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Resumo

Email é um meio de comunicação cada vez mais importante e largamente utilizado para iteração entre indivíduos

e/ou organizações, facilitando o contato entre indivíduos e possibilitando melhoria da produtividade nas organiza-

ções. Entretanto, o uso de ferramentas automáticas para envio de emails não autorizados, conhecidos como spam,

vem, dia-a-dia, enfraquecendo a atratividade deste meio de comunicação. Até hoje, a maioria da atenção dedicada

à deteção de spam focalizou no corpo do email ou nos endereços ou domínios associados aos remetentes de spam.

Neste trabalho, nós propusemos uma forma nova de tratar o problema causado por spam. Nosso objetivo

é desenvolver uma compreensão profunda das características fundamentais do tráfego spam, do comportamento

dos spammers e dos relacionamentos entre spammers e usuários legítimos em redes de email. Esperamos que

tal conhecimento possa ser usado, no futuro, como base para projetos de técnicas mais eficazes para detectar e

combater spam.

Primeiro, nós apresentamos uma caracterização extensiva de uma carga emails contendo spam e emails legíti-

mos, que visa identificar e quantificar as características fundamentais que distinguem o tráfego spam do de emails

legítimos, avaliando o impacto do tráfego spam no agregado e fornecendo dados para criar geradores de tráfegos

sintéticos. Em seguida, nós apresentamos uma análise teórica de um modelo de redes de email baseado em teoria

dos grafos, mostrando que existem diferenças fundamentais entre as relações desenvolvidas por spammers e seus

pares e as relações desenvolvidas por remetentes e destinatários de emails legítimos. Em terceiro lugar, nós usa-

mos as propriedades reveladas acima, do comportamento dos spammers e dos usuários legítimos, a fim de propôr

dois novos algoritmos para deteção de spam. Os algoritmos propostos se utilizam das propriedades estruturais dos

relacionamentos entre remetentes e destinatários de emails como base para a deteção de spam. Nossos algoritmos

se propõem a corrigir classificações errôneas de um algoritmo auxiliar usado para detectção de spam. A precisão

dessas classificações foi avaliada utilizando duas carga de dados, uma real e outra sintética. Finalmente, como

a maioria do tráfego de emails, representada pelo tráfego do spam, exibe relações oportunísticas ao invés de re-

lações sociais comuns, nós usamos este tráfego para quantificar as diferenças entre relações sociais e antisociais

(representadas aqui pelo comportamento dos spammers) em redes de email.
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Embora nenhuma métrica de tráfego ou comportamental estudada possa diferenciar inequivocamente emails

legítimos de spam, a combinação de diversas delas mostra um retrato claro do processo por meio do qual os email

legítimos e spam são criados. Por esta razão, supomos, o conhecimento gerado poderá ser usado para aumentar a

eficácia, como nos algoritmos propostos, dos mecanismos de detecção de email ilegítimos, assim como para melhor

compreender o comportamento malicioso em redes de comunicações.
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Abstract

Email is an increasingly important and ubiquitous mean of communication, both facilitating contact between indi-

viduals and enabling rises in the productivity of organizations. However, the relentless rising of automatic unautho-

rized emails, also known as spam, is eroding away much of the attractiveness of email communication. Most of

the attention dedicated to spam detection has focused on the content of the emails or on the addresses or domains

associated with spam senders.

This thesis takes an innovative approach towards addressing the problems caused by spam. Our goal is to

develop a deep understanding of the fundamental characteristics of spam traffic, spammers’ behavior and the way

spammers and non-spam (i.e., legitimate) users develop their relations in email networks, in hoping that such

knowledge can be used, in the future, to drive the design of more effective techniques for detecting and combating

spams.

First we present an extensive characterization of a spam-infected email workload, which aims at identifying

and quantifying the characteristics that significantly distinguish spam from legitimate traffic, assessing the impact

of spam on the aggregate traffic and providing data for creating synthetic workload models. Next, we present a

comprehensive graph theoretical analysis of email traffic that captures the fundamental characteristics of relations

among spammers and their peers, which is very different from the normal mutual relations between senders and

recipients of legitimate email. Third, we use the above properties of spammers and legitimate users behavior, in

order to propose two new spam detection algorithms that use structural relationships between senders and recipients

of email as the basis for spam detection. Our algorithms are used to correct misclassification from an auxiliary

algorithm and its classification precision is evaluated using an actual and a synthetic workloads. Finally, as the

majority of email traffic, represented by spam traffic, exhibits opportunistic, rather than symbiotic social relations,

we use this traffic to quantify the differences between social and antisocial (here represented by spammers behavior)

behaviors in networks of communication.

Although no single behavioral or traffic metric studied can unequivocally differentiate legitimate emails from

spam, the combination of several of them paint a clear picture of the processes, whereby legitimate and spam email
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are created. For this reason, we suppose, they can be used to augment the effectiveness, as our proposed algorithms

do, of mechanisms to detect illegitimate emails as well as to better understand malicious behavior in network of

communications.
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Resumo Estendido

Email é um meio de comunicação cada vez mais importante e largamente utilizado para iteração entre indivíduos

e/ou organizações, facilitando o contato entre indivíduos e possibilitando melhoria da produtividade nas organiza-

ções. Entretanto, o uso de ferramentas automáticas para envio de emails não autorizados, conhecidos como spam,

vem, dia-a-dia, enfraquecendo a atratividade deste meio de comunicação. Até hoje, a maioria da atenção dedicada

à deteção de spam focalizou no corpo do email ou nos endereços ou domínios associados aos remetentes de spam.

Neste trabalho, nós propusemos uma forma nova de tratar o problema causado por spam. Nosso objetivo

é desenvolver uma compreensão profunda das características fundamentais do tráfego spam, do comportamento

dos spammers e dos relacionamentos entre spammers e usuários legítimos em redes de email. Esperamos que

tal conhecimento possa ser usado, no futuro, como base para projetos de técnicas mais eficazes para detectar e

combater spam.

Primeiro, nós apresentamos uma caracterização extensiva de uma carga emails contendo spam e emails legíti-

mos, que visa identificar e quantificar as características fundamentais que distinguem o tráfego spam do de emails

legítimos, avaliando o impacto do tráfego spam no agregado e fornecendo dados para criar geradores de tráfegos

sintéticos. Em seguida, nós apresentamos uma análise teórica de um modelo de redes de email baseado em teoria

dos grafos, mostrando que existem diferenças fundamentais entre as relações desenvolvidas por spammers e seus

pares e as relações desenvolvidas por remetentes e destinatários de emails legítimos. Em terceiro lugar, nós usa-

mos as propriedades reveladas acima, do comportamento dos spammers e dos usuários legítimos, a fim de propôr

dois novos algoritmos para deteção de spam. Os algoritmos propostos se utilizam das propriedades estruturais dos

relacionamentos entre remetentes e destinatários de emails como base para a deteção de spam. Nossos algoritmos

se propõem a corrigir classificações errôneas de um algoritmo auxiliar usado para detectção de spam. A precisão

dessas classificações foi avaliada utilizando duas carga de dados, uma real e outra sintética. Finalmente, como

a maioria do tráfego de emails, representada pelo tráfego do spam, exibe relações oportunísticas ao invés de re-

lações sociais comuns, nós usamos este tráfego para quantificar as diferenças entre relações sociais e antisociais

(representadas aqui pelo comportamento dos spammers) em redes de email.
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Embora nenhuma métrica de tráfego ou comportamental estudada possa diferenciar inequivocamente emails

legítimos de spam, a combinação de diversas delas mostra um retrato claro do processo por meio do qual os email

legítimos e spam são criados. Por esta razão, supomos, o conhecimento gerado poderá ser usado para aumentar a

eficácia, como nos algoritmos propostos, dos mecanismos de detecção de email ilegítimos, assim como para melhor

compreender o comportamento malicioso em redes de comunicações.

Resumo do capítulo "Workload Models of Legitimate and Spam Emails"

Apesar do grande número de artigos sobre custo e do imenso número de métodos para deteção e filtragem

de spams existentes, os esforços para analizar as características deste tipo de tráfego na Internet foram um tanto

limitados. Além de algumas caracterizações de carga de emails [1, 2], nós estamos cientes somente de algumas

análises limitadas de um número reduzido de características do tráfego do spam na literatura [3, 4, 5].

Neste capítulo nós apresentamos uma caracterização extensiva do tráfego spam. Nosso objetivo é desenvolver

uma compreensão profunda das características fundamentais do tráfego spam e do comportamento dos spammers,

com o intuito de que tal conhecimento possa ser aplicado no projeto de técnicas mais eficazes para detectar e

combater spam.

Nossa caracterização baseou-se em um log de oito dias, perfazendo um total de 360 mil emails que chegaram

ao servidor SMTP de borda da Universidade Federal de Minas Gerails. As mensagens foram classificadas como

spam ou não utilizando técnicas padrão de detecção de spam. Para cada um das duas cargas resultantes e, também,

para a carga agregada, nós analisamos um conjunto de métricas estatísticas, utilizando informações disponíveis

nos cabeçalhos dos emails. Nosso objetivo era identificar as características quantitativas e qualitativas que, sig-

nificativamente, distinguam o tráfego spam do de emails legítimos, avaliando o impacto do tráfego spam sobre o

agregado. Além disso, avaliamos como o último se diferencia do tráfego de emails legítmos, fornecendo dados

para gerar carga sintética de emails contendo spam.

Os resultados mais importantes que obtivemos foram:

• Diferentemente do tráfego de emails legítimos que exibe um claro padrão diário e semanal com picos durante

as horas de trabalho do dia e durante os dias de semana, os números de spams, de bytes de spam, de spammers

distintos e de destinatários de spam distintos são, de forma geral, insensíveis aos períodos do dia ou aos dias

da semana, permanecendo quase estáveis durante todo o tempo nos logs analisados.

• Os tempos entre chegadas de spam e emails legítimos são, aproximadamente, distribuídos segundo uma

distribuição exponencial. Entretanto, enquanto as taxas de chegada de spam permanescem aproximadamente
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estáveis em todos os períodos analisados, as taxas de chegada de emails legítimos variam por um fator de

cinco.

• O tamanho dos email nos tráfegos spam, não spam e agregado seguem distribuições Log-normal. Entretanto,

o tamanho médio de um email não spam é de seis a oito vezes maior do que o tamanho médio de um spam nos

nossos logs. Além disso, o coeficiente de variação (CV) dos tamanhos de emails legítmos são, em torno, de

três vezes maior que o CV dos tamanhos dos spams. Assim, o impacto do tráfego spam no agregado implica

em uma diminuição no tamanho médio dos emails, além de um aumento na variabilidade nos tamanhos

destes.

• A distribuição do número de destinatários por email tem cauda muito mais pesada na carga spam do que na

carga de emails legítmos. Visto que somente 5% dos email não spam são endereçados a mais de um usuário,

enquanto 15% dos spams têm mais de um destinatário. Na carga agregada, a distribuição é fortemente

influenciada pelo tráfego spam, desviando-se significativamente do observado na carga de não spams.

• A principal distinção entre os tráfegos spam e não spam, quando consideramos a popularidade dos remetentes

e destinatários, acontece quando medimos esta em número de emails por destinatários. Enquanto no tráfego

não spam e na carga agregada a popularidade em número de emails recebidos por dia por destinatário é mo-

delada aproximadamente por uma distribuição Zipf mais uma probabilidade constante para os destinatários

de uma única mensagem por dia, no tráfego spam, o modelo mais adequado compõe-se da concatenação de

duas distribuições Zipfs, além da probabilidade constante atribuída aos destinatários de um único spam por

dia.

• Ao analisar a localidade temporal entre os destinatários no tráfego não spam, encontramos dois conjuntos

distintos de usuários, um com uma forte localidade temporal e outro que recebe emails somente esporadi-

camente. Por outro lado, estes dois conjuntos não estão claramente definidos no tráfego spam. De fato, a

localidade temporal é, em média, muito mais fraca entre os destinatários de spam e ainda mais fraca nos desti-

natários quando consideramos o tráfego agregado. Resultados similares foram encontrados para a localidade

temporal em torno dos remetentes.

• A distribuição dos tamanhos das listas de contatos dos remetentes e destinatários no tráfego não spam é muito

mais enviesada para listas com tamanhos menores do que no tráfego spam. De fato, um spammer típico

envia email, em média, para duas vezes mais destinatários distintos que um remetente de email legitímo.

Além disso, um destinatário de spam típico recebe emails de um número de spammers distintos quase três

vezes maior que o número dos remetentes distintos de um destinatário de emails legitímos. Por último, o
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tráfego spam impacta significativamente a distribuição dos tamanhos da lista de contatos para remetentes e

destinatários no tráfego agregado.

Nossa caracterização revela diferenças significativas entre as cargas de emails spam e não spam. Estas diferen-

ças são, possivelmente, devido à inerente natureza distinta de remetentes de emails e seus relacionamentos com os

destinatários dos email em cada grupo. Visto que uma transmissão de email legítimo é o resultado de um relaciona-

mento bilateral, iniciado tipicamente por um ser humano, dirigido por algum relacionamento social. Enquanto, por

outro lado, uma transmissão de spam é basicamente uma ação unilateral, tipicamente executado por ferramentas

automáticas e dirigido pela vontade dos spammers de alcançar tantos alvos quanto possível, indiscriminadamente,

sem ser detectado.

Resumo do capítulo "Characterization of Graphs of Legitimate and Spam Email"

Neste capítulo nós apresentamos uma caracterização do modo como os spammers, os remetentes e emails

legítimos e seus pares desenvolvem seus relacionamentos através da troca de emails. Para tal, modelamos os

tráfegos de emails legítimos e spam utilizando teoria dos grafos e usamos estas estruturas para identificar métricas

estruturais que podem ser utilizadas para diferenciá-los. Outro objetivo deste capítulo é encontrar um conjunto de

métricas que podem ser utilizadas, no futuro, em um modelo preditivo da disseminação de spams.

Este estudo vai além de diversos outros estudos recentes [6, 7] da natureza do tráfego spam. Nós tratamos

de uma base de dados diferente, envolvendo um número muito maior dos usuários e mensagens e analisamos um

conjunto muito maior de métricas estáticas e dinâmicas. Nós mostraremos que não há nenhuma métrica do grafo

que distingue inequivocamente um email legítimo de um spam. Entretanto, identificamos diversas métricas podem

ser combinadas em um mecanismo probabilístico para deteção de spam, como os que propomos no Capítulo 6.

Os resultados mais importantes que obtivemos foram:

• O grau de saída dos remetentes externos nos gráfos tanto de usuários quanto de domínios são bem modelados

por uma lei de potências. Entretanto, no grafo de usuários, os graus de saída abaixo de 20 são muito mais

prováveis para spammers do que para os remetentes de emails legítimos. Por outro lado, remetentes com

grau de saída maior que 400 quase não existem no tráfego spam. No grafo de domínio, a distribuição dos

graus de saída mostra uma probabilidade muito mais elevada para nós com graus baixos no tráfego spam do

que no tráfego de emails legítimos.

• A análise da reciprocidade da comunicação sugere que uma forte assinatura dos spammers é seu desequilí-

brio estrutural na comunicação entre o conjunto dos remetentes e seus destinatários associados. O mesmo
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desequilíbrio é encontrado na análise dos grafos de domínio.

• O conjunto de assimetria ("Asymmetry set") mostra o número de usuários spam no conjunto diferença entre

os "in-set"e "out-set"de um nodo em um grafo. Encontramos que, tanto no grafo de usuário como no de

domínio, há uma forte correlação estatística entre o tamanho deste conjunto e o número dos spammers nele.

Esses dois resultados mostram, juntos, que as mensagens de spam quase não são respondidas.

• Nossos resultados para o coeficiente de aglomeração mostram que os usuários do tráfego spam têm uma

coesão muito mais baixa na sua comunicação quando comparado com usuários legítimos. Mostrando que

spammers, geralmente, enviam emails a destinatários não correlacionados.

• Em conseqüência da assimetria na comunicação entre usuários do tráfego spam, encontramos que, em ambos

os gráficos, há muito menos probabilidade de se visitar um nodo participante do tráfego spam do que um nodo

do legítimo, durante uma caminhada aleatória.

• O subgrafo construído a partir dos usuários do tráfego spam é uma estrutura que cresce muito mais rapida-

mente quando comparado com o grafo construído com os usuários do tráfego legítimo. Alé do mais, devido

ao tamanho de nossos logs, uma semana de dados, não encontramos um ponto de saturação em nenhum dos

subgrafos analisados.

• A localidade temporal entre pares de usuários (remetente-destinatário) é mais forte no tráfego legítimo do

que no spam, mostrando a concentração da comunicação entre usuários legítimos no tempo.

• Ao analisar a entropia do fluxo das mensagens/bytes das comunicações entre remetentes de spam e de emails

legítimos e seus pares, encontramos que remetentes de emails legítimos comunicam-se de maneira muito

variável com seus pares do que spammers.

Resumo do capítulo "Using Structural Similarity for Improving Spam Detection"

Nenhum mecanismo de detecção de spam existente é infalível [3, 8]. Entre os principais problemas encontrados

estão os falsos positivos e os erros nas classificações. Além disso, os filtros devem ser atualizados continuamente

para capturar a diversidade de mecanismos introduzidos por spammers para evitar detecção.

Neste capítulo, nós propomos e avaliamos dois algoritmos para a deteção de spam que usam a estrutura dos

relacionamentos entre remetentes e destinatários como base para a deteção de mensagens de spam. O algoritmos

trabalham em conjunto com um outro detector de spam (chamado daqui por diante de algoritmo auxiliar), necessá-

rio para produzir um histórico de classificações de emails, de modo que as novas classificações possam ser inferidas
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baseando-se na estutura dos relacionamentos dos novos remetentes e destinatários com os usuários existentes e no

histórico de envio para recebimento destes. A idéia chave do algoritmo é que as listas dos destinatários distintos

para os quais os spammers e os usuários legítimos enviam mensagens, assim como as listas dos remetentes distin-

tos dos quais usuários recebem mensagens 1, podem ser usadas como identificadores de remetentes e destinatários

no tráfego de emails [3, 9, 10]. Nós mostramos que a aplicação dos nossos algoritmos sobre os resultados da

classificação de um classificador auxiliar conduz à correção de um número significativo de erros nas classificações.

Os algoritmos que apresentamos neste capítulo visam melhorar a eficácia de mecanismos de detecção de spam,

reduzindo falsos positivos e fornecendo informações para ajustar suas coleções de regras. Diferentemente da mai-

oria das alternativas para detecção de spam, nós focalizamos nossa análise nas características que conjecturamos

são as mais difíceis para spammers mudarem, isto é, a estrutura dos seus relacionamentos com seus destinatários.

Outros estudos recentes focalizaram em técnicas do combate a spam baseadas em características de modelos de

grafos construídos com usuários do tráfego de emails [6, 7, 11].

Resumo do capítulo "Social versus Anti-Social Behavior in Email Traffic"

A caracterização do tráfego de emails como uma rede social complexa 2 foi tópico principal de diversos estudos

recentes. Pelo melhor de nosso conhecimento, todas estas caracterizações têm lidado através do uso de estratégias

simples com o fato de que o tráfego de emails apresenta não somente interações sociais, mas também outros tipos

de relacionamentos entre usuários de email. Exemplos de tais estratégias são a limitação do tráfego aos emails aos

internos a uma organização [13, 14, 15, 16, 17], limitação de usuários de email de tal maneira que somente usuários

que participam em comunicações em dois sentidos são considerados [15, 17, 16], eliminação de usuários de email

com um volume elevado de menssagens [15, 16, 17] ou, ainda, eliminação das ligações que conectam usuários de

email que apresentam um número baixo de mensagens trocadas [14].

Por outro lado, tem crescido o interesse em descobrir a evidências em antisociais do comportamento em redes.

Entre os tópicos analisados em trabalhos recentes estão: observações proibidas, comportamento hostil e grupos de

polarização [18, 19]. Email como um possível meio de distribuição maciça é associado, particularmente, com a

disseminação de vírus eletrônico, assim como com tráfego spam [20] que tem inundado a Internet com mensagens

não desejadas e que, geralmente, contêm propostas comerciais ou, mais recentemente, uma variedade de outras

fraudes. Este comportamento, que nós chamamos genericamente de antisocial, apresenta características diferentes

das relações sociais, as quais já foram extensivamente analisadas no contexto de redes.

1As listas do contato como definidas no Capítulo 4
2De acordo com Newman, uma em rede social é um conjunto de pessoas ou grupo de pessoas conectadas segundo os padrões da interação

social, que podem ser representados como nós e ligações, respectivamente, em um grafo [12].
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O que é conceitualmente interessante sobre este comportamento antisocial é que gera um grafo com proprieda-

des quantitativas e dinâmicas não triviais que refletem algum tipo de interação que nós caracterizamos quantitati-

vamente e contrastamos com as propriedades gerais de redes sociais.

Neste capítulo é apresentado uma caracterização dos relacionamentos no tráfego do email que aborda o pro-

blema sob um novo ponto de vista. Primeiramente, a maioria das limitações adotadas em estudos precedentes

são retiradas. Em segundo, nós consideramos um único tráfego agregado de emails que forma dois componentes

diferentes: um componente legítimo gerado por usuários legítimos durante sua interação social através da troca de

emails e um componente não legítimo gerado pelos usuários que usam seu email para enviar spam. Note que, o

componente legítimo de nosso estudo é dominado pelo comportamento social, enquanto o componente não legítimo

apresenta um comportamento que nós chamaremos de "comportamento antisocial".

Os resultados mais importantes que obtivemos foram:

• Nós encontramos uma distribuição de lei de potências como melhor modelo para distribuição dos graus dos

nodos nas quatro redes analisadas nos tráfegos sociais e antisociais. Entretanto, o modelo se adequa melhor

à distribuição do grau nas redes construídas com o tráfego social do que nas redes construídas com o tráfego

antisocial.

• Nós encontramos que usuários no tráfego antisocial têm coeficiente de agregação significativamente mais

baixo que no tráfego social, principalmente nas redes que incluem usuários externos.

• Nós encontramos graus de nodos vizinhos não correlacionados, para as redes sociais e antisociais que in-

cluem os usuários externos. Por outro lado, devido ao grau não usual de emissão de spam a usuários internos

forjados, em uma de nossas cargas, encontramos correlação positiva na rede antisocial interna. Finalmente,

todas as redes sociais internas apresentaram correlação positiva entre os graus dos nodos vizinhos.

• Nós encontramos uma distribuição de lei de potências como melhor modelo para a distribuição dos tamanhos

das comunidades em todas as redes definidas, nas duas cargas. Não obstante, encontramos que as comuni-

dades nas redes antisociais que inclui usuários externos têm em média 30% mais nós que as comunidades

sociais. Adicionalmente, encontramos que a maior comunidade em cada rede social é quase duas vezes maior

que a correspondende maior comunidade na rede antisocial.

• Encontramos que os nodos no tráfego social têm um coeficiente de troca preferencial significativamente

maior que seus pares no tráfego antisocial. Além disso, nodos na rede antisocial que inclui os usuários

externos têm um baixo, mas às vezes não zero, coeficiente da troca preferencial.
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• Finalmente, os resultados mostram que o tráfego social de emails tem uma entropia mais baixa (mais informa-

ção estrutural) do que o tráfego antisocial para os dois períodos analisados, o de trabalho e o complementar.

Além disso, quanto maior o intervalo sob a análise, maior a diferença.

Nossa caracterização revela diferenças significativas entre os tráfegos social e antisocial. Estas diferenças

acontecem, possivelmente, devido à natureza distinta inerente dos relacionamentos dos remetentes de email e

suas conexões com os destinatários em cada grupo. Dado que, o envio de um email legítimo é o resultado de

um relacionamento bilateral, tipicamente iniciado por ser humano, dirigido por algum relacionamento social, e a

transmissão de um spam é bàsicamente uma ação unilateral, executada tipicamente por ferramentas automáticas e

dirigido pela vontatde dos spammers de alcançar tantos alvos quanto possível.

Resumo do capítulo "Conclusions and Future Work"

Esta tese fornece uma análise extensiva do comportamento de usuários legítimos e spammers no tráfego de

emails, clarificando as características que os distinguem mais significativamente.

Em resumo, nós mostramos que o comportamento dos spammers e dos usuários legítimos exibem as fortes

diferenças que refletem em diversas distinções estruturais e dinâmicas. Em segundo lugar, nós usamos estes co-

nhecimentos como base para proposição e análise de dois algoritmos que se utilizam da similaridade estrutural

das listas de contatos dos usuários de cada grupo para deteção de spam. Finalmente, nós estudamos as caracte-

rísticas estruturais e dinâmicas das redes de spam e de usuários legítimos no tráfego de emails a fim descobrir o

comportamento antisocial dos spammers.

Possíveis direções trabalho futuro incluem:

• Verificação de nossos resultados em relação ao tempo e a cargas distintas, a fim certificar de que os resultados

não são específicos das cargas analisadas;

• Projeto e avaliação de novas técnicas de detecção de spam que exploram as distinções entre os tráfegos spam

e legítimo e entre os comportamentos dos usuários apresentados nesta tese;

• Projeto e execução de um gerador sintético de carga de emails contendo spam a ser usado na avaliação

experimental de novas estratégias de deteção de spam;

• Usar grafos com pesos nas arestas (por exemplo, com número das mensagens como peso) na análise de

características antisociais e sociais dos relacionamentos nas redes. Como mostramos a intensidade do tráfego

é uma das principais distinções entre comportamentos antisocial e sociais em redes do email;
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• Caracterizar outras cargas antisociais como ataques de vírus ou worms, a fim tentar descobrir assinaturas

gerais do comportamento antisocial;

• Estudar como grandes volumes de spam em redes do email podem influenciar a disseminação de vírus ou

outro conteúdo malicioso em redes do email, a fim avaliar se as técnicas de imunização que se aplicam hoje

continuam a ser eficazes em redes de email infectadas de spam.
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Chapter 1

Introduction

Electronic mail (email) has become a de facto means to disseminate information to millions of users in the Internet.

