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Resumo

Dispositivos para aquisição e processamento de imagens podem ser encontrados em sistemas
complexos de monitoração de segurança ou simples aparelhos celulares. Em certas aplicações,
o tempo necessário para processar uma imagem não é tão importante quanto a qualidade das
imagens processadas (por exemplo, em imagens médicas), mas em alguns casos a qualidade
da imagem pode ser sacrificada em favor do tempo. Essa tese foca-se no nesse último caso,
e propõe dois tipos de métodos eficientes para o realce de contraste de imagens. Os métodos
propostos são baseados em equalização de histograma (EH), e alguns focam imagens em tons
de cinza e outros imagens coloridas.

Os métodos baseados em HE atualmente utilizados para processar imagens em tons de
cinza tendem a mudar o brilho médio da imagem para o tom médio do intervalo de tons
de cinza. Essa mudança não é desejavél em aplicações que visam melhorar o contraste em
produtos eletrônicos utilizados pelo consumidor, onde preservar o brilho da imagem original
é necessário para evitar o aparecimento de artefatos não exitentes na imagem de saída. Para
corrigir esse problema, métodos de bi-equalização de histogramas para preservação do brilho e
contraste de imagens foram propostos. Embora esses métodos preservem o brilho da imagem
original na imagem processada com um realce significante do contraste, eles podem produzir
imagens que não parecem naturais. Esse novo problema foi resolvido por uma nova tecnica
chamada Equalização de Multi-histogramas, que decompõe a imagem original em várias sub-
imagens, e aplica o método de EH clássico em cada uma delas. Essa metologia execute um
relace de contraste menos intenso, de forma que a imagem processada parece mais natural.
Essa tese propõe duas novas funções de discrepância para decomposição de imagens, originando
dois novos métodos de Multi-EH. Além disso, uma função de custo é utilizada para determinar
em quantas sub-imagens a imagem original será dividida. Experimentos mostraram que os
métodos propostos são melhores que outros EH estudados, uma vez que eles preservam o
brilho e produzem imagens com uma aparência mais natural.

Em relação aos métodos para realce de contraste em imagens coloridas, essa tese propõe um
método genérico e eficiente de EH baseado no espaço de cores RGB que preserva a tonalidade
da cor, e implementa duas instâncias desse método genérico. A primeira instanciação utiliza
os histogramas 1D R-red, G-green e B -blue para estimar um histograma 3D RGB, que é então
equalizado. A segunda instanciação, por sua vez, utiliza os histogramas 2D RG, RB, e GB.
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A EH é executada utilizando transformadas de deslocamento que preservam a tonalidade da
cor, evitando o aparecimento de cores não realistas. Os métodos propostos tem complexidade
linear no espaço e no tempo em relação ao tamanho da imagem, e não usam nenhuma con-
versão de um espaço de cores para outro. As imagens produzidas foram avaliadas subjetiva e
objetivamente, comparando os métodos propostos com outros estudados. A avaliação objetiva
foi feita utilizando medidas de contraste e de qualidade da cor da imagem, onde a qualidade foi
definida como uma função ponderada dos índices de naturalidade e coloridade. Um conjunto
de 300 imagens extraídas da base de dados da Universidade de Berkeley foram analisadas.
Os experimentos mostratam que o valor do contraste das imagens produzidas pelos métodos
propostos é em médias 50% maior que o valor do contraste na imagem original, e ao mesmo
tempo a qualidade das imagens produzidas é próxima a qualidade da imagem original.
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Abstract

Today, devices able to capture and process images can be found in complex surveillance
monitoring systems or simple mobile phones. In certain applications, the time necessary to
process the image is not as important as the quality of the processed images (e.g., medical
imaging), but in other cases the quality can be sacrificed in favour of time. This thesis focus
on the latter case, and proposes two types of fast image contrast enhancement methods.
The proposed methods are based on histogram equalization (HE), and some target gray-level
images while others target color images.

Regarding HE methods for gray-level images, current methods tend to change the mean
brightness of the image to the middle level of the gray-level range. This is not desirable in
the case of image contrast enhancement for consumer electronics products, where preserving
the input brightness of the image is required to avoid the generation of non-existing artifacts
in the output image. To surmount this disadvantage, Bi-histogram equalization methods for
brightness preserving and contrast enhancement have been proposed. Although these methods
preserve the input brightness on the output image with a significant contrast enhancement,
they may produce images which do not look as natural as the input ones. In order to overcome
this drawback, we propose a technique called Multi-HE, which consists of decomposing the
input image into several sub-images, and then applying the classical HE process to each one
of them. This methodology performs a less intensive image contrast enhancement, in a way
that the output image presents a more natural look. We propose two discrepancy functions
for image decomposing, conceiving two new Multi-HE methods. A cost function is also used
for automatically deciding in how many sub-images the input image will be decomposed on.
Experiments show that our methods are better in preserving the brightness and producing
more natural looking images than the other HE methods.

In order to deal with contrast enhancement in color images, we introduce a generic fast
hue-preserving histogram equalization method based on the RGB color space, and two in-
stantiations of the proposed generic method. The first instantiation uses R-red, G-green, and
B -blue 1D histograms to estimate a RGB 3D histogram to be equalized, whereas the second
instantiation uses RG, RB, and GB 2D histograms. The histogram equalization is performed
using shift hue-preserving transformations, avoiding the appearance of unrealistic colors. Our
methods have linear time and space complexities with respect to the image dimension, and do

iii



not need to apply conversions from a color space to another in order to perform the image con-
trast enhancement. Subjective and objective assessments comparing our methods and others
are performed using a contrast measure and a color image quality measure, where the quality
is established as a weighed function of the naturalness and colorfulness indexes. We analyze
300 images from a dataset of the University of Berkeley. Experiments show that the value
of the image contrast produced by our methods is in average 50% greater than the original
image value, keeping the quality of the produced images close to the original one.
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Résumé

Aujourd’hui, des appareils capables de capter et de traiter les images peuvent être trouvés
dans les systèmes complexes de surveillance ou de simples téléphones mobiles . Dans certaines
applications, le temps nécessaire au traitement de l’image n’est pas aussi important que la
qualité du traitement des images (par exemple, l’imagerie médicale), mais dans d’autres cas,
la qualité peut être sacrifiée au profit du temps . Cette thèse se concentre sur ce dernier cas,
et propose deux types des méthodes rapides pour l’amélioration du contraste d’image . Les
méthodes proposées sont fondées sur l’égalisation d’histogramme (EH), et certaines s’adressent
à des images en niveaux de gris, tandis que d’autres s’adressent à des images en couleur .

En ce qui concerne les méthodes EH pour des images en niveaux de gris, les méthodes
actuelles tendent à changer la luminosité moyenne de l’image de départ pour le niveau moyen de
la bande de niveau de gris . Ce n’est pas souhaitable dans le cas de l’amélioration du contraste
d’image pour les produits de l’électronique grand-public, où la préservation de la luminosité de
l’image de départ est nécessaire pour éviter la production d’artefacts non-existant dans l’image
de sortie . Pour éviter cet inconvénient, des méthodes de Bi-égalisation d’histogrammes pour
préserver la luminosité et l’amélioration du contraste ont été proposées . Bien que ces méthodes
préservent la luminosité de l’image de départ tout en améliorant fortement le contraste, elles
peuvent produire des images qui ne donnent pas une impression visuelle aussi naturelle que les
images de départ . Afin de corriger ce problème, nous proposons une technique appelée multi-
EH, qui consiste à décomposer l’image en plusieurs sous-images, et à appliquer le procédé
classique de EH à chacun d’entre eux . Cette méthode, bien qu’elle offre une amélioration du
contraste moins marquée, produit une image de sortie d’une apparence plus naturelle . Nous
proposons deux fonctions de décalage pour découpage d’histogramme, concevant ainsi deux
nouvelle méthodes de multi-EH . Une fonction de coût est également utilisé pour déterminer
automatiquement en combien de parties l’histogramme de l’image d’entrée sera décomposé
. Les expériences montrent que nos méthodes sont meilleures pour la préservation de la
luminosité et produisent des images plus naturelles que les autres méthodes de EH .

Pour améliorer le contraste dans les images en couleur, nous introduisons une méthode
générique et rapide, qui préserve la teinte. L’égalisation d’histogramme est fondée sur l’espace
couleur RGB, et nous proposons deux instanciations de la méthode générique . La première in-
stanciation utilise des histogrammes 1D R-red, G-green, et B -bleu afin d’estimer l’histogramme
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3D RGB qui doit être égalisé, alors que le deuxième instanciation utilise des histogrammes 2D

RG, RB, et GB . L’égalisation d’histogramme est effectué en utilisant des transformations de
décalage qui preserve la teinte, en évitant l’apparition de couleurs irréalistes . Nos méthodes
ont des complexités de temps et d’espace linéaire, par rapport à la taille de l’image, et n’ont
pas besoin de faire la conversion d’un espace couleur à l’autre afin de réaliser l’amélioration
du contraste de l’image . Des évaluations subjectives et objectives comparant nos méthodes
et d’autres sont effectués au moyen d’une mesure de contraste et de couleur afin de mesurer
la qualité de l’image, où la qualité est établi comme une fonction pondérée d’un indice de
“naturalité” et d’un indice de couleur . Nous analysons 300 images extraites d’un base de
données de l’Université de Berkeley . Les expériences ont montré que la valeur de contraste de
l’image produite par nos méthodes est en moyenne de 50% supérieure à la valeur de contraste
de l’image original, tout en conservant une qualité des images produites proche de celle des
images originales .
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To my father. I believe he is gardening in heaven.
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Chapter 1

Introduction

Nowadays digital cameras are certainly the most used devices to capture images. They are
everywhere, including mobile phones, personal digital assistants (PDAs - a.k.a. pocket com-
puters or palmtop computers), robots, and surveillance and home security systems. There is
no doubt that the quality of the images obtained by digital cameras, regardless of the context
in which they are used, has improved a lot since digital cameras early days. Part of these
improvements are due to the higher processing capability of the systems they are built-in and
memory availability. However, there are still a variety of problems which need to be tackled
regarding the quality of the images obtained, including:

1. contrast defects,

2. chromatic aberrations,

3. various sources of noises,

4. vignetting,

5. geometrical distortions,

6. color demosaicing and

7. focus defects.

Among the seven problems related above, some are more dependent on the quality of
the capture devices used (like 2-7), whereas others are related to the conditions in which the
image was captured (such as 1). When working on the latter, the time required to correct the
problem on contrast is a big issue. This is because the methods developed to correct these
problems can be applied to an image on a mobile phone with very low processing capability,
or on a powerful computer.

1
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Moreover, in real-time applications, the efficiency of such methods is usually favored over
the quality of the images obtained. A fast method generating images with medium enhance-
ment on image contrast is worth more than a slow method with outstanding enhancement.

With this in mind, this work proposes two types of methods based on histogram equal-
ization (HE) to enhance contrast in digital images. Although there has been a lot of re-
search in the image enhancement area for 40 years (Graham, 1962; Rosenfeld and Kak, 1976;
Wang et al., 1983; Zhu et al., 1999; Wang and Bovik, 2006), there is still a lot of room for
improvement concerning the quality of the enhanced image obtained and the time necessary
to obtain it.

HE is a histogram specification process (Zhang, 1992; Kundu, 1998; Coltuc et al., 2006)
which consists of generating an output image with a uniform histogram (i.e., uniform distribu-
tion). In image processing, the idea of equalizing a histogram is to stretch and/or redistribute
the original histogram using the entire range of discrete levels of the image, in a way that an
enhancement of image contrast is achieved. Figure 1.1 shows an illustrating example of using
HE for image contrast enhancement.

The first type of proposed methods, which deals with gray-level images, works on a multi-
HE (MHE) framework for image contrast enhancement. These MHE methods are especially
useful for applications where the brightness (i.e., the mean gray-level) of the processed im-
ages must be preserved, and real-time processing is required (e.g., digital cameras and video
surveillance systems).

On the other hand, the second type of proposed methods concentrates on color images,
and also focus the improvement of image contrast. They implement HE methods based on the
RGB color space1 (Kuehni and Schwarz, 2008) which are hue-preserving (Naik and Murthy,
2003), i.e., neither new nor unrealistic colors are produced. In other words, these methods
prevent the appearance of new and unrealistic colors in the enhanced image, and are linear
in time (with respect to the image dimension). Because this second type of method is linear
in time, it is indicated to enhance images in real-world applications, such as natural images
acquired by mobile phones and PDAs.

Remark that the first type of methods can be seen as a more elaborated version of the
existing methods for brightness preserving in gray-level image contrast enhancement through
HE. The second type of methods, in contrast, is a simplified, fast and hue-preserving color
image contrast enhancement method with respect to the proposed existing ones. The next
section describes the main motivations to use the two types of methods just described.

1The color space which is composed of R-red, G-green and B-blue color channels
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(a) (b)

(c) (d)

Figure 1.1: Illustration of HE. (a) Original image. (b) Histogram of the original image. (c)
Processed image. (d) Histogram of the processed image.

1.1 Motivation

Image enhancement methods based on improvements of contrast and avoidance of the ap-
pearance of unrealistic colors are really useful in applications where an image with more
distinguished texture details and perceptually better colors are required. As explained be-
fore, these applications include surveillance system based on images or simply better image
visualization in mobile phones and PDAs. Although there are a lot of techniques available to
perform these tasks, all of them have advantages and drawbacks.

HE is a technique commonly used for image contrast enhancement, since it is computa-
tionally fast and simple to implement. Our main motivation is to preserve the best features
the HE methods have, and introduce some modifications which will overcome the drawbacks
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associated with them.
In the case of gray-level image contrast enhancement, methods based on HE

(Castleman, 1979; Pizer et al., 1984, 1987; Zuiderveld, 1994; Ibrahim and Kong, 2007) have
been the most used. Despite its success for image contrast enhancement, this technique has
a well-known drawback: it does not preserve the brightness of the input image on the output
one. This drawback makes the use of classical HE techniques (Gonzalez and Woods, 2002)
not suitable for image contrast enhancement on consumer electronic products, such as video
surveillance, where preserving the input brightness is essential to avoid the generation of
non-existing artifacts in the output image.

To overcome such drawback, variations of the classic HE technique, such as Kim (1997);
Wang et al. (1999); Chen and Ramli (2003b), have proposed to first decompose the input im-
age into two sub-images, and then perform HE independently in each sub-image. For the
decomposition, these methods use some statistical measures of the image, which consider the
value of the image gray-levels. These methods based on Bi-HE perform image contrast en-
hancement with success while preserving the input brightness in some extend, but they might
generate images which do not look as natural as the input ones. Such result is unacceptable
for consumer electronics products.

Hence, in order to enhance contrast, preserve brightness and produce natural looking im-
ages, we propose a generic MHE method which first decomposes the input image into several
sub-images, and then applies the classical HE process to each of them. We present two discrep-
ancy functions to decompose the image, conceiving two variants of that generic MHE method
for image contrast enhancement, i.e., Minimum Within-Class Variance MHE (MWCVMHE)
and Minimum Middle Level Squared Error MHE (MMLSEMHE). A cost function, taking into
account both the discrepancy between the input and enhanced images and the number of de-
composed sub-images, is used to automatically make the decision of in how many sub-images
the input image will be decomposed on.

Regarding the color image contrast enhancement, the classical image enhancement
methods are also based on HE. The extension of these methods to color images is not straight-
forward. This is because there are some particular properties of color images which need to
be properly taken into account during image contrast enhancement.

Among these properties are the luminance (L) (or intensity (I )), saturation (S ) and hue
(H ) attributes of the color (Berns et al., 2000). Color spaces such as HSV, HSI, CIELUV
and CIELAB2 were conceived based on these three attributes (Kuehni and Schwarz, 2008).
Whereas the luminance represents the achromatic part of the color (e.g., it can be defined as
a weighted function of the R, G, and B color channels), the saturation and hue refer to the
chromatic part of the image. The saturation can be seen as measure of how much white is

2CIELUV and CIELAB are two uniform color spaces developed by the Commission Internationale de
l’Eclairage - CIE, where L stands for the luminance and A, B, U and V stand for the color channels.



1. Introduction 5

present in the color, and the hue is the attribute of the color which decides its "real color",
e.g., red or green. For the purpose of enhancing a color image, the hue should not be changed
for any pixel, avoiding output images with unnatural aspect.

However, color images in digital devices, such as mobile phones, cameras and PDAs, are
commonly transmitted, displayed and stored in the RGB color space (i.e., R-red, G-green, and
B-blue). This color space is not the most appropriated one for image processing tasks, since
the meaning of the attribute colors is not explicitly separated as it would be in other color
spaces. The conversion from the RGB color space to a Luminance-Hue-Saturation (LHS )-
based color space is trivial, but can be both not suitable for real-time applications and the
digital devices referred above. Moreover, working on a LHS -based color space requires tackling
the well-known gamut problem (Naik and Murthy, 2003).

The literature of HE methods for color image contrast enhancement presents works based
on the RGB, LHS, CIELUV and other color spaces. Both the methods based on the RGB
color space and the ones based on other color spaces do not present all the characteristics
required for use in portable devices: to be fast, improve the images contrast and still preserve
the hue. The formers because the hue is not preserving, and the latter methods due the
time required for conversions among color spaces and maybe the same reasons pointed for the
former methods. In order to achieve that, this work presents a generic fast hue-preserving HE
method based on the RGB color space for image contrast enhancement.

From the generic method we create two variants, which are characterized by the histograms
dimension they use, i.e., 1D or 2D. The equalization is performed by hue-preserving trans-
formations directly in the RGB color space, avoiding the gamut problem, keeping the hue
unchanged3 and the requirement of conversion between color spaces. Moreover, our methods
improve the image contrast (i.e., improve the variance on the luminance attribute) and, simul-
taneously, the saturation is modified according to the equalization of the RGB histogram. The
methods estimate the RGB 3D histogram to be equalized through R, G and B 1D histograms
and RG, RB, and GB 2D histograms, respectively, yielding algorithms with time and space
complexities linear with respect to the image dimension. These characteristics make these
methods suitable for real-time applications.

At this point, it is worth noticing that there are several sophisticated color image con-
trast enhancement methods available in the literature, such as Huang et al. (2006); Luft et al.
(2006). However, these methods are so computationally expensive that their use is neither
practical for real-time nor real-world applications. This is in contrast with our methods, which
are linear in time and space (regarding the image dimension).

