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Resumo Estendido

Avanços em técnicas de compressão, diminuição no custo de armazenamento e transmissões em

grande velocidade têm facilitado a forma como os vídeos são criados, armazenados e distribuí-

dos. Como conseqüência, os vídeos passaram a ser utilizados em várias aplicações. Devido ao

aumento na quantidade de dados dos vídeos distribuídos e usados em aplicações atuais, estes

se destacam como um tipo de dado multimídia, introduzindo, porém, o requerimento de um

gerenciamento mais e�ciente destes dados. Tudo isto tem aberto o caminho para novas áreas

de pesquisa, tais como a indexação e recuperação de vídeo baseadas no conteúdo semântico,

visual e espaço-temporal.

Esta tese apresenta um trabalho dirigido à criação de um suporte uni�cado para a index-

ação semi-automática de video e recuperação iterativa. Para criar uma indexação uni�cada, é

selecionado um conjunto de quadros-chave que capturam e encapsulam o conteúdo do vídeo.

Isso é conseguido através da segmentação do vídeo em tomadas constitutivas e selecionando

um número ótimo de quadros dentre os limites da tomada. Primeiro, desenvolvemos um

algoritmo para segmentação automática (detecção de cortes de cena). A �m de prescindir

da de�nição de limiares e parâmetros, utilizamos um método de classi�cação supervisionado.

Adotamos um classi�cador SVM devido à habilidade para utilizar espaços de características

de alta dimensão (utilizando funções de kernels) preservando a grande capacidade de gener-

alização. Igualmente, avaliamos profundamente diferentes combinações de características e

kernels. Avaliamos o desempenho do nosso classi�cador utilizando diferentes funções kernel

visando encontrar aquele que apresente melhor desempenho. Nossos experimentos, seguem es-

tritamente o protocolo da Avaliação TRECVID. Apresentamos os resultados obtidos na tarefa

de detecção de cortes de cenas da Avaliação TRECVID de 2006. Os resultados obtidos foram

satisfatórios lidando com um grande conjunto de características graças a nosso classi�cador

SVM baseado em kernels.

O passo seguinte depois da segmentação é a extração de quadros-chave. Eles são sele-

cionados a �m de minimizar a redundância de representação enquanto preservam o conteúdo

da tomada, i.e., selecionando um número ótimo de quadros dentro dos limites da tomada.

Nós propomos um sistema interativo de recuperaçao de vídeo: RETINVID baseano no sis-

tem RETIN, uma máquina de busca e recuperação por conteúdo de imagens. O objetivo do

aprendizado ativo quando utilizando em indexação é reduzir signi�cativamente o número de

quadros-chave anotados pelo usuário. Usamos o aprendizado ativo para ajudar no etiquetado

semântico de bases de dados de vídeos. A abordagem de aprendizado propõe amostras de
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tomadas-chave do vídeo para serem anotadas e posteriormente atualizar a base de dados com

as novas anotações. Logo, o sistema usa o aprendizado cumulativo adquirido para propagar as

etiquetas ao resto da base de dados, este processo é executado toda vez que uma amostra de

quadros-chave é apresentada ao usuário para ser anotada. As amostras de quadros-chave apre-

sentadas são selecionadas baseadas na habilidade do sistema para incrementar o conhecimento

obtido. Portanto, temos escolhido o aprendizado ativo devido à capacidade de recuperar cat-

egorias complexas, especi�camente a traves do uso das funções kernel. A falta de dados para

treinamento, categorias não-balanceadas e o tamanho do vetor de características podem ser

superados através do aprendizado ativo. Avaliamos o desempenho do nosso sistema usando a

base da dados utilizada na tarefa de alto-nível da Avaliação TRECVID de 2005.
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Abstract

Advances in compression techniques, decreasing cost of storage, and high-speed transmission

have facilitated the way videos are created, stored and distributed. As a consequence, videos

are now being used in many applications areas. The increase in the amount of video data

deployed and used in today's applications reveals not only the importance as multimedia data

type, but also led to the requirement of e�cient management of video data. This management

paved the way for new research areas, such as indexing and retrieval of video with respect to

their spatio-temporal, visual and semantic contents.

This thesis presents work towards a uni�ed framework for semi-automated video indexing

and interactive retrieval. To create an e�cient index, a set of representative key frames are

selected which capture and encapsulate the entire video content. This is achieved by, �rstly,

segmenting the video into its constituent shots and, secondly, selecting an optimal number of

frames between the identi�ed shot boundaries. We �rst developed an automatic segmentation

algorithm (shot boundary detection) to get rid of parameters and thresholds, we explore a

supervised classi�cation method. We adopted a SVM classi�er due to its ability to use very

high dimensional feature spaces (using the kernel trick) while at the same time keeping strong

generalization guarantees from a few training examples. We deeply evaluated the combination

of features and kernels in the whole data set. We evaluate the performance of our classi�er

with di�erent kernel functions. Our experiments, strictly following the TRECVID Evaluation

protocol. We present the results obtained, for shot extraction TRECVID 2006 Task. We

provide good results dealing with a large amount of features thanks to our kernel-based SVM

classi�er method.

The next step after segmentation is the key frame extraction. They will be selected to

minimize representational redundancy whilst still portraying the content in each shot, i.e.,

selecting an optimal number of frames between the identi�ed shot boundaries. We propose

an interactive video retrieval system: RETINVID based on RETIN system, a content-based

search engine image retrieval. The goal of active learning when applied to indexing is to

signi�cantly reduce the number of key frames annotated by the user. We use active learning

to aid in the semantic labeling of video databases. The learning approach proposes sample

key-frame(s) of a video to the user for annotation and updates the database with the new

annotations. It then uses its accumulative knowledge to propagate the labels to the rest of

the database, after which it proposes new key frames samples for the user to annotate. The

sample key frames are selected based on their ability to increase the knowledge gained by
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the system. Therefore, we have chosen an active learning approach because of its capacity

to retrieve complex categories, speci�cally through the use of kernel functions. The lack of

training data, the unbalance of the classes and the size of the feature vectors can be overcome

by active learning. We perform an experiment against the 2005 TRECVID benchmark in the

high-level task.
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Chapter 1

Introduction

Video data is becoming increasingly important in many commercial and scienti�c areas with

the advent of applications such as digital broadcasting, interactive-TV, video-on-demand,

computer-based training, video-conferencing and multimedia processing tools, and with the

development of the hardware and communications infrastructure necessary to support visual

applications. The availability of bandwidth to access vast amount of video multimedia data

will lead to the need for video database management techniques to allow browsing and search

of video in digital libraries, such as current text databases techniques allow online browsing

and keyword search. Finding methodologies to handle the temporal segmentation, storage,

retrieval, searching, and browsing of digitized video data has been an active area of recent

research. There are two important aspects, among many others, surrounding the development

of video indexing and retrieval systems: temporal segmentation and content classi�cation.

1.1 Temporal Segmentation

Temporal segmentation, often performed by detecting transitions between shots, is required

in the early stages of video indexing. A shot is de�ned as an image sequence that presents

continuous action which is captured from a single operation of a single camera. In other

words, it is a sequence of images acquired by a camera from the time it starts recording an

action to the time it stops recording it Hampapur et al. [1994]. Shots are joined together in

the editing stage of video production to form the complete sequence. Shots can be e�ectively

considered as the smallest indexing unit where no changes in scene content can be perceived

and higher level concepts are often constructed by combining and analyzing the inter and intra

shot relationships. There are two di�erent types of transitions that can occur between shots:

abrupt (discontinuous) shot transitions, also referred as cuts; or gradual (continuous) shot

transitions, which include camera movements (panning, tilting, zooming) and video editing

special e�ects (fade-in, fade-out, dissolving, wiping). These transitions can be de�ned as

follows:

• cut: an instantaneous change of visual content from one shot to another;

1
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• fade-in: a shot gradually appears from a constant image;

• fade-out: a shot gradually disappears from a constant image;

• dissolve: the current shot fades out while the next shot fades in;

• wipe: the next shot is revealed by a moving boundary in the form of a line or pattern;

Detection of all the categorized transitions will segment a video sequence into its individuals

shots, each representing a di�erent time or space, ready for further higher-level processing to

characterize it.

Based in people experience, after watching innumerable hours of television and/or �lm

during their lifetime, it is possible to say that they share an implicit �lm/video �grammar�,

particulary when it comes to shot transitions. For example, a dissolve from one shot to another

usually means a relatively short amount of time that has passed. Founded on this, producers

use this implicit grammar with the objective to help viewers understand the video. Violating

this grammar will frustrate the expectations of the viewer. The audience's perception of

screen time and the rhythm of the events are in�uenced by the dissolve. A fade denotes the

beginning or the end of a scene, episode or idea. The signi�cance of a fade implies in a more

signi�cant change of place or time lapse than a dissolve. The cut is the simplest, most common

way of moving from one shot to the next. Due to this grammar being used consistently, the

most common edit e�ects found in video sequences are cuts, fades and dissolves. For this

reason, the most of previous work and the present work focus on detecting only these types

of transitions.

1.2 Content Classi�cation

Larger number of video information repositories are becoming available every day. Indexes are

essential for e�ective browsing, searching, and manipulation of collections of video sequences.

Such indexes are central to applications such as digital libraries containing multimedia infor-

mation. To support e�ective use of video information, and to provide to ever-changing user

requirements, these indexes must be as rich and complete as possible.

Present-day commercial video search engines such as Google1 and Blinkx 2 often rely on

just a �lename and text metadata in the form of closed captions (Google) or transcribed speech

(Blinkx). This results in a disappointing performance, as quite often the visual content is not

mentioned, or properly described by the associated text. The text often covers the emotion of

the video, but this is highly speci�c for context and wears quickly. Because natural language

is highly ambiguous, simply matching the exact terms given in a search often results in a set of

documents that are not closely or signi�cantly related. There are two fundamental problems:

• polysemy, many of the documents retrieved may use the terms that were speci�ed in the

search in a manner that is di�erent from the way the users intended; item synonymy,

1Google Video Search 2007 [Online]. Available: http://video.google.com/
2Blink Video Search 2007 [Online]. Available: http://www.blinkx.tv/
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many documents may have been excluded because the documents do not contain the

terms speci�ed in the search, even though they do contain some term that has the same

meaning Lancaster [1986].

In contrast to text-based video retrieval, the content-based image retrieval research com-

munity has emphasized a visual only approach. It has resulted in a wide variety of image

and video search systems Flickner et al. [1995]; Gupta and Jain [1997]; Pentland et al. [1996].

A common denominator in these prototypes is that they �rst partition videos into a set of

access units such as shots, objects or regions Deng and Manjunath [1998], and then follow

the paradigm of representing video via a set of features (low-level visual information), such

as color, texture, shape, layout and spatiotemporal features Al-Omari and Al-Jarrah [2005];

Shahraray and Gibbon [1997]. Initial work on content-based retrieval focused on extract-

ing global features from an entire image. More recent work extended content extraction to

region-based analysis where feature vectors are computed from segmented regions and simi-

larity is evaluated between individual regions Jing et al. [2004]. Those features, global and/or

regional, are properly indexed, according to some indexing structure, and are then used for

video retrieval. Retrieval is performed by matching the features of the query object with those

of videos in the database that are nearest to the query object in high-dimensional spaces, see

Figure 1.1.

Query-by-example can be fruitful when users search for the same object under slightly

varying circumstances and when the target images are actually available. If proper exam-

ple images are unavailable, content-based image retrieval techniques are not e�ective at all.

Moreover, users often do not understand similarity of low-level visual features. They expect

semantic similarity. In other words, when searching for cars, an input image of a red car

should also trigger the retrieval of yellow colored cars. The current generation of video search

engines o�ers low-level abstractions of the data, where users seek high-level semantics. Thus,

query-by-example retrieval techniques are not that e�ective in ful�lling the needs of the users.

The main problem for any video retrieval methodology aiming for access is the semantic gap

between image data representation and their interpretation by humans Smeulders et al. [2000].

Not surprisingly, the user experience with (visual only) video retrieval is one of frustration.

Therefore, a new paradigm of semantics is required when aiming for access to video archives.

In a quest to narrow the semantic gap, recent research e�orts have concentrated on automatic

detection of semantic concepts in video. The feasibility of mapping low-level (visual) features

to high-level concepts was proven by pioneering work, which distinguished between concepts

such as indoor and outdoor Vailaya and Jain [2000], and cityscape and landscape Vailaya

et al. [1998]. The introduction of multimedia analysis, coupled with machine learning, has

paved the way for generic indexing approaches Adams et al. [2003]; Fan et al. [2004]; Naphade

and Huang [2001]; Snoek et al. [2006a,b, 2005].

The perceptual similarity depends upon the application, subject/user, and the context of

usage. Therefore, the machine not only needs to learn the associations, but also has to learn

them on-line with a user in the loop. Today's state-of-the-art Content-Based Image Retrieval

uses the combination of low-level features and relevance feedback Eakins [2002]; Santini et al.
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Figure 1.1: Relevant images retrieved.

[2001] to bridge the gap between low-level features and their high-level semantic meaning.

Studies have shown that semantic information and relevance feedback greatly facilitate image

retrieval Lu et al. [2000]. However, the old problems of labor-intensive manual annotation and

subjectivity of human perception still persist. The easiest way to reduce the labeling e�ort

is to request a human to label some selected data, and automatically propagate the labels to

the entire collection using a supervised learning algorithm.

The conventional relevance feedback algorithms converge slowly because users are led to

label only the most relevant documents, which is usually not informative enough for systems

to improve the learned query concept model. Active learning algorithms have been proposed

to speed up the convergence of the learning procedure Schohn and Cohn [2000]; Tong [2001].

In active learning, the system has access to a pool of unlabeled data and can request the user's

label for a certain number of instances in the pool. However, the cost of this improvement is

that users must label documents when the relevance is unclear or uncertain for the system.

These �uncertain documents� are also proven to be very informative for the system to improve

the learned query concept model quickly Xu et al. [2003]. Recently, active learning is being

used on video analysis Qi et al. [2006]; Song et al. [2006]; Yang and Hauptmann [2006].



1. Introduction 5

1.3 Aims and Objectives

The considerable amount of video data in multimedia databases requires sophisticated indices

for its e�ective use Brunelli et al. [1999]. The most e�ective method for doing this task is

the manual indexing, but it is slow and expensive. Thus, for this reason there is a need

for automated methods to annotate video sequences and to provide a content description.

Indeed, solving the problem of video segmentation (shot boundary detection) is one of the

principal prerequisites for revealing video content structure in a higher level. Based on these

observations, this work aims to develop an automatic technique for video segmentation and

content-based retrieval.

According to Hanjalic [2002], two points are essential in relation to robustness of a shot

boundary detector: an excellent detection performance for all types of shot boundaries and

a constant quality of detection performance with minimized need for manual �ne tuning of

detection parameters in di�erent sequences. Therefore, instead of investigating new features

in which the e�ect of shot is used and detected, we focus on improving existing algorithms

and detect automatically the shot boundaries, without setting any threshold or parameter.

To cope with the problem of parameter setting, we can see video shot segmentation from

a di�erent perspective, as a categorization task. We adopt a machine learning approach to

overcome this problem.

This research presents an approach to active learning for video indexing. The goal of active

learning when applied to indexing is to signi�cantly reduce the number of images annotated

by the user. We use active learning to aid in the semantic labeling of video databases. The

learning approach proposes sample key frame(s) of a video to the user for annotation and

updates the database with the new annotations. It then uses its accumulative knowledge to

propagate the labels to the rest of the database, after which it proposes new image samples

for the user to annotate. The sample images are selected based on their ability to increase

the knowledge gained by the system.

1.4 Contributions

The diagram in Figure 1.2 shows an automated video indexing system. The process begins

segmenting temporally the video sequence into shots and selects representative key frames.

Then, these key frames can be used to browse the video content or extracted features can

be used to match video content to a user's query to enable shot retrieval. In Figure 1.2, we

can �nd the main contributions highlighted in gray(blue): temporal segmentation and video

indexing.

• Video segmentation

1. We propose a hierarchical classi�cation system which views temporal video seg-

mentation as a 2-class clustering problem (�scene change� and �no scene change�).

Our method consists of �rst detecting abrupt transitions using a learning-based ap-
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Figure 1.2: A diagram of an automated video indexing system.

proach, then non-abrupt transitions are split into gradual transitions and normal

frames. Since our objective is to develop an automatic shot boundary detector we

avoid to de�ne as much as possible thresholds and parameters such as sliding win-

dows, as Qi et al. [2003] suggest in their hierarchical system, because it is necessary

to de�ne the size of the window. Thus, our system maintains the characteristic to

be parameter free.

2. Previous classi�cation approaches consider few visual features. As a consequence

of this lack, these methods need pre-processing and post-processing steps, in order

to deal with illumination changes, fast moving objects and camera motion. We de-

cided to use the well known kernel-based Support Vector Machine (SVM) classi�er

Cortes and Vapnik [1995] which can deal with large feature vectors. We combine a

large number of visual features (color and shape) in order to avoid pre-processing

and post-processing steps. Our system requires a small training set and we do not

have to set any threshold or parameter.

3. We propose to use entropy as the goodness-of-�t measure in a block-based correla-

tion coe�cients to measure the visual content similarity between frame pairs. The

entropy is applied in each block in order to describe the block information. We

executed tests for abrupt transition (cut) detection and our entropy-based method,

shows better performance than maximum correlation Porter et al. [2003]. This is

because the entropy gives a global information of the block, instead of the infor-

mation of a single element of the block.

4. Our dissolve (gradual transition) detection is based on three steps: a pattern detec-
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tion based on curve matching and a re�nement level based on a gradual transition

modeling error, feature extraction of dissolve regions using an improved method

and a learning level for classifying gradual transitions from no gradual transitions.

The improved double chromatic di�erence is based on the work by Yu et al. [1997].

We propose a modi�cation, reducing signi�catly the complexity of its computation

preserving its accuracy. Indeed, we use projection histograms Trier et al. [1996]

(1D) instead of the frame itself (2D).

5. We present a method for fade (gradual transition) detection based on our improved

feature developed for dissolve detection. Instead of examining the constancy of the

sign of the mean di�erence curve Truong et al. [2000a], we apply our improved

feature (used in dissolve detection) for fade detection. Some of the techniques

used for detecting fades are not tolerant to fast motion, which produces the same

e�ect of a fade. Our feature is more tolerant to motion and other edition e�ects or

combinations of them.

• Video indexing

We propose an interactive video retrieval system: RetinVid based on Retin system, a

content-based search engine image retrieval Gosselin and Cord [2006]. We have cho-

sen an active learning approach because of its capacity to retrieve complex categories,

speci�cally through the use of kernel functions. The lack of training data, the unbal-

ance of the classes and the size of the feature vectors can be overcome by active learning

Gosselin and Cord [2006]. We use color L∗a∗b system and Gabor texture features plus

shape features extracted for shot boundary detection.

1.5 Thesis Outline

This thesis is organized as follows. In Chapter 2, we present the video model, basic de�nitions

that will hold within this document. Chapter 3 provides a detailed review of previous ap-

proaches to video segmentation. Chapter 4 describes our learning-based approach for abrupt

transition detection. We present the color and shape features that our system computes,

also we describe the modi�cations that we suggest to improve the accuracy of correlation

coe�cients. On a large and comprehensive video data set (TRECVID3 2002 and 2006), the

performance of proposed algorithms are compared against two other existing shot boundary

detection methods in terms of precision and recall. Chapter 5 describes our learning-based

approach for dissolve detection and our fade detector. We present our improvement over a

widely used descriptor for dissolve detection and extend it also for fade detection. We test our

system using TRECVID 2006 data set. Chapter 6 describes an interactive machine learning

system for video retrieval: RetinVid. On a large and comprehensive video data set (TRECVID

2005), the performance of proposed system is compared against other retrieval methods in

3Trec video retrieval evaluation. Available: http://www.nlpir.nist.gov/projects/trecvid/.
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terms of mean average precision (MAP, which is the area under the Precision/Recall curve).

Chapter 7 concludes de thesis and provides some directions for future work.



Chapter 2

Video Model

Digital video now plays an important role in education, entertainment and other multimedia

applications. It has become extremely important to develop mechanisms for processing, �l-

tering, indexing and organizing the digital video information, hence useful knowledge can be

derived from the mass information available. The two most important aspects of video are its

contents and its production style Hampapur et al. [1995]. The former is the information that

is being transmitted and the latter is associated with the category of a video (commercial,

drama, science �ction, etc.). In this chapter, we will de�ne some of the concepts used in liter-

ature; like shot, scene and key frame. Also, we present the most popular types of transitions

(abrupt transitions, gradual transitions and camera movements) and a video database system.

2.1 Terminology

Before we go into the details of the discussion, it will be bene�cial to �rst introduce some

important terms used in the digital video research �eld.

Video: A video V is a sequence of frames ft with an accompanying audio track and can

be de�ned as V = (ft)t∈[0,T−1], where T is the number of frames.

Frame: A frame has a number of discrete pixels locations and is de�ned by ft(x, y) =
(r, g, b), where x ∈ {1 . . .M}, y ∈ {1 . . . N}, (x, y) represents the location of a pixel within an

image, M ×N represents the size of the frame and (r, g, b) represents the brightness values in
the red, green and blue bands respectively.

Intensity : The intensity i of color q corresponds to its relative brightness in the sense of

monochromatic gray levels.

Brightness: Brightness is de�ned by the Commission Internationale de L'Ecleritage (CIE)

as the attribute of a visual sensation according to which an area appears to emit more or less

light. Brightness is a perceptual quantity; it has no �rm objective measure.

Frame histogram: The distinct number of values each pixel can have is discretized and

a histogram is created for a frame counting the number of times each of the discrete values

appears in the frame.

Feature: In image processing the concept of feature is used to denote a piece of information

9
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which is relevant for solving the computational task related to a certain application. More

speci�cally, features can refer to

• the result of a general neighborhood operation (feature extractor or feature detector)

applied to the image,

• speci�c structures in the image itself, ranging from simple structures such as points or

edges to more complex structures such as objects.

Shot : A shot is the fundamental unit of a video, because it captures a continuous action

from a single camera where camera motion and object motion is permitted. A shot represents

a spatio-temporal frame sequence. This is an important concept, we will try to �nd the limits

of shots within a video. Figure 2.1 shows the structure embedded in a video.

Figure 2.1: Hierarchical structure within a video sequence

Scene: A scene is composed of a small number of shots that are interrelated and uni�ed

by similar features and by temporal proximity. While a shot represents a physical video unit,

a scene represents a semantic video unit.

Key frame: The frame that represents the salient visual content of a shot. Depending on

the complexity of the content of the shot, one or more key frames can be extracted. This

concept is also important. We will try to �nd the key frames that will be used later for video

indexing.

The number of frames is directly associated with the frequency and the duration of visu-

alization. In other words, we can say that a video is generated by composing several shots by

a process called editing. This is also referred to as the �nal cut Hampapur et al. [1994].

Transition: Shots are separated by editing e�ects (an interruption between shots), these

e�ects are known as transitions. The process of editing may introduce additional frames into

the �nal cut. Di�erent kinds of transitions separate a shot from another. There exist sharp

and gradual transitions.
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Edit Frame: The set of images generated during the process of editing two shots.

Scene Activity : Changes that occur in the video caused by changes that occurred in the

world during the production process. For example, changes in the image sequence due to

movement of objects, the camera or changes in lighting, etc.

Histogram: A histogram is obtained by splitting the range of the data into equal-sized

bins (class-intervals), each bin representing a certain intensity value range. The histogram

H(ft, j) is computed by examining each pixel in the image ft and assigning it to a j-th bin

depending on the pixel intensity. The �nal value of a bin is the number of pixels assigned to

it.

Similarity : Similarity is a quantity that re�ects the strength of relationship between two

features. If the similarity between feature x and feature y is denoted by s(x, y), we can

measure this quantity in several ways depending on the scale of measurement (or data type)

that we have.

A common similarity measure for vectorial features is the geometric distance. Many

similarity measure are based on the Lp(x, y) = (
∑k

i=0)|xi − yi|p)1/p. This is also often called

the Minkowski distance. For p = 2, this yields the Euclidean distance L2. For p = 1, we get
the Manhattan distance L1.

Dissimilarity : The dissimilarity d(x, y) between features i and j is also based on the

notion of distance. Dissimilarity functions are supposed to be increasing the more dissimilar

two points get. A common relationship between dissimilarity and similarity is de�ne by

d(x, y) = 1− s(x, y). Special cases of dissimilarity functions are metrics.

Metric: A metric is a dissimilarity (distance) measure that satis�es the following proper-

ties:

1. d(x, y) ≥ 0 (non-negativity);

2. d(x, y) = d(y, x) (symmetry);

3. d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality).

PatternTherrier [1989]: Objects of interest are generically called patterns and may be

images, printed letters or characters, signals, �states� of a system or any number of other

things that one may desire to classify.

2.2 Types of Transitions

The process of video production involves shooting and edition operations. The �rst is for

production of shots and the second one is for compilation of the di�erent shots into a structured

visual presentation Hampapur et al. [1995]. When we refer to compilation, we mean the

transition between consecutive shots. Figure 2.2 shows an example of an abrupt transitions

and a gradual transition.

De�nition 2.1 (Transition) A transition Ti between two consecutive shots Si =< . . . , fs−1, fs >

and Si+1 =< ft, ft+1, . . . > with s < t is the set of frames Ti = (fs+1, . . . , ft)
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For example, in Figure 2.2 S1 =< f1, . . . , fs1 >, S2 =< ft1 , . . . , fs2 > and T1 = ∅ (abrupt
transition).

Figure 2.2: Transitions illustration from shot Si to shot Si+1.

Transitions are usually subdivided into abrupt transitions (cuts) and gradual transitions

(dissolves, fades and wipes).

2.2.1 Cut

The simplest transition is the cut, and it is also the easiest transition to identify.

De�nition 2.2 (Cut) Also known as a sharp transition, a cut is characterized by the abrupt

change between consecutive shots, where t = s+ 1, as illustrated in Figure 2.2.

We can see an example of an abrupt transition in Figure 2.3.

(a) (b) (c) (d)

(d) (e) (f) (g)

Figure 2.3: An example of a cut.

2.2.2 Fades and Dissolves

Fades and dissolves are video editing operations that make the boundary of two shots spread

across a number o frames del Bimbo [1999]. Thus, they have a starting and an ending frame
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that identify the transition sequence. Gradual transitions occur when t > s + 1, where the

frames between the interval s and t are edited, created by a composition of the original frames.

De�nition 2.3 (Fade-out) The fade-out process is characterized by a progressive darkening

of a shot Si until the last frame becomes completely black. The frames of a fade-out can be

obtained by

Tf0(t) = α(t)G+ (1− α(t))Si(t) (2.1)

where α(t) is a monotonically increasing function that is usually linear, G represents the last

frame, which is monochromatic (e.g. white or black) and t ∈ ]si, si + d[ where d represents

the duration of the fade.

De�nition 2.4 (Fade-in) The fade-in process is characterized by a progressive appearing of

shot Si+1. The �rst frame of the fade-in is a monochromatic frame G. The frames of a fade-in

can be obtained by

Tfi
(t) = (1− α(t))G+ α(t)Si+1(t) (2.2)

where α(t) is a monotonically increasing function that it is usually linear. Figure 2.4 shows

examples of fade-in and fade-out sequences.

Figure 2.4: Examples of fade-in (top) and fade-out (bottom).

De�nition 2.5 (Dissolve) The dissolve is characterized by a progressive change of a shot

Si into a shot Si+1 with non-null duration. Each transition frame can be de�ned by

Td(t) = (1− α(t))Si(t) + α(t)Si+1(t) (2.3)

where α(t) is a monotonically increasing function that it is usually linear. Figure 2.5 displays

an example of dissolving.

Figure 2.6 shows examples of most used transitions, where TP is the transition period.

The �rst transition is a cut, two shots are concatenated without inserting new edit frames.
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Figure 2.5: An example of dissolve.

The next transition is a fade-out, where the shot slowly get dark until it disappears. A number

of �black� frames separate the fade-out from the fade-in. This transition is called fade out-in.

In the case of the fade-in, the shot appears slowly from dark frames. The last transition in

the �gure is a dissolve, while one shot appears the other disappears.

Figure 2.6: Illustration of a video sequence with shots and transitions

2.2.3 Wipe

In a wipe, one shot is (linearly, usually) replaced over time by another shot.

De�nition 2.6 (Wipe) We can model the changing characteristic of a wipe transition as

Tw(t) =

{
Si(x, y, t), ∀(x, y) ∈ Rw
Si+1(x, y, t), ∀(x, y) 6∈ Rw

}

where Si, Si+1 are shots and Rw de�nes the uncovered wipe region, as illustrated in Figure

2.7.

Figure 2.8 displays an example of a horizontal wipe, where a �vertical line� is horizontally

shifted left or right subdividing a frame in two parts.

Gradual transitions are more di�cult to detect than cuts. They must be distinguished

from camera operations and object movement that exhibit temporal variances of the same

order and may cause false positives. It is particularly di�cult to detect dissolves between
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Figure 2.7: First two frames of a wipe.

Figure 2.8: An example of a horizontal wipe.

sequences involving intensive motion Nam and Tew�k [2005]; Truong et al. [2000a]; Zabih

et al. [1999].

2.3 Motion Estimation

Excluding noise in the video signal, changes in visual content between two consecutive frames

can be caused either by object or camera motion.

2.3.1 Camera movement

A camera can be described with a position, an orientation, and a zoom-factor. The con-

�guration (position and orientation) of a camera can be described in a few di�erent ways.

The camera can move in �ve di�erent ways (often combined). As depicted in Figure 2.9, the

camera can translate, that is, move to a new position (track, boom or doll), it can rotate

horizontally (pan), it can rotate vertically (tilt), and it can roll around its main axis.

Camera motion produces a global motion �eld across the whole image, as shown in Figure

2.10. The motion vectors in vertical and horizontal movements are typically parallel and

magnitudes of motion vectors are approximately the same. In the case of zooming, the �eld

of motion vectors has a focus of expansion (zoom in) or focus of contraction (zoom out). Most

of the camera motion detection techniques are based on the analysis of the motion vector �eld.

2.3.2 Object Motion

Camera operation detection is based mainly in global motion detection in a frame. Object

motion detection uses typically the same kind of basic algorithms but the goal is to detect

regions with coherent motion witch are merged to form a moving object. Individual object

tracking is a very di�cult task in general. The one big problem is object occlusion. Occlusion

occurs when an object is not visible in an image because some other object or structure is
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Figure 2.9: Basic camera operations: �xed, zooming (focal length change of a stationary cam-
era), panning/tilting (camera rotation around its horizontal/vertical axis), tracking/booming
(horizontal/vertical transversal movement) and dollying (horizontal lateral movement).

Figure 2.10: Motion vector pattern resulting from various camera operations Koprinska and
Carrato [2001].

blocking its view. There are lot of studies of object tracking in literature and comprehensive

study of all methods is out of scope of this work.

2.4 Video Database Systems

A video sequence is a rich multimodal Snoek and Worring [2005], Maragos [2004] information

source, containing audio, speech, text (if closed caption is available), color patterns and shape

of imaged object, and motion of these objects Lui et al. [1998]. Research on how to e�ciently

access to the video content has become increasingly active in the past years Al-Omari and

Al-Jarrah [2005]; Antani et al. [2002]; Lu et al. [2000]; Zhang et al. [1997]. Considerable

progress has been made in video analysis, representation, browsing, and retrieval, the four

fundamental bases for accessing video content.
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• Video analysis: deals with the signal processing part of the video system, including shot

boundary detection, key frame extraction, etc.

• Video representation: concerns with the structure of the video. An example of video

representation is the tree structured key frames hierarchy Zhang et al. [1997].

• Video browsing: build on the top of the video representation. Deals with how to use

the representation structure to help the viewers browsing the video content.

• Video retrieval: concerns with retrieving interesting video objects for the viewer.

The relationship between these four research areas is illustrated in Figure 2.11. Most of

the research e�ort has gone into video analysis since it is required in the early stages of

video browsing, retrieval, genre classi�cation, and event detection. It is a natural choice for

segmenting a video into more manageable part. Though it is the basis for all the other research

activities, it is not the ultimate goal. Video browsing and retrieval are on the very top of

the diagram. They directly support users' access to the video content. To access a temporal

medium, such as a video clip, browsing and retrieval are equally important. Browsing helps

a user to quickly understand the global idea of the whole data, whereas retrieval helps a user

to �nd a speci�c query's results.

Figure 2.11: Relations between the four research areas Rui and Huang [2000b].

An analogy explains this argument. For example, the way how can a reader e�ciently

access the content of a book. Without needing to read the whole book, the reader can �rst go

to the Table of Contents of the book (ToC), �nd which chapters or sections suit his need. If

he has speci�c questions (queries), such as �nding a key word, he can go to the Index and �nd

the corresponding book sessions that contain that question. In resume, a ToC of a book helps

a reader browse and the Index helps a reader retrieve. Both aspects are equally important for

users in order to understand the content of the book. Unfortunately, current videos do not

dispose a ToC and an Index. Thus, techniques are urgently needed for constructing a ToC

and an Index to facilitate the video access. The scope of this work is orientated to develop

an automatic technique for video analysis and video retrieval.

