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com cŕıticas e comentários permitindo destacar perspectivas interessantes
sobre meu trabalho.

Durante este doutorado, tive a oportunidade de trabalhar e de evoluir
com o grupo do LaPO da UFMG, dirigido pelo Geraldo R. Mateus que
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Resumo

Uma rede de telecomunicação ótica está configurada de forma a respon-
der a uma dada demanda com um certo objetivo. No entanto, com o passar
do tempo e com o desenvolvimento da infraestrutura, a demanda da rede
muda. É neste contexto que se encontra o problema da reconfiguração, que
tenta propor mudanças na atual configuração de rede de forma a adaptá-la
à novas demandas. Considerando a quantidade de dados transportada, não
é viável interromper a utilização da rede para reconfigurá-la, mesmo que por
alguns instantes. Vários parâmetros devem ser considerados para determi-
nar o que seria uma boa solução, e varias métricas podem ser usadas para
medir a qualidade de uma solução.

Em um primeiro momento, estudamos o problema da reconfiguração
como sendo um problema de otimização mono-objetivo. Nós propomos um
modelo matemático que atende as condições do problema. No entanto, ob-
ter a solução ótima para o problema via modelo pode ser muito custoso
em termos de tempo de computação. Propomos então uma heuŕıstica gu-
losa e uma heuŕıstica usando o simulated annealing. As soluções obtidas
apresentam caracteŕısticas diferentes dependente da métrica otimizada. O
algoritmo guloso é rápido e acha soluções aceitáveis. O algoritmo do simu-
lated annealing obtém soluções comparaveis às soluções ótimas.

Em um segundo momento estudamos os aspectos multiobjetivo do pro-
blema da reconfiguração. Eles consistem em considerar simultaneamente as
diferentes métricas e procurar, não uma única solução, mas sim, um con-
junto de soluções representando diferentes compromissos interessantes e em
geral em conflito. Depois propomos um algoritmo que usa nosso modelo ma-
temático e uma adaptação do algoritmo evolutivo. Os métodos propostos
acham diferentes compromissos interessantes. Ao flexibilizar uma métrica
permite geralmente melhorar de forma significativa as soluções obtidas com
outras métricas.

Palavras chaves: Reconfiguração, otimização combinatória, programa-
ção linear, otimização multiobjetivo, redes óticas.
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Abstract

An optical telecommunication network is configured to transmit a given
traffic in order to meet a given objective. However the demand changes with
time and infrastructure development. The reconfiguration problem stands
in this context. It consists in being able to alter the configuration of the
network to adjust it to the new traffic. It is generally necessary to interrupt
partially or totally the traffic to reconfigure a network. Considering the
amount of data flowing on it, it may not be possible to regularly stop the
network, even for a short amount of time. Many parameters have to be
taken into account to find out a good solution, and many metrics can be
used in order to measure the quality of a solution.

In a first part, we focus on the reconfiguration problem as a mono-
objective optimization problem. We propose a mathematical model repre-
senting the reconfiguration problem. However solving exactly the proposed
model may require a high computational time. We also propose a greedy
and a simulated annealing heuristics. Depending on the metric optimized,
the solutions have different characteristics. The greedy algorithm is fast
and provides decent solutions whereas the simulated annealing algorithm
provides solutions competing with the optimal ones.

In a second part, we focus on the multiobjective aspect of the reconfigu-
ration problem. We consider at the same time different metrics and search
for a set of solutions representing different interesting trade-offs instead of a
unique solution. We propose an algorithm based on our mathematical for-
mulation. We also adapt an evolutionary algorithm. The proposed methods
succeed in finding different interesting trade-offs. Giving a little flexibil-
ity with respect to a metric generally allows to significantly improve the
solutions with respect to the other metrics.

Keywords: Reconfiguration, combinatorial optimization, linear pro-
gramming, multiobjective optimization, optical networks
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Resumo estendido

Introdução

Desde o fim do século dezoito, inovações e avanços tecnológicos aconte-
cem no domı́nio das telecomunicações. Isso permite a instalação de meios
de comunicação sempre mais poderosos e confiáveis. Este desenvolvimento
tecnológico é acompanhado por uma demanda sempre crescente e o mercado
das telecomunicações cresce constantemente.

Das diferentes tecnologias atualmente usadas, a tecnologia ótica, base-
ada no uso do LASER (Light Amplification by Stimulated Emission of Radi-
ation), é a mais usada nas redes backbones, que são redes de larga escala e de
muita alta velocidade. Com esta tecnologia, os dados a serem transmitidos
são modulados em raios de luz coerentes monocromáticos emitidos por LA-
SERs e transportados por fibras óticas. Estes sinais usam um comprimento
de onda especifico.

A fibra ótica é um meio de transmissão que apresenta muitas qualidades,
como uma taxa de transmissão teórica extremamente alta, uma taxa de erros
baixa e uma baixa dissipação de energia.Uma fibra ótica é um cabo fino de
plástico ou de vidro capaz de dirigir um raio de luz.

A instalação de uma rede de telecomunicação de larga escala é uma
operação cara, particularmente pela complexidade das operações de infra-
estrutura. A espessura de uma fibra ótica facilita o agrupamento de dezenas
delas num único cabo de grandes dimensões. De fato, as redes de larga escala
instaladas geralmente são multifibras.

A tecnologia ótica oferece taxas de transmissão muito elevadas. No en-
tanto, uma das limitações deste tipo de rede vem da parte eletrônica da
cadeia. Os equipamentos capazes de tratar com dezenas de gigabits de
dados por segundo são muito caros. Além disso, as redes de larga escala
carregam geralmente uma agregação de fluxos de dados. Isso dá uma certa
estabilidade no tráfego fazendo com que as evoluções de tráfego sejam con-
t́ınuas. Usar um sistema de comunicação por conexões e rotas pré-definidas
permite reduzir a quantidade de tratamento eletrônico que a transmissão de
informação precisa neste contexto de variação lenta de tráfego.

O tráfego carregado pelas redes de larga escala evolui ao longo do tempo.
O tráfego é geralmente mais alto durante os horários e os dias úteis que de
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noite ou fins de semana. Num peŕıodo de tempo curto, o tráfego evolui de
forma crescente e decrescente. No entanto, a tendência à longo prazo é o
aumento do tráfego, com a chegada de novos tipos de aplicações.

A tecnologia WDM (Wavelength Division Multiplexing - Multiplexação
por Comprimento de Onda) mudou radicalmente o uso da tecnologia ótica.
Com esta tecnologia, vários canais podem estar carregados simultaneamente
por uma única fibra, sendo que estes canais são modulados em comprimentos
de onda diferentes. Isso permite aumentar a capacidade de uma rede sem
precisar instalar novas fibras óticas.

Com a aparição da tecnologia WDM, o conceito de camada ótica, cuja
função é a transmissão do sinal ótico, ganha importância. Esta camada
permite a criação de uma topologia virtual, ou topologia lógica, substituindo
as conexões ponto-a-ponto. Nesta camada, nenhum tratamento eletrônico
é realizado; o sinal fica na forma ótica. A topologia virtual é composta de
caminhos óticos (caminhos óticos), que correspondem a conexões entre pares
de nós. A topologia lógica corresponde à topologia que será efetivamente
usada para transmitir dados.

O problema da reconfiguração

A definição da topologia lógica é um problema de otimização complexo.
Ele consiste em definir um conjunto de caminhos óticos, definir a rota e o
comprimento de onda que eles usam, de forma a otimizar a qualidade da
solução obtida em relação com uma métrica. Este problema é NP-dif́ıcil na
maioria dos casos.

Cada nó da rede manda dados aos outros nós. O problema do rotea-
mento consiste em definir qual(is) caminho(s) deve(m) seguir estes dados na
topologia lógica, da origem até o destino. Este problema pode ser reduzido
a um problema de fluxo com múltiplos produtos.

Nós chamamos Problema de definição da topologia lógica e roteamento
o conjunto destes dois problemas. À partir de um conjunto de demandas,
nós devemos definir uma topologia adequada ao tráfego e rotear este último.
Este problema é um dos problemas chaves relacionados com as redes WDM
e esta sendo muito estudado.

O tráfego circulando nos backbones corresponde à agregação de várias
requisições. Isso tem duas consequências: a primeira é que é muito provável
que cada nó envie e receba dados de cada outro nó. Isso nos leva a considerar
um tráfego do tipo todos para todos (all-to-all); a outra consequência desta
agregação de tráfego é que a evolução do tráfego no tempo é devagar e
continua. Nós discretizamos esta evolução e definimos a noção de peŕıodo de
tempo. Durante um peŕıodo de tempo, o tráfego fica constante. Este peŕıodo
de tempo é considerado como grande o suficiente para implementar uma
nova topologia lógica. Nós consideramos dois tipos de tráfego. O primeiro
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é definido da seguinte forma: um tráfego de referência é definido e depois
variações em relação ao tráfego inicial são efetuadas. O segundo tráfego
é definido de forma idêntica sendo que as variações são sempre positivas.
Neste ultimo caso, o tráfego é crescente.

Devido à evolução do tráfego, a topologia virtual e o roteamento definido
no ińıcio podem não ser ótimos. Pode ser preciso modificá-los. O problema
da reconfiguração consiste em achar de qual forma modificar a topologia
virtual e o roteamento durante as evoluções de tráfego, de forma a manter
uma configuração adequada ao tráfego. No entanto, mudar a configuração
da rede pode precisar de uma interrupção de serviço, que não é desejada
considerando a quantidade de dados circulando na rede. O problema da
reconfiguração é ligado a um compromisso entre o desempenho da rede e o
número de reconfigurações a serem aplicadas à topologia lógica. Notem que
a nós não interessa à forma como é realizada a transição de uma topologia
lógica a outra.

O problema da reconfiguração já foi estudado em vários tipos de tra-
balhos. Alguns trabalhos só consideram uma evolução do tráfego. Outros
trabalhos consideram apenas a evolução da topologia lógica. Neste caso, o
roteamento dos dados não é feito. A reconfiguração em tempo real é tam-
bém estudada. O problema é resolvido sem que tenha realmente otimização
dos recursos ou do número de reconfigurações. Finalmente, outros trabalhos
abordam o problema da reconfiguração definido da mesma forma que nós,
mas se restringindo a alguns casos espećıficos. Notamos que o problema
chamado “Agrupamento de tráfego dinâmico” é um problema parecido com
o que aqui tratamos.

De forma mais espećıfica, nós nos interessamos pelo seguinte problema:
consideramos uma rede WDM multifibra com qualquer topologia, sendo que
cada fibra ótica pode carregar um certo número de enlaces óticos, ou seja
de canais capazes de transportar informações mandadas em comprimento
de onda. Nós consideramos uma sucessão de matrizes de tráfego do tipo
all-to-all, uma para cada peŕıodo de tempo considerado. Nós supomos que
as evoluções futuras do tráfego são conhecidas. Para cada peŕıodo de tempo,
nós calculamos uma topologia virtual e um roteamento dos dados com múl-
tiplos saltos (multihop). Dentre as diferentes soluções posśıveis, nós escolhe-
mos a melhor em relação com uma métrica. Duas abordagens diferentes são
consideradas. A primeira considera o problema como um problema de oti-
mização mono-objetivo, uma métrica é escolhida inicialmente e o problema é
resolvido; uma segunda abordagem consiste em considerar simultaneamente
o conjunto de métricas posśıveis e procurar um conjunto de soluções repre-
sentando os diferentes compromissos posśıveis.

Várias métricas podem ser consideradas para o problema da reconfigura-
ção. Por exemplo, podemos optar por minimizar o número de enlaces óticos
usados, que corresponde a minimizar a carga da rede. Podemos também
minimizar o numero de caminhos óticos, que tem uma influência direta no
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custo dos roteadores instalados. Podemos diminuir a carga máxima dos en-
laces, o que permite distribuir o tráfego na totalidade da rede. Diminuir
o número médio de saltos permite de reduzir o tempo de transmissão dos
dados na rede. Finalmente, podemos ter por objetivo minimizar o número
de reconfigurações.

O problema mono-objetivo da reconfiguração

Num primeiro momento, consideramos o problema como um problema
de otimização mono-objetivo. Nós propomos um modelo matemático em
programação linear mista e inteira. A maioria das formulações usadas para
problemas parecidos são formulações de fluxo“origem-destino”. Com tal for-
mulação, um produto é definido para o tráfego associado a cada par“origem-
destino”. Em consequência, o número de variáveis e de restrições definidas
é muito elevado. Com objetivo de obter um modelo menor, nós propomos
uma formulação “fonte”. Neste caso, um produto é definido para o tráfego
associado a cada origem. As duas formulações são equivalentes quando o
custo de cada aresta não depende do produto, que é nosso caso.

Nossa formulação matemática inclui restrições que definem a topologia
lógica, um conjunto de restrições que efetua o roteamento dos dados, e um
conjunto de restrições que define a reconfiguração da topologia lógica. Nós
expressamos também as cinco métricas citadas acima. Algumas variáveis do
nosso modelo são inteiras, o que torna geralmente o problema mais dif́ıcil.
Dessas variáveis inteiras, algumas podem ser relaxadas; de qualquer forma
elas terão valores inteiros.

Nós propomos também várias extensões para nosso modelo. Um tipo de
extensãos é dito tecnológico. Ele consiste em tornar o modelo matemático
mais realista. Nós propomos três extensões deste tipo. Nós podemos desejar
limitar o número de emissores ou receptores a LASERS a serem instalados
em cada nó, considerando que são equipamentos caros. Nós propomos uma
restrição com este papel que pode ser adicionada a nosso modelo mate-
mático. Nós propomos também uma extensão para não considerar como
reconfiguração o fato de deixar de usar um enlace ótico. Finalmente, nós
propomos uma extensão impondo uma taxa mı́nima nos caminhos óticos.

Nós propomos também cortes para reduzir o espaço de soluções a ser
explorado durante a busca da solução ótima. Um primeiro corte consiste
em relacionar algumas variáveis de fluxo com o número de caminhos óticos
definidos; um segundo corte consiste em obter um limite inferior ao número
de caminhos óticos saindo de um nó considerando a quantidade total de
tráfego que o nó considerado manda. Um outro corte parecido mas agora
dando um limite inferior ao número de caminhos óticos chegando em um
nó. Finalmente um corte permitindo remover soluções equivalentes a uma
solução achada, obtido simplesmente por permutação dos comprimentos de
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onda usados.

Nós definimos um limite inferior para nosso problema. Este limite é ob-
tido resolvendo o problema da reconfiguração cuja rede inicial é modificada.
A modificação considerada é equivalente a trocar um enlace contendo várias
fibras, cada uma capaz de carregar vários comprimentos de onda, por um
enlace contendo várias fibras, cada uma capaz de carregar um único com-
primento de onda. Isso corresponde a remover a restrição impedindo dois
caminhos óticos de mesmo comprimento de onda a usar a mesma fibra.

Apesar do nosso modelo ser relativamente conciso, o problema da reconfi-
guração é um problema complexo, e é dif́ıcil, se não imposśıvel, de resolvê-lo
com grandes instâncias. Para resolver este problema, nós propomos duas
heuŕısticas.

A primeira é uma heuŕıstica gulosa, ou seja, um algoritmo construtivo.
Num passo dado, nós escolhemos a solução que nos parece a mais interes-
sante, sem considerar as posśıveis consequências da nossa escolha. Este tipo
de algoritmo é muito simples e geralmente rápido. O algoritmo que nós
descrevemos foi pensado de forma em favorecer os roteamentos de dados
mono-salto.

A segunda heuŕıstica proposta é baseada no Simulated Annealing. Nós
associamos ao problema uma temperatura que diminue ao longo da execu-
ção do algoritmo. Fazemos uma busca local e quando encontramos uma
solução que melhora as soluções achadas até o momento, ela é guardada.
Quando uma solução é pior que a melhor solução achada até agora, ela é
guardada com uma certa probabilidade. Esta probabilidade depende do va-
lor da temperatura, de forma que no inicio do algoritmo esta probabilidade
é bastante elevada, e que no fim de algoritmo esta probabilidade é baixa.
Assim, no ińıcio de algoritmo soluções muito diferentes são exploradas, e no
fim a exploração das soluções é muito mais seletiva.

Problema mono-objetivo: resultados experimentais

Muitos testes foram feitos com o objetivo de estudar o desempenho da
resolução do modelo matemático, dos cortes e do limite inferior propostos.
Nós procuramos definir qual é a influência das extensões propostas e se as
heuŕısticas descritas são eficientes. Para isso, nós usamos oito topologias
diferentes, a menor tendo 7 nós e 20 enlaces, a maior tendo 50 nós e 250 en-
laces. Os tráfegos considerados são gerados aleatoriamente. Nós resolvemos
os problemas num PC comum com um gigabyte de memória. Para resol-
ver as instâncias descritas pelo modelo matemático, nós usamos o software
Cplex1 versão 9, com limite de tempo.

Nós comparamos primeiro a formulação fonte que nós propomos com
uma formulação mais comum “fonte-destino”. Os problemas gerados com

1Copyright c©Ilog 1997-2005. Cplex is a registered trademark of Ilog.
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a formulação fonte são mais compactos que com a formulação comum. O
número de variáveis e de restrições é significativamente menor. O tempo de
computação necessário para resolver o problema é mais elevado com a for-
mulação comum. Em tempo limitado, as soluções obtidas com a formulação
fonte são melhores na grande maioria das vezes. Com a formulação fonte,
nós podemos resolver problemas de tamanho maior que com a formulação
comum.

Estudamos a influência das métricas e a eficiência dos cortes apresen-
tados. O tempo de computação preciso para resolver o problema depende
muito da métrica escolhida. Se queremos minimizar o número de enlaces
óticos ou o número de caminho óticos, o tempo de computação é muito ele-
vado. Ao contrário, com as métricas relacionadas com a carga dos enlaces
ou o número de saltos, o tempo de computação é significativamente menor.
Minimizar o número de reconfigurações é resolvido rapidamente com instân-
cias pequenas, mas assim que o tamanho das instâncias aumenta, o tempo
de computação se torna muito alto.

O corte relacionado ao número de caminhos óticos e as variáveis de fluxo
tem pouco interesse. Em tempo limitado, os resultados obtidos com o corte
são piores que sem. Os cortes dando um limite inferior ao número de cami-
nhos óticos entrando e saindo de um nó são interessantes. Eles permitem
diminuir o tempo de computação ou melhorar a qualidade da solução obtida
em tempo limitado. Além disso, o gap, ou seja a incerteza sobre a solução
obtida, é geralmente menor que sem o corte. Finalmente, o corte permitindo
evitar soluções idênticas com exceção de permutação tem um interesse me-
nor. Uma das formulações posśıveis para este corte obtém resultados ruins,
e a outra obtém resultados de qualidade equivalente aos obtidos sem cortes.

O limite inferior proposto obtém bons resultados quando a resolução do
problema modificado termina. Neste caso, a solução obtida é de melhor
qualidade que aquela obtida com a relaxação linear. No entanto, em al-
guns casos, nós não conseguimos obter a solução ótima do limite inferior,
tornando o valor obtido sem interesse. O limite inferior proposto converge
com dificuldade quando a métrica usada é o número de enlaces óticos ou o
número de caminhos óticos.

Dependendo da métrica escolhida como função objetivo, as caracteŕısti-
cas da solução obtida são muito diferentes. Quando minimizamos o número
de enlaces óticos, obtemos soluções cuja carga não é distribúıda, os caminhos
óticos são curtos, a agregação do tráfego é elevada e o número de reconfi-
gurações a serem efetuadas é relativamente baixo. Quando a métrica é o
número de caminhos óticos, a solução contem um conjunto de caminhos óti-
cos longos ponta a ponta completamente cheios, e um conjunto de caminhos
óticos muito curtos contendo o que sobra do tráfego. Se minimizamos a carga
máxima, achamos soluções com a melhor distribuição de carga na rede. No
entanto, tais soluções usam muitos recursos e o número de reconfigurações
é alto. Minimizar o número médio de saltos tende a gerar caminhos óticos
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longos e diretos. Isso se repercute no número de reconfigurações, que é ele-
vado. Finalmente, se procuramos minimizar o número de reconfigurações a
serem efetuadas, obtemos soluções usando um número muito alto de recur-
sos, de forma a sempre ter os caminhos óticos dispońıveis. Em consequência,
o número de reconfigurações a serem efetuadas é nulo.

Nós também testamos a influência da topologia e do tráfego no solver. O
tipo de tráfego ou a topologia parece não mudar a dificuldade de resolução
do problema. Só a densidade do tráfego parece ter uma influência quando
nós minimizamos o número de reconfigurações.

Estudamos diferentes extensões tecnológicas descritas anteriormente. Li-
mitar o número de receptores e de transmissores torna o problema mais dif́ıcil
de ser resolvido, particularmente quando o número de transmissores e de re-
ceptores é próximo do mı́nimo tal que o problema admita uma solução. No
entanto, a influência de uma tal restrição é baixa.

Não considerar como uma reconfiguração o fato de liberar recursos tem
influência só quando minimizamos o número de reconfigurações. Neste caso,
observamos que um número elevado de recursos é alocado no ińıcio, durante
o primeiro peŕıodo de tempo, e os recursos são progressivamente liberados
quando eles não são mais úteis.

Quando procuramos impor uma taxa de enchimento mı́nimo para os
caminhos óticos, o solver aumenta o comprimento do roteamento de forma
a aumentar a taxa de ocupação dos caminhos óticos.

Nós comparamos as soluções obtidas pelas heuŕısticas com aquelas obti-
das pelo modelo. O simulated annealing é capaz de obter soluções de qua-
lidade comparável àquela que as soluções obtidas pelo modelo matemático,
com um tempo de computação significativamente mais baixo. Além disso,
o simulated annealing é capaz de resolver instâncias muita maiores que o
modelo matemático. O algoritmo guloso é muito rápido, mas acha soluções
de qualidade inferior ao simulated annealing ou ao modelo matemático. Na
verdade, as soluções obtidas pelo algoritmo guloso correspondem a um com-
promisso entre os recursos usados e o número de reconfigurações a serem
feitas. Durante a definição da topologia lógica o algoritmo guloso acha uma
boa solução. No entanto, durante a transição ao segundo peŕıodo de tempo,
a qualidade da topologia lógica obtida pelo algoritmo guloso é de qualidade
inferior em relação àquela achada pelo solver.

O problema multiobjetivo da reconfiguração

O problema da reconfiguração admite várias métricas diferentes. De-
pendendo da métrica escolhida como função objetivo, o resultado obtido
apresenta caracteŕısticas diferentes. Isso pode ser problemático, e podemos
querer impor restrições adicionais ao modelo para evitar soluções pouco in-
teressantes. No entanto, acrescentar tais restrições adicionais precisa um
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grande conhecimento do modelo, e pode mesmo assim levar para resultados
não desejados.

Além disso, a escolha de uma métrica sendo geralmente feita antes do
processo de solução, quando o tomador de decisão não tem nenhuma idéia do
desempenho da solução obtida em relação com as outras métricas posśıveis.
Falta flexibilidade nesta abordagem. A Otimização multiobjetivo, também
chamada Otimização vetorial, permite evitar este problema. Não é uma
única solução que é computada, mas um conjunto de “boas” soluções. Uma
tal abordagem permite obter informações importantes, como a relação entre
as métricas.

Um problema de otimização multiobjetivo é um problema de otimização
cuja função objetiva é vetorial, ao contrário dos problemas de otimização
mono-objetivo cuja função objetivo é escalar. Em principio não existe “me-
lhor solução”, mas um conjunto de boas soluções. Este conjunto é chamado
Conjunto de Pareto. Um ponto é dito dominado se existe um outro ponto
obtendo melhor desempenho com todas as métricas consideradas. O con-
junto de Pareto é composto dos pontos que não são dominados. Isso significa
que se escolhemos dois pontos do conjunto de Pareto, o primeiro tem um
melhor desempenho que o outro em relação com pelo menos uma métrica,
e um pior desempenho em relação com a outra métrica. Ou seja, é pos-
śıvel melhorar o desempenho de uma solução pertencente ao conjunto de
Pareto em relação com uma métrica só diminuindo o seu desempenho em
relação com uma outra métrica. O ponto chamado ponto ideal é o ponto
cujas coordenadas correspondem ao valor ótimo de todas as métricas. Um
tal ponto geralmente não admite soluções. Isso significaria que existe uma
solução obtendo os melhores desempenhos posśıveis simultaneamente com
cada métrica.

O problema da reconfiguração é um problema combinatório. Algumas
variáveis têm valores discretos. Conseqüentemente, o conjunto de Pareto
não é necessariamente cont́ınuo, que pode ser problemático para alguns al-
goritmos multiobjetivos.

Resolver um problema multiobjetivo corresponde em buscar o conjunto
de Pareto. Uma vez este conjunto identificado, o tomador de decisão pode
escolher a solução que lhe parece a melhor. Geralmente, não é posśıvel
identificar de forma anaĺıtica o conjunto de Pareto. Neste caso procuramos
obter uma aproximação computando pontos pertecentes a este.

Para isso, podemos resolver problemas de otimização mono-objetivo, mo-
dificados de forma em que a solução ótima deles pertence ao conjunto de
Pareto. Neste contexto, existe vários métodos. Podemos dar pesos às dife-
rentes métricas e resolver o problema de otimização cuja função objetivo e
o somatório com pesos associados a cada métrica. Modificando o valor dos
pesos, obtemos diferentes soluções pertencentes ao conjunto de Pareto. Este
método é muito simples. No entanto, no caso de um conjunto de Pareto não
convexo, alguns pontos nunca serão obtidos.
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Uma outra possibilidade consiste em definir a partir do ponto ideal uma
direção e minimizar a distância entre o espaço solução e este ponto ideal.
Dependente da direção escolhida, um ponto ou um outro do conjunto de
Pareto será obtido Este método é chamado método das relaxações. No en-
tanto, ele não foi muito adequado aos problemas combinatórios. Ele pode
retornar pontos que são dominados. Além disso, para reduzir o número de
variáveis inteiras do nosso modelo, nós relaxamos a restrição de integralidade
de algumas variáveis. Isso não causa problema quando a função objetivo é
um critério de desempenho. Mas o método das relaxações usa uma função
objetivo completamente diferente (a distância de um ponto à um conjunto)
e a integralidade das variáveis relaxadas não é mais garantida.

Um terceiro método consiste em acrescentar restrições adicionais para
“impedir” o solver de achar a solução ótima em relação com uma métrica.
Este método tem o nome de método ǫ−restrito. O problema com este método
é que ele pode gerar problemas sem soluções quando são considerados três
ou mais objetivos simultaneamente.

Para resolver o problema multiobjetivo da reconfiguração, nós adapta-
mos o método ǫ-restrito. Nós definimos a noção de“sucessor” e de“predeces-
sor”, que nos permite ordenar um conjunto de ǫ−vetores. Nós descrevemos
um algoritmo permitindo gerar um conjunto de ǫ−vetores de forma a garan-
tir que isso não torna o problema sem solução. Nós ordenamos este conjunto
de ǫ−vetores com o conceito de sucessor precedentemente introduzido. De-
pois, nós resolvemos um por um os ǫ−problemas, seguindo a ordem. Isso
nos permite fornecer uma solução inicial para o problema. Nosso algoritmo
melhora de duas formas o ǫ−método padrão, porque ele garante que os
problemas gerados tem solução e ele fornece uma solução inicial para cada
problema. No entanto, existe o problema da escolha das restrições-ǫ. Um
outro problema vem da incerteza em relação com o número de restrições-ǫ
preciso para ter uma boa aproximação do conjunto de Pareto. Último ponto
de incerteza, não é comprovado que nosso método seja capaz de descrever a
integralidade do conjunto de Pareto.

Os métodos descritos acima tem todos o mesmo funcionamento. O pro-
blema a ser resolvido é modificado de uma certa forma e resolvido usando
métodos de otimização mono-objetivo. Uma tal abordagem pode ser custosa
em termos de tempo de computação. Ou seja, podemos definir um processo
que retorne vários pontos pertencentes ao conjunto de Pareto numa única
execução. Isso é posśıvel usando algoritmos evolutivos, tais como algoritmos
genéticos.

Para esta abordagem do problema, nós resolvemos um sub-problema do
problema da reconfiguração tal que nós o descrevemos. Nós resolvemos um
problema de definição multipeŕıodo de topologia lógica.

Os algoritmos evolutivos geralmente funcionam da seguinte forma. Defi-
nimos primeiro uma população, onde cada indiv́ıduo da população representa
uma posśıvel solução para o problema. Esta população evolui com opera-
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ções genéticas. Uma mutação é uma alteração aleatória de um indiv́ıduo.
A partir de dois indiv́ıduos, um cruzamento gera dois novos indiv́ıduos. A
qualidade de um indiv́ıduo é avaliada com uma função fitness. Em cada ite-
ração do algoritmo, novos indiv́ıduos são gerados. Alguns destes indiv́ıduos
são selecionados e servem de população de origem para a iteração seguinte.
Com uma função fitness adequada, é posśıvel evoluir a população na direção
do conjunto de Pareto. O principal problema vindo do uso de algoritmos
genéticos é a ausência de garantia em relação com a qualidade das soluções
obtidas.

