Fabiano Cupertino Botelho
Orientador - Nivio Ziviani

Algoritmos de Espaco Quase Otimo

Para Hashing Perfeito

Tese de doutorado apresentada ao Pro-
grama de Pods-Graduagao em Ciéncia da
Computacao da Universidade Federal de
Minas Gerais, como requisito parcial para
a obtencao do grau de Doutor em Ciéncia

da Computagao.

Belo Horizonte
29 de Setembro de 2008

A minha querida esposa Janaina.
Aos meus queridos pais Maria Licia e José Vitor.

As minhas queridas irmas Gleiciane e Cristiane.

Agradecimentos

A Deus por ter concedido a mim vida e sabedoria para realizar um sonho de infancia e

pela grande ajuda nos momentos dificeis.

A minha querida esposa Janaina Marcon Machado Botelho pelo amor, compreensao pelos
varios momentos em que nao pude lhe dar a atencao merecida, companheirismo e
incentivo durante momentos nos quais tive vontade de desistir de tudo. Obrigado
Jana por compartilhar comigo sua vida e as vitorias conquistadas durante todo o

doutorado. Com a graca de Deus em nossas vidas continuaremos a ser muito felizes.

Aos meus queridos pais Maria Licia de Lima Botelho e José Vitor Botelho pelos sacrificios

realizados no passado que deram suporte para esta conquista.

As minhas queridas irmas Cristiane Cupertino Botelho e Gleiciane Cupertino Botelho,

pelo carinho e amor das duas melhores irmas do mundo.

Aos meus queridos tios Marcia Novaes Alves e Sudario Alves, os quais sempre me acol-

heram com todo carinho, dando muito apoio durante todo o doutorado.

Ao Prof. Nivio Ziviani pelo excelente trabalho de orientacao e pelo exemplo de profis-
sionalismo e dedicacao ao trabalho. Sua grande experiéncia em pesquisa académica
e, em especial, nas areas de recuperacao de informacao e de algoritmos foram fun-
damentais para a realizacao desta tese. Além disto, seu excelente apoio, atencao
e incentivo foram de suma importancia nao somente para realizacao do doutorado,

como também, para minha formacao académica e profissional.

Ao Prof. Rasmus Pagh com quem tanto aprendi sobre técnicas de projeto e andlise
de algoritmos de hashing, sendo crucial sua participacao durante a realizacao deste
trabalho de tese.

Ao Prof. Yoshiharu Kohayakawa pela atencao dedicada nas discussoes que contribuiram
para melhorar a qualidade deste trabalho. Agradeco também por receber-me no
Instituto de Matematica e Estatistica da Universidade de Sao Paulo e por todo apoio

dado ao meu trabalho no periodo em que estive em Sao Paulo.

Ao Prof. Edleno Silva de Moura pela confianca depositada em mim e pelo incentivo
de sempre. Agradego também por receber-me no Departamento de Ciéncia da Com-

putacao da Universidade Federal do Amazonas no periodo em que estive em Manaus.

Aos demais membros da banca, professores Gaston Gonnet, Antonio Alfredo Loureiro,
Wagner Meira Jr. e Jayme Luiz Szwarcfiter por terem aceitado participar da avaliagao

desta tese e pelas criticas e sugestoes pertinentes.

A Djamal Belazzougui pelas sugestoes e contribuicoes inteligentes feitas a este trabalho
de tese e a biblioteca CMPH.

A Davi Reis por ter concebido a idéida da biblioteca CMPH, a qual foi fundamental para

divulgar os resultados obtidos nesta tese.

Ao colega e amigo Marco Antonio Pinheiro de Cristo pelos divertidos momentos que

passamos juntos durante nossas aulas de inglés e pelo incentivo de sempre.
Ao colega e amigo Thierson Couto pela amizade, e por estar sempre pronto a colaborar.

Ao colega e amigo David Menoti pelas discussoes, sugestoes e criticas que muito con-

tribuiram no inicio deste trabalho de tese.

Ao colega e amigo David Fernandes por ter me recebido em sua casa durante o periodo

que passei em Manaus e pela amizade de sempre.

Aos colegas e amigos do nosso grande e inesquecivel time de futebol Curucu e as suas
respectivas esposas pela amizade conquistada durante o periodo em que passamos
juntos. Obrigado Pedro Neto, Mauricio Figueiredo, Eduardo Freire Nakamura,
Ruiter Caldas, André Lins, José Pinheiro, Guillermo Camara Chavez, Martin Gomez
Ravetti, David Patricio Viscarra del Pozo e David Menotti pelos momentos super

divertidos que serviram para aliviar o estresse desse dificil periodo de doutorado.

Aos colegas e amigos do periodo de graduacao que, por meio da lista de discussao intri-

gas99, sempre me apoiaram estando perto ou distantes. Agradeco a todos também

Aos

Aos

Aos

pelas boas risadas que dei ao ler os emails da lista, o que com certeza ajudou e muito

a aliviar a tensao em momentos dificeis.

colegas e amigos do Laboratério para Tratamento da Informagao (LATIN) Anisio
Mendes Lacerda, Alvaro Pereira Jr., Charles Ornelas Almeida, Claudine Santos
Badue, Daniel Galinkin, Denilson Pereira, Guilherme Vale Menezes, Hendrickson R.
Langbehn, Humberto Mossri, Marco Antonio Pinheiro de Cristo, Marco Aurélio Bar-
reto Modesto, Pavel Calado e Wladmir Cardoso Brandao pelas criticas e sugestoes

dadas durante a preparacao da defesa e pelo clima de amizade que estabelecemos
dentro do LATIN.

professores e funcionarios do Departamento de Ciéncia da Computacao da Univer-
sidade Federal de Minas Gerais que de varias formas contribuiram para a conclusao
deste trabalho.

professores e funcionarios do Departamento de Computacao do Centro Federal de
Educagao Tecnoldgica de Minas Gerais por terem me recebido tao bem e com tanto

respeito para integrar a equipe do Departamento.

As bolsas concedidas pelos érgaos de fomento CAPES (Coordenacao de Aperfeicoamento

de Pessoal de Nivel Superior) e CNPq (Conselho Nacional de Desenvolvimento
Cientifico e Tecnoldgico), as quais serviram como subsidio durante o tempo dedi-

cado a este trabalho de tese.

Abstract

A perfect hash function (PHF) h : S — [0,m — 1] for a key set S C U of size n, where
m > n and U is a key universe, is an injective function that maps the keys of S to unique
values. A minimal perfect hash function (MPHF) is a PHF with m = n, the smallest possi-
ble range. Minimal perfect hash functions are widely used for memory efficient storage and
fast retrieval of items from static sets, such as words in natural languages, reserved words
in programming languages or interactive systems, universal resource locations (URLs) in
web search engines, or item sets in data mining techniques.

In this thesis we present a simple, highly scalable and near-space optimal perfect hashing
algorithm. Evaluation of a PHF on a given element of S requires constant time, and the
dominating phase in the construction algorithm consists of sorting n fingerprints of O(log n)
bits in O(n) time. The space usage depends on the relation between m and n. For m =n
the space usage is in the range 2.62n to 3.3n bits, depending on the constants involved
in the construction and in the evaluation phases. For m = 1.23n the space usage is in
the range 1.95n to 2.7n bits. In all cases, this is within a small constant factor from the
information theoretical minimum of approximately 1.44n bits for MPHFs and 0.89n bits for
PHF's, something that has not been achieved by previous algorithms, except asymptotically
for very large n. This small space usage opens up the use of MPHFs to applications for
which they were not useful in the past.

We demonstrate the scalability of our algorithm by constructing an MPHEF for a set of
1.024 billion URLs from the World Wide Web of average length 64 characters in approx-
imately 50 minutes, using a commodity PC. We also present a distributed and parallel
implementation of the algorithm, which generates an MPHF for the same URL set, using
a 14 computer cluster, in approximately 4 minutes, achieving an almost linear speedup.
Also, for 14.336 billion 16-byte random integers distributed among the 14 participating ma-
chines, the algorithm outputs an MPHF in approximately 50 minutes, with a performance
degradation of 20%.

Resumo

Uma fungao hash perfeita (FHP) h : U — [0, m — 1] para um conjunto de chaves S C U
de tamanho n, onde m > n e U é um universo de chaves, é uma funcao injetora que
mapeia as chaves de S para valores unicos. Uma fungao hash perfeita minima (FHPM)
¢ uma FHP com m = n, o menor intervalo possivel. Funcoes hash perfeitas minimas sao
amplamente utilizadas para armazenamento eficiente e recuperacao rapida de itens de con-
juntos estaticos, como palavras em linguagem natural, palavras reservadas em linguagens
de programagao ou sistemas interativos, URLs (universal resource locations) em méaquinas
de busca, ou conjuntos de itens em técnicas de mineragao de dados.

Nesta tese nés apresentamos um algoritmo de hashing perfeito altamente escalavel e
de espago quase 6timo. A avaliagao de uma FHP sobre um dado elemento de S requer
tempo constante, e a fase dominante no algoritmo de construcao consiste da ordenacao
de n fingerprints de O(logn) bits em tempo O(n). A utilizagdo de espago depende da
relacao entre m e n. Para m = n a utilizacao de espago esta dentro do intervalo 2,62n
a 3,3n bits, dependendo das constantes envolvidas nas fases de construcao e avaliacao.
Para m = 1,23n a utilizacao de espaco esta dentro do intervalo 1,95n a 2,7n bits. Em
todos os casos, isto estd distante por um pequeno fator constante do minimo tedrico de
aproximadamente 1,44n bits para FHPMs e 0,89n bits para FHPs, uma coisa que nao
foi alcancada por algoritmos anteriores, exceto assintéticamente para valores de n muito
grandes. Esta pequena utilizacao de espacgo permitiu o uso de FHPMs em aplicagoes para
as quais elas nao eram uteis no passado.

No6s demonstramos a escalabilidade do nosso algoritmo ao construir uma FHPM para
um conjunto de 1,024 bilhoes de URLs da World Wide Web de tamanho médio igual a
64 caracteres em aproximadamente 50 minutos, usando um PC comodite. Nés também
apresentamos uma implementacao distribuida e paralela do algoritmo, a qual gera uma
FHPM para o mesmo conjunto de URLs, usando um cluster de 14 computadores, em
aproximadamente 4 minutos, alcancando um speedup quase linear. Além disso, para 14, 336
bilhoes de ntimeros inteiros de 16 bytes gerados aleatoriamente e distribuidos entre as 14
maquinas participantes, o algoritmo gera uma FHPM em aproximadamente 50 minutos,

com uma degradacao de desempenho de 20%.

Artigos Publicados

1. F.C. Botelho, Y. Kohayakawa, and N. Ziviani. A practical minimal perfect hashing
method. In Proceedings of the 4th International Workshop on Efficient and Experi-
mental Algorithms (WEA’05), pages 488-500. Springer LNCS vol. 3503, 2005.

2. F.C. Botelho, R. Pagh, and N. Ziviani. Simple and Space-Efficient Minimal Perfect
Hash Functions. In Proceedings of the 10th Workshop on Algorithms and Data
Structures (WADS’07), pages 139-150. Springer LNCS vol. 4619, 2007.

3. F.C. Botelho, and N. Ziviani. External Perfect Hashing for Very Large Key Sets.
In Proceedings of the 16th Conference on Information and Knowledge Management
(CIKM’07), pages 653-662, ACM Press, 2007.

4. F.C. Botelho, D. Galinkin, W. Meira Jr., and N. Ziviani. Distributed Perfect Hashing
for Very Large Key Sets. In Proceedings of the 3rd International ICST Conference
on Scalable Information Systems (InfoScale’08), Naples, Italy, June 2008.

5. F.C. Botelho, H.R. Langbehn, G.V. Menezes, and N. Ziviani. Indexing Internal
Memory with Minimal Perfect Hash Functions. In Proceedings of the 23rd Brazilian
Symposium on Database (SBBD’08), Campinas, Brazil, October 2008.

Resumo Estendido

Introducao

A necessidade de acesso a itens com base no valor de uma chave é omnipresente em areas
como inteligéncia artificial, estruturas de dados, banco de dados, mineragao de dados e recu-
peracao de informacao. Alguns tipos de bases de dados sao atualizados apenas raramente,
geralmente por atualizagoes periddicas feitas em lote. Isso é verdade, por exemplo, para a
maioria das aplicagoes em data warehousing (veja [71] para mais exemplos e discussoes).
Em tais cenarios, é possivel melhorar o desempenho do processamento de consultas por
meio da utilizacao de fungoes hash perfeitas minimas para criar representacoes compactas

das chaves.

Em aplica¢oes onde o conjunto de chaves é fixo por um longo periodo de tempo, a
construcao de uma fungao hash perfeita minima pode ser feita como parte da fase de
pré-processamento. Por exemplo, aplica¢oes OLAP (On-Line Analytical Processing) fazem
uso extensivo de pré-processamento de dados para otimizar ao maximo o processamento
de certos tipos de consultas. Mais formalmente, dado um conjunto estatico de chaves
S C U de tamanho n, sendo suas chaves provenientes de um universo de chaves U de
tamanho u, onde cada chave estd associada com dados satélites, a questao que nds estamos
interessados é: quais sao as estruturas de dados que proporcionam o melhor compromisso

entre utilizagao de espaco e tempo de consulta?

A utilizacao de uma tabela indexada por uma funcao hash consiste em uma estrutura
de dados que permite a realizacdo de consultas eficientemente (custo constante no caso
médio). Considerando S C U e dada uma chave = € S, uma func¢ao hash h computa um
inteiro no intervalo [0, m — 1] para o armazenamento ou recuperacao de x em uma tabela
hash. Métodos de hashing para conjuntos de chaves nao estaticos podem ser usados para
construir estruturas de dados que armazenam S e suportam consultas do tipo “z € S7”

com custo esperado de tempo O(1). No entanto, esses métodos envolvem perda de espago

devido a localizagoes nao utilizadas na tabela e perda de tempo para resolver colisoes
quando duas chaves sao mapeadas para a mesma entrada da tabela.

Hashing perfeito é uma forma eficiente em espago para criar representacoes compactas
de um conjunto estatico S contendo n chaves. Para aplicagbes com somente pesquisas com
sucesso, a representacao de uma chave x € S é simplesmente o valor de h(z), onde h é
uma fungao hash perfeita (FHP) para o conjunto S de valores considerados. A palavra
“perfeita” refere ao fato de que a funcao mapeara os elementos de S para valores tnicos.
Fungoes hash perfeitas minimas (FHPM) produzem valores que sdo inteiros no intervalo
[0,n — 1], que é 0 menor intervalo possivel. A Figura 1(a) ilustra uma func¢ao hash perfeita

e a Figura 1(b) ilustra uma func¢do hash perfeita minima.

0o 1 2 n-1
[T T T T T T T] conjuntode Chave

Tabela Has
0 1 2 ree m-1
0 1 2 . n-1
[T T T T T T T] conjuntode Chave
[T T T [[T T] TabelaHash
0 1 2 ree n-1

Figura 1: (a) Funcao hash perfeita (b) Fungao hash perfeita minima.

Uma vez que colisoes nao ocorrem nas FHPs e FHPMs, cada chave pode ser recuperada
da tabela com um tnico acesso. FHPMs evitam completamente o problema de desperdicio
de espago e tempo. Melhor ainda, foi observado em [56] que FHPMs também evitam cache
misses que acontecem devido aos esquemas de resolugao de colisoes, como enderecamento
aberto e encadeamento [51]. Isso ocorre porque tais fungoes fazem, no pior caso, um tnico
acesso a tabela hash.

Funcoes hash perfeitas minimas sao usadas para armazenamento eficiente e recuperacao
rapida de itens provenientes de conjuntos estéticos, tais como palavras em linguagem na-
tural, palavras reservadas em linguagens de programacao ou sistemas interativos, conjun-
tos de itens em técnicas de mineracao de dados [21, 22|, tabelas de roteamento e outras
aplicacoes na érea de redes [66], dados espaciais esparsos [54], compressao de grafos [7] e,
para representar grandes mapas da web [27].

Uma FHP depende completamente do conjunto S de chaves. E sabido que manter

uma FHP em aplicacoes dinamicas, nas quais ocorrem insercoes no conjunto S, é somente

i

possivel usando espago que é super-linear em n [28]. No entanto, neste trabalho nds
consideramos o caso onde S é fixo, e a construcao de uma FHP pode ser feita como parte

do pré-processamento dos dados (por exemplo, em aplicagdes de data warehouse).

Os métodos de hashing perfeito conhecidos na literatura nao sao capazes de gerar
fungoes que podem ser armazenadas utilizando um nimero constante de bits por elemento
para conjuntos de dados de tamanhos realisticos. Todos os métodos anteriores ou sofrem
de um compreendimento tedrico incompleto e, portanto, nao existem garantias de que
eles funcionem bem para qualquer conjunto de chaves, ou nao sao praticos devido a um
procedimento complicado de avaliacao da funcao, que na maioria das vezes é também

ineficiente.

Até este trabalho de tese, por causa das limitagoes dos algoritmos existentes, o uso de
FHPMs era restrito a cenarios onde o conjunto de chaves era relativamente pequeno. No
entanto, em muitos casos, a demanda para se tratar conjuntos de chaves muito grandes de
forma eficiente estd crescendo. Por exemplo, maquinas de busca estao indexando dezenas
de bilhdes de paginas e algoritmos como PageRank [16], o qual utiliza o grafo da web
para derivar uma medida de popularidade para paginas web, poderia se beneficiar de uma
FHPM para mapear URLs que ocupam muitos bytes para ntimeros inteiros que ocupam
poucos bytes e sao utilizados como identificadores para as paginas. Os numeros inteiros

obtidos no mapeamento correspondem ao conjunto de vértices do grafo da web.

Embora uma quantidade consideravel de trabalho sobre como construir boas FHPs
tenha sido realizado nos ultimos vinte anos na literatura de hashing perfeito, existe uma
lacuna entre teoria e pratica em todos os métodos de hashing perfeito anteriores. Por um
lado, existem bons resultados tedricos sem comprovacao experimental da sua aplicabili-
dade para grandes conjuntos de chaves. Por outro lado, existem os algoritmos que fazem
suposicoes nao realisticas para analisarem teoricamente tanto o tempo de execucao quanto

0 espaco necessario para descrever as fungoes.

Nesta tese sao apresentados novos algoritmos para construir FHPs e FHPMs que,
além de serem melhores do que os principais algoritmos praticos disponiveis na literatura,
também sao bem compreendidos teoricamente. Consequentemente, um importante passo
foi dado para preencher a lacuna existente entre teoria e pratica nos métodos de hashing
perfeito. Noés também mostramos que os novos algoritmos viabilizaram a utilizacao de
FHPMs em aplicagoes nas quais tais fungoes nao eram consideradas uma boa opc¢ao no
passado. Por fim, os resultados desta tese permitem a construcao de FHPMs que escalam

facilmente para conjuntos contendo bilhoes de elementos.

il

Definicoes e Notacao

Nesta secao apresentamos algumas definicoes e a notacao usada ao longo deste trabalho.

O objetivo é estabelecer um vocabulario comum que serd usado por toda a tese.

Definicao 1 Uma chave é construida a partir de simbolos de um alfabeto >, o qual é

finito, ordenado e de tamanho |3|.

Definicao 2 Seja ® o comprimento méaximo de uma chave. Entado, L = ®log|X] é o
comprimento maximo em bits'. Assim, definimos um universo de chaves U de tamanho

u= 2L,

Por toda esta tese consideramos que L = O(1) e que logu cabe em um ntimero cons-
tante de palavras de um computador. Consequentemente, todos os algoritmos que iremos
considerar sao analisados para o modelo computacional Word RAM [41]. Neste modelo,
um elemento do universo U cabe dentro de uma palavra do computador, e as operacoes

aritméticas e os acessos a memoria tém custo unitario.
Definicao 3 Seja S um subconjunto de U contendo n chaves, onde n < u.

Definicao 4 Seja h : U — M uma funcao hash que mapeia as chaves de U para um dado
intervalo de inteiros M = [0,m — 1] = {0,1,...,m — 1} (isto é, dada uma chave z € U, a

fungao hash computa um inteiro em [0, m — 1]).

Definicao 5 Dado duas chaves z,y € U, onde x # y, e uma funcao hash h : U — M, uma

colisao ocorre quando h(x) = h(y).

Definicao 6 Uma funcao hash perfeita phf : S — M é uma funcao injetora, onde S C U
(isto é, para todos os pares sj, so € S nos quais s; # So, temos que phf(si) # phf(sz2),
onde m > n). Por ser uma funcdo injetora, phf mapeia cada chave de S em um inteiro
unico no intervalo M. Como nao ocorrem colisoes, se phf for utilizada para indexar uma
tabela hash de tamanho m, com n registros identificados pelas n chaves de S, entao, cada

registro pode ser recuperado com um tnico acesso a tabela.

Definicao 7 Uma funcao hash perfeita minima mphf : S — M é uma funcao bijetora,

onde S C U (isto é, cada chave de S é mapeada para um tnico inteiro em M e m = n).

'Por todo este trabalho iremos denotar log, # como log z.

v

Definicao 8 Uma funcao hash perfeita é de ordem preservada se, para qualquer par de

chaves s; e s; € S, temos phf(s;) < phf(s;) sempre que ¢ < j.

Limite Inferior de Espaco para se Representar FHPs e
FHPMs

A métrica mais importante relacionada com FHPs e FHPMs é a quantidade de espaco
necessario para descrever tais fungoes. O limite inferior terdérico para descrever uma FHP
foi primeiramente estudado em [57]. Fredman e Komlés [40] provaram um limite inferior
para FHPMs. Uma prova mais simples deste limite foi mais tarde obtido em [68]. Os
dois teoremas seguintes apresentam o limite inferior tedrico para descrever uma FHP e
uma FHPM, respectivamente. Aqui nés utilizamos a aproximacao de Stirling e, portanto,
obtivemos um resultado mais preciso, que esta distante do valor exato por uma constante
aditiva, uma vez que a aproximacao de Stirling estd distante do valor exato por um fator
constante. Por simplicidade de exposicao, consideramos nesta tese o caso em que log u < n,

o qual nos permite ignorar nos dois teoremas abaixo termos que dependam de w.