3In Naik and Murthy (2003), it is shown that a shift transformation on the RGB color space by the same
factor in all three channels is hue-preserving
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1.2 Objectives

Given the motivations presented above, the main objectives of this work are:

1. Create MHE methods for gray-level image contrast enhancement with constraints to the
processed images: brightness preserving and natural looking.

2. Compare the methods developed for gray-level image contrast enhancement with other
HE-based methods by means of the PSNR measure, brightness preserving and contrast
enhancement.

3. Build fast hue-preserving HE methods for color image contrast enhancement.

4. Compare the methods developed for color image contrast enhancement with existent
ones using quantitative measures, such as color naturalness and colorfulness indexes
(see (Yendrikhovskij et al., 1998b,a; Hasler and Susstrunk, 2003)).

5. Implement all the proposed methods so that they have linear time complexity with
respect to the image dimension, and are suitable for real-time applications.

1.3 Contributions

Achieving the proposed objectives in the image contrast enhancement domain, the principal
contributions of this thesis are:

1. MHE methods for gray-level image contrast enhancement with constraints to the pro-
cessed images such as brightness preserving and natural looking.

2. An analysis of the impact that MHE methods have on gray-level image contrast enhance-
ment, when constraints such as brightness preserving and natural looking are imposed
to the processed images.

3. A comparison of the methods conceived for gray-level image contrast enhancement and
other HE related methods using objective measures (e.g., PSNR, brightness preserving
and contrast enhancement).

4. Fast hue-preserving image contrast enhancement methods based on the RGB color space,
suitable for real-time applications.

5. A comparison of the methods developed for color image contrast enhancement and other
HE based methods using objective measures (e.g., contrast improvement and the color
naturalness and colorfulness indexes) by using a database from the University of Berke-
ley, which is composed of 300 images.
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1.4 Organization of the Document

The remainder of this thesis is organized as follows. Chapter 2 presents a bibliography review
on methods for image contrast enhancement through histogram specification methods, where
histogram equalization which is a histogram specification is included.

Chapter 3 introduces our MHE methods for gray-level image contrast enhancement. Re-
lated work is described and definitions for presenting our methods are introduced. Then we
describe the proposed methods.

Chapter 4 shows the proposed hue-preserving HE methods to enhance color images based
on the RGB color space. Some definitions for presenting our methods are introduced and
previous works are presented as well. At the end of the chapter, we introduce our methods.

A set of experiments is reported in Chapter 5, which is divided in two parts. The first
part presents results concerning the gray-level image contrast enhancement methods proposed
in Chapter 3, whereas the second part reports results concerning the color image contrast
enhancement methods presented in Chapter 4.

Finally, Chapter 6 presents final considerations and concluding remarks. Future works and
directions are pointed as well.



Chapter 2

Histogram Specification for Image
Contrast Enhancement: An Overview

In Chapter 1, we talked about a variety of problems involving the quality of the images
obtained by standard capture devices, including problems with contrast, noise and color.
Image enhancement is a vast area of study dedicated to improve the quality of an input image,
returning an output image which is more suitable than the original image (Hanmandlu, 2006)
for simple visualization purposes or for a specific application.

Image enhancement methods and techniques have been studied for more than 40 years,
and during this time a vast number of methods were developed (Wang et al., 1983). At first,
methods were more concentrated in improving the quality of gray-level images (Hall, 1971;
Andrews et al., 1972; Hall, 1974). Later, when the acquisition of color images became more
accessible, many of these early methods were adapted to be applied to color images (Pratt,
1978; Castleman, 1979; Niblack, 1986; Jain, 1989). At the same time, methods more suitable
for color images, which were tailored to take advantage of their properties, were also developed
(Soha and Schwartz, 1978; Bockstein, 1986; Strickland et al., 1987).

In this chapter, we present a categorization of a number of methods and techniques that can
be used for contrast enhancement, and then survey one of the presented subcategories named
histogram specification transformation, which is the core of methods proposed in Chapter 3
and 4. The first attempt to categorize image enhancement methods was made by Wang et al.
(1983) in the early eighties. Wang et al. (1983) classified the methods for image enhancement
on the basis of the properties of their operators, since the image enhancement is achieved by
image processing through operators. Since 1983, the methods used for image enhancement
became much more sophisticated, but their basic structure remained the same. For this reason,
their classification scheme is still useful to have a broad view of the type of methods existent
in the literature and their characteristics. The classification was based on:

1. The operator sensitivity to the image context;

8
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2. The area of the image which the operation covers;

3. The goals of the operation;

4. The techniques involved in the image enhancement.

According to the operator sensitivity to the image context, enhancement methods can
be classified as (a) context-free and (b) context-sensitive. A context-free method provides a
position-invariant operator, in which all the parameters are fixed a priori. A context-sensitive
method, in contrast, works with a position-variant operator, in which the parameters change
in response to local image characteristics. Context-free operators are computationally simpler
to apply. However, for images with variable information content, a context-sensitive operator
is more suitable.

Regarding the area of the image covered by the operator, the existing methods can be
divided into local and global. Local operators divide the original image into sub-images (or
masks), and take one sub-image into consideration at each time. These operators can be
further subdivided into fixed-size and variable-size. For more details see Klette and Zamperoni
(1996). In a global operation, in turn, the whole image is considered at once. Computationally
speaking, the application of a local operator requires less storage space than a global operator
does.

Based on their goals, the existing methods can be grouped into (a) noise cleaning, (b)
feature enhancement, and (c) noise cleanup plus feature enhancement. The noise-cleaning
operator aims to remove random noise from the image. In other words, it disregards the
image irrelevant information. The feature-enhancement operator attempts to decrease the
blurring, and to reveal the image features of interest. These two operators deal with dif-
ferent degradation phenomena. In practice, however, many operators are a combination of
both (de A. Araújo, 1989; Mascarenhas and Velasco, 1989).

According to the techniques involved, the published methods can be organized into four
approaches. They are:

1. Frequency domain filtering, which utilizes low or/and high-pass filters in the frequency
domain.

2. Spatial smoothing, which employs linear or nonlinear spatial domain low-pass filters;

3. Edge-enhancement, which involves linear or nonlinear spatial-domain high-pass filters;

4. Radiometric scale transformation, which manipulates or re-quantizes the levels of a
channel (e.g., the gray-level image) for contrast enhancement;

The remainder of this chapter is organized as follows. Section 2.1 describes the radiometric
scale transformation, which is directly related to the work proposed in this thesis. Section 2.2
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and Section 2.3 present a detailed description of methods developed to enhance gray-level
and color images, respectively, and that use a subgroup of radiometric scale transformation:
histogram specification transformation.

For the reader interested in works based on the other techniques for image enhancement,
we recommend:

• Image Frequency Domain Filtering: (Cooley and Tukey, 1965; Singleton, 1967, 1968;
Kober, 2006; Tang, 2003; Duda and Hart, 1973; Huang, 1975; Oppenheim and Schaefer,
1975; Duda and Hart, 1973; Meylan and Süsstrunk, 2004).

• Image Spatial Smoothing: (Prewitt, 1970; Graham, 1962; Brown, 1966; Prewitt, 1970;
Kuwahara et al., 1976; Tomita and Tsuji, 1977; Tukey, 1977; Nagao and Matsuyama,
1979; de A. Araújo, 1985; Beghdadi and Le-Negrate, 1989; Anderson and Netravali,
1976; Trusell, 1977).

• Image Edge-enhancement (Prewitt, 1970; Arcese et al., 1970; Rosenfeld and Kak, 1976;
Abdou and Pratt, 1979; Gabor, 1965; Prewitt, 1970; Wallis, 1976; Lee, 1980, 1981, 1976;
Schreiber, 1990).

2.1 Radiometric Scale Transformation

Methods following the radiometric scale transformation approach propose to re-quantize or
map each pixel in the image to a new value, capable of improve the contrast of an image. Image
contrast enhancement methods which use radiometric scale transformations are very different
from those methods categorized as frequency domain filtering, spatial smoothing, and edge-
enhancement methods. This is because, in general, gray-level radiometric scale transformation
methods take into account one pixel at a time, and consider each pixel independently of
its neighbors. For this reason, we say that the operations performed by these methods are
punctual.

Thanks to this property, we can work with the histogram of the image, instead of working
with the image itself, because the transformation of any pixels with equal gray-level produce
the same output. For this reason, we say that the operations are also global.

The histogram of a gray-level image represents the frequency of occurrence of the levels in
the image – for a multi-valued image case, e.g., a color image, we have uni- and multi-dimension
histograms. Through a histogram analysis, it is possible to extract some interesting image
global features, such as the mode (i.e., the most frequent level) and the distribution of levels.

Radiometric scale transformation methods are mainly used in two situations: 1) When
the gray-levels (or the luminance in the case of color images) of the objects in the images are
so close to the ones of the background that it is difficult to discriminate them; 2) When the
gray-levels of a large percentage of pixels concentrate in a narrow portion of the histogram,
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making the the image fine details hardly visible. In the former case, contrast enhancement
is needed to increase the gray-level differences between the objects and the background. In
the latter case, re-quantization or re-scaling is required to increase the dynamic range and to
single out hidden fine structures.

The methods presented in this section can work under a variety of frameworks, per-
forming linear and/or non-linear histogram transformations. These histogram transfor-
mations include stretching the histogram (Woods and Gonzalez, 1981), using level slic-
ing (Woods and Gonzalez, 1981), applying gamma function corrections (Gonzalez and Woods,
2002), using histogram equalization (Hall, 1974) and, finally, histogram hyperbolization (Frei,
1977).

In the case of histogram stretching, three basic kinds of stretches can be performed: (1)
stretch the dark areas and compress the bright areas; (2) stretch the bright areas and com-
press the dark areas; (3) stretch the mid-range levels and compress the extreme levels of the
histogram of the image.

Concerning level slicing, it is a technique where the histogram of an image is divided into
"sliced" intervals. These sliced intervals are put together in only one, i.e., the total dynamic
range of the output image. This technique is commonly used for visualization purposes, such
as on remote sensing applications (Lillesand and Kiefer, 1994), where the image naturalness
is disregarded.

Gamma functions corrections consist of applying non-linear functions, which usually follow
a power-law expression of the type O = Iγ (Gonzalez and Woods, 2002; Serra, 2005), to the
image histogram. I and O are the input and output images, respectively, and are composed
by non-negative real values, typically in a predetermined range, such as 0 to 1. If γ < 1,
we have what is called gamma compression. If γ > 1, we have a gamma expansion. These
gamma functions corrections are very easy to implement, and usually yield satisfactory results.
However, trial and error is needed to obtain the best results. In many cases, the investigator
has to provide his own mapping functions.

Histogram equalization takes advantage of the fact that the gray-level histograms of most
images (or the luminance histograms of color images), in general, show bright or dark peaks.
These peaks represent a large dark or a large bright area in the image, and may contain infor-
mation regarding fine details of the image. To enhance these areas, a method called histogram
equalization (or linearization) was proposed. This method maps the observed gray-level values
of the image into new gray-level values (or similarly the observed luminance levels of color
image to new levels), in a way that the new image presents a uniform gray-level histogram.
This is interesting because, according to the perception performed by the rods and cones of the
human retina, the image perceived by humans have a uniform histogram (Wyszecki and Stiles,
1967).

On the other hand, another study about human vision pointed out that the human percep-
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tion performs a non-linear transformation of the light intensity (Frei, 1977). To include this
characteristics of human perception into image contrast enhancement techniques, histogram
hyperbolization was proposed (Pratt, 1978; Frei, 1977). In this framework, the desired his-
togram of the computer enhanced image has a hyperbolic form, and can be exponential, a
cubic root or a logarithm.

The methods based on histogram equalization and hyperbolization are also called his-
togram specification methods, since an output histogram shape is specified a priori. In fact,
in the literature, there is a confusion between the terms histogram modification and specifi-
cation, which are in essence histogram transformations.

The methods proposed in this thesis follow the histogram specification transformation
or, more specifically, the histogram equalization framework presented in this section. As we
propose two different types of methods, one for gray-level and another for color images, the
next sections present, with some more level of detail, previous methods in the literature for
contrast enhancement purposes following the histogram specification transformation approach.

2.2 Histogram Specification for Contrast Enhancement of
Gray-level Images

The first histogram equalization methods for image contrast enhancement were proposed in
the early’s seventies (Hall, 1974; Andrews et al., 1972). They were based on the principle that
the visual contrast of a digitized image can be improved by adjusting its range of gray-level,
so that the histogram of the output image is flat, i.e., a uniform density can be specified
from the output histogram. This idea of flattening the image histogram comes from the
information theory, which states that the entropy of a signal is maximized when it has a
uniform distribution property (Wang et al., 1999).

Since then, histogram specification has been widely used for contrast enhancement in a
variety of applications, such as medical image processing and radar signal processing, due to its
simple function and effectiveness. Many variations of the standard method were implemented,
changing the way the density function is calculated, the density or distribution function to
be specified (e.g., a uniform, an exponential), the size of the image being processed each time
(e.g., local and adaptive methods),etc., as we will show in this section.

However, many of the proposed methods present one drawback: the brightness of the
processed image can be changed after the equalization is performed. This problem appears
mainly due to the flattening property of the histogram equalization, and makes it rarely
utilized in consumer electronic products such as TV, camcorders, video door phones, security
video cameras. This is because, for consumer electronics preserving the original brightness of
the image may be necessary in order not to introduce unnecessary visual deterioration. This
section is divided in two parts. The first part introduces a variety of methods which do not
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preserve the brightness of the processed image, while the second describes some methods that
do preserve it. This thesis is more focused on this second type of methods, as will be later
showed in Chapter 3.

2.2.1 Non-brightness Preserving Histogram Specification Methods

This section describes a set of methods which perform histogram equalization without worrying
about preserving the brightness of the processed image. We start with the work of Hummel
(1975), which showed that histogram equalization can be accomplished quite simply by using
a look-up table, which is applied to every point of the image. The transformation which comes
closer of providing a uniform density can be obtained from a scaled version of the cumulative
density function, i.e., the integral of the normalized original histogram. If we require this
transformation to be single valued, then gray-level bins of the original histogram can only
be merged together, but not broken up. Thus, if the original image has a histogram with
large peaks, the transformed histogram will have only a very approximately flat histogram.
Nonetheless, contrast is improved because gray-level bins with large numbers of points are
moved further apart, increasing the discriminability between the corresponding constant gray-
level sets. In Hummel (1977), several techniques were proposed to obtain an exact equalized
histogram, i.e., an histogram with an exact uniform density. To achieve that, a multiple-
valued transformation was defined, i.e., different pixels with the same gray-level value have
different output gray-levels.

In Kim et al. (1999), image contrast enhancement methods based on the piecewise-linear
approximation of the cumulative density function (CDF) of the image were proposed. They
actually they proposed to approximate the computation of the CDF of an image. This approx-
imate CDF makes methods based on HE faster, and more suitable for real-time applications.
Experiments showed the accuracy of the approximated CDF with respect to the original one,
and that the approach to approximate the CDF is effective.

In Williams et al. (2001), a modified cosine function and semi-histogram equalization was
proposed for contrast enhancement of gray-level images, and an extension of this methodology
is suggested to color images by equalizing the three channels (R, G and B) separately. We
believe this method has several practical drawbacks, such as the dependency of the image
dimension.

The methods just described dealt with the problem of improving global contrast, and
were conceived to solve problems such as improper lightning conditions (excessive, poor, etc.)
in the environment. On the other hand, local contrast enhancement methods, which target
the visibility of local details in the image, were also proposed. Within this scope, adaptive
histogram equalization (AHE) methods (Pizer et al., 1984) are the most well-known.

AHE works by finding local mappings from a pixel to its equalized version using local
histograms. In its basic form, the AHE method consists of performing an histogram equal-
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ization at each pixel of the image, based on its pixel neighborhood (its contextual region).
An evaluation of the effectiveness of AHE for contrast enhancement in clinical computed to-
mography (CT) images of the chest is shown in Zimmerman et al. (1988). Although AHE
improves contrast locally, its computational complexity may not be acceptable for real-time
applications. Another disadvantage of the AHE methods is that they often over-enhance the
image, creating the so called contrast objects. Contrast objects are objects which were not
visible in the original image. AHE can also be used to enhance noise in relatively homoge-
neous regions (Pizer et al., 1987). However, image contrast enhancement by AHE methods
often does not look natural (Stark, 2000), and also amplifies noise.

To overcome the noise amplification drawback, a contrast limited AHE (CLAHE) method
was proposed in Pizer et al. (1990). The noise problem associated with AHE can be reduced
by limiting the contrast enhancement specifically to the homogeneous areas of the images.
These areas are characterized by a high peak in the histogram associated with the contextual
regions, since many pixels fall inside the same gray-level range. A complete description and a
implementation of this new method for real-time were presented in Zuiderveld (1994) and Reza
(2004), respectively. A wavelet-multi-scale version of CLAHE was also proposed in Jin et al.
(2001), and applied to improve the contrast of chest CT images.

Aiming to reduce the high number of operations required by the AHE method, which
makes its exact and original conceived forms not suitable for real time applications, various
methods have been proposed in the last decade. For instance, in non-overlapped sub-block HE
methods, the image plane is divided into a number of sub-regions, and the pixels belonging to
a particular sub-region are equalized using the local histogram of the sub-region itself (Jain,
1989; Gonzalez and Woods, 2002). In Kim et al. (1998), a system for enhancing contrast of
image sequences using a spatially adaptive histogram equalization with temporal filtering was
proposed. A local enhancement is performed by block-overlapped histogram equalization,
followed by an efficient temporal filtering method for suppressing over-amplified noise. This
local result is combined with the original image (a global result) to obtain the enhanced image.
The authors claim that this system is practical for real-time applications. In Kim et al. (2001),
an alternative strategy was proposed, relying on partially overlapped sub-block HE (POSHE),
and it achieves contrast enhancement rates similar to that of AHE, but at the same time it
is capable of maintaining a fine visual quality to the image, by getting rid of the blocking
effect. Recently, in Lamberti et al. (2006), a contrast enhancement algorithm which exploits
efficient filtering techniques based on cascaded multiple-step binomial smoothing masks HE
(CMBFHE) was also introduced, and achieved exactly the same results as POSHE.

A combination of adaptive contrast enhancement algorithm (Beghdadi and Le-Negrate,
1989) and adaptive neighborhood histogram equalization (Paranjape et al., 1992) was pro-
posed in Mukherjee and Chatterji (1995), and called adaptive neighborhood extended contrast
enhancement. Besides the combination of techniques, the innovation in this method is that it
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defines contextual regions in which it carries out local contrast enhancement. Although this
method achieves good results, it requires three parameters to be setup in order to define the
contextual region.

