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Abstract

In this work, we show how information derived from links among Web documents can be

used in the solutions of the problem of document classification. The most obvious form

of link between two Web documents is a hyperlink connecting them. But links can also

be derived from references among documents of digital collections hosted in the Web, for

instance, from citations among articles of digital libraries and encyclopedias.

Specifically, we study how the use of measures derived from link information, named

bibliometric measures can improve the accuracy of classification systems. As bibliometric

measures, we used co-citation, bibliographic coupling and Amsler. We obtained distinct

classifiers by applying bibliometric and text-based measures to the traditional k-nearest

neighbors (kNN) and Support Vector Machine (SVM) classification methods.

Bibliometric measures were shown to be effective for document classification whenever

some characteristics of link distribution is present in the collection. Most of the documents

where the classifier based on bibliometric measures failed were shown to be difficult ones

even for human classification.

We also propose a new alternative way of combining results of bibliometric-measure

based classifiers and text based classifiers. In the experiments performed with three distinct

collections, the combination approach adopted achieved results better than the results of

each classifier in isolation.
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Resumo

Este trabalho mostra como informações derivadas de apontadores entre documentos da

Web podem ser utilizadas na solução do problema de classificação de documentos. A

forma mais comum de apontadores entre documentos da Web corresponde aos hyperlinks

entre documentos. Entretanto, apontadores também podem ser derivados a partir de

referências entre documentos de coleções digitais hospedadas na Web, por exemplo, a

partir de referências entre artigos de bibliotecas digitais ou de enciclopédias.

Especificamente, investigamos como a utilização de medidas derivadas de informação

de apontadores, denominadas medidas bibliométricas, podem ser utilizadas para melhorar a

qualidade de sistemas de classificação de documentos. As medidas bibliometricas utilizadas

foram: co-citação, acoplamento bibliográfico e Amsler. Obtivemos classificadores com estas

medidas e classificadores com informações de texto, utilizando os seguintes métodos de

classificação: o método dos k vizinhos mais próximos (kNN) e o método Suport Vector

Machine (SVM).

Classificadores com medidas bibliométricas mostraram ser eficazes sempre que a dis-

tribuição de apontadores na coleção possui determinadas caracteŕısticas. Além disto, os

documentos para os quais classificadores baseados nestas medidas falham mostraram-se

dif́ıceis também na classificação feita por pessoas.

Propomos, ainda, um modo alternativo de combinar resultados de classificadores que

usam medidas bibliométricas com resultados de classificadores que usam informações de

texto. Experimentos mostram que a combinação de resultados é superior ao resultados

individuais em todas as coleções de teste.
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Chapter 1

Introduction

The appearance and expansion of the World Wide Web have brought great challenges

and opportunities to the Information Retrieval area. Among the many challenges, one

have attracted the attention of many researchers, the task of automatic classifying Web

documents. However, the Web also presents new opportunities for IR researchers that

were not available in traditional collections of digital documents. For example, links among

documents are important additional sources of information that have been used both for the

ranking and for the classification tasks. Link analysis is an Information Retrieval technique

that aims to extract information from the link structure of the Web. This work is related

to research in link analysis with the aim of improving the classification of documents. In

this chapter, we discuss the goals and the contributions of our work.

1.1 Information Retrieval Systems

Information Retrieval (IR) systems deal with the problems of collecting, representing, or-

ganizing and retrieving documents. The main task of an IR system is to retrieve documents

that are relevant to a query formulated by a user. The part of the system responsible for

this task is named search engine.

When a query is received, it is parsed by the search engine and its component words

are extracted. The extracted terms are matched against the index that is an internal data

structure that maps terms to documents where they occur. Each matched document is

assigned a value of its relevance to the query, according to an internal model of relevance,

named IR model. Finally, the matched documents are ranked by some relevance value and

the final ranking is presented to the user.

1



2 CHAPTER 1. INTRODUCTION

Another important task of IR is document classification, the activity of assigning pre-

defined category labels to unlabeled documents. Research on document classification dates

back to the early 60s. However, until the 80s the most popular approach to document

classification was the knowledge engineering one, consisting in manually defining a set of

rules encoding expert knowledge on how to classify documents under given categories.

Knowledge engineering is a semi-automatic process that demands a knowledge engineer to

code the rules and an expert to classify documents into a specific set of categories. Thus, it

is an expensive and laborious process. Also, this approach is not flexible, since even minor

changes on the categories require two professionals again to adapt the classifier [48].

Before the 90s, IR systems were developed for specific collections of documents like

scientific articles, electronic newspapers, business articles and encyclopedias. The great

majority of the indexed documents followed editorial restrictions that imposed some form

of control over the format and the content of documents. Although some IR systems were

developed to allow users to access many different collections, each collection followed some

patterns and was concentrated in a specific subject area. Another important characteristic

was that users of these IR systems usually had some training in how to formulate queries

using system operators, which allowed for better expression of his or her information need.

In a so organized specialized context, the task of ranking documents did not bring much

challenges and most of the classification tasks were executed manually by an expert.

The IR area has grown up in the context just described. However, at the beginning

of the 90s the World Wide Web was introduced and brought important changes on the

needs for the tasks of ranking and classifying documents. The new demands and also new

sources of information introduced with the Web changed the scenario for IR completely.

In parallel, advances in IR techniques and in machine learning contributed to augment

enormously the research on IR for the Web.

1.2 New IR Requirements for the Web

The Web is characterized as a medium that allows for cheap and easy publishing of multi-

media documents. In contrast to collections of traditional IR systems, there is no editorial

restriction or control about the format and content of documents to be published. These

conditions have led to the rapid emergence of the Web as a repository of documents that

is huge, diverse in format and content, and very dynamic, with some documents being

removed, others being updated and many being added constantly.
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The diversity of content and great dynamics in the Web have imposed urgent demand

on new ranking techniques, but also, have caused renewed research interest in the task

classifying documents automatically into categories according to their topics in order to

assist the user with finding information [16, 53].

One important application of document classification is directory maintenance. Web

directories (e.g. Yahoo, Open Directory and Google Directory) have been created and

maintained with the intent to organize Web pages into hierarchical topics. A Web directory

is an important access tool for two reasons. First, it allows for a search focused in some

specific topic. Second, it allows for browsing the directory hierarchy.

Expansion of directories with new URLs, however, has been done manually. This ex-

pensive and inefficient approach is not able to keep directories up-to-date with the creation

of new pages. Thus, the automatic classification of Web pages into topics is essential for

directory expansion.

Automatic classification is also very important in other contexts inside the Web. Many

digital collections of documents that already existed before the Web have migrated to

the Web environment (specially, collections of scientific papers and encyclopedias). The

majority of these collections are organized by topics. Automatic classification is useful to

classify new incoming documents into the proper topics.

Research in automatic classification has been an intensive research topic since the early

90s, when researches adopted machine learning techniques to develop automatic classifiers.

In this approach, a general inductive process, also called learner, automatically builds a

classifier for a given category c by observing a set of documents manually classified under

c [48].

Despite bringing new challenges to research in IR, the Web also offers new evidence.

The tags of the HTML text inside Web pages reveal some structures in the page like

headings, tables, and items of lists that can be useful to accentuate the importance of

some terms inside a page.

Another important source of evidence found in many Web documents are the links be-

tween documents. These links may be directly derived from the hyperlinks among pages,

or from citations between documents of digital libraries or between articles of digital en-

cyclopedias hosted in the Web. Hyperlink derived information has been shown useful for

ranking [8,10,34] and for classifying [13,39] Web pages. In this work we investigate further

how we can use link information for enhancing the task of classifying documents.
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1.3 Link Analysis in IR

Citation is a form of linkage between documents that is as old as written language. There

are many reasons a written work may cite another, but a citation from a document A to

another document B reveals two facts: 1) The author of document A states that docu-

ment B is somehow related to document A or at least to the part of document A where

the citation occurs. 2) The author of document A considers that document B has some

importance, because B was chosen to be cited.

Bibliometrics [22] is a research area that is concerned to the bibliographic citation graph

of academic papers and has explored the two facts just cited, for two applications: (1) the

finding of scientific papers on related topics and (2) the measure of the relative importance

of scientific papers in the citation graph. Both applications are also very important in the

Web context. For instance, solutions to the problem of finding pages related to a topic are

useful for automatic classification of Web documents. They can be used for the automatic

expansion of directories [20], as well as for expansion of categorized collections of linked

documents hosted in the Web, like digital libraries and encyclopedias, among others.

The measure of relative importance of Web pages, on the other hand, has been used

to enhance Web search engine ranking. Traditional IR models based on text only are not

sufficient for ranking Web pages due to the large number of documents containing the query

terms. A common approach is to combine the text-based ranking with an importance

or “reputation”-based ranking of pages derived only from hyperlink information. Many

ideas from Bibliometrics have influenced algorithms that assign hyperlink-based reputation

values to Web pages [8]. The ranking of pages by their reputation values have became an

intensive research area in IR [6,28,34,41] and the combined ranking has been shown to be

better than the ranking based only on text [4, 10, 14].

However, hyperlinks and citations are two different document connections. The concept

of hyperlink extends that of citation by allowing the reader of a pointing document to have

direct access to the pointed document. So it is possible to use hyperlinks with navigational

purpose only. Also, the environments where scientific citations and Web hyperlinks occur

are distinct. Scientific papers are peer-reviewed, thus ensuring the referencing of other

important papers on the same subject. On the other hand, Web pages may reference other

unimportant and unrelated pages and, for commercial reasons, two important related pages

may not link to each other.

Link analysis algorithms are then faced with two problems: 1) How to obtain, from the
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noisy Web link structure, information that is useful for some of the IR tasks. 2) How to

define methods to make appropriate use of the obtained information in order to enhance

execution of a given IR task.

1.4 Objectives and Contributions

This work concerns the particular case of using link information available in distinct kinds

of document collections, hosted in the Web, to improve document classification. As link

information, we use bibliometric similarity measures which allow for evaluating how related

two documents are, considering the links they have. The main objectives of this work are:� Investigate how effective classifiers based on bibliometric similarity measures are to

classify documents in distinct collections.� Investigate strategies for combining the results of classifiers based on bibliometric

measures and text information, in order to obtain a final, more effective classification.� Analyze, in each collection, the documents that the classifiers using bibliometric

measures did not classify correctly.

As a contribution towards the above objectives, we present a comparative study of

the use of bibliometric similarity measures for classifying documents. We refer to these

classifiers as bibliometric classifiers. Three different link-based bibliometric measures were

used: co-citation, bibliographic coupling and Amsler. They were derived from hyperlinks

between Web pages and citations between documents. These bibliometric measures were

combined with two content-based classifiers: k-nearest neighbors (kNN) and Support Vec-

tor Machines (SVM).

In our comparative study we run a series of experiments using a digital library of

computer science papers, a Web directory and an on-line encyclopedia. Results show that

both hyperlink and citation information, when properly distributed over the documents and

classes, can be used to train reliable and effective classifiers based on the kNN classification

method. By reliable we mean that when the classifier assigns a class to a document with

high probability, the class is the correct one most of the time. Conversely, if the classifier

assigns a class to a document with low probability, the class is generally incorrect most of

the time. By effective we mean that experiments performed with ten-fold cross validation

have reached values of macro and micro-average F1 superior to state-of-the-art text-based
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classifiers in two of the collections studied and, in the sub-collection of an encyclopedia, the

micro-average F1 value is only marginally distinct from the one obtained with a text-based

classifier trained using the SVM model.

As another contribution, we investigate the possible reasons for the failures of biblio-

metric classifiers. We suspected that these cases are hard even for humans, since the test

documents might have some kind of strong relation to documents of the wrong class. In

order to confirm this hypothesis we conducted a user study, asking volunteers to classify a

random sample of these supposedly difficult cases. The experiment shows that most cases

are in fact difficult and that there is little consensus among human classifiers regarding

the correct class of a same document. Also, there are test documents for which the second

most probable class assigned by the classifier was the class assigned by specialists. Thus,

these cases could be considered multilabel classification cases according to the taxonomy.

In summary, the experiments with the three collections have shown that the use of

bibliometric measures perform well for classifying Web collections and digital library col-

lections where most of documents form pairs that have links in common to other documents.

We present empirical evidences that (i) the number of in-links and out-links is important

to train bibliometric classifiers and (ii) the co-occurrence of in-links and out-links is im-

portant to determine the existence of a bibliometric relation between documents. We also

study alternative ways of combining classifiers based on links with text-based classifiers,

performing an analysis of the gains obtained by each alternative combination studied. We

present comparisons to the effectiveness of an ideal perfect combiner and show that the

gains obtained with combination are important even when they are small, since in these

cases even a perfect combiner could not perform much better.