Existem variações de algoritmos evolutivos resolvendo os problemas mul-
tiobjetivo. Nós escolhemos usar o algoritmo SPEA (Strength Pareto Evolu-
tionary Algorithm), que conserva uma população externa de soluções não-
dominadas. As operações genéticas são aplicadas nos indiv́ıduos da popula-
ção principal e também nos indiv́ıduos da população externa.

Nós descrevemos a forma como codificamos uma solução num cromos-
somo, e a forma como realisamos as diferentes operações genéticas. A alo-
cação dos comprimentos de onda não é integrada ao cromossomo, mas é
computada separadamente usando um algoritmo guloso. Além disso, para
evitar que a população externa tenha indiv́ıduos demais, nós usamos uma
procedimento que permite a supressão de soluções quando elas são muito
similares. A população inicial é gerada aleatoriamente.

Problema multiobjetivo: resultados experimentais

Num primeiro momento, nós fazemos um estudo multiobjetivo superficial
do problema da reconfiguração com a ajuda do método dos objetivos com
pesos. Nós usamos o solver e nossa implementação do algoritmo do simulated
annealing para resolver os diferentes problemas gerados. Usar como função
objetivo um somatório de métricas com pesos torna o problema mais dif́ıcil
de resolver. No entanto, isso permite obter compromissos interessantes.

Nós fazemos depois um estudo multiobjetivo mais detalhado usando
nosso algoritmo baseado no método das ǫ−restrições. Para duas instâncias,
nós geramos vários problemas que nós resolvemos. Para cada instância, nós
obtemos vários pontos do conjunto de Pareto, mas também soluções domi-
nadas e soluções idênticas. Estas soluções idênticas aparecem quando as
restrições-ǫ são muito próximas umas das outras, ou quando o solver não
consegue achar uma nova solução em tempo limitado. No entanto, nós ob-
temos várias soluções diferentes apresentando compromissos diferentes.

Nós fazemos também muitos testes com o algoritmo evolutivo SPEA. O
número de gerações necessárias para garantia da convergência depende do ta-
manho da instância. Mil gerações são suficientes para as menores instâncias,
1500 iterações são necessárias para a maior. Observamos que a população
inteira se dirige progressivamente em direção do conjunto de Pareto durante
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a execução do algoritmo. O compromisso entre o número de recursos usados
e o número de reconfigurações não é muito claro, ao contrário daquele entre
a carga dos enlaces e o número de reconfigurações. A relação entre o número
de recursos usados e a carga dos enlaces é muito forte.

Conclusões

Nesta tese nós nos interessamos pelo problema da reconfiguração nas re-
des óticas WDM. É um problema complexo que inclui vários parâmetros.
Nós propomos um modelo matemático usando uma formulação fonte para o
problema, extensões tecnológicas, cortes e um limite inferior. Nós propomos
também uma heuŕıstica gulosa e uma heuŕıstica baseada no simulated an-
nealing. Nós fazemos vários testes para identificar a influência e a eficiência
das diferentes propostas. No entanto, uma abordagem mono-objetivo não é
suficiente para levar em consideração os diferentes compromissos envolvidos
para as diferentes métricas. Nós descrevemos uma abordagem multiobjetivo.
Nós propomos um algoritmo baseado no método ǫ−restrito, e nós adapta-
mos o algoritmo SPEA. Nós fazemos testes illustrando a eficiência dos nossos
métodos e dando vários compromissos posśıveis.

O trabalho desta tese parte da suposição que os tráfegos futuros são co-
nhecidos. Isso é uma hipótese forte que seria interessante relaxar, pelo menos
parcialmente, conciliando previsão e adaptação. Nós tratamos a forma como
a transição de uma topologia lógica a outra é realizada. Finalmente, seria
interessante fornecer um algoritmo auxiliar na escolha dentre as diferentes
soluções do conjunto de Pareto aquela que mais interessa o tomador de de-
cisão.
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UNIVERSITÉ de NICE-SOPHIA ANTIPOLIS – UFR SCIENCES
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Thèse dirigée par
Afonso FERREIRA/Geraldo Robson MATEUS
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Résumé

Un réseau de télécommunication optique est configuré de manière à ré-
pondre à une demande donnée, avec un certain objectif. Avec le temps, la
demande d’exploitation du réseau change. C’est dans ce contexte que se pose
le problème de la reconfiguration : être capable de changer la configuration
du réseau de manière à l’adapter à des nouvelles demandes. Pour ce faire il
faut généralement interrompre totalement ou partiellement le trafic. Étant
données les quantités de données y circulant, il n’est guère envisageable d’ar-
rêter le réseau. De nombreux paramètres sont à prendre en compte afin de
déterminer ce que sera une bonne solution, et plusieurs métriques peuvent
être utilisées pour mesurer la qualité d’une solution.

Dans une première partie, nous nous intéressons au problème de la recon-
figuration comme problème d’optimisation mono-objectif. Nous proposons
un modèle mathématique permettant de représenter le problème. Cepen-
dant, le résoudre exactement peut être très coûteux en temps de calcul. Nous
proposons également une heuristique gloutonne et une heuristique basée sur
le recuit simulé. Les solutions obtenues présentent différentes caractéristiques
selon la métrique optimisée. L’algorithme glouton est rapide et trouve des
solutions décentes. L’algorithme du recuit simulé obtient des solutions qui
sont comparables aux solutions optimales.

Dans une seconde partie, nous nous intéressons à l’aspect multiobjectif
du problème. Il consiste à considérer simultanément les différentes métriques
et rechercher un ensemble de solutions représentant différents compromis
intéressants. Puis nous proposons un algorithme basé sur notre modélisation
mathématique. Nous adaptons également un algorithme évolutif. Donner
une certaine flexibilité par rapport à une métrique permet généralement
d’améliorer de manière significative les solutions obtenues par rapport aux
autres métriques.

Mots-clefs : Reconfiguration, optimisation combinatoire, programma-
tion linéaire, optimisation multiobjectif, réseaux optiques
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Résumé long

Introduction

Depuis la fin du dix-huitième siècle, les innovations et avancées techno-
logiques se succèdent dans le domaine des télécommunications. Cela permet
la mise en place de moyens de communications toujours plus performants
et fiables. Ce développement technologique est accompagné d’une augmen-
tation de la demande et le marché des télécommunications crôıt de manière
constante.

Parmi les différentes technologies existantes, la technologie optique, basée
sur l’utilisation du LASER (Light Amplification by Stimulated Emission of
Radiation), est la plus utilisée pour les réseaux à grande échelle et à très haut
débit : les réseaux dorsaux. Avec cette technologie, les données à transmettre
sont modulées sur des rayons lumineux monochromatiques cohérents émis
par des LASERs et transportés par des fibres optiques.

Une fibre optique est un fin câble de plastique ou de verre capable de diri-
ger un rayon lumineux. C’est un moyen de transmission présentant de nom-
breuses qualités, telles qu’un débit théorique extrêmement élevé, un faible
taux d’erreur et une faible dissipation d’énergie.

L’installation d’un réseau de télécommunication à grande échelle est une
opération coûteuse, notamment de part l’ampleur des opérations d’infra-
structure. La finesse d’une fibre optique fait qu’il est facile d’en regrouper
des dizaines dans un seul gros câble. De fait, les réseaux à grande échelle
installés sont généralement multifibres.

La technologie optique offre des débit très élevés. Cependant, une des
limitations de ce type de réseau vient de la partie électronique de la châıne :
les équipements capables de traiter des dizaines de gigabits de données par
seconde sont très coûteux. Par ailleurs, les réseaux à grande échelle trans-
portent généralement une agrégation de flux de données. Cela donne une
certaine stabilité au trafic et les évolutions de trafic sont continues. Utiliser
un système de communication par connexion et des routes préétablies permet
de réduire la quantité de traitement électronique nécessaire à la transmission
d’information dans ce contexte de lente variation de trafic.

Le trafic transporté par un réseau à grande échelle évolue au cours du
temps. Le trafic est généralement plus élevé pendant les heures et les jours
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utiles que de nuit ou les fins de semaine. Sur une courte période, le trafic
évolue de manière croissante et décroissante. Par contre, la tendance sur le
long terme est l’augmentation du trafic, de fait de l’apparition de nouveaux
types d’applications.

La technologie WDM (Wavelength Division Multiplexing - Multiplexa-
tion par longueur d’onde) a radicalement changé l’utilisation de la techno-
logie optique. Avec cette technologie, plusieurs canaux peuvent être trans-
portés simultanément par une seule et même fibre, à partir du moment que
ces derniers sont modulés sur des longueurs d’onde différentes. Cela permet
d’augmenter la capacité d’un réseaux sans avoir à installer de nouvelles fibres
optiques.

Avec l’apparition de la technologie WDM, le concept de couche optique,
dont la fonction est de transmettre le signal optique, prend de l’importance.
Cette couche permet la création d’une topologie virtuelle, ou topologie lo-
gique, remplaçant les connexions point-à-point. À l’intérieur de cette couche,
aucun traitement électronique n’est réalisé ; le signal reste sous forme op-
tique. La topologie virtuelle est composé de chemins optiques (lightpaths),
correspondant à une connexion entre une paire de nœuds. La topologie lo-
gique correspond à la topologie qui sera effectivement utilisée pour trans-
mettre les données.

Le problème de la reconfiguration

La définition de la topologie logique est un problème d’optimisation com-
plexe. Il consiste à définir un ensemble de chemins optiques, définir la route
suivie par ces derniers, ainsi que la longueur d’onde qu’ils utilisent, de ma-
nière à optimiser la qualité de la solution obtenue par rapport à une mé-
trique. Ce problème est NP-difficile dans la plupart des cas.

Chaque nœud du réseau envoie des données aux autres nœuds. Le pro-
blème du routage consiste en définir quel chemin(s) doi(ven)t emprunter
ces données sur la topologie virtuelle, de leur origine à leur destination. Ce
problème peut être réduit à un problème de flot à commodités multiples.

Nous appelons Problème de définition de la topologie logique et routage
la réunion de ces deux problèmes. À partir d’un ensemble de demandes,
nous devons définir une topologie adaptée au trafic, et router ce dernier.
Ce problème est un des problèmes clefs lié aux réseaux WDM, et a été
grandement étudié.

Le trafic circulant sur les réseaux dorsaux correspond à l’agrégation de
nombreuses requêtes. Ceci a deux conséquences. Premièrement, il est fort
probable que chaque nœud envoie et reçoive des données de chaque autre
nœud. Ceci nous amène à considérer un trafic du type tous pour tous (all-to-
all). Autre conséquence de cette agrégation de trafics, l’évolution du trafic
dans le temps est lente et continue. Nous discrétisons cette évolution et dé-
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finissons la notion de période de temps. Pendant une période de temps, le
trafic reste constant. Elle est considérée comme suffisamment longue pour
avoir le temps d’implémenter une nouvelle topologie virtuelle. Nous consi-
dérons deux types de trafic. Le premier est défini de la façon suivante : un
trafic de base est défini, puis des variations, faibles par rapport au trafic
de base, sont calculées. Le second trafic est défini de manière identique à
l’exception des variations qui sont nécessairement positives. Dans ce cas le
trafic est croissant.

Conséquence de cette évolution du trafic, la topologie virtuelle et le rou-
tage définis initialement peuvent ne pas rester optimaux. Il peut être néces-
saire de les modifier. Le problème de la reconfiguration consiste à déterminer
de quelle façon modifier la topologie virtuelle et le routage lors des évolutions
de trafic de manière à maintenir une configuration adaptée au trafic. Cepen-
dant, changer la configuration du réseau peut nécessiter une interruption
de service, ce qui n’est pas souhaité compte tenu de la quantité de données
circulant sur le réseau. Le problème de la reconfiguration est lié à un com-
promis entre les performances du réseau et le nombre de reconfigurations
à appliquer à la topologie virtuelle. Notons que nous ne nous intéressons
pas à la façon dont est effectivement effectuée la transition d’une topologie
virtuelle à une autre.

Le problème de la reconfiguration a déjà été étudié. On trouve dans la
littérature plusieurs types de travaux. Certains ne considèrent qu’une seule
évolution de trafic. D’autres ne s’intéressent qu’à l’évolution de la topologie
logique et le routage des données n’est pas effectué. La reconfiguration en
temps réel est également abordée : le problème est résolu, mais sans qu’il n’y
ait vraiment d’optimisation des ressources ou du nombre de reconfigurations.
Finalement, d’autres travaux abordent le problème de la reconfiguration
défini de la même façon que nous, mais en se restreignant à certains cas
particuliers. Notons qu’un problème similaire est parfois trouvé sous le nom
de Groupage de trafic dynamique (Dynamic traffic grooming).

De manière plus spécifique, nous nous intéressons au problème suivant :
nous considérons un réseau multifibre WDM de topologie quelconque. Chaque
fibre peut transporter un certain nombre de liens optiques, c’est-à-dire de
canaux capables de transporter de l’information, transportés par une lon-
gueur d’onde. Nous disposons d’une succession de matrices de trafic de type
all-to-all, une pour chaque période de temps considérée. Nous supposons
que les évolutions futures du trafic sont connues. Pour chaque période de
temps, nous calculons une topologie virtuelle et un routage des données à
sauts multiples (multihop). Parmi les solutions possibles, nous choisissons
la meilleure par rapport à une métrique. Deux approches différentes sont
considérées. La première traite le problème comme un problème d’optimisa-
tion mono-objectif : une métrique est choisie initialement et le problème est
résolu. La seconde approche revient à considérer simultanément l’ensemble
des métriques possibles et à rechercher un ensemble de solutions présentant
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les différents compromis intéressants.

Plusieurs métriques peuvent être considérées pour le problème de la re-
configuration. On peut chercher à minimiser le nombre de liens optiques uti-
lisés, ce qui correspond à minimiser la charge du réseau. On peut chercher à
minimiser le nombre de chemins optiques, ce qui a une influence directe sur
le coût des routeurs installés. Diminuer la charge maximum des liens permet
de répartir le trafic sur l’ensemble du réseau, donnant plus de flexibilité à
l’administration du réseau. Diminuer le nombre moyen de sauts permet de
réduire le délai de transmission des données sur le réseau. Finalement, on
peut avoir pour but de minimiser le nombre de reconfigurations à appliquer.

Le problème mono-objectif de la reconfiguration

Dans un premier temps, nous considérons le problème comme un pro-
blème d’optimisation mono-objectif. Nous proposons un modèle mathéma-
tique en programmation linéaire mixte et entière. La plupart des formula-
tions utilisées pour des problèmes similaires au problème de la reconfigura-
tion sont des formulations flots origine-destination. Avec une telle formula-
tion, une commodité est définie pour le trafic associé à chaque paire “origine-
destination”. En conséquence, le nombre de variables et de contraintes défi-
nies est très élevé. Afin d’obtenir un modèle plus concis, nous proposons une
formulation source. Dans ce cas, une commodité est définie pour le trafic
associé à chaque origine. Les deux formulations sont équivalentes lorsque le
coût de chaque arête ne dépend pas de la commodité, ce qui est notre cas.

Notre formulation mathématique inclut des contraintes permettant la
définition de la topologie virtuelle, un ensemble de contraintes servant à
effectuer le routage des données et un ensemble de contraintes définissant la
reconfiguration de la topologie virtuelle. Nous exprimons également les cinq
métriques mentionnées précédemment. Certaines variables de notre modèle
sont entières, ce qui rend généralement la recherche de solution plus difficile.
Parmi ces variables entières, certaines peuvent être relâchée : elles prendront
des valeurs entières dans la solution optimale.

Nous proposons également plusieurs extensions à notre modèle. Un type
d’extensions est dit technologique. Il consiste à rendre le modèle mathéma-
tique plus réaliste. Nous proposons trois extensions à ce modèle. On peut
souhaiter limiter le nombre d’émetteurs et de récepteurs LASERS à installer
en chaque nœud, étant donné que ce sont des équipements coûteux. Nous
proposons la formulation mathématique de la contrainte à ajouter à notre
modèle remplissant ce rôle. Nous proposons également une extension afin
de ne pas compter la libération d’un lien optique comme reconfiguration.
Finalement, nous proposons une extension imposant un taux de remplissage
minimum dans les chemins optiques.

Nous proposons également des coupes, afin de réduire l’espace à explorer
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lors de la recherche de la solution optimale. Une première coupe consiste à
mettre en relation des variables de flots et le nombre de chemins optiques
définis. Une seconde coupe revient à obtenir une limite inférieure au nombre
de chemins optiques sortant d’un nœud en considérant la quantité totale de
trafic dont le nœud en question est à l’origine. Une coupe similaire est définie,
donnant une limite inférieure au nombre de chemins optiques arrivant en
un nœud. Finalement, nous proposons une coupe permettant de supprimer
des solutions équivalentes à une solution trouvée, obtenues simplement par
permutation des longueurs d’onde utilisées.

Nous définissons une borne inférieure pour notre problème. Cette borne
est obtenue en résolvant le problème de la reconfiguration en modifiant le
réseau de départ. La modification considérée revient à remplacer un lien
contenant plusieurs fibres, chacune capable de transporter plusieurs lon-
gueurs d’onde, par un lien contenant de nombreuses fibres, chacune capable
de ne transporter qu’une seule longueur d’onde. Cela revient à supprimer
la contrainte empêchant deux chemins optiques de même longueur d’onde
d’emprunter la même fibre.

Malgré la concision de notre modèle, le problème de la reconfiguration
est un problème complexe, et il est difficile, sinon impossible, de le résoudre
avec de grandes instances. Pour palier à ce problème, nous proposons deux
heuristiques.

La première est une heuristique gloutonne, c’est-à-dire un algorithme
constructif. À une étape donnée nous choisissons la solution qui nous semble
la plus intéressante, sans considérer les possibles conséquences de notre choix.
Ce type d’algorithme est très simple et généralement très rapide. L’algo-
rithme que nous décrivons a été pensé de façon à favoriser les routages de
données monosauts.

La seconde heuristique proposée est basée sur le Recuit simulé (Simula-
ted annealing). Nous associons au problème une température qui décrôıt au
fur et à mesure de l’exécution de l’algorithme. Nous effectuons une recherche
locale. Lorsqu’une solution meilleure que les solutions obtenues jusqu’à pré-
sent est trouvée, elle est conservée. Lorsqu’une solution est moins bonne que
la meilleure solution obtenue jusqu’à présent, elle est conservée avec une
certaine probabilité. Elle dépend de la valeur de la température, de façon à
ce qu’au début de l’algorithme cette probabilité soit relativement élevée, et
qu’en fin d’algorithme elle soit faible. Ainsi, en début d’algorithme des so-
lutions très variées sont explorées, alors qu’en fin d’algorithme l’exploration
des solutions est beaucoup plus sélectif.

Problème mono-objectif : résultats expérimentaux

Nous effectuons de nombreux tests afin d’étudier les performances de la
résolution du modèle mathématique, des coupes et de la borne inférieure
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proposés. Nous cherchons à déterminer quelle est l’influence des extensions
proposées et si les heuristiques décrites sont efficaces. Pour ce faire, nous
utilisons huit topologies différentes, la plus petite ayant 7 nœuds et 20 liens,
la plus grande ayant 50 nœuds et 250 liens. Les trafics considérés sont générés
aléatoirement. Nous résolvons nos problèmes sur un PC de bureau équipé
d’un gigaoctet de RAM. Pour résoudre les instances décrites par le modèle
mathématique, nous utilisons le solveur Cplex2 version 9, avec une limite de
temps.

Nous comparons d’abord la formulation source que nous proposons avec
une formulation plus classique “origine-destination”. Les problèmes générés
avec la formulation source sont plus compacts qu’avec la formulation clas-
sique : le nombre de variables et de contraintes est nettement plus faible. Le
temps de calcul nécessaire à la résolution du problème est plus élevé avec la
formulation classique. En temps limité, la solution obtenues avec la formu-
lation source dans la grande majorité des cas meilleure. Avec la formulation
source, nous sommes capables de résoudre des problèmes de taille supérieure
qu’avec la formulation classique.

Nous nous intéressons ensuite à l’influence des métriques et à l’efficacité
des coupes présentées. Le temps de calcul nécessaire à la résolution du pro-
blème dépend grandement de la métrique choisie. Si l’on cherche à minimiser
le nombre de liens optiques ou le nombre de chemins optiques, le temps de
calcul est très élevé. Par contre, avec les métriques sur la charge des liens
ou le nombre de sauts, le temps de calcul est nettement plus faible. Minimi-
ser le nombre de reconfiguration est très rapidement résolu avec des petites
instances, mais dès que la taille des instances augmente, le temps de calcul
devient très élevé.

La coupe mettant en relation le nombre de chemins optiques et les va-
riables de flux est plutôt peu intéressante : en temps limité, les résultats
obtenus avec la coupe sont pire que sans. Les coupes donnant une limite
inférieure au nombre de chemins optiques entrant et sortant d’un nœud sont
intéressantes : elle permette de diminuer le temps de calcul et d’améliorer
la qualité de la solution en temps limité. Par ailleurs, le gap, c’est-à-dire
l’incertitude sur la solution obtenue, est généralement plus faible que sans
la coupe. Finalement, la coupe qui permet d’éviter les solutions identiques à
une permutation près est d’un intérêt limité. Une des formulations de cette
coupe obtient de mauvais résultats, et l’autre obtient des résultats de qualité
similaire à ceux obtenus sans coupe.

La borne inférieure proposée obtient de bons résultats lorsque le proces-
sus de résolution du problème modifié arrive à son terme. Dans ces cas-là,
la solution obtenue est de qualité supérieure à celle obtenue par relaxation
linéaire. Dans certains cas cependant, nous n’arrivons pas à obtenir la so-
lution optimale de la borne inférieure, faisant que la valeur obtenue n’est

2Copyright c©Ilog 1997-2005. Cplex is a registered trademark of Ilog.
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d’aucun secours. Il s’avère que la borne inférieure proposée converge diffi-
cilement quand la métrique utilisée est le nombre de liens optiques ou le
nombre de chemins optiques.

Selon la métrique choisie comme fonction objectif, les caractéristiques
de la solution obtenue sont très différentes. Lorsque l’on minimise le nombre
de liens optiques, on obtient des solutions dont la charge n’est pas répartie.
Les chemins optiques sont courts et l’agrégation de trafic élevée. Le nombre
de reconfigurations à effectuer est relativement faible. Lorsque la métrique
choisie est le nombre de chemins optiques, la solution contient un ensemble
de longs chemins optiques point à point complètement remplis, et un en-
semble de très courts chemins optiques contenant ce qu’il reste du trafic. Si
l’on minimise la charge maximum, on trouve les solutions ayant la charge la
mieux répartie sur le réseau. Cependant, de telles solutions utilisent beau-
coup de ressources et le nombre de reconfigurations est élevé. Minimiser le
nombre moyen de sauts tend à créer de longs et directs chemins optiques, ce
qui se répercute sur le nombre de reconfigurations qui est élevé. Finalement,
si l’on chercher à minimiser le nombre de reconfigurations à effectuer, on ob-
tient des solutions utilisant un très grand nombre de ressources, de manière
à toujours avoir des chemins optiques disponibles. Du coup, le nombre de
reconfigurations à effectuer est nul.

Nous nous intéressons également à l’influence de la topologie et du trafic
sur le solveur chargé de chercher la solution du problème. Le type de trafic
ou la topologie du réseau ne semble pas changer la difficulté de résolution
du problème. Seule la densité du trafic semble avoir une influence lorsque
nous minimisons le nombre de reconfigurations.

Nous nous intéressons ensuite aux différentes extensions technologiques
décrites précédemment. Limiter le nombre de récepteurs et de transmetteurs
rend le problème plus difficile à résoudre, particulièrement lorsque ce nombre
est serré, c’est-à-dire lorsqu’il est proche du minimum tel que le problème
admette toujours une solution. Cependant, l’influence d’une telle restriction
est faible.

Ne pas considérer pas comme une reconfiguration le fait de libérer des
ressources n’a d’influence que lorsque l’on minimise le nombre de reconfi-
gurations. Dans ce cas-là, on observe qu’un nombre élevé de ressources est
alloué au début lors de la première période de temps, et les ressources sont
progressivement libérées lorsqu’elle ne sont plus utiles.

Lorsque l’on chercher à imposer un taux de remplissage minimum pour
les chemins optiques, le solveur augmente “artificiellement” la longueur du
routage, de façon à augmenter le taux d’occupation des chemins optiques.

Nous comparons les solutions obtenues par les heuristiques à celles obte-
nues par le modèle. Le recuit simulé est capable de fournir des solutions de
qualité très comparable à celles obtenues en résolvant le modèle mathéma-
tique, pour un temps de calcul nettement plus faible. Par ailleurs, le recuit
simulé est capable de résoudre des instances de nettement plus grande taille
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que le modèle mathématique. L’algorithme glouton est très rapide, mais
trouve des solutions de qualité inférieure au recuit simulé ou au modèle
mathématique. En fait, les solutions trouvées par l’algorithme glouton cor-
respondent à un compromis entre les ressources utilisées et le nombre de
reconfigurations à effectuer. Lors de la définition de la topologie logique,
l’algorithme glouton trouve une bonne solution. Cependant, lors du passage
à la seconde période de temps, la qualité de la topologie virtuelle trouvée par
l’algorithme glouton est en retrait par rapport à celle trouvée par le solveur.

Le problème multiobjectif de la reconfiguration

Le problème de la reconfiguration admet plusieurs métriques différentes.
Selon la métrique choisie comme fonction objectif, le résultat obtenu pré-
sente des caractéristiques différentes. Cela peut être problématique, et on
peut être tenté d’imposer des contraintes supplémentaires au modèle afin
d’éviter des solutions finalement peu intéressantes. Cependant, ajouter de
telles restrictions supplémentaires nécessite une grande connaissance du mo-
dèle mathématique, et peut malgré tout mener à des résultats indésirables.

Par ailleurs, le choix d’une métrique étant généralement fait a priori
avant le processus de résolution, le décideur ne dispose d’aucune idée de
la performance de la solution obtenue par rapport aux autres métriques
possibles. Cette approche manque de flexibilité. L’optimisation multiobjectif,
également appelé optimisation vectorielle, permet d’éviter ce problème. On
ne calcule pas une unique solution, mais un ensemble de “bonnes” solutions.
Une telle approche permet d’obtenir des informations importantes, comme
la relation qu’ont les différentes métriques entre elles.

Un problème d’optimisation multiobjectif est un problème d’optimisation
dont la fonction objectif est vectorielle, par opposition aux problèmes d’opti-
misation mono-objectifs dont la fonction objectif est scalaire. Par conséquent
de ce fait, il n’existe a priori pas de“meilleure solution”, mais un ensemble de
meilleures solutions. Cet ensemble porte de nom d’ensemble de Pareto On dit
qu’un point est dominé s’il existe un autre point obtenant de meilleures per-
formances avec toutes les métriques considérées simultanément. L’ensemble
de Pareto est constitué des points qui ne sont pas dominés. Cela signifie que
si l’on choisit deux point de l’ensemble de Pareto, le premier obtiendra de
meilleures performances que l’autre par rapport à une métrique, et de moins
bonnes performances par rapport à une autre métrique. Autrement dit, on
ne peut améliorer les performances d’une solution appartenant à l’ensemble
de Pareto par rapport à une métrique qu’en diminuant ses performances
par rapport à une autre métrique. On appelle point idéal le point dont les
coordonnées correspondent à la valeur optimal de chaque métrique. Un tel
point n’admet généralement pas de solutions : cela signifierait qu’il existe
une solution obtenant les meilleures performances possible simultanément
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avec chaque métrique.
Le problème de la reconfiguration est un problème combinatoire. Cer-

taines variables prennent des valeurs discrètes. Par conséquent, l’ensemble
de Pareto n’est pas forcément continu, ce qui peut être problématique pour
certains algorithmes multiobjectifs.

Résoudre un problème multiobjectif revient à recherche l’ensemble de
Pareto. Une fois cet ensemble identifié, le décideur peut choisir la solution
qui lui semble la meilleure. Généralement, il n’est pas possible d’identifier
analytiquement l’ensemble de Pareto. On cherche alors à en obtenir une
approximation, en calculant des points qui lui appartiennent.

Pour ce faire, on peut résoudre des problèmes d’optimisation mono-
objectifs, modifiés de façon à ce que leur solution optimale appartienne à
l’ensemble de Pareto. Dans cette optique, il existe plusieurs méthodes. On
peut donner des poids aux différentes métriques et résoudre le problème d’op-
timisation dont la fonction objectif est la somme pondérée des métriques. En
modifiant la valeur des poids, on obtient des solutions différentes apparte-
nant à l’ensemble de Pareto. Cette méthode est très simple. Dans le cas d’un
ensemble de Pareto non-convexe, certains points ne seront jamais obtenus.

