MARTIN GOMEZ RAVETTI

ALGORITMOS PARA O PROBLEMA

DE SEQUENCIAMENTO COM MAQUINAS PARALELAS
E TEMPOS DE PREPARACAO DEPENDENTES DA
SEQUENCIA

Belo Horizonte
Maio de 2007

UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIENCIAS EXATAS
PROGRAMA DE POS-GRADUAGAO EM CIENCIA DA COMPUTAGAO

ALGORITMOS PARA O PROBLEMA

DE SEQUENCIAMENTO COM MAQUINAS PARALELAS
E TEMPOS DE PREPARACAO DEPENDENTES DA
SEQUENCIA

Tese apresentada ao Curso de Pés-Graduacao
em Ciéncia da Computacdo da Universidade
Federal de Minas Gerais como requisito parcial
para a obtencao do grau de Doutor em Ciéncia
da Computagao.

MARTIN GOMEZ RAVETTI

Belo Horizonte
Maio de 2007

FEDERAL UNIVERSITY OF MINAS GERAIS
INSTITUTO DE CIENCIAS EXATAS
GRADUATE PROGRAM IN COMPUTER SCIENCE

ALGORITHMS FOR A SCHEDULING PROBLEM
WITH PARALLEL MACHINES AND SEQUENCE
DEPENDENT SETUPS

Thesis presented to the Graduate Program in
Computer Science of the Federal University of
Minas Gerais in partial fulfillment of the re-
quirements for the degree of Doctor in Com-
puter Science.

MARTIN GOMEZ RAVETTI

Belo Horizonte
May 2007

UNIVERSIDADE FEDERAL DE MINAS GERAIS

FOLHA DE APROVACAO

Algoritmos para o problema
de seqiienciamento com méaquinas paralelas
e tempos de preparacao dependentes da seqiiéncia

MARTIN GOMEZ RAVETTI

Tese defendida e aprovada pela banca examinadora constituida por:

Dr. GERALDO ROBSON MATEUS — Orientador
Universidade Federal de Minas Gerais

Ph. D. PANOS M. PARDALOS — Co-orientador
University of Florida

Dr. REINALDO MORABITO NETO
Universidade Federal de Sao Carlos

Dr. MAURICIO CARDOSO DE SOUZA
Universidade Federal de Minas Gerais

Dr. Luiz SATORU OCHI
Universidade Federal Fluminense

Dr. SEBASTIAN ALBERTO URRUTIA
Universidade Federal de Minas Gerais

Belo Horizonte, Maio de 2007

Resumo

Problemas de seqiienciamento podem ser encontrados nas mais diversas areas da ciéncia.
Se considerarmos aplicacoes industriais, existe um grande numero de problemas que podem
ser modelados através de problemas de seqlienciamento, em especial aqueles relacionados a
problemas de planejamento e programacao da producao.

O planejamento da producao de uma empresa é usualmente realizado considerando dois ou
trés niveis. Cada nivel com diferentes objetivos, mas com uma forte correlacao entre eles. Na
escola classica, num primeiro estigio a empresa trabalha com produtos agregados ou familias
de produtos, onde o foco do planejamento estd na otimizagdo dos recursos utilizados e na
capacidade das plantas. Os problemas de seqiienciamento sdao encontrados no nivel imediato
do planejamento da producao.

O objetivo desta tese é apresentar, discutir e resolver dois problemas de seqiienciamento,
ambos 0s casos estao baseados num caso real de uma empresa Brasileira. O primeiro problema
consiste num caso de maquinas paralelas considerando restri¢oes realistas, como tempos de
preparacao de maquinas dependentes da seqiiéncia e datas de entregas. Para resolver este
problema, em forma exata, sdo propostos trés modelos matematicos e um algoritmo Branch
and Bound. Um algoritmo baseado na técnica de relaxacao Lagragiana é apresentado, seu
principal objetivo é melhorar o limite inferior do problema e dessa forma melhorar o de-
sempenho do algoritmo B&B. O segundo problema considerado é o problema de flow shop

permutacional. Nesse caso, sao propostos e testados dois algoritmos hibridos.

Resumo Estendido

Introducao

Os problemas de seqiienciamento podem ser encontrados nas mais diversas dreas da ciéncia,
tanto em problemas médicos ou biologicos quanto em problemas de administracao. Os prob-
lemas de seqiienciamento surgiram na literatura nos anos 50, e desde entdo muitos grupos de
pesquisa com diferentes formagoes e objetivos vém trabalhando nesta area. O grande interesse
por este tipo de problemas revela por um lado sua importancia para aplicacoes reais e, por
outro, a complexidade e dificuldade do seu tratamento. O cenario industrial foi o escolhido
para o desenvolvimento do nosso trabalho. Os problemas aqui tratados foram baseados em
casos reais acontecidos numa empresa na cidade de Belo Horizonte. O primeiro problema
considera um ambiente de maquinas paralelas e o segundo problema é o bem conhecido flow

shop permutacional.

Trabalhos relacionados e métodos

Para resolver os problemas considerados neste trabalho, foram utilizados métodos heuristicos
e exatos. Para resolver os problemas otimamente, utilizaram-se modelos de programacao
matematica junto com o solver CPLEX assim como também foi desenvolvido um algoritmo do
tipo branch and bound. Quando consideradas abordagens heuristicas, os algoritmos utilizados
foram baseados nas metaheuristicas GRASP, VNS, Path Relinking e algoritmos Meméticos.

Todos esses métodos serao posteriormente detalhados.

Problemas Reais

Como dito previamente, os problemas considerados foram baseados num caso real. A empresa
Z é lider em seu mercado, possui mais de 3000 empregados e este trabalho foi desenvolvido
em uma de suas plantas. Nesta planta em particular sao produzidos cerca de 8000 tipos
diferentes de produtos, todos eles seguindo a mesma seqiiéncia produtiva. A seqiiéncia de
produgao consiste em 5 etapas: dosificacdo, mistura, conformacao (prensado), tratamento
térmico e embalagem. Dentre estas etapas, a de conformagao é a mais critica, tanto do ponto

de vista da qualidade do produto quanto do ponto de vista econdmico.

ii

Objetivos e contribuigoes

O principal objetivo deste trabalho é apresentar varias abordagens para dois grupos e proble-
mas de seqiienciamento: o problema de méaquinas paralelas e o problema de flow shop. Para
modelar e resolver estes problemas utilizamos diferentes algoritmos baseados em métodos
exatos e heuristicos, sempre tentando manter uma ligacao com a aplicagao real, discutindo
vantagens e desvantagens dos métodos e de sua utilizagdo no chao de fabrica.

No primeiro problema considerado, cada tarefa a ser seqiienciada possui uma data de en-
trega, e existe a necessidade de realizar uma preparacao de maquina entre o processamento
consecutivo de duas tarefas. O objetivo do problema é determinar a alocacao e seqiiéncia de
producao de forma a minimizar a soma entre o tempo de conclusdao de todas as tarefas e a
soma dos atrasos ponderados. Para resolver o problema foram propostos trés modelos, um

algoritmo branch and bound e duas heuristicas. Como resultado da pesquisa realizada, resul-

taram trés artigos em revistas internacionais (Idﬁ_Ba.n]_a.jLa.lJ, |2£)Qﬂ; M@ﬂm,
|2JJDj; Rocha. et alJ, |2JJDj) e varias publica¢Ges em conferéncias nacionais e internacionais.

No caso do problema de flow shop, tratamos com o caso especial do problema permuta-

cional, que foi resolvido com dois algoritmos hibridos. Como resultados da pesquisa realizada

foram apresentados os resultados parciais do trabalho numa conferéncia em Julho de 2006,

(Gomez Ravetti, M. et alJ, M)

Primeira Parte - Problema de Maquinas paralelas

Abordagens heuristicas

Neste capitulo é introduzido o primeiro problema e dois algoritmos heuristicos sao propostos,

implementados e testados. Os algoritmos estao baseados nas metaheuriticas GRASP e VNS.

Descricao do problema

O problema, basicamente, consiste na determinacao da seqiiéncia 6tima de produgao de um
conjunto de tarefas. Cada tarefa pode ser processada por qualquer uma das maquinas da
planta. As méquinas sdo ndo relacionadas, e isto implica que os tempos de processamento
necessarios para produzir uma, tarefa podem variar entre as méaquinas. Entre a producao de
duas tarefas é necessério preparar adequadamente a méquina, e 0 tempo dessa preparacao
depende da seqiiéncia das tarefas a serem produzidas e da maquina onde elas estao alocadas.
Cada tarefa possui uma data de entrega, permitem-se atrasos, mas serdo penalizados na fungao
objetivo. O objetivo serd a minimizacao do tempo de conclusao de todas as tarefas mais a

soma dos seus atrasos ponderados.

iii

Greedy Randomized Adaptive Search Procedure

A heuristica desenvolvida neste trabalho foi baseada na estrutura do GRASP basico

(Feo_and Besendgj, |L9_9_d) GRASP ¢ uma heuristica multi-start para problemas combi-

natorios) ; , |L9_9_d) Basicamente, a metaheuristica consiste

em duas fases: a construcao de uma solucao vidvel e uma busca local. Estas fases sdo repeti-
das em todas as iteragoes.

Varias versoes da heuristica foram implementadas e testadas, foram considerados diferentes
algoritmos para a geragao de solugoes viaveis, assim como diferentes buscas locais. Com o
objetivo de intensificar as buscas locais, foram testadas diferentes versoes da heuristica path-
relinking.

O algoritmo heuristico mostrou-se muito eficiente, encontrando as solugdes Otimas em
instancias pequenas e bons resultados para instdncias maiores. Também se mostrou muito
flexivel, j4 que conseguimos testar diferentes fungoes objetivo realizando poucas modificacoes.

Também foi possivel incorporar com certa facilidade restri¢coes encontradas na aplicacao real.

Variable Neitghborhood Search

VNS é uma metaheuristica proposta por (IH.ans_en_and_Nﬂ.a&i&nmLiA, |19_9_d), que sistematica-

mente cambina as estruturas de vizinhancga na busca de boas solu¢oes. VNS nao segue uma

trajetoria especifica, mas pesquisa vizinhangas progressivamente mais distantes da melhor
solucao encontrada até o momento. No nosso caso, diferentes buscas locais foram utilizadas,

de forma a obter um algoritmo mais poderoso, especialmente para instancias de grande porte.

Uma completa andlise do VNS pode ser encontrada em (Hansen and Mladengyid, |L9_9_d, ﬂ)ﬂj)
e (IH.ans_enﬁ_LalJ, |201ﬂ).

Esta heuristica apresentou um excelente desempenho, em especial para instancias acima

das 60 tarefas. A combinagdo das diferentes buscas locais permitiu ndo somente obter solugdes
de qualidade, mas também num tempo de execucao baixo. Sendo uma excelente opcao a ser

utilizada na solugdo do caso real.

Modelos e o algoritmo de branch and bound

Neste capitulo dois modelos sdo comparados e testados, assim como um algoritmo branch and
bound.

O primeiro modelo estd baseado num grupo de restri¢ées propostas por (@), para
o problema de seqiienciamento do tipo job shop. Estas restri¢oes sdo aquelas que permitem
modelar corretamente a dependéncia da seqiiéncia nos tempos de preparacao de maquinas.
Basicamente, sao analisadas todas as combinacoes de seqiiéncia de tarefas para cada uma das

méquinas. Este tipo de modelo permite uma facil leitura do problema, mas seu desempenho

v

nao é bom resolvendo problemas com até 15 tarefas. Os limites obtidos mediante a relaxagao
linear do modelo também sao de baixa qualidade.

O segundo modelo estd baseado numa series de restricGes propostas por M (@)
O modelo associa cada uma das tarefas a uma posicdo de processamento numa das maquinas,
ao invés de considerar a posicao relativa de cada par de tarefas, como no modelo anterior.

O branch and bound é essencialmente um algoritmo de enumeragdao em arvore, que de
forma inteligente elimina solugdes que garantidamente nao sao solugdes 6timas. O algoritmo
tem trés procedimentos basicos, inicializagdo, branching e bounding. Durante a fase de ini-
cializagdo, uma rapida heuristica é utilizada para encontrar uma solucao inicial, que servira
como limitante superior LS.

Branching divide o problema em subproblemas menores. Cada subproblema é representado
por um no6 da arvore. A estratégia de busca deve estar relacionada com o branching para decidir
qual n6 devera ser selecionado para subdividir novamente o problema. O LS permite descartar
0s noés da arvore onde a solugao representada obterd resultados melhores que a melhor solucao
obtida até o momento. Para determinar isto calcula-se um limite inferior LI. O procedimento
bounding calcula o LI para cada né para decidir qual deles pode ser eliminado e qual sera
escolhido para a proxima divisao.

Com relagdo ao desempenho dos algoritmos e modelos, foram resolvidas instancias de até
25 tarefas. Foi demonstrado que o B&B possui um desempenho muito melhor que ambos
os modelos resolvidos utilizando o solver CPLEX 9.0. Um aumento na variacao dos tempos
de preparacao de méaquinas parece incrementar o numero de subproblemas ou divisoes que
o algoritmo precisa realizar, mas o incremento nas datas de entrega ou nos tempos de pro-
cessamento produz o efeito contrario, diminuindo o nimero de subproblemas analisados e,

consequentemente, o tempo de execucao.

Limites Inferiores

Na literatura a minimiza¢ao do makespan (tempo de conclusao das tarefas) e a soma dos
tempos ponderados sao problemas geralmente analisados separadamente. Neste trabalho sao
considerados como um tunico problema, devido a que é inspirado num problema real e a
empresa requer a sua consideracdo em conjunto.

Neste capitulo, propomos um novo modelo onde, através da discretizacao do tempo e da
metodologia conhecida como relaxagao lagrangena, podemos melhorar os limites inferiores
do problema. A relaxacdo apresentada resulta muito atrativa porque podemos decompor o
problema em outro de emparelhamento que pode ser resolvido de forma eficiente. Vale advertir
que somente foram testadas instancias de pequeno porte e novos testes considerando instancias

maiores sao necessarios, ja que o desempenho pode mudar consideravelmente.

Segunda Parte - Flow Shop

Flow shop permutacional

Nesta segunda parte do trabalho, consideramos o bem conhecido problema de flow shop per-
mutacional. O problema encontrado na empresa pode ser representado como um caso especial
de flow shop, motivo pelo qual inicialmente consideramos o problema permutacional.

O problema consiste em encontrar a seqiiéncia de processamento 6tima de forma a mini-
mizar o tempo necessario para processar todas as tarefas. Neste problema, a seqiiéncia pro-
dutiva consiste em M estégios, de forma que um produto é completado depois de passar por
todos os estagios. Todos os produtos possuem a mesma seqiiéncia produtiva e, ainda no caso
permutacional, a seqiiéncia de processamento das tarefas utilizada na primeira maquina deve
ser mantida em todas as maquinas dos diferentes estagios.

Para resolver este problema foram propostas duas heuristicas hibridas, ambas heuristicas
mantém as caracteristicas das metaheuristicas GRASP e Iterated local Search (ILS), ou seja,
possuem uma fase de construcao de solucao vidvel e um estagio de busca local. Novamente,
foi mantido um conjunto de boas solugdes para que através da heuristica path-relinking seja
intensificado o poder das buscas locais.

As heuristicas possuem um comportamento de algoritmo Memético, utilizando o conjunto
de boas solugdoes como populagao inicial. As implementacoes realizadas se diferenciam no
momento no qual o algoritmo Memético é ativado.

Num caso, o algoritmo chama o Memético depois que, num certo namero de iteragoes, a
melhor solugdo nao é melhorada. Desta forma espera-se que o conjunto de solucdes possa ser
melhorado ou evolua de forma que a heuristica possa investigar novas regioes do espaco de
solucoes.

No segundo caso, o algoritmo chama o Memético somente no final da busca, assim, a
heuristica tem como objetivo bésico alimentar o algoritmo Memético com uma populagao
diversificada e de "boa qualidade".

A segunda versdao mostrou um desempenho ligeiramente melhor. Numa etapa posterior
da pesquisa serao incorporados estagios com maquinas paralelas e as restri¢oes relativas aos

tempos de preparacao de maquinas.

Conclusoes e trabalhos futuros

Na primeira parte da tese, a pesquisa foca-se num problema de seqiienciamento de tarefas
com restricoes que nao sdo comumente encontradas na literatura. O problema considera
tempos de preparagao de méquinas dependentes da seqiiéncia, datas de entrega e méquinas
nao relacionadas. O objetivo é encontrar a seqiiéncia que minimize a soma do makespan e a

soma dos atrasos ponderados.

vi

No capitulo 2, duas heuristicas foram propostas e testadas. A primeira foi baseada no
GRASP. Esta abordagem provou ser muito flexivel ja que resulta relativamente simples mod-
ificar o algoritmo para outros propoésitos e situagoes. Outra vantagem é que possui poucos
parametros, os quais podem ser facilmente ajustados. Neste caso particular, o tempo gasto
pelo algoritmo é muito razoavel se consideradas as restricoes consideradas.

O segundo algoritmo foi baseado na metaheuristica VNS. Foi realizada uma serie de exper-
imentos comparando o VNS com trés diferentes versoes do GRASP, cada uma com diferentes
buscas locais. Analisando os resultados computacionais, foi observado que VNS obteve bons
resultados médios para instancias com 60 tarefas ou mais, especialmente para aquelas com
datas de entrega apertadas. A combinagdo de trés buscas locais provou ser muito eficiente, de
simples implementacao e sem a necessidade de ajustar muitos parametros.

No capitulo 3, um algoritmo BéB utilizando GRASP como heuristica de inicializagao,
e dois modelos de programacao inteira e mista foram propostos e testados. Também como
contribuicao podemos citar a geragdo de um conjunto de instancias com diferentes valores de
datas de entrega, tempos de preparagdo de maquinas e tempos de processamento.

Foi provado que o algoritmo Bé&B possui um desempenho muito superior que os modelos
de MIP resolvidos com o CPLEX 9.0. Um aumento na variagdo no tempo de preparacao de
méquinas incrementa o nimero de nds que o algoritmo deve pesquisar, mas o incremento na
variagdo das datas de entrega ou nos tempos de processamento parece favorecer o algoritmo
reduzindo o nimero de nés pesquisados.

No capitulo 4, é introduzida a formulacdo que utiliza o tempo em forma discreta e propoe-
se um algoritmo baseado na relaxagdo Lagrangeana do modelo para melhorar os limitantes
inferiores do problema. A relaxacdo do modelo parece ser prometedora porque foi possivel
decompor o problema original num problema de emparelhamento que pode ser resolvido de
forma eficiente. Mesmo assim, é importante destacar que somente foram testados problemas
de pequeno porte e que resulta necesséario testar problemas maiores ja que o desempenho do
algoritmo poderia variar.

Na segunda parte da tese trabalhamos com o problema do tipo flow shop. Foram propostos
dois algoritmos hibridos baseados no GRASP, ILS e em algoritmos Meméticos para o caso
permutacional. Numa primeira abordagem utilizamos um algoritmo do tipo GRASP-ILS que,
mantendo um conjunto de boas e diversificadas solugoes, permitisse o algoritmo Memético
comegar com uma populacao de boa qualidade. Na segunda abordagem, o algoritmo Memético
é chamado cada vez que o algoritmo GRASP-ILS atinge um estagio de estagnagdo por certo
numero de iteragoes.

O melhor desempenho foi obtido pela primeira abordagem, isto é, utilizando inicialmente
o algoritmo GRASP-ILS para depois chamar o algoritmo Memético. Os resultados sdo bem
competitivos ja que nas instancias mais dificeis do conjunto proposto por Taillard, 100 tarefas

e 20 estagios, o algoritmo pode encontrar solugoes a 2.5% da melhor solu¢ao conhecida em

vil

menos de 80 segundos em 80% dos casos.

Trabalhos futuros

Considerando o problema de maquinas paralelas, atualmente estamos trabalhando em trés
diferentes projetos. O primeiro considera a utilizagdo de um algoritmo do tipo Local Branching
que serd comparado com os modelos propostos e com o algoritmo BéB.

Em muitos cendrios, especialmente no planejamento da producgdo, problemas de grande
porte devem ser resolvidos. Por este motivo, o segundo projeto analisa a implementacao de
uma heuristica que considera uma arquitetura distribuida.

O terceiro projeto contempla a integracdo de dois niveis do planejamento da producao,
propondo um esquema iterativo para gerar um plano de producao que considere restri¢oes do
seqiienciamento.

Considerando o ambiente flow shop, estamos trabalhando no problema conhecido como flow
shop flexivel. Neste caso, cada estagio pode estar composto por mais de uma méquina, onde
cada uma pode realizar qualquer uma das tarefas. Para este problema, estamos trabalhando

em limites inferiores, modelos e heuristicas.

viii

Abstract

Scheduling problems can be found in the most diverse areas of science. If we consider industrial
applications, there are a big number of problems that can be modeled as a scheduling problem,
especially those related to production planning.

The production planning of a company is usually done considering two or three planning
levels. Pursuing different objectives, but with a strong correlation between them. In the
classic school, in a first stage the company works with families of products where the main
focus is the optimization of resources and the capacity of the plants. The scheduling problems
are found in the level of the immediate production planning.

The aim of this dissertation is to present, discuss and solved two scheduling problems,
both cases are based on a real problem from a Brazilian company. The first problem consists
in a parallel machine case in which realistic constraints, as sequence dependent setups and
due dates, are considered. To solve this problem, three mathematical models and a branch
and bound algorithm are proposed to find the optimal solution. Two heuristics, based on the
metaheuristics GRASP and VNS, are also implemented and tested. An algorithm based on a
Lagrangian relaxation is also proposed, the main objective of this algorithm is to improve the
problem’s lower bounds and consequently the performance of the branch and bound algorithm.
The second problem is the well known permutation flow shop problem. In this case, two hybrid

algorithms are proposed and tested.

X

To Julia and Laura

Acknowledgments

There are several people who deserve my sincere acknowledgments. First, I would like to thank
my advisor, Professor Geraldo Robson Mateus, for his inestimable support, knowledge, guid-
ance and encouragement. Without his common-sense this dissertation would be an extremely
difficult task.

[have the great opportunity of studying at the University of Florida, under the supervision
of Dr. Pardalos. His commitment, dedication and willingness were inspiring and provide me
many opportunities. I want also to thank Dr. Mauricio G. C. Resende, with whom I have the
privilege to work with. His friendship, advises and comments were priceless.

[am very grateful with my committee members Professor Reinaldo Morabito Neto, Pro-
fessor Luiz Satoru Ochi, Professor Mauricio C. de Souza and Professor Sebastidan A. Urrutia,
for the time spent in the evaluation of this work and valuable feedback.

I have the great pleasure and honor to work with Fabiola G. Nakamura, Pedro Leite Rocha,
Mateus Rocha de Paula, Frederico P. Quintao, Claudio N. Meneses, Michael J. Hirsch, Tais
Valeriano, Marcos Magalhaes, Adriana A. de Oliveira and Luciana Assis.

All my colleagues of the Computer Science Department at the Federal University of Minas
Gerais, and colleagues of the Laboratory of Operational Research (LaPO): David(s), André(s),
Raquel, Pedro, Luciana, Tais, Marcos, Braulio, Flavio, Gleice, Fernanda, Gurvan, Cristiana,
Naka, Mauricio, Vilar, Ruiter, Fabiano, Luiz, Wagner, Joao, Ricardo, and many others.

Thanks go to all the faculty and staff of the Computer Science Department at the Federal
University of Minas Gerais. Their support and help allow me to focus on my work and have
a good time during my years at BH.

I want to give big thank to my family and friends, for their trust and encouragement. And,
finally, I owe my eternal gratitude to my hidden co-author and advisor, Laura. Her love and

support make this dissertation worthy and possible.

x1

Contents

1 Introduction

1.1

1.2

1.3

1.4
1.5

Scheduling Problems L L
1.1.1 Parallel machines
1.1.2 Flowshop e
1.1.3 Problem definition and classification
Related works and methods o Lo
1.2.1 Branch and Bound (B&B)o
1.2.2 Greedy Randomized Adaptive Search Procedure (GRASP).
1.2.3 Variable Neighborhood Search (VNS)
Contextualization o
1.31 Realcase
Objectives and contributions L L Lo
Organization of the text oo

Parallel Machines

2 Heuristic Approaches

2.1
2.2
2.3

24

Introduction
Problem description
Greedy Randomized Adaptive Search Procedure
2.3.1 Sortingrules
2.3.2 Construction phase
2.3.3 Probability distribution and local search
2.3.4 Path Relinking Lo
2.3.5 Versions of GRASP
2.3.6 GRASP experiments
Variable Neighborhood Search
24.1 VNSalgorithm
2.4.2 The initial solution o

xii

oo |~ [orm | Sy [o | v~ | v | oo [om | om [om | == | =

II

2.5

2.6

2.4.3 Random solutions
2.4.4 Thelocal searches
Computational results Lo
2.5.1 Results

Concluding remarks and Future Research

Models and a Branch and Bound Algorithm

3.1
3.2

3.3

3.4
3.5

3.6

Introduction
Models o e
3.21 First Model
3.22 Second Model
The Branch and Bound Algorithm
3.3.1 Initialization Based on GRASP
3.3.2 Branching
3.33 Bounding e
Instances L
Tests and Results o
3.5.1 Comparing the B&B and the MIP Models
352 DueDates.
3.5.3 Processing Time o
3.54 Setup Time
3.5.0 Larger Instanceso
Concluding remarks and future research 0.

Lower Bounds

4.1 Time-Indexed Formulation o oL
4.1.1 Parameters and variables L.
4.1.2 Mathematical models o

4.2 Lagrangian relaxation o Lo
4.2.1 Introduction
4.2.2 Relaxing the problem o o Lo
4.2.3 Proposed Algorithm
424 Preliminary Results oo

4.3 Conclusions and future works L o Lo

Flow Shop

Permutacional Flow Shop Problem

5.1

Introduction e

2.2
5.3

0.4

2.5

2.6

Model o e
GRASP-ILS e
5.3.1 Construction phase L
532 ILS
5.3.3 GRASP
534 Local Search
5.3.5 Path-relinking
5.3.6 Hybrid GRASP-ILS
Memetic Algorithm
5.4.1 Mutation Operator (M)
5.4.2 Path Crossover (PX)
543 Cold Restart
5.4.4 Hybrid algorithms L
Computational Results
5.5.1 Calibration
5.5.2 Performance Analysis oo
Concluding Remarks and future research

ITIT General Conclusions and Future Research

6 Summary and concluding remarks

6.1

Future works e

Appendices

A Models comparison

B GRASP and exact solutions

C NEH as first solution

Bibliography

Xiv

List of Figures

1.1

2.1

2.2
2.3

24

2.5

2.6

2.7

3.1
3.2
3.3
3.4
3.5

4.1

5.1

Real case exemplification.

