
The end result of this research into distributed systems is an expanding set of middleware 
platforms that reside above the operating system and below the application, abstracting 
lower level functionality such as network connectivity and providing a high-level 
coordination interface to the application programmer. 

Often the combination of characteristics from the environment and application 
drive the design of the middleware. For example, consider the new class of applications 
for sensor networks with the following features: 

 
Inherent distribution. The sensors are distributed throughout a physical space, and 
are primarily connected wirelessly; 
Dynamic availability of data sources. Either mobility through space, addition of 
new sensors, or loss of existing sensors causes the set of available sensors to 
change over time; 
Constrained application quality of service demands. Sensor network applications 
require a minimum quality of service (QoS), and this level must be maintained 
over an extended period of time. There may be many ways to achieve the QoS 
(e.g., different sensors may offer data or services that meet the applications©QoS 
requirements). Furthermore, the required QoS and the means of meeting this QoS 
can change over time, as the state of the application or the availability of sensors 
changes; 
Resource limitations. Both network bandwidth and sensor energy are constrained. 
This is especially true when considering battery powered sensors and wireless 
networks; 
Cooperative applications. Sensor network applications share available resources 
(e.g., sensor energy, channel bandwidth, etc.) and either cooperate to achieve a 
single goal, or, at the very least, do not compete for these limited resources. 

 
One unique feature of sensor network applications with these properties is that 

simply responding to the changing environment is insufficient to achieve the required 
QoS over time. Instead, the applications must be proactive, actively affecting the 
network. Most existing middleware systems do not support such a proactive approach 
with respect to the network, leaving reactivity as the only choice and sacrificing 
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application quality over time. We believe that a middleware that enables applications to 
affect the network and the sensors themselves is needed to support this new and growing 
class of applications for sensor networks. 

This chapter presents an overview of the related research in the areas of sensor 
networks and middleware, highlighting how existing approaches to the management of 
sensor networks could benefit from a middleware abstraction and showing that existing 
middleware does not meet the specification needs of all sensor network applications. 
Based on this observation, we propose a new middleware for sensor networks called 
Milan (Middleware Linking Applications and Networks). Milan allows sensor network 
applications to specify their quality needs and adjusts the network characteristics to 
increase application lifetime while still meeting those quality needs. Specifically, Milan 
receives information from the individual applications about their QoS requirements over 
time and how to meet these QoS requirements using different combinations of sensors, 
the overall system about the relative importance of the different applications, and the 
network about available sensors and resources such as sensor energy and channel 
bandwidth. Combining this information, Milan continuously adapts the network 
configuration (e.g., specifying which sensors should send data, which sensors should be 
routers in multi -hop networks, which sensors should play special roles in the network, 
etc.) to meet the applications©needs while maximizing application lifetime. 

Next we will describe several sensor network applications that could benefit from 
a middleware like Milan that proactively affects different characteristics of the network, 
and in section 6.3 we will discuss existing sensor network management and middleware 
approaches. In section 6.4 we will describe Milan and show how the design of a health 
monitor sensor application can be simplified using Milan. 

 
6.2 Sensor Network Applications 

 
As stated in the introduction, sensor network applications represent a new class of 

applications that are: 
data driven, meaning that the applications collect and analyze data from the 
environment, and depending on redundancy, noise, and properties of the 
sensors themselves, the applications can assign a quality level to the data, and 

state based, meaning that the application©s needs with respect to sensor data 
can change over time based on previously received data. Typically sensors are 

battery-operated, meaning they have a limited lifetime during which they 
provide data to the application. A challenge of the design of sensor networks 

is how to maximize network lifetime while meeting application quality of 
service (QoS) requirements. 

For these types of applications, the needs of the application should dictate which 
sensors are active and the role they play in the network topology. To further illustrate this 
point, we discuss some specific sensor network applications and how they can benefit 
from this form of interaction. Next we will give a brief description of the test bed 
application for the middleware application relationship proposed. 
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6.2.1. Medical Monitoring 
 

As an example of a sensor networks application, consider a personal health 
monitor application running on a PDA that receives and analyzes data from a number of 
sensors (e.g., ECG, EMG, blood pressure, blood flow, pulse oxymeter). The monitor 
reacts to potential health risks and records health information in a local database. 
Considering that most sensors used by the personal health monitor will be battery 
operated and use wireless communication, it is clear that this application can benefit from 
intelligent sensor management that provides energy-efficiency as well as a way to 
manage QoS requirements, which may change over time with changes in the patient©s 
state. For example, higher quality might be required for certain health-related variables 
during high stress situations such as a medical emergency, and lower quality during low 
stress situations such as sleep. Next we will present a review of the related literature 
(section 6.3) and describe the middleware application relationship approach employed in 
the Milan architecture (section 6.4). 