1.5 Related Work

In this section, we review previous work about links among documents. Links were first

studied as a source of information in Bibliometrics where they corresponded to the citations

among scientific papers. Citations were used mainly to find articles related to some topic

and to find important articles in a topic. Works addressing these two purposes contributed

and inspired a number of work in link analysis for hypertext collections. Thus, for chrono-

logical reasons, in Section 1.5.1 we first review some work in bibliometrics. In Section 1.5.2,

we review previous works that use link information in classification of linked documents

and in Section 1.5.3 we review works that make use of links for assigning reputation values
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to Web pages.

1.5.1 Citation-Related Measures

In 1963, Kessler [33] presented the bibliographic coupling measure that measures the sim-

ilarity of two documents by counting the number of documents they cite in common (see

Section 2.3.2). Small et al. [51] used the bibliometric coupling for clustering scientific

journals.

About ten years later, the measure of co-citation was introduced in [50] (see Sec-

tion 2.3.1). Co-citation between two documents A and B is a measure that counts the

number of documents that cite both A and B. Co-citation and bibliographic coupling

have been used as complementary sources of information for document retrieval and classi-

fication [3,5]. Amsler [3] introduced another similarity measure that combines and extends

co-citation and bibliographic coupling (see Section 2.3.3).

Citations also were suggested as a means to evaluate the importance of scientific jour-

nals [26], where the importance of a journal was assumed proportional to the number of

citations to its papers. In [45], Salton introduced the idea of using citations for automatic

document retrieval. Pinski and Narin [25] proposed a citation-based measure of reputa-

tion, stemming from the observation that not all citations are equally important. They

introduced a recursive notion of reputation such that a scientific journal has high repu-

tation if it is heavily cited by other reputable journals. Geller [27] further extended the

work of Pinski and Narin and observed that the values of reputation correspond to the

stationary distribution of the following random process: beginning with an arbitrary jour-

nal j, one chooses a random reference that appears in j and moves to the journal specified

in the reference. Geller also demonstrated that the values of the reputations converge.

Doreian [40] proposed a recursive algorithm that is able to approximate the convergence

values of reputation as proposed by Geller.

1.5.2 Document Classification

The Companion algorithm [21] was proposed to find pages in the same topic of a page

given as input. Companion constructs a vicinity graph for a given input page and applies

the HITS algorithm over the generated graph. The algorithm ranks pages by authority

degree and uses the top pages as the most similar to the input page.

The authors in [30] used a similarity matrix between Web pages resulting from the
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combination of co-citation between pages and a text-based similarity between pages. The

matrix was used for clustering of Web pages.

For the task of classification in the Web, the authors in [20] compared classification

using only link information with classification using only textual information over a direc-

tory of Web pages. They trained kNN classifiers using as similarity measures co-citation,

bibliographic coupling, Amsler and hub and authority values derived from the Companion

algorithm. As text-based similarity they used the cosine measure. Their experiments have

shown superior effectiveness of the link-based classifiers.

In [23], authors used link information with a probabilistic latent indexing and prob-

abilistic HITS classifiers and conclude that whenever there is sufficient high link density

and good link quality, link information is useful.

Several works have used some kind of combination of link information with other hy-

pertext sources of evidence in order to improve classification effectiveness. For instance,

Joachins et al. [32] studied the combination of support vector machine kernel functions

representing co-citation and text-based information.

Cohn et al. [18] used a probabilistic combination of link-based and text-based proba-

bilistic methods and shown that the combination presented better effectiveness than the

text-based classifier in isolation.

Pavel et al. [9] extended the work in [20] using other classification methods and used

a Bayesian network to combine the output of link-based classifiers with the output of

text-based classifiers. Their experiments over a directory of Web pages have shown that

the combination of results presented better effectiveness than any of the two classifiers in

isolation. However, the gains of combination over the text-based classifier were much more

significant than the gains over the link-based classifiers.

Some authors have not used links directly in the classification, but only the textual

evidence related to linked documents. For instance, in [24], [29] and [52], good results were

achieved by using anchor text together with the paragraphs and headlines that surround

the links. Yang et al. [61] show that the use of terms from linked documents works better

when neighboring documents are all in the same class.

As another approach, some works classify a test document using its textual features

combined with the class information of its neighbors (documents that link to it or are

linked to by it). The neighbors may be a classified document or other test documents.

Chakrabarti [12] presented a two-step classification method named HyperClass. In the

first step, HyperClass constructs the neighborhood for a test document t and assigns an



1.5. RELATED WORK 9

initial most probable class to each test document of the neighborhood (including t) by

means of a traditional text-based classifier. The second step is a recursive one in which the

most probable class of t is computed as a conditional probability given the text evidence of

t and the classes of the neighbors of t. The second step is applied to all test documents and

it is shown, using Markov Random Fields, that the values of the probabilities converge.

Oh et al. [39] improved on this work by using a filtering process to further refine the set of

linked documents to be used.

In this work we present an empirical comparative study of the bibliometric similarity

measures used in [9], when applied to distinct collections of digital documents. Also, we

analyze the characteristics of collections that have influence on the results of classifiers

based on bibliometric measures and present a method for combining the results of text-

based and bibliometric classifiers. Finally, we present a user study that confirm that most

documents that lead bibliometric classifiers to fail are indeed difficult to classify even by

people.

1.5.3 Computing Reputations of Web Pages

The simplest idea for ranking documents using link information is to rank the documents

by the number of in-links each document has. This solution is also known as the Indegree

algorithm [7]. The intuition behind the algorithm is that pages with more incoming links

have more visibility, and thus may have high reputation in terms of quality.

In [11], the authors proposed the use of page connectivity for searching and visualizing

the Web. For the experiments, they used a different set of documents for each query. This

set was built by submitting a query to a search engine and by using the resulting pages

to create an initial set of pages I. Then they expanded I with the root URLs of each web

site present in I and with all the URLs that point to or are pointed by pages in I. To each

page p of the expanded set I they associated a rank value that is the number of incoming

and outgoing links of p. The results presented were positive, but only experiments with

a few queries were performed. This approach and the Idegree algorithm can be seen as a

simple electoral process, since the reputations of web pages are computed by the number

of links (votes) given by other web pages.

Later, the ideas used for citations among scientific documents were transposed to the

Web environment. Specifically, the recursive notion of reputation and the mathemati-

cal foundations used to compute reputations, commented in last section, were used and

extended giving rise to PageRank and HITS algorithms.
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PageRank [8] is the most well-known link-based ranking algorithm for Web. It is based

on the idea that a page is recursively defined as important when it is linked to by many

other important pages. PageRank models the process of ranking pages by a random walk

in the Web graph, but differently from previous work, it deals with loops in the graph and

with disconnected components, by including a dumping factor.

HITS (Hyperlink-Induced Topic Search) algorithm was introduced by Kleinberg in [35].

In HITS, pages assume two distinct roles: hubs and authorities. An authority is a page

that contains important information on a given subject. A hub is a page that may not

have relevant information, but links to many authority pages. Thus, a good hub page links

to many good authority pages and, recursively, a good authority page is linked to by many

good hub pages.

Several subsequent works proposed solutions for some of the problems still found on

the above algorithms. For instance, in the Web, we frequently find groups of pages highly

linked to each other, such as the pages belonging to a same site. In this case, many

links do not necessarily indicate higher reputation, what can make HITS classify certain

pages as good hubs/authorities when they are not. To avoid this problem, the SALSA

algorithm [37] computes the degrees of hub and authority for Web pages by examining

random walks through the Web graph.

We can identify two distinct approaches in the literature that are used for computing

page reputation. The first approach considers reputation of a page as a measure of its

popularity. In this case, the reputation of a page depends only on the number of references

to it. The Indegree algorithm is a representative of this category. The second approach

considers reputation as a measure of relative authority. In this case, the reputation value

of a page interferes with the reputation value of the pages it links to. PageRank, HITS and

the algorithms derived from them are representatives of this approach. Some works have

compared these two approaches. Amento et al. [2] presented experiments for a site level

version of Indegree, where all the links to a web site were computed as links to its root

page. The sites were then ranked and the results obtained slightly outperformed PageRank.

Their experiments indicate that simple count of votes may produce good results.

Westerveld et al. [57] presented experiments using Indegree combined with textual

information for ranking pages on a search engine, with conclusions that such combination

produce good results.

Upstill et al. [55] studied the usefulness of several kinds of evidence on the home page

finding task, where two of them are Indegree and PageRank. In all the experiments per-
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formed by them, PageRank and Indegree presented extremely close performances. The

authors also comment that combining pieces of evidence can hurt the final result and lead

to erroneous conclusions.

Borodin et al. [6] study and propose several methods to calculate the reputation of a

page. The experiments are performed using the method described in [11] and the Google

search engine to create a local database. Results obtained indicate that Indegree is superior

to PageRank on the experimented scenario. However, the results are not conclusive about

the comparison between Indegree and PageRank, since authors presented no experiments

with a complete search engine database.

1.6 Organization of this Work

This text is organized as follows. Chapter 2 introduces basic concepts related to the text

and bibliometric information we use, document classification and evaluation of the effec-

tiveness of classifiers. These concepts are essential to the understanding of this work.

Chapter 3 describes our approaches to use bibliometric information to derive classifiers

and the methods used to combine the results of text-based and bibliometic classifiers. It

also present the collections we used to evaluate the classification and combination meth-

ods. Chapter 4 presents the results of series of experiments using the classification and

combination methods described in Chapter 3, as well as, the results of user a study about

the failures of automatic classifications. Finally, in Chapter 5 presents conclusions and

future work.
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Chapter 2

Basic Concepts

This chapter introduces basic concepts used in subsequent chapters. Section 2.1 describes

the Vector Space Model, which is one of the most used model in IR, both for ranking

and classifying documents. Section 2.2 presents the graph model for collections of linked

documents. In Section 2.3 we present the definitions of bibliometric measures we use.

In Section 2.4 we discuss about document classification and present some classification

methods. Section 2.5 presents some measures commonly used to evaluate the effectiveness

of classifiers, which are useful to understand the results shown in the following chapters. In

Section 2.6 we present the Bayesian network, a formalism we use in this work to combine

results of classifiers that were trained using distinct source of information, in order to

obtain a final enhanced classification.

2.1 The Vector Space Model

The vector space model is a simple, traditional and effective text-based model for retrieving

and ranking documents from a collection [47]. Its is also much used in the task of document

classification. Documents (and queries) in the vector space model are represented as vectors

in a space composed of index terms, i.e., words extracted from the text of the documents in

the collection [58]. This vector representation allows us to use any vector algebra operation

to compare queries and documents, or to compare a document to another one.

Let D = {d1, d2, . . . , dN} be a collection of documents. Let K = {k1, k2, . . . kT} be the

set of all distinct terms that appear in documents of D. With every pair (ki, dj), ki ∈ K,

dj ∈ D is associated a weight wij. A document dj is, thus, represented as a vector of the

term weights ~dj = (w1j , w2j, . . . wTj), where T is the total number of distinct terms in the

13
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entire document collection. Each wij represents the importance of term ki in document dj.

The computation of wij we use in this work was proposed in [46] and corresponds to the

product:

wij = log2(1 + tfij) × log2

|D|

ni

(2.1)

where tfij is the number of times the term ki occurs in document dj, ni is the number of

documents in which ki occurs, and |D| is the total number of documents in the collection.

The component tfij is usually referred to as TF (term frequency) and reflects the idea that

a term is more important in a document if it occurs many times inside the document. The

factor log(|D|/ni) is called the inverse document frequency (IDF) and measures how rare

is the term ki in the collection D. The entire product wij is referred to as term frequency

- inverse document frequency (TF-IDF).

The vector space model is much used model for ranking documents in response to a

user query. Users formulate their queries as sets of words. Thus, a query q also can be

represented as a vector of term weights ~q = (w1q, w2q, ..., wTq). With this representation,

we can use any vector related measure to compare a query with a document. The most

commonly used measure is the so called cosine similarity, i.e., the cosine value of the angle

between both vectors. Thus, we define the similarity between a document dj and a query

q as:

cos(~dj, ~q) =

∑t

i=1 wij × wiq
√

∑t

i=1 w2
ij ×

√

∑t

i=1 w2
iq

(2.2)

Given a query, the vector space model computes a similarity value to each document

that has at least one term in common with the query. Thus a set of documents is generated.

This set is ordered in decreasing order of similarity to the query, and the resulting ranking

is presented to the user. The documents on the top of the raking are the most relevant to

the query, according to the vector space model.

Figure 2.1 shows the vectors corresponding to a query q and a document dj, in space

with two dimension, that is, containing two terms k1 and k2.

The cosine measure defined in Equation 2.2 can also be used as a similarity measure

between documents of a given collection. In this case, we substitute the query q in the

equation for a vector representing another document dk and obtain Equation 2.3. In this

work, we use Equation 2.3 to obtain kNN classifiers which make use of similarity values
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Figure 2.1: Representation of document dj and query q in the vector space model, consid-

ering only two terms k1 and k2.

among documents to decide the class of a non-classified document.

cos(~dj, ~dk) =

∑t

i=1 wij × wik
√

∑t

i=1 w2
ij ×

√

∑t

i=1 w2
ik

(2.3)

2.2 Graph-Based Model

Collections of documents which have direct linkage between documents can be modeled

as a direct graph G = (D, E), where the set of vertices D represents the set of documents

and the set E is the set of direct edges representing the linkages between documents. For

example, graphs can be derived from collections of Web pages, digital libraries of scientific

papers, encyclopedias, etc.