APD for the six versions with the best results, considering 60, 100 and 150 jobs.
Time in seconds
Heuristic’s seed dependence,(third part)
Results for instances with long range due dates. VNS is indicated by the curve
with squares as vertexes.
Results for instances with short or long range due dates. VNS is indicated by the
curve with squares as vertexes.
Results for instances with short range due dates. VNS is indicated by the curve
with squares as vertexes. e e
Computation time [seconds| for instances with short or long due dates. VNS is
indicated by the curve with squares as vertexes.
APD confidence intervals for 150 job instances. GRASP1, GRASP2 and GRASP3
represents the GRASP algorithms using local searches 1,2 and 3, respectively (see

subsection 2], L

First and Second branching scheme.
MIP vs. B&B
Varying the due dates Lo
Varying the processing times L o

Varying the setup times L
Time-indexed variable example oL,

Example of the path-relinking procedure. At each step, a random position is
chosen and from this point, in a cyclic order, three possible changes are analyzed.
The letter ‘S’ indicates which solution is selected for the next step. This solution
corresponds to the best move analyzed. Only five steps are performed if the guiding

solution is not reached first. L

XV

5.2

2.3
5.4
2.9

PX — S indicates the offspring with better objective function and X the discarded
offspring. The first position to check is randomly chosen.
Hybrid algorithm structures.
95% confidence intervals for hybrid algorithms.
CPU time (seconds) needed to reach a solution no further than 2.5% of the best

known upper bound. The time is on a logarithmic scale.

XVl

List of Tables

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16
2.17

Configurations of the heuristic for the experiments. The column SR shows the
sorting rule chosen, FPR indicates the number of iterations between the use of PR,
PD indicates the probability distribution F'1 = 1/pos(i) or F2(i) = —(pos(i)/n)+1
and finally the column CP indicates if is used a deterministic or a random approach.
PD for each version of GRASP with the same seed and 15000 iterations, considering
20 jobs. ..o
PD for each version of GRASP with the same seed and 15000 iterations, considering

60 jobs. . . . L E

PD for each version of GRASP with the same seed and 15000 iterations, considering

100 jobs. . . . L e E
PD for each version of GRASP with the same seed and 15000 iterations, considering
150 jobs. . . . L E
APD for each version of GRASP and for each instance size. @
Average computation times considering 60, 100 and 150 jobs. Time in seconds . . . |£I
APD results for the GP version considering different number of iterations [thou-
sands|(second part). |£I
APD results for the GPL version considering different number of iterations [thou-
sands|(second part). E
APD results for the GPLF version considering different number of iterations [thou-
sands|(second part). E
APD results for the GPLFC version considering different number of iterations
[thousands|(second part). E
APD results for the GPS version considering different number of iterations [thou-
sands|(second part). L E
Results considering different seeds (third part) E

Results applying PR after different numbers of iterations (FPR) for the GP version. @
APD for different configurations of machines
Three different versions of GRASP oo @
APD results for the VNS algorithm. Each column presents results for a different

number of jobs. L e e

3.1

3.2

3.3

3.4

3.5

3.6

4.1

5.1

5.2

5.3

5.4

2.5

Al

B.1
B.2
B.3

C.1

Standard values of the instances o L. @
Spent CPU time and variation by the two MIP models and the B&B @
Number of branched nodes and standard deviation varying the due dates with the
B&B . @
Number of branched nodes and standard deviation varying the processing times
with the B&B o o B
Number of branched nodes and standard deviation varying the setup times with
the B&B e @
Comparing the B&B and GRASP performance on larger instances E

Comparison between lower bounds. Columns MKS-LB and DEL-LB present the
average values of the lower bounds for makepan and delays, respectively. Column

Imp indicates the number of times the LB was improved by the relaxation approach.

Average percentage increase over the best known solution for GRASP-ILS varying

the path-relinking frequency parameter PRF.
Comparison between crossover operators listing m, the average percentage increase over

the best known solution, and the number of times in which each variant obtained the best
solution in the comparison. L. L e e e e e e e E
Average relative percentage deviation for different GRASP-ILS and MA load balances.

G/M indicates G% of running time allocated to GRASP-ILS and M% of running time
allocated to MA. L L @
Average relative percentage increase for Taillard instances. Column CPU 1 indi-

cates the average time (in CPU seconds) spent to find the best solution. Column

CPU 2 indicates the average time (in CPU seconds) taken by the algorithm hybrid

Average relative percentage increase for Taillard instances. Column CPU 1 indi-
cates the average time (in CPU seconds) spent to find the best solution. Column
CPU 2 indicates the average time (in CPU seconds) taken by the algorithm hybrid

Comparison between the proposed models. L. @

GRASP solution for instances with 5 jobs and 2 unrelated machines. @
GRASP solution for instances with 10 jobs and 6 unrelated machines. @
GRASP solution for instances with 15 jobs and 6 unrelated machines. @

NEH and GRASP solutions for instances with 100 jobs and 6 unrelated machines. @

Xviil

Chapter 1

Introduction

Scheduling problems can be found in the most diverse areas of science, from biological and
medicine to administration problems. In computer science, different scheduling problems are
found in areas like computer architecture, information retrieval and computer networks. If we
consider industrial applications, there are a big number of problems that can be modeled as
a scheduling problem, especially those related to production planning.

Scheduling problems first appeared in the literature in the 1950’s. Several research groups
with different backgrounds and different approaches have been working in this area. However
there is still space for new research, indicating not only the complexity and difficulty of
these problems, but also their importance for real applications. It is possible to find journals
dedicated only to these problems.

This research was initially based on a real case study of a company located in Belo Hori-
zonte. From the analysis of the real case, two problems were successfully considered and solved
by using different approaches (Gomez Ravetti, M/, 2003). The scheduling problem family is
impressive, and for that we focus in two cases found in this real case: the first one considers

a parallel machine environment and the second one a flow shop environment.

1.1 Scheduling Problems

Scheduling problems consist in allocating limited resources to a set of activities that have to
be done, in such a way that certain criteria are optimized.

If scheduling problems are considered in a general way, it is easy to visualize them in almost
every real-world situation. However, when dealing with real cases, their own specificity make
them unique, and this specificity should be taken into account for modeling and solving them
(Blazewicz et all, 11996).

1. INTRODUCTION 2

1.1.1 Parallel machines

In this environment we have a set of independent tasks or jobs to be scheduled on parallel
machines. The machine types, the criterion to be optimized and different features considered
during the optimization process define the complexity of the problem. As well as, allow us to
make a classification of different problems.

The machines can be identical, uniform or unrelated:

Identical machines The processing times of each job or task are independent of the machine

which processes it. The most common notation to this environment is P.

Uniform machines Each machine has a different speed, and the processing time needed to

get a job done remains proportional for all the jobs. The notation is U.

Unrelated machines There is no particular relation between the machines. The processing
time for each job has no relation to the processing time of the same job in any other

machine. The notation used in this case is R.

|MQI£MLﬂ} (IZMl]J) presents a survey on parallel machines, with an emphasis on identical
machines. Other interesting surveys are (Cheng and Sin, |L9})d) and (Lawler et alJ, M) In

Chapters 2], Bl and @], we deal with this environment, considering realistic constraints.

1.1.2 Flow shop

This is a specific case in which dedicated machines are considered, that is, they are specialized
for the execution of certain tasks. A flow shop consists of a set of different dedicated machines
that performs tasks of jobs. It is assumed that each job needs the same set of tasks to be
done, and each machine is dedicated to one of these tasks, also called stages.

The most studied case in the flow shop scenery is the Permutation Flow Shop Problem
(PSFP). This is the case in which each machine processes the jobs in the same order. Once
the production sequence is set, it will remain the same for all machines (stages), this problem
is known to be NP-Hard when minimizing the conclusion time and the number of machines

is greater than 3, see (|C4)ff_maﬂ, 192&; Kan, 192d). In our dissertation we tackle this problem

in Chapter [l

1.1.3 Problem definition and classification

There is a vast number of features and variations that can be considered in scheduling problems
and they have an important role in determining the complexity of the problems.

In general, the activities or tasks can be characterized by the following data:

e Processing times, p;,, time needed by machine m to process task 1.

1. INTRODUCTION 3

e Arrival time, 7;, time at which task 7 is ready for processing.

e Due date, d;, time at which task ¢ should be completed.

e Deadline, d;, this is a "hard" deadline; the task i must be completed before d;.
e weight, v;, degree of importance or priority of task i.

e Resources needed for each task.

In this work it is assumed that the number o jobs are finite and all the mentioned data
are integers, and whenever the schedule starts all the resources or setups are ready to the first
job. Preemption is not allowed, that is, once the machine begins to process any task, it must
finished before processing another task.

Another important definition is related to the criterion chosen to evaluate the schedules.

The most common criteria are:

Completion time or makespan C),,; or Z, time needed to complete all the jobs. It is the

maximum completion time C; for all tasks j.

Mean Flow time F = Z?:l F;, where F; = C; — rj, F} represents the difference between

the completion time of a task j and the date when the task is ready to be processed.
Maximum lateness Lo, = max{L;}, where L; = C; — d; represents the delay of task j.

There are other related criteria that can be used, like minimizing the earliness or tardiness,
the number of weighted delays or the number of delayed jobs. For more details on definition
and other criteria and features, see (Iﬁamll, M), (Iﬁai_e&mz_e&_aﬂ, |L9_9_d), (mgd, |L9_9§|) or
(Brucker, 2004).

1.2 Related works and methods

In this section we present some works related to the research presented in this dissertation. As
the particular problems are introduced and defined, specialized references will be incorporated
and analyzed for each case.

The problems analyzed in this work were based on a real case and to solve them we used
heuristic approaches and exact methods. For solving the problems optimally we use mixed
integer lineal programming models with the CPLEX 9.0 ! solver and a proposed Branch-and-
Bound algorithm. When considering heuristics approaches we use heuristics based on GRASP,
VNS, ILS, and hybrid approaches using Memetics Algorithms, Path Relinking and polynomial

time heuristics as NEH. Below we introduce some of the methods used in this dissertation.

L CPLEX Software: an optimizer for linear problems developed by ILOG. More information at their website:
http: //www.ilog.com/products/cplex/

1. INTRODUCTION 4

1.2.1 Branch and Bound (B&B)

Branch and Bound is a general algorithmic method that basically enumerates all feasible solu-
tions of various optimization problems and it is especially used with discrete and combinatorial
problems. Its name implies in two main procedures: Branching is the procedure of dividing
into two or more subproblems mutually excluded. Bounding calculates lower bounds on the
optimal solution for each subproblem generated in the branching procedure. The algorithm
can be represented as a enumeration tree, then it is possible to set as the root node the original
problem. Each subproblem obtained by the branching procedure will be a tree node in the
next level. Assume that in some stage of a branch and bound algorithm, a solution x” has been
obtained for a minimization problem. And, let’s also consider that the bounding procedure
obtain a lower bound b for one node of the tree. If b > f(2’) then the node do not need to be
considered any further because the node will never led the algorithm to the optimal solution
x*. For this reason, the branching procedure is not executed from this node. Different families

of algorithms are based on how the bounding and branching strategies are designed.

1.2.2 Greedy Randomized Adaptive Search Procedure (GRASP)

Greedy Randomized Adaptive Search Procedure, GRASP is a multi-start metaheuristic for

combinatorial problems ([&Q_a.nd_BﬁwndA,hf)_Qd; [@Mﬁ al.|,|19_9d). This metaheuristic consists

of two phases: the construction of a feasible solution in a greedy-random way and a local search,

to improve the constructed solution. These phases are repeatedly applied, that means, the
metaheuristic uses local search in different starting solutions.

The construction phase is based on a greedy algorithm but with an association to a random
procedure. This combination allows the method to combine a greedy algorithm and a random
procedure, to produce starting solutions for local search.

One of the main drawbacks of this method is that the iterations are memoryless. Each
iteration has no relation with the next one. Thus, the use a memory-based mechanism can im-

?rove its efficiency. Several mechanisms are discussed and analyzed in (IBfﬁ_endf_a.nd_Bﬂﬁi.rd,

). Two mechanisms are used in this work, the first being Path Relinking, and the second

being a hybrid method based on a Memetic Algorithm.

1.2.2.1 Path Relinking

The Path Relinking (PR) technique is used as search strategy in many heuristics
(IGlover and Laszunal, |_L9_9_7|), dGlm&rl, |2£)Dd) In 1999 it was used in a GRASP environment

by [Laguna and Marti (ILQ9_d) Resende and Bibeirgl dﬂ)j)ﬁ_bl) present and analyze two strate-

gies:

e PR as a tool to improve the solution found by GRASP.

e PR as a strategy to intensify the local search procedure.

1. INTRODUCTION 5

The algorithm selects two solutions and analyzes a path of solutions found between both.
This path is built around some number of job movements. For each movement, the encountered
solution is analyzed.

In this work, we use path relinking to intensify the local search. Even so, there are several

ways to implement this technique, ibei) mention a few:
e Periodic use of path relinking.

e Use of path relinking in the two possible directions, that is, from solution x1 to solution

z9 and from x5 to 7.
e Use of path relinking in only one direction.

e Use of truncated path relinking. That is, by analyzing only part of the path.

We also refer to (|Ee£Le$_a.L|, |19_9_l|, |19_9_d), where we find applications of GRASP for one-

machine scheduling problems, (Binato et alJ, M) which present an interesting application
of the metaheuristic for job shop problems, ,) where a bibliography
of GRASP is presented and n nd Ribeiro, Mal) where we find an interesting and

useful analysis of the applications of PR in GRASP

1.2.3 Variable Neighborhood Search (VNS)

Variable Neighborhood Search (VNS) is a metaheuristic proposed in (Hansen and MladenQyigJ,

), which systematically changes neighborhood structures. VNS does not follow a tra-

jectory but investigates progressively more distant neighborhoods of the current incumbent
solution. In our case, we also use different local searches to obtain an even more powerful
algorithm.

A very complete study about VNS can be found on (IH.a.ns_Qn_a.n_d_MLa.d&nmLigj, |19_9_d, |2£)ﬂ_3i)
and (Hansen et alJ, M) This metaheuristic is successfully applied to solve various problems

such as the p-median problem fa-L6 ,), the multi-depot routing problem

(Polacek et alJ M) and several other classical problems (Hansen and Mladenovi ,|L9_9_d),
id, 2003).

2

1.3 Contextualization

Nowadays it is difficult to find companies that deal with these problems efficiently, that means,
finding good solutions in adequate time. This is one of the main purposes for our research.
For that, we tried to maintain real characteristics, in modeling and specification level, as well
as in the trade off between the quality of solution and processing time.

We choose an industrial scenario for our problems, more specifically, a production planning

situation. In most cases, the production planning is done in different levels and pursuing

1. INTRODUCTION 6

different objectives, but with a strong correlation between them. In the classic school, in a first
stage the company works with families of products where the main focus is the optimization
of resources and the capacity of the plants.

The scheduling problems are found in the level of the immediate production planning.
That is, those responsible for these tasks usually receive the production orders or tasks that
have to be processed before a certain date. It is usual that at this stage the main concern
when solving these problems are: (i) to finish all the tasks as soon as possible, (i) to respect
the due dates, (774) minimize delayed jobs, and other similar criteria. It is easy to see that
many of these objectives can be conflicting with each other, hence there is a need of looking
for flexible methods and with an easy understanding. The production planning of a company
is far from being a simple and exact process; even the company’s policies have a decisive roll

in this process. In next section we introduce the problem from which we based our work.

1.3.1 Real case

The problems studied in this work were based on a real case, from a Brazilian company, that
we will refer as company Z. Company Z is a leader in its market and has more than 3000
employees, our work was based in one of its many plants.

In this particular plant, it is produced more than 8000 products, all them with the same
production sequence that consist in 5 stages: material input measurement, blending, confor-
mation, heat treatment and packaging, see Figure [[Jl In each of these stages the company
has more than one machine and most of the products can be processed by any machine at a
particular stage.

The main production stage is the conformation stage, and this is because the quality of
the product is extremely related to the quality of its conformation and because this is the
most difficult process in this production sequence. For all these reasons, company Z has been
investing a lot in this particular stage. Nowadays it has 7 machines, 4 of them are identical
but they need manual work, the others are unrelated and more advanced.

The production planning of this plant is made by planning their sales in the conformation
stage and once the production plan is set, all other stages are adjust. Capacity problems in
other stages are not common but when happen they are easily solved. The original case is a

flexible flow shop.

1.3.1.1 Assumptions and simplifications

For our work we are going to make some simplifications and assumptions to define two specific
problems.
The first problem considers a parallel machine environment. This case represents the

problem of scheduling all the jobs considering only the conformation stage. We assume that

1. INTRODUCTION 7

Job
Complete

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 1.1: Real case exemplification.

all the machines are unrelated and they can process all the jobs. The processing times and
setup times values are integers, due dates are considered and delays are allowed.

For the second problem, we suppose a flow shop environment, that is, one machine per
stage is considered and all the jobs must pass for each stage in the same order to be completed.
No setup times are considered neither due dates.

For both cases, preemptions are not allowed. A more detail description will be given

forward.

1.4 Objectives and contributions

The main objective of this dissertation is to present several approaches for two groups of
problems,; the parallel machine problem and the flow shop problem. To model and solve these
problems, we use several algorithms based on exact methods and heuristics, always striving
to remain linked to real applications, discussing advantages and disadvantages of the different
models and methods.

In the first problem, the parallel machine case, we are considering that each job has a due
date, and there is a need of a setup between the process of two different jobs in the same
machine. The objective is to minimize the completion time plus the sum of the weighted

delays. To solve this problem we analyze three mathematical models, propose a branch and

bound algorithm and two heuristics. As a result of our research three journal papers were
published (de Paula et all, 2007; (Gémez Ravetti, M. et all, 2007; Rocha et all, EDE(E) and 6
conferences papers were presented.

In the flow shop case, we deal with the permutation problem, and we solved using two

hybrid algorithms. As the result of our research in flow shop problems we present our work

at a conference in July of 2006, (IGQm.eZ_B.a.m_ti,_M._@_alJ,

1. INTRODUCTION 8

1.5 Organization of the text

The dissertation is organized in three parts. In the first part, we deal with the parallel machine
scenario.

In Chapter 2 two heuristics are proposed and analyzed. The algorithms are based in
two well known metaheuristics, GRASP and VNS. In Chapter Bl we formally introduce two
mathematical models and compare the solution obtained using a commercial software with a
proposed Branch-and-Bound algorithm. A time-indexed model and a lagrangian relaxation is
analyzed in Chapter [l

In the second part, the flow shop environment is considered. In Chapter B, we deal with
the permutation case, considering two hybrid algorithms.

Finally in the third Part we conclude our work, analyzing results and future works.

Part 1

Parallel Machines

Chapter 2

Heuristic Approaches

2.1 Introduction

In the parallel machine scenery several topics are discussed, from modeling techniques to
different heuristics. In this chapter we introduced the problem and present two heuristic
approaches based on the metaheuristics GRASP and VNS.

The literature on parallel machine scheduling problems (PMSP) is very extensive and this
topic is studied from many points of view. Nevertheless, the consideration of an unrelated
environment is not usual, especially when compared to the identical parallel machines or the
single machine scenarios.

The unrelated PMSP (UPMSP) is very common in industry. In particular, the problem
addressed in this work was based on a real case of a Brazilian company, where the equipment
is composed of machines with different technologies. That fact implies not only different

processing times per machine but also different setup times per machine.

(Ilﬂd) show that minimizing the makespan considering two identical
machines is a NP-hard problem. Certainly, a problem with unrelated machines and job se-
quence dependent setups is also NP-hard. Due to its complexity and to the necessity of almost

constant reschedules, the use of exact algorithms is prohibited for a large number of jobs.

Interesting surveys on parallel machines can be found in |L9_9j)

(Cheng and Sin, |_9_9d and (MQkQLQﬂ uDj Cheng and Q. Dlné m also present a very

useful survey on scheduling problems considering setup times.

There are few works considering UPMSP. |Adamopolos and Pappig (ILM) propose

a polynomial heuristic to deal with a scheduling problem with common due dates.

Jansen and PQerlabI (ij) propose an approximation scheme for an UPMSP considering

sequence dependent setup times and preemptive and non-preemptive jobs. |K.lm_e$_al.|)

use Simulated Annealing to address an unrelated PMSP, minimizing the total tardiness con-
sidering sequence-dependent setup times. |K.lm_e$_al.| (IZDDd) consider a similar scenario with

common due dates where four heuristics are proposed and studied.

10

2. HEURISTIC APPROACHES 11

An exact solution to an UPMSP is attempted in dR&LQLL&;LQp_QS_aDd_dﬁﬁa.m]hd, |21)D_d)

In this work the authors develop a branch-and-price approach to the problem of scheduling a

set of independent jobs, with release dates and due dates, on unrelated parallel machines with
availability dates and sequence-dependent setup times, to minimize the total weighted tardi-
ness. We also refer to [B_akell (|19_Z4I), |Bla.meu_CZ_e$_al.| (|19_9_d), [Elnfdﬂl (|19_9_5]),
(Im)j) and Brugkeﬂ (IZODJ) for classic and well known approaches.

To solve our problem, we first use two heuristic approaches based on two well-known
metaheuristics, GRASP and VNS. The metaheuristic GRASP (Greedy Randomized Adaptive

Search Procedure) proposed by Mﬁﬂ.&nﬂﬁ] (|19_9_5|) is a multi-start or iterative procedure

where each GRASP iteration consists of a construction phase, where a feasible solution is

constructed, followed by a local search procedure that finds a locally optimal solution. We
also refer to m_aﬂ (|L39j, |L9_9ﬂ), where we find applications of GRASP for one-machine

scheduling problems, [Bi (IZDﬂd) which present an interesting application of the meta-

heuristic for job shop problems, [Festa and Besendg] (IZODj) where a bibliography of GRASP is

presented and ibei) where we find an interesting and useful analysis
of the applications of path relinking in GRASP.
VNS is a modern metaheuristic that proposes systematic changes of the neighborhood

structure within a search to solve optimization problems. A very complete study about

it can be found in Hansen and Mladenovic’s work (I.H.a.n.s.&u_a.nd_Nﬂ.a.d_Qnmd_(J, |19_9_d, |2£)ﬂ_3i)
and (IH.a.ns_Qnﬁ_t_a.lJ, |2£)11j) This met-heuristic was successfully applied to solve various

problems such as the p-median problem rcia-Lopez 1

: M) the multi-depot rout-

ing problem) and several other classical problems, readers can check

(Hansen and Mladen Qy(J |_Q9_d uﬂé and (Iﬂa.nien_e&_aj LODj

The aim of proposing a VNS algorithm is to solve large instances of the scheduling problem

with identical or unrelated parallel machines and both machine and sequence-dependent setup
times minimizing their makespan plus the weighted delays. The neighborhood structures are
based on known relevant local searches.

The VNS performance depends on the initial solution, between other aspects, that is
sequentially improved. In order to generate a fairly good initial solution we use an algorithm
based on that proposed by|N_a&La.Z_€m_al.| (IlQB_Gi) that has shown to be one of the best polynomial
heuristic for the permutation flow shop problem (NEH).

The lack of other works dealing with this problem, force us to use artificial instances to
test our algorithms. All our instances and results are available at the UFMG Scheduling Group
home page !

This chapter is organized as follows: Section introduces the problem and discuses
some decisions taken. In Section the heuristic based on GRASP is introduced with some

important features of our version; this section also includes some computational results. In

"http://www.dec.ufmg.br/lapo/wiki/index.php/Scheduling_ Team

2. HEURISTIC APPROACHES 12

Section 2.4l we discuss our algorithm based on VNS, introducing neighborhood structures, local
searches, and the use of a polynomial heuristic based on NEH to obtained the first solution
to the VNS method. Section presents several tests comparing both approaches. Finally,
Section concludes the chapter analyzing the results and presenting incoming works in this

research line.

2.2 Problem description

In this part of the dissertation we consider a problem with realistic constraints. The problem
consists in an unrelated parallel machine case, in which each job has a processing time that
also depends on the machine in which it is going to be processed. Between processing two
different jobs, a machine needs a setup; this setup depends on both the job sequence and the
machine. We also take into account that each job has a due date.

Before presenting the algorithms it is interesting to discuss some important decisions taken:
First, it was decided to allow delays. When solving problems with tight due dates or with a
large number of jobs, if delays are not allowed we can have no feasible solutions, loosing good
possible schedules. Even in a not so extreme environment, the possibility of allowing delays
can be particularly useful in the managerial decision making.

The second point to be discussed is about the objective function. As it is well known in
scheduling theory, there are several criteria to use with different purposes. From a commercial
point of view, one of the most important objectives in any company is do not have delays with
the clients. On the other hand, from the production point of view it is interesting to finish all
the jobs as soon as possible trying to use all machines in the best possible way. It is easy to
see that real world scheduling problems have a well defined multi-objective nature.

Finally, we have to analyze how these different objectives are combined. This combination
is not a simple task that satisfies all the decision makers. The combination of two objective
functions was firstly require from the company. For all that, we decided to minimize the sum of
the makespan, that is, the completion time of all jobs, plus the sum of weighted delays. These
weights can be understood as a measure of the importance of the job, and this importance
can be related to the client, a certain process or even a managerial decision.

The addition of the makespan plus the weighted delays is a sum of times, resulting in

a coherent objective function. In (MQsheiQyI, M) we find a similar objective function but
with a multi-criteria approach. Using the notation «|3|y proposed by |Gr_al].amﬁ_al.| (Ilf)ld)
and Blazewicz et alJ , this scheduling problem can be formally defined as R|s;jm|Craz +
ST - v, see).

2. HEURISTIC APPROACHES 13

2.3 Greedy Randomized Adaptive Search Procedure

The heuristic used in this dissertation has a similar structure to basic
GRASP (Feo and Resende, 11995), which is a multi-start metaheuristic for combinato-
rial problems (Feo and Resende, 1995; [Feo et al., [1996). Basically, this metaheuristic consists
of two phases: the construction of a feasible solution and a local search. These two phases

are repeated in every iteration. Figure 2] presents the pseudo-code of GRASP.

Algorithm 2.1: Pseudo-code of GRASP’s main block.
Procedure: Rand_Construction(Job_List)

1 begin

2 Read_Input();

3 Job_List «— Sort_Jobs (rule);

4 for i « 1 to iterations do

5 Local _Solution «—Rand_Construction(Sort_List);

6

7

8

9

Local _Solution « Local_Search(Local_Solution);
if Local _Solution < Best_Solution then

‘ Best _Solution < Local _Solution;
end
10 end

11 end

In basic GRASP, for building a feasible solution, a list of candidates is compiled for random
selection of the next element to be added to the solution. This list is made based on a greedy
function.

However, in our implementation, the candidate’s list is made only once at the beginning of
the procedure. In each iteration, the list is randomized and the algorithm builds the solutions
using a greedy function. The use of a greedy function to schedule the jobs, and not to build
the list of candidates, proved to be remarkable. This procedure simplifies the implementation,

providing good results.

2.3.1 Sorting rules

Two rules for sorting the job list are tested. The first one uses the due date as sorting
criterion 2. In this case, the jobs are ordered in a non-decreasing order. The second rule uses
a tardiness lower bound (LB), suggested by |Armentano and Ronconi (1999) for a Tabu-Search
algorithm. In this case, the jobs are ordered in a non-increasing order. For this problem the

LB is calculated as follows:

LBi] = d; — max{pin) (2.1)

>This criterion is also known as Earliest Due Date (EDD)

2. HEURISTIC APPROACHES 14

It is important to realize that previous job-allocations do not affect the sorting criteria,
this is the main motive for avoiding the use of a candidate’s list. Many other sorting criteria

were test but with poor results.