Teorema 1 Toda funcdo hash perfeita phf : S — M, onde |S| = n e |[M| = m, requer

pelo menos (1 + (m/n—1+1/2n)In(1 —n/m))nloge bits para ser armazenada.

ProvA. A probabilidade de mapear aleatoriamente n elementos dentro de um intervalo
de tamanho m sem colisdes (isto é, a probabilidade de se obter uma FHP) é:
(m—1)(m—-=2)...(m—n+1) m!

Prph(nam) = mn = mn(m _ n)'

Pela seguinte aproximacao de Stirling n! ~ n"e™"+/27wn obtemos:

(m—n) m—n) e " m

Pryp(n,m) ~ m - (m —mn)~(

m-—-n

Portanto, pelo menos 1/ Pry,(n, m) fungdes hash sdo necessarias para se obter uma FHP.
Assim, pelo menos log(1/Prpn(n,m)) = (1+ (m/n—1+1/2n)In(1—n/m)) nloge bits sao

necessarios para codificar esse conjunto de funcoes. O

Teorema 2 Toda func¢do hash perfeita minima mphf : S — M, onde |S| = n e |M| =

m = n, requer pelo menos nloge — O(logn) bits para ser armazenada.

PrOVA. A probabilidade de encontrar uma FHPM (onde n = m) é:

n! n"™V2mn .
Prpn(n,n) = — = ——— = e "V2mn.
nn nten
Na equagao acima também utilizamos a aproximagao de Stirling mencionada anteriormente.
Consequentemente, o niimero esperado de bits necessario para descrever essas raras FHPMs

¢ no minimo log(1/ Prypn(n,n)) = nloge — O(logn). O

Hashing Uniforme versus Hashing Universal

Todos os algoritmos de hashing perfeito precisam usar funcoes hash selecionadas aleato-
riamente com probabilidade uniforme de uma familia ‘H de func¢oes hash, as quais sao
utilizadas durante a construcao de FHPs e FHPMs. Existem dois tipos de familias de
fungoes hash que sao utilizadas nas andlises classicas de esquemas de hashing: (i) fungoes
hash uniformes e (ii) fun¢oes hash universais. Nesta se¢ao definimos essas duas familias de

funcoes hash.

Familia de Funcoes Hash Uniformes

A anélise classica de esquemas de hashing é frequentemente calcada na suposicao de que
as funcoes hash utilizadas sao escolhidas aleatoriamente e com probabilidade uniforme de

uma familia de fungoes hash uniformes, a qual é definida como segue.

Definicao 9 Seja H a familia de todas as m* fungoes hash que mapeiam chaves do universo
U para o intervalo [0, m — 1]. Uma funcao hash uniforme é uma func¢ao que é escolhida com
probabilidade uniforme da familia H e que produz valores independentes e uniformemente

distribuidos dentro do intervalo considerado.

O problema com as funcoes hash uniformes é o espago necesséario para descrever uma
tnica fungao, o qual é Q(ulogm) bits. Esse requisito de espago normalmente excede a
capacidade de armazenamento disponivel e é frequentemente desconsiderado durante a

analise dos algoritmos praticos de hashing perfeito existentes na literatura.

Lema 1 [20] Seja H uma familia de fungoes hash e seja h : U — M uma fungao hash
1

W.
utilizagao da fungao hash h, e 0 caso contrario, onde x # y. A probabilidade de colisao

selecionada de H com probabilidade Seja Cp(x,y) = 1sex € U ey € U colidem na

vi

entre duas chaves diferentes x,y € U corresponde ao valor esperado de Cj(x,y) e é dada

por:

PrROVA. Seja Cp(x,U) o numero total de chaves de U que colidem com uma dada chave
z € U na utilizagdo da fungdo hash h. Logo, Cp(z,U) = 3 7,2, Cu(@,y). Seja Cn(U,U)
o numero total de colisdes para toda chave x € U na utilizacao da fungao hash h. Logo,
Ch(U,U) = > ey Cn(x,U). Seja 'H uma familia ou colecao de fungdes hash uniformes.
Assim, Cy(U,U) = 3,4, Crh(U,U) denota o niimero total de colisdes para toda chave
x € U e para todas as fungdes hash de H. Vamos imaginar que M = [0, m—1] é um intervalo

de indices de uma tabela hash com m entradas e que os valores de M sao computados por

1
Ml

hash uniformes. Depois de mapear todas as chaves para o intervalo M, se uma entrada

uma fungao hash h : U — M selecionada com probabilidade da familia H de funcgoes
i € M tem trés chaves {ky, ko, k3}, entao k; colide com cada uma das chaves de {ks, k3},
ko colide com cada uma das chaves de {k1,k3}, e k3 colide com cada uma das chaves de
{ki,ks}, e, portanto, 6 colisdes ocorrem na entrada i. Considerando uma funcdo hash
h € 'H, no pior caso, quando todas as chaves de U sao mapeadas na mesma entrada ¢, o
niumero de colisoes corresponde ao numero de pares ordenados que podem ser formados
a partir das chaves do universo U de tamanho u, o qual é dado por C,(U,U) = u* — w.
Consequentemente, Cy (U, U) = |H|(u? — u). Como existem m entradas, entdo, o nimero
esperado de colisoes para todas as funcoes hash de H é:

BlCw(U,U)] = M| <i _ L)

m mu

Assim, pelo principio da casa dos pombos?, existem z,y € U e h € H tal que

BlC(wy) = -~ =2

m mu -~ m U

Familia de Funcoes Hash Universais

Como mencionado na se¢ao anterior, a quantidade de espaco necessario para se representar

uma funcao hash uniforme é proibitiva na pratica. Felizmente, na maioria das situacoes,

20 principio da casa dos pombos diz que, dado dois ntimeros naturais n e m com n > m, se n pombos
sao colocados dentro de m casas de pombos, entao, pelo menos uma casa de pombo conterd mais do que

um pombo.

vil

funcoes hash heuristicas se comportam de forma similar ao comportamento esperado de
funcoes hash uniformes, mas existem casos para os quais garantias probabilisticas rigorosas
sdo necessarias [18]. Por exemplo, vérios esquemas de hashing adaptativos presumem
que uma funcao hash com certas propriedades pré-estabelecidas pode ser encontrada com
custo esperado de tempo O(1). Isso acontece se a fungdo é selecionada aleatoriamente
com probabilidade uniforme de uma familia de funcoes hash uniformes até que uma fungao
adequada seja encontrada, mas nao necessariamente se a selecao for limitada a um conjunto
menor de fungdes. Essa situagdo conduziu Carter e Wegman [20] ao conceito de hashing

universal.

Definicao 10 Uma familia ‘H de funcoes hash é definida como fracamente universal ou
apenas universal se, para qualquer par de elementos distintos x1, 29 € U e uma funcao h

escolhida com probabilidade uniforme de H, temos que

Definicao 11 Uma familia ‘H de fungoes hash é definida como fortemente universal ou
independente aos pares se, para qualquer par de elementos distintos xq,x, € U e dois

valores arbitrarios y;,ys € M, temos que

Pr(h(a) =y h(e) = o) =

Em muitas situacoes, a andlise de varios esquemas de hashing pode ser completada sob
a suposicao mais fraca de que h é escolhida com probabilidade uniforme de uma familia
de fungoes hash universais, ao invés da suposicao de que h é escolhida com probabilidade
uniforme de uma familia de fungoes hash uniformes. Em outras palavras, aleatoriedade
limitada é suficiente na pratica [70]. Por exemplo, quando estamos trabalhando com um
universo de chaves muito maior do que o intervalo M = [0,m — 1] da func¢ao hash, que
é o caso para a maioria das aplicacoes de métodos de hashing, fungoes hash universais se
comportam tao bem quanto as funcoes hash uniformes. Isso pode ser visto ao compararmos
o resultado do Lema 1 com a probabilidade de colisdes para funcoes hash universais, que
¢ dada na Definicao 10. E importante observar que existem casos para os quais garantias
probabilisticas rigorosas sdo necessérias [18, 2]. Para ilustrar esse fato, iremos utilizar os

trés cendrios seguintes, os quais foram bem reportados em [2]:

1. Considere que um conjunto de chaves S C U de tamanho n seja mapeado em uma

tabela hash com m entradas. A questao é: quantas entradas m sao necessarias para

viil

que nenhuma colis@o ocorra? Ao utilizarmos uma funcao hash universal com uma
tabela de tamanho m = O(n?), a probabilidade de que nenhuma colisdo ocorra é
maior que 1/2. Por outro lado, ao utilizarmos uma funcao hash uniforme, é bem
sabido que uma tabela de tamanho m = o(n?) nao é suficiente para evitar colisoes,
como exemplificado pelo paradoxo do aniversirio®. Consequentemente, nada é per-

dido quando se utiliza uma funcao hash universal nesse cenario.

. Considere que um conjunto de chaves S C U seja mapeado em uma tabela hash com
m = n entradas. A questao é: qual deveria ser o tamanho de S para cobrir todas as
entradas da tabela (isto é, nenhuma entrada fica vazia)? Ao utilizarmos uma funcao
hash universal, se o tamanho de S for 2n?, entdo, todas as entradas sdo cobertas
com probabilidade maior do que 1/2. Por outro lado, ao utilizarmos uma funcao
hash uniforme, é bem sabido que seria necessario um conjunto de chaves de tamanho
6(nlogn) para cobrir todas as entradas, com alta probabilidade*. Consequentemente,
ao utilizarmos uma funcao hash uniforme nesse cenario, um ganho polinomial é obtido

ao sairmos de O(n?) para 6(nlogn) entradas.

. Considere que o conjunto de chaves S de tamanho n seja mapeado em uma tabela
hash com m = n entradas. A questao é: qual seria a entrada com o maior niimero de
chaves? Ao utilizarmos uma funcéo hash universal, a entrada com o maior niimero
de chaves conterd O(n'/?) chaves. Ao utilizarmos uma funcdo hash uniforme, é bem
sabido que a entrada com o maior nimero de chaves conterd 6(log n/loglogn) chaves.
Consequentemente, ao utilizarmos uma fungao hash uniforme nesse cenario, um ganho

exponencial é obtido ao sairmos de O(n'/?) para 6(logn/loglogn).

Grafos Randomicos

Nesta secao discutimos alguns fatos sobre grafos randémicos que sao importantes para a

andlise dos nossos algoritmos. Um grafo randomico é um grafo gerado por algum procedi-

mento aleatério. Existem muitas formas nao equivalentes de se definir grafos randémicos

e agora iremos apresentar dois modelos fortemente relacionados. O estudo dos grafos

30 paradoxo do aniversario diz que, se 23 ou mais pessoas forem aleatoriamente reunidas, a probabi-

lidade que pelo menos duas pessoas facam aniversirio no mesmo dia é maior do que 50%, como pode ser
visto em Feller [36, Pdgina 33].
4Por toda esta tese o termo “com alta probabilidade” é utilizado para significar com probabilidade

1 —n~° para § > 0.

1X

randomicos se iniciou com o trabalho classico de Erdds e Rényi [33, 34, 35] (veja [8, 49]

para um tratamento moderno do assunto).

Defini¢ao 12 Seja G = (V, E) um grafo randéomico obtido através do modelo uniforme
G(m,n), que é o modelo em que todos os ((g)) grafos com m vértices e n arestas sao
equiprovaveis. Nesse modelo, o grafo G inicia com um nimero fixo de vértices, denotado
por [V| =m, e |E| = n arestas sao escolhidas aleatoriamente do conjunto de todas as ()
arestas possiveis sem permitir repeticio. Um modelo similar, denotado por G(m, p), onde
0 < p <1, é obtido quando consideramos o mesmo conjunto de vértices e selecionamos
cada aresta com probabilidade p, mas independentemente das outras. Portanto, neste caso,

repeticoes sao permitidas.

Como apresentado em [48], frequentemente é itil considerar que o grafo randémico
evolui no tempo por meio de um processo estocastico, iniciando com um conjunto de
vértices e sem nenhuma aresta. Em seguida, arestas sao inseridas até que o grafo completo
seja obtido. O processo de se adicionar cada aresta independentemente das outras em algum
instante de tempo aleatério, o qual pode, por exemplo, estar uniformemente distribuido
no intervalo (0, 1), resultard em um grafo randémico do tipo G(m, p) em um certo instante
de tempo p € (0,1) e um grafo randémico do tipo G(m,n) no instante de tempo em que a
n-ésima aresta aparece.

Nosso melhor resultado constréi uma familia 7 de FHPs e FHPMs baseado em hiper-

grafos r-partidos sem ciclos, definidos como segue.

Definicao 13 Um hipergrafo é a generalizagao de um grafo nao direcionado onde cada

aresta conecta r > 2 vértices.

Defini¢ao 14 Seja G, = (V, E) um hipergrafo randéomico, r-partido e r-uniforme para
r > 2, onde V é a unido das r partes disjuntas Vo, Vi, ..., Vi._1, |Vi| = p, |V| = m = rp,
e |E| = n. As arestas sao inseridas em G,, uma de cada vez, sendo cada uma selecionada

aleatoriamente dentre todas as p” arestas possiveis, permitindo repeticao.

Definicao 15 Um hipergrafo é aciclico se e somente se alguma sequéncia de remocoes
repetidas de arestas que incidem sobre vértices de grau 1 tem como resultado um hipergrafo

sem nenhuma aresta [26, Pagina 103].

Trabalhos Relacionados

Nesta se¢ao revisamos alguns dos resultados teodricos, praticos e heuristicos mais impor-
tantes da literatura de hashing perfeito. Czech, Havas e Majewski [26] fizeram um levan-
tamento mais completo até o ano de 1997.

Como mencionado anteriormente, existe uma lacuna entre teoria e pratica nos métodos
de hashing perfeito. Por um lado, existem bons resultados tedricos sem comprovacao
experimental da sua aplicabilidade para grandes conjuntos de chaves. Noés argumentaremos
abaixo que esses métodos nao podem ser utilizados na pratica. Por outro lado, existem duas
categorias de algoritmos préticos: (i) os algoritmos que tém as complexidades de tempo e
espago analisadas sob a suposicao de que funcoes hash uniformes podem ser utilizadas sem
nenhum custo adicional de espaco, a qual é uma suposicao nao realistica porque cada uma
dessas fungbes requer pelo menos ulogm bits para ser armazenada, e (ii) os algoritmos
heuristicos que apresentam apenas evidéncias empiricas sobre os seus comportamentos.
O objetivo desta secao é discutir a lacuna existente entre estes trés tipos de algoritmos

disponiveis na literatura.

Resultados Teodricos

Nesta segao revisamos alguns dos resultados tedricos mais importantes da literatura
de hashing perfeito minimo, os quais nao assumem que funcoes hash uniformes estao
disponiveis para serem utilizadas sem nenhum custo adicional de espaco. Fredman e
Komlés [40] provaram que pelo menos nloge + loglogu — O(logn) bits sdo necessarios
para representar uma FHPM (considerando o pior caso e todos os conjuntos de chaves de
tamanho n), dado que u > n® para algum « > 2. Mehlhorn [57] mostrou que o limite
obtido por Fredman e Komlés era quase justo, exibindo para isso um algoritmo que constréi
uma FHPM que pode ser representada em no méximo nloge + loglogu + O(logn) bits.
No entanto, seu algoritmo estd muito distante da pratica, uma vez que tanto a geragao
quanto a avaliacdo das funcdes resultantes sio exponenciais em n (isto é, nf(re"uvlogw)y,
Schmidt e Siegel [70] propuseram o primeiro algoritmo para construir uma FHPM com
tempo de avaliagdo constante e tamanho da descrigao igual a O(n+loglogu) bits. Do ponto
de vista pratico, o algoritmo de Schmidt e Siegel nao é atrativo. O esquema é complicado
para se implementar e a constante escondida na ordem de complexidade assintoética de
espaco é grande: para um conjunto de n chaves, pelo menos 29n bits sao utilizados, o que

significa uma utilizacao de espaco na pratica similar aos melhores esquemas que geram

X1

fungoes que sdo armazenadas em O(nlogn) bits. Embora parega que os autores em [70]
queriam descrever o algoritmo deles da forma mais clara possiivel, sem tentar otimizar a
constante, seria dificil melhorar a utilizacao de espaco significativamente.

Mais recentemente, Hagerup e Tholey [43] apresentaram o melhor resultado teérico
que conhecemos. A FHPM obtida pode ser avaliada em tempo O(1) e armazenada
em nloge + loglogu + O(n(loglogn)?/logn + logloglogu) bits. O tempo de geragao
é O(n+loglogu) utilizando O(n) palavras de um computador. Apesar da sua importancia
tedrica, o algoritmo de Hagerup e Tholey também nao ¢é pratico, uma vez que ele enfatiza
somente complexidade assintética de espago. (Ele também é muito complicado de se im-
plementar, mas nao iremos discutir isso.) Para n < 2'%° o esquema nao é bem definido,
pois conta com o particionamento do conjunto de chaves em subconjuntos de tamanho
n < logn/(21loglogn). Se corrigirmos isto permitindo subconjuntos de tamanho minimo

2300

1, entao, subconjuntos de tamanho um serao utilizados para n < , 0 que conduziria a

uma utilizagao de espago de pelo menos (3loglogn+log7) n bits. Para um conjunto de um

2390 excede o nimero

bilhao de chaves, isso seria mais do que 17 bits por elemento. J& que
de atomos conhecidos no universo, é seguro conluir que a FHPM de Hagerup e Tholey nao
¢é eficiente em espaco em situacoes praticas. Embora acreditamos que o algoritmo deles
foi otimizado levando em cosideracao a simplicidade de exposicao, ao invés das constantes
envolvidas na ordem de complexidade de espaco, parece ser dificil reduzir a utilizacao de

espaco significativamente na abordagem deles.

Resultados Praticos

Nesta secao descrevemos alguns dos principais resultados “praticos” que serviram de fonte
de inspiracao para este trabalho. Eles sao caracterizados pela simplicidade e por possuirem
fatores constantes, aparentemente baixos, na complexidade de espago para se descrever as
fungoes resultantes. Em geral, eles sao analisados sob a suposicao nao realistica de que
funcoes hash uniformes estao disponiveis para serem utilizadas sem nenhum custo adicional
de espaco.

O algoritmo proposto por Czech, Havas e Majewski [25] fazem a suposi¢ao mencionada
anteriormente para construir FHPMs de ordem preservada (mas, na prética, fungoes hash
universais sao utilizadas). O método usa duas fungées hash uniformes hy : S — [0, cn — 1]
e hy : S — [0,ecn — 1] para gerar FHPMs na seguinte forma: mphf(x) = (g[hi(x)] +
glha(z)] mod n, onde ¢ > 2. As FHPMSs resultantes podem ser avaliadas em tempo O(1) e
armazenadas em O(nlogn) bits (que é 6timo para uma FHPM de ordem preservada). A

FHPM resultante é gerada com complexidade esperada de tempo O(n).
xii

Botelho, Kohayakawa e Ziviani [12] melhoraram as requisi¢oes de espago para se ar-
mazenar as FHPMs resultantes sob a pena de gerar funcoes da mesma forma, mas que
nao sao de ordem preservada. O algoritmo deles também ¢é linear em n, mas executa mais
rapido do que os algoritmos de Czech et al. [25] e as FHPMs resultantes necessitam da
metade do espago para serem armazenadas, pois ¢ € [0.93,1.15]. No entanto, as FHPMs
resultantes ainda requerem O(nlogn) bits de espago de armazenamento. Foi mostrado

experimentalmente em [12] que o algoritmo funciona bem em situagoes praticas.

Majewski et al. [55] propuseram um algoritmo para gerar uma familia de FHPMs
baseado em hipergrafos r-uniformes (isto é, com arestas de tamanho r). O algoritmo é
uma generalizacao do apresentado em [25]. As fungoes resultantes podem ser avaliadas em
tempo O(1) e armazenadas em O(nlogn) bits. Embora as fungoes resultantes sdo quase
tao compactas quanto as geradas no trabalho apresentado em [12], elas ainda requerem
O(nlogn) bits de espago de armazenamento. Botelho, Pagh e Ziviani [14] projetaram uma
familia de algoritmos que melhora o requisito de espago, saindo de O(nlogn) para O(n)

bits, sob a pena de gerar funcoes que nao sao de ordem preservada.

J& que a requisicao de espaco de armazenamento para fungoes hash uniformes as tornam
inadequadas para implementacao, é preciso estabelecer uma configuracao mais realistica. O
primeiro passo nessa dire¢ao foi dado por Pagh [61]. Ele propos uma familia de algoritmos
randomicos para construir FHPMs da forma mphf(x) = (f(z) + d[g(x)]) mod n, onde f
e g sdo selecionadas de uma familia de fungoes hash universais (veja Definicao 10) e d
¢ um conjunto de valores de deslocamentos utilizados para resolver as colisoes causadas
pela funcao f. Pagh identificou um conjunto de condigoes relacionadas com f e g, e
mostrou que se estas condigoes forem satisfeitas, entao, uma FHPM pode ser computada
com complexidade de tempo esperada igual a O(n) e pode ser armazenada em (24¢€)nlogn
bits, que é sub-6timo.

Dietzfelbinger e Hagerup [29] melhoraram o resultado apresentado em [61], reduzindo
a utilizagao de espago para (14 ¢)nlogn bits, mas, na abordagem deles, f e g precisam ser
escolhidas de uma classe de fungoes hash que atenda a alguns outros requisitos. Woelfel [75]
mostrou como diminuir a utilizagdo de espago um pouco mais, indo para O(nloglogn) bits
assintoticamente, ainda com um algoritmo muito simples. No entanto, nao existe nenhuma

evidéncia empirica sobre o valor pratico desse esquema.

Galli, Seybold e Simon [42] propuseram um algoritmo para gerar FHPMs similar aos
apresentados nos trabalhos [61, 29]. No entanto, nas FHPMs deles, as duas fungoes f e g sao

definidas como f(z) = h.(z) mod n e g(z) = |h.(z)/n], onde h.(k) = (ck mod p) mod n?,

xiil

1 <c¢<p-—1epéum nimero primo maior que u. As FHPMs sao geradas em tempo
liner e armazenadas em O(nlogn) bits. A principal vantagem dessa abordagem é que ela
pode ser facilmente adaptada para conjuntos dinamicos, mas somente para FHPs.