 
6.3 Sensor Network Management and Middleware Application 
Relationship Approaches 

 
There has been considerable research into the development of low-level protocols 

to support sensor networks as well as high-level middleware systems to support the 
development of distributed computing applications by hiding environmental 
complexities. A recent trend includes the combination of these into middleware designed 
for sensor networks. In this section, we describe these developments and explain why 
they are insufficient for the unique style of many sensor network applications. 

 
6.3.1. Sensor Networks 

 
One of the distinguishing characteristics of sensor networks is their reliance on 

non-renewable batteries, despite their simultaneous need to remain active as long as 
possible. Therefore, initial work has been done to create network protocols tailored to 
sensor networks that extend network lifetime considering the energy constraints of the 
individual sensors. Some protocols make use of low-level node collaboration to reduce 
the energy cost of data transfer by aggregating data locally rather than sending all raw 
data to the application. For example, with LEACH [52], nodes form local clusters and all 
data within a cluster are aggregated by the cluster-head node before being transmitted to 
the base station. This limited form of low-level collaboration is also found in the query-
based technique of Directed Diffusion [53], in which nodes collaborate to set up routes as 
interests for particular data are disseminated through the network. Another approach to 
reducing energy dissipation is to turn nodes o_ whenever possible. As idle power can 
often be significant, this approach can greatly extend application lifetime. MAC-level 
protocols, such as PAMAS [54] and S -MAC [55] use this technique to reduce energy 
dissipation in the MAC protocol, often trading o_ latency in packet delivery for energy 
efficiency. Topology control protocols such as ASCENT [56], Span [57], and STEM [58] 
use a similar technique of turning on and off sensors to maximize network lifetime while 
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keeping the network fully connected. Other topology control protocols such as Lint [59] 
aim to determine the minimum transmitting power necessary for a fully connected 
network, whereas protocols such as those described in [60, 61] determine the optimal 
transmitting power to minimize overall energy dissipation. In addition to the above two 
techniques, considerable energy can be saved by tailoring the routing protocol to the 
characteristics of sensor networks, including the energy constraints of the sensors, the 
data-driven nature of these networks, and the many-to-one, many-to-some, or many- to-
many collection of the data. Sensor network routing protocols such as Rumor Routing 
[62], Directed Diffusion [53] and SPIN [63] provide lightweight, data-centric solutions 
tailored to typical sensor network traffic patterns. Although these protocols are effective 
in extending the lifetime of sensor networks, the gap between the protocol and the 
application is often too large to allow the protocols to be effectively used by application 
developers. 

 
6.3.2. Middleware 

 
Middleware has often been useful in traditional systems for bridging the gap 

between the operating system (a low-level component) and the application, easing the 
development of distributed applications. Because wireless sensor networks share many 
properties with traditional distributed systems, it is natural to consider distributed 
computing middleware for use in sensor networks. One of the most common middleware 
systems, Corba [64], hides the location of remote objects, simplifying the application©s 
interactions with these remote objects by allowing all operations to appear local. 
Although this could be applied to sensor networks to provide access to the sensor data, by 
hiding the location of the object (e.g., the sensor), the context information (e.g., the 
location) of the sensor is similarly lost. Additionally, by providing individual sensor 
access through objects, the potential energy savings by aggregation is lost. Jini©s [65] 
service discovery protocol and leasing mechanisms allow client applications to discover 
services and manage client-server connections as the set of available services changes. 
Service discovery is useful for dynamic sensor networks to know what sensors and/or 
services are available; however, access to services remains object-based, similar to 
Corba. The Lime middleware [66] focuses on a different API (application programming 
interface), namely a shared memory scheme for mobile ad hoc components through a 
Linda-like tuple space [67]. Neither Jini nor Lime considers the limited energy 
constraints of sensor networks, and their supporting protocols are heavyweight when 
compared to protocols tailored to sensor networks. 