A variation of CLAHE method was presented in Zhu et al. (1999), which is named contrast
local HE (CLHE). First, the HE process is introduced in a variational framework, where the
HE process is viewed as an optimization problem. Then, this framework is extended to a local
HE (LHE) directly, and a smoothness constraint term is introduced into the optimization
function so that the enhancement result is a balance of the enhancement of details of interest
and the maintenance of the original image appearance. Results on common and X-ray images
are presented comparing this method with global HE, and LHE or AHE. Although this new
method outperform the previous ones regarding the contrast of yielded images, unrealistic
images are produced.

In Chang and Wu (1998), another adaptive contrast enhancement algorithm, but this time
based on local standard deviation (LSD) distribution was proposed. The innovation of this
method consists of using nonlinear functions with local standard deviation to weight it. Once
the LSD distribution is estimated, the desired histogram can be specified and the enhance-
ment performed. Note that this method is a histogram transformation one. Experiments
were carried out on chest X-ray images, and showed that this method adequately enhances
details, and produces little noise over-enhancement and few ringing artifacts. The method
also outperforms the ones it was compared with. However, three parameters are set to fit the
nonlinear local standard deviation model.

In Stark (2000), a scheme for adaptive image contrast enhancement based on a general-
ization of the equalized histogram was proposed. In particular, he studied the definition of
cumulative density functions, which are used to generate the gray-level mapping from the local
histogram. By choosing alternative forms of cumulative density function, one can achieve a
wide variety of effects. A signed power-law with local-mean replacement form is proposed,
and is dependent on two parameters. Through the variation of these parameters, the method
can produce a range of degrees of contrast enhancement, from leaving the image unchanged
to yielding full adaptive equalization.

In Ni et al. (1997), a prototype of a system for image contrast enhancement through his-
togram equalization which uses an adaptive image sensor in situ was introduced. This image
sensor can automatically adapt to different lighting conditions without frame delay, and pro-
vides a constant image signal excursion range. Although some critical problems, such as frame
rate, fixed pattern noise, etc., remain opened and need further investigation and experimen-
tation, this sensor has shown very encouraging results. A CMOS1 prototype chip of 64 × 64
is showed.

1CMOS - complementary metal oxide semi-conductor
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2.2.2 Brightness Preserving Histogram Specification Methods

Different from the methods presented in the previous section, this section presents a set of
works which aim at improving contrast while preserving the brightness of the image.

We firstly present the bi-histogram equalization methods for image contrast enhancement
with brightness preserving proposed by Kim (1997); Wang et al. (1999); Chen and Ramli
(2003b). All these methods decompose the original image into two sub-image by using statis-
tical properties of the image, such as the mean gray-level value (Kim, 1997), the level which
separates the histogram of the image in equal areas (Wang et al., 1999) and the level which
yields the minimum brightness changing in the output image (Chen and Ramli, 2003b). Once
the image is decomposed, each sub-image histogram is equalized to produce the output im-
age. It is mathematically shown that these methods keep the brightness of the output image
near to the input one. An extension of Kim (1997)’s work was proposed in Chen and Ramli
(2003a). This last method proposes to recursively decompose the image into sub-images by
using its mean gray-level value, yielding a scalable brightness preservation controlled. All
these methods will be detailed in Section 3.2, since they are directly related with this thesis.

In Wang and Ye (2005), an elegant and sophisticated variational framework for image
contrast enhancement brightness preserving with maximum entropy was introduced. Although
the authors claim that their method is a histogram equalization one, it is, in fact, a histogram
specification of an entropy distribution. Numerical results achieved by this method, i.e.,
the entropy and brightness of the output images, are similar to the ones of Chen and Ramli
(2003b)’s method.

2.3 Histogram Specification for Contrast Enhancement of
Color Images

This section presents a number of methods for contrast enhancement in color images. In some
cases, such as images from mobile phones and digital cameras preserving the hue is essential.
In others preserving perceptual attributes is sometimes less important than obtaining the
greatest possible color contrast improvement (Mlsna and Rodriguez, 1995) (this is especially
true for color composites derived from multi-spectral images such as remote sensing images,
which have no significant basis in human perception). These methods can be roughly divided
into two classes: non hue-preserving and hue-preserving methods. Section 2.3.1 presents non-
hue-preserving methods, while Section 2.3.2 presents hue-preserving ones.

2.3.1 Non-Hue-Preserving Histogram Specification Methods

This section describes histogram specification methods for color images which do not preserve
the hue attribute of the color. We start by describing the work of Soha and Schwartz (1978).
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They proposed a multi-spectral histogram normalization for effective contrast enhancement in
color image by stretching the original RGB (Kuehni and Schwarz, 2008) components along the
principal component axis, in order to equalize the variance of all components (i.e., channels).
This method de-correlates the color channels, and does not take into account perceptual fea-
tures of the color space. Hence, unrealistic colors may be produced. Either linear or non-linear
contrast stretching can be used. If a Gaussian stretch is applied, a symmetrical multidimen-
sional Gaussian histogram is produced. This method implicitly offers a favorable feature,
because it offers the opportunity to apply smoothing (low pass filtering) to the low order
(poorer signal to noise ratio) principal components, and/or edge sharpening (high frequency
boost filtering) to the higher order components, prior to performing the inverse rotation.

In turn, the method proposed in Niblack (1986) stretches iteratively three 2D histograms
on the RGB color space, i.e., RG, GB, BR. For the three 2D histograms (RG, GB, BR), the
following steps are performed iteratively: (1) In RG, stretch the g values for each r value; (2) In
GB, stretch the b values for each g value; (3) In BR, stretch the r values for each b value. This
method causes distortion in the color space and it is not hue-preserving (Naik and Murthy,
2003).

In Trahanias and Venetsanopoulos (1992), a direct 3D histogram equalization method
for color image contrast enhancement based on the RGB color system was proposed. This
method produces images that are over-enhanced, i.e., the colors are well saturated. However,
it is indicated to multi-valued images (or color images) where the channels are well correlated,
such as in satellite images. This method has ©(L3) time complexity which does not allow its
implementation for real-time application. This method is described in details in Chapter 4,
Section 4.2, because it is directly related to our proposed method for enhancing the contrast
of color images.

In Pitas and Kiniklis (1996), two histogram equalization methods based on the RGB and
HSI color spaces for color image contrast enhancement were proposed. In the first algo-
rithm, a 3D histogram based on RGB color space is equalized following its joint probability
density function in the RGB cube. This algorithm and the Trahanias and Venetsanopoulos
(1992)’s method differ in the way the output RGB histogram is obtained, i.e., the manner
which output function transformation is computed. Furthermore, the first algorithm proposed
by Pitas and Kiniklis (1996) has ©(L3) time complexity. To reduce this complexity, a paral-
lel algorithm was proposed for color image histogram calculation and equalization, scanning
the image L times, where L is the number of discrete levels for each component R, G and
B (typically L = 256). In the second algorithm, a 2D histogram to be equalized, built from
the combination of saturation and intensity channels of HSI color space, is specified following
rules based on both saturation and intensity thresholds. Note that this later algorithm is hue-
preserving, i.e., the saturation and the intensity (or the luminance) channels are enhanced
and the hue is left unchanged, but is described in this section because it is an extension of the
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non-hue-preserving method initially proposed.
Chitwong et al. (2000) presented an interesting method for color image contrast enhance-

ment based on region segmentation histogram equalization. The method proposes to initially
divide the image into small areas using the principles of graph theory, since the graph theory
gives high accurate boundaries for regions. The method is applied to multi-spectral satellite
imagery by assigning the colors red, green and blue to three different spectral images. When
compared to the traditional histogram equalization method, the proposed method clearly
outperforms the latter one when a subjective visual assessment is carried out.

In Pichon et al. (2003), a histogram equalization method which takes into account color
channels correlations through mesh deformation, which always generates almost (i.e., discrete)
uniform color histograms, is proposed. This algorithm makes an optimal use of the RGB
color space, and it is appropriated for scientific visualization, but not for image enhancement,
because it does not preserve the image natural features.

2.3.2 Hue-Preserving Histogram Specification Methods

This section describes hue-preserving contrast enhancement methods. The most common way
to preserve the hue attribute when working with histogram specification is to convert the
image from its original color space (e.g., RGB) to another one, such as LHS, HSI, HSV -
color spaces based on luminance (L - or intensity (I )), saturation (S )and hue (H )attributes,
YIQ, etc. After that the histogram specification is applied to the luminance and/or saturation
components, keeping the hue unchanged.

In Bockstein (1986), a histogram equalization method based on luminance, saturation, and
hue (LHS ) color space (Kuehni and Schwarz, 2008) was proposed. The equalization is applied
to the luminance (L) and the saturation (S ) histograms for the smaller regions, while the hue
value (H ) is preserved.

In Yang and Rodriguez (1995), a scaling and a shifting operator to be directly applied to
the RGB color space while preserving the properties of LHS and YIQ color spaces was pro-
posed. After some analysis, the authors concluded that scaling transformations in luminance
preserves the hue and the saturation of the LHS color space. However, in the YIQ color
space, only the hue is preserved. In contrast, shifting transformations in luminance preserve
the hue and saturation of the YIQ color space, whilst only the hue is preserved in the LHS
color space.

Weeks et al. (1995) proposed a method which modifies the saturation and intensity com-
ponents of C-Y color space2 (Kuehni and Schwarz, 2008). This algorithm partitions the whole
C-Y color space into n×k number of subspaces, where n and k are the number of partition in

2The C-Y color space (also called color difference space), composed of luminance (Y ) and chromatic
information (R-Y ) and (B-Y ), is implemented as a linear combination of R, G and B channels of the RGB
color space. This space is the same as the YIQ one rotated by 33 degrees (Martin, 1962).
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the luminance and saturation components, respectively. Saturation is equalized once for each
of these n × k subspaces, within the maximum realizable saturation of the subspace. Later,
the luminance component is also equalized, but considering the whole image. To take care
of the R, G and B values exceeding the bounds, Weeks et al. (1995) suggested to normalize
(i.e., clipping) each component using (255)/(max(R, G,B)).

In Mlsna and Rodriguez (1995), a multivariate contrast enhancement method named "his-
togram explosion" was proposed. This method aims to explode the RGB histogram, i.e.,
stretch the histogram to its maximum, such that the maximum contrast enhancement can be
obtained. The proposed method is indicated to remote sensing imagery, and it can be hue-
preserving if the parameters which model the histogram explosion are chosen properly. This
method is able to explode nearly the full extent of the RGB gamut without clipping, and it is
later extended to the CIELUV space (Mlsna et al., 1996). The same authors later proposed
a recursive algorithm for 3D histogram enhancement scheme for color images (Zhang et al.,
1996).

Duan and Qiu (2004) proposed a novel histogram processing method for color image con-
trast enhancement. This method proposes to produce a good balancing between histogram
equalization (contrast enhancement) and the maintenance of the image original pixel distri-
bution (to be faithful to the original image visual appearances). Because of its characteristics,
it is expected to produce realistic and good-looking pictures. In this method, only the satu-
ration component is enhanced, and it works as follows. The HSI color space is divided into A

(a = 1, ..., A) hue regions, and each one of these hue regions are divided into B (b = 1, ..., B) lu-
minance regions. For each one of these resulted (a, b) hue-luminance regions, a one-million high
resolution saturation histogram is constructed. The method uses a single parameter to control
the degree of contrast enhancement, and this parameter is used to recursively divide each one
of these hue-luminance images high-dimensional histograms of the range [0, Satmax(a, b)] into
K (k = 1, ..., K) intervals, where Satmax(a, b) is the maximum saturation value of the (a, b)
hue-luminance region. After the division, the saturations falling into the k-th interval are
grouped together, and represented by the same saturation value k × Satmax(a, b)/K. Then
the processed HSI values are converted back to RGB values, and if necessary a clipping or
scaling process is performed. Results showed the effectiveness of this method when compared
with other previous works in literature, since it improves the contrast and colorfulness of the
original image without introducing artifacts, which is caused by traditional equalization pro-
cesses. Nevertheless, this method is not suitable for real-time applications, since to process a
half-million image pixels it takes about one minute in a 2GHz CPU PC.

The luminance quantization error can be significantly magnified by the transforma-
tion function, leading to distortion in the processed image a.k.a. the gamut prob-
lem (Naik and Murthy, 2003). To decrease the gamut problem, Rodriguez and Yang (1995)
proposed the use of high-resolution histograms when transforming the image from the RGB
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color space to another one, such as the YIQ color space3 (Kuehni and Schwarz, 2008). Ex-
perimental results with histogram equalization showed that the use of a higher resolution
histogram of the YIQ color space luminance leads to reduced distortion, as well as a "flatter"
output histogram of the enhanced image.

In Naik and Murthy (2003), a technique to avoid the gamut problem for image processing
was formalized. A generalization of linear and nonlinear gray-level contrast enhancement
functions to color images is presented as well.

2.4 Conclusions

In this chapter, we presented an overview on image contrast enhancement. In especial, we
surveyed histogram specification methods for image contrast enhancement, since they are the
core of the method proposed in this work.

In the next chapter, we present our gray-level multi-histogram equalization methods for
image contrast enhancement.

3YIQ is the color space used by the NTSC color TV system, employed mainly in North and Central
America, and Japan. The Y component represents the luminance information (i.e., the luminance), and is the
only component used by black-and-white television receivers - the achromatic part of the signal, whereas I and
Q stands for in-phase and quadrature, respectively, referring to the components used in quadrature amplitude
modulation, which represent the chrominance information.



Chapter 3

Multi-Histogram Equalization
Methods for Gray-Level Images

Histogram equalization is a technique commonly used for image contrast enhancement. It
works by redistributing the gray-levels of the input image by using its cumulative density
function. Despite its success, this technique has a well-known drawback: it does not preserve
the brightness of the input image in the output image. To overcome such drawback, methods
based on this technique have proposed to decompose the original image into two sub-images,
and then perform the histogram equalization in each sub-image. These methods decompose the
original image by using statistical properties, such as the mean gray-level value (Kim, 1997),
the equal-area value (Wang et al., 1999) or the level which yields the minimum brightness
error between the original and the enhanced images (Chen and Ramli, 2003b).

Although these methods preserve the input brightness in the output image with a sig-
nificant contrast enhancement, they may produce images which do not look as natural as
the input ones. In order to enhance contrast, preserve brightness and still produce natural
looking images, this chapter presents a novel technique called multi-histogram equalization,
which consists of decomposing the input image into several sub-images, and then applying the
classical histogram equalization process to each one of them.

We propose to decompose the image by using two discrepancy functions, conceiving two
multi-histogram equalization methods for image contrast enhancement. These discrepancy
functions were borrowed from the multithresholding literature (Otsu, 1979; Sezgin and Sankur,
2004; Luessi et al., 2006). A cost function, which takes into account both the discrepancy
between the input and enhanced images and the number of decomposed sub-images, is used
to automatically decide in how many sub-images the input image will be decomposed on.

Note that several histogram equalization methods proposed in the literature are suitable
for real-time applications, because they are quite simple. Our proposed methods, even more
sophisticated in the decomposition process of the original image than the others, remain fast
and suitable for real-time applications.

21
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The remainder of this chapter is organized as follows. As the proposed methods use many
concepts previously introduced in the literature, Section 3.1 presents some basic definitions
regarding the gray-level images, which will be referred to throughout this chapter. Section 3.2
describes some previous works in histogram equalization, which are closely related to our
proposed methods. The proposed multi-histogram equalization methods are introduced in
Section 3.3. Finally, conclusions are drawn in Section 3.4.

3.1 Basic Definitions

In this section, we present some basic definitions for monochromatic image and their proba-
bility functions, which will be used throughout this chapter.

Definition 3.1 (Image) Let N and Z denote the set of natural and integer numbers, respec-
tively. Let Xmn be a subset of points (x, y) ∈ N2, such that 0 ≤ x < m, and 0 ≤ y < n, where
m and n denote the dimensions of Xmn. Let ||Y || denote the the cardinality of a set Y ⊆ N2.
Note that ||Xmn|| = m × n. A mapping I, from Xmn to ZL, where ZL = {0, ..., L − 1}, is
called a (monochromatic) image. In applications, L is typically 256.

Definition 3.2 (Level) For a point (x, y) ∈ Xmn, l = I(x, y) is called the level of the point
(x, y) in I.

Definition 3.3 (Sub-Image) Let ls and lf be levels of the image I, where 0 ≤ ls ≤ lf < L.
Let I[ls, lf ] ⊆ I be composed by all mappings from points (x, y) ∈ Xmn to {ls, ls+1, ..., lf−1, lf},
i.e.,

I[ls, lf ] = {(x, y) → I(x, y)|ls ≤ I(x, y) ≤ lf , ∀(x, y) ∈ Xmn}. (3.1)

The sub-mapping I[ls, lf ] defines a ( sub-)image of I.

The definition above was presented to facilitate the definition of a sub-histogram and
its probability functions, which are necessary for the definition of bi- and multi-histogram
equalization methods. In the following, when the boundaries [ls, lf ] of the image I are omitted,
they are assumed to be [0, L− 1].

Definition 3.4 (Histogram) Let Xmn
l be a subset of Xmn, such that for all (x, y) ∈ Xmn

l ⊆
Xmn, we have I(x, y) = l. Let HI

l be the absolute frequency of the level l in the image I,
where 0 ≤ l ≤ L− 1, i.e., HI

l = ||Xmn
l ||. Note that HI

l = 0 if there is no (x, y) ∈ Xmn where
I(x, y) = l. The mapping HI from the levels of the image I to their absolute frequency levels,
i.e., HI : ZL → N, is called the histogram of the image I. Note that

∑L−1
i=0 HI

i = m× n. Also
note that HI

l = H
I[ls,lf ]
l , with 0 ≤ ls ≤ l ≤ lf < L.
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Definition 3.5 (Probability Density Function) Let P
I[ls,lf ]
l be the relative frequency (or

the probability) of the level l in the (sub-)image I[ls, lf ], i.e.,

P
I[ls,lf ]
l =

HI
l∑lf

i=ls
HI

i

, (3.2)

where 0 ≤ ls ≤ l ≤ lf ≤ L− 1. Note that
∑lf

i=ls
P

I[ls,lf ]
i = 1.

The function P I[ls,lf ], which is composed by all P
I[ls,lf ]
l , is the probability density function

of the image I[ls, lf ].