Une autre possibilité consiste à définir à partir du point idéal une di-
rection, et à minimiser la distance entre l’espace solution et ce point idéal.
Selon la direction choisie, un point ou un autre de l’ensemble de Pareto sera
obtenu. Cette méthode est appelée méthode des relaxations. Cependant, elle
ne nous est pas apparue très adaptée aux problèmes combinatoires. En effet,
elle peut retourner des points qui sont dominés. De plus, afin de réduire le
nombre de variables entières de notre modèle, nous relâchons la contrainte
d’intégralité de certaines variables. Cela ne pose pas problème lorsque l’on
a comme fonction objectif l’optimisation d’un critère de performance. Mais
la méthode des relaxations utilise une fonction objectif radicalement diffé-
rente (la distance d’un point à l’ensemble des solutions) et l’intégralité des
variables relâchées n’est plus garantie.

Une troisième possible méthode revient à ajouter des contraintes supplé-
mentaires afin “d’empêcher” le solveur de trouver la solution optimale par
rapport à une métrique. Cette méthode porte le nom de méthode ǫ−restreinte.
Le problème de cette méthode est qu’elle peut générer des problèmes sans
solution lorsque l’on considère trois ou plus de trois objectifs simultanément.

Afin de résoudre le problème multiobjectif de la reconfiguration, nous
adaptons la méthode ǫ-restreinte. Nous définissons la notion de successeur et
de prédécesseur, ce qui nous permet d’ordonner un ensemble de ǫ−vecteurs.
Nous décrivons un algorithme permettant de générer un ensemble de ǫ−vec-
teurs de façon à garantir que cela ne rende pas le problème sans solution.
Nous ordonnons cet ensemble de ǫ−vecteurs avec le concept de successeur.
Puis nous résolvons un par un les ǫ-problèmes, dans l’ordre. Cela nous per-
met de fournir une solution initiale au problème. Notre algorithme améliore
de deux façons les méthodes ǫ−restreintes défauts, puisqu’il garantit la fai-
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sabilité des problèmes générés et il fournit une solution initiale à chaque
problème. Cependant, il reste le problème du choix des ǫ−vecteurs. Un autre
problème vient de l’incertitude quant au nombre de ǫ−vecteurs nécessaires
à l’obtention d’une bonne approximation de l’ensemble de Pareto. Dernier
point d’incertitude : il n’est pas prouvé que notre méthode soit capable de
décrire dans son intégralité l’ensemble de Pareto.

Les méthodes décrites ci-dessus ont toutes le même fonctionnement :
on modifie le problème à résoudre d’une certaine façon, puis on résout le
problème modifié en utilisant des méthodes d’optimisation mono-objectif.
Une telle approche peut être coûteuse en terme de temps de calcul. On peut
vouloir définir un processus qui en une seule exécution renvoie de nombreux
points appartenant à l’ensemble de Pareto. C’est possible en utilisant des
algorithmes évolutifs, tels que les algorithmes génétiques.

Pour cette approche du problème, nous résolvons un sous-problème au
problème de la reconfiguration tel que nous l’avons décrit jusqu’à présent :
nous résolvons un problème de définition multipériode de topologie virtuelle.

Les algorithmes évolutifs fonctionnent de la façon suivante : on définit
d’abord une population. Chaque individu de la population représente une
possible solution au problème. Cette population évolue grâce à des opéra-
tions génétiques. Une mutation est une altération aléatoire de l’individu. À
partir de deux individus, un croisement génère deux nouveaux individus.
La qualité d’un individu est évaluée avec une fonction fitness. À chaque ité-
ration de l’algorithme, de nouveaux individus sont générés. Certains de ces
individus sont sélectionnés et servent de population de base pour l’itération
suivante. Avec une fonction fitness adéquat, il est possible de faire évoluer
l’ensemble de la population vers l’ensemble de Pareto. Le principal problème
issu de l’utilisation d’algorithmes génétiques est l’absence de garantie quant
à la qualité des solutions obtenues.

Il existe plusieurs variantes d’algorithme évolutifs résolvant des pro-
blèmes multiobjectifs. Nous avons choisi d’utiliser l’algorithme SPEA (Stren-
gth Pareto Evolutionary Algorithm), qui conserve une population externe de
solutions non-dominées. Les opérations génétiques sont appliquées tant sur
les individus de la population principale que sur les individus de la popula-
tion externe.

Nous décrivons la façon dont nous encodons une solution en un chromo-
some, ainsi que la façon dont nous réalisons les différentes opérations géné-
tiques. L’allocation des longueurs d’onde n’est pas intégrée au chromosome,
mais est calculée de manière séparée en utilisant un algorithme glouton. Par
ailleurs, afin d’éviter que la population externe ne contienne trop d’éléments,
nous utilisons une procédure qui permet de supprimer des solutions lorsque
celles-ci sont très similaires. La population initiale est générée de manière
aléatoire.
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Problème multiobjectif : résultats expérimentaux

Dans un premier temps, nous effectuons une étude multiobjectif superfi-
cielle du problème de la reconfiguration à l’aide de la méthode des objectifs
pondérés. Nous utilisons le solveur et notre implémentation de l’algorithme
du recuit simulé afin de résoudre les différents problèmes générés. Utiliser
comme fonction objectif une somme pondérée de métriques semblent rendre
le problème plus difficile à résoudre. Cependant, elle nous permet d’obtenir
des compromis intéressants.

Nous effectuons ensuite une étude multiobjectif plus poussée utilisant
notre algorithme basé sur la méthode ǫ-restreinte. Pour deux instances, nous
générons de nombreux problèmes que nous résolvons. Pour chaque instance,
nous obtenons de nombreux points de l’ensemble de Pareto, mais également
des solutions dominées et des solutions en double. Ces solutions identiques
apparaissent lorsque les ǫ−vecteurs sont trop proches les unes des autres,
ou lorsque le solveur n’arrive pas à trouver une nouvelle solution dans le
temps imparti. Nous obtenons cependant de nombreuses solutions différentes
présentant des compromis différents.

Nous effectuons également de nombreux tests avec l’algorithme évolutif
SPEA. Le nombre de générations nécessaires à la convergence de l’algorithme
dépend de la taille de l’instance. Alors que 1000 générations sont suffisantes
pour les plus petites instances, 1500 itérations sont nécessaires pour les plus
grandes. Au cours de l’exécution de l’algorithme on constate que la po-
pulation avance progressivement et dans son ensemble vers l’ensemble de
Pareto. Il apparâıt que le compromis entre le nombre de ressources utilisées
et le nombre de reconfigurations n’est pas très marqué, au contraire de celui
entre la charge des liens et le nombre de reconfigurations. La relation entre
le nombre de ressources utilisées et la charge des liens est très forte.

Conclusion

Dans cette thèse, nous nous intéressons au problème de la reconfiguration
dans les réseaux optiques WDM. C’est un problème complexe qui inclut de
nombreux paramètres. Nous proposons un modèle mathématique utilisant
une formulation source pour le problème, des extensions technologiques, des
coupes et une borne inférieure. Nous proposons également une heuristique
gloutonne et une heuristique basée sur le recuit simulé. Nous effectuons
de nombreux tests afin d’identifier l’influence et l’efficacité des différentes
propositions. Cependant, une approche mono-objectif est insuffisante pour
prendre en compte les différents compromis impliqués par les différentes
métriques. Nous décrivons alors une approche multiobjectif. Nous proposons
un algorithme basé sur la méthode ǫ-vecteurs, et nous adaptons l’algorithme
SPEA. Nous faisons de nombreux tests illustrant l’efficacité de nos méthodes
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et donnant de nombreux compromis possibles.
Dans cette thèse Les travaux partent du principe que l’on connâıt à

l’avance les futurs trafics. C’est une hypothèse forte qu’il serait intéressant de
relâcher au moins partiellement, c’est-à-dire de concilier prévision et adap-
tation. Nous ne nous sommes également pas intéressé à la façon dont les
transitions d’une topologie virtuelle à une autre sont effectuées. Enfin, il se-
rait particulièrement intéressant de fournir un algorithme d’aide à la décision
afin d’aider le décideur à choisir parmi les différentes solutions de l’ensemble
de Pareto celle qui l’intéresse le plus.
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Chapter 1

Introduction

In the post-industrialized era, economy tends to develop services, which
heavily rely on telecommunication structures. Data transport networks have
been developing at a high rate since the end of World war II. The amount
of exchanged information constantly evolves and increases. Different tech-
nologies have been developed and used as a result of a constant search for
higher transmission rates, lower transmission delays and higher reliability.
Nowadays, high performance networks are built with optical fibers. Due
to various technical qualities, it is predominant for backbones, long-distance
high-speed networks.

However, installing a large-scale optical network is an expensive and
difficult infrastructure operation. The structure of the network as well as its
exploitation has to be carefully designed and studied in order to go with the
traffic and its evolutions all over the network lifespan. Our work takes place
in this context: We are dealing with problems coming from the evolution of
traffic over time on an existing optical network.

1.1 General context

In this section, we describe the recent history of telecommunication and
how it leads to the use of optical fiber based networks.

1.1.1 Development of networking

The end of the eighteen century defines the beginning of an intense tech-
nological development in the area of telecommunications. Claude Chappe
presented a project of optical telegraph to the French legislative assembly at
the end of the eighteenth century. The French government needed a fast and
efficient communication way. This system was composed of poles and mobile
arms that could take various positions. Based on a specific code, it allowed
the French government to transmit orders in a very short time [EB80].

1
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During the nineteenth century, many technological breakthroughs led
to the electrical telegraph as we know it. Samuel Morse achieved the first
communication between Washington DC and Baltimore in 1844. Quickly
adopted and developed, electrical telegraph contributed towards the first in-
dustrial revolution. The first transatlantic cable was installed in 1865. Gra-
ham Bell patented the telephone in 1876. In 1878, James Clerk Maxwell’s
works about electromagnetic radio-waves initiated research about radio-
transmission.

In the beginning of the twentieth century, a telecommunication revolu-
tion occurred with the introduction of electronics. The transistor appeared
in 1947, and the micro-chip in 1960. In 1962 was launched Telstar, the first
telecommunication satellite, usable only a few hours per day due to its orbit.
During the years 1970-1980, telecommunication networks were based almost
exclusively on coaxial cables and radio. The transition between analogue
and digital communication happened at the same time. Digital communica-
tion allows to increase the number of channels transmitted simultaneously
by using efficient multiplexing techniques. It allows to integrate services by
transmitting at the same time information of different kinds such as voice,
image, text, data [Tél02b].

The LASER (Light Amplification by Stimulated Emission of Radiation)
was invented in 1961. It is the dawning of research about optical fibers.
Optical high speed networks, of 180 Megabits per second (Mbps) and then
540Mbps, were first installed in the late eighties. The idea of fully optical
transport network appeared in the nineties. In 1990 also appeared the World
Wide Web. The cellular phones were widely adopted during the nineties.

New trends are continuously appearing such as generalized broadband
access, even for cellular and wireless devices, convergence of the media trans-
mission and development of network-based services. The importance of the
telecommunication in the world is increasing. The telecommunication mar-
ket now weights billions of dollars [otEC03], as shown on Figure 1.1. The
European Union telecommunication market was estimated to 251 billions
euros in 2003. Considerable investments are realized by many companies
to build and maintain telecommunication infrastructures. Optical networks
represent one of the major elements of the overall telecommunication scheme.

1.1.2 Why optical networks?

The use of optical fiber as a medium really increased in the nineties. As
a consequence of fast technological development and large capacity optical
systems, first all optical transport networks were built in 1993. Nowadays
optical fiber networks have overcome any other transmission technology for
large-scale networks [Tél02b].

Basically, the structure of any communication in a network is the same
(see Figure 1.2). The data to be transmitted is encoded and sent to a
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Figure 1.2: Structure of a telecommunication network

transmitter, where it is modulated, and then transmitted in a medium. The
signal reaches a receiver where it is demodulated and decoded. Eventually, if
the distance to be covered is very long, the signal may go across intermediary
amplifiers [EB80].

Optical fiber offers some decisive quality in relation with other technolo-
gies:

• The bandwidth theoretically reachable is very high, in the order of
100Tbps (Terabits per second) [MS01];

• The error rate is low, offering a reliable communication medium;

• The energy dissipation is very low, resulting in distant amplifiers and
relays (more than 50 kilometers) [RS98];

3



CHAPTER 1. INTRODUCTION

• The optical signal is insensitive to any kind of electromagnetic inter-
ferences;

• An optical fiber is light and thin, allowing to assemble tenth of fibers
in a single cable;

• It offers a relative security against active and passive attacks, as it
is almost impossible to listen to the canal without interrupting the
optical communication.

For all these reasons, the optical fiber is the most used medium for
long-distance and high bandwidth networks. The backbones rely on such
technology and, as the time goes on, the optical fiber is always closer to the
end user. The metropolitan and access networks are more and more based
on optical fiber.

1.2 Technological context

In this section, we give an overview of the technological aspects related
to optical networks.

1.2.1 Optical fiber technology

In optical networks, information is modulated on coherent monochro-
matic rays of light. Those rays are emitted by LASER, and have a specific
wavelength. We say that the signal is transmitted over a wavelength λ. The
transmission medium can be either free space or optical fiber.

Free space is for very small distances (few centimeters). Rays of light are
guided with lenses and mirrors. Such technology is used for interconnection
systems [MMHE93].

Optical fiber is a glass or plastic wire able to conduct rays of light over
long distance. The first generation of optical fibers use geometric optics
to conduct the ray of light. Optical fibers are build in a way that avoids
the refraction when a ray of light reaches the border of the fiber. It is
reflected inside the fiber with almost no energy dissipation, until reaching
its destination, as illustrated in Figure 1.3.

Second generation of optical fibers have a core diameter of the same
order of the value λ. The geometric optics laws do not apply in this context,
and it is necessary to study the propagation of electromagnetic waves, as
described by Maxwell’s equations, to explain how a ray of light propagate
over a long distance. Informally speaking, the index of the material varies
smoothly in a way that maintains the ray of light in the center of the fiber.
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n2

n1

Figure 1.3: Propagation of two rays of light in a first generation optical fiber

1.2.2 Multifiber networks

Installing a large-scale telecommunication network is expensive. For in-
stance the cost of a North-American network covering 15 cities was esti-
mated to 200 millions dollars [Tél02a]. An important part of the expenses
comes from the infrastructure operations: digging and installing cables. The
thinness of an optical fiber allows a single cable to contain tenth of fibers.
Consequently companies generally install many optical fibers at the same
time, even if it is not required.

Installing multifiber networks offers interesting possibilities for the car-
rier companies. Some of the fibers can be dedicated to specific protection
schemes. Some other fibers can be rented as dedicated links to large compa-
nies or organizations. The carrier can also face a temporary or permanent
traffic increasing using those additional fibers.

1.2.3 Connection oriented communication

The bandwidth offered by optical technology is very high, and one limita-
tion comes from the electronic part of the transmission scheme. The devices
that are able to deal with tenths of Gigabits per seconds are very expensive.
Moreover, high-speed backbone networks deal with aggregated data streams.
It provides a certain stability in the traffic and the evolutions in the traffic
pattern, if any, occur smoothly. Connection oriented communication with
pre-established routes is a way to reduce the amount of processing in this
context of slow variations.

There are researches developed in order to implement an Internet Proto-
col (IP) layer directly on the optical layer. This would make communications
in the optical network much more dynamic, since with IP connections have
generally a short lifetime. However, it would require being able to perform
efficient optical routing, which is is not yet feasible technologically. IP is
a packet-switching protocol. No connection setup is needed before a node
sends packets to another node. The intermediate nodes have to perform the
routing. Routing optically the packets is not yet feasible technologically, and
routing electronically the packets would require very expensive equipments.
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1.2.4 Evolving traffic

It has been noted that bandwidth requirements evolve with time, both
in short-term and in long-term. During working hours and working days,
the traffic is generally higher than during the night or week-end. The emer-
gence of new kinds of applications (multimedia diffusion, voice over IP, etc)
and the decreasing price for broadband access causes the traffic to increase
continuously on the long-term.

Depending on the time-window considered, the traffic can vary around a
base traffic (short time-window) or increase continuously (long time-window).
A network has to be able to go along with this evolution all along its lifes-
pan. The fact that the traffic will evolve has to be taken into account in
the network design. But as it may be impossible to foresee some evolutions
during the network design phase, it also has to be taken into account in the
network management phase.

1.2.5 WDM networks

Wavelength Division Multiplexing (WDM ) revolutionized the use of op-
tical technology for data transmission. It is a frequency multiplexing specific
to optical technology. Each signal is modulated with a LASER of specific
wavelength and sent in the optical fiber. Various channels can be transmit-
ted simultaneously in a unique fiber as long as the used wavelengths are
different. Figure 1.4 represents such multiplexing technique: three signals
are modulated in three different colors, but are transmitted at the same time
in a unique fiber.

t

t

t t

t

t

t

freq

Figure 1.4: A single optical fiber transmits different independent wave-
lengths

With this technology commercial equipments are able to have an overall
throughput greater than one Terabits per second. Transmission rates of 10
Tbps have already been achieved with experimental equipments [FCI+02].

WDM also allows a telecommunication company to expand the capacity
of a network without laying more fibers. The capacity of a given link can
be expanded by changing the multiplexers and demultiplexers at each end.
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1.2.6 Virtual topology

The WDM technology emphasizes the importance of the optical layer
responsible for transmitting the signal [RS98]. It is composed of the virtual
topology, overtaking the point-to-point connection restriction. Within this
layer, no electronic processing is performed. Such processing is avoided
because it has some serious drawbacks. It requires optical-electrical-optical
(O-E-O) conversion which introduces a delay. Such conversion depends on
the way the signal has been modulated. Finally electronic devices that are
able to process signals at very high bit rates are expensive.

A fully optical layer has some specific characteristics, as:

• Independence of the wavelengths: Wavelengths are managed indepen-
dently one from another. The signal contained in one wavelength is
completely independent from the signal contained in another wave-
length;

• Wavelength reuse: The same wavelength can carry two distinct signals
in two different places of the network;

• Transparency of the optical layer : The optical layer is independent of
the modulation of the signal. It treats the signal independently of its
content (bit rate, protocol, codification);

• Reliability and protection mechanisms in order to provide a robust
system against failures.

The virtual topology, also called logical topology, is constituted of light-
paths. A lightpath is a connection between a pair of network nodes. It can
be direct (point to point) or indirect (the lightpath goes across a succession
of intermediate nodes). From a logical point of view, a lightpath from node A
to node B represents an indivisible link from A to B, independently from
going across intermediate nodes or not. This is illustrated on Figure 1.5(a),
which shows a physical topology and the way the lightpaths are defined, and
Figure 1.5(b) which shows the resulting virtual topology. Data to be sent
from node 2 to node 3 will go through node 1 or node 4, even though there
exists a direct link between node 2 and 3 on the physical topology.

Developing an optical layer allows to turn two nodes, non-adjacent in
the physical topology, into two adjacent nodes from a logical point of view.
Data using a logical direct link will not suffer from O-E-O conversion.

A single optical fiber cannot carry simultaneously two lightpaths using
the same wavelength. Moreover, the wavelength remains the same all along
the lightpath. This last constraint is known as wavelength continuity con-
straint.

Technically, using different wavelengths along a same lightpath is possi-
ble. Converters, which are expensive devices, have to be added. As optical
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(a) Physical topology and a set of
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(b) The associated logical topology

Figure 1.5: From physical to logical topology

converters are still prototypes and are not commercially available, O-E-O
conversions are required, which introduces delay.

Technologically, lightpaths are implemented statically via add-and-drops
(the device responsible for modulating and demodulating the electrical sig-
nal on a wavelength) and switches (devices responsible for forwarding the
signal). Generally, wavelengths are demultiplexed before entering a switch,
where they are split and recombined. Then they are multiplexed in a differ-
ent manner.

1.3 Document structure

In chapter 2, we describe the main problem that we focus on, the recon-
figuration problem. It is based on the Virtual Topology Design and Routing
problem (VTDR problem), which consists in finding a configuration for a
network in order to transmit data. It is a core problem for the efficient use
in telecommunication backbones.

In chapter 3 we focus on the mono-objective aspect of the reconfiguration
problem. We propose a mathematical model to solve it. We also provide
some extensions to this model. These extensions can be technological or
related to the method chosen to solve the problem. Due to the complexity
of the problem, it is unlikely that we succeed in solving large instances
of the problem based on exact methods. To address such situation, we
propose a simple and straightforward greedy algorithm and a probabilistic
metaheuristic based on simulated annealing.

In chapter 4, we present computational results obtained with the math-
ematical model and the heuristics presented in chapter 3. We make exper-
iments with different network topologies, allowing us to obtain interesting
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conclusions about the reconfiguration problem.
The problem involves different metrics, leading us to use multiobjective

optimization. Instead of focusing on a single objective for the problem,
we consider at the same time several objectives. Such approach allows to
find relationships between different metrics and provides a large amount of
information useful for the decision maker. We describe the mathematical
background in chapter 5 and we propose an algorithm based on our math-
ematical formulation performing such multiobjective optimization. We also
adapt an evolutionary algorithm to our problem.

In chapter 6, we report computational results exploring multiobjective
optimization. We make experiments in order to identify interesting trade-
offs of our problem. We are able to identify relationship between different
metrics, providing valuable knowledge that can help the decision maker when
he comes to deal with traffic evolution.

Finally, we conclude this thesis in chapter 7.

1.4 Contributions

The following elements are the main contributions of our thesis:

• we propose a source formulation for the multiperiod reconfiguration
problem in multifiber optical networks;

• we adapt some extensions and cuts to our mathematical formulation ;

• we propose a cut to avoid part of the solutions that can be obtained
by permutation from a base solution;

• we explore various aspects of the problem, considering various metrics;

• we adapt the simulated annealing metaheuristic to the multiperiod
reconfiguration problem;

• we propose an algorithm based on the ǫ-restricted method in order to
search for solutions belonging to the Pareto frontier;

• we adapt an evolutionary algorithm for the context of multiperiod
virtual topology design and routing problem.
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Chapter 2

The reconfiguration problem
in multifiber WDM networks

In this chapter, we present the reconfiguration problem in multifiber
WDM networks. It comes from the fact that the carried traffic in a network
evolves with the time, and consists in studying how to alter the configuration
of the network. The problem associated with the configuration of an optical
network, the virtual topology design and routing problem, is first described.

Different traffic evolution models, based on collected data, are presented.
It allows us to define more precisely the reconfiguration problem. We make
a bibliographic study of the problem, emphasizing different points of view
from different works from the literature. Many metrics can be considered to
measure the quality of a solution. We present the set of metrics that we use
in our thesis.

2.1 Related problems

In this section, we present the different optimization problems that lead
to the reconfiguration problem, before giving its definition.

2.1.1 The VTD problem

The Virtual Topology Design (VTD) problem can be defined as: given
a physical topology, what is the set of lightpaths providing the best perfor-
mance based on a given metric (Cost of the network, used resources, quality
of service)? Which path on the physical topology should each lightpath
follow? Which wavelength should be assigned to it?

This problem has been proved to be NP-hard and is equivalent to the n-
graph coloring problem [CGK92] in the context of monofiber networks. The
structure of the problems is modified for a multifiber network. Increasing
the number of fibers per link often simplifies the routing of the lightpaths.
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The same physical link can be used by more than one lightpaths modulated
with the same wavelengths. which reduces the conflicts about the use of a
wavelength on a given physical link. However, even in the multifiber case,
the VTD problem remains NP-hard in most cases [LS01, FPR+03].

2.1.2 The routing problem

Each node of the network has data to send to other nodes. The routing
problem consists of defining which lightpaths will be used to transmit those
data from the origin nodes to the destination nodes, optimizing a perfor-
mance criterion. Each origin-destination pair defines a commodity. The
origin node is the node from which the data come from, and the destination
node is the node that will receive the data. This problem can be reduced
to a multicommodity flow formulation. A network flow is the assignment
of a flow to each edge of a graph. Each edge has a capacity, and the flow
conversation constraints have to be verified for each commodity. Except in
the source or in the demand node, the amount of flow entering a node has
to equal to the flow leaving the node. The complexity of the problem is
polynomial as long as the flows considered can be described by continuous
variables. When we consider integer flow formulation, the problem becomes
NP-hard.

2.1.3 The VTDR problem

The relationship between the virtual topology and the routing problems
is very strong, and it is common to consider both problems simultaneously.
The Virtual Topology Design and Routing (VTDR) problem is the union of
the virtual topology design and routing problems. Given a physical topol-
ogy, solving a VTDR problem consists in defining a set of lightpaths, the
path followed by each lightpath, the wavelength associated to it, and the
lightpaths that will transmit the data from their origin to their destination.
The VTDR problem is one of the key problems in the design of a WDM net-
work, and it has been widely studied in the literature. As it is an extension
of the virtual topology design problem, it is NP-hard.

There are many variations for this problem depending on the parameters
considered such as topology (ring, grid, mesh), the technical details (single-
hop or multihop, with or without wavelength converters) and the explored
metrics. A common mathematical formulation for this problem considers
the lightpaths as a multicommodity flow and the data as another flow on
the virtual topology [Ban96]. In the survey [DR00], the authors present a
mathematical model, some cuts and various heuristics about this problem.
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2.1.4 Traffic models

As mentioned in section 1.2.3, the traffic carried by large scale optical
networks is highly aggregated. The traffic sent by a node corresponds to the
aggregation of a very high number of small amount of data. Consequently,
it is likely that each node sends data to each other nodes and receives data
from each other nodes. This leads us to consider all-to-all traffic pattern.

There are various works studying worldwide network traffic. However,
there is no widespread agreement about its characteristics, due to the large
amount of data flowing on backbones and the difficulty to collect and analyze
these data in the nodes. Some models consider that traffic matrix from
different periods of time are not correlated and randomly generated (see
for instance [NTM00, BR99]). Other models try to simulate different kind
of situations by considering a day as a set of working hours, leisure hours,
night hours. One interesting work can be found in [RGK+02], where data
have been collected on a backbone network during more than one year. This
allowed the authors to quantify the traffic into regular predictable, and a
stochastic components. According to the authors, it generates good traffic
estimations.

Other consequence of the traffic aggregation is its continuous and slow
evolution. In this work we discretize such evolution, making it happen step
by step. We call time period the time between two evolutions, and it is
considered sufficiently long to implement a new virtual topology and alter
the routing.

We considered two different evolution patterns. In the first one, a base
traffic is first defined, and low evolutions are then defined. The second
evolution pattern is the same as the first one, except that in the low evolution
the traffic increases from one to the following time period.

2.2 The reconfiguration problem

Consequence of such traffic evolution, the initial virtual topology and
routing may not remain the optimal one, leading to a loss of performance or
congestion. Therefore it becomes necessary to change the routing and the
virtual topology and to reconfigure the network. The idea of using optical
network configurability, adapting the virtual topology and the routing to
the traffic, comes with the first optical networks (see [LA91] for instance).

The reconfiguration problem is finding out how to change the virtual
topology and the routing, to keep them optimal or to maintain a good
solution regarding to the traffic evolution. It may not be desirable to modify
the virtual topology completely due to its implications as it may generate
network interruptions which can result in high costs. Considering the huge
quantity of data flowing constantly in a backbone, such an interruption must
be as short as possible. The reconfiguration has to be sufficient without being
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excessive.
Actually, we are facing a problem where we have to consider the trade-

off between the number of changes to apply in the reconfiguration of the
network and the network performance. The virtual topologies are effectively
implemented via the configuration of the add-and-drops and switches. From
the description of a virtual topology, the configuration of these devices can be
deduced. We do not study how the transition between the different virtual
topologies will be carried out. There are different methods that can be used,
such as computing a succession of branch exchange operations until reaching
the new virtual topology [LHA94].

2.2.1 Unique reconfiguration

A set of works only consider the reconfiguration problem in the case of a
unique evolution, and not as a succession of evolutions. This reconfiguration
definition with a given all-to-all traffic pattern is considered in [BM00, KO00,
GM02]. Note that the VTDR problem can be seen as a reconfiguration from
a non existing configuration.

In [BM00] the computation of the new configuration is performed in two
phases: a configuration to minimize the resources allocated is computed first,
and then is computed a solution using this amount of resources, minimiz-
ing the number of changes with respect to the current solution. The same
approach has been explored in [RR00]. The reconfiguration of the virtual
topology is computed using metaheuristics in [KO00]. However, the authors
restrict themselves to regular grid topology. In [GM02] is proposed a Mixed
Integer Linear Programming (MILP) model performing one reconfiguration.
The authors focus on the adaptation of the virtual topology when traffic
evolutions happen, which are considered low but very frequent. The com-
puted virtual topology is at most one lightpath different from the previous
one. An adaptive heuristic for dynamic traffic is also proposed.