In the case of video retrieval, a video index is much smaller and thus easier to construct and

use if it references whole video shots instead of every video frame. Shot transitions provide
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convenient jump points for video browsing. The detection of a shot change between two

adjacent frames simply requires the computation of an appropriate continuity or similarity

metric. However, this simple concept presents some major complications:

• gradual transition (GT) detection could not be based on the same assumption of abrupt

transitions (high similarity between frames corresponding to the same shot and low

similarity between frames corresponding to two successive shots), since similarity is also

high in GT. The visual patterns of many GT are not as clearly or uniquely de�ned as

that of abrupt transitions (AT);

• maintain a constant quality of detection performance for any arbitrary sequence, with

minimized need for manual �ne tuning of detection parameters in di�erent sequences

(de�ned parameters must work with all kind of videos);

• most of previous works in shot boundary detection consider a low number of features

because of computational and classi�er limitations. Then to compensate this reduced

amount of information, they need pre-processing steps, like motion compensation or

post-processing steps, like illuminance change �ltering;

• camera or object motions may result in a sustained increase in the inter-frame di�erence

the same as GT and cause false detection, and illuminance changes are cause of false

detection in AT.

Video retrieval continues to be one of the most exciting and fastest growing research areas

in the �eld of multimedia technology. The main challenge in video retrieval remains bridging

the semantic gap. This means that low level features are easily measured and computed, but

the starting point of the retrieval process is typically the high level query from a human.

Translating or converting the question posed by a human to the low level features illustrates

the problem in bridging the semantic gap. However, the semantic gap is not merely translating

high level features to low level features. The essence of a semantic query is understanding

the meaning behind the query. This can involve understanding both the intellectual and

emotional sides of the human.

Studies have shown that semantic information and relevance feedback greatly facilitate

image retrieval Lu et al. [2000]. However, the old problems of labor-intensive manual an-

notation and subjectivity of human perception still persist. Recently, a machine learning

technique called active learning has been used to improve query performance in image re-

trieval systems Cord et al. [2007]; Tong and Chang [2001]. The major di�erence between

conventional relevance feedback and active learning is that the former only selects top-ranked

examples for user labeling, while the latter adopts more intelligent sampling strategies to

choose informative examples from which the classi�er can learn the most.
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2.5 Our Propositions

There are two important aspects, among many others, surrounding the development of a video

indexing and retrieval systems: temporal segmentation and content-based retrieval.

2.5.1 Segmentation

We propose an automatic machine learning approach for video segmentation, in order to over-

come the parameter setting problem. Instead on investigating new features for shot boundary

detection, we focus on improving existing algorithms. Our kernel-based SVM approach can

e�ciently deal with a large number of features with the objective to get a robust classi�cation:

better handle of illumination changes and fast movement problems, without any pre-processing

step. After partitioning a video sequence into shots and detect their boundaries, we have the

basis for a more complex task, like video retrieval.

2.5.2 Video Retrieval

A video retrieval system generally consists of 3 components:

• feature extraction from video frames (key frames) and an e�cient representation strategy

for this pre-computed data, in this stage we compute frame features and use shape

features computed in video segmentation stage;

• a set of similarity measures, each one captures some perceptively meaningful de�nition

of similarity;

• a user interface for the choice of which de�nition(s) of similarity should be applied to

retrieval, and for the ordered and visually e�cient presentation of retrieved shot videos

and for supporting active learning.

2.6 Conclusion

In this chapter, we present some basic de�nitions that will be used in this work. These

de�nitions let us situate in the context of temporal video segmentation and video indexing.

For temporal video segmentation, �rst we present the de�nitions of principal transitions that

separate two consecutive shots, then how they are detected based in the similarities of frame

features. We also show some problems that a�ect the performance of shot boundary detections

methods and present our propose to handle these problems. In the case of video indexing,

we show the importance of accessing video content. Thus, techniques for video indexing are

urgently needed to facilitate the video access. We present our proposal for the main challenge

in video retrieval, i.e., bringing the semantic gap. We use active learning to aid in the semantic

labeling of video databases.



Chapter 3

State of the Art of Video

Segmentation

A vast majority of all the works published in the area of content-based video analysis and

retrieval are related in one way or another with the problem of video segmentation. In

this chapter we present a review of di�erent approaches for abrupt and gradual transition

detection, also known as shot boundary detection.

3.1 Introduction

Since shots are the basic temporal units of video, the shot segmentation, generally called shot

boundary detection, is the groundwork of video retrieval. To ful�ll the task of partitioning

the video, video segmentation needs to detect the joining of two shots in the video stream

and locate the position of these joins. There are two di�erent types of these joins, abrupt

transition (AT) and gradual transition (GT). According to the editing process of GTs, 99%

of all edits fall into one of the following three categories: cuts, fades, or dissolves Lienhart

[1999].

The basic idea of temporal segmentation is to identi�ed the discontinuities of the visual

content. No matter what kind of detection techniques, it consists of three core elements: the

representation of visual content, the evaluation of visual content continuity and the classi�-

cation of continuity values.

1. Representation of visual content : The objective is to represent the visual content of

each frame ft, this is done extracting some kind of visual features from each frame and

obtain a compact content representation. The problem of content representation is to

seek an appropriate feature extraction method. There are two major requirements for an

appropriate content representation: invariance and sensitivity. The invariance means

that the feature is stable to some forms of content variation, e.g., rotation or translation

of the picture. Inversely, the sensitivity re�ects the capacity of the features for capturing

the details of visual content. The sensitivity is a reverse aspect of invariance. That is,

the more details the feature can capture, the more sensitive it is because it can re�ect

20
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tiny changes in the visual content. With the invariance, the features within a shot stay

relatively stable, while with sensitivity, the features between shots shows considerable

change. Therefore, a bene�c relation between invariance and sensitivity must be taken

into account to achieve a satisfactory detection performance.

2. Construction of dissimilarity signal : the way for identifying the transitions between

shots consists in �rst calculate the dissimilarity (distance) values of adjacent features.

Thus, the visual content �ow is transformed into a 1-D temporal signal. In an ideal

situation, the dissimilarity within the same shot is low, while rise to high values sur-

rounding the positions of shot transitions. Unfortunately, various disturbances such

as illumination change and large object/camera motion a�ect the stability of tempo-

ral signal obtained by inter-frame comparison of features. In order to overcome this

problem, it is important to consider not only inter-frames di�erences but also incorpo-

rate the variations within the neighborhood of the particular position, i.e., contextual

information.

3. Classi�cation of dissimilarity signal : The �nal critical issue is to classify the 1-D tem-

poral signal of content variation into boundaries or nonboundaries, or identify the types

of transitions. The thresholding scheme is the simplest classi�er, where the threshold

is the unique parameter. However, these thresholds are typically highly sensitive to the

speci�c type of video. The main drawback of threshold-based approaches lies in detect-

ing di�erent kinds of transitions with a unique threshold. To cope with this problem,

video shot segmentation may be seen, from a di�erent perspective, as a categoriza-

tion task. Through learning-based approaches, it is possible to eliminate the need for

threshold setting and use multiple features simultaneously. Learning-based approaches

could be divided in �supervised� and �unsupervised� learning. The former learns from

examples provided by a knowledgable external supervisor and in the latter no teacher

de�nes the classes a priori. A common problem of machine learning methods consist in

deciding which features use, i.e., what combination of features are more adequate for

shot boundary detection.

The three major challenges to current shot boundary detection are: the detection of GTs,

the elimination of disturbances caused by abrupt illumination change and large object/camera

motion.

1. Detection of gradual transitions: the detection of GTs remains a di�cult problem. Lien-

hart [2001a] presents a depth analysis and �nd an explanation why the detection of GTs

is more di�cult than the detection of ATs in the perspective of the temporal and spatial

interrelation of the two adjacent shots. There are three main reasons why this task

is di�cult. First, GTs include various special editing e�ects (dissolve, wipe, fade-in,

fade-out, etc.). Each e�ect results in a distinct temporal pattern over the dissimilarity

signal curve. Second, due to the wide varying lengths of GTs, the task of detecting the

type and location of transitions in videos is very complex, e.g., the duration of some fast
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dissolves is less than 6 frames and some fade out-in can take more than 100 frames of

duration. The inter-frame di�erence during a GT is usually high. This makes it di�cult

to distinguish changes caused by a continuous edit e�ect from those caused by object

and camera motion Finally, the temporal patterns of GTs are similar to those caused

by object/camera motion, since both of them are essentially processes of gradual visual

content variation.

2. Disturbances of abrupt illumination change: most of the methods for content represen-

tation are based on color feature, in which illumination is a basic element. Luminance

changes are often detected to be AT by mistake, this occurs because of the signi�cant

discontinuity of inter-frame feature caused by the abrupt illumination change. Several

illumination-invariant methods have been proposed to deal with this problem. These

methods usually face a di�cult dilemma, they can remove some disturbance of illumi-

nation change but with a big cost, because they also lose the information of illumination

change which is critical in characterizing the variation of visual content.

3. Disturbances of large object/camera movement : as shot transitions, object/camera move-

ments also conduce to the variation of visual content. Sometimes, the abrupt motion

will cause similar change than the one produced by AT. In the case of persistent slow

motion, they produce similar temporal patterns over the dissimilarity signal than the

patterns produced by GTs. Therefore, it is di�cult to distinguish the motion from the

shot boundaries, since the behaviors of the content variation are similar.

With the emergence of numerous shot boundary detection approaches, several excellent

surveys have been presented Boreczky and Rowe [1996], Gargi et al. [2000], Lienhart [2001b],

Hanjalic [2002], Koprinska and Carrato [2001] and, Cotsaces et al. [2006]. In this chapter, we

present some existing methods but focus on categorizing and analyzing them in the guide of

the formal framework of chapters 4 and 5.

3.2 Methods of Visual Content Representation

The visual content of a frame can be represented by visual features extracted from it. The

tradeo� between invariance and sensitivity (the two major requirements for an appropriate

content representation) must be taken into account to achieve a satisfactory detection per-

formance. Features are not only based on the extraction of image attributes, but also the

di�erence between two successive frames is considerate as feature. A better way is to consider

not only inter-frame di�erences but also incorporate the variations within the neighborhood

of the particular position.

3.2.1 Pixel-based Methods

The simplest way to quantify the di�erence between two frames is to compare the intensity

values of corresponding pixels. If the mean of the di�erences in the intensity value of the pixels



3. State of the Art of Video Segmentation 23

is greater than a threshold, then a transition is detected. One of the �rst methods described

in literature was from Nagasaka and Tanaka [1992]. Shot changes are detected using a simple

global inter-frame di�erence measure. Also, they propose a shot change detection method

based on pixel pair di�erence called template matching. For every two successive frames,

di�erences of intensities are computed on pixels having the same spatial position in the two

frames. Then, the cumulated sum of di�erences is compared to a �xed threshold in order

to determinate if a shot change has been detected. Zhang et al. [1993] propose a pair-wise

pixel comparison, the objective is to determine the percentage of pixels that have changed

considerably between two frames. A pixel is deemed to have changed considerably if is greater

than a given threshold. An AT is then declared present if the percentage of changed pixels

is greater than a second threshold. Obviously, this is the most sensitive method, since it

has captured any detail of the frame. To speed the e�ciency of pixel-based methods, several

methods, known as visual rhythm Chang et al. [2000]; Guimarães et al. [2003, 2004] or spatio-

temporal slice Bezerra [2004]; Ngo et al. [2001] subsample the pixels from the particular

positions of each frame to represent the visual content. The drawback of these methods

are the number of parameters to be set. Ngo [2003] and Bezerra and Lima [2006] observed

this shortcoming and propose a learning approach for the classi�cation task of visual rhythm

features in order to avoid the de�nition of �xed thresholds. Pixel-based approach is sensitive

to object and camera motion. For example, a camera pan could cause the majority of pixels

to appear signi�cantly changed. To handle the drawbacks, several variants of pixel-based

methods have been proposed. For example, Zhang et al. [1995] propose to smooth the images

by a 3× 3 �lter before performing the pixel comparison. The average intensity measure takes

the average value for each RGB component in the current frame and compares it with the

values obtained for the previous and successive frames Hampapur et al. [1994]. Although less

sensitive to motion than pixel-level comparisons, two shots with di�erent color distributions

can have similar average intensity values resulting in a missed detection.

Although some pixel-based methods are the simplest way to quantify the di�erence be-

tween two frames, they are the most sensitive methods, since they capture any detail of the

frames. They are very sensitive with object and camera motion, and illuminance changing.

Subsampling methods overcome these problems, reducing their impact in the accuracy of the

detection.

3.2.2 Histogram-based Methods

Color histograms which capture the ratio of various color components or scales, are a popular

alternative to the pixel-based methods. Since color histograms do not incorporate the spatial

distribution information of various color components, they are more invariant to local or small

global movements than pixel-based methods. This method is based on the assumption that

two frames with a constant background and constant objects will show little di�erence in

their corresponding histograms. This approach should be less sensitive to motion than the

pixel-level comparison as it ignores changes in the spatial distribution within a frame, but

herein also lies its weakness. There can exist two neighboring shots with similar histograms
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but entirely di�erent content, resulting in a di�erence measure similar to that caused by

camera and object motion. This means that it can be di�cult to detect all the ATs without

also incurring false detections. However, histogram approaches o�er a reasonable trade-o�

between accuracy and computational e�ciency and are the most commonly used methods in

use today.

Y. Tonomura [1990] proposes a method based on gray-level histograms. Images are com-

pared by computing a distance between their histograms. Nagasaka and Tanaka [1992] propose

also a method based on gray-level histograms. However, they report that the metric is not

robust in the presence of momentary noise, such as camera �ashes and large object motion.

A more robust measure is suggested to compare the color histograms of two frames. The

authors propose using a 6 bit color code obtained by taking the two most signi�cant bits of

each RGB (Red, Green and Blue Pratt [1991]) component resulting in 64 color codes. To

make the di�erence between two frames containing an AT be more strongly re�ected they

also propose using the χ2 statistic which can be used to measure the di�erence between two

distributions Press et al. [1988-1992]. An extensive comparison of di�erent color spaces and

frame di�erence measures is given in Boreczky and Rowe [1996]; Dailianas et al. [1995]; Gargi

et al. [2000]. Histograms in di�erent color spaces such RGB, HSV (Hue, Saturation and Value

Foley et al. [1990]), YIQ (luminance and chrominance Pratt [1991]), L∗a∗b (L∗ present the

luminance, a∗ correlates with redness-greenness and b∗ correlates with yellowness-blueness

Pratt [1991]), Munsell Miyahara and Yoshida [1988] and opponent color axes Furht et al.

[1995] are tested . Di�erent comparisons as metrics have also been used as the bin-to-bin

di�erence, χ2 test and histogram intersection. The results show that YIQ, L∗a∗b and Munsell

spaces are seen to perform well in terms of accuracy, follow by the HSV and L*u*v (luminance

and chrominance Pratt [1991]) spaces and �nally by RGB. Zhang et al. [1995] use a quantize

color histogram, only the upper two bits of each color intensity are used to compose the color

code. The comparison of the resulting 64 bins has been shown to give su�cient accuracy.

Drawbacks with color histograms are the sensibility to illuminance changes, like �ash lights,

and the lost of spatial information, two di�erent frames may have the same color distribution.

This approach is less sensitive to motion than pixel-based methods, because it ignores

changes in the spatial distribution within a frame, but herein also lies its weakness. Two

neighboring shots with similar histograms but entirely di�erent content can cause the same

e�ect of camera and object motion. Histogram approaches o�er a reasonable relation between

accuracy and computational e�ciency and are the most commonly used methods in shot

boundary detection.

3.2.3 Block-based Methods

A weakness of the global-level comparisons is that they can miss changes in the spatial dis-

tribution between two di�erent shots. Yet, pixel-level comparisons lack robustness in the

presence of camera and object motion. As a trade-o� between both of these approaches,

Zhang et al. [1993] propose the comparison of corresponding regions (blocks) in two succes-

sive frames. The blocks are compared on the basis of second-order statistical characteristics
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of their intensity values using the likelihood ratio. An AT is then detected if the number of

blocks with a likelihood ratio is greater than a given threshold. The number of blocks required

to declare an AT obviously depends on how the frame has been partitioned.

Nagasaka and Tanaka [1992] also propose dividing each frame into 4 × 4 regions and

comparing the color histograms of corresponding regions. They also suggest that momentary

noise such as camera �ashes and motion usually in�uence less than half the frame. Based on

this observation, the blocks are sorted and the 8 blocks with the largest di�erence values are

discarded. The average of the remaining values is used to detect an AT. Ueda et al. [1991]

propose an alternative approach by increasing the number of blocks to 48 and determining

the di�erence measure between two frames as the total number of blocks with a histogram

di�erence greater than a given threshold. This method is found to be more sensitive to

detecting ATs than the previous approach Otsuji and Tonomura [1993]. Although the latter

approach removes the in�uence of noise by eliminating the largest di�erences, it also reduces

the di�erence between two frames from di�erent shots. In contrast, Ueda's approach puts

the emphasis on the blocks that change the most from one frame to another. A combination

of this and the fact that the blocks are smaller makes this method more sensitive to camera

and object motion Hanjalic [2002]. Demarty and Beucher [1999] split each image sequence

into blocks of 20 × 20 pixels. A Euclidean distance is calculated between two corresponding

blocks in two successive frames in order to build a grey level mask, followed by the study of

the temporal evolution curve of this criterion for the whole sequence. From this curve, shot

transitions are extracted by means of a morphological �lter. This algorithm also gives access

to a spatial model of the transition.

This highlights the problem of choosing an appropriate scale for the comparison between

features relating to the visual content of two frames. Using a more local scale increases the

susceptibility of an algorithm to object and camera motion, whilst using a more global scale

decreases the sensitivity of an algorithm to changes in the spatial distribution.

3.2.4 Motion-based Approaches

To overcome further the problem of object and camera motion several methods have been

proposed which attempt to eliminate di�erences between two frames caused by such motions

before performing a comparison. Methods have been suggested that incorporate a block-

matching process to obtain an inter-frame similarity measure based on motion Lupatini et al.

[1998]; Shahraray [1995]. For each block in frame ft−1, the best matching block in a neighbor-

hood around the corresponding block in frame ft is sought. Block-matching is performed on

the image intensity values and the best matching block is chosen to be the one that maximizes

the normalized correlation coe�cient. The maximum correlation coe�cient is then used as a

measure of similarity between the two blocks.

The main distinction between these approaches is how the measures of all the blocks are

combined to obtain a global match parameter. Akutsa et al. [1992] use the average of the

maximum correlation coe�cient for each block. This has the disadvantage of combining poor

matches with good ones to obtain a passable match between two frames belonging to the same
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shot. Shahraray [1995] uses a non-linear digital order statistic �lter. This allows the similarity

values for each block to be weighted so more importance could be given to the blocks that

have matched well. This improves its performance for cases when some of the blocks being

compared have a high level of mismatch. The drawback of this approach is that there can exist

good matches between two frames from di�erent shots resulting in a less signi�cant change

indicating an AT. To overcome this, the authors suggest that blocks be weighted such that

a number of the best matching blocks are also excluded. This suggests that the coe�cients

for the non-linear averaging �lter must be chosen carefully when the distribution of similarity

values between two frames vary greatly.

Lupatini et al. [1998] sum the motion compensated pixel di�erence values for each block. If

this sum exceeds a given threshold between two frames an AT is declared. On the other hand,

Liu et al. [2003] base their method on motion-compensated images obtained from motion

vector information. A motion-compensated version of the current frame is created using the

motion vectors of the previous frame. Then the motion-compensated image is normalized in

order to get the same energy as the original frame. The original frame is compared to the

two modi�ed frames, motion-compensated and motion-compensated normalized, using χ2 test

Zhang et al. [1993]. The result is compared to an adaptive threshold in order to detect ATs.

Vlachos [2000] and Porter et al. [2003] use phase correlation to obtain a measure of con-

tent similarity between two frames. The latter proposes a technique inspired by motion-based

algorithms. Correlation between two successive frames is computed and used as a shot change

detection measure. In order to compute the inter-frame correlation, a block-based approach

working in the frequency domain is taken. Frames are divided into blocks of 32 × 32 pix-

els. Every block in a frame ft−1 is matched with a neighbouring block in frame ft by �rst

computing the normalized correlation between blocks and then seeking and locating the cor-

relation coe�cient with the largest magnitude. The normalized correlation is computed in

the frequency domain instead of the spatial domain to limit computation time. The average

correlation is then obtained for a couple of frames. Shot changes are detected in the pres-

ence of local minima of this value. Phase correlation methods are insensitive to changes in

the global illumination and lend themselves to a computationally tractable frequency domain

implementation. As in the spatial domain, there can exist good matches between two frames

belonging to two di�erent shots in the frequency domain.

Finally, Fernando et al. [1999] exploit the fact that motion vectors are random in nature

during an AT. The mean motion vector between two frames is determined and the Euclidean

distance with respect to the mean vector calculated for all the motion vectors. If there exists

an AT, the majority of motion vectors will have a large variance due to the poor correlation

between the two frames. A large increase in the Euclidean distance can then be used to

declare an AT. Akutsa et al. [1992]; Bouthemy et al. [1999] also exploit these characteristics.

Motion based algorithms tend to be more robust in the presence of local or global motion

than frame comparison techniques. However, Yuso� et al. [1998] show that the process of

computing the pixel di�erence can still lead to false detections in the presence of sudden

intensity changes or miss detections if two shots have similar intensities.
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3.2.5 Edge-based Approaches

Zarih et al. [1996] propose a method that can detect ATs and GTs like dissolves, fades and

wipes. The objective is to detect the appearance of intensity edges that are distant from

edges in the previous frame, i.e, when a transition occurs new intensity edges appear far from

the locations of old edges. Similarly, old edges disappear far from the location of new edges.

The processes needed for computing the edges change calculation are: motion compensation,

edge extraction, edge change ratio and the entering and exiting edges. Although this method

illustrate the viability of edge features to detect a change in the spatial decomposition between

two frames, its performance is disappointing compared with simpler metrics that are less

computationally expensive Dailianas et al. [1995]; Lienhart [2001b]. Lienhart [1999] compares

the edge change ratio based AT detection against histogram based methods. The experiments

reveal that edge change ratio usually do not outperform the simple color histogram methods,

but are computationally much more expensive. Despite this depressing conclusion, the edge

feature �nds their applications in removing the false alarms caused by abrupt illumination

change, since it is more invariant to various illumination changes than color histogram. Kim

and Park [2002] and Heng and Ngan [2003] independently design �ashlight detectors based

on the edge feature, in which edge extraction is required only for the candidates of shot

boundaries and thus the computational cost is decreased.

During a dissolve, the edges of objects gradually disappear while the edges of new objects

gradually become apparent. During a fade-out the edges gradually disappear, whilst during

a fade-in edge features gradually emerge. This is exploited by the edge change ratio used to

detect ATs, which is extended to detect GTs as well Zabih et al. [1999].

During the �rst half of the dissolve the number of exiting edge pixels dominates whilst

during the second half the number of entering edge pixels is larger. Similarly, during a fade-

in/out the number of entering/exiting edge pixels are the most predominant. This results in

an increased value in the edge change ratio for a period of time during the sequence which

can be used to detect the boundaries of GTs. Although, the detection rate of GTs with this

method is reported to be good, the false positive rate is usually unacceptably high Lienhart

[1999]; Lupatini et al. [1998]. There are several reasons for this. The algorithm is compensated

only for translational motion, meaning that zooms are a cause of false detections. Also, the

registration technique only computes the dominant motion, making multiple object motions

within the frame another source of false detections. Moreover, if there are strong motions

before or after a cut, the cut is misclassi�ed as a dissolve and cuts to or from a constant

image are misclassi�ed as fades.

Lienhart [1999] also used edge information to perform dissolve detection. First, edges

extracted with the Canny edge detector Canny [1986] are confronted with two thresholds

to determinate weak and strong edges. Then the edge-based contrast is obtained from two

images, one containing the strong edges and the other the weak edges. Finally dissolves

are detected when the current value edge-based is a local minimum. Yu et al. [1997] use

edge information to detect GTs. ATs are �rst detected using a histogram di�erence measure
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computed between two successive sub-sampled frames. Then a second pass is necessary for

detecting GTs. Heng and Ngan [1999] also propose a method based on edge information. They

introduce the notion of edge object, considering the pixels close to the edge. Occurrences of

every edge object are matched on two successive frames. Shot changes are detected using the

ratio between the amount of edge objects persistent over time and the total amount of edge

objects. Nam and Tew�k [1997] propose a coarse-to-�ne shot change detection method based

on wavelet transforms. Image sequences are �rst temporally sub-sampled. Frames processed

are also spatially reduced using a spatial two-dimensional (2D) wavelet transform. Intensity

evolution of pixels belonging to coarse frames is analyzed using a temporal one-dimensional

(1D) wavelet transform. Sharp edges de�ne possible shot change locations. Video frames

around these locations are further processed at full-rate. Temporal 1D wavelet transform

is applied again to the full-rate video sequence. Edge detection is also performed on every

coarse frame and the number of edge points is computed on a block-based basis. Di�erence

between two successive frames is computed using the number of edge points for each block.

True shot boundaries are located on sharp edges in the 1D wavelet transform and high values

of inter-frame di�erence considering block-based amount of edge points. Zheng et al. [2004]

propose a separation method of fade-in and fade-out from object motion based on Robert

edge detector. First, compute the edges using the Robert operator. Then, count the number

of edges in the frame, a fade-in/fade-out is detected if there exists a frame without edge pixels.

The search area is constrained by a interval bounded by two ATs.

The performance of edge-based methods are disappointing compared with other simpler

methods that are less computationally expensive, e.g. several experiments reveal that edge

methods usually do not outperform the simple color histogram methods. The computational

cost is not only due to the process of edge detection, but also for pre-process like motion

compensation. Even though there have been improvements in the detection process, the false

positive rate is still high. The reasons for this is as a result of zoom camera operations (the

method is compensated only for translational motion) and multiple object motions.

3.2.6 Variance-based Approach

Another method for detecting GTs is to analyze the temporal behavior of the variance of

the pixel intensities in each frame. This was �rst proposed by Alattar [1993] but has been

modi�ed by many other authors as well Fernando et al. [2000]; Truong et al. [2000a]. It can

be shown that the variance curve of an ideal dissolve has a parabolic shape, see Figure 5.2.

Thus, detecting dissolves becomes a problem of detecting this pattern within the variance

time series. Alattar [1993] proposes to detect the boundaries of a dissolve by detecting two

large spikes in the second-order di�erence of this curve.

Although these models are reported to perform well, assumptions made about the behavior

of an ideal transition do not generalize well to real video sequences Nam and Tew�k [2005].

The two main assumptions are: (i) the transition is linear (Eq.5.4) and (ii) there is no motion

during the transition. These assumptions do not always hold for real transitions and as a result

of noise and motion in the video sequences the parabolic curve is not su�ciently pronounced
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for reliable detection. To overcome this problem, Nam and Tew�k [2005] present a novel

technique to estimate the actual transition curve by using a B-spline polynomial curve �tting

technique. However, some motion contour can be well �tted by B-spline interpolation, too.

Therefore, using the �goodness� of �tting to detect GTs is not so reliable. Moreover, Truong

et al. [2000a] note in their study of real dissolves that the large spikes are not always obvious

and instead exploit the fact that the �rst derivative during a dissolve should be monotonically

increasing and thus they constrain the length of a potential dissolve.

Many approaches have been proposed speci�cally for the detection of fade transitions

Lienhart [1999]; Lu et al. [1999]; Truong et al. [2000a]. They start by locating monochrome

images (see De�nitions 2.3 and 2.4) which are identi�ed as frames with little or no variance

of their pixel intensities. The boundaries are then detected by searching for a linear increase

in the standard deviation of the pixel intensities. Lienhart [1999] reported accurate detection

with this approach on a large test set.

3.3 Methods of Constructing Dissimilarity Signal

Features representing the visual content of frames, i.e., pixels, edges, motion, blocks or the

whole frame are stored as scalar values, vectors, histograms or sets of vectors (it depends

on the feature used). The next step for identifying the transitions between shots consists in

calculating the dissimilarity values of adjacent features. Therefore, the visual content �ow

is transformed into a 1-D temporal signal. Various disturbances such as illumination change

and large object/camera motion a�ect the stability of temporal signal obtained by inter-frame

comparison of features. In order to overcome this problem, it is also important to incorporate

the variations within the neighborhood. The existing methods can be classi�ed into two

categories according to whether they have incorporated the contextual information, i.e., two

frames (pair-wise comparison) Hanjalic [2002]; Matsumoto et al. [2006]; Yu-Hsuan et al. [2006]

and N -frame window (contextual information) Joyce and Liu [2006]; Nam and Tew�k [2005].

A comparison among di�erent metrics is evaluated by Ford et al. [1997].

3.3.1 Pair-wise Comparison

The two frames measure is the simplest way to detect discontinuity between frames. The

straightforward way to evaluate the continuity is to directly compare their features. In pixel-

based methods it is obtained by comparing pixels between consecutive frames. With histogram

methods, L1 norm, χ2 test, intersection and cosine similarity have been tried to calculate and

detect the discontinuity Cabedo and Bhattacharjee [1998]; Gargi et al. [2000].

The absolute bin-wise di�erence, also known as L1 norm, is the most extended metric

used in shot boundary detection Ewerth et al. [2006]; Lienhart [1999]; Mas and Fernandez

[2003]. The L1 norm between two histograms is then determined using:

dt =
n∑
j=1

|H(ft, j)−H(ft+1, j)| (3.1)
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where H(ft, j) is the j−th bin of the histogram of the t−th frame. To enhance the di�erence

between two frames across a cut, Cooper et al. [2006]; Nagasaka and Tanaka [1992] propose

the use of the χ2 test to compare the histograms. The χ test is de�ned as:

dt =
n∑
j=1

(H(ft, j)−H(ft+1, j))2

H(ft, j) +H(ft+1, j)
. (3.2)

Zhang et al. [1995] show that χ2 test not only enhances the di�erence between two frames

across an AT but also increases the di�erence due to camera and object movements. Hence, the

overall performance is not necessarily better than the linear histogram comparison. Similarity

can also be evaluated thanks to histogram intersection. Histogram intersection is computed

using di�erent operators, for example a min function as:

dt = 1−
∑n

j=1min(H(ft, j), H(ft+1, j))∑n
j=1H(ft, j)

. (3.3)

Haering et al. [2000] threshold the histogram intersection of two consecutive frames. After

that, Javed et al. [2000] propose an extension to Haering et al. [2000] method. Instead of

thresholding the histogram intersection of two successive frames, they compute the di�er-

ence between two successive histogram intersection values and compare this derivative to a

threshold. Cabedo and Bhattacharjee [1998]; O'Toole [1998] use another measure of similarity

between histograms. This measure considers the two histograms as n−dimensional vectors,

where n is the number of bins in each histogram. This measure is related to the cosine of the

angle between the two vectors. The cosine dissimilarity is de�ned as:

dt = 1−
∑n

j=1(H(ft, j)×H(ft+1, j))√∑n
j=1(H(ft, j)×

√∑n
j=1H(ft+1, j))

. (3.4)

This measure outperforms other similar methods Cabedo and Bhattacharjee [1998].

In edge-based methods, the matching ratio of edge maps of the adjacent frames is used

Zarih et al. [1996]. To obtain a motion independent metric, the mapping can be constructed by

block matching Hanjalic [2002], it is de�ned as the accumulation of the continuities between

the most suited block-pairs of two consecutive frames. With machine learning methods,

di�erent histogram di�erences are computed from consecutive frames and categorized by a

classi�er Ardizzone et al. [1996]; Ling et al. [1998]; Matsumoto et al. [2006].

One major drawback of the pair-wise comparison scheme is its sensitivity to noises. The

approach can fail to discriminate between shot transitions and changes within the shot when

there is signi�cant variation in activity among di�erent parts of the video or when certain

shots contain events that cause brief discontinuities. There exist several techniques re�ning

the original continuity signal to suppress the disturbances of various noises. Yuan et al. [2004]

propose a so-called second-order di�erence method to construct the discontinuity signal. Their

experiments show that the method can e�ectively reduce some disturbances of motion. Jun

and Park [2000] propose to �rst smooth the original signal by a median �lter, and then
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subtract the smoothed one from the original signal, �nally obtain a clear measured signal.

Actually, these techniques of re�ning the signal are some implicit ways of using the contextual

information of the nearby temporal interval.

3.3.2 Contextual Information Scheme

The objective is to detect the discontinuity by using the features of all frames within a suitable

temporal window, which is centered on the location of the potential discontinuity. Hanjalic

[2002] points out that as much additional information as possible should be embedded into

the shot boundary detector to e�ectively reduce the in�uence of the various disturbances. For

example, not only the variation between the adjacent frames should be examined but also

the variations within the temporal interval nearby should be investigated (contextual infor-

mation). Recently some methods have been explicitly proposed using contextual information

Cooper [2004]; Feng et al. [2005]; Qi et al. [2003]. Cooper [2004] summarizes these ideas as a

similarity analysis framework to embed the contextual information. First, a similarity matrix

is generated by calculating the similarities between every pair of frames in the video sequence.