Among the strengths of electronic communication media, such as email, are the relatively low cost, high reliability

and, generally, fast delivery. Electronic messaging is not only cheap and fast, but it is also easy to automate [21].

These properties tend to make social email communication among users more indiscriminate, as email senders

may easily send copies of a message to multiple parties that play no active role in the relationship between sender

and recipients. Furthermore, the low cost 1 involved in delivering a message to a large group of recipients makes

email obviously also very attractive for commercial advertising purposes and distribution of a variety of other kind

of scams. Email as a means of potential mass distribution is particularly associated with the dissemination of

computer viruses, worms as well as spam messages [20].

Our goal in this thesis is to develop an in-depth study of spam email traffic and of the relationships developed

by spammers 2 and their peers using email. As well as, uncover their main characteristics and their distinctions

from legitimate email traffic and from the relationship developed by legitimate email senders 3 and their peers.

Throughout the analysis, we show how these properties can be used to improve spam detection techniques. Finally,

we use these properties in order to propose, implement and test two innovative algorithms based on the relationships

among email users for improving spam detection.

1.1 Spam definition

Spamming is the act of sending unsolicited (commercial) electronic messages in bulk, and the word spam has

become the synonym for such messages. This word is originally derived from spiced ham, which is a registered

1In energy, time and reputation of the sender
2It is a common used term to designate the one who sends spams.
3It is a commonly used term to designate the one who sends non spam email.

1
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trademark of Hormel Foods Corporation [22]. Based on the origin of the word spam, all other emails are so

called ham. Official terminology for spam is defined in [21, 20, 23]: Unsolicited Bulk Email (UBE) or Unsolicited

Commercial Email (UCE) - “It is Internet mail ("email") that is sent to a group of recipients who have not requested

it. A mail recipient may have at one time asked a sender for bulk email, but then later asked that sender not to send

any more email or otherwise not have indicated a desire for such additional mail; hence any bulk email sent after

that request was received is also UBE".

Classical direct marketing has been used for a long time. For these marketing methods costs increase propor-

tionally with the number of potential customers reached and revenue is only created by selling real products or

services. In this classical approach, frauds are almost excluded because lots of investments is necessary in order

to lead profitability. Spamming, as a new form of direct marketing, in contrast, is subject to lots of frauds, as the

costs of sending millions of spam emails is very low and the cost increase with the number of potential customers

reached is near zero. Therefore, in order to generate profit, it suffices that only a very small rate of them result

in true business transactions. Spams are sent out by companies and by individuals, primarily for profit. Spam

advertises, generally, offers a diversity of goods like; such as pornography, computer software, medical products,

investments and credit card accounts.

1.2 Motivation

Spam is an increasing threat to the viability of Internet email and a danger to Internet commerce. Spammers take

away resources from users and service suppliers without compensation or authorization. Defending against spam

has the characteristics of an arms race, the effectiveness of spam fighting techniques is permanently challenged and

constant upgrades and new developments being necessary.

1.2.1 Economical

The volume of spam is increasing at a very fast rate. In January 2003, 24% of all Internet emails were spam. By

March 2005, this fraction had increased to 83% [24]. A report from October 2003 shows that, in North America, a

business user received on average 10 spams a day, and that this number is expected to grow by a factor of four by

2008 [25]. Furthermore, AOL and MSN, two large ISPs, report blocking, daily, a total of 2.4 billion spams from

reaching their customers’ in-boxes. This traffic corresponds to about 80% of daily incoming emails at AOL [26].

This rapid increase in spam traffic is taking its toll in end users, business corporations and system administrators.

Results from a survey in March 2004 with over two thousand American email users report that over 60% of them

are less trusting of email systems, and over 77% of them believe being online has become unpleasant or annoying



1.3. CONTRIBUTIONS OF THIS THESIS 3

due to spam [27]. The impact of spam traffic on the productivity of workers of large corporations is also alarming.

Research enterprises estimate the yearly cost per worker at anywhere from US$ 50 to US$ 1400, and the total

annual cost associated with spam to American businesses is in the range of US$ 10 billion to US$ 87 billion [26].

Finally, estimates of the cost of spam must also take into account the costs of computing and network infra-structure

upgrades as well as quantitative measures of its impact on the quality of service available to traditional non-spam

email traffic and other “legitimate" Internet applications.

1.2.2 Technical

A number of approaches have been proposed to alleviate the impact of spam. These approaches can be categorized

into pre-acceptance and post-acceptance methods, based on whether they detect and block spam before or after

accepting the email [3]. Examples of pre-acceptance methods are black listing [28] and gray listing or temp-

failing [29]. Pre-acceptance approaches based on server authentication [4, 30], economic disincentives [31] and

accountability [32] have also been proposed. Examples of post-acceptance methods include Bayesian filters [33,

34], collaborative filtering [35], email prioritization [3], and recent techniques that exploit specific properties of the

relationship established between spammers and spam recipients [6, 7].

Although existing spam detection and filtering techniques have, reportedly, very high success rates (up to 97%

of spams are detected [35]), they suffer from one key limitation. The rate of false positives, i.e., legitimate emails

classified as spams, can be as high as 15% [36], incurring costs that are hard to measure. Second, the lifetime

of existing techniques is compromised by spammers frequently changing their mode of operation (e.g., forging

their email addresses and/or misspelling the body of spam messages). In other words, spam filters have their

effectiveness frequently challenged.

Finally, despite the large number of reports on spam cost and the plethora of previously proposed spam detection

and filtering methods, the efforts towards analyzing the fundamental characteristics of this type of Internet traffic

have been somewhat limited.

1.3 Contributions of this thesis

This thesis takes an innovative approach towards addressing the nature of spamming and presents:

• A thorough understanding of the qualitative and quantitative fundamental characteristics of spam traffic and

its impact on the aggregate email traffic, uncovering the way network resources are being stressed by spam

traffic;
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• A quantitative exhaustive understanding of the main distinctions between spammers’ and legitimate senders’

and recipients’ relationships and how it can be used in spam detection;

• Two innovative algorithms that uses quantitative knowledge of user relationships for spam detection improv-

ing;

• The structural and dynamical characteristics of the antisocial spam networks and their distinction relative to

social email networks.

We hope that such knowledge can be used, in the future, to drive the design of more effective techniques for

detecting and combating spam emails or for improving our proposed detection algorithms, as well as to better

understand the malicious behavior in complex networks and its distinction relative to social behavior.

1.4 Outline of the thesis

In this thesis we present a deep analysis and modeling of spammers’ characteristics as well as their distinctions

relative to legitimate senders’ and recipients’ behaviors. Chapter 2 presents an overview of the studies related to

the content of this thesis. Next, in Chapter 3 is presented the definitions, formulae and applications in computer

science area of the theory used in the other Chapters of this thesis. Thirdly, in Chapter 4, we present a statistical

characterization of spam and legitimate email traffics, uncovering their qualitative and quantitative distinctions. In

Chapter 5 we model the relationship established among email users and between users and domains using graph

theory and present their structural and dynamical characteristics. In Chapter 6 we propose, implement and test

a new spam detection algorithm that uses the structural characteristics of the relationship between senders and

recipients to classify emails as spam or legitimate. In Chapter 7, we present the main structural and dynamical

distinctions between antisocial email traffic (here taken as spam) and social traffic, which corresponds to legitimate

email traffic. Finally, Chapter 8 presents our conclusions an outlook for future work.



Chapter 2

Related Work

In this Chapter we present an overview of the studies related with the content of this thesis. In order to do so,

we divided the studies into three groups. In Section 2.1 we present studies related with statistical characterization

of Internet workloads and, specifically, email workloads. Section 2.2 describes an overview of the studies related

with anti-spam techniques. Finally, Section 2.3 describes studies characterizing and modeling social and antisocial

behaviors in networks.

2.1 Workload characterization

Developing a clear understanding of a workload is a key step towards the design of efficient and effective distributed

systems and applications. A number of traffic characteristics, most of them not available in current management

tools, can be clearly understood through the analysis of real traffic. An in-depth understanding of a workload,

among other uses, is valuable for the formulation of policies of use, development of techniques to detect network

anomalies, and for extracting guidelines for design of new services.

Calzarossa and Serazzi [37] presented in a survey of the workload characterization by pointing out through a

few applications, the various steps required for the construction of a workload model and the sets of parameters

and techniques to be considered in various types of studies. The steps proposed in the survey were summarized by

the authors as: Choice of the set of parameters able to describe the behavior of the workload; choice of the perfor-

mance/monitoring tools; experimental measurement collection; analysis of workload data and finally; construction

of the workload models. In Chapter 4 we present an extensive characterization of a spam email workload where

we use a diversity of steps and techniques proposed in [37].

A number of characterization studies of different workload types that led to valuable insights into system

design are available in the literature, including the characterization of Web workloads [38], streaming media work-

5
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loads [39, 40, 41] and, recently, peer-to-peer [42] and chat room workloads [43]. To the best of our knowledge,

previous efforts towards characterizing spam traffic have been very limited.

Next, we discuss previous characterizations and analysis of email and spam workloads.

2.1.1 Email traffic characterizations

In [1, 2], the authors provide an extensive characterization of several email server workloads, analyzing email inter-

arrival times, email sizes, and number of recipients per email. They also analyze user accesses to email servers

(through the POP3 protocol), characterizing inter-access times, number of emails per user mailboxes, mailbox

sizes and size of deleted emails, and propose user behavior models. In Chapter 4 of this thesis, we characterize not

only a general email workload, but also a spam workload, in particular, aiming at identifying a signature of spam

traffic, which can be used in the future for developing more effective spam-controlling techniques. Furthermore, in

Chapter 4 Sections 4.3 and 4.4, we contrast our characterization results for legitimate emails with those reported

in [1, 2].

2.1.2 Spam email traffic characterizations

In [5] the authors analyze two sets of SMTP packet traces, the second collected four years after the first, and

identify a significant increase in the use of DNS black lists over this four-year period. Furthermore, they also

show that the distribution of the number of email connections per spam sender, although not Zipf-like in the first

collected set, does exhibit a heavy-tailed Zipf-like behavior in the second set, collected four years later. In contrast,

the characterization presented in Chapter 4 covers a much broader range of workload aspects. Nevertheless, we

compare our results with those presented in [5] whenever it is appropriate.

Twining et al [3] present a simpler server workload characterization, as the starting point for investigating the

effectiveness of novel techniques for detecting and controlling junk emails (i.e., virus and spams). They analyze the

logs of two email servers that include a virus checker and a spam filter, and characterize the arrival process of each

type of email (i.e., spam, virus, and “good") per-sender, the percentage of servers that send only junk emails, only

good emails, and a mixture of both. A major conclusion of the paper is that popular spam detection mechanisms

such as blacklisting, temp-failing, and rate-limiting are rather limited in handling the problem. Chapter 4 presents

a much more thorough characterization of spam traffic, and contrasts, whenever appropriate, our findings to those

reported in [3].

In [4, 44], the authors analyze the temporal distribution of spam arrivals as well as spam content in two distinct

workloads. The authors also discuss the factors that make users and domains more likely to receive spams and
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the reasons that lead to the use of spam as a communication and marketing strategy. In [4] is also included a

brief discussion of the pros and cons of several anti-spam strategies. While in [44] it is discussed the privacy of

users in the Internet and the correlation between the spammer business and the spam content. In Chapter 4 we do

not analyze content of emails, but we present an extensive characterization of spam and legitimate traffics using a

workload not only bigger and more recent but with a much greater percentage of spams.

2.2 Describing anti-spam techniques

A diversity of previous studies have focused on techniques for reducing the impact of spam email traffic. These ap-

proaches can be categorized into pre-acceptance and post-acceptance methods, based on whether they detect spam

before or after accepting messages. Examples of pre-acceptance methods are server authentication [4, 30], black

listing [28], white listing [45], Gray lists or Temp-failing [29] and accountability [32]. Generally, pre-acceptance

tend to catch spam messages coming from well know senders or from relays not properly configured. While post-

acceptance methods are mostly based on information available in the body or header of the messages and include

Bayesian filters [33], collaborative filtering [35] and, more recently, user social and antisocial behaviors [6, 7].

Post-acceptance filters are, generally, more complex than pre-acceptance filters. Therefore, they tend to be more

expensive in terms of computational power, since they need to process the messages before being able to classify

them properly.

Among pre-acceptance methods is black listing [46, 28], where the connections are refused by the server after

finding the sender in a list of “non trustable senders". These black lists can be private or public. While the first is

constructed based on the site administrators experiences, the public type is provided by specialized sites, generally,

as a paid information service. Note that, black listing is subject to several problems, on the other hand trustable

senders can be wrongly classified as non trustable, avoiding to receive legitimate messages. While, on the other

hand, spammers change their sender names very frequently, causing a strong reduction of the effectiveness of black

listing.

White lists are lists of trustable ISP (Internet Service Providers) [45] from which the server always accepts

messages without applying any post-acceptance spam detection method. This kind of listing scheme is to be used

in conjunction with any post-acceptance spam detection method in order to avoid delaying and to reduce resource

usage by the post-acceptance method adopted. This scheme is also subject to errors, due to the use of forged

identifiers by spam senders.

In the Gray lists or Temp-failing methods the server returns a “temporary fault message"every time it receives

a try to open a connection where the pair (sender, recipient) appears for the first time. In doing so, badly config-
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ured servers, which is supposed to be the case of SMTP servers [47] of spam senders, do not try do re-send the

message [29].

In the Delaying techniques the SMTP servers try to maximize the delay of the spammers connection, in order

to reduce their effectiveness [48, 49]. Also in this case, wrong sender classification can cause lots of problems in

the flow of legitimate messages.

In the authentication approaches every SMTP server must authenticate origin servers, by using digital certifica-

tion sites, before acceptance of a connection [30, 32]. As spammers use forged domains to send their emails they

should not be authenticated. Moreover, authentication of forged domains is not possible.

Assigning costs for sending/receiving emails is a method in which the SMTP server must pay an amount [32,

31], using electronic money, for every email sent. Thereafter, as spammers must send millions of emails per day,

their activities turn to be not cost effective. The main problem with these two previously described techniques is

the need of changing in the actual structure of Internet SMTP servers which is very hard.

The spam detection algorithms we propose in Chapter 6 are not in the class of pre-acceptance filters. But, as

will be shown, they can work in conjunction with any of the previous pre-acceptance techniques. Moreover, they

need to work in conjunction with a post-acceptance filter.

On the other hand, there is a great number of spam detection methods that run after the email acceptance.

Among them, the body-based email filters are the most common [50, 35, 51, 52, 53, 54, 55, 56]. Moreover, the

Bayesian [50, 52, 55, 56] filters, which use Bayesian statistical techniques in the classification of message body,

are in the group of the more frequently used. One interesting characteristic of Bayesian filters is their learning

capability, which in principle increase their accuracy after each new classification.

Parallel to Bayesian filters we find the simple-text-classification-based filters, which use text classification

techniques and a pre-established table of probabilities to classify messages using the words and sentences that

appear in their body or headers [51, 54].

In [35] a collaborative filter is proposed, where the classification of trustworthy users are added to a database

and used in the subsequent classifications. The authors related that the filter reached 98% of accuracy.

In [53] the authors experimentally compare a diversity of body-based filters. The results demonstrate that there

is a plateau of accuracy at 99.9%, reached by Bayesian filters and that is surpassed only by computationally very

expensive filters. The success behind the Bayesian filters is closely related to their learning capability. In doing so,

this type of filter is capable of capturing the concept of spam each user has. Running on the mailbox of each user,

it is trained by the users with new classifications and unclassifications and, after some instances it reaches a very

precise knowledge of the concept of spam for each particular user.

Recent studies, as can be seen in [6, 7], focus on the structural characteristics of the relationships established
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between senders and recipients of spam and legitimate email messages, in order to use them as the basis for the

design of new post-acceptance spam detection techniques.

In [6] a graph is created to represent the email traffic captured in the mailbox of individual users. The clustering

coefficient of each of these graphs is used to classify messages as spam or legitimate. The results show that 53%

of the messages were precisely classified using the proposed approach. Our algorithms, proposed in Chapter 6, are

different from the one proposed in [6], since we base our analysis on several users other than focusing on a single

one. Moreover, we need an auxiliary algorithm whereas the algorithm proposed in [6] is a stand alone approach.

In [7] the authors propose to detect machines that behave as spam senders by analyzing a border flow graph

of sender and recipient machines. In contrast to our work, presented in Chapter 6. The authors propose trying to

detect relays that are commonly used to send spam, instead of identifying spam messages one-by-one. They use a

metric that evolves through time to determine the periods in which certain relays are being used by spammers and

block the traffic coming from those relays.

2.3 Analyzing and modeling social, virus, and malicious behavior

The ease with which messages can be distributed to many recipients is at the root of most opportunistic behavior

involving email. These behaviors displays different characteristics from social relations and, beside social networks

properties, is beginning to be subject to many studies. Next, we present a diversity of studies that analyze and model

social and, malicious behaviors in email networks.

2.3.1 Analyzing and modeling social networks

Social networks were focus of several prior studies, which have provided evidence that there are several structural

graph properties that are characteristic of graphs that represent social iteration between users, but not of other

complex networks [12, 57]. Among these properties are positive assortative mixing, high clustering coefficient and

small word property.

In [12] the authors describe several new models of social networks, based on random graphs with given degree

distributions, that allows to explore directly the effects of various degree distributions. Moreover, they compare the

predictions of the models to data for a number of real-world social networks. They found that the predictions for

typical vertex-vertex distances, clustering coefficients, and expected vertex degree agree well with empirical data.

One of the main conclusions of the paper is that if a comparison between a network and the equivalent random

model reveals substantial disagreement, it strongly suggests that there are significant social forces at work in the
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network. In Chapter 7 we show that some of the models proposed in this paper are in agreement with the empirical

results we found for social networks of emails and, on the other hand, are not applied for our antisocial networks.

In [57], Newman studied assortative mixing in networks and, as a special case, he studied degree assortative

mixing in a variety of networks. He proposed a number of measures of assortative mixing appropriate to various

mixing types, and he applied them to a variety of real-world networks, showing that assortative mixing is a pervasive

phenomenon found in many networks. In the particular case of mixing by degree, he found strong variation with

assortativity in the connectivity of the network. The results found in Chapter 7 for the mixing by degree of our

social and antisocial networks are in agreement with the results presented in [57].

In [14, 15, 17, 58] the authors suggested that social networks can be understood in terms of their organization

in communities, i. e., groups of nodes that have a greater density of links among them proportionally with other

nodes in the network. They also show, as can be seen in [15, 58], that such communities can be quantified and

used to infer information about the existence of informal groups inside the organizations as well as its hierarchical

structure.

In [14] the authors describe a method for the automatic identification of communities from email logs within

an organization, using a betweenness centrality algorithm. The method was verified using nearly 1 million email

messages, and it was effective at identifying true communities, both formal and informal. Moreover, the proposed

method was able to identify leadership roles within the communities. In Chapter 7 we use the minimum spanning

tree (MST) algorithm in order to extract communities from our social and antisocial networks and characterize their

size distribution.

In [15, 17, 58] the authors propose a procedure for analyzing and characterizing complex networks and apply

it to social networks. Their results reveal self-organization of social network, and a power law distribution of

community sizes. In Chapter 7 we extracted the communities of our social and antisocial networks, but using a

distinct algorithm. Nevertheless, we also found a power law distribution as the best statistical model that describes

community sizes.

In summary, in Chapter 7 we separate the social from the antisocial, represent by spam email traffic, component

of the email networks and present a characterization of their skeleton properties and, of the dynamic of their

communication.

2.3.2 Communication patterns in social networks

The communication patterns in social networks have been extensively studied in order to explain characteristics of

the dissemination of information inside organizations and other social groups [59, 60]. A clear understanding of

these patterns can influence positively organizations in the management of their information flow.
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In [59] the authors present a study and a model of information flow within an organization. Due to the fact that

an item relevant to one person is more likely to be of interest to other individuals in the same social circle than to

those outside of it. An epidemic model on a scale-free network with this property has a finite threshold, implying

that the spread of information is limited. The study was carried out using a workload of emails exchanged inside an

organization. In Chapter 7 we study the dynamical of the incoming communication of social and antisocial email

traffics, the last represented by the spam email traffic.

Eckmann, Moses and Sergi [60] have shown, via the consideration of mutual information between sets of two

and three time series of email received and sent by a single user, that there are coherent dynamical structures among

the behavior of users, with patterns of sending and receiving that exhibit temporal interdependence, and to a large

extent approximate synchronization. Conversely, in Chapter 7 we study the incoming email traffic, aggregated over

all users, and show that spam in-flow of emails has much less temporal structure when compared with legitimate

in-flow of emails.

Finally, in a related work, Barabasi [61], has shown that the statistics of time intervals between email messages

is typically well described by power law distributions, with characteristic bursting of activity alternating with long

silences. He also proposed a simple decision-based queuing model to explain the process. In Chapter 7 we study

the dynamics of communication in social and antisocial email groups by two simple metrics, the coefficient of

reciprocity and entropy of the incoming traffic.

2.3.3 Virus propagation analysis and models in email networks

Analyzing and modeling virus propagation is the subject of several recent studies [13, 62, 63, 64]. A clear under-

standing of the infection mechanism and how it propagates through a network of email users is a important and

necessary step toward developing an efficient immunization scheme.

In [13, 62] the authors show that there are several structural properties characteristic of social networks that can

be used to explain the speed and amplitude of the spread of email viruses through organizations. Consequently,

knowledge of the properties helps the design of techniques for virus immunization. Particularly, the authors study

the virus propagation over a diversity of different networks and show that on networks with scale free degree

distribution (ex. social networks) the immunization of only 10% of the nodes with higher degrees is very effective

in stopping a virus dissemination. Moreover, it is shown that if the scale free degree distribution is not present in

the network, this immunization scheme can be very ineffective.

In [63] authors present a virus model that accounts for the behavior of email users, such as email checking

frequency and the probability of opening an email attachment. They found that the topology of email network plays

an important role in determining way an email virus spreads. Moreover, in the study, email virus propagation on
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three topologies are compared: power law, small world and random graph topologies. One of the key conclusions

is that while in power law networks email viruses spread more quickly than on a small world or a random graph

topology, the immunization defense against viruses is more effective on a power law topology.

Finally, in [64] it is shown that error tolerance is not shared by all redundant systems. They show that only

scale free networks have this property. However, they also show that these networks are vulnerable to attacks on

some vital nodes.



Chapter 3

Background

3.1 Introduction

The aim of this Chapter is to present the definitions, formulae and applications in computer science area of the

theory used in the other Chapters of this thesis.

3.2 Statistical distributions

A probability distribution is a function that assigns probabilities to the measurable sets of a measurable space [65].

A random variable is defined as a measurable function from a probability space to some measurable space.

This measurable space is the space of possible values of the variable, and it is usually taken to be the real numbers.

Every random variable gives rise to a probability distribution, and this distribution contains most of the important

information about the variable. As an example, if X is a random variable, the corresponding probability distribution

assigns to the interval [a, b] the probability f(X) = P (a ≤ X ≤ b), i.e. the probability that the variable X will take

a value in the interval [a, b], which is called probability distribution function (PDF). The probability distribution of

the variable X can be uniquely described by its cumulative distribution function (CDF) F (x)., which is defined by:

F (x) = P (X ≤ x).

Several probability distributions are so important in theory or applications that they have been given specific

names. In this Section we focus in some of them that are commonly found in the literature as models for computer

science phenomenas and that we use in the next Chapters of this thesis.

The exponential distributions [65], are continuous probability distributions, often used to model the time be-

tween independent events that happen at a constant average rate, which is defined by:

13
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f(x) = λe−λx, (3.1)

where λ > 0 is the distribution rate parameter.

As examples of use of exponential distributions models are: time between submission of queries to search ma-

chines in the Internet and time executing a process in a computer. In Chapter 4 we found exponential distributions

as the best model for inter arrival rates of emails in legitimate (non-spam emails), spam (emails flagged as spam)

and aggregate email traffics.

The log-normal distribution [65] is the probability distribution of any random variable whose logarithm is nor-

mally distributed. If X is a random variable with a normal distribution, then exp(X) has a log-normal distribution;

likewise, if Y is log-normally distributed, then log(Y ) is normally distributed. The log-normal distribution has

probability density function (PDF) defined as:

f(x) =
1

xσ
√

2π
e

−(ln(x)−µ)2

2σ2 , (3.2)

for x > 0, where µ and σ are the mean and standard deviation of the variable’s logarithm.

Log-normal distributions are useful to model positively skewed data, whereas the natural log of the data are

normally distributed, such as movement data and electrical measurements . In Chapter 4 we found log-normal

distributions as the best model for the distribution of the size of the emails in non-spam, spam and aggregated

email traffics.

The gamma distribution [65] is a continuous probability distribution. The probability density function of the

gamma distribution can be expressed in terms of the gamma function:

f(x) =
1

βαΓ(α)
xα−1e

x
β , (3.3)

for x > 0, where α > 0 is the shape parameter and β > 0 is the scale parameter of the gamma distribution.

The gamma distribution is commonly used in modeling skewed data such as movement data and electrical

measurements.

The Weibull distribution [65] is a continuous probability distribution with the probability density function

defined as:

f(x) = αβxβ−1e−αxβ

, (3.4)

for x > 0, where α > 0 is the rate parameter and β > 0 is the shape parameter.
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One example of application of Weibull distribuition is for time to failure modeling.

In Chapter 4 we found gamma and Weibull distributions as the models for the distribution of sender and

recipient stack distances in non-spam and spam email traffics.