2.3.2 Construction phase

Two different types of construction phase are considered. In the first type, after sorting the
candidate list, a greedy function schedules each job to the machine that finishes it first. In
the second type, we select two machines as candidate machines and with a probability of 70%
for the best candidate and 30% for the other, we randomly choose one.

Figure shows the basic pseudo-code of the construction phase function.

Algorithm 2.2: Pseudo-code of GRASP’s construction phase.
Procedure: Rand_Construction(Job_list)

1 begin

2 Solution «— (;

3 Rnd_list «— Rnd_Sort (Job_list);

4 while Local Solution is not complete do

5 select the first element (i) from Rnd_list;
6 Local _Solution < Local _Solution U {i};
7 end

8 return Local Solution;

9 end

2.3.3 Probability distribution and local search

Once the job list is ordered, the algorithm will randomly reorder the array using a specific
probability distribution. In this chapter, we present several tests with two types of probability
distributions.

The first probability function is F'1(z) = 1/pos(i), where pos(i) indicates the position of the
job i on the sorted vector. The second function is created using a linear equation considering
the first and last job of the sorted vector F2(i) = —(pos(i)/n)+ 1. The second function allows
the heuristic to exploit a bigger set of feasible solutions.

The local search swaps all the existing pairs of jobs. This local search is chosen arbitrarily.
The algorithm used for the local search has a time complexity O(n?). Later in this chapter,

the heuristic is tested with other local searches.

2.3.4 Path Relinking

The path relinking (PR) technique is used as search strategies in many heuris-
tics (Glover and Laguna, 1997; |Glover, 2000). In 1999 it was used in a GRASP environment

2. HEURISTIC APPROACHES 15

by [Lagun.a._a.nd_Ma.rLd (|19_9_d) In (I.B@s&ndﬁ_a.nd_Bihdml, |ZDDBH) two strategies are presented:

e PR as a tool to improve the solution found by GRASP.

e PR as a strategy to intensify the local search procedure.

The algorithm selects two solutions and analyzes the path of solutions found between
both. This path is built around some number of job movements. For each movement, the
encountered solution is analyzed.

In this work, we use path relinking to intensify the local search. Even so, there are several

ways to implement this technique. Resende and Bibeird dﬂ)j)ﬁ_bl) mention a few:
e Periodic use of path relinking.

e Use of path relinking in the two possible directions, that is, from solution x; to solution

zo and from x9 to 7.
e Use of path relinking in only one direction.
e Use of truncated path relinking. That is, by analyzing only part of the path.

The algorithm of PR used in this dissertatio works as follows. First, a pool of good
solutions is retained. Every time path relinking is used, a solution is randomly chosen from
this pool. Then, the path of solutions is analyzed in one direction, from the found solution
in local search to the selected solution from the pool. Finally, the whole path between the

solutions is considered.

2.3.5 Versions of GRASP

This section presents the different versions of the heuristic tested. The results of these exper-
iments are presented in section [2.3.6]

The versions vary in the following aspects:
1. sorting rule (SR);

2. frequency of path relinking use (FPR);

w

. probability distribution (PD);
4. construction phase(CP);

Table [Z1] details the parameters utilized for each of the heuristics considered. As an
example, the version "GPSF" of the table, indicates a GRASP algorithm with a FPR equals
1, due date as sorting criterion, F'2 as the probability function and a deterministic construction

phase.

2. HEURISTIC APPROACHES 16

Table 2.1: Configurations of the heuristic for the experiments. The column SR shows the sort-
ing rule chosen, FPR indicates the number of iterations between the use of PR, PD indicates
the probability distribution F1 = 1/pos(i) or F2(i) = —(pos(i)/n) + 1 and finally the column
CP indicates if is used a deterministic or a random approach.

Name SR FPR PD Ccp

GP due date 1 F1 deterministic
GPL LB 1 F1 deterministic
GPS due date 2000 F1 deterministic
GPF due date 1 F2 deterministic
GPC due date 1 F1 random
GPSL LB 2000 F1 deterministic
GPLF LB 1 F2 deterministic
GPLC LB 1 F1 random
GPSF due date 2000 F2 deterministic
GPSC due date 2000 F1 random
GPFC due date 1 F2 random
GPSLF LB 2000 F2 deterministic
GPSLC LB 2000 F1 random
GPLFC LB 1 F2 random
GPSFC LB 2000 F2 random
GPSLFC LB 2000 F2 random

2.3.6 GRASP experiments

The heuristics are implemented in C, using the gcc compiler. The experiments are executed on
a Pentium IV computer, 2.4GHz CPU and 1GB of RAM memory under a Debian GNU /Linux
environment.

Different instances with a variety of sizes are considered. Instances for this kind of problem
are not found so we have generated them randomly. Ten replications are considered for each
size, N = 20, 60, 100, 150.

This problem was originally based on a real-world problem. Therefore, the configuration

tested is composed by four identical machines and two unrelated machines (411).

2.3.6.1 Instances generation

Random instances are generated for these tests, based on the following rules:

e The processing times of the group of identical machines vary between 10 and 20 time

units;
e The processing times of the unrelated machines vary between 5 and 8 time units;

e The setup times vary between 1 and 7 time units.

2. HEURISTIC APPROACHES 17

The generated instances can also be used for different machine configurations. The algo-
rithm to generate these instances and the instances used in this dissertation are available on
line at the UFMG Scheduling Group home page3.

2.3.6.2 Tests planning

The tests are divided in five parts. In the first part, the seed and the number of iterations are
fixed. The objective of this part is to find the best configuration of the heuristic parameters
to this kind of problem. For these tests a configuration of four identical machines and two
unrelated is maintained.

In the second part only instances with 150 jobs are considered. The seed is fixed but not
the number of iterations. In the third part only one instance of the same size is considered.
The number of iterations is fixed and the heuristic is executed ten times with different seeds.

With the second and third tests, we intend to analyze the relationship between the heuristic
performance with the number of iterations, and its seed dependence.

In the fourth part of the tests, we analyze the influence of the use of PR. Finally, in the

fifth part the goal is to analyze the heuristic behavior for different machine configurations.

2.3.6.3 Lower bounds

For each instance a lower bound is obtained, using three simple methods. These lower bounds
will be properly presented in the next chapter.
The lower bound is used to obtain the average percentage deviation (APD) (Oguz et all,

2003), where, the percentage deviation is defined as follows,

X - LB

PD
LB

(2.2)

where X denotes the value of the objective function obtained by the heuristic.

The percentage deviation is a measure of how far the solution is from the lower bound.
Then the solution is better for small values of APD.
2.3.6.4 Results
This section presents the computational results of several tests with the different versions of
the heuristic. Five different subsections are considered.
2.3.6.5 First part.

In this first part of the results the focus is on the adjustment of the parameters. The goal is to

detect the best configuration for this kind of problem. The seed and the number of iterations

http://www.dcc.ufmg.br /lapo/wiki/index.php/Scheduling_ Team

2. HEURISTIC APPROACHES 18

are fixed.
The arbitrary chosen seed for these tests is 1.00 and the number of iterations is 15, 000.
From Tables 2.2 23] 2.4l and we can analyze the performance of the different versions of

the heuristic for different numbers of jobs.

Table 2.2: PD for each version of GRASP with the same seed and 15000 iterations, considering
20 jobs.

Instances for 20 jobs

Name 1 2 3 4 5 6 7 8 9 10 APD
GP 046 235 590 6.33 433 463 293 257 365 2.64 | 3.58
GPL 0.46 235 590 633 441 463 293 253 3.65 2.64 | 3.58
GPS 046 235 590 6.33 433 522 293 257 365 264 | 3.64
GPSL 046 235 590 6.37 433 530 297 253 3.65 264 | 3.65
GPF 0.46 235 590 633 433 493 293 257 3.65 264 | 3.61

GPLF 050 235 590 6.33 4.26 463 297 253 3.65 264 | 3.58
GPSF 046 235 590 6.33 433 530 297 253 3.65 264 | 3.65
GPSLF 050 235 590 6.33 433 526 293 253 3.65 264 | 3.64
GPC 050 235 590 633 4.22 530 297 257 3.65 264 | 3.64
GPLC 050 235 590 6.33 433 463 293 253 3.65 264 | 3.58
GPSC 0.50 235 590 6.37 433 544 297 257 3.65 2.64 | 3.67
GPSLC 050 235 590 637 444 530 3.00 257 3.65 264 | 3.67
GPSFC 0.50 235 590 6.50 4.41 559 297 257 3.65 264 | 3.71
GPSLFC 0.50 235 590 6.37 441 544 3.00 253 3.65 2.64 | 3.68
GPFC 050 235 590 6.33 441 463 3.00 257 3.65 264 | 3.60
GPLFC 0.50 235 590 643 444 493 297 253 3.65 264 | 3.63

Grand Average 3.632

Table 2.3: PD for each version of GRASP with the same seed and 15000 iterations, considering
60 jobs.

Instances for 60 jobs

Name 1 2 3 4 5 6 7 8 9 10 APD
GP 549 527 534 739 598 278 6.70 1.19 0.58 2.27 | 4.29
GPL 589 534 542 810 6.60 252 6.28 1.18 0.59 244 | 4.44
GPS 6.27 577 6.01 879 7.29 258 697 1.20 0.58 287 | 4.83
GPSL 6.38 541 6.03 817 7.02 261 7.21 122 059 268 | 4.73
GPF 6.00 6.64 6.06 852 7.42 271 6.06 136 0.66 276 | 4.82

GPLF 6.83 6.10 640 849 692 335 6.54 122 071 2.67 | 493
GPSF 709 642 643 997 799 333 837 140 066 3.20 | 5.48
GPSLF 6.84 7.09 716 1026 821 3.69 799 139 0.69 3.17 | 5.65
GPC 6.36 6.16 598 807 696 3.11 6.74 122 0.66 2.78 | 4.80
GPLC 624 574 570 744 731 263 6.41 119 0.62 257 | 4.58
GPSC 6.93 6.38 621 884 728 333 763 133 066 332 | 5.19
GPSLC 699 599 6.19 893 78 3.71 715 1.28 0.65 3.09 | 5.18
GPSFC 741 694 691 890 839 424 832 173 079 341 | 5.70
GPSLFC 771 745 6.43 983 892 445 809 196 0.71 3.39 | 5.89
GPFC 514 6.61 6.61 825 752 356 739 133 078 273 | 4.99
GPLFC 6.17 585 651 956 685 375 723 169 0.71 319 | 5.15

Grand Average 5.042

In Table and Figure 1] we present a summary of the results. Table 27 presents the

2. HEURISTIC APPROACHES

19

Table 2.4: PD for each version of GRASP with the same seed and 15000 iterations, considering

100 jobs.
Instances for 100 jobs

Name 1 2 3 4 5 6 7 8 9 10 APD
GP 7.17 105 3.18 105 638 431 296 1.10 130 1.89 3.04
GPL 6.77 112 3.03 164 6.33 420 3.28 097 125 174 3.03
GPS 748 138 4.11 131 6.75 535 392 1.18 149 2.17 3.51
GPSL 7.74 1.68 447 1.73 649 5.08 4.19 1.15 149 2.03 3.60
GPF 8.02 169 5.18 142 749 555 529 144 231 3.52 4.19
GPLF 707 238 442 184 696 6.27 543 1.73 260 3.28 4.27
GPSF 881 2.63 583 259 883 7.25 6.49 1.89 2.85 3.69 | 5.08
GPSLF 793 3.07 6.61 252 843 7.08 7.00 2.00 263 3.60| 5.09
GPC 7.81 148 3.69 133 6.33 520 3.06 1.09 148 2.34 | 3.38
GPLC 7.7 188 445 1.76 6.88 5.10 4.55 1.12 1.73 2.29 3.75
GPSC 757 235 532 203 7.15 578 466 143 1.79 254 | 4.06
GPSLC 838 253 5.55 195 730 6.00 5.01 1.79 1.68 2.73 | 4.29
GPSFC 9.61 407 6.43 290 875 740 640 270 281 4.16 5.52
GPSLFC 9.84 3.50 6.57 255 872 7.04 6.63 262 315 4.07 | 547
GPFC 9.14 235 489 261 7.04 588 580 1.87 259 3.06 | 4.54
GPLFC 9.34 280 5.82 204 804 5.09 482 197 271 3.57 4.62

Grand Average 4.216

Table 2.5: PD for each version of GRASP with the same seed and 15000 iterations, considering

150 jobs.
Instances for 150 jobs

Name 1 2 3 4 5 6 7 8 9 10 APD
GP 1.02 126 378 070 426 425 350 081 773 097 | 2.83
GPL 098 1.15 342 071 5.04 359 369 081 847 1.07 | 2.89
GPS 1.05 160 387 074 517 524 4.06 086 865 1.02 | 3.23
GPSL 1.03 178 3.71 073 5.03 5.15 412 086 863 1.36 | 3.24
GPF 142 294 6.23 109 7.18 6.89 6.54 136 9.60 244 | 4.57
GPLF 154 3.08 516 136 6.86 691 7.61 1.03 12.67 255 | 4.88
GPSF 191 4.02 6.44 118 827 8.04 732 163 1283 3.34 5.50
GPSLF 229 393 614 149 761 852 823 171 12.02 268 5.46
GPC 116 2.05 438 083 559 497 4.67 087 853 1.28 | 3.43
GPLC 096 244 434 070 474 493 474 089 9.64 138 | 3.48
GPSC 1.07 236 4.87 086 6.23 580 536 097 10.11 1.42 | 3.90
GPSLC 126 240 519 079 578 571 492 098 10.54 1.49 | 3.90
GPSFC 248 414 692 190 852 846 837 2.00 14.27 3.14 | 6.02
GPSLFC 238 468 7.08 194 8.04 749 8.06 214 1396 2.72 5.85
GPFC 187 387 618 132 790 5.63 6.75 194 1231 277 | 5.06
GPLFC 1.88 416 711 132 771 6.53 6.11 1.79 13.55 3.05 5.32

Grand Average 4.348

average computation time spent for each version considering different instance sizes: 60,100

and 150 jobs.

From these data, it is apparent that the GP and GPL approaches present the best average

results without additional computation time. In general, the different versions have a good

behavior except the last four or five.

The poor performance of some versions are caused by the junction of the linear probability

function (F2) and the random construction phase (C2).

These two parameters cause an

2. HEURISTIC APPROACHES 20

Figure 2.1: APD for the six versions with the best results, considering 60, 100 and 150 jobs.
Time in seconds

5 T

GP —-—
GP-LB -+
GPS -a--
GPS-LB -
GP-C2 -&--
GP-LB-C2 -*-- 4

45 -

APD

35

25 Il Il Il Il Il Il Il
20 40 60 80 100 120 140 160
Number of Jobs

Table 2.6: APD for each version of GRASP and for each instance size.

Version 20 jobs 60 jobs 100 jobs 150 jobs | Overall APD
GP 3.580 4.298 3.042 2.828 3.437
GPL 3.584 4.436 3.035 2.894 3.487
GPS 3.639 4.833 3.513 3.227 3.803
GPSL 3.650 4.732 3.604 3.242 3.807
GPF 3.609 4.819 4.190 4.568 4.297
GPLF 3.576 4.923 4.267 4.878 4.411
GPSF 3.647 5.485 5.085 5.497 4.928
GPSLF 3.643 5.648 5.087 5.463 4.960
GPC 3.642 4.805 3.380 3.433 3.815
GPLC 3.580 4.584 3.753 3.478 3.849
GPSC 3.672 5.193 4.062 3.905 4.208
GPSLC 3.671 5.178 4.293 3.905 4.262
GPSFC 3.707 5.705 5.523 6.020 5.239
GPSLFC 3.679 5.893 5.471 5.850 5.223
GPFC 3.598 4.993 4.524 5.056 4.542
GPLFC 3.634 5.150 4.621 5.319 4.681

extended search in the solution space. This kind of approach could bring excellent results
or the worst results. This characteristic could be very interesting when using a larger local
search or for a multi-criteria approach.

In a similar way we can conclude that the best performances occur when only few mod-
ifications are made in the greedy construction phase procedure. That is translated to our
algorithm as the use of the F'1 probability function and the deterministic schedule of the jobs.

It is worth noting that as the number of jobs increases, the APD values decrease, as

expected. The effectiveness of the lower bound improves with the increase in the number of

2. HEURISTIC APPROACHES 21

Table 2.7: Average computation times considering 60, 100 and 150 jobs. Time in seconds

60 100 150

GP 18.59 | 61.38 | 144.79
GPL 18.46 | 57.66 | 145.74
GPS 18.35 | 57.34 | 143.89
GPSL 18.13 | 60.32 | 144.34
GPF 19.00 | 59.36 | 147.74
GPLF 18.95 | 57.91 | 148.18

GPSF 18.68 | 58.46 | 148.91
GPSLF 18.57 | 59.62 | 145.70
GPC 18.99 | 60.84 | 146.18
GPLC 18.91 | 58.68 | 146.57
GPSC 18.70 | 58.91 | 149.77
GPSLC 18.65 | 60.51 | 145.16
GPSFC 19.05 | 60.30 | 146.72
GPSLFC | 18.96 | 61.48 | 147.25
GPFC 19.41 | 59.13 | 149.43
GPLFC 19.35 | 58.53 | 150.10

Table 2.8: APD results for the GP version considering different number of iterations [thou-
sands|(second part).

GP
Iterations 1 2 3 4 5 APD

15000 0912 1.236 3.290 0.712 4.730 | 2.176
30000 0.912 1.111 3.042 0.712 4.716 | 2.099
50000 0.907 1.107 3.042 0.712 4.171 | 1.988
100000 0.907 1.107 3.042 0.712 4.014 | 1.957
200000 0.903 1.107 2.995 0.712 4.014 | 1.946
300000 0.903 1.107 2939 0.699 4.014 | 1.932

jobs.

2.3.6.6 Second part.

In this part of the tests we analyze the heuristic performance for a different number of itera-
tions. We choose five versions of GRASP and a set of five problems with 150 jobs. We keep
the seed used in the first part (1.00).

In Tables 2.8 to 212, we present the percentage deviation for the five instances and its
average for the chosen versions.

From these results we can conclude the GP and GPL present better responses to this kind
of problem. We can also observe that we obtain a solution improvement, but the increase
in the number of iterations also affects the computation time. The average CPU time for
300, 000 iterations is near 2,500 seconds (150 jobs).

For the reasons above, the use of a large number of iterations depends more on the situation
that is to be solved, that is, on the trade off between the benefits of a long run and time

expended. In our particular case, a large number of iterations is interesting for the monthly

2. HEURISTIC APPROACHES

22

Table 2.9: APD results for the GPL version considering different number of iterations [thou-

sands|(second part).

GP-LB

Iterations 1 2 3 4 5 | APD

15000 0.952 1.209 3.262 0.676 4.512 | 2.122
30000 0.930 1.209 3.243 0.648 4.512 | 2.108
50000 0.930 1.209 3.019 0.648 4.512 | 2.063
100000 0.930 1.209 2.701 0.648 4.507 | 1.999
200000 0.930 1.102 2.626 0.648 4.071 | 1.875
300000 0930 1.089 2.626 0.648 4.066 | 1.872

Table 2.10: APD results for the GPLF version considering different
[thousands|(second part).

GPLF

number of iterations

Iterations 1 2 3 4 5 | APD

15000 1.520 3.098 4.883 1.187 7.090 | 3.556
30000 1.520 3.098 4.883 1.110 7.043 | 3.531
50000 1.520 3.098 4.883 1.050 7.043 | 3.519
100000 1.317 3.098 4.883 0.945 6.929 | 3.434
200000 1.088 2.787 4.776 0.927 6.929 | 3.301
300000 1.066 2.658 4.776 0.927 6.929 | 3.271

Table 2.11: APD results for the GPLFC version considering different
[thousands|(second part).

GPLFC

number of iterations

Iterations 1 2 3 4 5 | APD

15000 1.731 3.373 6.542 1379 7.417 | 4.089
30000 1.731 3.351 6.215 1.187 7.417 | 3.980
50000 1.731 3.351 5986 1.187 7.412 | 3.934
100000 1.731 3.320 5.986 1.187 7.412 | 3.927
200000 1.326 3.320 5.921 1.187 6.464 | 3.644
300000 1.326 3.320 5.533 1.187 6.431 | 3.559

Table 2.12: APD results for the GPS version considering different number of iterations

[thousands|(second part).
GPS

Iterations 1 2 3 4 5 | APD

15000 0.982 1.391 3.799 0.731 5.175 | 2.416
30000 0.982 1.391 3.687 0.726 5.175 | 2.392
50000 0.982 1.391 3.636 0.726 4.654 | 2.278
100000 0.969 1.378 3.636 0.726 4.654 | 2.273
200000 0.969 1.378 3.369 0.726 4.464 | 2.181
300000 0.956 1.378 3.369 0.703 4.464 | 2.174

2. HEURISTIC APPROACHES 23

schedule program. However, in the daily decision process of the company, new schedules are
needed to support decisions, and the use of a larger number of iterations is not very convenient.

These daily problems are usually related to new contracts, new clients or new due dates.

2.3.6.7 Third part.

In this part of the test the focus is on the heuristic’s seed dependence. We choose only one
instance with 150 jobs and we set the number of iterations to 15,000. The seeds used are
randomly chosen.

In Table 213l and Figure we present the results. In this case is not necessary to use the
APD form because we are interested in the variability of the solution. The difference between
the worst and the best result for each version is also shown. The best result for each version
is in italics. The best overall result is in bold typeface.

These results are very interesting, especially if associated with the previous ones. In the
second part of the tests, it is possible to realize that the APD improvement made by the
increase of the number of iterations vary between 0.242 to 0.53. And in this test, it is possible
to see that the improvement could reach the 1% of the objective value. We can conclude that

it appears to be more interesting to use several seeds with shorter runs, than one seed with a

larger run.
Table 2.13: Results considering different seeds (third part)
Version 1 2 3 4 5 6 7 8 9 10 | Diff.
GP 1225 1087 1195 1209 1144 1196 1195 1044 1214 1164 | 181
GPL 1191 1138 1165 1228 1152 1193 1161 1098 1198 1173 130
GPS 1288 1348 1327 1305 1318 1202 1331 1259 1301 1347 | 146
GPSL 1307 1272 1160 1306 1305 1286 1268 1278 1260 1284 | 147
GPF 1623 1632 1715 1508 1778 1842 1594 1366 1792 1838 | 476
GPLF 1623 1632 1715 1508 1778 1842 1594 1866 1792 1838 | 476
GPSF 1908 1757 1878 1916 1863 1904 1940 1939 1915 2013 | 256
GPSLF 1920 1845 2004 1964 1997 1863 2011 1857 1668 1883 | 343
GPC 1178 1390 1512 1322 1283 1387 1266 1406 1268 1407 | 334
GPLC 1376 1383 1336 1345 1162 1390 1232 1356 1297 1295 | 228
GPSC 1442 1460 1365 1516 1443 1423 1470 1462 1476 1479 151
GPSLC 1458 1494 1396 1415 1476 1481 1384 1544 1480 1426 160
GPSFC 1986 2071 2007 1981 2048 2013 2000 2027 1955 1929 | 142
GPSLFC 1868 1824 1970 1892 2079 2000 2003 1969 2001 1884 | 255
GPFC 1640 1807 1748 1929 1871 1860 1841 1750 1865 1806 | 289
GPLFC 1796 1797 1841 1724 1708 1777 1702 1810 1927 1649 | 278

2.3.6.8 Fourth part.

In this experiment we use path relinking as a form of intensification of the local search, applied
in each iteration or after 2000 iterations. We used three instances of 100 jobs to analyze how

PR affects the performance of the heuristic.

2. HEURISTIC APPROACHES

24

Figure 2.2: Heuristic’s seed dependence,(third part)

1900
1800 -
1700 e)
1600 - .
1500 -

1400

Obj. Function

1300 -

1200

1100

GP —-—
A GPoAB -+
-~ GPS -8--

N / GPS-LB -x
;. GP-F2 -

1000
0 4

Seeds

We use the GP version considering 50000 iterations and 6 different frequencies of path re-
linking (FPR), 1,2000, 5000, 10000, 15000 and 20000. The results are presented in Table 2.14]
We can observe that the use of PR at different steps does not cause a significant reduction
of CPU time. With these tests we can conclude that PR is not relevant in the computational

time spent by the heuristic.

The use of path relinking is shown to be effective without an increase of CPU time. For

our implementation, the most expensive procedure is the local search.

Table 2.14: Results applying PR after different numbers of iterations (FPR) for the GP

version.
Inst. 1 Inst. 2 Inst. 3

FPR | Obj. Func. time [sec] | Obj. Func. time [sec] | Obj. Func. time [sec]|

1 1027 115.77 290 117.13 623 119.81
2000 1300 116.11 340 115.58 757 119.59
5000 1300 116.08 340 115.64 757 119.57
10000 1300 115.61 340 115.63 757 120.24
15000 1300 115.62 340 115.62 757 120.19
20000 1300 115.67 340 115.66 757 120.16

2.3.6.9 Fifth part.

Until now, we always used the same machine configuration, a group of four with identical

characteristics and two unrelated machines.

GRASP shows a satisfactory performance.

For this particular configuration, the use of

2. HEURISTIC APPROACHES 25

In this experiment we test the flexibility of GRASP by analyzing the performance of the

method for other configurations of machines. The tested configurations are:
e MG - six identical machines.

e M321 - A group of three identical machines, two identical machines but different from

the rest and one unrelated machine.
e M3111 - A group of three identical machines and other three unrelated machines.
e M222 - Three different groups of two identical machines.
e M2211 - Two different groups with two identical machines and two unrelated machines.
e M21111 - A group of two identical machines and four unrelated machines.

In this experiment we used five instances of 150 jobs. The seed remains the same for all the
tests (1.00), and the number of iterations is set to 15, 000.

Because of the different configurations we can not compare the results directly. Still,
in Table we can observe that the heuristic produces interesting results for these new

instances. The use of this methodology seems to be very suitable for the UPMSP environment.

Table 2.15: APD for different configurations of machines

M6 M3l11 321 222 2211 21111
GP 0.386 0.719 0.635 0478 0.561 0.616
GPL 0378 0.720 0.636 0.482 0.558 0.618
GPLF 0.491 1.008 0936 0.699 0.837 0.896
GPLFC 0.533 1.041 1.037 0.771 0.884 0.989
GPS 0392 0.726 0.652 0.480 0.571 0.625

2.4 Variable Neighborhood Search

The VNS architecture and notation wused here follow those proposed
by IHansen and Mladenovid (2003).

Lets consider a set of machines M = {1,2,..,m} and a set of jobs § = {1,2,..,n} with
positive processing times p;; and positive weights w;, for each job j € J and each machine
ke M.

As it was previously stated, the problem consists in scheduling all the jobs minimizing the
sum of the completion time, also known as makespan, plus the sum of the weighted delays.

In order to process a job j after a job j’ a setup time s;s, is required and depends both

on the sequence of jobs j < j' and on the machine k € M where they are processed.