In this work we use the term link to refer generically to the direct edges of the graph

derived from a given collection. We also use the terms pages or papers in place of vertex

when it is clear from the context that we are referring to a graph derived from a collection

of such documents. We define out-link of a document (vertex) d as an edge from d to

another document. An In-link of d is an edge incident to d.

The graph model just described is very important in modern IR, for instance, it is used

as input by most algorithms that compute page reputation values [7,8,28,34,34] for ranking

documents in response to a user query. The model is also used to compute bibliometric
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measures which are presented in Section 2.3.

2.3 Bibliometric Similarity Measures

In Chapter 3, we use three similarity measures derived from link structure to train clas-

sifiers: co-citation, bibliographic coupling, and Amsler. These measures were introduced

in Bibliometrics1 [22] to measure similarity between scientific documents by means of the

citations they have in common. Here, we extend the use of these measures to any collection

of documents that can be represented as a directed graph, as described in Section 2.2. Let

d be a document of the set D of documents of the collection. We define the parents of d

(Pd) as the set formed by all the documents in D that link to d. We also define the children

of d (Cd) as the set of all documents d links to. We now describe each link-based similarity

measure.

2.3.1 Co-Citation

Co-citation was proposed by Small in [50]. Given two documents d1 and d2 of D, co-citation

between d1 and d2 is defined as:

co−citation(d1, d2) =
|Pd1

∩ Pd2
|

|Pd1
∪ Pd2

|
(2.4)

Equation (2.4) indicates that, the more parents d1 and d2 have in common, the more

related they are. This value is normalized by the total set of parents, so that the co-

citation similarity varies between 0 and 1. If both Pd1
and Pd2

are empty, we define the

co-citation similarity as zero.

For example, given the documents and links in Figure 2.2, we have that PA =

{D, E, G, H} and PB = {E, F, H}, PA ∩ PB = {E, H} and PA ∪ PB = {D, E, F, G, H}.

Thus co−citation(A, B) = 2
5
.

2.3.2 Bibliographic Coupling

Kessler [33] introduced the measure of bibliographic coupling. Bibliographic coupling be-

tween two documents d1 ∈ D and d2 ∈ D is defined as:

1The study of written documents and their citation structure.
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Figure 2.2: Documents A and B with their parents and children.

bibcoupling(d1, d2) =
|Cd1

∩ Cd2
|

|Cd1
∪ Cd2

|
(2.5)

According to Equation (2.5), the more children in common page d1 has with page d2,

the more related they are. This value is normalized by the total set of children, to fit

between 0 and 1. If both Cd1
and Cd2

are empty, we define the bibliographic coupling

similarity as zero.

Consider the example shown in Figure 2.2. Consider documents E and H . CE =

{A, B}, CH = {A, B}. So, by Equation (2.5), bibcoupling(E, H) = 1.

2.3.3 Amsler

Amsler [3] proposed a measure of similarity that combines both co-citation and biblio-

graphic coupling, to measure the similarity between two papers. Generalizing the Amsler

original idea, we can say that two documents d1 and d2 are related if they have at least

one document in common among their child or parent documents. Formally, the Amsler

similarity measure between two documents d1 and d2 is defined as:

amsler(d1, d2) =
|(Pd1

∪ Cd1
) ∩ (Pd2

∪ Cd2
)|

|(Pd1
∪ Cd1

) ∪ (Pd2
∪ Cd2

)|
(2.6)

Equation (2.6) tells us that the more linked documents (either parents or children) d1

and d2 have in common, the more they are related. The measure is normalized by the total

number of links. If the set of parents and the set of children of both d1 and d2 are empty,

the similarity is defined as zero.
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Considering Figure 2.2 again, and documents A and B in it, we have that (PA ∪CA)∩

(PB ∪ CB) = {E, H}, and, (PA ∪ CA) ∪ (PB ∪ CB) = {D, E, F, G, H, I, J, M}, Thus,

amsler(A, B) = 2
8
.

2.4 Document Classification

Given a collection D of documents and a set C of categories or classes, document classi-

fication is the task of assigning a boolean value to each pair (dj, ci) ∈ D × C. The value

T assigned to (dj, ci) corresponds to the decision of labeling document dj with class ci,

whereas the value F indicates that dj is not to be labeled with class ci. This process is also

referred to as hard classification [48] and corresponds to a function Φ : D × C → {T ,F}.

Until the ’80s, the most popular approach for the automatic classification of documents

consisted in manually building an expert system capable of deciding the class of a set of

documents. These systems are built specifically for a collection of classes and involve two

kinds of professionals: a knowledge engineer and a domain expert. The knowledge engineer

builds the expert system by manually coding a set of logical rules with the aid of an expert

in the membership of documents in the chosen set of classes (the domain expert). One

logical rule is created for each class and has the format:

if (expression) then class.

The main drawback of this approach is that it is inflexible. If the set of classes is

updated, the two professionals must intervene again. Besides, it is also expensive and time

consuming.

Since the early 90s, another paradigm, that of machine learning, has gained popularity

in research community. The approach consists in the use of a general inductive process

(named learner) to automatically build an automatic document classifier by learning, from

a set of pre-classified documents, the characteristics of the classes of interest [48].

Machine learning approach to document classification has become attractive, mainly

because of the great number of applications in the Web which demand for document

classification. Among these applications, we can cite classification of documents in intranets

of huge companies, expansion of Web directories and classification of new articles in digital

libraries.
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2.4.1 Training Classifiers Automatically

The machine learning process relies on the following premises: there is an initial corpus

Ω = {d1, d2, . . . , d|Ω|} ⊂ D of documents pre-classified (maybe by a domain expert) under

classes C = {c1, c2, . . . , c|C|}, that is, the values of the some function Φ: D × C → {T, F}

are known for every pair (dj , ci) ∈ Ω × C.

The learning process consists in deriving a function Ψ: D×C → {T, F} named classifier

such that Φ and Ψ coincide as much as possible. Thus, after a classifier Ψ is obtained by

the learning process, it is necessary to evaluate its effectiveness by comparing its results to

the values of the Φ function. In order to train the classifier and evaluate it, two disjoint

subsets of Ω, not necessarily of equal size, are used:� The training set used to obtain the classifier Ψ. The classifier is trained by learning

the characteristics of the documents of the training set that help to identify the

classes of these documents.� The test set, used for testing the effectiveness of the obtained classifier Ψ. Each

document dj in the test set is submitted to Φ. The classifier infers the class (or

classes) of dj by matching the characteristics of dj with the characteristics learned

during the training process that most identify the classes in C. Finally, the classifier

takes a decision for each pair (dj, ci) which is compared to Φ(dj , ci). A measure of

classification effectiveness is based on how often the values of Ψ(dj, ci) match the

values of Φ(dj , cj).

2.4.2 Hard and Ranking Classification

Many classification methods do not output directly a T or F value for each pair (dj, ci).

Instead, they implement a function Γ : D × C → [0, 1] such that the value Γ(dj, ci) corre-

sponds to a confidence score that document dj should be classified under ci. Confidence

scores allow for ranking the classes of C for a given document dj. Classifications that pro-

duce a rank of classes (instead of a hard classification) are named ranking classifications

and are useful to some applications. For instance, a ranking classification is of great help

to a human expert in charge of taking the final classification decision, since she could thus

restrict the choice to the class (or classes) at the top of the list, rather than having to

examine the entire set. Also, ranking classification is useful when the results of two classi-

fiers are to be combined to produce a final classification. In this case, the confidence scores
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produced by different classifiers are used to take the final decision.

Finally, a ranking classification Γ can be transformed in a hard classification Ψ by

means of a threshold τi for each class ci. Decision of classifying dj under class ci is taken

as follows:

Ψ(dj, ci) =

{

T if Γ(dj, ci) ≥ τi

F otherwise
(2.7)

2.4.3 Single-label and Multilabel Classifications

Depending on the application, different constraints may be imposed on the classification

task. One of them is to limit the number of classes of C that the classifier Ψ may assign to

a given document. The case in which each document is to be assigned to exactly one class,

is called single-label classification, whereas the case in which any number of classes from 0

to |C| may be assigned to a document is called multilabel classification. A special case of

single-label classification is the binary classification, in which, each document dj ∈ D must

be assigned to the class ci or to its complement c̄i. Examples of application of binary text

classifiers are spam filters, which must classify incoming mails as spam or non-spam mails.

In this work, we use two machine learning methods (also called learners) to derive

document classifiers: the kNN and Support Vector Machine (SVM). These methods have

been extensively evaluated for text classification on reference collections and offer a strong

baseline for comparison. We now briefly describe each of them.

2.4.4 The kNN Method

A kNN classifier assigns a class label to a test document based on the classes attributed to

the k most similar documents in the training set, according to some similarity measure. In

the kNN algorithm [59], each test document dj is assigned a score sdj ,ci
, which is defined

as:

sdj ,ci
=

∑

dt∈NK(dj)

similarity(dj , dt) × f(ci, dt), (2.8)

where Nk(dj) are the k neighbors (the most similar documents) of d in the training set

and f(ci, dt) is a function that returns 1 if the training document dt belongs to class ci and

0 otherwise. The scores sdj ,ci
may be transformed in confidence scores Γ(dj, ci), that is,

values in the interval [0, 1] by means of a normalizing process:

Γ(dj, ci) =
sdj ,ci

∑|C|
ci

sdj ,ci

(2.9)
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These confidence scores allows kNN to produce a ranking classification. In Chapter 3, we

discuss how we derive kNN classifiers using the cosine measure and bibliometric measures

as similarity measures.

2.4.5 The SVM Classifier

SVM is a relatively new method of classification introduced by Vapnik in [56] and first

used in text classification by Joachims in [31]. The method is defined over a vector space

where the problem is to find a hyperplane with the maximal margin of separation between

two classes. Classifying a document corresponds to determining its position relative to this

hyperplane.

Figure 2.3 illustrates a space where points of different classes are linearly separable.

The dashed line represents a possible hyperplane separating both classes. This hyperplane

can be described by:

(~w · ~x) + b = 0, (2.10)

where ~x is an arbitrary data point that represents the document to be classified, and the

vector ~w and the constant b are derived from a training set of linearly separable data. The

classification of a vector is achieved by applying the decision function

f(~x) = sign((~w · ~x) + b) (2.11)

which determines the position of ~x relative to the hyperplane.

support vector

margin
hyperplane

Figure 2.3: The SVM classifier. A separating hyperplane is found by maximizing the

margin between the candidate hyperplane and the classes.

In Figure 2.3, the solid lines represent how much the hyperplane can be moved while

still separating the classes. The SVM classifier tries to maximize the margin between the
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hyperplane and the points in the boundaries of each class. This is achieved by solving

a constrained quadratic optimization problem. The solution can be found in terms of a

subset of training patterns that lie in the marginal planes of the classes, the support vectors,

and is of the form:

~w =
∑

i

vi~xi (2.12)

where each vi is a learned parameter and each xi is a support vector. The decision function

can be written as:

f(~x) = sign(
∑

i

vi(~x · ~xi) + b) (2.13)

In the original data space, also called the input space, classes may not be separable by

a hyperplane. However, the original data vectors can be mapped to a higher dimensional

space, called the feature space, where classes are linearly separable. This is achieved through

the use of kernel functions. Using kernel functions the optimization problem is solved in

the feature space, instead of the input space, and the final decision function thus becomes:

f(~x) = sign(
∑

i

viκ(~x · ~xi) + b) (2.14)

where κ is the kernel function.

The support vector machine method originally performs only binary classification: a

document belongs or not to a given class. However some recent implementations, like

the LIBSVM package [15] we use in this work, also offer the option to generate ranking

classifications.

2.5 Evaluation

In this section, we describe the measures we use in Chapter 4 to evaluate the effectiveness

of the classifiers we obtained using link and text information. We also describe the ten-fold

cross-validation method used to obtain distinct samples of collections in order to evaluate

a classification method.

2.5.1 Precision and Recall

Classification effectiveness is usually measured in terms of the classic information retrieval

notions of precision (p) and recall (r), adapted to the case of document classification [48].
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Measures of precision and recall can be derived for each class ci in the set of classes C. Pre-

cision and recall for a given class ci are better defined by considering the contingency table

of class ci (see Table 2.1). FPi (false positives under ci) is the number of test documents

Class Expert judgments

ci YES NO

Classifier YES TPi FPi

judgments NO FNi TNi

Table 2.1: The contingency table for class ci.

incorrectly classified under ci. TNi (true negatives under ci), TPi (true positives under ci)

and FNi (false negatives under under ci) are defined accordingly. Precision pi and ri of a

classifier for class ci are defined as:

pi =
TPi

TPi + FPi

(2.15)

ri =
TPi

TPi + FNi

(2.16)

2.5.2 The F-measure

In classification tasks, precision and recall are computed for every class as in last section.