Next, the continuity signal is computed by correlating a small kernel function along the main

diagonal of the matrix. Designing an appropriate kernel function for correlation is the critical

issue within this method. Cooper performs a comparison of four kernel functions. The kernel

sizes are: 4, 6, 8 and 10. Qi et al. [2003] calculate the features di�erences for each of 30 frame

pairs between frame t and frame t− 1, up to frame t and frame t− 30. These window-based
di�erences represent a frame's temporal relationship with its neighborhood. Nam and Tew�k

[2005] propose a GT detection algorithm using b-splines interpolation. The authors make use

of the �goodness� of �tting to determinate the occurrence of GT transition. They perform a

time-localized window analysis to e�ectively identify the gradual change transition. A win-

dow of 1 sec. time-length (30 frames for video data of 30 frame/s) is used for dissolve/fade

detection. However, some motion contour can be well �tted by B-spline interpolation, too.

Therefore, using the �goodness� of �tting to detect GT is not so reliable.

One major drawback with window-based di�erence methods is how to determine the size of

the window, there exists not a general consensus. A transition process may last more than 100

frames Yuan et al. [2004], e.g., a fade out-in transition. Note that the methods with N -frame

window embeds the contextual information while constructing the continuity signal, which is

di�erent from the pair-wise comparison (two frames) scheme which incorporates contextual

information by additional post-processing procedure.

3.4 Methods of Classi�cation

Having de�ned a feature (or a set of features) computed from one or more frames (and,

optionally, a similarity metric), a shot change detection algorithm needs to detect where

these features exhibit discontinuity. This can be done in the following ways Cotsaces et al.

[2006]: statistical machine learning, static thresholding and adaptive thresholding.
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3.4.1 Statistical Machine Learning

There have been some recent e�orts treating shot boundary detection as a pattern recognition

problem and turning to the tools of machine learning. Frames are separated through their

corresponding features into two classes, namely �shot change� and �no shot change�, and train

a classi�er to distinguish between the two classes Ngo [2003]. Through machine learning ap-

proaches we can avoid the problem of thresholds and parameters setting, which is a di�cult

task and depends on the type of the input video. We can merge di�erent features in order

to improve the accuracy of the detector, we do not need to set a threshold for each type of

feature. All these parameters are found by the classi�er. Recently, works on shot boundary

detection exploit the advantages that machine learning approaches provide. In this section

some works done on shot boundary detection using supervised and unsupervised learning are

seen brie�y.

Supervised Learning

In supervised learning, classi�ers are trained and tested on a set of sample and test data.

The classi�er creates its own internal rules on the cases that are presented. The task of the

supervised learner is to predict the value of the function for any valid input object after having

seen a number of training examples (i.e. pairs of input and target output). To achieve this,

the learner has to generalize from the presented data to unseen situations in a �reasonable�

way.

Various approaches, including Support Vector Machines (SVM) Feng et al. [2005]; Mat-

sumoto et al. [2006]; Ngo [2003], k-Nearest Neighbor algorithm(kNN) Cooper [2004]; Cooper

et al. [2005], and neural networks Lienhart [2001b] have been employed to perform shot bound-

ary detection. With the statistical machine learning methods, the parameters of the models

are chosen via cross validation processes and the shapes of decision boundaries are constructed

automatically during the training procedure. One di�culty that machine learning methods

have to face is how to construct the features for the classi�ers. Cooper [2004]; Cooper and

Foote [2001] and the FXPAL Cooper et al. [2005] system use dissimilarity features within the

particular temporal interval as the input for kNN and Yuan et al. [2005] use a SVM classi�er.

Similarly, Feng et al. [2005] use features within a sliding window as the features of SVM. Ngo

[2003] proposes a dissolve pattern descriptor based on temporal slices. Potential dissolves

are selected by cut detection in low-resolution space and classi�ed by SVM system. Qi et al.

[2003] propose a hierarchical approach with a sliding window, one level for AT detection and

second level for GT detection. They compare the performance of several binary classi�ers:

kNN, the Naïve Bayes probabilistic classi�cation Jain et al. [2000] and SVM. They combine

di�erent classi�ers for the two di�erent stages, ATs and GTs detection. The one that has the

best performance use kNN for both stages. Another problem that machine learning methods

for shot boundary detection has to face is how to obtain a well-chosen training set with rela-

tively balance positive and negative examples, since within each video sequence the number
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of negative examples usually signi�cantly exceeds that of positive examples. Lienhart [2001a]

uses a dissolve synthesizer to create an in�nite amount of dissolve examples and produce the

non-dissolve pattern set by means of so called bootstrap method. Chua et al. [2003] and Yuan

et al. [2005] adopt the active learning strategy to handle the unbalance training data.

Unsupervised Learning

In the case of unsupervised learning, no teacher de�nes the classes a priori. Thus, the

system itself must �nd some way of clustering the objects into classes, and also �nd descrip-

tions for these classes. The resulting rules from such a system will be a summary of some

properties of the objects in the database: which classes are present and what discerns them.

This will of course only be what the system has found as most prominent, but there may be

many other ways of dividing the objects into classes, and many ways of describing each class.

While in supervised learning the patterns are known in the sample and need to be generalized,

in unsupervised learning the patterns are not known.

Gunsel et al. [1998] and Ewerth and Freisleben [2004] propose an unsupervised method

for temporal video segmentation and shot classi�cation. The classi�cation is based on 2-

class clustering (�scene change� or �no scene change�) and the well-known K-means algorithm

Pappas [1992] is used to cluster frame dissimilarities. Gao and Tang [2002] argue that a clear

distinction between the two classes can not be made and suggest a fuzzy c-means algorithm.

However, in the end the representatives of the �fuzzy� set must be assigned to one of the classes

�cut� and �non-cut�. As a limitation we can note that the approach is not able to recognize

the type of the GTs. Ferman and Tekalp [1998] incorporate two features in the clustering

method. Lee et al. [2006] propose a method using an improved Arti�cial Resonance Theory

(ART2) neural network G. Carpenter [1987] for scene change detection.

3.4.2 Static Thresholding

This is the most basic decision method, which involves comparing a metric expressing the sim-

ilarity or dissimilarity of the features computed on adjacent frames against a �xed threshold.

In early work, heuristically chosen global thresholds were used Gargi et al. [1995]; Lienhart

et al. [1997a]. Zhang et al. [1993] propose a statistical approach for determining the threshold,

based on measure mean value µ and standard deviation σ of frame-to-frame di�erences. The

threshold T is determined as T = µ + ασ. They also suggest that α should have values be-

tween 5 and 6. Even the most robust techniques fail when there is a lot of camera movement

in the shot. In severe cases, nearly every frame in a video stream could be marked as a cut

when objects move signi�cantly and/or the camera operation changes very quickly. Many

methods Cernekova et al. [2006]; Guimarães et al. [2003]; Nam and Tew�k [2005]; Qian et al.

[2006] use a pre�xed threshold for detecting the transitions, the values of the thresholds are

set empirically. Static thresholding only performs well if video content exhibits similar char-

acteristics over time and only if the threshold is manually adjusted for each video. The main

drawback of these approaches lies in selecting an appropriate threshold for di�erent kind of
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videos.

3.4.3 Adaptive Thresholding

The obvious solution to the problems of static thresholding is to use a sliding window and

computing the threshold locally within the sliding window Cernekova et al. [2006]; Robles et al.

[2004]; Truong et al. [2000a]. A much better alternative is to work with adaptive thresholds,

which incorporate the contextual information taking into account the local activity of the

content. This can further improve thresholding since it is more appropriate to treat a shot

change as a local activity. One requirement with the window-approach is that the window

size should be set so that it is unlikely that two shots occur within the window. Therefore,

the center value in the window must be the largest frame-to-frame di�erence in the window.

Ewerth and Freisleben [2004] select the threshold based on the second largest value within the

window. Hanjalic [2002] combines sliding-window approach and general statistical models for

the frame-to-frame di�erence curve to detect hard cuts. Osian and Gool [2004] analyze the

value of the di�erences in a sliding window of 15-20 frames and compute several statistical

parameters. The evaluated di�erence must be higher than a �xed minimum threshold and

larger than a multiple of the average di�erence (computed over the entire window). The

multiplication coe�cient is proportional to the variance within the window. There is an

exception from the previous criterion when the average di�erence of the previous frames is

very high and the average di�erence of the next frames is very low or vice versa because current

di�erence delimits a high activity shot from a low activity one. Urhan et al. [2006] combine

global and local thresholds. If the dissimilarity is below a global threshold, they compute a

local threshold based on the average di�erences within the window. Cernekova et al. [2006]

use a local average di�erence within a sliding window without considering the current frame

di�erence that is evaluated. The ratio between average di�erence and current di�erence is then

compared to a threshold in order to detect the peaks that correspond to the ATs. Adaptive

threshold shows better performance than global thresholding scheme Hanjalic [2002]. Related

surveys with discussions on thresholding scheme can be found in Hanjalic [2002]; Lienhart

[2001b]. With adaptive threshold the problem of the threshold tuning is changed by the

decision of the size of the sliding window, thus one problem changes to another.

In threshold-based methods the decision boundaries are actually manually designed, which

requires the developers to be familiar with the characteristics of various types of videos.

3.5 Methods of Gradual Transition Detection

ATs are based on the fact that there is a big di�erence between the frames across a cut that

results in a high peak in the frame-to-frame di�erence and can be easily detected using one

threshold. However, such one-threshold based approaches are not suitable to detect GTs.

Although during a GT the frame to frame di�erences are usually higher than those within a

shot, they are much smaller than the di�erences in the case of AT and can not be detected

with the same threshold. On the other hand, object and camera motions might entail bigger
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di�erences than the gradual transition. Hence, lowering the threshold will increase the number

of false positives. For relatively comprehensive surveys refer to Lienhart [2001b] and Hanjalic

[2002]. In the following we present an overview of the existing methods:

1. Fade out-in: during the fade out-in, two adjacent shots are spatially and temporally well

separated by some monochrome frames Lienhart [2001a], where as monochrome frames

not often appear elsewhere. Lienhart [1999] proposes to �rst locate all monochrome

frames as the candidates of fade out-in transitions. Thus, the key of the fade out-in

detection is the recognition of monochrome frames. For this purpose, the mean and the

standard deviation of pixel intensities are commonly adopted to represent the visual

content. The e�ectiveness of monochrome frame detection has been reported in Cao

et al. [2006]; Lienhart [2001b]; Truong et al. [2000a], and Bezerra and Leite [2007].

The latter use visual rhythm for detecting fade transitions. They consider a slice as

a set of strings which may be matched using the longest common sequence (string

comparison metric) Navarro [2001]. The segmentation technique for detecting patterns

representing transitions is based on morphological, topological and discrete geometry.

This segmentation technique is applied to the longest common sequence signal, �nally

the transition is detected by k-means clustering algorithm. Guimarães et al. [2003] use

a similar approach, but instead of the longest common sequence signal and k-means

algorithm, they use directly the image formed by slices and detect inclined edges using

morphological geometry and line approximation. This method does not detect fade

out-in transition as a compound set.

2. Wipe: For wipes, the adjacent shots are not temporally separated but spatially well

separated at any time Lienhart [2001a]. One common method of wipe detection involves

extracting and counting edges in the image; this statistic will monotonically change

during a transition, from the old shot's value to the new shot's value Yu et al. [1997].

An interesting method for wipe detection is the so-called spatio-temporal slice analysis

Ngo et al. [1999] and visual rhythm Bezerra and Leite [2007]. For various styles of

wipes, there are corresponding patterns on the spatio-temporal slices. Based on this

observation, Ngo et al. [2005] transform the detection of wipes to the recognition of

the speci�c patterns on spatio-temporal slices. Bezerra and Leite [2007] propose a

new metric maximum matching distance, derived from the longest common sequence.

This metric gives information of pattern translations instead of measured similarity

in order to discriminate motion from wipes. K-means algorithm is used for detecting

wipe transitions. Other wipe detection methods such as Naci and Hanjalic [2005] are

also based on the fact that two adjacent shots before and after wipes are spatially well

separated at any time.

3. Dissolve: During dissolve transition two adjacent shots are temporally as well as spa-

tially combined Lienhart [2001a]. A popular dissolve detection method is based on

the characteristic of the change of intensities variance, i.e., the so-called downwards-

parabolic pattern, which was originally proposed by Alattar [1993]. A drawback of this



3. State of the Art of Video Segmentation 36

method is that motion produces the same pattern as dissolves. Several improvements

on this idea can be found in Yu et al. [1997] and Truong et al. [2000b]. Yu et al. [1997]

propose a veri�cation process, named double chromatic di�erence, among all candidate

regions extracted using the method of Alattar [1993]. Through this veri�cation process

it is possible to separate downwards-parabolic pattern produced by motion from the

ones produced by real dissolves. A method using visual rhythm and machine learning is

also proposed Ngo [2003]. The method consists in reducing the temporal resolution of

a slice. When di�erent dissolve arrives at di�erent multi-resolution, they gradually be-

come AT depending on their temporal length. Then the strategy is to detect ATs at the

low resolution space. After detecting the transitions, the AT boundaries are projected

back to the original scale. They compute Gabor wavelet features from projected regions

through a support window. However, regions with fast camera and object motion also

appear as ATs. Thus, a SVM classi�er is used to �lter false matches and retaining the

correct dissolves.

4. General approaches for GTs: With global color feature adopted, various types of GTs

such as wipes and dissolves exhibit similar characteristics over the continuity signal

curve. Therefore, it is possible to develop a uni�ed technique to detect several types

of GTs simultaneously. For example, the well-known twin-comparison technique, pro-

posed by Zhang et al. [1993], is a general approach to detect GTs. The twin-comparison

algorithm uses two threshold values, the �rst, the higher, is used to detect AT and

the second, lower threshold is used to detect GTs. Nevertheless, it often truncates the

long GTs because of the mechanism of the global low threshold. In addition, it has

di�culties in reducing the disturbances of camera and object motion. To overcome the

shortcomings, Zheng et al. [2005] propose an enhanced twin-comparison method, i.e., �-

nite state automata method, in which motion-based adaptive threshold is utilized. This

method yields the best performance of GT detection on the benchmark of TRECVID

2004. Di�erent from ATs, GTs extend across varying temporal duration, which makes it

di�cult for a single �xed scale transition detector to detect all the GTs. The success of

the twin-comparison based methods is somewhat due to the exploitation of the multi-

resolution property of GTs, i.e., low threshold for high resolution and high threshold

for low resolution. Several other methods have been proposed in the form of explicit

temporal multi-resolution analysis. Lin et al. [2000] and Chua et al. [2003] exploit the

multi-resolution edge phenomenon in the feature space and design a temporal multi-

resolution analysis based algorithm which uses Canny wavelets (�rst order derivative

of the Gaussian function) to perform temporal video segmentation. The experimental

results show that the method could locates ATs and GTs in a uni�ed framework. How-

ever, as noted by the author, the Canny wavelet transform is computationally intensive.

Another multi-resolution idea is to adjust the sample rate of the video. For example,

Lienhart [2001a] employs a �xed scale transition detector to run on sequences of di�er-

ent resolutions to detect dissolves. Similarly, Ngo [2003] reduced the problem of dissolve
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detection to an AT detection problem in a multi-resolution representation and machine

learning classi�cation. Other machine learning approaches are proposed by Feng et al.

[2005]; Gunsel et al. [1998]; Lee et al. [2006]; Qi et al. [2003]. A limitation of general

approaches for GTs is that these methods are not able to recognize the type of the GT.

3.6 Conclusion

We present in this chapter a general overview of the principal approaches for shot boundary

detection. Di�erent approaches were studied, like threshold-based methods and learning-based

methods. Many factors in�uence the performance of a shot boundary detection method.

In the case of static threshold-based methods, there are many drawbacks: parameters are

set empirically, do not work well for di�erent kinds of videos and combination of di�erent

features is a di�cult task because is necessary to set thresholds for each type of feature.

Adaptive thresholds try to overcome the problem of threshold setting computing thresholds

inside a sliding window, i.e., changing a global threshold (static threshold methods) for local

thresholds. Unfortunately, adaptive threshold methods change one problem for other, because

now they have to set the size of the sliding window. The size of the sliding window is crucial

for the performance of the detector. Some methods use pre-processing and post-processing

operations to overcome problems like abrupt luminance changes and motion compensation.

In order to overcome all these problems, a machine learning approach can handle the

problem of threshold and parameter setting. Other characteristic of learning methods is that

it is possible to combine di�erent features, i.e., combine features that make the detection more

robust since weakness of some features are compensated by strongness of other features. It is

also possible to avoid pre-process and post-process operations, e.g., use illumination invariant

features to avoid �ash �ltering process. On the other hand, the data available is unbalance,

i.e., the number of negative examples are much bigger than positive examples. We can han-

dle this problem using a SVM classi�er which has an excellent generalization. Therefore,

through a SVM-based method we can handle the problems of threshold and parameter set-

ting, combinations of features, pre-processing and post-processing operations and unbalanced

data.



Chapter 4

Abrupt Transition Detection

In this work, we focus on the exploitation of features based on frame di�erences (histograms,

projection histograms, Fourier-Mellin moments, phase correlation method, etc.). After the

feature extraction step, these features are classi�ed by Support Vector Machines. Most of

previous works consider a low number of features because of computational and classi�er

limitations. Then to compensate this reduced amount of information, they need pre-processing

steps, like motion compensation. Our kernel-based SVM approach can e�ciently deal with a

large number of features in order to get a robust classi�cation: better handle of illumination

changes and fast movement problems, without any pre-processing step.

4.1 Introduction

In recent years, methods for automatic shot boundary detection received considerable at-

tention due to many practical applications. For example, in video databases the isolation

of shots is of interest because the shot level organization of video documents is considered

most appropriate for video browsing and content-based retrieval. Shots also provide a con-

venient level for the study of styles of di�erent �lmmakers. Moreover, other research areas

can pro�t considerably from successful automation of shot boundary detection processes as

well. A good example is the area of video restoration. There, the restoration e�ciency can

be improved by comparing each shot with previous ones, if a similar previous shot in terms

of visual characteristics is found, restoration settings already used before can be adopted.

For the processes of high-level video content analysis, ful�lling of the aforementioned

criteria by the shot boundary detector has even a larger importance. First, bad detection

performance may negatively in�uence the performance of subsequent high-level video analy-

sis modules (e.g., movie segmentation into episodes, movie abstraction, broadcast news seg-

mentation into reports). Second, if we cannot expect a video restoration/coloring operator

(expert) to adjust the shot boundary detector settings to di�erent sequences, this can be

expected even less from a nonprofessional user of commercial video retrieval equipment.

The isolation of shot in a video is relatively easy when the transition from one shot to

another consist of ATs. The development of shot boundary detection algorithms was initiated

38
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some decades ago with the intention of detecting ATs in video sequences. The aim of any AT

detection method is to select some feature related to the visual content of a video such that:

• any frames within the same shot exhibit similar properties, and

• frames belonging to di�erent shots would have dissimilar feature characteristics.

The basis of detecting shot boundaries in video sequences is the fact that frames surround-

ing a boundary generally display a signi�cant change in their visual contents. The detection

process is the recognition of considerable discontinuities in the visual-content �ow of a video

sequence. Figure 4.1 illustrates a general framework for AT detection. In the �rst stage of

this process di�erent visual features (color, shape, texture, etc.) are extracted in order to

describe the content of each frame (feature extraction). Most of the existing methods use

some inter-frame di�erence metric, i.e., the metric is used to quantify the feature variation

from frame t to frame t+ l, with l being the inter-frame distance (skip) and l ≥ 1. This dis-
similarity computation is executed in the second stage of the AT detection. The discontinuity

value is the magnitude of this variation and serves as an input into the detector. There, it is

compared against a threshold. If the threshold is exceeded, a shot boundary is detected.

Figure 4.1: General framework for AT detection.

To be able to draw reliable conclusions about the presence or absence of a shot boundary

between frames ft and ft+l, we need to use the features and metrics for computing the

discontinuity values that are as discriminating as possible. This means that a clear separation

should exist between discontinuity-value ranges for measurements performed within shots

and at shot boundaries. There are mainly two factors that in�uences in the accuracy of the

detector: object/camera motion and lighting changes. These two factors are cause of false

detections.

We follow the same stages in our AT detector:

1. Feature extraction: we consider di�erent visual features like color histograms in di�erent

color spaces, shape descriptors like moments and other features. We present the features

used in our detector in Section 4.2;
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2. Dissimilarity measures: a pair-wise dissimilarity is performed in this stage. We evaluate

the dissimilarity measures applied for matching visual information in Section 4.3;

3. Detection: a machine learning approach is presented in the Section 4.4. We adopt

the machine learning approach in order to avoid the setting of parameters and thresh-

olds. Also this approach let us combine di�erent features in order to get a more robust

detector.

We test our detector with TRECVID data sets of 2002 and 2006. The �rst data set

(2002) was used to study the di�erent features and dissimilarity measures adopted in our

work. The second data set (2006) was used to compare the performance of our method with

other methods. These results are presented in Section 4.5. Finally, we discuss our conclusion

in Section 4.6.

4.2 Visual Features

Automatic detection is based on the information that is extracted from the shots which can

tell us when an AT occurs (brightness, color distribution change, motion, edges, etc.). It is

easy to detect ATs between shots with little motion and constant illumination, this is done

by looking for sharp brightness changes. In the presence of continuous object motion, or

camera movements, or change of illumination in the shot, it is di�cult to understand when

the brightness changes are due to these conditions or to the transition from one shot to

another. Thus, it is necessary to use di�erent visual features to avoid this kind of problems.

In the next subsections we will review some visual features used for shot boundary detection.

4.2.1 Color Histogram

The color histogram-based shot boundary detection algorithm is one of the most reliable

variants of histogram-based detection algorithms. Its basic idea is that the color content does

not change rapidly within but across shots. Thus, ATs and other short-lasting transitions can

be detected as single peaks in the time series of the di�erences between color histograms of

contiguous frames or of frames a certain distance l apart.

Let f(x, y) be a color image (frame) of size M × N , which consists of three channels

f = (I1, I2, I3), the color histogram used here is:

hc(m, t) = 1
M×N

∑M−1
x=0

∑N−1
y=0

{
1 if f(x, y) in bin m

0 otherwise
(4.1)

Histograms are invariant to image rotation and change slowly under the variations of

viewing angle and scale Swain [1993]. As a disadvantage one can note that two images with

similar histograms may have completely di�erent content. However, the probability for such

events is low enough, moreover techniques for dealing with this problem have already been

proposed in Pass and Zabih [1999].
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4.2.2 Color Moments

The basis of color moments lays in the assumption that the distribution of color in an image

can be interpreted as a probability distribution. Probability distributions are characterized

by a number of unique moments (e.g. Normal distributions are di�erentiated by their mean

and variance). If the color in an image follows a certain probability distribution, the moments

of that distribution can then be used as features to characterize that image, based on color

information.

Color moments have been successfully used in many retrieval systems. The �rst order

(mean), the second (variance) and the third order (skewness) color moments have proven to

be e�cient and e�ective in representing color distributions of images Feng et al. [2003]. The

�rst three order moments are calculated as:

µt =
1

MN

M∑
i=1

N∑
j=1

ft(i, j) (4.2)

σt =

 1
MN

M∑
i=1

N∑
j=1

(ft(i, j)− µt)2
 1

2

(4.3)

st =

 1
MN

M∑
i=1

N∑
j=1

(ft(i, j)− µt)3
 1

3

(4.4)

where ft if the tth frame of size M ×N .

4.2.3 Phase Correlation Method between frames ft and ft+1 (PCM)

Another useful motion feature is the phase correlation method (PCM) between two frames

Wang [2001]. For each frame pair in the video sequence, the �rst frame is divided into a regular

grid of blocks. A similarity metric for each frame pair can then be derived by comparing the

edge features contained within each block. The next step is to estimate the motion for each

block between the two frames to compensate for di�erences caused by camera and object

motions. For each block in the �rst frame, the best matching block in the neighborhood

around the corresponding block in the second frame is searched. The location of the best

matching block can be used to �nd the o�set of each block between the two frames to then

compute a motion compensated similarity metric. This metric is performed by a normalized

correlation.

The phase correlation method measures the motion directly from the phase correlation

map (a shift in the spatial domain is re�ected as a phase change in the spectrum domain).

This method is based on block matching: for each block rt in frame ft is sought the best

match in the neighbourhood around the corresponding block in frame ft+1. When one frame

is the translation of the other, the PCM has a single peak at the location corresponding to the

translation vector. When there are multiple objects moving, the PCM tends to have many

peaks, see Figure 4.2.
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non cut

cut

Figure 4.2: Phase correlation.

The PCM for one block rt is de�ned as:

ρ(rt) =
FT−1{r̂t(ω)r̂t+1

∗(ω)}√∫
|r̂t(ω)|2dω

∫
|r̂t+1(ω)|2dω

(4.5)

where ω is the spatial frequency coordinate vector, r̂t(ω) denotes the Fourier transform of block

rt, FT−1 denotes the inverse Fourier transform and {}∗ is the complex conjugate. Figure 4.2

shows the coe�cients in ρ(rt) map of block rt. In Figure 4.2(a) we show the correlation

coe�cients resulted of matching two blocks of frames within the shot and in Figure 4.2(b) we

show the correlation coe�cients of an AT.
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By applying a high-pass �lter and performing normalized correlation, this method is robust

to global illumination changes Porter et al. [2003]. The value of the maximum correlation

coe�cient is suggested as a measure for each block Porter et al. [2003], but a problem with

this measure is that no information of the neighbors of the maximum correlation coe�cient is

available. Instead of using that measure, we propose the use of the entropy Er of the block r

as the goodness-of-�t measure for each block. If the entropy of the correlation metrics is high

then it means that there is not much common information between the blocks. If the entropy

is low then it means there is a lot of information concentrated in a single coe�ciente, i.e., the

blocks are similar. We use the Shanon entropy to calculate the similarity between to blocks.

The entropy of a variable X is de�ned as

H(X) = −
∑
x

P (X) log2[P (x)] (4.6)

where P (X) is the probability that X is in the state x, and P log2 P is de�ned as 0 if P = 0
The similarity metric Mt is de�ned by the median of all block entropies instead of the

mean to prevent outliers Porter et al. [2003]:

Mt = median(Er) (4.7)

4.2.4 Projection Histograms

Projection is de�ned as an operation that maps an image into a one-dimensional array called

projection histogram. The values of the histogram are the sum of the pixels along a particular

direction Trier et al. [1996]. Two types of projection histograms are de�ned. They are at 0-

degree (horizontal projection histogram) and 90-degrees (vertical projection histogram) with

respect to the horizontal axis:

Mhor(y) =
1

x2 − x1

∫ x2

x1

f(x, y)dx (4.8)

Mver(x) =
1

y2 − y1

∫ y2

y1

f(x, y)dy (4.9)

Thus, a horizontal projection histogram h(x) of a binary image f(x, y) is the sum of black

pixels projected onto the vertical axis x. A vertical projection histogram v(y) of a binary

image f(x, y) is the sum of black pixels projected onto the horizontal axis y. The horizontal

and vertical projection histograms of the digit 2 is shown as an example in Figure 4.3.

4.2.5 Shape Descriptors

As shape descriptors we use orthogonal moments like Zernike moments Kan and Srinath [2001]

and Fourier-Mellin moments Kan and Srinath [2002].
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Figure 4.3: Projection histograms of digit 2.

Zernike Moments

Zernike polynomials, pioneered by Teague Teague [1980] in image analysis, form a complete

orthogonal set over the interior of the unit circle x2 + y2 ≤ 1. The Zernike function of order

(p, q) is de�ned in the polar coordinate system (ρ, θ) as

Vp,q(ρ, θ) = Rp,qe
jqθ, (4.10)

where Vp,q is a complete set of complex polynomials, p is a positive integer value p ≥ 0
that represents the polynomial degree, q is the angular dependency and must complain that

|q| ≤ p with p−|q| even and Rp,q is a set of radial polynomials that have the property of being

orthogonal inside the unity circumference. These functions have the following expression:

Rp,q(ρ) =
p∑

k=q,p−|k|=even

(−1)(p−k)/2((p+ k)/2)!
((p− k)/2)!((q + k)/2)!((k − q)/2)!

. (4.11)

The Zernike moments (ZM) of an image order are the projections of the image function

onto these orthogonal basis functions. The ZM of order p is de�ned as:

Zpq =
p+ 1
π

∫ 2π

0

∫ 1

0
f(ρ, θ)V ∗pq(ρ, θ)ρdρdθ (4.12)

where p = 0, 1, 2, . . . ,∞ de�nes the order, f(ρ, θ) is the image in polar coordinates (ρ, θ), Vpq
is the Zernike polynomial and {}∗ denotes the conjugate in complex domain.

For the discrete image, the Equation 4.12 becomes:

Zpq =
p+ 1
π

∑
x

∑
y

f(x, y)V ∗pq(ρ, θ)∆x∆y (4.13)
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where x2 + y2 ≤ 1, x = ρ cos θ and y = ρ sin θ.

Zernike moments are orthogonal and rotation invariant. But when they are used for scale

invariant pattern recognition, Zernike moments have di�culty in describing images of small

size.

Fourier-Mellin Moments

The circular Fourier or radial Mellin moments of an image function f(ρ, θ) are de�ned in

the polar coordinate system (ρ, θ) as:

Fpq =
∫ 2π

0

∫ ∞
0

ρpf(ρ, θ)ejqθρdρdθ, (4.14)

where q = 0,±1,±2, . . . is the circular harmonic order and the order of the Mellin radial

transform is an integer p with p ≥ 0. Now introduce the polynomial Qp(ρ) de�ned in Sheng

and Shen [1994] as:

Qp(ρ) =
p∑

k=0

(−1)p+k
(p+ k + 1)!

(p− k)!k!(k + 1)!
. (4.15)

Then the (p, q) order Orthogonal Fourier Mellin Moments (OFMM) function Upq and the

OFMM moments Opq can be de�ned in polar coordinate system (ρ, θ) as:

Upq(ρ, θ) = Qp(ρ)e−jqθ, (4.16)

Opq =
p+ 1
π

∑
x

∑
y

f(x, y)Upq(ρ, θ)∆x∆y, (4.17)

where x2 + y2 ≤ 1, x = ρ cos θ and y = ρ sin θ.
For a given degree p and circular harmonic order q, Qp(ρ) = 0 has p zeros. The number

of zeros in a radial polynomial corresponds to the capacity of the polynomials to describe

high frequency components of the image. Therefore, for representing an image with the same

level of quality, the order of p ortogonal Fourier-Mellin is always less than the order of other

moments (high order moments are more sensitive to noise) Kan and Srinath [2002].

Fourier-Mellin moments are also orthogonal and rotation invariant. Fourier-Mellin mo-

ments are better able to describe images of small size Kan and Srinath [2002].

4.3 Dissimilarity Measures

This section describes the dissimilarity measures used for matching visual information. The

dissimilarity is determined as a distance between some extracted features. Di�erent features

are computed from each frame, thus each frame is represented by a set of features. The

dissimilarity measure is computed between same features (for example Zernike moments) of

two consecutive frames. Feature vectors are considered as histograms in terms of dissimilarity

measure. Figure 4.4 shows the dissimilarity schema, whereH i(ft) is ith feature extracted from
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frame ft and R is the number of features (for example: H1(ft) and H1(ft+1) represent RGB
color histograms of frame t and frame t+ 1 respectively, H2(ft) and H2(ft+1) represent HSV
color histograms of frame t and frame t + 1 and so on). Then, all dissimilarities computed

between frame ft and ft+1 form a new vector dt that will be used as input data to the

classi�er.

Figure 4.4: Pairwise dissimilarity measures. H i(ft) represent the i-th �histogram� feature of
frame ft

Many dissimilarity measures have been used for content analysis. Among the most used

we focus on L1 norm, cosine dissimilarity, histogram intersection and χ2 which seemed to be

more appropriate to our features. In this case L1 norm distance and χ2 distance are used as

dissimilarity measure.

Several other statistical measures have been reviewed and compared in Ford et al. [1997]

and Ren et al. [2001]. Then, the pairwise dissimilarity measure between features is used as

an input in the SVM classi�er.

Figures 4.5 and 4.6 display the dissimilarity vector of di�erent features. We include some

motion and abrupt illumination change in the video segments. The isolate picks are the ATs

and the other high values that stay together are caused by camera or object motion. We can

see in both �gures that color histograms are more tolerant to motion but also is very sensitive

to illumination changes as it is seen in the second �gure, more or less at frame position 2250

(where we can �nd an isolate pick). Other feature that stays stable is the correlation between

consecutive frames, the strength of the pick are higher using this feature. But the correlation

of some frames that belongs to di�erent shots has low value misleading the detection.

After computing the dissimilarity vector, compound by the pairwise dissimilarities of all

features, we are now able to detect the transitions. Thus, an AT occurs if the dissimilarity
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Figure 4.5: Dissimilarity vectors for di�erent features
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Figure 4.6: Dissimilarity vectors for di�erent features
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is high. If we adopt a threshold-based approach, we need to set thresholds for each feature.

The second problem is how to choose the features and blend them. Since we are proposing a

learning-based approach, we eliminate the need for threshold setting and we are able to use

multiple features simultaneously. Thus, this dissimilarity vector will be used as input data to

the SVM classi�er in order to detect the ATs.

4.4 Machine Learning Approach

The system which we propose, deals with a statistical learning approach for video cut detec-

tion. However, our classi�cation framework is speci�c. Following the structure presented in

Section 4.1, in the �rst stage we choose as features: color histograms in di�erent color spaces

(RGB, HSV and opponent color), shape descriptors (Zernike and Fourier-Mellin moments),

projections histograms, color moments (luminance variance) and phase correlation. In the sec-

ond stage, we test di�erent dissimilarity measures: L1 norm, cosine dissimilarity, histogram

intersection and χ2 distance. Then in the third stage, each dissimilarity feature vector (dis-

tance for each type of feature: color histogram, moments and projection histograms) is used

as input to the classi�er.