Prabhakar e Bonomi [66] projetaram FHPs que foram utilizadas para armazenar tabelas
de roteamento em roteadores. Eles mostraram que o requisito de espago de armazenamento
para as funcoes resultantes tende a 2en bits a medida que n tende ao infinito. Nas suas
simulagoes, as fungoes resultantes necessitavam de 8.6n bits para serem armazenadas. A
principal vantagem desse esquema é que ele é simples o suficiente para ser implementado
em hardware.

Algoritmos randémicos do tipo Las Vegas® foram projetados em todos os trabalhos
anteriores e também neste trabalho de tese. Contrariamente, os trabalhos [4, 73] apresen-
tam algoritmos deterministicos para construir FHPs e FHPMs. As fungoes resultantes re-
querem O(nlog(n)+log(log(u))) bits de espago de armazenamento e sao avaliadas em tempo
O(log(n) + log(log(u))). Assim, as fungoes resultantes ndo sao avaliadas em tempo O(1) e
estao distantes por um fator de O(logn) bits dos limites inferiores de espago de armazena-
mento de FHPs e FHPMSs, os quais sao apresentados nos Teoremas 1 e 2, respectivamente.
As complexidades de caso médio e de pior caso dos algoritmos sao O(nlog(n)log(log(u)))

e O(n?log(n) log(log(u))), respectivamente.

Heuristicas

Nesta secao consideramos trabalhos projetados para aplicagoes especificas e, em geral,
apenas evidéencias experimentais sobre o comportamento dos algoritmos sao apresentadas.

Fox et al. [39] criaram o primeiro esquema com boa performance de caso médio para
grandes conjuntos de chaves, isto é, n ~ 10°. Eles projetaram dois algoritmos. O primeiro
gera uma FHPM que pode ser avaliada em tempo O(1) e armazenada em O(nlogn) bits. O
segundo usa hashing quadratico e adiciona desvios realizados com base em uma tabela de
valores binarios para obter uma FHPM que pode ser avaliada em tempo O(1) e armazenada
em c(n+1/logn) bits. Eles argumentaram que o valor de ¢ seria tipicamente menor do que
5, no entanto, a partir da experimentacao apresentada, fica claro que o valor de ¢ cresce
com n e eles nao discutem isso. Eles alegaram que os seus algoritmos tinham complexidade
linear de tempo de execucdo, mas, foi mostrado em [26, Section 6.7] que os algoritmos sao

exponenciais no pior caso, embora o pior caso tenha uma pequena probabilidade de ocorrer.

5Um algoritmo randémico é chamado de Las Vegas se ele sempre produz respostas corretas, mas com

uma pequena probabilidade de demorar muito para executar.

Xiv

Fox, Chen e Heath [38] melhoraram o resultado acima para obter uma func¢ao que
pode ser armazenada em cn bits. O método usa quatro fungoes hash uniformes hiy : S —
[0,n—1], h11 : [0,p1—1] — [0, p2—1], Ry : [p1,n—1] — [p2,b—1] € hgg : Sx{0,1} — [0,n—1]

para construir uma FHPM que tem a seguinte forma:

mphf () = (hao(z,d) + g(i(x))) mod n
hi1 o hip(z) se hip(z) < p1

i(x) =

hia o hip(z) caso contrario.

onde p; = 0.6n ¢ py = 0.3n foram determinados experimentalmente, e b = [c¢n/(logn+1)].
Novamente o valor de ¢ foi estabelecido somente para valores pequenos de n. Também neste
caso, o valor de ¢ poderia muito bem crescer com o valor de n. Entao, a limitacao dos
trés algoritmos é que nao existe nenhuma garantia de que o nimero de bits por chave para
armazenar a funcao resultante permanecga constante a medida que o valor de n aumente.
O trabalho de Lefebvre e Hoppe [54] tem o mesmo problema de nao garantir que o
nimero de bits por chave para se armazenar as funcoes resultantes permaneca constante.
Eles projetaram um método para construir FHPs utilizadas especificamente para represen-
tar dados espaciais esparsos. As fungoes resultantes requerem mais de 3 bits por chave para
serem armazenadas. Seguindo a mesma tendéncia, Chang, Lin e Chou [21, 22] projetaram
FHPMs feitas sob medida para minerar regras de associacao e padroes transversais em

técnicas de mineracao de dados.

Panorama Técnico deste Trabalho

Nosso objetivo primario foi o de projetar algoritmos de hashing perfeito que fossem bem
fundamentados teoricamente e que pudessem ser eficientemente utilizados na pratica. Para
isso, investigamos maneiras de preencher a lacuna existente entre teoria e prética nos
algoritmos de hashing perfeito disponiveis na literatura.

Neste trabalho utilizamos uma abordagem de dois passos para atingir nosso objetivo
primario. No primeiro passo, particionamos o conjunto de chaves de entrada em pequenos
subconjuntos de chaves, chamados de buckets de agora em diante. Esse passo é equivalente
ao processo de gerar runs em um mergesort externo de multiplos caminhos, o qual foi
cuidadosamente projetado para funcionar com complexidade de tempo linear. No segundo

passo, geramos uma FHP ou uma FHPM para cada bucket.

XV

A Figura 2 ilustra os dois passos do algoritmo: o passo de particionamento e o passo
de pesquisa. O passo de particionamento toma como entrada um conjunto de chaves S de
tamanho n e usa uma funcao hash hy para particionar S em N, buckets. O passo de pesquisa
gera uma FHPM (ou, equivalentemente, uma FHP) para cada bucket i, 0 <i < N, — 1, e

computa o arranjo offset. A avaliacao da FHPM resultante para uma dada chave x é:
MPHF (x) = MPHF;(x) + offset][i]

onde i = hy(x) indica o bucket onde a chave = reside, MPHF;(z) é a posigao de x dentro

do bucket i, e offset[i] fornece o nimero total de entradas antes do bucket i na tabela hash.

0o 1 n—1
| | | | | | | | . | | | | Conjunto de Chaves S
ho
Particionamento *
N
N ! Buckets
0 1 é Nl: -1
Pesquisa / / \ \
Iy e et ey oy
MPHF, MPHF; MPHF, MPHFy,
B [[CJ:0 - [ETSRET Tobela Hosh
0 1 m—1

Figura 2: Os dois passos do algoritmo.

Se o tamanho do conjunto de chaves, que é denotado por n, couber na meméria interna
disponivel, entao, o primeiro passo do algoritmo nao é necessario. Nessa situacao, fazemos
com que o tamanho do bucket seja igual ao tamanho da entrada, isto é, n, e geramos uma
FHP ou uma FHPM para esse tinico bucket. Consequentemente, o algoritmo se torna um
algoritmo de memoria interna que acessa a memoria de forma randomica e, por isso, foi
denominado RAM que é uma abreviagao para iternal random access memory algorithm.
Se o tamanho do conjunto de chaves for maior do que o tamanho da memoria interna
disponivel, entao, o primeiro passo ¢é realizado para particionar o conjunto de entrada em
pequenos buckets e, portanto, o algoritmo se torna uma algoritmo de memoria externa
ciente de cache. O algoritmo foi chamado de EM, que é uma abreviacao para external
memory algorithm e é ciente de cache porque os buckets sao pequenos o suficiente para
caberem na cache do processador. Dessa forma, o algoritmo EM acessa a memoria de uma
forma menos randomica quando comparado ao algoritmo RAM.

Nos refinamos e combinamos intiimeras técnicas existentes para projetar e implementar

o algoritmo, como discutido a seguir.

XVl

1. Para gerar FHPs ou FHPMs para os buckets poderiamos escolher intimeras alter-
nativas, enfatizando ou utilizacao de espaco, ou tempo de construcao, ou tempo de
avaliacao. Podemos fazer funcionar qualquer um dos métodos que assumem que
fungoes hash uniformes estao disponiveis para serem utilizadas sem custo adicional
de espaco. Para isso, basta utilizarmos a técnica split-and-share apresentada em
[30], na qual quebramos o problema em pequenos buckets e simulamos fungoes hash
uniformes para cada um dos buckets. No Capitulo 3, apresentamos um refinamento
dessa idéia que nos permite obter uma familia de fungoes hash uniformes para cada

bucket com um custo adicional de espago que é constante.

2. Utilizamos o algoritmo RAM para computar FHPs ou FHPMs para os pequenos
buckets por duas razoes: (i) ele gera funcgoes de espaco quase 6timo; e (ii) é mais
eficiente do que os principais algoritmos praticos disponiveis na literatura de hashing
perfeito, incluindo nosso resultado anterior apresentado em [12]. Nés pegamos como
ponto de partida um algoritmo para gerar FHPs implicitamente definido em [23], o
qual foi também sugerido de forma independente por Belazzougui [5]. A partir dai,
melhoramos a andlise, refinamos o algoritmo de geracao para que obtivesse sucesso
com alta probabilidade, o estendemos para também gerar FHPMs, e mostramos como
implementar tudo de uma maneira quase 6tima em termos de espago. Caso o conjunto
de chaves cujo tamanho é n caiba em memoria interna, temos apenas um bucket de
tamanho n, caso contrario, varios buckets pequenos sao manipulados pelo algoritmo.

O algoritmo RAM ¢é apresentado no Capitulo 2.

3. Ordenagao externa (veja, por exemplo, [74, 53]) foi usada para agrupar as chaves em
buckets quando o conjunto de chaves nao cabe em memoria interna. Em seguida,
cada bucket é tratado separadamente. A perspectiva importante aqui foi o parti-
cionamento do problema em buckets pequenos, e isso tem tanto implicagoes tedricas
quanto praticas. Do ponto de vista tedrico, mostramos que, ao refinarmos a técnica
de split-and-share para simular funcoes hash uniformes para os buckets pequenos, fo-
mos capazes de provar que o algoritmo EM funcionara com alta probabilidade para
qualquer conjunto de chaves, mesmo aqueles escolhidos por adversarios. Ja do ponto
de vista pratico, uma caracteristica importante disso é que podemos construir buck-
ets pequenos o suficiente para caberem no cache do processador, resultando em uma
aceleragao significativa no tempo de processamento por elemento em comparagao

com outros métodos. Para gerar os runs da ordenagao externa, usamos o algoritmo

XVvil

radizsort [24], o qual realiza essa tarefa com complexidade linear de tempo.

Tabelas de deslocamentos (offset) sao utilizadas para colocar tudo junto em uma
unica FHP ou FHPM. Isso tem sido feito em varios trabalhos tedricos (veja, por
exemplo, [70, 43]). No Capitulo 4, mostramos como implementar isso com um baixo

custo de utilizacao de espaco na pratica e apresentamos o algoritmo EM.

4. O algoritmo EM tem um alto grau de paralelismo por ser baseado em um mergesort
externo de multiplos caminhos. No Capitulo 5, exploramos esse fato para projetar

uma versao paralela do algoritmo EM.

5. As técnicas projetadas em mnosso trabalho anterior apresentado em [12], as quais
permitem a geracao de FHPMs com base em grafos randomicos contendo ciclos, foram
utilizadas para otimizar uma versao do algoritmo RAM apresentado no Capitulo 2.

Isso é apresentado no Capitulo 6.

Contribuicoes

A atratividade de se usar FHPs e FHPMs depende dos seguintes requisitos [43]:

1. A quantidade de tempo de CPU necessério para gerar as fungoes.
2. Os requisitos de espaco para gerar as funcgoes.
3. A quantidade de tempo de CPU necessario pelas fungoes durante a avaliagao.

4. Os requisitos de espago para se descrever as fungoes resultantes.

Nenhum algoritmo conhecido até entao tem bom desempenho em todos os quatro re-
quisitos acima. Normalmente, a requisicao de espago para gerar as fungoes ¢é ignorada.
Devido a isso, os algoritmos na literatura nao sao capazes de escalar para conjuntos de
chaves contendo bilhoes de elementos. Além disso, como mencionado anteriormente, existe
uma lacuna entre os algoritmos praticos e tedricos. Por um lado, os algoritmos préaticos
possuem a complexidade de espaco para descrever as fungoes analisada sob a suposicao nao
realistica de que fungoes hash uniformes estao disponiveis para serem utilizadas sem custo
adicional de espaco. Por outro lado, os algoritmos tedricos sao analisados sem nenhuma
suposicao nao realistica, mas eles enfatizam apenas complexidade assintotica de espaco e

sao muito complicados para implementar.

Xvill

As principais contribuicoes desta tese sao:

1. Nos apresentamos um algoritmo de hashing perfeito simples, pratico e altamente es-

calavel que leva em consideracao os quatro requisitos mencionados no inicio desta

secao. Caso o conjunto de chaves de entrada caiba na memoria principal, o algo-

ritmo se torna um algoritmo de meméria interna, o qual acessa a memoéria de forma

randomica e, como mencionado anteriormente, foi chamado de RAM (internal ran-

dom access memory algorithm); caso contrério, ele se torna um algoritmo de meméria

externa ciente de cache e, por isso, foi denominado EM (external memory algorithm).

Versoes preliminares dos algoritmos RAM e EM foram apresentadas em [14] e [15],

respectivamente. Em seguida apresentamos mais detalhes sobre os dois algoritmos.

(a) O algoritmo RAM trabalha sobre hipergrafos randomicos, r-partidos e aciclicos

obtidos com o auxilio de r fungdes hash uniformes. A idéia de basear a geracao

de FHPs ou FHPMs em hipergrafos radomicos e aciclicos nao é nova, veja, por

exemplo, [55], mas nds procedemos diferentemente para alcangar fungoes que

podem ser descritas com uma complexidade de espago igual a O(1) bits por

chave, ao invés de O(logn) bits por chave, reduzindo a ordem de complexidade

de espago para armazenar as funcoes de O(nlogn) para O(n) bits. O algoritmo

RAM ¢ apresentado no Capitulo 2.

Agora comentamos sobre os quatro requisitos mencionados anteriormente:

i.

11.

111.

v.

O algoritmo RAM gera FHPs ou FHPMs com complexidade linear de
tempo. As FHPs s@o equivalentes as sugeridas por Belazzougui [5], as quais
foram anteriormente sugeridas por Chazelle et al. em [23], mas de uma

forma mais geral.

O algoritmo RAM requer O(n) palavras de computador para gerar FHPs
ou FHPMs. Esta ¢é a razao que o torna mais apropriado para conjuntos de

chaves que podem ser tratados em memoria interna.

O algoritmo RAM gera FHPs ou FHPMs que sao avaliadas com custo O(1)

de tempo.

O algoritmo RAM gera FHPs e FHPMs de espaco quase 6timo. Os req-
uisitos de espaco para descrever as funcgoes resultantes depende da relacao
entre m e n. Para m = n, a utilizacao de espago ¢é aproximadamente 2.62n
bits. Para m = 1.23n, a utilizacao de espago é aproximadamente 1.95n bits.

Em todos os casos, os valores estao distantes, por um fator constante, dos

Xix

limites inferiores tedricos, os quais sao 1.44n e 0.89n bits para FHPs e FH-
PMs, respectivamente. Esse é um resultado que nao tinha sido alcangado
pelos algoritmos praticos existentes até entao, mas que tem sido procurado

a mais de vinte anos pela comunidade de hashing perfeito.

(b) O algoritmo EM usa intiimeras técnicas da literatura para permitir a geragao de
FHPs ou FHPMs para conjuntos de chaves contendo bilhoes de elementos. Ele
aumentou uma ordem de magnitude no tamanho do maior conjunto de chaves
para o qual uma FHPM tinha sido gerada na literatura [12]. Esse resultado é
proveniente de uma combinagao de um novo esquema de hashing perfeito que é
bem fundamentado teoricamente e simplifica consideravelmente os métodos an-
teriores, e o fato que ele é projetado para fazer uma boa utilizacao da hierarquia
de memoria, ja que é fundamentalmente uma técnica de dividir para conquistar.
O algoritmo EM pode ser considerado como o primeiro passo visando preencher
a lacuna existente entre teoria e pratica nos métodos de hashing perfeito. Con-
sequentemente, o algoritmo EM é o primeiro algoritmo que pode ser usado na
pratica, tem complexidades de tempo e espago cuidadosamente analisados sem
suposicoes nao realisticas, e escala para conjuntos com bilhoes de chaves.

A escalabilidade do algoritmo EM foi demonstrada por meio da geracao de uma
FHPM para um conjunto com 1,024 bilhoes de URLs, as quais foram obtidas da
World Wide Web e possuem comprimento médio igual a 64 bytes. A funcao foi
gerada em approximadamente 50 minutos, utilizando um computador pessoal
rodando o sistema operacional Linux na versao 2.6, com um processador de 1.86
GHz (core 2 duo) da Intel, 4 MB de cache L2 e 1 GB de memoria principal. O

algoritmo EM ¢é apresentado no Capitulo 4.

Agora comentamos sobre os quatro requisitos mencionados anteriormente:

i. O algoritmo EM gera FHPs ou FHPMs com complexidade linear de tempo.
O passo que domina o tempo de execucao do algoritmo de geracao é a
ordenacao de n fingerprints de O(logn) bits.

ii. O algoritmo EM requer O(n¢) palavras de computador para ter complexi-
dade linear de tempo, onde 0 < € < 1. Isso acontece porque ele necessita
somente de um heap em memoria principal para realizar uma intercalacao
de multiplos caminhos dos arquivos armazenados no disco, e o tamanho do
heap é a relacao entre o tamanho do conjunto de chaves e a quantidade de

memoria interna disponivel, ambos em bytes. No nosso caso, como queremos

XX

desempenhar a operacao de intercalacao em uma unica passada sobre os
arquivos, necessitamos que € = 0.5 (veja, por exemplo, [1, Teorema 3.1]).
Isso é uma das razoes que capacita o algoritmo EM escalar para conjuntos

contendo bilhoes de elementos.

iii. O algoritmo EM gera FHPs ou FHPMs que sao avaliadas com custo O(1)

de tempo.

iv. O algoritmo EM também gera FHPs e FHPMs de espaco quase 6timo,
mas agora nos nao assumimos que fungoes hash uniformes estao disponiveis
para serem utilizadas sem nenhum custo adicional de espaco. Para isso,
projetamos, no Capitulo 3, uma forma de simular fungoes hash uniformes
que operam sobre os buckets pequenos com somente um fator constante de
espaco adicional. Isso nos permitiu usar o algoritmo RAM para construir as
FHPMs de cada bucket sem suposicoes nao realisticas. Da mesma forma que
para o algoritmo RAM, os requisitos de espaco para se descrever as funcoes
resultantes também dependem da relacao entre m e n. Para m = n, a
utilizagao de espago é de aproximadamente 3.3n bits. Para m = 1.23n,
a utilizacao de espacgo é de aproximadamente 2.7n bits. Novamente, esses
valores estao distantes por um fator constante dos limites inferiores tedricos
relacionados com o espago necessario para representar FHPs e FHPMs. Esse
também é um resultado que nao foi alcancado pelos algoritmos praticos e
tedricos disponiveis até entao na literatura de hashing perfeito, exceto para

valores de n assintoticamente grandes.

2. Nés fornecemos uma implementacao paralela e altamente escalavel do algoritmo EM,
a qual foi chamada de PEM — parallel external memory algorithm. O algoritmo PEM
permite distribuir a construcao, descricao e avaliacao das fungoes resultantes. Por
exemplo, usando um cluster de 14 computadores o algoritmo PEM gera uma FHPM
para 1,024 bilhoes de URLs em aproximadamente 4 minutos, atingindo um speedup
quase linear. Além disso, para 14,336 bilhoes de inteiros de 16 bytes gerados aleato-
riamente e igualmente distribuidos entre as 14 maquinas participantes, o algoritmo
PEM produz como saida uma FHPM em approximadamente 50 minutos, resultando
em uma degradagao de desempenho de 20%. Pelo melhor do nosso conhecimento,
nenhum outro resultado da literatura de hashing perfeito pode ser implementado
de uma forma paralela para obter resultados melhores no que diz respeito ao de-

sempenho e a escalabilidade do que os obtidos com o algoritmo PEM. O algoritmo

xx1

PEM ¢ apresentado no Capitulo 5. Uma versao preliminar do algoritmo PEM foi

apresentado em [11].

. Nos apresentamos técnicas que permitem a geracao de FHPs e FHPMs baseadas em
grafos randomicos contendo ciclos. Um resultado preliminar foi apresentado em [12],
onde melhoramos a utilizagao de espaco do algoritmo de Czech, Havas e Majewski [25]
sob a pena de gerar funcoes na mesma forma que nao sao de ordem preservada. Os
dois algoritmos possuem complexidade de tempo linear em n, mas nosso algoritmo
executa, em média, 59% mais rapido do que o apresentado em [25], e as FHPMs

resultantes sao armazenadas na metade do espaco.

No entanto, as FHPMs resultantes ainda necessitam de O(nlogn) bits para serem
armazenadas. Como em [25], assumimos hashing uniforme e usamos O(n) palavras
de computadores do modelo de computacao Word RAM para construir as funcoes.
Recentemente, usando idéias similares as apresentadas em [12], fomos capazes de
otimizar a versao do algoritmo RAM que trabalha sobre grafos bipartidos para gerar
as funcoes 40% mais rapido do que quando ciclos nao sao permitidos. Estes resultados

sao apresentados no Capitulo 6.

. No6s mostramos que as FHPs e as FHPMs projetadas nesta tese podem agora serem
utilizadas em aplicagoes para as quais elas nao eram consideradas uma boa opcao no
passado. Isso é uma consequéncia do fato de que as fungoes resultantes necessitam
de um numero constante de bits por chave para serem armazenadas. No Capitulo 7,
mostramos que FHPMs fornecem o melhor compromisso entre utilizacao de espaco e
tempo de pesquisa quando comparadas a outros esquemas de hashing. Uma versao

preliminar deste resultado foi apresentada em [13].

. Finalmente, criamos a biblioteca CMPH — C' Minimal Perfect Hashing Library, a qual
estd disponivel no link http://cmph.sf.net sob a licenga LGPL (the GNU Lesser
General Public License). A biblioteca foi concebida por duas razoes. Primeiro,
gostariamos de tornar nossos algoritmos disponiveis para testar sua aplicabilidade
em situagoes praticas. Segundo, percebemos que havia uma falta de uma biblioteca
similar na comunidade de software de cddigo aberto. Recebemos muitos feedbacks
interessantes com respeito a praticidade da biblioteca. Por exemplo, mais de 2, 500

downloads foram realizados até Setembro de 2008 e a biblioteca foi incorporada por

Xxil

duas distribuicoes do Linux: Debian® e Ubuntu”.