2. HEURISTIC APPROACHES 26

2.4.1 VNS algorithm

Define the completion time of job j recursively as C; = Cjs + pji + 81k, where Cj is zero if
job j is the first job scheduled or the completion time of job j' otherwise. The tardiness p; of
each job is calculated as p; = max((C; — d;),0), where d; is the due date for job j. Our goal
is to minimize Cpyaz + Z?:l Vj.pj-

First we define a job sequence J; for machine k as a permutation of the elements of the
subset J, C 29, where 29 is the set of all subsets of J, and:

IkNdp =0 Vke M,k #K
U =17
keM
Let JF be the set of all feasible solutions and consider a solution 8§ = {J;, Jo, .., J,} € F.
A Neighborhood structure associates each 8§ € F with a neighborhood N;(8) C F of solution 8.

For this approach three neighborhoods structures are defined:

1. Job swaps on one machine. One machine is chosen and all possible job swaps are

considered.

2. Job swaps between two different machines. Two machines are chosen and all possible

job swaps from different machines are considered.

3. Job transfers from one machine to another. One machine is chosen and all possible job

movements from this machine to any other are considered.

Note that the neighborhoods themselves N1 (8), Na(8), and N3(8) respectively, are deter-
mined by both its respective structure and the solution it is being applied to.

The size of Neighborhood N1 (8) is O(m.n?), of Neighborhood Na(8) is O(m?.n?) and the
size of Neighborhood N3(8) is O(m.n?).

Algorithm2.3] shows the VNS structure used in this dissertation.

2.4.2 The initial solution

Any method capable of generating a feasible solution would be sufficient for the first part of

our algorithm. However, as shown by [Johnson et alJ (IL%}J) and Matsuo et alJ (|L9§§J), a good

initial solution can reduce considerably the computation time.
In this work we propose the use of an algorithm based on NEH, (Nawaz et alJ, |L9§j) The

NEH has proven to be very advantageous over other polynomial approaches of obtaining an

initial solution for the flow shop scheduling problem.
Since the target of this implementation are large instances, the gain provided by this

algorithm is worth to its additional computational time, which is small if compared to the

2. HEURISTIC APPROACHES 27

Algorithm 2.3: Basic VNS structure

1 Find an Initial Solution S*;

2 1« 1;

3 for Iterations «— 1 to Mazxlterations do
4 S « S*;

5 Shake procedure: Find a random solution S’ € N;(S);
6 S” « Local Search(N;(S'));

7 if 7 < S* then

8 S* «— S

9 l—1;

10 else

11 | 11+

12 end

13 end

14 end

time spent by the local searches. Our implementation has a time complexity O(n®.m), and it

is designed as shown in Algorithm 241

Algorithm 2.4: NEH algorithm adaptation for the parallel machine case.

1 Sort the jobs in order of due dates;

2 for each job 5 do

3 MKS « INT-MAX;

4 for each machine k do

5 for each position p in machine k do

6 MKS’= INSERT job j on k at position p;
7 if MKS’ < MKS then

8 MKS «— MKS',

9

else
10 ‘ Remove j from k at position p;
11 end
12 end
13 end
14 end
15 end

2.4.3 Random solutions

Every time a neighborhood is selected, a random procedure is called. This procedure selects
a random solution from the selected neighborhood structure. Therefore, three procedures are

created in the following manner, one for each neighborhood structure (Nj):

1. For Ny(9):

2. HEURISTIC APPROACHES 28

Algorithm 2.5: Local search 1. Job swaps in one machine.

1 for each k € M do

2 for each ji in k do

3 for each jo in k, j1 # jo do

4 if Solution considering j1 and jo swapped < Current Solution then
5 | Swap(j1,J2);
6

7

8

9

end
end

end
end

e Choose a machine k at random.
e Choose 2 jobs j; and js at random in k.

e Swap jobs j1 and js.
2. For Na(S):

e Choose 2 machines k, k¥’ at random.
e Choose a job j; in k and a job js in &/, both at random.

e Swap jobs j1 and js.
3. For N3(95):

e Choose 1 job j; and 1 machine k' at random, where j; is not allocated in £’
e Choose a valid position pos in k" at random.

e Transfer job j; to k' at position pos.

2.4.4 The local searches

There are several variations of the VNS structure. In our version, we use a specific local search

for each neighborhood. The local searches are listed below:

LS 1. Job swaps at one machine. This local search analyzes every possible swap on one
machine. Even when the chosen machine is not the one with the greatest completion
time, the objective function can be improved by improving the job delays. The algorithm

presented in Algorithm has a time complexity O(m.n?).

LS 2. Job swaps on different machines. In this local search, all job swaps between jobs
belonging to different machines are evaluated. A larger amount of solutions are searched.

The time complexity of our algorithm is O(m?.n?), see Figure 2.0

2. HEURISTIC APPROACHES 29

Algorithm 2.6: Local search 2. Job swaps belonging to different machines.

1 for each k € M do

2 for each ji in k do

3 for each k' € M,k # k' do
4 for each js € k' do

5 if Solution considering j1 and jo swapped < Current Solution then
6 | Swap(ji,ja);

7 end

8 end

9 end

10 end

11 end

Algorithm 2.7: Local search 3. Job insertion from the machine with worst value of
makespan to a machine with the better one.

1 Find the machine with the highest makespan k. Find the machine with the lowest
makespan k', k # k’. for each j in k do

2 for each valid position pos in k' do

3 if Solution considering j transferred from k to k' in position pos < Current
Solution then

4 ‘ Transfer j from k to k' on position pos.

5 end

6 end

7 end

LS 3. Job insertion. This procedure searches for new solutions transferring jobs from the
machine with the highest makespan to the machine with the lowest one. The time

complexity of our implementation is O(n?), see Algorithm 271

The algorithm always tries to use the local search LS 1 first. If after an iteration no
improvement is made, then another neighborhood is used (I is incremented), and every time
a new solution is found, the first local search is used (/= 1).

For instances with long range due dates, local search 1 is effective only when the chosen
machine has the highest completion time. For instances with short range due dates, local
search 1 can improve the objective function by improving some of the job delays, saving
computational time. The feasible space searched by the other two local searches are much
larger than the first one.

The bad behaved instances which have both some short and long due dates are also handled
in a convenient way using all the local searches. Further reading about neighborhood search

techniques can be found on (Ahuja et al., 12002).

2. HEURISTIC APPROACHES 30

300 T T T T T T T

GRASP with local search 1 —+—

GRASP with local search 2

GRASP with local search 3 ------
VNS

250

200

150

Solution

100

50

0 20 40 60 80 100 120 140 160
Jobs

Figure 2.3: Results for instances with long range due dates. VNS is indicated by the curve
with squares as vertexes.

2.5 Computational results

In this section we present the computational results of several experiments considering schedul-
ing problems with different categories of due dates. All the algorithms are coded in C, using
version 4.0.3 of the GCC compiler. The experiments run on a Pentium 4 computer, 3.0 GHz
CPU and 1 GB of RAM memory under a Debian GNU/Linux environment.

Random instances are used in this work. Details about how the instances were generated
are presented in Section 3.4 All instance files can be found at the UFMG Scheduling Group

home page?.

Table 2.16: Three different versions of GRASP

Name Local Search

GRASP 1 LS 1: Job Swaps on the same machine.
GRASP 2 LS 2: Job Swaps on different machines.
GRASP 3 | LS 3: Insertion of a Job on a different machine.

*http://www.dec.ufmg.br /lapo/wiki/index.php/Scheduling Team

2. HEURISTIC APPROACHES 31

10000 T T T T T —T T
GRASP with local search 1 —+—
GRASP with local search 2
9000 GRASP with local search 3 ---%---
VNS -8
8000 |- 4
7000 B
6000 - g
=t
2
E 5000 B
o
7]
4000 4
3000 |- g
2000 -
1000 g
0 1 1 1 1 1
0 20 40 60 80 100 120 140 160

Jobs

Figure 2.4: Results for instances with short or long range due dates. VNS is indicated by the
curve with squares as vertexes.

8000 T T T T T —T T *
GRASP with local search 1 ——+—
GRASP with local search 2.
GRASP with local search 3 ------
7000 VNS 8- o
6000 B
5000 B
c
o
5 4000 | i
o
%]
3000 B
2000 E
1000 i
0 m%‘*”&‘.w i} Il Il Il Il 1 L
0 20 40 60 80 100 120 140 160

Jobs

Figure 2.5: Results for instances with short range due dates. VNS is indicated by the curve
with squares as vertexes.

2. HEURISTIC APPROACHES 32

2.5.1 Results

For this experiment, 8 sets, with 10, 15, 20, 25, 30, 60, 100 and 150 jobs, are used. Each set is
composed by 30 instances with due dates ranges progressively shorter. Each instance is solved
using ten different seeds and the average solution and computation time is considered. The
number of iterations performed by each algorithm is fixed in 10,000. Once again, the results
are presented considering the average percentage deviation.

The results presented in this section are focusing two main objectives, to prove the effi-
ciency of VNS for this scheduling problem and comparing the VNS approach with GRASP.
For this second objective, we are using three different versions of GRASP based on the pre-
vious description of the heuristic § 3] but incorporating the three local searches defined for
the VNS approach, Table shows the different versions of GRASP.

140 T T T T

IGRASP withI local 'searchI 1 —+
GRASP with local search 2 -
GRASP with local search 3 ------

120 - VNS 6|

100 B

Time [sec]

60 1
40

20 |

0 20 40 60 80 100 120 140 160

Figure 2.6: Computation time [seconds| for instances with short or long due dates. VNS is
indicated by the curve with squares as vertexes.

Figures 2.5] 2.3l and [24] compare the computational results of the three versions of GRASP
and the VNS, considering three types of instances: short range due dates, long range due dates
and with both, short and long range due dates.

In all the three categories of due dates, the VNS algorithm provides better average solutions
when considering more than 60 jobs.

For short range due dates (Figure 2.5]) the VNS algorithm presents a superior performance
and by analyzing the GRASP curves it is possible to realize that the local search 2 suit this case
better. For long range due dates (Figure [Z3]), the focus of the algorithm is on the makespan,

2. HEURISTIC APPROACHES 33

and the performance of them all is similar, but when considering more than 100 jobs the VNS
algorithm begins to present better results. For the case with mix range due dates (Figure [2.4)),
as expected, once again the VNS obtains a better performance, when considering 60 or more
jobs.

As for the computational time, the combination of the local searches allows the VNS to
obtain good results. As we can see in Figure[2.6] the VNS gets better results than two versions
of GRASP, specially for larger instances.

Figure 2.7 presents the APD confidence intervals for the group of instances with 150 jobs.
We conclude, that the VNS algorithm provides better average results than GRASP 1 and 3,
in 95% of the cases. Even with an interception between the confidence intervals for the VNS
and the GRASP 2, it is clear the VNS results have a propensity to be superior with larger
instances.

Table 217 shows the APD values for each instance, each value is the average of ten runs.
The first group of instances (1-10) have a short range due dates, form 11-20 the range is longer
and finally instances (21-30) have long range due dates. We conclude that the algorithm is

providing good results, specially for bigger instances.

Confidence Intervals for 150 job instances

22
' ' GRASP with Ioce{l search 1 —+—
GRASP with local search 2
20 F GRASP with local search 3 +--%---:
: VNS i
18 i
16 | % .
14 | i
2 :
o 12 f : 4
< :
10 F i
8 -
6 | _
o}
4 F -
2 1 1 1 1
0 1 2 3 4 5
Algorithm

Figure 2.7: APD confidence intervals for 150 job instances. GRASP1, GRASP2 and GRASP3
represents the GRASP algorithms using local searches 1,2 and 3, respectively (see subsec-

tion 2.

2. HEURISTIC APPROACHES 34

Table 2.17: APD results for the VNS algorithm. Each column presents results for a different
number of jobs.

Inst 10 15 20 25 30 60 100 150
1 3.228 | 4.582 | 5.879 | 6.056 | 6.452 | 5.646 | 13.918 | 14.062
2 3.875 | 4.648 | 3.975 | 4.475 | 6.340 | 7.522 | 16.052 | 12.135
3 4.234 | 3.676 | 4.580 | 5.045 | 5.714 | 5.132 | 13.792 | 17.426
4 3.056 | 3.800 | 4.915 | 4.754 | 7.050 | 9.338 | 10.408 | 21.599
5 2.503 | 3.128 | 3.697 | 3.378 | 5.004 | 6.263 | 12.494 | 17.611
6 4.982 | 4.324 | 3.992 | 5.992 | 5.890 | 7.530 | 12.495 | 21.608
7 3.326 | 4.760 | 3.938 | 5.426 | 4.745 | 9.332 | 13.060 | 16.352
8 4.654 | 4.181 | 6.926 | 6.000 | 5.456 | 8.195 | 12.688 | 15.076
9 7.763 | 3.795 | 4.778 | 5.292 | 6.692 | 7.366 | 15.565 | 16.572
10 2.793 | 4.640 | 4.705 | 3.706 | 5.721 | 7.074 | 14.845 | 20.215

Avg 4.041 | 4.153 | 4.739 | 5.012 | 5.906 | 7.340 | 13.532 | 17.266
11 0.906 | 0.530 | 0.572 | 0.733 | 0.516 | 0.375 0.338 0.335
12 3.744 | 0.835 | 0.406 | 0.383 | 0.563 | 0.424 0.378 0.375
13 1.400 | 0.594 | 0.549 | 0.744 | 0.536 | 0.388 0.345 0.330
14 0.532 | 0.946 | 1.110 | 0.382 | 0.800 | 0.438 0.339 0.320
15 0.901 | 0.535 | 0.382 | 0.437 | 0.424 | 0.388 0.353 0.304
16 2.021 | 0.536 | 0.383 | 0.500 | 0.358 | 0.465 0.421 0.451
17 2.458 | 0.819 | 0.394 | 0.520 | 0.473 | 0.434 0.383 0.322
18 0.640 | 0.580 | 1.194 | 0.496 | 0.494 | 0.387 0.358 0.316
19 0.910 | 0.542 | 0.492 | 0.536 | 0.548 | 0.368 0.360 0.331
20 0.546 | 1.046 | 0.517 | 0.452 | 0.497 | 0.414 0.358 0.627

Avg 1.406 | 0.696 | 0.600 | 0.518 | 0.521 | 0.408 0.363 0.371
21 1.184 | 0.457 | 0.585 | 0.542 | 0.417 | 0.430 0.369 0.340
22 0.850 | 0.613 | 0.442 | 0.423 | 0.478 | 0.412 0.373 0.384
23 0.586 | 0.522 | 0.418 | 0.459 | 0.402 | 0.393 0.373 0.319
24 0.621 | 0.437 | 0.457 | 0.381 | 0.454 | 0.394 0.332 0.322
25 0.499 | 0.560 | 0.350 | 0.525 | 0.437 | 0.377 0.363 0.352
26 1.018 | 0.608 | 0.391 | 0.490 | 0.433 | 0.428 0.381 0.359
27 1.083 | 0.523 | 0.464 | 0.532 | 0.523 | 0.422 0.424 0.319
28 0.739 | 0.698 | 0.735 | 0.445 | 0.530 | 0.406 0.346 0.335
29 0.574 | 0.548 | 0.579 | 0.553 | 0.423 | 0.446 0.363 0.347
30 0.640 | 0.494 | 0.451 | 0.469 | 0.437 | 0.413 0.401 0.346

Avg 0.779 | 0.546 | 0.487 | 0.482 | 0.453 | 0.412 0.373 0.342

[Total Avg [2.076 | 1.799 | 1.942 [2.004 [2.294 [2.720 [4.756 | 5.993 |

2.6 Concluding remarks and Future Research

In this chapter we propose two heuristic approaches that proved to be very efficient to tackle
a scheduling problem with realistic constraints.

The GRASP algorithm proved to be very efficient and flexible, it was very easy to setup
its parameters and use different local searches. The results obtained with GRASP were com-
petitive.

The algorithm based on VNS to solve large instances of this scheduling problem was also
proposed and tested. We run a series of experiments comparing the VNS algorithm with
three versions of GRASP, each one with a different local search. Analyzing the computational
results, we conclude that the VNS provides very good average results for instances with 60 jobs
or more, specially for short range due dates. The combination of three different local searches
proved to be very effective with a simple implementation and with no need of adjusting several
parameters.

The NEH also proved to be remarkable as a procedure to find initial solutions. And before

2. HEURISTIC APPROACHES 35

taking any conclusions between both approaches, it is important to remember that the GRASP
versions do not use the NEH as first heuristic and a significant part of the difference between
both algorithms could be related to this fact. More tests are needed to analyze the relevance
of using NEH as first approach. In Appendixes [Bland [C]several tests are shown analyzing the
relationship between GRASP and exact algorithms and between GRASP and NEH.s

Since the VNS approach proved itself advantageous to solve large instances of scheduling
problems with realistic constraints, further work would include a deeper study of various local

search techniques among improvements in other relevant parts of the VNS structure.

Chapter 3

Models and a Branch and Bound
Algorithm

3.1 Introduction

In this chapter, two different models are proposed, compared and tested. A Branch-and-Bound
algorithm is also presented and tested.

The main objectives of working with mathematical models for these complex problems
are to understand its nature and to detect advantages to improve and/or create new efficient
approaches to solve them.

It is important to remember that the problem addressed in this work is a scheduling
problem with unrelated parallel machines, due dates, and setup times that depend on both
job sequence and machine. It consists of programming several jobs to be processed by several
machines. Each job should be scheduled to a specific machine, and the order each machine will
process its jobs should be decided. It takes each job a different time to be processed by each
machine. When a machine finishes processing a job, it has a setup period before processing the
next. This setup time exists so that the machine can be prepared for the next job (e.g. cleaned
or reconfigured) and is also different for each pair of jobs and each machine. Each job also
has a due date (maximum time when the job should be completed) and a weight (priority).
Though we allow the due date to be exceeded, there will be a penalty in the objective function

depending on the job weight.

3.2 Models

There are a few ways to get this problem modeled, but before introduce and analyze two of
them, we define a common notation. This notation will be valid through the dissertation and

when needed, a specific notation will be added. The general notation is presented bellow.

36

3. MODELS AND A BRANCH AND BOUND ALGORITHM 37

Parameters

N set of jobs to be processed.

M set of machines.

Pim Processing time of job ¢ by machine m.

Siitm, Time for setting up machine m, from processing job ¢ to processing job 4”.

d; Due date of job 1.

v; Tardiness penalty coefficient of job 1.

Gii'm Time between the beginning of job 7 and the conclusion of setup (i,4’).
Jii'm = Pim + Sii'm.

Cm Number of available time units in machine m.

G Sufficiently large positive constant.

3.2.1 First Model

The first model to be introduced is a model based on a group constraints proposed by Manne
(1960), for the job shop scheduling problem. As is possible to see, this model presents an easy
reading and understanding. The group of specific variables used in this model is presented

below.

e t;: processing start time of job ;

1 if job ¢ is processed on machine m,
Aim: .
0 otherwise;

3 1 if jobs i and i’ are processed on machine, and 7 is processed before 7',
i/ m: .
0 otherwise;

p;: tardiness of job ¢;

Zym makespan of machine m

Z: makespan (maximum completion time).
Z; 'Total makespan

Let us first define E™ as the group of all pairs of jobs (i,4") that will be produced by the

same machine m. The MILP model is presented below.

N
min (Z + Z (pi - I/l)> (3.1)

M
> aim =1, Vie N (3.2)
m
ZZti—i—pim—(l—aim)-G, Vie NmeM (33)

di + pi > ti + pim — (1 — ovim) - G, Vie Nnme M (34)

3. MODELS AND A BRANCH AND BOUND ALGORITHM 38

(1 — Oéim) -G+ (1 — Oéz'/m) -G+ (1 — ﬂulm) -G +ty >t + pim + Siilm,V(i,i/) S Em,m eM (35)

(1 —aim) -G+ (1 —aim) G+ Biirm - G+t > tir + Ditm + Sitim. V(i,i') € E™,me M (3.6)

aim € {0,1}, Vie NmeM
Biirm € {0, 1}, V(i,i') € E™,i' € Nnme M
ti, pi 2 0, Vi € N
Z >0

Constraints (3.3) and ([36) describe the precedence relationship between the jobs. These are the
constraints proposed by [Mannd (1960).

This model considers that all processing times are larger than setup times, if this situation does
not happen the model must be slightly modified.

The use of variables (3 is also worth to notice. In our model, these variables indicate a precedence
relation between two jobs, but not necessarily immediately before each other. This approach presents
better performance than when variables Betas mean specific setup situations.

In Constraints ([3.4), the tardiness p; of job i is calculated. The value of the tardiness is penalized
in the objective function.

In the industry, it is common to find two approaches: Scheduling jobs considering the capacity of
each machine and scheduling jobs assuming infinity capacity of the machines. The model above can
work perfectly with both approaches.

The makespan, in other words the specific date on which processing of all jobs is finished, is
calculated by using Constraints (3.3).

We must also be sure that each job is assigned to just one machine, and this is expressed in

equations (3.2)). Finally, the integrality and nonnegative constraints concludes the model.

3.2.2 Second Model

In this approach the model used is based on a series of constraints proposed by (Wagner (1959). The
model tries to schedule a job in the specific position in which it will be processed by the machine,
instead of considering the relation between each pair of jobs, as in the previous model.

The decision variables used in this model are listed below.

o tﬁ,‘{): processing start time of the o'" job on machine m,

& Q-

(o). 1 if job i is processed by machine m at the o' position,
0 otherwise;

1 if jobs i and i’ are processed by machine m at the o' and (o + 1)** positions
. ﬁz(f,)m respectively,

0 otherwise.

e p;: tardiness of job i;

3. MODELS AND A BRANCH AND BOUND ALGORITHM 39

e Z: total makespan.

With the definition of the decision variables we are ready to state and analyze the model based on
Wagner’s job shop model. This model is presented below.

N
min <Z + Z (pi - I/l)> (3.7)

M IN|
Do el =1, VieN (38)
m o=1
Sal) <1, VmeM,o=1,...,IN| (3.9)
Zazo)<2a(o b, VYme M,o=2,...,IN| (3.10)
di + pi >t 4 pim — (1—a§2) .q, Vme M,¥ie Noo=1,...,|N| (3.11)
7 > tIND 4 Z ((IN1) pim> , Vme M (3.12)
t) =0, VmeM (3.13)
Bl >1 - (2 —alot - ag,";) ye Vm € M,Vi,i' € Nyo=2,...,|N| (3.14)
N N N—{i}
H0 >t)+ (ol i) £ 30 S (B9 siem) . VmeMo=2,..,IN| (3.1)
) Q i’
a9 89 0,1}, Vie N,i' e Nyme M,o=1,...,|N]|
pi = 0, Vie N
tl) >0, VYme M,0=2,...,|N|
Z>0

In this case, the model tries to associate a certain job to a processing position of a machine, instead
of analyze a reference position between any pair of jobs.

The objective function (B.7) is similar to the first model, it minimizes the makespan added to the
weighted delays. Each job is processed exactly once ([3.8), and there is at most one job at each position
on each machine (3.9).

There must be a job at position o — 1 if there is another job at position o on the same machine for
0 > 2 ([BI0). The processing start time of the job at the o' position on machine m added to the job’s

3. MODELS AND A BRANCH AND BOUND ALGORITHM 40

processing time must be less than or equal to the job’s due date added to a possible delay p; (311).

The makespan is greater than or equal to the processing start time for the job at the last position
on each machine. Since the processing start time for each position is always greater than or equal to
the processing start time for the previous position, this constraint determines the makespan (B12]).
The processing start time for every job at the first position is equal to zero (B13).

The setup time from job i to job i’ is used between positions 0 — 1 and o on machine m if jobs ¢
and 4’ are on machine m and job 4 is at position o — 1 and job 4’ is at position o (314).

The processing start time for the jobs at the other positions is equal to the processing start time
of the job at the previous position added to its processing time on the machine and the setup time
between the two positions (B.I3)), using the value from (3.I4).

If (agfnfl) = ag,"ﬁn =0), from Constraints @.I4), then 85" > 1—2.G, meaning that 3{5. "

i m ii'm
be 0 or 1. Since this is a minimization problem, Constraints (3138 will force ﬂ(ofl)

i’'m

might
to be equal to 0.

3.3 The Branch and Bound Algorithm

Algorithm 3.1: A generic Branch & Bound
Procedure: Branch

begin

‘ node

end

if IsACompleteSolution(node) then

UB « SolutionValue(node);

return

end
orall n € ChildrenOf(node) do
if LB(n) < UB then
‘ Branch(n);
end

© ® N M AW N R
=

[
(=}

[
[

end

UB = InitialSolution();
Branch(firstNode);
return U B;

[~ S S =
O WN

A B&B is a specific enumeration tree strategy. In a B&B, there are three main procedures:
initialization, branching and bounding. During the initialization, a fast heuristic is used to find a good
initial solution, which serves as an upper bound (UB).

Branching divides the problem into smaller subproblems. Each subproblem represents a partial
solution and is represented by a node in the tree. A search strategy must be associated with the
branching to decide which node should be branched next. The UB helps to prune nodes from the
search tree that have a lower bound (LB) greater than UB (minimization problem).

The bounding procedure calculates the LB for each node in order to decide which node should be

pruned and which should be branched next. The framework for a generic Branch and Bound is shown

3. MODELS AND A BRANCH AND BOUND ALGORITHM 41

in Algorithm 31l In the following sections, the three procedures are customized for this scheduling

problem and described in more detail.

Algorithm 3.2: Main block of the B&B and the initialization algorithm(GRASP)

bestSol; % Value of best solution so far;
localSol; % Value of local solution;
GRASP (iterations); Branch1(1); return bestSol;
Procedure: GRASP
begin
‘ iterations
end
jobs «— Order(N);
for i < 1,iterations do
jobsRand <« ReOrder (jobs);
BuildSol(jobsRand);
LocalSearch();
PathRelinking();
if localSol < bestSol then
‘ bestSol « localSol;
end

© 0w N O kA W N

I S G R O =
S Uk W N = O

17 end

3.3.1 Initialization Based on GRASP

During the initialization, a complete initial solution is found to serve as an UB. Any node in the
enumeration tree with a LB greater than UB can be pruned. In this work, an algorithm based on the
metaheuristic GRASP is used to find this first solution. This metaheuristic consists of two phases: the
construction of a feasible solution and a local search. These two phases are repeated for each iteration.
The effectiveness of GRASP as an upper bound has been previously studied (Rocha et all, 2004). A
description is available in Algorithm

Initially, the jobs are ordered by the earliest due date rule (EDD). During the construction phase,
the algorithm randomly reorders the array by means of a specific probability distribution. In this
chapter, the probability function is f(z) ~ 1/x, where f(z) represents the probability for the z*" job
to be chosen next. Finally, a greedy function is used to schedule the jobs. The local search, arbitrarily
chosen, swaps all the existing pairs of jobs assigned to different machines. If a swap improves the
solution, the new solution is stored and the old one is abandoned. Nothing is done otherwise.

Path relinking (PR) is also used at the end of each iteration to intensify the local search. There
are several ways to implement this technique. For this application, PR works as follows: first, a pool
of good solutions is retained. Every time PR is used, a solution is randomly chosen from this pool and
all solutions in the path from the solution found in the local search to the selected solution from the

pool are analyzed. If a better solution is found, it is added to the pool.