In Algorithm 4.1, we present the steps for computing the dissimilarity vectors. In the �rst

loop, Hist[t] corresponds the color histograms in the di�erent color spaces, thus we have 3

color histograms, Shape[t] corresponds the Zernike and Fourier-Mellin moments, Colormom[t]
is the variance of luminance and Proj[t] corresponds to horizontal and vertical projection his-

tograms. In the second loop we calculate the dissimilarity between features of consecutive

frames. The function Dissimilarity(., .) calculates the four dissimilarity measures used in

this work and �nally also in this loop we calculate the phase correlation.

Algorithm 4.1: Dissimilarity vector calculation
Data: Video frames

Result: Dissimilarity d vectors

foreach frame t in the video do1

Hist[t] = Color histograms;2

Shape[t] = Shape descriptors;3

Colormom[t] = Color moments;4

Proj[t] = Projection histograms;5

end6

for t = 1 to Video size - 1 do7

d[0,t] = Dissimilarity(Hist[t], Hist[t+1]);8

d[1,t] = Dissimilarity(Shape[t], Shape[t+1]);9

d[2,t] = Dissimilarity(Proj[t], Proj[t+1]);10

d[3,t] = Phase Correlation between frame t and frame t+1;11

end12
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Once we have the dissimilarity feature vector, we are able to detect the ATs. In the

stage of classi�cation we adopt a supervised classi�cation method. As we use a consecutive

pairwise dissimilarity, the number of dissimilarity vectors is one less than the number of video's

frames, e.g., if we have a video of L frames, the number of dissimilarity vectors is L− 1. The
dissimilarity vectors are classi�ed into two classes: �cut� and �non cut�, i.e., we have a binary

classi�cation. Other characteristic of the data is that the number of dissimilarity vectors that

correspond for �cut� is much smaller than ones that correspond for �non cut�. This means

that the data available is unbalanced.

Based on the characteristics of the data, we choose SVM as our classi�er. SVM is a

learning machine that can perform binary classi�cation. The two key features of SVM are

the generalization theory and kernel functions. Under the premise of zero empirical risk,

SVM guarantees the correct classi�cation of the whole training set and obtains the best

generalization performance by maximizing the classi�cation margin. SVM can obtain global

optimal solution in theory, especially suitable to solve the classi�cation problems with small

samples. SVM solves linearly inseparable problem by non-linearly mapping the vector in

low dimension space to a higher dimension feature space (thanks to kernel functions) and

constructing an optimal hyperplane in the higher dimension space.

We will focus on SVMs for classi�cation. Basically, SVM methods project data to classify

in a space of large (possibly in�nite) dimension, where a linear criterion is used. For any

training set, one can choose an appropriate projection Φ so that linear separability may be

achieved. Computation is done without an explicit form of the projection, but only with the

kernel corresponding to the scalar product between projections.

The model is thus speci�ed by choosing the kernel K:

K(xi, xj) = Φ(xi) · Φ(xj)

and a function f which sign is the predicted class:

f(x) = w · Φ(x) + b.

Given training data x1, x2, . . . , xn that are vectors in some space X ⊆ Rd. Also given their

labels y1, y2, . . . , yn where yi ∈ {−1, 1}. We will denote T = {(x1, y1), . . . , (xn, yn)} a training
set generated independent and identically distributed according to (X ,Y). The computation

of w is achieved by minimizing ||w|| under correct classi�cation of the training set, i.e. ∀i
yif(xi) ≥ 1. This is equivalent to maximizing the margin between training points and the

separating hyperplane.

It can be proven Boser et al. [1992] that w is of the form
∑

i αiyiΦ(si), where the αi come

from the following quadratic optimization problem:

Maximize ∑
i

αi −
1
2

∑
i,j

αiαjyiyjK(si, xj)
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subject to

0 ≤ αi ≤ C,∀i and
Ns∑
i=1

αiyi = 0,

where C is a misclassi�cation cost used in order to tolerate noisy con�guration (soft margin).

The si with non-zero αi are called support vectors.

Finally, the decision function g in SVM framework is de�ned as:

g(x) = sgn(f(x)) (4.18)

f(x) =
Ns∑
i=1

αiyiK(si, x) + b (4.19)

where b ∈ R and αi parameters are computed, considering the SVM optimization.

Several common kernel functions are used to map data into high-dimensional features

space:

Linear:

K(xi, xj) = xi · xj (4.20)

Polynomial kernel:

K(xi, xj) = (xi · xj + 1)d (4.21)

Gaussian radial basis kernel :

K(xi, xj) = e−||xi−xj ||2/2σ2
(4.22)

Gaussian kernel with χ2 distance (Gauss-χ2):

K(xi, xj) = e−χ
2(xi,xj)/2σ

2
(4.23)

Triangular kernel Fleuret and Sahbi [2003]:

K(xi, xj) = −||xi − xj || (4.24)

Each kernel function results in a di�erent type of decision boundary.

The SVM problem is convex whenever the used kernel is a Mercer one (c.f. Appendix

A). The convexity ensures the convergence of the SVM algorithm towards a unique optimum.

The uniqueness of the solution is one of the main advantages of the SVM compared to other

learning approaches such as neural networks Boughorbel et al. [2004]. See Appendix A for

further details.

In Figure 4.7, we present our training framework. The dissimilarity vectors are used for

training our SVM classi�er, the training data is constitute by one or more videos. As a result

of the training, SVM computes the support vectors, which are the data points that lie closest

to the decision surface. Therefore, thanks to support vectors we have a trained machine.

Figure 4.8 shows the test framework based on the support vectors computed in the training
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stage. We are now able to detect when a �cut� occurs.

Figure 4.7: Learning-based approach for video cut detection: Training. Feature
vectors Fi, Zi, . . . Ci represent Fourier Mellin moments, Zernike moments, Color histogram,
and the other features detailed in Section 4.2 and dt is the dissimilarity between consecutive
frames.

Another key in classi�cation is the normalization of the input data. The objective of nor-

malization is to equalize ranges of the features removing statistical error. The normalization

methods tested in our work are the statistical normalization and the min-max normalization

Ortega-Garcia et al. [2002].

4.5 Experiments

In this section we present the experiments conducted in order to choose the better parameters

for our system and also compare our method with other methods in TRECVID evaluation.

4.5.1 Data Set

The training set consists of a single video of 9078 frames (5mins. 2 secs.) with 128 �cuts� and

8950 �non cuts�. This video is captured from a Brazilian TV-station and is composed by a

segment of commercials. The training video was labeled manually by ourselves. The test set is

composed by two data sets of TRECVID evaluation. The �rst test set is the TRECVID-2002

data set that was used to de�ne the best parameters, i.e., feature combinations, dissimilarity
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Figure 4.8: Learning-based approach for video cut detection: Test. Feature vectors
Fi, Zi, . . . Ci represent Fourier Mellin moments, Zernike moments, Color histogram, and the
other features detailed.

measures and kernel functions. The second test set, TRECVID-2006 data, was used to com-

pare the performance of our system with other methods proposed by teams that participate

in the evaluation.

We strictly follow the TRECVID protocol in our tests. We use the precision, recall and

F1 statistics de�ned in TRECVID protocol.

Recall =
correct

correct+missed
;

Precision =
correct

correct+ false
.

A good detector should have high precision and high recall. F1 is a commonly used metric

that combines precision and recall values. If both values are high then F1 is high.

F1 =
2× Precision× Recall
Precision + Recall

. (4.25)

4.5.2 Features

As our objective is to avoid pre-processing and post-processing steps we combine distinctive

features. In the case of global color histograms we use three di�erent color spaces:
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RGBh in RGB space, 2 bits for each channel (64 bins)

HSVh in HSV space, 2 bits for each channel (64 bins)

R−Gh in opponent color space, we use the second channel (R−G), 64
bins

In the case of RGBh and HSVh we use 64 bins (2 bits per channel). In shot boundary

detection the number of bits per channel is set to 2 or 3 in order to reduce sensitivity to noise,

slight light and object motion as well as view changes Lienhart et al. [1997a]; Santos [2004].

We use opponent color space (brightness-independent chromaticities space) in order to make

our set of features more robust to illuminance changes. The advantage of this representation

is that the last two chromaticity axes are invariant to changes in illumination intensity and

shadows. Thus, we use the second channel (Red−Green) and divide it in 64 bins.

For shape descriptors we use Fourier-Mellin and Zernike moments:

Zh moments of order 5

Fh moments of order 4

For Zernike moments we select moments of order 5 arranged in a vector of 12 elements.

Greater orders are not necessary, since the content of consecutive frames that belongs to the

same shot is very similar. Toharia et al. [2005] compare moments of order 3, 5 and 10. The

performance between the three orders are similar. In the case of Fourier-Mellin moments, we

choose moments of order 4 arranged in a vector of 24 elements. For representing an image

over the same level of quality is always less than the order of other moments Kan and Srinath

[2002].

Other features used in our framework are the projections histograms in X-axis and Y-axis

direction (horizontal and vertical), phase correlation, computed in the frequency domain and

the luminance variance (color moments):

Vh vertical projection histograms, the size depends on the number

frame's columns

Hh horizontal projection histograms, the size depends on the num-

ber frame's rows

PC 32× 32 blocks

V ar luminance variance

For phase correlation we choose a block size of 32×32. Porter et al. [2003] suggest the use
of the maximum correlation value as a measure for each block. A drawback with this method

is that we do not have information of the neighbors of the maximum correlation value. We

propose the use of the entropy of the phase correlation blocks as the goodness-of-�t measure.

The entropy give us global information of the block, not only information for a single element

of the block. Although, the phase correlation feature is particularly relevant in presence
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of illumination changes, it provides false positive cuts for �black� frames due to MPEG-1

artifacts. In order to overcome this limitation, we add the luminance variance (V ar). Indeed,

two �black� frames phase correlation will be high like for non-similar images while variance

will be little in the �rst case and high in the second. Indeed, the phase correlation feature of

two successive �black� frames will be high like in case of two non-similar frames while variance

will allow us to discriminate these con�gurations. In the case of projection histograms, they

depend on the size of the frame.

Since our framework is tested using TRECVID data sets, we strictly follow the TRECVID

protocol in our tests. We can provide up to 10 di�erent runs (10 di�erent choices of parameters,

features or kernels). In Table 4.1, we present the visual feature vectors used in our tests. The

combinations for each run were selected empirically, evaluating all possible combinations and

choosing the best ones.

Run Features
1 HSVh, Fh, Zh, Hh, PC, V ar
2 R−Gh, HSVh, RGBh, Fh, Zh, PC, V ar
3 R−Gh, HSVh, RGBh, Fh, Hh, PC, V ar
4 HSVh, RGBh, Fh, Zh, PC, V ar
5 HSVh, RGBh, Fh, Zh, Hh, PC, V ar
6 RGBh, Fh, Zh, Vh, PC, V ar
7 RGBh, Fh, Zh, Vh, Hh, PC, V ar
8 HSVh, RGBh, Fh, Zh, Vh, Hh, PC, V ar
9 R−Gh, HSVh, RGBh, Fh, Zh, Hh, PC, V ar
10 R − Gh, HSVh, RGBh, Fh, Zh, Hh, Vh, PC,

V ar

Table 4.1: Combination set of visual features used in our tests.

4.5.3 TRECVID 2002

The shot boundary test collection of TRECVID-2002 contains 4 hours and 51 minutes of

video. The videos are mostly of a documentary/educational nature, but very varied in age,

production style, and quality. At a total, there are 18 videos in MPEG-1 with a total size of

2.88 gigabytes. The videos contain 545,068 total frames and 2,090 shot transitions with 1,466

cuts. For all videos, shot segmentation reference data has been manually constructed by the

National Institute of Standards and Technology (NIST).

Table 4.2 shows the best three results for each run evaluation in terms of recall, precision

and F1 measures. We also present the kernel functions and the dissimilarity distances used for

comparing the feature vectors. We can observe that the run with the best recall has the worst

precision. Something similar occurs with the run with the best precision, it has the worst

recall. Now observing the best F1 measures, the run that achieves the highest value uses all

the feature set (Run 10 ). In fact, this run has a more equilibrated recall/precision, i.e., both

values are high. This means that using the hold data set we can reduce the number of false

detection and missing transitions. Something that we have to take into account is that the
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results are very closer. When we refer to a run with the worst result, we mean that it is worst

compared with the other results and not because the result is poor. Now, analyzing the other

factors, kernel function and dissimilarity measure, the kernel function that best performs is

the Gauss-χ2 kernel. In the case of the dissimilarity measures, we can not conclude anything

de�nitely because the results are very heterogeneous.

Run Recall Precision F1 Kernel Diss. Measure

0.929 0.923 0.926 Gauss-χ2 χ2

1 0.881 0.950 0.914 Gauss-χ2 Cos
0.931 0.892 0.911 Gauss-χ2 L1

0.944 0.909 0.926 Gauss-χ2 χ2

2 0.936 0.910 0.923 Gauss-χ2 L1
0.930 0.902 0.916 Gauss-χ2 Hist.Int.

0.926 0.928 0.927 Gauss-χ2 Cos
3 0.927 0.916 0.922 Gauss-χ2 Hist.Int.

0.934 0.898 0.916 Gauss-χ2 χ2

0.941 0.914 0.927 Gauss-χ2 L1
4 0.930 0.915 0.923 Gauss-χ2 Hist.Int.

0.933 0.911 0.922 Gauss-χ2 χ2

0.931 0.924 0.927 Gauss-χ2 Cos
5 0.927 0.923 0.925 Gauss-χ2 Hist.Int.

0.947 0.889 0.917 Gauss-χ2 χ2

0.945 0.911 0.928 Gauss-χ2 Hist.Int.
6 0.926 0.914 0.920 Gauss-χ2 Cos

0.955 0.886 0.919 Gauss-χ2 L1

0.936 0.919 0.928 Gauss-χ2 Hist.Int.
7 0.922 0.916 0.919 Gauss-χ2 Cos

0.955 0.877 0.915 Gauss-χ2 χ2

0.936 0.921 0.928 Gauss-χ2 Hist.Int.
8 0.925 0.919 0.922 Gauss-χ2 Cos

0.951 0.881 0.915 Gauss-χ2 χ2

0.932 0.925 0.929 Gauss-χ2 Cos
9 0.924 0.916 0.920 Gauss-χ2 Hist.Int.

0.944 0.892 0.918 Gauss-χ2 χ2

0.936 0.923 0.930 Gauss-χ2 Hist.Int.
10 0.926 0.915 0.920 Gauss-χ2 Cos

0.923 0.911 0.917 Triangle Hist.Int.

Table 4.2: Measure of performance for each run.

Through Table 4.2, it is not possible to extract a conclusion with respect to the dis-

similarity measures. Therefore, we make an analysis with the best results for each type of

dissimilarity measure, see Figure 4.9 and 4.10. The performance is evaluated in function of

recall and precision. Even though the performance of the dissimilarity measures are similar,

we can see that histogram intersection and cosine dissimilarities outperform lightly the results

of L1 and χ2 dissimilarities. In almost all the cases the kernel function with best performance
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is the Gaussian-χ2. In Figure 4.5.3, the triangle marker inside the circle is the only run where

Triangle kernel function outperforms other kernels. The best recall has the worst precision

(Run6 in Figure 4.5.3), this means that experiment run detects almost all the transitions but

it also has various false positives. This also occurs with the best precision, it also presents

the worst recall (Run8 in Figure 4.5.3). This means that almost all the transitions detected

by the experiment run are true, but it misses various transitions. The experiment Run10, see
Figure 4.5.3, is the one that has a more equilibrate recall/precision and also has the best F1

measure.

[L1 norm dissimilarity]

[Cosine dissimilarity]

Figure 4.9: Precision/Recall measure performance for L1 norm and cosine dissimilarity.

Since we already have selected the ten di�erent combinations of the features, our objective

is to �nd the other parameters: kernel function and dissimilarity measure. Figures 4.11 and
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[Histogram intersection dissimilarity]

[χ2 dissimilarity]

Figure 4.10: Precision/Recall measure performance for histogram intersection and χ2 dissim-
ilarity.

4.12 shows the performance for all the experiment runs using the linear kernel function and

di�erent dissimilarity measures. We �nd the best recall results in Figure 4.5.3 where the

L1 norm is used as a dissimilarity measure. But unfortunately the precision results are the

worst. We see that this behavior is the same for all precision values, i.e., the L1 norm has

the worst precision values. The cosine dissimilarity (Figure 4.5.3) and histogram intersection

(Figure 4.5.3) have a more equilibrate relation of recall and precision. Other characteristic is

that the experiment runs are close together, this means that independent of the experiment

run, the performance of the system is almost the same. The χ2 dissimilarity (Figure 4.5.3)
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also shows a good performance, but comparing with the cosine dissimilarity and histogram

intersection is a little bit worst. In conclusion, the dissimilarity measures that seem better

than the linear kernel function are the cosine dissimilarity, histogram intersection and �nally

the χ2 dissimilarity.

[L1 norm]

[Cosine dissimilarity]

Figure 4.11: Precision/Recall measure for all runs using the Linear kernel function.

Figures 4.13 and 4.14 show the performance for all the experiment runs using the poly-

nomial kernel function and di�erent dissimilarity measures. In Figure 4.5.3, we can see that

the performance of the system is increased using the polynomial kernel instead of the linear

kernel (see Figure 4.5.3). The relation recall/precision is also better with polynomial kernel

and the results are closer between them, i.e., they are more or less the same. Again the cosine

dissimilarity (Figure 4.5.3) and histogram intersection (Figure 4.5.3) have a more equilibrate
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[Histogram intersection]

[χ2 dissimilarity]

Figure 4.12: Precision/Recall measure for all runs using the Linear kernel function.

relation of recall/precision and experiment runs are also close together. The χ2 dissimilarity

(Figure 4.5.3) also shows a good performance. This dissimilarity has the best recall, but un-

fortunately the precision become worst. An interesting fact that we can notice is that in all

the cases (the four dissimilarities) the recall increase while the precision decrease. Again the

best dissimilarities are cosine and the histogram intersection. In conclusion, the performance

really increases when the system uses the L1 norm with the polynomial kernel function. An-

other interesting fact is that the relation recall/precision are more stable in all the cases. As

it was established for linear kernel, the cosine and the histogram intersection also show the

best performance when the polynomial kernel function is used .

Then the next kernel function to be tested is the Gaussian-L2. Figures 4.15 and 4.16
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[L1 norm]

[Cosine dissimilarity]

Figure 4.13: Precision/Recall measure for all runs using the Polynomial kernel function.

present the performance for all the experiment runs using the Gaussian-L2 kernel function

and di�erent dissimilarity measures. As it occurs with the polynomial kernel function, the

Gaussian-L2 outperforms the linear kernel. In the case of the L1 norm, see Figure 4.5.3, the

behavior of the system with Gaussian−L2 is similar to the behavior of the system with the

linear kernel. In both cases the results are spread and have high recall values, but low precision

values. As it occurs with linear and polynomial kernel, the cosine dissimilarity (Figure 4.5.3)

and histogram intersection (Figure 4.5.3) have a more equilibrate relation of recall/precision

and experiment runs are also close together. The χ2 dissimilarity (Figure 4.5.3) increases a

little the recall, but it lose performance in precision. Compared to linear kernel the results

are better, but when compared with the polynomial kernel, the recall maintains almost the
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[Histogram intersection]

[χ2 dissimilarity]

Figure 4.14: Precision/Recall measure for all runs using the Polynomial kernel function.

same values but it decreases in precision. We can conclude again that cosine dissimilarity and

histogram intersection are the best dissimilarity measures. An interesting fact is that with

the Gaussian-L2 kernel it was possible to outperform, in recall and precision, the quality of

the results compared to linear kernel.

Now, we evaluate another Gaussian kernel, but instead of using the L2 norm distance, we

use the χ2 distance. When we presented the best results for each experiment run, we saw that

the best kernel was the Gaussian-χ2. Figures 4.17 and 4.18 present the performance for all the

experiment runs using the Gaussian−χ2 kernel function and di�erent dissimilarity measures.

With the four dissimilarity measures the system gain in performance using the Gaussian−χ2

kernel function. The gain is not only in a better precision but also in a better recall, but
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[L1 norm]

[Cosine dissimilarity]

Figure 4.15: Precision/Recall measure for all runs using the Guassian-L2 kernel function.

also in equilibrate relation recall/precision and similar results, i.e., the system shows similar

performance independent of the experiment run. The L1 norm (Figure 4.5.3) and the χ2

dissimilarity (Figure 4.5.3) have high recall values and lower precision values compared to

recall. The behavior of cosine dissimilarity (Figure 4.5.3) and histogram intersection (Figure

4.5.3) are the same behavior that we saw with other kernels, i.e., high recall and high precision

and all the results are similar. In conclusion, the Gaussian−χ2 outperforms the results of other

kernel functions and again we get the best results using cosine dissimilarity and histogram

intersection.

Finally, we evaluate the triangle kernel function. Figures 4.19 and 4.20 present the perfor-

mance for all the experiment runs using the triangle kernel function and di�erent dissimilarity
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[Histogram intersection]

[χ2 dissimilarity]

Figure 4.16: Precision/Recall measure for all runs using the Gaussian-L2 kernel function.

measures. Comparing the results with the other kernels function, the triangle kernel function

is the second best in performance. When the L1 norm is used (Figure 4.5.3), the results

are spread and the recall/precision values are better than linear, polynomial and Gaussian-

L2 kernels. Again the two best dissimilarity measures are the cosine dissimilarity (Figure

4.5.3) and the histogram intersection (Figure 4.5.3). The χ2 dissimilarity (Figure 4.5.3) has a

similar performance than cosine dissimilarity and histogram intersection. In conclusion, the

triangle kernel function outperforms the results of linear, polynomial and Gaussian-L2 kernel

functions. The only one that has a better performance is the Gaussian-χ2 kernel and the best

dissimilarity measures are the cosine dissimilarity and the histogram intersection.

Learning support is robust since with training sets from di�erent camera, from di�erent
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[L1 norm]

[Cosine dissimilarity]

Figure 4.17: Precision/Recall measure for all runs using the Gaussian−χ2 kernel function.

compress format, coding, from di�erent country, situation, the features keep being relevant

and stable to detect cuts in di�erent context and environment. We realized di�erent experi-

ments and optimization processes:

Optimization of Kernel Functions

We conducted numerous experiments that provide interesting and meaningful contrast.

Table. 4.3 shows the recall, precision and F1 measures for the three best similarity measures

for each kernel function, we also present the dissimilarity distance used for comparing the

feature vectors and the features that were used in each run. The Gaussian-χ2 kernel provides
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[Histogram intersection]

[χ2 dissimilarity]

Figure 4.18: Precision/Recall measure for all runs using the Gaussian−χ2 kernel function.

the best results over all the other kernel functions.

Thus, our evaluation of kernel functions con�rms that when distributions are used as

feature vectors, a Gaussian kernel gives excellent results in comparison to distance-based

techniques Gosselin and Cord [2004b].

Optimization of Training Set

In order to reduce the number of support vectors and decrease the time consumed for

training and testing we reduce our training set. Instead of using the 5 min. video (c.f.

Section 4.5.1) we segment it and train our classi�er with a 2 min. video that contains 50 cuts.
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[L1 norm]

[Cosine dissimilarity]

Figure 4.19: Precision/Recall measure for all runs using the Triangle kernel function.

The performance of our system maintains its accuracy with the advantage that the steps of

training and testing are very fast. In Table 4.4 we show the recall, precision and F1 statistics

using seven di�erent feature sets.

Based in our previous experiments, we are able to set the choice for the kernel function and

the dissimilarity measure. The choice for kernel function is the Gaussian-χ2 (as it is shown in

our experiments, it executes the best performance). The choice of cosine dissimilarity is based

on the results of our experiments, this only con�rms what Cabedo and Bhattacharjee [1998]

have shown in their experiments and they also demonstrate the better performance of cosine

dissimilarity. Therefore, we test the performance of our detector using the Gaussian-χ2 kernel

function and the cosine dissimilarity. We evaluate our system with TRECVID-2002 data set,
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[Histogram intersection]

[χ2 dissimilarity]

Figure 4.20: Precision/Recall measure for all runs using the Triangle kernel function.

i.e., our ten experiment runs are compared in terms of recall/precision with the results of the

teams that participate in the TRECVID-2002 evaluation.

TRECVID 2002 Evaluation

In Table 4.5, we show the performance of our system. All these results, the best ones,

are obtained using the Gaussian-χ2 kernel. We present the recall and precision, its respective

variance and the F1 measures. The small values of variance show the stability of our sys-

tem. In Figure 4.5.3, we show the results that were obtained in the o�cial TRECVID-2002

evaluation and compare them with the results of our ten runs, Figure 4.5.3. As shown in the
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Kernel Recall Prec. F1 Diss. Run

0.913 0.876 0.894 Hist.Int. 10
Linear 0.928 0.860 0.892 Hist.Int. 7

0.903 0.881 0.892 Cos. 3

0.896 0.915 0.905 Cos. 7
Poly 0.887 0.924 0.905 Hist.Int. 8

0.909 0.898 0.903 χ2 3

0.909 0.904 0.906 Hist.Int. 8
Gauss-L2 0.919 0.889 0.904 L1 4

0.903 0.903 0.903 Cos. 5

0.936 0.923 0.930 Cos. 10
Gauss-χ2 0.932 0.925 0.929 Cos. 9

0.936 0.921 0.928 Hist.Int. 8

0.923 0.911 0.917 Cos. 10
Triangle 0.914 0.916 0.915 Hist.Int. 8

0.932 0.895 0.914 χ2 4

Table 4.3: Measure performance for each kernel function (in Table 4.1, we present the features
used in the runs).

Complete Train Set 128 Reduced Train Set 50
Recall Prec. F1 Recall Prec. F1 Features

0.92 0.92 0.92 0.90 0.93 0.92 HSVh, Zh, Hh, Var, PC
0.92 0.92 0.92 0.91 0.93 0.92 HSVh, Vh, Hh, Var, PC
0.93 0.90 0.92 0.93 0.91 0.92 HSVh, RGBh, Fh, Hh, Var, PC
0.93 0.91 0.92 0.92 0.92 0.92 HSVh, Zh, Vh, Hh, Var, PC
0.94 0.90 0.92 0.93 0.91 0.92 R−Gh, HSVh, Fh, Hh, Var, PC
0.95 0.90 0.93 0.93 0.91 0.92 HSVh, RGBh, Fh, Zh, Hh, Var, PC
0.94 0.90 0.92 0.93 0.91 0.92 R − Gh, HSVh, RGBh, Fh, Zh, Hh,

Var, PC

Table 4.4: Comparison of performance for 7 feature sets using all training set videos and the
reduced training set videos.

�gure the accuracy and robustness of our approach is very e�cient. Hence, the capacity of

generalization of our classi�er is proven and the combination of the selected features performs

good results without any pre-processing or post-processing.

4.5.4 TRECVID 2006

The test data is composed by news video in Arabic, Chinese and English. The data were

collected by Linguistic Data Consortium (LDC) during November and December of 2005,

digitized and transcoded to MPEG-1. The test collection comprises about 7.5 hours, including

13 videos for a total size of about 4.64 Gb. The total number of frames is 597,043 and the

number of transitions is 3785. The collection contains 1844 abrupt transitions, that represents

48.7% of the total transitions. The reference data was created by a student at NIST whose
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Run Recall σrecall Prec. σprec. F1 Diss. meas
1 0.929 0.004 0.923 0.010 0.926 χ2 test
2 0.944 0.003 0.909 0.014 0.926 χ2 test
3 0.926 0.003 0.928 0.007 0.927 Cos
4 0.941 0.003 0.914 0.009 0.927 L1
5 0.931 0.003 0.924 0.007 0.927 Cos
6 0.945 0.003 0.911 0.007 0.928 Hist.Int.
7 0.936 0.004 0.919 0.008 0.927 Hist.Int.
8 0.936 0.004 0.921 0.009 0.928 Hist.Int.
9 0.932 0.003 0.925 0.007 0.928 Cos
10 0.936 0.005 0.923 0.007 0.929 Cos

Table 4.5: Performance of our system with Gaussian-χ2 kernel function

task was to identify all transitions.

The nomenclature used for the features is as follows: RGB color histogram (RGBh), HSV

color histogram (HSVh), opponent color histogram (R−Gh), Zernike moments (Zh), Fourier-

Mellin moments (Fh), Horizontal project histogram (Hh), Vertical projection histogram (Vh),

Phase correlation (PC) and Variance (V ar). In Table 4.6, we present the visual feature

vectors for cut detection used for the 10 runs.

The experiment runs are compound by the election of the features, kernel function and

dissimilarity measure. In the case of kernel function we select the Gaussian-χ2 our choice for

the dissimilarity measure is the cosine dissimilarity.

In Table 4.7, we show the performance of our system for cut detection, measured in recall

and precision. We present the recall and precision and its respective variance. The small

values of variance shows again the stability of our system.

The factor that in�uence the precision and recall values is related to GTs. In GTs we

have three classes: �dissolve�, �fade out-in� and �other� transitions. In the case of dissolves,

more or less half of them are extremely short (less than 6 frames) and are considered as ATs.

Fade-in, fade-out, wipe, �black� frames separating consecutive shots and other type of special

e�ects are included in �other� transitions category. Now, let see how these GTs a�ect the

performance of our AT detector. As short dissolves are considered as ATs, the recall of our

system decreases since the recall count the detected transitions from all possible transitions

(cuts and short dissolves). In Figure 4.22, we see some examples of �other� class transitions.

Our system detects false cuts in the abrupt changes. Thus, the precision values are a�ected

by the false positives detected by our system.

Trecvid 2006 Participants

We made a classi�cation based on the approach used for the participants of TRECVID

2006 Evaluation:

Machine learning approach

1 Values are calculated in function of F1 measure
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[O�cial results for TRECVID 2002 Smeaton and Over [2002]]

[Our ten runs results for TRECVID 2002]

Figure 4.21: Precision/Recall measure of performance

� AT&T : cut detector is a �nite state machine. For each frame a set of visual

features are extracted, these can be classify into two types: intra-frame and inter-

frame. The intra-frame features are: color histograms (RGB and HSV), edge and

related statistical features (mean, variance, skewness and �atness). The inter-frame

features capture the motion compensated intensity matching errors and histograms

changes. The HSV color histogram is quantize into 256 bins. Motion features are

extracted based on 24 blocks, each with the size 48× 48 pixels. The search range

of motion vector for each block is set to 32× 32. The motion features include the

motion vector, the matching error and the matching ratio. The dissimilarities are
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Run Features
1 HSVh, Zh, Hh, V ar, PC
2 HSVh, Vh, Hh, V ar, PC
3 HSVh, RGBh, Fh, Zh, V ar, PC
4 RGBh, Zh, Vh, Hh, V ar, PC
5 R−Gh, HSVh, RGBh, Fh, Hh, V ar, PC
6 HSVh, RGBh, Fh, Zh, Hh, V ar, PC
7 RGBh, Fh, Zh, Vh, Hh, V ar, PC
8 HSVh, Zh, Vh, Hh, V ar, PC
9 R−Gh, HSVh, RGBh, Fh, Zh, Hh, V ar, PC
10 HSVh, RGBh, Fh, Zh, Hh, Vh, V ar, PC

Table 4.6: 10 best combinations of visual features for cut detection

Run Recall σrecall Prec. σprec.
1 0.821 0.012 0.909 0.003
2 0.825 0.013 0.889 0.003
3 0.818 0.015 0.908 0.003
4 0.827 0.013 0.886 0.003
5 0.832 0.012 0.876 0.003
6 0.828 0.012 0.876 0.004
7 0.827 0.014 0.886 0.003
8 0.821 0.014 0.879 0.004
9 0.813 0.014 0.911 0.002
10 0.803 0.021 0.868 0.002
Mean Trecvid 1 0.729 - 0.722 -
Max Trecvid 1 0.868 - 0.943 -

Table 4.7: Performance of our system with χ2 kernel function

Figure 4.22: Shot transitions

computed between consecutive frames and frame distance of 6 frames. SVM is

applied to cut detector to further boost the shot boundary performance.

� Chinese Academy of Sciences / JDL (CAS/JDL): uses a two pass approach, �rst

selects the suspicious transition candidates using a low threshold method and then

judges the candidates by using the SVM base method. The features used are
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histograms and mutual information. Due to the low threshold, the method does

not need to extract complex features. The dissimilarity measure used is the L1
norm. The drawback of this method is that sometimes the system is not able to

di�erentiate between GTs and object motion.

� FX Palo Alto Laboratory (FXPAL): uses dissimilarity features within the particular

temporal interval as the input for kNN classi�er. Color histograms in YUV space

are extracted, global image histograms and block histograms using a uniform 4×4
spatial grid. The dissimilarity measure used is the χ2 distance and is computed

using a frame distance of 5 and 10 frames.