Some middleware acknowledge the changing properties of wireless networks and 
attempt to modify their own behavior to match the conditions detected within the 
network. For example, both Limbo [68] and FarGo [69] reorder data exchanges or 
relocate components to respond to changing network conditions such as bandwidth 
availability or link reliability. At a lower level, Mobiware [70] supports various levels of 
quality of service by adapting streams within the network with active filters deployed in 
the routers. Other middleware systems provide hooks to allow the applications to adapt. 
For example, applications built on the Odyssey platform [71] can register for notification 
of changes in the underlying network data rate. Similarly, the Spectra [72] component of 
Aura [73] monitors the network conditions and the accessible computation resources, 
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deciding where computation should be performed based on the network transmission 
required to complete them as well as the expense of the computation on mobile versus 
fixed nodes. These advances are applicable to wireless sensor networks; however, they do 
not integrate any of the specific data aggregation protocols of sensor networks, nor do 
they consider the details of the low-level wireless protocols. 

Among existing distributed computing middleware, QoS-Aware Middleware [74] 
provides the closest example of a middleware that can support sensor network 
applications. This middleware is responsible for managing local operating system 
resources based on application requirements specified to the middleware. The 
application©s QoS information is compiled into a QoS profile to guide the middleware in 
making resource use decisions. 

 
6.3.3 Middleware for Sensor Networks 

 
Recently, much work has targeted the development of middleware specifically 

designed to meet the challenges of wireless sensor networks, focusing on the long-lived 
and resource-constrained aspects of these systems. Both the Cougar [85] and SINA [75] 
systems provide a distributed database interface to the information from a sensor network 
with database-style queries. Power is managed in Cougar by distributing the query among 
the sensor nodes to minimize the energy consumed to collect the data and calculate the 
query result. To support the database queries, SINA incorporates low-level mechanisms 
for hierarchical clustering of sensors for efficient data aggregation as well as protocols 
that limit the re-transmission of similar information from geographically proximate 
sensor nodes. AutoSec [76], Automatic Service Composition, manages resources in a 
sensor network by providing access control for applications so that qualities of service 
requests are maintained. This approach is similar to middleware for standard networks 
because resource constraints are met on a per-sensor basis, but the techniques for 
collecting the current resource utilization are tailored to the sensor network. DSWare [77] 
provides a similar kind of data service abstraction as AutoSec, but instead of the service 
being provided by a single sensor, it can be provided by a group of geographically close 
sensors. Therefore, DSWare can transparently manage sensor failures as long as enough 
sensors remain in an area to provide a valid measurement. While these middleware for 
sensor networks focus on the form of the data presented to the user applications, Impala 
[78], designed for use in the ZebraNet project, considers the application itself, exploiting 
mobile code techniques to change the functionality of the middleware executing at a 
remote sensor. The key to energy efficiency for Impala is for the sensor node applications 
to be as modular as possible, enabling small updates that require little transmission 
energy.  

Although each of these middlewares is designed for efficient use of the wireless 
sensor network, they largely ignore the properties of the network itself. In other words, 
most of these approaches do not attempt to change the properties of the network in order 
to manage energy, and they are not flexible enough to support different protocol stacks or 
different applications©QoS requirements. 



125 
 
 

6.4. MILAN Project 
 

As the summary of related work in the previous section shows, most sensor 
network research has focused on designing new network-level protocols (e.g., MAC 
layer, routing layer, topology control, etc.), without considering existing standards or how 
applications use the protocols. We argue that sensor network applications may be built on 
top of existing protocols, and thus some coordination framework is needed to leverage 
the exibility that exists in both standardized and non-standardized network protocols. 
However, to make these protocols more useful, application designers would benefit from 
a middleware that encapsulates the protocols, providing a high-level interface. Although 
the middleware discussed provide reasonable APIs, they either invent their own energy 
management protocols or provide limited mechanisms to adapt to the constraints of the 
wireless network. We argue that additional savings can be achieved if the middleware 
varies the actual parameters of the network over time while simultaneously meeting the 
requirements of the application, thereby increasing the lifetime of the network. 