3. MODELS AND A BRANCH AND BOUND ALGORITHM 42

3.3.2 Branching

The branching procedure develops the enumeration tree. The branching scheme is divided into 2
phases. In the first phase, the jobs are assigned to the machines, but no processing sequence is
defined. The job sequence on each machine is decided in the second phase.

The first branching scheme starts ordering the jobs by the EDD rule. The jobs are assigned first
to the machine capable of finishing each one earliest, then on the next machine, and so on. Each time
a job is assigned to a machine, a new node in the enumeration tree is created. The scheme is described
in Algorithm

The second branching scheme decides the processing order on each machine. The order is decided
for each machine at a time. On each machine, the first job to be processed is chosen, then the second,
until there are no more jobs assigned to that machine. Each time a job is assigned to a specific position
on a machine, a new node in the enumeration tree is created. This scheme is described in Algorithm
B4 and in Figure Bl

To avoid generating the complete enumeration tree, a bounding procedure is used to find a LB
for each node. For a certain node i, if LB(¢) is worse than UB, the node is pruned. The bounding

procedure is described in the next section.

Algorithm 3.3: First branching scheme

Procedure: Branchl

begin

| i

end

if AllJobsAlocated() then
Branch2(1,1);
return

end
job — jobslil;
for m < NextMachine() do

© 0 N O O W N

10 AlocateJob(job, m);

11 if LB(presentSol) < bestSol then
12 ‘ Branchl (i + 1);

13 end

14 DealocateJob(job,m);

15 end

3.3.3 Bounding

The bounding procedure is probably the most important procedure on a B&B. A tight LB allows the
algorithm to prune a great number of nodes, eliminating a lot of unnecessary processing. In this work,
the bounding procedure calculates separately the LB for the makespan (LB*) and for the weighted
tardiness (LB?) on each node. To calculate the LB* in the first branching scheme, the procedure
considers two forms, but only the largest value is used, as shown in Equation (B3I6]).

3. MODELS AND A BRANCH AND BOUND ALGORITHM 43

First Branching. A
Each time a job is assigned to a machine, a new node in the
enumeration tree is created.

Atnode A, no jobs are assigned.
Atnode B, job one is assigned to machineM1 7T
At node Z, all jobs are assigned to a

machine, but not sequence is considered.

Second Branching.

The process decides the processing order on each
machine, at a time. On each machine, the first job
to be processed is chosen, then the second, until
there are no more jobs assigned to that machine.

Atnode Z, a feasible solution is completed. All the
jobs are sequenced.

Z,

Figure 3.1: First and Second branching scheme.

3. MODELS AND A BRANCH AND BOUND ALGORITHM 44

e First, it adds the smallest processing times of all unassigned jobs and the processing times of
all assigned jobs to n times the smallest setup time u, where n is the smallest number of setups

needed for all machines (i.e. number of jobs minus the number of machines). This gives LB

e Next, it adds the processing times of each job assigned to machine m to the n’ smallest setup
times among them, where n’ is the smallest number of setup times necessary for m (i.e. number
of jobs assigned to m minus one). This gives LBkaL.

LB* is formally defined in Equations (BI6/3.18), where N is the set of unassigned jobs, N2 is

the set of jobs assigned to machine m and Sg, is the set of setup times among the jobs from NY,.

LBkt
LBk = max <|7|,m1\gx (LB];;II)> (316)
N M Ng,
LBF = Zmin(pim) —|—ZZpim +n-u (3.17)
) m 7
NE, se,
LBEY =3 (i) + > (sirm) (3.18)
i {ii'm}

During the second branching scheme, since there are no unassigned jobs, Equations (BI9H3.20)
are used to calculate the LB*. The procedure adds the partial makespan (the makespan considering
only the scheduled positions) to the processing times of the n unscheduled jobs and the n smallest
setup times among them. This is done for each machine, and the larger value found gives the LB*.
Considering N as the set of jobs on machine m scheduled to a specific position and N%* as the set

of jobs on machine m that have not been scheduled to a position in the processing order, in Equations

Algorithm 3.4: Second branching scheme

Procedure: Branch2 (i, m)

1 begin

2 if SolutionIsComplete() then

3 bestSol < presentSol;

4 return

5 end

6 if OrderIsDecided(m) then

7 Branch2(1,m + 1);

8 return

9 end

10 for job — NextJob(m) do

11 AlocateJobInPosition(job, m,1);
12 if LB(presentSol) < bestSol then
13 ‘ Branch2(i + 1,m);

14 end

15 end

16 end

3. MODELS AND A BRANCH AND BOUND ALGORITHM 45

BI9320), S2° is the set of setup times used by the jobs in N%* and S is the set of the n smallest
setup times among the jobs in V" and the last job added to N, where n is the number of necessary
setups for the jobs in N2".

LB* = max (LBt*) (3.19)
m
N Sas S
LBZ;O‘Q _ Z (pzm) + Z (Szz’m) —+ Z (S“/m) (320)
i {ii'm} {ii'm}

The lower bound for the weighted tardiness (LB?) is calculated in a similar way to the LB*. Tt
is given according to Equations ([3:21}3.26), where LB considers only the unassigned jobs and LB!®

considers only the jobs assigned to machine m.

M
LB'=LB"™+> LB (3.21)
m

N* M
LB%™ = Z {wi - max (min(pim) —d;, O)} (3.22)

)

LB = LB!*" + max (LBL*?, LBL?) (3.23)
Nes
LB = Z [w; - max (t; + pim — d;, 0)] (3.24)
Ny
LB =" [wi - max (t] + pim — di, 0)] (3:25)
Nau NE,
LB = min (w;) - Z max (t! + pim — di,0) (3.26)

(3

L B! represents the tardiness penalty for the scheduled jobs and ¢; is the start time of job i. The
lower bound for the unscheduled jobs is calculated in two different ways (LBL? and LB!23), and only
the largest value found is used. LB!%? considers as if all jobs could be processed in the next available
position, and t; is the smallest start time for job i. LB!*® considers if the jobs were processed in a
nondecreasing order using the due date and processing time in that order as sorting rule and a fixed
setup time between each job. This setup time is equal to the smallest setup time considering the
unscheduled jobs assigned to machine m and is used to calculate ¢/, the start time of job ¢ according
to this sequence.

It is important to point out a few differences between these variables during the first and second
branching scheme. In the first branching scheme, ¢} is always zero, since there are no jobs scheduled
at any position. In the second branching scheme, N* is always empty, because all jobs are assigned
to some machine. Therefore, LB is always zero. Even though LB will only be greater than zero
when a job’s processing time is larger than its due date, little variations in the LB can mean a great

number of pruned nodes. Therefore, this formula is maintained.

3. MODELS AND A BRANCH AND BOUND ALGORITHM 46

The proposed lower bounds are weak bounds especially when the setup times can vary in a large
range. One last detail is that no lower bound formula considers the job delays, make them even more
weak when tight due dates are considered. This fact is also discuss in Chapter @ when a method is

proposed to improved these lower bound formulas.

3.4 Instances

To analyze the algorithms and models developed for this problem, several classes of instances are
defined. In each class there is a change in one of the inputs. All values are randomly generated from
an uniform distribution. Their maximal and minimal values are listed in Table 3], where U(x,y) is a

value generated from an uniform distribution between x and y.

Table 3.1: Standard values of the instances

Input data Standard value
Processing time U(5,200)

Setup time U(25,50)

weight or Priority U(1,3)

Due date U (maximal processing time, %)
q 1

To generate the due dates, several variations of formulas found in other works, like
(Pereira-Lopes and de Carvalho, 2006) or (Ho and Chang, [1995) were tested. To ensure that the
ratio % stays the same in all sizes of instances of each class, the following algorithm
to calculate the maximal value for the due date was adopted: in the order of generation, each job is
assigned to the machine capable of finishing it first. The makespan of this solution is referred to as
h. The maximum value for the due date is given by Q;Th, where ¢ indicates the congestion level of the
scheduling system (Pereira-Lopes and de Carvalhd, 2006). The larger the ¢, the more congested the
system will be, and the more tardy jobs will be.

The created classes are:

A: Contains standard values for all variables.
They are defined in Table [311

B: The due dates are decreased.
q=2.

C: The due dates are decreased.
q=3.

D: The due dates are decreased.
q=4.

E: The due dates are decreased.
q=>5.

3. MODELS AND A BRANCH AND BOUND ALGORITHM 47

F: The processing time is slightly decreased.
p =U(5,150).

G: The processing time is greatly decreased.
p =U(5,100).

H: The setup time is slightly increased.
s =U(25,100).

I: The setup time is greatly increased.
s =U(25,150).

Algorithm 3.5: Modified Floyd-Warshall

1 S;% Matriz with the setup times of a specific machine;
2 P;% Vector with the processing times of a specific machine;

Procedure: Floyd-Warshal (S, P)
3 begin

4 n < S.rows;

5 for kK — 1 ton do

6 for i — 1 ton do

7 for j — 1 to n do

8 | sij < min(sgg, ik, + pr + s15);
9

end
10 end
11 end
12 end

We generated instances with 4 machines and 4 to 12 jobs, and with 6 machines and 6 to 25 jobs.
For each problem size, 40 instances were randomly generated using different seeds.

After generated, the instances were slightly modified. For the first MIP model and the B&B to be
valid, the setup and processing times must satisfy the triangular inequality s;; < six + pr + sg;. In
some production lines, specially in chemical industry, the processing of job k is part of the setup from
job i to j. With this in mind, the processing time of job k was included in the triangular inequality.

Since the setup times were generated randomly, they needed to be corrected to satisfy the inequal-
ity. In order to do that, the Floyd-Warshall algorithm (F-W) was modified as shown in Algorithm
to include a weight in each node to be considered as well as the arc’s weight. The original F-W
is used to find the shortest path between all pairs of nodes in a directed graph (Cormen et all, [1990).
All instance files can be found at the UFMG Scheduling Group home page !.

"http://www.dec.ufmg.br/lapo/wiki/index.php/Scheduling_ Team

3. MODELS AND A BRANCH AND BOUND ALGORITHM 48

10* ‘ :
Manne’'s —&— .
Wagner's ---e--- T
10° F B&B -4 g
% 102 /
£
5 10*
g 10°
w
107t
1072
Number of jobs
Figure 3.2: MIP vs. B&B
Table 3.2: Spent CPU time and variation by the two MIP models and the B&B
Jobs MIP based on Manne’s MIP based on Wagner’s Branch and Bound
Avg. + Dev. (%) Min. Max. | Avg. + Dev. (%) Min. Max. | Avg. + Dev. (%) Min. Max.
4 0.02 £ 00.00 0.02 0.02 0.08 £+ 04.24 0.06 0.09 0.01 £ 00.00 0.01 0.01
5 0.03 + 00.00 0.03 0.03 0.15 + 06.67 0.12 0.22 0.01 + 00.00 0.01 0.01
6 0.05 £ 04.90 0.04 0.06 0.50 + 08.58 0.35 0.72 0.01 £ 00.00 0.01 0.01
7 0.08 + 05.67 0.06 0.10 1.91 4+ 07.06 1.15 2.64 0.02 + 00.00 0.02 0.02
8 0.23 + 13.35 0.14 0.47 4.82 £+ 09.11 3.08 7.11 0.02 + 00.00 0.02 0.02
9 0.53 £+ 11.54 0.32 0.95 19.40 £ 10.66 10.18 30.58 0.03 + 06.32 0.02 0.03
10 5.97 + 22.99 1.10 15.17 123.55 £+ 10.36 80.44 222.78 0.03 + 00.00 0.03 0.03
11 32.93 + 35.83 3.97 130.89 747.79 £+ 19.30 250.04 1,366.97 0.04 + 00.00 0.04 0.04
12 637.60 4+ 54.57 25.61 3,825.17 4,297.73 + 10.72 2,091.25 6,706.19 0.04 + 03.00 0.04 0.05

3.5 Tests and Results

We present results comparing the solutions found by the developed B&B to the solutions found by
both models when solved by CPLEX 9.0? in Section B5.l Tests with the B&B solving the various
classes described in Section [3.4] are shown in the following sections.

We use an interquartile mean for all tests, discarding 50% of the values found. Since there are
20 instances of each class, the 5 smallest and the 5 greatest values found for each class are discarded
from the sample. The interquartile mean is less sensitive to outliers than the mean, but uses more
information from the sample than the median.

During the tests, we tend to vary only one job from instance to instance. But, a problem with n
jobs is not always easier to solve than with n + 1 jobs. Depending on the number of machines and
how the jobs are spread across them, the later may be a lot easier than the former. In the graphics
we are able to see some disturbances like this.

GRASP was fixed at 1,000 iterations to provide the upper bound, and all graphics are shown in
logarithmic form.

3.5.1 Comparing the B&B and the MIP Models

In this test we compare the CPU time spent the by two MIP models and the B&B to find the optimal
solution. Both models were solved by CPLEX, and were given the same starting solution that was

2 CPLEX Software: an optimizer for linear problems developed by ILOG. More information at their website:
http: //www.ilog.com/products/cplex/

3. MODELS AND A BRANCH AND BOUND ALGORITHM 49

107 ‘ ‘ ‘
sf 921
10°F gq=2 e 5 e
o A o

S 10°F q=4 e -
S 4 =5 —-+- S e S A ,//'///l('
X 10 = /»_/_,.f./ -
0 s i
o) 3 et e~ -
k] 10 e /::/.#<4’;//
o 2 e
o 10
2
S 10*
o
53]

-2

6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Number of jobs

Figure 3.3: Varying the due dates

found by GRASP and given to the B&B. Instances of class A for 4 machines were used in this test.
Results are shown in Figure and detailed in Table

The first model performs close to the B&B in the smaller instances. As the number of jobs grows,
so does the difference between them. The deviations of the first and second models also increase as
the number of jobs grows, but the deviation of the B&B varies without an apparent rule. The second
model performs worst than the first and the B&B, but it presents itself more stable. It has a smaller
deviation than the first model in the larger instances. Its spent CPU time also grows at a lower rate
than the first model. This leads us to believe it will perform faster than the first model in larger
instances, but we were unable to test it due to time constraints. The B&B reached the same optimal
solutions obtained by the MIP models.

3.5.2 Due Dates

In this test we try to evaluate how the variation of due dates influence in the execution of the B&B.
Instances of classes A through E for 6 machines were used in this test. Results are shown in Figure
B3 and detailed in Table B3l

Instances of class E (very tight due dates) are the hardest to be solved by the algorithm, followed
by class D (tight due dates). Classes A through C present nearly the same difficulty. This shows that
as the due dates decrease, the difficulty for the B&B increases. One may think the opposite should
occur, since that as the due dates decreases, so do the number of interesting solutions, causing the
search universe to decrease. But when taking a look at the bounding phase of the B&B described in
Section B.3.3] it is possible to understand why this does not happen. To calculate the lower bound,
the bounding procedure considers the unscheduled jobs as either being next on the schedule or as all
of them having the lowest priority and the lowest setup time among them. This formula may not give

strong lower bounds when the delay penalty is too great, but guarantees the solution optimality.

3.5.3 Processing Time

Here we try to evaluate how the variation of the processing times influence the execution of the B&B.
Instances of classes A, F and G are used. Results are show in Figure 3.4 and detailed in Table B4
Instances with large processing times were the easiest to be solved by the B&B. We believe this

happens because the search space of interesting solutions is decreased when the difference of the

50

3. MODELS AND A BRANCH AND BOUND ALGORITHM

ST F 09°70L°8G6°L8E‘T | LV 1€ F 06°898'69¢86 | L0°6T F 08°06%'€THCT | GG

9T° 1€ F 00°¢ST L85 G6G 167 F 09°F0£'G8T°GG | 892 F 06 FIS LTV 4

£0°0¢ F 00°798°G16°9T 2500 F 08°G92°6LL°T 06°9T F 08°9L0°TF¥'€ €C

7€°8¢ F 0£'8TOTSO'FT¥ | 60°€C F 0S'16L°G00°LS 82°LC F 0LF9V'T1L°G 09°2€ F 09°T90‘78¥%'C 44

29°T€ F 08°80L°€L0°G8S | TE'8E F 00°G8L°GS6°CTZ | 80°LE F 06°850°908°C¢ 18°6C F 03°3S6'G06 9% a1 F 00°LET°CET 1%

GE'€T F 09°T20° 09765 | LS°GT F 09°050°GEL‘9. 68T F 08666 78L9T TLLE F 09°8ST LV T G9'6T F 06°798°71¢ 0%
£€8°6% F 08°69%°070°FS 8G°LS F 0L°88€°991°¢€T $S°6€ F 0£°897°0TT°S €8°6E F 00°€L1°21% LL 1T F 06°CVLT9 6T
98'1¢ F 00°7L6°C0SFT ¥0'8T F 06'829°CIS 9 G0'T¢ F 06°8€ET9IE‘T ¥0°9¢ F 02°%58°CE9 19°9T F 03 L¥€°16 8T
16 1€ F 09607 L86°LT 0%'8T F 09°68F°L¥E‘S ST €T F 08°992°G08 28°8T F 01°196°29 €L°6% F 00°128°0C L1
0S°0% F 06°G9L°€25°S G%'9% F 0£'86G°80L°C 09°0¢ F 02°082°€C6 8G°€E F 007G LS 90°€T F 0F°01S°GT 9T
6S°9T F 08°CTF'QTILT 1928 F 05" €78°C08 ¥8°2¢ F 0L°0.8°9%¢C 00°€¢ F 08°G95°¢CT 88°GT F 09 TTL L ST
Z€'ST F 09°899°€Th 1€°22 F 0F7°€£0°09T £8°6¢ F OF'STI V¢ 0L F 01°2L2C 0Z'ST F 0S°662°€ jal
0L'LT F 0625 6€T 9.°02 F 09°TFS°08 29°1¢ F 0.°288°6¢ 96’71 F 07°€69°C 6€°8% F 08°€8. €1
¥9'8Z F 09°996°C9 LTI F 08°€H8'LT 88’2 F 0€°T90°0T 79'8T F 0€°L€€°T L0°9€ F 02°2SL°T 4
Z0'8T F 0G°8€L LT ZT'6T F 0T°€TE0T 06'1¢ F 07°650°% 11°¢¢ F 05°¢cL €061 F 02°LG€ 11
9¢'¢T F 06°6T0°9 16'8T F 09°226°C 01°SZ F 00°9T0°C 80°GZ F 0£°65¢ 66°.C F 0790 01
06°€ F 02201 86'7¢ F 07°1.L8 80°8T F 0.°L0¢€ 6L°2¢ F 08°80¢ 1€°.€ F 06°88T 6
19°€% F 00°¢L9 0€°S% F 00°€5S ¥9°0¢ F 09°2€C 18°%C F 06°92T 76'8¢ F 06°€9 8
78°9¢ F 0T°€8T ZIT'6E F 0F'CFI L¥'LE F 0766 68°€¢ F 0L°€S 18°2% F 00°1¢€)}
671 F 01°9% 9%'91 F 09°0% 00°0¢ F 0L°%F 16°¢¢ F 0% €1 LLEV F 01°ST 9

c=5» _ y=2>b _ ¢=5»b _ z=>h _ 1=5> _mﬂow

X oY) YIM so)ep oNp oY) SUIAIeA UOIJRIASD PIRPUR)S PUR S9POU PaypUeIq Jo IdqUINN :¢'¢ d[qe],

3. MODELS AND A BRANCH AND BOUND ALGORITHM

ol

10* ‘ ‘ ‘ ‘
Small (class G) —=—
Medium (class F) ---e---
10° Large (class A) ---4--- /.
§ B
i 10°
1%
S
2 10*
o
2
S 10°
o
I
107t
-2

10

12 13 14
Number of jobs

15 16 17

Figure 3.4: Varying the processing times

Table 3.4: Number of branched nodes and standard deviation varying the processing times

with the B&B

Jobs | Small Medium Large

6 11.30 £ 43.98 14.70 £ 40.00 15.10 £ 43.77
7 64.30 + 30.30 31.80 4 24.53 31.00 + 27.81
8 79.30 £+ 25.03 95.30 + 31.80 63.90 + 28.92
9 274.90 + 24.01 141.90 £ 27.89 188.90 £ 37.37
10 1,252.20 + 50.11 341.80 &+ 27.90 236.40 + 27.99
11 1,014.30 £+ 17.71 603.30 4+ 18.34 357.20 + 19.23
12 1,735.30 + 20.44 1,366.90 + 31.50 1,752.20 + 36.07
13 3,742.20 £+ 12.56 1,275.00 &+ 18.67 783.80 + 28.39
14 13,456.20 + 18.45 5,783.90 4+ 11.49 3,299.50 4+ 15.20
15 33,117.60 + 17.76 13,402.70 £+ 15.00 7,711.60 £+ 15.88
16 40,263.50 £+ 12.73 15,270.40 + 13.18 12,510.40 + 13.06
17 84,750.90 + 13.55 30,694.90 + 17.17 22,271.00 + 25.73
18 215,261.90 + 27.03 133,605.40 + 33.81 91,347.20 £+ 16.67
19 560,559.90 + 14.01 160,188.50 + 21.41 64,742.90 + 21.77
20 2,640,069.60 + 18.36 545,886.50 + 13.38 314,864.90 + 19.65

18 19 20

10 T T T T
Small (class A) —=—
Medium (class H) ---e---
10° F Large (class 1) ---4---
g
< 10°
1%
S
2 10
o
2
S 10°
<
[
107t
1072

Number of jobs

Figure 3.5: Varying the setup times

processing time of a job over two machines may be too great. When a job is scheduled on a machine
where its processing time is greater than on other machines, the lower bound increases, and if it gets
greater than the upper bound, the node is pruned. It is easy to realize that the greater the processing

time, the quicker the lower bound will increase, and the quicker the node will be pruned.

3. MODELS AND A BRANCH AND BOUND ALGORITHM

92

Table 3.5: Number of branched nodes and standard deviation varying the setup times with

the B&B
Jobs | Small | Medium Large

6 15.10 £ 43.77 15.60 £+ 37.76 14.90 £ 37.58

7 31.00 + 27.81 38.50 + 31.12 61.90 + 36.20

8 63.90 + 28.92 80.90 4+ 24.87 102.40 + 24.81

9 188.90 + 37.37 190.00 + 32.38 221.30 + 29.60
10 236.40 + 27.99 586.90 + 20.83 1,309.30 + 27.06
11 357.20 + 19.23 648.30 + 20.20 922.10 + 17.80
12 1,752.20 + 36.07 1,879.90 + 27.26 1,359.90 + 17.34
13 783.80 + 28.39 2,427.50 £+ 29.97 5,299.10 £ 15.08
14 3,299.50 4+ 15.20 4,620.60 + 18.01 7,256.60 + 13.24
15 7,711.60 4+ 15.88 15,045.40 4+ 18.26 17,668.60 + 12.33
16 12,510.40 £ 13.06 37,956.70 + 19.86 64,910.70 &+ 10.67
17 22,271.00 £ 25.73 85,211.10 £ 21.77 183,705.90 + 18.64
18 91,347.20 + 16.67 376,655.90 £+ 19.12 733,566.90 + 28.43
19 64,742.90 £ 21.77 563,697.60 + 11.78 1,699,133.80 £+ 20.97
20 314,864.90 £+ 19.65 1,223,759.50 £+ 14.87 | 2,766,689.50 4+ 11.22

3.5.4 Setup Time

In this test we try to evaluate how the variation of the setup times influence the execution of the B&B.
Instances of classes A, F and G are used. Results are show in Figure and detailed in Table

Instances with small setup times were the easiest to be solved by the B&B. Here we can see a weak
lower bound greatly harming the performance of the algorithm. As explained in Section [3.3.3] the
bounding procedure considers only the smallest setup times when calculating the lower bound. When
the setup times may vary in a great interval, the lower bound is weakend, harming the performance
of the B&B.

3.5.5 Larger Instances

We are able to find the optimal solution for problems up to 30 jobs with the B&B. For larger problems,
we limit the B&B resolution time to 7,200 minutes (two hours), and measure the improvement on the
solution provided by GRASP. Since the B&B does not prove optimality if the time limit is exceeded,
its solution is compared to the solution found by GRASP after 20,000 iterations (GRASP2) to evaluate
if GRASP with a greater number of iterations is a better approach. The average improvement on the
GRASP solution after 1,000 it. given by Formula (8.27), as well as the average distance between the
B&B and the GRASP2 solution given by Formula (3:28)) are shown in Table

GRASP sol. — B&B sol.

GRASP sol. (3.27)
B&B sol. — GRASP2 sol.
B&B sol. (3.28)

With 30 jobs, the B&B improves the solution found by GRASP after 1,000 it. by an average
of 9.8%, and the distance from the B&B solution to the GRASP2 solution is —2.31% in average. A
negative number means the B&B solution is in average better than the GRASP2 solution. Since the
B&B found and proved the optimal solutions for the instances up to 30 jobs, a negative distance

was expected in this case. But as the problem size increases, the GRASP2 solution becomes more

3. MODELS AND A BRANCH AND BOUND ALGORITHM 53

Table 3.6: Comparing the B&B and GRASP performance on larger instances

Jobs [Improvement | Distance

30 9.80 % -2.31 %
40 2.02 % 1.69 %
50 0.25 % 2.93 %
60 0.26 % 2.64 %
70 0.00 % 331 %
80 0.07 % 3.10 %
90 0.21 % 2.20 %
100 0.09 % 2.19 %

interesting and the improvement the B&B makes on the GRASP solution decreases. With 70 jobs,
the B&B is unable to improve the GRASP solution in any of the 20 instances.

As the number of jobs increases, the B&B loses efficiency since it must solve a TSP (Traveling
Salesman Problem) for each machine during the second branchind scheme. In theses situations, the

solution provided by GRASP should be more interesting.

3.6 Concluding remarks and future research

In this chapter, we considered a scheduling problem with unrelated parallel machines, due dates and
setup times that depend both on the machine and the sequence. A B&B algorithm using GRASP as
an initialization procedure, and two MIP models were proposed and tested. Also as a contribution,
we generated a set of instances with different values of due dates, setups and processing times.

Concerning the performance of the algorithms and models, we solved instances with up to 25 jobs.
We showed that the B&B has a much better performance than the two MIP models solved by CPLEX
9.0. An increase in the variation of the setup times may increase the number of nodes branched by
the B&B, whereas an increase in the due dates or processing times may decrease the number of nodes
in the enumeration tree.

Future research studies include a comparison between GRASP and the B&B involving larger
instances, the improvement of the way B&B takes advantage of the solutions provided by GRASP,
the development of a dichotomic B&B and the analysis of its performance when considering identical
machines. A greater cooperation among the solving methods and a parallel version of the B&B may

be also considered.

Chapter 4

Lower Bounds

In the literature, the optimization of the makespan and the sum of weighted delays are often considered
as two different problems, but in this work, they are considered together due to the fact that this
problem is inspired on a real case and the company requires that. As presented in chapter Bl the
lower bounds used in this work are computed using logic and construction functions. The aim of this
chapter is to proposed a time-indexed formulation for the parallel machine scheduling problem and an
algorithm based on Lagrangian relaxation to improve the problem’s lower bounds.

As it is possible to see in Section [3.3] the proposed branch-and-bound algorithm works using a
depth-first strategy. This approach allows the algorithm to find better solutions very fast, but at the
same time the lower bound is not improved. The CPU time spent in the whole search has a strong
dependence on the initial lower bound, for that reason, to obtain better lower bounds could improve
the CPU time spent by the B&B algorithm.