� Helsinki University of Technology (HelsinkiUT): extracts feature vectors from con-

secutive frames and project them onto a 2D self-organizing map (SOM). The fea-

tures extracted are the average color, color moments, texture neighborhood, edge

histogram and edge co-occurrence. The frame features are calculated for �ve spa-

tial zones for each frame of the video. These results are averaged over the frames

contained within each one of the �ve non-overlapping temporal video slices. By

this way, a �nal feature vector that describes the changes of the frames descriptors

over time in di�erent spatial areas of the video is calculated. The average color

feature vector contains the average RGB of all the pixels within the zone. The color

moments feature treats the HSV color channels as probability distributions, and

calculates the �rst three moments. The texture neighborhood feature is calculated

from the Y (luminance) component of the YIQ. The 8-neighborhood or each inner

pixel is examined, and a probability estimate is calculated for the probabilities

that the neighbor pixel in each surrounding relative position is brighter than the

central pixel. The feature vector contains these eight probability estimates. Edge

histogram, is the histogram of four Sobel edge directions. Edge co-occurrence gives

the co-occurence matrix of four Sobel edge directions. Finally the system detects

ATs from the resulting SOM. Computationally the most expensive (because of

SOMs).

� Indian Institute of Technology at Bombay (IIT.Bombay): proposes a method that

reduces the number of false positives caused by dramatic illumination changes

(�ashes) and shaky camera and �re/explosions. They use a multi-layer �ltering to

detect candidates based on correlation of intensity features and is further analyzed

using a wavelet transform. The correlation used is a normalized mean centered

correlation. A high correlation signi�es similar frames, probably belonging to the

same shot; a low value is an indication of a shot break. To overcome the problem of

threshold setting, the system considers the continuity of correlation values rather

than the correlation values themselves. The system achieves this using the Morlet

wavelet. The Morlet wavelet is a complex sine wave modulated with a Gaussian.

The characteristic of this wavelet is that the number of positive and negative

values are equal and the area sums zero. When there is no or little change in
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the correlation sequence, the wavelet transform returns zero value. If there is a

AT, there is a discontinuity in the correlation value, which results in a distinctive

PPNN pattern (two positives values followed by two negatives) in the lowest scale.

A �nal �ltering step is executed by a trained SVM. The features used in the training

SVM are: pixel di�erences which includes average pixel di�erence and Euclidean

pixel di�erence, histograms di�erences (average histogram di�erence, histogram

intersection and χ2 distance), edge di�erence, average intensity value, correlation,

cross-correlation and maximum of the correlation values, presence of PPNN pattern

in the lowest level of the wavelet transform and the lowest wavelet coe�cient.

� KDDI and R&D Laboratories (KDDI): compressed domain approach for detecting

ATs and short dissolve. Feature parameters are judged by SVM. The features uses

are: the number of in-edges and out-edges in divided regions, standard deviations

of pixel intensities in divided regions, global and block histograms with Ohata's

and RGB color spaces and edge change ratio. The system uses a 2-stage data fusion

approach with a SVM. The overview of the data fusion approach is as follows: At

the �rst stage, every adopted feature is judged by a speci�c SVM. This means the

number of feature types is equal to the number of SVMs at the �rst stage. And

the SVM at the second stage synthesizes the judgments from the �rst stage.

� Tsinghua University (Tsinhgua): cut detector uses 2nd order derivatives of color

histogram and pixel-wise comparisons. Features vectors for ATs are constructed

based on the graph partition, and then are used to train a SVM. It also has a post-

processing module for �ashlight detection. The features used are: color histograms

of 48 bins in RGB space (16 bins per channel), histogram intersection is adopted

to calculate the dissimilarity of two histograms, pixel-wise di�erence is used as

a supplement to color histograms because it introduces spatial information. A

threshold method, called second order derivative, is proposed to boost the precision

of AT candidates. This scheme eliminates the false positives. To detect �ashlight

e�ect and monochrome frame, the mean value and standard deviation of each

frame's pixel intensities are also calculated. Abrupt change of illumination can be

detected by tracking the variation of mean gray value. Moreover, stable intensities,

a prominent characteristic of monochrome frame, can be re�ected by small standard

deviation feature.

� University of Marburg (Marburg): proposes an unsupervised kmeans clustering for

ATs. Two di�erent frame dissimilarity measures are used: motion-compensated

pixel di�erences and color histograms. To detect cuts, two di�erent frame dissim-

ilarity measures are applied: motion-compensated pixel di�erences of subsequent

DC-frames and the histogram dissimilarity of two frames within a prede�ned tem-

poral distance of 2. A sliding window technique similar is used to measure the

relative local height of a peak value. For cut detection, the best sliding window

size is estimated by evaluating the clustering quality of �cut clusters� for several
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window sizes. Thus, the minimum and maximum sliding window size serves as

a parameter for both dissimilarity metrics. Several ranges for this parameter are

tested in the experiments for both dissimilarity measures. For cut detection, the

unsupervised approach is optionally extended by two classi�ers in order to build

an ensemble of classi�ers. An Adaboost and an SVM classi�er is incorporated in

that ensemble of classi�ers. The features uses are: motion compensated pixel dif-

ferences, histogram di�erences, luminance mean and variance, edge histograms of

Sobel-�ltered DC-frames, local histogram di�erences and ratio of the second largest

dissimilarity value divided by the local maximum for several sliding window sizes.

� Tokyo Institute of Technology (TokyoInstTech): proposes a supervised SVM classi-

�er for AT and short GT detection. For the cut detection, two linear kernel SVMs

(one for ATs and the other for short GT) with di�erent feature sets are used.

The features for a AT detection are activity ratio (the ratio of �dynamic� pixels

to all pixels, where each dynamic pixel has larger di�erence than a predetermined

threshold), the optical �ow, the change in the Hue-Saturation color histogram and

edge. The features for short GT detection are the activity ratio and the change

in the Hue-Saturation color histogram. Linear kernel functions are used for both

systems.

Threshold-based approach

� Arti�cial Intelligence and Information Analysis (AIIA): uses mutual information

as a similarity metric. The mutual information between two frames is calculated

separately for each of the RGB color components. The mutual information cor-

responds to the probability that a pixel with gray level i in frame ft has gray

level j in frame ft+1. The mutual information is not calculated between all pair of

frames, because relations between frames, which are far apart are not important for

the AT detection. Thus, the method uses only mutual information calculated be-

tween frame in a sliding temporal window (30 frames). Then a cumulative measure

which combines information from all these frame pairs is calculated. Mutual in-

formation calculated between consecutive frames provides easily detectable peaks.

The threshold for detection of the transition is set empirically.

� Chinese University of Hong Kong (CityUHK): applies adaptive thresholding on

color histograms (RGB and HSV color spaces) and gray-level histogram di�erences.

The system uses Euclidean distance, color moments, and Earth Mover's Distance

(EMD) measures to calculate color di�erences. The former two performed rather

poorly as they are under-sensitive to true positives but over-sensitive to false-

positives. The EMD method, however, is able to produce better results, as it

is sensitive to most transition-like changes. Though it also produce more noise

than the other two measures, this is not problematic when adaptive thresholding is

applied. The adaptive threshold is calculated within a sliding window of 11 frames.
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� Communication Langagière et Interaction Personne-Système (CLIPS): detects ATs

by image comparisons after motion compensation. Pre-process operations like mo-

tion compensation and �ltering process like photographic �ash are applied. The

system has several thresholds that have to be tuned for an accurate detection.

Direct image di�erence is the simplest way for comparing two images and then to

detect ATs. Such di�erence however is very sensitive to intensity variation and to

motion. This is why an image di�erence after motion compensation is being used.

Motion compensation is performed using an optical �ow technique which is able to

align both images over an intermediate one. This particular technique has the ad-

vantage to provide a high quality, dense, global and continuous matching between

the images. Once the images have been optimally aligned, a global di�erence with

gain and o�set compensation is computed. Since the image alignment computation

is rather costly, it is actually computed only if the simple image di�erence with

gain and o�set compensation alone has a large enough value (i.e. only if there

is signi�cant motion within the scene). Also, the di�erences are computed on re-

duced size images. A possible cut is detected if both the direct and the motion

compensated di�erences are above an adaptive threshold. Filtering process like

photographic �ash are applied. The �ash detection is based on an intensity peak

detector which identify 1- or 2-frame long peaks on the average image intensity

and a �lter which uses this information as well as the output of the image di�er-

ence. A �ash is detected if there is a corresponding intensity peak and if the direct

or motion compensated di�erence between the previous and following frames are

below a given threshold.

� European Cooperation in the Field of Scienti�c and Technical Research (COST292):

transitions are detected by merging the results of two shot boundary detectors. The

�rst detector is based on the extraction of the relevant features from spatiotempo-

ral image blocks and modeling those features to detect and identify a vast range

of transition and an abundance of graphical e�ects. The extracted features are

mainly related to the behavior of luminance values of pixels in the blocks. Fur-

ther, as the features used and the processing steps performed are rather simple,

the proposed method is computationally inexpensive. Video data is de�ned as a

three dimensional discrete function of luminance values: horizontal and vertical

frame dimensions and the length of the video. To perform a 3D analysis on the

data, overlapping spatiotemporal data blocks are de�ne. There exists a temporal

overlap factor. Some statistics are computed from this blocks, if these values are

bigger than a threshold an AT is detected. The second detector works directly

on compressed video only in I/P resolution. The shot boundary detector works

separately on I-frames and P-frames. The detection on P-frames is based on the

temporal di�erence of intra-coded macroblocks and the variation of global motion

parameters. The detection method for I-frames reuses the global motion models

of the shot boundary detection on P-frames. It is used to calculate the histogram
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intersection of the DC image of the current I-frame and the motion compensated

DC image of the previous I-frame. In order to detect an AT, the values of the

histogram intersection are thresholded. The merging is performed under the basic

assumption that the �rst detector achieves a higher precision and recall, since the

second works in the compressed domain only in I/P resolution. For each detector,

the shot boundary detection results are characterized by a con�dence measure.

In the merging process, both con�dence measures are used and privilege the �rst

detector.

� Dokuz Eylol University (Dokuz): is based on color histograms di�erences (RGB

color space) for AT detection. Color histograms are quantize into 27 bins. Then a

Euclidean distance of histogram belonging to two consecutive frames are calculated.

The method uses a threshold value for AT detection and a skip frame interval to

skip ahead 5 frames for eliminating consecutive frames that have much redundant

information. The detection is based on a threshold.

� Institute of Informatics and Telecommunications National Center for Scienti�c

Research �Demokritos� (ITT/NCSR Demokritos): a two step process is executed

in order to detect ATs and eliminate false detections produces by �ashlights. The

feature set consists of combinations of RGB color, adjacent RGB color, center of

mass and adjacent gradients. In the �rst step candidate ATs are detected applying

a threshold, the second step is a �ashlight �lter. A modeling of an AT in terms

of the Earth Mover's Distance (EMD) is introduced. For any candidate boundary

a set of similarities based on EMD between the current frame and each of the 5

previous frames are computed. The objective is to get a spatiotemporal template

in order to express a linear dissimilarity that decreases in time.

� RMIT University (RMIT): the system consists of a two-pass implementation of

a moving query window algorithm. The content of each frame is represented by

two types of histograms: local and global. Local color histograms in the HSV

color space are extracted from 16 equal-sized regions in each frame. For each

region, separate histogram with 32 bins per color component is computed. Two,

three-dimensional global HSV histograms, where each color is represented as a

point in a three-dimensional space. For both type of histograms the Manhattan

distance is used as dissimilarity measure. For AT detection the system uses the

techniques of query-by-example and ranked results. The moving window extends

equally on either side of the current frame, but not including the current frame

itself. The, the current frame is used as a query on the collection of frame within

the window. The frames forming the preceding half window are referred as pre-

frames, and the frames that following the current frame are referred as post-frames.

The behavior of the algorithm is controlled through the following parameters: half

window size, number of frames on one side of the query window; demilitarized zone

depth, speci�es the number of frames (size of the gap) on each side of the current
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frame which are not evaluated as part of the query window; lower bound, this is

the lower threshold used for AT detection and upper bound, this upper threshold

is used for AT detection in connection with the lower bound.

To detect and AT, the number of pre-frames are monitored in the N/2 results

as each frame is examined, where N is the size of the window. When the sliding

window goes closer to an AT, the number of pre-frames rises quickly and passes the

upper bound. Once it pass the transition, the number of frames falls sharply below

the lower bound. The slop re�ects this by taking on a large positive value, followed

quickly by a large negative. The drawback with the system consists in determinate

the size of the window, which is critical. They use a dynamic threshold based on

the information of previous frames.

� University of Modena (Modena): examine frame di�erences behaviors over time to

see if it corresponds to a linear transformation. The approach is strictly focus on

GTs with linear behavior, including ATs. The detection is based on the �tness of

the data to a linear model. The length of the transition distinguishes an AT from

a GT.

� Carleton University (Carleton.UO): approach based on tracking image features

across frames. ATs are detected by examining the number of features successfully

tracked (and lost) in adjacent frames, refreshing the feature list for each compar-

ison. The features used are corners of edges on gray scale frames and requires

registration of corner features across frames. In the case of a cut at frame f , all

features being tracked should be lost from frame ft−1 to ft. However, there are

often cases where the pixel areas in the new frame coincidentally match features

that are being tracked. In order to prune these coincidental matches, the minimum

spanning tree of the tracked and lost feature sets are examined. The inter-frame

di�erence metric is the percentage of lost features from frame ft−1 to ft. This cor-

responds to changes in the minimum spanning tree. The system needs automatic

thresholding to adjust to video type. The auto-selection of a threshold will be done

by examining the density distribution of the lost features over the entire sequence.

� University of São Paulo (USP): propose a two step process. First, compute ab-

solute pixel di�erences between adjacent frames and detect any type of large dis-

continuity or activity in pixels. Frames are considerate as gray scale images. If

the di�erence is bigger than a threshold then it is consider as an event point. The

second one is a re�nement, looking for shot boundaries only. Parameters (window

size and thresholds) are set experimentally. Designed for AT detection only.

� University Rey Juan Carlos (URJC): use color histogram (16 bins) and shape

descriptors as Zernike moments of order 3. They vary the weighed combinations

and �nd a fusion approach that improve the accuracy on the independents in

isolation. The con�dence is measured based on the di�erence computed between
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the current frame and a window of frames. A candidate for AT is detected when

the values are higher than a dynamically computed threshold.

There are no information available for Curtin University, Florida University(FIU), Huazhong

University of Science and Technology, Motorola and Zhejiang University systems.

In Figure 4.23 we show the results that were obtained in the o�cial TRECVID-2006 eval-

uation. Hence, the capacity of generalization of our classi�er is proven and the combination

of the selected features performs good results without any pre-processing or post-processing

step. The data of TRECVID-2006 are more complex, making more di�cult the task of shot

boundary detection, this can be seen comparing with the results of previous years.

[All results]

[Zoom version]

Figure 4.23: Precision/Recall measure of performance on the TRECVID 2006 for cut detection

The best results are achieved by AT&T, Tsinghua, Curtin and KDDI systems. The �rst,

second and fourth are machine learning approaches. Unfortunately, we do not have any

information about Curtin system. These teams are being participating in Trecvid evaluation
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for many years. Thanks to that, they could improve year by year their methods. The two

best systems (ATT and Tsinghua) based their approaches in �nite state machines and the

results are improved by SVM. Tsinghua also has several post-processing �lters, which let the

system eliminate false positives. KDDI system is a SVM-based detector, for cut detection they

use 6 SVMs for di�erent type of features and then combine them at the end. This method

is a type of bagging technique2 Breiman [1996], which aloud to improve machine learning

methods. Other machine learning methods that have similar performance to our method are

ITT.Bombay and Marburg systems. Even though ITT.Bombay (SVM-based method) has

post-processing operations, their results are similar to ours with no pre-processing and post-

processing operations. And the other machine learning approaches, CAS/JDL, FXPAL and

HelsinkIUT show worst performance than our system.

We can conclude that the best methods for shot boundary detection in TRECVID Evalu-

ation are the machine learning approaches. They can deal with many features, eliminate the

threshold setting and can also use an ensemble of classi�ers in order to improve its accuracy.

4.6 Conclusion

In this Chapter, we addressed the problem of temporal video segmentation. Classical methods

like static thresholding approaches have the drawback of manual �ne tuning of detection

parameters, i.e., select an appropriate threshold for di�erent kind of videos. These methods

only performs well if video content exhibits similar characteristics over time. Methods with

adaptive thresholds were proposed in order to overcome the problem of threshold setting,

but these approaches add new problems like de�ning the size of sliding windows where the

adaptive threshold is evaluated. Thus, in order to overcome this problem we consider AT

detection from a supervised classi�cation perspective.

Previous detecting cut classi�cation approaches consider few visual features because of

computational limitations. As a consequence of this lack of visual information, these methods

need pre-processing and post-processing steps, in order to simplify the detection in case of

illumination changes, fast moving objects or camera motion. We evaluate di�erent visual fea-

tures and dissimilarity measures with the objective to build an automatic and free-parameter

AT detector.

We focus on improving existing algorithms for AT detection. We evaluate the char-

acteristics of di�erent visual features. Since our objective is to avoid pre-processing and

post-processing steps, we consider features that let our system deal with abrupt illumination

changes and motion compensation. Features like phase correlation and color histograms in

the opponent color space are more robust to abrupt illumination changes. As color histograms

does not consider spatial information are more robust to camera/object motion. Therefore,

we consider di�erent features with the objective to use the capabilities of the features and

also to overcome the weakness of them and our system let us merge the features.

2Ensemble of classi�ers has better accuracy than the single classi�er that composes the ensemble
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We improve the accuracy of phase correlation method and propose to use entropy as the

goodness-of-�t measure in block-based correlation coe�cients. The advantage of our method

is that it considers the global information of the block instead of a single element of the block

as it was proposed by other author. We also evaluate di�erent dissimilarity measures: L1
norm, cosine dissimilarity, histogram intersection and χ2 test. In our approach the cosine

dissimilarity and histogram intersection show the best performance. Kernel functions were

also evaluated by our kernel-based system. We consider 5 di�erent kernel functions: linear,

polynomial, Gaussian-L2, Gaussian-χ2 and triangular kernels. The Gaussian-χ was the kernel

that showed the best performance followed by triangle kernel. Both kernel functions show a

equilibrate relation recall/precision, getting high values both measures.

We used the TRECVID-2002 and TRECVID-2006 data sets. The former was used to

compare, evaluate and de�ne the di�erent feature sets, dissimilarity measures and kernel

functions. The latter was used to compare our approach with other approaches, i.e., we

participated in the TRECVID Evaluation of 2006. Even though the performance of our AT

detector was a�ected by some type of GTs, we can claim that we are among the best teams

in shot boundary task.



Chapter 5

Gradual Transition Detection

Gradual transition detection could not be based on the same assumption of ATs (high simi-

larity between frames corresponding to the same shot and low similarity between to frames

corresponding to two successive shots), since similarity is also high in GTs. Unlike ATs, the

inter-frame di�erence during a GT is small. The main problem of detecting GTs is the ability

to distinguish between GTs and changes occurred by motion of large objects or to camera

operations. GTs are often used at scene boundaries to emphasize the change in content of the

video sequence. The purpose of this chapter is to present our approach for GTs, speci�cally

for fade out-in and dissolve detection.

5.1 Introduction

There has been a small amount of work on detecting GTs, because it is a much harder problem.

Usually, GTs manifest themselves as gradual increase in the frame di�erences over a relatively

long sequence of frames. Di�erent methods have been created to detect the prolonged increase

in frame di�erence during a GT. However, false detections due to camera operations or object

motions need to be prevent because they are also characterized by similar increase in the

frame di�erences. All of these approaches have relied directly on intensity data.

The number of possible GTs is quite large. Well-known video editing programs such as

Adobe Premiere1 or Ulead MediaStudio2 provide more than 100 di�erent and parameterized

types of edits. In practice, however, 99% of all edits fall into one of the following three

categories: cuts, fades, or dissolves Lienhart [1999]. Therefore, in the following, we concentrate

on fades and dissolves in the case of GT detection.

In Figure 5.1, we present an overview of our method for GT detection. We adopt a

hierarchical approach, where in a �rst stage we detect the boundaries of the ATs. We also

need to detect the boundaries of fade transitions. This �rst stage is important because we

search for dissolves in the video once the sequence is segmented into cut-free and fade-free

segments.

1Available: http://www.adobe.com/products/premiere/
2Available: http://www.ulead.com/msp/runme.htm

82
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Figure 5.1: General framework for GT detection.

Before we present an overview of our approaches for dissolve and fade out-in detection, let

remember the de�nitions of dissolves and fades (for simpli�cation we omit frame coordinates).

The dissolve is characterized by a progressive change of a shot P into a shot Q with non-null

duration,

f(t) = α(t)× P (t) + (1− α(t))×Q(t) t1 ≤ t ≤ t2 (5.1)

where α is a decreasing function during the gradual scene change with α(t1) = 1 and α(t2) = 0,
t represents temporal dimensions and t2 − t1 is the duration of the transition.

A fade-out is characterized by a progressive darkening of a shot P until the last frame

becomes completely black,

f(t) = α(t)× P (t) + (1− α(t))×G t1 ≤ t ≤ t2 (5.2)

where G is a monochromatic frame and α has the same characteristics that in dissolve tran-

sition.

A fade-in is characterized by a progressive appearing of shot Q. The �rst frame of the
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fade-in is a monochromatic frame G,

f(t) = α(t)×G+ (1− α(t))×Q(t) t1 ≤ t ≤ t2 (5.3)

We can observe that fade-out (Eq. 5.2) and fade-in (Eq. 5.3) are special cases of dissolve

transition (Eq. 5.1). We base our GT detector in the fact that fade-in and fade-out transitions

are special cases of dissolve transitions.The approach we use is based on the detection by

modeling Brunelli et al. [1999], that consists in formulating mathematical models of edited

transitions and use these models to design the feature vector and identifying them within the

video. These models use the luminance variance for characterizing the dissolve and the fade

out-in transitions.

Our dissolve detector consists of the following steps:

1. Features for dissolve modeling : We present the luminance variance and the gradient

magnitude of the frame, both features show a similar behavior, i.e., the transitions can

be approximate by a parabola, see Figure 5.2. We present these features in Section

5.2.1;

2. Candidate dissolve regions detection: In this stage, we detect all the intervals where

the previous features describe a downward parabola. This include true dissolves and

object/camera motion that produce the same e�ect of dissolves. We present this stage

in Section 5.2.2;

3. Veri�cation of candidate regions: We �lter most of the false dissolves using the dissolve

modeling error that we present in Section 5.2.3;

4. Dissolve features: In this stage, we extract di�erent features from the candidate regions

that lately will be used to train a classi�er. We present di�erent methods for dissolve

detection in Section 5.2.4 and we also improve a well-known method.

5. Machine Learning : In this last stage, we train a SVM classi�er with features extracted

in the previous stage. We present our machine learning approach in Section 5.2.5.

For the fade out-in detection we exploit the fact that fades are special cases of dissolve

transition and propose a method based on the improved method that we used for dissolve

detection. In Section 5.3, we present our method for fade out-in detection. We use a threshold-

based approach for this method since we only need to set an unique parameter.

As we did with AT detection we test our GT detector on TRECVID data sets of 2002 and

2006. The �rst data set (2002) was used to test the di�erent kernel functions of our classi�er.

The second data set (2006) was used to compare the performance of our method with other

methods. These results are presented in Section 5.4. Finally, we discuss our conclusion in

Section 5.5.



5. Gradual Transition Detection 85

5.2 Dissolve Detection

In Zhang et al. [1993], they use a twin threshold mechanism based on histogram di�erence

metric. Zarih et al. [1996] have used a measure based on the number of edge changes for

detecting editing e�ects, also for cut detection. This method requires global motion com-

pensation before computing dissimilarity. Low precision rate and time-consuming are the

drawbacks of this technique. Another feature that is commonly used for dissolve detection

is intensity (luminance) variance. During a dissolve transition, the intensity curve forms

a downwards-parabolic shape, see Figure 5.2. Alattar [1993] proposes a variance-based ap-

proach, many other researchers have used this feature to build their dissolve detectors Hanjalic

[2002]; Truong et al. [2000a]. Alattar [1993] suggests to take the second derivative of intensity

variance, and then check for two large negative spikes. Again object/camera motion and noise

make di�cult the dissolve detection (spikes are not too pronounced due to motion and noise).

Truong et al. [2000a] propose an improved version with more constraints. Won et al. [2003]

suggest a method based on the analysis of a dissolve modeling error that is the di�erence

between an ideally modeled dissolve curve without any correlation and an actual variance

curve with a correlation. Other researches based on correlation are Campisi et al. [2003]; Han

and Kweon [2003]. Nam and Tew�k [2005] use B-spline polynomial curve �tting technique to

detect dissolves. The main drawback of these approaches lies in detecting di�erent kind of

transitions with a unique threshold. We want to get rid of the threshold setting as much as

possible.

First, we present the dissolve model in more details because we are going to use it in the

next sections. The dissolve is characterized by a progressive change of a shot P into a shot Q

with non-null duration. Each transition frame can be de�ned by

f(x, y, t) = α(t)× P (x, y, t) + β(t)×Q(x, y, t) t1 ≤ t ≤ t2 (5.4)

where α is a decreasing function during the gradual scene change with α(t1) = 1 and α(t2) = 0;
and β(t) is a increasing function with β(t1) = 0 and β(t2) = 1; x, y and t are continuous

variables that represent the horizontal, vertical and temporal dimensions, respectively. In the

following discussion, we made two assumptions:

α(t) + β(t) = 1 (5.5)

P (x, y, t) = P (x, y) and Q(x, y, t) = Q(x, y). (5.6)

The second assumption Eq.(5.6) is that, during those transitions, no violent object and

camera motion happen. In fact, most GTs satisfy this assumption.

5.2.1 Features for Dissolve Modeling

We use luminance variance and the e�ective average gradient for modeling a dissolve transi-

tion. In both cases, we search for a pronounced downward parabola. In the following sections
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we demonstrate that both features performs a parabola e�ect when a dissolve transition occur.

Luminance Variance Sequence

Considering Eqs. (5.4)(5.5) and (5.6), the mean of image sequence during dissolve can be

expressed as:

E(f(t)) = α(t)E(P ) + β(t)E(Q) (5.7)

and (5.6) the variance of f(x, y, t) within the dissolve region can be expressed as the following

equation:

σ2
f (t) = E(f − f̄)2

= E[α(t)P (x, y) + β(t)Q(x, y)− α(t)P (x, y)− β(t)Q(x, y)]2 (5.8)

= α2(t)σ2
P + β2(t)σ2

Q + 2α(t)β(t)E[(P (x, y)− P (x, y))(Q(x, y)−Q(x, y))]

where α(t) + β(t) = 1.
If P (x, y) and Q(x, y) are assumed to be statically independent with variances σ2

P and σ2
Q,

respectively, then the covariance between P (x, y) and Q(x, y) is zero. Therefore Eq. (5.8) is
approximated as following:

σ2
f (t) ≈ α2(t)σ2

P + β2(t)σ2
Q

= [σ2
P + σ2

Q]α2(t)− 2σ2
Qα(t) + σ2

Q (5.9)

Eq. (5.9) shows that the variance σ2
f (t) for dissolve can be approximated by a parabola,

see Figure 5.2(a). Considering the middle of the parabola (α(t) = 0.5) in Eq. (5.9), the

variance of an ideal parabola model σ̃2
center is de�ned as:

σ̃2
center =

σ2
p + σ2

q

4
. (5.10)

In this subsection, we describe the �rst feature used for �nding candidate regions. The

candidate regions are extracted using the �rst and second derivatives of the variance curve.

E�ective Average Gradient (EAG)

The local edge magnitude can be computed by

G2(t) = (G2
x(t) +G2

y(t)) (5.11)

where Gx is the gradient on horizontal direction and Gy is the gradient on vertical direction.

Using the video edit model Eq. (5.4)

Gx(t) = α(t)Gx(p(x, y)) + β(t)Gx(q(x, y))
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Gy(t) = α(t)Gy(p(x, y)) + β(t)Gy(q(x, y)) (5.12)

Let TG2(t) =
∑

x,y G
2(t), then

TG2(t) =
∑
x,y

(
(α(t)Gx(p(x, y)) + β(t)Gx(q(x, y)))2

+(α(t)Gy(p(x, y)) + β(t)Gy(q(x, y)))2
)

β(t) = 1− α(t) (5.13)

Considering
∑

xGx(p)Gx(q) ≈ 0,
∑

y Gy(p)Gy(q) ≈ 0

TG2(t) ≈ (TG2(p) + TG2(q))α2(t)− 2TG2(q)α(t) + TG2(q) (5.14)

Thus, as for intensity variance, the gradient magnitude of image sequence during dissolve

also shows parabolic shape.

It is notable that e�ective average gradient (EAG) can be used for the same purpose.

EAG is de�ned by the following equation:

EAG =
TG

TP
(5.15)

where TG =
∑

x,y G(x, y) is the total magnitude of the gradient image, and TP =
∑

x,y F (x, y)
is the total number of pixels with non-zero gradient values, as F (x, y) is de�ned by

F (x, y) =

{
1 if |G(x, y)| > 0
0 if |G(x, y)| = 0

(5.16)

As the EAG also shows a parabolic shape in presence of dissolve (see Figure 5.2)(b), it is

possible to extend Eq. (5.10) and to consider again the middle of the parabola, (α(t) = 0.5)
in order to de�ne the variance of an ideal parabola model ẼAG2

center is de�ned as:

ẼAG2
center =

EAG2(p) + EAG2(q)
4

. (5.17)

Clearly, when variance or gradient magnitude of an image situated at the beginning or at

the end of the transition is low, the valley of parabola becomes less distinct, i.e., the parabola

becomes less pronounced. We present an example in Figure 5.3 where the luminance variance

curve and the gradient magnitude curve of the same interval of a video sequence is presented.

The parabolic valleys in Figure 5.2.1 are less pronounced and di�cult to identify while in

Figure 5.2.1 we present the EAG in the same interval and both parabolic are easily distinct.

This phenomena also occurs with EAG, some dissolves are not easily detected by EAG but

they could be found by the variance. Thus, based on this criteria we adopted both features

as a possible dissolve indicator.

In this subsection, we describe the second feature used for �nding candidate regions. The

candidate regions are extracted using the �rst and second derivatives of the e�ective average
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[Luminance variance curve.]

[EAG curve.]

Figure 5.2: Downward parabolic shape described by a dissolve.

gradient curve. All processes are executed over luminance and edges, thus, when we talk

about variance, mean or standard deviation we are talking about luminance of the frame.

5.2.2 Dissolve Regions Detection

The candidate region is identi�ed using the characteristics of �rst and second derivative of

the luminance variance curve. The same process followed in luminance variance curve will be

applied to EAG curve. Figure 5.4 shows the procedure used for detecting a candidate region

using the luminance variance.
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[Variance curve.]

[EAG curve.]

Figure 5.3: Downward parabolas described by two dissolves.

In Figures 5.2.2 and 5.2.2, we present a sequence of luminance variance where we can �nd

a dissolve (the pronounced parabola) and the zoomed version of this dissolve, respectively.

The candidate region extraction begins by identifying the search region in the �rst derivative

of the variance/EAG curve, see Figure 5.4(c). To determinate the search region in the �rst

derivative of the variance/EAG curve, the zero crossing point from negative to positive is �rst

identi�ed and used as the center of the search region. Then, the starting point of the search

region is determined as the �rst position to the left of the zero crossing point where the value

of the �rst derivative is zero. The end point is determined as the �rst position to the right of
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the zero crossing point where the �rst derivative is zero. The area between the �rst point and

the zero crossing point is referred as the left size of the search region, and the region between

the zero crossing point and the end point is called as right size of the region (see Figure 5.4(c)

which shows the search region).

Then, a candidate region is extracted from the search region using the second derivative.

We search in the left side of the search region for the minimum local value position of the

second derivative. This position is set as the starting point of the candidate region. We do

the same process in the right size of the search region and look for the minimum local value

position of the second derivative, this position is set as the ending point of the candidate

region. Figure 5.4(d) shows the candidate region.

Candidate regions identi�cation are based on the analysis of characteristics of �rst and

second derivative of variance/EAG curve, i.e., searching a downward parabola. Other edition

e�ects also produce the same behavior. This means that the number of interval detected

are big, we use the dissolve modeling error to eliminate most of these e�ects, specially the

object/camera motion.

5.2.3 Veri�cation of Candidate Regions

Early researches in dissolve detection based their methods on the characteristics of an ideal

model without any correlation between neighbor scenes, i.e., they are based on the assump-

tion that neighboring scenes are independent. However, in most of real cases exists a certain

correlation between di�erent scenes that a�ects the accuracy of the dissolve detection meth-

ods. Consequently, dissolve can be missed in a video sequence with high correlation or low

luminance variance between adjacent scenes, moreover scene including object/camera motion

can be falsely detected as a dissolve. Won et al. [2003] demonstrate the e�ect of correlation

between neighbor scenes. This correlation must be taken into account for the precise detection

of a dissolve.

The dissolve modeling error Won et al. [2003] is the di�erence between an ideal dissolve

that starts at t1 and ends at t2, and the actual variance curve. Let σ2
real(t) be the actual

variance curve including a correlation and σ2
ideal(t) be the ideal dissolve model curve without

any correlation in the region [t1, t2]. The actual variance curve can be expressed by Eq. (5.8)

and the ideal dissolve model by Eq. (5.9). As consequent, the dissolve modeling error can be

given by

f(t) = 2α(t)β(t)E[(P (x, y)− P (x, y))(Q(x, y)−Q(x, y)) (5.18)

= 2α(t)β(t)σPQ (5.19)

where σPQ is the covariance between scene P and scene Q. The covariance can be normalized

by the standard deviations at t1 and t2:

ρPQ =
σPQ
σPσQ

. (5.20)
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[Variance curve.]