Computer science is plenty of high variability phenomenas, the above distributions are not capable of correctly

modeling this kind of phenomena. As examples of high variability phenomena we have: file sizes in a computation

environment, link bandwidth in Internet environment and in/out degree of graph models of router connections in

the Internet [66].

In order to treat with this models we use power law distribution models. Generally, power law distributions

have the following formulas:

P (X > x) ≈ Cx−α, (3.5)

where C 6= 0 is a constant, and α is the distribution parameter.

In Chapters 4, 5 and 7 we use a power law distribution to model the popularity of a diversity of distinct objects.

In some these case we referred as a power law distribution called Zipf’s Law [67].

Originally, Zipf’s law stated that, in a corpus of natural language written text, the frequency of any word is

roughly inversely proportional to its rank in the frequency table. So, the most frequent word will occur approxi-

mately twice as often as the second most frequent word, which occurs twice as often as the fourth most frequent

word, etc. The term has come to be used to refer to any of a family of related power law probability distributions.

From this on, it was observed that Zipf’s law could be applied to the popularity of a diversity of types of objects in

computer science.

3.3 Network definitions

The popularity of network models for representing virtually any natural structure reflects the flexibility and gener-

ality of the network models, including those undergoing dynamical changes of topology. Several investigations in

networks, as ours, involve the representation of the structure of interest as a graph, followed by an analysis of the

topological features of the obtained representation performed in terms of a set of informative measurements [66].

Such activities can be understood as being aimed at the topological characterization of the studied structures, as we

do in Chapter 5 for spam and legitimate networks. Another related application is to use the obtained measurements

in order to discriminate between different classes of structures, as we do in Chapter 7 in order to find distinctions

between social and antisocial networks.
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Figure 3.1: Graph examples

Characterization and classification of structures using networks imply important question of how to choose the

most appropriate measurements. To begin with, there is an unlimited set of topological measurements. Next, we

have the fact that measurements are often correlated, implying redundancy. Ultimately, one has to rely on her/his

knowledge of the problem and available measurements in order to select a suitable set of features to be made.

For such reasons, it is of paramount importance to have a good knowledge not only of the most representative

measurements, but also of their respective properties and interpretation.

The purpose of this Section consists precisely in providing an integrated and comprehensive guide to the net-

work topological measurements commonly found in the literature and, used in this thesis, as well as their main

interpretation applied to the characterization of email networks. We begin presenting the basic network concepts

and notation, following we present several network topological measurements and its basic interpretation.

3.3.1 Graph basic definitions

Definition 1 A weighted directed graph, G, is defined as a triple (V, E, ω), where V (G) is a set with N vertices

(or nodes), E(G) is a set of M directed edges (or directed links), and a mapping ω defined as: ω(E) → <.

Each vertex can be identified by an integer value i = 1, 2, . . . , N . Moreover, each edge is identified by a pair

(i, j) ∈ E(G) that represents a connection going from vertex i to vertex j to which a weight ω((i, j)) ∈ < is

associated.

Based on Definition 1, we define an unweighted direct graph, G, as a pair (V, E) defined exactly as previously,

note that in this case we do not have an ω mapping defined [68, 69]. Moreover, if we does not consider the directions

of the edges, i.e., if (i, j) = (j, i) ∀ (i, j) and (j, i) ∈ E(G), we have a unweighted undirect graph.

When the set V (G) is such that E(G) = V1(G) × V2(G), where V1(G) and V2(G) ⊂ V (G) and V1(G) ∩

V2(G) = ∅, we have a bipartite graph, which can be directed, undirected, weighted or unweighted.
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Figures 3.1 a-c show examples of graph representations, where nodes are represented by circles and edges are

the lines linking the circles. In Figure 3.1-a is presented an example of an unweighted directed graph and in

Figure 3.1-c we present an weighted directed bipartite graph [68, 69].

In Chapters 5 and 7 we use graph models in context of email networks. There, we define users or domains

of users who send or receive emails as nodes and, the edges representing messages being exchanged between two

nodes. In accordance with the analysis being done, one of the previously defined type of graphs is chosen.

3.3.2 Network properties

Distinct network topologies manifest according with the type of relation being modeled. As said, there exist a

diversity network topology metrics. As a matter of the fact, many of the metrics present characteristic values, for

each relation being modeled, that can be found in the literature. This Section defines the network topological and

dynamical metrics we use in this thesis.

The degree of a node i, represented by ki, is the number of links connected to that node, often called connec-

tivity of i. In the case of directed networks, there are two kinds of degrees: the out-degree, kout
i , which is the

number of outgoing links of i, and the in-degree, kin
i , corresponding to the number of incoming links of i. Note

that, generally, ki ≤ kout
i + kin

i . As an example, in Figure 3.1-a, kout
2 = 2 and kin

2 = 2.

Two nodes i and j of a graph G are said to be neighbors if there exist an edge linking them. The out-set of

a node i in a directed graph G = (V, E), represented by OS(i), is the set of nodes j, such that there is an edge

(i, j) ∈ E(G). Analogously, we define the IS(j) as the in-set of nodes i such that (i, j) ∈ E(G). As it can be

seen, in Figure 3.1-a, the IS(2) = 3 and OS(2) = 3, 4.

In Chapters 5 and 7 we use node degree in order to characterize social and antisocial email networks. Aiming

at using this to detect spam, as in Chapter 5, or to extract social/antisocial components of email networks, as in

Chapter 5. Moreover, in Chapters 7 and 6 we use the in-set and out-set definitions in order to extract groups of

nodes called clusters and use them in characterizing social/antisocial networks, as in Chapter 7 or to improve spam

detection, as in Chapter 6.

The clustering coefficient (CCi) [66] of a node i measures the probability of neighbors of a node i being

neighbors themselves. Let ki be the number of neighbors of a node i, then if all of its neighbors are neighbors of

themselves, we have ki(ki − 1) edges linking them. In an actual network we can measure the number of nodes in

the set of neighbors of a node (i) that are neighbors themselves, lets represent this number as li, so the CCi of a

node i is defined as:
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CCi =
li

ki(ki − 1)
(3.6)

The CC measures the transitivity of a network and is defined as the average CCi for all node i in the network

and is defined as:

CC =
1

N

N
∑

i=0

CCi, (3.7)

where N is the total number of nodes of the network.

The CC is used in the study of propagation throughout a network and is important in the understanding of the

information propagation, diseases, computer virus and other in actual networks.

In Chapters 5 and 7 we use node clustering coefficient in order to characterize non-spam, spam, social and

antisocial email networks. Again, aiming at using this to detect spam, as in Chapter 5, or to extract social/antisocial

components of email networks, as in Chapter 5.

Link reciprocity [70] in a directed network is defined as the tendency of a pairs of vertices to form mutual

connections between each other. In Chapter 5 we use link reciprocity in order to characterize legitimate and spam

networks, looking for distinctions that enable us to improve spam detection. In another way link reciprocity tell

us how much information is lost when a directed network is regarded as undirected.

We use following definition of link reciprocity, in Chapter 5, that we called, communication reciprocity

(CR). The communication reciprocity of a node i is defined as:

CR(i) =
|OS(i) ∩ IS(i)|

|OS(i)| , (3.8)

where OS(i) is the out-set and IS(i) is the in-set of the node i, respectively. With our choice of normalization

this metric measures the probability of a node i be targeted by one of its targets.

The path between two non-adjacent vertices i and j of a network is defined as a sequence of m edges (i, k1),

(k1, k2), . . . , (km−1, j); such set of edges is called a path between i and j, and m is the length of the path. We say

that two vertices are connected if there is at least one path connecting them.

A connected component (CC) is a subset of the nodes of a graph, so that one node can be reached from any

other node in the set following edges between them [66]. Besides that, a giant connected component is defined

as the greatest CC in a graph. Typically a network has one GCC which contains significant part of the network

components. The characterization of GCC in networks is used in order to understand the behavior of the flow

between nodes in networks.
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In Chapters 5 and 7 we study the GCC of our email networks of non-spam, spam, social and antisocial traffics.

One shortest path between two vertices i and j in a graph [68, 69] is defined as one path between them with

minimum size among all the paths linking them.

In networks, the greater the number of paths in which a vertex or edge participates, the higher the importance

of this vertex or edge for the network. Thus, assuming that the interactions follow the shortest paths between two

vertices, it is possible to quantify the importance of a vertex or an edge (u) in terms of its betweenness (Bu).

Defined as:

Bu =
∑

(i,j)∈E

σ(i, u, j)

σ(i, j)
, (3.9)

where σ(i, u, j) is the number of shortest paths between vertices i and j that pass through vertex or edge u,

σ(i, j) is the total number of shortest paths between i and j, and the sum is over all pairs (i, j) ∈ E of distinct

vertices.

Another interesting structural characteristic of networks is the probability of visiting a node during a random

walk through the graphs [71]. At each step of the random walk we need to select the next node to be visited.

This can be done in two ways. The next node can be randomly selected from the out-set of the current node or

we can perform a jump. For a jump, one of the nodes of the graph is selected randomly as the next node. Note

that, this measure is closely related to node betweenness since higher node betweenness tends to generate a higher

probability of visitation. The probability P (i) of finding a node i in a random walk is computed iteratively as

follows:

P (i) =
d

N
+ (1 − d) ∗

∑

j ∈ IS(i)

P (j)

|OS(j)| , (3.10)

where d is the probability of performing a jump during a random walk, N is the number of nodes in the graph.

In Chapter 5 we study the probability of a node participate of a random walk in our non-spam and spam email

networks.

For networks with different types of vertices one interesting structural characteristic to be studied is the way

the types of vertices connect, which is called the mixing pattern or assortative mixing of the network [66].

In Chapter 7 we analyze the nature of degree correlations between neighbors in undirected versions of our email

networks, by looking at the correlation between node degrees of the neighbors of nodes [72]).



20 CHAPTER 3. BACKGROUND

3.4 Vector basic definitions

The purpose of this Section consists precisely in providing an integrated and comprehensive guide to the math-

ematical vector basic definitions commonly found in the literature and, used in this thesis, as well as their main

interpretation applied to the characterization of email networks.

A vector of dimension n is an ordered collection of n elements, which are called components or dimensions.

We often represent a vector by some letter, just as we use a letter to denote a scalar (real number) in algebra. An

n-dimensional vector ~A has n elements denoted as A1, A2, . . . , An. Symbolically: ~A = 〈A1, A2, . . . , An〉.

Two vectors are equal if their corresponding components are equal. The norm of a vector ~A of dimension n,

denoted | ~A|, is defined as:

| ~A| =
√

A2
1 + A2

2 + ... + A2
n (3.11)

The sum of two vectors ~A = (A1, A2, . . . , An) and ~B = (B1, B2, . . . , Bn) is a third vector defined as:

~C = ~A + ~B = (A1 + B1, A2 + B2, ..., An + Bn).

The inner product of two vectors ~A and ~B is a number defined as:

~A • ~B = cos( ~A, ~B)| ~A|| ~B|, (3.12)

In Chapter 6 we define a vectorial representation for email senders and recipients. We then, represent group of

users by the summation of their vectorial representation. Finally, we define similarity of users and group of users

by the normalized inner product of their vectorial representation.

3.5 Clustering algorithms

Complex networks, generally, present an inhomogeneous connecting structure characterized by the presence of

groups whose vertices are more densely interconnected to one another, called clusters, than with the rest of the

network. These grouping structure was previously found and analyzed in many kinds of networks such as social [19,

73, 14], biological [73] and Internet web pages networks. Clustering identification in large networks is particularly

useful because vertices belonging to the same cluster are more likely to share properties and dynamics. In addition,

the number and characteristics of the existing clusters provide subsidies for identifying the category of a network as

well as understanding its dynamical evolution and organization. In the case of the World Wide Web, for instance,
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pages related to the same subject are typically organized into communities, so that the identification of these

communities can help the task of seeking for information.

In Chapters 6 and 7 we use clustering algorithms in order to find and use group distinctions of non-spam,

spam, social and antisocial email networks to improve spam detection as well as extract antisocial components. In

Chapter 6 we use historical information about clusters in a new spam detection algorithm, and show that it is very

effective in improving spam detection. However, in Chapter 7 we use studied clustering structure of social and

antisocial networks in order to characterize their distinct structure.

A diversity of clustering algorithms have been proposed and used in the literature [73, 14, 17]. In Chapters 7

we use use the following algorithm called Minimum Spanning Tree Clustering Algorithm (MST) to extract

communities of our email networks [74]:

1. Start by assigning each node its own cluster, so that if you have N nodes, you now have N clusters, each

containing just one node.

2. Let the distances between the clusters equal the distances between the nodes they contain.

3. Find the closest (or most similar) pair of clusters and merge them into a single cluster, so that now you have

one less cluster.

4. Compute distances between the new cluster and each of the old clusters (as the number common neighbors

the users inside the new cluster and the users inside each old cluster have).

5. Repeat steps 1 to 4 until the happening of any of the previously chosen stop condition.

However, in Chapter 6 we use an adapted version of MST as part of the new spam detection algorithm proposed.

3.6 Conclusions

In this Chapter we present a diversity of definitions that we use and refer in next Chapters of this thesis. Moreover,

we presented here a few collection of applications of each measurement or property defined.





Chapter 4

Workload Models of Legitimate and Spam Emails

4.1 Introduction

Despite the large number of reports on spam cost and the plethora of previously proposed spam detection and

filtering methods, the efforts towards systematically analyzing the characteristics of this type of Internet traffic

have been somewhat limited. In addition to some previous email workload characterizations [1, 2], we are aware

of only a few limited analysis of some spam traffic characteristics in the literature [3, 4, 5].

In this Chapter we take an innovative approach towards addressing the problems caused by spam and present

an extensive statistical characterization of a spam traffic. A preliminary version of this work was published in [10].

Our goal is to develop a deep understanding of the fundamental characteristics of spam traffic and spammer’s

behavior, hoping that such knowledge can be used, to drive the design of more effective techniques for detecting

and fighting spam.

Our characterization is based on an eight-day log of over 360 thousand incoming emails to a large university in

Brazil. Standard spam detection techniques are used to classify the emails into two categories, namely, spam and

non-spam (i.e., legitimate email). For each of the two resulting workloads, as well as for the aggregate workload, we

analyze a set of statistics, based on the information available in email headers. We aim at identifying the quantitative

and qualitative characteristics that significantly distinguish spam from non-spam traffic, assessing the impact of

spam on the aggregate traffic by evaluating how the latter deviates from the non-spam traffic, and providing data

for generating realistic synthetic spam-infected email workloads

Our key findings are:

• Unlike traditional non-spam email traffic, which exhibits clear weekly and daily patterns, with load peaks

during the day and on weekdays, the numbers of spam emails, spam bytes, distinct active spammers and

23
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distinct spam email recipients are roughly insensitive to the period of measurement, remaining mostly stable

during the whole day, for all days analyzed.

• Spam and non-spam inter-arrival times are approximately exponentially distributed. However, whereas the

spam arrival rates remain roughly stable across all periods analyzed, the arrival rates of non-spam emails

vary by as much as a factor of five in the periods analyzed.

• Email sizes in the spam, non-spam and aggregate workloads follow Log-normal distributions. However, the

average size of a non-spam email is from six to eight times larger than the average size of a spam, in our

workload. Moreover, the coefficient of variation (CV) of the sizes of non-spam emails is around three times

higher than the CV of spam sizes. Thus, the impact of spam on the aggregate traffic is a decrease on the

average email size but an increase in the size variability.

• The distribution of the number of recipients per email is more heavy-tailed in the spam workload. Whereas

only 5% of non-spam emails are addressed to more than one user, 15% of spams have more than one recipient.

In the aggregate workload, the distribution is heavily influenced by the spam traffic, deviating significantly

from the one observed in the non-spam workload.

• Regarding daily popularity of email senders and recipients, the main distinction between spam and non-spam

email traffics comes up in the distribution of the number of emails per recipient. Whereas in the non-spam

and aggregate workloads, the distribution is well modeled by a single Zipf-like distribution plus a constant

probability of a user receiving only one email per day, the distribution of the number of spams a user receives

per day is more accurately approximated by the concatenation of two Zipf-like distributions, in addition to

the constant single-message probability.

• There are two distinct and non-negligible sets of non-spam recipients: those with very strong temporal

locality and those who receive emails only sporadically. These two sets are not clearly defined in the spam

workload. In fact, temporal locality is, on average, much weaker among spam recipients and even weaker

among recipients in the aggregate workload. Similar trends are observed for the temporal locality among

email senders.

• The distributions of contact list sizes for senders and recipients are much more skewed towards smaller sizes

in the non-spam workload. In fact, a typical spammer sends emails on average to twice as many distinct

recipients as a typical legitimate email sender. Moreover, a typical spam recipient receives spams from a

number of distinct spammers that is almost three times the number of non-spam senders a typical recipient
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has contact with. Furthermore, the spam traffic significantly impacts the distribution of contact list sizes for

senders and recipients in the aggregate traffic.

Therefore, our characterization reveals significant differences between the spam and non-spam workloads.

These differences are possibly due to the inherent distinct nature of email senders and their relationships with

email recipients in each group. Whereas a non-spam email transmission is the result of a bilateral relationship,

typically initiated by a human being, driven by some social relationship, a spam transmission is basically a unilat-

eral action, typically performed by automatic tools and driven by the spammers’ will to reach as many targets as

possible, indiscriminately, without being detected.

The remaining of this chapter is organized as follows. Our email workloads and the characterization method-

ology are described in Section 4.2. Section 4.3 analyzes temporal variation patterns in the workloads. Email traffic

characteristics are discussed in Section 4.4. Email recipients and senders properties are analyzed in Section 4.5.

Finally, Section 4.6 presents our conclusions.

4.2 Email workload

This section introduces the email workload analyzed in this Chapter. Section 4.2.1 describes the data source

and collection architecture. The methodology used in the characterization process is presented in Section 4.2.2.

Section 4.2.3 provides an overview of our email workload.

4.2.1 Data source

Our email workload consists of anonymized SMTP logs of incoming emails to a large university, with around 22

thousand students, in Brazil. The logs were collected at the central Internet border email server of the university.

This server handles all emails coming from the outside addressed to the vast majority of students, faculty and staff

with email addresses under the major university domain name. Only emails addressed to two out of over 100

university sub-domains (i.e., departments, research labs, research groups) do not pass through and, thus, are not

logged by, the central border server.

The central email server runs the Exim email software [75], the AMaViS virus scanner [76] and the Trend-

micro Vscan anti-virus tool [77]. It also runs a set of pre-acceptance spam filters, including local black lists and

local heuristics for detecting suspicious senders. These filters block on average 50% of all daily SMTP connec-

tion arrivals. The server also runs SpamAssassin [51], a popular spam filtering software, over all emails that are

accepted. SpamAssassin detects and filters spams based on a set of user-defined rules. These rules assign scores

to each received email based on the presence in the subject or in the email body of one or more pre-categorized
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Figure 4.1: Data Collection at the Central Email Server

keywords taken from a constantly changing list. Highly ranked emails are flagged as spams. Spam Assassin also

uses size-based rules, which categorize emails larger than a pre-defined size as non-spam 1. Emails that are neither

flagged as spam nor as virus-infected are forwarded to the appropriate local servers, indicated by the sub-domain

names of the recipient users.

We analyze an eight-day log collected by the AMaViS software at the central email server, during academic

year at the university. Our logs store the header of each email that passes the pre-acceptance filters, along with

the results of the tests performed by SpamAssassin and the virus scanners. In other words, for each email that is

accepted by the server, the log contains the arrival time, the size, the sender email address, a list of recipient email

addresses and flags indicating whether the email was classified as spam and whether it was detected to be infected

with a virus. Figure 4.1 shows the overall data collection architecture at the central email server.

Emails that are flagged with virus or addressed to recipients in a domain name outside the university, for which

the central email server is a published relay, are not included in our analysis. These emails correspond to only 0.8%

of all logged data.

Note that the central server does not perform any test on the existence of the accepted email recipient addresses.

Such tests are performed by the local servers. Thus, some of the recipient email addresses in our logs may not

actually exist. These recipient addresses could be result of honest mistakes or the consequence of dictionary

attacks [78], a technique used by some spammers to automatically generate a target distribution list with a large

number of potential email addresses.

1We note that this rule was applied to only 4% of all emails in our log
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4.2.2 Characterization methodology

As the basis for our characterization, we first group the emails logged by AMaViS into two categories, namely,

spam and non-spam (also referred to as “ham" in the literature [52]), based on whether the email was flagged by

SpamAssassin. Three distinct workloads are then defined:

• Spam - only emails flagged as spam by SpamAssassin.

• Non-Spam - only emails not flagged as spam by SpamAssassin.

• Aggregate - all emails logged by AMaViS.

We characterize each workload separately. The purpose is fourfold. First, we can compare and validate our

findings for the non-spam workload with those reported in previous analysis of traditional (non-spam) email traf-

fic [3, 1, 2, 79]. Second, we are able to identify the characteristics that significantly distinguish spam from non-spam

traffic. Third, we are also able to assess the quantitative and qualitative impact of spam on the overall email traffic,

by evaluating how the aggregate workload deviates from the non-spam workload. Finally, we provide useful data

for generating synthetic spam and non-spam workloads, which in turn, can be used in an experimental evaluation

of alternative spam detecting techniques.

Our characterization focuses on the information available in the email headers, logged by AMaViS. In doing

so, we characterize the email arrival process, distribution of email sizes, distribution of the number of recipients

per email, distribution of contact list sizes, popularity and temporal locality among email recipients and senders.

Each workload aspect is analyzed separately for each day in our eight-day log (except when explicitly stated),

recognizing that their statistical characteristics may vary over time. The email arrival process is analyzed during

periods of approximately stable arrival rate, as daily load variations may also impact the aggregate distribution.

To find the statistical distribution 2 that best models each workload aspect, on each period analyzed, we compare

the least square differences of the best fitted curves for a set of alternative distributions commonly found in other

characterization studies [1, 39, 40, 41, 43, 80, 13, 81]. We also visually compared the curve fittings at the body and

at the tail of the measured data, favoring a better fit at either region whenever appropriate to capture the aspects

of the workload that are most relevant to system design. For instance, shorter inter-arrival times and larger email

sizes have a stronger impact on server capacity planning. Thus, we favor a better fit at the body (tail) of the data

for determining the arrival process (distribution of email sizes). In Sections 4.4-4.5, we show only the results for

the best fitted distributions.
2In Chapter 3 we presented a formal definition of a probability distribution, as well as, the definition of all statistical distributions we

propose as models for the traffic metrics presented in this Chapter
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Measure Non-Spam Spam Aggregate
Period 2004/01/19-26 2004/01/19-26 2004/01/19-26
Number of days 8 8 8
Total # of emails 191,417 173,584 365,001
Total size of emails 11.3 GB 1.2 GB 12.5 GB
Total # of distinct senders 12,338 19,567 27,734
Total # of distinct recipients 22,762 27,926 38,875
Avg # distinct recipients/msg (CV) 1.1 (0.74) 1.7 (1.38) 1.4 (1.27)
Avg # msgs/day (CV) 23,927 (0.26) 21,698 (0.08) 45,625 (0.17)
Avg # bytes/day (CV) 1.5 GB (0.39) 164 MB (0.19) 1.7 GB (0.37)
Avg # distinct senders/day (CV) 3,190 (0.22) 5,884 (0.10) 8,411 (0.11)
Avg # distinct recipients/day (CV) 8,981 (0.15) 14,936 (0.24) 19,935 (0.20)

Table 4.1: Summary of Workloads (CV=Coefficient of Variation)

A visual inspection of the list of sender user names in the spam workload indicated that a large number of

them seemed to be a random sequence of characters, suggesting forging. Note that sender IP addresses may also

be forged, although we expect it to happen less frequently. Our logs contain only sender domain names. However,

sender IP addresses are separately collected by the Exim software. By analyzing the Exim logs collected at the

same period of our AMaViS logs, we found that, on average, a single sender domain name is associated with 15

different IP addresses, whereas the average number of different domains per sender IP address is only 6. In other

words, there is no indication of which information is more reliable. Because the results of Spam Assassin are

available only in the AMaViS logs and a merge of both logs is hard to build, our per-sender analysis focuses only

on sender domain names.

Thus, throughout this chapter, we simply use:

• Email sender - to refer to the email sender domain.

• Email recipient - to refer to an email recipient user name.

4.2.3 Overview of the workloads

An overview of our three workloads is provided in Table 4.1. Note that, although spams correspond to almost 50%

of all emails, spam traffic corresponds to only 10% of all bytes received during the analyzed period. Furthermore,

the total number of distinct spammers is almost 60% larger than the number of distinct senders in the non-spam

workload. Thus, the average number of emails originated from the same domain is smaller in the spam workload,

possibly due to spammers periodically changing their email domain names to escape from black lists. Note, also,

that the total number of spam recipients as well as the number of recipients per spam are also, significantly, larger

than the corresponding metrics in the non-spam workload. This may be explained by spammers effort to target
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Group Senders Recipients
% % Msg % % Msg

Only Non-Spam 29 31 25 10
Only Spam 56 23 38 20

Mixture 15 46 37 70

Table 4.2: Distribution of Senders and Recipients

as many addresses as possible (e.g., dictionary attacks). Another interesting point is the much lower variability in

spam traffic, which is further discussed in Section 4.3. Similar conclusions hold on a daily basis, as shown in the

last five rows in Table 4.1.

Table 4.2 shows the percentages of senders and recipients that send and receive only non-spam emails, only

spams and a mixture of both. It also shows the percentage of emails each category of sender/recipient is responsible

for. More than half of all domains send only spams, whereas 15% of them send both types of emails. We also point

out that, on average, six out of the ten most active spam senders on each day send only spams. Nevertheless, the

spam-only servers are responsible for only 23% of all emails, whereas 46% of the emails originate from domains

that send a mixture of spams and non-spams. These results may be explained by spammers frequently “forging"

new domains. In [3], the authors also found a large fraction of senders who send only junk (i.e., virus or spam)

emails. However, they found those senders represent a larger fraction of the emails in their workloads than we find

in ours.