The chapter is organized as follows: In Section 1] the time-index model for the original problem
is presented. In Section the relaxed model and the proposed algorithm are presented and tested

for small instances.

4.1 Time-Indexed Formulation

Time-indexed formulations are used in scheduling problems because its linear relaxation provides
stronger lower bounds than other models, as well as, they are useful to guide approximation al-
gorithms, (Dyer and Wolsey, 11990; IQueyranne and Schulz, 1994). On the other hand, the main
drawback of these models is their size. For scheduling problems these formulations were initially
proposed by Dyer and Wolseyl (1990), for a single-machine case, and have been studied by many
authors, (Sousa and Wolsey, 11992; IQueyranne and Schulz, [1994; van den Akker et al), (1998, 11999;
Savelsbergh et al), [1998). To the best of our knowledge, we do not know any work proposing a
time-indexed model considering unrelated parallel machines and sequence dependent setup times.
The time-indexed formulation is based on the division of time into T' periods. T represents the
planning horizon, and a period t starts at ¢ and ends at ¢ + 1. Considering a practical point of view,
this time-discretization is made by using the minimum fraction of time considered in the process. For
example in the real case, company Z works with 30 minutes as time unit for its Gantt chart, and this

discretization can be used in the model.

o4

4. LOWER BOUNDS 55

4.1.1 Parameters and variables

The parameters are almost the same than in the previous models. The main point is setting a planning

horizon T, by fixing this parameter, the consideration of infinity variables is avoided.

Parameters

N number of jobs to be processed.

M number of machines.

Pim Processing time of job ¢ by machine m.

Siilm Time for setting up machine m, from processing job ¢ to processing job 4”.

Tiitm Time for setting processing job 7 plus setting up machine m, from processing
job 7 to processing job i’ (Titm = Pim + Siitm)

d; Due date of job 1.

v; Tardiness penalty coefficient of job i.

T Planning horizon.

Decision Variables

zt z! = 1,if job i started at machine m in period ¢, !, = 0 otherwise,
C; Completion time of Job i .

Z Global makespan.

Pi Job ¢ delay.

4.1.2 Mathematical models

In this first model, we are dealing with the same problem as in the previous chapters. The objective

function remains the same, that is, the sum of the makespan plus weighted delays, Equations E11

N
MinZ—f—ZVipi (4.1)
i=1
Subject to
M T—pim
oY al,=1 Vi (4.2)
m=1 t=1
t+Tijm
ah,+ Y 2t <1 ViVt(t < T — pim)VmVj(i # j) (4.3)
s=t+1
M T—pim
Ci> > (t + pim)-2,, Vi (4.4)
m=1 t=1

pi>Ci—d; Vi o (4.5)

4. LOWER BOUNDS 56

Z > C; Vi (4.6)
pi >0 Vi (4.7)
C; >0 Vi (4.8)
Z>0 (4.9)
zt,, €{0,1} Vivtym (4.10)

Constraints ensure that each job is scheduled exactly once. Constraints [£3] take care about
the sequence dependent setup times, by no allowing the schedule of an extra job before the previ-
ous processing job plus the setup time (7) are completed, Figure 1] describes the relation between

consecutive jobs for a better understanding of the model and its constraints.

T = P ¥ 8p=5+3= 8

Jobi (p,=5) x,=1 | Setupij(s,, =3) | Jobj (p,= 4) x,=1

6 9 13 ‘ >

Figure 4.1: Time-indexed variable example

Constraints@ 4 calculate the completion time for each job, and the inequalities @35land 4.6, compute
the job’s delay and the makespan, respectively.

As it is possible to see, the allocation of a binary variable (e.g. zf,) implies in schedule a job
(i) on a machine (m), beginning on a certain date (¢), with these data we are able to compute its
completion time and its delay, if exists. There are two major complicating factors in this model. First,
the sequence dependent setup times and the number of constraints for this matter is huge. Second, to
consider the makespan as part of the objective function. The makespan is a recursive function that
makes impossible to known after fixing a variable, how this allocation is going to affect the objective
function, unless all other variables are already fixed.

As previously stated, the aim of this chapter is to proposed an algorithm to improve the lower
bound presented in Chapter Bl All our lower bounds consider only the makespan. For this reason,
we are going to split our problem and find a lower bound to the weighted delays sum. The model is
now reformulated, considering only the weighted delays as objective function. With this new model

we clearly improve our linear relaxation bound; the model is presented below.

N
i=1

Subject to

4. LOWER BOUNDS 57

M T—pim
oY al, =1 Vi (4.12)
m=1 t=1
t+Tijm
T+ Y 25, <1 Vi, Vt(t < T — pim),¥Vm,Vj(i # §) (4.13)
s=t+1
M T—pim
pi>) (t + pim)-t,, — d; Vi (4.14)
m=1 t=1
pi >0 Vi (4.15)
i € {0,1} Vi, vt,¥m (4.16)

Considering this model and relaxing the group of Constraints I3] it is possible to deal with the
problem of considering too many constraints. In next section, a Lagrangian relaxation is presented

and an algorithm for improving the lower bound is proposed.

4.2 Lagrangian relaxation

4.2.1 Introduction
Lagrangian relaxation was carry out after the innovating work of [Held and Karpl (IQZ!L 1971). The

main idea behind the Lagrangian relaxation is to identify and remove a set of constraints that are

considered difficult to solved and added them to the objective function penalized by a set of Lagrangian

multipliers, (|G_e_cﬂrj_cm|, |19_Z4I), dEishﬂL |19§J.|) Counsidering a problem (P) defined as,

(P) z =ming{cdz : Ax < b,Bzr < ¢,z € R"}

Where b,c € R", A € R™" B € R™>™, Assume that the problem, with the absence of con-
straints Az < b, is easily solvable. The Lagrangian problem (P,) is obtained by relaxing the group of
complicating constraints and add them to the objective function. The use of a non-negative penalty

terms (Lagrangian multipliers, \) for each constraint avoid their violation.
(Py) Z'(A) = ming{cz + N(Az = b) : Bx < ¢,z € R"}

It is easy to check that, for each value A € R the result of the dual problem Pj is a lower of the
original one (P), i.e., z/(\) < z. The problem now is to find the best possible Lagrangian multipliers
for the problem (Py), this problem is usually called Dual Problem or Lagrangian Dual (D).

(D) d =maxx{z'(A) : N e R}""}

Since 2’'(X) < z VA € R, then, the problem D is a relaxation of the original problem P, d < z.
This method has been used in several combinatorial problems and there are a vast number of papers

with applications and new approaches, some of them are, ded_and_Kar_d, |19_Zd, |19_Z].|), (IGﬂﬁrjm:],
11974), (Fishex, 1981), (Potts, [1985), (Frangioni, 2003).

4. LOWER BOUNDS 58

4.2.2 Relaxing the problem

Relaxing the second group of constraints (EI3) and considering AL, =~ > 0Vi, Vj(i # i), VE(t < T —pim),

ijm

Vm we are able to obtain, the Langrangian Problem

N N N M T—pim t+Tijm
SOEIETED 75 i i S sR T CAED SR AE) ENIEL
=1

= =1 j= 17(1;éj) m=1 t=1 s=t+1
Subject to
M T—pim
SN A, Vi (4.18)
m=1 t=1
M T—pim
pi > Z (t + Pim) -t — di Vi (4.19)
pi >0 Vi (4.20)
m €9{0,1} Vi, Vt,Vm (4.21)

Considering a zf,, = 1,Vi,Vt,Vm, it is possible to compute the completion time and delay for each
t

Z;,,- Following that direction, it is possible to define and calculate a new cost (3, for each possible
allocation,
N
= vi(max (0,6 + pim —di)) + > | AL, + Z Alim (4.22)
=1, (i#4) s=t—Tjim

With the new costs /3, the problem to solved is the problem P’(/3), that is, decide where and when
each job is going to be allocated (m and t).

N M T—-pim

i=1 m=1 t=1

T—pim

M
> at =1 Vi (4.24)

1 t=1

at € {0,1} Vi, Vt,¥Ym (4.25)

Once this new problem is solved, we can calculate the lower bound for these A values by using
equation (£I7). The problem now is to find the best possible values for the Lagrangian multipliers
(M), to obtain the best lower bound, Problem P()). For our original problem the final lower bound

will be the sum of the makespan plus the weighted delays lower bounds.

maz {P(\) : AL, > 0,Vi, V], Vt, Vm} (4.27)

igm =

4. LOWER BOUNDS 59

4.2.3 Proposed Algorithm

It can be shown that P()) is a piecewise linear function. Solving the dual problem is therefore a non-
differentiable optimization problem. A successful and well known technique for this problem is the
Subgradient Optimization, see (Fisher,[1981), (Beasley,1993). Based on the Subgradient Optimization
procedure Algorithm [L] shows the pseudo-code of our proposed algorithm.

Algorithm 4.1: Pseudo-code of the proposed Algorithm.

Procedure: Lower_Bound()
begin

1
2 Initialize(sr, LB_best, 0) <« (2,LB_best,1.05);
3 UB < GRASP(Q);
4 A\ — oM,
5 while 7 <0.0001 do
6 B «— costs(A);
7 Inspect Solution «Inspection(f3);
8 LB « Compute_LB(Inspect_Solution);
9 if LB > LB _best then
10 LB best — LB,
11 non__imp « 0;
12 else
13 non_imp = non_imp + 1,
14 if non_imp = 300 then
15 T — /2
16 non__imp = 0;
17 end
18 end
19 SG «—Compute_SG(Inspect_Solution);
20 Step — 7 (0 -UB — LB)/||SG,||?;
21 for all \j;,, do
22 Nijm — max(0, L, + Step - SGY;,);
23 end
24 end
25 return LB _best,;
26 end

The proposed method works as follow. In line 2, the main parameters are initialized. In lines 3,
the GRASP heuristic is called and the upper bound variable (UB) gets its best solution value. In line
4, the Lagrangian multipliers (A) are set to zero. From lines 5 to 19, the iterative process take place.
Initially the beta-costs (3) are compute using Equation £.22] the relaxed problem (m()\)) is solved, and
a lower bound is compute using Equation .17 lines 5, 6 and 7. If necessary, the best lower bound is
update. In line 15, the 7 factor is reduced after 300 iterations with no lower bound improvement.

The subgradient values (SG) are calculated in line 19, using the last solution of the relaxed problem.
With the SG new values, a scalar step size is obtained, line 20. Finally, in line 22,the Lagrangian

multipliers are updated. The algorithm returns the incumbent lower bound in line 25.

4. LOWER BOUNDS 60

4.2.4 Preliminary Results

Preliminary tests are performed to evaluate the effectiveness of the method. For these tests we are
using the solver CPLEX 9.0, with the callable library. The algorithm was coded in C, in a GNU/Debian
environment. For this preliminary experiments we solved the Dual Problem using CPLEX 9.0, instead
of using a specific algorithm for the relaxed problem. For that reason, we considered only small
instances and compared the results with the previous lower bounds. Table .1l summarizes the results
of 188 experiments considering instances with 6 up 16 jobs. Column MKS-LB presents the average
values of the makespan lower bounds using the methods presented in Section B.3.3] Column DEL-LB
presents the lower bound obtained by the Lagrangian approach. Finally, Column Imp indicates the

number of times the LB was improved by the relaxation approach.

Table 4.1: Comparison between lower bounds. Columns MKS-LB and DEL-LB present the
average values of the lower bounds for makepan and delays, respectively. Column Imp indicates
the number of times the LB was improved by the relaxation approach.

NJobs MKS-LB DEL-LB Imp
6 59.111 43.111 13
7 69.063 43.326 7
8 76.077 51.179 10
9 83.176 58.300 10
10 82.333 48.459 6
11 83.059 77.639 11
12 83.950 59.192 6
13 82.105 53.351 6
14 89.000 36.828 10
15 91.150 55.271 7
16 99.250 48.419 7
Average 81.661 52.280

Is important to remember that with the separation of the objective function the final lower bound
will be the sum of MKS-LB and DEL-LB, for this reason, the lower bound is improved every time the
DEL-LB has a nonzero value. The results show a 70% of improvement in the lower bound values and
a 50% of the instances have their lower bounds improved by the algorithm. Even with these strong
results, it is important to remark that these values depend on how the instances are generated. The
proposed algorithm is going to obtain best results in instances with tight due dates, precisely when

the delays are more frequent.

4.3 Conclusions and future works

In this chapter, we introduced a time-indexed formulation and proposed an algorithm based on its
Lagrangian relaxation to improve the instances lower bounds.

The relaxation of the model seems very attractive because we are able to decompose a difficult
problem to a new one that can be solved in a very efficient way. Nevertheless, only small instances
were tested and the results for larger problems could change considerably.

4. LOWER BOUNDS 61

An efficient implementation of the algorithm, avoiding the use of CPLEX is taking place, it is
expected a significant CPU time reduction allowing the test of larger problems.

Part 11

Flow Shop

62

Chapter 5

Permutacional Flow Shop Problem

5.1 Introduction

The Flow Shop Problem (FSP) is a scheduling problem in which n jobs have to be processed by
m machines. The problem is to ﬁnd the sequence of jobs for each machine to minimize completion
time, also known as makespan . This problem is NP-Hard for m > 3 '

@ M Several papers in the hterature address this problem, proposing models, heurlstlcs and

bounds. bambmé d_9_Z’Z| tested several heuristics. Nawaz et alJ (|L9_8;i) presented a polynomial
time algorithm (NEH) ﬁndln interestin i results. Until now, NEH is one of the best polynomial time

heuristics for this problem Ta 1llr) presented an improvement in the complexity of the NEH
algorithm, a heuristic based on tabu search, and a useful characterization of the distribution of the
objective function. Taillard proposed a series of test problems with strong upper bounds. The run-

ning time required by Taillard’s tabu search heuristic was not given and focus was limited to solution

quality. |Ben—_[la.¥a._a.mi_A_l;Ea,mza.nl (|J_9_9§) implemented and tested an improved variant of Taillard’s
tabu search, reporting times and comparing their performances with Ogbu and Smith’s simulated

annealing algorithm (ithl,). However, they did not match all of Taillard’s results
for large instances. Stiitzle presented and tested an Iterated Local Search (ILS) heuristic obtaining
good results. BMMMM (IZQ(ﬂ) compared 25 methods, from very basic ones, such as Johnson’s
algorithm ,), to more sophisticated ones, such as tabu search and simulated annealing.

The results of their study concluded that NEH was the best 301§n0mial—time heuristic while Stiitzle’s

ILS, M, M), and Reeves’s genetic algorithm, M,), were the best metaheuristic-based
heuristics. Interesting results can be found in (Nagano and MQgcelliﬂ, |24)Dj), the authors proposed

a polynomial time heuristic (N&M) with competitive results against the NEH algorithm.
(EE)

proposed a new memetic algorithm for this problem, obtaining improved results when compared
with the ILS and tabu search. The same authors followed up with another paper in the same direc-
tion dBmz_eleJ, |2_0_0d), proposing and testing two genetic algorithms and obtaining strong results.
Agarwal 1. (2006) implemented a heuristic improvement procedure based on adaptive learning and

applied it to the NEH algorithm, leading to additional improvements. However, for larger instances,

their results were of poor quality and their algorithm was computationally intensive. These results

seemed to present a few issues, that we discuss in Section i (|2_0_0_d) described a

simple algorithm with which they obtained good results and presented six new upper bounds.

63

5. PERMUTACIONAL FLOw SHOP PROBLEM 64

In dAgamm]iL_alJ, |20_0_d; |Bm;[la.xa._a.mi_AJ;Eamza.n|, |19_9§; hhillard, |199j) and almost all other

papers dealing with the FSP, the problem of interest was a special case called Permutation Flow Shop

Problem (PFSP) in which the jobs have identical ordering sequences on all machines. This widespread
approach is useful because it allows a simpler implementation, specially for genetic algorithms, and it
is known that a PFSP solution is a good approximation of the FSP solution.

In this chapter, we consider the PFSP and propose two hybrid algorithms, called hybrid A and
hybrid B. Both Algorithms use the heuristic NEH, GRASP-ILS, Path-Relinking, and Memetic Algo-
rithm, see Figure The chapter is organized as follows. In section the mathematical model
is presented. In Sections and [B5.4] we describe the GRASP-ILS and the Memetic algorithm. In
Section 5.5, we present the computational experiments and their analysis. Section concludes this

part of the research.

5.2 Model

It is well known that any job shop model can be used to model a flow shop problem,

see dB_lammm_a,ﬂ, |L9_9_d) In the particular case of a Permutation Flow Shop Problem PFSPi,
(m,)

the model is based on Wagner’s job shop model, M, @), and can be found in

and (IB_La.ZMzm]_J, |19_9d) The notation used is presented below,

{ 1 if job ¢ is scheduled on position j in the permutation ,
Lij-

0 otherwise;

wjm: idle time on machine m before start processing the j — th in the permutation;

Yjm: idle time of job j — th, after finishing on machine m while waiting for machine m + 1

become free;

e Z: makespan (maximum completion time);

5. PERMUTACIONAL FLOw SHOP PROBLEM 65

min Z
Subject to

IN|
> @i =1, Vie N (5.1)
j=1
IN|
> @i =1, VjeN (5.2)
i=1
IN| IN|
Zpim-xij—i-l + Yjtim + Witim = Yjk + Zpim—i-l-mij + Wit 1m+1, (5.3)
i=1 i=1

Vm=1... M| -1Yj=1...|N|-1 (5.4)
IN| |N| IN|
Z sz'm-xin + ijm =Z, (5.5)
j=1i=1 j=1
k—1 |N]|
S pimwi = wi Yk k=2, |M|—1 (5.6)
m=1 i=1
Y1k =0, k=1,...,|M| -1 (5.7)
wjr > 0, Vi e NVke M (5.9)
yir > 0, Vi € NVk e M

(5.10)

Z>0 (5.11)

The process of assigning a job to a certain position in the permutation is granted by Equations (G.1])
and (52)). Equations (5.3)) compute the times between any pair of jobs, taken into account idle times.
The makespan is compute by Equation ([@.3). The idle time for all the machines, besides the first one
while waiting for the arrival of the first job, is compute by Equations (5.6)). Equations (5.7) grant that
the first job in the permutation can pass immediately to the successive machine. Finally, non-negative

constraints complete the model, from (5.8) to (5.11).

5.3 GRASP-ILS

As it is well known, a traditional GRASP and ILS have two main phases, a construction phase and
a local search. Readers unfamiliar with GRASP and ILS are referred to (Feo and Bgsgndé, |L9_9ﬁ;

Festa and Resende, 2009; Resende and Ribeird, 2003b) and (Lourenco et all, [2003), (Stutzle, [1998),

respectively. In our implementation, we also use path-relinking (Feo an nde, 1995).

5.3.1 Construction phase

Usually, the construction phase is a greedy algorithm, with some randomness, in which a new solution
is obtained at each iteration. In our case, we use the NEH heuristic to construct the first solution.
The pseudo-code of the NEH algorithm is presented in Algorithm 5.1

5. PERMUTACIONAL FLOw SHOP PROBLEM 66

Algorithm 5.1: NEH Algorithm

1 Sort the jobs by decreasing sums of processing times;

2 Schedule the first two jobs minimizing the partial schedule;

3 for i =3 ton do

4 Insert the i-th job in one of the ¢ possible places of the partial solution, minimizing
the partial schedule.

5 end

5.3.2 ILS

As in the implementations of ILS, the GRASP-ILS heuristic has a perturbation phase which perturbs
the current solution by making two-swap movements at random positions. If an improved solution is
found, the current solution is updated; if no improvement is found, the current solution is updated with
probability pr > 0. This is a simulated-annealing-like acceptance criterion (Ruiz and Stutzle, 2006;
Stutzle, [1998). If n is the number of jobs, m is the number of machines, and p;; are the processing

time for job ¢ at machine j, then the temperature 7" used in the acceptance process is

Diet g Dij

T=05-
n-m-10

5.3.3 GRASP

In a standard GRASP, at each iteration a new solution is constructed, usually blending a random
procedure with a greedy heuristic. In the heuristic proposed in this work, we maintain a pool of
good-quality solutions on which to apply a path-relinking procedure. After 20 iterations without
improvement, we reconstruct the pool using a partial NEH algorithm while preserving most of the

structure of the current best solution.

5.3.4 Local Search

We use a well-known local search that has been previously applied to this and other combinatorial
optimization problems. Tabu search, ILS, and genetic algorithms have used the same type of local
search scheme, e.g. (Ruiz and Stutzle,[2006). This scheme, which we call LSInsertion is based on the
insertion procedure of the NEH algorithm. For every job, we remove the job from its original position
and attempt to insert it in one of the n possible positions. If an improvement is obtained, then the
process is repeated. This procedure works by choosing the positions at random and terminates after a
complete search without improvement. It is very similar to local search LS3 used in the VNS algorithm

in § 244

5.3.5 Path-relinking

Path-relinking (PR) is used as a form of intensification of the search procedure. PR, is applied from
the incumbent solution to a solution randomly selected from the pool (Feo and Resende, [1995). Be-
ginning at a random position and considering only swaps, three possible moves are analyzed and the

best move is selected. At each step, the new solutions are analyzed and the best one is saved. In

5. PERMUTACIONAL FLOw SHOP PROBLEM 67

Figure 0.1 an example of the procedure is shown. A similar approach and some variations can be
found in (Feo and Resende, 1995).

192}
[oleo[-[s[e]~] [o[=]@C]~]@]~] [o][s[e] = [a[~]~]

Initial Sol Guiding Sol

[l = @[~ [e[=]~[e[][] [o[o[e]a[~[~]~]

S

Figure 5.1: Example of the path-relinking procedure. At each step, a random position is
chosen and from this point, in a cyclic order, three possible changes are analyzed. The letter
‘S’ indicates which solution is selected for the next step. This solution corresponds to the best
move analyzed. Only five steps are performed if the guiding solution is not reached first.

The PR procedure terminates when the whole path between the solutions is analyzed or after
testing a small number of solutions in the path, returning the best solution found in the process.
In our implementation, we only allow five steps, and at each step only three possible solutions are
analyzed.

The main characteristic of the PR is that at each new step the solutions maintain most of the
original structure. When the procedure begins from the best solution, the goal is to preserve most of

this successful structure with some influence of the selected pool solution.

5.3.6 Hybrid GRASP-ILS

Combining these ideas results in the hybrid GRASP-ILS heuristic whose pseudo-code is shown in
Algorithm 521 In this algorithm, Solution, CurrSol and BestSolution, represent different solutions
and their corresponding makespan values. PoolSolution is a random solution chosen from the pool.

In line 1 of the pseudo-code, the jobs are sorted in decreasing order of the sums of their processing
times and the order is saved in the array JobSorted. In line 2, the NEH heuristic is called to produce
the initial solution that is inserted in the pool in line 3. In line 4, the local search is applied on the
initial solution and the local optimum can itself be inserted into the pool in line 5. NonImproves, the

counter of iterations without incumbent solution improvement, is initialized in line 7.

5. PERMUTACIONAL FLOw SHOP PROBLEM 68

The loop in lines 8 to 38 constitutes the main iterations of the heuristic. From line 9 to line 11 the
current solution CurrSol is perturbed and the local search is applied to the perturbed solution. Lines 13
to 21 are only executed every PRF iterations, where PRF is the path-relinking frequency parameter.
In line 13 the path-relinking procedure is applied from the incumbent solution (BestSolution) to
a solution selected at random from the pool (PoolSolution). If certain criteria are met, the path-
relinking solution (SolPR) is inserted into the pool in line 14. In lines 15 to 21 and 23 to 29 the
current, solution can be updated when the current solution is improved or with a positive probability
otherwise. The pool of solutions is replaced after a certain number of nonimproving iterations (NImp).

This pool of solutions contains a set of good, or elite, solutions found during the process. As
we can see in Algorithm 0.2 after each local search and after the path-relinking, the algorithm tries
to introduce the new solution into the pool. For this insertion, not only the quality of the solution
is considered but also the similarity with the other solutions in the pool. This idea is not new and
the reader can refer to (Aiex et all, 2003) for example. In our case we do not allow the insertion of
solutions that are too similar to the ones already in the pool. A solution is inserted if its objective
value is the best so far or if its objective value is better than the worst objective value in the pool and
the solution is different enough from the solutions in the pool.

The similarity between two solutions is computed by counting the number of different jobs for a

certain position. The importance of a diversified pool is discussed in the next section.

5.4 Memetic Algorithm

When working with the PFSP we only deal with a permutation vector, which has an easy representa-
tion. This is one of the main advantages of working with the PFSP. The idea of the post-optimization is
to use the information gathered by the GRASP-ILS heuristic to search for new solutions near solutions
in the pool. For this reason and based on the experience of [Ruiz and Maroto (2005) and [Ruiz et _al.
(2006) we use a Memetic Algorithm (MA), reader can refer to [Moscato (1989) and Moscata (2002).
The MA works using the pool of solutions produced by the GRASP-ILS as the initial population in
addition to a number of random solutions to allow it to search other regions of the feasible solution
space.

As the MA is used along with GRASP-ILS, we need a simple structure and only a few operators.
A mutation procedure, a path crossover, and the cold restart are the only operators used. These

operators are described next.

5.4.1 Mutation Operator (M)

This operator works as a perturbation approach of GRASP-ILS. Its main goal is to allow the algorithm
to search beyond the neighborhood defined by the local search. This operator makes two swap moves
at random positions. It is applied only to the best or second best solution, randomly chosen in the

population.

5.4.2 Path Crossover (PX)

This procedure is similar to path-relinking and it is used as a crossover by |Ahuja et al! (2000) for

solving quadratic assignment problems. After the selection of two parents, the crossover consists of

5. PERMUTACIONAL FLOw SHOP PROBLEM 69

the construction of a path between those parents. This operator begins the procedure from a random
position and continues until it reaches this position again. The parent’s alleles (jobs) are compared. If
they are the same, then the offspring inherits that allele. If the alleles differ, two distinct swap moves
can be done, one on each parent. The algorithm always selects the move which results in a better
objective function value. The offspring resulting from this crossover is the best solution generated
during the construction of the path. Figure shows an example of the PX operator.

We also tested a few other crossover operators, such as multi-parent and similar block order

crossovers, but these did not produce results as good as PX or were excessively expensive to compute.

Rand

v v
‘2‘5‘7‘1‘3‘4‘6‘P1 ‘2‘3‘7‘1‘5‘4‘6‘%
[2[7[2]a]s]4]e]re [2]7[e]a]s]4]c]r

X‘2‘5‘7‘3‘1‘4‘6‘01 X‘2‘3‘7‘1‘5‘4‘6‘OS

5‘2‘7‘3‘1‘5‘4‘6‘02 8‘2‘7‘3‘1‘5‘4‘6‘06

-
‘2‘5‘7‘1‘3‘4‘6‘P1 Return the Best Offspring
‘2‘7‘3‘1‘5‘4‘6‘!33 ‘2‘7‘3‘1‘5‘4‘6‘02
X‘2‘3‘7‘1‘5‘4‘6‘OS ‘2‘3‘7‘1‘5‘4‘6‘03=06

8‘2‘7‘5‘1‘3‘4‘6‘04

Figure 5.2: PX — S indicates the offspring with better objective function and X the discarded
offspring. The first position to check is randomly chosen.