Conclusoes

Encontrar fungoes hash perfeitas que sao armazenadas utilizando espago constante para
cada elemento do conjunto de chaves tem sido objeto de estudo ha mais de vinte anos
pela comunidade cientifica. Nesta tese apresentamos uma solugao para esse problema que
¢ bem fundamentada teoricamente e pode ser utilizada na pratica para conjuntos estaticos
contendo bilhoes de elementos. Nenhum outro resultado da literatura gera funcoes tao
compactas e que podem ser geradas por algoritmos lineares extremamente eficientes e
escalaveis como as fungoes apresentadas neste trabalho.

Esse resultado possui intimeras implicagoes praticas. Por exemplo, mostramos que
as FHPMs projetadas neste trabalho fornecem o melhor compromisso entre utilizacao de
espago e tempo de pesquisa para aplicagoes que precisam indexar conjuntos estaticos de
chaves em memoria primaria. Além disso, devido a disponibilizacao dos resultados na
biblioteca CMPH, recebemos comentarios sobre a utilidade dos resultados para escalar
modelos de tradugao automatica em técnicas de aprendizado de maquina, para melhorar a
qualidade de filtros de spam, onde grandes vocabularios sao mantidos, dentre outras. Por
fim, os resultados desta tese podem ser explorados em uma série de areas e aplicagoes,

como indicado no Capitulo 8.

6Debian é um projeto voluntdrio para desenvolver uma distribuigao GNU/Linux, a qual esté disponfivel
em http://www.debian.org. O Debian iniciou a mais de uma década e, desde entao, cresceu e hoje envolve
mais de 1.000 membros com status oficial de desenvolvedor, possuindo ainda muito mais voluntérios e
contribuidores. O Debian expandiu ao ponto de englobar atualmente mais de 20.000 “pacotes” de aplicagoes

de cédigo aberto e livre.
70 projeto Ubuntu, disponivel em http://www.ubuntu.com, tenta trabalhar com o Debian para tratar

de assuntos que fazem com que alguns usudrios evitem de usar o Debian. Ubuntu fornece um sistema
baseado no Debian com atualizagoes e releases frequentes, utilitarios corporativos, e uma interface de
desktop mais agraddvel. Ubuntu permite a seus usuarios uma forma de implantar o Debian com corregoes
de erros criticos de seguranca, uma interface consistente de desktop, e nunca estd mais do que seis meses

distante da ultima versao de qualquer software na comunidade de software de cédigo aberto e livre.

xxili

XX1v

Fabiano Cupertino Botelho

Supervisor - Nivio Ziviani

Near-Optimal Space

Perfect Hashing Algorithms

PhD. dissertation presented to the Grad-
uate Program in Computer Science of the
Federal University of Minas Gerais as a par-
tial requirement to obtain the PhD. degree

in Computer Science.

Belo Horizonte
September 29, 2008

To my dear wife Janaina.
To my dear parents Maria Licia and José Vitor.

To my dear sisters Gleiciane and Cristiane.

Acknowledgements

To God for having granted me life and wisdom to realize a dream of childhood and for

the great help in difficult moments.

To my dear wife Janaina Marcon Machado Botelho for the love, understanding by several
times when I could not give her the attention she deserves, companionship and en-
couragement during moments in which I desired to give up everything. Jana thank
you for sharing your life with me and the victories won during the entire doctorate.

With the grace of God in our lives we will continue to be very happy.

To my dear parents Maria Lucia de Lima Botelho and José Vitor Botelho for sacrifices

made in the past that have given support for this achievement.

To my dear sisters Cristiane Cupertino Botelho and Gleiciane Cupertino Botelho for the

love of the best two sisters in the world.

To my dear aunt Marcia Novaes Alves and my dear uncle Sudario Alves for always welcome

me with affection, giving me much support throughout my doctorate.

To Prof. Nivio Ziviani for the excellent work of supervision and for being an example
of professionalism and dedication to work. His extensive experience in academic
research, and particularly in the areas of information retrieval and algorithms have
been of extreme importance to realize this work. In addition, his excellent support,
attention and encouragement were of great importance not only for completing the

doctorate, but also for my academic and professional life.

To Prof. Rasmus Pagh with whom I’ve learned a lot about techniques for designing and

analyzing hashing algorithms, being crucial his participation in this thesis.

To Prof. Yoshiharu Kohayakawa for the attention dedicated to the discussions that con-

tributed to improve the quality of this work. Thanks also to receive me at the

Institute of Mathematics and Statistics at the University of Sao Paulo and for all the

support given to my work during the time I spent in Sao Paulo.

To Prof. Edleno Silva de Moura for trusting on me and for always encouraging me.
Thanks also to receive me at the Department of Computer Science at the Federal

University of Amazonas during the time I spent in Manaus.

To the other Professors that evaluated this thesis, namely, Gaston Gonnet, Antonio Al-
fredo Loureiro, Wagner Meira Jr. and Jayme Luiz Szwarcfiter for having accepted

to participate of the PhD. defense and for the relevant criticisms and suggestions.

To Djamal Belazzougui for the intelligent suggestions and contributions made to this
thesis and to the CMPH library.

To Davi Reis for having conceived the idea of the CMPH library, which was fundamental

to disseminate the results obtained in this thesis.

To my colleague and friend Marco Antonio Pinheiro de Cristo for the fun moments we

spent together during our English classes and for always encoraging me.

To my colleague and friend Thierson Couto for his friendship, and to be always ready to

cooperate.

To my colleague and friend David Menotti for the discussions, suggestions and criticisms

that contributed much in the beginning of this work.

To my colleague and friend David Fernandes for having received me in your home during

the time I spent in Manaus and for his endless friendship.

To my colleagues and friends of our great and unforgettable soccer team Curucu and their
wives for the friendship conquered during the period we spent together. Thanks Pedro
Neto, Mauricio Figueiredo, Eduardo Freire Nakamura, Ruiter Caldas, André Lins,
José Pinheiro, Guillermo Camara Chavez, Martin Gomez Ravetti, David Patricio
Viscarra del Pozo and David Menotti for the amazing and fun moments that served

to relieve the stress of this difficult period of doctorate.

To colleagues and friends from that period of our undergraduate course that, through
the mailing list intrigas99, always supported me being close or distant. I thank also
for all the good laughs that I gave when I was reading some posts of the list, which

certainly helped a lot to ease the tension in difficult times.

To my colleagues and friends of the Laboratory for Treating Information (LATIN) Anisio
Mendes Lacerda, Alvaro Pereira Jr., Charles Ornelas Almeida, Claudine Santos
Badue, Daniel Galinkin, Denilson Pereira, Guilherme Vale Menezes, Hendrickson
R. Langbehn, Humberto Mossri, Marco Antonio Pinheiro de Cristo, Marco Aurélio
Barreto Modesto, Pavel Calado and Wladmir Cardoso Brandao for the criticism and
suggestions provided during the defense preparation and for the climate of friendship
we have established within LATIN.

To Professors and employees of the Department of Computer Science at the Federal
University of Minas Gerais that in various ways contributed to the completion of this

work.

To Professors and employees of the Department of Computer Engineering at the Federal
Center for Technological Education of Minas Gerais for having received me so well

and in a so respectful manner to integrate the department team.

To the scholarships granted by CAPES (Coordination of Improvement of Higher Edu-
cation) and CNPq (National Council for Scientific and Technological Development),
which served as subsidy for the time dedicated to this thesis.

Published Papers

1. F.C. Botelho, Y. Kohayakawa, and N. Ziviani. A practical minimal perfect hashing
method. In Proceedings of the 4th International Workshop on Efficient and Experi-
mental Algorithms (WEA’05), pages 488-500. Springer LNCS vol. 3503, 2005.

2. F.C. Botelho, R. Pagh, and N. Ziviani. Simple and Space-Efficient Minimal Perfect
Hash Functions. In Proceedings of the 10th Workshop on Algorithms and Data
Structures (WADS’07), pages 139-150. Springer LNCS vol. 4619, 2007.

3. F.C. Botelho, and N. Ziviani. External Perfect Hashing for Very Large Key Sets.
In Proceedings of the 16th Conference on Information and Knowledge Management
(CIKM’07), pages 653-662, ACM Press, 2007.

4. F.C. Botelho, D. Galinkin, W. Meira Jr., and N. Ziviani. Distributed Perfect Hashing
for Very Large Key Sets. In Proceedings of the 3rd International ICST Conference
on Scalable Information Systems (InfoScale’08), Naples, Italy, June 2008.

5. F.C. Botelho, H.R. Langbehn, G.V. Menezes, and N. Ziviani. Indexing Internal
Memory with Minimal Perfect Hash Functions. In Proceedings of the 23rd Brazilian
Symposium on Database (SBBD’08), Campinas, Brazil, October 2008.

Contents

1 Introduction

1.1
1.2
1.3
1.4

1.5
1.6

1.7
1.8
1.9

2 The
2.1

2.2

Motivation
Definitions and Notation
The Information Theoretical Lower Bound to Describe PHFs and MPHFs .
Uniform Hashing Versus Universal Hashing
1.4.1 Family of Uniform Hash Functions
1.4.2 Family of Universal Hash Functions
Random Graphs
Related Work
1.6.1 Theoretical Results
1.6.2 Practical Results

Internal Perfect Hashing Algorithm

The Family of Functions
2.1.1 Mapping Step
2.1.2 Assigning Step
2.1.3 Ranking Step
2.1.4 Evaluating the Resulting Functions
Analytical Results.
2.2.1 The Linear Time Complexity
2.2.2 Space Requirements to Describe the Functions
2.2.3 The 2-graph Instanceo L.

O N O O Ot s ==

e e T e e T
S DD W= O O

2.2.4 The 3-graph Instance oL 0L
2.2.5 The Use of Universal Hashing
2.2.6 The Space Requirements to Generate the Functions
2.3 Experimental Results
2.3.1 Performance of the RAM Algorithm
2.3.2 Comparison with the Main Practical Results in the Literature . . .

2.4 Conclusions

Using Split-and-Share to Simulate Uniform Hash Functions

3.1 Splitting

3.2 Simulating Uniform Hash Functions
3.2.1 The Shared Function
3.2.2 Using the Shared Function
3.2.3 Analysis of The Shared Function
3.2.4 Implementation Details

3.3 Conclusions,

The External Cache-Aware Perfect Hashing Algorithm

4.1 Design of the EM Algorithm
4.1.1 Partitioning Step
4.1.2 Searching Step

4.2 Analytical Results.
4.2.1 The Linear Time Complexity
4.2.2 The Space Requirements to Describe the Functions
4.2.3 The Space Requirements to Generate the Functions

4.3 Experimental Results oo
4.3.1 Performance of the EM Algorithm
4.3.2 Comparison with RAM and FCH Algorithms

4.4 Conclusions

A Highly Scalable and Parallel Perfect Hashing Algorithm

5.1 Metrics Used to Evaluate The PEM Algorithm

5.2 Parallel Algorithm
5.2.1 Parallel Construction
5.2.2 Centralized Evaluation of the Resulting Functions

i

49
20
52
52
23
23
o4
95

57
o8
60
62
63
63
65
66
66
67
70
73

5.2.3 Parallel Evaluation of the Resulting Functions 81

5.2.4 Implementation Decisions 82
5.3 Experimental Results 84
5.3.1 Key Size Impact 84
5.3.2 Communication Overhead 86
5.3.3 Load Balancing oo 88
5.3.4 Parallel Evaluation 0L 89
5.4 Conclusions 90
MPHFs and Random Graphs With Cycles 91
6.1 The BKZ Algorithm 92
6.1.1 The CHM algorithm 92
6.1.2 Design of The BKZ Algorithm 94
6.1.3 Comparing the BKZ and CHM Algorithms 103
6.2 The RAM Algorithm: Dealing with Connected Components with a Single
Cycleforr=2 106
6.2.1 Design of the Optimized Version of The RAM Algorithm 106
6.2.2 Comparing the two Versions of the RAM Algorithm 110
6.3 Conclusions 112
Indexing Internal Memory With MPHF's 113
7.1 The Algorithms 114
7.1.1 Linear Hashing 115
7.1.2 Quadratic Hashing 115
7.1.3 Double Hashing 116
7.1.4 Cuckoo Hashing 117
7.1.5 Sparse Hashing 118
7.1.6 Minimal Perfect Hashing 120
7.2 Experimental Results oo 122
721 Key Sets 123
7.2.2 Minimal Perfect Hashing Versus Linear Hashing, Quadratic Hashing
and Double Hashing 125
7.2.3 Minimal Perfect Hashing Versus Dense and Sparse Hashing 128
7.2.4 Minimal Perfect Hashing Versus Cuckoo Hashing 129
7.3 Conclusions 130

il

8 Conclusions and Future Work
8.1 Conclusions
8.2 Future Work
Bibliography

v

Chapter 1

Introduction

1.1 Motivation

The need to access items based on the value of a key is ubiquitous in areas including
artificial intelligence, data structures, database, data mining and information retrieval.
Some types of databases are updated only rarely, typically by periodic batch updates. This
is true, for example, for most data warehousing applications (see [71] for more examples
and discussion). In such scenarios it is possible to improve query performance by creating
very compact representations of keys by minimal perfect hash functions.

In applications where the key set is fixed for a long period of time the construction
of a minimal perfect hash function can be done as part of the preprocessing phase. For
example, On-Line Analytical Processing (OLAP) applications use extensive preprocessing
of data to allow very fast evaluation of certain types of queries. More formally, given a
static key set S C U of size n from a key universe U of size u, where each key is associated
with satellite data, the question we are interested in is: what are the data structures that
provide the best trade-off between space usage and lookup time?

An efficient way to represent a key set in terms of lookup time is using a table indexed
by a hash function. Considering S C U and given a key x € S, a hash function A computes
an integer in [0, m — 1] for the storage or retrieval of = in a hash table. Hashing methods
for non-static key sets can be used to construct data structures storing S and supporting
membership queries of the type “z € S7” in expected O(1) time. However, they involve a
certain amount of wasted space owing to unused locations in the table and wasted time to

resolve collisions when two or more keys are hashed to the same table location.

2 CHAPTER 1. INTRODUCTION

Perfect hashing is a space-efficient way of creating compact representation for a static
set S of n keys. For applications with successful searches, the representation of a key z € S
is simply the value h(z), where h is a perfect hash function (PHF) for the set S of values
considered. The word “perfect” refers to the fact that the function will map the elements
of S to unique values (is identity preserving). Minimal perfect hash function (MPHF)
produces values that are integers in the range [0,n — 1], which is the smallest possible
range. Figure 1.1(a) illustrates a perfect hash function and Figure 1.1(b) illustrates a

minimal perfect hash function.

0 1 2 . n-1
LT I I [[[[]Keyset
()
Hash Tabl
0 1 2 . m-1
0 1 2 e n-1
l >l§< | [[T T]Keyset
(b)
LT [[[[[[J]HashTable
0 1 2 ces n-1

Figure 1.1: (a) Perfect hash function (b) Minimal perfect hash function.

Since PHFs and MPHF's are collision free, each key can be retrieved from the table with
a single probe. MPHFs completely avoid the problem of wasted space and time. Better
still, it was observed in [56] that MPHF's also avoid cache misses that arise due to collision
resolution schemes like open addressing and chaining [51].

Minimal perfect hash functions are used for memory efficient storage and fast retrieval of
items from static sets, such as words in natural languages, reserved words in programming
languages or interactive systems, item sets in data mining techniques [21, 22|, routing
tables and other network applications [66], sparse spatial data [54], graph compression [7]
and, to represent large web maps [27].

A PHF depends on the set S of distinct key values that occur. It is known that
maintaining a PHF dynamically under insertions into S is only possible using space that
is super-linear on n [28]. However, in this work we consider the case where S is fixed, and
construction of a PHF can be done as part of the preprocessing of data (e.g., in a data
warehouse).

To the best of our knowledge, previously perfect hashing methods have not been able to

generate functions for realistic data sizes that require a constant number of bits to store the

1.1. MOTIVATION 3

functions. All previous methods suffer from either an incomplete theoretical understanding
(so there is no guarantee that they work well on a given data set) or seems impractical due

to a very intricate and time-consuming evaluation procedure.

Until now, because of the limitations of current algorithms, the use of MPHF's is re-
stricted to scenarios where the key set being hashed is relatively small. However, in many
cases the demand to deal in an efficient way with very large key sets is growing. For in-
stance, search engines are nowadays indexing tens of billions of pages and algorithms like
PageRank [16], which uses the web graph to derive a measure of popularity for web pages,
would benefit from an MPHF to map long URLs to smaller integer numbers that are used

as identifiers to web pages, and correspond to the vertex set of the web graph.

Though there has been considerable work on how to construct good PHFs, there is
a gap between theory and practice among all previous methods on perfect hashing. On
one hand, there are good theoretical results without experimentally proven practicality
for large key sets. On the other hand, there are the algorithms that assume unrealistic

assumptions to theoretically analyze their run time and space usage.

In this thesis we present new algorithms for constructing PHFs and MPHF's that out-
perform the main practical algorithms available in the literature and are theoretically
well-understood. Therefore we give an important step in the way of bridging the gap
between theory and practice on perfect hashing. We also show that the new algorithms
have made it viable to use MPHF's for applications that was not possible in the past. The

algorithm we propose to construct MPHF's can easily scale to billions of entries.

In Section 1.2 we present some definitions and notation used throughout this work.
In Section 1.3 we present the information theoretical lower bound to describe PHFs and
MPHFs. In Section 1.4 we present two important concepts used in the analysis of hashing
schemes. In Section 1.5 we disscuss some facts on random graphs used to analyze the
algorithms designed in this work. In Section 1.6 we present the main results available in
the literature on perfect hashing and also discuss the aforementioned gap between theory
and practice on perfect hashing. In Section 1.7 we present our objectives and a technical
overview of this work. In Section 1.8 we present the main contributions of this work.

Finally, in Section 1.9 we present the road map of this thesis.

4 CHAPTER 1. INTRODUCTION

1.2 Definitions and Notation

The aim of this section is to establish a common vocabulary to be used throughout this

work.

Definition 1 A key is made up by symbols from a finite and ordered alphabet ¥ of size
X

Definition 2 Let ® denote the mazimum key length. Then L = ® log |X| is the maximum

key length in bits!. Then we define a key universe U of size u = 2L.

Throughout this thesis we consider that L = O(1) and that logu fits in O(1) computer
words. Therefore, all algorithms we will consider are analyzed for the Word RAM model
of computation [41]. In this model an element of the universe U fits into one machine word,

and arithmetic operations and memory accesses have unit costs.
Definition 3 Let S be a subset of U containing n keys, where n < u.

Definition 4 Let h : U — M be a hash function that maps the keys from U to a given
interval of integers M = [0,m — 1] = {0,1,...,m — 1} (i.e., given a key = € U, the hash

function h computes an integer in [0,m — 1]).

Definition 5 Given two keys z,y € U, where x # y, and a hash function h : U — M, a

collision occurs when h(z) = h(y).

Definition 6 A perfect hash function phf : S — M is an injection on S C U(i.e., for all
pair si, so € S such that s; # sy, then phf(s1) # phf(s2), where m > n). For being an
injection, phf maps each key in S to a unique integer in M. As no collision occurs, if phf
is used to index a hash table of size m with n records identified by the n keys in S, each

record can be retrieved in one probe.

Definition 7 A minimal perfect hash function mphf : S — M is a bijection on S C U

(i.e., each key in S is mapped to a unique integer in M and m = n).

Definition 8 A perfect hash function is order-preserving if for any pair of keys s; and
s; € S then phf(s;) < phf(s;) if and only if i < j.

IThroughout this work we denote log, = as log .

1.3. THE INFORMATION THEORETICAL LOWER BOUND TO DESCRIBE PHFS AND MPHEFS 5

1.3 The Information Theoretical Lower Bound to De-
scribe PHFs and MPHF's

One of the most important metrics related to PHFs and MPHFs is the amount of space
required to describe a function. The information theoretical lower bound to describe a
PHF was first studied in [57]. Fredman and Komlds [40] proved a lower bound for MPHFs.
A simpler proof of this was later given in [68]. The following two theorems present the
information theoretical lower bound to describe a PHF and an MPHF, respectively. Here
we use Stirling’s approximation and so we obtained a more precise result up to an additive
constant, because Stirling’s approximation is tight within a constant factor. For simplicity
of exposition, we consider in this thesis the case logu < n, which allows us to ignore terms

in the space usage that depend on w.

Theorem 1 Every perfect hash function phf : S — M, where |S| = n and |M| = m,
requires at least (14 (m/n —1+1/2n)In(1 —n/m)) nloge bits to be stored.

ProOF. The probability of randomly mapping n elements into a range of size m without
collisions (i.e., probability of getting a PHF) is:
(m—1)(m—=2)...(m—n+1) m!

Prph(na m) = mn = mn<m _ Tl)'

By using Stirling’s approximation n! &~ n"e™"v/2wn we obtain:

(m—n) m—n) e " m

Prp(n,m) ~ m - (m —mn)~(

m—n
Therefore, at least 1/ Pr,,(n,m) hash functions are required to obtain a PHF. Thus, at
least log(1/Pryn(n,m)) = (1 + (m/n—141/2n)In(1 — n/m))nloge bits are required to

encode that set of hash functions. O

Theorem 2 Every minimal perfect hash function mphf : S — M, where |S| = n and

|M| = m = n, requires at least nloge — O(logn) bits to be stored.

PROOF. The probability of finding an MPHF (where n = m) is:

n! n"2mn _
Prmph(n,n) = ﬁ = W =e "V2mn
which also uses the aforementioned Stirling’s approximation. Therefore, the expected
number of bits needed to describe these rare minimal perfect hash functions is at least

log(1/ Prypn(n,n)) = nloge — O(logn). O

6 CHAPTER 1. INTRODUCTION

1.4 Uniform Hashing Versus Universal Hashing

All perfect hashing algorithms need to use hash functions chosen uniformly at random
from a fixed family H of hash functions for constructing PHFs or MPHFs. There are two
families of hash functions used in the classical analysis of hashing schemes: (i) uniform hash
functions and (ii) universal hash functions. In this section we define these two families of

hash functions.