Definition 3.6 (Probability Distribution Function) Let C
I[ls,lf ]
l be the probability dis-

tribution (or the cumulative probability density) of the level l in the image I[ls, lf ], i.e.,

C
I[ls,lf ]
l =

1
∑lf

i=ls
HI

i

l∑

i=ls

HI
i =

l∑

i=ls

P
I[ls,lf ]
i , (3.3)

where 0 ≤ ls ≤ l ≤ lf ≤ L− 1. Note that C
I[ls,lf ]
lf

= 1.

The function CI[ls,lf ] composed by all C
I[ls,lf ]
l is the probability distribution function (or

the cumulative probability density function) of the image I[ls, lf ].

Definition 3.7 (Brightness) Let I[ls, lf ] be a sub-image of I. We define the mean (or the
brightness) of the image I[ls, lf ] as:

lm(I[ls, lf ]) =

∑lf
l=ls

l ×HI
l∑lf

l=ls
HI

l

=
lf∑

l=ls

l × P
I[ls,lf ]
l . (3.4)

Definition 3.8 (Contrast) Let I[ls, lf ] be a sub-image of I. We define the standard devia-
tion (or the contrast) of the image I[ls, lf ] as:

lσ(I[ls, lf ]) =

√√√√
∑lf

l=ls
(l − lm(I[ls, lf ]))2 ×HI

l∑lf
l=ls

HI
l

=

√√√√√
lf∑

l=ls

(l − lm(I[ls, lf ]))2 × P
I[ls,lf ]
l . (3.5)

Note that this definition of image contrast (standard deviation) is a global one. There are
other definitions of contrast based on local properties of the image, e.g., neighbor points in
the image (Huang et al., 2005).

3.2 Related Work

This section describes some previous work which make use of the histogram equalization
method with the purpose of brightness preserving.
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We start by describing the classical histogram equalization (CHE) method in Sec-
tion 3.2.1. We then present four other methods which are extensions of the CHE, namely
BBHE (Kim, 1997), DSIHE (Wang et al., 1999), MMBEBHE (Chen and Ramli, 2003b) and
RMSHE (Chen and Ramli, 2003a), which will be later described in this section. These four
extensions of the CHE method have one main point in common: they decompose the original
image into two or more sub-images, and then equalize the histograms of these sub-images
independently. In contrast, the major difference among these methods is the criteria they use
to decompose the input image into two or more sub-images.

The first method, described in Section 3.2.2, divides the input image in two by using the
mean gray-level value. An extension of this method, which recursively segments the original
image, is later described in Section 3.2.5. Section 3.2.3 presents a method which uses the equal-
area value to segment the images, whereas the method described in Section 3.2.4 segments
images by taking into account the level which yields the minimum brightness error between
the input and the enhanced images. Section 3.2.6 presents some final remarks.

Note that, for all the methods described in this section, I and O denote the input (or
the original) and the output (or the processed) images, respectively. Both I and O have
boundaries which will be denoted by [ls, lf ], instead of [0, L− 1], as previously introduced in
Section 3.1. We chose to use this definition because it is more general and, therefore, can be
used by other methods which will be presented in this chapter.

3.2.1 Classical Histogram Equalization Method (CHE)

This section describes the classical histogram equalization (CHE) method for monochromatic
images (e.g., gray-level ones) in detail, since this method is the core of the methods presented
in this chapter. The CHE method for monochromatic images works as follows.

Let the boundaries of the images I and O, represented by [ls, lf ], be set as [0, L − 1].
Also, let HI[ls,lf ] (the image histogram), P I[ls,lf ] (the image probability density function) and
CI[ls,lf ] (the image probability distribution function) be defined as in Section 3.1. Let HO[ls,lf ]

be the uniform histogram of the output image, where any level l, with 0 ≤ ls ≤ l ≤ lf ≤ L−1,
has the same amount of pixels, i.e.,

H
O[ls,lf ]
l =

1
lf − ls + 1

lf∑

l=ls

H
I[ls,lf ]
l , (3.6)

or the same density (probability), i.e.,

P
O[ls,lf ]
l =

1
lf − ls + 1

. (3.7)
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The cumulative density function CO[ls,lf ] is defined in function of l as:

C
O[ls,lf ]
l =

1
∑lf

i=ls
H

I[ls,lf ]
i

l∑

i=ls

H
I[ls,lf ]
i =

l∑

i=ls

P
I[ls,lf ]
i =

i− ls + 1
(lf − ls + 1)

. (3.8)

The l′ output level corresponding to the input level l is obtained as the one that minimizes
the difference between C

O[ls,lf ]
l′ and C

I[ls,lf ]
l . In other words, the output level l′ for the input

level l can be computed as the transformation function T I[ls,lf ](l), i.e.,

l′ = T I[ls,lf ](l) = ls +
〈
(lf − ls)× C

I[ls,lf ]
l

〉
, (3.9)

where 〈z〉 stands for the nearest integer to z ∈ R.
To generate the enhanced output image O[ls, lf ] using this transformation, for any pixel

(x, y) ∈ Xmn, we obtain its respective output level O[ls, lf ](x, y) as l′ = T I[ls,lf ](l), where
l = I(x, y), i.e.,

O[ls, lf ] = {O(x, y) = l′|l = I(x, y), l′ = T I[ls,lf ](l), ∀(x, y) ∈ Xmn}. (3.10)

The high performance of the HE in enhancing the contrast of an image is a consequence of
the dynamic range expansion of the gray-level image domain. That is, theoretically the output
image enhanced by a HE method uses all the gray-levels in the image domain, i.e., from 0
up to L − 1. Besides, the CHE tries to produce an output image with a flatten histogram,
i.e., a uniform distribution. Based on information theory, the entropy of a message source
will get the maximum value when the message has uniform distribution (Wang et al., 1999).
This means that an enhanced image by the CHE method has the maximum information (i.e.,
entropy) with respect to its original one. However, the CHE method barely satisfies the
uniform distribution property in images with discrete gray-level domains.

Despite the advantages offered by the CHE method, it can introduce a significant change
in the image brightness, i.e., its mean gray-level. That is, thanks to the uniform distribution
specification of the output histogram, the CHE method shift the brightness of the output
image to the middle gray-level, i.e., L/2. This change in brightness is not desirable when
applying the CHE scheme into consumer electronics devices, for instance, TV, camcorders,
digital cameras and video surveillance. This is because it may introduce unnecessary visual
deterioration to the output image.

3.2.2 Brightness Bi-Histogram Equalization Method (BBHE)

In order to overcome the drawback introduced by the CHE method described in the previous
subsection, a brightness preserving bi-histogram equalization (BBHE) method was proposed
in Kim (1997). The essence of the BBHE method is to decompose the original image into two
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sub-images, by using the image mean gray-level, and then apply the CHE method over each
of the sub-images.

Formalizing what we just explained, the input image I is decomposed into two sub-images
based on its mean level lm(I), i.e.,

I = I[0, blm(I)c] ∪ I[blm(I)c+ 1, L− 1], (3.11)

where bzc stands for the greatest integer not greater than or equal to z (i.e., floor function).
Note that in this method description, and in the next ones, the boundaries of the images I

and O and their sub-images, will be represented by [ls, lf ], where 0 ≤ ls ≤ lf < L and will be
indicated in the equation, e.g., I[ls, lf ] or O[ls, lf ].

Each of these decomposed sub-images I[0, blm(I)c] and I[blm(I)c+1, L−1] then have their
histograms equalized independently using Equation 3.10. The composition of the resulting
processed sub-images constitutes the output image of the BBHE method, i.e.,

O = O[0, blm(I)c] ∪O[blm(I)c+ 1, L− 1]. (3.12)

In Kim (1997), it is mathematically shown that the BBHE method produces an output
image with the value of the brightness (the mean gray-level) located in the middle of the mean
of the input image and the middle gray-level, i.e.,

lm(O) =
1
2
(lm(I) + L/2). (3.13)

Notice that the output mean brightness of the BBHE method is a function of the input
mean brightness lm(I). This fact clearly indicates that the BBHE preserves the brightness of
the image when compared to the case of classical histogram equalization, where the output
brightness always tends to the middle gray-level, i.e., L/2.

3.2.3 Dualistic Sub-Image Histogram Equalization Method (DSIHE)

Before start describing this method, two useful definitions need to be introduced

Definition 3.9 (Discrete Entropy) Let I[ls, lf ] be a sub-image of I. We define the discrete
entropy of the image I[ls, lf ] as:

Ent(I[ls, lf ]) = −
lf∑

l=ls

P
I[ls,lf ]
l × log2 P

I[ls,lf ]
l . (3.14)

Note that the discrete entropy of an image can, to some extent, depict the richness of
details.
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Definition 3.10 (Equal-Area Level) Let I[ls, lf ] be a sub-image of I. The level la(I[ls, lf ])
which decomposes the image I[ls, lf ] into two sub-images I[ls, la(I[ls, lf ])] and I[la(I[ls, lf ]) +
1, lf ] with almost ( i.e., in discrete meaning) equal area ( i.e., equal density), is called the equal-
area level of the image I[ls, lf ], and it is defined as:

la(I[ls, lf ]) = arg min
ls≤l≤lf

|
l∑

i=ls

P
I[ls,lf ]
i − 1/2|, (3.15)

where |z| stands for the absolute value of z ∈ R.
After these definitions, following the same basic ideas used by the BBHE method of de-

composing the original image into two sub-images and then equalizing the histograms of the
sub-images separately, Wang et al. (1999) proposed the so called equal area dualistic sub-
image histogram equalization (DSIHE) method. Instead of decomposing the image based on
its mean gray-level, the DSIHE method decomposes the images aiming at the maximization of
the Shannon’s entropy (Shannon, 1948; Kapur, 1994) of the output image. The method uses
the Shannon’s entropy because the condition to maximize the average information content
(i.e., the entropy) of the processed image can seldom be satisfied for discrete images. For
such aim, the input image is decomposed into two sub-images, being one dark and one bright
image, respecting the equal area property, i.e.,

I = I[0, la(I)] ∪ I[la(I) + 1, L− 1], (3.16)

where la(I) stands for the equal-area level of the image I.
Then the two sub-images I[0, la(I)] and I[la(I) + 1, L− 1] have their histograms equalized

independently using Equation 3.10, and the composition of the resulting processed sub-images
constitutes the output image of the DSIHE method, i.e.,

O = O[0, la(I)] ∪O[la(I) + 1, L− 1]. (3.17)

In Wang et al. (1999), it is shown that the brightness of the output image O produced by
the DSIHE method is the average of the equal-area level la(I) of the image I and the middle
gray-level of the image L/2, i.e.,

lm(O) =
1
2
(la(I) + L/2). (3.18)

The authors claim that the brightness of the output image O generated by the DSIHE
method does not present a significant shift in relation to the brightness of the input image,
especially for the large area of the image with the same gray-levels (represented by small
areas in histograms with great concentration of gray-levels), e.g., images with small objects
regarding the great darker or brighter backgrounds.
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3.2.4 Minimum Mean Brightness Error Bi-Histogram Equalization
Method (MMBEBHE)

Still following the basic principle of the BBHE and DSIHE methods of decomposing an im-
age before applying the CHE method to equalize the resulting sub-images independently,
Chen and Ramli (2003b) proposed the minimum mean brightness error bi-histogram equaliza-
tion (MMBEBHE) method. The main difference between the BBHE and the DSIHE methods
and the MMBEBHE one is that the latter searches for a threshold level lt that decomposes the
image I into two sub-images I[0, lt] and I[lt +1, L−1], such that the minimum brightness dif-
ference between the input and output images is achieved, whereas the former methods consider
only the input image to perform the decomposition. In this method, the image decomposition
process can be described as follows:

I = I[0, lt] ∪ I[lt + 1, L− 1], (3.19)

where lt(I) stands for the threshold level which yields the minimum mean brightness error,
i.e.,

lt = arg min
0≤l≤L−1

〈lm(I)− lm(O(l))〉, (3.20)

〈z〉 stands for the nearest integer value to z ∈ R, O(l) is the output image for the threshold
level l, i.e.,

O(l) = O[0, l] ∪O[l + 1, L− 1], (3.21)

and O[0, l] and O[l+1, L−1] are the enhanced images obtained by the histograms equalization
of the images I[0, l] and I[l + 1, L− 1] using Equation 3.10.

The output processed image which generates the minimum mean brightness error is given
by:

O = O[0, lt] ∪O[lt + 1, L− 1]. (3.22)

Assumptions and manipulations for finding the threshold level lt that minimizes the mean
brightness error between the input and output images in ©(L) time complexity were made
in Chen and Ramli (2003b). Such strategy allows us to obtain the brightness lm(O[0, lt] ∪
O[lt + 1, L − 1]) of the output image without generating the output image for each possible
threshold level l, and its aim is to produce a method suitable for real-time applications.

3.2.5 Recursive Mean-Separate Histogram Equalization Method
(RMSHE)

Recall that the extensions of the CHE method described so far in this chapter were charac-
terized by decomposing the original image into two new sub-images. However, an extended
version of the BBHE method (see Section 3.2.2), introduced in Chen and Ramli (2003a), and
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named recursive mean-separate histogram equalization (RMSHE), proposes the following. In-
stead of decomposing the image only once, the RMSHE method proposed to perform image
decomposition recursively, up to a scale r, generating 2r sub-images.

As in the BBHE method, each sub-image Iq−1[ls, lf ] is decomposed based on its mean
gray-level lm(Iq−1[ls, lf ]), i.e.,

Iq−1[ls, lf ] = Iq[ls,
⌊
lm(Iq−1[ls, lf ])

⌋
] ∪ Iq[

⌊
lm(Iq−1[ls, lf ])

⌋
+ 1, lf ], (3.23)

where q stands for the scale of decomposition, with 0 < q ≤ r. Note that I0[ls, lf ] stands
for I[0, L − 1]. After the decomposition process, each one of these 2r sub-images Ir[ls, lf ] is
independently enhanced using the CHE method. The output image O is composed by the
union of all the enhanced sub-images Or[ls, lf ] obtained by Equation 3.10.

Note that when r = 0 (no sub-images are generated) and r = 1, the RMSHE method is
equivalent to the CHE and BBHE methods, respectively.

In Chen and Ramli (2003a), the authors mathematically showed that the brightness lm(O)
of the output image O is better preserved as r increases following:

lm(O) = lm(I) + (L/2− lm(I))/2r. (3.24)

Note that, computationally speaking, this method presents a drawback: the number of
decomposed sub-histograms is a power of two.

3.2.6 An Insight on the Results Produced by HE Methods

The previous sections described methods which use histogram equalization with the purpose of
preserving the brightness of gray-level images. Figure 3.1 shows, for the girl image, the output
images produced by these HE methods. In turn, Table 3.1 shows values of the brightness and
contrast obtained for these images.

Table 3.1: Brightness preserving methods for image contrast enhancement.

Method Brightness Contrast
Original 139.20 29.70
HE 133.94 75.47
BBHE 162.78 70.09
DSIHE 131.66 75.42
RMSHE (r = 2) 139.77 37.81
MMBEBHE 144.97 68.70
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: An example of image brightness preserving and contrast enhancement: (a) original
image; enhanced images using (a) as input by CHE, BBHE, DSIHE, RMSHE (r = 2), and
MMBHEBE methods are shown in (b), (c), (d), (e) and (f), respectively.
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By analyzing the data in Table 3.1 and the images in Figure 3.1, we observe that the only
method which preserves the brightness of the input image and generates a natural looking
image is the RMSHE method. Recall that this method is based on multi-histogram decom-
position or, in other words, on the recursive decomposition of the image into two sub-images.

From the results in Table 3.1, we can also conclude that the bi-histogram equalization
methods are not robust regarding the brightness preserving. To overcome this drawback,
Section 3.3 introduces two new robust methods for image contrast enhancement and brightness
preserving, also capable of producing natural looking images.

3.3 The Proposed Methods

As mentioned before, the histogram equalization method enhances the contrast of an image
but cannot preserve its brightness (which is shifted to the middle gray-level value). As a
result, the histogram equalization method can generate unnatural and nonexisting objects in
the processed image. In contrast, bi-histogram equalization methods can produce a significa-
tive image contrast enhancement and, at some extend, preserve the brightness of the image.
However, the images generated might not have a natural appearance. To surmount such draw-
backs, the main idea of our generic proposed method is to decompose the image into several
sub-images, such that the image contrast enhancement provided by the HE in each sub-image
is less intense, leading the output image to have a more natural looking. The conception of
this method brings two points.

The first point is how to decompose the input image. As histogram equalization is the focus
of the work, the image decomposition process is based on the histogram of the image. The
histogram is divided into classes, determined by threshold levels, where each histogram class
represents a sub-image. The decomposition process can be seen as an image segmentation
process executed through multi-threshold selection (Otsu, 1979; Luessi et al., 2006). The
second point is in how many sub-images an image must be decomposed into. This number
depends on how the image is decomposed.

In order to answer these questions, Section 3.3.1 presents two cost functions to decompose
an image based on threshold levels, whereas the algorithm used to find the optimal threshold
levels is presented in Section 3.3.2. These two cost functions conceive two instantiations
of the generic MHE method. Finally, a criterion for automatically selecting the number of
decomposed sub-images is exposed in Section 3.3.3.

3.3.1 Multi-Histogram Decomposition

Many histogram equalization-based methods have been proposed in the literature to decom-
pose an image into sub-images by using the value of some statistical measure based on the
image gray-level value (Kim, 1997; Wang et al., 1999; Chen and Ramli, 2003b,a). These meth-
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ods aim to optimize the entropy or preserve the brightness of the image. Here, we will focus
our attention on decomposing an image such that the enhanced images still have a natural
appearance. For such aim, we propose to cluster the histogram of the image in classes, where
each class corresponds to a sub-image. By doing that, we want to minimize the brightness shift
yielded by the histogram equalization process into each sub-image. With the minimization of
this shift, this method is expected to preserve both the brightness and the natural appearance
of the processed image.