5.4.3 Cold Restart

Cold restart is used in many genetic algorithms with the idea of creating a more diversified population.
This is useful when the algorithm reaches a state of stagnation, that is, when no improvement occurs
after a certain number of generations. Cold restart changes the population by modifying, replacing,
and maintaining part of the solutions. The three best solutions are left unchanged. Approximately half
of the population results from applying the mutation operator on one of the three best solutions. About
one fourth of the population is generated by applying the iterated greedy algorithm of Ruiz and Stutzle
(2006) to the incumbent solution. The remaining elements of the population are replaced by randomly
generated solutions.

5.4.4 Hybrid algorithms

The hybrid algorithms combine the GRASP-ILS and MA heuristics. This combination can be done

in several ways, but in this work we use two approaches called hybrid A and B.

5. PERMUTACIONAL FLOw SHOP PROBLEM 70

Initially, the solution of the polynomial-time heuristic NEH is used as the initial pool solution. If
this solution can be locally improved, then the improved solution is also inserted into the pool. In
both cases the pool of elite solutions is used by the path-relinking component of the hybrid heuristics.

The difference between both hybrid approaches lays in when the MA heuristic is called. In the first
algorithm, we use the MA as a post-optimization procedure to intensify the search around the best
solutions found during GRASP-ILS phase. After running GRASP-ILS for a fixed number of iterations,
the MA uses the pool of elite solutions produced in the GRASP-ILS phase as its initial population.
Path-relinking also plays a role in this hybrid heuristic in that it contributes to the pool as well as
makes use of elements of the pool for intensification.

In the second approach, the GRASP-ILS algorithm calls the MA algorithm after the algorithm
reaches a state of stagnation for a fixed number of iterations. In this case, the MA algorithm uses the
pool of elite solutions as the initial population for a certain number of generations. After that, the
GRASP-ILS continues to run with the pool provided by the MA output.

The algorithm structures are shown in Figure[5.3] for now on we will refer to these cases as hybrid
A and hybrid B, respectively. The diversity of solutions in the pool is critical in both the GRASP-ILS
and MA phases. It allows different promising regions of the solution space to be explored.

Hybrid A Hybrid B
NEH
@ NEH Solution NEH
GRASP @ NEH Solution
ILS GRASP :
<=> Memetic
@ Pool of Solutions ILS
Pool of Solutions
Memetic @

BEST SOLUTION

U

BEST SOLUTION

Figure 5.3: Hybrid algorithm structures.

5.5 Computational Results

To analyze the performance of the hybrid heuristics, we designed several experiments using benchmark
instances proposed by [Taillard (1990) as our testbed. These experiments are composed of two parts.
In the former, we define tests to calibrate certain parameters of our algorithm and in the latter, we
analyze the behavior of the algorithm and its performance.

All the algorithms tested in this part of the thesis were implemented by the authors in the C
programming language and compiled with GNU GCC version 3.2.3, using compiler options -O6 -
funroll-all-loops -fomit-frame-pointer -march=pentium4. CPU times were computed using the func-

tion getrusage(). The experiments for the performance analysis were run on a Dell PowerEdge 2600

5. PERMUTACIONAL FLOw SHOP PROBLEM 71

computer with dual 3.2 GHz 1 Mb cache XEON III processors and 6 Gb of memory RAM under a
Red Hat Linux 3.2.3-53. The algorithm used for random-number generation is an implementation of

the Mersenne Twister algorithm described in (Matsumoto and Nishimurd, [1998).

5.5.1 Calibration

We first conduct a set of experiments to engineer the algorithm, i.e. set parameters and load balance
the various components of the algorithm. Though we conducted extensive computational testing with
numerous crossover operators, initial pool solution heuristics, local search algorithms, path-relinking
schemes, population and pool sizes, and other parameters, we limit this discussion to the calibration
of the memetic when using the PX as a crossover operator, the results of adding the path-relinking to
the GRASP-ILS heuristic, and the relationship of both components of the hybrid heuristic.

We determine the parameter PRF (frequency of path-relinking), the crossover operator to be used
in the MA, and the load balance between the GRASP-ILS and MA components.

5.5.1.1 Frequency of path-relinking (PRF)

The GRASP-ILS heuristic works with a pool of 15 solutions. Since path-relinking is not activated at
each GRASP-ILS iteration, the main parameter to be analyzed is the frequency in which it is called.
This is parameter PRF in Algorithm

To test the effect of using path-relinking, we compared five versions of the hybrid algorithm which
differed only with respect to the PRF parameter. This included a variant in which PRF = 0, i.e. the
pure ILS proposed by [Stutzle (1998). To perform these tests, we allowed the algorithm to run for 200
CPU seconds, regardless of instance size. The 30 chosen instances have 50, 100, and 200 jobs, with
20 stages, and they proved to be the most difficult of this benchmark. The use of time as a stopping
criterion was considered because the path-relinking strategy directly affects CPU time and it is this
tradeoff of quality and time that we want to understand.

For each instance tested, each variant was run five times using different random number generator
seeds and the average percentage increase over the best known solution (API) was calculated. These
results are summarized in Table .1l API is computed considering the best upper bound known to
the date. Equation (5.1Z) shows the formula for API, where R is the number of repetitions, X the

solution of the heuristic, and UB the best known upper bound.

R
S 1 X-UB
APl = — —F - 100 5.12
L3 (X w) 61

The results in Table B0 indicate that GRASP-ILS with path-relinking outperforms the pure ILS.
Furthermore, on average the use of path-relinking frequency parameter PRF = 2 results in a better

performance than any other frequency tested.

5.5.1.2 Crossover comparison

The memetic algorithm component of the hybrid heuristic has several parameters that need to be
set. We conducted extensive experimentation to set these parameters. These experiments resulted in

the following parameter choices. The size of the population was set to 20 solutions of which five are

5. PERMUTACIONAL FLOw SHOP PROBLEM 72

Table 5.1: Average percentage increase over the best known solution for GRASP-ILS varying
the path-relinking frequency parameter PRF.

Jobs - Machines PRF =2 PRF =5 PRF = 10 PRF = 20 Pure ILS
1.36104 1.78701 1.70909 1.49610 1.76623
2.11123 2.00864 1.77106 1.76026 2.12203
2.52129 2.39495 2.01044 2.48283 2.42790
1.57358 1.57358 1.68099 1.83673 1.53598
50 - 20 1.54528 1.53974 1.47328 1.71144 1.62836
1.74763 1.81275 1.97558 1.94844 1.78019
1.57085 1.29015 1.67881 2.04049 1.73819
2.53048 2.96938 2.86643 2.62260 2.92062
1.84344 1.68314 1.58696 1.83810 1.46407
1.29546 1.09371 1.12025 1.22113 1.39634
Average 1.810 1.815 1.787 1.896 1.878
2.51532 2.56369 2.52499 2.42180 2.73460
2.17911 2.30197 2.17911 2.17265 2.16618
2.09217 2.01882 2.03795 2.21336 2.17509
1.80252 1.82166 1.80252 1.88228 1.80252
100 - 20 2.30915 2.35350 2.05892 2.22363 1.95439
2.22816 2.31301 2.20930 2.16216 2.22187
2.11232 2.23676 2.08679 2.27186 2.34844
2.78706 2.75269 2.83706 2.56522 2.59334
2.82709 2.78247 2.76335 2.75697 2.80478
1.82157 1.82468 1.75008 1.94591 2.04228
Average 2.267 2.297 2.225 2.2616 2.284
1.74185 1.82939 1.76686 1.82582 1.81510
2.36722 2.39579 2.37079 2.40650 2.35116
2.37578 2.54346 2.53993 2.45521 2.45698
1.98512 2.09846 2.21179 2.23481 2.25961
200 - 20 1.39977 1.64491 1.72129 1.72484 1.68043
2.25042 2.22540 2.05917 2.17535 2.17535
1.92118 1.95109 2.05489 1.88600 1.90887
2.23222 2.25163 2.28163 2.34869 2.33104
2.10686 2.20515 2.32666 2.46247 2.34989
2.56741 2.52851 2.61339 2.77783 2.70179
Average 2.095 2.167 2.195 2.230 2.203
Overall Average 2.057 2.093 2.069 2.129 2.122
Overall Standard Deviation 0.417 0.444 0.419 0.372 0.411

randomly generated at each new generation. The probability of applying the crossover is 40%, the
mutation 1% and after applying the operators local search is carried out with a probability of 5%.
To avoid superfluous computations, all the solutions have a flag which indicates if local search was
applied to the solution. After completing a generation, local search is applied to the best solution with
a probability of 10% if its flag indicates that local search has not been previously applied. We next
compare the performance of the memetic algorithm when using two crossovers.

After comparing several crossovers [Ruiz et all (2006) choose the Similar Block Order Crossover
(SBOX), which presented a better performance than the other operators. The SBOX transfers to the
offspring similar blocks of alleles from its parents. Two sequences of alleles are considered a similar
block if there are at least two consecutive identical alleles in the same position in both parents. After
the recognition of the similar blocks, a crossover point is randomly chosen and the remaining alleles are
copied from their parents. By using the crossover point it is possible to generate two offsprings after
each crossover. We compare the performance of SBOX with the PX operator described in Section 5.4.21

As seen in Table [5:2] we were unable to reproduce the results obtained by [Ruiz et all (2006). The

difference between the performances could be attributed factors such as differences in coding, data

5. PERMUTACIONAL FLOw SHOP PROBLEM 73

structure design, compilers, hardware discrepancies, or even computer configuration. Furthermore,
Ruiz, Maroto, and Alcaraz report elapsed time instead of CPU time.

To evaluate these operators, once again we use the 30 instances from Taillard’s benchmark with
50, 100, and 200 jobs and 20 stages. The experiment consisted of allowing each algorithm to perform
five runs with different seeds where both algorithms are identical with the exception of the crossover
used. Table shows the results, where for each operator we present the API and the number of
times in which the best solution was found using the crossover.

Table 5.2: Comparison between crossover operators listing AP, the average percentage increase over
the best known solution, and the number of times in which each variant obtained the best solution in
the comparison.

SBOX crossover PX crossover
Jobs - Machines API times best found API times best found
50 x 20 2.28890 4 2.25186 6
100 x 20 2.60578 6 2.57615 6
200 x 20 2.38082 3 2.41622 7

We use the ‘times best found’ metric because sometimes the average value does not show all the
information needed to make the correct choice. In this particular case, we can see that for the 200-job
instances the variant with the SBOX crossover presents a lower average value but the algorithm using
PX crossover obtains better results more times. In these tests, the use of PX as crossover has a better
average performance than SBOX, finding best solutions in most cases. All other parameters used in

the algorithm were fixed in the comparison.

5.5.1.3 Load balancing GRASP-ILS and MA for the hybrid A algorithm

When combining components GRASP-ILS and MA into a hybrid heuristic we need to determine
what portion of the total running time will be allocated to each component. We call this choice load
balancing. We conducted experiments to determine a good load balancing. Once again, we consider
the same instances as before and use the 200 CPU seconds as the stopping criterion. The experiment
consisted of allowing each variant (with distinct load balance) to perform five runs with different seeds.
The possibilities of using the pure GRASP-ILS or the pure MA are also considered in the experiment.

Table B3] and Figure [0.4] present the results. The figure shows the confidence intervals for the
different configurations of the hybrid algorithm. The variants are represented by their respective load
balances. For example, variant 95/5 has a load balance with 95% of the CPU time used by the
GRASP-ILS and 5% by the MA. As can be seen in the table and figure, the 95%-5% load balance
variant has the best average performance.

5. PERMUTACIONAL FLOw SHOP PROBLEM 74

Table 5.3: Average relative percentage deviation for different GRASP-ILS and MA load balances.
G/M indicates G% of running time allocated to GRASP-ILS and M% of running time allocated to
MA.

Jobs - Machines GRASP-ILS 95/5 80/20 50/50 20/80 5/95 Memetic
1.39221 1.36104 1.53247 1.48052 1.75065 1.71429 1.91169
2.20302 2.11123 2.23542 1.87905 2.32721 2.23002 2.12203
2.58720 2.52129 2.52678 2.48833 2.55974 2.60368 2.50481
1.76155 1.57358 1.79914 1.69710 1.79914 2.05693 2.10526
50 x 20 1.78898 1.54528 1.78898 1.78344 1.91083 2.07699 2.06037
2.05156 1.74763 2.05156 2.05156 2.05156 2.10583 2.09498
1.76518 1.57085 1.79757 1.74359 1.84615 1.81916 2.35358
2.56841 2.53048 2.56299 2.56299 2.91520 3.00732 3.07234
1.85413 1.84344 1.85413 1.85413 1.91825 1.82207 2.23350
1.46005 1.29546 1.39634 1.41757 1.40165 1.08840 2.05999
Average 1.94323 1.81003 1.95454 1.89583 2.04804 2.05247 2.25186
2.47662 2.51532 2.75395 2.72170 2.73460 2.88617 3.02806
2.16618 2.17911 2.26964 2.54122 2.64791 2.75461 3.01326
2.09217 2.09217 2.14958 2.21017 2.16233 2.58970 2.49721
1.81528 1.80252 1.80890 1.83442 1.73233 2.04498 1.88547
100 x 20 2.27431 2.30915 2.36300 2.50871 2.41368 2.22997 2.44219
2.23130 2.22816 2.22816 2.32558 2.70585 2.69956 2.66813
2.11232 2.11232 2.09317 2.17294 2.29419 2.53350 2.59413
2.85268 2.78706 2.85893 2.99328 3.06827 3.16825 2.74957
2.82709 2.82709 2.83665 2.89721 2.87809 3.04064 3.05976
1.82157 1.82157 1.89307 2.02362 2.15107 1.83712 2.11999
Average 2.26695 2.26745 2.32551 2.42289 2.47883 2.57845 2.60578
1.81331 1.74185 1.81331 1.82760 1.91157 1.83117 1.95266
2.50647 2.36722 2.49755 2.55467 2.46006 2.41899 2.53861
2.52405 2.37578 2.53993 2.54699 2.52758 2.46404 2.60524
2.27554 1.98512 2.35346 2.52701 2.44200 2.43492 2.62617
200 x 20 1.57030 1.39977 1.66800 1.65024 1.78169 1.64491 1.89182
2.37912 2.25042 2.38806 2.39878 2.29154 2.32192 2.47386
2.06193 1.92118 2.08128 2.03730 2.00739 1.79803 2.17628
2.25693 2.23222 2.24634 2.38574 2.45280 2.54632 2.54632
2.18728 2.10686 2.28020 2.20872 2.34811 2.44282 2.41780
2.68411 2.56741 2.73362 2.78490 2.86270 2.70179 2.93343
Average 2.22590 2.09479 2.26018 2.29220 2.30854 2.26049 2.41622
Overall Average 2.14536 2.05742 2.18007 2.20364 2.27847 2.29714 2.42462

5.5.2 Performance Analysis

We next investigate the algorithm’s dependence on the initial random number generator seed and in
its running time. The tables below show the performance of the algorithm after ten runs for each
instance. In these experiments, we use number of iterations as the stopping criterion, so that the
experiments can be more accurately reproduced.

The hybrid B algorithm does not need a load balancing calibration, but after performing similar
experimentation two important parameters were set, the algorithm calls the GA only after a stagnation
of 20 iterations, and it is allowed to run 20 generations after returning the improved pool of elite

solutions.

5.5.2.1 Time to target

Many local search based combinatorial optimization heuristics, including GRASP, GRASP with path-

relinking, and memetic algorithms have running time to the optimal solution that are distributed

5. PERMUTACIONAL FLOw SHOP PROBLEM 75

2.6

25

2.4

2.1

Average percentage increase over best known solution

19

1.8

100/0 95/5 80/20 50/50 20/80 5/95 0/100
% time GRASP-ILS / % time MA

Figure 5.4: 95% confidence intervals for hybrid algorithms.

according to a shifted exponential distribution (Aiex et all,[2002). To study the random variable time
to target solution value we ran the hybrid A and hybrid B algorithms using one hundred different seeds

for one instance with 100 jobs and 20 stages!

. The seeds were randomly generated and are distinct
from the ones used in the calibration process.

The hybrid A algorithm uses 95% of the processing time allowed with GRASP-ILS and the last
5% with the MA. In this test the maximum CPU time allowed to each run is 10,000 seconds. For the
hybrid B algorithm, the MA is called after a period of 20 iterations without improving the incumbent
solution, and after 20 generations the MA algorithm returns the pool to the GRASP-ILS algorithm.

A target of 2.5% was chosen for this experiment. For this particular case, the best known solution
has a value of 6314, therefor the target was set to 6471. The algorithms will stop after obtaining a
solution less or equal to 6471 or after 10,000 seconds. Time-to-target plots (ttt-plots) are produced
for these values using ttt-plots code, see (Aiex et all, 2005). Figure shows the ttt-plots obtained.

Of interest is that within 80 seconds, almost 80% of the cases for both algorithms reached the
target and within 1000 seconds more than 90%. These results show that the choice of the seed is not
a critical aspect for obtaining a reasonable performance. By this comparison it is possible to realize

the hybrid A algorithm presents a performance slightly better than the hybrid B algorithm.

5.5.2.2 Performance

In this section we present the results obtained by using our algorithm in the 120 instances from
Taillard’s Benchmark. The algorithm performs a fixed number of iterations for both the GRASP-ILS

!The instance used is this experiment is one from Taillard’s benchmark, called ta085.

76

5. PERMUTACIONAL FLOw SHOP PROBLEM

Figure 5.5: CPU time (seconds) needed to reach a solution no further than 2.5% of the best

known upper bound. The time is on a logarithmic scale.

Exponencial distribution comparison
1 +
e
&+
4
i
08 +
f
i
: /
2 06 o
2 ¥
2 i
Y :
Q 3
2 i
8 :
> 4
g 04 §
3 :
o
b
¥
i
¢
0.2 =
7
&
#
{} Hybrid A+
0 28 I
1 10 100 1000 10000 100000
time to target solution (2.5%)

and the memetic part.

Some authors use a relation between the number of jobs and the number of machines to set a
time for testing the performance of the algorithms. The problem with this approach is that for this
particular benchmark, the difficulty of the instances do not seem to increase with the increase of the

number of jobs. We resume this discussion in next section.

In Tables 5.4l and the average values of our experiments are presented, for both hybrid algo-
rithms, and compared with the best known solutions found in the literature. The best known results
were found by different authors and using different strategies. A percentage deviation equal to zero

indicates that the best known solution was found by the algorithm. It is possible to see that the stan-
dard deviation (StdDev) remains with low values, indicating a robust method. The obtained results

are not only competitive but also can be used in real life problems.
When comparing the hybrid approaches, it is possible to observe, the performance of the hybrid
A algorithm is slightly better than algorithm hybrid B.

5.5.2.3 Remarks regarding the instances
It is interesting to analyze the difficulty of our algorithms for some instances. It is quite obvious and
expected that the increase in the number of machines increases the effort needed by our algorithms to
find a good solution. In part, this could be explained by considering that the makespan for an specific
permutation can be calculated by using a function depending on the number of jobs and machines, and

the time wasted on this evaluations explain the need of extra time to reach the same result quality.
Nevertheless it is quite remarkable to notice that the worst performance of our algorithms happens

for the group of instances with 100 jobs and 20 stages (100x20) and for 200x20. And these results are

5. PERMUTACIONAL FLOw SHOP PROBLEM 77

Table 5.4: Average relative percentage increase for Taillard instances. Column CPU 1 indicates
the average time (in CPU seconds) spent to find the best solution. Column CPU 2 indicates
the average time (in CPU seconds) taken by the algorithm hybrid A.

Hybrid A
Jobs - Machines API Best ‘Worst StdDev CPU 1 CPU 2
20 -5 0.079 0.000 1.138 0.234 0.28 5.06
20 - 10 0.328 0.000 1.194 0.327 5.44 18.74
20 - 20 0.224 0.000 0.826 0.233 8.00 28.64
50 - 5 0.003 0.000 0.071 0.014 15.18 125.24
50 - 10 0.713 0.000 2.407 0.602 206.10 1186.92
50 - 20 1.222 0.324 3.791 0.783 1743.90 4647.40
100 - 5 0.012 0.000 0.285 0.044 129.16 680.38
100 - 10 0.256 0.000 1.263 0.270 322.32 1422.72
100 - 20 1.430 0.702 2.183 0.388 1905.28 4350.28
200 - 10 0.270 0.009 0.754 0.164 498.12 1433.04
200 - 20 1.672 0.782 2.615 0.342 2523.44 4218.04
500 - 20 0.981 0.570 1.459 0.213 2493.02 3894.82

Average 0.604

Table 5.5: Average relative percentage increase for Taillard instances. Column CPU 1 indicates
the average time (in CPU seconds) spent to find the best solution. Column CPU 2 indicates
the average time (in CPU seconds) taken by the algorithm hybrid B.

Hybrid B
Jobs - Machines API Best Worst StdDev CPU 1 CPU 2
20 -5 0.058 0.000 0.810 0.167 0.439 4.584
20 - 10 0.275 0.000 2.011 0.382 3.472 14.813
20 - 20 0.231 0.000 0.653 0.186 4.404 28.169
50 - 5 0.019 0.000 0.353 0.071 8.026 93.952
50 - 10 0.700 0.000 1.605 0.485 260.749 1179.363
50 - 20 1.390 0.297 3.787 0.603 1479.574 4108.018
100 - 5 0.006 0.000 0.095 0.020 153.866 687.559
100 - 10 0.258 0.017 0.858 0.256 263.291 1175.743
100 - 20 1.857 0.798 3.624 0.550 1096.554 3575.116
200 - 10 0.257 0.009 0.754 0.184 287.079 1044.240
200 - 20 1.863 0.835 2.766 0.431 1105.303 2129.254
500 - 20 0.902 0.471 1.388 0.203 3149.858 4816.021

Average 0.651

consistent with previous results no matter the method used. The main question to answer is why for
500x20 the algorithm has a better performance. In Taillard’s webpage we can find that for 500x20
there are seven out of ten instances with results proved to be optimal solutions, for 200x20 there four
out of ten optimal solutions and for the case 100x20 only one optimal result has been found so far and
none for 50 x 20.

Next we discuss some new facts that need review. In 2006/Agarwal et all (2006) discuss an approach
to solve the PFSP. In this paper the authors claim to have found a better upper bound for one
instance of Taillard’s benchmark by using an adaptive-learning approach (over well known polynomial
heuristics).

The instance is ta040 (50 jobs and 5 stages). In the paper, they found a permutation with 2774

5. PERMUTACIONAL FLOw SHOP PROBLEM 78

as a makespan value, but they did not present the real permutation values. The problem is that in
Taillard’s website? the optimal value for this instance is 2782.

Something similar occurs in the instance ta068 (100 jobs and 5 stages) in which we found two
problems: the first one is that the upper bound is not correct, the authors use 5034, while the correct
upper bound and supposedly also the optimal value is 5094. This could be only a typing mistake, but
the second problem is that the solutions found for two methods presented in that paper have 5082 as
a makespan value, that is, smaller than the optimal solution value.

Another comment about that paper is that the upper bounds for most of the larger instances are
changed with the lower bounds. In those cases the results presented by the authors tend to be better
than they are claiming to be.

It is very important to review these questions in order to avoid future difficulties for other re-
searchers, especially because these instances are referenced in almost every paper dealing with FSP.
And for future publications, it seems to be more appropriate to present the solutions when a new

upper bound or a significant result is reached.

5.6 Concluding Remarks and future research

In this part of the work we discussed the Permutational Flow Shop Problem. This problem has been
extensively studied and there are several algorithms published with excellent performance.

We presented two implementations of hybrid algorithms based on GRASP, ILS and a memetic
algorithm. In one approach we use the GRASP-ILS algorithm first maintaining a pool of good and
diversified solutions in order to apply path-relinking and to construct a population for the memetic
algorithm. In the second approach, we use the memetic algorithm to improve the pool of elite solutions
every time the GRASP-ILS algorithm reaches a state of stagnation for an specific number of iterations.

The memetic algorithm uses a crossover based on path-relinking (PX) that was shown to be very
effective. The best performance is obtained using the hybrid A algorithm, when we allow the GRASP-
ILS to perform a large search almost 95% of the time and then the memetic algorithm try to obtain
a better solution using the output of the previous one.

The results are quite competitive showing that for the hardest instances of Taillard’s benchmark,
100 jobs and 20 stages, the algorithm can find a solution no worse than 2.5% of the best known upper
bound in less than 80 seconds for 80% percent of the cases.

We also discussed some characteristics about the difficulty of the benchmark and some new results
presented in a recent paper that need to be reviewed.

The next step in our research is the consideration of sequence dependent setups and due dates in
all stages, or only in some of them. We are also considering for a multi-objective approach, trying to
obtain a flexible algorithm that could face different real-life circumstances. We believe that the use of
this kind of hybrid approaches will be most advantageous in these more complicated cases, especially

when dealing with multi-objective problems.

%http://ina2.eivd.ch/Collaborateurs/etd /problemes.dir/problemes.html

5. PERMUTACIONAL FLOw SHOP PROBLEM 79

Algorithm 5.2: GRASP-ILS Algorithm.

©C 0w N O Ok W N

BRSO W OWw W W W W W WW W N NNDNDNDNDNDNDNDN R e e e e e e e
= O © 0 N O G b W N = O © @@ N OO G b W N H © © 00 NN O G KB W N = O

JobSorted « Sort the jobs by decreasing sums of processing times;
Solution < NEH(JobsSorted);

PoolInsertion(Solution),

Solution « LSInsertion(Solution);
PoolInsertion(Solution,Proximity);

CurrSol < BestSolution;

NonImproves « 0;

for i — 1,... MaxIterations do

Solution < Perturbation(CurrSol);

Solution « LSInsertion(Solution);
PoolInsertion(Solution,Proximity);

if 4 mod PRF = 0 then

SolPR <« PathRelinking(BestSolution,PoolSolution);
PoolInsertion(SolPR,Proximity);

if CurrSol > SolPR then

CurrSol < SolPR;

else

if RND(0,1) < exp(—SolPR — CurrSol)/T then
| CurrSol « SolPR;
end
end
end
end

if CurrSol > Solution then
CurrSol «+ Solution;
else
if RND(0,1) < exp(—Solution — CurrSol)/7T then
‘ CurrSol « Solution;
end
end
end
if BestSolution is improved then
NonImproves « 0;
else
‘ NonImproves < NonImproves + 1;
end

end

if NonImproves = NImp then
| RestartPOOL();

end

end

Part 111

General Conclusions and Future

Research

80

Chapter 6

Summary and concluding remarks

In the first part of the dissertation, our research focuses on a scheduling problem with features that
are not often found in the literature. The problem considers sequence and machine dependent setup
times, unrelated parallel machines, and due dates. The objective is to schedule the jobs in order to
minimize the sum of the makespan and the weighted delays.

In Chapter 2] two heuristics were proposed and tested. The first heuristic was based on GRASP.
This approach proved to be very simple and flexible; it is relatively simple to modify this algorithm to
other purposes and situations and it has only a few main parameters that are easily adjusted. In our
particular case the time spent by the algorithm is very reasonable according to real-world constraints.