Table 4.2 also shows that whereas 25% of all recipients are not the target of spam, around 38% of them appear

only in the spam workload and receive 20% of all emails in our log. Furthermore, we found that around 50% of the

spam-only recipients received less than 5 emails during the whole log, and that a number of them seemed forged

(e.g., randomly generated sequence of characters). These observations lead us to speculate that many spam-only

recipients are the result of two frequent spammer actions: dictionary attacks and removal of recipients from their

target list after finding they do not exist (i.e., after receiving a “not a user name" SMTP answer). They also illustrate

a potentially harmful side-effect of spam, namely the use of network and computing resources for transmitting and

processing a significant number of emails that are addressed to non-existent users and, thus, that are discarded only

once they reach local email servers.

4.3 Temporal variation patterns in email traffic

This section discusses temporal variation patterns in each of our three email workloads, namely, spam, non-spam

and aggregate workloads. Section 4.3.1 analyzes daily and hourly variations in load intensity. Temporal variations

in the numbers of distinct email recipients and senders are discussed in Section 4.3.2.
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Figure 4.2: Daily Load Variation (Normalization Parameters: Max # Emails=51,226, Max # Bytes 2.24 GB)
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Figure 4.3: Hourly Load Variation (Normalization Parameters: Max # Emails=2,768, Max # Bytes 197 MB)

4.3.1 Load intensity

Figure 4.2 shows daily load variations in the number of emails and number of bytes, for non-spam, spam and

aggregate workload respectively. The graphics show load measures normalized by the daily load peak observed in

the aggregate traffic. The normalization parameters are shown in the caption of the figure.

Figure 4.2-a shows that daily load variations in the non-spam email traffic exhibit a bell-shape behavior, typi-

cally observed in other web workloads [39, 41, 40], with load peaks during weekdays and a noticeable decrease in

load intensity over the weekend (days six and seven). On the other hand, Figure 4.2-b shows that spam traffic does

not present any significant daily variation. In fact, the daily numbers of emails and bytes are roughly uniformly

distributed over the whole week. This stability in the daily spam traffic was previously observed in [4] for a much

lighter workload, including only 5% of all emails received. Figure 4.2-c shows that the impact of this distinct

behavior on the aggregate traffic is a smoother variation in the number of emails per day. Finally, the variations

in the aggregate number of bytes and in the number of non-spam bytes have very similar patterns, as shown in

figure 4.2-c. This is because non-spam emails account for over 90% of all bytes received (see Table 4.1).
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Traffic Metric Minimum Maximum Average CV

Non-Spam # Emails/Hr. 232 - 435 703 - 4,676 513 - 1,213 0.20 - 0.74
# MBytes/Hr. 4 - 11 46 - 349 23 - 86 0.45 - 0.98

Spam # Emails/Hr. 194 - 776 1,081 - 2,086 781 - 1,007 0.12 - 0.36
# MBytes/Hr. 1.7 - 5.7 6.1 - 18.4 4.3 - 8.0 0.15 - 0.45

Aggregate # Emails/Hr. 500 - 1,210 1,681 - 6,762 1,294 - 2,134 0.13 - 0.55
# MBytes/Hr. 8.7 - 16.8 50 - 367 29 - 93 0.36 - 0.93

Table 4.3: Summary of Hourly Load Variation

The same overall behavior is observed for the hourly load variations, as illustrated in Figure 4.3, for a typical

day. Like in [1, 2], traditional non-spam email traffic (Figure 4.3-a) presents two distinct and roughly stable

regions: a high load diurnal period, typically from 7AM to 7PM, (i.e., working hours), during which the central

server receives between 65% and 73% of all daily non-spam emails, and a low load period covering the evening,

night and early morning. On the other hand, the intensity of spam traffic (Figure 4.3-b) is insensitive for the time

of the day: the fraction of spams that arrives during a typical diurnal period is between 50% and 54%. Figure 4.3-c

shows the impact of spam on the aggregate traffic is a less pronounced in hourly variation of the number of emails

received than in daily variations.

Table 4.3 summarizes the observed hourly load variation statistics. For each workload, it presents the ranges for

minimum, maximum, average and coefficient of variation of the numbers of emails and bytes received per hour, on

each day. In each column we show the lowest followed by the greatest values found, respectively, for the metric in

a per hour base for each day of our eight-day log. Note the higher variability in the numbers of emails and bytes in

the non-spam workload. Moreover, for any of the three workloads, a higher coefficient of variation is observed in

the number of bytes, because of the inherent variability of email sizes. These results are consistent with that found

for the daily variations in the numbers of emails and bytes, in each workload (see Table 4.1). Qualitative similar

results were also found for load variations on a minute basis. The coefficients of variation of the number of emails

per minute vary in the ranges of 0.45-0.78 and 0.46-0.91 for the spam and non-spam workloads, respectively. The

coefficients of variation of the number of bytes per minute are in the ranges of 0.70-1.03 and 1.37-1.75, in the two

workloads.

One key conclusion is that, on various time scales, whereas traditional email traffic is concentrated on diurnal

periods, the arrival rate of spam emails is roughly stable over time. One question that comes up is whether this

difference is also observed on a per-sender basis. We analyzed the hourly traffic generated by each of the 50 most

active spam-only senders and strictly non-spam senders. We found that each of the 50 strictly spam senders sent,

on average, 53% of its daily emails during the day. In contrast, the strictly non-spam senders selected send, on
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Figure 4.4: Daily Variation of Number of Senders and Recipients (Normalization Parameters:
Max # Senders=10,089, Max # Recipients=25,218)
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Figure 4.5: Hourly Variation of Number of Senders and Recipients (Normalization Parameters:
Max # Senders=956, Max # Recipients=2,802)

average, 63% of their emails during the same period. Similar results were obtained for the 100, 200 and 500 most

active senders in each group. Thus, each spammer independently sends almost half of its emails over night, when

computing and networking resources are mostly idle. We conjecture that, by using automatic tools, spammers try

to maximize their short-term throughput, sending at the fastest rate they can get through without being noticed,

throughout the day.

4.3.2 Distinct senders and recipients

This section analyzes temporal variations in the numbers of distinct senders and recipients. Daily variations and

hourly variations for a typical day are shown in Figures 4.4 and 4.5, respectively. As before, we show normalized

measures, expressed as fractions of the peak number of senders and recipients in the aggregate traffic, in the period.

The normalization parameters are given in the captions of the figures.

As observed in the load variation, temporal variations in number of distinct email senders in the spam workload

present significantly different behavior from those observed in the non-spam email workload. Whereas the number

of distinct legitimate email senders does present weekly patterns, the number of distinct spammers is roughly stable



4.3. TEMPORAL VARIATION PATTERNS IN EMAIL TRAFFIC 33

Non-Spam Traffic
Traffic Metric Minimum Maximum Average CV

Non-Spam # Recip./Hr. 228 - 383 589 - 2,883 411 - 978 0.21 - 0.58
# Senders/Hr. 107 - 136 225 - 937 160 - 332 0.14 - 0.61

Spam # Recip./Hr. 485 - 1,174 1,397 - 4,095 955 - 2,371 0.15 - 0.41
# Senders/Hr. 147 - 406 548 - 925 433 - 577 0.10 - 0.24

Aggregate # Recip./Hr. 828 - 1,672 2,480 - 6,580 1,505 - 3,179 0.20 - 0.41
# Senders/Hr. 256 - 541 828 - 1,614 623 - 885 0.12 - 0.33

Table 4.4: Summary of Hourly Variation of Number of Distinct Recipients and Senders

over the eight days (with a slight increase by the 7th day), as shown in Figures 4.4-a and 4.4-b. This difference is

even more striking on a hourly basis, as shown in Figures 4.5-a and 4.5-b. Again, we speculate that the inherently

different nature of the email senders in each workload (automatic tools versus human beings) are responsible for

it. In the aggregate traffic, the significant variations observed in the non-spam email traffic are somewhat smoothed

out by the roughly stable number of spammers, as shown in Figures 4.4-c and 4.5-c.

Regarding the daily variations in the number of distinct recipients, shown in Figure 4.4, no clear distinction

between spam and non-spam traffic is observed. We found that the number of distinct spam recipients actually

decreased significantly by the fourth day. We could not find any reason to explain this odd behavior. However, on a

hourly basis, we found that whereas the number of distinct recipients of non-spam emails is higher during the day,

the number of distinct spam recipients is roughly stable over time, as illustrated in Figure 4.5, for a typical day.

These results are summarized in Table 4.4, which shows, for each of the three workloads, the observed ranges for

the minimum, maximum, average and coefficient of variation of the number of distinct recipients and senders per

hour.

We also measured the correlation between the number of distinct senders and the number of distinct recipients

per hour, on each day, for the three workloads. We found coefficients of correlation between 0.90 and 0.99 in the

non-spam workload, and between 0.58 and 0.89 in the spam workload. The lower correlation seems to indicate that

there is a larger overlap in the distribution lists of typical spammers. This overlap may be the result of spammers

using similar automatic tools to create their targets, trading their distribution lists to extend their reach or obtain-

ing the same distribution list from existing web services [82]. The sharing of recipients among traditional email

senders is most probably due to the fixed number of recipients, who are members of a somewhat closed university

community.

In summary, our results show that, unlike traditional non-spam email traffic, which exhibits clear daily patterns,
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Figure 4.6: Distribution of Inter-Arrival Times

with load peaks during the day, the numbers of spam emails, spam bytes, distinct active spammers and distinct

spam recipients are roughly insensitive to the period of measurement, remaining mostly stable during the whole

day, for all days analyzed.

The fundamental differences between spam and non-spam traffic discussed in this section may be explained

by the inherently distinct nature of their sources. Spammers are driven by the goal of reaching as many targets as

possible, without being detected. To do so, they use automatic tools to (roughly) uniformly spread the flooding of

emails over time to avoid being noticed. Thus, a spam transmission is basically a unilateral action. The transmission

of a non-spam email, on the other hand, is the result of a bilateral relationship [9, 60, 80, 13]. It is typically initiated

by a human being, driven by some social reason (i.e., work, leisure), during his/her active hours.

4.4 Email traffic characteristics

This section analyzes the characteristics of email traffic for the spam, non-spam and aggregate workloads. The

email arrival process is characterized in Section 4.4.1. The distributions of email sizes and number of recipients

per email are analyzed in Sections 4.4.2 and 4.4.3, respectively. For each workload characteristics, we discuss the

differences between spam and non-spam, pointing out the impact of the former on the aggregate workload.

4.4.1 Email arrival process

In this section the email arrival process in each workload is characterized during periods of roughly stable arrival

rate in order to avoid spurious effects due to data aggregation. In the spam workload such periods are typically

whole days, whereas in the non-spam and aggregate workloads, different stable periods are observed during the

day and over night.

We found that email inter-arrival times are exponentially distributed in all three workloads, as illustrated in

Figures 4.6-a, 4.6-b and 4.6-c, for typical periods of stable arrival rate in the non-spam, spam and aggregate work-
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Figure 4.7: Sensitivity of Inter-Arrival Time Distribution to the Period Analyzed

Workload Inter-Arrival Times Exponential
Mean (sec) CV Parameter λ

Non-Spam 2.1 - 9.7 1.12 - 1.90 0.10 - 0.48
Spam 3.6 - 4.9 1.08 - 1.99 0.21 - 0.26
Aggregate 1.3 - 3.2 1.07 - 1.73 0.31 - 0.75

Exponential (PDF): pX(x) = λe−λx.

Table 4.5: Summary of the Distribution of Inter-Arrival Times

loads, respectively. To evaluate the sensitivity of the distribution to the period of measurement, we looked into the

distribution of inter-arrival times observed in different periods. Figure 4.7 presents the cumulative distributions of

inter-arrival times for two distinct periods, one during the day and the other during the evening, for each workload.

Figure 4.7-a shows that non-spam email arrivals are burstier during the day, with around 86% of all inter-arrival

times within 5 seconds. During the evening, only 40% of non-spam inter-arrival times are under 5 seconds. On

the other hand, the distributions are the same in both periods in the spam workload, as shown in Figure 4.7-b.

Figure 4.7-c shows somewhat intermediate results for the aggregate workload.

Table 4.5 summarizes our findings. It shows the ranges of the mean and coefficient of variation of the inter-

arrival times measured in seconds as well as the range values of the λ parameter (email arrival rate) of the best-fitted

exponential distribution, for all periods analyzed, in each workload. Note that λ remains roughly stable across all

periods analyzed in the spam workload. In fact, the peak arrival rate is only 25% higher than the minimum. On the

other hand, the non-spam arrival rates vary by as much as a factor of five across the periods analyzed. Aggregate

traffic exhibits somewhat lower variations, as discussed in Section 4.3.

Our results are in contrast with prior work, which found that the distribution of email inter-arrival times at four

email servers is a combination of a Weibull and a Pareto distributions [1, 2]. However, like in our workloads (see

Table 4.5), the reported coefficient of variation of their inter-arrival times was close to 1. Moreover, our results

are in close agreement with other previous work which found a non-stationary Poisson process to model with

reasonable accuracy SMTP connection arrivals [79].
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Figure 4.8: Distribution of Emails Sizes (Body)
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Figure 4.9: Distribution of Email Sizes (Tail)

Workload Email Sizes Log-normal Parameters
Mean (KB) CV µ σ

Non-Spam 34 - 75 4.27 - 5.24 8.77 - 9.72 1.72 - 1.83
Spam 5 - 9 1.37 - 1.98 7.97 - 8.51 1.03 - 1.26
Aggregate 19 - 44 5.57 - 6.39 7.97 - 8.95 1.86 - 1.94

Log-normal (PDF): pX(x) = 1

xσ
√

2π
e

−(ln(x)−µ)2

2σ2 .

Table 4.6: Summary of the Distribution of Email Sizes

4.4.2 Email size

We found that the distribution of email sizes is most accurately approximated, both at the body and at the tail of the

data, by a Log-normal distribution, in all three workloads, as illustrated in Figures 4.8 and 4.9, for a typical day.

Figures 4.8 (a-c) show the complementary cumulative distribution functions of the data and fitted Log-normal dis-

tributions for the non-spam, spam and aggregate workloads, respectively. Semi-log plots of the same distributions

are shown in Figures 4.9(a-c). Table 4.6 presents the ranges of the mean, coefficient of variation and parameter val-

ues of the best-fitted Log-normal distribution for each workload, in all days analyzed. These results are consistent

with those reported in previous email workload characterizations [1, 2].

Table 4.6 shows that the sizes of non-spam emails are much more variable and have a much heavier tail in

comparison with legitimate email sizes. In our workloads, approximately 83% and 61% of spam and non-spam

emails, respectively, have sizes under 10 KB. However, whereas only 1% of all spams are sized above 60 KB,
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Figure 4.10: Distribution of Number of Recipients per Email

approximately 13% of non-spam emails have sizes above that mark. Note that, as explained in Section 4.2.1, the

size-based rule of SpamAssassin influences only email size distribution that models less than 1% of the data in

spam traffic, so this rule has almost no impact in our models. These results are consistent with those reported in

[1, 2] for non-spam email traffic. The impact of spam on the aggregate traffic is, thus, a decrease in the average

email size but an even more variability of email size.

We draw the following insights from these results. First, in our workload, spammers typically send (a large

number of) short emails, possibly with no attachment. Second, as performed by some system administrators (in-

cluding our central server administrator), email size might be used, together with other filtering techniques, to

improve the effectiveness of spam detection.

4.4.3 Number of recipients per email

This section characterizes the distribution of the number of distinct recipients per email message. Since this dis-

tribution is discrete, we do not apply the same fitting technique as in previous sections. Instead, like in [1, 2], we

subdivide each distribution into k buckets. Each bucket is characterized with an average probability, calculated

over the eight days analyzed. Jointly, these probabilities represent the distribution of the number of recipients per

email. For each workload, we choose a value of k in order to limit the probability of an email with more than k

recipients per email to below 0.002 [1, 2]. The values of k for the non-spam, spam and aggregate workloads are

knon−spam = 8, kspam = 16 and kaggregate = 16, respectively.

Figure 4.10 shows the cumulative distributions for the three workloads. As mentioned in Section 4.2.3, spams
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are typically addressed to a larger number of recipients than non-spam emails. Whereas, on average, 95% of

all non-spam emails are addressed to one recipient, 86% of spams have a single destination. Furthermore, the

distribution is heavier tailed in the spam traffic when compared to non-spam workload, possibly due to the use of

automatic tools. Since almost half of all emails are spam, the distribution of the number of recipients per email in

the aggregate workload is strongly influenced by the heavy tailed behavior. The authors of [1, 2] found an even

heavier tail in the distribution of the number of recipients per email when compared with our findings. In that study,

even though 94% of all emails are addressed to a single recipient, 20 buckets were necessary to cover 99.8% of all

emails.

4.5 Analyzing email senders and recipients

This section further analyzes email senders and recipients in our three workloads. Popularity of email recipients

and senders is analyzed in Section 4.5.1. Section 4.5.2 analyzes temporal locality among email recipients and

senders. Finally, Section 4.5.3 analyzes contact lists of senders and recipients, i.e., the lists of contacts each sender

(recipient) exchanges email with.

4.5.1 Popularity

Popularity of objects have been repeatedly modeled with a Zipf-like distributions (Prob(access object with rank

i = C/iα, where α > 0 and C is a normalizing constant [67]) in many contexts, including web, email and streaming

media [39, 40, 41, 80]. A Zipf-like distribution appears as a straight line in the log-log plot of popularity versus

object rank. However, two roughly linear regions have been observed in the log-log plots of some streaming media

and peer-to-peer workloads [40, 41, 42, 83]. The concatenation of two Zipf-like distributions has been suggested

as a good model in such cases [40, 41].

In the following sections, we analyze the log-log plots of email recipient and sender popularity, measured

in terms of both the number of emails and the number of bytes received and sent. To assess the accuracy of our

proposed models, we measure the R2 factor of the linear regression [65] for each single Zipf-like distribution found.

In our models, the values of R2 are above 0.95 in all cases. A value R2 = 1 corresponds to perfect agreement.

4.5.1.1 Recipient popularity

This section analyzes the popularity of email recipients in our three workloads. A characterization of the number

of emails per recipient is presented first. The distribution of the number of bytes per recipient is discussed later in

this section.
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Figure 4.11: Distribution of Number of Emails per Recipient

Number of emails per recipient

Figures 4.11-a, 4.11-b and 4.11-c show the log-log plots of the number of emails per recipient for the non-

spam, spam and aggregate workloads, respectively, on a typical day. Given the large fraction of users who receive

only one email per day in all three workloads, we choose to characterize the number of emails per recipient using a

combination of a fixed constant probability, for recipients who receive only one email, and a probability distribution

for the remaining users.

The curves in Figure 4.11 present significantly different patterns for recipients of two or more emails. Whereas

Figures 4.11-a and 4.11-c show straight lines, Figure 4.11-b shows two distinct linear regions in the spam workload.

These results are representative of all days analyzed. Thus, for recipients of two or more emails per day, we

modeled the number of emails per recipient with a single Zipf-like distribution, for the non-spam and aggregate

workloads, and with the concatenation of two Zipf-like distributions, for the spam workload. Figures 4.11(a-c)

show the curves for the best fitted Zipf-like distributions in each case. The roughly flat curve over the most popular

spam recipients implies they receive around the same number of spams on the analyzed day. This is true for all

days analyzed, and may be explained by the larger average number of recipients per spam (section 4.4.3) and by

the larger fraction of recipients shared among spammers (section 4.3.2). Again, the inherent difference between

the unilateral relationship established by spam traffic and and the bilateral, socially-driven relationship established

between non-spam senders and recipients may incur significantly different traffic patterns.

Number of bytes per recipient

Figures 4.12-a, 4.12-b and 4.12-c show the log-log plots of the number of bytes per recipient observed on a

typical day for the non-spam, spam and aggregate workloads, respectively. All three graphs show two clear linear

regions, and are representative of the results found in all days analyzed. Thus, we model the number of bytes per

recipient with the concatenation of two Zipf-like distributions, also shown in the graphs of Figure 4.12.

The discrepancy between these results and the number of emails per recipient distributions in the non-spam and
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Figure 4.12: Distribution of Number of Bytes per Recipient
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Figure 4.13: Distribution of Number of Emails per Sender

aggregate workloads may be due to the higher variability in non-spam email sizes (see Section 4.4.2). Moreover, we

found that the correlation between the number of emails and the number of bytes received by each user is typically

weak, ranging between 0.18-0.27, 0.50-0.66, and 0.18-0.28 for the non-spam, spam and aggregate workloads,

respectively. Thus, in each workload, the users who receive the largest number of emails are not necessarily the

ones who receive the largest volume of traffic.

4.5.1.2 Sender popularity

This section characterizes sender popularity. We first present the results for the number of emails per sender.

Analysis of the number of bytes per sender is discussed at the end of the section.

Number of emails per sender

Figures 4.13-a, 4.13-b and 4.13-c show the log-log plots of the number of emails per sender, on a typical day, in

the non-spam, spam and aggregate workloads, respectively. The three curves show similar behavior. As observed

for email recipients, there is a large number of senders that send only one email on a typical day. Moreover,

the portion of the curve covering the remaining senders is well approximated with a straight line. Thus, in all

workloads, we model the number of emails per sender with the concatenation of a constant probability, for single-

message senders, and a Zipf-like distribution (shown in the Figure 4.13(a-c)), for the remaining senders.
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Figure 4.14: Distribution of Number of Bytes per Sender

Traffic Popularity % receive/send Zipf % Data Prob. α
Metric one email/day Model

Non-Spam
# Emails 48-62 Single 100 1 0.52-0.68

# Bytes — 1st 3-21 0.05-0.26 0.62-0.85
2nd 79-97 0.74-0.95 1.67-3.20

Spam
# Emails 29-59 1st 2-3 0.05-0.08 0.22-0.30

2nd 97-98 0.92-0.95 0.47-0.64

# Bytes — 1st 4-62 0.05-0.66 0.34-0.56
2nd 38-96 0.34-0.95 1.10-3.87

Aggregate

# Emails 29-49 Single 100 1 0.95-0.97

# Bytes — 1st 3-85 0.05-0.88 0.64-1.32
2nd 15-94 0.13-0.95 1.85-8.62

Table 4.7: Summary of Distributions of Recipient Popularity

Note that the curve in Figure 4.13-b flattens out over a few of the most popular spammers. However, since they

represent a very small fraction of all spammers, a straight line is a reasonably good fit for the curve. Nevertheless,

it is interesting to note that the fitting of the single Zipf-like distribution is more accurate for the non-spam and

aggregate workloads. This result is in agreement with the previous observation of a Zipf-like distribution for the

number of connections per spam source in a 2004 SMTP workload [5].

Number of bytes per sender

A single Zipf-like distribution was found to be a good approximation of the number of bytes per sender, in all

three workloads, as illustrated in Figure 4.14. We point out that the high variability in email sizes, which might be

responsible for a noticeable flat region over the recipients with the largest number of emails (Section 4.5.1.1), is

less effective here because of the larger number of emails per sender. Furthermore, unlike observed for recipients,

the correlation between the number of emails and the number of bytes for each sender was typically high, in the

ranges of 0.68-0.88, 0.66-0.80 and 0.70-0.87, for the non-spam, spam and aggregate workloads, respectively.

Our main conclusions with respect to email sender and recipient popularity are:
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Workload Popularity % receive/send α
Metric one email/day

Non-Spam # Emails 54-68 0.993-1.251
# Bytes — 1.72-2.08

Spam # Emails 55-67 0.781-0.996
# Bytes — 0.915-1.192

Aggregate # Emails 53-61 0.937-0.987
# Bytes — 1.185-1.775

Table 4.8: Summary of Distributions of Sender Popularity

• The distributions of the number of non-spam emails per sender and recipient follow, mostly, a Zipf-like

distribution. This result is consistent with previous findings that the connections between email senders and

recipients are established using a distribution that follows a Power Law (e.g., a Zipf-like distribution) [5, 80,

13].

• The distribution of the number of spams per recipient does not follow a true power law, but rather, presents a

flat region over the most popular recipients. This may be due to large spam recipient lists and large number

of recipients shared among spammers. The number of spams per sender is reasonably well approximated by

a Zipf-like distribution.

• In all three workloads, the number of bytes per recipient is most accurately modeled by two Zipf-like dis-

tributions. In the case of the non-spam and aggregate workloads, this is probably due to the high variability

in email size. The distribution of the number of bytes per sender is well modeled by a single Zipf-like

distribution in all three workloads.

Tables 4.7 and 4.8 summarize our findings. Table 4.7 presents the ranges of the observed percentage of recip-

ients that receive only one email on a typical day. It also shows the range of parameter values for the Zipf-like

distributions that best fit the data for the remaining recipients. For the cases where two Zipf-like distributions is the

best model, it shows, for each single distribution, the total probability and percentage of recipients that fall within

the corresponding region of the curve as well as the value of the α parameter. Table 4.8 shows similar data for the

distributions of sender popularity.

We point out that the skewed distributions of the number of emails and bytes per sender and per recipient suggest

that sender and recipient popularity could be used to improve the effectiveness of spam detection techniques. For

instance, on a typical day, on average, 53% of the spams and 63% of the spam bytes originate from only 3% of

all strictly spam senders. Furthermore, around 40% of these spammers are among the most active throughout the

eight days covered by our log. Thus, the insertion of these popular spammers into black lists could significantly

reduce the number of spams accepted by the server. Similar results are observed for the strictly non-spam senders,



4.5. ANALYZING EMAIL SENDERS AND RECIPIENTS 43

0.000
0.010
0.020
0.030
0.040
0.050
0.060
0.070
0.080
0.090

 0  20  40  60  80  100  120  140

Pr
ob

ab
ilit

y

Stack Distance

0.000

0.005

0.010

0.015

0.020

 0  20  40  60  80  100  120  140

Pr
ob

ab
ilit

y

Stack Distance

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

 0  20  40  60  80  100  120  140

Pr
ob

ab
ilit

y

Stack Distance

(a) Non-Spam (b) Spam (c) Aggregate

Figure 4.15: Histograms of Recipient Stack Distances

suggesting the use of white lists to reduce the overhead of email scanning. Finally, the concentration of spams

into a small fraction of recipients, who remain among the most popular through several days, suggests that spam

detection techniques might use the email destination to improve its success rate.