From the multi-threshold selection literature point of view, the problem stated above can
be seen as the minimization of the within-histogram class variance (Otsu, 1979), where the
the within-class variance is the total squared error of each histogram class with respect to
its mean value (i.e., the brightness). That is, the decomposition aim is to find the optimal
threshold set T k = {tk1, ..., tkk−1} which minimizes the decomposition error of the histogram
of the image into k histogram classes (or sub-images) and decomposes the image I[0, L − 1]
into k sub-images I[l1,k

s , l1,k
f ], ..., I[lk,k

s , lk,k
f ], where lj,ks and lj,kf stand for the lower and upper

gray-level boundaries of each sub-image j when the image is decomposed into k sub-images.
They are defined as: lj,ks = tkj−1, if j > 1, and lj,ks = 0 otherwise, and lj,kf = tkj + 1, if j 6= k,
and lj,kf = L− 1 otherwise. The discrepancy function for decomposing the original image into
k sub-images (or histogram classes) following the minimization of within-class variance can
be expressed as:

Disc(k) =
k∑

j=1

lj,k
f∑

l=lj,k
s

(l − lm(I[lj,ks , lj,kf ]))2P I[0,L−1]
l . (3.25)

The variant method conceived with this discrepancy function is called Minimum Within-Class
Variance MHE method (MWCVMHE).

Note that the mean gray-level (i.e., the brightness) of each sub-image processed by the
CHE method is theoretically shifted to the middle gray-level of its range, i.e., lm(O[ls, lf ]) =
lmm(I[ls, lf ]) = lmm(O[ls, lf ]) = (ls + lf )/2. As we want to minimize the brightness shift of
each processed sub-image such that the global processed image has its contrast enhanced and
its brightness preserved (creating a natural looking output image), we focus our attention on
the brightness of the output image. Hence, instead of using the mean lm(I[ls, lf ]) of each input
sub-image I[ls, lf ] in the discrepancy function, we propose to use its middle level (ls + lf )/2,
since every enhanced sub-image O[ls, lf ] will theoretically have its mean value (brightness)
on the middle level of the image range - thanks to the specification of a uniform histogram
distribution. Therefore, a new discrepancy function is proposed and it is expressed as:

Disc(k) =
k∑

j=1

lj,k
f∑

l=lj,k
s

(l − lmm(I[lj,ks , lj,kf ]))2P I[0,L−1]
l , (3.26)
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Algorithm 3.1: Computing Disc(k) and PT (k, L− 1)
Data: ϕ(p, q) - discrepancy of sub-image I[p, q]
Result: D(p)q - discrepancy function Disc(p) up to level q
Result: PT - optimum thresholds matrix
for q ← 0 ; q < L ; q + + do D(1)q ← ϕ(0, q) ;1

for p ← 1 ; p ≤ k ; p + + do2

D(p + 1)p ← D(p)p−1 + ϕ(p− 1, p− 1) ;3

PT (p + 1, p) ← p− 1 ;4

for q ← p + 1 ; q ≤ L− k + p ; q + + do5

D(p + 1)q ← −∞ ;6

for l ← p− 1 ; l ≤ q − 1 ; l + + do7

if (D(p + 1)q > D(p)l + ϕ(l + 1, q)) then8

D(p + 1)q ← D(p)l + ϕ(l + 1, q) ;9

PT (p + 1, q) ← l ;10

where lmm(I[lj,ks , lj,kf ]) stands for the middle value of the image I[lj,ks , lj,kf ] and it is defined as
〈(ls + lf )/2〉. The variant method conceived with this discrepancy function is called Minimum
Middle Level Squared Error MHE method (MMLSEMHE).

3.3.2 Finding the Optimal Thresholds

The task of finding the optimal k − 1 threshold levels which segment an image into k classes
can be easily performed by a dynamic programming algorithm with ©(kL2) time complex-
ity (Otsu, 1980).

Algorithm 3.1 presents this algorithm, where ϕ(p, q) stands for the "discrepancy contribu-
tion" of the sub-image I[p, q], i.e.,

ϕ(p, q) =
q∑

l=p

(l − γ)2P I[0,L−1]
l , (3.27)

where γ stands for lm(I[p, q]) or lmm(I[p, q]) depending on the discrepancy function used (see
Equations 3.25 and 3.26).

Once Algorithm 3.1 is run, the optimal threshold vector T k can be obtained by a back-
searching procedure on PT , i.e.,

tkj = PT (j + 1, tk∗j+1), (3.28)

where 1 ≤ j < k, tk∗j+1 = L− 1 if j + 1 = k, and tk∗j+1 = tkj+1 otherwise.
Remark that, recently, Luessi et al. (2006) proposed a new scheme jointing the matrix

search procedure to the dynamic programming one, yielding a faster time complexity algorithm
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(©(kL)) to multithresholding. This method can also be employed to perform the image
decomposition process described here. Moreover, note that even faster approximated methods
based on descendent gradient steps can be employed to find the thresholds (Reddi et al., 1984;
Lee and Park, 1990).

3.3.3 Automatic Thresholding Criterium

This section presents an approach for automatically choosing the number of sub-images in
which the original image will be decomposed on. This decision is a key point of our work,
which has three main aims: 1) contrast enhancement; 2) brightness preserving; 3) natural
appearance. Nonetheless, these goals cannot be all maximized simultaneously.

We take into account that, as the number of sub-images in which the original image is
decomposed increases, the chance of preserving the image brightness and natural appearance
also increases. In contrast, the chances of enhancing the image contrast decrease. Hence, in
order to decide in how many sub-images the original image should be decomposed on, this
tradeoff should be considered. We propose to use a cost function, initially used in Yen et al.
(1995), to automatically select the number of decomposed sub-images. This cost function
takes into account both the discrepancy between the original and processed images (which is
our own aim decomposition function), and the number of sub-images in which the original
image is decomposed on. This cost function is defined as:

C(k) = ρ(Disc(k))1/2 + (log2 (k))2, (3.29)

where ρ is a positive weighting constant. The number of decomposed sub-images k is auto-
matically given as the one which minimizes the cost function C(k). It is shown in Yen et al.
(1995) that the cost function presented in Equation 3.29 has a unique minimum for practical
cases (i.e., Disc(k) is of the form α× k−λ, α > 0, λ > 0, ρ < 4 lnL×Lλ/2/(λα1/2(ln 2)2) and
0 < k < L). Hence, instead of finding the value k which minimizes C(k) throughout k values
range, it is enough to search for k from 0 up to a value where C(k) starts to increase.

3.4 Conclusions

In this chapter, we introduced two new gray-level multi-histogram equalization methods for
image contrast enhancement and brightness preserving. Note that the time complexity of our
methods is upper-bounded by the step of finding the optimal thresholds which has ©(kL2)
time complexity (or even ©(kL), if Luessi et al. (2006)’s algorithm is employed). These time
complexities make our methods fast and suitable for real-time applications, even though they
are more sophisticated than the previous ones in the original image decomposition process.
Experiments comparing our methods and the ones described in Section 3.2 are presented in
Section 5.1.



Chapter 4

Fast Hue-Preserving Histogram
Equalization Methods

In the previous chapter we described some classical methods based on histogram equalization
which are used to enhance gray-level images, and proposed new ones. Following this same
line, in this chapter, we propose a generic fast hue-preserving histogram equalization (HE)
method based on the RGB color space for image contrast enhancement and two instantiation
of that generic process. The first method uses R-red, G-green and B -blue 1D histograms to
estimate a RGB 3D histogram to be equalized, whereas the second method uses RG, RB,
and GB 2D histograms.

The proposed methods preserve many of the ideas presented by other methods based on
histogram equalization (Gonzalez and Woods, 2002; Trahanias and Venetsanopoulos, 1992).
However, they have two main advantages: first, the methods are hue-preserving, i.e., they
avoid that new and unrealistic colors appear in the enhanced image. Second, the methods
have low time complexity (both instantiations are linear with the image dimension), which
makes them suitable for real-time applications, such as contrast enhancement of natural images
acquired by mobile phones and PDAs.

This chapter starts with Section 4.1 introducing some basic definitions which will be used
in the remaining sections. Following these definitions, in order to give a detailed description of
our methods, Section 4.2 describes other methods from which the proposed methods borrow
ideas from. Our fast hue-preserving histogram equalization methods for color image contrast
enhancement are then introduced in Section 4.3. Section 4.4 discusses the time and space
complexities of the described methods and the proposed ones. Finally, conclusions are drawn
in Section 4.5.

35
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4.1 Basic Definitions

In a context of discrete variables, the histogram of a variable represents the absolute frequency
of each discrete value, whereas the probability density function of a variable constitutes the
relative frequency of these values. The probability distribution function (or the cumulative
probability density function), in turn, can be seen as the probability of a variable be less or
equal to a value. These functions are used to estimate the probability of an event happening.

Considering that a color image is a discrete variable, this section describes its multidimen-
sional histograms and their probability functions, which will be used throughout this chapter.

Definition 4.1 (Color Images) Let N and Z denote the set of natural and integer numbers,
respectively. Let Xmn be a subset of points (x, y) ∈ N2, such that 0 ≤ x < m, and 0 ≤ y < n,
where m and n denote the dimensions of Xmn. Let ||Y || denote the cardinality of a set Y ⊆ N2.
Note that ||Xmn|| = m× n. A mapping I, from Xmn to Z3

L, is called a ( color) image ( of the
RGB color space). By abuse of terminology we denote a color image by IRGB.

Indeed, a color image IRGB has three mappings from Xmn to ZL, which are the red, green
and blue images, i.e., IR, IG and IB, respectively.

Let us also define three other mappings from Xmn to Z2
L, i.e., IRG, IRB IGB. We call

these mappings as red/ green, red/blue and green/blue images, respectively.

Definition 4.2 (Levels) For a point (x, y) ∈ Xmn, Ri = IR(x, y), Gi = IG(x, y) and Bi =
IB(x, y) are called the red, green and blue levels of the point (x, y) in IRGB, respectively,
where 0 ≤ Ri, Gi, Bi < L. We can also denote (Ri, Gi, Bi), (Ri, Gi), (Ri, Bi) and (Gi, Bi) by
IRGB(x, y), IRG(x, y), IRB(x, y) and IGB(x, y), respectively.

In the following, we define 1D, 2D and 3D histograms and probability density and distri-
bution functions for color images.

For the 1D case, we firstly consider the R color channel.

Definition 4.3 (1D Histogram) Let Xmn
Ri

be a subset of Xmn, such that for all (x, y) ∈
Xmn

Ri
⊆ Xmn, we have IR(x, y) = Ri. Let HIR

Ri
be the absolute frequency of the level Ri in

the image IR, where 0 ≤ Ri < L, i.e., HIR

Ri
= ||Xmn

Ri
||. Note that HIR

Ri
= 0, if there is no

(x, y) ∈ Xmn such that IR(x, y) = Ri. The mapping HIR from the levels of the image IR

to its absolute frequency levels, i.e., HIR
: ZL → N, is called the histogram of the image IR.

Note that
∑L−1

Ri=0 HIR

Ri
= m× n.

Definition 4.4 (1D Probability Density Function) Let P IR

Ri
be the relative frequency (or

the probability) of the level Ri in the image IR, i.e.,

P IR

Ri
=

HIR

Ri

m× n
, (4.1)
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where 0 ≤ Ri < L. Note that
∑Ri

ri=0 P IR

ri
= 1.

The function P IR composed by all P IR

Ri
is the probability density function of the image IR.

Definition 4.5 (1D Probability Distribution Function) Let CIR

Ri
be the probability dis-

tribution (or the cumulative probability density) of the level Ri in the image IR, i.e.,

CIR

Ri
=

1
m× n

Ri∑

ri=0

HIR

ri
=

Ri∑

ri=0

P IR

ri
, (4.2)

where 0 ≤ Ri < L. Note that CIR

L−1 = 1.
The function CIR composed by all CIR

Ri
is the probability distribution function (or the

cumulative probability density function) of the image IR.

It is immediate to extend the above definitions for the image IR, i.e., HIR , P IR and CIR ,
to the images IG and IB. Note that the definitions for 1D histograms and their probability
functions of color images, here introduced, are identical to the ones presented in Section 3.1
for monochrome images. They are again presented for sake of coherence on notation for color
images.

For 2D histograms and their probability functions, we firstly consider the R and G color
channels.

Definition 4.6 (2D Histogram) Let Xmn
Ri,Gi

be a subset of Xmn, such that for all (x, y) ∈
Xmn

Ri,Gi
⊆ Xmn, we have (Ri, Gi) = IRG(x, y). Let HIRG

Ri,Gi
be the absolute frequency of the

color levels Ri and Gi in the image IRG, i.e., HIRG

Ri,Gi
= ||Xmn

Ri,Gi
||. Note that HIRG

Ri,Gi
= 0, if

there is no (x, y) ∈ Xmn such that IRG(x, y) = (Ri, Gi). The mapping HIRG from the levels
of the image IRG to its absolute frequency, i.e., HIRG

: Z2
L → N, is called the histogram of the

image IRG. Note that
∑L−1

ri=0

∑L−1
gi=0 HIRG

ri,gi
= m× n.

Definition 4.7 (2D Probability Density Function) Let P IRG

Ri,Gi
be the relative frequency

(or the probability) of the color levels Ri and Gi in the image IRG, i.e.,

P IRG

Ri,Gi
=

HIRG

Ri,Gi

m× n
, (4.3)

where 0 ≤ Ri, Gi < L. Note that
∑L−1

ri=0

∑L−1
gi=0 P IRG

ri,gi
= 1.

The function P IRG composed by all P IRG

Ri,Gi
is called the probability density function of the

image IRG.

Definition 4.8 (2D Probability Distribution Function) Let CIRG

Ri,Gi
be the probability

distribution (or the cumulative probability density) of the color levels Ri and Gi in the im-
age IRG, i.e.,

CIRG

Ri,Gi
=

Ri∑

ri=0

Gi∑

gi=0

P IRG

ri,gi
, (4.4)
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where 0 ≤ Ri, Gi < L. Note that CIRG

L−1,L−1 = 1.
The CIRG function composed by all CIRG

Ri,Gi
is called the probability distribution function

(or the cumulative probability density function) of the image IRG.

Note that to compute CIRG for all possible Ri and Gi, the above formulation has complexity
©(L4). By using a recursive definition, all possible Ri and Gi can be computed in ©(L2),
i.e.,

CIRG

Ri,Gi
= CIRG

Ri−1,Gi
+ CIRG

Ri,Gi−1 − CIRG

Ri−1,Gi−1 + P IRG

Ri,Gi
. (4.5)

It is immediate to extend the above definitions for the image IRG, i.e., HIRG , P IRG and
CIRG , to the images IRB and IGB.

For the last scenario, we have a single 3D histogram and its probability functions to be
defined.

Definition 4.9 (3D Histogram) Let Xmn
Ri,Gi,Bi

be a subset of Xmn, such that for all (x, y) ∈
Xmn

Ri,Gi,Bi
⊆ Xmn, we have IRGB(x, y) = (Ri, Gi, Bi). Let HIRGB

Ri,Gi,Bi
be the absolute frequency

of the color levels Ri, Gi and Bi in the image IRGB, i.e., HIRGB

Ri,Gi,Bi
= ||Xmn

Ri,Gi,Bi
||. Note that

HIRGB

Ri,Gi,Bi
= 0, if there is no (x, y) ∈ Xmn such that IRGB(x, y) = (Ri, Gi, Bi). The mapping

HIRGB from the levels of the image IRGB to its absolute frequency, i.e., HIRGB
: Z3

L → N, is
called the histogram of the image IRGB. Note that

∑L−1
ri=0

∑L−1
gi=0

∑L−1
bi=0 HIRGB

ri,gi,bi
= m× n.

Definition 4.10 (3D Probability Density Function) Let P IRGB

Ri,Gi,Bi
be the relative fre-

quency (or the probability) of the color levels Ri, Gi, and Bi in the image IRGB, i.e.,

P IRGB

Ri,Gi,Bi
=

HIRGB

Ri,Gi,Bi

m× n
, (4.6)

where 0 ≤ Ri, Gi, Bi < L. Note that
∑L−1

ri=0

∑L−1
gi=0

∑L−1
bi=0 P IRGB

ri,gi,bi
= 1.

The function P IRGB composed by all P IRGB

Ri,Gi,Bi
is the probability density function of the

image IRGB.

Definition 4.11 (3D Probability Distribution Function) Let CIRGB

Ri,Gi,Bi
be the probabil-

ity distribution (or the cumulative probability density) of the color levels Ri, Gi, and Bi in the
image IRGB, i.e.,

CIRGB

Ri,Gi,Bi
=

Ri∑

ri=0

Gi∑

gi=0

Bi∑

bi=0

P IRGB

ri,gi,bi
, (4.7)

where 0 ≤ Ri, Gi, Bi < L. Note that CIRGB

L−1,L−1,L−1 = 1.
The function CIRGB composed by all CIRGB

Ri,Gi,Bi
is called the probability distribution function

(or the cumulative probability density function) of the image IRGB.
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Remark that the above formulation has complexity ©(L6) to compute CIRGB for all pos-
sible Ri, Gi, and Bi. By using a recursive definition, similarly to the 2D case, we can compute
all possible Ri, Gi, and Bi in ©(L3), i.e.,

CIRGB

Ri,Gi,Bi
= CIRGB

Ri−1,Gi−1,Bi−1 + CIRGB

Ri−1,Gi,Bi
+ CIRGB

Ri,Gi−1,Bi
+ CIRGB

Ri,Gi,Bi−1

− CIRGB

Ri−1,Gi−1,Bi
− CIRGB

Ri−1,Gi,Bi−1 − CIRGB

Ri,Gi−1,Bi−1 + P IRGB

Ri,Gi,Bi
.

4.2 Previous Works

In this section, we present two histogram equalization methods directly related to our pro-
posed methods. These methods are particularly important because we borrowed some ideas
from them when implementing the methods proposed in this chapter. Note that all the his-
togram equalization methods described in this chapter work in three phases: (1) they compute
the histograms of the image, (2) they compute the density and distribution probability func-
tions of the image from the histograms, and (3) they enhance the image through histogram
equalization.

The process carried out to compute the histogram of the image is the same in all methods.
With a single scan throughout the image we can compute 1D, 2D or 3D histograms, according
to the definitions given in Section 4.1.

The second phase, where the density and distribution probability functions are calculated,
strongly depends on the dimensions of the probability functions used for the method. It is well
known that a typical color image has its R, G and B color channels neither full correlated nor
totally independent distributed. Hence, the dimension (i.e., 1D, 2D or 3D) of the density and
distribution probability functions of the images used for the methods has a great impact on
the quality of enhanced images and on the time complexity of the methods. In this respect,
whereas some methods take into account only the red, green and blue channels separately
(calculating 1D histograms), others consider the correlation among these channels two at-a-
time, or even consider the three of them all together.

Regarding the third phase (the histogram equalization itself), methods can follow very
specific rules to achieve it. The classical method processes the 1D histograms separately, and
then employs the equalized histograms to enhance the image. Other methods process the
image pixel by pixel, using an iterative process, in a way that the histogram of the output
enhanced image has a uniform distribution, i.e., it is equalized.