We are developing a new middleware named MILAN (Middleware Linking 
Applications and Networks) that receives a description of application requirements, 
monitors network conditions, and optimizes sensor and network configurations to 
maximize application lifetime. To accomplish these goals, applications represent their 
requirements to Milan through specialized graphs that incorporate state-based changes in 
application needs. Based on this information, Milan makes decisions about how to 
control the network, as well as the sensors themselves, to balance application QoS and 
energy efficiency, lengthening the lifetime of the application.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 75: Overview of the interactions among Milan, the 
applications, and the sensors, together with a partial API. 
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Figure 75 shows an overview of the interactions among Milan, the applications, 
and the sensors, together with a partial API. This figure makes a distinction between the 
network plug-ins and the core of Milan, emphasizing the separation of computation that 
is specific to the selected network type, versus the computation that always occurs, but 
the API specifies only the application and sensor level operations. To make the 
description of the Milan API and the network plug-in abstraction more concrete, we use 
the personal health monitor application from section 6.2 as a running example. For more 
details about the MILAN project see [84]. 

 

 

6.5 Middleware Application Relationship proposed 
 

 
The middleware application relationship can be achieved through the employment 

of two graphs. The first graph represents the sensors’ accuracy to determine a certain 
variable and/or the accuracy resulting from the data fusion process. The second graph is 
based on the different states that an application can assume over time. These two graphs 
represent the knowledge-based application’s Quality of Service necessity in different 
situations (states). This QoS system is named application performance. The middleware 
should manage the tradeoff among the different components of the entire system 
(network bandwidth, sensor management, application performance and life time, fault 
tolerance, among other factors). 

 
 
 
 

6.5.1 Application Performance 
 

 
Many sensor network applications are designed to receive data input from 

multiple sensors and to adapt as the available sensors change over time, either as new 
sensors come within range, or as sensors go offline when they move away or run out of 
energy. We assume that application performance can be described by the QoS of different 
variables of interest to the application, where the QoS of the different variables depends 
on which sensors provide data to the application. Sometimes two or more sensors can 
constitute a virtual sensor to provide a specific QoS to the application. A generic 
component QoS graph is showed in figure 76. We can have n sensors related to n virtual 
sensors with a cardinality of zero to n. So, the QoS can be provided to the application 
directly from a sensor or from the virtual sensor that is a set of two or more sensors. As 
an example, in the personal health monitor, variables such as blood pressure, respiratory 
rate, and heart rate may be determined based on measurements obtained from any of 
several sensors [79]. Each sensor has a certain QoS in characterizing each of the 
application©s variables. For example, a blood pressure sensor directly measures blood 
pressure, so it provides a quality (accuracy) of 1.0 in determining this variable. Quality is 
mapped to a specific reliability in determining the variable from the sensor©s data, with 
1.0 corresponding to 100% reliability. In addition, the blood pressure sensor can 
indirectly measure other variables such as heart rate, so it provides some quality, 
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although less than 1.0, in determining these variables. The component QoS graph of the 
heart monitor is showed in figure 77. 
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The quality of the heart rate measurement would be improved through high-level 
fusion of the blood pressure measurements with data from additional sensors such as a 
blood flow sensor. In order to determine how to best serve the application, Milan must 
know (1) the variables of interest to the application, (2) the required QoS for each 
variable, and (3) the level of QoS that data from each sensor or set of sensors can provide 
for each variable. Note that all of these may change based on the application©s current 
state. During initialization of the application, this information is conveyed from the 
application to Milan via \State-based Variable Requirements" and \Sensor QoS" graphs. 
Examples of these graphs are shown in figures 78 and 79, respectively. Figure 78, an 
abstract State-based Variable Requirements Graph, shows the required QoS for each 
variable of interest based on the current state of the system and the variables of interest to 
the application, where these states are based on the application©s analysis of previously 
received data. For a particular state (a combination of system state (level A) and variable 
state (level B)), the State-based Variable Requirements Graph defines the required QoS 
for each relevant variable. Because variables (level C) can be named in multiple variable 
states (level B), Milan must extract the maximum QoS for each selected variable to 
satisfy the requirements for all variable states. Figure 79 shows the State-based Variable 
Requirements Graph for the personal health monitor. This application has two states - a 
system state that includes the patient©s overall stress level, as well as multiple states for 
each variable that can be monitored. 