[Zoom of variance curve.]

[First derivative of variance curve.]

[Second derivative of variance curve.]

Figure 5.4: Processes for detecting a possible dissolve.
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where ρPQ is the covariance normalized by σPσQ, i.e., the correlation at t1 and t2. If Eq.

(5.18) is substituted by Eq. (5.20), the dissolve modeling can be expressed as Won et al.

[2003]:

f(t) = 2α(t)β(t)σPσQρPQ. (5.21)

At the center of a dissolve, α(t) = 0.5, the dissolve modeling error is proportional to the

correlation. The maximum dissolve modeling error Dmax can be de�ned as Won et al. [2003]:

Dmax =
σPσQρPQ

2
. (5.22)

If a correlation c is de�ned in the region [t1, t2], the maximum dissolve modeling error

Dmax_c becomes

Dmax_c =
σPσQc

2
. (5.23)

A dissolve is detected if the maximum dissolve modeling error Dmax is less than Dmax_c, this

region can be identify as a dissolve with a correlation smaller than c. Hence, the maximum

dissolve error Dmax_c with correlation c becomes an adaptive threshold determined by the

characteristics of each region, where c is the target correlation.

Figure 5.5 shows a �ow chart for verifying the dissolve region. For each candidate region,

the maximum dissolve modeling error Dmax_c (c.f. Eq. 5.23)between a dissolve model with

a given target correlation c and an ideal dissolve model with no correlation is estimated with

variances at the start and end points of each candidate region and the given target correlation

c. Won et al. [2003] propose a value of c between 0.15 and 0.45. Then Dmax becomes the

adaptive threshold to verify each candidate region as a dissolve.

The maximum dissolve modeling error Dmax in each candidate is de�ned by the di�erence

between the variance σ2
center at the center of each candidate region and the variance σ̃2

center

at the center of an ideal dissolve model estimated by Eq. 5.10. If the maximum dissolve

modeling error Dmax in the current region is less than the target modeling error Dmax_c, the

region is determined to be a dissolve region.

5.2.4 Dissolve Features

After the �rst �ltering of possible dissolves, there still persist some edition e�ects that cannot

be detected by the dissolve modeling error. Most of these are produced by fast motion,

continues changes of the frame's content like the motion of water, smoke, �re, etc. Sometimes

there exist a dissolve only on a portion of the frame and in that case the region is considered

as a false dissolve. Therefore, due to many factors that in�uence the quality of the detection,

it is necessary a second �ltering using other features extracted from the interval. Next, we

present the features used for a �nal dissolve �ltering.

5.2.4.1 Double Chromatic Di�erence

Another con�rmation test used to distinguish between true dissolves and false alarms caused

by object and camera motion is the double chromatic di�erence (DCD) test proposed by Yu
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Figure 5.5: Flow chart for verifying dissolve region Won et al. [2003].

et al. [1997]. The DCD con�rmation test de�nes a synthetic dissolve per potential-dissolve

segment, beginning and ending at the �rst and last frame of the segment, respectively. From

these starting and ending frames, the center frame of the synthetic dissolve is formed and

compared to the real dissolve shape. If the shape of the comparison error over time is bowl

shaped, the potential-dissolve segment is accepted, see Figure 5.7(a).

We re�ne the dissolve detection obtained with dissolve modeling error using a modi�cation

of the DCD test. The feature can discriminate dissolve from zoom, pan and wipe. The DCD

of frame ft of a moving image sequence is thus de�ned as the accumulation of pixel-wised

comparison between this average and the intensity of frame f(x, y, t), where f(x, y, t) is a frame

in the possible segment of dissolve. This follows the results using Eq. (5.4) and assumptions

(5.5) and (5.6).

DCD(t) =
∑
x,y

∣∣∣∣f(x, y, t1) + f(x, y, t2)
2

− f(x, y, t)
∣∣∣∣ (5.24)

=
∑
x,y

∣∣∣∣α(t1) + α(t2)
2

∣∣∣∣ |P (x, y)−Q(x, y)| (5.25)

=
∣∣∣∣α(t1) + α(t2)

2
− α(t)

∣∣∣∣∑
x,y

|P (x, y)−Q(x, y)|

where t1 ≤ t ≤ t2, t1 and t2 de�ne the starting point and ending frames of a dissolve period.

Because α(t) is a decreasing function, DCD(t) is approximately a parabola. Under the

assumption of α(t) + β(t) = 1, there always exists a frame tm, t1 < tm < t2, where

f(x, y, tm) =
f(x, y, t1) + f(x, y, t2)

2
(5.26)
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i.e., DCD(tm) = 0.
From Eq. (5.25), it is possible to see that for any t1, t2 satisfying 0 ≤ t0 < tn ≤ T , DCD(t)

will always show approximate parabolic shape. That is, the positions of starting point and

ending point of dissolve are not essential in DCD calculation. Actually, it is di�cult to �nd

out starting point and ending point of dissolve accurately.

Figure 5.6: Ideal DCD of an ideal dissolve.

Figure 5.6 shows the plot of an ideal DCD of an ideal dissolve transition. Here, we assume

an ideal dissolve transition is a dissolve with neither camera motion nor object motion present

during any part of the dissolve transition.

We propose to use a one dimensional descriptor that preserves illumination and spatial

information instead of the frame content (2 dimensions) in Eq. (5.24). A descriptor that has

these characteristics is the projection histogram Trier et al. [1996]. This descriptor also has

a successful performance in abrupt transition detection Cámara-Chávez et al. [2006a]. Based

in the characteristics of this descriptor and good performance in shot boundary detection, we

decide to use it instead of the frame content. Thus, we reduce the computational complexity,

from a 2D descriptor to a 1D descriptor, preserving the performance of the DCD. For our

modi�ed DCD, the formulation Eq. (5.24) remains the same if f(x, y, t) represents projection
histogram. Figure 5.7 shows a comparison between the shape generated by DCD and the

modi�ed DCD.

The modi�ed double chromatic di�erence (SD) of frame ft of a moving image sequence is

thus de�ned by the comparison between average projection histograms:

SD(t) =
∑
x

∣∣∣∣Mv(x, t0) +Mv(x, tN )
2

−Mv(x, t)
∣∣∣∣ (5.27)

where t0 ≤ t ≤ tN , t0 and tN de�ne the starting point and ending frames of a dissolve period.

Ideally, there exists a projection histogram Mv(x, t), where

Mv(x, t) =
Mv(x, t0) +Mv(x, tN )

2
(5.28)
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[DCD curve.]

[Modi�ed DCD curve.]

Figure 5.7: Comparison between shapes generated by DCD and modi�ed DCD.

5.2.4.2 Correlation coe�cients

The �rst-order frame di�erences FD(t) = ft − ft+1 remain constant during the transition

of a dissolve. Consider a 2D scatter space spanned by two subsequent frame di�erences,

X = FD(t), and Y = FD(t+ 1). The points (X,Y ) tend to scatter linearly during a dissolve

transitions in spite of noise, as shown in Figure 5.2.4.2. Observe the non-linearity in Figure

5.2.4.2 and 5.2.4.2 corresponding to the frames with cut and large motion. Therefore, the

correlation coe�cient as a measure of linearity between X and Y can be used to distinguish

dissolve frames from others.

Han and Kweon [2003] propose a method based on the correlation of the di�erence se-

quence. First, the image is divided into blocks of 8× 8 Bt(j), where 1 ≤ j ≤ J and J is the

number of blocks in frame ft. Each block is represented by its own average intensity. Then,

the blocks of interest (BOI) are selected or inliers among the blocks for frame ft, according

to the following criterion:

BOIt(j) = Bt(j) if vj < Vt/ log Vt, (5.29)

where vj is the variance of block j and Vt the global variance of frame ft. The role of

denominator log Vt is to normalize the order of Vt. The objective of using BOI instead of B is

the reduction of motion artifacts (rejecting outliers) in dissolves. Finally, the BOI di�erences

BDt(j) between frame ft and ft+1 are used to compute the correlation coe�cients ρt given
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[Dissolve.]

[Cut.]

[Large motion.]

Figure 5.8: Scatter plot of X = FD(t) and Y = FD(t+ 1).

by

ρt =
σBDt,BDt+1

σBDtσBDt+1

, (5.30)
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where σBDt is the standard deviation of BDt and σBDt,BDt+1 is the covariance of BDt and

BDt+1.

5.2.4.3 Other Visual Features

Here we use features presented in the previous section, extract information from that features,

speci�cally for DCD and modi�ed DCD, and some features computed for AT detection. In

Figures 5.2.4.3 and 5.2.4.3, we present the luminance variance sequence where a dissolve occurs

in the interval [735, 755], and the zoom version of the dissolve. In both �gures we can see the

position where the dissolve begins (t1) and the position where it ends (t2). The computation

of some of the features we used here are calculated in these positions. Another important

position is the center of the dissolve region, when we said center of region, we are talking

about the position, along the luminance variance curve, with the lowest value in the interval

(candidate region). That is, in the interval [t1, t2] the position with the minimum variance

value is searched. This position is de�ned by C. More formally, we de�ne C as follows:

C = argmintV ar(t), t ∈ [t1, t2] (5.31)

where V ar is the luminance variance curve.

1. Ddata: di�erent information extracted from the dissolve region, the features used are:

a) 2 correlation values : the correlation between frames in t1 and C, the other between

frames in C and t2;

b) 2 color histogram di�erences : color histogram di�erence, here we use the L1
norm, between histograms of frames at t1 and C, the other histogram di�erence is

computed between histograms of frames at C and t2;

c) correlation by blocks of interest in the sequence: this feature is computed only

on the target intervals and use the dissolve descriptor Han and Kweon [2003]

(cf. Section 5.2.4.2). The median of the correlation coe�cients is calculated, i.e.,

median(ρt), t ∈ [t1, t2].

2. DCD features: we extract information from DCD curves

a) the quadratic coe�cient of the parabola approximating the DCD curve at best

Lienhart [2001b].

b) The �depth� of the DCD curve (downward parabola). In Figure 5.2.4.3, we present

the DCD feature generated from frames within the interval [t1, t2]. From the

DCD curve, we �nd the �depth� of the parabola as the height di�erence between

DCD(m) and DCD(0) (or DCD(N)) Hanjalic [2002].

ψ(i) =

{
1− min(DCDi(m),DCDi(N))

max(DCDi(m),DCDi(N)) , if R ≤ 0

1− min(DCDi(m),DCDi(0))
max(DCDi(m),DCDi(0)) , if R > 0

(5.32)
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where R = |DCDi(m)−DCDi(N)|−|DCDi(m)−DCDi(0)| and m is the position

with the lowest value in the DCD, N is the size of the DCD cruve and i is the

interval (region) number.

3. SD features: the modi�ed DCD, here we extract the same features presented in the

DCD features (previous item),

4. VarProj : di�erence of the projection histograms extracted in the �rst step (cut de-

tection), i.e., the dissimilarity of consecutive projection histograms during the dissolve

interval (from t1 to t2). This di�erence is normalized in size with the objective that all

the projection intervals have the same size.

5. Motion: motion vectors are also extracted in the �rst step, when the phase correlation

method is computed, for each block we compute the magnitude of the motion vector.

We concatenate them in one feature vector given as input to our kernel-based SVM clas-

si�er in order to determine �dissolves� and �non-dissolves� video segment.

5.2.5 Machine learning approach

The classi�cation problem can be restricted to a two-class problem Cord et al. [2007]. The

goal is, then, to separate the two classes with a function induced from available examples. We

hope to produce, hence, a classi�er that will properly work on unknown examples, i.e. which

generalizes e�ciently the classes de�ned from the examples. Therefore we consider dissolve as

a categorization task and classifying every possible dissolve interval into �dissolve� and �non

dissolve�.

Figure 5.10 shows the steps of our approach. The �rst step is the detection of possible

dissolves, this step is based on three processes. The �rst process consists in the computation

of luminance variance and the EAG curve. Then in the second process, for each type of curves

we �nd the candidate regions using the �rst and second derivatives of the luminance variance

and EAG curves, respectively. The third process is the �rst �ltering of possible dissolves in our

approach which consists in eliminating the false dissolves generated by object/camera motion.

For this purpose we use the dissolve modeling error. When we presented the luminance

variance and EAG curves (cf. Section 5.2.1), we said that some dissolves that not appear

clearly de�ne in luminance variance curve may appear clearly in EAG curve and vice versa.

With the previous three process we have a list of possible dissolve regions computed from

luminance variance curve and we also have other list computed from EAG curve. We merge

both lists in order to have a single list of regions from we are going to extract the features

that we will use for a �nal classi�cation. The last stage of our approach consists in extracting

the features from these interval. We compute the DCD and modi�ed DCD features (Section

5.2.4.1), the correlation coe�cients (Section 5.2.4.2) and the other visual features (Section

5.2.4.3). The concatenation of all these features correspond the input to our SVM classi�er.

Finally, these intervals are been classi�ed into �dissolves� and �non dissolves�.
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[Luminance variance sequence.]

[Zoom version of possible dissolve.]

[DCD curve.]

Figure 5.9: Dissolve features.

We use the same kernels functions presented in Section 4.4: linear, polynomial, Gaussian-

L2, Gaussian-χ2 and triangular. For further details on SVM and kernel functions see Appendix

A.
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Figure 5.10: Proposed model for dissolve detection.

5.3 Fade detection

A fade process is a special case of dissolve process. During a fade, a video sequence gradually

darkens and is replaced by another image which either fades in or begins abruptly. Alattar

[1993] detects fades by recording all negative spikes in the second derivative of frame luminance

variance curve. The drawback with this approach is that motion also would cause such spikes.

Lienhart [1999] proposes detecting fades by �tting a regression line on the frame standard

deviation curve. Truong et al. [2000a] observe the mean di�erence curve, examining the

constancy of its sign within a potential fade region. We present further extensions to these

techniques.

A fade-out process is characterized by a progressive darkening of a shot P until the last

frame becomes completely black. A fade-in occurs when the picture gradually appears from

a black screen. The fades can be used to separate di�erent TV program elements such as the

main show material from commercial blocks.

Fade-in and fade-out occur together as a fade group, i.e., a fade group starts with a shot

fading out to a color C which is then followed by a sequence of monochrome frames of the

same color, and it ends with a shot fading in from color C.
As a fade is a special case of a dissolve we can explore some of the features used for dissolve

detection. The salient features of our fade detection algorithm are the following:

1. The existence of monochrome frames is a very good clue for detecting all potential

fades, these are used in our algorithm. In a quick fade, the monochrome sequence may

be compound by a single frame while in a slower fade it would last up to 100 frames

Truong et al. [2000a]. Therefore, detecting monochrome frames (candidate region) is

the �rst step in our algorithm.
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2. In this second step we are going to use a descriptor that characterizes a dissolve, our

improved double chromatic di�erence. The variance curves of fade-out and fade-in frame

sequences have a half-parabolic shape independent of C. Therefore, if we compute the

modi�ed DCD feature in the region where the fade-out occurs we will have a parabola

shape, the same principle is applied for the fade-in. Figure 5.11 shows the half-parabolic

formed in the fade-in and fade-out regions. Therefore, if we compute the modi�ed

DCD feature in the region where the fade-out occurs we will have a parabola shape,

the same principle is applied for the fade-in. In Figures 5.12 and 5.13, we have the

parabolas generated using the modi�ed DCD feature in the fade-out and fade-in regions,

respectively.

3. We also constrain the variance of the starting frame of a fade-out and the ending of

a fade-in to be above a threshold to eliminate false positives caused by dark scenes

preventing them from being considered as monochrome frames.

Some of the techniques used for detecting fades are not tolerant to fast motion, which

produces the same e�ect of a fade. DCD feature is more tolerant to motion and other edition

e�ects or combinations of them. Our modi�ed double chromatic di�erence feature preserves

all the characteristics of the feature presented in Yu et al. [1997], with the advantage that we

reduce the size complexity of the feature, from 2D to 1D.

Figure 5.11: Variance curve in the fade-out and fade-in interval.

5.4 Experiments

In this section we present the experiments conducted in order to choose the better parameters

for our system and also compare our method with other methods in TRECVID evaluation.
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Figure 5.12: Modi�ed DCD generated in the fade-out region.

Figure 5.13: Modi�ed DCD generated in the fade-in region.

5.4.1 Data set

We test our system with two di�erent data sets. For the �rst experiment, the training set

consists of a single video of 20,000 frames with 20 dissolves. This video is captured from a

Brazilian TV-station and is composed by a segment of a soccer match. The training video

was labeled manually by ourselves. The test set consists of TRECVID-2002 data set. For the

second experiment, the training set consists of TRECVID-2002 data and the test set consists

of TRECVID-2006 data. The TRECVID data sets are described later in Sections 5.4.3 and

5.4.4, respectively.
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5.4.2 Features

As our objective is to avoid pre-processing and post-processing steps we combine distinctive

features. Next we are going to present the features used for our fade out-in detector and

dissolve detector.

For fade detection we choose a threshold of 200 for the variance of each frame, if the

variance is lower than that value we consider it as a monochrome frame and a possible fade.

After that is necessary to see if the interval has two downward parabolas, one for fade-in and

other for fade-out.

For dissolve detection, variance and edge average gradient curves are smoothed by B-

spline smooth method in order to reduce the noise in�uence. After computing all possible

dissolve intervals from �rst and second derivative of both curves, we make the �rst �lter

process eliminating intervals through veri�cation candidate region method. Won et al. [2003]

propose a value of c between 0.15 and 0.45 (cf. Section 5.2.3). In our case we use a value of

0.8 because our intention is that the classi�er make the decision based on the characteristics

of the candidate region.

From candidate region, we compute a set of features that describe the characteristics of

the interval (cf. Section 5.2.4.3):

DCD compute double chromatic di�erence for each interval, and

quadratic coe�cient and parabola depth is computed

SD compute modi�ed double chromatic di�erence for each interval,

and quadratic coe�cient and parabola depth is computed

V arProj vertical and horizontal projection di�erences are used

Motion magnitude of the motion vectors

The values of Ddata are computed from the candidate region, features are extracted

between the beginning of the region and the �center� of the downward parabola formed in

luminance variance curve and between the �center� and the ending of the candidate region.

Ddata identify the frame comparison positions on luminance variance

curve, i.e., the begging (t1), the �center� (C) and the ending (t2)

of the candidate region, where C = argmintV ar(t), t ∈ [t1, t2].
Features computed are color histogram di�erence, correlation

between frames and the median of correlation coe�cients com-

puted using the correlation by blocks of interest inside the in-

terval (cf. Section 5.2.4.2).

5.4.3 TRECVID 2002

The training set consists of a single video of Brazilian soccer match, which contains 20,000

frames with 20 dissolves. We use a SVM classi�er and train it with di�erent kernels: linear,

polynomial, Gaussian with χ2, Gaussian with L2 norm and triangular.
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We use the corpus of TRECVID-2002 Video Data Set. The shot boundary test collection

contains 4 hours and 51 minutes of video. The videos are mostly of documentary/educational

nature, but very varied in age, production style, and quality. The total size of data is 2.88

Gigabytes of MPEG-1 video. The collection used for evaluation of shot boundary contains

624 gradual transitions with the following breakdown:

• 511 dissolves

• 63 fades out-in

• other

We use the following features for dissolve detection: Ddata and SD. We conduct numerous

experiments that provide interesting and meaningful contrast. Table.5.1 shows the mean

recall/precision measure and the variance for each kernel function. The �ve kernels present

similar results, thus the quality of the features selected are good. Seeing the variance results,

it is also possible to conclude that the classi�cation's results of all the videos are more or less

the same.

Kernel Recall Var. Recall Precision Var. Precision F1
Linear 0.819 ± 0.032 0.886 ± 0.011 0.832
Polynomial 3 0.746 ± 0.044 0.908 ± 0.006 0.800
Gauss-L2 0.837 ± 0.026 0.901 ± 0.010 0.851
Gauss-χ2 0.850 ± 0.025 0.905 ± 0.009 0.877

Triangle 0.821 ± 0.032 0.901 ± 0.010 0.840

Table 5.1: Performance measure in mean precision and mean recall for each kernel function.

We want to emphasize with these results that our system is very robust to training data

set. Indeed, the training data set used here is Brazilian TV videos which are very di�erent in

terms of quality, format and length from TRECVID videos we used for testing our system.

In this second experiment, we use 11 videos from TRECVID 2002 corpus. We take one of

these videos for training and testing our system on the 10 others. We repeat this experiment

to explore all the possible combinations and present the results in Table.5.2. As it occurs

with ATs the best kernel function is the Gaussian-χ2, then followed by the Gaussian-L2. In
ATs the worst kernel function was the linear one, but in GT detection the polynomial kernel

is the one the performs worst (here worst does not mean bad results) compare to the other

kernels.

We can see through these results the stability of our system. Our system is among the

most e�cient ones since best methods o�er average precision and recall between 0.7 and 0.9.

5.4.4 TRECVID 2006

The test data are composed by news video in Arabic, Chinese and English. The data were

collected by Linguistic Data Consortium (LDC) during November and December of 2005,
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Linear Polynomial Gaussian-L2 Gaussian-χ2 Triangle
Video Re. Pr. Re. Pr. Re. Pr. Re. Pr. Re. Pr.
1 0.65 0.87 0.72 0.84 0.69 0.88 0.72 0.90 0.67 0.89
2 0.66 0.91 0.66 0.92 0.73 0.92 0.73 0.92 0.65 0.92
3 0.77 0.90 0.23 0.77 0.82 0.87 0.85 0.90 0.79 0.89
4 0.77 0.88 0.37 0.92 0.76 0.93 0.80 0.95 0.77 0.93

5 0.97 0.78 0.91 0.81 1.0 0.71 1.0 0.71 0.97 0.79
6 1.00 0.75 0.99 0.73 1.0 0.74 1.0 0.73 0.99 0.76
7 0.85 0.86 0.91 0.83 0.95 0.79 0.95 0.83 0.93 0.86
8 0.94 0.86 0.95 0.87 0.95 0.81 0.96 0.84 0.94 0.84
9 0.94 0.82 0.81 0.79 0.96 0.78 0.97 0.81 0.95 0.83
10 0.98 0.75 0.75 0.76 0.96 0.77 0.98 0.79 0.92 0.81
11 0.69 0.87 0.79 0.87 0.7 0.92 0.74 0.93 0.79 0.91

Table 5.2: Performance measure for each kernel function.

digitized and transcoded to MPEG-1. The test collection comprises about 7.5 hours, including

13 videos for a total size of about 4.64 Gb. It comprised 13 videos for a total size of about

4.64 Gb. The reference data was created by a student at NIST whose task was to identify all

transitions. The distribution of GTs is as follows

• 1509 dissolve (39.9%)

• 51 fades out-in(1.3%)

• 381 other (10.1%)

The training data used was the TRECVID 2002 data set, see Section 5.4.3 for more details.

We use Gaussian-χ2 kernel function for our SVM classi�er, the selection of this kernel is based

on the excellent performance on ATs detection.

In Table 5.3, we present the visual feature vectors for dissolve detection used for the 10

runs. The feature vector Ddata is computed from DCD features, except for Etis7, Etis8 and

Etis9 runs, that is computed from SD features. The objective is to compare the performance

of both features (DCD and SD), see if the modi�cation we are proposing works well, i.e.,

reduce the complexity and preserve the accuracy. Each run is tested with the hold data set

(13 videos).

In Table 5.4 we show the performance of our system for gradual transition detection

(dissolves and fades), measured in recall and precision. The recall and precision are computed

from the GT boundaries, i.e., we fusion the boundaries detected by the dissolve detector and

the fade out-in detector. It is important to notice that our framework detects only dissolves

and fades, but in the data set there is another class named �other�, which includes other

types of transitions. It is possible to �nd wipe, fade in, fade out (notice that fade in and

fade out are not merged as a compound GT), black frames that separate two consecutive

shots and other kind of transitions. The experiment run that show the best performance

in terms of F1 measure is the Run4, that also has the best precision and the second best



5. Gradual Transition Detection 106

Run Features
1 Ddata, VarProj
2 Ddata, Motion
3 Ddata, DCD
4 Ddata, DCD, SD
5 Ddata, DCD, VarProj
6 Ddata, DCD, Motion
7 Ddata, SD
8 Ddata, SD, VarProj
9 Ddata, SD, Motion
10 Ddata, DCD, SD, VarProj, Motion

Table 5.3: 10 best combinations of visual features for gradual transition detection.

recall. This experiment run combines the histograms di�erences, frames correlation, median

of correlation coe�cients, DCD and modi�ed DCD features. If we compare Run3 and Run7
the performance in terms of F1 measure is very similar: 0.716 and 0.711, respectively. The

former use the DCD feature while the latter the modi�ed DCD. We see the same behavior

with Run5 and Run8 with F1 equal to 0.678 and 0.672, respectively. In the former we

include the DCD feature and in the latter the modi�ed DCD feature. In both comparisons

the performance is almost the same. In next �gures we are going to present the performance

using recall/precision measure for each video for these four runs.

Run Recall σrecall Precision σprec. F1
1 0.585 0.031 0.771 0.060 0.665
2 0.602 0.029 0.798 0.061 0.686
3 0.632 0.037 0.825 0.044 0.716
4 0.621 0.033 0.853 0.042 0.719

5 0.607 0.032 0.769 0.049 0.678
6 0.581 0.029 0.807 0.051 0.676
7 0.612 0.032 0.849 0.040 0.711
8 0.604 0.031 0.758 0.058 0.672
9 0.586 0.030 0.837 0.048 0.689
10 0.583 0.031 0.757 0.059 0.659

Mean TRECVID 0.533 - 0.626 - 0.576
Max TRECVID 0.775 - 0.858 - 0.814

Table 5.4: Detailed results for all runs of gradual transition.

In Figure 5.14, we compare the accuracy of the double chromatic di�erence method (Run3,

Run5 ) and our modi�ed double chromatic di�erence method (Run7, Run8 ), respectively. The

former is represented by square marker and the latter by round marker. We can see that in

both �gures the results are very similar, i.e., the results produced by the double chromatic

di�erence features are similar than results produced by modi�ed double chromatic di�erence.

We reduce the computational complexity, from a 2D descriptor to a 1D descriptor, preserving

the performance of the DCD method. We can see in both �gures that there are two videos

where our system shows a bad performance. This is due to extremely short dissolves, the
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transitions take only 2 frames. In one of the videos has only one dissolve bigger than 2 frames

and our system detected it, the rest of dissolves take 2 frames of duration. The second video is

from a TV journal, it has the same characteristics of the previous video, i.e., many (almost all)

extremely short dissolves and edition e�ects that made our system misclassify these edition

e�ects as dissolves. These e�ects consist in a portion of the frame disappears slowly, exactly

as a dissolve does, and produce the same downward parabola e�ect in luminance variance and

DCD/SD curves. We present an example in Figure 5.15. These e�ects are very di�cult to

identify, a probably solution could be separate the frame in blocks and analyze if the e�ects

occur in all or almost all the blocks.

[Run3 and Run7]

[Run5 and Run8]

Figure 5.14: Comparison between double chromatic di�erence method square marker)and our
modi�ed double chromatic di�erence method (round marker)
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Figure 5.15: An example of a false dissolve.

In Figure 5.16, we show the performance of our system. We can see that we have high

values for precision and lower values for recall. For the recall values, let �rst remember that

our system only detects dissolve and fade out-in transitions. But there also exists another

class which involves wipes, fade-in, fade-out, black frames between shots and other special

e�ects that separate two consecutive shots. These class represent more or less the 20% of

the GTs and also exists some dissolves with fast motion embedded. As the recall count the

detected transitions from all possible transitions, our system detects only a percentage of all

GTs. Another reason that a�ect the performance is that some transitions that they really exist

are not considered in the ground truth. This omission is due to errors in the labeling process.

On the other hand, we still want to compare the performance of our improved feature. In the

�gure, we represent the runs using the DCD with square marker and the runs using the SD

with round marker. In the three cases the outcome are almost the same, thus we can conclude

that our feature is as good as the original feature but with less computational complexity.

Figure 5.16: Performance measure in recall and precision for each of our runs

Another measure used for gradual transitions is the accuracy of the interval detected,

i.e., how well the interval of the gradual transition detected matches with the real transition.

Frame-precision and frame-recall are used to measure this:
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frame−recall =
#overlapping frames of �detected� transition

#frames of detected reference transition
(5.33)

frame−precision =
#overlapping frames of �detected� transition

#frames of detected submitted transition
(5.34)

Figure 5.17 shows an example of how to compute the frame-recall and frame-precision.

These measures are only computed for detected GTs. The reference transition is the interval

where a GT occurs, i.e., the true interval (in Figure 5.17 from frame 40 to frame 70), submitted

transition is the interval found by the GT detector (in Figure 5.17 from frame 50 to frame 75)

and the overlapping frames are the intersection between reference transition and submitted

transition (in Figure 5.17 from frame 50 to frame 70). Thus, the frame−recall = 20/30 and

the frame−precision = 20/25.

Figure 5.17: Elements for computing frame-recall and frame-precision of GTs.

Note that a system can be very good in detection and have poor accuracy, or it might

miss a lot of transitions but still be very accurate on the ones it �nds.

Table 5.5 shows the results of all runs measured in frame-recall and frame-precision. The

values that measure how well the detected transition �ts with the reference transition are

more or less the same, independent of the run. The values of frame-recall and frame-precision

are very close, this means that the accuracy for all runs is almost the same.

Trecvid 2006 Participants

We made a classi�cation based on the approach used for the participants of TRECVID

2006 Evaluation:

Machine learning approach
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Run F-Recall σrecall F-Precision σprec. F1

1 0.766 0.009 0.849 0.004 0.805

2 0.773 0.010 0.850 0.004 0.810

3 0.775 0.007 0.849 0.004 0.810

4 0.775 0.008 0.849 0.004 0.810

5 0.769 0.010 0.847 0.003 0.806

6 0.774 0.009 0.849 0.005 0.810

7 0.775 0.010 0.850 0.004 0.811

8 0.770 0.009 0.849 0.004 0.808

9 0.772 0.010 0.851 0.004 0.810

10 0.767 0.011 0.843 0.004 0.803

Mean Trecvid 0.674 - 0.768 - 0.718

Max Trecvid 0.889 - 0.921 - 0.905

Table 5.5: Detailed results for all runs for frame-precision and frame-recall

� AT&T : builds six independent detectors for cuts, fast dissolves (less than 4 frames),

fade-in, fade-out, dissolve, and wipes. Each detector is a �nite state machine. The

dissolve detector is computed from luminance variance and use many features for

dissolve veri�cation. For fade-in and fade-out detectors use the intensity histogram

variance. The dissimilarities are computed between consecutive frames and frame

distance of 6 frames. SVM is applied to dissolve detector.

� Chinese Academy of Sciences / JDL (CAS/JDL): presents two parts: fade out-in

detection and other type of gradual transitions. For fade detection they use two

features: image monochrome and joint entropy between two frames. For GTs, a

sliding window of 60 frames is de�ned. It uses a two pass approach, �rst selects the

suspicious transition candidates using a low threshold method and then judges the

candidates by using the SVM base method. Needs to improve distinction between

GTs and camera motion.

� FX Palo Alto Laboratory (FXPAL): uses dissimilarity features within the particular

temporal interval as the input for kNN classi�er. The features used are global and

local histograms. The same features used for AT detection. All possible pairwise

comparisons between frames are visualized as a similarity or a�nity matrix. De�ne

two matrices, one for global and the other local histograms, with the (i, j) element

equal to the similarity between frames i and j. Time, or the frame index, runs

along both axes as well as the diagonal. The input is formulated as correlation of

speci�c kernels along the main diagonal of the similarity matrix.

� Helsinki University of Technology (HelsinkiUT): the system is based on a 2D self-

organizing map (SOM). There is one classi�er for each feature calculated from

the frames, and each classi�er has a weight value. The �nal decision is made by

comparing the weighted vote result of the classi�ers to a threshold value. ATs and

GTs are detected using the same method. Computationally the most expensive

(because of SOMs).

� KDDI and R&D Laboratories (KDDI): proposes an extension of 2005 approach, a
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new additional feature (for long dissolve detection) and the combination of multi-

kernels improve the accuracy of the detector. This approach works on the uncom-

pressed domain (very fast execution time). The dissolve and fade detection use

the frame activity which is the sum of the square di�erence. This frame activ-

ity also performs a downward parabola when a dissolve occurs. In the case of a

fade-in or fade-out, activity curve shows monotonous increase/decrease. Then a

temporal �ltering is executed between the current frame and previous n frames,

this feature produce a peak in a presence of a dissolve. For con�rm the presence

of a dissolve the system use both features (two shapes), the downward parabola

and the peak. The system also has a dissolve detector based on edge histogram

descriptor speci�ed in MPEG-7 and is extracted from DC images3.

� Tsinghua University (Tsinhgua): two independent detectors for fade in-out and

GTs. Fade in-out detector based on detecting monochrome frames using mean and

the standard deviation of the intensities. Then search the fade-out boundary of

the previous shots and the fade-in boundary of the next shot. For GT detection,

is based on graph partition model. The graph is associated to a weight matrix

which indicate the similarity between two nodes, the larger the more similar. The

input is formulated as correlation of speci�c kernels along the main diagonal of

the similarity matrix. The system uses di�erent kernels in order to detect di�erent

types of transitions. The features used are global color histograms in RGB color

space (16 bins per channel) in HSV color space and, local color histograms in RGB

color space (2, 4 × 4 and 8 × 8 blocks) and HSV color space (2). Finally a SVM

classi�er is used to detect the transitions.