In the next subsections, we recall the classical 1D histogram equalization method. We
then show the 3D histogram equalization method proposed by Trahanias and Venetsanopoulos
(1992). This last method presents important concepts which will be then incorporated into
our methods, described later on in Section 4.3.
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4.2.1 Classical 1D Histogram Equalization Method

In Section 3.2.1, we described the classical histogram equalization method for enhancing
monochromatic images. This classical method can be extended and also applied to enhance
color images. However, as the extended version of this method uses a completely different
set of notations, in this section we recall what was presented in Section 3.2.1, but using a
notation which is more suitable for color images. We focus the description of the method on
red images, and then extend it to green and blue images. Putting together these definitions in
red, green and blue images, we can perform histogram equalization on the RGB color space.

The histogram equalization method for red images is described as follows. Let IR and OR

be the red input and output images, or the original and equalized images, respectively. Let
HIR (histogram), P IR (probability density function) and CIR (cumulative probability density
function) be defined as in Section 4.1. The computation of the histogram and the probability
functions of the input image constitute the first two phases of the method. Hence, let HOR be
the desired uniform histogram of the output image, where any level Ro of HOR has the same
amount of pixels, i.e.,

HOR

Ro
=

1
L

(m× n), (4.8)

or the same density (i.e., probability), i.e.,

POR

Ro
=

1
L

. (4.9)

Thus, the cumulative probability density function COR is defined in function of Ro as:

COR

Ro
=

1
m× n

Ro∑

ro=0

HIR

ro
=

Ro∑

ro=0

P IR

ro
=

Ro + 1
L

. (4.10)

The third phase consists of computing the equalized histogram from the cumulative density
function of the input image, and then equalizing the image. The R′

o output equalized level
corresponding to the input level Ri is obtained as the one that minimizes the difference between
COR

R′o
and CIR

Ri
. In practice, the output level R′

o for the input level Ri is computed by the
transformation function T IR

(Ri), i.e.,

R′
o = T IR

(Ri) =
〈
(L− 1)× CIR

Ri

〉
, (4.11)

where
〈
(L− 1)× CIR

Ri

〉
stands for the nearest integer to ((L− 1)×CIR

Ri
) ∈ R. This transfor-

mation function was named single mapping law (SML) in Zhang (1992). In this same work,
a general mapping law (GML) was also proposed with the purpose of improving the accu-
racy of a uniform histogram specification. Nonetheless, in this work, we use the SML, i.e.,
Equation 4.11, because it is simpler and faster to compute.
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To generate the output enhanced image with this transformation, for any pixel (x, y) ∈
Xmn, we obtain the output value OR(x, y) as R′

o = T IR
(Ri), where Ri = IR(x, y).

This method can be easily extended for color image contrast enhancement by applying
separately the equalization process described above to the images IR, IG and IB. This
extended method presents a well-known problem: it produces unrealistic colors, since it is
not hue-preserving (Naik and Murthy, 2003). Note that this method has ©(max(m× n,L))
and ©(L) time and space complexities, respectively. From now on, we refer to this extended
method as the classical 1D histogram equalization method, i.e., C1DHE method.

4.2.2 3D Histogram Equalization Method

In this section, we describe the method proposed by Trahanias and Venetsanopoulos (1992),
which takes into account the correlation of the three color channels, R, G, and B, simultane-
ously. It is described as follows.

Let IRGB and ORGB be the input and output color images. Let HIRGB , P IRGB and CIRGB

be as defined in Section 4.1. Let HORGB be the uniform histogram of the output image, where
any entry (Ro, Go, Bo) has the same amount of pixels, once a such output histogram is desired,
i.e.,

HORGB

Ro,Go,Bo
=

1
L3

(m× n), (4.12)

or the same density, i.e.,

PORGB

Ro,Go,Bo
=

1
L3

. (4.13)

Hence, any entry (Ro, Go, Bo) in CORGB is computed using PORGB , i.e.,

CORGB

Ro,Go,Bo
=

Ro∑

ro=0

Go∑

go=0

Bo∑

bo=0

PORGB

ro,go,bo

=
Ro∑

ro=0

Go∑

go=0

Bo∑

bo=0

1
L3

=
(Ro + 1)(Go + 1)(Bo + 1)

L3
. (4.14)

Note that CORGB

Ro,Go,Bo
can be directly obtained by its own values, i.e., Ro, Go and Bo.

To yield the output enhanced image, for any input pixel (x, y) ∈ Xmn, where (Ri, Gi, Bi) =
IRGB(x, y), the smallest (Ro, Go, Bo) for which the inequality:

CIRGB

Ri,Gi,Bi
− CORGB

Ro,Go,Bo
≥ 0, (4.15)

holds.
However, this process of calculating the output image presents an ambiguity, mainly be-
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cause there are many solutions for (Ro, Go, Bo) which satisfy Equation 4.15. This ambiguity is
remedied as follows. The computed value of CIRGB at (Ri, Gi, Bi) is initially compared to the
value of CORGB at (Ro, Go, Bo). If CIRGB is greater (resp. less) than CORGB , then the indexes
Ro, Go, and Bo are repeatedly increased (resp. decreased), one at-a-time, until Equation 4.15 is
satisfied. The obtained (Ro, Go, Bo) is the output entry to the corresponding input (Ri, Gi, Bi),
i.e., if (x, y) ∈ Xmn and (Ri, Gi, Bi) = IRGB(x, y), then ORGB(x, y) = (Ro, Go, Bo).

From now on, we call the Trahanias and Venetsanopoulos (1992) 3D method as TV3DHE
method. Note that the TV3DHE method has ©(max(m× n× L,L3)) and ©(L3) time and
space complexities, respectively.

Note that the methods discussed in this section have drawbacks that make them not
suitable for real-world and real-time applications. Whereas the C1DHE method is not hue-
preserving, the TV3DHE method is neither hue-preserving nor complies with real-time appli-
cation requirements.

4.3 The Proposed Methods

In this section, we present a generic method which, in contrast with the methods presented in
the previous section, is both hue-preserving and has time and space complexities which com-
plies with real-world and real-time applications. We propose two variants from the generic
method, which are characterized by the histograms dimension used to estimate the 3D prob-
ability functions, i.e., 1D or 2D histograms - making the variant point of the generic method
to be the probability function estimation phase.

4.3.1 Generic Hue-preserving Histogram Equalization Method

In this section, we present our generic method which, as the other ones, is divided in three
phases. Initially, let I and O be the input and output images. Let the input #D histograms
and probability functions be defined as in Section 4.1, where # is the histogram dimension
used (this is the variant point of our method). Although the proposed method works with
#D histograms, we do not equalize the #D histograms per say, but a 3D pseudo-histogram,
i.e., H ′IRGB

. The H ′IRGB

definition is based on a pseudo 3D cumulative density function.
The computation of this cumulative density function, C ′IRGB

, which constitutes the second
phase of our method, is performed as the product of the three #D cumulative functions for
any entry (Ri, Gi, Bi). We show in details the variant methods in Section 4.3.2 and 4.3.3.

The third phase works as follows. Unlike the method described in Section 4.2.2, which
iteratively increased or decreased the values of Ro, Go and Bo in order to minimize Equa-
tion 4.15, we propose to find the output triplet (Ro, Go, Bo) for any image pixel, in a single
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step, i.e., ©(1). Thus, from Equations 4.14 and 4.15, we have:

C ′IRGB

Ri,Gi,Bi
− (Ro + 1)(Go + 1)(Bo + 1)

L3
= 0. (4.16)

If we take Ro, Go and Bo as Ri + k, Gi + k and Bi + k, respectively, where k would be the
number of iterations required for minimizing Equation 4.15, we obtain:

k3+
k2[R

′
i + G

′
i + B

′
i]+

k[R
′
i ×G

′
i + R

′
i ×B

′
i + G

′
i ×B

′
i]+

R
′
i ×G

′
i ×B

′
i − L3 × C ′IRGB

Ri,Gi,Bi
= 0,

(4.17)

where R
′
i, G

′
i, and B

′
i mean Ri + 1, Gi + 1, and Bi + 1, respectively. By solving this cubic

equation in function of k, we obtain the desired output triplet (Ro, Go, Bo) as the input one
plus the displacement k, i.e., (Ri + 〈k〉 , Gi + 〈k〉 , Bi + 〈k〉), where 〈k〉 stands for the nearest
integer to k ∈ R.

Equation 4.17 can be easily solved by the methods proposed in Nickalls (1993) and Cardano
(1545). The formed method is faster and mathematically simpler than the latter, which
uses transcendental functions. Based on their complexities, in this work, we use the Nickalls
(1993)’s method.

Observe that any image pixel is enhanced following a shift transformation by a k factor,
i.e., from (Ri, Gi, Bi) to (Ro, Go, Bo) = (Ri +〈k〉 , Gi +〈k〉 , Bi +〈k〉), which makes our generic
method hue-preserving (Naik and Murthy, 2003).

Having described this generic method, the next subsections show our variant methods,
which differ only on the histogram dimension used. By respecting the chronology’s conception
of our method, the method based on RG, RB and GB 2D histograms (Menotti et al., 2006)
(from now on HP2DHE method), is firstly described in Section 4.3.2. Then, the method
based on 1D histograms (Menotti et al., 2007b) (from now on HP1DHE method) is presented
in Section 4.3.3.

4.3.2 Hue-preserving 2D Histogram Equalization Method

In this section, we present our HP2DHE method which was initially introduced in Melo et al.
(2005) and after in Menotti et al. (2006). It uses 2D histograms (as defined in Section 4.1) and
is based on the correlation of channels two at-a-time to perform the histogram equalization.

The cumulative probability density function, C ′IRGB

, is then computed as the product of
the three 2D cumulative functions for any entry (Ri, Gi, Bi), i.e.,

C ′IRGB

Ri,Gi,Bi
= CIRG

Ri,Gi
× CIRB

Ri,Bi
× CIGB

Gi,Bi
. (4.18)
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The main rationale for computing this pseudo-cumulative probability density function as
the product of three 2D cumulative functions is that the three color channels in an image are
usually not simultaneously correlated.

Note that, in Menotti et al. (2006), we proposed to solve Equation 4.15 iteratively, as done
in Trahanias and Venetsanopoulos (1992) (TV3DHE method), by using a non hue-preserving
transformation. Here, we modify the method originally proposed in Menotti et al. (2006) to
use the hue-preserving shift transformation and the solution of Equation 4.15 described in
the previous subsection. These two modifications make the HP2DHE method presented here
hue-preserving, and reduces its initially time complexity from ©(max(m × n × L,L2)) to
©(max(m× n, L2)).

4.3.3 Hue-preserving 1D Histogram Equalization Method

In this section, we present a hue-preserving histogram equalization method based on the RGB
color space for image contrast enhancement, which uses 1D histograms, and is also a variant
of the generic method described in Section 4.3.1. The method is based on the independence
assumption of color channels, which is used in a Bayesian framework for computing the cu-
mulative probability density function. We use 1D histograms to estimate a 3D probability
distribution function, and then equalize the conceived histogram through the estimated prob-
ability function.

In Data Mining and Knowledge Discovery domains, it is well known that Bayesian classi-
fiers work well, even though the independence assumption is violated (Domingos and Pazzani,
1997). Although it is also well know that this assumption does not hold for the R, G and
B channels of color images, we hope that the enhancement produced in color image through
histogram equalization will work well.

Hence, the function C ′IRGB

is estimated for any entry (Ri, Gi, Bi) as the product of every
cumulative distribution CIR

Ri
, CIG

Gi
, and CIB

Bi
, following the rule, i.e.,

C ′IRGB

Ri,Gi,Bi
= CIR

Ri
× CIG

Gi
× CIB

Bi
. (4.19)

Note that, in Equation 4.19, C ′IRGB

obeys a Naive Bayesian rule (Stigler, 1983), while in
Equation 4.18 (i.e., the one of HP2DHE method) C ′IRGB

is defined without a mathematical
meaning. Nevertheless, the images processed by the HP2DHE method produce similar results
to the HP1DHE method, as the experiments reported in the next chapter (Section 5.2) will
show.

As we use 1D histograms, this method has the time complexity greater than the HP2DHE
method, i.e., ©(max(m × n,L)), and the space complexity is linear, i.e., ©(L). Moreover,
the time and space complexities of HP1DHE are exactly the same of the C1DHE method,
which are the best to our knowledge for color image contrast enhancement through histogram
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equalization.

4.4 Complexity Analysis

In this section, we present an analysis of the space and time complexities of the histogram
equalization methods described in this chapter, including our proposed method (i.e., its vari-
ants). As explained before, histogram equalization methods work in three main phases: 1)
Histogram computation; 2) Density and Distribution probability functions computation; 3)
Image contrast enhancement through histogram equalization. We firstly discuss the time
complexity of these methods in each of these three phases.

The first phase is computed with a single scan throughout the image, and hence it has
©(m× n) time complexity.

The second phase is dependent on the histograms dimension used. The probability func-
tions for 1D histograms can be computed in©(L). By using recursive definitions presented in
Section 4.1, one can compute the probability functions for 2D, and 3D histograms in ©(L2)
and©(L3), respectively. Hence, it is confirmed that the time complexity of this second phase
is dependent on the dimension of the histograms.

In the third phase, the image is processed pixel by pixel, i.e., ©(m × n). The C1DHE
method, however, before processing each image, performs a preprocessing in©(L) to compute
lookup tables, i.e., it computes the transformation function in Equation 4.11 only once for
each level of each channel R, G and B. The TV3DHE method executes an iterative process
for each pixel in the image, and has ©(L) time complexity for each one. Note that TV3DHE
method can perform ©(3(L − 1)) steps in the worst case, since it gives one unitary step
at-a-time in only one of the three channels. Our methods have no preprocessing and they
perform the third phase in ©(1) for any image pixel. However, solving the cubic equation
described in Equation 4.17 is computationally heavy, making the total run-time performance
of our methods worst than the C1DHE one.

Table 4.1 summarizes the time complexity of the methods.

Table 4.1: A summary about time complexity of the histogram equalization methods. M [x, y]
stands for max(x, y), and mn stands for m× n.

C1DHE TV3DHE method HP2DHE method HP1DHE
Histograms ©(mn) ©(mn) ©(mn) ©(mn)
Probabilities ©(L) ©(L3) ©(L2) ©(L)
Equalization ©(M [mn,L]) ©(mn× L) ©(mn) ©(mn)
Total ©(M [mn,L]) ©(M [mn× L, L3]) ©(M [mn, L2]) ©(M [mn,L])

Now, we discuss the space complexity of the methods presented in this chapter. The
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space complexity of the methods depends totally on the histograms dimension used, e.g.,
©(L), ©(L2) or ©(L3). That is, our HP1DHE and the C1DHE methods have linear space
complexity with respect to the number of discrete levels, i.e., ©(L), whilst our HP2DHE
and the TV3DHE methods have quadratic and cubic space complexity, i.e., ©(L2), ©(L3),
respectively.

Remark that the HP1DHE and HP2DHE methods have ©(max(m × n,L)) and
©(max(m × n,L2)) time complexities, respectively. And they are linear and quadratic for
space complexity, i.e., ©(L), ©(L2), respectively. Hence, such time and space complexities
comply with real-time application requirements.

Note that as the term m × n on the time complexity expression is much more important
than the second one1, on a run-time comparison the methods have similar performance, as
will be further illustrated in the next chapter. Observe that especial attention for the run-
time of the methods with respect to the image dimension is given in the next chapter in the
experiments and is presented in Section 5.2.3.

4.5 Conclusions

In this chapter, we introduced and described two new hue-preserving histogram equalization
methods based on the RGB color space for image contrast enhancement. In next chapter, we
present the experiments for the methods proposed in this chapter and in Chapter 3.

1Usually we have m× n greater than L and the run-time taken on the third phase, where the term m× n

is the only taken into account, is much more heavy



Chapter 5

Experiments

This section reports the results of experiments performed to evaluate the methods introduced
in Chapter 3 and 4, and it is divided in two parts. Section 5.1 reports the results concerning the
gray-level image contrast enhancement methods introduced in Chapter 3, whereas Section 5.2
presents the results related to the color image contrast enhancement methods proposed in
Chapter 4.

5.1 Multi-Histogram Equalization Methods for Gray-level
Image Contrast Enhancement and Brightness Preserving

In this section, we report results of experiments comparing our proposed methods in Chapter 3
(Section 3.3) with the other HE methods described in Section 3.2 and the method proposed in
Wang and Ye (2005). The input images used in the experiments were the ones previously used
in Kim (1997), Wang et al. (1999), Chen and Ramli (2003b), Chen and Ramli (2003a) and
Wang and Ye (2005). They are named as they were in the works where they first appeared:
arctic hare, bottle, copter, couple, Einstein, F16, girl, hands, house, jet, U2, woman (girl
in Wang and Ye (2005)). Images were extracted from the CVG-UGR database (CVG-URG,
2007) and provided by the authors of (Chen and Ramli, 2003b) and (Chen and Ramli, 2003a).

Table 5.1 shows the number of sub-images automatically obtained by the methods
MWCVMHE and MMLSEMHE (i.e., the value of the parameter k - see Section 3.3.3), repre-
sented by the columns lm and lmm, respectively. These values were obtained using the thresh-
old criterion for weighting the constant ρ with the value 0.8 (as done in Yen et al. (1995)).
In practice, our methods take less than 50 milliseconds to find the number k, decompose and
enhance an image on a Pentium IV - 2GHz1.

To start our analysis, for each image, we compute the brightness (i.e., the mean) and
contrast (i.e., the standard deviation) of the original and the output images obtained by the

1We take into account the loading and storing time of the image file as well.

47
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Table 5.1: Automatic Selection of the Number of Sub-images - k

Image lm lmm

arctic-hare 5 7
bottle 6 6
copter 6 6
couple 5 6
Einstein 6 7
F16 5 7
girl 5 6
hands 5 6
house 6 6
jet 5 5
U2 4 4
woman 6 7

HE methods. Moreover, in order to assess the appropriateness of the processed images for
consumer electronics products, we compute the PSNR measure (Rabbani and Jones, 1991)
as well. In the image processing literature, the PSNR has been used as a standard measure to
evaluate and compare compression and segmentation algorithms (Rabbani and Jones, 1991).
It is well-known that a processed image with good quality (with respect to the original one)
presents PSNR values within 30 dB and 40 dB (Rabbani and Jones, 1991).