The second algorithm was based on VNS. We run a series of experiments comparing the VNS
algorithm with three versions of GRASP, each one with a different local search. Analyzing the compu-
tational results, we conclude that the VNS provides very good average results for instances with 60 jobs
or more, especially for short range due dates. The combination of three different local searches proved
to be very effective with a simple implementation and with no need of adjusting several parameters.
The NEH also proved to be remarkable as a procedure to find initial solutions.

In Chapter Bla B&B algorithm using GRASP as an initialization procedure, and a two MIP model
were proposed and tested. Also as a contribution, we generated a set of instances with different values
of due dates, setups and processing times.

We showed that the B&B has a much better performance than the two MIP models solved by
CPLEX 9.0. An increase in the variation of the setup times may increase the number of nodes branched
by the B&B, whereas an increase in the due dates or processing times may decrease the number of
nodes in the enumeration tree.

In Chapter M a time-indexed formulation is introduced and an algorithm based on its Lagrangian
relaxation is proposed to improve the instance’s lower bound. The relaxation of the model seems very
attractive because we are able to decompose the original problem to a relaxed problem that can be
solved in a very efficient way. Nevertheless, only small instances were tested and the results for larger
problems could considerably change.

In the second part of the dissertation, we deal with flow shop problems. We presented two imple-
mentations of hybrid algorithms based on GRASP, ILS and a Memetic Algorithm for the permutation
case. In one approach (hybrid A) we use the GRASP-ILS algorithm first maintaining a pool of good
and diversified solutions in order to apply path-relinking and to construct a population for the Memetic

81

6. SUMMARY AND CONCLUDING REMARKS 82

Algorithm. In the second approach (hybrid B), we use the Memetic Algorithm to improve the pool
of elite solutions every time the GRASP-ILS algorithm reaches a state of stagnation for an specific
number of iterations.

The best performance is obtained using the hybrid A algorithm, when we allow the GRASP-ILS
to perform a large search almost 95% of the time and then the Memetic Algorithm try to obtain a
better solution using the output of the previous one. The results are quite competitive showing that
for the hardest instances of Taillard’s benchmark, 100 jobs and 20 stages, the algorithm can find a
solution no worse than 2.5% of the best known upper bound in less than 80 seconds for 80% percent

of the cases.

6.1 Future works

In this final section we comment some of the ongoing projects and future works that have emerged
out of the research presented in this work. Considering the parallel machine case, we are currently
working on three projects. In the first project we are working on a Local Branching based algorithm.
Initially we are considering the MILP model proposed in Section 3.2l The objective is to compare
the Local Branching approach for the three proposed models.

In many different scenarios, specially in production planning very large scale problems must be
solved in a short time, for that reason, the second project analyzes the implementation of a heuristic
with high-throughput, considering a distribute architecture.

The third project tackles the integration of two levels of production planning, proposing an it-
erative scheme to generate a production plan that takes into account scheduling constraints due to
changeover setup times in single-level manufacturing systems. In this integration we are using the
GRASP algorithm presented in this dissertation.

Considering the flow shop environment, we are working on the Flexible Flow Shop Problem
(FFSP)!. In this case, we have identical parallel machines at each stage, that can perform the same

tasks for all jobs. For this problem, we are working on lower bounds, models and heuristics approaches.

! Also know as Compound flow shop or Hybrid flow shop

Appendix A

Models comparison

In this appendix, we want to compare the three proposed models in terms of number of variables and
contraints. Table [A] shows the comparison of the three proposed models. One important detail is
that the time-indexed formulation needs an upper bound for the horizon considered. This situation
is directly related to the number of constraints the model has, but can be easily solved by allowing
GRASP to perform one iteration.

Table A.1: Comparison between the proposed models.
Manne Wagner time-indexed (T=500)

variables 351 6071 24291
Objectives nonzeros 11 11 10
Linear Constraints 682 5650 218459

In this evaluation the time horizon was arbitrarily set to 500. The first solution obtain by GRASP

is 352 time units, so the number of variables will considerably decrease.

83

Appendix B

GRASP and exact solutions

In this chapter we present the results of 60 experiments for small instances, 5, 10 and 15 jobs. In
the all the instances our GRASP with its basic configuration find all the optimal solutions. In this
experiment, GRASP is set to perform 20000 iterations. Tables [B.Il [B.2] and [B.3] summarize the
experiment. Column F.0Obj shows the objective function value. Column Iteration and Time Best
present the number of the iteration and the CPU time [seconds|, in which the best solution as found.

Finally, Column Time presents the CPU time of the whole process [seconds].

Table B.1: GRASP solution for instances with 5 jobs and 2 unrelated machines.

Instance F.Oby Tteration Time Best Time
00 213 0 0.00 0.39
01 278 0 0.00 0.43
02 263 13 0.00 0.39
03 642 0 0.00 0.41
04 385 1 0.00 0.40
05 187 0 0.00 0.42
06 283 22 0.00 0.39
07 246 1 0.00 0.39
08 208 0 0.00 0.41
09 551 0 0.00 0.41
10 212 0 0.00 0.44
11 307 81 0.00 0.39
12 379 9 0.00 0.37
13 237 3 0.00 0.47
14 272 0 0.00 0.40
15 213 1 0.00 0.43
16 307 0 0.00 0.42
17 415 0 0.00 0.38
18 502 0 0.00 0.42
19 400 1 0.00 0.44

6.60 0.00 0.41

84

B. GRASP AND EXACT SOLUTIONS

85

Table B.2: GRASP solution for instances with 10 jobs and 6 unrelated machines.

Instance F.Oby Iteration Time Best Time
00 143 14 0.01 4.32
01 173 31 0.01 4.47
02 418 11 0.01 4.33
03 136 19 0.01 4.46
04 185 0 0.00 5.16
05 216 99 0.02 4.27
06 195 27 0.01 4.40
07 104 2 0.00 4.45
08 157 10 0.00 4.09
09 169 3 0.00 4.27
10 141 177 0.04 4.43
11 194 28 0.01 4.36
12 330 4 0.00 4.19
13 190 8 0.01 4.43
14 97 13 0.00 4.33
15 165 286 0.06 4.29
16 120 0 0.00 4.48
17 284 14 0.01 4.34
18 141 1189 0.27 4.42
19 123 45 0.01 4.40
Average 99.00 0.02 4.39

B. GRASP AND EXACT SOLUTIONS

86

Table B.3: GRASP solution for instances with 15 jobs and 6 unrelated machines.

Instance F.Oby Iteration Time Best Time
00 346 134 0.07 10.48
01 162 25 0.02 10.77
02 263 4 0.01 10.51
03 234 29 0.02 11.08
04 351 336 0.19 11.18
05 172 15 0.01 10.83
06 271 25 0.02 10.44
07 241 1370 0.69 10.19
08 165 635 0.34 10.87
09 209 247 0.15 11.53
10 355 8833 4.79 10.92
11 174 1242 0.65 10.54
12 283 12261 6.26 10.30
13 156 0 0.00 10.76
14 142 116 0.06 10.67
15 176 10 0.01 10.67
16 206 26 0.02 10.62
17 174 9 0.01 9.75
18 262 1585 0.83 10.58
19 344 1145 0.61 10.62
Average 1402.35 0.74 10.67

Appendix C

NEH as first solution

The first solution of our two heuristic is based on a well known heuristic called NEH. This heuristic

was initially formulated for the Permutation Flow Shop Problem, and we adapted to the PMSP. In

this appendix 20 tests are summarize. This experiment has the objective of analyze the quality of the

NEH solution against the solution obtained by any other of the proposed heuristics.

For this experiment instances with 100 jobs and 6 unrelated parallel machines were chosen. The

algorithm is going to use NEH as a construction procedure. Table [Clsummarizes the results. Columns
NEH and TimeN present the results obtained by the NEH algorithm and its CPU time. Columns
GRASP and TimeG present the final results after 10000 iterations and its CPU time, respectively.

Table C.1: NEH and GRASP solutions for instances with 100 jobs and 6 unrelated machines.

Instances NEH Time GRASP Time
00 22445 0.07 7388 454.21
01 21304 0.07 9577 395.81
02 33846 0.07 13271 436.78
03 28510 0.07 9891 392.71
04 31537 0.07 11461 402.45
05 30809 0.07 12691 413.47
06 35120 0.07 20669 386.4
07 22742 0.07 12145 376.12
08 32457 0.07 9927 388.53
09 34323 0.07 13276 383.16
10 22955 0.07 5348 395.34
11 39648 0.07 18927 368.9
12 33873 0.07 14972 394.95
13 25167 0.07 8106 390.97
14 28351 0.07 10293 413.24
15 28958 0.07 6648 398.91
16 31516 0.07 8858 368.22
17 30078 0.06 9205 376.39
18 32693 0.07 7513 393.53
19 35039 0.07 15272 392.34

87

Bibliography

Adamopolos, G. and Pappis, C. (1998). Scheduling under common due date on parallel unrelated
machines. European Journal of Operational Research, 105(3):494-501.

Agarwal, A.; Colak, S., and Eryarsoy, E. (2006). Improvement heuristic for the flow-shop scheduling
problem: An adaptive-learning approach. FEuropean Journal of Operational Research, 169(3):801-
815.

Ahuja, R. K., Ergun, O., Orlin, J. B., and Punnen, A. P. (2002). A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics, 123(1-3):75-102.

Ahuja, R. K., Orlin, J. B., and Tiwari, A. (2000). A greedy genetic algorithm for the quadratic
assigment problem. Computers & Operations Research, 27(10):917-934.

Aiex, R., Binato, S., and Resende, M. (2003). Parallel GRASP with path-relinking for job shop
scheduling. Parallel Computing, 29:393-430.

Aiex, R., Resende, M., and Ribeiro, C. (2002). Probability distribution of solution time in GRASP:

An experimental investigation. Journal of Heuristics, 8:343-373.

Aiex, R., Resende, M., and Ribeiro, C. (2005). TTTPLOTS: A perl program to create time-to-target
plots. Technical report, AT&T Labs,Technical Report TD-6HT7EL. To appear in Optimization
Letters.

Armentano, V. A. and Ronconi, D. (1999). Tabu search for total tardiness minimization in flowshop
scheduling problems. Computers & Operations Research, 26(3):219-235.

Baker, K. R. (1974). Introduction to Sequencing and Scheduling. John Wiley & Sons Inc, New York.
Baker, K. R. (editors S C Graves et al.1993). Requirements planning. In Handbooks in OR & MS.

Beasley, J. E. (1993). Lagrangian relaxation. In Reeves, C. R., editor, Modern heuristic techniques for
combinatorial problems, pages 243-303. John Wiley & Sons, Inc., New York, NY, USA.

Ben-Daya, M. and Al-Fawzan, M. (1998). A tabu search approach for the flow shop scheduling problem.
European Journal of Operational Research, 109(1):88-95.

Binato, S., Hery, W., Loewenstern, D., and Resende, M. (2002). A greedy randomized adaptive search
procedure for job shop scheduling. In FEssays and surveys on metaheuristics, pages 58-79. C.C.

Ribeiro and P. Hansen, editors.Kluwer Academic.

88

BIBLIOGRAPHY 89

Blazewicz, J., Ecker, K., Pesch, E., Schimdt, G., and Weglarz, J. (1996). Scheduling Computer and
Manufacturing Processes. Springer - Verlag, Berlin.

Blazewicz, J., Lenstra, J., and Kan, A. R. (1983). Scheduling subject to resource constraints. Discrete
Applied Mathematics, 5:11-24.

Brucker, P. (2004). Scheduling Algorithms. Springer-Verlag, Berlin.

Cheng, T. and Q. Ding, B. L. (2004). A concise survey of scheduling with time-dependent processing
times. European Journal of Operational Research, 152(1):1-13.

Cheng, T. and Sin, C. (1990). A state-of-the-art review of parallel-machine scheduling research.
European Journal of Operational Research, 47(3):271-292.

Coffman, E. (1976). Computer and Job-Shop Scheduling Theory. Wiley, New York.

Cormen, T., Leiserson, C., and Rivest, R. (1990). Introduction to Algorithms, chapter 26: All-Pairs
Shortest Paths. The MIT Press, Cambridge, MA.

Dannenbring, D. G. (1977). An evaluation of flow shop sequencing heuristics. Management Science,
23(11):1174-1182.

de Paula, M. R., Goémez Ravetti, M., Mateus, G. R., and Pardalos, P. M. (2007). Solv-
ing parallel machines scheduling problems with sequence-dependent setup times using vari-
able neighbourhood search. IMA Journal of Management Mathematics, 18(2). In Press,
http://dx.doi.org/10.1093 /imaman/dpm016.

Dyer, M. E. and Wolsey, L. A. (1990). Formulating the single machine sequencing problem with release
dates as a mixed integer program. Discrete Applied Mathematics, 26(2-3):255-270.

Feo, T. and Resende, M. (1995). Greedy randomized adaptive search procedures. Journal of Global
Optimization, 6(2):109-133.

Feo, T., Sarathy, K., and McGahan, J. (1996). A GRASP for single machine scheduling with sequence
dependent setup costs and linear delay penalties. Computers € Operations Research, 23(9):881-895.

Feo, T., Venkatraman, K., and Bard, J. (1991). A GRASP for a difficult single machine scheduling
problem. Computers & Operations Research, 18(8):635-643.

Festa, P. and Resende, M. (2002). GRASP: An annotated bibliography. In Ribeiro, C. and Hansen,

P., editors, Essays and surveys in metaheuristics, pages 325-367. Kluwer Academic Publishers.

Fisher, M. L. (1981). The lagrangian relaxation method for solving integer programming problems.

Management Science, 27:1-18.

Frangioni, A. (2005). About lagrangian methods in integer optimization. Annals of Operations Re-
search, 139:163-193.

Garcia-Lopez, F., Melian-Batista, B., Moreno-Pérez, J., and Moreno-Vega, J. M. (2002). The parallel
variable neighborhood search for the p-median problem*. Journal of Heuristics, 8(3):375-388.

BIBLIOGRAPHY 90

Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide to the Theory of NP-
Completeness. W H Freeman & Co., New York, USA.

Geoffrion, A. M. (1974). Lagrangean relaxation for integer programming. Math. Programming Study,
2:82-114.

Glover, F. (2000). Multi-start and starategic oscilation methods - principles to exploit adaptive mem-
ory. In Laguna, M. and Gonzéales-Velardes, J. L., editors, Computing Tools for Modeling, Optimiza-
tion and Simulation: Interfaces in ComputerScience and operations Research, pages 1-24. Kluwer

Academic Publishers.
Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers, Boston.

Gomez Ravetti, M. (2003). Problemas de seqilienciamento com méquinas paralelas e tempos de
preparacao dependentes da seqiiéncia. Master’s thesis, Departamento de Ciéncia da Computacao,

Universidade Federal de Minas Gerais.

Gomez Ravetti, M., Nakamura, F. G., Meneses, C. N., Resende, M. G., Mateus, G. R., and Pardalos,
P. M. (2006). A hybrid heuristic for the permutational flow shop problem. In 19th International

Symposium on Mathematical Programming, Rio de Janeiro, Brazil.

Gomez Ravetti, M., Rocha, P. L., Mateus, G. R., and Pardalos, P. M. (2007). A scheduling prob-
lem with unrelated parallel machines and sequence dependent setups. Int. Journal of Operational

Research. In Press.

Graham, R., Lawler, E. L., Lenstra, J. K., and Kan, A. R. (1979). Optimization and approximation
in deterministic sequencing and scheduling theory: a survey. Annals of Discrete Mathematics,
5:287-326.

Hansen, P. and Mladenovic, N. (1999). Variable neighborhood search: Principles and applications.

European journal of operational reasearch, 130:449-467.

Hansen, P. and Mladenovic, N. (2003). A tutorial on variable neighborhood search. Le cahiers du
GERARD, G-2003:46.

Hansen, P., Mladenovic, N., and Brimberg, J. (2002). Convergence of variable neighborhood search.
Les Cahiers du GERAD, G-2002-21.

Held, M. and Karp, R. (1970). The travelling-salesman problem and minimum spanning trees. Oper-
ations Research, 18:1138-1162.

Held, M. and Karp, R. (1971). The travelling-salesman problem and minimum spanning trees: Part
ii. Mathematical Programming, 1:6-25.

Ho, J. C. and Chang, Y.-L. (1995). Minimizing the number of tardy jobs for m parallel machines.
European Journal of Operational Research, 84(2):343-355.

Jansen, K. and Porkolab, L. (2001). Improved approximation schemes for scheduling unrelated parallel
machines. Mathematics of Operations Research, 26(2):324-338.

BIBLIOGRAPHY 91

Johnson, D., Aragon, C., and Schevon, L. M. C. (1989). Optimization by simulated annealing: An
experimental evaluation; part 1, graph partitioning. Operations Research, 37:865—892.

Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included.
Nav. Res. Log. Quarterly, 1:61-68.

Kan, A. R. (1976). Machine scheduling problems: classification, complexity and computations. The
Hague : Nijhoff.

Kim, D.-W., Kim, K.-H., Jang, W., and Chen, F. F. (2002). Unrelated parallel machine scheduling
with setup times using simulated annealing. Robotics and Computer-Integrated Manufacturing,
18(3-4):223-231.

Kim, D.-W., Na, D.-G., and Chen, F. F. (2003). Unrelated parallel machine scheduling with setup
times and a total weighted tardiness objective. Robotics and Computer-Integrated Manufacturing,
19(1-2):173-181.

Laguna, M. and Marti, R. (1999). GRASP and path relinking for 2-layer straight line crossing mini-
mization. INFORMS Journal on Computing, 11(1):44-52.

Lawler, E., Lenstra, J. K., Kan, A. R., and Shmoys, D. (1993). Sequencing and scheduling: algorithms
and complexity. In Graves, S., Kan, A. R., and Zipkin, P., editors, Handbooks in Operations Research
and Management Science 4, Logistics of Production and Inventory, pages 445-524. North Holland.

Lee, C.-Y. and Pinedo, M. (2002). Optimization and heuristics of scheduling. In Pardalos, P. M. and
Resende, M. G. C., editors, Handbook of Applied Optimization. Oxford University Press, New York.

Lourenco, H., Martin, O., and Stutzle, T. (2003). Iterated local search. In Glover, F. and Kochenberger,

G., editors, Handbook of metaheuristics. Kluwer.
Manne, A. (1960). On the job—shop scheduling problem. Operations Research, 8(2):219-223.

Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: a 623-dimensionally equidistributed uni-
form pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation,
8:3-30.

Matsuo, H., Sug, C., and Sullivan, R. (1989). A controlled search simulated annealing method for the
single machine weighted tardiness problem. Annals of Operations Research, 21:85-108.

Mokotoff, E. (2001). Parallel machine scheduling problems: A survey. Asia - Pacific Journal of
Operational Research, 18(2):193-242.

Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards

memetic algorithms. Technical report, Caltech Concurrent Computation Program, C3P Report 826.

Moscato, P. (2002). Optimization and heuristics of scheduling. In Pardalos, P. M. and Resende, M.
G. C., editors, Handbook of Applied Optimization. Oxford University Press, New York.

Mosheiov, G. (2004). Simultaneus minimization of total completion time and total deviation of job
completion times. European Journal of Operational Research, 157(2):296-306.

BIBLIOGRAPHY 92

Nagano, M. and Moccellin, J. (2002). A high quality solution constructive heuristic for flow shop
sequencing. Journal of the Operational Research Society, 53(12):1374-1379.

Nawaz, M., Enscore, E., and Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop
sequencing problem. Omega, 11(1):91-95.

Ogbu, F. and Smith, D. (1990). The application of the simulated annealing to the solution of the
n/m/cmax flow shop problem. computers & Operations Research, 17(3):243-253.

Oguz, C., Ercan, M., Cheng, T., and Fung, Y. (2003). Heuristic algorithms for multiprocessor task
scheduling in a two-stage hybrid flow-shop. European Journal of Operational Research, 149(2):390-
404.

Pereira-Lopes, M. J. and de Carvalho, J. V. (2006). A branch-and-price algorithm for scheduling
parallel machines with sequence dependent setup times. Furopean Journal of Operational Research.

In Press.
Pinedo, M. (1995). Scheduling Theory, Algorithms and Systems. Prentice Hall, New Jersey, USA.

Polacek, M., Hartl, R. F., and Doerner, K. (2004). A variable neighborhood search for the multi depot
vehicle routing problem with time windows. Journal of Heuristics, 10(6):613-627.

Potts, C. N. (1985). A lagrangean based branch and bound algorithm for single machine sequencing.
Management Science, 31(10):1300-1311.

Queyranne, M. and Schulz, A. S. (1994). Polyhedral approaches to machine scheduling. Technical
report, Preprint 408/1994, Department of Mathematics, Technical University of Berlin, Berlin,

Germany.

Reeves, C. (1995). A genetic algorithm for flowshop sequencing. Computers & Operations Research,
22(1):5-13.

Resende, M. and Ribeiro, C. (2003a). GRASP and path-relinking: Recent advances and applications.
In Ibaraki, T. and Yoshitomi, Y., editors, Proceedings of the Fifth Metaheuristics International
Conference (MIC2003), pages T6-1 — T6-6.

Resende, M. and Ribeiro, C. (2003b). Greedy randomized adaptive search procedures. In Glover,
F. and Kochenberger, G., editors, Handbook of Metaheuristics, pages 219-249. Kluwer Academic
Publishers.

Rocha, P. L., Gomez Ravetti, M., and Mateus, G. R. (2004). The metaheuristic
GRASP as an upper bound for a branch and bound algorithm in a scheduling prob-
lem with sequence-dependent setup times. In 4th EU/ME Workshop on Design and Eval-
wation of Advanced Hybrid Meta-Heuristics, Nottingham - FEngland. Available on-line at
http://webhost.ua.ac.be/eume/workshops/hybrid /A037Revised.pdf.

Rocha, P. L., Gomez Ravetti, M., Mateus, G. R., and Pardalos, P. M. (2007). Exact algorithms for
a scheduling problem with unrelated parallel machines and sequence and machine-dependent setup
times. Computers & Operations Research. In Press, http://dx.doi.org/10.1016/j.cor.2006.07.015.

BIBLIOGRAPHY 93

Ruiz, R. and Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop
heuristics. European Journal of Operational Research, 165(2):479-494.

Ruiz, R., Maroto, C., and Alcaraz, J. (2003). New genetic algorithms for the permutational flowshop
scheduling problem. MIC2003: The Fifth Metaheuristics International Conference, pages 63.1-63.8.

Ruiz, R., Maroto, C., and Alcaraz, J. (2006). Two new robust genetic algorithms for the flowshop
scheduling problem. OMEGA, The International Journal of Management Science, 34:461-476.

Ruiz, R. and Stutzle, T. (2006). A simple and effective iterated greedy algorithm for the permutation

flowshop scheduling problem. FEuropean Journal of Operational Research, Available on-line.

Savelsbergh, M. W. P., Uma, R. N., and Wein, J. (1998). An experimental study of lp-based ap-
proximation algorithms for scheduling problems. In SODA ’98: Proceedings of the ninth annual
ACM-SIAM symposium on Discrete algorithms, pages 453-462, Philadelphia, PA, USA. Society for
Industrial and Applied Mathematics.

Sousa, J. P. and Wolsey, L. A. (1992). A time-indexed formulation of non-preemptive single-machine

scheduling problems. Mathematical Programming, 54:353-367.

Stafford, E. F. (1988). On the development of a mixed-integer linear programming model for the
flowshop sequencing problem. Journal of the Operational Research Society, 39(12):1163-1174.

Stutzle, T. (1998). Applying iterated local search to the permutation flow shop problem. Technical
report, TU Darmstadt, AIDA-98-04, FG Intellektik.

Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem. European
Journal of Operational Research, 47(1):65-74.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational
Research, 64(2):278-285.

van den Akker, J., Hurkens, C., and Savelsbergh, M. (1998). Time-indexed formulations for machine
scheduling problems: Column generation. citeseer.ist.psu.edu/vandenakker98timeindexed.html.

van den Akker, J., van Hoesel, C., and Savelsbergh, M. (1999). A polyhedral approach to single-
machine scheduling problems. Mathematical Programming, 85:541-572.

Wagner, H. W. (1959). An integer linear-programming model for machine scheduling. Naval Research
Logistic Quarterly, 6(2):131-140.

	1 Introduction
	1.1 Scheduling Problems
	1.1.1 Parallel machines
	1.1.2 Flow shop
	1.1.3 Problem definition and classification

	1.2 Related works and methods
	1.2.1 Branch and Bound (B&B)
	1.2.2 Greedy Randomized Adaptive Search Procedure (GRASP)
	1.2.3 Variable Neighborhood Search (VNS)

	1.3 Contextualization
	1.3.1 Real case

	1.4 Objectives and contributions
	1.5 Organization of the text

	I Parallel Machines
	2 Heuristic Approaches
	2.1 Introduction
	2.2 Problem description
	2.3 Greedy Randomized Adaptive Search Procedure
	2.3.1 Sorting rules
	2.3.2 Construction phase
	2.3.3 Probability distribution and local search
	2.3.4 Path Relinking
	2.3.5 Versions of GRASP
	2.3.6 GRASP experiments

	2.4 Variable Neighborhood Search
	2.4.1 VNS algorithm
	2.4.2 The initial solution
	2.4.3 Random solutions
	2.4.4 The local searches

	2.5 Computational results
	2.5.1 Results

	2.6 Concluding remarks and Future Research

	3 Models and a Branch and Bound Algorithm
	3.1 Introduction
	3.2 Models
	3.2.1 First Model
	3.2.2 Second Model

	3.3 The Branch and Bound Algorithm
	3.3.1 Initialization Based on GRASP
	3.3.2 Branching
	3.3.3 Bounding

	3.4 Instances
	3.5 Tests and Results
	3.5.1 Comparing the B&B and the MIP Models
	3.5.2 Due Dates
	3.5.3 Processing Time
	3.5.4 Setup Time
	3.5.5 Larger Instances

	3.6 Concluding remarks and future research

	4 Lower Bounds
	4.1 Time-Indexed Formulation
	4.1.1 Parameters and variables
	4.1.2 Mathematical models

	4.2 Lagrangian relaxation
	4.2.1 Introduction
	4.2.2 Relaxing the problem
	4.2.3 Proposed Algorithm
	4.2.4 Preliminary Results

	4.3 Conclusions and future works

	II Flow Shop
	5 Permutacional Flow Shop Problem
	5.1 Introduction
	5.2 Model
	5.3 GRASP-ILS
	5.3.1 Construction phase
	5.3.2 ILS
	5.3.3 GRASP
	5.3.4 Local Search
	5.3.5 Path-relinking
	5.3.6 Hybrid GRASP-ILS

	5.4 Memetic Algorithm
	5.4.1 Mutation Operator (M)
	5.4.2 Path Crossover (PX)
	5.4.3 Cold Restart
	5.4.4 Hybrid algorithms

	5.5 Computational Results
	5.5.1 Calibration
	5.5.2 Performance Analysis

	5.6 Concluding Remarks and future research

	III General Conclusions and Future Research
	6 Summary and concluding remarks
	6.1 Future works

	Appendices
	A Models comparison
	B GRASP and exact solutions
	C NEH as first solution
	Bibliography