This yields a great number of values, making the tasks of comparing and evaluating algo-

rithms more difficult. It is often convenient to combine precision and recall into a single

quality measure. One of the most commonly used such measures is the F-measure [60].

The F-measure combines precision and recall values and allows for the assignment of

different weights to each of these measures. It is defined as:

Fα =
(α2 + 1)pr

α2p + r
(2.17)

where α defines the relative importance of precision and recall. When α = 0, only precision

is considered. When α = ∞, only recall is considered. When α = 0.5, recall is half as

important as precision, and so on.

The most used of the F-measure is the F1-measure which is obtained by assigning equal

weights to precision and recall by defining α = 1:

F1 =
2rp

p + r
(2.18)
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The F1 measure allows us to conveniently analyze the effectiveness of the classification

algorithms used in our experiments on each of the used classes.

It is also common to derive a unique F1 value for a classifier, by computing the average

of F1 of individual classes. Two averages are considered in the literature [60]: micro-average

F1 (micF1) and macro-average F1 (macF1). Micro-average F1 is computed by considering

recall and precision over all classes, that is, the global precision is computed as:

pg =

∑|C|
i=1 TPi

∑|C|
i=1(TPi + FPi)

(2.19)

and the global recall is computed as:

rg =

∑|C|
i=1 TPi

∑|C|
i=1(TPi + FNi)

(2.20)

Thus, micro-average F1 is defined as:

micF1 =
2rgpg

pg + rg

(2.21)

Macro-average F1 is computed as:

macF1 =

∑|C|
i=1 F1i

|C|
(2.22)

where F1i is the value of F1 measure for class ci.

2.5.3 Cross-Validation

Cross-validation has become a standard method for evaluating document classification [38,

48]. It consists in building k different classifiers: Ψ1, Ψ2, . . . , Ψk. The classifiers are built

by dividing the initial corpus Ω (See Section 2.4.1) into k disjoint sets: Te1, T e2, . . . , T ek.

classifier Ψi is trained using Ω − Tei as the training set and is evaluated using Tei as the

test set. Each classifier is evaluated, usually using precision, recall or F1 measures and the

average of the k measure is taken as the final evaluation. The most used value of k is 10

and the the method is called ten-fold cross-validation.

2.6 Bayesian Networks

A Bayesian network [42] (also known as inference network or belief network) is a graph-

ical formalism for representing independences among the variables of a joint probability
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distribution. Bayesian networks have been shown to produce good results when applied

to information retrieval problems, both for simulating traditional models [43, 44, 54] and

for combining information from different sources [9, 49]. In this section, we give a general

introduction to Bayesian networks and in Section 3.2.2 we show how the formalism can be

used to combine the results of classifiers.

In a Bayesian Network, the probability distribution is represented through a directed

acyclic graph, whose nodes represent the random variables of the distribution. Thus, two

random variables, X and Y , are represented in a Bayesian network as two nodes in a

directed graph, also referred to as X and Y . An edge directed from Y to X represents the

influence of the node Y , the parent node, on the node X, the child node. Let x be a value

taken by variable X and y a value taken by variable Y . The intensity of the influence of

the variable Y on the variable X is quantified by the conditional probability P (x|y), for

every possible set of values (x, y).

In general, let PX be the set of all parent nodes of a node X, pX be a set of values for

all the variables in PX , and x be a value of X. The influence of PX on X can be modeled

by any function F that satisfies the following conditions:

∑

x∈x

F(x,pX) = 1 (2.23)

0 ≤ F(x,pX) ≤ 1. (2.24)

where x is the set of possible values for variable X. The function F(x,pX) provides a

numerical quantification for the conditional probability P (x|pX). Let X = {X1, X2, ..., Xn}

be the set of variables in a Bayesian network. The joint probability distribution over X is

given by:

P (x1, x2, ..., xn) =

n
∏

i=1

P (xi|pXi
) (2.25)

To illustrate, Figure 2.4 shows a Bayesian network for a joint probability distribution

P (x1, x2, x3, x4, x5), where x1, x2, x3, x4, and x5 refer to values of the random variables X1,

X2, X3, X4, and X5, respectively. The node X1 is a node without parents and is called a

root node. The probability P (x1) associated with a value x1 of the root node X1 is called a

prior probability and can be used to represent previous knowledge of the modeled domain.

By applying Equation (2.25), the joint probability distribution for the network shown in

Figure 2.4 can be computed as:



26 CHAPTER 2. BASIC CONCEPTS

P (x1, x2, x3, x4, x5) = P (x1)P (x2|x1)P (x3|x1)P (x4|x2, x3)P (x5|x3)

1

X 3

54

2 X

XX

X

Figure 2.4: Example of a Bayesian network.

The most common task we wish to solve using Bayesian networks is probabilistic infer-

ence. Given an evidence, we can calculate the posterior probability of a possible explanation

by applying the Bayes’ rule:

P (r|e) =

∑

U−{r} P (U , e)

P (e)
(2.26)

where P (r|e) denotes the probability that random variable R has value r given evidence e

and U is a set representing the universe of variables in the model. The denominator is just

a normalizing constant that ensures the posterior probability adds up to 1. Notice that

P (U , e) can be obtained through application of Equation (2.25).

To illustrate this inference process, we calculate the probability P (w|x) for the Bayesian

network presented in Figure 2.5. In this network all the variables are binary, that is, they

can assume only two possible values. The network in the figure presents a method for

combining evidences, using a noisy-OR node. In particular, the “or” mark above node W

means that P (W |Z1, Z2) is defined in such way that W is true if anyone of their parent

nodes, Z1 and Z2, are true and W is false if both nodes Z1 and Z2 are false. In other

words, P (w|z1, z2) = 0 and P (w|z1, z2) = P (w|z1, z2) = P (w|z1, z2) = 1, where zi denotes

that node Zi = 1 and zi denotes that node Zi = 0. We calculate the probability P (w|x)

for this case.
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or

y

X

Y 2Y 1

Z 1

W

Z 2

Y nY i

Figure 2.5: Example of a Bayesian network with a noisy-OR node.

P (w|x) =

∑

y,z P (x,y, z, w)

P (x)

= η
∑

y,z

P (w|z) P (z|y) P (x|y) P (y)

= η
∑

y

P (x|y) P (y)
∑

z

P (w|z) P (z|y)

= η
∑

y

P (x|y) P (y) [P (z1, z2|y) + P (z1, z2|y) + P (z1, z2|y)]

= η
∑

y

[1 − (1 − P (z1|y))(1 − P (z2|y))] P (x|y) P (y) (2.27)

where z is used to refer to any of the possible states of nodes Z1 and Z2. Notice that similar

network and an equation similar to Equation (2.27) will be used in evidence combination

methods in following sections.
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Chapter 3

Classification Approaches and

Collections

In this Chapter, we detail the approaches we adopt to use bibliometric measures to classify

documents and describe the document collections we use to evaluate these approaches. In

Section 3.1, we describe the first approach which corresponds to deriving classifiers based

on bibliometric measures that we call bibliometric classifiers. In Section 3.2, we present the

second approach, that of combining the results of bibliometric classifiers with the results

of text-based classifiers, aiming to obtain a final improved classification. In Section 3.3 we

describe the three collections of linked documents we use to evaluate the classifiers and the

combination methods. A detailed experimental evaluation of the methods over the three

collections is presented in the next chapter.

3.1 The Obtained Classifiers

In this Section, we describe how we derived bibliometric and text-based classifiers using

the kNN an SVM classification methods. These methods were chosen because they are

considered two of the most successful methods for classifying documents [31, 48]. Besides,

Yang et al [60] have shown that the two methods are robust to skewed category distribution,

which is a common characteristic in document collections.

Both versions of kNN and SVM classifiers we use generate ranking classifications. In

this work, we need ranking classification for the purpose of combining results of classi-

fiers, as discussed in Section 3.2. However, the documents of the derived collections we

use are single-labeled documents. Thus, for each classification method we obtain a final

29
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single-labeled classification by choosing for each test document the class at the top of the

corresponding rank, that is, the class with highest confidence score.

kNN Classifiers

As described in Section 2.4.4, the kNN infers the class of a given test document dj by

considering the classes of the k training documents most similar to dj according to some

similarity function similarity(dj, dt), where dt is a document in the training set. Any

similarity measure between documents can be used in place of the function similarity(dj, dt)

in Equation (2.8). Consequently, we can directly derive bibliometric kNN classifiers by

substituting the function for the value of the corresponding bibliometric similarity measure

computed between test document dj and each document of the training set. For instance,

we can obtain a kNN classifier based on the co-citation measure by rewriting Equation (2.8)

as:

sdj ,ci
=

∑

dt∈NK(dj )

co−citation(dj , dt) × f(ci, dt), (3.1)

where Nk(dj) is the set of k documents in the training set most similar to dj by the

co-citation measure as defined in Equation 2.4. In the same way, we can derive kNN

classifiers using the bib-coupling and Amsler measures, by substituting the similarity(dj, dt)

function for the bib-coupling and Amsler measures, as defined in Equations (2.5) and (2.6),

respectively.

Similarly, any text-based similarity measure between documents could be used to derive

text-based versions of kNN classifiers. In this work, we use the cosine similarity measure

defined in Equation (2.3). We consider each document as a vector of term weights TF-IDF

and the cosine of the angle between any two vectors is used as the similarity measure

between the the corresponding documents.

We experimented with different values for k, both for bibliometric and cosine kNN

classifiers. Since values greater than 30 did not cause any significant change in the results,

we fixed k equal to 30 in all kNN classifiers we used.

SVM Classifiers

The SVM classifier considers each document as vector in a n-dimensional feature space,

where n is the number of distinct features of documents in the training set. It expects as
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input for each document dj a set of pairs 〈featuref , feature valuef〉, 1 ≤ f ≤ n. We obtain

SVM classifiers for a given bibliometric measure B, by using as features all the documents

df for which there is at least one training document dt such that B(dt, df) > 0. We use

the value B(d, df) as the the value of feature df in a document d. We obtain text-based

SVM classifiers by using the terms of each document as the features of the document and

the TF-IDF as the feature value. The SVM classifiers were generated with the SVMLIB

software [15], using the Radial Basis Function(RBF) Kernel.

Classifiers and No-Information Documents

Some test documents are no-information documents for a given classifier, that is, a docu-

ment that contains no useful information for the classifier to infer its class. In the case of

text-based classifiers, a no-information document is one that has no term or has no term

in common with any training document.

For bibliometric classifiers, a no-information document is one that has no links or has

no parent or no child document in common with any training document, according to

the specific bibliometric measure considered. In the case of co-citation, no information

corresponds to absence of common parents, whereas for bib-coupling, it corresponds to the

absence of common children and, for the Amsler measure, it corresponds to the absence of

any linked document (parent or child) in common with some training document.

In order to minimize classification error, the classifiers always assign the most popular

class to no-information test documents. We refer to this assignment strategy as default

classification.

3.2 Methods for Combining Results of Classifiers

Methods that combine the results of two classifiers decide the class of a given test document

by choosing between the classes output by two distinct classifiers. In the decision process,

these methods use the highest confidence score associated by each classifier to its output

class. In this section, when we refer to a confidence score of a classifier we mean the highest

confidence score the classifier assigns to a given document and which is used to determine

the document’s class.

We present two methods we use in the experiments of the next chapter to automatically

combine the results of bibliometric and text-based classifiers. The first method we describe
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is the Reliability-Based Combination [19], a method we propose which uses the most reliable

classifier to decide which classifier result to choose. The second method [9] uses a Bayesian

network to obtain a linear combination of results of individual classifiers.

3.2.1 Reliability-Based Combination

Since combination methods use confidence scores output by classifiers to decide the class of

a test document, it is important that these classifiers be reliable regarding the confidence

scores they assign to classes. An ideally reliable classifier is one that provides confidence

scores exactly proportional to its classification effectiveness. In other words, given a set of

documents Dcs, for which the ideally reliable classifier assigns class labels with confidence

score cs, it should correctly classify p × |Dcs| documents of the set Dcs.

We define the accuracy acccs for a given confidence score cs output by a classifier Ψ

as the ratio: correctΨcs
/docsΨcs, where correctΨcs

is the number of documents that Ψ

correctly classifies when its confidence score is cs, and docsΨcs is the total number of

documents to which Ψ assigns cs. The reliability of a classifier Ψ can be evaluated by

associating each confidence score cs assigned by Ψ with its corresponding accuracy acccs.

Once we have the pairs (cs, acccs), we obtain a linear regression of these points. The more

reliable a classifier is, the more its corresponding regression line approximate the identity

function acc(cs) = cs which corresponds to the ideally reliable classifier.