The values of brightness, contrast and PSNR obtained for each image are presented in
Tables 5.2, 5.3 and 5.4. These tables are divided into three parts: 1) The names and the data
of original images (for the PSNR table, the values of original images are constant, i.e., ∞);
2) The data values obtained by the Uni-, Bi-HE and Wang and Ye (2005)’s methods, i.e., HE,
BBHE, DSIHE, MMBEBHE, and BPHEME; 3) The values obtained by the MHE methods,
i.e., RMSHE (r = 2), and our proposed MWCVMHE and MMLSEMHE methods.

In Tables 5.2 and 5.3, we firstly compare the data values (image brightness and image
contrast, respectively) of each of the 8 processed images with the original image and highlight
in gray the best results in parts 2 (i.e., Uni-, Bi-HE and Wang and Ye (2005)) and 3 (i.e.,
MHE) of the table. In a second step, we compare the best values in parts 2 and 3 of the
tables against each other (i.e., Uni-, Bi-HE and Wang and Ye (2005)’s methods against MHE
methods). The best value is dark-grayed, the worst light-grayed.

Let us first analyze the results in Table 5.2, regarding the brightness of the original and the
processed images. By observing the absolute difference between the value of the brightness
in the original and processed images (i.e., the brightness preservation), we state that: 1)
The images produced by our proposed methods are better in preserving the brightness of the
original images in 8 out of 12 images; 2) Even though our methods are not always the best
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brightness preserving ones, their resulting brightness is always very close to the brightness
of the original images; 3) The MMLSEMHE method has shown to be more robust than the
MWCVMHE method in terms of brightness preservation.

We perform a similar analysis to the one performed in Table 5.2 in Table 5.3. By observing
the contrast values, we state that: 1) The method DSIHE produces the best image contrast
enhancement in 10 out of 12 images, losing only twice for the classical HE method; 2) The
RMSHE (with r = 2 - four sub-images) presents the best image contrast enhancement among
the MHE methods in 10 out 12 images, losing only twice for our MWCVMHE method; 3) The
MMLSEMHE method produces the smallest image contrast enhancement - this is the price
to pay to obtain at the same time image contrast enhancement, brightness preserving, and
natural looking images. Nonetheless, as will be shown in a further visual analysis of images,
the images produced by the MMLSEMHE method are the best ones regarding the natural
look.

Finally, we analyze the data presented in Table 5.4. In Table 5.4, the best values of
PSNR are highlighted in gray. Recall that the greater the value of the PSNR, the better
it is. Looking at these figures, we observe that the images processed by the MMLSEMHE
method produces the best PSNR values, as they are within the range [30dB, 40dB]. Based
on this result we argue that the MMLSEMHE method performs image contrast enhancement,
preserves the brightness and also produces images with a natural looking. Moreover, this
result corroborates, in practice, our hypothesis that the MMLSEMHE method, using the
discrepancy function in Equation 3.26, yields image with the best PSNR values among all
the HE methods.

Once the images were analyzed considering their brightness, contrast and PSNR, we
performed an image visual assessment. Remark that all the 12 input images, their histograms,
their respective enhanced images and equalized histograms (obtained by all the methods listed
in Tables 5.2, 5.3 and 5.4), adding up more than 200 images, can be seen in Menotti (2007).
Here we present an analysis of 3 images: girl, Einstein and arctic hare.

Figure 5.1 shows the resulting images obtained by the BPHEME method (Wang and Ye,
2005) and our proposed ones for the girl image. Note that the output images obtained by
Bi-HE and the RMSHE methods for the girl image can be observed at Figure 3.1. By visually
inspecting the images on these two figures, we can clearly see that only the MHE methods
(i.e., RMSHE (with r = 2), MWCVMHE and MMLSEMHE methods) are able to generate
natural looking images and still offer contrast enhancement.

Figure 5.2 shows the Einstein and the resulting images obtained by the MHE methods, i.e.,
RMSHE (with r = 2), MWCVMHE and MMLSEMHE. By observing the processed images, it
is noticeable that our proposed methods are the only ones among the MHE methods that can
produce images with a natural looking. Recall that the other methods are worse than MHE
methods for producing natural looking images.
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(a) (b)

(c) (d)

Figure 5.1: Results: (b), (c) and (d) are the enhanced resulting images by BPHEME,
MWCVMHE (k = 5), and MMLSEMHE (k = 6) methods, respectively, using (a) the girl
image as input.

Figure 5.3 shows the images obtained by applying the MHE methods to the image arctic
hare. We chose this picture because it shows that, even though the image contrast produced
by our methods is sometimes limited, they can enhance particular and interesting parts of
an image. Observe that on the upper right corner of the images, we can perceive contrast
enhancement. Nonetheless, the RMSHE (with r = 2) and MWCVMHE methods generate
better enhancement on that region than the MMLSEMHE method.

After analyzing the data presented in Tables 5.2, 5.3 and 5.4 and visually observing some
processed images, we conclude that: 1) The MMLSEMHE method produces images with
better quality than the other methods with respect to the PSNR measure; 2) Nonetheless,
a better image contrast enhancement can be obtained by the MWCVMHE method, which
also presents satisfactory brightness preserving and natural looking images; 3) The RMSHE
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(a) (b)

(c) (d)

Figure 5.2: Results for : (a) original image; (b), (c) and (d) are the enhanced resulting images
by RMSHE (r = 2), MWCVMHE (k = 6), and MMLSEMHE (k = 7) methods, respectively,
using the einstein image.

method (with r = 2) should be employed when better contrast enhancement than the one
offered by the MMLSEMHE and MWCVMHE methods is desired. However, in this case, the
processed image may present some annoying and unnatural artifacts (for instance Figure 5.2b).



5. Experiments 55

(a) (b)

(c) (d)

Figure 5.3: Results for : (a) original image; (b), (c) and (d) are the enhanced resulting images
by RMSHE (r = 2), MWCVMHE (k = 5), and MMLSEMHE (k = 7) methods, respectively,
using the arctic hare image.

5.2 Histogram Equalization Methods for Color Image
Contrast Enhancement based on the RGB Color Space

In this section, a comparison among our proposed HE methods for color images and the ones
described in Section 4.2 is carried out. Firstly, a subjective assessment is used to compare the
visual quality of two images: the beach and the train. After, we define objective measures
to compare quantitatively the quality of the yielded images and the contrast improvement
obtained for the processed images. Finally, a run-time analysis of the HE methods for color
contrast enhancement images is performed.

5.2.1 Subjective Evaluation

In this section, we visually compare the processed images to the original ones, in order to
assess the quality of the processed images. The main goal is highlight how delicate it is to
evaluate subjectively enhanced images.

Figure 5.4 shows the results for the beach image. Note that unrealistic colors are present
in the image generated by the C1DHE method (Figure 5.4b). The image produced by the
TV3DHE method is overenhanced, producing oversaturated and bright colors (Figure 5.4c).
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(a) (b)

(c) (d)

(e)

Figure 5.4: Results for the beach (partial brazilian flag) image: (a) original image; (b) C1DHE;
(c) TV3DHE; (d) HP2DHE; (e) HP1DHE.

In turn, the image produced by our HP2DHE method (Figure 5.4d) is more realistic than all
the others. However, from another viewpoint, which considers the application in which the
methods are used, we can say that the output image of the TV3DHE method has better quality
than the others. This is because the water region in this particular image (Figure 5.4c) was
better enhanced. Despite these arguments, we can say that our HP1DHE method generates
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(a) (b)

(c) (d)

(e)

Figure 5.5: Results for the train image: (a) original image; (b) C1DHE; (c) TV3DHE; (d)
HP2DHE; (e) HP1DHE.

an image (Figure 5.4e) with a good balance between non oversaturated and realistic colors.
Figure 5.5 shows the results for the second image, the train. We observe that the TV3DHE

method produces an oversaturated image (Figure 5.5c), as it did for the beach image. The
images produced by our methods (Figure 5.5d and Figure 5.5e) are more real than the one
obtained by the TV3DHE method. However, some hidden details in dark regions continue to
be uncleared. In our opinion, the best enhancement is achieved by the image produced by the
C1DHE method (Figure 5.5b). This is because the image produced by the C1DHE method
presents colors which are more realistic for the green regions, and have more details than those
produced by the other three methods. However, again, note that in the sky portion of the
image unrealistic colors are produced by the C1DHE method.

From the discussion above, we claim that our methods produce images (Figures 5.4d, 5.4e,
5.5d, and 5.5e) with the best trade-off between the saturated colors and quality preservation
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(i.e., realistic images). That is, our methods produce images with colors that are more realistic
than the C1DHE (which is not hue preserving), and the images are not so saturated as the
ones produced by the TV3DHE method.

Nonetheless, we notice from the experiments just reported that it is difficult to assess
the quality of an enhanced image using only a subjective measure. Ideally, a more objective
and quantitative evaluation should be performed, allowing us to draw more clear and solid
conclusions.

5.2.2 Objective Evaluation

As noticed above, it is imperative to evaluate the image quality yielded by the HE methods
quantitatively, since subjective evaluation can be very application-dependent and not always
conclusive. Hence, here, we use quantitative measures to assess the quality of original and
processed images produced by the methods described in Section 4.2 and ours (presented in
Section 4.3), and then perform an objective comparison among them. We also evaluate the
contrast improvement by comparing the processed images to the original one.

The measures used for comparing the methods are defined in Section 5.2.2.1. The numerical
results obtained through these quantitative measures in a data set of 300 images taken from
the Berkeley University (Martin et al., 2001) are analyzed and discussed in Section 5.2.2.2.

5.2.2.1 Measures for Assessing Color Images Quality and Contrast

This section describes two types of measures that can be used to evaluate color images: a
color image quality mesure and a measure of contrast as defined bellow. The defined color
image quality measure (CIQM) (Yendrikhovskij et al., 1998b,a) is composed by the color image
naturalness and colorfulness indexes (two psycho-physical measures defined according to the
human vision system), and is used to verify if the HE methods preserve the quality of the
images. These measures are based on the CIELUV color space, and are described as follows.

The naturalness is the degree of correspondence between human perception and the reality
world. Based on assumptions experimentally proved, the CIE a∗b∗ or CIE u′v′ planes are
roughly divided into four privileged segments: achromatic, orange-yellow, yellow-green and
blue. The naturalness index is suggested to be computed as the sum of the naturalness indexes
of the privileged segments, weighted by the number of pixels within a privileged segment. In
turn, the naturalness index of a privileged segment is defined as a Gaussian density function
of the difference between the apparent color of the segment and the prototypical color of that
segment category. The colorfulness presents the color vividness degree. The colorfulness index
can be computed as a linear function of the average saturation of the image and its standard
deviation.

The naturalness and colorfulness indexes can be computed for every image without any
other additional information, such as a reference image, being provided. Hence, by using these
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quantitative measures based on the human vision system, we can compare the performance
of various histogram equalization methods for color image contrast enhancement without any
subjective evaluation.

In order to define the CIQM, we firstly calculate the color naturalness index (CNI)
and the colorfulness index (CCI). These two indices are defined in the CIELUV color
space (Yendrikhovskij et al., 1998b). Note that even though the conversion required for com-
puting the CIQMs are said to be standard, essential implementation details are no clear in
Yendrikhovskij et al. (1998b)

The first index, the CNI, is computed as follows:

1. Converting the image from the RGB color space to the CIELUV color space. This is
done by first converting the image from the RGB color space to the XY Z one (using
D65 white point), i.e.,




X

Y

Z


 =




0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505


×




d(R)
d(G)
d(B)


 , (5.1)

where

d(K) =





((K + 0.055)/1.055)2.4, if K > 0.04045

K/12.92, otherwise.
(5.2)

Having the image in the XY Z color space, we convert it to the CIELUV one, i.e.,

L∗ =





116(Y/Yn)1/3 − 16, if Y/Yn > 0.008856

903.3(Y/Yn), otherwise,
(5.3)

u∗ = 13L∗(u
′ − u

′
n), (5.4)

v∗ = 13L∗(v
′ − v

′
n), (5.5)

where
u
′
= (4X)/(X + 15Y + 3Z), (5.6)

v
′
= (9Y )/(X + 15Y + 3Z), (5.7)

and u
′
n and v

′
n are computed using the D65 white point - (Xn, Yn, Zn) =

(95.047, 100.000, 108.883), based on Equations 5.6 and 5.7.

2. Computing the hue (H∗
uv) and saturation (S∗uv), i.e.,

H∗
uv = arctan(v∗/u∗), (5.8)
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S∗uv = C∗
uv/L∗ =

√
(u∗)2 + (v∗)2/L∗. (5.9)

3. Thresholding the L∗ and S∗uv components, where L∗ values between 20 and 80 and S∗uv

values over 0.1 are kept.

0.4

0.5

0.6

0.3
0.05 0.15 0.25 0.35u’

v’

Figure 5.6: The "skin", "grass" and "sky" segments derived from the naturalness judgments
of the colors (Yendrikhovskij et al., 1998b). Ellipses: standard deviations of a Gaussian ap-
proximation to subject responses. Data are shown in the CIELUV color space.

4. Defining three kinds of pixels according to hue value (H∗
uv): 25 − 70 is called “skin"

pixels, 95 − 135 is called “grass" pixels, and 185 − 260 is called “sky" pixels, following
the Yendrikhovskij et al. (1998b)’s psychophysics studies. Note that saturation and hue
values are defined based on polar coordinates, and the hue varies from 0 to 360 degrees
(see Figure 5.6).

5. Computing the averaged saturation values for “skin" Sskin, “grass" Sgrass, and “sky"
Ssky pixels, i.e., respectively.
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6. Computing local CNI values for “skin" Nskin, “grass" Ngrass, and “sky" Nsky pixels:

Nskin = exp(−0.5((Sskin − 0.763)/0.524)2), 2 (5.10)

Ngrass = exp(−0.5((Sgrass − 0.810)/0.528)2), (5.11)

Nsky = exp(−0.5((Ssky − 0.432)/0.221)2). (5.12)

7. Finally, computing the global CNI value:

CNI =
(nskinNskin + ngrassNgrass + nskyNsky)

(nskin + ngrass + nsky)
. (5.13)

Note that the conversion described above is in low level of detail such that the numerical
results presented in this section can be easily reproduced.

Our second index, the CCI, can be easily computed as:

CCI = µS∗uv
+ σS∗uv

, (5.14)

where µS∗uv
and σS∗uv

stand for the mean and standard deviation of the saturation in CIELUV
(S∗uv), defined in Equation 5.9, respectively.

Having calculated these two indexes, we define the color image quality measure Q in terms
of CNI and CCI, i.e.,

Q = wCNI + (1− w)CCI/CCImax, (5.15)

where the weighting parameter w is set to 0.75 as suggested in Yendrikhovskij et al. (1998b),
and CCImax is set to 2.8396 following the maximum CCI value found in our experiments.
This first measure shows us the quality of both the original and the processed images in terms
of color.

The second measure is the image contrast, and is defined as follows. Let us firstly define
the regional standard deviation of the luminance, i.e.,

Lα
σ(x, y) =

√∑x+W
p=x−W

∑y+W
q=y−W (Lα(p, q)− Lα

µ(x, y))2

(2W + 1)2
, (5.16)

where

Lα
µ(x, y) =

1
(2W + 1)2

x+W∑

p=x−W

y+W∑

q=y−W

Lα(p, q), (5.17)

Lα stands either for the luminance L∗ in the CIELUV color space (defined as in Equation 5.3),
or for the luminance in the RGB color space, which is defined as the average of the three

2The values 0.763, 0.810, 0.432, 0.524, 0.528 and 0.221 were determined experimen-
tally (Yendrikhovskij et al., 1998b).



5. Experiments 62

channels R, G and B, i.e., LRGB = (Ri + Gi + Bi)/3, and the parameter W is setup to 24
(i.e., blocks of 49× 49 pixels as in Jobson et al. (2002)).

From here, we define the overall contrast of an image by the mean of the regional standard
deviations of the luminance (Jobson et al., 2002). This measure provides a gross measure of
the regional contrast variations, and it has been used by Huang et al. (2005) as a measure of
contrast in gray-level images.

Note that we define the contrast for the luminance in both the CIELUV and RGB color
spaces. In the CIELUV color space it is done because it is where the color quality image
measure is defined, and in the RGB color space because it is where our methods work. We do
that to highlight that the HE methods improve the contrast for the luminance in both color
spaces, as the analysis of the results, in the next section, will confirm.

5.2.2.2 Computational Results

This section presents and discusses the numerical results obtained by using the metrics
described in the previous section to evaluate the two proposed methods (HP1DHE and
HP2DHE) and the others described in Section 4.3 (C1DHE and TV3DHE) in a data set
composed of 300 images.

We compute, for both the original and the processed images, the contrast in both the
CIELUV and RGB color spaces, as described in Equation 5.16. We also compute the CIQMs,
as described in Equations 5.13, 5.14 and 5.15. Tables 5.5 and 5.6 show these data. Note that
the values in both tables are presented in the form µ±σ, i.e., the mean and standard deviation
obtained on the data set of 300 images. All images used and produced in this experiment can
be seen in Menotti (2008).

Table 5.5: Contrast for the images in the CIELUV and RGB color spaces

Method L∗ LRGB

Original 12.53 ± 15.86 31.13 ± 98.02
C1DHE 18.38 ± 14.28 47.11 ± 95.21
HP1DHE 18.14 ± 13.75 46.73 ± 92.33
HP2DHE 18.55 ± 15.29 47.02 ± 100.20
TV3DHE 13.30 ± 8.36 36.44 ± 59.64

Table 5.5 shows the contrast in both the CIELUV and RGB color space for the original
and processed images. From this table, we observe that the images processed by our methods,
i.e., HP1DHE and HP2DHE, have the value of the contrast increased, in average, about 50%
in both the CIELUV and RGB color space. The values of the contrast of images processed
by the C1DHE method increase in a similar fashion. In contrast, the TV3DHE method is the
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one which increases the less the contrast. Remark that, in general, the improvement of the
value of contrast in the CIELUV color space is proportional to the one in the RGB space (the
range of the CIELUV luminance is [0, 100] and the RGB luminance is [0, 255] (with L = 256)).
Confirming what we had hypothesized in the previous section, the HE methods increased the
contrast in both color spaces. From this first analysis, we state that our methods and the
C1DHE are effective in yielding significant increasing in the value of images contrast.