The State-based Variable Requirements Graph specifies to Milan the 
application©s minimum acceptable QoS for each variable (e.g., blood pressure, 
respiratory rate, etc.) based on the current state of the patient. For example, the figure 
shows that when a patient is in a medium stress state and the blood pressure is low, the 
blood oxygen level must be monitored with a quality level of :7 and the blood pressure 
must be monitored with a quality level of :8. For a given application, the QoS for each 
variable can be satisfied using data from one or more sensors. The application specifies 
this information to Milan through the Sensor QoS Graph, figure 76. When multiple 
sensors are combined to provide a certain quality level to the variable, we refer to this as 
a single “virtual sensor". Figure 77 shows the Sensor QoS Graph for the personal health 
monitor. This graph illustrates the important variables to monitor when determining a 
patient©s condition and indicates the sensors that can provide at least some quality to the 
measurement of these variables. Each line between a sensor (or virtual sensor) and a 
variable is labeled with the quality that the sensor (or virtual sensor) can provide to the 
measurement of that variable. For example, using data from a blood pressure sensor, the 
heart rate can be determined with a .7 quality level, but combining this with data from a 
blood flow sensor increases the quality level to 1:0. Given the information from these 
graphs as well as the current application state, Milan can determine which sets of sensors 
satisfy all of the application©s QoS requirements for each variable. These sets of sensors 
define the application feasible set FA, where each element in FA is a set of sensors that 
provides QoS greater than or equal to the application-specified minimum acceptable QoS 
for each specified variable. For example, in the personal health monitor, for a patient in 
medium stress with a high heart rate, normal respiratory rate, and low blood pressure, the 
application feasible sets in FA that Milan should choose to meet the specified application 
QoS are shown in Table 7. Milan must choose which element of FA should be provided 
to the application. This decision depends on network-level information. 
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Figure 79: Heart Monitor application Performance graph 
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Table 7: Specified application QoS   
   
Set Sensors  
1 Blood Flow and Respiratory Rate 
2 Blood Flow and ECG 3 leads  
3 Pulse Oxymeter, Blood Pressure, ECG (1 

 lead), Respiratory Rate  
4 Pulse Oxymeter, Blood Pressure, ECG (3 

 lead),  
5 Oxygen Measurement, Blood Pressure, 

 ECG (1 lead), Respiratory Rate  
6 Oxygen Measurement, Blood Pressure, 

 ECG (3 lead)  
 
 
 
 

6.5.2 Tradeoffs 
 

Among the elements in F, Milan chooses an element fi that represents the best 
performance/cost tradeoff. How should “best" be defined? This depends on the 
application. Milan framework supports any method of deciding how to choose an element 
of F. In most sensor network applications, we want to allow the application to last as long 
as possible using the limited energy of each of the sensors. Simple approaches to 
choosing sensor sets may yield the set fi that consumes the least power or that will run for 
the maximum lifetime before the first sensor dies. However, if we want to ensure that the 
application can run at the required QoS level as long as possible, we should instead 
optimize the total lifetime by intelligently choosing how long to use each feasible sensor 
set [83]. In some cases, there are multiple ways to schedule sensors so that the same total 
network lifetime is achieved. In these cases, we may want to maximize the average 
quality of the sensor sets over time. For some applications, the goal may be to maximize 
some combination of lifetime and quality. Milan is flexible enough to incorporate any of 
these or other optimization criteria. It is performed the tradeoff computation occurring in 
the core Milan component. After the computation is complete and the first set of sensors 
is chosen, the Milan core informs the plug-in of the selection, and the plug-in configures 
the network accordingly, using information about the role each sensor should play. 

 
6.6. Discussion 

 
Fault tolerance and resilience: The middleware application relationship is a 
powerful tool to provide fault tolerance and resilience to fails and adaptation of 
the system to new states of the application. If the application provides to 
middleware more than one possible way to provide one service, the system can 
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choose which one is better. Furthermore, if one way fails, the system can provide 
the same service by the other set of sensors.  
Ubiquitous computing aspect: The approach that provides fault tolerance and 
resilience to the system allows to build a ubiquitous computing environment. The 
application specifies to the system the way it accepts a graceful degradation along 
the decrement in available resources. This concept allows the application to run 
until the QoS can be provided by the entire system. It is part of the application 
designer job to specify an application that is compatible with graceful 
degradation. We have specified a language represented by the different graphs to 
represent the resilience and graceful degradation of the application. 