� University of Marburg (Marburg): the main idea of the GT detection is to view

a GT as an abrupt change at a lower temporal resolution and also proposes an

unsupervised kmeans clustering for GTs. First, frame dissimilarities are computed

based on histograms of approximated DC-frames. These dissimilarities are com-

puted from di�erent frame distances (d = 6, 10, 20, 30, 40, 50). The signal is �ltered
using a sliding window in order to detect isolate peaks. Finally, these features are

clustered using a k-means algorithm.

� Tokyo Institute of Technology (TokyoInstTech): for GT detection, a radial kernel

function is used for the SVM classi�er. The features used are the di�erence be-

tween consecutive frames, the optical �ow, the change in the Hue-Saturation color

histograms and edge.

Threshold-based approach

� Indian Institute of Technology at Bombay (IIT.Bombay): the system attempt to

detect dissolves using a simple method. Dissolves are detected analyzing the change

3Reduced images formed from the collection of scaled Discrete Cosine (DC) coe�cients in intra-coded
discrete cosine transformation compressed video retain �global� feature.
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in the brightness value of frames. Within a shot, the total brightness remains

predictable when a GT is encountered a cone-like pattern is produced.

� Arti�cial Intelligence and Information Analysis (AIIA): mutual information is used

as similarity measure. The accumulative mutual information shows a �V� pattern,

i.e., in the �rst part of the GT the mutual information decreases while in the

second part it increases. A threshold is used to identify the GT and �rst and

second derivative to con�rm the presence of GT and also to identify the boundaries.

Parameters are set empirically.

� Chinese University of Hong Kong (CityUHK): uses the same features and similar-

ity measures of AT detection. A distinguishing characteristic between cut, long

GTs, and false positives is the smoothness of their Earth Mover's Distance values

across time. Gradients from Earth Mover's Distance are calculated and analyzed

to determinate if as GT occurs.

� Communication Langagière et Interaction Personne-Système (CLIPS): dissolves

are the only GT e�ects detected by this system. The method is very simple: a

dissolve is detected if the L1 norm of the �rst image derivative is larger enough

compared to the L1 norm of the second derivative of the second image derivative,

this checks that the pixel intensities roughly follows a linear but non constant

function of the frame number. The method detects dissolves between constant or

slowly moving shots. A sliding window of 11 frames is used and a �lter is then

applied. Parameters are set manually.

� European Cooperation in the Field of Scienti�c and Technical Research (COST292):

uses a general system for ATs and GTs. This system is described in the previous

chapter.

� Dokuz Eylol University (Dokuz): uses the same features of AT detection. GTs are

detected on a second pass by computing the length of the consecutive cuts. It

uses a threshold that holds the minimum number of frames that a shot holds. The

minimum number is �xed to 10 frames.

� Institute of Informatics and Telecommunications National Center for Scienti�c

Research �Demokritos� (ITT/NCSR Demokritos): the method relies on spatial

segmentation and a similarity measure based on Earth Mover's Distance (EMD).

The GT detection is based on the �t of a frame to a spatiotemporal template. The

system uses the features described in the previous chapter.

� RMIT University (RMIT): the approach is also based on the moving query window,

but frames are note ranked (as it is done for AT detection). For each frame within

the window, a similarity is computed for the current frame. Frames on either side

of the current frame are then combined into two sets of pre-frames and post-frames.

The ratio between average similarities of each set is used to determinate a GT.
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� University of Modena (Modena): the same model used for ATs. They work on

determining the range (in frames) and nature of a GT and integrating AT and GT

detectors. A window of 60 frames is used.

There is no information available for Curtin University, Florida University (FIU), Huazhong

University of Science and Technology, Motorola and Zhejiang University systems. Carleton

University, University of São Paulo and University Rey Juan Carlos systems only detect ATs.

Figure 5.4.4 shows the performance of our system for gradual transition, measured in

recall and precision, and Figure 5.4.4 is a zoomed version. We compare our results with all

other submissions. The best two submissions are from AT&T and Tsinghua systems, both

of them are SVM-based methods. In the case of AT&T, it has six independent detectors

for cuts, fast dissolves (less than 4 frames), fade-in, fade-out, dissolve, and wipes. Thus,

they can detect more types of transitions. We can see that the precision of our system is

similar to the precision of AT&T. Tsinghua system has a similar structure than our system,

i.e. a SVM-based detector for ATs and GTs, and a detector for fade out-in transitions. The

di�erence with our system is that the features are constructed from a graph partition model

and also the system has a post-processing module that detects short transitions (less than 4

frames). Therefore, they can detect the short dissolves that we missed. This is the reason

why they have a higher recall, but if we consider the precision it is more or less the same of

us. The other three teams that have almost the same performance of us, two of them are

machine learning-based (TokioInstTech and FXPAL systems) and only one is threshold-based

(CLIPS).

Figure 5.19 shows the frame-precision and frame-recall for all the runs submitted for each

team. Again AT&T and Tsinghua systems are the best ones, not only have high values, but

also all the runs are close between them. That is, despite the execution strategy the accuracy

of their methods performs well. In the case of the three systems with similar outcome to us,

all runs of TokyoInstTech are very similar (points are very close) with good precision but low

recall. For CLIPS and FXPAL systems, we see that results are spread. This means that not

necessarily their best GT detector is very accurate on the transitions it �nds. All our runs

have more or less the same accuracy. Our results are among the best ones.

In Table 5.6 we show the combination of all transitions, i.e., abrupt transitions and gradual

transitions. In all cases, AT and GT detection and accuracy of GT, we are over the mean

results of all the teams that participate in TRECVID Evaluation 2006. Even though it is

the �rst time we participate in this Evaluation, the results obtained by our system are really

encouraging. We have got better results than teams that have participated for many years in

the evaluation.

Figure 5.20 shows all transitions compared with the results of other teams. Despite the

problems occasioned for �other� gradual transitions the overall performance of our system

is among the best teams. In TRECVID Evaluation 2O06 does not exist a ranking of the

participants. Thus, it is not possible to refer to an o�cial ranking and say in what position a

team is positioned. With the objective to know in which position our system stays, we made
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[All results.]

[Zoomed version.]

Figure 5.18: Precision/Recall measure of performance on the TRECVID 2006 for gradual
transitions Smeaton and Over [2006].

an uno�cial raking based on the F1 measure. In the case of AT detection we obtained the

sixth best performance, in GT the fourth position, in accuracy of GTs we obtained the fourth

position and in the overall performance we obtained the fourth position from a total of 26

participants. We insist in the fact that this is not an o�cial ranking. For further information

of the approaches of other teams visit http://www-nlpir.nist.gov/projects/tvpubs/tv.

pubs.org.html. You can also �nd the results in recall/precision of some of the teams.

In Figure 5.21, we show the runtime require for detecting ATs and GTs in the TRECVID

2006, i.e., the detection time of the shot boundaries for the 13 videos. Now a days the

computer are getting faster and faster. It is better to have a method that requires less human

adjusts than having something that it is computationally faster. So the computers can be

fast and fast but human work is not so easy to get. Thus, that is the reason why we sacri�ce

computer cost to avoid human intervention (interaction).

http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html
http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html
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[All results.]

[Zoomed version.]

Figure 5.19: Frame-Precision/Recall measure of performance on the TRECVID 2006 for grad-
ual transitions Smeaton and Over [2006].

5.5 Conclusion

In this chapter we present our hierarchical system gradual transition detection. Our system

is dedicated to detect dissolves and fades out-in transitions.

For dissolve detection, we use a pyramidal approach, i.e., we look for dissolves inside shots

delimited by ATs and fades out-in boundaries. This means that in a �rst stage we need

to detect ATs and fades. The hierarchical structure of our system allows us to reduce to

two modalities of identi�cation of GTs: fast motion or dissolve. Our approach consists in

detect the possible dissolves using a modeling method, then extract features from the region

of possible dissolve and �nally use a SVM classi�er to detect the dissolves. We investigate

di�erent features that characterize dissolve and improve a well-known method for dissolve

detection. We reduce the size of the feature from 2D (frame content) to 1D (projection
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Run All transitions
Recall Precision F1

Etis1 0.757 0.876 0.812
Etis2 0.764 0.868 0.813
Etis3 0.768 0.888 0.824

Etis4 0.771 0.879 0.821
Etis5 0.771 0.851 0.809
Etis6 0.761 0.861 0.808
Etis7 0.769 0.878 0.820
Etis8 0.762 0.850 0.804
Etis9 0.751 0.894 0.816
Etis10 0.743 0.842 0.789

Mean Trecvid 0.668 0.687 0.677
Max Trecvid 0.855 0.892 0.873

Table 5.6: Results for all runs for various settings

histograms), preserving its accuracy. Our experiments shows that the performance of the

original method (DCD) is almost the same with our improved method (SD).

For fade out-in detection we use the modi�ed method developed for dissolve detection.

We use the modi�ed method because fade is a special case of dissolves and also for the good

performance showed in dissolve detection. We characterize a fade out-in �rst detecting the

�black frames� and then reproducing two downward parabola patterns, one for fade-out an

the other for fade-in. We do not use a machine learning approach because the detector has a

single parameter to be set. This parameter is used for detect �black frames� that separate a

fade-out from a fade-in.

Although our system detects only two types of GTs, we are among the best results. We

thus improve dissolve detection as our results show it. The good results are not only limited

to number of transitions detected, but also in the accuracy of the interval detected, i.e., how

well the interval of the gradual transition detected match with the real transition.
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[All results.]

[Zoomed version.]

Figure 5.20: Precision/Recall measure of performance on the TRECVID 2006 for all type of
transitions Cámara-Chávez et al. [2006b].
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Figure 5.21: Mean runtime on the TRECVID 2006 Smeaton and Over [2006].



Chapter 6

Content-based video retrieval

With technology advances in multimedia, digital TV and information highways, a large

amount of video data is now publicly available. However, without appropriate search technique

all these data are nearly not usable. Traditionally, the main contents in many information

retrieval systems are textual information. Text input is often the only mean for users to issue

information requests. Systems accessible only through text input frequently frustrate users

by providing abundant but irrelevant information. Users want to query the content instead

of raw video data. For example, a user will ask for speci�c part of video, which contain some

semantic information. Content-based search and retrieval of these data becomes a challenging

and important problem. Therefore, the need for tools that can manipulate the video content

in the same way as traditional databases manage numeric and textual data is signi�cant.

6.1 Introduction

With the recent developments in technology, large quantities of multimedia data has become

available in both public and proprietary archives. News videos, consisting of visual, textual

and audio data, are important multimedia sources because of their rich content and high social

impact. Most commercial video search engines such as Google, Blinkx, and YouTube provide

access to their repositories based on text, as this is still the easiest way for a user to describe an

information needed. The indices of these search engines are based on the �lename, surrounding

text, social tagging, or a transcript. This results in disappointing performance when the visual

content is not re�ected in the associated text because natural language is highly ambiguous.

For example, describing an object such as an airplane in terms of its shapes and colors would

be a demanding task, providing an example can give all the information that is required.

Numerous attempts have been made to represent and describe the visual world (a world

without language) with inherent meaning, far more complex than words. The success of re-

trieval depends on the completeness and e�ectiveness of the indexes. Indexing techniques

are determined by the extractable information through automatic or semi-automatic content

extraction. The content-based image retrieval research community has emphasized a visual

only approach. It has resulted in a wide variety of image and video search systems Flickner

119
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et al. [1995]; Gupta and Jain [1997]; Pentland et al. [1996]. Since video contains rich and mul-

tidimensional information, it needs to be modeled and summarized to get the most compact

and e�ective representation of video data. A common denominator in these prototypes is that

they �rst partition videos into a set of access units such as shots, objects or regions Deng

and Manjunath [1998], and then follow the paradigm of representing video via a set of fea-

tures (low-level visual information), such as color, texture, shape, layout and spatiotemporal

features Al-Omari and Al-Jarrah [2005]; Shahraray and Gibbon [1997].

As shown in Figure 6.1, there are three processes that capture di�erent levels of content

information: The �rst is temporal segmentation to identify shot boundaries. At the second

level each segment is abstracted into key-frames. Finally, visual features, such as color and

texture, are used to represent the content of key-frames and in measuring shot similarity.

Indexing is then supported by a learning process that classi�es key-frames into di�erent vi-

sual categories; this categorization may also support manual user annotation. These results

composite the data set of video, which facilitate retrieval and browsing in a variety of ways.

Figure 6.1: A diagram of an automated video indexing system.

While video browsing using key frames has been achieved for some applications, video

retrieval, on the other hand, is still in its preliminary state and considered a hard problem.

Besides lack of e�ective tools to represent and model spatial-temporal information, video

retrieval has the same di�culties as traditional image retrieval. That is the so-called �semantic

gap�, utilizing low-level features for retrieval does not match human perception well in the

general domain.

This means that low level features are easily measured and computed, but a high level

query from a human is typically the starting point of the retrieval process. However, the se-

mantic gap is not merely translating high level features from low level features. The essence of
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the semantic query consists in understanding the meaning that is behind the query. Therefore,

this can involve understanding not only the intellectual side of human, but also the emotional

side. For example, suppose we have two sets of pictures, one of �dogs� and the other of �birds�.

If a search task looking for images that belong to �animal� category is executed, then images

in these two sets should be considered similar. However, if the task consists in searching

images of �dogs�, then the pictures with �birds� are not relevant. This means that the user is

the only one who knows exactly what he is searching for and the system needs to learn the

dissimilarity based on the user's feedback.

This interactive stage (human-machine) contains two main steps: visualization and rel-

evance feedback, which are iterated Smeulders et al. [2000]. The visualization step displays

a selected set of images to the user. Based on his needs, the user judges how relevant those

images are with respect to what the user is looking for. The perceptual similarity relies on

the application, the person, and the context of usage. Therefore, the machine not only needs

to learn the associations, but also has to learn them on-line with the user's interaction in the

loop.

However, the old problems of labor-intensive manual annotation and subjectivity of human

perception still persist. The conventional relevance feedback algorithms converge slowly be-

cause users are led to label only the most relevant documents, which is usually not informative

enough for systems to improve the learned query concept model.

Using learning is well-known in interactive content-based retrieval. Some comprehensive

overviews of techniques are presented in Smeulders et al. [2000]; Zhou and Huang [2003].

Recently the use of support vector machines in learning has gained interest. It has proved to

give the highest boost to the performance Chen et al. [2005, 2001]; Gosselin and Cord [2004a].

The video retrieval system described here simpli�es the labeling task to identifying relevant

key frames. The easiest way to reduce the labeling e�ort is to request the user to label

some selected data, and automatically propagate the labels to the entire collection using a

supervised learning algorithm. It greatly reduces the need for labeled data by taking advantage

of active learning.

In this work, we show how the automatic video analysis techniques, such as shot boundary

detection and key frame selection can be used in the content based video retrieval process.

Therefore, our framework consists of:

1. Shot boundary detection: In the case of video retrieval, a video index is much smaller and

thus easier to construct and use if it references video shots instead of every video frame.

Shot transitions provide convenient jump points for video browsing. The detection of a

shot change between two adjacent frames simply requires the computation of an appro-

priate continuity or similarity metric. Therefore, scene cut detection often performed

by detecting transitions between shots, is required in the early stages of video indexing.

In Chapters 4 and 5, we presented a broadly study of shot boundary detection.

2. Key frame selection: The predominant approach to automate the video indexing process

is to create a video abstract. A video abstract is de�ned as a sequence of images ex-
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tracted from a video, much shorter than the original yet preserving its essential message

Lienhart et al. [1997b]. This abstraction process is similar to extraction of keywords or

summaries in text document processing. That is, we need to extract a subset of video

data from the original video such as key frames as entries for shots, scenes, or stories.

As well as being less time consuming to produce than a textual annotation, a visual

summary to be interpreted by a human user is semantically much richer than a text.

Abstraction is especially important given the vast amount of data even for a video of a

few minutes duration. The result forms the basis not only for video content representa-

tion but also for content-based video browsing. Using the key frames extracted in video

abstraction, we can build a visual table of contents for a video or they can be used to

index video.

3. Retrieval process: A video retrieval system generally consists of 3 components:

a) Feature extraction: Most of the current video retrieval techniques are extended

directly from image retrieval techniques. A typical example is the key frame based

video indexing and retrieval systems. Image features such as color and texture

are extracted from these key frames. Those features are used for indexing and

retrieval.

b) Similarity measures: A set of similarity measures, each of which captures some

perceptively meaningful de�nition of similarity, and which should be e�ciently

computable when matching an example with the whole database. Compared with

feature-based image retrieval, it is more di�cult to combine multiple features to

de�ne the content similarity between two video sequences of shots for retrieval since

more features (often with di�erent levels of importance) are involved. Besides, con-

tent similarity comparison can be performed based on key-frame-based features,

shot-based temporal and motion features, object-based features, or a combina-

tion of the three. There are several sophisticated ways to calculate the similarity

measure: dynamic programming Dagtas et al. [2000], spatio-temporal matching

Sahouria and Zakhor [1999]; Zhao et al. [2000], tree structure Yi et al. [2006], ma-

chine learning Adams et al. [2003]; Fan et al. [2004]; Naphade and Huang [2001];

Snoek et al. [2006a,b, 2005].

c) User interface: A user interface for the choice of which de�nition(s) of similarity

is necessary for retrieval, and for the ordered and visually e�cient presentation of

retrieved videos and for supporting user interaction.

Figure 6.2 depicts the structure followed by our system, RETINVID. This deals with

video browsing based on shot detection, key frame extraction, indexing and content-based

retrieval. The video browsing and retrieval can also be seen as a classi�cation problem. From

one or several frames brought by a user, the aim is to retrieve the shots illustrating the same

concept. Key frame extraction is based on a clustering of each segmented shot. The closest

frame to the cluster center is considered as a key frame. RETINVID is a complete system of
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video retrieval from the visual content. We have opted for an active learning scheme, which

has proved its e�ciency in content-based image retrieval Gosselin and Cord [2006], notably

through the use of kernel functions.

Figure 6.2: Content-based video retrieval schema.

The rest of this chapter is organized as follows. In Section 6.2, key frame extraction is

presented, which consists in summarizing the shot content, this could be represented by one

or more key frames, it would depend in the content complexity. Video indexing is presented

in Section 6.3, the success of retrieval depends on a good indexation. In Section 6.4, we
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introduce the approach to active learning with support vector machines. A machine learning

technique is used to improve performance in retrieval systems. In Section 6.5, we present the

results of our proposed method and in Section 6.6, we discuss our conclusions.

6.2 Key frame extraction

Key frames provide a suitable abstraction and framework for video indexing, browsing and

retrieval Zhuang et al. [1998]. One of the most common ways of representing video segments

is by representing each video segment such as shot by a sequence of key frame(s) hoping that

a �meaningful� frame can capture the main contents of the shot. This method is particularly

helpful for browsing video contents because users are provided with visual information about

each video segment indexed. During query or search, an image can be compared with the

key frames using similarity distance measurement. Thus, the selection of key frames is very

important and there are many ways to automate the process. There exist di�erent techniques

for key frame extraction Zhuang et al. [1998].

6.2.1 Key frame extraction techniques

In this section, we review some principal approaches for key frame extraction:

Shot boundary based approach

After video is segmented into shots, an easy way of key extraction is to use the �rst frame

as the key frame Nagasaka and Tanaka [1992]. Although it is a simple method, the number

of key frames is limited to one, regardless of the shot's visual content. A drawback of this

approach if that the �rst frame normally is not stable and does not capture the major visual

content.

Visual content based approach

This approach uses multiple visual criteria to extract key frames Zhuang et al. [1998].

• Shot based criteria: Selects a key-frame from a �xed position in the scene or several

frames separated by a �xed distance Lu [1999]. Although this method considers only

length of shots, the performance should be e�ective enough to save all the processing

complexities and time needed to divide a shot into sub-shots and assign a key frame to

them based on changes in contents Divakaran et al. [2002].

• Color feature based criteria: The current frame of the shot will be compared with the

last key-frame. If signi�cant content change occurs, the current frame will be selected

as the new key-frame Zhang et al. [1997].
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• Motion based criteria: The third criteria selects key-frames at local minima of motion

Narasimnha et al. [2003]; Wing-San et al. [2004]. For a zooming-like shot, at least two

frames will be selected: the �rst and last frame, since one will represent a global view,

while the other will represent a more focused view. For a panning-like shot, frames

having less than 30% overlap are selected as key-frames Zhang et al. [1997].

Motion analysis based approach

Wolf [1996] proposed a motion based approach to key frame extraction. First, the optical

�ow for each frame is calculated Horn and Schunck [1981], then a simple motion metric based

on the optical �ow is computed. Finally, the metric is used as a function of time in order to

select key frames at the local minima of motion. The justi�cation of this approach is that in

many shots, the key frames are identi�ed by stillness Wolf [1996].

Shot activity based approach

Gresle and Huang [1997] propose a shot activity based approach motivated by the same

observation of Wolf [1996]. They �rst compute the intra and reference histograms and then

compute an activity indicator. The local minima are selected based on the activity curve as

the key frames Diklic et al. [1998]; Gresle and Huang [1997].

Clustering based approach

Clustering is a powerful technique used in various disciplines, such as pattern recognition,

speech analysis, and information retrieval. In Ferman et al. [1998] and Zhang et al. [1997], key-

frame selection is based on the number and sizes of the unsupervised clusters. Progress has

been made in this area, however, the existing approaches either are computationally expensive

or cannot capture adequately the major visual content Zhang et al. [1997]. A novel clustering

approach based on statistical model is introduced by Yang and Lin [2005]. This method is

based on the similarity of the current frame with their neighbors. A frame is important,

if it contains more temporally consecutive frames that are spatially similar to this frame.

The principal advantage of this method is that the clustering threshold is set by a statistical

model. This technique is based on the method of Zhang et al. [1997] with the di�erence that

the parameters are set by a statistical classi�er.

Depending on the complexity of the content of the shot, one or more key frames can be

extracted. For example, in the case of camera operations more than one key frame is needed,

as it was explained in the motion based criteria for key frame extraction. Clustering is thus

a good way to determinate both the most representative key frames, as well as their number.

We based our unsupervised key frame detector in the method proposed by Yang and Lin

[2005].
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6.2.2 Features

Given a video shot s = {f1, f2, . . . , fN} obtained after a shot boundary detection. Then, we

cluster the N frames into G clusters, say c1, c2, . . . , cG. The similarity of two frames is de�ned

as the similarity of their visual content, the color histogram of a frame is our visual content.

The color histogram we used is the same computed with our ATs detector (see Chapter 4),

i.e., we used a RGB color histogram (2 bits per channel). The similarity between frames i

and j is de�ned by L1 norm.

Any clustering algorithm has a threshold parameter ρ which controls the density of cluster-

ing, i.e., the higher the value of ρ, the more the number of clusters. The threshold parameter

provides a control over the density of classi�cation. Before a new frame is classi�ed into a

certain cluster, the similarity between this node and the centroid of the cluster is computed

�rst. If this value is less than ρ, this node is not close enough to be added into the cluster.

Our unsupervised clustering algorithm is based on one of the algorithms of the Adaptive

Resonance Theory (ART) neural network family, Fuzzy ART G. Carpenter [1991].

6.3 Video indexing

Video indexing approaches can be categorized based on the two main levels of video content:

low level (perceptual) and high level (semantic) annotation Djeraba [2002]; Elgmagarmid et al.

[1997]; Lu [1999]; Tusch et al. [2000]. The main bene�ts of low-level feature-based indexing

techniques are Tjondronegoro [2005]:

• They can be fully automated using feature extraction techniques (visual features).

• User can use similarity search using certain features characteristics.

However, feature-based indexing tends to ignore the semantic contents, whereas users

mostly want to search video based on the semantic rather than on the low-level characteristics.

There are elements beyond perceptual level, which can make feature based-indexing very

tedious and inaccurate. For example, users cannot always describe the characteristics of

certain objects they want to retrieve for each query.

The main advantage of high-level semantic-based indexing is the possibility to achieve

a query more natural, powerful and �exible. For example, users can browse a video based

on the semantic hierarchy concepts and they can search a particular video according to the

keywords. Unfortunately, this type of indexing is often achieved using manual intervention as

the process of mapping low-level features to semantic concepts is not straight forward due to

the semantic gap. Manual semantic annotation should be minimized because it can be very

time-consuming, biased and incomplete Ahanger and Little [2001]; Leonardi [2002]; Snoek

and Worring [2005].
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There are three major indexing techniques Tjondronegoro [2005]: feature-based video

indexing (including shot-based, object-based, and event-based indexing), annotation-based

video indexing, and indexing approaches which aim to bridge semantic gap.

6.3.1 Feature-based video indexing

This type of indexing can be categorized based on the features and extracted segments.

Segment-based indexing techniques

During the process of indexing texts, a document is divided into smaller components such

as sections, paragraphs, sentences, phrases, words, letters and numerals, and thereby indices

can be built on these components Zhang [1999]. Using the same concept, video can also

be decomposed into a hierarchy similar to the storyboards in �lmmaking Zhang [1999]. For

example, a hierarchical video browser consists of a multi-levels abstraction to help users in

�nding certain video segments. This type of browsing scheme is often called storyboard,

contains a collection of frames that represent the main concepts in the video. An advantage

of storing key-frames is that they require less storage space than the whole video.

Figure 6.3 shows a storyboard indexing for hierarchical video browsing. A video contains

stories, for example, a birthday party, a vacation, a wedding, etc. Each of the stories contains a

set of scenes, for example a vacation story contains the preparation of the travel and touristic

places scenes. Each scene is then partitioned into shots, i.e., shots of the di�erent places

visited. Then, a scene is a sequence of shots that correspond to a semantic content, and

a story is a sequence of scenes that reveals a single amusing semantic story. In Snoek and

Worring [2005] we can �nd a review of this approach.

Object-based video indexing techniques

Object-based video indexing aims at distinguishing particular objects throughout video

sequence to capture content changes. In particular, a video scene is de�ned with a complex

collection of objects, the location and physical attributes of each object and the relationship

between them.

Objects extraction process is more complex than extracting low-level features such as color,

texture and volume. However, the process on video can be considered easier as compared to

an image because an object region usually moves as a whole within a sequence of video frames.

Event-based video indexing techniques

Tracking activity of objects, events in video segments. Event-based video indexing aims

at detecting interesting events from video track Zeinik-Manor and Irani [2005]. However,

there is not yet a clear de�nition for �event� itself for video indexing. Event can be generally

de�ned as the relations between appearing objects in a time interval that may occur before

or after the other event Babaguchi et al. [2002]. Event can also be de�ned as long-term
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Figure 6.3: Segment-based indexing Tjondronegoro [2005].

temporal objects which are characterized by spatial-temporal features at multiple temporal

scales, usually over tens or hundreds of frames. An event includes a) temporal textures such

as �owing water: inde�nite spatial and temporal type, b) activities such as person walking:

temporally periodic but spatially restricted and c) isolated motion events such as smiling.

6.3.2 Annotation-based video indexing

Another alternative for managing video is to annotate the semantics of video segments using

keywords or free texts. Thus, user queries can be managed using standard query language,

such as SQL and browsing can be based on hierarchical topic (or subject) classi�cation [10,

64]. However, the major limitation of this approach is the fact that it would be extremely

tedious and ine�ective to manually annotate every segment of video. On the other hand, the

process of mapping low-level video features into high-level semantic concepts is not straight

forward.

There are also some major drawbacks which can already be expected from annotation-

based indexing:

• Keywords/free text selection is subjective and often depends on application and domain

requirements.

• Words are often not able to fully describe a single frame therefore it is expected that

words will be extremely insu�cient to describe a video segment.

• When users do not know how to explain what they want using words, it is often the case

that they would like to query based on a similar image or sound. Similarly in browsing
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a video document, users often �nd that visual key frames representation is more helpful

and interesting compared to pure texts.

6.3.3 Indexing by bridging semantic gap

The objective is to bridge the semantic gap between high-level concepts and low-level features.

Audio-visual feature extraction is easier than semantic understanding, and thus generally

possible to be fully automated. Content-based video retrieval can be bene�ted from query-by-

example (QBE). For example, given a sample video shot, the system should �nd the indexed

segments which have the closest characteristics such as similar speaker pitch and similar

face. The usage of QBE has been demonstrated in news applications Satoh et al. [1999] by

associating faces and names in news videos. To accomplish this task, their system uses face

sequence extraction and similarity evaluation from videos, name extraction from transcripts,

and video-caption recognition.

QBE assumes that when video frames are represented by key frames, retrieval can be

performed by users selecting the visual features, and the speci�ed weights on each feature

when more than one feature is used. The retrieval system then �nds images similar to the

query. Such systems are not always satisfactory due to the fact that best feature representation

and manually assigned weights are sometimes not su�cient to describe the high-level concepts

in queries. In the QBE paradigm, two tasks are dominant. The �rst is to produce a compact

signature representation of video segments (normally a segment is one camera shot). The

second is to provide algorithms to compare di�erent signatures from di�erent segments. For

example, most users think with high-level concepts such as �a vase�, rather than the shape

and textures. After its success in text-based retrieval, relevance feedback has been tested for

image retrieval systems Lu et al. [2000]; Rui et al. [1998].

Even though relevance feedback does not map low-level features with high-level semantic,

it aims to adjust an existing query automatically. This is achieved by using the information

feedback provided by the users about the relevance of previously retrieved objects so that the

adjusted query is a better approximation of user's need. Thus, relevance feedback technique

tries to establish the link between these features based on users' feedback. The burden of

specifying the weights is removed from the user as they need to mark images that are relevant

to the query. The weights are dynamically embedded in the query to represent the high-level

concepts and perception subjectivity.

The conventional relevance feedback algorithms converge slowly because users are led to

label only the most relevant documents, which is usually not informative enough for systems

to improve the learned query concept model. Recently, active learning algorithms have been

proposed to speed up the convergence of the learning procedure Schohn and Cohn [2000];

Tong [2001]. In active learning, the system has access to a pool of unlabeled data and can

request the user's label for a certain number of instances in the pool. However, the cost of this

improvement is that users must label documents when the relevance is unclear or uncertain

for the system. These �uncertain documents� are also proven to be very informative for the

system to improve the learned query concept model quickly Xu et al. [2003]. Recently, active
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learning is being used on image retrieval systems Chang et al. [2005]; Cord et al. [2007];

Gosselin and Cord [2006, 2004b] and video analysis Qi et al. [2006]; Song et al. [2006]; Yang

and Hauptmann [2006].

6.4 Active learning

The idea is to improve the classi�er by asking users to label informative shots and adding the

labeled shots into the training set of the classi�er. The major di�erence between conventional

relevance feedback and active learning is that the former only selects top-ranked examples

for user labeling, while the latter adopts more intelligent sampling strategies to choose in-

formative examples from which the classi�er can learn the most. A general assumption on

the informativeness of examples is that an example is more useful if the classi�er's prediction

of it is more uncertain. Based on this assumption, active learning methods typically sample

examples close to the classi�cation hyperplane. Another general belief is that a relevant ex-

ample is more useful than an irrelevant one especially when the number of relevant examples

is small compared to that of the irrelevant ones.

Optimized training algorithms are able to cope with large-scale learning problems involving

tens of thousands of training examples. However, do not solve the inherent problem which

consists in the fact that conventional supervised machine learning relies on a set of patterns

which have to be assigned to the correct target objects. In many applications, the task of

assigning target objects cannot be accomplished in an automatic manner, but depends on

time-consuming and expensive resources, such as complex experiments or human decisions.

Hence, the assumption that a set of labeled examples is always available, does not take into

account the labeling e�ort which is necessary in many cases.

Let us consider the pool-based active learning model (see Figure 6.4), which was originally

introduced by Lewis and Catlett [1994a] in the context of text classi�cation learning. We

refer to the pool-based active learning model as active learning herein after to simplify our

presentation. The essential idea behind active learning is to select promising patterns from

a given �nite set U (also referred as the pool of unlabeled examples) in a sequential process

in the sense that the corresponding target objects contribute to a more accurate prediction

function. The active learning algorithm sequentially selects patterns from set U and requests

the corresponding target objects from a teacher component (also referred to as oracle). In

contrast to standard supervised learning, pool-based active learning considers an extended

learning model in which the learning algorithm is granted to access to a set of unlabeled

examples. The learning algorithm is provide with the ability to determine the order of assign-

ing target objects with the objective of attaining a high level of accuracy without requesting

the complete set of corresponding target objects. Moreover, the stopping criterion can be of

dynamic nature and depends on a measure of the learning progress or be of static nature such

as a �xed number of requested target objects.

The problem of labeling e�ort in supervised machine learning arises naturally in many

�elds of application. The crucial point in active learning is that by ordering the sequential
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Figure 6.4: Pool-based active learning: an extended learning model in which the learning
algorithm is granted access to the set of unlabeled examples and provided with the ability to
determine the order of assigning target objects Brinker [2004].

process of requesting target objects with respect to an appropriate measure of the information

content, it is possible to reduce the labeling e�ort. In many applications, active learning

achieves the same level of accuracy as standard supervised learning, which is based on the

entire set of labeled examples, while only requesting a fraction of all the target objects.