4.5.2 Temporal locality

Temporal locality in an object reference stream implies that objects that have been recently referenced are more

likely to be referenced again in the near future [81]. A previously proposed method to assess the temporal locality

present in a reference stream is by means of the stack distances distribution [81]. A stack distance measures the

number of references between two consecutive references to the same object in the stream. Short stack distances

imply strong temporal locality.

This section analyzes temporal locality among recipients and among senders in our three workloads. We start

by creating one email stream for each workload and day analyzed, preserving the order of email arrivals in the

corresponding workload and day. To assess temporal locality among recipients, each email in a stream is replaced

by its recipient list, creating, thus, a recipient stream. The distribution of stack distances in the recipient stream is

then determined. Similarly, to assess temporal locality among senders, each email is replaced by its sender and the

distribution of stack distances is determined.

Section 4.5.2.1 analyzes temporal locality among recipients. Temporal locality among senders is discussed in

Section 4.5.2.2.

4.5.2.1 Temporal locality among recipients

Figures 4.15-a, 4.15-b and 4.15-c show histograms of recipient stack distances, for distances shorter than 150,

observed on a typical day in the non-spam, spam and aggregate workloads, respectively. The complementary
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Figure 4.16: Complementary Cumulative Distributions of Recipient Stack Distances

Workload Mean CV Weibull Parameters
(x1000) α β

Non-Spam 0.7-1.9 2.0-2.3 0.08-0.12 0.35-0.41

Workload Mean CV Gamma Parameters
(x1000) α β

Spam 2.2-3.5 1.1-1.6 0.36-0.54 4877-23741
Aggregate 3.1-5.4 1.4-1.9 0.29-0.37 8465-47657

Gamma (PDF): pX(x) = 1
βαΓ(α)x

α−1e
x
β ;

Weibull (PDF): pX(x) = αβxβ−1e−αxβ

Table 4.9: Summary of the Distributions of Recipient Stack Distances

cumulative distributions of recipient stack distances, measured on the same day, are shown in Figure 4.16. Note

the log scale on the y-axis in Figure 4.16.

We draw the following conclusions. First, there is a higher probability of very short stack distances, and thus,

stronger temporal locality, in the non-spam workload. Second, the distribution of stack distances has a slightly

heavier tail for non-spam recipients than for spam recipients (see discussion below). Finally, the impact of spam

on the aggregate traffic is a significant reduction on the temporal locality among recipients, evidenced by an even

heavier tail in the stack distance distribution. A summary of best-fitted distributions for recipient stack distances

in each workload is presented in Table 4.9. Note the small mean and large coefficient of variation in the non-spam

workload.

In search for an explanation for the significantly different temporal locality observed among spam and non-

spam email recipients, we defined two regions in each stack distance distribution: the head and the tail. The head
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Figure 4.17: Histograms of Email Sender Stack Distances

(tail) consists of the short (large) stack distances so that the total probability of the region does not exceed p = 0.2.

We then defined two sets of recipients: one including all recipients for which the stack distances in the head are

observed, and the other containing the recipients for which the stack distances in the tail are observed. We make

three observations. First, the sets are mostly disjoint, in both spam and non-spam workloads. Second, the number

of distinct recipients in the head region is a significant fraction (over 30%) of the number of daily recipients, in

both workloads. Third, whereas the number of recipients in the tail of the non-spam distribution is significant, the

number of recipients in the tail of the spam distribution corresponds to only 4% of daily spam recipients.

These findings, jointly, imply that there are, at least, two distinct and non-negligible sets of non-spam recipients.

These sets correspond to two classes of email users with very distinct behavior: those who make intense use of

email for communication and, thus, receive bursts of emails from their peers, mostly during the day, when they are

active, and those who send, and thus, receive email only sporadically. These sets are not clearly defined among

spam recipients, since the transmission of a spam is driven by the spammer, who acts mostly independently of the

recipient’s intimacy with email systems.

4.5.2.2 Temporal locality among senders

The histograms of email sender stack distances observed on a typical day, for the non-spam, spam and aggregate

workloads, are shown in Figures 4.17-a, 4.17-b and 4.17-c, respectively. Figure 4.18 the corresponding comple-

mentary cumulative distributions. As observed for email recipients, there is a higher probability of very short and

very large stack distances for non-spam email senders. The distribution for the aggregate workload has an even

heavy tail, implying a significant reduction on temporal locality among email senders due to spam. A summary of

the best-fitted distributions for email sender stack distances is given in Table 4.10.



46 CHAPTER 4. WORKLOAD MODELS OF LEGITIMATE AND SPAM EMAILS

1e−06
1e−05
1e−04
1e−03
1e−02
1e−01
1e+00

0 5 10 15 20 25 30 35 40 45

Pr
ob

(X
 >

 x
)

Stack distance (x1000)

Non−Spam
Spam

Aggregate

Figure 4.18: Complementary Cumulative Distributions of Email Sender Stack Distances

Workload Mean CV Weibull Parameters
µ σ

Non-Spam 287-644 3.35-3.78 4.34-6.63 1.58-1.70
Spam 960-1567 1.88-2.51 5.52-7.80 1.23-1.42

Aggregate 1403-2189 2.32-3.23 6.03-7.91 1.36-1.56

Table 4.10: Summary of the Distributions of Email Senders Stack Distances

4.5.3 Contact lists

This section analyzes the contacts established between senders and recipients through email in the spam, non-

spam and aggregate workloads. Our basic assumption is that, in both spam and non-spam traffics and thus in

the aggregate traffic as well, users (i.e., senders/recipients) have a defined list of peers they often have contact

with (i.e., they send/receive an email to/from) [9]. In non-spam traffic, contact lists are the consequence of social

relationships on which users’ communications are based. In spam traffic, on the other hand, the lists used by

spammers to distribute their solicitations are created for profit and, generally, do not reflect any form of social

interaction.

In each workload, the contact list of a sender s is defined as the set of recipients to which s sent at least one

email (spam, non-spam or either one, in the aggregate workload) in the period analyzed. Similarly, the contact list

of a recipient r is defined as the set of senders from which r received at least one email in the period analyzed. The

size of a sender/recipient contact list is given by the number of recipients/senders in its contact list.

A sender/recipient contact list is built dynamically, over time, as new emails are exchanged. Moreover, contact
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Figure 4.19: Cumulative Distribution of Size of Sender Contact Lists

Workload Sizes of Sender Contact Lists
Mean CV Size = 1 (%) Size < 8 (%) Size < 400 (%)

Non-Spam 6.9 9.0 58 92 99.8
Spam 13.8 3.2 29 72 99.6
Aggregate 12.6 4.7 37 77 99.6

Table 4.11: Distribution of Sizes of Sender Contact Lists

lists certainly may change over time. However, we expect them to be much more stable than other workload aspects

such as email inter-arrival times and sender popularity (see Section 4.5.1). Thus, in contrast to other analysis

presented in this chapter, this section analyzes the distribution of the sizes of recipient and sender contact lists in

each of our three workloads considering the entire eight-day log. The distribution of the size of sender contact lists

is analyzed in Section 4.5.3.1. Section 4.5.3.2 analyzes the size of recipient contact lists.

4.5.3.1 Sender contact lists

Figure 4.19 shows the cumulative distributions of sender contact list sizes in each workload, for list sizes varying

from 1 to 100, which account for more than 98% of all senders in our three workloads. Note that the distribution is

much more skewed towards shorter contact lists among non-spam senders. In other words, typical spammers send

emails indiscriminately to a much larger number of distinct recipients. Dictionary attacks certainly contribute to

generating large contact lists. Non-spam senders, on the other hand, have, on average, a smaller number of contacts,

established through some sort of social relationship. Note that the longer contact lists of spammers significantly

impact the distribution in the aggregate traffic.
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Figure 4.20: Cumulative Distribution of Size of Recipient Contact Lists

Table 4.11 shows the mean and coefficient of variation of sender contact list sizes in the non-spam, spam and

aggregate workloads. It also shows the percentage of senders that fall into different ranges of list sizes. On average,

spammers have contact to twice as many distinct recipients than non-spam senders. Furthermore, the fraction of

sender contact lists with only one recipient over the eight-day period analyzed is significantly higher in the non-

spam traffic. In fact only 8% of non-spam sender contact lists have size greater than eight, whereas 28% of spammer

contact lists have size above that mark. Nevertheless, it is interesting to note the high variability in the contact list

sizes among non-spam senders. This reflects the natural variability in the behavior of legitimate email users: some

have (email) contact to a much larger number of people than others.

Therefore, spammer contact lists are longer than hammer contact lists, on average, but much less variable.

Furthermore, the clear distinction between the distributions of contact list sizes among spammers and non-spam

senders significantly impact the distribution in the aggregate traffic.

4.5.3.2 Recipient contact lists

Figure 4.20 shows the cumulative distribution of recipient contact lists sizes in each workload, for list sizes varying

from 1 to 100, which account for more than 99% of all recipients. As observed among senders, the distribution of

contact list sizes is much more skewed towards shorter lists among non-spam recipients. The impact of spam on

the aggregate traffic is clear: the aggregate distribution is much more heavy tailed than the non-spam distribution.

Table 4.12 shows the mean and coefficient of variation of recipient contact list sizes in the non-spam, spam and
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Workload Sizes of Recipient Contact Lists
Mean CV Size = 1 (%) Size < 6 (%) Size < 30 (%)

Non-Spam 3.7 1.4 44 81 99.5
Spam 9.6 1.3 18 45 95.2
Aggregate 9.5 1.5 23 49 95.1

Table 4.12: Distribution of Sizes of Recipient Contact Lists

aggregate workloads. It also shows the percentage of recipients that fall into different ranges of list sizes. Note that,

on average, the number of distinct spammers with whom recipients have contact is almost three times the number

of contacts of non-spam recipients. Furthermore, the fraction of recipient contact lists with only one sender is

significantly higher in the non-spam traffic. In fact, only 19% of non-spam recipient contact lists have size greater

than 5, whereas 55% of spam recipient contact lists have size above that mark.

In summary, the analysis presented in this section shows that the sizes of contact lists can strongly distinguish

non-spam and spam traffic and that they strongly impact the distributions observed in the aggregate traffic. An

attempt to exploit this distinction for clustering senders and recipients into communities that share similar contact

lists, and use such communities for detecting spam is presented in [11].

4.6 Conclusion

This chapter provides an extensive analysis of a spam traffic, uncovering characteristics that significantly distin-

guish it from legitimate email traffic and assessing how the aggregate traffic is affected by the presence of a large

number of spam messages.

Our characterization, based on the information available on the email headers, revealed that email arrival pro-

cesses, email sizes, number of recipients per email, popularity and temporal locality among recipients and the sizes

of sender and recipient contact lists are some key workload aspects where spam traffic significantly deviates from

traditional non-spam traffic. We believe that such discrepancies are consequence of the inherently different nature

of email senders in each traffic. Traditional email senders are usually human beings who use emails to interact

socially with their peers. Spammers, instead, typically use automatic tools to generate and send their emails to a

multitude of “potential", mostly unknown, users. A further analysis of the relationship between spammers and their

recipients and of spammer behavior, in general, is presented in the Chapters 5 and 7.





Chapter 5

Characterization of Graphs of Legitimate and

Spam Email

5.1 Introduction

In this chapter we present a characterization of the way spammers, legitimate senders and their peers develop their

relationship by exchanging emails. In order to do so, we model legitimate and spam email traffic as graphs and

use these structures to identify theoretical structural metrics that can be used to differentiate them. We are also

interested in finding a set of metrics that can be used, in the future, in a predictive model of spam dissemination.

Our study, which was published in a preliminary version in [9], goes beyond several other recent analyzes [6, 7]

on the graphical nature of spam traffic. We deal with a different database, involving a much larger number of users

and messages, and analyze a wider set of metrics, both static and dynamic. We will show that there is no single

graphical metric that unequivocally distinguishes between legitimate and spam email. There are, however, several

graph theoretical measures that can be combined into a probabilistic spam detection framework. These are then

identified as candidates for the construction of a future spam filtering algorithm.

Our key findings are:

• Out-degree distribution of external senders, in the user and domain graphs, are well modeled by a power

law. However, in the user graph, out-degrees lower than 20 are much more probable for spammers than for

non-spam senders. On the other hand, with out-degree greater than 400 there are almost no spam senders. In

the domain graph, the out-degree distribution shows a much higher probability for nodes with low out-degree

in spam than in non-spam traffic.

• The analysis of the communication reciprocity suggests that a strong signature of spammers is its structural

51
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imbalance between the set of senders and receivers associated with a spam sender. Even in the domain graph

the difference is very clear.

• The asymmetry set shows the number of spam addresses in the difference of the in and out sets of each graph

node. We found that, in both user and domain graphs, there is a strong statistical correlation between the size

of the asymmetry set and the number of spammers in it. These previous two results together show that spam

messages are almost never replied to.

• Our results for the clustering coefficient show that spam users have much lower cohesion in their commu-

nication than non-spam users. Moreover, it shows that spammers send emails, generally, to uncorrelated

recipients.

• As a result of the communication asymmetry between spam nodes, we found that, in both graphs, there is

much less probability of visiting a spam than a non-spam node during a random walk.

• The spam subgraph is a much more rapidly growing structure. Due to the size of our log, one week long, we

do not find a saturation point in any of the subgraphs analyzed.

• We found that temporal locality among pairs (sender-recipient) of users is stronger in non-spam traffic than

in spam traffic, showing concentration of legitimate email communications in time.

• We analyzed the entropy of the flow of messages/bytes of the communication between spammers and legit-

imate senders and their peers. We found that legitimate senders communicate in a much more variable way

with their peers than spammers.

The remaining of this chapter is organized as follows. In section 5.2 we introduce the modeling of email traffic

in terms of two graph classes and present the metrics to be studied. Section 5.3 presents the email workload used in

this work. We present several theoretical graph metrics and evaluate this workload according to them in Section 5.4.

Finally, we present our conclusions in section 5.5.

5.2 Graph-Based modeling of email workloads

In order to characterize spam email traffic versus non-spam we define two types of graphs 1: a user graph and a

domain graph. The vertices of the user graph are email senders and recipients of our log. An email sent by A to

receiver B results in a link between A and B. The domain graph has as vertices the domains of the external senders

being analyzed, and users inside the local domain. In this case, if an user B of the local domain receives an email

1In Chapter 3 we present the definition of graph and the set structural graph properties we analyze in this Chapter
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from any user in an external domain D, we define a link between D and B. Note that, sets of users external to the

local domain who share a domain are aggregated into a single node. Note, also, that the domain graph is a simply

bipartite graph and not all characteristics studied will apply to it.

The edges of both graphs can take one of four forms: directed or undirected; binary (or unweighted) or weighted

(e.g., by the number of emails exchanged or by the total size of the emails exchanged in bytes). These options

cover most of the possibilities for direct graphical construction out of the email logs at our disposal (described in

Section 5.3).

The user graph is, in principle, the most useful to identify the individual nature of users as spam or non-spam

senders. In some cases these characteristics extend to the whole external domain (particularly if the spammer

changes his name2 more often than its domain) and the domain graph produces a useful aggregation of the user

data. We believe that user graphs will be more effective in identifying senders of non-spam since spam senders

very frequently tend to change their full email address.

The user or domain graphs can be constructed exclusively out of spam traffic, non-spam traffic, or the aggregate

set of all emails. Some of the graph theoretical properties studied below will be analyzed in terms of the graphs

constructed when considering the different traffics separately while others will be evaluated on selected nodes from

the aggregated traffic. The selected nodes represent senders in the aggregated graph and can be divided into two

classes - spam and non-spam - based on the type of emails they send. These classes do not form disjoint sets, see

Table 5.2.

Given these two graph types we will analyze two types of properties: (i) structural and (ii) dynamical. The

former captures the structure of social relationships between users exchanging emails, while the latter relates to

how graphical properties evolve over time. As we shall show below there are distinct independent signatures of

spam traffic in both structural and dynamical properties. As a consequence they should be taken together to generate

a better detection procedure.

5.3 Email workloads

Measure Non-Spam Spam Aggregate
# emails 336,580 278,522 615,102
Size of emails 11.00 GB 1.70 GB 12.71 GB
# sender users 94,985 170,664 263,144
# sender domains 20,414 48,087 59,971
# recipients 26,450 12,867 35,471

Table 5.1: Workload summary

2The first part of the address, located before the @.
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The construction of the graphs introduced in Section 5.2 is subject to several practical constraints. Our knowl-

edge of email traffic comes from Postfix logs of the central SMTP incoming/outgoing servers of an academic de-

partment from a large University in Brazil. Incoming emails only contain the recipients internal to the department’s

domain. Outgoing emails contain the full list of recipients. Moreover our data set does not contain information

about emails exchanged between users external to the domain.

The logs were collected between 11/18/2004 and 12/31/2004 and contain the following data for each email: (i)

received time and date; (ii) a reject flag, indicating whether connection was rejected during email acceptance (iii)

Size of email3; (iv) sender address; (v) list of recipients and (vi) a spam flag, indicating if it was classified as spam

or not by SpamAssassin [51], see Section 4.2.1 in Chapter 4 for more information about it.

The logs were sanitized and anonymized to protect the users’ privacy. Statistical characteristics of the workload

are in agreement with previous email traffic analysis [10, 4, 3]. Table 5.1 summarizes the data set.

5.4 Spam networks vs. legitimate email networks

Type External Internal
Spam 169931 (277535) 733 (987)
Non-Spam 93666 (186607) 1319 (151973)
Spam & 2366 (-) 139 (-)Non-Spam
Total 263231 (462142) 1913 (152960)

Table 5.2: Number of unique email addresses by origin (internal or external to the domain) and classified as spam,
non-spam or both. Numbers in parentheses indicate the total number of emails sent by each class.

Although spam emails originate mainly from users outside the local domain spam senders use several tech-

niques to forge or steal local addresses (e.g., crawling the web for email addresses available at web pages, network

sniffing, name dictionaries). As a result spam email does originate from the local domain both from real users and

from forged ones. This mixing between regular email users and spam senders can lead to more complex email

networks than might have been naively expected and poses a challenging problem for detection.

Table 5.2 summarizes the number of addresses and emails by node classes and by internal or external origin.

Node classes are as defined in Section 5.2 plus a third category - Spam & Non-Spam - which is the intersection of

the former two. The size of this overlap shows the impact of email address spoofing.

Most emails originate outside the domain. In our log most outside users are spam senders and account for the

majority of the emails. Because it is very easy for a spammer to forge an address spam senders use many addresses

simultaneously and/or frequently switch between them. This strategy is visible in our database as non-spam internal

3Only for the accepted emails.
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users send many more emails per user than spam internal users. We expect that this is a general feature of spam

versus non-spam traffic.

The number of spam senders that are internal is very small. Among these, the fraction of the internal spam

senders that send exclusively spam is 81%. These addresses correspond presumably to internal emails that have

been forged and do not actually exist4. The remaining addresses send both spam and non-spam and are probably

genuine users whose addresses have been spoofed.

Section 5.4.1 presents the structural analysis of both graphs and its relation with spammers and non-spam sender

behaviors. The last Section 5.4.2 presents results for the dynamical characteristics of both graphs for each traffic.

5.4.1 Structural analysis of spam vs. non-spam email graphs

This Section presents the results of the analysis of how spammers and legitimate senders behaviors reflects in

the structural properties of the user and domain graphs. Section 5.4.1.1 presents the distribution of the sender

out-degrees for each traffic. The communication reciprocity of the spam and legitimate senders is presented in

Section 5.4.1.2. In Section 5.4.1.3 we discuss the correlation between the asymmetry set of each sender and

the number of spammers in it. Results for the communication cohesion of each group of users is presented in

Section 5.4.1.4. Finally, in Section 5.4.1.5 is presented results for the probability of a user being part of a random

walk in each graph.

5.4.1.1 Sender out-degree distributions

One of the most common structural measures analyzed in complex networks is the distribution of the number of

the incoming and outgoing node connections, or degree [57, 13, 62]. Figure 5.1 shows the distribution of the out-

degrees, the out-degree of a node in a graph is formaly defined in Chapter 3, of the different sender classes for the

user and domain graphs.

The out degree distributions approximately follow a power law (Const/xα). By using a simple statistical

linear regression we estimated the exponent α that best models the data. For the user graph we obtained α = 1.497

(with R2 = 0.965.) for spam senders and α = 1.359 (R2 = 0.981) for non-spam senders. We conclude that the

spam senders’ out degree distribution is slightly more skewed. We conjecture that this is because spammers have

a limited knowledge of the set of users in each specific domain. Since in our analysis we only observe a fraction

of the spammers’ lists (the one composed by the messages sent to the domain studied) there are no spammers with

recipients’ lists as large as those found for non-spam senders.

4This suggests that a simple effective way to filter out spam originating from internal domain addresses is to verify that they correspond to

an existing user.
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Figure 5.1: Distribution of the node degrees for sender classes in the aggregated graphs
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Figure 5.2: Distribution of Communication Reciprocity

Degrees from 1 to near 20 are much more probable for spam senders than for non-spam senders, while very

large degrees are more likely in non-spam. There are only small differences between the two sender classes in the

body of the distribution, for degrees from about 20 to 400. The mean out-degrees, are 3.56 and 1.63 for non-spam

and spam, respectively (see Table 5.2).

In the domain graph the out-degree distribution shows a much higher probability for nodes with low out-degree

in spam traffic than in non-spam.
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5.4.1.2 Communication reciprocity

In order to evaluate discrepancies between in and out sets of addresses for a given node we create a simple metric

called Communication Reciprocity (CR) of x, a more formal definition of CR is given in Chapter 3, as:

CR(x) =
|OS(x) ∩ IS(x)|

|OS(x)| , (5.1)

where OS(x) is the set of nodes that receive a message from node x and IS(x) is the set of addresses that

send messages to x. With our choice of normalization this metric measures the probability of a node receiving a

response from each one of his addresses.

Figure 5.2 shows the distribution of the Communication Reciprocity. This metric is able to effectively dif-

ferentiate users associated with spam from non-spam. The grouping of users in the domain graph makes this

differentiation more difficult. However, even in the domain graph the difference is very clear.

The analysis of the communication reciprocity suggests that a strong signature of spam is its structural im-

balance between the set of senders and receivers associated with a spam sender. However whenever there is an

imbalance, how many of the unmatched addresses correspond to spam senders? A first approach to answering this

question is presented in the next section.

5.4.1.3 Asymmetry set

Let the asymmetry set for a node be the difference of its in and out sets. Figure 5.3 shows the number of spammers

addresses in the asymmetry set versus the size of the asymmetry set itself. The resulting relation is very well fit by a

straight line at 45o, showing a strong correlation between the two numbers. The statistical correlation is C = 0.979

for user graph and C = 0.998 for the domain graph. So, almost all senders in the asymmetry sets are spammers

indifferently of the graph analyzed. The non-spam data is not very well modeled by a 45o straight line. These

correspond to the non-spam senders that were not answered (or to whom we could not see an answer in our log).

The correlation is C = 0.8723 and C = 0.9932 for the user and domain graphs respectively. As expected from the

result of the spam data the non-spam data has a higher correlation for the domain graph.

This result can be made sharper if we analyze the correlation between the number of spammers in the incoming

set of a node and spammers in its asymmetry set. We find C = 0.999 and C = 0.994 for the user and domain

graphs, respectively. There is a slightly worse correlation in the domain graph. We conjecture this is due to the

external reliable domains used by spammers (e.g., through spoofing and forging techniques). These may not be

counted in the asymmetry set since they are replied through their legitimate emails but are part of the incoming set

as spammers.
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Figure 5.3: Number of spammers/non-spam senders in the asymmetry set vs. the number of nodes in it

These results show that spam messages are almost never replied to, except in cases of spoofed or forged domains

or users’ ids and rarely, we assume, intentionally.

Asymmetry sets can, in principle, be used as a component in a probabilistic spam detection mechanism. The

arrival of an email from a sender that has already been contacted by an internal recipient is an indication that it has

high probability of being a non-spam.

5.4.1.4 Clustering coefficient

Another common characteristic of social networks is a high average clustering coefficient (CC) [84]. As formaly

defined in Chapter 3, the CC of a node n, denoted Cn, is defined as the probability of any two of its neighbors being

neighbors themselves. This metric is associated to the number of triangles that contain a node n. For an undirected

graph, the maximum number of triangles connecting the Nn neighbors of n is Nn × (Nn − 1)/2. Thus, the CC

measures the ratio between actual triangles and their maximal value. During clustering coefficient analysis we only

consider the nodes with Nn > 1, since this is a necessary condition for the CC to be nonzero.
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Figure 5.4: Distribution of the clustering coefficient for the non-spam and spam user classes in the aggregated user
graph.

Figure 5.4 shows the distribution for the CC of nodes in the aggregated graphs. The clustering coefficient

measures cohesion of communication, not only between two users but among friends of friends. This is a pervasive

characteristic of social relations that tends to be absent in spam sender-receiver connections. As a result legitimate

email users have on average higher CC than spam senders, 0.16 against 0.08, respectively.