 
6.7. Conclusions 

 
Current research trends suggest the power of middleware to ease the application 

development task in complex environments. While conventional middleware operates 
above the networking layer, for sensor network applications that rely on multiple and 
varying sensors, it is not a viable approach to manage the network completely 
independently of the needs of the application. We have argued that the needs of the 
application should be integrated with the management of the network into a single, 
unified middleware system. Through this tight coupling, the middleware can trade 
application performance for network cost, while still retaining the separation between the 
policy specifying how to react to a dynamic environment (obtained from the application) 
and the mechanisms to implement the policy (performed in the middleware). We have 
shown that Milan, a sensor network middleware that we are developing to meet these 
goals, can aid the development of sensor network applications. 
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Conclusion 
 
 

We have presented a general data fusion architecture described in a formal 
language of object representations (UML) that tries to represent different scenarios, 
specifications and features of a general data fusion system. It also allows a dynamic 
modification of the system according to different states of the environment or of the 
system. 

We have also described general body-worn sensor networks built in a network of 
micro sensors, agents and actuators. The system was designed considering and 
optimizing power management and wireless network problems to achieve the resilience 
and ubiquitous computing goals. Furthermore, some specific aspects related to the health 
and body-worn sensor network application were considered. We have also introduced the 
concept of a resilience agent. This type of agent was more complex than a fault tolerant 
agent, and it included the fault tolerant agent’s functionalities added adaptability to new 
circumstances without failures. Moreover, it considered clinical aspects to decide about 
power consumption and network optimization.  

The Personal Heart Rate Monitor is from the class of network-based mobile 
dynamic systems powered by battery, where an application should adapt itself to different 
configurations of the system (data sources moving in and moving out), different states of 
the environment, and consider power and bandwidth constraints. We propose a solution 
for the problem of developing an application framework to manage data from different 
types of sensors to perform a Heart Rate Monitoring application in a Ubiquitous 
Computing environment. In this paper, we have focused on the application’s framework 
(data fusion and decision modules) while also considering the necessary middleware and 
network facilities to ensure resilience to changes in available resources and in the 
environment at state. As a consequence, the solution for these problems may solve the 
same problems in the class of related systems. Controlling Robots based on the 
environment and home security systems are two examples of this class of systems to 
which our framework should also be applicable. 

The PHRM is a new system that takes into consideration that it is very difficult to 
analyze one body variable independently. In the case of the heart rate, without knowing 
the user age, underlying diseases, level of body activity, sleeping state and alert, it is very 
difficult to conclude whether the measured heart rate is normal or abnormal. Nowadays, 
available systems do not consider this wild view of physiological monitoring and 
interpretation. Another aspect that makes the developed system new is the fact that it 
takes into account aspects such as fault tolerance and ubiquitous computing determined 
by not only the hardware, but also by the necessity of the application (Application’s 
Quality of Service). In this aspect, the presence of a middleware can help to manage the 
hardware point of view together with the application point of view, optimizing this 
relationship and the system life time.  

Based on these aspects, the PHRM is the first heart rate monitoring system that 
considers multiple correlations with the user’s health variables to help the user in the 
monitoring of his health. To achieve this goal, the general data fusion architecture applied 
showed that it is a reasonable approach to provide dynamic management of data and 
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variables from different sources. Besides the developed system is fault tolerant to failures 
and compatible with ubiquitous availability. 

To achieve the goal of performing data fusion in an optimal node in distributed 
sensor networks, we have implemented different algorithms already described in the 
literature (shortest path) and greedy algorithm. The other approximate algorithms are 
adaptations of the greedy algorithm. The suboptimal´s algorithms (Hervaldo’s algorithm 
and optimal node algorithm) showed to be the algorithms with better performance and 
acceptable cost. The results obtained from the computation cost simulations showed that 
the approximate solutions are less expensive than the optimal solution. The comparison 
of the computation cost among the aproximate solutions showed that the Greedy, 
modified Greedy and Hervaldo’s algorithms have the same computation cost. The 
computation cost of the optimal node is only 20% (1/5) of the other approximate 
solutions. As a conclusion, the optimal node solution has the lowest computation cost. As 
a result of the simulations considering the communication cost and the computation cost, 
the best alternatives to the optimal solution are the approximate Hervaldo’s algorithms 
and the optimal node solution. 