2.2.2 Reconfiguration restricted to virtual topology

Some works in the literature consider all-to-all traffic evolving but fo-
cusing only on the reconfiguration of the virtual topology. The routing of
data itself is not solved. A two phase algorithm is defined in [SMGM01].
The first phase consists in computing quickly a solution adapted to the new
traffic pattern. The obtained solution is improved during the second phase.
Both phases use local search. A local search algorithm starts from an ex-
isting solution and modify it slightly. If the new solution is better than the
previous one, it is kept. The process is repeated various times.

The trade-off between prevision and adaptation of the virtual topology is
studied in [GADO01]. Optimizing network costs for all periods at the same
time is compared with year by year optimization without any knowledge
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about future traffics. The focus of the article is not to solve efficiently the
problem, but to compare different strategies from the network management
point of view.

2.2.3 Dynamic reconfiguration

Real-time reconfiguration is a possibility to face dynamic traffic. Chang-
ing traffic may trigger some events. The configuration of the network is
an adaptation in response to the event. Such approach has been chosen
in [GPA+02, GM02, YR04] with all-to-all traffic. There is no way to per-
form in-depth resource optimization with this kind of algorithm. As the
algorithm is triggered by an event, the computation of the adaptation has
to be fast. Moreover without any knowledge of the future traffics it is not
possible to adapt the configuration of the network in a way that eases the
future adaptations. To have a knowledge about the future traffics implies
making prevision. Such aspect is not present in the cited papers. An inter-
esting discussion on the choice of an adaptation reconfiguration algorithm
to be used can be found in [YR02].

2.2.4 Similar problems

In some works, a problem, very similar as the one we consider, is solved
but in very specific cases. In [NTM00], the authors develop reconfiguration
algorithm for ring networks. The proposed algorithm is based on branch-
exchange techniques. In [BR01] a Markovian process is used to study the
trade-offs involved by the reconfiguration in single-hop broadcast WDM net-
works.

Similar problems may also be found in the literature under the name of
“dynamic traffic grooming”, as [ZZZM02, JPM03]. In both works, the au-
thors modify the initial network graph. The modifications consist in splitting
nodes to represent different parts of the optical devices (electronic process-
ing, purely optical router). It allows to use quite simple algorithms based on
the shortest path [ZZZM02] or to solve the problem with elegant mathemat-
ical model [JPM03]. Unfortunately, this latter mathematical model focuses
on the grooming and not on the reconfiguration.

A very interesting survey about the dynamic traffic grooming problem
can be found in [HD04]. However, it focuses on the “grooming” part of the
problem and does not mention many reconfiguration works. Moreover it
does not consider the multifiber case. A mathematical MILP formulation is
provided, which generates a very high number of variables and constraints.

2.2.5 Problem solved

In this work, we solve the following reconfiguration problem. We consider
a mesh multifiber WDM network and each fiber carries a given number of
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optical links. By optical link, we mean a channel able to carry information
from a node to one of its neighbors. It corresponds to the use of a wavelength
in a fiber linking two nodes. Each optical link can carry a given amount of
data. We are given a succession of all-to-all traffic evolution matrices, one
for each considered time period. In this work, we consider that the future
traffic evolutions are known.

For each time period we compute a virtual topology and a multihop
routing for the associated traffic matrix. There is a very large number of
different possibilities for these computations and we need a way to decide
which solution to consider. The quality of a solution can be evaluated with
different metrics taking into account the resources used, the transmission
delay and the difficulty to switch from a virtual topology to another.

We adopt two different approaches. We first consider the problem as
a mono-objective problem where we choose one metric and search for the
best solution according to it. We then consider the multiobjective approach,
which consists in taking into account all metrics at the same time. We search
for a set of best solutions and the relationship between the different metrics.

To our knowledge, there are few works based on exact methods for the
reconfiguration problem. Even though the trade-off between reconfiguration
and performance is regularly mentioned, few works make a comprehensive
study of this trade-off [GM02, BR01].

2.2.6 Network reconfiguration implementation

The way the network reconfigurations should be implemented and the
way the changes are propagated on the network is beyond the scope of this
work. Some articles from the literature addressed this problem. In [LHA94]
is computed a sequence of branch-exchange operations allowing to perform
the reconfiguration step by step in a way that is minimally disruptive to
the traffic. Such approach transforms the reconfiguration in a long process.
In [BR01] is proposed an algorithm for the context of single-hop optical
networks, aiming to minimize the negative effects on network performance
while keeping the length of the transition phase relatively small. In [YR02] is
proposed a model allowing to measure the consequences of a reconfiguration
strategy on both the control plane (changes in the virtual topology) and the
data plane (changes in the packet routing).

2.3 Metrics

A problem such as the reconfiguration problem involves many elements,
and a solution can be quantified according to various aspects, such as the
amount of resources used, the load of the network, the transmission delay or
the difficulty to switch from a configuration to other when the traffic matrix
changes.
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The choice of a metric is a strong hypothesis in an optimization work.
In this thesis we consider five metrics for the mono-objective approach and
the multiobjective approach. Four of the chosen metrics are related to the
physical configuration of the network, while the other one is reflects one
aspect of the quality of service offered by the network.

2.3.1 Number of optical links

The number of used optical links is a usual metric and represents directly
the load of the network. Each optical link is a resource in the network. If all
optical links are being used, no wavelength is available in the network and a
new request will be discarded. This metric is used for example in [ZZZM02].

2.3.2 Number of lightpaths

Used in [RR00, ZZZM02], this metric represents the number of lightpaths
required to implement the defined virtual topology. For each used lightpath,
a transmitter and a receiver is required. This has a direct influence on the
cost of the switches.

2.3.3 Maximum link load

Minimizing the maximum link load, expressed in number of lightpaths,
allows to balance the load between all the links or in a great part of the
links. It avoids having a small set of links carrying all lightpaths. Network
evolution and management is more flexible when the load is well-balanced,
since there is capacity available in all links. It allows to implement dedi-
cated protection schemes, to face a sudden traffic increase, to rent available
dedicated lines. This metric is used in [GM02].

2.3.4 Average number of hops

The number of hops of a demand from node s to node d is the number
of lightpaths that the data goes through. It has a direct influence on the
transmission time and delay. A signal goes through electronic devices only
when it enters or leaves a lightpath. Going through such devices is considered
as slow as O-E-O conversions are required. A low value for the average
number of hops is interesting from a quality of service point of view, as the
transmission delay is directly related with the number of hops a demand
makes. This metric is considered in [Ban96, GADO01].

2.3.5 Number of lightpath changes

All metrics above can be used for the VTDR problem. However, the
reconfiguration problem introduces some specific metrics such as the number
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of changes in the lightpath definitions. Such metric is a computation of the
cost implied by the reconfiguration to be carried out, and is used in [BM00,
RR00]. The changes in the allocation of the lightpaths is representative
of the reconfigurations to be implemented in the optical devices (add-and-
drops, switches).

2.4 Conclusion

We describe the reconfiguration problem in multifiber WDM networks
and how it is related to other optimization problems in WDM networks.
A bibliographical study of this problem is presented. We describe exactly
the solved problem and we introduce the metrics we use to evaluate the
performance of the solutions.

In the following chapter, we will consider this problem either as a mono-
objective optimization problem, for which we propose a mathematical model
and heuristics, or as a multiobjective optimization problem, for which we
propose an algorithm and adapt some heuristics.
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Chapter 3

Mono-objective
reconfiguration problem

In this chapter we focus on the reconfiguration problem as a mono-
objective optimization approach. One of the metrics described in the pre-
vious chapter is chosen and used as objective function to solve the recon-
figuration problem. We propose different methods to solve the problem.
We first present a mathematical formulation of the reconfiguration. With a
dedicated software, we are able to solve optimally instances of the reconfig-
uration problem.

We also propose some extensions to the mathematical model. Some
extensions aim to turn the modeling of the network more realistic. Other
extensions aim to reduce the computation time required to solve instances
of the reconfiguration problem. We also propose a lower bound for the
problem. Having a good lower bound allows to have a better evaluation of
the quality of a solution.

As the reconfiguration problem is complex and requires a high compu-
tation time, it may not be possible to obtain optimal solution for large
instances using optimization software to solve linear programming models.
To face such difficulty we propose two heuristics. The first one is a greedy
algorithm. It is a simple and straightforward heuristic. The second one is a
simulated annealing based heuristic. It is a more complex heuristic than the
greedy one able to handle large instances of the reconfiguration problem.

3.1 Mixed integer linear programming model

As a first approach of the problem, we propose a mathematical model
for the reconfiguration problem. It models any instance of the problem,
and with the use of an appropriate software, a solver, we can search for the
optimal solution. The model we propose is a Mixed Integer Linear Problem
(MILP), which means that it uses only linear equations or inequations, and
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some of its variables are integer.

3.1.1 Source formulation

A common formulation for the VTDR and derived problems is a flow
formulation [Ban96]. In such formulation we define a commodity as an
origin-destination flow. Therefore, there is a variable making the association
between each commodity and each link, indicating if the first one uses the
second one. In our case, there is a high number of commodities going through
the network. The number of generated variables and constraints would be
very high.

We try to obtain the most concise model as possible. The number of
variables and constraints can be reduced by aggregating all commodities
from a given node [Roc98]. Both approaches are equivalent if the cost asso-
ciated with each edge does not depend on the commodity, which is the case
of the model we propose below. Such commodity aggregation is used for
the virtual topology design problem in [TMP02]. This leads us to a source
formulation of the reconfiguration problem. Such formulation reduces the
computer memory required to search for the optimal solution of the problem,
and allows to solve it with less computational efforts.

3.1.2 Notations

We consider a network as a multigraph P = (N ,L) of |N | nodes. Each
node n ∈ N corresponds to a telecommunication center. Each edge e ∈ L
corresponds to a cable (m,n) between two telecommunication centers. This
cable contains F(m,n) optical fibers from node m to n. The topology is ar-
bitrary (mesh) and not necessary symmetric: we can have F(m,n) 6= F(n,m).
Each optical fiber transports simultaneouslyW wavelengths {w ∈ 1, . . . ,W}.
Each one can transport a bandwidth B, expressed in Gbps. We assume that
W and B are the same on the entire network: many technological param-
eters (range of frequency used, kind of optical fiber) are involved, and we
believe that few telecommunication providers would build an heterogeneous
network. A lightpath from node i to node j corresponds to an elementary
path on the physical topology.

We consider that traffic evolution occurs step by step. The overall time
window is divided in T time periods t1, . . . , tT , and data changes occur when
a time period ends and another begins. Each time period is long enough to
implement the computed configuration. Real-time changes in the traffic do
not occur.

For each origin-destination pair (s, d) ∈ N 2 and for each time period t,
a demand request Ds,d(t), expressed in Gbps, is defined.

We define the following variables:
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• pi
(m,n),w(t) is the number of wavelengths w used by lightpaths having

node i as origin on physical link (m,n) ∈ L during time period t.

• c
(i,j)
w (t) is the number of lightpaths from node i to node j using wave-

length w during time period t.

• c(i,j)(t) is the number of lightpaths from node i to node j during time
period t.

• f s
(i,j)(t) is the flow from origin s using lightpath (i, j) during time

period t.

• ∆pi
(m,n),w(t) is the number of changes for the number of wavelengths w

used by lightpaths having node i as an origin on physical link (m,n) ∈
L, between time period t − 1 and t.

The overall number of variables is Θ
(

|N |3WT
)

.

3.1.3 Virtual topology constraints

The following constraints are associated with the virtual topology design
problem. We use a source flow formulation to express it. The lightpaths are
considered as commodities that will flow on the physical topology.

∑

(i,n)∈L

W
∑

w=1

pi
(i,n),w(t) =

∑

j∈N

c(i,j)(t),

{

∀i ∈ N
1 6 t 6 T

(3.1)

∑

(m,n)∈L

pi
(m,n),w(t) −

∑

(n,p)∈L

pi
(n,p),w(t) = c(i,n)

w (t),







∀i, n ∈ N 2, i 6= n
1 6 w 6 W
1 6 t 6 T

(3.2)

W
∑

w=1

c(i,j)
w (t) = c(i,j)(t),

{

∀i, j ∈ N 2, i 6= j
1 6 t 6 T

(3.3)

∑

i∈N ,i6=n

pi
(m,n),w(t) 6 F(m,n),







∀ (m,n) ∈ L
1 6 w 6 W
1 6 t 6 T

(3.4)

Constraints (3.1) express the flow conservation for each origin node i.
Constraints (3.2) express the flow conservation in destination nodes n, for
each wavelength. Constraints (3.3) define the number of lightpath between
each pair of node. Constraints (3.4) enforce the link capacity.

As we consider multifiber networks, the wavelength capacity is related
with the number of fibers in constraints (3.4). We cannot allow twice the
same wavelength in a given fiber, and consequently we cannot allow a num-
ber of wavelengths greater than the number of fibers installed. Figure 3.1

21



CHAPTER 3. MONO-OBJECTIVE RECONFIGURATION PROBLEM

illustrates constraints (3.4): It is not possible to allocate more wavelength w1

between A and B, but there is still capacity available, since it is possible to
allocate a wavelength w2.

A B
Fiber 1

Fiber 2

w2

w1

w1

Figure 3.1: Capacity constraints have to be considered for each wavelength

The number of constraints for the virtual topology design problem is
Θ

(

|N |2WT
)

.

3.1.4 Routing constraints

The constraints below are related to the routing of the data on the virtual
topology. We use a source flow formulation to express this part of the
problem. The data to be transmitted are commodities that will flow on the
lightpaths defined.

∑

j∈N ,j 6=s

f s
(s,j)(t) =

∑

d∈N ,d6=s

Ds,d(t),

{

∀s ∈ N
1 6 t 6 T

(3.5)

∑

i∈N ,i6=s

f s
(i,k)(t) −

∑

j∈N ,j 6=s

f s
(k,j)(t) = Ds,k(t),

{

∀(s, k) ∈ N 2, k 6= s
1 6 t 6 T

(3.6)

∑

s∈N ,s 6=j

f s
(i,j)(t) 6 B

W
∑

w=1

c(i,j)
w (t),

{

∀ (i, j) ∈ N 2

1 6 t 6 T
(3.7)

Constraints (3.5) correspond to the flow conservation at origin node s.
Constraints (3.6) correspond to flow conservation at destination nodes k.
Finally, constraints (3.7) are the capacity constraints.

The number of constraints for the routing is Θ
(

|N |2T
)

.

3.1.5 Reconfiguration constraints

We consider the reconfiguration problem as a succession of VTDR prob-
lems. We can add the following constraints, in order to express the lightpath
changes that occur from a time period to another. Each variation of the al-
location variables (the pi

(m,n),w(t) variables) from a time period to another
is a change of the virtual topology. Hence, it has to be taken into account.
This is done by constraints (3.8) and (3.9).
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pi
(m,n),w(t) − pi

(m,n),w(t − 1) 6 ∆pi
(m,n),w(t),







∀i ∈ N , (m,n) ∈ L, i 6= n
1 6 w 6 W
2 6 t 6 T

(3.8)

pi
(m,n),w(t − 1) − pi

(m,n),w(t) 6 ∆pi
(m,n),w(t),







∀i ∈ N , (m,n) ∈ L, i 6= n
1 6 w 6 W
2 6 t 6 T

(3.9)

The number of constraints for the reconfiguration is Θ
(

|N |3WT
)

.

3.1.6 Objective functions

Various metrics can be used to quantify the quality of a solution. The fol-
lowing functions correspond to the mathematical formulation of the metrics
described in section 2.3.

O(t) =
∑

i∈N

∑

(m,n)∈L

W
∑

w=1

pi
(m,n),w(t), 1 6 t 6 T (3.10)

L(t) =
∑

i∈N

∑

j∈N

c(i,j)(t), 1 6 t 6 T (3.11)

M(t) = Ml(t) (3.12)

H(t) =
1

∑

s∈N

∑

d∈N Ds,d(t)

∑

s∈N

∑

i∈N

∑

j∈N

f s
(i,j)(t), 1 6 t 6 T (3.13)

C(t) =
∑

i∈N

∑

(m,n)∈L

W
∑

w=1

∆pi
(m,n),w(t), 2 6 t 6 T (3.14)

O(t) computes the overall number of optical links used for each time
period. L(t) corresponds to the number of lightpaths defined for each time
period. The maximum link load, expressed in number of lightpaths, is given
by M(t). The average number of hops for each time period corresponds
to H(t), and the overall number of reconfigurations between two successive
virtual topologies is given by C(t).

Ml(t), used to compute the maximum link load, is obtained by adding
the constraints (3.15) to the model.

∑

i∈N

W
∑

w=1

pi
(m,n),w(t) 6 Ml(t), ∀ (m,n) ∈ L, 1 6 t 6 T (3.15)
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3.1.7 Integrality constraints

Some of the variables we use in our model must be integer to have a
meaning in relation with the problem modeled. The number of optical links
has to be integer, as well as the number of lightpaths and reconfigurations.
This leads us to the following integrality constraints:

• pi
(m,n),w(t) ∈ N

• c
(i,j)
w (t) ∈ N

• c(i,j)(t) ∈ N
• ∆pi

(m,n),w(t) ∈ N
Consequently, the mathematical model proposed is a not a classical lin-

ear programing model, but a mixed integer linear programming model. Our
mathematical formulation involves continuous and integer variables. Unfor-
tunately, using integer variables generally increases the difficulty to solve a
problem.

However, we can relax the integrality constraints for some variables. The

c
(i,j)
w (t) variables will necessary be integer since they are the sum of integer

variables. This is also the case of c(i,j)(t).
Solving the problem without the associated integrality constraints, the

∆pi
(m,n),w(t) variables may not be integer. However, we generally want to

minimize the number of changes. This minimum will be reached only for an
integer value. From constraints (3.8) and (3.9) holds

|pi
(m,n),w(t − 1) − pi

(m,n),w(t)| 6 ∆pi
(m,n),w(t)

The minimum of the sum C(t) will be reached when each of its term reaches
its minimum value. As constraints (3.8) and (3.9) are the only restric-
tions assigning variables ∆pi

(m,n),w(t), this minimum value corresponds to

|pi
(m,n),w(t− 1)− pi

(m,n),w(t)| which is integer, as the pi
(m,n),w(t− 1) are inte-

ger variables.
Doing so, the number of integer variables is Θ

(

|N |3WT
)

, and the num-
ber of continuous variables is Θ

((

|N 2|W + |N |3
)

T
)

. As the number of
constraints is Θ

(

‖N |3WT
)

, such model can be considered as a large model.
However, we could not find in the literature smaller model for the same
problem.

3.2 Model extensions

We present in this section some extensions that can be defined for the
mathematical model presented in section 3.1. Such extensions may be re-
lated to technological or to the optimization aspects. In the first case, we
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take into account additional modeling characteristics, while in the second
case we define additional constraints in order to solve the problem efficiently.

3.2.1 Technological aspects

We provide below some extensions to the mathematical model defined
in section 3.1 in order to turn the modeling more realistic.

Bounded number of receivers and transmitters

The mathematical models found in the literature generally include ad-
ditional constraints. It is common to find restrictions on the number of re-
ceivers and transmitters for each node [LA91, Ban96]. Their number should
be limited, considering that they are expensive devices.

If we consider that each node n ∈ N is equipped with Rn receivers
and En transmitters, we have to add the following constraints:

∑

i∈N

c(i,j)(t) 6 Rj ,

{

∀j ∈ N
1 6 t 6 T

(3.16)

∑

j∈N

c(i,j)(t) 6 Ei,

{

∀i ∈ N
1 6 t 6 T

(3.17)

Not considering optical link release as reconfiguration step

One may not want to consider the release of an optical link as a recon-
figuration step, arguing that optical link can be used later on and this new
assignment will be counted as a reconfiguration step. Moreover, not count-
ing the optical link release will encourage the release of unused resources,
and will consequently reduce the overall resource utilization.

To stop considering lightpath link release as a reconfiguration, it is suf-
ficient to remove constraints (3.9) from the mathematical model.

Avoiding almost empty lightpaths

To reduce network resource utilization, the almost empty lightpaths
could be avoided by adding a restriction on the lightpath occupation. In
our model we do not differentiate the lightpaths, but we consider as a whole
the lightpaths having the same origin-destination pair. Consequently, we
cannot explicitly avoid that any lightpath will be occupied with less than
a given rate, but we can force a set of lightpaths having the same origin-
destination pair to have a minimal average occupation. This is expressed
by constraints (3.18). F , expressed in Gbps, corresponds to the minimal
average occupation rate that a set of lightpaths having the same origin-
destination pair must reach.
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F
W
∑

w=1

c(i,j)
w (t) 6

∑

s∈N ,s 6=j

f s
(i,j)(t), ∀ (i, j) ∈ N 2, 1 6 t 6 T (3.18)

The F value has to be carefully defined. If it is too high, the problem
can be infeasible.

3.2.2 Cuts

A cut is an additional constraint reducing the solution space without
excluding the optimal solution. Adding adapted cuts to the mathematical
formulation may help the process in charge for finding a solution or to de-
tect earlier that a part of the exploration tree will not lead to valid integer
solution. We focused on the cuts having a meaning with respect the recon-
figuration problem and its modeling. We do not consider cuts coming from
a polyhedral analysis of the problem.

Flow and number of lightpaths

Constraints relating the flow variables and the number of lightpaths can
be defined. It “helps” making the flow variables being equal to zero if the

c
(i,j)
w (t) is equal to zero. This cut is frequently found in the literature for

this kind of problem (in [Ban96] and all works based on it, for instance). It
can be expressed in this way:

f s
(i,j)(t) 6

∑

d∈N

Ds,d(t)
W
∑

w=1

c(i,j)
w (t), ∀(s, i, j) ∈ N 3, s 6= j, 1 6 t 6 T (3.19)

Number of lightpaths required

We can compute a lower bound for the number of lightpaths reaching
or leaving a node, which allows us to define a cut. Similar cuts are cited
in [DR00] in the context of the VTDR problem, and in [JPM03] in the
context of dynamic traffic grooming.

Incoming traffic The sum of the demands to node d is a lower bound for
the overall traffic arriving in d. As the lightpaths have a fixed capacity this
imply a lower bound on the number of lightpaths to d (for each time period
t). Such restrictions can be expressed in different ways. Constraints (3.20)
and (3.21) give two possible formulations for expressing such restriction.
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∑

i∈N i6=j

W
∑

w=1

c(i,j)
w (t) >

⌈
∑

s∈N Di,d(t)

B

⌉

, ∀j ∈ N , 1 6 t 6 T (3.20)

∑

i∈N i6=j

c(i,j)(t) >

⌈
∑

s∈N Di,d(t)

B

⌉

, ∀j ∈ N , 1 6 t 6 T (3.21)

Outgoing traffic Similarly, the sum of the demands having node s as an
origin is a lower bound for the overall traffic leaving s. Such cut can be
expressed in different ways. Constraints (3.22)-(3.24) give three possibilities
for expressing such restriction.

∑

(i,n)∈L

W
∑

w=1

pi
(i,n),w(t) >

⌈
∑

d∈N Di,d(t)

B

⌉

, ∀i ∈ N , 1 6 t 6 T (3.22)

∑

(i,j)∈N 2

W
∑

w=1

c(i,j)
w (t) >

⌈
∑

d∈N Di,d(t)

B

⌉

, ∀i ∈ N , 1 6 t 6 T (3.23)

∑

(i,j)∈L

c(i,j)(t) >

⌈
∑

d∈N Di,d(t)

B

⌉

, ∀i ∈ N , 1 6 t 6 T (3.24)

Permutation

Any permutation in the lightpath allocation will give a solution with
the same performance, whatever may be the metric chosen. In other words,
if a fiber can transport W wavelengths, there are W! equivalent solutions,
obtained by permutation over the used wavelengths.

Avoiding those almost identical solutions may be useful. This reduces
dramatically the size of the solution space, without altering the quality of
the solutions.

One possibility to do so is to sort the number of allocated resources:
more lightpaths use the first wavelength than using the second one; more
lightpaths use the second wavelength than the third one, and so on. As
far as we know, such kind of cut has never been proposed in the context of
optical telecommunication networks.

Depending on the kind of resources that we want to focus on, we can
express such idea in different way: constraints (3.25) refer to the number of
optical links, while constraints (3.26) refer to the number of lightpath.

∑

i∈N

∑

(i,j)∈L

pi
(i,j),w(1) = cw, 1 6 w 6 W (3.25)
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∑

(i,j)∈N 2

c(i,j)
w (1) = cw, 1 6 w 6 W (3.26)

We then have to add the constraints (3.27) to the mathematical model
to break the possible symmetries.

cw+1 6 cw, 1 6 w 6 W − 1 (3.27)

3.2.3 A lower bound

Solving the reconfiguration problem consists in searching for a solution
that is optimal with respect to the metric chosen. The objective functions
associated with each metrics described in Section 2.3 are to be minimized.
In the context of an objective function to be minimized, a lower bound is a
value that is lower than the optimal value. The process of searching for the
optimal solution of a MILP optimization problem is illustrated on Figure 3.2.

Value

Solving process

Optimal value

Optimality proven

Lower bound

Time limit

Gap

Figure 3.2: Solving process and lower bound

The process of solving an optimization problem generally involves a
search for new better solutions (the black dots on the figure) which gen-
erally goes along with a search for lower bound improvements. A solution
is optimal if it has the same value as the best lower bound found so far. If
we decide to stop the solution process before its end, it is still possible to
evaluate the quality of the best solution found so far, by giving a maximum
value between the current solution and the optimal value (gap). It is known
that the optimal value is the fact that it is higher than the lower bound,
and consequently use this latter for the computation of the gap. For those
reasons, a good lower bound is extremely useful.

In our model, the number of variables and constraints grows linearly with
the number of wavelengths that a fiber is able to transmit. Instead of having
F(m,n) fibers of capacity W from node m to node n, we could consider that
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there are WF(m,n) fibers installed, each one able to transmit one wavelength.
The overall capacity of the network remains the same, but it is impossible
to have two conflicting wavelengths in the same fiber. Solving such problem
should be easier than solving the original problem. The solution obtained
may not be feasible for the original problem, but gives a lower bound for
our problem [JMT04].

1 2

3

?

(a) Original model

1 2

3

(b) Lower bound

Figure 3.3: Unfeasible solution for the original model

The lower bound consists in solving the same problem as the original one,
except that we do not consider the wavelength conflict constraint, as shown
on Figure 3.3. Since we consider fibers of unitary capacity, it is impossible
to have two lightpaths using the same wavelength conflicting in the same
fiber. Let us consider the three-nodes network of the Figure 3.3, with the
links (1,2), (2,3) and (3,1) made of one optical fiber. The capacity of each
fiber is two wavelengths. It is impossible to have simultaneously a direct
lightpaths from node 1 to node 3 through node 2, from node 2 to node 1
through node 3 and from node 3 to node 2 through node 1. One of the
three lightpaths would have to use a first wavelength on its first link and
a second wavelength on its second one, which is in contradiction with the
hypothesis of not using wavelength converters. The network considered by
the lower bound has links with two fibers, each fiber having a capacity of one
wavelength. With such configuration, it is possible to create the requested
set of lightpaths.

With such lower bound, it is possible to have an estimation of the per-
formance for any heuristic.

3.3 Heuristics

Although we propose a concise mathematical model and cuts to reduce
the computation time required to solve the reconfiguration problem, it may
be difficult or impossible to solve this mathematical formulation for large in-
stances. To address this problem, we present a simple and computationally
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efficient greedy heuristic. We also present a simulated annealing heuristics,
which has been successfully applied to a virtual topology design and evolu-
tion with restoration problem [DSS03]. The main drawback of such kind of
method is the lack of guarantees about the solutions quality. It is difficult
to know how good is the solution obtained at the end of the process.

3.3.1 Greedy algorithm

A greedy algorithm is a constructive algorithm working step by step. In
each step, it takes the decision that appears to be the best immediately and
independently of the future discussions. It never goes back in its choices.
Once something has been defined (a route to take, an assignment to made),
it does not change, avoiding any kind of local search. As a consequence,
greedy algorithms are generally simple and straightforward, and are often
thought as the more natural way to solve a problem. In general they are also
computationally efficient. Unfortunately, they often lead to approximate
solutions [Wei97].

Our algorithm solves the reconfiguration problem as a succession of
VTDR problems, taking into account the existing configuration of the net-
work. It has been designed to give priority to single-hop routing and the
lightpaths are built with the shortest path algorithm. Algorithm 1 gives a
high level description of the proposed greedy algorithm. The Configure is
an algorithm defining a virtual topology and a routing from a physical topol-
ogy and a traffic matrix. The Reconfigure is an algorithm defining a virtual
topology and a routing from a physical topology, a traffic matrix and the
current virtual topology and routing. The configure (respectively recon-

figure) algorithm is described by Algorithm 2 (respectively Algorithm 3).