1.4.1 Family of Uniform Hash Functions

The classic analysis of hashing schemes often entails the assumption that the hash functions
used are uniformly chosen at random from a family of uniform hash functions, defined as

follows.

Definition 9 Let H be the family of all m* possible hash functions from U to [0, m—1]. A
uniform hash function is a function that has independent function values and is uniformly

chosen at random from H.

The problem with uniform hash functions is the space required to describe a single
function, which is Q(u logm) bits. This space requirement usually far exceeds the available
storage and is often overlooked in the analysis of practical perfect hashing schemes available

in the literature.

Lemma 1 [20] Let H be a family of uniform hash functions and h : U — M be a hash
function taken from H with probability IWll Let Cp(z,y) =1ifx € U and y € U collide by
using a hash function h and 0 otherwise, where x # y. The probability of collision between

two different keys x,y € U corresponds to the expected value of Cj,(x,y) and is given by:

E[Ch(‘ra y)] >

SN

1
m

ProoOF. Let Cy(z,U) denote the total number of keys in U that collides with a given
key x € U by using a hash function h. So, Cp(z,U) = >_ 7,2, Cn(z,y). Let Cu(U,U)
denote the total number of collisions for all x € U by using a hash function h. So,
Ch(U,U) = > ey Cn(z,U). Let H be a family or a collection of hash functions. Thus,
Cn(U,U) = > 4ep Cn(U,U) denotes the total number of collisions for all z € U and for
all hash functions from H. Let us think of M = [0,m — 1] as a range of indexes of a hash

table with m buckets and the values in M are computed by a hash function h : U — M

1.4. UNIFORM HASHING VERSUS UNIVERSAL HASHING 7

taken with probability ﬁ from a family H of uniform hash functions. After mapping all
keys to the range M, if a bucket i € M has three keys {ki, ko, k3}, then ky collides with
each of {ks, k3}, ko collides with each of {ki, k3}, and k3 collides with each of {ki, ks}, so
we have 6 collisions in bucket 7. In the worst case, when all keys from U are mapped to the
same bucket 7, this corresponds to the number of ordered pairs we can form from the key
universe U of size u considering a hash function i € H, which is given by Cy,(U, U) = u*—u.
Therefore, Cy (U, U) = |H|(u? — u). As we have m buckets, then the expected number of
collisions for all hash functions in H is:
BlCu(U.0)] =) (o)

m mu

Thus, by the pigeon hole principle? there exists =,y € U and h € ‘H such that

ElCh(a,y)] = ~ — — >

1
moomu - m

SN

1.4.2 Family of Universal Hash Functions

As mentioned in Section 1.4.1, the amount of space to represent a uniform hash function
is prohibitive in practice. Fortunately in most cases heuristic hash functions behave very
closely to the expected behavior of uniform hash functions, but there are cases when
rigorous probabilistic guarantees are necessary [18]. For instance, various adaptive hashing
schemes presume that a hash function with certain prescribed properties can be found in
constant expected time. This holds if the function is chosen uniformly at random from all
possible functions until a suitable one is found but not necessarily if the search is limited
to a smaller set of functions. This situation has led Carter and Wegman [20] to the concept

of universal hashing.

Definition 10 A family of hash functions H is defined as weakly universal or just universal
if for any pair of distinct elements x1, 25 € U and h chosen uniformly at random from H
then

2The pigeonhole principle states that, given two natural numbers n and m with n > m, if n pigeons

are put into m pigeonholes, then at least one pigeonhole must contain more than one pigeon.

8 CHAPTER 1. INTRODUCTION

Definition 11 A family of hash functions H is defined as strongly universal or pair-wise
independent if for any pair of distinct elements 1, x5 € U and arbitrary y,,ys € M then

Pr(h(a1) =y and h(zs) = y2) = —-

m2

It turns out that in many situations the analysis of various hashing schemes can be
completed under the weaker assumption that h is chosen uniformly at random from a
family of universal hash functions, rather than the assumption that h is chosen uniformly
at random from all possible hash functions. In other words, limited randomness suffices in
practice [70]. For instance, when we are hashing a key universe much larger than the hash
function range M = [0, m — 1], which is the case for most hashing applications, universal
hash functions behave very closely to the expected behavior of uniform hash functions.
This can be seen by comparing the result of Lemma 1 with the probability of collision for
universal hash functions, which is given in Definition 10. We notice that there are cases
where rigorous probabilistic guarantees are necessary [18, 2]. Let us illustrate this with the
following three scenarios, which have been extensively used in various settings and were

reported in [2].

1. Consider that a key set S C U of size n is hashed to m buckets. The question is:
how many buckets m are needed to get no collisions? By using a universal hash
function we need m = O(n?) to get no collisions with probability more than 1/2.
By using a uniform hash function, it is well known that o(n?) is not enough to get
no collisions, as exemplified by the birthday paradox®. Therefore, nothing is lost by

using a universal hash function in this scenario.

2. Consider that the key set S C U is hashed to m = n buckets. The question is: what
is the size of S to cover all buckets (i.e., no bucket is left empty)? By using a universal
hash function, if the size of S is 2n?, then, all buckets are covered with probability
more than 1/2. By using a uniform hash function, it is well known that a key set .S of
size f(nlogn) would be enough to cover all buckets with high probability?. Therefore,
by using a uniform hash function in this scenario, a polynomial gain is obtained by

going from O(n?) to f(nlogn).

3. Consider that the key set S of size n is hashed to m = n buckets. The question is:

what is the size of the largest bucket? By using a universal hash function, the largest

3The birthday paradoz says that if 23 or more people are grouped together at random, the probability

that at least two people have a common birthday exceeds 50%, as can be seen in Feller [36, Page 33].
4Throughout this thesis we write “with high probability” to mean with probability 1 —n=% for § > 0.

1.5. RANDOM GRAPHS 9

bucket will contain O(n'/?) keys. By using a uniform hash function, it is well known
that the largest bucket will contain 0(logn/loglogn) keys. Therefore, by using a
uniform hash function in this scenario, it is obtained an exponential gain by going
from O(n'/?) to 6(logn/loglogn).

1.5 Random Graphs

We now discuss some facts on random graphs that are important for analyzing our al-
gorithms. A random graph is a graph generated by some random procedure. There are
many non-equivalent ways to define random graphs and now we present two closely re-
lated models. The study of random graphs goes back to the classical work of Erdds and
Rényi [33, 34, 35] (for a modern treatment, see [8, 49]).

Definition 12 Let G = (V, E) be a random graph in the uniform model G(m,n), the

m

model in which all the ((721)) graphs on V' with n edges are equiprobable. In this model,
graph G starts with a fixed number of vertices |V| = m and |E| = n edges are randomly
chosen without replacement from the set of all (”2””) possible edges. A similar model, denoted
by G(m,p), where 0 < p < 1, is obtained by taking the same vertex set but now each edge
is selected with probability p and independently of all other edges and therefore repetitions

are allowed.

As presented in [48], it is often useful to regard the random graph as evolving in
time by a stochastic process, starting with a vertex set without edges and then inserting
edges until the complete graph is obtained. For instance, the process of adding each edge
independently of the others at some random time, for example, uniformly distributed in
the range (0, 1), will give a random graph of type G(m, p) at a fixed time p € (0,1) and a
random graph of type G(m,n) at the random time at which the n-th edge appears.

Our best result generates a family F of PHFs or MPHFs based on random acyclic
r-partite hypergraphs, defined as follows.

Definition 13 A hypergraph is the generalization of a standard undirected graph where

each edge connects r > 2 vertices.

Definition 14 Let G, = (V, E) be a random r-partite r-uniform hypergraph for r > 2,
where V' is a disjoint union of the r parts Vy, Vi,..., V.1, |Vi| = p, |[V| = m = rp, and

10 CHAPTER 1. INTRODUCTION

|E| = n. The edges are inserted into G, one at a time, each being picked at random from

all p" possible edges, allowing repetitions.

Definition 15 A hypergraph is acyclic if and only if some sequence of repeated deletions

of edges containing vertices of degree 1 yields a hypergraph without edges [26, Page 103].

1.6 Related Work

In this section we review some of the most important theoretical, practical, and heuristic
results on perfect hashing. Czech, Havas and Majewski [26] provided a more comprehensive
survey until 1997.

As mentioned before, there is a gap between theory and practice among minimal perfect
hashing methods. On one hand, there are good theoretical results without experimentally
proven practicality for large key sets. We will argue below that these methods are indeed
not practical. On the other hand, there are two categories of practical algorithms: the
theoretically analyzed time and space usage algorithms that assume uniform hash functions
for their methods, which is an unrealistic assumption because each uniform hash function
h:U — [0,m—1] require at least ulogm bits of storage space, and the heuristic algorithms
that present only empirical evidences. The aim of this section is to discuss the existent

gap among these three types of algorithms available in the literature.

1.6.1 Theoretical Results

In this section we review some of the most important theoretical results on minimal perfect
hashing, which do not assume that uniform hash functions are available for free. Fredman
and Komlés [40] proved that at least nloge + loglogu — O(logn) bits are required to
represent an MPHF (in the worst case over all sets of size n), provided that u > n® for
some « > 2. Mehlhorn [57] showed that the Fredman-Koml6s bound is almost tight by
providing an algorithm that constructs an MPHF that can be represented with at most
nloge + loglogu + O(logn) bits. However, his algorithm is far from practice because its
generation and evaluation time are exponential on n (i.e., nf(e"ulosw),

Schmidt and Siegel [70] proposed the first algorithm for constructing an MPHF with
constant evaluation time and description size O(n+loglogu) bits. Their algorithm, as well
as all other algorithms we will consider, is for the Word RAM model of computation [41]

(see Section 1.2). From a practical point of view, Schmidt and Siegel’s algorithm is not

1.6. RELATED WORK 11

attractive. The scheme is complicated to implement and the constant of the space bound
is large: For a set of n keys, at least 29n bits are used, which means a space usage similar
in practice to the best schemes using O(nlogn) bits. Though it seems that [70] aims
to describe its algorithmic ideas in the clearest possible way, not trying to optimize the
constant, it is hard to improve the space usage significantly.

More recently, Hagerup and Tholey [43] have come up with the best theoretical result
we know of. The MPHF obtained can be evaluated in O(1) time and stored in nloge +
log log u+O(n(loglogn)?/log n+logloglog u) bits. The generation time is O(n+loglogu)
using O(n) words of space. In spite of its theoretical importance, the Hagerup and Tholey
algorithm also is not practical, as it only emphasizes asymptotic space complexity. (It
is also very complicated to implement, but we will not go into that.) For n < 250 the
scheme is not well-defined, as it relies on splitting the key set into buckets of size n <
logn/(21loglogn). If we fix this by letting the bucket size be at least 1, then buckets
of size one will be used for n < 23%°, which means that the space usage will be at least
(3loglogn +1log 7) n bits. For a set of a billion keys, this is more than 17 bits per element.

2300 exceeds the number of atoms in the known universe, it is safe to conclude that

Since
the Hagerup-Tholey MPHF is not space efficient in practical situations. While we believe
that their algorithm has been optimized for simplicity of exposition, rather than constant

factors, it seems difficult to significantly reduce the space usage based on their approach.

1.6.2 Practical Results

We now describe some of the main “practical” results upon which our work is based. They
are characterized by simplicity and (provably) low constant factors. In general, they are
analyzed upon the unrealistic assumption that uniform hash functions are available for
free.

The algorithm proposed by Czech, Havas and Majewski [25] assumes uniform hash
functions to be available for free (i.e., they use universal hash functions) to construct order
preserving MPHF's. The method uses two uniform hash functions h; : S — [0, cn — 1] and
hy : S — [0,cn — 1] to generate MPHFs in the following form: mphf(z) = (g[hi(z)] +
glha(z)] mod n where ¢ > 2. The resulting MPHFs can be evaluated in O(1) time and
stored in O(nlogn) bits (that is optimal for an order preserving MPHF). The resulting
MPHF is generated in expected O(n) time.

Botelho, Kohayakawa and Ziviani [12] improved the space requirement at the expense

of generating functions in the same form that are not order preserving. Their algorithm

12 CHAPTER 1. INTRODUCTION

is also linear on n, but runs faster than the ones by Czech et al [25] and the resulting
MPHFs are stored using half of the space because ¢ € [0.93,1.15]. However, the resulting
MPHFs still need O(nlogn) bits to be stored. It was found experimentally in [12] that

their generation procedure works well in practice.

Majewski et al [55] proposed an algorithm to generate a family of MPHFs based on
r-uniform hypergraphs (i.e., with edges of size r). It is a generalization of the algorithm
in [25]. The resulting functions can be evaluated in O(1) time and stored in O(nlogn)
bits. Although the resulting functions are almost as compact as the ones generated by the
work in [12], they still require O(nlogn) bits to be stored. Botelho, Pagh and Ziviani [14]
designed a family of algorithms that improves the space requirement from O(nlogn) to

O(n) bits at the expense of generating functions that are not order preserving.

Since the space requirements for uniform hash functions makes them unsuitable for
implementation, one has to settle for a more realistic setup. The first step in this direction
was given by Pagh [61]. He proposed a family of randomized algorithms for constructing
MPHFs of the form mphf(z) = (f(z) + d[g(x)]) mod n, where f and g are chosen from a
family of universal hash functions (see Definition 10) and d is a set of displacement values
to resolve collisions that are caused by the function f. Pagh identified a set of conditions
concerning f and g and showed that if these conditions are satisfied, then a minimal perfect
hash function can be computed in expected O(n) time and stored in (2 + €)nlogn bits,

which is suboptimal.

Dietzfelbinger and Hagerup [29] improved [61], reducing the space usage to (1+¢€)nlogn
bits, but in their approach f and g must be chosen from a class of hash functions that meet
additional requirements. Woelfel [75] has shown how to decrease the space usage further,
to O(nloglogn) bits asymptotically, still with a quite simple algorithm. However, there is

no empirical evidence on the practicality of this scheme.

Galli, Seybold and Simon [42] proposed an algorithm to generate MPHF's similar to the
ones generated in the works [61, 29]. However, in their MPHF's the two functions f and g are
defined as f(z) = h.(r) mod n and g(x) = |h.(x)/n], where h.(k) = (ck mod p) mod n?,
1 <c¢<p—1andpisa prime larger than u. The resulting MPHF's are generated in linear
time and stored in O(nlogn) bits. The main advantage of their approach is that it can be

easily adapted for dynamic key sets, but just for PHFs.

Prabhakar and Bonomi [66] designed perfect hash functions to be used for storing
routing tables in routers for networking applications. They have shown that the storage

requirement for the resulting functions goes to 2en when n goes to infinity. In their

1.6. RELATED WORK 13

simulations the resulting functions were stored in 8.6n bits. The main advantage of their
scheme is that it is simple enough to be implemented in hardware.

Randomized algorithms of Las Vegas® type were designed in all previous work and also
in this work. Conversely, the works [4, 73] present deterministic algorithms to construct
PHFs and MPHFs. The resulting functions require O(nlog(n) + log(log(u))) bits of stor-
age space and are evaluated in O(log(n) + log(log(w))). Thus, the resulting functions are
not evaluated in O(1) time and are within a factor of logn bits from the information
theoretical lower bounds to describe PHFs and MPHF's, which are presented in Theo-
rems 1 and 2, respectively. The average and worst case complexity of the algorithms are

O(nlog(n)log(log(u))) and O(n3log(n)log(log(u))), respectively.

1.6.3 Heuristics

In this section we consider works designed for specific applications and, in general, just
experimental evidences of the behavior of the algorithms are provided.

Fox et al. [39] created the first scheme with good average-case performance for large
datasets, i.e., n ~ 10°. They have designed two algorithms, the first one generates an
MPHF that can be evaluated in O(1) time and stored in O(nlogn) bits. The second al-
gorithm uses quadratic hashing and adds branching based on a table of binary values to
get an MPHF that can be evaluated in O(1) time and stored in ¢(n + 1/logn) bits. They
argued that ¢ would be typically lower than 5, however, it is clear from their experimenta-
tion that ¢ grows with n and they did not discuss this. They claimed that their algorithms
would run in linear time, but, it is shown in [26, Section 6.7] that the algorithms have
exponential running times in the worst case, although the worst case has small probability
of occurring.

Fox, Chen and Heath [38] improved the above result to get a function that can be
stored in cn bits. The method uses four uniform hash functions hyp : S — [0,n — 1],
hii 2 [0,p1 — 1] = [0,p2 — 1], hia : [p1,m — 1] — [p2, b — 1] and hg : S x {0,1} — [0,n — 1]
to construct an MPHF that has the following form:

mphf(x) = (ho(x,d) + g(i(z))) mod n
() B hll ¢} hlo(ﬂf) if hlo(l') <D

hiz o hip(z) otherwise.

5A random algorithm is Las Vegas if it always produces correct answers, but with a small probability

of taking a long time to execute.

14 CHAPTER 1. INTRODUCTION

where p; = 0.6n and ps = 0.3n were experimentally determined, and b = [en/(logn + 1)].
Again c is only established for small values of n. It could very well be that ¢ grows with
n. So, the limitation of the three algorithms is that there is no warranty that the number
of bits per key to store the function will be fixed as n increases.

The work by Lefebvre and Hoppe [54] has the same problem of not providing any
warranty that the storage space of the resulting functions will be a constant number of bits
per key. They have designed a PHF method to specifically represent sparse spatial data
and the resulting functions require more than 3 bits per key to be stored. In the same
trend, Chang, Lin and Chou [21, 22] have designed MPHF's tailored for mining association

rules and traversal patterns in data mining techniques.

1.7 Technical Overview of this Work

Our primary objective was to design perfect hashing algorithms that are theoretically well-
founded and can be efficiently used in practice. For that we investigate ways to bridge the
existent gap between theory and practice among the minimal perfect hashing algorithms
available in the literature.

In this work we used a two-step approach in order to design an algorithm that achieves
our primary objective. In the first step, we partition the input key set into small buckets.
This step is equivalent to the process of generating runs in an external multi-way merge
sort, which is carefully engineered to make it work in linear time. In the second step, we
generate a PHF or an MPHF for each bucket.

Figure 1.2 illustrates the two steps of the algorithm: the partitioning step and the
searching step. The partitioning step takes a key set S of size n and uses a hash function
ho to partition S into N, buckets. The searching step generates an MPHF (or equivalently
a PHF) for each bucket i, 0 < i < N, — 1, and computes the offset array. The evaluation
of the resulting MPHF for a key x is:

MPHF (x) = MPHF;(x) + offset][i]

where i = ho(z) indicates the bucket where key z is, MPHF;(z) is the position of x in
bucket ¢, and offset[i] gives the total number of entries before bucket 7 in the hash table.

If the key set size n fits in the internal memory available, then the first step of the
algorithm is not necessary. In this situation, we just make the bucket size equal to the

input size n and generate a PHF or an MPHF for this bucket. Therefore, the algorithm

1.7. TECHNICAL OVERVIEW OF THIS WORK 15

0 1 n—1
LI T TP [eee [] [KeysSers
ho
Partitioning *
3N
N ! Buckets
0 1 2 N!:—l
Searching / / \ \
Iy e Y fryoy
MPHF, MPHF; MPHF, MPHEFN, —;
B [[[T - [ETTRET Hash Table
0 1 m—1

Figure 1.2: The two steps of the algorithm.

becomes an internal random access memory algorithm, referred to as RAM algorithm from
now on. If the key set size n is larger than the size of the internal memory available, then
the first step is performed to partition the input set into small buckets and the algorithm
becomes an external memory algorithm, referred to as EM algorithm from now on. The
external algorithm is also cache-aware because the buckets are small enough to fit in the
CPU cache. Therefore, the EM algorithm accesses memory in a less random fashion when
compared with the RAM algorithm.

We refine and combine a number of existing techniques in the design and implementa-

tion of the algorithm, as follows:

1. To generate PHFs or MPHF's for the buckets we could choose from a number of
alternatives, emphasizing either space usage, construction time, or evaluation time.
All methods that assume uniform hash functions can be made to work, by using the
split-and-share technique presented in [30] to split the problem into small buckets, and
simulate uniform hash functions on each bucket. In Chapter 3 we present a particular
engineering of this idea, with a refinement that, without extra space usage, gives a

family of uniform hash functions on each bucket.

2. The RAM algorithm is used to compute PHFs or MPHFs on the buckets because
it generates near-space optimal functions and outperforms the main practical algo-
rithms available in the literature, including our previous result presented in [12].
We take a PHF generation implicit in [23] as a starting point, which was also inde-
pendently suggested by Belazzougui [5]. Then, we improve the analysis, refine the
generation algorithm to make it succeed with high probability, extend it to gener-
ate MPHFs as well, and show how to implement everything in a near space-optimal

manner. When the key set fits in the internal memory we have just one bucket of size

16

CHAPTER 1. INTRODUCTION

n, otherwise several small buckets are handled. The RAM algorithm is presented in
Chapter 2.

External sorting (see, e.g., [74, 53]) is used to group the keys into buckets when the
key set does not fit in the internal memory. Then, we handle each bucket separately.
The important insight here is that we split the problem in small buckets and this
has both theoretical and practical implications. From the theoretical point of view
we showed that, by refining the split-and-share technique to simulate uniform hash
functions on the small buckets, we were able to prove that the EM algorithm will
work for every key set with high probability. From the practical point of view, an
important feature of this is that we may make buckets that are small enough to fit
in the CPU cache, resulting in a significant speedup (in processing time per element)
compared to other methods. To generate the runs of the external memory sorting,

we use radix sorting [24] to perform this in linear time.

Offset tables are used to put everything together to a single PHF or MPHF'. This has
been done in several theoretical works (see, e.g. [70, 43]). In Chapter 4 we show how

to implement this with low space overhead in practice and present the EM algorithm.

The EM algorithm has a high degree of parallelism because it is based on the external
multi-way merge sort algorithm. In Chapter 5 we exploit this fact to design a parallel

version of the EM algorithm.

The techniques designed in our previous work presented in [12] to generate MPHFs
based on random graphs with cycles were used to optimize one version of the RAM

algorithm presented in Chapter 2. This is presented in Chapter 6.

1.8 Contributions

The attractiveness of using PHFs and MPHFs depends on the following issues [43]:

1.