Some recent studies [6] have analyzed graphical metrics of the connected components of email graphs. A

connected component is a subset of the nodes of a graph, so that one node can be reached from any other node in

the set following edges between them. A complementary measure to the CC and size of the connected component

is the average path length between two nodes. The connected component and average path length properties are

generally related to so-called small world networks, which display high CC (higher than a random graph with the

same connectivity) and short path length, usually comparable to log N , where N is the number of nodes in the

graph.

In our experiments both the connected component and the average path length have not been able to convinc-

ingly differentiate spam from legitimate traffic. All of the graphs studied are small world networks. Also all of

the graphs have giant connected components. Other studies have used the clustering coefficient of connected com-

ponents to identify spam in networks constructed from the correspondence of a single user [6]. However for data

from servers that aggregate the communication between different senders and recipients we find that these metrics

do not suffice to perform a clear identification of spam.
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Figure 5.5: Distribution of the probability of finding a node during a random walk.

5.4.1.5 Random walk

Another interesting structural characteristic of graphs is the probability of visiting a node during a random walk, as

defined in [71] and in Chapter 3, through the graphs. At each step of the random walk we need to select the next

node to be visited. This can be done in two ways. The next node can be randomly selected from the out set of the

current node or we can perform a jump. For a jump, one of the nodes of the graph is selected randomly as the next

node. Note that, this measure is related to node betweenness5 since higher node betweenness tends to generate a

higher probability of visitation. Nevertheless this probability is much easier to compute than node betweenness for

large graphs. The probability P (x) of finding a node x in a random walk is computed iteratively as follows:

P (x) =
d

N
+ (1 − d) ∗

∑

z ∈ IS(x)

P (z)

|OS(z)| , (5.2)

where d is the probability of performing a jump during a random walk, N is the number of nodes in the graph.

The parameter d is a dumping factor that can be varied. A value usually used in the literature is 0.15 [71], that is

also the value we use in our measurements.

The results are shown in Figure 5.5. The difference between spam and non-spam behavior is less noticeable in

the domain graph than in the user graph. Spam nodes show generally lower probabilities of being visited, as might

have been expected because of the asymmetry of their communication. Visiting probabilities for spam nodes in the

user graph are localized to the initial and final parts of the distribution and are less pronounced in the middle range.

The node visitation probability distributions can be modeled by a power law. We estimate the corresponding

5The number of shortest paths between any two connected nodes that pass through a node.
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exponent at α = 0.694, 1.097 and 0.975 for the non-spam component of the user graph, and for the non-spam

and spam components in the domain graph, respectively. The R2 associated with the fits varies between 0.959 and

0.998. The R2 for the spam curve of the user graph is 0.853, showing that it is not well modeled by a power law,

as visual inspection suggests.

5.4.2 Dynamical analysis

Beyond the structural characteristics of the graphs of spam and non-spam email other metrics related to the dy-

namics of communication and graph evolution may help model spam traffic. In this section we will analyze some

dynamical characteristics of the user and domain graphs defined.

In the Section 5.4.2.1 we present results for the growth of the graphs in number of nodes and edges. Sec-

tion 5.4.2.2 analyzes temporal locality among peers on each traffic. Finally, entropy of the flow of incoming

messages and bytes from each sender is studied in Section 5.4.2.3.

5.4.2.1 Growing of the graphs

A large amount of effort has been devoted recently to creating realistic growth models for complex networks. One

of the key characteristics of such models is the number of nodes and edges evolution, as well as the probabilistic

connection rules for the new nodes to those already in the graph. Figure 5.6 shows the evolution of the graph in

terms of number of nodes and edges. We plot these quantities against percentage of messages evaluated for each

graph, to avoid the rate of message arrival influence, which varies with time depending on the type of the traffic

being considered (e.g., the bell shaped behavior for the non-spam traffic against the almost constant rate for spam

traffic [10, 1, 4]).

The growth of the aggregated graph (a composition of the spam and the non-spam graphs) results from the

growth in both the spam and non-spam components. The spam subgraph is a much more rapidly growing structure.

Over the time of the log we find no saturation effect in these numbers. Instead the number of addresses and edges

grows almost linearly with the number of emails. An eventual saturation in the non-spam component might be

expected for longer times.

5.4.2.2 Temporal locality among pairs sender-recipient

Another important dynamical graph characteristic is how the weights of edges evolve. An interesting metric that

can be used to measure this is the stack distance [81] of connected pairs in terms of the emails they exchange

over time. The stack distance measures the number of distinct references between two consecutive instances of the

same object in a stream. We take the total email log as the stream and each pair (sender,receiver) as the object,
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Figure 5.6: Graph evolution by percentage of messages.

disregarding the order. Figure 5.7 shows the pairs’ stack distance distributions. We see that temporal locality

is much stronger in non-spam traffic. This means in practice that legitimate users exchange emails over small

concentrations of time.

5.4.2.3 Entropy of the flow of messages/bytes per sender

We were also interested in studying how the nodes communicate with their peers in terms of number of messages.

Because of the impersonal nature of spam we expect that spam senders communicate in a more predictable way

with their recipients. Not only will legitimate senders show more variation in the number of messages they send to

each person in their out sets, but they will also show variability of the messages themselves in terms of their sizes.

In order to quantify these effects we evaluated the normalized entropy of the in and out flows for each node, defined

as:

H(x) =

∑

y∈OS(x) −p(y) ∗ log(p(y))

log(|S(x)|) , (5.3)
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Figure 5.7: Distribution of stack distances for the pairs (sender, recipient) in the distinct traffic.

where p(y) is the probability of y receiving a message from x and and |S(x)| is the number of distinct elements

in the set being considered.

Figure 5.8 shows the normalized entropy for the out flow of the nodes in the different sender classes for the

aggregated graphs. As expected, spammers communicate with their recipients with much less variability (higher

entropy). A similar analysis was conducted considering the bytes that each node sends with similar results. Due

to the great aggregation of nodes in the domain graphs, the entropy of the bytes/messages flow is not capable of

distinguishing the two traffics as it is in the user graphs.

5.5 Conclusions

In this chapter, we have shown that legitimate and spam email graphs differ in two fundamental classes of charac-

teristics: structural, which capture the skeleton architecture of the graphs, and dynamical, concerning node com-

munication and graph evolution.

We have shown that the spam and non-spam subgraphs are structurally characterized by different distributions

of their node clustering coefficient. Legitimate email users display on average higher clustering coefficients than

spam senders. Node visitation probability is a measure of the centrality of a node relative to other nodes in the

graph. Legitimate email nodes have higher visitation probability than spam nodes. We also defined a new metric

called communication reciprocity. It measures the probability that a node receives a response from any of its

addressees. There is a strong difference in the probability distributions of the communication reciprocity in the

legitimate and spam graphs; legitimate nodes have a much higher probability of being responded to. Another
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Figure 5.8: Distribution of entropy of the number of messages/bytes in the flow of emails for the aggregated graph.

metric introduced in this chapter is the email asymmetry set, which represents the difference between the sets of

in and out edges of a node. We showed that there is a strong correlation between the size of asymmetry sets and

the number of spammers in the set. Dynamically the spam graph grows much faster than the legitimate email

graph. The legitimate email graph grows more slowly both in the number of nodes and edges, manifesting the

higher stability of relations in a social group. Two other dynamical metrics, entropy and stack distance, are used

to reveal the temporal characteristics of communication among nodes. Spam nodes display a much higher entropy

than legitimate email users, and a much longer stack distance.

We have shown that differences in both classes of graph characteristics can be explained by the same hypothesis,

namely that legitimate email graphs reflect real social networks, while spam graphs are technological networks,

devoid of a sense of community. Although no single metric can unequivocally differentiate legitimate emails from

spam, the combination of several graphical measures paint a clear picture of the processes whereby legitimate and

spam email are created. For this reason they can be used to augment the effectiveness of mechanisms to detect

illegitimate emails.



Chapter 6

Using Structural Similarity for Improving Spam

Detection

6.1 Introduction

None of the existing spam filtering mechanisms is infallible [3, 8]. Their major problems are false positives and

wrong mail classification. In addition, filters must be continuously updated to capture the multitude of mechanism

constantly introduced by spammers to avoid filtering actions.

In this Chapter, we propose and evaluate two algorithms for spam detection that use structural relationships

between senders and recipients as the basis for the detection of spam messages. The algorithms work in conjunction

with another spam classifier (hereafter called auxiliary algorithm), necessary to produce spam or legitimate mail

tags on past senders and receivers, which in turn are used to infer new ones, through structural similarity. The key

idea is that the lists of distinct recipients that spammers and legitimate users send messages to, as well as the lists

of distinct senders from which users receive messages 1, can be used as the identifiers of senders and recipients in

email traffic [3, 9, 10]. We show the application of our structural based algorithms over the results of the auxiliary

classifier leads to the correction of a number of misclassification. A preliminary version of the results presented in

this chapter where published in [11].

The algorithms presented in this Chapter aim at improving the effectiveness of spam filtering mechanisms, by

reducing false positives and by providing information to tune their collection of rules. Differently from most of

the alternatives for spam filtering, we focus our analysis on the characteristics that we conjecture are the most

difficult for the spammers to change, i.e., their structural relationships with email users, as a way to improve the

1The contact lists as defined in Chapter 4
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classification provided by other filters. Other recent studies have focused on spam combat techniques based on

characteristics of graph models of email traffic [6, 7, 11].

This Chapter is organized as follows: Section 6.2 presents the methodology used to handle email data. The

structural algorithm proposed is described in Section 6.3. We describe the workloads and the classification results

of our algorithms for each workload in Section 6.4. In Section 6.4.3 we discuss the use of weighted representations

for email users. Finally, conclusions are presented Section 6.5.

6.2 Modeling similarity among email senders and recipients

Our proposed spam detection algorithms exploit the structural similarities that exist in groups of senders and re-

cipients of email. This section introduces a unifying modeling framework of individual email users and proposes

a metric to capture the similarity between them. It then shows how to obtain clusters of users who share great

similarity.

In Chapter 3 we present all the definitions related to the modeling presented in this Section.

Our basic assumption is that, in both legitimate and spam traffics, users have a defined list of peers they often

have contact with (i.e., they send/receive an email to/from, see Section 6.4). In legitimate email traffic, contact

lists are the consequence of social relationships. On the other hand, the lists created by spammers to distribute

their solicitations are guided by business opportunities and, generally, do not reflect any form of social interaction.

A user’s contact list certainly may change over time. However, we expect it to be much less variable than other

characteristics commonly used for spam detection, such as the presence of certain keywords in the email content

or its size and encoding. In other words, we expect contact lists to be an effective basis for detecting spam.

We start by representing an email user as a vector in a multi-dimensional vector space created out of all possible

contacts. We represent email senders and recipients separately. We then use vector operations (the inner product in

contact space) to express the similarity among multiple senders/recipients, and use this metric for clustering them.

Our approach can be used with several different email user identification (e.g., email address, domain name, SMTP

relay, etc); therefore, the term email user is used throughout this work to denote any means of identification of an

email sender/recipient that one may want to use.

Let Nr be the number of distinct recipients. We represent a sender si as a Nr dimensional vector ~si, defined

in the vector space of email recipients being considered. The n-th dimension (representing recipient rn) of ~si is

defined as:

~si[n] =











1, if si → rn

0, otherwise
, (6.1)
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Figure 6.1: Message Exchange Example: (a) Shows a Graph-representation of Email Data, (b) Shows the Vector
Representation of the Senders and (c) Shows the Vector Representation of the Recipients

where si → rn indicates that sender si has sent at least one email to recipient rn.

Similarly, we define ~ri as a Ns dimensional vector representing recipient ri, where Ns is the number of distinct

senders being considered. The n-th dimension of this vector is analogously set to 1 if and only if recipient ri has

received at least one email from sn.

Figure 6.1-a shows a graph that represents the communication between senders and recipients. Nodes represent

email users and the edges connecting them imply that a user has sent at least one message to another email user.

The bipartite graph representation is adequate since we separate the two facades of each user, i.e. their sending

and receiving behaviors, creating a separate representation for each. Figures 6.1-b and 6.1-c show the vector

representations for senders and recipients, respectively.

We next define the similarity between two senders si and sj as the cosine of the angle (the normalized inner

product) between their vector representation (~si and ~sj). The cosine is a well known metric that has been success-

fully employed in several application areas, including document similarity in information retrieval systems [85, 86]

and intrusion detection [87]. This similarity metric is computed as:

sim(si, sj) =
~si • ~sj

|~si||~sj |
= cos(~si, ~sj), (6.2)

where ~si • ~sj represents the inner product of the vectors and |~si| represents the norm of ~si. Note that, since

the vector representation of senders are found in the first quadrant of the respective conceptual spaces, this metric

varies from 0, when senders do not share any recipient in their contact lists, to 1, when senders have identical
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contact lists and thus have the same representation. The similarity between two recipients is analogously defined.

We note that our similarity metric has different interpretations in legitimate and spam traffics. In legitimate

email traffic, it tends to represent social interaction with the same group of users, whereas in the spam traffic, a great

similarity probably represents the use of different identifiers by the same spammer or the sharing of distribution

lists by distinct spammers.

Finally, we can use our vector modeling approach to represent a cluster of senders or recipients. A sender

cluster sci, represented by vector ~sci, is computed as the sum of its elements, that is:

~sci =
∑

s∈sci

~s. (6.3)

The similarity between sender s and an existing cluster sci can then be directly assessed by extending Equa-

tion 6.2 as follows:

sim(sci, s) =











cos(~sci − ~s,~s), if s ∈ sci

cos(~sci, ~s), otherwise
(6.4)

We note that a sender ~s vectorial representation and the sender cluster to which it belongs may change over

time as new emails are considered. In order to accurately estimate the similarity between a sender ~s and a sender

cluster ~sci to which ~s currently belongs to, we first remove ~s from ~sci, and then take the cosine between the two

vectors (~sci − ~s and ~s). This is performed so that the previous classification of a user does not influence its actual

classification. Recipient clusters and the similarity between a recipient and a given recipient cluster are defined

analogously.

6.3 Structural similarity algorithms

This section introduces our email classification approach, which exploits the similarities between email senders

and recipients to group them into clusters and uses historical information to improve spam detection accuracy. We

present two algorithms, each one designed to work together with any existing spam detection or filtering technique.

Our goal is to provide a significant reduction of false positives (i.e., legitimate emails wrongly classified as spam),

which can be as high as 15% in current filters [36].

The architecture proposed in this chapter is shown in Figure 6.2. A message arrives at the spam detection

system and is directed to a structural similarity based algorithm. This algorithm first sends the message to the
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auxiliary algorithm in order to retrieve a first classification attempt of that message. Based on this classification,

on the cluster formed by senders and recipients, and, on historical information, our algorithms generate a new

classification, which can coincide or not with the original classification provided by the auxiliary algorithm. The

idea is to use the classification performed by the auxiliary method to build an incremental historical knowledge

base that gets more representative as more messages are processed.

The two algorithms presented below are similar in their inner workings but differ in the way they use historical

information derived from the clusters to provide the final classification of the messages. Whereas the cluster-based

algorithm derives its classification from historical information of the clusters formed by the senders/recipients of

each message, the communication-based algorithm uses historical information of the interactions between clusters

in order to classify messages. The cluster-based and the communication-based algorithms are presented in detail in

Section 6.3.1 and Section 6.3.2 respectively.

6.3.1 Cluster-based algorithm

This algorithm, in Algorithm 1, maintains sets of sender and recipient clusters, created by the structural similarity,

as defined in Equation (6.4). A sender/recipient of an incoming email is added to the sender/recipient cluster that is

most similar to it provided that their similarity exceeds a given threshold τ . Thus, τ defines the minimum similarity

a sender/recipient must have with a cluster to be assigned to it. Varying τ allows us to create more tightly or loosely

knit clusters. If no cluster can be found, a new single-user cluster is created. In this case, this sender/recipient is

used as seed for populating the new cluster.

The sets of sender and recipient clusters are updated at each new email arrival based on the email sender and

on the list of recipients. Recall that to determine the cluster of a previous classified user we first remove the user

from its current cluster and then assess its similarity to each existing cluster. Thus, single-user clusters tend to be
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(1) foreach arriving message m
(2) mClass =classification of m by auxiliary detection method;
(3) sc =find cluster for m.sender;
(4) Update spam probability for sc using mClass;
(5) Ps(m) =spam probability for sc;
(6) Pr(m) = 0;
(7) foreach recipient r ∈ m.recipients
(8) rc =find cluster for r;
(9) Update spam probability for rc using mClass;
(10) Pr(m) = Pr(m)+spam probability for rc;
(11) Pr(m) = Pr(m)/size(m.recipients);
(12) SR(m) = compute spam rank based on Ps(m) and Pr(m);
(13) if SR(m) > ω
(14) classify m as spam;
(15) else if SR(m) < 1 − ω
(16) classify m as legitimate;
(17) else
(18) classify m as mClass;

Algorithm 1: Cluster-based Algorithm for Email Classification.

reduced as more emails are processed, except for users that appear only very sporadically.

A probability of sending/receiving spam messages is assigned to each sender/recipient cluster. We refer to this

measure simply as the cluster spam probability. We calculate the spam probability of a sender/recipient cluster as

the average spam probability of its elements, which, in turn, is estimated using the frequency of spams sent/received

by each of them in the past. Therefore, the cluster-based algorithm uses the result of the email classification

performed by the auxiliary algorithm on each arriving email m (mClass in Algorithm 1) to continuously update

cluster spam probabilities.

Let us define the probability of an email message m being sent by a spammer, Ps(m), as the spam probability

of its sender’s cluster. Similarly, let the probability of an email m being addressed to users that receive spam,

Pr(m), as the average spam probability of all of its recipients’ clusters. The cluster-based algorithm uses Ps(m)

and Pr(m) to compute a number that expresses the chance of email m being spam. We call this number the spam

rank of email m, denoted by SR(m). The idea is that emails with large values of Ps(m) and Pr(m) should have

high spam ranks and thus should be classified as spam messages. Similarly, emails with small values of Ps(m)

and Pr(m) should receive low spam rank and be classified as legitimate email (see Section 6.4.2 for experimental

support of this hypothesis).

Figure 6.3 shows a graphical representation of the computation of the spam rank for a message. We first

normalize the probabilities Ps(m) and Pr(m) by a factor of
√

2, so that the diagonal of the square region defined in

the bi-dimensional space be sized as 1 (see Figure 6.3-left and equation 6.5). Each email m can be represented as a
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Figure 6.3: Spam Rank Computation and Email Classification for the Cluster-based Algorithm.

point in this square. The spam rank of m, SR(m), is then defined as the length of the segment starting at the origin

(0,0) and ending at the projection of m on the diagonal of the square (see Figure 6.3-right). With these definitions

the spam rank varies between 0 and 1.

SR(m) =
|〈Pr(m), Ps(m)〉| cos θ√

2
, (6.5)

where θ is angle between the vector 〈Pr(m), Ps(m)〉 and the vector 〈1, 1〉, |〈Pr(m), Ps(m)〉| means the norm of

the vector and
√

2 is a normalization factor in order to obtain an SR(m) ≤ 1.

The spam rank SR(m) is then used to classify m as follows: if it is greater than a given threshold ω, the

email is classified as spam; if it is smaller than 1 − ω, it is classified as legitimate email. Otherwise, we can not

precisely classify the message, and we rely on the initial classification provided by the auxiliary detection algorithm.

The parameter ω can be tuned to determine the precision of our classification. Graphically, emails are classified

according to the marked regions shown in Figure 6.3-left. The two identical triangles represent the regions where

our algorithm is able to classify emails as either spam (upper right) or legitimate email (lower left).

6.3.2 Communication-based algorithm

The algorithm, in Algorithm 2, works similarly to the cluster-based algorithm. The threshold τ is used to separate

sender and recipients of emails in clusters that are then used to classify the messages.

The difference between the approaches is the way we compute the spam rank of a message. While the cluster-

based algorithm uses aggregated information about the clusters, the communication-based approach uses informa-

tion of the exchange of messages between clusters. This algorithm tries achieve more accuracy by exploiting the
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(1) foreach arriving message m
(2) mClass =classification of m by auxiliary detection method;
(3) sc =find cluster for m.sender;
(4) Update spam probability for sc using mClass;
(5) SR(m) = 0;
(6) foreach recipient r ∈ m.recipients
(7) rc =find cluster for r;
(8) Update spam probability for rc using mClass;
(9) SR(m) = SR(m)+ probability of sc and rc exchange a spam;
(10) SR(m) = SR(m)/size(m.recipients)
(11) if SR(m) > ω
(12) classify m as spam;
(13) else if SR(m) < 1 − ω
(14) classify m as legitimate;
(15) else
(16) classify m as mClass;

Algorithm 2: Communication-based Algorithm for Email Classification.

facades of each cluster’s relationships with others. As can be seen from Algorithm 2, the spam rank of a message in

this case is computed as the average probability of the sender cluster exchanging a spam message with the cluster

of their recipients. The parameter ω is still used in order to determine the final classification of the message.

6.4 Experimental results

In this section we describe the experimental results. Section 6.4.1 presents results obtained by our algorithms using

actual data collected from an SMTP server. Results derived from synthetic workloads generated to evaluate the

general properties of our approaches are presented in Section 6.4.2. Finally, Section 6.4.3 discusses the use of a

weighted representation for email users as opposed to the binary representation showed in Section 6.2.

6.4.1 Actual workload

Our email workload consists of anonymized SMTP logs of incoming emails to a large university, with around

22000 students, in Brazil. The logs are collected at the university central Internet email server of the. This server

handles all emails coming from the outside addressed to the vast majority of students, faculty and staff who have

email addresses under the major university domain name.

The central email server runs the Exim email software [75], the AMaViS virus scanner [76] and the Trendmicro

Vscan anti-virus tool [77]. It also runs a set of pre-acceptance spam filters, including local black listing and local

heuristics for detecting suspicious senders. These filters block on average 50% of all daily SMTP connection
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Figure 6.4: Central Email Server Architecture.

arrivals. The server also runs SpamAssassin [51], see Section 4.2.1 in Chapter 4 for more information about it, on

all email messages that are accepted.

We analyze an eight-day log, between 01/19/2004 to 01/26/2004, collected by the AMaViS software at the

central email server, during the university’s academic year. For each email that is accepted by the server the

logs register the following: the arrival time, the message size, the sender email address, a list of recipient email

addresses, flags indicating whether the email was classified as spam or detected to be infected with a virus and its

content in these cases. We also have the full body of the messages that were classified as spam by SpamAssassin.

Figure 6.4 shows the overall data collection architecture at the central email server.

Emails that are flagged with virus or addressed to recipients in a domain name outside the university, for which

the central email server is a published relay, are not included in our analysis. These emails correspond to only 0.8%

of all logged data. Table 6.1 summarizes our workload.

Measure Non-Spam Spam Aggregate
# of emails 191,417 173,584 365,001
Size of emails 11.3 GB 1.2 GB 12.5 GB
# of distinct senders 12,338 19,567 27,734
# of distinct recipients 22,762 27,926 38,875

Table 6.1: Summary of the Workload.

Note that the central server does not perform any test on the existence of the recipient addresses of the accepted

emails. Such tests are performed by the local servers. Thus, some of the recipient email addresses in our logs may

not actually exist. These recipient addresses could be result of honest mistakes or the consequence of dictionary

attacks. A dictionary attack is a spamming technique where spammers submit thousands or millions of email

messages with random potential addresses, such as joe@domain.com, john@domain.com, etc.
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Figure 6.5: Number of Email User Clusters and Beta CV vs. τ .

By visually inspecting the fraction of the list of senders user names 2 of spam messages in our workload, we

found that a large number of them corresponded to a seemingly random sequence of characters, suggesting that

spammers tend to change user names as an evasion technique. Therefore, for the experiments presented below

we identified the sender of a message by his/her domain while recipients were identified by their full addresses,

including both domain and user name.

6.4.1.1 Classification results

The number and quality of the clusters generated through our similarity measure are the direct result of the chosen

value for the threshold τ (see Section 6.3). In order to determine the best parameter value the simulation was

executed several times for varying τ . The most appropriate value for τ is the same for both algorithms, due to the

fact that they use the same clustering scheme.

βCV =
intraClustersCV

interClustersCV

(6.6)

Figure 6.5 shows how the beta CV (Coefficient of Variation) for the clusters and the number of clusters vs.

τ . Beta CV denotes the ratio of intra CV over the inter CV for the clusters, see equation 6.6, whereas the intra

CV measures the coefficient of variation for the similarities intra-cluster, the inter CV measures the coefficient

of variation for similarities between different clusters. Thus, beta CV is a measure of the quality of the clusters

generated. The more stable the beta CV the better quality in terms of the grouping is obtained [74]. There is one

2The part before @ in email addresses.
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Figure 6.6: Spam Senders Identification Stabilization

clear point of stability in the curve of Figure 6.5-b at τ = 0.5. Moreover, the value of beta CV also stabilize at

τ = 0.5 (Figure 6.5-a). This is the value we adopt for the remaining of the chapter.

Our algorithms rely on three hypothesis. First, contact lists of email users provide an effective mean for iden-

tifying them. Second, for the cluster-based algorithm, messages can be more accurately classified as spam or not

based on the probabilities of sending/receiving spams of the cluster that their sender/recipients belong to. Finally,

for the communication-based algorithm, we hypothesize that historical information about communication between

a sender and a recipient cluster can be used to detect spam.