Algorithm 1 Greedy algorithm for the reconfiguration problem

Require: A physical topology P, a set of traffic matrices D, one for each
time period

Ensure: A solution for the reconfiguration problem or fail
S(1) = Configure(P,D(1))
if S(1) = fail then

Return fail and exit
end if
for each time period t, 2 6 t 6 T do

S(2) = reconfigure(P,D(t),S(t − 1))
if S(t) = fail then

Return fail and exit
end if

end for
Return the set of S(t) for each time period
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Algorithm 2 Configure algorithm

Require: A physical topology P and a traffic matrix D(t)
Ensure: solution S(t) for the VTDR problem associated or a fail

for all demands from s to d greater than the capacity of a lightpath do
If possible, build direct lightpaths from s to d and fill them with the
demand

end for
for all remaining demands from s to d do

Route the demand using, by order of preference:

• A new direct lightpath from s to d;

• A new set of lightpaths from s to d minimizing the number of
hops;

• An existing direct lightpath from s to d;

• A path from s to d on the virtual topology using existing light-
paths

end for
if There is still demand to be routed then
fail

else
Return current solution S(t)

end if

If we consider that the complexity of the shortest path algorithm is
O

(

|N |2
)

, which is the case for a “naive” implementation of the Dijkstra al-
gorithm for the shortest path, the complexity of the Configure algorithm
is O

(

|N |4W
)

. As a consequence, the complexity of the Reconfigure al-
gorithm is O

(

|N |4W
)

, and the complexity of the overall greedy algorithm
is O

(

|N |4WT
)

.

3.3.2 The simulated annealing metaheuristics

Metaheuristics, such as the simulated annealing, are generally able to
find good solutions to optimization problems for an affordable computation
cost.

Simulated annealing is a Monte Carlo approach for minimizing multivari-
able functions [KJV83]. It develops an analogy between optimization and
statistical mechanics, which is the central discipline of condensed matter
physics. When a system temperature decreases, the behaviour of atoms is a
major concern in statistical mechanics. Whether the matter will solidify as
a crystal or as a glass not only depends on the temperature, but also on the
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Algorithm 3 Reconfigure algorithm

Require: A physical topology P, a traffic matrix D(t) and a current solu-
tion S(t − 1) for the VTDR problem

Ensure: solution S(t) for the VTDR problem associated or a fail

for All demands which decreased between t − 1 and t do
Desallocate demands to reach the new value of the demand, and delete
the empty lightpaths. By order of preference, desallocate:

• Multihop routing, by decreasing number of hop

• routes sharing links with other demands

• routes not filling completely lightpath

• routes filling completely lightpath

Update remaining capacity and demands
end for
for All demands do

Increases routing on existing lightpaths with available capacity
end for
Compute the physical topology P ′ considering only the available capacity
Compute the remaining demands D′

S(t) = configure(P ′,D′)
if S(t) = fail then

Return fail and exit
else

Merge S(t) with the current solution
Return S(t)

end if

way the temperature is decreased. Decreasing too quickly the temperature
will lead to a crystal with many defects or a glass with no crystalline order
and only locally optimal structure.

Finding the best low-temperature state of a matter is similar to search
for a local optimal solution of an optimization problem. However, there
is no equivalent concept for the temperature in the optimization context.
An heuristic converging too quickly, only accepting solution improving the
overall objective function, is likely to converge toward a local optimal or a
good solution.

Algorithms

A temperature for the system is defined. The algorithm progresses by
lowering gradually this temperature until the system freezes. At each tem-
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perature, a large number of different solutions for the problem is computed,
allowing the system to reach a steady state. This process is called thermal-
ization.

The system is initialized with a particular configuration. Each new so-
lution is constructed by imposing a displacement. If the energy of this new
state is lower than the previous one, this new solution is kept. If not, this
new solution is accepted with a given probability. The acceptance probabil-
ity decreases with the temperature of the system, allowing to explore large
portions of the solution space at the beginning of the process. As the tem-
perature decreases, the probability of accepting a bad solution decreases,
leading to a local search converging towards the nearest local optima. The
probability of acceptance is generally given by ρ = exp−δ/KT , where K is the
Boltzmann’s constant, T the temperature and δ the temperature variation.
With the execution of the algorithm, the temperature decreases, leading to
a more stable system.

There are different possible annealing schemes to update the temperature
T . We may use an annealing scheme where the temperature varies as Tn =

α × Tn−1, where Tn is the temperature at the nth temperature update,
and α is an arbitrary constant between 0 and 1. The parameter α decides
how slowly T decreases. Typical values of α lie between 0.9 and 0.95. The
parameter α and the value of T0, the initial value, plays a critical role for
the performance of the simulated annealing. Annealing scheme where the
temperature update is made as Tn = T0/(1 + α× Tn−1) can also be defined.
We choose to use this latter proposition. The typical values of α can be of the
order of 0.01 to 0.1 to have a graceful degradation of the temperature. We
call transition the fact that the temperature decreases, and sub-transition
each time a problem is solved without any modification of the temperature.

We associate to each link e = (n1, n2) of the network a weight we, creat-
ing the link weight vector W . Depending on the weights, different routes will
be found by the shortest path algorithm. The weights of the edges are mu-
tated by a factor γ between each sub-transition of the simulated annealing
algorithm.

The simulated annealing algorithm is given by Algorithm 4. Our algo-
rithm transforms the set of traffic matrices into an ordered list of requests,
and then assign resources to each request. The Solve algorithm we use to
generate solution is given by Algorithm 5.

The complexity of the Solve algorithm is O
(

|N |4WT
)

. This gives for
the Simulated annealing algorithm an overall complexity of O

(

|N |4WT XY
)

.

3.4 Conclusion

We present a mixed integer linear programming model for the reconfig-
uration problem in multifiber WDM networks. This model uses a source
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Algorithm 4 Simulated annealing for the Reconfiguration problem

Initialize an empty ordered list of requests R
{Transformation of the demands into a set of requests}
for ∀i, j, t do

Add to R ⌊
Di,j(t)

B ⌋ requests of size B and one request with the remaining
traffic (lower than B)

end for
Initialize the link weight vector W to 1
Initialize temperature T0

Compute the initial solution: S̄ = Solve(P,W,R)

for Y transitions do
for X sub-transitions do

Evaluate the hop number hr of each request r ∈ R
Reorder the requests r ∈ R by decreasing hr

S = Solve(P,W,R)

if Compute FS < FS̄ then
S̄ = S (update the best solution found)

else
S̄ = S with a probability of e−

δ
KTn

end if
end for
Update the link weights with wl = wl (1 − γ) ,∀l ∈ L
Scale down temperature: Tn+1 = T0

1+αTn

end for

formulation of multiflow constraints more concise than the models for the
same problem found in the literature. We provide some additional con-
straints in order to improve the problem modeling by bounding the number
of receivers and transmitters, by not considering optical link release as a re-
configuration step or by avoiding almost empty lightpaths. We also provide
some cuts to help the solver. For a given cut, we provide different formula-
tions. We express a cut giving a lower bound for the number of lightpaths
arriving in or leaving a node. We also introduce a cut avoiding solutions
that can be obtained by permutation from other solutions. We also express
a lower bound for the problem, as the solution of a MILP problem.

However, it may be difficult or impossible to solve optimally the problem
for large instances. We present a greedy algorithm and a simulated algorithm
to solve the reconfiguration problem. Such heuristics are computationally
much more efficient than solving problems generated with our mathematical
model. However, we do not have any guarantee with respect to the quality
of the solution obtained with such heuristics.
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Algorithm 5 Solve(P,W,R) algorithm

Require: A network P, a link weight vector W and an ordered list of
requests R
for all request r ∈ R do

Let sr, dr, tr and vr be respectively the origin node, the destination
node, the time period and the size of r
if vr = B then

Find the shortest path from sr to dr considering the wavelengths
available during time period tr. The cost of a link corresponds to its
weight.
Make wavelengths allocation avoiding wavelength changes
Update available wavelengths for the time period tr

else
if Exist paths pr from sr to dr at time period tr using only available
capacity within the lightpaths able to transport a request of size vr

then
Use the shortest of the possible pr

else
Find the shortest path from sr to dr considering the wavelengths
available during time period tr. The cost of a link corresponds to
its weight.
Make wavelengths allocation avoiding wavelength changes

end if
end if
Update the available capacity in used links
Update the used link weights with remaining capacity: wl = wl ∗ vi

end for
Ensure: A virtual topology for each time period
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Chapter 4

Mono-objective optimization:
Computational results

We present in chapter 3 a mathematical model based on a source formu-
lation for the reconfiguration problem. We also present a set of cuts to help
during the search for the optimal solution. We introduce some extensions
in order to turn the modeling of the network more realistic. However, as
the problem is NP-hard, it is likely that we are not able to deal with large
instances. We design a simple and straightforward greedy heuristic, and we
adapt a metaheuristic based on the simulated annealing.

In this chapter, we make experiments in order to evaluate the difficulty
of solving exactly the problem, to find out the characteristics of the solutions
and to study the performance of the algorithms proposed. The reconfigura-
tion problem admits various solutions of different quality. There may be a
significant performance difference between two solutions, leading to signif-
icant differences on the network cost or on the quality of service provided.
For this reason, we aim to identify the best possible solutions.

We first describe the network topologies that we use in our experiments.
Some of these topologies are based on existing networks. We compare the
mathematical source formulation proposed with a classical flow formulation.
We then experimentally study the performance of the cuts and lower bound.
We experiment such cuts on different instances in order to find out their in-
fluence on the process of searching for the optimal solution. We solve another
set of instances with and without the technological extensions proposed in
section 3.2.1 in order to study their influence on the solution.

The heuristics proposed solve the reconfiguration, but we do not have
evaluation of their quality. We run experiments in order to compare the
quality of the solutions found by the heuristics with the solutions obtained
using the mathematical formulation. It allows us to have an idea of the
general performance of the heuristics and the quality of the solutions.
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4.1 Test instances

In this work, we mainly use four network topologies to run our exper-
iments. Two of these networks are hypothetical small networks (SN1 and
SN2), and the other two networks are based on existing networks (NSFNET
and Cost239 [BDH+99]). The topology of these networks is represented by
Figures 4.1 to 4.4. The characteristics of those networks are given in Ta-
ble 4.1. The other used parameters depend on the instance solved. We
also considered the N20, N30, N40 and N50 hypothetical networks. These
topologies are representative Internet topologies.

0

1 2

3

4

6

5

Figure 4.1: Small network 1 (SN1) Figure 4.2: NSFNET network

Figure 4.3: Small network 2 (SN2) Figure 4.4: Cost239 network

Table 4.1: Networks characteristics
SN1 SN2 NSFNET Cost239 N20 N30 N40 N50

|N | 7 7 14 11 20 30 40 50
|L| 20 26 44 42 68 160 240 250

As mentioned in section 2.1.4, depending on the time scale chosen, the
traffic considered can increase and decrease, or can only increase. In our
experiments, we considered both cases. The first one is denoted by var
while the second one is denoted by incr. The traffic matrices are generated
in the following way: We first generate an initial traffic matrix, the initial
demand from a node n1 to a node n2 being randomly chosen between 20 and
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60Gbps with a uniform distribution. We then randomly choose also with
a uniform distribution the evolution of the demand for each time period,
based on the value of the demand at previous time period. For the var
traffic, this evolution is between -10 and 10 Gbps, while for the incr traffic
it is between 0 and 10Gbps. We generally considered five time periods. For
instance, with a var traffic, it is possible to have the following traffic from
node A to node B over five time period: 57Gbps, 67Gbps, 75Gbps, 68Gbps
77Gbps.

We run our experiments on a desktop PC with one gigabyte of RAM. To
solve the mathematical models, we use the commercial software Cplex1 ver-
sion 9. To solve the MILP problems, it uses a branch and bound algorithm.
It consists in exploring a recursively build tree of possibilities. Each node of
the tree is obtained solving a relaxed version (e.g. without the integrality
constraints) with additional constraints on the value of the variables. Cplex
also uses additional cuts for accelerating the search for the optimal value.

For the vast majority of the run experiments, we imposed the solver a
time-limit TL, expressed in seconds. This means that if the computation
reaches the time-limit, the solver does not guarantee an optimal solution. It
returns the best solution found so far, if any. It also returns an evaluation
of the quality of the solution, by the mean of a solution gap. There is no
way to know if the solution returned by the solver is the optimal one or not.
We use the following convention: The +symbol means that the solver hit
the time limit imposed, but has already found a feasible solutions. In this
case, we report the solution found by the solver and the gap in parenthesis.
The 0symbol means that the solver hit the time limit without finding any
possible solution. The ∗symbol means that we are unable to complete the
experiment, due to a lack of memory.

4.2 Classical formulation and source formulation

Firstly we want to compare the classical and the source formulation. By
classical, we mean the origin-destination flow formulation where a commod-
ity is defined for each origin-destination flow, as evoked in section 3.1.1. This
classical formulation can be found in appendix A. Structurally, the main
difference between these formulations appears when solving flow problems
with a Dantzig-Wolfe decomposition algorithm [DW60]. With an origin-
destination formulation, a high number of simple problems (shortest path)
are solved; with a source formulation, a lower number of more complex prob-
lems (shortest path tree) are solved [JLFP92]. Even though those problems
are more complex, they involve less constraints and variables.

The three following aspects are considered: computation time, problem
size and solution quality. We run experiments with the SN2, Cost239 and

1Copyright c©Ilog 1997-2005. Cplex is a registered trademark of Ilog.
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NSFNET instances. The parameters chosen for our experiments are given
in Table 4.2. The computation times with the two models are given in
Table B.1 and Table B.2. The solutions found are given in Table B.3 and
Table B.4, and the problem sizes are given in Table B.5. These tables are
located in the appendix B. Figures 4.5 and 4.6 illustrate the computation
time required for solving the instance SN2 and Cost239 with the objectives
M , C and H. Figures 4.7 and 4.8 represent the number of integer variables,
real variables and constraints depending on the formulation, for the SN2
and Cost239 instances.

Table 4.2: Parameters to compare the formulations
SN2 Cost239 NSFNET N20

F(i,j) 5 5 5 3

W 8 16 8/16 8
B 40 20 40/20 40
Traffic var var var var
TL 3600 3600 3600/7200 7200
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Figure 4.5: SN2 instance, computa-
tion time (s)
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Figure 4.6: Cost239 instance, compu-
tation time (s)

The problems generated with our source formulation are much smaller
than the ones generated with the classical formulation. The impact on the
computation time is difficult to evaluate exactly, since the majority of the
computations reaches the time-limit. When it is not reached, we observe
that the computation time for the source formulation is significantly lower.

Given the same amount of time, the solution found is generally better
with the source formulation, with the exception of the problem solved opti-
mizing the L objective function. In every cases the solver achieved a slightly
better lower bound and the number of nodes explored in the branch and
bound tree is much higher with the source formulation. The classical formu-
lation find its computational limits for networks that the source formulation
is still able to handle, emphasizing the compactness of our formulation.
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Figure 4.7: SN2 instance, number of
variables and constraints
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Figure 4.8: Cost239 instance, number
of variables and constraints

4.3 Metrics and cut efficiency

In this section we study the efficiency of the cuts proposed in section 3.2.2,
when added to the mathematical formulation proposed for the reconfigura-
tion problem.

4.3.1 Parameters chosen

We solve instances of the reconfiguration problem on the four networks
described in section 4.1. We also consider a four nodes bidirectional line net-
work line4. The parameters chosen for each network are given in Table 4.3.

Table 4.3: Parameters to analyze the cuts efficiency
Line4 SN1 SN2 NSFNET Cost239

F(i,j) 2 4 4 5 4

W 5 10 10 40 16
B 40 40 40 10 40
Traffic var var var incr incr
TL 3600 3600 3600 3600 3600

4.3.2 Computation time

The most striking fact we observe is the evolution of the computation
time with respect to the metric chosen. Metrics O and L appear to be the
hardest to solve on our test instances. The time-limit is regularly reached,
even for small instances. On the other hand, metrics M and H seem to be
quite easy to solve, since the time-limit is not hit even for large instances
(Cost239 and NSFNET). The situation is different for metric C. When the
network is small (SN1 and SN2), the optimal solution is found very quickly.
For larger networks (NSFNET and Cost239), the optimal solution is found
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after almost one hour of computation for the NSFNET, and no solution is
found for the Cost239 network.

4.3.3 Cut performance

We made some experiments in order to evaluate the performance of the
cuts defined in section 3.2.2. We solved the reconfiguration problem, adding
to the original model one cut. To avoid “interferences” with Cplex’s cuts,
we disabled all of them.

Figures 4.9 to 4.12, illustrates the computation time and the solution
gap for some instances solved. We denote by nocut the results obtained
without considering any cut. The results obtained considering the cut de-
fined by constraints (3.19) is denoted by flow. The cut about the incoming
traffic described by constraints (3.20) (respectively (3.21)) is denoted by
in1 (respectively in2 ). Similarly, the cut about the outgoing traffic de-
scribed by constraints (3.22) (respectively (3.23), (3.24)) is mentioned by
out1 (respectively out2, out3 ). Finally the permutation cut described by
constraints (3.25) (respectively (3.26)) is denoted by sym1 (respectively
sym2 ). We represent the computation time only for experiments ending
before the time limit (Figures 4.9 and 4.11), and the solution gap only for
experiments for which the solver hit the time limit (Figures 4.10 and 4.12).
The data used to plot the graphs are extracted from the Tables B.6 (respec-
tively Table B.7) containing the computation time (respectively solution
gap) for the instances solved. Those tables are located in the appendix B.
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In our experiments, the cut defined by constraints (3.19) has a negative
impact on the computation time or on the solution gap. With and without
this cut the solver generally finds the same solution after exploring the same
number of nodes of the branch and bound. But this exploration is slower
with the cut. Due to the additional restriction defined by constraints (3.19)
the relaxed problems generated during the branch and bound algorithm are
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Figure 4.11: Cost239 instance, com-
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harder to solve but lead to the same solution.
When we include the permutation cut described by constraint (3.25),

the exploration of the branch and bound tree is much slower than without
the cut. This cut may eventually have a positive impact when the solution
process is not interrupted, but that has not been verified. We do not know
if the gain resulting in a smaller solution space balance or not the longer
time required to solve each intermediate linear program. The permutation
cut described by restriction (3.26) has better results than the previous one.
The solver succeeds in exploring much faster (but still slower than without
any cuts), the branch and bound tree. This allows to have computational
performance (computation time, solution gap, solution found) very close to
the nocut formulation.

The cuts about the minimum number of lightpaths required for incoming
or outgoing traffic appear to be useful. Each of them improves significantly
the lower bound while performing the branch and bound algorithm, resulting
in a lower solution gap. However, the exploration of the branch and bound
tree is significantly slower with the cut defined by the constraint (3.22) and
the lower bound is not improved. With our test instances, it is difficult to
decide which formulations are the most efficient, between formulations (3.20)
and (3.21), and between formulation (3.23) and (3.24).

The second formulation of the cut avoiding permutations has more or
less the same performance that the reference model, while the cuts about
the number of lightpaths and the ingoing or outgoing traffic improve the
solution gap and have generally a positive impact on the computation time.

4.3.4 Lower bound performance

We make experiments to evaluate the performance of the lower bound
described in section 3.2.3. We also show the results obtained by relaxing the
integrality constraints (e.g. linear relaxation).
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Figures 4.13 and 4.14 illustrate the performance of the lower bound and
the linear relaxation for the Cost239 instance. We denote by ref the results
obtained by our model for the reconfiguration problem, by lb the results
obtained by the lower bound proposed in section 3.2.3 and by rel the results
obtained with the linear relaxation. These results are extracted from the Ta-
ble B.8, located in appendix B, which contains the results and computation
time of the instances solved.
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tion value for metrics O and L
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tion value for metrics M , H and C

On our test instances the performance of the lower bound is good when
considering the objective functions H, M and C, since it always reaches the
optimal value. The computation time is more or less the same than the one
required to solve the linear relaxation of the problem. The value of the lower
bound found by the lower bound lb are better than the one obtained with the
linear relaxation. However, when solving the problem with objective O and
L, our lower bound reaches the time-limit of one hour, and consequently, the
optimal value may not be found. In this situation, the result provided by the
lower bound is useless. Since the optimal value is not reached, there is no
guarantee that the obtained value is actually lower than the value obtained
by the original reconfiguration algorithm (see lines 1 and 2 of the Cost239
instance in Table B.8).

Figure 4.15 shows the evolution of the solution found during the opti-
mization process, for the reconfiguration model ref and for the lower bound
lb. Remember that the lower bound is valid only when the solver proves the
optimality of the obtained solution, which is not the case on this example.
An initial solution is found very early with the lower bound lb (120 seconds)
while it is necessary to wait for 1300 seconds for the model ref. The number
of branch and bound nodes explored within the time-limit while computing
the lower bound is much higher (190000 versus 51000). That is, the inter-
mediate linear programming problems to be solved are much easier to solve.
Remains to be solved the convergence problem of the lower bound.

The linear relaxation provided solution of good quality with our test
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Figure 4.15: Cost239 instance, evolution of the solution found with the
computation time

instances (less than 5% below the optimal solution). The computation time
is very low (few seconds), except when the objective is C: The solver seems
to have difficulty to solve the linear relaxation of the large instances with the
objective function C. As solving the linear relaxation of a problem is one
of the first steps of a branch and bound algorithm, the computation time
it requires has a direct implication in the computation time required by the
overall branch and bound algorithm. It is worth noting that with our test
instances and for metrics H and C, the linear relaxation finds the optimal
solution.

4.3.5 Metric influence

We observe that, depending on the metric chosen, the solutions found
and their characteristics are quite different. Table 4.4 gives the value of each
metrics, depending on the metric chosen to perform the optimization, for
the NSFNET network.

Minimizing the number of optical links makes the lightpaths use the
shortest path between each pair of nodes. Consequently, the load is not
balanced. This can be particularly observed on a sparse topology like the
networks SN1 and NSFNET. There is also a tendency to fill as much as
possible each optical link. This generates solutions with short lightpaths
(1.56 hops in average) and highly aggregated traffic. As the lightpaths are
short and few resources are used, the number of reconfigurations to carry
out is small in relation to other metrics (2734 reconfigurations while with
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Table 4.4: NSFNET instance, solution depending on the metric optimized
Metric optimized

O L M H C

Num. optical links 3136 3460 4507 3684 7300
Num. lightpaths 2011 1521 2401 1658 3470
Max. physical load 137 133 104 139 292
Avg. number of hops 2.69 2.03 3.02 2 3.98
Num. reconfigurations 2734 3206 4077 3386 0
Avg. lightpath length 1.56 2.27 1.87 2.21 2.1

the other metrics it is above 3000), except when minimizing the number of
reconfigurations.

Minimizing the number of lightpaths aims to create as few lightpaths
as possible and fill them as much as possible. It creates long direct light-
paths from the origin to the destination as long as they can be completely
filled. The remaining traffic is aggregated in a set of short lightpaths. Con-
sequently, the average hop number is low (2.03, almost the optimal value 2),
and the average lightpath length is high (2.27 in average).

Minimizing the physical load allows to find the solutions with more bal-
anced load between all metrics. The load of each link is very low (104, while
with the other metrics, it is above 130), however the overall resources used
is high, as well as the number of reconfigurations. The lightpaths are short
and the average number of hops is high (3.02).

Minimizing the average number of hops tends to define only direct point
to point lightpaths (2), which has a negative impact on the resources used.
There is no traffic aggregation. The lightpaths are long, and a high number
of reconfigurations have to be carried out.

Finally, minimizing the number of reconfigurations will allocate all the
lightpaths that will be required at a moment or another. Obviously, this
reduces greatly the number of reconfigurations to be carried out (0), but also
drastically increases the resources used (7300, more than twice the optimal
value 3136). In our experiments, it has always been possible to find a solution
without any reconfiguration when minimizing the number of virtual topology
modifications. Such solutions may include lightpaths that are empty during
some time periods. It means that if we can afford using many resources, it is
possible to avoid any reconfiguration. In other words, it is possible to avoid
the drawbacks of the reconfiguration by oversizing the virtual topology. As
the amount of resources allocated is very high, the physical load is very high,
but appears to be well balanced.
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4.3.6 Other parameters

To evaluate the influence of the network topology, we solve the problem
with the same traffic matrix on the networks SN1, SN2 and line7, a seven
nodes bidirectional line network. For all metrics, the computational results
obtained are very similar from a network to another: The computation time
and the gap obtained are almost the same. In other words, the topology does
not seem influence much Cplex when it searches for the optimal solution.

We also check the influence of the technical parameters on the problem
by experimenting different values for the F(i,j), W and B parameters with the
same traffic matrices. As the number of constraints and variables directly
depends on the value of W, the memory occupation during the search for
the optimal solution is higher with high values of W, resulting in higher
computation time. The other parameters do not have significant influence
on the solution process: The computation time, number of branch and bound
nodes explored and solution gap are almost the same. When the capacity
of the optical links is reduced, the number of lightpaths defined increases,
but the solutions keep the same profile. The difference between the metrics,
as described in section 4.3.5 remains the same. The F(i,j) parameter do
not seem to have a significant influence on the solution process and on the
solutions found.

We then focus on the influence of the traffic on the problem. The traf-
fic considered in the vast majority of our experiments can be considered as
intermediate - neither light nor heavy. We generate heavy traffics, almost
reaching the maximum capacity of the network. The computation times ob-
served are very similar than with our other experiments, except for metric C,
where it is significantly higher (118 seconds for the SN2 network, against 20
seconds for the intermediate traffic). As the number of used optical links
is much higher, this increases the combinatorial aspects of the lightpaths
reconfiguration. We also observe that the solution gaps for metrics O and L
are very low (less than 1%). As the traffic is very heavy, there are few
possibilities to decrease the number of optical links/lightpaths used.

We also compare the influence of incr and var traffics. To do so, we
generate traffic with comparable parameters, and solve the problem on the
same network. The computational efforts required to solve the problem do
not seem to be influenced by the traffic type, and the solutions have the
same characteristics.

4.4 Technological extensions of the model

4.4.1 Receivers and transmitters

The restrictions (3.16) and (3.17) are regularly present in optimization
model related to WDM networks (see [LA91, Ban96, Rou01]). Although
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such restriction can improve the realism of the network model, we did not
find articles about the consequences of using such restrictions.

We run experiments with and without such restriction and we compare
both the quality of the obtained solutions with respect the different metrics
presented. We use the SN2 and Cost239 networks to run our experiments.
The parameters chosen are given in Table 4.5.

Table 4.5: Parameters to analyze the influence of adding receivers and trans-
mitters

SN2 Cost239

F(i,j) 5 5

W 8 16
B 40 20
traffic var var
TL 3600 7200

The number of receivers and transmitters has been homogeneously de-
fined in the network. That is, ∀n ∈ N ,Rj = R and En = E . Table B.9 gives
the computation time of the different instances. The solution values are
given by Table B.10. These tables are located in appendix B. We present
only the values for R and E that lead to feasible solutions. For values of R
and E lower than the ones given in the Table B.10, the problem is infeasible.

The obtained results are illustrated by Figure 4.16 (respectively 4.17)
which shows the computation time (respectively solution found) with the
SN2 network for different values of R and E .
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It appears that when including the restrictions (3.16) and (3.17), the
problem is more difficult to solve, particularly for tight values of R and E
(e.g. R = 8 for SN2 network, and R = 24 for Cost239 network). However,
the influence of such restrictions on the solution value only exists for those
tight values of R and E . In this case, the number of used optical links
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is a little higher. The number of used lightpaths does not seems to be
assigned. When minimizing the number of optical links, the solver tends
to establish lightpaths using the shortest paths. The nodes located in the
middle of the networks have a higher load. Limiting the number of receivers
and transmitters force the solver to use longer paths, thus increasing the
number of optical links used. However, the difference between the solution
qualities is low and exists only for the tightest values of R and E . In the
other cases the restriction does not seem to alter the solution quality.

4.4.2 Optical link release

We try to identify the effect of not counting as reconfiguration the dele-
tion of a lightpath. We run experiments with the SN2 instance and with the
Cost239 instance. The parameters chosen for our experiments are given in
Table 4.6. The solutions found for each time period, and the overall number
of reconfiguration are given in Table B.11, located in appendix B, and are
illustrated by figures 4.18 and 4.19.

Table 4.6: Parameters to release the optical links
SN2 Cost239

F(i,j) 5 5

W 8 / 16 8
B 40 /20 40
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Figure 4.18: SN2 (W = 16) instance,
solution value for metrics O and L
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Figure 4.19: Cost239 instance, solu-
tion value for metrics O and L

Such modification has a huge impact when minimizing the number of
reconfigurations and a low one when minimizing another objective function,
since it does not have further influence that the way the reconfigurations are
counted. The solver tends to allocate at the beginning all the resources it
will need, and then release them when they are not needed anymore.
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4.4.3 No empty lightpaths

When we minimize the number of reconfigurations, the solutions found
tends to allocate all the lightpaths that will be needed during a time period
or another, even if some lightpaths remain empty during some time period.
To avoid such behaviour, we define in section 3.2.1 the constraints (3.18)
forcing the lightpaths to be filled at a rate of F or more.