Table 5.6 shows the Q, CNI and CCI measures for the original and processed images.
Note that the first numerical column in this table reports the Q measure values, which are a
weighting function of the CNI and CCI measures. We observe that, in average, the images
processed by our methods have preserved the values of Q in the processed images close to
the value in the original ones. This means that our methods produce images with quality
similar to the original images. Also note that the images enhanced by the C1DHE method
have obtained similar Q values to the ones obtained by our methods. In contrast, the images
produced by the TV3DHE method have Q values quite smaller than the ones calculated from
the original images. This shows that the TV3DHE method yields images with deteriorated
color quality.

Table 5.6: Color Image Quality Measures

Method Q CNI CCI
Original 0.6754 ± 0.0195 0.8064 ± 0.0332 0.8026 ± 0.1234
C1DHE 0.6780 ± 0.0141 0.7834 ± 0.0260 1.0275 ± 0.1329
HP1DHE 0.6557 ± 0.0205 0.7829 ± 0.0351 0.7779 ± 0.0673
HP2DHE 0.6673 ± 0.0230 0.7828 ± 0.0408 0.9105 ± 0.0987
TV3DHE 0.5831 ± 0.0160 0.7197 ± 0.0247 0.4923 ± 0.0498

On the second numerical column of Table 5.6, we have the values for the CNI measure.
Observe that, in average, our methods and the C1DHE keep the naturalness of the produced
images close to the one in the original image, whereas the images produced by the TV3DHE
method have CCI values significantly smaller than the ones obtained from the original images.

On the third numerical column of Table 5.6, we report the values for the CCI measure.
Observe that the CCI measure is based on the mean and standard deviation of the saturation
of the image in the CIELUV color space. The results reported show that, in average, the
C1DHE method is the one that more frequently increases the value of the CCI measure from
the original to the processed images. It achieves such result because it equalizes the three R,
G and B 1D histograms freely and separately. On the other hand, the C1DHE method has
the well-known drawback of not being hue-preserving, which will be discussed and illustrated
further in this section. The images produced by the TV3DHE method, in average, do not
preserve both the CNI and CCI values and, consequently the Q value, close to the values of
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the original images. The fact that the TV3DHE method produces images with CCI values
quite different from the ones in the original images corroborates the hypothesis previously
subjectively stated in Section 5.2.1 (and in Menotti et al. (2006, 2007b)) that the TV3DHE
method produces overenhanced/oversatured images. That is, in general the saturation values
of the images produced by the TV3DHE method are smaller than the saturation values of the
images produced by the other methods, and so are their variances.

From the analysis regarding the contrast and the CIQMs, we claim that: 1) The contrast
of the images processed by our HP1DHE and HP2DHE methods is in average 50% greater
than the contrast of the original images, whilst the color quality, measured by the naturalness
and colorfulness indexes, of the processed images are close to the ones of the original image; 2)
The TV3DHE method is the one that shows the smaller improvement on the contrast of the
original image. Moreover, it produces images overenhanced, deteriorating the color quality of
the images; 3) The results achieved for contrast enhancement and color quality preservation
by the C1DHE method are as good as our methods.

Besides the good results that our numerical analysis attributed to the C1DHE method,
the C1DHE is not suitable for real-world applications because the images produced by it do
not preserve the hue of the original image. As a result, the images produced by the C1DHE
method may have unnatural colors, even though the CNI, CCI and, consequently, Q, indicate
that the images produced by the C1DHE method have image color quality close to the ones
of the original images. These contradictory results show that the CQIMs used in this work
have a drawback. They can quantitatively represent the color quality of a image by means
of the naturalness and colorfulness indexes, but they do not take into account simultaneously
the original and processed images in such assessment.

Note that we could perform changes in the TV3DHE method in order to make it faster
and hue-preserving, by applying our shift-hue-preserving transformation. Nonetheless, even
after these modifications, the images enhanced by the the TV3DHE method would continue
to be overenhanced and the contrast improvement would not be significant.

Despite the good results that our numerical analysis attributed to the C1DHE method
and the fact that it is six times faster than our methods, the C1DHE is not suitable for
real-world applications: the images produced by this method do not preserve the hue of the
original image. As a result, the images produced by the C1DHE method may have unnatural
colors, even though the CNI, CCI and, consequently, Q indexes indicate that the images
produced by the C1DHE method have image color quality close to the ones of the original
images. These contradictory results show that the CQIMs used in this work have a drawback.
They can quantitatively represent the color quality of an image by means of the naturalness
and colorfulness indexes, but they do not take into account simultaneously the original and
processed images in such assessment.

In order to exemplify the conclusions reached, we will carefully analyze one example of an
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(a) (b)

(c) (d)

(e)

Figure 5.7: Results for the landscape image: (a) original image; (b) C1DHE; (c) TV3DHE;
(d) our HP1DHE; (e) our HP2DHE.

image extracted out of the 300 presented in the database, namely landscape. Table 5.7 shows
the contrast and the CNI, CCI and Q values for the original and processed landscape images
in Figure 5.7. Figure 5.7b shows the landscape image processed by the C1DHE method, and
highlights the fact that it is not hue-preserving. We observe that the colors present in the
image in Figure 5.7b look unnatural with respect to the original image in Figure 5.7a, even
through the CNI, CCI and Q values of the processed image is close to the ones in the original
image. We can also observe that the image produced by the TV3DHE method in Figure 5.7c is
overenhanced, i.e., the colors are oversaturated, as explained before in this section. Moreover,
we can see that the increase in the value of the image contrast produced by the TV3DHE
method is the smallest among the compared methods, as shown in Table 5.7.
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Finally, the claims about our methods are verified in the images in Figures 5.7d and 5.7e
and confirmed in Table 5.7. As observed, the images have their contrast value increased by
in average 50%, while their color quality measures values are kept close to the ones of the
original images. Furthermore, recall that our methods are hue-preserving.

Table 5.7: Color Image Quality and Contrast Measures for the Images in Figure 5.7.

Method Color Quality Contrast
Q CNI CCI CIELUV RGB

Original 0.7038 0.8540 0.7196 7.00 17.03
C1DHE 0.7681 0.9292 0.8089 12.09 30.32
HP1DHE 0.7210 0.8725 0.7575 11.50 28.98
HP2DHE 0.6504 0.7688 0.8381 11.00 27.59
TV3DHE 0.7140 0.9004 0.4392 8.76 23.68

5.2.3 Run-time Analysis

In this section, we analyze the run-time behavior of the C1DHE, TV3DHE, HP1DHE and
HP2DHE methods with respect to the image dimension, in order to confirm the time com-
plexity of the methods as exposed in Section 4.4. Other factors that affect the run-time of the
methods are also analyzed. Nonetheless, in the experiments of this section, we consider the
number of levels of each channel constant, i.e., L = 256.

In order to perform this analysis, we build a setup as follows. We select three images (the
train, beach and landscape), and reshape and resize each one of them in seven different image
dimensions, starting from 128 × 128 pixels, and increasing by a multiplicative factor of 2 up
to 1024× 1024 pixels, i.e., 128× 128, 256× 128, 256× 256, 512× 256, 512× 512, 1024× 512
and 1024× 1024. We end up with twenty one images to be used for run-time analysis of the
four methods.

In order to collect unbiased run-times, we randomly select and run each one of these images
as input for each method ten times. Table 5.8 shows the average run-time measured to run
the images for the methods. Note that the time for loading and saving the image files are also
take into account.

Although the C1DHE method is in average about five times faster than ours, recall that
it is not hue-preserving. In contrast, our HP1DHE and HP2DHE methods are, in average,
seven times faster than the TV3DHE method. These last two statements are based on a linear
regression on the data presented in Table 5.8. Note that, in average, our methods enhance
images of 512 × 512 pixels in about 100 milliseconds on a Pentium 4 - 2GHz. This run-time
complies with real-time applications.
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Table 5.8: Average run-time in milliseconds for analysis.

Image Dimension C1DHE TV3DHE HP1DHE HP2DHE
128× 128 4 737 11 20
256× 128 8 786 18 28
256× 256 10 876 32 41
512× 256 15 1049 52 61
512× 512 24 1399 95 104
1024× 512 38 2068 181 193
1024× 1024 66 3272 350 371
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Figure 5.8: Run-time curves of the C1DHE, TV3DHE, HP1DHE and HP2DHE methods.

Figure 5.8 shows the run-time curves of the four methods built based on the data in
Table 5.8. As we can observe, the slant (i.e., the angular coefficient) of the TV3DHE curve is
much bigger than the others. This fact can be explained by the slow, iterative and not hue-
preserving third step of the TV3DHE, i.e., the histogram equalization step - ©(3(L− 1)).
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Also observe that the linear coefficient of the run-time curves of the methods based on
1D and 2D histograms (our HP1DHE and HP2DHE methods and the C1DHE one) is much
lower than the one based on 3D histograms (TV3DHE method). This difference is clearly
explained by the cost of storing/computing the 3D histograms.
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Figure 5.9: Run-time curves of the C1DHE, HP1DHE and HP2DHE methods.

In order to highlight the difference among the run-time curves of the methods based on
1D and 2D histograms, Figure 5.9 shows the run-time curves of the C1DHE, HP1DHE and
HP2DHE methods. We note that the computational time of the HP2DHE method is slightly
more expensive than the HP1DHE one. This is because the HP2DHE method uses 2D

histograms instead of 1D histograms - this is the only difference on the implementation of
these methods. In the graph of Figure 5.9, it is clear that the C1DHE method is faster than
ours. Nonetheless, once more, note that the C1DHE is not hue-preserving.
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5.3 Conclusion

In this chapter, we firstly showed results of experiments regarding the multi-histogram equal-
ization methods for gray-level image contrast enhancement. These experiments showed that
our methods are better on preserving the brightness of the processed image (in relation to
the original one) and yielding images with natural appearance, at the cost of contrast en-
hancement. These experiments bring two major contributions to the current literature: 1)
An objective comparison among all the HE studied methods using quantitative measures,
such as the PSNR, brightness and contrast; 2) An analysis showing the boundaries of the
HE technique and its variations (i.e., Bi- and Multi-HE methods) for contrast enhancement,
brightness preserving and natural appearance.

In the second part of this chapter, we presented experiments regarding the histogram
equalization methods for color image contrast enhancement. We firstly performed an subjec-
tive assessment on the quality of the processed images with respect to the original one, which
was not conclusive. After, we evaluated the processed images objectively by using measures
of contrast, naturalness and colorfulness on a database composed of 300 images, such that a
quantitative comparison could be performed. The analysis of the experiments showed that the
value of the contrast of the images produced by our methods is in average 50% greater than
the original value. Simultaneously, our HP1DHE and HP1DHE methods keep the quality of
the image in terms of naturalness and colorfulness close to the quality of the original image.
The same results are achieved by the C1DHE method. However, this classical method does
not preserve the hue and produces images that are not realistic with respect to the original
image. Finally, we performed a runtime analysis confirming the time and space complexities
of the methods for color image contrast enhancement.

In the next chapter, we point out the conclusions of this work.



Chapter 6

Conclusion and Future Work

This work presented two new types of methods for image contrast enhancement through his-
togram equalization. The main motivation to use methods based on histogram equalization
to improve contrast in images was their simplicity and appropriateness for real-time applica-
tions (Woods and Gonzalez, 1981; Reza, 2004). Whereas the first type of proposed methods
is suitable for gray-level images, the second type can be applied to color images.

The gray-level multi-histogram equalization methods, introduced in Chapter 3, differ from
other methods previously proposed in the literature in one major point. They segment
the image into several sub-images based on discrepancy functions borrowed from the multi-
thresholding literature, instead of using image statistical features. As showed by experiments
reported in Section 5.1, the proposed methods are successful in enhancing the contrast of
images while preserving their brightness and avoiding the appearance of unnatural artifacts.
Furthermore, although the proposed methods used a more sophisticated technique to decom-
pose the original image than the other methods described in this thesis, they are still fast and,
consequently, suitable to be applied to real-time problems.

The fast hue-preserving histogram equalization methods for color image contrast enhance-
ment, proposed in Chapter 4, also showed to be able to produce images with colors which
are more realistic than the ones produced by methods which are not hue-preserving. Besides,
the produced images were also not as saturated as the ones produced by other histogram
equalization methods we compared them to.

We also performed an objective and quantitative evaluation of the output images using
measures based on the human vision system, such as the naturalness and the colorfulness
indexes. The motivation for it was that subjective assessment carried out to judge the quality
of the color images produced by contrast enhancement methods is not very effective. Indicating
the best method over all the compared ones is not a straightforward task.

It is important to note that, to the best of our knowledge, this is the first work to evaluate
histogram equalization methods with a well-known database of 300 images by using measures
such as naturalness and colorfulness.
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6.1 Future Work

In this section we present future work as possible extensions of this thesis.

6.1.1 Polar Color Spaces

The histogram equalization method for color images proposed in Chapter 4 is based on the
RGB color space. However, the RGB color space is not the only one which can be used when
working with images. In special, there is a set of color spaces called polar spaces. Polar
spaces, introduced in the late seventies (Smith, 1978), are transformations of the RGB color
space, and include the HSV (hue, saturation, value) color space – also known as HSB (hue,
saturation, brightness), and the HSL (hue, saturation, lightness/luminance) color space – also
known as HLS or HSI (hue, saturation, intensity). The main difference between the HSL and
the HSV color spaces is that the brightness of a pure color is equal to the brightness of white,
whereas the lightness of a pure color is equal to the lightness of a medium gray-level.

The polar spaces are often used by artists instead of the RGB color space because it is
often more natural to think about a color in terms of hue and saturation, instead of in terms
of additive or subtractive color components. With this in mind, we plan to develop a method
for image contrast enhancement using the polar color space. This method would also be based
on histogram equalization techniques, as the two other methods proposed in this work.

However, note that the polar spaces were not conceived neither for processing purposes nor
for the current computing facilities. For this reason, these color spaces are not coherent with
the theory of synthesis of colors (Newton’s Disk) (Newton, 1672). In other words, these colors
spaces are not able to perform image processing transformations such that coherent colors are
yielded (e.g., according to the Newton theory of synthesis, summing up the colors red and blue
should result in the color magenta). Hence, Serra (2005) proposed L1− L2 norms to correct
this problem, and make the polar color spaces adequate to perform color transformations.

Recently, Angulo (2007) started analyzing the impact of these corrections proposed by
Serra (2005) while performing image contrast enhancement through spatial smoothing using
morphological operators. In future work, we also propose to make a similar analyze to the
one done by Angulo (2007), but using histogram equalization methods. The main motivation
for that is to verify the impact of the correction on polar color spaces when applied to color
image contrast enhancement.

6.1.2 Color Quality Measures

The drawbacks pointed out in Chapter 5, regarding the proposed color quality measures,
should be considered for future work. We plan to modify the current measures by taking into
account the original and processed images simultaneously, in order to define new measures of
color image quality measure.



Appendix A

Other Research Studies

During the doctorate period, the PhD student worked in parallel on other research subjects.
Some of them are briefly shown in the followings.

A.1 1D Component Tree in Linear Time and Space and its
Application to Gray-Level Image Multithresholding

The upper-weighted sets of a signal are the sets of points with weight above a given threshold.
The components of the upper-weighted sets, thanks to the inclusion relation, can be organized
in a tree structure, which is called the component tree. In Menotti et al. (2007a), we present
a linear time and space algorithm to compute the component tree of one-dimensional signals.

From this algorithm we derive an efficient gray-level image multithresholding method,
which is based on the hypothesis that objects which appear on an image can be represented
by salient classes present in the histogram of this image. These classes are modelled as
the most significative components of the histogram’s component tree, where the importance
corresponds to the volume attribute. We show results of the proposed method and compare
it with classical methods.

A.2 Segmentation of Envelopes and Address Block Location

Although nowadays there are working systems for sorting mail in some constrained ways,
segmenting gray-level images of envelopes and locating address blocks in them is still a difficult
problem. Pattern Recognition research has contributed greatly to this area since the problem
concerns feature design, extraction, recognition, and also the image segmentation if one deals
with the original gray-level images from the beginning.

The problem consists of segmenting and locating the address block in postal envelopes.
The aim is to automatically separate in postal envelopes the regions related to background,
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stamps, rubber stamps, and the address blocks. We worked with three different approaches
for solve the problem.

The first one is based on statistical hypothesis testing and feature selection in the wavelet
space (Menotti and Borges, 2007; Menotti et al., 2004b, 2003b,a). First, a typical image of a
postal envelope is decomposed using Mallat algorithm and Haar basis. High frequency channel
outputs are analyzed to locate salient points in order to separate the background. A statistical
hypothesis test is taken to decide upon more consistent regions in order to clean out some
noise left. The selected points are projected back to the original gray-level image, where the
evidence from the wavelet space is used to start a growing process to include the pixels more
likely to belong to the regions of stamps, rubber stamps, and written area.

We also proposed two other approaches which are based on fractal dimension
(Eiterer et al., 2004b,a,c) and lacunarity (Facon et al., 2005). These approaches are variants
of the first approach on the feature selection step, i.e., instead of using the wavelet space, we
use fractal dimension and lacunarity as features to solve the problem.

We evaluate all these works by a pixel to pixel accuracy measure (Menotti et al., 2004a)
using a ground truth database composed of 200 real images with different layouts and back-
grounds. Success rate for address block location reached is over 90%.

A.3 Statistical Hypothesis Testing and Wavelet Features for
Region Segmentation

In Menotti et al. (2005), we introduce a novel approach for region segmentation. In order to
represent the regions, we devise and test new features based on low and high frequency wavelet
coefficients which allow to capture and judge regions using changes in brightness and texture.
A fusion process through statistical hypothesis testing among regions is established in order
to obtain the final segmentation. The proposed local features are extracted from image data
driven by global statistical information. Preliminary experiments show that the approach can
segment both texturized and regions cluttered with edges, demonstrating promising results.
Hypothesis testing is shown to be effective in grouping even small patches in the process.

A.4 A New Algorithm for Constructing Minimal Perfect Hash
Functions

In Botelho et al. (2004), we present a three-step algorithm for generating minimal perfect
hash functions which runs very fast in practice. The first step is probabilistic and involves the
generation of random graphs. The second step determines the order in which hash values are
assigned to keys. The third step assigns hash values to the keys. We give strong evidences
that first step takes linear random time and the second and third steps take deterministic
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linear time. We improve upon the fastest known method for generating minimal perfect
hash functions. The total time to find a minimal perfect hash function in a PC computer
took approximately 175 seconds for a collection of 20 million keys. The time to compute a
table entry for any key is also fast because it uses only two different hash functions that are
computable in time proportional to the size of the key. The amount of space necessary to
store the minimal perfect hash function is approximately half the space used by the fastest
known algorithm.
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