The goals of active learning can be summarized as follows:

• improve the utility of the training set, i.e., make better use of the information that is

available from the current training data with the aim to use less training data than

passive learning to achieve the same generalization ability.

• improve the cost e�ciency of data acquisition by labeling only those data that are ex-

pected to be informative with respect to the improvement of the classi�er's performance.

• facilitate training by removing redundancy from the training set.

6.4.1 Basic main algorithms

The typical active learning settings consist of the following components Tong [2001]: an

unlabeled pool U , an active learner l composed of three components, (f, q,X). The �rst

component is a classi�er, f : X → [−1, 1], trained on the current set of labeled data X

(typically few). The second component q(X) is the querying function that, given a current

labeled set X, decides which example in U to query next. The active learner can return

a classi�er f after each query or after some �xed number of queries. Figure 6.5 illustrates

the framework of active learning. The query function q selects informative data from the
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unlabeled pool, then users annotate the selected data and feed them into the labeled data set.

Given the labeled data X, the classi�er f is trained based on X.

Figure 6.5: Illustration of basic learning Hauptmann et al. [2006].

In Algorithm 6.1, we show the pool-based active learning algorithm, where the basic three

operations are: sampling (query function), user labeling and training.

Algorithm 6.1: Algorithm of pool-based active learning.

while a teacher can label examples do1

Apply the current classi�er to each unlabeled example;2

Find the m examples which are the most informative for the classi�er ;3

Let the teacher label the m examples ;4

Train a new classi�er on all labeled examples;5

end6

In 2000, two groups proposed an algorithm for SVMs active learning Schohn and Cohn

[2000]; Tong and Koller [2000]. Algorithm 6.2 describes the selection process proposed by

them. This corresponds to step 4 in Algorithm 6.1.

Algorithm 6.2: Selection Algorithm.

while a teacher can label examples do1

Compute f(xi) over all xi in a pool;2

Sort xi with |f(xi)| in decreasing order;3

Select top m examples ;4

end5

The query function is the central part of active learning process and active learning meth-

ods di�er in their respective query functions. There exist two broad approaches for query

function design Li and Sethi [2006]:
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1. statistical learning approach: query function is designed to minimize future errors Cohn

et al. [1996]. They take a probabilistic approach by picking examples that minimize

the generalization error probability. The statistical learning approach is also used by

Fukumizu [2000] for training multilayer-perceptron networks to perform regression;

2. pragmatic approach: some sort of minimization is performed without directly consider-

ing future performance. An early example of this approach is query by committee Freund

et al. [1997], the unlabeled example to be picked is the one whose predicted label is the

most ambiguous. Their choice of the query function is related to reducing the size of

the version space. Tong and Koller [2000] suggest a querying approach based on version

space splitting and apply it for text classi�cation. They query examples closest to the

decision boundary, this method is known as �simple margin� scheme. The objective is

to reduce the version space under the assumption that it is symmetric. Similar schemes

that query samples close to boundary are proposed by Schohn and Cohn [2000] and

Campbell et al. [2000]. Another example is the uncertainty sampling scheme of Lewis

and Catlett [1994b] where the example picked is the one with the lowest certainty.

This research proposes an approach to active learning for content-based video retrieval.

The goal of active learning when applied to content-based video retrieval is to signi�cantly

reduce the number of key frames annotated by the user. We use active learning to aid in the

semantic labeling of video databases. The learning approach proposes sample video segments

to the user for annotation and updates the database with the new annotations. It then uses

its accumulative knowledge to propagate the labels to the rest of the database, after which it

proposes new samples for the user to annotate.

6.4.2 Active learning for video retrieval

When comparing results of fully automated video retrieval to interactive video retrieval Haupt-

mann and Christel [2004] in TRECVID evaluation, there is a big di�erence in performance.

The fully automated search (no user in the loop) succeeds with good recall for many topics,

but low precision because relevant shots tend to be distributed throughout the top thousands

in the ordered shot list, causing the standard metric of mean average precision (MAP, which

is the area under the Precision/Recall curve) for automated search to fall behind almost any

interactive system. One explanation is that query �nds the relevant stories, but �nding the

individual relevant clips is very di�cult. Interactive system performance Smeaton et al. [2006]

appears strongly correlated with the system's ability to allow the user to e�ciently survey

many candidate video clips (or key frames) to �nd the relevant ones. Interactive systems

allow the user to annotate video shots, look at the results, improve the query by choosing

relevant shots and iterate in this by reformulating or modifying the query Hauptmann and

Christel [2004]; Smeaton et al. [2006]; Snoek et al. [2006a].

Vasconcelos and Kunt [2001] divide retrieval techniques in two categories: statistical and

geometrical. Geometrical methods are based on the calculation of similarity between a query,

usually represented by an image, and the images of the database Rui and Huang [2000a].
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Statistical methods are based on the update of relevance function or a binary classi�cation of

images using the user labels. The relevance function estimation approach aims to associate a

score to each image, expressing by this way the relevance of the image to the query Cox et al.

[2000]. The binary classi�cation approach uses relevant and irrelevant images as input training

data Chapelle et al. [1999]. This approach has been successfully used in the context-based

image retrieval Tong [2001].

We focus on statistical learning technique for image retrieval, speci�cally a binary classi�-

cation method adapted to image retrieval. The classi�cation in content-based image retrieval

context has some speci�es Gosselin and Cord [2005]: the input dimension is usually very high,

the training set is small compared with the test set (the whole database), the training data

set grows step by step due to user annotations, unlabeled data are available, and limited com-

putation time. We also deal with these characteristics in the context of content-based video

retrieval. Therefore, we use the RETIN system, a content-based search engine image retrieval

Gosselin and Cord [2006], for content-based video retrieval: RETINVID. This system belongs

to binary classi�cation approach, which is based on SVM classi�er and on an active learning

strategy Cohn et al. [1996].

6.4.3 RETIN system

This system is based on SVMactive method Tong and Chang [2001] which query examples

closest to the decision boundary. In content-based image retrieval, the training set remains

very small, even after interaction where new labeled examples are added, in comparison to

the whole database size. In that context get a reliable estimation of the boundary constitutes

a major problem. In this particular context, statistical techniques are not always the best

ones. Cord et al. [2007] propose a heuristic-based correction to the estimation of f close to

the boundary.

Let (xi)i∈{1,...,n}, xi ∈ R be the feature vectors representing images from the database,

and x(i) the permuted vector after a sort according to the function f (Equation 4.19). At the

feedback step j, SVMactive proposes to label m images from rank sj to sj+m−1:

x(1),j︸ ︷︷ ︸
most relevant

, x(2),j , . . . , x(sj),j , . . . , x(sj+m−1),j︸ ︷︷ ︸
images to label

, . . . , x(n),j︸ ︷︷ ︸
less relevant

While the strategy of SVMactive consists in selecting sj from the images that are closer to

the SVM boundary, Cord et al. [2007] propose to use the ranking operation. The drawback

of the former is that the boundary changes a lot during the �rst iterations, while the ranking

operation persists almost stable, this characteristic is exploited by the latter. In fact, they

suppose that the best s allows to present as many relevant images as irrelevant ones. In their

method, the selected images are restricted to be well balanced between relevant and irrelevant

images, then sj is considered good. Therefore, they exploit this property to adapt s during

the feedback step.

In order to maintain the training set balanced, they adopt the following upgrade rule
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for sj+1 : sj+1 = sj + h(rrel(j), rirr(j)), where rrel and rirr are the number of relevant and

irrelevant labels, respectively. h(., .) is a function which characterizes the system dynamics

where h(x, y) = k(x − y). Through this rule, they ensure to maintain the training set s

balanced, increasing the set when rrel > rirr and decreasing in the other case.

With the objective to optimize the training set, they increase the sparseness of the training

data. In fact, nothing prevents to select an image that is closer to another (already labeled or

selected). To overcome this problem, m cluster of images from x(sj),j to x(sj+M−1),j (where

M = 10m for instance) can be computed using an enhanced version of Linde-Buzo-Gray

(LBG) algorithm Patanè and Russo [2001]. Next, the system selects for labeling the most

relevant image in each cluster. Thus, images close to each other in the feature space will not

be selected together.

6.4.4 RETINVID system

Our content-based video retrieval system consists of 3 basic steps: video segmentation (cf.

Chapters 4 and 5), key frame extraction (cf. Section 6.2) and video indexing (cf. Section 6.3).

Figure 6.6 illustrates our framework. First, the video is segmented into shot detecting the ATs

and GTs. From each shot, a key frame extraction is executed. One or more key frames could

represent the content of the shot, it depends on the complexity of the shot content. Then,

we extract color and texture features from the key-frames. We perform the feature extraction

implemented in RETIN system. We used Color L∗a∗b and Gabor texture features Philipp-

Foliguet et al. [2006] for still images and the Fourier-Mellin and Zernike moments extracted

for shot detection. For the active classi�cation process, a SVM binary classi�er with speci�c

kernel function is used. The interactive process starts with a coarse query (one or a few

frames), and allows the user to re�ne his request as much as necessary. The most popular

way to interact to the system is to let the user annotate examples as relevant or irrelevant to

his search. The positive and negative labels are then used as examples or counterexamples

of the searched category. The user decides whether to stop or continue with the learning

process. If the user decides to continue, new examples are added to the training set and the

classi�cation process is iterated. Finally, if the user decides to stop, the �nal top similarity

ranking is presented to him.

6.5 Experiments

A potentially important asset to help video retrieval and browsing is the ability to automati-

cally identify the occurrence of various semantics features such as �Indoor/Outdoor�, �People�,

etc., which occur in video information. In this section, we present the features and parameters

set used for our content-based video retrieval system.
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Figure 6.6: RETINVID System.

6.5.1 Data set

We use the TRECVID-2005 data set for high level feature task. Given a standard set of

shot boundaries for the feature extraction test collection and a list of features de�nitions,

participants are asked to return for each chosen feature, the top ranked video shots (ranked

according to the system's con�dence). The presence of each feature is assumed to be binary,

i.e., it is either present or absent in the given standard video shot.

The features to be detected are de�ned (brie�y) as follows and are numbered 38-47: (38)

People walking/running, (39) Explosion or �re, (40) Map, (41) US Flag, (42) Building exterior,

(43) Waterscape/ waterfront, (44) Mountain, (45) Prisoner, (46) Sports, (47) Car.

The feature test collection for TRECVID-2005 high level task contains 140 videos and

45,765 reference shots. The features were annotated using a tool developed by Carnegie

Mellon University.
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6.5.2 Features and parameters

Color, texture and shape information are used to perform the high level task. We used

color L∗a∗b, Gabor texture (features provided by RETIN system) and the Fourier-Mellin and

Zernike moments extracted for shot detection.

Features provided by RETIN system are statistical distributions of color and textures

resulting from a dynamic quantization of the feature spaces. That is, the color and texture

space clusterings are used to compute the image histograms. The clustering process is per-

formed using the enhanced version of LBG algorithm. The main problem is to determinate

the number of bins, i.e., the number of clusters.

Di�erent studies were performed in order to determine the number of histogram bins.

Brunelli and Mich [2001] have evaluated many feature histograms and concluded that his-

tograms with small number of bins are reliable. For color histograms, Tran and Lenz [2001]

suggest to use around of 30 bins. Fournier et al. [2001] performed many experiments, using

di�erent numbers of clusters for dynamic quantization of feature space, and con�rm all these

prepositions. An interesting characteristic and also the major advantage of dynamic approach

is that it is possible to reduce the size of the feature without performance degradation. There-

fore, we have adopted the dynamic quantization with 32 classes, i.e., 32 for color and 32 for

texture. In the case of shape descriptors, as we use the features extracted for shot boundary

detection, the number of bins for Zernike moments are 11 bins and for Fourier Mellin are 24

bins.

When distributions are used as feature vectors, a Gaussian kernel gives excellent results in

comparison to distance-based techniques Gosselin and Cord [2004b]. That is also con�rmed in

the excellent performance of Gaussian-χ2 kernel for shot boundary detection Cámara-Chávez

et al. [2007]. Thus, we use this kernel associated to SVM to compare key frames and compute

classi�cation. The number m of key frames labeled at each interactive feedback is set to

m = 10. The number of feedbacks is set to 25.

6.5.3 Evaluation

The active strategy is implemented through an �active� window, which proposes the most

useful key frames for annotations (Figure 6.5.3). The interface is composed on one hand of

the key frames ranked by relevance result and on the other hand of a few key frames, which

are at the very brink of the category. The lower window displays the key frames to be labeled

during the learning process. The upper one (the bigger one) is the �nal window, where the

key frames are displayed according to their relevance. These key-frames are the most likely

to make the category boundary rapidly evolve towards the solution.

Figures 6.7 and 6.8 show the performance of our system. In Figure 6.5.3, the queried key

frame is shown. The key frame has the following characteristics: two windows (views), the

�rst window at the left of the key frame presents a young reporter and, the second window (

the bigger one) situated at the the right of the key frame may contains di�erent scenes. The

only constrain of the query is that the key frame must contain a young reporter in the �rst
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[Queried key frame.]
[Some key frames annotated positively (cross marker) and negatively (square marker).]

Figure 6.7: RETINVID Interface.

window. In Fig. 6.5.3, the user initializes the query and annotates key frames (the markers

are at the right of the keyframe). The user annotates positively (cross marker) two key frames

where the �rst window shows a young reporter and negatively (square marker) other two key

frames where the small window shows a lady and an older reporter, respectively. Figure 6.8

shows the key frames retrieved according to their relevance. Figure 6.5.3 displays the most

relevant key frames. At the beginning of these top ranked key frames are the two positive

labeled key frames. The most relevant key frames have the same characteristics of the queried

key frame. That is, key frames with two windows where the �rst window presents a young

reporter and the second window may show any content as in Figure 6.5.3. In Figure 6.5.3

the less relevant key frames are shown. The last key frames are the ones that were labeled

as negative. This example shows the power of our retrieval system. That is, it is capable to

retrieve the desired query even though the positively and negatively labeled key frame are

very similar.

Now we show the results of the experiments where we retrieve the key frames from
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[RETINVID Results: top ranked relevant key frames.]

[RETINVID Results: less relevant key frames.]

Figure 6.8: RETINVID Interface.

TRECVID-2005 data containing the 10 concepts chosen during high level feature task of

the TRECVID-2005 evaluation. Results are compared through the Mean Average Precision
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(MAP). We compare the MAP for our system with the average MAP of all the participants

of TRECVID-2005 high level feature task in Table 6.1.

Categories our MAP mean MAP 05

38. People-Marching 0.836 0.106
39. Explosion-Fire 0.159 0.031
40. Maps 0.167 0.171

41. Flag-US 0.168 0.061
42. Building 0.177 0.225

43. Waterscape-Waterfront 0.242 0.165
44. Mountain 0.151 0.128
45. Prisoner 0.832 0.001
46. Sports 0.163 0.206

47. Car 0.163 0.158

Table 6.1: Comparison of the MAP for our system with average MAP of TRECVID-2005
participants for 10 o�cial concepts chosen during 2005 evaluation.

These results are very encouraging in the context of high-level feature task and search

task for our RETINVID system. We have quite comparable results with the average MAPs of

TRECVID-2005 participants for 5 of the 10 features tested, better, or even far better, results

for the 5 left.

6.6 Conclusion

In this Chapter, we addressed the problem of retrieving parts of videos illustrating a semantic

concept, such as �Car�, �Prisioner�, etc., using only visual information. We can basically �nd

three main steps for content-based video retrieval: temporal video segmentation, key frame

extraction and video indexing.

For temporal video segmentation, we use our kernel-based SVM detector (cf. Chapters

4 and 5). Depending on the complexity of the content of the shot, one or more key frames

can be extracted. For example, in the case of camera operations more than one key frame is

needed, as it was explained in the motion based criteria for key frame extraction. Clustering

is thus a good way to determinate both the most representative key frames, as well as their

number. Thus, for key frame extraction, we explore a clustering approach.

For video indexing and retrieval, we present an interactive strategy. We have already

pointed out some speci�c characteristics in context-based image retrieval like: high dimen-

sionality, few training data and interactive learning. It is possible to reduce this problem

through the theory of kernel functions Smola and Scholkopf [2002], specially in the case when

kernel functions can be adapted to a speci�c application Cord et al. [2007]. We explore the

characteristics of RETIN system over content-based image retrieval speci�cities and extend

to our RETINVID system.

The Gaussian kernel gives excellent results in comparison to distance-based techniques

Gosselin and Cord [2004b]. We con�rm that in our content-based video retrieval system
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and also in our shot boundary detector. Thus, the use of this kernel associated to SVM

compares key frames and computes the classi�cation. Regarding the second characteristic,

unlabeled key frames are available. Through interaction with the user it is possible for the

system to acquire knowledge, i.e., the user decides whether to stop or continue with the

learning process. If the user decides to continue new examples are added to the training set,

improving the accuracy of the classi�er. And �nally, concerning the third characteristic, active

learning could deal with the lack of training data. The training data is dynamic since samples

take place gradually thanks to user interaction. The active learning strategy which selects

for labeling new key frames close to the boundary between relevant and irrelevant key frames

(RETIN's strategy) allows us to get good performance of classi�cation with a small training

set. Another advantage of active learning has to concern with the limited computation time,

because user would not like to wait a long time between each feedback iteration.



Chapter 7

Conclusion and future work

Advances in multimedia technology accelerate the amount of digital information like data

stored as image and video content. Both of these types of data require application-dependent

processing strategies, easy-to-handle storage and indexing methods as well as sophisticated

querying mechanisms. Finding methodologies to handle the temporal segmentation, storage,

retrieval, searching, and browsing of digitized video data has been an active area of recent

research. There are two important aspects, among many others, surrounding the development

of video indexing and retrieval systems: temporal segmentation and content classi�cation.

We present some general concluding remarks that come from the contributions described in

this thesis. This thesis presented work in the areas of video segmentation, key frame selection

and the use of active learning for the purpose of indexing and retrieval of video sequences.

7.1 Summary

In Chapters 1 and 2, we argued the importance of developing an automatic technique for video

segmentation and content-based retrieval. Temporal video segmentation, often performed by

detecting transitions between shots, is required in the early stages of video indexing and

retrieval. Shots, considered as the smallest indexing unit, are not only useful for indexing,

but also for summarizing the video content through key frames and to allow video browsing.

Following a review of some recent works on temporal video segmentation in Chapter 3,

Chapter 4 focuses on improving existing algorithms and detecting automatically ATs instead

of investigating new features in which the e�ect of shot is used and detected. The drawback

of many well-known methods resides on the problem of �ne tuning of thresholds and param-

eters. Some methods consider few visual features and as a consequence of this lack, these

methods need pre-processing and post-processing steps. We consider AT detection from a

supervised classi�cation perspective in order to overcome threshold and parameter settings,

and pre-processing and post-processing steps. Our approach is able to use multiple features

simultaneously and just requires a small training. We tested di�erent dissimilarity measures

and di�erent kernel functions in our classi�er. Our system was evaluated in TRECVID-2006

on shot boundary task. Even though the performance of our AT transition detector is a�ected

142
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by some type of GTs, we can claim that we are among the best teams in AT detection.

In Chapter 5, we present a hierarchical system for GT detection. The �rst step is dedicated

to detect the boundaries of ATs. Once the video sequence is segmented into cut-free segments,

we seek for fade out-in transitions based on our improved method and, �nally, we look for

dissolves inside the shots delimited by the sharp cuts and fade out-in bounders resulting from

the AT detection and fade out-in detection. The hierarchical structure of our system allows us

to reduce to two modalities of identi�cation of GTs: fast motion or dissolve. We improved an

existing method that characterizes dissolves, reducing the dimension of the feature from 2D

to 1D and preserving its accuracy. We also tested the performance of our system in TrecVid-

2006 evaluation. Although our system detects only two types of GTs, we are among the best

results. The good results are not only limited to number of transitions detected, but also

in the accuracy of the interval detected, i.e., how well the interval of the gradual transition

detected match with the real transition.

We can basically follow three main steps for content-based video retrieval: temporal video

segmentation, key frame extraction and video indexing which were introduced in Chapter 6.

A video index is much smaller and thus easier to construct and use if it references video shots

instead of every video frame. One of the most common ways of representing video segments

is to represent each video segment by a sequence of key frame(s). One or more key frames

could be extracted, this depends on the complexity of shot's content. Camera operations and

object motions are the factors that in�uence in the complexity of the shot content. We adopt

a clustering approach for key frame extraction, since this approach is capable to extract the

most representative key frames and also determine automatically their number.

Human interactive systems have attracted a lot of research interest in recent years, espe-

cially for content-based image retrieval systems. We have chosen an active learning approach

because of its capacity to retrieve complex categories, speci�cally through the use of kernel

functions. Our system is based on a content-based image retrieval machine which allows

optimization of the image samples that are annotated by the user.

In this work we dealt with the following characteristics:

• high dimensionality, it is possible to reduce this problem through the theory or kernel

functions;

• small training data set, unlabeled key frames are available; and

• interactive learning, through interaction with the user it is possible for the system

to acquire knowledge (the user decides whether to stop or continue with the learning

process).

Another advantage of active learning concerns with the limited computation time, the user

would not like to wait long time between each feedback iteration.
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7.2 Principal contributions

Our main contributions in temporal segmentation and video retrieval are:

Shot boundary detection

1. We proposed and implemented a hierarchical supervised approach which views temporal

video segmentation as a 2-class clustering problem (�transition� and �no transition�).

Our method �rst detects ATs using a machine learning approach. Once the video

sequence is segmented into cut-free segments then they are split into GTs and normal

frames. Since our objective was to develop an automatic shot boundary detector, we

tried to avoid as much as possible to de�ne thresholds and other parameters, such as

sliding windows (it is necessary to de�ne the size) as it was suggested by other author

that also adopts a hierarchical approach. Our system is totally parameter free for ATs

and dissolve detection. We only set one parameter for fade out-in detection.

2. Our system does not need pre-processing and post-processing steps like motion compen-

sation and dramatic illuminance changes �ltering. We decided to use the well known

kernel-based SVM classi�er which can deal with large feature vectors and combine a

large number of visual features (color and shape) in order to avoid additional processes.

3. We used entropy as the goodness-of-�t measure in block-based correlation coe�cients

to measure the visual content similarity between frame pairs. We executed tests in AT

detection and our method (entropy-based) showed better performance than maximum

correlation (a method proposed by other author). The advantage of our method is that

it considers the global information of the block instead of a single element of the block.

4. Our dissolve detector uses a three step process: pattern detection based on curve match-

ing, re�nement based on a modi�ed feature for modeling error and learning step for clas-

sifying dissolve from non dissolves. We reduced the dimension of a well-known feature

used for dissolve detection from 2D to 1D, preserving its capacity for dissolve detection.

Indeed, we use projection histograms (1D) instead of the frame itself (2D).

5. We proposed and implemented a new method for fade detection based on the modi�ed

version of the feature developed for dissolve detection. Our method is more robust to

motion changes which causes false detection due to the e�ects produced by motion that

are similar to fade e�ects.

Video retrieval

We proposed and implemented an interactive video retrieval system which is based on a

content-based image retrieval engine (Retin). Our system aids in the semantic labeling of

video scenes. We use an active learning strategy to select new key frames for labeling that
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are closer to the boundary of relevant and irrelevant key frames, strategy provided by Retin

system. In few iterations, the system supplies a semantic query composed by key frames

ranked by relevance result.

7.3 Future work

There are some speculative ideas for possible future extensions to the work presented here.

Shot boundary detection

In order to improve the computation complexity, we can consider the approximation of

these features using DC-Images1 extracted from an MPEG sequence, i.e., using the compressed

domain. Furthermore, it is useful to compare the current detection performance of proposed

algorithms against the case when features are approximately computed from DC-Images.

A drawback of our system is on the computational complexity, since shape descriptors like

moments require more time to be computed. We can use the fast computation of pseudo-

Zernike moments instead of Zernike moments. Pseudo-Zernike moments have also better

feature representation capabilities and are more robust to image noise than the conventional

Zernike moments.

Our fade detection module is the only detector that requires to set an unique parameter.

A machine learning approach for fade detection will be also very useful, keeping our primal

objective to develop a system totally parameter free. We have ignored the problem of wipe

detection in this thesis. We can extend the number of event detections: wipe, fade-in, fade-

out and fast dissolves. We also want to improve the performance of our detectors by the

interaction with the user, i.e., using active learning in all modules.

Video retrieval

Initial work on content-based retrieval focused on extracting color and texture features

globally from an entire image. More recent work extended content extraction to region-

based analysis where feature vectors are computed from segmented regions and similarity is

evaluated between individual regions, thus we can extend our system to also compute region

features.

Other characteristics that must be explored are the temporal and motion information. The

temporal consistency of video data has not been well studied in the context of semantic concept

detection and retrieval despite its potential value to such tasks. Temporal consistency refers to

the observation that temporally adjacent video shots have similar visual and semantic content.

This implies that the relevant shots matching a speci�c semantic concept or a query topic

tend to gather in temporal neighborhoods or even appear next to each other consecutively.

1Reduced images formed from the collection of scaled Discrete Cosine (DC) coe�cients in intra-coded
discrete cosine transformation compressed video retain �global� feature.
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Temporal consistency provides valuable contextual clues to video analysis and retrieval tasks.

In our approach, the relevance of a given shot with respect to a semantic concept or query

topic is determined based on its own content and independently from its neighboring shots.

With temporal consistency, one can make more informed prediction as to the relevance of

the shot by considering the relevance of its neighboring shots, thus enhancing the overall

performance of the predictions.



Appendix A

Support Vector Machines

Support Vector Machines (SVMs) were introduced as a machine learning method by Cortes

and Vapnik Cortes and Vapnik [1995]. The objective is that given a two-class training set they

project datapoints in a higher dimensional space and attempt to specify a maximum-margin

separating hyperplane between the datapoints of the two classes.

We consider SVMs in the binary classi�cation setting. Given training data x1, x2, . . . , xn

that are vectors in some space X ⊆ Rd. Also given their labels y1, y2, . . . , yn where yi ∈
{−1, 1}. SVM hyperplanes the training data by a maximal margin. All vectors lying on one

side of the hyperplane are labeled as -1, and all vectors lying in the other side are labeled as

1. Support vectors are the training instances that lie the closest to the hyperplane. There

exist di�erent cases of SVM, we will review brie�y some cases.

A.1 Linear separable case

Suppose we have some hyperplane which separates the positive from the negative examples.

The points x which lie on the hyperplane satisfy w.x + b = 0, where w is normal to the

hyperplane, |b|
||w|| is the perpendicular distance from the hyperplane to the origin, and ||w|| is

the Euclidean norm of w. Suppose that all the training data satisfy the following constraints:

xi ·w+ b ≥ +1 for yi = +1 (A.1)

xi ·w+ b ≤ −1 for yi = −1 (A.2)

which can be combined as :

yi(xi ·w+ b) ≥ 0 ∀i (combined constraints) (A.3)

Consider the points for which Equation (A.1) holds. These points lie on the hyperplane

H1 : xi ·w+ b = 1 with normal w and perpendicular distance from the origin |1−b|||w|| . Similarly,

the points for Equation (A.2) holds lie on the hyperplane H2 : xi ·w + b = −1, with normal

again w, and perpendicular distance from the origin |−1−b|
||w|| . Hence d+ = d− = 1

||w|| and

the margin is simply 2
||w|| . H1 and H2 are parallel (they have the same normal) and that

147
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no training points fall between them. Thus we can �nd the pair of hyperplanes which gives

the maximum margin (in Figure A.1, corresponds to maximizing the distance d+ + d−) by

minimizing ||w||2, subject to constraints (A.3).

Figure A.1: Linearly separable classes Mueller [2004].

There are two reasons for switching to a Langrangian formulation of the problem. The

�rst is that the constraints in Equation A.3 will be replaced by constraints on the Lagrange

multipliers, which will be much easier to handle. The second is that in this formulation the

training data will only appear in the form of dot products between vectors. This is a crucial

property which allows generalize the procedure to the nonlinear case Burges [1998].

By applying Lagrange multipliers αi, i = 1, . . . , l and taking the resulting dual function,

we get:

LD =
∑
i

αi −
1
2

∑
i,j

αiαjyiyjxi · xj (A.4)

subject to:

αi > 0. (A.5)∑
i

αiyi = 0. (A.6)

with solution given by :

w =
∑
i

αiyixi. (A.7)

Support vector training (for the separable, linear case) therefore amounts to maximizing

the LD with respect to the αi. There is a Lagrange multiplier αi for every training point. In
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the solution, those points for which αi > 0 are called �support vectors�, and lie on hyperplanes

H1 and H2.

A.2 Soft margin

Obviously, not all datasets are linearly separable, and so we need to change the formalism to

account for that. Clearly, the problem lies in the constraints, which cannot always be satis�ed.

So, let's relax those constraints by introducing �slack variables�, ζi. In this case, positive slack

variables ζi, i = 1, . . . , l are added Cortes and Vapnik [1995]. For most xi, ζi = 0. However,
for some it e�ectively moves the point to the hyperplane at the edge of its class, see Figure

A.2.

Figure A.2: Non linearly separable classes Mueller [2004].

The constraint equations are modi�ed as follows:

xi ·w+ b ≥ +1− ζi for yi = +1 (A.8)

xi ·w+ b ≤ −1− ζi for yi = −1 (A.9)

ζi ≥ 0 ∀i (A.10)

The purpose of the variables ζi is to allow misclassi�ed points, which have their corresponding

ζi > 1. Therefore
∑
ζi is an upper bound on the number of training errors. Hence a natural

way to assign an extra cost for errors is to change the objective function to be minimized

from ||w||2
2 to ‖|w||2 + C(

∑
i ζi)

k, The term C
∑

i ζi leads to a more robust solution, in the

statistical sense, i.e., this term makes the optimal separating hyperplane less sensitive to the
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presence of outliers in the training set. C is a parameter to be chosen by the user, a larger C

corresponding to assigning a higher penalty to errors. This is a convex programming problem

for any positive integer k; for k = 2 and k = 1 it is also a quadratic programming problem, and

the choice k = 1 has the further advantage that neither the ζi, nor their Lagrange multipliers,

appear in the dual function, which becomes:

Maximize:

LD ≡
∑
i

αi −
1
2

∑
i,j

αiαjyiyjxi · xj (A.11)

subject to:

0 ≤ αi ≤ C, (A.12)∑
i

αiyi = 0. (A.13)

The solution is again given by

w =
Ns∑
i

αiyixi. (A.14)

where Ns is the number of support vectors. Thus the only di�erence from the optimal hyper-

plane case is that the αi now have an upper bound C.

A.3 Nonlinear SVMs

In most cases, linear separation in input spaces is a too restrictive hypothesis to be of practical

use. Fortunately, the theory can be extended to nonlinear separating surfaces by mapping

the input points into features points and looking for optimal hyperplane in the corresponding

feature space Cortes and Vapnik [1995].

In order to use higher-level functions to classify data using SVMs, the data is �rst mapped

to a higher-order feature space, possibly of in�nite dimension (see Figure A.3):

Φ : Rd 7→ H (A.15)

Because the operations on the xi are always dot products, a kernel function K can be

used to perform the mapping

K(xi, xj) = Φ(xi) · Φ(xj). (A.16)

It will only be necessary to use K in the training algorithm, and would never need to

explicitly even know what Φ is. Thus, the SVM equation becomes:

f(x) =
Ns∑
i=1

αiyiΦ(si) · Φ(x) + b (A.17)
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Figure A.3: Input data mapped to a higher-order feature space Mueller [2004].

=
Ns∑
i=1

αiyiK(si, x) + b (A.18)

where si are the support vectors, subject to:

0 ≤ αi ≤ C, (A.19)

Ns∑
i

αiyi = 0. (A.20)

The solution is again given by

w =
Ns∑
i

αiyiΦ(xi). (A.21)

where Ns is the number of support vectors.

Several common kernel functions are used to map data into higher dimension feature space:

Linear

K(xi, xj) = xi · xj (A.22)

Polynomial kernel:

K(xi, xj) = (xi · xj + 1)d (A.23)

Gaussian radial basis kernel :

K(xi, xj) = e−||xi−xj ||2/2σ2
(A.24)
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Gaussian kernel with χ2 distance (Gauss-χ2):

K(xi, xj) = e−χ
2(xi,xj)/2σ

2
(A.25)

Triangular kernelFleuret and Sahbi [2003]:

K(dt, ds) = −||dt − ds|| (A.26)

Each kernel function results in a di�erent type of decision boundary.

Figure A.4 shows classes that are separable by a polynomial shaped surface in the input

space, rather than a hyperplane.

Figure A.4: Nonlinear classes Mueller [2004].

There are many possible kernels, and the most popular ones are given above. All of

them should ful�ll the so-called Mercer's conditions. The Mercer's kernels belong to a set of

reproducing kernels.

A.3.1 Mercer condition

There exists a mapping Φ and an expansion

K(x, y) =
∑
i

Φ(x)iΦ(y)i (A.27)
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if and only if, for any g(x) such that ∫
g(x)2dx is �nite (A.28)

then ∫
K(x, y)g(x)g(y)dxdy ≥ 0. (A.29)

Mercer's condition tell us whether or not a prospective kernel is actually a dot product

in some space. The theory of Mercer Kernels allows data which may be embedded in a

vector space, such as spectral lines, physical measurements, stock market indices, or may not

arise from a vector space, such as sequences, graphs, and trees to be treated using similar

mathematics.
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