The parameters chosen for our experiments are given in Table 4.7. Ta-
ble B.12, which is located in appendix B, gives the results we obtained with
different values for F . We represent on Figure 4.20 the results obtained with
metric H.

Table 4.7: Parameters to avoid empty lightpaths
SN2 Cost239

F(i,j) 5 5

W 8 16
B 40 20
TL 3600 7200

Minimum fill rate (%)
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Figure 4.20: SN2 and Cost239 instances, solution value for metric H

The influence of the minimum lightpath fill rate is only noticeable on the
average number of hops. The solution value for other metrics do not seem
to alter by the constraints forcing the lightpaths not to be empty. With the
constraints added, the solver “artificially” increases the length of the path
chosen for routing the data, increasing the fill rate of the lightpaths. Instead
of using a direct lightpath for routing data between nodes, it makes the data
use two or three lightpaths, resulting in an higher average fill rate in order
to attend the constraints.
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4.5 Heuristic comparisons

We implement the simulated annealing and the greedy algorithms pre-
sented in section 3.3 with the C++ language. We run experiments with
those algorithms and compare the results obtained with the mathematical
model. We compile the programs with the GNU compiler g++ 4.02. We
make our experiments on the small network SN2, Cost239, NSFNET, and
on the N20, N30 and N40 networks. The parameters we consider for those
experiments are given in Table 4.8.

Table 4.8: Parameters to compare heuristics
SN2 Cost239 NSFNET N20 N30 N40

F(i,j) 5 5 5 5 5 5

W 8 /16 8/ 16 8 /16 8/ 16 8/ 16 8 / 16
B 40 /20 40/ 20 40 /20 40/ 20 40/ 20 40 / 20
traffic var var var var var var
TL 36000 36000 36000 86000 86000 86000

For the simulated annealing experiments, the total number of sub-transi-
tions at a given temperature is chosen between 10-15 and the transitions
across different temperatures is considered to be between 30-40 based on
the size of the demand sets. These numbers are chosen because they are
moderate enough for the simulated annealing to show different possible so-
lution sets. These numbers are empirically chosen.

The K constant is chosen such that, 0 ≤ exp−δ/(K×Ti) ≤ 1 where Ti is

the temperature at the ith iteration. The temperature mutation parame-
ter α is taken to be 0.005 so that the temperature does not drop abruptly.
Higher values of α leads to a fast convergence for the simulated anneal-
ing procedure. We mutate the values of α so that the simulated annealing
procedure explores the maximal possible solution states, and shows no fur-
ther improvements. The edge weight mutation parameter γ is chosen to be
between 0.5 and 1.0.

4.5.1 Performance Analysis

We denote by gr the data obtained with the greedy algorithm. Re-
member that our greedy algorithm gives priority to single-hop routing and
lightpaths following the shortest path. We denote by sa(O) (respectively
sa(L) and sa(C)) the data obtained when solving an instance with the sim-
ulated annealing and using metric O (respectively L and C). In a similar
way, we denote by md(O) (respectively md(L) and md(C)) the data obtained
when solving an instance with the solver and using metric O (respectively L

2Copyright c©2006 Free Software Foundation, Inc.
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and C). The computation time of the different instances is reported in
Table B.13. The number of optical links each solution uses is given in Ta-
ble B.14. Table B.15 gives the number of lightpaths. Finally, Table B.16
gives the number of reconfigurations that will have to be carried out for each
solution. Those tables are located in appendix B, and are illustrated by Fig-
ures 4.21, 4.22 and 4.23 Each figure shows the results obtained optimizing
one metric, even if we represent the results obtained optimizing each metric.
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Figure 4.21: Heuristics: Solution value for metric O

The computation times of the greedy algorithm are really low, even for
large instances. The quality of the results of the greedy algorithm is vari-
able. However, it generally represents a trade-off, since the solutions found
use an intermediate level of resources, triggering a limited number of recon-
figurations.

The computation time of the simulated annealing algorithm is also low in
comparison with the computation time obtained using the solver. As for the
solver, the computation time depends on the metric chosen for performing
the optimization. The solutions obtained with the simulated annealing al-
gorithm compete with the one obtained with the solver. However, it is able
to handle large instances in a reasonable computation time. The chosen
parameters allowed it to explore a part of the solution space large enough
to find a good solution. It returns solutions which are within 5% of the
optimal solution found by the solver, with computation times at least 4-6
times lower.
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Figure 4.22: Heuristics: Solution value for metric L

4.5.2 Single hop cases

The greedy algorithm has been designed to generate virtual topologies
giving priority to single-hop routing, and all the instances generated ad-
mit solutions with single-hop routing. For comparison purpose, we add the
constraints (4.1) to the mathematical model forcing single-hop routing. We
run another set of experiments in order to compare the results obtained
with the greedy algorithm and the results obtained with the mathematical
model. The parameters chosen for the computation of the results are given
in Table 4.9.

H(t) = 1, 1 6 t 6 T (4.1)

Table 4.9: Parameters to evaluate the greedy algorithm performance
SN1 SN2 Cost239 NSFNET N20 N30 N40 N50

F(i,j) 5 5 5 5 5 5 5 5

W 8 16 16 8 16 16 16 16
B 40 20 20 40 20 20 20 20
TL 3600 3600 7200 7200 - - - -

Table B.17 gives the results obtained with the greedy algorithm, com-
pared with the MILP approach. The Table B.18 gives the results obtained
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Figure 4.23: Heuristics: Solution value for metric C

for the N20 and larger instances. These tables are located in appendix B,
and Figures 4.24, 4.25 and 4.26 illustrate the results obtained with the SN2
and Cost239 instances. Note that the results md(c) do not appear on the
figure 4.26 because the value equals 0. The greedy algorithm always finds
an intermediary solution in comparison with the mathematical model. It
uses more optical links than the optimal value, but less than the solutions
obtained with the solver when optimizing the objective function L or C.
Similarly, the solution obtained with the greedy algorithm generates less
reconfigurations than the solutions obtained optimizing the objective func-
tion O or L.

We report in Figure 4.27 (respectively Figure 4.28) the number of optical
links (respectively lightpaths) used during each time period. We also report
on the graphs the resources used with solutions obtained by the solver,
restricting the number of reconfiguration to the one obtained with the greedy
algorithm. For the Cost239 network, the greedy algorithm finds a solution
triggering 758 reconfigurations. Consequently, we also solved the problem
with the constraint C 6 758. Note that both lines “Solver” and “Solver
with C 6 758” are overlapping. With our instances the greedy solution
does not use more resources during the first time period than the solutions
obtained with the solver. However, when it comes to reconfigure, that is
after the first reconfiguration step, the level of resources used by the greedy
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Figure 4.24: SN2 and Cost239 in-
stances, solution value for metric O
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Figure 4.25: SN2 and Cost239 in-
stances, solution value for metric L
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Figure 4.26: SN2 and Cost239 instances, solution value for metric C

algorithm increases while it remains more or less constant with the solver.
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Figure 4.27: Cost239 instance, solu-
tion value for metric O
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Figure 4.28: Cost239 instance, solu-
tion value for metric L

Finally, we generate a test instance with the N50 network, running over
500 time periods. The computation time is still low with respect to the
instance size, since it requires a few minutes (12 minutes and 21 seconds)
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on our computer to run. The resources used are represented on Figure 4.29.
The phenomenon previously noted also happens. The number of resources
used notably increases from the first to the second time period, and remains
more or less constant during the later time periods.
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Figure 4.29: Greedy heuristic, Long N50 instance

4.6 Conclusion

We propose a source mathematical formulation for the reconfiguration
problem, as well as some possible extensions for the mathematical model.
Some cuts are adapted from similar problems or introduced. We also propose
a lower bound. As the computation time required to solve exactly different
instances of the problem is high, we define a greedy algorithm and adapt a
simulated annealing algorithm.

Our formulation is much more compact than the other formulations from
the literature and allows to deal with larger instances. For the smaller
instances, our formulation generally outperforms the classical formulation.

According to our experiments, the most efficient cuts among the one
studied are the cuts about the number of incoming and outgoing lightpaths.
They allow to reduce the computation time and the solution gap. One of
the two cuts avoiding the permutation seems useless for experiments with
a time-limit. The other cut offers a much better performance and actually
helps to decrease the computation time in some cases. The cut linking the
number of lightpaths and the flow variables, which is commonly found in
the literature, has a negative impact with all of our instances.
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The lower bound proposed outperforms the linear relaxation, especially
when we optimize the objective function H, M or C. For the other two
objectives, it suffers from a difficulty to converge towards the optimal solu-
tions.

Depending on the objective function chosen, the computation time re-
quired to solve the problem is drastically different. When optimizing met-
rics O and L, the solver has difficulties to converge toward the optimal
solution. The computation time when optimizing metrics M and H is low.
The situation is different with the C metric: The computation time is very
low for small instances, but the solver is unable to find any solution for large
instances, due to the fact that it does not succeed in solving efficiently the
linear relaxation of the problem.

The network physical topology does not seem to influence much the com-
plexity to find the optimal solutions with the solver. The traffic used does
not have influence on the search for the solution, except with the C ob-
jective function. In this case, the solver requires more time to reach the
optimal solution if the traffic is heavy. The values for the technological pa-
rameters F(i,j) and B do not have significant influence on the computation
time. On the other hand, high values for the parameter W increase the com-
putation time, as the number of constraints and variables linearly depends
on W.

The characteristics of the solution depend on the objective function cho-
sen. When minimizing O, we obtain a solution with short filled lightpaths,
and a controlled number of reconfigurations. Minimizing L, we obtain long
direct lightpaths and a set of small lightpaths, resulting in a low average
number of hops and a high number of reconfigurations. Minimizing the
maximum link load increases the use of resources and the number of recon-
figurations to be carried out. Minimizing the average number of hops tends
to generate long direct lightpaths, which has a negative impact on the re-
sources used and the number of reconfigurations to be performed. Finally,
minimizing the number of reconfigurations generates solutions allocating a
very high number of resources, in a way that the virtual topology is able to
handle any of the traffics given without having to be reconfigured.

Limiting the number of receivers and transmitters has an impact on the
solution value only when the limit is very tight with respect to the minimum
value possible without turning the problem infeasible. Not considering the
release of a lightpath as a reconfiguration, the solution found will change
only when minimizing objective C. However, it does not alter fundamen-
tally the solution found. The resources are massively allocated for the first
time period, and released when not needed anymore. Imposing a minimum
fill rate for the lightpaths turns out to be useless. The routing of data “ar-
tificially” increases the lengths of the paths, in order to increase the overall
flow of data and consequently fill the lightpaths.

The greedy algorithm allows to obtain solutions of decent quality with
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a very short computation time. The number of resources used during the
first time period even compete with the one obtained with the mathematical
model. However, the number of resources used after the first reconfiguration
step is significantly higher. The solutions obtained with the greedy algorithm
represent an interesting trade-off as the number of reconfigurations is mod-
erate. The simulated annealing algorithm allows to obtain solutions which
compete, in terms of quality, with the optimal solutions. The computation
times are much lower than the ones required with the exact method.
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Chapter 5

Multiobjective
reconfiguration problem

Many optimization problems accept different metrics to measure the
quality of a solution. This is the case of the reconfiguration problem. As we
saw in chapter 4, considering separately the different objectives may lead to
results that do not consider the trade-off between the different metrics. If we
want to reduce the number of reconfigurations, the solutions found oversize
the network capacity. On the other hand, if we want to reduce the resources
used, the solutions found require a high number of reconfigurations.

A common way to deal with this problem is to add some restrictions to
prevent from finding uninteresting solutions, or to give a weight to each met-
ric and solve the optimization problem with the weighted sum as an objective
function. However, such approach generally requires a deep knowledge of
the problem treated, since the restrictions and the weights cannot be chosen
randomly. As we observed in section 4.4, adding restrictions to avoid some
undesired behavior may be difficult, as the solver is able to generate not
practical solutions in order to attend the restrictions. For instance, when we
impose a minimum fill rate for the lightpaths, the solver tends to artificially
increase the length of the routes in order to increase the traffic flowing on
the network.

Generally, the choice of a metric is made a priori before the beginning
of the optimization process. This approach lacks of flexibility and lets the
decision maker facing a problem to be solved - the choice of a metric -
before knowing the results of the optimization process. When a solution
is obtained, there is no way to evaluate its quality with respect to other
performance criterion. In other words, the decision maker has to choose
one metric, and hope that the obtained result does not have undesirable
performance in relation with other ones.

Multiobjective optimization, also called vectorial optimization, avoids this
drawback. It does not compute a unique, but a set of “good” solutions.
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Carrying out such analysis while designing a large scale network can provide
a significant amount of information, the relationship between metrics, to the
decision maker after the optimization process.

5.1 Mathematical aspects

In this section, we describe the mathematical aspects involved by the
multiobjective optimization.

5.1.1 Vectorial optimization

A mono-objective minimization1 problem can be formulated as:

minx f i(x)
x ∈ P

where

f i :

{ Rn → R
x 7→ f i(x)

is one of the possible metrics of the optimization problem, initially chosen.
P is the set of feasible points.

With multiobjective optimization, the scalar objective function is re-
placed by a vectorial objective function. The components of the objective
function are the different metrics considered for the problem. The optimiza-
tion is performed inRm, where m is the number of metrics. A multiobjective
optimization problem can be defined in the following way:

minx F (x)
x ∈ P

(5.1)

where

F :



















Rn → Rm

x 7→ F (x) =







f1(x)
...
fm(x)







f i are the different metrics considered and P is the set of feasible solu-
tions.

1In this chapter, we consider that any objective is to be minimized. This is not a loss
of generality, since maxx f(x) = −minx −f(x)
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5.1.2 Pareto optimal set

In classical optimization, as the objective function is a scalar, the solution
space is included in a line. The optimization process aims to identify one
of the extremities of this solution space. In multiobjective optimization, the
solution space is a part of Rm. There is no total order relation in Rm, and
as a consequence there is not a single but many “best solutions”, forming a
region called Pareto optimal set or Pareto optimal frontier [Par96].

For all vectors x, y ∈ Rm, we define the following notation:

x 6 y ⇔ {xi 6 yi, i = 1, . . . , n}

x < y ⇔ {xi < yi, i = 1, . . . , n}

x = y ⇔ {xi = yi, i = 1, . . . , n}

x 6= y ⇔ {∃i/xi 6= yi}

The objective function of our optimization problem is in Rm. We say
that a point x dominates a point y if x 6 y and ∃j/xj < yj. This is written
y ≺ x.

The set of nondominated points of F (P) is the Pareto optimal set. It
is included in Rm and is constituted of the non-dominated points. It has
a special interest, since it represents the set of all solutions verifying the
following statement: if we want to improve the performance in relation with
a metric, we have to decrease the performance in relation with at least
another one [CH83].

The ideal point, corresponds to the point in the solution space which
each component reaches its minimum possible value. Such point may not
have an antecedent in P, as a given solution is probably not the best one
for all the metrics at the same time. The existence of such point means
that there is no “trade-off” between the different metrics. It also means that
the Pareto optimal set is a single point. Even in this case, multiobjective
optimization brings additional information in relation with mono-objective
optimization. With classical optimization, we would find the same solution,
but we would not be aware of the situation. The nadir point is the point
which components are the worst value for each objective among the F̄ i.

More formally, if we denote by x̄i the solution of the following mono-
objective problem:

minx f i(x)
x ∈ P

We define f̄ i = f i
(

x̄i
)

and F̄ i = F
(

x̄i
)

. The ideal point can be defined as
follows:
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F̄ =

















mini=1...m f1
(

x̄i
)

...
mini=1...m fk

(

x̄i
)

...
mini=1...m fm

(

x̄i
)

















=

















f̄1
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f̄k

...
f̄m

















The nadir point can be defined as follows:

Ḟ =

















maxi=1...m f1
(

x̄i
)

...
maxi=1...m fk

(

x̄i
)

...
maxi=1...m fm

(

x̄i
)

















=

















ḟ1

...

ḟk

...

ḟm

















Let us give an example for a hypothetical multiobjective optimization
problem with two objectives represented by functions f1 and f2. The solu-
tion space, represented on the Figure 5.1, is included in R2. F̄ 1 and F̄ 2 are
points obtained when the minimum of function f1 and f2 is reached.

Even though the values f1(x) and f2(x) are worst than f̄1 and f̄2, x
belongs to the Pareto set, represented by the continuous line: there is no
point performing better for both f1 and f2 at the same time. On the other
hand, y does not belong to the Pareto optimal set, since there are points
with lower values for both f1 and f2, x for instance. The ideal point and
nadir point are also represented.

f 1

f 2

F (P)

F̄ 1

F̄ 2

x

y

Ḟ

F̄
f̄ 2

ḟ 2

f̄ 1 ḟ 1

Figure 5.1: Pareto optimal set, ideal point F̄ and nadir point Ḟ

62



5.1. MATHEMATICAL ASPECTS

5.1.3 Combinatorial optimization problems

We consider in this work a combinatorial problem. Some variables can
only take discrete values and the solution set is also discrete. Figure 5.2 illus-
trates a hypothetical combinatorial optimization problem in R2. The image
by F of each element of P is represented by a point. The black points repre-
sent the Pareto optimal set. The gray points are dominated solutions. The
delimitation corresponds to the image of the solutions without considering
the integrality restrictions.

f 1

F̄ 1

F̄ 2

f 2

F (P)

Figure 5.2: Pareto optimal set for combinatorial optimization

Depending on the chosen algorithm to search the Pareto set, the combi-
natorial nature of the problem may be a difficult task. As for mono-objective
optimization, discrete solution sets generally increase the overall solving dif-
ficulty. For instance, direction based algorithms are generally avoided in
such case, since nothing guarantees that there exists a solution in an arbi-
trary direction. An interesting survey about multiobjective combinatorial
algorithms can be found in [EG00]. The authors first present an exact and
an approximation methods for multiobjective combinatorial problems, and
then an annotated bibliography problem by problem.

Solving a multiobjective problem consists in identifying the Pareto op-
timal set. Once the Pareto optimal set is identified, the decision maker can
choose the solution that fits the best his needs.

In the vast majority of the cases, it is not possible to identify analytically
the Pareto optimal set. We want to have the best approximation possible to
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the Pareto optimal set. This can be done by computing one by one points
belonging to the Pareto optimal set.

5.2 Mathematical model based methods

Many algorithms have been developed to search for the Pareto set of a
multiobjective problem. A generic approach consists in solving many modi-
fied mono-objective problems, whose solutions belong to the Pareto optimal
set.

5.2.1 Weighted objectives method

In a first classical approach we give weights to each of the f i and we
consider as an objective function the weighted sum of the f i. If we consider
a multiobjective problem described by equation (5.1) and if we define a

vector λ =







λ1

...
λm






such that each λi is positive, solving the mono-objective

optimization problem
{

minx
∑m

i=1 λif i(x)
x ∈ P

(5.2)

generates a point belonging to the Pareto optimal set. This is illustrated on
Figure 5.3. The direction minimizing the overall objective function changes
with the weight associated to each objective function.

This naturally leads to the following algorithm to identify points of the
Pareto optimal set: generate a set of λ−vector and then solve for each
λ−vector the mono-objective problem (5.2) associated.

If the Pareto optimal set is not convex, some of its points may not be
found by such algorithm. This is illustrated by Figure 5.4: The y point
belongs to the Pareto set but will never be found by the weighted objective
method whatever may be the weights.

5.2.2 Relaxation method

This method was first introduced in 1983 [CH83], and detailed in [TPF97].
The idea is to choose a vector pointing toward the Pareto optimal set. From
this vector and a scalar, a multidimensional polygon is built. Reducing the
scalar reduces the polygon size. The method of relaxation minimizes the
value of the scalar such that the intersection between the polygon and the
solution space is not empty.

Let be the cone of origin F̄ and generated by vectors
(

F̄ 1 − F̄
)

, . . . ,
(

F̄m − F̄
)

64



5.2. MATHEMATICAL MODEL BASED METHODS

f 2

f 1

F (P)

F̄ 1
min λ1f

1 + λ2f
2

F̄ 2

Figure 5.3: Weighted objective method for finding points of the Pareto op-
timal set

y

x

f2

f1

Figure 5.4: Weighted objective methods misses y
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Let us define a vector η =







η1
...

ηm






such that each ηi is positive, and w =

∑

i=1...m ηi

(

F̄ i − F̄
)

.
We can define the following mono-objective optimization problem:







minx,η η
F (x) 6 F̄ + ηw
x ∈ P

(5.3)

The solution of such problem belongs to the Pareto optimal set. A graph-
ical interpretation is shown on Figure 5.5. The brightest gray polygon is a
polygon defined by the ηw vector from the F̄ point. The intersection be-
tween the polygon and the solution space decreases with the value of η. The
solution of the optimization problem returns the lower value for η such that
the polygon still intersects the solution space. In the case of continuous op-
timization, this intersection reduces to a unique point of the Pareto optimal
set.

f 1

f 2

F (P)

F̄ + η1

(

F̄ 1 − F̄
)

+ η2

(

F̄ 2 − F̄
)

F̄ 1

F̄ 2

x

F̄

Figure 5.5: Relaxation method

Unfortunately, this method may not be adapted to combinatorial opti-
mization, as shown on Figure 5.6. The algorithm may return dominated
points. For the minimum η guaranteeing that the polygon still contains fea-
sible points, there may be more than a unique solution and some of these
solutions may be dominated, and consequently not belonging to the Pareto
optimal set.

In our case there is a more critical problem with this method. As men-
tioned in section 3.1.7, some of the integrality restrictions can be relaxed in
order to reduce the amount of integer variables, considering that those vari-
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F̄ 1

F̄ 2

f 2

f 1

F̄

F̄ + ηw

F (P)

Figure 5.6: The solutions returned may be dominated

ables will have integer values at the optimal solution. Since we completely
change the objective function, such assertion does not hold any more. This
is illustrated on Figure 5.7. The points represent the fully integer solutions,
and the lines the possible solutions when some integrality constraints have
been relaxed. It appears that the solver will probably return a solution in
which some variable have a fractional value, even it does not make sense
“physically”.

F̄ 1

F̄ 2

f 2

f 1

F̄

F (P)

F̄ + ηw

Figure 5.7: The solutions returned may not be integer

5.2.3 ǫ-restricted method

The idea of the ǫ-restricted method is to add additional restrictions
preventing the solver to return one of the x̄i [CH83]. More precisely, an
ǫ−restricted method corresponds to generate and solve mono-objective prob-
lems under the form:
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minx f i

x ∈ P
f j 6 ǫj ; j 6= i

(5.4)

The ǫi are chosen such that f̄ i 6 ǫi 6 ḟ i. Figures 5.8 and 5.9 illustrate
the key idea of the ǫ−method: minimizing f1 will give x̄1. If the restriction
f2(x) 6 ǫ2 is added to the problem, minimizing f1 will not return x̄1 but an-
other points of the Pareto optimal set (see Figure 5.8). The same argument
can be applied when minimizing f2 (see Figure 5.9). The main drawback of
this method is that it may generate problems without any feasible solution
if m > 3, where m is the number of objective functions.

min f 1(x)

f 2(x) 6 ǫ2

ǫ2

f 2(x) 6 ǫ2

f 1

f 2

F (P)

F̄ 1

Figure 5.8: ǫ based method minimizing f1

One may think in adding more restrictive constraints to get a more reg-
ular distribution of the Pareto optimal set points, replacing the restrictions :

f j
6 ǫj

by the restrictions :
ǫj
l 6 f j

6 ǫj
u

where ǫj
l and ǫj

u are respectively a lower and an upper bound for function

f j, while optimizing with objective function f i. ǫj
l and ǫj

u are chosen in a
way such that at the end of the algorithm, all possible values for f j have
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min f 2(x)
f 1(x) 6 ǫ1

ǫ1

f 1(x) 6 ǫ1

f 2

F (P)

F̄ 2

f 1

Figure 5.9: ǫ based method minimizing f2

been covered.
Figure 5.10 illustrates this in the case of a two dimensional problem.

However when the dimension m > 3, such algorithm would generate much
more empty problems than the original method. As we do not know a
priori if the problem is empty or not, it may require a high computation
time to find it out. Even with non-empty problems, the solver may have
great difficulties to find solutions, since the solution set is very restricted.
Moreover, points returned by such an algorithm would not necessary belong
to the Pareto optimal set if ǫj

l and ǫj
u define a very narrow solution set. As

showed on Figure 5.11, both x1 and x2 belongs to the Pareto optimal set,
and will be found by the algorithm in other step. But point y, which does
not belong to the Pareto optimal set, will also be found when the restriction
ǫ2
l 6 f2 6 ǫ2

u will be considered. In other words, being too restrictive with
respect the ǫ restriction can decrease the method efficiency. In other words,
such modifications would not improve the original ǫ−restricted method and
consequently will not be further considered.

5.2.4 Chosen method and used algorithm

We described above three different methods to search for the points of
the Pareto optimal set. As mentioned in section 5.2.2, the relaxation method
is not well adapted for MILP problem such as our, since it may generate
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min f 1(x)

ǫ2
l 6 f 2(x) 6 ǫ2

u

ǫ2
u

ǫ2
l

f 1

f 2

F (P)

F̄ 1

Figure 5.10: More restrictive ǫ− constraints

ǫ2
u

ǫ2
l

x2

x1

y

Figure 5.11: Some points may not belong to the Pareto optimal set

dominated and non-integer solutions.
We choose to adapt and use the ǫ-restricted method. The search for

the Pareto optimal set will be made by generating various mono-objective
optimization problems, whose solutions should belong to the Pareto optimal
set. Each generated problem remains a MILP problem.

The algorithm we propose has been designed to generate feasible prob-
lems and to use already computed solutions as initial solutions, easing the
solving of the problem. The notations used are described below. We also
sort the ǫ−restrictions used using a concept of predecessor and successor
defined below.

We denote by f̄ i
j the jth component of F̄ i. As we will generate several ǫ-

restricted problems, we call ǫi
j the jth ǫ restriction associated with metric i.
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Figure 5.12: Successor/predecessor definition

We say that a vector v1 is a successor of the vector v0 when ∃!i/v0
i < v1

i and
v0
j = v1

j ,∀i 6= j. Reciprocally, we say that v0 is a predecessor of v1. We say

that vector vk is a close successor of vector v0 among a set of vector v1 . . . vj

if vk is a successor of v0 and ∄v 6= vk ∈ v1 . . . vj/v0 6 v 6 vk. In this case,
v0 is a close predecessor of vk. Note that a vector may have up to m
close successors or close predecessors. Those definitions are represented on
Figure 5.12. A dashed arrow represents the “successor” relationship and a
continuous arrow represents the “close successor” relationship. We say that
we sort a set of vector v when we associate to each vector its close successors
and its close predecessors.

Algorithm 6 describes the algorithm we used to search for the Pareto
optimal set. Informally speaking, it consists in computing ǫ-vectors, gen-
erating and solving ǫ-restricted problems in a way that we can always use
as an initial solution one of the solutions recently computed. We do not
compute the complexity of the algorithm, since the complexity of generat-
ing the ǫ−vectors is negligible with respect to the complexity of solving the
optimization problems.

Figure 5.13 illustrates the idea of Algorithm 6 for a problem with two
metrics. We only represented the ǫ generated to solve problems optimizing
metric f1. The ǫ2

l are represented by lines. The dotted arrows indicate
which solution will be used as starting point for each problem generated
from an ǫ. The dashed lines give the succession of the Pareto optimal points
that will be computed. The Figure also illustrates the fact that if the epsilon
are chosen too close one to another, two ǫ-generated problems will give the
same point.

A possible problem of our method is the difficulty to choose interesting
ǫ-vectors. If the ǫ−vectors are too close one to another, it is likely that we
obtain the same solutions. On the other hand, having ǫ-vectors different
one from another may result in largely unexplored regions of the Pareto set.
As far as we know, the majority of the multiobjective algorithms based on
mono-objective optimization suffer with the problem of choosing different
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Algorithm 6 ǫ−restricted method based algorithm

Require: An optimization problem Rn → Rm

1: Solve each mono-objective problem, to obtain each of the F̄ k, 1 6 k 6 m.
2: for i from 1 to m do
3: for For each metric j from 1 to m, j 6= i do
4: for For each metric l from 1 to m, l 6= i do
5: Generate a set Ei,j,k containing the ǫj

l values to be used as ǫ-

constraint with respect to the metric k, such that f̄ j
k 6 ǫj

l 6 f̄ i
k

6: end for
7: Compute Ei,j =

∏

16k6m,i6=k Ei,j,k, where
∏

corresponds to the
Cartesian product

8: end for
9: Compute Ei =

⋃

16j6m,i6=j Ej,l

10: Sort Ei and remove duplicates, if any
11: for each ǫ vector in Ei do
12: build optimization problem (5.4) and solve it using as initial solution

the solution obtained solving the problem build with one of ǫ close
predecessor. If ǫ does not have close predecessor, it means that we
can use one of the x̄j .