In order to show that contact lists provide an effective means of user identification, we analyze how sender

/recipient vectorial representations change over time, as new messages arrive in the system. In this analysis, we

consider a warm-up period containing a certain fraction of the messages, during which sender/recipients are up-

dated. We define ~si,j as the vectorial representation of sender i at a point in time when it had sent j% of its messages

(j is larger than the warm-up period). We use the similarity between the representations of sender i in two points

in time, spaced by a certain factor t of messages sent, as a measure of how stable the sender identification is over

that period. We then analyze how this similarity, given by cos(~si,j , ~si,j+t) evolves as the step t increases. Fig-

ure 6.6-a shows average similarity measures for the senders in the spam traffic, varying the step from 1% to 100%,

for different warm-up periods. Figure 6.6-b shows, for each average, the corresponding coefficient of variation

(CV). Note that, as expected, when there is no warm-up period (“No Warming"), fluctuations in the early messages

dominate, and as a consequence stabilization is not reached by the end of our workload. In other words, a large

set of messages would be required for stabilization to be reached. As the warm-up period increases, stabilization

is reached with a smaller number of messages. In particular, when we consider only the last 25% of the messages
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Figure 6.7: Number of Spam Messages by Varying Message Spam Probabilities for Different Bin Sizes.

for each sender (“Warming of 75%"), sender representation remains, on average, very stable with CV approaching

zero. Similar patterns were observed for legitimate email senders as well as legitimate and spam recipients.

Next, we investigate the second hypothesis. Figure 6.7 shows the fraction of spam messages in our workload

for different values of Ps(m) and Pr(m) grouped based on a discretization of the full space represented in the plot.

This space is subdivided into smaller squares of the same size called bins, the darker the gray scale the greater the

number of spams in each bin. Clearly, spam and legitimate messages are located on the top-right and bottom-left

regions of the spectrum as we have hypothesized in Section 6.3. There is, however, an intermediate region in the

middle where we cannot satisfactorily determine the classification. This is why it becomes necessary to vary ω.

One should adjust ω based on the level of confidence it has on the auxiliary algorithm.

Figure 6.7 shows that messages addressed to recipients that have high Pr(m) tend to be spam more frequently

than messages with the same value of Ps(m). Analogously, messages with low Ps(m) have higher probability of

being legitimate messages.

The third hypothesis is that we are able to classify messages based on the previous patterns of communication

between their sender and recipients’ clusters. Figure 6.8 shows the probability of a message being spam as a

function of its spam rank computed using the communication-based algorithm (see Algorithm 2). The plot clearly

shows that there is a strong correlation between the chance of a message being spam and the communication

between its sender and recipient clusters.

Both of our algorithms make use of an auxiliary spam detection algorithm, such as SpamAssassin. Therefore,

we need to evaluate how frequently we repeat the same classification of that algorithm. Figure 6.9 shows the the

percentage of messages that received the same classification and the total number of classified messages in our
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Figure 6.8: Probability of a Message Being Spam as A Function of its Communication-based Spam Rank.

simulation by varying ω, considering only messages classified by the auxiliary as legitimate (Figure 6.9 a-c) and

spam (Figure 6.9 b-d). The difference between these curves is the set of messages that were classified differently

from the original classification.

It can be observed from the plots that the communication-based (Figure 6.9 c-d) algorithm is able to classify

more messages than the cluster-based (Figure 6.9 a-b) one. We conjecture the reason is that each cluster has a set

of properties that are explicitly recognized by the communication-based approach and not by the cluster-based one,

which instead needs to rely more often on the classification provided by the auxiliary algorithm.

In another experiment, we simulated a different algorithm that also makes use of historical information provided

by an auxiliary spam detector described in [3]. The main differences are that it uses historical information of each

sender separately and it does not use recipients information. We built a simulator for this algorithm and executed

it against our data set. The results show that it was able to classify 85.11% of the messages in accordance to the

auxiliary algorithm, while our approach classified more than 95% with ω = 0.85. It is important to note that our

algorithms can be tuned by the proper set of threshold ω. The higher the parameter ω the more our algorithms

classify in accordance with the auxiliary classification, but less messages are classified.

We believe that the differences between the original classification and the classification found for high ω values

using both algorithms are generally due to misclassification by the auxiliary algorithm. In our data set we have

access to the full body of the messages that were originally classified as spam. Therefore, we can evaluate the

fraction of the total amount of false positives (messages that the auxiliary algorithm classified as spam and that one

of our algorithms classify as legitimate) that were generated by the auxiliary algorithm. This is important so that
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Figure 6.9: Messages Classified in Accordance With the Auxiliary Algorithm and the Total Number of Messages
Classified by Varying ω.

the common belief that the cost of false positives is much higher than the cost of false negatives [8].

Each of the possible false positives (for ω = 0.85, resulting in 1,850 emails) were manually evaluated by three

people so as to determine whether such a message was indeed spam. Figure 6.10 shows the percentage of messages

correctly classified by our two algorithms and by the auxiliary one in this subset. This graphs show the evolution of

the success rate, after a warm-up phase of 50% of the messages, as messages were processed and more information

about email users was gathered. Both algorithms outperform the auxiliary since they generate less false positives.

Note that the cluster-based algorithm is clearly the best option until nearly 75% of the data is included, showing

that it needs less training examples than the communication-based algorithm. After that, the two algorithms have a

similar behavior.
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Figure 6.10: Classification Effectiveness.

Due to the cost of manually checking messages we can not afford to classify all of the messages classified as

spam by the auxiliary algorithm. However, we evaluate a randomly chosen fraction of the messages classified as

spam by the auxiliary and by our algorithms, which represents the total data with a confidence level of 99% and a

confidence interval of 3% [65]. With ω = 0.85, we found that 15% and 37% of the total messages are in this group

for the cluster-based and communication-based algorithms, respectively. Moreover, we analyzed manually a sample

of 3.50% (1,708 emails) and 1.52% (1,821 emails) for the cluster-based and communication-based algorithms,

respectively. We found that 99.9% and 99.5% of the analyzed messages were correctly classified using cluster-

based and communication-based algorithms, respectively, showing the high precision of both proposed algorithms.

Finally, we emphasize that we can not determine the legitimate classified messages classification quality, since

we do not have access to the full body of those messages.

6.4.2 Synthetic workload

In this section we will use a set of synthetic data to evaluate our approach. In Section 6.4.1.1 we showed that our

approach is able to correct false positives generated by the auxiliary algorithm but the synthetic data used in this

section allows us to better estimate the resilience of our approach against errors of the auxiliary algorithm and also

against email address forging.

The synthetic workload generator developed does not make use of most of the characteristics of email traffic

as presented in some recent papers [9, 10, 5, 4, 2]. Instead, we are interested in creating a well controlled data

set where senders and recipients can be clustered so that our algorithms can be evaluated under different spammer
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Parameter Interpretation
Spam senders fraction Used to tune the number of spammers that are in the workload. There-

fore, this parameter is indirectly responsible by the total number of spam
messages generated.

Legitimate senders fraction Used to tune the number of legitimate senders in the workload. Similar
to the spam fraction, this parameter is indirectly responsible by the total
number of legitimate messages generated.

Mixed-behavior senders fraction Used to determine the percentage of senders in the workload that send both
spams and legitimate messages. For each sender that falls in the mixed
class, a probability of it sending a spam is uniformly selected.

# senders The total number of senders in the workload.
# recipients Total number of recipients in the workload.
# distribution lists Each sender is assigned to a specific distribution list that represents the

users to which they send messages. This parameter regulates the amount
of distribution lists that are generated, in order to have a clustering of the
senders this parameter must be lower than # senders.

Distribution list size Size of each distribution list.
# messages Total number of messages generated.
Error rate This parameter is used to tune the quality of the auxiliary algorithm. If

it is set to 0 it is generated a log stream with 0% of miss-classification,
while a 0.5 value of this parameter means a log stream with 50% of miss-
classification.

Table 6.2: Synthetic Workload Generator Parameters.

strategies, different auxiliary algorithms and amount of misclassifying errors. Table 6.2 summarizes the parameters

considered.

In order to generate the synthetic log stream we first create a set of recipients according to the parameter #

recipients and separate them in # distribution lists. These lists are assigned to senders to distribute their messages.

Each list has the same number of recipients determined by the parameter distribution list size. Recipients are

randomly 3 selected and inserted into the lists. Note that there may be intersections between the distinct lists, this

is an important feature, valuable to evaluate the behavior of our clustering approach.

Each of the distribution lists is then classified as spam, legitimate or mixed according to the probabilities,

denoted spam senders fraction, legitimate senders fraction and mixed-behavior senders fraction parameters. Note

that this doesn’t mean that a recipient will receive only spam or legitimate messages since there may be intersections

between the different lists.

Second, we create a set of senders following the # senders parameter. Similarly to what has been done to

distribution lists, the senders are separated into classes according to spam senders fraction, legitimate senders

fraction and mixed-behavior senders fraction parameters. Each sender is assigned to an specific distribution list

3Hereafter, whenever we mention random in the synthetic workload generator we mean that elements are selected following a uniform

distribution.
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with the same classification.

Finally, we generate the # messages. For each message, we randomly select a sender. Note that, as explained

in Table 6.2, the parameters spam senders fraction and legitimate senders fraction somewhat indirectly determine

the number of messages generated for each class. The only exception is when a sender is a mixed-behavior sender.

These senders have an associated probability of sending spams that is randomly selected from 0 to 1 during its

creation.

The classification for each message is determined by its sender. If it is a spammer every message coming from

that sender is classified as spam, and if it is a legitimate sender each message coming from him is considered

as legitimate. If the sender is a mixed-behavior sender the type of the message is selected based on his proba-

bility of sending spams. After this procedure the message goes through a classification procedure that creates a

misclassification or not, according to the error rate parameter.

Parameter Value
Spam senders fraction (100% - mixed-behavior senders fraction)/2
Legitimate senders fraction (100% - mixed-behavior senders fraction)/2
# senders 2,000
# recipients 3,000
# distribution lists 1,000
Distribution list size 10
# messages 25,200

Table 6.3: Basic Parameters for Workload Generation.

Table 6.3 shows the basic parameter values used in the generation of all synthetic workloads of this chapter.

These parameters were chosen so that the workloads generated resemble the actual workload described in Sec-

tion 6.4.1. The size of the synthetic workloads is approximately 7% of the size of the original workload. We

believe this provides us with a controlled and sound set of workloads to test our algorithms.

Workload type Mixed-behavior fraction Error rate
Well-defined 0% 0 - 1
Mixed 0% - 100% 0.20

Table 6.4: Workload types analyzed.

The parameters we vary in our experiments are the error rate and the mixed-behavior senders fraction. They

allow us to analyze the capability of our algorithm to correct misclassification and the potential effect of email

forging by spammers. In Table 6.4 we show how we vary these parameters to create the two types of synthetic

workloads analyzed here. In one of these types, that we call Well-Defined Workload, the Mixed-behavior senders

i/fraction was set to 0 and the error rate is varied. In the other type, that we call Mixed Workload, we vary the error
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Figure 6.11: Actual Success Rate in Terms of the Success Rate of the Auxiliary Algorithm for the Well-defined
Workload. The Parameter ω is Set to 0.85.

rate and the Mixed-behavior senders fraction parameters. Note that in the latter, the percentage of both spam and

legitimate is (100 - Mixed-behavior senders fraction)%.

6.4.2.1 Classification results

This section presents the results of simulations of our two algorithms and of the sender-based approach algorithm

(see Section 6.4.1.1) using our two types of synthetic workloads. We are interested in testing the resilience of the

algorithms in terms of the error rate of the auxiliary algorithm. Figure 6.11 shows the classification success rate

by varying values of the error rate parameter using the Well-defined workload.

A general conclusion drawn from Figure 6.11, is that both our algorithms perform better than the sender-based

algorithm. This is mostly because of two factors: (i) The sender-based algorithm initially classifies messages as

spam if they don’t have historical information about their senders; (ii) There is a parameter in this algorithm that

is similar to ω in our approach and it is set to 0.5 according to [3]. The reason for the sender-based algorithm

performing better than the auxiliary 4 for error rates higher than 0.5 and worse for lower rates is its pessimistic

assumption of considering each first message from each sender as spam. Also from Figure 6.11, we can see that the

two proposed algorithms have similar behavior. Nevertheless, the communication-based algorithm has performed

slightly better than the cluster-based one.

We were also interested in the resilience of the algorithms in terms of the possibility of users sending both spam

and legitimate messages at the same time. Figure 6.12 shows the results obtained by the three algorithms for the

Mixed workload. Our algorithms are still better than the sender-based and it is clear that if the amount of addresses

that are used both for sending spams and legitimate messages is small our algorithms are still capable of producing

4The success rate for the auxiliary algorithm in Figure 6.11 can be computed as 1 - Error Rate
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Figure 6.12: Actual Success Rate in Terms of the Success Rate of the Auxiliary for the Mixed Workload. The error
rate for this Experiment was Set to 0.20. The Parameter ω is Set to 0.85.

better results than the auxiliary algorithm alone. Besides, the communication-based algorithm is more sensitive to

users sending both spam and legitimate messages at the same time. For the workload described in Section 6.4.1

we have computed the percentage of users that send both spam and legitimate messages is approximately 23%.

Other studies show that if we consider the full address of the user as its identification, this number is approximately

0.94% [9].

6.4.3 Weighted vector representation

One question that arises is whether a weighted vector representation for email users would be better than a binary

representation. In order to answer this question we simulated our two proposed algorithms considering the vector

identification of each user defined as follows.

Let Nr be the number of distinct recipients. We represent sender si as a Nr dimensional vector, ~si, defined in

the space created by the email recipients being considered. The n-th dimension (representing recipient rn) of ~si is

defined as:

~si[n] =











mi,n, if si → rn

0, otherwise
, (6.7)

where mi,n indicates the number of messages that have been sent by si to rn.

Similarly, we define ~ri as an Ns dimensional vector representation for the recipient ri, where Ns is the number

of distinct senders being considered. The n-th dimension of this vector is set to mi,n if recipient ri has received

exactly mi,n emails from sn.

Figure 6.13 shows the variation of beta CV and number of cluster by varying τ while considering the weighted
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Figure 6.13: Number of Email User Clusters and Beta CV vs. τ for the Weighted Representation.

representation for email users. As can be noted, our algorithm is not able to cluster the users as properly in this

scenario as it was able to do in the binary case (see Figure 6.5). We conjecture that this is due to the greater

variability of users’ communication patterns that have been presented in other studies [9].

6.5 Conclusions

In this chapter we propose and evaluate two algorithms to improve spam detection mechanisms based on the struc-

tural similarity between contact lists of email users. The idea is that contact lists are much more stable identifiers of

email users than message contents, sender domain or user names which all can be changed quickly and widely. The

proposed algorithms work in tandem with an auxiliary classifier. We have shown that we can successfully group

spam and legitimate email users into clusters and use them to improve the quality of spam detection.

Specifically we have implemented a simulator based on data collected from the main SMTP server for a large

university that uses SpamAssassin. We have shown that our algorithm can be tuned to produce classifications

similar to those of the original classifier algorithm and that, for a certain set of parameters, it was capable of

correcting false positives.

Moreover, we have also experimented with synthetic workloads. The results show that our algorithms are

able to correct misclassification both when the auxiliary classifies the messages incorrectly and when a single user

identifier is used to send both spam and legitimate email.

Whereas we expect the communication-based approach to have a better performance in the long-term, it is more

sensitive to the quality of the clusters generated or the time period used to train it. On the other hand, the cluster-
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based approach works better for small training data and is less sensitive to the quality of the clusters generated.

The use of weights in the vector representation to cluster email users has been studied to some extent but has

shown worse results than the simple binary approach. We believe this happened because of two facts: the greater

variability in the way legitimate users exchange messages and the simplicity of the clustering algorithm that we use

in our approach.





Chapter 7

Social versus Anti-Social Behavior in Email Traffic

7.1 Introduction

The characterization of email traffic as a complex social network 1 has been the main topic of several recent studies.

To the best of our knowledge, all of these characterizations have dealt with the fact that email traffic represents not

only social interaction, but also other types of relationships between email users with simple strategies. Examples

of such strategies are the restriction of email traffic internal to single organizations [13, 14, 15, 16, 17], restriction

of email users in such a way that only users that participate in two-way communications are considered [15, 17, 16],

elimination of emails users with a high volume of messages [15, 16, 17], and elimination of links connecting email

users that represent a low number of messages exchanged [14].

On the other hand, there has been growing interest in uncovering evidence of antisocial behavior in online

networks. Recent work addresses topics such as uninhibited remarks, hostile flaming, non-conforming behavior,

group polarization, and spurious traffic [18, 19]. Email as a mean of possible mass distribution is particularly

associated with the dissemination of computer viruses as well as spam traffic [20], that flood the Internet with

unwanted messages usually containing commercial propositions or, more recently, a variety of other scams. This

behavior, which we call generically antisocial, displays different characteristics from social relations for which

social networks have been extensively constructed and analyzed.

What is conceptually interesting about this antisocial behavior is that it generates quantitative graph theoret-

ical and dynamical properties that are nontrivial and reflect a certain type of interaction that we quantitatively

characterize and contrast to the general properties of social networks.

1According to Newman, a social network is a set of people or groups of people connected through patterns of social interaction, which can

be represented as nodes and links, respectively, in a graph [12].
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In this chapter it is presented a characterization of relations in email traffic tackling the problem from a distinct

point of view. First, most of the previous restrictions adopted in previous studies are lifted. Second, we consider a

single aggregated email traffic as formed from two different components: a legitimate component that is generated

by legitimate users during their social interaction through email exchange and a non-legitimate component that

is generated by users that use their email addresses to send unsolicited bulk messages generally called spam.

Whereas, the legitimate component of our study dominated by social behavior, the non-legitimate component

posses a behavior that we call "antisocial behavior".

Our key findings are:

• We find a power law degree distribution for all nodes of the four networks analyzed in social and antisocial

traffics. However, the power law model is a better model of the degree distribution in social traffic than in

antisocial traffic.

• We found that users in the antisocial traffic have significant lower CC than in the social traffic, mainly in the

networks that include external users.

• We found uncorrelated neighbor’s degree distributions, for the social and antisocial networks that include

the external users. On the other hand, due to the unusual behavior of sending spams to forged internal users,

in one of our workloads, we found that the internal antisocial network has assortative mixing. Finally, all

internal social networks present positive degree correlation between neighbors.

• We find a power law distribution of community sizes for all defined networks, in the two workloads. Never-

theless, we find that the antisocial communities in the networks that include external users have on average

near 30% more nodes than social communities. Besides, we find that the biggest community in each social

network is almost twice as larger as the corresponding community in the antisocial network, for the two

workloads.

• We find that nodes in social traffic have a significantly greater coefficient of preferential exchange than its

pairs in the antisocial traffic. Moreover, nodes in the antisocial network that includes external users have a

low, but sometimes non zero, coefficient of preferential exchange.

• Finally, the results show that social email traffic has lower entropy (higher structural information) than an-

tisocial traffic for both work and non-work periods. The larger the time interval under analysis, the more

noticeable this difference becomes, thus capturing longer patterns of communication and the presence of

time correlations.
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Therefore, our characterization reveals significant differences between the social and antisocial traffics. These

differences are possibly due to the inherent distinct relationship nature of the email senders and their connections

with email recipients in each group. Whereas, a legitimate email transmission is the result of a bilateral relationship,

typically initiated by a human being, driven by some social relationship, a spam transmission is basically a unilateral

action, typically performed by automatic tools and driven by the spammers’ antisocial will to reach as many targets

as possible.

The remaining of this chapter is organized as follows. Our characterization methodology and the email work-

loads are described in Sections 7.2 and 7.3, respectively. Section 7.4 analyzes the structural characteristics of the

defined networks. The dynamical characteristics of the social and antisocial networks are studied in Section 7.5.

Finally, in Section 7.6 we present our conclusions.

7.2 Methodology

In order to characterize the social and antisocial behaviors and show how they reflect in the structural and dynamical

properties of email networks we define two types of graphs 2: the user graph and the aggregated graph. In both

graphs we can distinguish two groups of nodes: the first composed of users that are under the domain of the

workload, see Section 7.3, under analysis and, another group composed of outside users.

The vertices of the user graph are email senders and recipients. An email sent by A to receiver B results in

an edge between A and B. The aggregated graph is a graph with only two vertices, one of them aggregating the

internal to the domain recipients and the other one aggregating external to the domain senders.

The unlabeled edges of the user graphs can be directed or undirected, while the edges of the aggregated graph

are directed and labeled with the flow of messages between the connected nodes.

The user graph is used for identifying the structural characteristics of the networks and in the analysis of the

dynamical properties of the communication between pairs of users. On the other hand, the study of the dynamics

of the incoming flow of messages is done by using the aggregated graph.

We constructed four user graphs representing different email networks that emerge from the two workloads

described in Section 7.3. A social network (SN) is built from the legitimate messages exchanged between all

the users, including those external users that send/receive emails to/from internal users. Similarly, an antisocial

network (AN) is built from the spam messages exchanged between all users. An internal social network (ISN) is

built considering internal users exclusively involved in legitimate email communication. Finally, the internal spam

2In Chapter 3 we present the definition of graph and a set structural graph properties we analyze in this Chapter
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traffic 3 is used to build an internal antisocial network (IAN). In general these networks are undirected, unless

otherwise noted.

We also note that messages exchanged through mailing lists, which also involve bulk email traffic, may exhibit

antisocial characteristics. As in [60], aiming at minimizing the impact of such communication patterns on our

analysis, we remove from our internal social network users who exchange emails with 40 or more other users.

To study the incoming flow of messages we constructed two aggregated graphs. The first uses only outside

domains, legitimate messages income, and the other one with the incoming flow of spam messages.

Finally, in order to extract the communities of our networks we define, for each network, a similarity graph. A

similarity graph is a complete graph 4, where users are the vertices and each pair of vertices is linked by a labeled

edge. The edge linking two users is labeled with the number of common neighbors the linked users have. We

constructed one similarity graph for each network in each workload.

7.3 Experimental data analysis

Log Period Social Antisocial
#emails (#users) #emails (#users)

1st-log 11/18/04 to 12/31/04 292173 (107016) 270491 (178360)
2nd-log 05/16/05 to 08/23/05 857596 (285005) 361955 (149391)

Table 7.1: Workload Summary

Our email workload consists of two anonymized SMTP logs of emails from a department, with at about 1,400

users including staff, and administrators, of a large university in Brazil. The logs were collected at the central

Internet email server of the department. The server handles all emails exchanged inside the department as well as

all the emails exchanged between external and internal department users. Statistical characteristics of the workloads

are in agreement with previous email traffic analysis [4, 10, 3].

Table 7.1 summarizes the data sets. The logs were collected from a department that runs its own set of pre-

acceptance spam filters, including local black lists, local heuristics and, more recently, a GreyList scheme [46, 29,

3]. Besides, for all external incoming emails the server runs a public spam filter, SpamAssassin, see Section 4.2.1

in Chapter 4 for more information about it, which classifies the emails as spam or not [51].

We have 48% and 30% of all emails classified as spam in the first and second logs, respectively. The difference

in the fraction of spams in the logs is due to the adoption of distinct pre-acceptance schemes of spam detection

by the department between the two log collections. Note yet that the collection time of the 2nd-log is greater

3Originating from and addressed to an internal user. These are usually the result of forged identifiers.
4A complete graph is a graph where all pair of nodes are connected by a link.
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than the collection time of the 1st-log by, at about, half an year, as can be seen in Table 7.1. Therefore, these

logs will allow us to show that the structural and dynamical properties of the social and antisocial networks are

somehow stable over time. Furthermore, as the rules of the pre and pos-acceptance spam detection used in the logs

are independently defined, we intended to show that the properties studied here are more related to users behavior

aspects than to the particular characteristics of the log.

Network - #Vertices (#Undirected Edges)
Workload Internal Social Social Internal Antisocial Antisocial
1st-log 2211 (12630) 107016 (176454) 1274 (2607) 178360 (480226)
2nd-log 3147 (19450) 285005 (383601) 1129 (3542) 149391 (368718)

Table 7.2: Networks summary

The construction of the networks is subject to at least two important constraints. The first is that our knowledge

of the external users behavior is limited to their contacts inside our log domains, i.e., we do not have emails

exchanged among external users. Second, as our antisocial traffic is composed of spam emails, we deal with a large

number of forged user names. Particularly, we get access to the user names of the internal antisocial traffic of the

1st-log and find out that almost all users are not real users.

Table 7.2 shows the basic statistics of the constructed networks. Due to the use of forged user names by

spammers the size of the internal antisocial networks is not negligible. Moreover, they have very distinct structural

properties as we show in the next Sections.

7.4 Network structural characteristics

In this Section we study the structural characteristics, refer to the Chapter 3 for the formal definition of the met-

rics, of the four email networks defined. In order to show that the differences in the social and antisocial use of

emails reflect in very distinct structural properties of the networks, we study a set of graph properties commonly

used to distinguish social networks from other complex networks in the literature. Section 7.4.1 presents results

for the degree distribution of the networks. Results for the distribution of clustering coefficient are presented in

Section 7.4.2. In Section 7.4.3 is analyzed the size of the connected component of the networks. Results for the

correlation between neighbor node degrees of the networks are presented in Section 7.4.4. Finally, Section 7.4.5

presents a study of the distribution of the social and antisocial community sizes in our workloads.
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Figure 7.1: Distribution of node degree - a-d 1st-log and e-h 2nd-log

Network - α (R2)
Workload Internal Social Social Internal Antisocial Antisocial
1st-log 1.190 (0.964) 1.843 (0.933) 1.791 (0.831) 2.058 (0.910)
2nd-log 1.440 (0.957) 1.899 (0.935) 1.374 (0.861) 1.726 (0.918)

Table 7.3: Parameters of the degree distribution models

7.4.1 Degree distribution

We find power law degree distributions for the undirected versions of our networks, as in a diversity of previous

studies [80, 57, 13]. The exponents (α) and error estimations R2 are shown in table 7.3. Note that, as expected,

all the social networks are, in the two logs, very well modeled by a power law distribution with R2 > 0.93.

On the other hand, the internal antisocial networks are not well modeled by a scale-free distribution with R2 <

0.87. Moreover, the proposed antisocial network fits are not as good as the proposed models for any of the social

networks.