Multiple data fusion paths can have positive or negative results. If a node is a 
sensing unit and data fusion node simultaneously, its energy will drain earlier and the 
system´s lifetime will be shorter. So, the worst case scenario is the situation where the 
same nodes act as sensing units and data fusion or destination node. The best data fusion 
multiple paths solutions are characterized by the use of different nodes to act as sensing 
units, data fusion nodes and destination nodes. If the system uses more nodes at 
approximately the same communication cost, the system’s lifetime will be longer. 
Consequently, the sensor network application designer should balance minimum cost and 
maximum lifetime. The system´s goal is to achieve the minimum communication and 
data fusion cost, and to maximize the system’s lifetime. 

Network density should be considered in the design of sensor network 
applications. A network with a hundred nodes and ten sensors as source of data will use 
almost all nodes to perform 10 distributed data fusion paths to each combination of 
sensors and destination node. This result shows that the number of network nodes is a 
limiting factor to the increase of the system’s lifetime. Another aspect that should be 
considered is the communication data fusion cost tradeoff. If the data fusion computation 
cost is higher than the communication cost, in general it is better to increase the number 
of paths and data fusion nodes. On the other hand, it is better to use the fewest number of 
paths.  

The use of combination multiple paths and multiple nodes increases the system’s 
lifetime. This increase is greater in the algorithms that vary the nodes in different paths. 
The 10 shortest paths in the shortest path algorithm use almost the same nodes. In the 
other hand, the approximate solution based on the best node not considering the 
destination node achieves the best system’s lifetime because it creates more paths with 
different nodes. So, considering the system’s lifetime, the shortest path is not the best 
solution to achieve the optimal data fusion nodes to solve the data fusion expression. 
Furthermore, network density is proportional to system’s lifetime if the number of 
sensing units and DF nodes are constant. A network with 50 nodes will have a shorter 
system’s lifetime than a network with 500 nodes. 
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In all algorithms tested the network based on multiple paths and multiple DF 
nodes is much better than the options of multiple paths, average multiple paths, shortest 
path (better communication cost) and average multiple paths and multiple DF nodes. 
These differences are greater when we increase the communication data fusion cost ratio. 
The comparison among the algorithms showed that the Approximate Optimal DF Node 
without sensor is slightly better than the Optimal DF node and much better than 
Hervaldo’s algorithm. 

The hypothesis of using long paths can be better than the one of using shortest 
paths this was evaluated by testing the performance of the Optimal Node algorithm in the 
best 100 paths divided in ranges of ten. The results showed that it is not favorable to use 
longest paths to increase system’s lifetime in low density networks. It should be tested in 
high density networks. 

Current research trends suggest the power of middleware to ease the application 
development task in complex environments. While conventional middleware operates 
above the networking layer, for sensor network applications that rely on multiple and 
varying sensors, it is not a viable approach to manage the network completely regardless 
of the needs of the application. We have discussed that the needs of the application 
should be integrated with the management of the network into a single, unified 
middleware system. Through this tight coupling, the middleware can trade application 
performance for network cost, while still retaining the separation between the policy 
specifying how to react to a dynamic environment (obtained from the application) and the 
mechanisms to implement the policy (performed in the middleware). We have shown that 
Milan, a sensor network middleware that we are developing to meet these goals, can aid 
the development of sensor network applications. 

The general data fusion architecture proposed can be represented at middleware 
level in different ways. We have shown a solution represented by graph theory that seems 
to be a reasonable approach to guarantee resilience of the system’s functions to achieve 
the ubiquitous computing goal. Our model also considers the possibility of integration of 
the different aspects from different applications running at the same time. 

The data fusion architecture, data fusion techniques such as Kalman Filter, power 
state machine, and middleware application relationship are powerful tools to provide fault 
tolerance and resilience to failure and adaptation of the system to new states of the 
application. If the application provides to middleware in more than one possible way (set 
of sensors) to provide one service, the system can choose which one is better. 
Furthermore, if one way fails, the system can provide the same service through the other 
set of sensors. 

The approach that provides fault tolerance and resilience to the system allows to 
build a ubiquitous computing environment. The application specifies to the system the 
way it accepts a graceful degradation along the decrease in available resources. This 
concept allows the application to run until the application´s QoS can be provided by the 
entire system. It is part of the application designer job to specify an application that is 
compatible with graceful degradation. We have specified a language represented by 
different graphs to demonstrate the resilience and graceful degradation of the application. 
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