2.

The amount of CPU time required for generating the functions.

The space requirements for generating the functions.

. The amount of CPU time required by the functions for each retrieval.

The space requirements of the description of the resulting functions to be used at

retrieval time.

1.8. CONTRIBUTIONS 17

No previously known algorithm performs well for all these requirements. Usually, the
space requirement for generating the functions is overlooked. That is why the algorithms in
the literature cannot scale for key sets on the order of billions of keys. Also, as mentioned
before, there is a gap between practical and theoretical algorithms. On one hand, practical
algorithms analyze the space requirement to describe the resulting functions under the
unrealistic assumption that uniform hash functions are available to be used with no extra
cost of space. On the other hand, the theoretical algorithms are analyzed with no unrealistic
assumption, but they emphasize asymptotic space complexity and are too complicated to
implement.

The main contributions of this thesis are:

1. We present a simple, practical and highly scalable perfect hashing algorithm that
takes into account the four requirements aforementioned. When the input key set
fits in main memory, it becomes an internal random access memory algorithm (RAM
algorithm); otherwise, it becomes an external memory algorithm (EM algorithm).
Preliminary versions of the RAM and the EM algorithms were presented in [14] and

in [15], respectively. We now present more details on the two algorithms.

(a) The RAM algorithm works on random acyclic r-partite hypergraphs given by
function values of uniform hash functions on the keys of S. The idea of basing
perfect hashing on random acyclic hypergraphs is not new, see e.g. [55], but we
proceed differently to achieve a space usage of O(1) bits per key rather than
O(logn) bits per key, reducing the complexity order to store the functions from
O(nlogn) to O(n) bits. The RAM algorithm is presented in Chapter 2.

We now comment on the four aforementioned requirements:

i. It generates PHFs or MPHFs in linear time. The PHFs are equivalent to
the ones suggested by Belazzougui [5], which were previously suggested in

a more general way by Chazelle et al in [23].

ii. It requires O(n) computer words to generate PHFs or MPHF's. That is why

it is appropriated for key sets that can be handled in internal memory.
iii. It generates PHFs or MPHF's that take O(1) time to be evaluated.

iv. It generates near space-optimal PHFs and MPHFs. The space requirements
of the description of the resulting functions depend on the relation between
m and n. For m = n, the space usage is approximately 2.62n bits. For

m = 1.23n, the space usage is approximately 1.95n bits. In all cases, this is

CHAPTER 1. INTRODUCTION

within a small constant factor from the information theoretical minimum of
approximately 1.44n bits for MPHF's and 0.89n bits for PHFSs, something

that has not been achieved by previous practical algorithms.

(b) The EM algorithm uses a number of techniques from the literature to allow
the generation of PHFs or MPHFs for sets on the order of billions of keys. It
increases one order of magnitude in the size of the greatest key set for which
an MPHF was obtained in the literature [12]. This improvement comes from a
combination of a novel, theoretically sound perfect hashing scheme that greatly
simplifies previous methods, and the fact that it is designed to make good use of

the memory hierarchy, since it is fundamentally a divide-to-conquer technique.

The EM algorithm is the first step aiming to bridge the gap between theory and
practice on perfect hashing. Therefore, the EM algorithm is the first algorithm
that can be used in practice, has time and space usage carefully analyzed without

unrealistic assumptions, and scales for billions of keys.

We demonstrate the scalability of the EM algorithm by generating an MPHF
for a set of 1.024 billion URLs from the World Wide Web of average length
64 characters in approximately 50 minutes, using a commodity PC. The EM

algorithm is presented in Chapter 4.

We now comment on the four aforementioned requirements:

i. It generates PHFs or MPHFs in linear time and the dominating step in the

generation algorithm consists of sorting n fingerprints of O(logn) bits.

ii. It requires O(n¢) computer words to have linear time complexity, where
0 < e < 1. This is because it only needs a heap in main memory to
multi-way merge files stored on disk, and the size of the heap is the relation
between the size of the input key set and the amount of the internal memory
available, both in bytes. In our case, as we want to perform the merge
operation in one pass, we need € = 0.5 (see, e.g., [1, Theorem 3.1]). This is
one of the reasons that enables the EM algorithm to scale for sets on the

order of billions of keys.
iii. It generate PHFs or MPHF's that take O(1) time to be evaluated.

iv. It also generates near space-optimal PHFs and MPHFs, but now we do not
assume that uniform hash functions are available with no additional cost of

space. For that we designed in Chapter 3 a way of simulating uniform hash

1.8. CONTRIBUTIONS 19

functions on the small buckets with only a constant factor space overhead.
This enabled us to use the RAM algorithm to build the MPHFs of each
bucket without unrealistic assumptions. As for the RAM algorithm, the
space requirements of the description of the resulting functions also depend
on the relation between m and n. For m = n, the space usage is approxi-
mately 3.3n bits. For m = 1.23n, the space usage is approximately 2.7n bits.
Again, this is within a small constant factor from the information theoreti-
cal minimum for PHFs and MPHF's, something that has not been achieved
by previous practical and theoretical algorithms, except asymptotically for

very large n.

2. We provide a scalable parallel implementation of the EM algorithm, referred to as
Parallel External Memory (PEM) algorithm from now on. The PEM algorithm allows
to distribute the construction, description and evaluation of the resulting functions.
For instance, using a 14-computer cluster the parallel EM generates an MPHF for
1.024 billion URLSs in approximately 4 minutes, achieving an almost linear speedup.
Also, for 14.336 billion 16-byte random integers evenly distributed among the 14
participating machines the PEM algorithm outputs an MPHF in approximately 50
minutes, resulting in a performance degradation of 20%. To the best of our knowledge
there is no previous result in the perfect hashing literature that can be implemented in
a parallel way to obtain better scalability and performance than the results presented
by the PEM algorithm. The PEM algorithm is presented in Chapter 5. A preliminary
version of the PEM algorithm was presented in [11].

3. We present techniques that allow the generation of PHFs and MPHFs based on
random graphs containing cycles. A preliminary result was presented in [12]. It
improved the space requirement of the algorithm by Czech, Havas and Majewski [25]
at the expense of generating functions in the same form that are not order preserving.
Both algorithms are linear on n, but our algorithm runs 59% faster than the one

in [25], and the resulting MPHF's are stored using half of the space.

However, the resulting MPHFs still need O(nlogn) bits to be stored. As in [25],
the algorithm assumes uniform hashing and needs O(n) computer words of the Word
RAM model to construct the functions. Recently, using ideas similar to the ones
presented in [12], we have optimized the version of the RAM algorithm that works
on random bipartite graphs to output the resulting functions 40% faster when cycles

are allowed. These results are presented in Chapter 6.

20 CHAPTER 1. INTRODUCTION

4. We show that the PHFs and MPHF's designed in this thesis can now be used for
applications in which they were not considered a good option in the past. This is
a consequence of the fact that the resulting functions need O(1) number of bits per
key to be stored. In Chapter 7 we show that MPHFs provide the best trade-off
between space usage and lookup time when compared to other hashing schemes. A

preliminary version of this result was presented in [13].

5. Finally, we have created the C Minimal Perfect Hashing Library that is available at
http://cmph.sf.net under the GNU Lesser General Public License (LGPL). The
library was conceived for two reasons. First, we would like to make available our
algorithms to test their applicability in practice. Second, we realized that there was
a lack of similar libraries in the open source community. We have received very good
feedbacks about the practicality of the library. For instance, it has received more
than 2,482 downloads (August 2008) and is incorporated by two Linux distributions:
Debian® and Ubuntu”.

1.9 Road Map

This text is organized as follows: Chapter 2 presents the internal random access memory
algorithm (RAM algorithm), which generates a family of near space-optimal PHFs or
MPHF's based on random acyclic r-partite r-uniform hypergraphs, for » > 2. Chapter 3
presents a way of simulating uniform hash functions on small key buckets. Chapter 4
presents the external memory algorithm (EM algorithm), which is the first algorithm that
is theoretically well-understood and can be applied to sets on the order of billion keys.
Chapter 5 presents a parallel version of the EM algorithm. Chapter 6 shows how to generate
PHFs or MPHFs based on random graphs with cycles. Chapter 7 presents applications

6Debian is a volunteer project to develop a GNU/Linux distribution, which is available
at http://www.debian.org. Debian was started more than a decade ago and has since grown to comprise
more than 1000 members with official developer status and many more volunteers and contributors. It has

expanded to encompass over 20,000 “packages” of free and open source applications and documentation.
"The Ubuntu project, available at http://www.ubuntu.com, attempts to work with Debian to address

the issues that keep many users from using Debian. Ubuntu provides a system based on Debian with
frequent time-based releases, corporate accountability, and a more considered desktop interface. Ubuntu
provides users with a way to deploy Debian with security fixes, release critical bug fixes, a consistent
desktop interface, and to never be more than six months away from the latest version of anything in the

open source world.

1.9. ROAD MAP 21

in which the use of PHFs and MPHFs became interesting as a consequence of the results

of this work. Finally, Chapter 8 presents the conclusions and some suggestions regarding

future steps to be taken in this research.

22

CHAPTER 1.

INTRODUCTION

Chapter 2

The Internal Perfect Hashing
Algorithm

In this chapter we present a simple and efficient internal random access memory algorithm
(RAM algorithm) to generate a family F of near space-optimal PHFs! or MPHFs. Its
name comes from the fact that the RAM algorithm does not take into account the mem-
ory hierarchy to optimize efficiency, as the one presented in Chapter 4 does. The RAM
algorithm generates a family F of PHFs or MPHFs based on random acyclic r-partite
hypergraphs (see Section 1.5) given by function values of 7 uniform random hash functions
on S. It is designed for key sets that induce random acyclic r-partite hypergraphs that fit
in the internal random access memory. The resulting PHFs and MPHFs are stored in near
optimal space (i.e., O(n) bits.) Acyclic random hypergraphs has been used in previous
MPHF constructions [55], but we will proceed differently to achieve a space usage of O(n)
bits rather than O(nlogn) bits, diminishing the complexity order to store the functions

from O(nlogn) to O(n) bits. A previous version of the RAM algorithm was presented

!Chazelle et al [23] present a way of constructing PHFs that is equivalent to the ones presented in this
chapter. It is explained as a modification of the “Bloomier Filter” data structure, but it is not explicit
that a PHF is constructed. We have independently designed an algorithm to construct a PHF that maps
keys from a key set S of size n to the range [0, (2.0 + €)n — 1] based on random 2-graphs, where ¢ > 0.
The resulting functions require 2.0 + € bits per key to be stored. Belazzougui [5] suggested a method
to construct PHFs that map to the range [0, (1.23 + €)n — 1] based on random 3-graphs. The resulting
functions are stored in 2.46 bits per key and this space usage was further improved to 1.95 bits per key by
using arithmetic coding. Thus, the simple construction of a PHF described must be attributed to Chazelle
et al [23]. The new contribution of this chapter is to analyze and optimize the constant of the space usage

considering implementation aspects as well as a way of constructing MPHFs from those PHF's.

23

24 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

in [14].

This chapter is organized as follows. In Section 2.1 we describe the family F of PHF's or
MPHFs and the RAM algorithm. In Section 2.2 we present analytical results of the RAM
algorithm. In Section 2.3 we present some experimental results. Finally, in Section 2.4 we

conclude this chapter.

2.1 The Family of Functions

The RAM algorithm is a three-step randomized algorithm of Las Vegas type because it
needs to generate a random acyclic r-partite hypergraph in its first step. Once the hyper-
graph is obtained, the two other steps are deterministic. To make the exposition as clear
as possible we first present our approach for » = 2 and, then, generalize it for r > 2. Later
on, we show that the two interesting cases from the family F of PHFs or MPHF's are based
on 2-graphs and 3-graphs.

The general idea of the algorithm for » = 2 is as follows. For a given undirected
bipartite 2-graph G = (V, E), |E| = n, |V| = m and m > n, build an array ¢ such that the

following function phf : E — [0, m — 1] is a perfect hash function on E:

Phi(e = {u,v) € B) = u, .if (glu] + g[v]) mod 2 =0 @2.1)
v, if (g[u] + g[v]) mod 2 =1

The problem to solve is to look for an assignment of values from {0, 1,7} to vertices so
that for each edge the sum of values associated with its endpoints taken modulo r (r = 2 in
this case) indicates a unique value in the range [0, m — 1]. This assignment is represented
by a function g : V' — {0,1,...,r}, which is implemented as the array ¢g in Eq. (2.1).
This assignment of values to vertices can be always solved if the graph (or hypergraph)
is acyclic [55]. The special value r = 2 is used to represent non-assigned vertices. So, we
define:

Definition 16 A vertex v € V is assigned if g[v] # r and non-assigned otherwise.

We now show how each key x € S is mapped to each edge e € E. Each key z € S is

assigned to edge e = {u, v} as follows:

2.1. THE FAMILY OF FUNCTIONS 25

where we assume hg : U — [0,m/2 — 1] and hy : U — [m/2,m — 1] as two uniform
hash functions. The uniform hash assumption is discussed in Section 2.2.5. Each different
pair of functions (hg, h1) induces a different bipartite random graph G = G(hg, hy) and
we iteratively select (hg, ki) until the induced graph G to be acyclic. In Section 2.2.1 we
show how to obtain an acyclic bipartite random graph in an expected constant number of
iterations.

To obtain an MPHF we observed that the resulting PHF presented in Eq. (2.1) asso-
ciates n vertices from V' to n edges of S and, by construction, all associated vertices are
assigned according to Definition 16. This led us to a well-studied primitive in the succinct

data structure area (see e.g. [62, 59, 69]), defined as:

Definition 17 Let rank : V — [0,n — 1] be a function defined as:

rank(v) =[{y €V | y <vAglyl # 7. (2.2)

Function rank(v) counts how many vertices are assigned before a given vertex v € V', which

is uniquely associated with a key = € S.

Therefore, our problem is reduced to computing the array g such that a function mphf :
E — [0,n — 1] is a bijection on E, i.e., an MPHF on F and, consequently, an MPHF on
S since there is a one-to-one mapping between S and E by using r = 2 uniform hash

functions:
mphf (e = {u,v} € E) = rank(phf(e)) (2.3)

The main insights that allow us to build functions that are evaluated in constant time
and stored in O(n) bits instead of O(n logn) bits are twofold. First, the values in the range
of g are small enough to be encoded by a constant number of bits, actually 8 = [log(r+1)]
bits. Second, It is possible to build a data structure that allows the computation of function
rank presented in Eq. (2.2) in constant time by using o(m) additional bits of space.

Figure 2.1 gives an overview of the three-step RAM algorithm for » = 2, on a key set
S C U containing the first 4 month names abbreviated to the first three letters, i.e., S =
{jan, feb, mar, apr}. The mapping step in Figure 2.1(a) builds an acyclic random bipartite
graph for n = 4 keys or, equivalently, |E| = n = 4, and |V| = m = 8. The assigning step

26 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

in Figure 2.1(b) builds the array g so that each edge is uniquely associated with one of its
r = 2 vertices. For instance, jan is mapped to 2 because (g[2] + ¢[5]) mod 2 = 0, feb to 6
because (g[2]+ ¢g[6]) mod 2 = 1, and so on. The ranking step builds the data structure used
to compute function rank : V' — [0,n — 1] (see Definition 17) in O(1) time. To illustrate,
rank(7) = 3 means that there are three vertices assigned before vertex 7, which are the

vertices 0,2 and 6. We are now ready to formally define our family F of PHFs or MPHF's.

g
s 0|0
1 T\Hash Table
jan 2 [0l O
feb Mapping Assigning i% Ranking ;
mar 5 I/ 3
apr 6 i/
7 [1]

(a) (b) (©)

Figure 2.1: (a) The mapping step generates an acyclic bipartite random 2-graph. (b) The
assigning step builds an array g so that each edge is uniquely assigned to a vertex. (c¢) The

ranking step builds the data structure used to compute function rank : V- — [0,n — 1] in
O(1) time.

Definition 18 Let H be a family of uniform hash functions as presented in Definition 9.
Let hy : U — [i1™,(i +1)™ — 1], 0 < i < r, be r uniform hash functions from H. The r
functions and the set S define, in a natural way, a random r-uniform r-partite hypergraph.
Let G, = G,(hg,hy...,h._1) be such a hypergraph with vertex set V' = [0, m — 1] and
edge set B = {{ho(z),h1(x),....,hy—1(x)} | © € S}. Let g : V — {0,1,...,7} be a
function, which is implemented as an array ¢, such that for each edge the sum of values
in g associated with its endpoints taken modulo r indicates a unique value in the range
[0,m — 1]. Let PHF be a family of PHFs from S to [0, m — 1] with parameters r > 2 and

a class ‘H of uniform hash functions, defined as:

PHF(r,H) = {phf | phf (z) = hi(x),i = <i g[hl(x)]> mod r, h; € H} (2.4)

Let MPHF be a family of MPHF's from S to [0,n — 1] with parameter PHF and defined
as:

MPHF(PHF) = {mphf | mphf(z) = rank(phf(z)), phf € PHF} (2.5)

2.1. THE FAMILY OF FUNCTIONS 27

Then, we define:
F(PHF, MPHF)={h|h € PHF or h € MPHF} (2.6)

From now on we are going to design and analyze the RAM algorithm to prove the

following theorem:

Theorem 3 For a given key set S with n keys, a given r € D = {x | x > 2}, a given
class of uniform hash functions H, and an induced random acyclic r-partite hypergraph
G, = (V,E), where |E| = n, |V| = m = ¢(r)n and ¢ : D — R, it is possible to find in
expected linear time an array g that implements a function g : V" — {0,1,...,r} and a
data structure rankTable so that a function h € F can be computed in O(1) time and
described in fm bits if h is a PHF and in (8 + €)m + o(m) bits if h is an MPHF, where
B = [log(r+1)] and 0 < € < 1. For that O(n) computer words are required.

Figure 2.2 presents a pseudo code for the RAM algorithm. If we strip off the third
step we will build PHFs instead of MPHFs. The algorithm receives as input a key set .S,
|S| = n, an edge size r and a family H of uniform hash functions, and produces in expected
O(n) time the resulting functions represented by the array g and a data structure, referred
to as rankTable, used to allow the computation of Eq. (2.2) in O(1) time. We now describe

and analyze each step in detail.

procedure RAM (S, r, H, g, rankTable)
Mapping (S, H, G, L);
Assigning (G,, L, g);
Ranking (g, rankTable);

Figure 2.2: The RAM algorithm.

2.1.1 Mapping Step

The mapping step takes a key set S and a family H of uniform hash functions as input,
and creates a random acyclic r-partite hypergraph G, and a list of edges £. We used an
edge-oriented data structure proposed in [32] to represent the hypergraphs, where each
edge is explicitly represented as an array of r vertices and, for each vertex v, there is a list

of edges that are incident on v. Figure 2.3 presents a pseudo code for the mapping step.

28 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

procedure Mapping (S, H, G,, L)

1. repeat

2. E(G,)=0;

3 select hg,h1,...,hr—1 uniformly at random from H;
4 for each z € S do

5. e = {ho(x),h1(z) ..., he—1(x)};

6 addEdge (G,, e);

7. L = isAcyclic(Gy);

8. until E(G,) is empty

Figure 2.3: Mapping step.

The list £ is obtained whenever we test whether G, is acyclic. For that we iteratively
delete edges that are incident on vertices of degree one. The list £ stores the deleted edges
in the order of deletions (i.e., the first edge in £ was the first deleted edge, the second edge

in £ was the second deleted edge, and so on.) The following algorithm can do this test:

1. Traverse GG, and store in a queue () every edge that has at least one of its vertices

with degree one.

2. Until @ is not empty, dequeue one edge from @, remove it from G,, store it in L,
and check if any of its vertices is now of degree one. If it is the case, enqueue the

only edge that contains that vertex.

Figure 2.4 presents one possible output when applied to the random acyclic bipartite
hypergraph G4 presented in Figure 2.1. The three edges containing vertices of degree one
were, first, deleted and stored in £. Then the only edge containing vertices of degree two

and three was deleted and stored in L.

0 1 2 3
[{0.5}[{2.6}f2.7} {2.5} | £

Figure 2.4: Output of the test to check whether a hypergraph has cycles.

2.1.2 Assigning Step

The assigning step takes the random acyclic r-partite hypergraph G, and the list of edges

L as input, and produces an assignment of values to the vertices of GG, that is represented

2.1. THE FAMILY OF FUNCTIONS 29

by the array g. The assignment is created as follows. Let Visited be a boolean vector of size
m that indicates whether a vertex has been visited. We first initialize g[i] = r (i.e., each
vertex is unassigned) and Visited[i| = false, 0 < i < m—1. Then, for each edge e € L from
tail to head, we look for the first vertex u belonging to e not yet visited. Let j, 0 < 7 <r—1
be the index of u in e. Then, we set g[u] = (j — >, con visiteao)=true 9[]) mod r. Whenever
we pass through a vertex u from e, if it has not yet been visited, we set Visited[u] = true.

Figure 2.5 presents a pseudo code for the assigning step.

procedure Assigning (G,, L, g)
1. for u=0 to m—1 do
2. Visited [u] = false;

3. glul =r;

4. for i = |£|—1 to 0 do

5. e=L[i];

6. sum = 0;

7. for k=r—-1to 0 do
8. if (not Visited[elk]])
9. Visited [e[k]] = true;
10. u = elk];

11. 7 =k;

12. else sum += gle[k]];

13. glu] = (j —sum) mod r;

Figure 2.5: Assigning step.

Figure 2.6 presents a step by step example for the list of edges of our example presented
in Figure 2.4. The initial state is shown in Figure 2.6(a). In Figure 2.6(b), the vertices 2 and
5 of edge L[3] are marked as visited and g[2] = (0 — ¢[5]) mod 2 = 0. In Figure 2.6(c), the
vertex 7 of edge L£[2] is marked as visited and ¢[7] = (1—g¢[2]) mod 2 = 1. In Figure 2.6(d),
the vertex 6 of edge L[1] is marked as visited and ¢[6] = (1 — ¢g[2]) mod 2 = 1. Finally, in
Figure 2.6(e), the vertex 0 of edge £]0] is marked as visited and ¢[0] = (0—g[5]) mod 2 = 0.