13: end for
14: end for
Ensure: Points of Rm belonging to the Pareto optimal set

ǫ2
2

ǫ2
5

ǫ2
3

ǫ2
4

ǫ2
1

F̄ 1

F̄ 2

f 2

f 1

F (P)

Figure 5.13: ǫ-based algorithm
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values for a parameter, in order to generate different solutions. We do not
perform an analysis of the number of ǫ−vectors to be generated or of the
values to use to generate such vectors.

We also face the absence of guarantee that a solution is the best one
according to the metrics that are not the objective function. When we
minimize a metric, the solver improves its solutions until finding the optimal
one. When it proves that a solution is optimal, it returns it, whatever may be
the value of the solution with respect to another metric. Carefully chosen ǫ-
vectors provide a workaround to this problem. If the ǫ-vector is sufficiently
tight, the solver will not have the possibility to return a solution of low
quality in relation with the other metrics than the one being optimized.

Finally remains as open question whether or not our method is able to
find any point belonging to the Pareto set. We generate the ǫ-vectors in a
way that we are able to provide an initial solution. The generation process
of the ǫ−restriction discards at least ǫ-vectors that would lead to empty
problem. Remains the question about whether or not it also discards some
ǫ−vectors leading to Pareto solutions unreachable with ǫ−vectors generated
with our method.

5.3 Evolutionary algorithm

The previous section describes different methods using mathematical
model to identify the Pareto optimal set. Those methods have the following
approach in common: they solve many mono-objective problems. For each
problem solved, we hopefully obtain a nondominated point. However, such
approach may require a very high computation time, particularly if solving
one problem already requires hours of computation. An other approach to
identify the Pareto optimal set is to compute simultaneously various points
of it. This is possible using population based algorithms, such as evolution-
ary algorithms [SMK00].

5.3.1 Problem solved

In this section, we focus on a subproblem of the reconfiguration prob-
lem. We do not consider the overall reconfiguration problem described in
section 2, but a multiperiod virtual topology design problem. Solving the
routing of the data traffic with evolutionary algorithm would significantly
increase the complexity of the problem modeling and the solutions search.

From a physical topology and a succession of traffic matrices, a virtual
topology adapted to each traffic matrix is defined. The wavelength allocation
is also solved. The difference with the reconfiguration problem as defined
in section 2.2 lies in the fact that we do not deal with the routing of the
data traffic. The traffic matrices which serve as input of our problem are
expressed in number of lightpaths.
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The quality of the solutions obtained is evaluated with respect to the
amount of resources used (number of optical links), to the balance of the load
over the network (maximum link load) and to the number of reconfigurations
triggered by the solution (number of reconfiguration).

5.3.2 The Strength Pareto Evolutionary Algorithm

Evolutionary algorithms start with an initial set of solutions and try to
improve them by applying genetic operations, simulating a general evolu-
tion process. The population is a set of solutions called individuals. Each
individual represents a possible solution for the considered problem and is
encoded as a long string called chromosome, divided in many genes repre-
senting unitary information unit.

The population evolves through different genetic operations, such as mu-
tation, crossover and selection. The mutation is the operation introducing
new genes in the population. It consists in modifying randomly a gene.
The crossover operation combines two individuals to generate two other in-
dividuals. The main purpose of the crossover is to recombine the existing
elements. Through a fitness function, a value is assigned to each individual,
representative of its quality. The selection consists in choosing the individ-
uals based on their fitness, to create a new population on which the genetic
operations will be applied again.

With an adequate fitness function, it is possible to make the overall
population map effectively the Pareto optimal set. Such approach may be
flexible and computationally efficient. The main drawback of such kind of
methods is the lack of guarantees about the solutions quality. It is difficult
to know how good is the approximation of the Pareto optimal set obtained
at the end of the process.

There are different variants of population algorithms solving multiobjec-
tive algorithms [Hor97]. We chose the Strength Pareto Evolutionary Algo-
rithm (SPEA) [ZT99]. It maintains a set of nondominated solutions in an
external population and uses a fitness function based on the dominance. A
mating pool is filled for each generation with individuals from both the cur-
rent population and the external population. The genetic operations will be
applied to the elements of the mating pool. As a consequence, the solutions
stored in the external population participate in the selection.

The steps of the SPEA algorithm are described on Algorithm 7 and will
be described more precisely from sections 5.3.6 to 5.3.10. We note P the
current population and P ′ the external population. N is the maximum size
of P while N ′ is the maximum size of the external population.

The overall complexity of the algorithm, including the complexity of
the sub-procedures, is O

(

GN
(

mN2 + |N |2L
))

, where G is the maximum
number of generations and L =

∑

16t6T

∑

(o,d)∈N 2,o6=d Do,d(t) is the overall
number of lightpaths defined.
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Algorithm 7 The Strength Pareto Evolutionary Algorithm

1: Generate initial population P and create the empty external set of non-
dominated individuals P ′

2: repeat
3: Evaluate objective function for each individual in P
4: Copy nondominated members of P to P ′

5: Remove solutions of P ′ which are dominated by any other solution of
P ′

6: if |P ′| > N ′ then
7: prune P ′ using a clustering algorithm
8: end if
9: Compute the fitness function of each individual in P ∪ P ′

10: Select individuals through binary tournament from P ∪ P ′ until the
mating pool is filled

11: Apply crossover and mutation to members of the mating pool in order
to create a new population P

12: until Maximum number of generations G reached

5.3.3 SPEA application to the reconfiguration problem

The SPEA is a metaheuristic that can be applied to any multiobjective
optimization problem. In the classical genetic algorithms, the operations of
mutation and crossover are generic, the specificity of the problem lying in a
binary chromosome encoding and the fitness function. The mutation only
consists in changing a“0” into a “1”or reciprocally and the crossover consists
in cutting two chromosomes in two at the same position and swapping the
end of the chromosomes [Hol75].

Such generic approaches work fine when any possible combination in the
chromosome leads to a feasible solution. In the case of constrained problems,
finding a chromosome encoding that allows random mutation or crossover is
a complicated task. We did not succeed in finding such chromosome encod-
ing for our problem. Consequently the mutation and crossover procedures
depends specifically on the problem.

5.3.4 Chromosomes encoding

The choice of the chromosome codification is an important step in the
use of evolutionary algorithm. It has to allow the representation of any
possible solution for the problem and to allow quite easily to perform the
genetic operations.

The codification of the chromosomes we retain is the following: Each
chromosome C is divided in T parts of the same size, one for each time period.
Each of these parts C(t) represents the virtual topology associated with the
corresponding time period t and is divided in |N |(|N |−1) segments C(t)(o,d),
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associated with all the possible origin-destination pairs (o, d) , o 6= d. Each
segment C(t)(o,d) contains K values or less if so many paths do not exist.
The value C(t)(o,d)(k) represents the number of times path k is defined for
origin-destination pair (o, d) during time period t in the solution proposed
by this chromosome. Consequently, the size of the overall chromosome is
O

(

T |N |2K
)

. Figure 5.14 illustrates this chromosome construction. Note
that the encoding chosen is not a binary one.

C(t)(o|N|,d|N|−1)C(t)(o1,d1)

C(t)

Chromosome

C(t + 1)C(t − 1)

C(t)(o1,d1)(1) C(t)(o|N|,d|N|−1)(1) C(t)(o|N|,d|N|−1)(K)C(t)(o1,d1)(K)

Figure 5.14: Chromosome encoding

As mentioned, we only allow a lightpath to use one of the K-shortest
paths between each pair origin-destination. There are various works about
the theoretical aspects of the K-shortest path problem, and numerous algo-
rithms exist. In this work we chose to implement the algorithm presented
in [MP03], as it is simple and quite efficient.

5.3.5 Wavelength assignment

The chromosome encoding described in section 5.3.4 does not include in-
formation about the wavelength allocation. It would result in much longer
chromosomes. The genetic operations do not consider the wavelength allo-
cation.

In evolutionary algorithm, the solution space is represented by the num-
ber of valid combinations a chromosome can have. Longer chromosomes
implies larger solution space. To explore efficiently a larger solution space,
we need a larger population. Consequently, longer chromosomes have nega-
tive consequences on the overall computation process on two aspects: longer
chromosomes means higher memory requirements, and larger population
means more computations and also larger memory requirements.

Fore those reasons, we decided not to include the wavelength allocation
in the chromosome, but to solve the wavelength allocation problem for each
individuals using a fast heuristic, described by Algorithm 8. The algorithm
used is a greedy algorithm. The main problem of this algorithm is the
following: it may not find any solution in some cases when solutions actually
exist. However, we believe that such problem do not happen frequently and
the computation time gain over more clever algorithm is worth it.

The complexity of the wavelength allocation algorithm is O
(

|N |2LW
)

.
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Algorithm 8 Wavelength allocation algorithm

1: for Each node do
2: for Each time period do
3: Initialize the list of the available wavelengths
4: Sort the lightpaths having the current node as origin, from the

longest to the shortest
5: for Each lightpath do
6: repeat
7: Associate a wavelengths to the lightpath
8: Check if it is possible to allocate the wavelengths all along the

path
9: until A wavelength has been allocated or all available wavelength

have been experimented
10: if All wavelengths have been unsuccessfully experimented then
11: Fail

12: else
13: Update the list of available wavelengths
14: end if
15: end for
16: end for
17: end for

5.3.6 Mutation

We perform the mutation the following way: We select one by one all in-
dividuals. We decide with a probability α if the individual is mutated. If this
is the case, we generate a mutation in a randomly chosen gene C(t)(o,d)(k).
The mutation is made the way it is described by Algorithm 9. Basically, we
choose randomly a gene, reset its value, and reallocate the lightpaths carried
among all the genes of its segment.

We generate a mutation guarantying that the resulting solution is still
feasible. This algorithm calls N + N ′ times the wavelength allocation algo-
rithm, leading to a complexity of O

(

(N + N ′) |N |2LW
)

.

5.3.7 Crossover

From two chromosomes from the mating pool we generate two additional
chromosomes. The crossover process is done as described by Algorithm 10.
This combines the characteristics of two different individuals. Hopefully,
this allows to combine the strengths of the two original individuals. We do
not replace the two original individuals, as they may be better than the two
individuals generated by the crossover operation. As a consequence of the
recombination, some genes can appear in the recombined chromosomes.

When the recombination does not preserve the feasibility of the two
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Algorithm 9 Mutation algorithm

1: for Each chromosome in the mating pool do
2: Randomly decide with a probability α if there will be a mutation
3: if the mutation happens then
4: Chose randomly a gene C(t)(o,d)(k). Its value is v
5: Reset its value: C(t)(o,d)(k) = 0
6: for v times do
7: Chose randomly one of the K genes in segment C(t)(o,d) with

probability 1
K . Let say we chose gene C(t)(o,d)(l)

8: Increment of 1 the value of C(t)(o,d)(l)
9: end for

10: Make wavelength assignment with Algorithm 8
11: end if
12: end for

Algorithm 10 Crossover algorithm

1: Divide randomly the individuals of the mating pool in two lists of equal
number of individuals

2: repeat
3: Take the first individual of each list and remove each one from its list
4: Randomly decide with a probability β if there will be crossover
5: if The crossover happens then
6: Copy the two parents individuals
7: Chose randomly a gene C(t)(o,d)(k)
8: swap from the two chromosomes the value of all genes follow-

ing C(t)(o,d)(k)

9: if the resulting
∑K

i=1 C(t)(o,d)(i) 6= Do,d(t) then
10: Also permute the genes of segment C(t)(o,d) that have not been

permuted yet
11: end if
12: Make wavelength assignment for each new individuals with Algo-

rithm 8
13: end if
14: until One of the two lists is empty
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solutions, the place where the chromosomes are “cut” is deported to the
beginning of the segment containing the cut, guarantying the feasibility of
the two resulting two individuals. The overall complexity of the crossover
algorithm is O

(

(N + N ′)
(

T |N |2K
))

.

5.3.8 Clustering

We cannot simply copy each nondominated solution to an external pop-
ulation and keep it. It could lead to an overpopulated external population.
Moreover it is likely that it would contain many very similar solutions. On
the other hand we aim to have an external population as representative as
possible of the diversity of the solutions contained in the Pareto optimal
set. As some external population individuals also participate to the genetic
operations, maintaining the diversity of the external population, they help
to maintain the diversity of the overall population.

Such objective are achieved by means of clustering. It allows us to
regroup very similar solutions, at the same time reducing the population
size and preserving its diversity. We apply the clustering algorithm de-
scribed in [ZT99] (originally defined in [Mor80]), described by Algorithm 11,
where |C| corresponds to the number of elements of C and ||i1 − i2|| =
√

∑m
l=1

(

il1 − il2
)2

, with m the dimension of the solution space and ilm the

value of the lth objective of individual im.

Algorithm 11 Clustering algorithm

1: Create a cluster ci for each external nondominated point i ∈ P ′ : ci = {i}
2: Initialize a set of clusters C =

⋃

i∈P ′ {ci}
3: while |C| > N ′ do
4: Calculate the distance of all possible pair of clusters. The distance

d of two clusters c1 and c2 is the average distance between pairs of
individuals across the two clusters:

d =
1

|c1|.|c2|

∑

i1∈c1,i2∈c2

||i1 − i2||

5: Merge the two clusters c1 and c2 that have the minimum distance:
C = C \ {c1, c2} ∪ {c1 ∪ c2}

6: end while
7: Compute the reduced nondominated set by selecting a representative

individual per cluster

The complexity of the clustering algorithm is O
(

N ′3m
)

.
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5.3.9 Fitness

As mentioned in section 5.1.1, when we deal with multiobjective op-
timization, the objective function is a vector. Moreover, there is no direct
mapping between the objective function and the fitness function, as in classi-
cal mono-objective optimization. Consequently it can be difficult to evaluate
and compare the individuals.

In [ZT99] is proposed along with the SPEA algorithm a fitness function
for multiobjective problems. The fitness function is based on the dominance
concept. It attracts individuals near the Pareto optimal front and tends
to distribute them at the same time along the trade-off surface. Generally
the method guarantying the diversity of the population - also called niching
method - is distance based. This is not the case here, since the diversity is
guaranteed by the fitness function.

As mentioned in section 5.3.5, the wavelength allocation algorithm cho-
sen may not be able to find a solution in some cases. When this happens,
we discard the individual.

The fitness assignment is a two-stage process described by Algorithm 12.
The fitness is to be minimized. It first computes the fitness of the individuals
of the external population, based on the number of elements of the popu-
lation it dominates. We then sum for each individual of the population P
the fitness of the individuals that dominate it. Such fitness function favors
individuals near the Pareto-set and distributed along the trade-off surface.

Algorithm 12 Fitness assignment

1: for Each chromosome i ∈ P ′ do
2: Let d be the number of chromosomes in P dominated by i
3: Assign si = d

N+1
4: if Wavelength allocation is possible for this individual then
5: Assign fi = si

6: else
7: Discard individual
8: end if
9: end for

10: for Each chromosome j ∈ P do
11: if Wavelength allocation is possible for this individual then
12: fj = 1 +

∑

i∈P ′,j≺i si

13: else
14: Discard the individual
15: end if
16: end for

The complexity of the fitness assignment algorithm is O (NN ′).
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5.3.10 Initial population

The initial population is generated randomly. Each chromosome is cre-
ated in the following way: For each pair origin-destination (o, d) and for each
time period t, we choose randomly Do,d(t) times with a probability 1

K one
of the K possible paths from o to d and initialize the C(t)(o,d)(k) according
to it. This way, each chromosome is a randomly generated feasible solution
for the problem. The solutions are possible since each demand is distributed
among the different possible paths from each origin to each destination. The
complexity of the generation of the initial population is O (NL).

5.4 Conclusion

In this chapter, we focus on the multiobjective aspects of the reconfigu-
ration problem. We present an algorithm based on the ǫ−restricted method
in order to generate a set of optimization problems, allowing us to obtain
points belonging to the Pareto set. Our algorithm generates only feasible
problems and uses already computed solutions as initial solutions.

We also adapt the Strength Pareto Evolutionary Algorithm for a sub-
problem of the reconfiguration problem. This population based algorithm
compute simultaneously various non-dominated points, hopefully belonging
to the Pareto set, in a single run. However, the quality of the solutions
obtained is not guaranteed.
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Chapter 6

Multiobjective optimization:
computational results

In the previous chapter, we introduce different methods to find out the
Pareto set of the reconfiguration problem. In this chapter, we perform ex-
periments in order to search for the Pareto set of different instances of our
problem.

We use the simulated annealing heuristic and a weighted objective method
as a first approach of multiobjective optimization. We then use the algo-
rithm based on the use of ǫ-vectors we proposed in section 5.2.4. We run a
set of experiments with two different networks, allowing us to generate many
nondominated points. We conclude this chapter running a large number of
experiments with the SPEA algorithm.

6.1 Weighted method with the simulated anneal-

ing algorithm

We superficially apply the weighted objective method described in sec-
tion 5.2.1 with the simulated annealing algorithm presented in section 3.3.2
and solving the mathematical model presented in chapter 3. We use the same
instances and the same traffic matrix as in section 4.5. We consider the small
network SN2, the Cost239, NSFNET, N20, N30 and N40 networks. The con-
sidered parameters for these experiments are given in Table 6.1. Moreover,
we use the same parameters for the simulated annealing algorithm as in
section 4.5. The temperature mutation parameter α is 0.005 and the edge
weight mutation parameter γ is between 0.5 and 1.

We consider αO (respectively αL and αC) the weight associated with the
O (respectively L and C) metric. Depending on the value of each parameter,
more importance is given to one or another aspect. The objective function
being optimized is given by equation (6.1).
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Table 6.1: Parameters to apply the weighted objective method
SN2 Cost239 NSFNET N20 N30 N40

F(i,j) 5 5 5 5 5 5
W 8 /16 8/ 16 8 /16 8/ 16 8/ 16 8 / 16
B 40 /20 40/ 20 40 /20 40/ 20 40/ 20 40 / 20
traffic var var var var var var

TL 36000 36000 36000 86000 86000 86000

F = αOO + αLL + αCC (6.1)

We study some combinations for the (αO, αL, αC) triple. Note that set-
ting (αO = 1, αL = 0, αC = 0) is equivalent as optimizing the metric O. Sim-
ilarly, (αO = 0, αL = 1, αC = 0) corresponds to minimizing L, and minimiz-
ing C corresponds to (αO = 0, αL = 0, αC = 1). In these cases, we use the
results obtained in section 4.5. Tables C.1 to C.4, located in appendix C,
give the results obtained with the solver and the simulated annealing algo-
rithm. With the instances N30 and N40, we could not obtain any result with
the solver. We report in Table C.5 the results obtained with the simulated
annealing algorithm only.

Mixing the resources and reconfiguration objectives turns the problem
much more difficult to solve than considering a single objective. This can
be observed for the MILP and for the simulated annealing approaches. If
we consider only one metric, the results obtained with the other metrics
are generally very bad. On the other hand, if we consider the performance-
reconfiguration trade-off, that is using at the same time two metrics, we
obtain good solutions in relation with both metrics.

For instance, with the SN2 network (W = 16), minimizing objective
function O gives a solution using 603 optical links, but triggering 885 re-
configurations. On the other hand, the solution obtained minimizing C uses
1900 optical links and triggers 0 reconfigurations. Mixing the objectives with
an equal weight, we obtain a solution using 611 optical links and triggering
only 11 reconfigurations. A little flexibility with respect with a metric al-
lows to drastically improve the quality of the solution with respect to other
metrics.

6.2 Results with the ǫ-restricted method

We apply the method presented in section 5.2.4 to search for the Pareto
set of the reconfiguration problem. Due to the high computational cost, we
only apply this method to two instances. We choose the SN2 and cost239
networks, with the parameters given in Table 6.2.

We apply Algorithm 6. We first solve the five classical mono-objective
problems without any modifications. We obtain the solutions given in Ta-
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Table 6.2: Parameters to apply the ǫ-restricted method
SN2 Cost239

F(i,j) 5 5
W 8 8
B 40 40
traffic var var

TL 3600 7200

ble C.6, located in appendix C. Each cell of the table corresponds to a
solution and the value of the objective vector. Each value of this vector
corresponds to the quality of the solution with respect to the metrics given
at the extreme left of the table. For instance, one of the solutions obtains
the following objective vector:
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From these solutions, we defined 48 ǫ-vectors for the SN2 network, and 40
for the Cost239 network. We believe that such number of vectors is enough
to have a correct mapping of the Pareto set without being excessively time-
consuming. We solve with a two hours time-limit each of the generated
optimization problems, using a previously computed solution as described
by Algorithm 6.

Except for the original five mono-objective problems, for each problem
an initial solution is provided. However, it may happen that the solver
returns as final solution the initial solution. This happens if the solver hits
the time-limit before finding a better solution. As our mathematical model
is a MILP model, the Pareto set is not continuous. Consequently, there is
no guarantee that each different ǫ-vector leads to a different Pareto point.

For the SN2 network, we solve 53 problems, the 5 mono-objective ones
and the 48 ǫ−problems. We obtained 38 different solutions. From those,
23 are nondominated. For the Cost239 network, we solve 45 problems, the
5 mono-objective ones and the 40 ǫ−problems. We obtained 24 different
solutions, from those, 12 are nondominated. The nondominated solutions for
the SN2 (respectively Cost239) network are given in Table C.7 (respectively
Table C.8) located in the appendix.

We obtain dominated solutions. This is consequence of solving the prob-
lem with a time-limit. When it is reached, the solver returns the best solu-
tion found so far, which may not be optimal. In the case of our ǫ−restricted
method, this means that the solution found may not belong to the Pareto
set and may be dominated.
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By design, our ǫ−algorithm only generates feasible optimization prob-
lems, even if finding the optimal solution remains a difficult task. This solves
one of the main problems of the original ǫ-method. The main problem faced
is related with the choice of the number of ǫ−vectors, and of the vectors
themselves. The experiment we run, we use “manually” chosen ǫ-vectors,
according to the values obtained solving the mono-objective problems.

For both instances, our algorithm is able to return solutions making con-
trolled use of resources and having low number of reconfigurations. The SN2
instance admits a solution with O = 485 and triggering only 30 reconfigura-
tions. The Cost239 network admits a solution with O = 1185 and triggering
no reconfiguration. However, it suffers from a very high value for H = 7.04.
Such solutions are interesting from a designer point of view, since making
good use of the resources while avoiding large reconfiguration steps, but may
be a problem in terms of quality of service.

6.3 The SPEA algorithm

We make experiments in order to evaluate the performance of the evo-
lutionary algorithm described in section 5.3 and its ability to identify the
Pareto set. The results obtained allow us to study the relationship between
the different metrics chosen.

6.3.1 Computational results

We use the SN1, SN2, Cost239 and NSFNET networks described in sec-
tion 4.1. We implement the algorithms presented in section 5.3 in Java and
run our test instances on a desktop PC. The traffics are randomly generated.
We consider 5 time periods, and the demand from a node o to a node d dur-
ing time period t is randomly defined such that Do,d(t) ∈ [2, 10]. The metrics
considered to compare the quality of our results are the ones described in
section 5.3.1, that is the number of optical links, the maximum link load
and the number of reconfigurations.

The chosen parameters for the experiments are given in Table 6.3. Choos-
ing the value for the parameters to be used is always a difficult question when
dealing with probabilistic algorithms. We make various experiments modi-
fying the values of the different parameters, and it appears to us that this
set of parameters is quite good. In relation with other sets of parameters,
the number of generations required for the algorithm to converge as well as
the computation time are low. Figures 6.1 to 6.4 represent the evolution
of the solutions found depending on the generation for instances SN1, SN2,
Cost239 and NSFNET.

The computation time goes from 5 minutes for the smallest instance to
16 hours for the largest instances with the largest population. It appears
that with this problem and our test instances, the clustering is not really
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Figure 6.2: NSFNET instance: obtained results
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Figure 6.3: SN2 instance: obtained results
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Figure 6.4: Cost239 instance: obtained results
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Table 6.3: Parameters to apply the SPEA algorithm
SN1 SN2 Cost239 NSFNET

W 8 8 24 32
N 50 50 50 50
N ′ 70 70 70 70
Mating pool size 30 30 30 30
α 5% 5% 5% 5%
β 75% 75% 75% 75%
K 4 4 4 4
Number of generations 1000 1000 1500 1500

necessary, as the size of P ′ remains small (less than 30 elements) during the
execution of the algorithm. The only instance for which the clustering is
required is the NSFNET instance.

The SPEA algorithm succeeds in improving significantly the quality of
the solutions between the first and the last iteration. None of the chromo-
somes of the initial population belongs to P ′ after 250 generations. Similarly,
almost none of the chromosomes of P ′ after 250 generations belongs to P ′ af-
ter 500 generations. The population converges toward the Pareto set globally
and progressively. The SPEA algorithm succeeds in maintaining a diversity
among the population even though the solution quality constantly improves.
The improvements are made in every directions towards the Pareto set, and
not in a single direction. It seems that with our parameters 1000 iterations
are enough for the algorithm to converge with the small networks (SN1
and SN2). However, the larger networks, more than 1500 generations are
required.

Figure 6.5 shows some of the results we obtained with experiments in
order to evaluate the influence of number of paths considered K. For K =
3, the algorithm tends to find low quality solutions. Increasing the value
to K = 4 significantly improves the quality of the solutions found. When we
consider larger values for K we obtain solutions of lower quality. The size
of the solution space is related with the value of the K parameter and with
the best solutions achievable. Increasing K increases the size of the solution
space and the size of the chromosomes, resulting in better solutions, that
are harder to find.

The variation of the metrics among the obtained solutions is quite low
(less than 5%) with our test instances. However we believe that such varia-
tion already have a significant impact in the network use.

The SN1 network is small and quite sparse. There are few different paths
from a node to other one. Consequently the solution space is small and there
are few nondominated results. This appears clearly on the results obtained.
The final population contains very few elements. This is not the case for the
other networks having a much larger solution space.

Figures 6.6 (respectively 6.7) represents solutions for the NSFNET net-
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work projected on the plan defined by the metric “number of optical links”
(respectively “maximum link load”) and “number of lightpath changes”. We
call those projections “Projection 1” (respectively “Projection 2”). The“Pro-
jection 3”is given by the Number of optical links and the maximum link load,
and is represented on Figure 6.8.
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Figure 6.6: NSFNET instance: Projection 1

There is a small trade-off between the use of the resource and the number
of reconfigurations to be carried out. But another aspect to be considered
is that using long lightpaths, and consequently more optical links, results in
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a high number of reconfigurations. This can be observed on figure 6.6. The
solutions using the higher amount of optical links are the ones requiring the
higher number of reconfigurations.

The trade-off between the number of reconfigurations and the maximum
link load is apparent on figure 6.7: Decreasing the number of reconfigurations
results in an increasing maximum link load.

The solutions on projection 1 and 2 are much less organized that on
Projection 3. It appears that the relationship between the maximum link
load and the number of optical links used is tight: for a given value of optical
links used, there are few variations on the maximum link load. Moreover,
the trade-off between the two involved metric clearly appears: Using a large
number of optical links allows to use longer lightpaths, and consequently to
decrease the maximum link load.

91



CHAPTER 6. MULTIOBJECTIVE OPTIMIZATION:
COMPUTATIONAL RESULTS

6.4 Conclusion

We apply three different methods to perform a multiobjective study of
the reconfiguration problem. We apply superficially a weighted objective
method with the mathematical model and the simulated annealing heuris-
tics. It allows us to find out some interesting trade-offs, and the computation
time is low when used with the simulated annealing algorithm.

We also make experiments with an ǫ-based method. Our method solves
one of the possible problems of ǫ-based methods. By design, our algorithm
guarantees the existence of a feasible solution to the problem. However, this
method is more complex to handle than the weighted objective method, and
requires a high computation time.

Finally, we apply the Strength Pareto Evolutionary Algorithm to a sub-
problem of the reconfiguration problem. The algorithm generates a set of
various non-dominated solutions in a run. It appears to be able to maintain
a good diversity among the population. However, it suffers from the lack of
evaluation of the solution quality.

Carrying out a multiobjective analysis allows to obtain solutions pre-
senting interesting trade-offs. For instance there are solutions using few re-
sources and triggering few reconfigurations. But those solutions suffer from
bad quality with respect to the average number of hops or to the maximum
link load.

Performing a multiobjective study of a problem as complex as the recon-
figuration problem brings valuable information about the different possible
solutions and their relative performance. However, it may be difficult for a
decision maker to find out what is the best solution according to its own cri-
teria. Choosing a solution among tenth of different possibilities is a delicate
task. It would be particularly interesting to study and define procedures to
help the decision making.
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Chapter 7

Conclusions and perspectives

7.1 Conclusion

In this thesis, we address the reconfiguration problem in multifiber WDM
networks. This problem comes from the evolution of the traffic carried by
the network during its lifetime. It is a complex problem involving various
parameters.