The notion of reliable classifier can be used to derive the reliability-based combination

which is based on the following idea: If one of the classifiers to be combined presents

high accuracy and provides reliable confidence scores, it is possible to use it as a guide in

the combination process. In other words, in the cases where the more reliable classifier

assigns a document to a category with low confidence score we can expect it to be wrong

(low accuracy). Thus, in such cases, it would be better to use the classification decision

provided by the second classifier. This idea is formally presented in the algorithm of

Figure 3.1.

The algorithm first obtains the set Atr, containing for each document i the pairs

(cAi, yAi) (lines 3-6). It then executes similar steps to obtain the set Btr (lines 7-8). Next,

it computes the accuracy acccs for each distinct confidence score cs among the values cAi

output by classifier A. The value of acccs is obtained by dividing the number of pairs

(cs,1) in Atr by by the total number of documents to which A assigns cs, i.e., the number

of pairs (cs, 1) plus the number of pairs (cs, 0) in Atr. Then, the algorithm obtains the

regression line from pairs (cs, acccs) for classifier A (lines 9-10). In the same way, it obtains
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1 Let A be the most reliable class i f ier to be combined;

2 Let B be the least reliable class i f ier to be combined;

3 Let Atr be a set of points {cAi, yAi} , where cAi , 0 ≤ cAi ≤ 1 , represents

4 the confidence score of A in the classif ication given for document i in

5 the training collection (0 ≤ cAi ≤ 1) and yAi is 1 i f the classif ication

6 provided by A for i is correct and is 0 otherwise;

7 Let Btr be a set of points {cBi, yBi} , where yBi is 1 i f the classif ication

8 provided by B for i is correct and is 0 otherwise;

9 Let fA(x) = b + ax be the function that best f i t s the points (cs, acccs)

10 derived from Atr ;

11 Let fB(x) = d + cx be the function that best f i t s the points (cs, acccs)

12 derived from Btr ;

13 i f (a == c) {

14 i f (b > d)

15 p = 0;

16 else

17 p = 1;

18 } else

19 p = b−d
c−a

;

20 for each document i in the test collection {

21 i f (cAi > p)

22 classif ication of document i is given by A ;

23 else

24 classif ication of document i is given by B ;

25 }

Figure 3.1: Reliability-Based Combination.

the regression line from pairs (cs, acccs) corresponding to classifier B (lines 11-12). It then

finds the confidence score p where the most reliable classifier A tends to be always better

than the least reliable classifier B, that is, the point p where the regression lines cross

each other (lines 13-19) and uses this point to determine which classifiers provide the best

decisions (lines 19-23). In sum, decisions from classifier A are preferable if it yields belief

estimations greater than p.
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3.2.2 Combination Using Bayesian Network

In this work, we use the Bayesian network shown in Figure 3.2, proposed by Pavel et al. [9],

as a means of combining the results of two distinct classifiers. In the figure, the root nodes,

C

1

or oror

D1 D Dn

T T B
1 j m B B

1 m

F F Fm

T

Training set

Text
evidence

Final evidence

Category 

Bibliometric
evidencej

i

j

Figure 3.2: Bayesian network model to combine a text-based classifier with evidence from

link structure.

labeled D1 through Dn, represent our prior knowledge about the problem, i.e., the training

set. Node C represents a category c. The edges from nodes Di to c represent the fact that

observing a set of training documents will influence the observation of a category c.

Each node Tj represents evidence from the text-based classifier indicating that test

document j belongs to category c. An edge from a node Di to a node Tj represents the

fact that the training document i is related to test document j by text information. Thus

if i belongs to class c we may infer that there are chances for document j to belong to class

c.

Each node Bj represents evidence, given from the bibliometric classifier, indicating that

document j belongs to category c. An edge from a node Di to a node Bj indicates the

evidence given by bibliometric information that the training document i is related to the

test document j. Thus, if i is classified under category c, there are grounds to infer that j

should be also considered as candidate for category c.
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Given these definitions, we can use the network to determine the probability that a test

document j belongs to category c, by deriving an equation in a way similar to one used to

derive Equation (2.27). This translates to the following equation:

P (fj|c) = η
∑

d

[

1 −
(

1 − Wt P (tj|d)
)(

1 − Wb P (bj|d)
)

]

P (c|d) (3.2)

where η = 1/P (c) is a normalizing constant and d is a possible state of all the variables

Di. The probability P (c|d) is now used to select only the training documents that belong

to the category we want to process. We define P (c|d) as:

P (c|d) =

{

1 if ∀i, di = 1 if i ∈ C

0 otherwise
(3.3)

where C is the set of training documents that belong to category c. By applying Equation

(3.3) to Equation (3.2), we obtain:

P (fj|c = η
∑

dc

[

1 −
(

1 − Wt P (tj|dc)
)(

1 − Wb P (bj |dc)
)

]

(3.4)

where dc is the state of variables Dj where only the variables corresponding to the training

documents of class c are active. Constants Wt and Wb are the weights given to the text-

based classifier and to the bibliometric classifier, respectively. They can be used to regulate

the importance of each source of evidence on the final result. The introduction of weights

in the model is accomplished by the use of a noisy-OR combination [42].

To compute the final probability, we simply define P (tj|dc) and P (bj|dc) as the con-

fidence scores assigned by the text-based classifier and the bibliometric classifier, respec-

tively, to the association of document j with class c. Since the confidence scores are values

between 0 and 1 they can be used as probability values.

The Bayesian Network combination method produces a ranking classification for each

test document j. The rank is given by the values of P (fj|c) for the distinct classes c. The

class c with highest probability P (fj|c) is the one chosen to be the class of document j by

the combination method.

3.3 Document Collections

In this section, we describe the collections used in our comparative study of classification

and combination methods to be described in the next chapter. We use three collections
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with distinct characteristics of link and textual information. In section 3.3.1, we describe

ACM8, a sub-collection of the ACM digital library1. In section 3.3.2, we describe Cade12,

a collection of Web pages derived from the the Cadê directory2. Section 3.3.3 describes

Wiki8, a sub-collection of the Wikipedia3 encyclopedia.

3.3.1 The ACM8 Collection

The ACM8 collection is a sub-collection of the ACM Digital Library. All the text contained

in the title and abstract, when available, was used to index the documents. Note that many

citations in the original ACM Digital Library could not be traced to the corresponding

paper for several reasons. Among them, the fact that many cited papers do not belong to

this digital library and also due to the imprecise process used to match the citation text to

the corresponding paper [36]. High precision and recall in this pre-processing phase is hard

to be achieved due to problems such as differences in the writing style for names of authors

and conferences in the citations. This problem is particularly important in the case of the

ACM Digital Library, since most citations were obtained with OCR after scanning, which

introduces many errors, making the matching process even harder.

To simulate a more realistic situation in which most citations are available, we selected

a subset of the ACM Digital Library having only documents with at least four matched

citations to distinct references. This is a very reasonable assumption since most papers

of the ACM Digital Library (even short ones) have more than four citations. In fact, the

average number of citations in the ACM Digital Library is 11.23.

The resulting ACM8 collection is a set of 6,680 documents, without stop words. Doc-

uments are labeled under the 8 largest categories of the ACM Digital Library taxonomy,

which we list here in descending order of their sizes: (1) D-Software, (2) H-Information

Systems, (3) I-Computing Methodologies, (4) B-Hardware, (5) C-Computer Systems Orga-

nization, (6) F-Theory of Computation, (7) K-Computing Milieux and (8) G-Mathematics

of Computing. Classes A-General Literature, E-Data and J-Computer Applications of the

ACM taxonomy were not used because they contain less than 20 documents in this sub-

collection. Similarly to our Web collection, each paper is classified into only one category.

These classes are first-level classes defined by the ACM Computing Classification Sys-

tem [1]. Usually, the authors assign sub-classes to their documents to make classification

1http://portal.acm.org/dl.cfm
2http://www.cade.com.br/
3http://en.wikipedia.org/wiki/Main Page
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more specific and are free to use sub-classes of different first-level classes. Since, in our clas-

sification experiments, we were mainly concerned with one-label classification, the ACM8

was composed only of documents that were assigned sub-classes of the same first-level class.

Thus, none of the ACM8 documents were considered multilabel cases by their authors.

Figure 3.3 shows the category distributions for the ACM8 collection. Note that the

ACM8 collection has a very skewed distribution, where the two most popular categories

represent more than 50% of all documents.
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Figure 3.3: Category distribution for the ACM8 collection.

Table 3.1 shows some statistics about links (citations) in the ACM8 collection. Links

from ACM8 articles to articles outside ACM8 correspond to 77.8% of the links in the

collection. The external documents cited include both articles of the ACM digital libraries

not included in ACM8 and publications outside the ACM digital library. The information

about these publications came from the DBLP(http://dblp.uni-trier.de/) collection. Since

we have no information about the external documents, in-links can be derived only from

internal links, while out-links can be derived from all links. Thus the number of in-links in

the ACM8 collection is 11, 510, while the number of out-links is almost four times higher.

The first two percentages in Table 3.1 are computed over the total of 51,897 links in the

collection.

Figure 3.4 shows the distribution of in-links and out-links for the ACM8 collection. It

can be seen that the majority of the documents has less in-links than out-links.
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Statistics ACM8.

Internal links 11,510 (22.18%)

Links from external documents to ACM8 documents 0

Links from ACM8 documents to external documents 40,387 (77.82%)

ACM8 documents with no in-links 1,941 (29.0%)

ACM8 documents with no out-links 0

Average of in-links by document 4.72

Average of out-links by document 7.77

Table 3.1: Statistics for the ACM8 collection.
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Figure 3.4: Link distribution for the ACM8 collection.
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3.3.2 The Cade12 Collection

The Cade12 is a sub-collection of pages indexed by the Brazilian Web directory Cadê. All

pages in the Cadê directory were manually classified by human experts. Since they were also

indexed by the TodoBR search engine4, we built the Cade12 collection by obtaining text

and links directly from the TodoBR database. The content of each document in Cade12

collection is composed of the text contained in the body and title of the corresponding

Web page, after discarding HTML tags.

The resulting collection is composed of 42,391 documents, containing a vocabulary of

191,962 distinct terms. In our experiments we used only the 10,000 terms with highest

information gain (infogain). Information gain is used to measure the capacity of a feature

(term) of separating documents into classes. It is defined by Equation (3.5) [48].

infogain(tk, ci) =
∑

ci∈C

P (ci) ×
∑

c∈{ci,c̄i}

∑

t∈{tk ,t̄k}

P (t, c) × log
P (t, c)

P (t) × P (c)
(3.5)

where C is the set of classes and the probabilities are interpreted on an event space of

documents. For intance, P (t̄k, ci) denotes the probability that, for a random document x,

term tk does not occur in x and x belongs to class ci. The probabilities are computed over

the training set. Information gain is used as feature selection – only the m terms with the

greatest information gain are used as features of the documents, for some arbitrary m > 0.

Text classifiers are trained using only these m terms..

Documents in Cade12 are labeled under 12 first-level classes of the Cadê directory, listed

in descending order of their sizes: (1) Services, (2) Society, (3) Recreation, (4) Computers,

(5) Health, (6) Education, (7) Internet, (8) Culture, (9) Sports, (10) News, (11) Science

and (12) Shopping. Figure 3.5 shows the category distribution for the Cade12 collection.

Note that the collection has a skewed distribution and the three most popular categories

represent more than half of all documents.

The link information of the Cade12 collection was extracted from the set of 40,871,504

links of the TodoBR database. As observed by the authors in [9], the richer the link

information considered, the better the accuracy obtained by link-based classifiers. In fact,

this was an important reason for choosing Cadê. With Cadê we are not restricted to

a limited source of links since Cadê is a subset of TodoBR, which is a large collection

containing most of the link information available in Brazilian Web pages. Links from Web

4TodoBR is a trademark of Akwan Information Technologies, which was acquired by Google in July

2005.
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Figure 3.5: Category distribution for the Cade12 collection.

pages of directory web sites were removed to avoid a bias in the results.

Table 3.2 shows statistics about link information of the Cade12 collection. The first

three percentages in the table are computed over the total of 56,4316 links in the collection.

Statistics Cade12

Internal links 3,830 (0.68%)

Links from external pages to Cade12 pages 554,592 (98.28%)

Links from Cade12 pages to external pages 5,894 (1.04%)

Cade12 pages with no in-links 4,392 (10.36%)

Cade12 pages with no out-links 40,723 (96.06%)

Mean of in-links by document 12.57

Mean of out-links by document 0.13

Table 3.2: Link statistics for the Cade12 collection.

Figure 3.6 presents the distribution of in-links and out-links in the Cade12 collection.

Note that most pages have no out-links at all, but the majority does have in-links.