Figures 7.1 a-h show the log-log plots of the degree distribution of the internal social, internal antisocial, social

and antisocial networks, respectively, for the two logs. The asymptotic decay of the head and tail of the internal

antisocial degree distribution plots, Figures 7.1-b and 7.1-f, have a strong influence in the weakness of the internal

antisocial proposed models. Note that, these results are in accordance with results showed in Chapter 4.
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Figure 7.2: Distribution of the clustering coefficient

In spite of these results, the degree distribution is a weak discriminator, mainly for the networks that include

external users, between social and antisocial behavior. Moreover, it is clearly affected by the incomplete knowledge

of part of the networks, which happens whenever external users are considered. Such lack of knowledge clearly

leads to an underestimation of the degree of external users, which in turn results in the incorrect shifting of these

users to lower degree.

7.4.2 Clustering coefficient

Network - CC (σ2)
Workload Internal Social Social Internal Antisocial Antisocial
1st-log 0.226 (0.073) 0.137 (0.091) 0.052 (0.023) 0.026 (0.014)
2nd-log 0.166 (0.059) 0.163 (0.109) 0.244 (0.064) 0.042 (0.023)

Table 7.4: Mean Clustering Coefficient of the Networks

According to Newman and Park, a high clustering coefficient is a theoretical graph quantity typical of social

networks [80, 57]. Therefore, we investigate whether this structural property of our undirected email user networks

can distinguish the social imprint of legitimate email communication from the antisocial characteristics of spam.

The CC of a node n, denoted Cn, is defined as the normalized probability of any two of its neighbors being

neighbors themselves. This metric is associated to the number of triangles that contain a node n. For an undirected

graph, the maximum number of triangles connecting the Nn neighbors of n is Nn × (Nn − 1)/2. Thus, the CC

measures the ratio between actual triangles and their maximum value.

Table 7.4 shows the mean and variance of CC for all the networks in the two logs. Note that, the mean CC of

the internal social networks is higher and comparable with that found by other authors [80]. On the other hand,

as generally expected, the mean CC of the antisocial networks that include external users is almost zero, in the

two logs. Nevertheless, the spammers unusual behavior of sending messages to forged internal user names makes

the mean CC of the internal antisocial network in the 2nd-log be higher than the CC of its internal social network.
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Moreover, note that the internal antisocial network in the 2nd-log is 13% smaller, in number of users, but 36%

greater, in number of directed links, than its pair in the 1st-log.

Figure 7.2 a-d shows the distribution of the CC of nodes of all networks, in the two workloads. As expected, in

the 1st-log, Figure 7.2 a and b, users of the antisocial traffic have significantly lower CC than in the social traffic.

Similarly, in the 2nd-log, Figure 7.2 c and d users in the social network have greater CC than in the antisocial

network. However, also in the 2nd-log, against our expectations, users of the internal antisocial network have

greater CC than users of the internal social network.

On the other hand, all four networks in the two logs contain a significant fraction of their nodes with zero

clustering coefficient, but this proportion is much higher for graphs that include external users and/or antisocial

components. Specifically, 61% and 68% of all nodes in the social networks of the 1st and 2nd logs have CC = 0,

respectively. On the other side, this becomes more than 81% in the 1st-log and more than 78% in the 2nd-log for

the nodes in the antisocial component.

The internal social network, in the 1st-log, has only 29% of its nodes with CC = 0 compared to 73% for the

internal antisocial network. Due to the spammers behavior of sending emails to forged internal users, observed in

the 2nd-log, we found that, while 23% of the internal antisocial users have CC = 0, in the internal social network

43% of the users have zero clustering coefficient.

These results show that there are clear differences on the transitivity of the social and antisocial components

of our email networks, but also that low clustering is not a sufficient condition for a node to be associated with

antisocial behavior. Similarly to our analysis of degree, these results also indicate that the separation of the two

traffics is important in order to generate a truly social component. Failure to do so will result in underestimation of

the average social network transitivity.

7.4.3 Connected components

Some recent studies [6] have analyzed graphical metrics of the giant connected component of email graphs. A

connected component is a subset of the vertices of a graph, such that one node can be reached from any other node

following the set edges between them [66].

We found, for undirected versions of our networks that in all the social networks there is a giant connected

component with more than 92% of the vertices. On the other hand, the antisocial networks also have a giant

connected component, in this case with more than 88% of the network vertices. We conjecture that, in the social

networks, the giant connected component is mainly due to the exchange of messages between users. Otherwise,

the great overlap of the distribution lists of the spammers as showed in Chapter 4, seem to be responsible for the

giant connected component found in the antisocial networks.
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Figure 7.3: Variations of the neighbors degree with degree k of a node - a-d 1st-log and e-h 2nd-log

The giant connected components shows no clear difference between social and antisocial network components.

Therefore, it is not a good measure to use in distinguishing the truly antisocial/social component.

7.4.4 Assortative mixing

A social network is usually characterized by a positive degree correlation between neighbors [88, 72, 89, 57]. On

the other hand, non-social networks, generally, have negative degree correlation as shown in [89]. Here we analyze

the nature of degree correlations between neighbors in undirected versions of our email networks, by looking at

Knn(k) (the mean degree of the neighbors of nodes with degree k as defined in [72]).

The Knn(k) is an increasing function of k when the network is said to show assortative mixing. Otherwise, it

is a decreasing function when the network shows dis-assortative mixing [72]).

The common use of email easily creates imbalances of degree between the senders and recipients of messages,

due to the easy and cost less way an email can be addressed to number of recipients, this tends to generate negative

correlation between degree of neighbors of at least some legitimate users. Particularly, spam senders invariably

follow the strategy of increasing their degree indiscriminately and maximally, and consequently reach, on average,

a population of senders with much lower degree, which are statistically much more abundant for a scale free degree

distribution.

Figures 7.3 a-h show the Knn as a function of k for our four networks, of the 1st a-d and e-h 2nd logs,

respectively.
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The social and antisocial networks shows dis-assortative mixing, as seen in Figures 7.3 a and b for the 1st-log

and e and f for the 2nd-log. As expected, the antisocial networks have a stronger disassortativity when compared

with social networks, in the two traffics. The disassortativity of the antisocial networks is due, we suppose, to the

strategy of spammers of trying indiscriminately to reach as much recipients as possible.

In order to understand the unexpected disassortativity of the social networks, we calculate, the statistical cor-

relation between external sender degrees and its corresponding internal recipient degrees and find C = −0.103

and C = −0.153, in the 1st and 2nd logs, respectively. These results show that the nature of the dis-assortative

mixing of the social networks is a result of the relationship between these groups of users. Therefore, in the social

network, we suppose, the negative degree correlation is the result of the common subscription by many users to

external distribution lists, such as those related to news, promotions, etc 5.

On the other hand, the internal social networks of the two logs, as expected and in accordance to previous

analysis of other social networks [72], have a clearly positive assortative mixing, as it can be seen in Figures 7.3

c and g. Besides, the internal antisocial network, for the 2nd-log, as expected, Figure 7.3-h, presents a clear

disassortativity. In another way, against our expectations, the internal antisocial network of the 1st-log presents a

non negligible positive correlation (C = 0.38, for the points in the Figure 7.3-d) between the neighbors degrees.

We conjecture, again, it’s due to the behavior of spammers of exchanging spam messages among forged internal

users.

In spite of these properties, the antisocial network built from the exchange of spam messages has definite prop-

erties, showing negligible transitivity and strong dis-assortative mixing. Moreover, our analysis shows, in contrast

to previous expectations [57], that social email networks involving users that are external to the departmental do-

main may present a negative degree correlation, presumably reflecting the technological properties of email as a

mean of distribution of legitimate information, rather than very asymmetric but reciprocal social exchanges.

7.4.5 Community sizes

Recent studies [57, 15, 14, 17, 90] suggest that social networks can be largely understood in terms of the or-

ganization of nodes into communities, refer to Chapter 3 for a formal definition of community, a feature that can

explain, to some extent, the observed values for the clustering coefficient (as seen in Section 7.4.2), degree correla-

tions (as seen in Section 7.4.4) and size of the connected component (as seen in Section 7.4.3). This observation has

5Recall that, unlike the internal social network, node degrees in our entire social network are not constrained, and thus, may represent

distribution lists.
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Figure 7.4: Distribution of cluster size- 1st-log a-d and e-h 2nd-log

Network - α (R2)
Workload Internal Social Social Internal. Antisocial Antisocial
1st-log 1.355 (0.959) 1.335 (0.968) 1.370 (0.900) 1.551 (0.951)
2nd-log 1.183 (0.986) 1.407 (0.963) 1.230 (0.961) 1.259 (0.972)

Table 7.5: Parameters of the cluster size distribution models

indeed led to the interesting suggestion that email networks can be used to infer informal communities of practice

within organizations [14], as well as their hierarchical structure [15, 14, 16, 17], features that can in principle be

useful for the efficient management of human collective behavior and for learning about information flow in the

organizations [59].

One of the key characteristics of social communities studied by various of previous works is the distribution of

the community size [17, 15, 16, 91]. The size of a community is defined as the number of users or nodes of our

networks inside it. In this Section we present a study of the size of the communities extracted from our networks.

Using the defined similarity graphs, differently from [17, 15, 16, 91] that used the clustering algorithm pro-

posed by Girvan and Newman in [73], we applied a traditional hierarchical clustering algorithm, called Minimum

Spanning Tree [74], to extract the communities.

Given a set of N nodes to be clustered, and an NxN similarity (the similarity between two nodes is defined in

Section 7.2) matrix, the basic process of hierarchical clustering used is this:

1. Start by assigning each node its own cluster, so that if you have N nodes, you now have N clusters, each

containing just one node.
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2. Let the distances between the clusters equal the distances between the nodes they contain.

3. Find the closest (or most similar) pair of clusters and merge them into a single cluster, so that now you have

one cluster less.

4. Compute distances between the new cluster and each of the old clusters (as the number common neighbors

the users inside the new cluster and the users inside each old cluster have).

5. Repeat steps 1 to 4 until the happening of any of the previously chosen stop condition.

In [74] is proposed a method to stop the process of clusterings based on the quality of the clusters generated.

The process consists of calculating the statistical CV of the distances (similarities) inter-clusters and intra-clusters

at the end of each iteration. Note that, in order to have more knit tightly clusters we must minimize the intra-cluster

distances CV and, as well as, maximize the inter-cluster’s CV. The authors of [74] propose to use the number

intra−clustersCV/inter−clustersCV as a parameter, when this number stabilizes, i. e., when the aggregation

of a node to a cluster do not mean significant change in this ratio, we are with the "best"possible number of

communities.

Figures 7.4 a-h show the log-log plots of the frequency distribution function of the size of the communities

extracted from each defined network, for the two logs, respectively. The proposed models are represented by the

line in the plots.

Although, we use a clustering algorithm distinct from those used in [17, 15, 16, 91], our results are consistent

with theirs. In accordance with their results, we found a power law distribution for the sizes of the social commu-

nities. Moreover, Figures 7.4 a-h show, clearly, that community sizes in the social traffic are more tightly modeled

by a power law than communities sizes in the antisocial traffic.

We also find that unitary communities are much more probable in social networks (P (X = 1) > 0.60) than in

antisocial networks (P (X = 1) < 0.50). Moreover, the mean size of antisocial communities is 29% greater than the

mean size of social communities. These results suggest that sharing contact lists is a behavior more characteristic

of antisocial users than of the social users.

On the other hand, while the greatest community in the antisocial networks are 979 and 1412 in the two logs,

in the social networks we found 1578 and 2897, respectively, showing that social relationships result in larger

community sizes when compared with antisocial relationships.

These results also indicate that the study of the communities of interest without the separation of the two traffics

will result in wrong estimation of communities sizes.

So far we have examined metrics related to the topological skeleton of email networks and the dynamical

exchange of emails between peers in the networks, that revealed differences between social and antisocial behavior.
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These differences suggest mechanisms to differentiate legitimate human collaboration from opportunistic behavior

on the basis of network structure, and have indeed been proposed as the basis for spam detection algorithms [11,

6]. However, much remains unsatisfactory about the transitivity and assortative mixing measures as means of

characterizing patterns of human communication.

7.5 Graph dynamical characteristics

In this Section we study the dynamical characteristics of the communication in our networks. We expect to find

out very different patterns of communications, in order to show the strong differences in the social and antisocial

uses of email. By one side, social relationships are driven by the reciprocity in the communication as shown in

[60, 9] and have a clear pattern of ask/answer as shown by [60, 61]. On the other side, antisocial communication,

represented here by spam traffic, is characterized by the unilaterality and automation of the communication [9, 10].

In the next Section 7.5.1 we study the dynamics of communication links between senders and recipients directly,

without reference to third parties. In the last Section 7.5.2 we consider means for quantifying the differences in

the incoming flow of spam and legitimate messages, in order to do this we use the aggregated graphs as defined in

Section 7.2.

7.5.1 Preferential exchange

Network - 〈E〉 (σ2)
Workload Internal Social Social Internal Antisocial Antisocial
1st-log 0.258 (0.140) 0.033 (0.025) 0.063 (0.040) 0.0001 (0.0001)
2nd-log 0.158 (0.107) 0.023 (0.017) 0.160 (0.075) 0.0002 (0.0001)

Table 7.6: Coefficient of Preferential Exchange in the Networks

Here we investigate the simplest measure of communication between two users: reciprocity. We build a simple

coefficient of preferential exchange Ei for user i as:

Ei = 1 −
∣

∣

∣

∣

∣

∑

j∈Ci
[k(j → i) − k(i → j)]

∑

j∈Ci
[k(j → i) + k(i → j)]

∣

∣

∣

∣

∣

(7.1)

where Ci is the set of all users that have contact with user i within a given time period, and k(j → i) is the

number of messages sent by user j to i. Therefore, 0 ≤ Ei ≤ 1, with the lower end corresponding to no message

replied, and the upper end with every message obtaining a response. This can be further averaged over all users to

generate network averages 〈E〉.
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Table 7.6 shows the mean 〈E〉 for each network of the two logs. Due to the partial knowledge of the complete

social relations of the external senders, the internal social networks have coefficient of preferential exchange 5 times

greater than the social networks that include external users in the two cases. Therefore, antisocial networks are

naturally associated with small (but sometimes non-zero!) reciprocity, whereas social networks, in particular those

containing legitimate users whose behavior we know most completely, are associated with the highest reciprocity

in the two logs. Surprisingly, the internal antisocial networks have a higher 〈E〉 than the internal social network in

the 2nd-log and a non negligible value in 1st-log. This is due, we conjecture, to the spammers behavior of sending

spam to their own internal forged users names used to spread spam, what can be seen as a kind of simulation of a

social behavior.

7.5.2 Traffic entropy

Up to this point we concentrated on the structure of the network of interactions mediated by email messages. In

its construction as a graph we have not paid attention to the detailed temporal structure of message exchanges. An

interesting question then is whether the dynamical properties of email traffic can distinguish social and antisocial

relations.

This question has recently become a subject of interest. Eckmann, Moses and Sergi [60] have shown that

coherent structures emerge from the temporal correlations between time series expressing short periods of intense

message exchange between groups of users. Barabasi [61], on the other hand, has shown that the distribution of

time intervals between email messages sent by a single user may be well described by a power law distribution,

with bursts of activity alternating with long silences.

Both these characterizations identify properties of legitimate email traffic - temporal correlations between users

and inter-message power law time statistics - that are thought to be exclusively social and thus not shared by the

antisocial traffic component. In fact intense email exchanges between small groups of users are to be expected in

patterns of human communication, creating the correlations observed by Eckmann, Moses and Sergi [60]. Barabasi

in turn suggests that the power law statistics he observed can be explained in terms of a queueing model which

encodes prioritization of tasks driven by human decision making.

Although suggestive, these interesting results were obtained for selected senders and receivers of email. Con-

sequently, it remains unclear whether they hold for the general user or for aggregated groups of users. To this end,

we investigated the statistics of our social and antisocial traffics by averaging over the behavior of all users. The

first obvious temporal property of email traffic is its non stationarity. This creates difficulties for any attempt at

statistical estimation. Social email traffic in particular shows large temporal variations, from night to day, working
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days to weekends, and for our data set, strong seasonality associated with the academic calendar. As we show

below, antisocial traffic displays weaker non-stationarity.

The second temporal feature of email traffic is an immediate result of the power law degree distributions de-

scribed above. The majority of users do not communicate often with many others, but have instead low degree

associated with an infrequent and often irregular usage of email. This means that the typical email user in our data

- and, we believe, in most other large email networks - does not show time coherence with others, nor is he/she

utilizing email under the temporal optimization pattern suggested by Barabasi.

To circumvent some of these difficulties, we attempted to identify statistical temporal patterns of communica-

tion that are characteristic of the social vs. antisocial aggregated traffics, using the aggregated graphs defined in

Section 7.2. In so doing, we average over the behaviors of many users. Specifically, we represent temporal patterns

of message arrival through the definition of a communication word of size d. The dimension d is the number of time

intervals, or letters, in the communication word. Hence, a word is represented by a vector W = (i1, i2, . . . , id).

The simplest representation of the traffic is through a binary assignment, where the value of ij is set to 1 if one or

more messages were exchanged in the corresponding time interval, or ij = 0 otherwise. We estimate the proba-

bility for a given word to occur out of N realizations obtained from the measurement data through simple word

frequencies. The entropy of the traffic is defined as usual as

H(W d) = −
N

∑

i=1

p(wd
i)log2p(wd

i), (7.2)

which is a function of word size d.

To illustrate these statements up consider the simplest statistical model that generates a binary time series

subject to a given message arrival rate p. Then p can be written as the probability to obtain a 1 at each letter. If

we further assume that bits corresponding to different letters are uncorrelated then the bit value at each letter can

be regarded as the result of an independent Bernoulli trial. It follows that the probability for all words of length

d with a given number n of 1s is given by the binomial distribution P (p; n, d) = (d
n) pn (1 − p)d−n. Because

all words with a given number n of 1s are equally likely, their probability is pw(p; n, d) = pn (1 − p)d−n. The

corresponding entropy is also easy to compute as H(W d) = d m, where m = −(1− p) log2(1− p)− p log2 p > 0

is the entropy per letter. The fact that the entropy is proportional to the word length d is a direct consequence of the

assumed lack of temporal correlations. These expressions become especially simple if the temporal bin for each

letter is chosen such that p = 1/2, in which case m = 1 is maximal. This independent message model (IMM) is the

maximal entropy distribution for a traffic characterized by a message arrival p. As such real traffics must display
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Figure 7.5: Variation of the difference between the independent message model entropy and the entropy of the
legitimate and spam traffics with the word size.

lower entropy relative to it.

In order to study these variations patterns we aggregated the data into two temporal periods: work hours (i.

e. the period from 8AM to 8PM of the weekdays, except holidays, in the log) and remaining time which we

aggregated as non-work hours. The difference between the maximal entropy model and the entropy of the real time

series can be interpreted as the temporal structural information of each traffic.

Figure 7.5 a-d shows the variation with word size d of the difference between the independent message model

entropy and the entropy of the legitimate and spam traffics during work 7.5-a and 7.5-c, and 7.5-b and 7.5-d non-

work periods, for the two logs, respectively. All word probability distributions were constructed by normalizing

the time bin for each letter word so that p = 1/2. As a result the time bin for each letter of the social traffic during

work hours was set to 4s, and 11s for the corresponding non-work period. Time bins for the antisocial traffic were

set at 4s during work hours and 5s otherwise. The excess curvature for large d is the result of poorer estimation of

rare words.

The results show that social email traffic has lower entropy (higher structural information) than antisocial traffic

for both working and non-working periods in the two workloads. The larger the work the more noticeable this

difference becomes, thus capturing longer patterns of communication and the presence of time correlations. The

difference between the independent message model, where for p = 1/2 all words are equally likely, and the real

traffics is that in the latter words with many 1s are suppressed while the probability of words with two to three 1s

separated by one to three 0s is enhanced. The difference between social and antisocial traffics is more subtle, with

social email traffic displaying a greater probability for words with an isolated message in a long stream of silence.

These structures are reminiscent to those found by Barabasi, but display less definitive statistical signatures. We

see in general though that both social and antisocial traffics are not random, and that social email shows stronger

temporal structure with a high probability for long silences and bursts of a few messages.
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7.6 Conclusions

In summary, we have shown that the richness of behaviors in human communication - both symbiotic and oppor-

tunistic or antisocial - is present in the structure of networks of email communication and can be quantified via

graph theoretical and time series analysis. Opportunistic nodes display antisocial behavior that can be captured

graphically. Perhaps even more directly, antisocial email traffic can be identified by a greater statistical simplicity

(higher entropy) in temporal patterns of communication, typical of the fact that each sender/recipient relationship

is not developed to be unique and the same schemes are used to reach many recipients indiscriminately. More-

over, the ease to exchange email messages that leads to these opportunistic behaviors also has consequences for

the truly social component of the network, which exhibits a power law degree distribution with a small exponent

and, in some cases, small or negative assortative mixing by degree. We believe that the quantitative characteristics

of antisocial communication patterns observed here for email networks are probably general to other opportunistic

behaviors, bound to be present in other networks of human interaction.

Furthermore, we found that low network transitivity and preferential exchange are a strong imprint of antisocial

behavior. So, in order to generate the truly social component we must separate the two components or we incur in

misestimation of these characteristics.

Finally, although we found power law distribution for sizes of the extracted communities for all the networks,

there are important differences in the way users can be clustered in communities in the two components. While

communities made of only one node are much more common in the social components, the antisocial communities

are on average two times bigger than social ones.





Chapter 8

Conclusions and Future Work

This thesis provides an extensive analysis of a spam and legitimate email users behavior, uncovering characteristics

that significantly distinguish them.

Our statistical characterization of the email workload, presented in Chapter 4, based on the information available

on the email headers, revealed that:

• While spam traffic is roughly insensitive to the period of measurement, legitimate traffic exhibits clear daily

and weekly patterns;

• Spam email inter-arrival times are roughly stable over time, while legitimate email inter-arrival time is char-

acterized by occurrence of bursts during working hours;

• Spam email messages are not only significantly smaller on average than legitimate emails, but also show

much less size variability;

• Spam emails are addressed on average to a greater number of recipients than legitimate emails;

• Legitimate sender and recipient popularity and spam sender popularity, defined in terms of number of emails,

follow a Zipf-like distribution, while spam recipient popularity does not;

• There are two distinct and non-negligible sets of legitimate recipients: those with very strong temporal

locality and those who receive emails only sporadically. These two sets are not present in our spam workload

and;

• Spam senders and recipients deal with many more contacts than legitimate senders and recipients.

However, we found that spam traffic significantly biases aggregated traffic from traditional legitimate traffic.
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Chapter 5 shows that legitimate and spam email graphs differ in two fundamental classes of characteristics:

structural, which capture the graphs’ skeleton architecture, and dynamical, concerning node communication and

graph evolution. We have shown that the spam and non spam subgraphs are structurally characterized by:

• Different distributions of the clustering coefficient of their nodes. Legitimate users present a higher cluster-

ings coefficient.;

• Higher visitation probability of legitimate email nodes than spam nodes;

• Higher probability of being replied to for legitimate nodes when compared with nodes that receive spam and;

• A strong correlation between the size of asymmetry sets and the number of spammers in the set.

On the other hand, concerning graph dynamical properties, we have shown that:

• The spam graph grows much faster, both in number of nodes and edges, than the legitimate email graph,

manifesting the higher stability of relations in a social group and;

• The dynamic of the communication between pairs of sender-recipients in spam traffic displays a much higher

entropy and a much longer stack distance than legitimate email nodes communication.

In Chapter 6 we propose and evaluate two algorithms to improve spam detection mechanisms based on the

structural similarity among contact lists of email users. We have shown that we can successfully group spam and

legitimate email users into clusters and use them to improve the quality of spam detection. In one algorithm, we

use historical information of the clusters, while in the other, we use historical information of the communication

between clusters of users for spam detection. In both cases, we were able to reduce significantly (approximately

≈ 60%) the rate of false positives.

Characteristics of the networks of legitimate and spam emails were analyzed in Chapter 7. We have shown that:

• The richness of behaviors in human communication - both symbiotic and opportunistic or antisocial, here

represented by spammer behaviors - is present in the structure of networks of email communication and can

be quantified via graph theoretical and time series analysis;

• Low network transitivity and preferential exchange are a strong imprint of spam or spammers behavior;

• Although we found power law distribution model for sizes of the extracted communities for all the networks,

there are significative differences in the way users can be clustered in communities in the two components.

While unitary communities are much more common in the social components, the antisocial, or spammer,

communities are on average bigger than social ones.
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In summary, we have shown that spam and legitimate user behaviors exhibit strong differences that reflect in

several structural and dynamical distinctions. Secondly, we use these knowledge to propose and analyze a new

spam detection algorithm based on the structural similarity among contact lists of email users. Finally, we studied

structural and dynamical characteristics of networks of spam and legitimate email users in order to uncover the

antisocial behavior of spammers.

Possible directions for future work include:

• Verification of our results over distinct time and workloads, in order to be sure that the results are not specific

of the workloads analyzed;

• Design and evaluation of new spam detection and filtering techniques that exploit the distinctions between

spam and legitimate traffics and, user behavior uncovered in this thesis;

• Design and implementation of a spam-infected email synthetic workload generator to be used in the experi-

mental evaluation of new spam detection strategies;

• Use weighted graphs (e.g., with number of messages as edge weight) in the analysis of social an antisocial

network characteristics, as we showed that traffic intensity is one of the main distinctions between antisocial

and social behaviors in email networks;

• Characterize other antisocial workloads like virus/worm attacks, in order to try to uncover general signatures

of antisocial behavior;

• Study how large volumes of spam in email networks influence the dissemination of virus and other malicious

content in email networks, in order to evaluate if the immunization techniques actually applied in email

networks continue to be effective in spam-infected email networks.
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