We propose for this problem a mixed integer linear programming model,
based on a source formulation. The model is more compact than other mod-
els found in the literature. It has been published in the literature [HM05a].
Some technological extensions and cuts are adapted from similar problems,
or even introduced. We also propose a lower bound for the problem. How-
ever, as the problem is difficult to solve exactly, we propose a greedy and
a simulated annealing heuristics. Technical report presenting the simulated
annealing have been written [HD05].

We make experiments in order to evaluate the performance of our model
with respect to different metrics. We also study the influence of the cuts and
extensions on the difficulty to solve the problem and on the solution charac-
teristics. Technical report presenting this work have been written [HM05c].
We also run a set of experiments in order to evaluate the quality of the
proposed algorithm. For a very low computation time, the greedy algorithm
finds a solution of decent quality. The simulated annealing represents an
interesting trade-off between the computation time and the solution quality,
while the mathematical model finds the best solutions, but may difficulties
converge or even to handle large instances.

As the mono-objective approach is not sufficient to capture the different
trade-offs involved by this problem, we perform a multiobjective study of the
problem. We propose an algorithm based on the ǫ-restricted method. Our
algorithm does not have one of the main drawbacks of classical ǫ-restricted
method, since the problems generated always admit a solution. Preliminary
works about this methods have been published in an international confer-
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ence [HM05b]. We also adapt the Strength Pareto Evolutionary Algorithm
to a subproblem of the reconfiguration problem.

We perform different experiments allowing us to validate those algo-
rithms and to extract various solutions covering different aspects of the in-
volved trade-off.

7.2 Perspective and future works

Part of this work is based on the hypothesis that the future traffic evolu-
tions are known, or at least that the differences between the foreseen traffic
evolution and the effective future traffic evolution are negligible. This hy-
pothesis is very strong, particularly if we want to consider long term traffic
evolution. It would be particularly valuable to make a sensibility analysis of
the solutions obtained with different methods, and to include some elements
of the adaptation algorithms. This would allow us to compute initially a so-
lution for the overall reconfiguration problem considering estimated traffic
matrices, but also to adapt the solution found to traffic evolution that has
not been foreseen.

By minimizing the number of reconfigurations, we facilitate the imple-
mentation of each new virtual topology. However, we left aside the way to
carry out this implementation. The way the information regarding the new
virtual topology and routing is transmitted also has to be carefully studied.
The cost of carrying out a reconfiguration also has to be taken into account.

With respect to the multiobjective analysis, it would be particularly
interesting to study and define procedures to help the decision making. The
proposed algorithms aim to identify the Pareto frontier of the problem, where
are located the interesting trade-offs. However, it can contains a high number
of different solutions and it can be confusing for the decision maker to extract
one and only one solution from this set of interesting trade-offs.
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David Fogel and Zbigniew Michalewicz editors.

[JLFP92] K.L. Jones, I.J. Lustig, J.M. Farvolden, and W.B. Powell. Mul-
ticommodity networks flows: The impact of formulation on
decomposition. Technical Report SOR-91-23, Department of
Civil Engineering and Operations Research, Princeton Univer-
sity, April 1992.

[JMT04] B. Jaumard, C. Meyer, and B. Thiongane. ILP formulations for
the RWA problem-symmetric systems. In Globecom, volume 3,
pages 1918–1924. IEEE, November 2004. DOI: 10.1109/GLO-
COM.2004.1378328.
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Appendix A

Classical formulation for the
reconfiguration problem

In section 4.2, we compare our source formulation to the “classical” for-
mulation. Follows this classical formulation. We use similar notations as
the one defined in section 3.

A.1 Variables

We use the following variables:

• pi,j
m,n,w(t) ∈ N: number of wavelengths w used by lightpaths between i

and j on physical link (m,n) during time period t;

• ci,j(t) ∈ N: number of lightpaths from node i to node j during time
period t;

• f s,d
i,j (t): part of demand from node s to node d using a lightpath from

i to j during time period t.

• ∆pi,j
m,n,w(t) ∈ N is the number of changes for the number of wave-

lengths w used by lightpaths from node i to node j physical link (m,n) ∈
L, between time period t − 1 and t.

A.2 Virtual topology constraints

N
∑

m=1

pi,j
m,k,w(t) −

N
∑

n=1

pi,j
k,n,w(t) = 0,

(i, k, j) ∈ N3, k 6= i, j
1 6 w 6 W
1 6 t 6 T

(A.1)

N
∑

n=1

W
∑

w=1

pi,j
i,n,w(t) − ci,j(t) = 0,

∀(i, j) ∈ N2

1 6 t 6 T
(A.2)
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N
∑

m=1

W
∑

w=1

pi,j
m,j,w(t) − ci,j(t) = 0, ∀ (i, j) ∈ N2 ∀(i, j) ∈ N2

1 6 t 6 T
(A.3)

∑

(i,j)

pi,j
m,n,w(t) 6 P(m,n),

∀(i, j) ∈ N2

1 6 w 6 W
1 6 t 6 T

(A.4)

A.3 Routing constraints

N
∑

i=1

f s,d
i,k (t) −

N
∑

j=1

f s,d
k,j (t) = 0,

∀(s, d, k) ∈ N3, k 6= s, d
1 6 t 6 T

(A.5)

N
∑

j=1

f s,d
s,j (t) = Ds,d(t),

∀(s, d) ∈ N2

1 6 t 6 T
(A.6)

N
∑

i=1

f s,d
i,d (t) = Ds,d(t),

∀(s, d) ∈ N2

1 6 t 6 T
(A.7)

∑

(s,d)

f s,d
i,j (t) −Bci,j(t) 6 0

∀(i, j) ∈ N2

1 6 t 6 T
(A.8)

A.4 Reconfiguration constraints

pi,j
m,n,w(t) − pi,j

m,n,w(t − 1) 6 ∆pi,j
m,n,w(t),

(m,n, i, j) ∈ N4

1 6 w 6 W
1 6 t 6 T

(A.9)

pi,j
m,n,w(t − 1) − pi,j

m,n,w(t) 6 ∆pi,j
m,n,w(t),

(m,n, i, j) ∈ N4

1 6 w 6 W
1 6 t 6 T

(A.10)

A.5 Objective functions

A.5.1 Number of optical links

O(t) =
∑

(m,n)

∑

(i,j)

W
∑

w=1

pi,j
m,n,w(t), 1 6 t 6 T (A.11)
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A.5.2 Number of lightpaths

L(t) =
∑

(i,j)

ci,j(t), 1 6 t 6 T (A.12)

A.5.3 Maximum physical link load

M(t) = Ml(t), 1 6 t 6 T (A.13)

with

∑

(i,j)

W
∑

w=1

pi,j
m,n,w(t) 6 Ml(t), ∀ (m,n) ∈ N2 (A.14)

A.5.4 Average number of hops

H(t) =
1

∑

s,d Ds,d(t)

∑

i,j

∑

s,d

f s,d
i,j (t), 1 6 t 6 T (A.15)

A.5.5 Number of reconfigurations

C(t) =
∑

(m,n)

∑

(i,j)

W
∑

w=1

∆pi,j
m,n,w(t), 1 6 t 6 T (A.16)
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Appendix B

Mono-objective optimization:
Computational results

We provide in this chapter the numerical values for the experiments re-
garding the mono-objective approach. In some of the following tables appear
percentages in parenthesis. This percentage corresponds to the solution gap
(when applicable).

105



APPENDIX B. MONO-OBJECTIVE OPTIMIZATION:
COMPUTATIONAL RESULTS

B.1 Classical and source formulation: computa-
tional results

Table B.1: SN2, Cost239 and NSFNET (W = 8) instances, computation
time (s)

“classical” formulation Source formulation
SN2 network

O 3652+ 3628+

L 3638+ 3623+

M 36.01 3.86
H 2.609 0.58
C 12.68 17.28

Cost239 network

O 3636+ 3624+

L 3626+ 3613+

M 36050 344.45
H 31.81 5.55
C 36140 2359

NSFNET network (W = 8)

O ∗ 3618+

L 3626+ 3608+

M 36050 642.4
H 31.81 12.71
C 36140 36050

Table B.2: NSFNET (W = 16) and N20 instances, Computation time (s)
“classical” formulation Source formulation

NSFNET network (W = 16)

O ∗ 72230

L ∗ 7212+

M ∗ 2377
H ∗ 16.96
C ∗ 72090

N20 network

O ∗ 72420

L ∗ 72350

M ∗ 2494
H ∗ 67.60
C ∗ 72350
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Table B.3: SN2, Cost239 and NSFNET (W = 8) instances, solution value
“classical” formulation Source formulation

SN2 network

O 314 (5.03%) 312 (4.88%)
L 239 (3.68%) 240 (4.06%)
M 20 20
H 5.00 5.00
C 0 0

Cost239 network

O 1896 (2.31%) 1871 (1.00%)
L 1111 (1.24%) 1111 (1.24%)
M - 56
H 5.00 5.00
C -0 0

NSFNET network (W = 8)

O - 1894 (5.99%)
L 953 (1.66%) 967 (3.08%)
M - 60
H 5.00 5.00
C - -

Table B.4: NSFNET (W = 16) and N20 instances, solution value
“classical” formulation Source formulation

NSFNET network (W = 16)

O - -
L - 1812 (0.8%)
M - 120
H - 5.00
C - -

N20 network

O - -
L - -
M - 62
H - 3.00
C - -
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Table B.5: SN2, Cost239, NSFNET and N20 instances, problem size
“classical” formulation Source formulation

SN2 network

integer var. 60480 11760
continuous var. 50128 12832
constraints num. 107272 22425

Cost239 network

integer var. 880000 96800
continuous var. 710684 92924
constraints num. 1493104 169089

NSFNET network (W = 8)

integer var. 1230320 101920
continuous var. 998005 102565
constraints num. 2061656 175296

NSFNET network (W = 16)

integer var. - 203840
continuous var. - 191381
constraints num. - 347408

N20 network

integer var. - 182400
continuous var. - 154739
constraints num. - 257772
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B.2 Metrics and cut efficiency: Computational re-
sults

B.2.1 Cut performance

Table B.6: SN1, SN2, Cost239 and NSFNET instances, computation time
(s)

nocut flow in1 in2 out1 out2 out3 sym1 sym2

Line4 network

O 3632+ 3673+ 3677+ 3666+ 3628+ 3637+ 3630+ 3637+ 3628+

L 3624+ 3629+ 3630+ 1701 3632+ 3634+ 714 3631+ 3626+

M 0.43 0.73 0.56 0.45 0.48 0.60 0.35 0.83 0.48
H 0.23 0.36 0.31 0.31 0.24 0.25 0.24 0.32 0.24
C 0.09 0.11 0.14 0.11 0.12 0.11 0.08 3.35 0.11

SN1 network

O 3632+ 3648+ 3642+ 3642+ 3650+ 3648+ 3635+ 3628+ 3631+

L 3624+ 3640+ 3632+ 3639+ 3646+ 3643+ 3622+ 3616+ 3621+

M 33.7 22.9 71.1 3635+ 32.5 71.8 37.6 118. 66.1
H 8.17 12.3 10.1 9.61 9.61 9.42 8.17 9.64 9.22
C 12.7 18.1 13.6 17.8 21.3 170 13.5 197 28.9

SN2 network

O 3627+ 3634+ 3634+ 3628+ 3636+ 3631+ 3632+ 3627+ 3632+

L 3622+ 3629+ 3630+ 3624+ 3638+ 3632+ 3624+ 3616+ 3623+

M 82.3 112 34.1 46.0 28.8 79.5 12.0 93.5 45.5
H 8.95 12.5 9.11 8.57 9.64 9.83 9.02 14.1 9.73
C 17.8 32.3 18.6 20.8 28.7 18.5 21.2 134 34.5

NSFNET network

O 3629+ 3642+ 3640+ 3632+ 3629+ 3629+ 3629+ 36060 3619+

L 3618+ 3633+ 3624+ 3621+ 3614+ 3619+ 3617+ 36060 3613+

M 395 416 207 495 311 222 484 3604+ 872
H 44 95 74 48 46 49 63 1834 146
C 3572 36220 3205 36070 36030 3134 3128 36070 36050

Cost239 network

O 36320 36460 3637+ 3639+ 3611+ 3633+ 3630+ 36240 3633+

L 3627+ 3628+ 3624+ 3618+ 3616+ 3614+ 3618+ 3615+ 3611+

M 207 452 156 183 176 157 313 1795 2935
H 45 42 67 33 28 28 6 108 9
C 36150 36240 36140 36120 36070 36150 36060 36190 36050
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Table B.7: SN1, SN2, Cost239 and NSFNET instances, solution gap (%)
nocut flow in1 in2 out1 out2 out3 sym1 sym2

Line4 network
O 11.76 11.48 7.8 6.91 9.1 8.52 7.61 12.48 11.55
L 7.0 7.25 4.87 1.67 6.23 4.62 1.67 7.25 7.04

SN1 network
O 7.16 7.25 6.12 6.79 6.56 6.00 6.44 7.03 7.82
L 11.71 11.20 6.56 6.39 5.43 4.40 4.92 11.72 11.25
M 0 0 0 4.17 0 0 0 0 0

SN2 network
O 6.06 6.28 4.88 4.56 4.76 5.08 4.76 6.33 6.90
L 11.34 12.13 4.99 5.35 7.09 7.04 6.99 11.78 11.88

NSFNET network
O 0.25 0.31 0.28 0.31 0.25 0.28 0.28 ∞ 0.38
L 1.90 1.96 1.49 1.49 1.50 1.62 1.62 ∞ 1.96
C 0 ∞ 0 ∞ ∞ 0 0 ∞ ∞

Cost239 network
O ∞ ∞ 2.67 2.75 6.11 2.35 2.67 ∞ 1.77
L 9.12 9.89 5.92 5.65 ∞ 1.89 5.36 9.28 1.74
C ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
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B.2.2 Lower bound performance

Table B.8: SN1, SN2, Cost239 and NSFNET instances, computation time
(s) and solution value

Computation time (s) Solution value
ref lb rel ref lb rel

line4 network

O 3641+ 3629+ 0.019 118 118 102.69
L 1045 15.5 0.016 60 60 48.699
M 0.07 0.02 0.019 25 25 21.525
H 0.05 0.01 0.017 5 5 5
C 0.09 0.01 0.050 0 0 0

SN1 network

O 3649+ 3617+ 0.42 325 329 300.775
L 3635+ 3612+ 0.30 182 186 157.5
M 14.8 0.58 1.58 23 23 20.4833
H 0.71 0.12 0.28 5 5 4.99999
C 14.1 0.21 11.3 0 0 0

SN2 network

O 3631 3619+ 0.43 295 300 276.874
L 3622 3611+ 0.30 180 185 155.524
M 8.17 0.73 2.10 16 16 14.4
H 0.69 0.13 0.28 5 5 4.99999
C 18.2 0.24 15.5 0 0 0

NSFNET network

O 3627+ 3605+ 8.92 3136 3137 3127.2
L 3657+ 3603+ 7.02 802 803 783.8
M 1030 4.63 158 104 104 103.2
H 8.30 0.35 4.97 2 2 2
C 3587 3.36 3605+ 0 0 0

Cost239 network

O 3620+ 3609+ 4.53 1189 1203 1169.90
L 3615+ 3604+ 2.34 613 615 562.47
M 265 12.5 51.5 37 37 34.9649
H 5.96 0.55 2.03 4.99 5 5
C 3603+ 4.74 3606+ - 0 0
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B.3 Technological extensions of the model: Com-
putational results

B.3.1 Receivers and transmitters

Table B.9: SN2 and Cost239 instances, computation time (s)
Number of receivers R and transmitters E

SN2 network
8 10 12 14 16 ∞

O 3644.5+ 3630.2+ 3630.1+ 3627.0+ 3629.9+ 3646.8+

L 3620.7+ 3621.2+ 3620.3+ 3920.8+ 3621.8+ 3637.7+

C 477.07 99.1 111.6 105.8 101.2 19.1

Cost239 network

24 28 32 36 40 ∞
O 7256+ 7252+ 7253+ 7286+ 7261+ 7280+

L 7230+ 7219+ 7224+ 7261+ 7226+ 7237+

C 72090 72130 72090 72280 72110 72430

Table B.10: SN2 and Cost239 instances, solution value
Number of receivers R and transmitters E

SN2 network
8 10 12

O 319 (5.72%) 314 (5.04%) 314 (5.33%)
L 240 (3.99%) 239 (3.66%) 239 (3.67%)
C 0 0 0

14 16 ∞
O 313 (5.01%) 313 (4.99%) 312(4.89%)
L 239 (3.64%) 240 (4.02%) 240(4.07%)
C 0 0 0

Cost239 network
24 28 32

O 1890 (2%) 1872 (1.06%) 1869 (0.9%)
L 1111 (1.22%) 1110 (1.15%) 1110 (1.13%)
C - - -

36 40 ∞

O 1875 (1.22%) 1870 (0.95%) 1870 (0.95%)
L 1110 (1.15%) 1111 (1.23%) 1111 (1.23%)
C - - -
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B.3.2 Optical link release

Table B.11: SN2 and Cost239 instances, solution value
Time period

1 2 3 4 5
SN2 network (W = 8,B = 40)

O 430 345 283 212 135
L 198 172 158 130 91

SN2 network (W = 16,B = 20)

O 1389 1045 676 468 315
L 487 433 300 218 164

Cost239 network (W = 8,B = 40)

O 1648 1542 1373 1277 913
L 917 875 779 775 633

B.3.3 No empty lightpaths

Table B.12: SN2 and Cost239 instances, solution value
Minimum fill rate F

00% 25% 50% 75%
SN2 network

O 312+(4.88%) 312+(4.43%) 313+(4.72%) 312+(4.42%)
L 240+(4.06%) 239+(3.63%) 240+(4.08%) 241+(4.47%)
M 20 20 20 20
H 5.00 5.0049 5.0256 5.2356+

C 0 0 0 0

Cost239 network

O 1871+(1.00%) 1872+(1.06%) 1872+(1.06%) 1876+(1.27%)
L 1111+(1.23%) 1111+(1.24%) 1111+(1.22%) 1111+(1.24%)
M 56 56 56 56
H 5.0000 5.0014 5.0061 5.0538
C 0 - - -
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B.4 Comparison with the heuristics: Computa-
tional results

Table B.13: Heuristics experiment, computation time (s)
gr sa(O) sa(L) sa(C) md(O) md(L) md(C)

SN2 (8) 0.04 234 298 18 36241+ 36173+ 15.75
SN2 (16) 0.08 304 331 41 36333+ 36238+ 54.44
Cost239 (8) 0.016 642 620 221 36309+ 36086+ 767.8
Cost239 (16) 0.08 800 813 340 36299+ 36093+ 2243
NSFN. (8) 0.016 1023 1088 1496 36191+ 36054+ 8100
NSFN. (16) 0.032 2044 2181 2102 36262+ 36060+ 360650

N20 (8) 0.02 3145 3089 3278 86799+ 868110 12236
N20 (16) 0.068 3578 3610 3888 86690+ 865210 864910

N30 (8) 0.148 3452 3312 3441 865620 865160 865620

N30 (16) 0.332 3609 3549 3456 -∗ -∗ -∗

N40 (8) 0.448 3588 3455 3491 -∗ -∗ -∗

N40 (16) 1.008 3718 3655 3722 -∗ -∗ -∗

Table B.14: Heuristics experiment, solution value with metric O
gr sa(O) sa(L) sa(C) md(O) md(L) md(C)

SN2 (8) 485 307 392 1228 312 (4.79%) 409 1190
SN2 (16) 780 599 682 1945 603 (1.63%) 691 1900
Cost239 (8) 1549 933 1119 4304 944 (1.90%) 1179 4220
Cost239 (16) 2494 2102 2304 5367 1871 (1.00%) 2252 5215
NSFN (8) 2857 1791 2512 8168 1814 (1.85%) 2559 8100
NSFN (16) 4828 3601 4047 9106 3588 (0.75%) 4038 -
N20 (8) 4122 2682 3189 7810 2655 (1.34%) - 7782
N20 (16) 6821 5307 5489 15043 5266 (0.53%) - -
N30 (8) 14215 3019 3488 8311 - - -
N30 (16) 23604 5987 6759 15835 - - -
N40 (8) 26735 3141 3790 8671 - - -
N40 (16) 44367 6018 7211 16093 - - -
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Table B.15: Heuristics experiments, solution value with metric L
gr sa(O) sa(L) sa(C) md(O) md(L) md(C)

SN2 (8) 343 297 246 896 292 239 (3.59%) 875
SN2 (16) 555 556 469 1523 542 447 (1.66%) 1440
Cost239 (8) 878 784 585 2389 780 591 (3.24%) 2335
Cost239 (16) 1418 1410 1194 3381 1406 1110 (1.14%) 3305
NSFN (8) 1380 1343 968 3601 1310 965 (2.87%) 3575
NSFN (16) 2326 2310 1806 4408 2365 1810 (0.69%) -
N20 (8) 1785 1668 1677 3409 1719 - 3339
N20 (16) 2951 3166 3105 6465 3139 - -
N30 (8) 6774 2018 2011 3672 - - -
N30 (16) 11231 3976 4000 7188 - - -
N40 (8) 12206 2231 2467 4005 - - -
N40 (16) 20256 4151 4879 8173 - - -

Table B.16: Heuristics experiment, solution value with metric C
gr sa(O) sa(L) sa(C) md(O) md(L) md(C)

SN2 (8) 101 454 606 1 452 613 0
SN2 (16) 168 891 1043 4 885 1040 0
Cost239 (8) 320 1331 1702 1 1308 1698 0
Cost239 (16) 550 2473 3001 8 2744 3364 0
NSFN (8) 605 2345 3666 1 2379 3669 0
NSFN (16) 1052 5107 5934 3 4967 5912 -
N20 (8) 1410 2534 2872 2 2622 - 0
N20 (16) 2350 5575 5891 4 5613 - -
N30 (8) 2983 2834 3109 6 - - -
N30 (16) 5186 5811 6079 11 - - -
N40 (8) 5600 2984 3451 9 - - -
N40 (16) 9822 5567 6671 15 - - -
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B.4.1 Single hop cases

Table B.17: SN1, SN2, Cost239 and NSFNET single hop instances, solution
value

Greedy md(O) md(L) md(C)
Number of optical links

SN1 591 484 628 655
SN2 741 707 1051 890
Cost239 2514 2389 3062 2870
NSFNET 3379 2801 3208 4700

Number of lightpaths

SN1 370 305 305 410
SN2 540 516 516 620
Cost239 1441 1369 1369 1645
NSFNET 1607 1331 1331 1805

Number of reconfigurations

SN1 139 664 636 0
SN2 244 1066 1214 0
Cost239 758 3521 3870 0
NSFNET 778 3673 3557 0

Table B.18: N20, N30, N40 and N50 instances, greedy solution value
N20 N30 N40 N50

O 11342 23439 43905 60573
L 4897 11150 19969 31394
C 3469 7286 13870 18890
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Multiobjective optimization:
Computational results

C.1 Weighted method with the simulated anneal-

ing algorithm: Computational results

Table C.1: SN2 instances, solution (O,L,C) found depending on
(αO, αL, αC)

Solver Simulated annealing
(O,L,C) (gap) (O,L,C)

(αO, αL, αC) SN2 network (W = 8)

(1, 0, 0) (312, 292, 452) (4.79%) (307, 297, 454)
(0, 1, 0) (409, 239, 613) (3.59%) (392, 246, 606)
(0, 0, 1) (1190, 875, 0) (0 %) (1228, 896, 1)
(1, 0, 1) (318, 304, 5) (5.05%) (324, 307, 5)
(0, 1, 1) (5137, 250, 8) (8.1 %) (5188, 253, 8)

SN2 network (W = 16)

(1, 0, 0) (603, 542, 885) (1.63%) (599, 556, 891)
(0, 1, 0) (691, 447, 1040) (1.66%) (682, 469, 1043)
(0, 0, 1) (1900, 1440, 0) (0 %) (1945, 1523, 4)
(1, 0, 1) (611, 544, 11) (1.58%) (616, 584, 13)
(0, 1, 1) (953, 459, 5) (2.07%) (874, 533, 6)
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Table C.2: Cost239 instances, solution (O,L,C) found depending on
(αO, αL, αC)

Solver Simulated annealing
(O,L,C) (gap) (O,L,C)

(αO, αL, αC) Cost239 network (W = 8)

(1, 0, 0) (944, 780, 1308) (1.90%) (933, 784, 1331)
(0, 1, 0) (1179, 591, 1698) (3.24%) (1119, 585, 1702)
(0, 0, 1) (4220, 2335, 0) (0 %) (4304, 2389, 1)
(1, 0, 1) (−,−,−) (1136, 884, 1304)
(0, 1, 1) (−,−,−) (1236, 778, 8)

Cost239 network (W = 16)

(1, 0, 0) (1871, 1406, 2744) (1.00%) (2102, 1410, 2473)
(0, 1, 0) (2252, 1110, 3364) (1.14%) (2304, 1194, 3001)
(0, 0, 1) (5215, 3305, 0) (0 %) (5367, 3381, 8)
(1, 0, 1) (−,−,−) (1069, 863, 11)
(0, 1, 1) (−,−,−) (1322, 699, 12)

Table C.3: NSFNET instances, solution (O,L,C) found depending on
(αO, αL, αC)

Solver Simulated annealing
(O,L,C) (gap) (O,L,C)

(αO, αL, αC) NSFNET network (W = 8)

(1, 0, 0) (1814, 1310, 2379) (1.85%) (1791, 1343, 2345)
(0, 1, 0) (2559, 965, 3669) (2.87%) (2512, 968, 3666)
(0, 0, 1) (8100, 3575, 0) (0 %) (8168, 3601, 1)
(1, 0, 1) (1883, 1249, 12) (4.82%) (1798, 1210, 11)
(0, 1, 1) (−,−,−) (1801, 1306, 2279)

NSFNET network (W = 16)

(1, 0, 0) (3588, 2365, 4967) (0.75%) (3601, 2310, 5107)
(0, 1, 0) (4038, 1810, 5912) (0.69%) (4047, 1806, 5934)
(0, 0, 1) (−,−,−) (9106, 4408, 3)
(1, 0, 1) (−,−,−) (1914, 1223, 11)
(0, 1, 1) (−,−,−) (1943, 1405, 2406)
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C.1. WEIGHTED METHOD WITH THE SIMULATED ANNEALING
ALGORITHM

Table C.4: N20 instances, solution (O,L,C) found depending on
(αO, αL, αC)

Solver Simulated annealing
(O,L,C) (gap) (O,L,C)

(αO, αL, αC) N20 network (W = 8)

(1, 0, 0) (2655, 1719, 2622) (1.34%) (2682, 1668, 2534)
(0, 1, 0) (−,−,−) (3189, 1677, 2872)
(0, 0, 1) (7782, 3339, 0) (0%) (7810, 3409, 2)
(1, 0, 1) (−,−,−) (2694, 1745, 2676)
(0, 1, 1) (−,−,−) (2781, 1783, 2760)

N20 network (W = 16)

(1, 0, 0) (5266, 3139, 5613) (0.53%) (5307, 3166, 5575)
(0, 1, 0) (−,−,−) (5489, 3105, 5891)
(0, 0, 1) (−,−,−) (15043, 6465, 4)
(1, 0, 1) (−,−,−) (5038, 3104, 5428)
(0, 1, 1) (−,−,−) (5120, 3165, 5603)

Table C.5: N30 and N40 instances, solution (O,L,C) found depending on
(αO, αL, αC)

W = 8 W = 16
(O,L,C) (O,L,C)

(αO, αL, αC) N30 network

(1, 0, 0) (3019, 2018, 2834) (5987, 3976, 5811)
(0, 1, 0) (3488, 2011, 3109) (6759, 4000, 6079)
(0, 0, 1) (8311, 3672, 6) (15835, 7188, 11)
(1, 0, 1) (3096, 2113, 2901) (6192, 4014, 5689)
(0, 1, 1) (3200, 2103, 2944) (6371, 4218, 5763)

N40 network

(1, 0, 0) (3141, 2231, 2984) (6018, 4151, 5567)
(0, 1, 0) (3790, 2467, 3451) (7211, 4879, 6671)
(0, 0, 1) (8671, 4005, 9) (16093, 8173, 15)
(1, 0, 1) (3134, 2345, 3024) (6094, 4487, 5831)
(0, 1, 1) (3410, 2409, 3310) (6652, 4674, 6598)
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APPENDIX C. MULTIOBJECTIVE OPTIMIZATION:
COMPUTATIONAL RESULTS

C.2 Results with the ǫ-restricted method: Com-
putational results

Table C.6: SN2 and Cost239 instances, mono-objective solution value
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Table C.7: SN2 instance, obtained nondominated points
Solutions
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C.2. RESULTS WITH THE ǫ-RESTRICTED METHOD

Table C.8: Cost239 instance, obtained nondominated points
Solutions
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