The reason to traverse the edges in the reverse order they were deleted is to assure that
each edge will contain at least one vertex that is traversed for the first time. For example,
if the deleted edges were stored in £ in the following order: e, es,...,€;,€:41,...,6€, and
we consider edge e;, then we know that e; will have at least one of its vertices of degree one
by removing the edges ey, e, ..., e; 1. Let us refer to that vertex as v. Thus, by removing
e;, v will become of degree 0. Therefore, v is not contained in any of the edges e;,1,...,e,.

So, by traversing from e, to e;, at least one of the vertices in the edges will be traversed

30 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

v

0 1 2 3 0 1 2 3
[{0.5)[{2.6}[2.71 {25} | L [{0.5}[{2.6}[{2,7}[25} | L

@ 01234567 b) 01234567
[rlrlrfr]rlr[r]r]o [r[rlofr[r[r[r][r] 9

v v v
0 1 2

3 o 1 2 3 0 1 2 3
[{0.5}[{2.6}[{2.71 2.5} | L [{0.5}[{2.6}[{2.7}[25} | L fostf2.6: {2715} | L
C) 01234567 d 01234567 € 01234567

[rlrfofr]rfr]r[1] o Lrlrfofr[r[r[a]1] o (ol r[of r[r[r[af1] ¢

Figure 2.6: Example of the assigning step.

for the first time and such a vertex can be used to uniquely represent the edge.

2.1.3 Ranking Step

The ranking step receives the array ¢ as input and produces the data structure rankTable,
which allows the computation of function rank presented in Eq. (2.2) in O(1) time. We
now present a practical variant described in [62] that uses e m additional bits of space,
where 0 < € < 1. We remark that it is possible to join, in a single and more succinct data
structure, the array g and the data structure used to compute function rank in constant
time (see, e.g., [59, 69]).

Conceptually, the scheme is very simple: store explicitly the rank of every kth index
in a rankTable, where k = |log(m)/¢]. In the implementation we let the parameter k to
be set by the users so that they can trade-off space for evaluation time and vice-versa. In
the experiments we set k to 256 in order to spend less space to store the resulting MPHF's.
This means that we store in rankTable the number of assigned vertices before every 256th

entry in the array g. Figure 2.7 presents a pseudo code for the ranking step.

procedure Ranking (g, rankTable)

1. sum = 0;

2. for i=0 to |g|—1 do

3. if(imod k ==0) rankTable[i/k] = sum;
4. if(g[i] #r) sumt+;

Figure 2.7: Ranking step.

Figure 2.8 illustrates the ranking step on the array g of Figure 2.6 (e) considering k = 3.

It means that there is no assigned vertex before g[0], there are two assigned vertices before

2.1. THE FAMILY OF FUNCTIONS 31

g[3], and two before ¢[6].

01234567
LolrJo[r]r]r]1]1] g

0 1 2
[0 [2 [2]rankTablefork=3

Figure 2.8: Example of the ranking step.

2.1.4 Evaluating the Resulting Functions

To compute rank(u), where u is given by a perfect hash function phf € PHF (see
Eq. (2.4)), we look up in rankTable the rank of the largest precomputed index v < u,
and count the number of assigned vertices from position v to u — 1. To do this in time
O(1/e) we use a lookup table T, that allows us to count the number of assigned vertices
in b = elogm bits in constant time for any 0 < ¢ < 1. For simplicity and without loss
of generality we let b be a multiple of the number of bits 5 used to encode each entry of
g. Then, the lookup table T, can be generated a priori by the pseudo code presented in
Figure 2.9, where LS(#,3) stands for the value of the 3 least significant bits of i and >>
is the right shift of bits. Note that for each r > 2 a different lookup table T, is required.

procedure GenLookupTable (3, b, 7))
1. for i=0to 2 —1 do

2 sum = 0;

3. =i

4. for 7=0 to b/3—1 do

5 if(LS(#, B) #) sumi+;

6 i =14 > p;
7. T.[i] = sum;

Figure 2.9: Generation of the lookup table T,.

In the experiments, we have used a lookup table that allows us to count the number of
assigned vertices in 8 bits in constant time. Therefore, to compute the number of assigned
vertices in 256 bits we need 32 lookups. Such a lookup table fits entirely in the CPU cache
because it takes 2° bytes of space.

We use the implementation just described because the smallest hypergraphs are ob-

tained when r = 3 (see Section 2.2.1). Therefore, the most compact and efficient functions

32 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

are generated when r = 2 and r = 3. That is why we have chosen these two instances of
the family to be discussed in Sections 2.2.3 and 2.2.4.

Figure 2.10 presents the pseudo code for the resulting PHFs. Note that the resulting
functions can be computed in O(r) time. As the practical instances are for r = 2 and r = 3,
then the computational cost is O(1) and it is quite simple to be computed, an important

characteristic at retrieval time.

function phf (z, g, r)

1. e = {ho(x),h1(z),..., hp—1(x)};

2. sum = 0;

3. for i=0 to r—1 do sum 4= gle[i]];
4. return e[sum mod r};

Figure 2.10: Pseudo code for the resulting PHF's.

Figure 2.11 presents the pseudo code for the resulting MPHFs. The variable 7). counts
the number of assigned vertices in £ entries of g or in b = € = elogm bits. We use the
notation g[i — j| to represent the values stored in the entries from g[i] to g[j] for i < j.
If j > |g| or (j —i+1) < &, then the value r, which is used to represent unassigned
vertices, is appended to fulfill the entries to be looked up in 7,. It is easy to see that the

computational cost is O(1/e).

function mphf (z, g, r, rankTable, k)

u = phf(x, g, r);

J = u/k;

rank = rankTable[j];

for i=jxk to u—1 step £ do
rank += T,[g[i — i + &]];

return rank;

STl W N~

Figure 2.11: Pseudo code for the resulting MPHF's.

2.2. ANALYTICAL RESULTS 33

2.2 Analytical Results

2.2.1 The Linear Time Complexity

In this section we show that the RAM algorithm runs in expected O(n) time. For that we

need to show that the mapping, assigning and ranking steps run in expected O(n) time.

Analysis of the Mapping Step

We start by showing how to obtain a random acyclic r-partite hypergraph G, =
G.(ho, h1,...,h.—1) with n edges and m = c¢(r)n vertices with high probability, where
re€ D ={x|x>2}and ¢(r) is a function with real values on D. We will firstly analyze

the case for r = 2 and, in the following, the case for r > 3.

Theorem 4 Let Gy = (V, E) be a bipartite random graph with n edges and m vertices.
Then, if m = cn holds for ¢ > 2, the probability that G5 is a forest (acyclic), for n — oo,

Pro=4/1- (2)2 (2.7)

Cc

is:

PROOF. Let Gy = (V, E) be a bipartite random graph with |V| = 2p = m, and |E| =
dm/2 = n, where d = 2n/m is the average degree of G5. To build Gj, each edge is
independently taken at random with probability p from all p? possible edges. As there are
m = 2p vertices, and each edge is connected to an average of d edges, then we can conclude
that p = d/p = 2d/m. Let sy be the set of cycles of length 2¢ in the complete bipartite
graph K,,, for t > 1 and each m. A cycle in (s can be represented as a sequence of 2t
distinct vertices in K,, by choosing a starting point. Therefore, the cardinality of Cy is

given by:
1
Co| = g((ﬂ)tﬂ (2.8)

where p = % and (p); = p(p—1) ... (p—1+1). As each edge in G, is selected independently
of the others and with probability p = %d, then, each cycle in by occurs with probability:

Pry,(d) = p* (2.9)

Let Coi(G3) be a random variable that measures the number of cycles of length 2¢ in Gs.
Let C.(G5) be a random variable that measures the number of cycles of any even length in
Gs. The probability distribution of Cy;(G2) and C.(G2) converge to a Poisson distribution

34 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

with parameters \g; and A., respectively. For a more detailed proof of a similar statement
see [48, Page 16]. To conclude the proof we are going to show how to get Ag; and A., which
represents the average number of cycles of length 2¢ in G5 and the average number of cycles

of even length in G5, respectively. It is easy to see that, for m — oo:

ot = Prad) x 0l = (22) " L (ot = L (2.10)
2t = LTt 21 =\ o Pt Y :
and
A :iA :1d2+1d4+§:id2t:—11n(1—d2) (2.11)
e A R R < % 2 ‘ '
As in [48], we use Y oy 52t = —3In(l — 2) — s — 12?, where © = d?. Therefore, the

probability that G5 is a forest is given by:
Pry(C.(Gy) =0) = e =1 —d2 (2.12)

Note that d is restricted to be in the range (0,1). As G5 has m = cn vertices and n = dm /2
edges, then d = 2/c and we obtain:

Pro— 1 (2)2 (2.13)

forc>2. O

For example, when ¢ = 2.09 we have Pr, = 0.29. This is very close to 0.294 that
is the value we got experimentally by generating 1,000 random bipartite 2-graphs with
n = 107 keys (edges). A rigorous bound on Pr, for r > 2 seems to be technically difficult
to obtain. However, the heuristic argument presented in [26, Theorem 6.5], which was
rigorously proved in [19], also holds for our random r-partite hypergraphs. Thereby we

have the following theorem.

Theorem 5 The threshold for the appearance of a 2-core (a subgraph of minimum degree

2) in a random r-partite hypergraph for r > 2 is r/7, where

. x
T:%ﬁ{atzzvz} (2.14)
From Theorems 4 and 5 we can conclude that with Pr, bounded by a constant (Pr, =
(1)) and ¢(r) given by

24¢€,e>0 forr =2

c(r) = -1
r (minwg {W}) for r > 2,

(2.15)

2.2. ANALYTICAL RESULTS 35

the random acyclic r-partite hypergraphs dominate the space of random r-partite hyper-
graphs. The value ¢(3) ~ 1.23 is a minimum value for Eq. (2.15), as shown in Figure 2.12,
previously reported in [55]. This implies that the random acyclic r-partite hypergraphs
with the smallest number of vertices happen when r = 3. In this case, we have got exper-
imentally Pr, ~ 1 by generating 1,000 random 3-partite hypergraphs with n = 107 keys
(hyperedges).

Figure 2.12: Values of ¢(r) for r € {2,3,...,10}.

It is interesting to remark that the problems of generating random acyclic r-partite
hypergraphs for » = 2 and for > 2 have different natures. For r = 2, the probability Pr,
varies continuously with the constant ¢. But for » > 2, there is a phase transition. That
is, there is a value ¢(r) such that if ¢ < ¢(r) then Pr, tends to 0 when n tends to oo and if
¢ > ¢(r) then Pr, tends to 1. This phenomenon has also been reported in [55] for random
r-uniform hypergraphs.

We now show that the expected number of iterations of the mapping step is bounded by
a constant. When a random r-partite hypergraph with cycles occurs we abort and select
randomly a new tuple of hash functions (hg, hy, ..., h,_1) from H. Then, we can model the
number of iterations to generate a random acyclic r-partite hypergraph G, as a random
variable Z that follows a geometric distribution, since the probability Pr, of generating a
random acyclic r-partite hypergraph is Q(1). Thus, Pr(Z = i) = Pr,(1 — Pr,)""! and the
mean of Z is 1/Pr,, which corresponds to the expected number of iterations to obtain G,.
Therefore, as Pr, is (1), the expected number of iterations is O(1).

To conclude the analysis of the mapping step presented in Figure 2.3 we need to show
that each iteration runs in O(n) time. Statements 4 and 7 are the critical ones in the
mapping step, once statements 2 and 3 have costs equal to O(1) and O(r).

It is easy to see that statement 5 in Figure 2.3 has cost O(r). Statement 6 also has

36 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

cost O(r) because it needs to insert a given edge e in r lists of incident edges, one for
each vertex in e. Thereby, statement 4 has cost O(n) for r = O(1). Therefore, it is safe to
conclude that the mapping step takes expected O(n) time because it is known (see e.g. [55,
Theorem 2.2]) that the algorithm to test whether a hypergraph contains cycles performed

in statement 7 also runs in O(n) time.

Analysis of the Assigning Step

It is easy to see in the assigning step presented in Figure 2.5 that the loops of statement
1 and 4 have costs equal to O(m) and O(rn), respectively. This comes from the fact that
the operations involved in all other statements have cost O(1). As the number of vertices
in G, is a linear function of the number of edges, i.e., m = ¢(r)n, then, for r = O(1), the

assigning step runs in O(n) time.

Analysis of the Ranking Step

It is also easy to see in the ranking step presented in Figure 2.7 that the ranking step runs
in O(n) time. This is because statement 2 just loops over the m = ¢(r)n entries of the
array g, performs operations in O(1) time, and ¢(r) is a constant fixed a priori.

In conclusion, the RAM algorithm takes expected O(n) time because the mapping,

assigning and ranking steps run in expected O(n) time.

2.2.2 Space Requirements to Describe the Functions

In this section we present the space required to store the resulting functions disregarding

the space for storing the r uniform hash functions, which is discussed in Section 2.2.5.

The description of the resulting functions is compounded by the array g, the rankTable
and the lookup table T,.. The resulting array ¢ contains values in the range [0,] and its
domain size is equal to the number of vertices in G,, i.e., m = ¢(r)n. Then, we can use
B = [log(r + 1)] bits to encode each value in g. Therefore, g requires m bits of storage
space. The rankTable is stored in em bits because it has m/k entries of size log m bits and
k = |log(m)/e| for 0 < € < 1. The lookup table T, is stored in o(m) bits because it has m*
entries of size loglogm bits. Putting all together we have that the number of bits required
to store the resulting PHFs and MPHFs are m and (3 + €)m + o(m) bits, respectively.

2.2. ANALYTICAL RESULTS 37

2.2.3 The 2-graph Instance

The use of acyclic bipartite 2-graphs allows us to generate the PHFs of Eq. (2.4) that give
values in the range [0,m — 1], where m = (2 + ¢)n for ¢ > 0 (see Section 2.2.1). The
significant values in the range of the array g for a PHF are {0, 1}, because we do not need
to represent information to calculate the function rank (i.e., r = 2). Then, we can use
just one bit to represent the value assigned to each vertex, i.e., § = 1. Therefore, the
resulting PHF requires m bits to be stored. For ¢ = 0.09, the resulting PHFs are stored in
approximately 2.09n bits and map to the range [0,2.09n — 1].

To generate the MPHF's of Eq. (2.5) we need to include the ranking information. Thus,
we must use the value r = 2 to represent unassigned vertices and now two bits are required
to encode each value assigned to the vertices, i.e., § = 2. Then, the resulting MPHF's
require (24¢)m+o(m) bits to be stored (remember that the ranking information requires em
bits and the lookup table 75 requires o(m) bits), which corresponds to (2+¢€)(2+¢)n+o(n)
bits for any € > 0 and € > 0. In the experiments, for ¢ = 0.125 and € = 0.09 the resulting
functions are stored in approximately 4.44n bits. We now present two packing schemes

that give more compact MPHFs and can be done in O(n) time.

Packing the Resulting MPHF's for » = 2 with Arithmetic Coding

The range of significant values assigned to the vertices is clearly [0,2]. Hence, we need
log(3) bits to encode the value assigned to each vertex. Theoretically we use arithmetic
coding as block of values. Therefore, we can compress the resulting MPHF to use (log(3) +
€)(2 + €)n + o(n) bits of storage space by using a simple packing technique. In practice,
we can pack the values assigned to every group of 5 vertices into one byte because each
assigned value comes from a range of size 3 and 3° = 243 < 256. At generation time we
should use a small lookup table of size 5 containing: pow3_table[5] = {1,3,9,27,81}. To

assign a value x € [0, 2] to a vertex u € V' we use:

byte = glu/5];
byte += x * pow3_table[u mod 5];
glu/5] = byte;

At retrieval time we should use a lookup table 7ok, Of size 5*256=1280 bytes to speed

up the recovery of the value = assigned to a given vertex u, as shown below.

| byte = glu/3);

38 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

x = Tjookup|u mod 5] [byte]; |

Each entry of the lookup table Tj,oryp is computed by:
Trookup|?][j] = (j/pow3_table[i]) mod 3, (2.16)

where 0 < 7 < 5 and 0 < j < 256. In the experiments, for ¢ = 0.125 and € = 0.09, the

resulting functions are stored in approximately 3.6n bits.

A More Effective Packing Scheme for r = 2

We now present a more effective packing scheme that allows us to compress the resulting
MPHFs to use (3 + ¢€)n bits, for € > 0. The basic idea is to put the information to compute
the array g and the information to compute the function rank in different data structures.
Therefore, the range of the values in the array g is narrowed to [0, 1] instead of [0, 2]. Then,
it is now possible to spend just # = 1 bit for each one of the m values of g. This implies
that the array ¢ is used to represent a phf € PHF.

Let V, = {phf(x) | x € S A phf € PHF} be the set of assigned vertices in V. To
compute function rank somehow we need to represent V,. Let R be a bit vector of size
|V| = m used to represent V,. That is, R[v] = 1 if v € V, and R[v] = 0 otherwise. Thereby

we can redefine the function rank as follows.
Definition 19 Let rank : V — [0,n — 1] be a function defined as:
rank(v) = {y €V | y<vAR(y) =1} (2.17)

In this case it would be required to store the array g and the vector R, both with m
one-bit entries, plus o(m) bits required to compute function rank in O(1) time. However,
we can create a compressed representation that uses just over 3 bits per key by noticing
that there exist exactly n assigned vertices in V| i.e., |V,| = n, and the value of ¢ for all
non-assigned vertices V,,, = V — V, is equal to 0. Thus, the contents of g and R are not
independent. For instance, there can be a non-zero bit in g[v] only if R[v] = 1. Therefore,
it is possible to create a compressed representation ¢’ that uses only n bits and enables
us to compute any bit of g in constant time. First of all, if R[v] = 0 we can conclude
that g[v] = 0. We want to initialize ¢’ such that g[v] = ¢'[rank(v)] whenever R[v] = 1,
i.e., v € V. This is possible since rank(v) is 1-1 on elements in V,. In conclusion, we can

replace g by ¢’ and reduce the space usage to n+m+ o(m) bits. By using m = (2+¢/2)n

2.2. ANALYTICAL RESULTS 39

for e > 0 and (e/2)n bits of extra space to support rank operations efficiently, the total
space is (3 + €)n bits.

2.2.4 The 3-graph Instance

The use of 3-graphs allows us to generate more compact PHFs and MPHF's at the expense
of one more hash function hy. An acyclic 3-partite random 3-graph is generated with
probability (1) for m > ¢(3)n, where ¢(3) ~ 1.23 is the minimum value for ¢(r) (see
Section 2.2.1). Therefore, we will be able to generate the PHFs of Eq. (2.4) so that they
will produce values in the range [0, (1.23 + £)n — 1] for any € > 0. The values assigned to
the vertices are drawn from {0, 1,2, 3} and, consequently, each value requires 3 = 2 bits to
be represented. Thus, based on the fact that for PHFs no ranking information is needed
(i.e., € = 0), the resulting PHF's require 2(1.23 4 €)n bits to be stored, which corresponds
to 2.46n bits for ¢ = 0.

We can generate the MPHF's of Eq. (2.5) from the PHFs that take into account the
special value r = 3. The resulting MPHF's require (2 + €)(1.23 + ¢)n + o(n) bits to be
stored for any ¢ > 0 and € > 0, once the ranking information must be included. In the
experiments, for e = 0.125 and € = 0, we have got MPHF's that are stored in approximately
2.62n bits.

Packing the Resulting PHF's for »r = 3 with Arithmetic Coding

For PHF's that map to the range [0, (1.23+¢)n— 1] we can get still more compact functions.
This comes from the fact that the only significant values assigned to the vertices that
are used to compute Eq. (2.4) are {0,1,2}. Then, we can apply the arithmetic coding
technique aforementioned to get PHFs that require log(3)(1.23 4+ £)n bits to be stored,
which is approximately 1.95n bits for € = 0. For this we must replace the special value
r=3to0.

2.2.5 The Use of Universal Hashing

The uniform hashing assumption is not feasible because each hash function h; : U —

[, (i 4+ 1) — 1] for 0 < @ < r would require at least nlog™ bits to be stored plus

the space for the PHFs. As mentioned in Chapter 1 (Section 1.4) limited randomness
represented by universal hash functions is often as good as total randomness when the key

universe U is much larger than the functions range.

40 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

For our experiments we choose h; from a family of heuristic hash functions proposed
in [50] with very good performance in practice but with no theoretical foundation. These
functions do not impose any upper bound for the key sizes and their description requires
just the storage of an integer that is used as a seed for a pseudo random number generator.
The function just loops over the key doing bitwise operations on blocks of 12 bytes and,
at the end, a 12 byte long integer is generated.

From a theoretical perspective, the uniform hashing assumption is not too harmful,
as we can use the split-and-share approach [30] to simulate a uniform hash function by
using o(n) bits of extra space. We use this in the design of the EM algorithm presented in
Chapter 4. In Chapter 3 we show how to use this idea to create uniform hash functions

for the small buckets generated in the EM algorithm.

2.2.6 The Space Requirements to Generate the Functions

In this section we show that the RAM algorithm presented in Figure 2.2 needs O(n)
computer words of main memory to generate functions of F. For that we will assume
that the key set .S is kept in external memory and just the data structures involved in the
generation process are kept in internal memory. We need to maintain the following data

structures in internal memory.

1. The r uniform hash functions hg, hq,...,h,_1. Each function can be described in

o(n) bits by using the split-and-share technique.

2. The random acyclic r-partite hypergraph G,. As m = ¢(r)n, it is possible to store

G, in O(rn) computer words by using the data structure proposed in [32].

3. The list £ of deleted edges obtained when we test whether G, is a forest. It is also

stored in O(rn) computer words.

4. The description of a resulting function h € F. This corresponds to gm bits if
h € PHF and (5 + €)m + o(m) bits if h € MPHF.

Therefore, for r = O(1), we need O(n) computer words to generate the functions of F.
This ends the proof of Theorem 3.

2.3. EXPERIMENTAL RESULTS 41

2.3 Experimental Results

The purpose of this section is to evaluate the performance of the RAM algorithm and to
compare it with the main practical perfect hashing algorithms we found in the literature.
In Section 2.3.1 we consider key sets that can be handled in internal memory by the RAM
algorithm. The experimental results for the RAM algorithm match the analytical results
presented in Section 2.2. In Section 2.3.2 we compare the RAM algorithm with the main
ones found in the literature.