3.3.3 The Wiki8 Collection

Wiki8 is a sub-collection of the Wikipedia encyclopedia in English, captured from the

Wikipedia dump files. The Wikipedia collection is periodically stored in compressed for-

mat files called dump files to facilitate download. We used the dump file obtained from

“http://download.wikimedia.org/enwiki/2006816”. The text of each Wiki8 document is

derived from the text of the corresponding Wikipedia article by discarding HTML tags
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Figure 3.6: Link distribution for the Cade12 collection.

and by filtering out stop words. We also removed meta-information inside documents that

contained information about the classes of the document. As a consequence some doc-

uments became empty. The resulting collection contains 28.045 documents and a total

of 101,563 terms, however, in our experiments we used only the 10,000 terms with best

information gain. For each document we maintained the links to other documents. Links

to Wikipedia categories were not used.

The Wiki8 collection is composed of 28,044 documents labeled under 8 categories: (1)

History, (2) Politics, (3) Chemistry, (4) Philosophy, (5) Biology, (6) Mathematics, (7)

Astronomy and (8) Computer Sciences. We chose these classes due to their general nature,

easily assessed by the human judges that participated in the user study to be described

in Section 4.3. As shown in Figure 3.7 the category distribution in Wiki8 is also skewed.

More than half of the documents belong to the most popular class, History.

Table 3.3 shows some statistics about the links in the Wiki8 collection. By external

in-links we mean links to pages in Wiki8 from pages of Wikipedia that were not included in

Wiki8. External out-links are links from any page in Wiki8 to any page out of it (including

pages out of Wikipedia). The first three percentages in Table 3.3 are computed over the

total of 2,994,659 links in the collection. There are more in-links than out-links in Wiki8,

but about 6% of the documents do not have in-links and 0.3% do not have outlinks.

Figure 3.8 shows the distribution of in-links and out-links in the collection.



42 CHAPTER 3. CLASSIFICATION APPROACHES AND COLLECTIONS

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1  2  3  4  5  6  7  8

N
um

be
r 

of
 d

oc
um

en
ts

Categories

Figure 3.7: Category distribution for the Wiki8 collection.

Statistics Wiki8

Internal Links 186,844 (6.24%)

External in-links 1,584,587 (52.91%)

External out-links 1,223,228 (40.85%)

Wiki8 pages with no in-links 1,6862 (6%)

Wiki8 pages with no out-links 84(0.3%)

Mean of in-links by document 63.16

Mean of out-links by document 50,28

Table 3.3: Link statistics for the Wiki8 collection.
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Figure 3.8: Link distribution for the Wiki8 collection.



Chapter 4

Experimental Results

In this chapter, we describe experimental evaluations of the bibliometric classifiers and

the combination methods presented in Chapter 3. The experiments were conducted using

the ACM8, Cade12 and Wiki8 collections as test beds. We also present the results of

investigations about the documents to which bibliometric classifiers failed to assign the

correct class.

Section 4.1 depicts the results of a series of experiments comparing the effectiveness

of the distinct bibliometric classifiers and text-based classifiers. Section 4.2 describes ex-

periments that show the reliability of bibliometric classifiers in the distinct collections and

presents comparative analysis of the methods we use to combine the results of both biblio-

metric classifiers and text-based classifiers. Section 4.3 describes the investigations about

the documents that bibliometric classifiers failed to classify.

4.1 Experimenting with Bibliometric Classifiers

In this section, we present the results of experiments with bibliometric and text-based

classifiers trained using the kNN and the SVM classification methods, as described in

Section 3.1. The experiments were conducted with the following objectives:� Compare the effectiveness of bibliometric classifiers and text-based classifiers in each

collection.� Evaluate how the three bibliometric measures (co-citation, bib-coupling and Amsler)

are influenced by link distribution in each collection.

43
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In all classification experiments, we used a ten-fold cross validation and we evaluated each

run using macro and micro F1 measures. The final results of each experiment represent

the average of the ten runs for both measures. For each collection, we used the text-based

classification of each method as the baseline for the method. Thus, the results of the kNN

classifier using the cosine measure and the results of the SVM classifier with TF-IDF were

taken as baselines.

Table 4.1 presents the micro-averaged and macro-averaged F1 values for the link and

text-based classifiers over the ACM8 collection. The two last columns of the table show

the percentage of gain of each classifier over the text-based classifier for each method.

Gains over

Method Similarity micF1 macF1 text classifier (%)

micF1 macF1

co-citation 61.60 52.56 -20 -25.5

kNN bib-coupling 83.20 78.29 8.1 10.9

Amsler 84.43 79.41 9.7 12.5

Text Cosine 76.95 70.57 – –

co-citation 59.33 49.98 -26.17 -34.21

SVM bib-coupling 80.72 74.59 0.4 -0.18

Amsler 83.08 77.08 3.37 1.46

Text TF-IDF 80.37 75.97 – –

Table 4.1: Macro-averaged and micro-average F1 results for kNN and SVM classifiers

applied over the ACM8 collection.

Co-citation-based classifiers presented the worst results over all classifiers. This is

because there are few documents that share the same in-links and since co-citation is a

measure of the number of in-links two documents have in common, this measure is not

sufficiently precise for the classifier to decide the class of a test document. In fact, 29%

of the documents do not have co-citation. In the case of ACM8, this can be justified by

the small number of in-links in the collection (less than twice the number of documents).

For instance, 85% of the documents that kNN with co-citation failed to classify have less

than 4 in-links. On the other hand, of the 61.75% of documents that kNN with co-citation

correctly classified, only 28% of them have less than two in-links.

Classifiers using the Amsler similarity achieved the best effectiveness for both kNN

and SVM methods. However, results are only slightly better than for bib-coupling. Since
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the Amsler similarity is a kind of combination between co-citation and bib-coupling, we

can conclude that bib-coupling contributed most to the results. This is because there are

many pairs of documents that have at least one out-link in common. In fact, 97% of the

documents have bibliographic coupling with at least some other document in the collection.

This means that not only there are many out-links in ACM8, but cited documents (children)

tend to be cited by two or more documents. Also, when using a kNN classifier with the

Amsler measure, most test documents have co-occurrence children in the training set.

In fact, only 74 no-information cases were found. Thus, kNN rarely used the default

classification in ACM8 as a means to decide the class of the test documents.

The text in documents of the ACM8 collection, despite being short, is not noisy, since

content-based classifiers also presented a good effectiveness. Table 4.1 also shows that link

information is better used to obtain classifiers based on the kNN method, while textual

information is better used with SVM.

The same set of experiments using the kNN and SVM methods with bibliometric and

text-based information was applied to the Cade12 collection. The results are shown in

Table 4.2. Contrary to the ACM8 collection, bib-coupling-based classifiers presented the

worst results among the bibliometric classifiers. This is because only 1% of the documents

has at least one parent document which is also a parent of another document in the

collection. In spite of this scarcity, all the classifiers achieved micro-average F1 values

superior to 21% due to the default classification. This strategy works because of the

large number of documents that belong to the most popular class. The small number of

documents with bib-coupling values are due to the rareness of out-links in the collection.

On the other hand, 70.49% of the documents are co-cited with other documents. This

means that if we do not consider the default classification, the maximum accuracy that

could be achieved is about 70%. As Table 4.2 shows, classifiers using Amsler similarity or

co-citation similarity almost achieved this limit.

Although the kNN classifier using co-citation performed better than the one using bib-

coupling, and better than text-based classifiers, about 30% of the documents were classified

using the default classification. Thus, in order to make clear the true contribution of

bibliometric information for this collection, we conducted an experiment where we removed

the documents for which the classifier applied the default classification. Since the results

between the SVM and kNN classifiers presented in Table 4.2 are only slightly different, we

used only the kNN classifier, which presented a better effectiveness. Similar experiments

were not conducted with the ACM8 and Wiki8 collections because the no-information cases
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Gains (%) over

Method Similarity micF1 macF1 text classifier

micF1 macF1

co-citation 68.51 75.60 36.9 69.9

kNN bib-coupling 22.09 5.39 -55.8 -87.9

Amsler 68.56 75.53 37.0 70

Text cosine 50.03 44.50 – –

co-citation 68.91 76.9 27.2 55.7

SVM bib-coupling 24.08 6.40 -55.6 -87.0

Amsler 68.09 74.8 25.6 51.47

Text TF-IDF 54.18 49.38 – –

Table 4.2: Macro-averaged and micro-average F1 results for kNN and SVM classifiers

applied over the Cade12 collection.

in these collections are rare, corresponding to less than 2% of the documents. The results

are shown in Table 4.3. The results of the classification for the whole collection were copied

to the first line of the table to facilitate comparison.

kNN with co-citation micF1 macF1

Using Default Classification 68.51 75.60

Not Using Default Classification 85.29 80.73

Table 4.3: Results for the kNN when considering all documents and when considering only

documents that are not no-information documents.

The difference between the two results shows that the lower values for macro-averaged

and micro-average F1 obtained in the first experiment involving all documents are mainly

due to lack of link information.

In fact, whenever co-citation information is available, its quality can be considered good

for classification in Cade12. Only about 15% of the classification failures in the collection

are due to wrong conclusions extracted from the co-citation measure itself. For example,

one of the documents has class label Society but, kNN assigned label Recreation to it

because among the k documents that are most related to it by co-citation, 68.3% of them

have class label Recreation and 31.7% have class label Society.

We also trained kNN and SVM classifiers using the Wiki8 Collection. The results are

shown in Table 4.4.
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Gains (%) over

Method Similarity micF1 macF1 text classifier

micF1 macF1

co-citation 81.3 68.43 0.5 -0.1

kNN bib-coupling 86.95 82.31 7.51 20.16

Amsler 87.73 82.05 8.48 19.78

Text cosine 80.87 68.50 – –

co-citation 74.68 60.09 -15.4 -27.6

SVM bib-coupling 86.07 80.61 -2.5 -2.9

Amsler 85.66 80.84 -3.0 -2.5

Text TF-IDF 88.27 82.99 – –

Table 4.4: Macro-averaged and micro-average F1 results for kNN and SVM classifiers

applied over the Wiki8 collection.

We note that text-based classifiers presented very good effectiveness in the Wiki8 col-

lection. This high effectiveness is due to the high specificity of text information within each

class. There are many terms that occur frequently in one class and are rare in other classes.

For example, terms like stars, earth, sun, solar, moon and space, among others occur in

at least 20% of the documents of the class Astronomy and are rare in other classes. Also,

each of the terms biology, cell, and cells occurred at least in 30% of the documents of the

class Biology and are nonexistent in other classes. We can also find sets of discriminative

terms like these for the other classes of the collection.

The quality of text in Wiki8 is even more evident when we compare it to the quality

of text in the other two collections. This comparison was performed by computing the

information gain of the terms in the three collections. For each collection, we ranked

the terms in descending order of their information gain values and computed the mean

information gain of the top k terms. Table 4.5 shows the mean information gain for values

of k equal to 100, 1 000 and 10 000 in each collection. We note that the mean values of

information gain for Wiki8 is in all cases greater than those of the other collections.

As Table 4.4 shows, bib-coupling-based classifiers performed better than the co-citation-

based classifiers, in spite of the fact that there are more in-links than out-links in Wiki8.

This happens because co-occurrent children documents are more evenly distributed over

the collection than co-occurrent parent documents. In fact, only 1% of the documents have

no children in common with any other document, while 12% of the documents do not have
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Collection Average Infogain for k Best Terms

k = 100 k = 1000 k = 10000

Wiki8 0.038 0.013 0.0033

ACM88 0.020 0.006 0.000126

Cade12 0.012 0.0049 0.000125

Table 4.5: The Average information gain of the k terms with best informatio gain in each

collection.

parents in common with any other document. Since bib-coupling is directly related to

the number of children two pages have in common, classifiers using this measure produce

better results.

Since only 1% of the documents do not have bib-coupling with any other document,

the chances for a document to have no bib-coupling similarity to any training document

is also small. In fact, only 0.03% of the test documents are no-information cases. So, as

is in the case of the ACM8 collection, almost all mistakes and hits are consequence of the

usage of the method (kNN or SVM) and not due to default classification.

The bibliometric classifiers presented accurate results in all the trhee collections, al-

though, in the Wiki8 collection text-based classifiers were more effective. The experiments

indicate that, in spite of the differences in the purposes, density and distribution of the

links found in the three studied collections, the information extracted from links may play

an important role in classification tasks.

4.2 Combining Results of Classifiers

In this section, we present and discuss two set of experiments. With the first set we aim

to evaluate the reliability of bibliometric classifiers. As the results of these experiments

show, bibliometric classifiers obtained for the three collections are reliable classifiers and

this conclusion stimulates the use of the reliability-based combination method. With the

second set of experiments we intend to compare the two methods we use to combine

classifiers’ results: the reliability-based method and the Bayesian Network method.
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4.2.1 Reliability of Bibliometric Classifiers

Recalling Section 3.2.1, an ideally reliable classifier provides confidence scores proportional

to its accuracy. In spite of not being ideal classifier, kNN classifiers using bibliometric

measures present the property of providing confidence scores proportional to their accu-

racy in ACM8, Cade12 and Wiki8 collections. Figures 4.1(a), 4.1(b) and 4.1(c) show the

accuracy values obtained for confidence scores estimated by kNN using the Amsler simi-

larity measure. We chose Amsler-based kNN because it was the classifier with best micro

F1 values over all bibliometric classifiers (loosing only for the co-citation-based SVM in

the Cade12 collection). Also, its macro F1 values are only slight inferior to some of the

other bibliometric classifiers. In all figures, the dashed lines are derived by linear regres-

sion applied over the (confidence score, accuracy) points for a classifier, and the solid lines

correspond to an ideal classifier for which the confidence score would correspond exactly

to the accuracy obtained, as explained in Section 3.2.1.

We note that in the first three graphics the regression lines are very similar to the line

representing the reliability of an ideal classifier. This implies that, in general, the values

provided as confidence scores approximately correspond to the accuracy obtained by the

classifier. Thus, we can take these values as good estimates of how many documents will be

assigned to the correct classes. Similar figures were obtained for the other kNN classifiers

using the other similarity measures in the three collections, which we do not include here to

avoid repetition of arguments. The only exception occurs with kNN based on bib-coupling

measure in the Cade12 collection, where the regression line clearly differs from the ideal

line, as shown in Figure 4.1(d). This occurs because there are only few documents that

have bib-coupling similarity to some other document in the collection. as discussed in

Section 4.1.

4.2.2 Combining the Results of Bibliometric and Textual Clas-

sifiers

In this section we report the experiments with the two combination methods described in

Section 3.2. We applied the reliability-based combination method to the three collections

we studied. In each collection, we used the kNN classifier based on the Amsler similarity as

the first classifier to be combined. As the second classifier, we used the text-based classifier

that performed better in each collection. Figure 4.2 shows the regression lines obtained

by applying the algorithm of Figure 3.1 to each collection. The two lines in each graphic
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(a) Regression line for Amsler in ACM8.
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(b) Regression for Amsler in Cade12
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(c) Regression for Amsler in Wiki8.
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(d) Regression for Bib-coupling in Cade12.

Figure 4.1: Accuracy per confidence score. Graphics (a), (b) and (c) show the regres-

sion line for the Amsler-based kNN classifier in ACM8, Cade12 and Wiki8 collections,

respectively. Graphic (d) shows the regression line for bib-coupling-based kNN in Cade12.
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correspond to the lines computed by the linear functions derived from lines 9 and 11 of the

algorithm. For all the three collections, the classifiers based on the Amsler measure were

used as guides since they are more reliable than text-based classifiers.
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Figure 4.2: Regression lines for confidence scores of Amsler-based kNN classifier and for

confidence scores of TF-IDF-based SVM classifier in the three collections.

For the ACM collection we can see that the regression lines for the Amsler-based clas-

sifier and the best text classifier are very similar. This means that, in general, for any

confidence scores of the Amsler classifier the effectiveness of both Amsler-based and text-

based classifiers are very similar. Consequently, the reliability-based combination, in this

case, is not able to present much gain over the Amsler classifier as will be seen later in this

section.
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As Figure 4.2(b) shows, the regression line for the text-based classifier for the Cade12

collection is close to a constant function. This is a consequence of the poor quality of text

information in Cade12. On the other hand the regression line for the kNN based on Amsler

measure is very similar to an ideal classifier. So the confidence score of the Amsler-based

classifier can be used to drive the combination of results. Both lines cross each other at

point p corresponding to a confidence score of 50%. If the confidence score of the Amsler-

based classifier falls at p or above, the class it indicates is adopted. If this is not the case,

the class pointed by the text-based classifier is preferred. Contrary to what happened in

ACM8, reliability-based combination in this case is expected to perform better than text

and Amsler-based classifiers considered in isolation.

The regression lines for the Wiki8 collection are shown in Figure 4.2(c). As can be

seen, the kNN classifier using the Amsler measure is also more reliable than the text-based

classifier for this collection, since its confidence score values are similar to its accuracy

values. However, the regression lines of the two classifiers cross each other for values

of confidence score superior to 0.85. This means that the link-combination method will

take the output of the text-based classifiers for most of the confidence scores. Also, the

accuracies for both classifiers are similar for confidence scores superior to 0.85, thus the

reliability-based combination for this collection is expected to perform only slightly better

than text-based classifier alone.

The results of the reliability-based combination strategy for the three collections are

listed in Table 4.6. For comparison purposes, the results obtained by text-based and

Amsler-based classifiers taken in isolation are also shown in the table.

Table 4.6 also shows the results for the Bayesian combination method described in

Section 3.2.2. This method was used in [9] with a subset of the Cadê collection slightly

different from the Cade12 and presented good improvements over text-based classifiers

and bibliometric classifiers in isolation. Thus, we use this method as the baseline for

comparison with the reliability-based. For each collection, We tuned the weights Wt and

Wb in Equation3.4 by splitting the training set in two disjoint sets: a training subset and

a validation subset [48]. We used the training subset to train bibliometric and text-based

classifiers and used the validation subset to test the classifier. The results of classifiers with

the validation documents were extensively combined, by varying values of Wt and Wb until

the best values were found that maximise F1 measure of the combination process. Once

the values of the two weights were found we retrained the bibliometric and text-based

classifiers, this time using the entire training set and evaluate the combination process
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Gains over

Collection Methods micF1 macF1 link classifier (%)

micF1 macF1

kNN-Amsler 84.43 79.41 – –

ACM8 SVM-TFIDF 80.37 75.97 -4.8 -4.33

Bayesian Comb. 87.04 82.76 3.0 4.2

Reliability Comb. 85.76 81.37 1.6 2.46

kNN-Amsler 68.56 75.53 – –

Cade12 SVM-TFIDF 54.18 49.38 -20.97 -34.62

Bayesian Comb. 76.51 79.29 11.6 4.97

Reliability Comb. 78.04 80.39 13.82 6.43

SVM-TFIDF 88.27 82.99 – –

Wiki8 kNN-Amsler 87.15 82.05 -1.26 -1.13

Bayesian Comb. 90.75 87.28 2.8 5.16

Reliability Comb. 90.44 86.44 2.45 4.15

Table 4.6: Macro-averaged and micro-average F1 results for combining approaches in the

ACM8, Cade12 and Wiki8 collections.

using documents of the test set. This process was repeated for each round of the ten-fold

cross-validation process, so that we obtained values of Wt and Wb in each round.

As we can see in Table 4.6, the reliability-based combination method presented results

inferior to the Bayesian method for the ACM8 and Wiki8 collections. As we stated before,

for the case of the ACM8, the regression lines of both text and Amsler-based classifiers

are similar to each other. Thus, reliability-based combination could not improve much by

using the output of text classifier for confidence scores of the Amsler classifier smaller than

about 0.7, which is the confidence score where the two lines cross each other.

For Wiki8, the accuracy of the text-based classifier is superior to the Amsler-based

classifier for all confidence scores inferior to about 0.85. Also, the accuracy above this point

is very similar for both classifiers, thus reliability-based combination could not improve

much the result by choosing the output of the Amsler classifier for confidence scores superior

to 0.85.

The gains obtained from any combination strategies seem at first sight quite small

both in the ACM8 and Wiki8 collections. However, suppose we had a perfect combination

method that would be able to choose between the two classifiers the one which assigned the
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right class, whenever one of them gives a right assignment. The macF1 and micF1 average

values for such perfect combiner can be obtained with 10-fold cross validation, using the

same folds that were used in all the other experiments for each collection.

When comparing this perfect classifier to the results obtained on each collection, we

realise that the possible improvements in results are not so high. For the ACM8 collection,

this perfect combiner would achieve micF1 average value of 91.24% and macF1 average

value of 88.50%, which correspond to gains of only 4.8% in micF1 and 9.6% in macF1

over the Bayesian method, which is our best method. Also, for the Wiki8 collection,

the perfect combiner would achieve values of 94.22% for micF1 and 92.32% for macF1,

which correspond to gains of 3.8% and of 5, 7%, respectively, over the Bayesian method.

A perfect combiner for Cade12 would achieve 83.99% for micF1 and 86.58% for macF1,

which correspond to gains of 7.62% and of 7.7%, respectively, over the reliability-based

combination method. The results of the perfect combiner correspond to the superior limits

for combination of results of classifiers. As we can see, there is room for enhancement, but

the possible gains over the ones obtained tend to be small, considering the optimal case.

4.3 Further Understanding the Classification Failures

In this Section we investigate the possible reasons for the classification failures produced

by the bibliometric classifiers. We performed two types of study to evaluate the origins

and meaning of the failures produced. First, we use information available in the ACM8

collection to study the failures that are consequence of documents containing multiple

classes. Second, we perform a more comprehensive study with users to understand the

failures occurred in the three experimented collections.

Possible Multilabel Classification Cases

Since kNN using the Amsler similarity measure was the best bibliometric classifier, we

decide to further investigate its cases of misclassification. We found that in 58% of the

failures, the class assigned by the documents’ authors appears as the second most probable

class assigned by the classifier. Although all documents of ACM8 were assigned to only

one first level class of the ACM hierarchy by their authors, we intended to investigate if

some of the above cases could be considered correct in a multilabel classification setting,

as follows.
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In the ACM computing classification system tree (CCST) [1], associations between

classes are declared explicitly. For instance, Figure 4.3 shows an entry in CCST describing

the sub-class I.7 - Document and Text Processing. The labels appearing on the right hand

side of the sub-class title (H.4 and H.5) indicate that a document classified under sub-class

I.7 is also related to sub-classes H.4 and H.5. As a consequence, a document classified

under class I.7 (or its subclasses) might be also classified under classes H.4 and H.5 (or its

subclasses).

◦ I.7 DOCUMENT AND TEXT PROCESSING
�

�

�

�
Revised (H.4, H.5)

� I.7.0 General

� I.7.1 Document and Text Editing
�

�

�

�
Revised

� Document Management N
E
W!

� Languages∗∗

� Spelling∗∗

� V ersion control N
E
W!

� I.7.2 Document Preparation

� Desktop Publishing

� Format and Notation

� Hypertext/hypermedia

� Index generation N
E
W!

� Languages and systems

� Markup languages N
E
W!

� Multi/mixed media

� Photocomposition/typesetting

� Scripting languages N
E
W!

� Standards

� I.7.3 Index Generation∗∗

Figure 4.3: Part of the ACM classification tree showing relations among sub-classes of

different first-level classes.

To find the proportion of misclassification cases that could be considered correct as-

signments in a multilabel classification setting, we have to determine the misclassified

documents which could be assigned to multiple classes, among them, the one chosen by
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the kNN classifier. Thus, given a test document dt for which the kNN classifier failed, let

LkNN be the list of the sub-classes of the k most similar documents to dt and let Lauth be

the list of sub-classes of dt assigned by its authors. By inspecting both lists, we can find

pairs of sub-classes (ci,cj), where ci ∈ LkNN and cj ∈ Lauth, such that ci and cj or some of

their ancestors are explicitly related in the ACM hierarchy. Once we find these pairs, we

select ci as a potential class of dt if its first-level ancestor was assigned by the kNN clas-

sifier and its occurrence count in LkNN is greater than a certain threshold f , determined

experimentally after sampling some documents. In our experiments, we used f = 3.

Table 4.7 shows an example of a misclassified document that was assigned to sub-class

I.7.2 (Lauth = {I.7.2} in this case) by its author. The second column shows LkNN , the

sub-classes of the k nearest neighbours of this document. The numbers in parentheses

correspond to the occurrence of each sub-class. The subclasses in bold face occurred more

than three times in LkNN and have as ancestor class H.5 that is related to sub-class I.7.

This class, by its turn, is ancestor of the class assigned by the author of the document (see

Figure 4.3). Thus, if the kNN classifier assigns class H to this document, this should be

considered a correct decision in a multilabel classification setting.

Author Sub-classes in k

assigned most similar documents

I.7.2 H.5.1 (18), H.5.2 (10), H.2.4 (7), H.2.1 (5),

H.5.3 (5), H.5.4 (5), H.3.1 (4), H.2.8 (3),

H.3.4 (3), H.3.3 (3), H.1.2 (3), H.2.3 (2), C.0 (1),

H.3.7 (1), H.4.3 (1), D.2.13 (1), D.2.6 (1), H.3.2 (1), H.3.5 (1)

Table 4.7: Example of the detection of a candidate for multilabel classification.

Table 4.8 summarises the cases of misclassifications that could be considered correct

decisions in a multilabel classification setting. For obtaining these data, we used kNN with

Amsler similarity. Additionally, to confirm that the document could be really considered

as pertaining to both classes, we manually checked them.

The second column of Table 4.8 contains the total of misclassified documents per class.

Third column contains the number of failures that were considered multilabel classification

cases. The fourth column contains the percentages of these cases. As we can see, 24%

of the misclassifications should be considered correct decisions if we had used multilabel

classification.
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kNN Failures

Class Multilabel classification

Total failures Total %

B 123 43 34.95

C 168 50 29.76

D 175 55 42.8

F 159 34 31.42

G 71 12 16.9

H 97 18 18.56

I 107 19 17.76

K 72 2 2.78

Average 29.12 24.36

Table 4.8: The number of kNN classification failures by class and the number and percent-

age of these failures that can be considered multilabel classification cases.

User Study

Motivated by the difficulty in improving classification results in the ACM8 and Wiki8 col-

lections by meanas of our combination methods, as well by the failures of the bibliometric-

based kNN classifier in the Cade12 collection even when bibliometric relations exist, we

decided to perform a user study using the cases that our classifiers did not succeed in

providing a correct class to a test document.

When a bibliometric-based kNN classifier assigns a wrong class to a test document it

does so because the parents or children of the test document are more linked to training

documents of the wrong class than to training documents of the correct class. Since links

are an explicit indication from an author that his work is somehow related to another

one, we suspected that even humans would have difficult to classify documents that had a

wrong class assigned by the bibliometric classifiers.

To test this assumption we conducted another experiment in order to study human

classification of those unsuccessful cases. We removed all the no-information documents

in the collections since our objective was to study only the cases the classifiers have failed

because the bibliometric information led them to fail. We then repeated the classification

using kNN classifier with the Amsler similarity and ten fold cross-validation with each

of the three new collections. For each collection, we grouped the classifier results by the

corresponding categories, such that each class could be considered as a stratum from where



58 CHAPTER 4. EXPERIMENTAL RESULTS

we derived the samples. We considered in each class the proportions of hits and failures

of the classifier, and we computed the sizes of the samples to be classified by people using

Equation 4.1, derived in [17] for computing the sample size using proportions:

nc =
t2PQ

d2

1 + 1
Nc

( t2PQ

d2 − 1)
(4.1)

where nc is the size of the sample for class c, Nc is the total number of documents of class

c, P is the fraction of Nc that the were misclassified by kNN, Q = 1 − P is the fraction of

Nc that were correctly classified, d is the size of the error interval and t is the abscissa of

the normal curve that cuts off an area α at the tails of the curve. In our experiment we

used α = 0.05, thus, t = 1.96 and d = 0.05.

Given the large number of subjects necessary to classify the documents, and since we

are mostly interested in failures of the classifier, we decided to evaluate only classifier

failures. Thus, we reduced the size nc of the samples by using only nc ∗ P elements that

correspond to the proportion of misclassified documents of the sample. Once randomly

obtained the samples for each class of a given collection, we joined all the class samples

forming a unique sample with documents of distinct classes that subjects were asked to

classify. We obtained 214 documents for the ACM8 collection, 323 for the Cade12 and 82

documents for the Wiki8 collection.

For each collection sample we generated a replica of each document and randomly

distributed the resulting duplicated sample in pools, in a way that each document would

be evaluated by two distinct human classifiers. We assigned a pool to each subject. We

generated 20 pools for Cade12 and ACM8 and 10 pools were generated for the Wiki8

collection. We assigned each pool of a same collection to a distinct subject. The 20 pools

of ACM8 were evaluated only by computer science graduate students, since expertise in

this subject area was required. The pools for for Cade12 and Wiki8 were evaluated by

graduate and undergraduate students.

For each document, a person had to choose one among four options. The first two

options were two classes: the correct one and the one assigned by the classifier. The order

of presentation of correct and wrong classes was randomly changed among the documents.

The third option was to choose both classes and the fourth option was to choose none of

the classes.

For the ACM8 and Cade12 collections, subjects had access to much more information

than the automatic classifier had. Besides link information, in the case of the ACM8

sample, people could analyse the title, authors, keywords, abstract (when available), the
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conference name, and the links’ text. Evaluators of the Cade12 collection sample had access

to the full page (which included images and photos). For the Wiki8 collection, however,

the only information available was the raw text of each document. Further, people had the

advantage of deciding between two classes only, for a given document, in contrast to the

automatic classifier that had to chose one among all the possible classes.

Table 4.9 summarises the classifications made by subjects for the three collections. It

shows the percentages of occurrence of each option among the classifications. Note that

in all the collections the percentage of correct classification is low, not reaching even 45%.

Most of the human classifications show doubt or disagreement with the correct class. This

confirms our expectation about the difficulty of classifying the sampled documents.

Human classification ACM8 Cade12 Wiki8

correct 38.31% 43.34% 41.46%

wrong 28.97% 19.50% 12.80%

marked both classes 20.79% 28.94% 40.24%

marked none of the two classes 11.91% 8.20% 5.48%

Table 4.9: Results of classifications made by subjects.

We also collected some statistics about the documents that were evaluated, shown in

Table 4.10. The experiment shows the consensus among the subjects. For instance, if

we sum the values of each column of Table 4.10, we have that 42.5% of the documents

in the ACM8 sample and 53.5% of the documents in Cade12 samples received the same

evaluation by the two subjects. Conversely, consensus is high in Wiki8, where 71.86% of

the document received the same evaluation from the two subjects. However, the number

of documents for which consensus was achieved for the two-class opinion is almost the

same of those that consensus about the correct class. Finally, in the three collections the

number of documents that were assigned the correct class by the two subjects is small.

This emphasises the difficulty of these documents that lead the classifier to fail.

We also investigated users’ opinion for the documents that we denominate hard deci-

sions of the classifier. Hard decisions correspond to misclassified documents for which the

classifier assign the correct class as the second choice and the probability difference between

the first and second choices was very small (less or equal to 0.2 in our experiments). The

second line of Table 4.11 shows that the majority of the documents that are hard decision

cases were misclassified or received a two-class vote by at least one human evaluator. Also,

only a few hard decision cases were correctly classified by all subjects. Thus hard decision
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% of documents classified: ACM8 Cade12 Wiki8

correctly by all subjects 21.49 28.79 34.14

wrongly by all subjects 13.55 9.29 4.87

as both by all subjects 5.14 12.07 30.48

as not belonging to any by all subjects 2.33 3.40 2.44

Table 4.10: Percentage of documents that reached consensus by the two human classifiers,

in three collections.

cases are really very difficult even for human classification.

The above results and observations tend to indicate that the failures of the classifier

based on bibliometric measures are really difficult cases. Even human classification, using

much more information, did not achieve much success. Further, consensus on the correct

class is very rare among human evaluators and the doubt cases for the classifier are even

harder ones to correctly classify.

ACM8 Cade12 Wiki8

% of documents that are doubt cases 13.08 23.83 26.83

% of doubts wrongly classified or

that received 2 classes 71.4 72.72 54.54

% of doubts correctly classified

by all subjects 25.0 19.48 31.81

Table 4.11: Human classification of documents that were doubt cases.
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Conclusions and Future Work

In this work, we study about the use of classifiers based on bibliometric similarity mea-

sures for classifying Web collections. We use three bibliometric measures: co-citation,

bibliographic coupling and Amsler. For each bibliometric measure we derived kNN and

SVM based classifiers and conducted experiments training these classifiers over three im-

portant, but very distinct collections of documents found in the Web: a directory of Web

pages, a digital library of scientific articles and a sub-collection of an encyclopedia.

We compared the effectiveness of bibliometric classifiers and text-based classifiers. Ex-

periments have shown that bibliometric classifiers performed better than text classifiers in

two of the collections studied and presented results only marginally inferior to text-based

classifier in the collection derived from the encyclopedia.

The experiments allowed us to reach important conclusions about the circumstances

where bibliometric measures are effective for classifying documents. The first conclusion is

that bibliometric classifiers are strongly affected by the distribution of the co-occurrence

of parent and children documents over the collection. This is a consequence of the fact

that a bibliometric similarity measure between any two documents is the computation

of the number of children or parent both documents have in common. Thus, there are

two necessary conditions for the existence of some bibliometric information for a given

document d1: (a) document d1 must have at least one in-link, a parent, or at least one

out-link, a child; (b) there must be at least another document d2 that shares with d1 a

common in-linked (parent) or out-linked (child) document. Obviously, condition (a) is a

prerequisite for condition (b).

For example, in Cade12, the distribution of links is in a such a way that the great

majority of the documents does not have parents in common with any other document and

61
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about 70% of the documents do not have children in common with any other document.

Thus, bibliometric classifiers, although being superior to text classifiers in this collection,

have a limited accuracy dictated by the lack of information.

Given the first conclusion, we have that, for a new collection, it is easy to predict that a

certain kind of bibliometric measure must not be used if many documents in the collection

do not have one kind of link. For instance, if out-links are rare, as is the case of Cade12,

classifiers based on bibliographic coupling certainly will not perform well. However, when

most of documents have at least one kind of links (in-links or out-links) we need to, verify if

they have parent or children in common with the other documents in the collection and this

imply in computing at least the Amsler measure for the test documents. Thus, whenever

link information is present in many documents it is difficult to infer that any bibliometric

measure is appropriate without computing it.

The second conclusion is that the existence of bibliometric information to classify a

given test document is not sufficient. There must also be coherence between the correct

class of a test document and the class of most of its neighbors relative to a given biblio-

metric measure. This happens because both kNN and SVM classifiers using bibliometric

measures take their decision based on the neighbors of the test document. The kNN clas-

sifier considers the class that is most frequent among the k neighbors, whereas the SVM

classifier, we trained, uses the test documents’ neighbors as its features. Thus, if most of

the neighbors belong to a distinct class, the classification of the test document will fail.

While the first conclusion is related to the existence of bibliometric information, the

second one is related to the quality of this information whenever it is available. However,

it is expected that most documents link to documents of the same topic or of topics related

to its own topic. Thus, we hypothesize that cases where most of the documents related to

a given document d have class distinct from d’s class are both rare and of difficult cases.

Both the rareness and the difficulty hypothesis were confirmed in all the three collections

studied. The rareness hypothesis can be used to explain why bibliometric classifiers are

reliable ones.

The difficulty hypothesis could be confirmed by means of a user study conducted over

those cases where the classifier failed although bibliometric information was available.

Most of the cases were assigned a wrong class by at least one of the human classifiers and

consensus is rare among classifiers.

Given the fact that bibliometric classifiers are reliable, whenever the corresponding

bibliometric measure is available, we devised a method for combining the results of biblio-
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metric classifiers and text-based classifiers. In this method, we use the estimation of the

reliability of each classifier to decide the one to be used in the classification of a given doc-

ument. The combination method was compared to the Bayesian combination used in [9]

and was shown to be better than the Bayesian method for one of the collections tested and

slightly inferior in the other two collections.

Except for the Cade12 collection, where the proposed combination method achieved

gains up to 13.8% over the best classifier, the combination of classifiers’ results did not

present significant gains. Also, the difference in effectiveness between both combination

method is too tight. Thus, we investigated the effectiveness of an ideal combination method

that could be able to chose the correct classifier for a given document, whenever at least

one of the classifiers could classify the document correctly. For the three collection, this

analysis shows that an ideal combination method could achieve gains up to 7.6% of micF1

values and gains up to 9.6% of macF1 over the best combination tested for each of the

collections studied. This means that there is still room for improvements, but given the

tight margin between the ideal combination and those investigated here, we can infer that

improvement by combining classification results is hard to achieve in practice.

In summary, we conclude that bibliometric measures, whenever available, are useful for

building document classifiers and most of the cases where bibliometric classifiers fail to

classify were shown to be really difficult cases.

Future Work

In this work, we derived bibliometric measures directly from explicit links found among

documents in collections of the Web. Our study revels some general conclusions about the

effectiveness of bibliometric measures. However, we could also observe that each collection

has its own specificity about the availability and distribution of link information inside

it. Thus, we suggest that exploring features in specific collections may be more effective

to enhance effectiveness of bibliometric classifiers in each collection. These features can

be used to derive artificial links which may increase the number of bibliometric relations

among documents. An artificial link is created between two documents to represent some

kind of relation between them that is expected to be useful for the classification task. In

what follows, we suggest possible derivation of artificial links in some specific collections:

1. Deriving links from authoring information – In a digital library of scientific

papers, we may create a link between two documents that have one or more authors
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in common. The intuition is that an author tend to write papers in a same topic and

the more authors two papers have in common the more is the chance that they are

related to the same topic.

2. Deriving links from Web pages content and from URLs – We suggest in-

vestigating the creation of links between documents that have two or more words in

common that co-occur frequently in documents of a a same class. Other possibility

is to link documents which are kept in a same directory of a site. These documents

tend to be associated to similar topics and can be identified by a common prefix of

their URL.

The use of artificial and explicit links together to derive bibliometric measures can be seen

as a method of combining different source of evidence, because artificial links are derived

from other sources of evidence not related to explicit links.

In summary, we suggest, as future work, some investigation on link mining in other to

enrich collections with high quality links, aiming to enhance bibliometric classifiers.

As another future work, we suggest investigations on feature selection applied to links

to be used in collections where bibliometric relations among documents exist in abundance.

We may use some feature selection technique to eliminate parent or children documents

that link to or are linked by many documents of distinct classes.
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