The algorithms were implemented in the C language and are available under the GNU
Lesser General Public License (LGPL) at http://cmph.sf.net. The experiments were
carried out on a computer running the Linux operating system, version 2.6, with a 1.86
gigahertz Intel Core 2 processor with a 4 megabyte L2 cache and 1 gigabyte of main
memory. For the experiments we used two collections: (i) a set of 150 million randomly
generated 4 byte long IP addresses, and (ii) a set of 1,024 million 64 byte long (on average)
URLs collected from the Web.

To compare the algorithms we used the following metrics: (i) The amount of time to
generate PHFs or MPHFs, referred to as Generation Time. (ii) The space requirement
for the description of the resulting PHFs or MPHF's to be used at retrieval time, referred
to as Storage Space. (iii) The amount of time required by a PHF or an MPHF for each

retrieval, referred to as Evaluation Time.

2.3.1 Performance of the RAM Algorithm

In this section we evaluate the performance of the RAM algorithm considering generation
time and storage space as metrics. We will consider two versions of the RAM algorithm:
(i) the version that works on random graphs with no cycles when r = 2 and, (ii) the version
that works on random hypergraphs with no cycles when r = 3.

Let us start with the version of the RAM algorithm that works on random graphs (i.e.,
r = 2) with no cycles. We can consider the runtime of the algorithm to have the form anZ
for an input of n keys, where « is some machine dependent constant that further depends
on the length of the keys and Z is a random variable with geometric distribution with
mean 1/Pr,, where Pr, = /1 — (2/¢)* (see Theorem 4). All results in our experiments
for this version were obtained taking ¢ = 2.09; the larger is ¢ the faster is the algorithm
because Pr, increases continuously with c.

The values chosen for n were 1,2,4,8,12,16,20 and 24 million keys. Although we

42 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

have 150 million random IPs and 1,024 million URLs, on a PC with 1 gigabyte of main
memory, the RAM algorithm is able to handle an input with at most 24 million keys.
This is mainly because the sparse random hypergraph required to generate the functions
is memory demanding.

In order to estimate the number of trials for each value of n we used a statistical method
for determining a suitable sample size (see, e.g., [47, Chapter 13]). As we obtained different
values for each n, we used the maximal value obtained, namely, 300 trials in order to have
a confidence level of 95%.

Figure 2.13 presents the runtime for each trial. In addition, the solid line corresponds
to a linear regression model obtained from the experimental measurements. As we can
see, the runtime for a given n has a considerable fluctuation, which gives a coefficient of
determination R? = 66%. However, the fluctuation also grows linearly with n, as explained

in the following.

o IPs (r=2) Linear regression @ |le URLs (r=2) Linear regression

600
600
I

Time (s)
400
Time (s)
400

200
.
eodecscccccce o
200
eosescscccccce
eedeseccccee coo

25

N
o

0 5 10 15 20 25 0 5 10 15
Number of keys (millions) Number of keys (millions)

(a) IPs collection (b) URLs collection
Figure 2.13: Number of keys in S versus generation time for the RAM algorithm that works
on acyclic random graphs with » = 2. The solid line corresponds to a linear regression
model for the generation time (R? = 66%).

The observed fluctuation in the runtimes is as expected; recall that this runtime
has the form anZ with Z a geometric random variable with mean 1/Pr, = 1/0.29
for ¢ = 2.09. Thus, the runtime has mean an/Pr, = 3.45an and standard devia-
tion any/(1 — Pr,)/(Pr,)? = 2.91an. Therefore, the standard deviation also grows lin-

early with n, as experimentally verified in Figure 2.13.

The version of the RAM algorithm that works on hypergraphs with no cycles, where
r = 3, is the fastest version. This is a consequence of Theorem 5, because the probability
of obtaining a hypergraph with no cycles for r > 2 tends to 1 for ¢ > ¢(r), where ¢(r) is
given in Eq. (2.15). For r = 3, ¢(3) € (1.22,1.23) and therefore we use ¢ = 1.23 in our

experiments. We again use the statistical method for determining a suitable sample size

2.3. EXPERIMENTAL RESULTS 43

to estimate the number of trials to be run for each value of n. We got that just one trial
for each n would be enough with a confidence level of 95%. However, we made 25 trials.
This number of trials seems rather small, but, as shown in Figure 2.14, the behavior of this
version of the RAM algorithm is very stable and its runtime is almost deterministic (i.e.,
the standard deviation is very small), which gives a coefficient of determination R* = 99%

for the linear regression model obtained.

o IPs (r=3) Linear regression &4 e URLs (r=3) Linear regression
o | [3
n
S 2
o @
2
(= =
8 &1
=R
S} o
0 5 10 15 20 25 0 5 10 15 20 25
Number of keys (millions) Number of keys (millions)
(a) IPs collection (b) URLSs collection

Figure 2.14: Number of keys in S versus generation time for the RAM algorithm that
works on acyclic random hypergraphs with » = 3. The solid line corresponds to a linear

regression model for the generation time (R* = 99%).

To conclude this section we now compare the two versions of the RAM algorithm by
taking n = 1,12 and 24 million keys in the two collections and by considering generation
time and storage space as metrics. Table 2.1 presents the respective confidence intervals
for the generation time, which is given by the average time + the distance from average
time considering a confidence level of 95%, and the respective values for the storage space.
It is possible to see that the generation time, as expected, is influenced by the key length
(IPs are 4 bytes long and URLs are 64 bytes long on average), and the storage space is
not. It is also possible to see that the fastest algorithm, for » = 3, also generates the most

compact functions.

2.3.2 Comparison with the Main Practical Results in the Liter-
ature
The main practical perfect hashing algorithms we found in the literature to compare the

RAM algorithm with are: Botelho, Kohayakawa and Ziviani [12] (referred to as BKZ),
Fox, Chen and Heath [38] (referred to as FCH), Majewski, Wormald, Havas and Czech [55]

44 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

n RAM algorithm Generation Time (sec) Storage Space
IPs URLs Bits/Key | Size (MB)
1 % 106 r=2 3.09 £0.28 4.00 £ 0.34 3.60 0.43
r= 1.32£0.01 1.61 £0.01 2.62 0.31
12 % 106 r= 48.30 £4.42 59.04 £ 5.47 3.60 5.15
r=3 23.21+0.02 26.31 £0.06 2.62 3.75
24 % 10° r=2 101.59 £9.13 | 125.65 £11.35 3.60 10.30
r=3 51.19 £ 0.03 57.39£0.04 2.62 7.50

Table 2.1: Comparison of the two versions of the RAM algorithm considering generation

time and storage space, and using n = 1,12, and 24 million keys for the two collections.

(referred to as MWHC), and Pagh [61] (referred to as PAGH). For the MWHC algorithm
we used the version based on random hypergraphs with » = 3. We did not consider the one
that uses random graphs because it is shown in [12] that the BKZ algorithm outperforms
it. The BKZ algorithm is presented in Chapter 6.

We used the hash function presented in [50] for all the algorithms. For all the experi-
ments we used n = 3,541,615 keys for the two collections. The reason to choose a small
value for n is because the FCH algorithm has exponential time on n for the generation
phase, and the times explode even when a number of keys are a little over.

We first compare the RAM algorithm for constructing MPHFs with the other algo-
rithms, considering generation time and storage space. Table 2.2 shows that the RAM
algorithm for » = 3, and the MWHC algorithm are faster than the others in generating
MPHFs. This is because they work on random acyclic hypergraphs with » = 3 and the
probability of obtaining such a hypergraph tends to 1 as n tends to infinity. Therefore,
they scan the whole key set stored in external memory once with high probability, whereas
all the other algorithms scan the whole key set everytime a failure occurs and they have a
higher probability of failure.

It is also important to note that the resulting functions of the RAM algorithm are the
most compact functions. The storage space requirements in bits per key for the two versions
of the RAM algorithm are 3.6 when r = 2, and 2.62 when r = 3. For the BKZ, MWHC
and PAGH algorithms they are logn, 1.231logn and 2.03logn bits per key, respectively.
Therefore, the RAM algorithm is the best choice for sets that can be handled in main
memory.

We now compare the algorithms considering evaluation time. Table 2.3 shows the

2.3. EXPERIMENTAL RESULTS 45

Algorithms Generation Time (sec) Storage Space

IPs URLs Bits/Key | Size (MB)

RAM r=2 11.39 £ 1.33 16.73 £1.89 3.60 1.52

r=23 5.46 +0.01 6.74 £0.01 2.62 1.11

BKZ 9.22+0.63 11.33 £0.70 21.76 9.19

FCH 2,052.7£530.96 | 2,400.1 £ 711.60 4.22 1.78

MWHC 5.98 £ 0.01 7.18 =0.01 26.76 11.30

PAGH 39.18 £ 2.36 42.84 £ 2.42 44.16 18.65

Table 2.2: Comparison of the algorithms for constructing MPHF's considering generation

time and storage space, and using n = 3,541,615 for the two collections.

evaluation time for a random permutation of the n keys. Although the number of memory
probes at retrieval time of the MPHF generated by the PAGH algorithm is optimal [61]
(it performs only 1 memory probe), it is important to note in this experiment that the
evaluation time is smaller for the FCH and the RAM algorithms because the generated
functions fit entirely in the machine’s L2 cache (see the storage space size for the RAM
algorithm and the FCH algorithm in Table 2.2). Therefore, the more compact an MPHF
is, the more efficient it is if its description fits in the cache. For example, for sets of size
up to 13 million keys of any type the resulting functions generated by the RAM algorithm
with r = 3 will entirely fit in a 4 megabyte L2 cache.

Algorithms RAM BKZ | FCH | MWHC | PAGH
r=2|r=3
Evaluation IPs 1.19 1.16 1.33 | 0.75 1.53 1.30
Time (sec) | URLs | 2.12 2.11 224 | 1.61 2.46 2.20

Table 2.3: Comparison of the algorithms considering evaluation time and using the collec-
tions IPs and URLs with n = 3,541, 615.

In a converse situation, where the functions do not fit in the cache, the MPHF's gener-
ated by the PAGH algorithm are the most efficient, as shown in Table 2.4.

Finally, we compare the PHFs and MPHFs generated by the different versions of the
RAM algorithm. Table 2.5 shows that the generation times for PHFs and MPHFs are
almost the same, with the algorithms for » = 3 being the fastest because the probability
of obtaining an acyclic 3-graph for ¢ = 1.23 tends to one, whereas the probability for a
2-graph where ¢ = 2.09 tends to 0.29 (see Section 2.2.1). For PHFs with m = 1.23n,
the storage requirement drops from 2.62 to 1.95 bits per key when r = 3. The PHFs with

46 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

Algorithms RAM BKZ | FCH | MWHC | PAGH
r=2|r=3
Evaluation IPs 7.11 8.02 4.86 — 6.29 4.60
Time (sec) | URLs | 10.17 | 11.49 | 9.29 - 9.61 9.25

Table 2.4: Comparison of the algorithms considering evaluation time and using the collec-
tions IPs and URLs with n = 15, 000, 000.

m = 2.09n, and m = 1.23n are the fastest at evaluation time because no ranking or packing

information needs to be computed.

RAM m Generation Time (sec) Eval. Time (sec) | Sto. Space

r | Packed IPs URLs IPs URLs Bits/Key
9 no 2.09n | 10.50 £1.24 | 14.79 £1.58 | 0.68 1.63 2.09
yes n 11.39£1.33 | 16.73£1.89 | 1.19 2.12 3.60
no 1.23n | 5.51 £0.01 6.76 £0.01 | 0.79 1.68 2.46
3| yes]123n | 554+0.01 | 6.78+0.02 | 0.79 1.71 1.95
no n 5.46 £0.01 6.74£0.01 | 1.16 2.11 2.62

Table 2.5: Comparison of the PHFs and MPHFs generated by the RAM algorithm, con-
sidering generation time, evaluation time and storage space metrics using n = 3,541,615

for the two collections. For packed schemes see Sections 2.2.3 and 2.2.4.

2.4 Conclusions

We have presented an efficient algorithm to generate a family of near-space optimal PHF's
or MPHF's for key sets that can be handled in the internal memory. The algorithm accesses
memory in a random fashion and then was called internal random access algorithm (RAM).

The space necessary to describe the functions takes a constant number of bits per key.
The space usage depends on the relation between the size m of the hash table and the size
n of the input. For m = n, the space usage is in the range 2.62n to 4.44n bits, depending on
the constants involved in the construction and in the evaluation phases. For m = 1.23n the
space usage is in the range 1.95n to 2.46n bits. In all cases, this is within a small constant
factor from the information theoretical minimum of approximately 1.44n bits for MPHF's
and 0.89n bits for PHFs, something that has not been achieved by previous algorithms,

except asymptotically for very large n (i.e, n > 23%).

2.4. CONCLUSIONS 47

The resulting functions are evaluated for a given element of a key set in constant
time. Moreover, as the generated function is space economical, its evaluation is likely to
be performed in the CPU cache, which is very efficient in time. However, the resulting
MPHFs still assume uniform hashing. In Chapter 3 we present a particular engineering of
the split-and-share technique [30] to simulate a uniform hash function on small key buckets.
This result is used by the EM algorithm presented in Chapter 4 to generate simple and

near space-optimal PHFs and MPHFs without assuming uniform hashing.

48

CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

Chapter 3

Using Split-and-Share to Simulate

Uniform Hash Functions

In this chapter we show how to use the split-and-share approach presented in [30] to
simulate uniform hash functions on each of the small key buckets generated by the EM
algorithm (the EM algorithm is described in detail in Chapter 4). Our implementation
has two advantages compared to the implementation described in [30]. First, it generates
a family of hash functions for each bucket, with only a constant factor of space overhead.
This is necessary because the RAM algorithm needs to be able to choose new hash functions
when it fails because the random graph induced by the current hash functions contains
cycles. Second, the hash function is well suited for string data, and the buckets obtained

are provably very small — a fact that we exploit in the implementation.

We describe how to implement a single hash function in the family. To get the r
hash functions needed for the RAM algorithm we conceptually just keep r representations
(r = 3). In the implementation we exploit the fact that the number of random accesses can
be kept down by merging the hash function representations, as explained in Section 3.2.2.

A previous version of this result was presented in [15].

This chapter is organized as follows. In Section 3.1 we show how to split the key set
into small buckets. In Section 3.2 we show how to simulate uniform hash functions on the

small buckets. Finally, in Section 3.3 we conclude this chapter.

49

50 CHAPTER 3. USING SPLIT-AND-SHARE TO SIMULATE UNIFORM HASH FUNCTIONS

3.1 Splitting

The first ingredient we need is a hash function that maps the keys of S to N, = 2 buckets,
such that all buckets are of approximately the same size. If a uniform hash function is
used and N, < n/logn, it is well known that the largest bucket will contain O(n/N,) keys
with high probability. Most explicitly defined hash functions (e.g., universal or polynomial
hash functions) have much weaker guarantees. However, in [2] it is shown that if we fix a
concrete family of universal hash functions, it is possible to considerably diminish the loss
by using universal hash functions. We want to apply the following result presented in [2],

where N, is assumed to be a power of 2:

Theorem 6 [2] Let H be the family of all linear transformations over Galois field 2, or
simply GF(2), the field of two elements, mapping {0, 1}* to {0,1}°. Let N, = 2° and
suppose that N, < n/logn. Let S C {0,1}F be a set of size n, and pick hg € H uniformly
at random. Then the expected size of the largest bucket when hashing S using hg is
O(nloglog(n)/Ny).

To apply the above result we need to identify strings with bit vectors in {0, 1}%. Since
we are dealing with zero-terminated strings, this is simple: Just pad with extra zeros at
the end to get a string of L bits. As we will see shortly, the time to hash a string will be
proportional to its length, not proportional to L.

The theorem says that the expected size of the largest bucket is within a factor
O(loglogn) of the average bucket size. This means that with a function from H we can
split the set into O(nloglog(n)/¢) buckets of maximum size ¢. Thus, for a given constant

k > 0 we have:

o rnloglog(n)
- l
b < logn+ logloglogn —logl +logk (3.1)

For the EM algorithm to generate functions with space complexity O(n) bits we have
to impose the following restriction on ¢:

n

Ny

IN

logn
¢ > klognloglogn

¢ = Qlognloglogn) (3.2)

We will not analyze the constant in the number of buckets — instead, our algorithm

simply chooses the smallest number of buckets possible with a given hash function. Tech-

3.1. SPLITTING 51

nically this means that the space usage of the EM algorithm, as it is implemented, will be
O(n) bits only in expectation. However, given an upper bound on the constant of Theo-
rem 6 we may turn this into a worst-case space bound by picking a new function hg until
the maximum bucket size is close to the expectation. Our implementation is engineered
to work with maximum bucket size £ = 256. For extremely large sets (hundreds of billions
of keys) a larger maximum bucket size ¢ is needed to keep the space at O(n) bits. This
happens because ¢ increases asymptotically with n, as shown in Eq. (3.2).

Let ho : {0,1}Y — {0,1}® be a function from the family H of Theorem 6 with the
following form: hg = Az, where A is a b x L matrix with entries in GF(2). To represent
ho we need to store the bL bits of the matrix A. A matrix-vector product Az can be
implemented by adding the columns corresponding to 1s in x. Note that addition of vectors
over GF(2) corresponds to bit-wise exclusive-or. For example, let us consider L = 3 bits,
b = 3 bits, x = 110 and

1 0 1
A=10 0 1
1 10
Then
1 0 1 1 1 1
ho(z)=10 0 1 1l=1]0]+ =
1 1 0 0 1

The evaluation time for this is O(L), assuming that a column vector can be stored in
one machine word. To obtain faster evaluation we use a tabulation idea from [3] that gives
evaluation time O(L/logo) by using space O(cL/logologn) for ¢ > 0. Note that if z is
short, e.g. 8 bits, we can simply tabulate all the function values and compute ho(x) by
looking up the value in an array. To make the same thing work for longer keys, split the
matrix A into parts of 8 columns each: A = A;|A|...|A[r/s), and create a lookup table
ho,; for each submatrix. Similarly split = into parts of 8 bits, x = x175 ... 71 /8. Now ho(z)
is the bit-wise exclusive-or of hg;[z;], for i = 1,..., [L/8]. Therefore, we have set o to 256
so that keys of size L can be processed in chunks of logo = 8 bits. Observe that all zero
characters in a string can simply be skipped, since their contribution to the matrix-vector
product will be zero. This means that the evaluation time is proportional to the number

of characters in the input string.

52 CHAPTER 3. USING SPLIT-AND-SHARE TO SIMULATE UNIFORM HASH FUNCTIONS

3.2 Simulating Uniform Hash Functions

The second ingredient of split-and-share is a single hash function p that, when applied to the
keys of a single bucket, behaves like a fully random hash function with high probability.
This function can then be shared among all buckets. As stated earlier, we will in fact
present a way of generating a family of hash functions such that for any bucket, each
function behaves like a fully random function with high probability. Technically, this is
done by making p a function of two parameters (see Eq. (3.3)), where the second parameter
s describes which function in the family is used. To make the analysis go through we need

the fact that for any bucket, the functions in the family are pairwise independent.

3.2.1 The Shared Function

Let y1,...,yr be independently chosen functions from a pairwise independent family of
functions from {0, 1}* to {0,1}°, where 2° >> (is a parameter to be chosen later. Also,
let p be a prime number, and £ a positive integer. We will use a variation of a family due

to [31] that achieves full independence with high probability on small sets:

p(z,s)= (Z tily;(2)] + s x ti]y; (fff)])mod P (3.3)

The tables t,...,t, and #,,...,t, contain 2° random values from {0,...,p —1}. We

prove the following lemma to obtain the independence property we need:

Lemma 2 For any s;,s; € {1,...,p— 1}, s; # s, B; C S of size |B;|, where B; is the set
of keys in bucket i, the following holds: With probability at least 1 — | By| (| B;]/2°)* over
the choice of y1, . .., yx the function values p(x, s), x € B;, s € {s;, s;} are independent and

uniformly distributed in {0,...,p — 1}.

ProOF. Consider arbitrary values v, s € {0,...,p—1}, forz € B;, s € {s;, s;}. Indepen-
dence means that the probability that p(x,s) = v, for all ¥ € B;, s € {s;,s}} is p~21Bil. To
arrive at a sufficient condition for independence, consider how the entries of 4, ..., t; and

T,..., 1. are accessed when computing p(x,s) for x € B; and s € {s;,s,}. Assume that
a key ¥ € B; has an associated unique entry y;,(v) in t;, and ¢} , that is not read when
evaluating p on keys in B; — {z}. Then for any choice of values in other entries, the values
p(x,s;) and p(x,s;) are independent and uniformly distributed in {0,...,p — 1}. This is

because there is exactly one choice of t;, [y;, ()] and ¢/ _[y;, ()] for each value of v, ,, Vs«

3.2. SIMULATING UNIFORM HASH FUNCTIONS 53

(two independent linear equations with two variables in GF(p)). In conclusion, a sufficient
condition for independence is that we can assign a unique entry to each x € B;.

Since yi, ...,y are chosen from a pairwise independent family we know that for any
r € B; the probability that z does not have a unique entry is at most (|B;|/2°)*. By the
union bound, the probability that some key in B; does not have a unique entry is at most

|Bi (|1Bil/2°)*. DO

3.2.2 Using the Shared Function

We want to use the shared function to implement the RAM algorithm on the buckets. In
fact, we will use three independent shared functions pg, p1, p2, one for each hash function
needed by RAM. However, for reasons explained below all three functions will use the same

functions y1, ..., Y.

Definition 20 Let |B;| denote the number of keys mapped by hg to bucket B; and m; =
@, for ¢ > 1.23, then

h po(x, s;) mod m;
hii(x) = p1(z, s;) mod m; +m;
h P2

(z,s;) mod m; + 2m;

The variable s; is specific for bucket i. The algorithm randomly selects s; from
{1,...,p — 1} until the functions hyy, h;1, and h;s work with the RAM algorithm of Sec-
tion 2.2.4, which is used to generate a PHF or an MPHF for each bucket. We will prove
in Section 3.2.3 that, with high probability, a constant fraction of the set of all choices of
s; works.

In the implementation we have focused on ways to make the memory access pattern
more local when computing h;o, h;1, hio. This is to make better use of the CPU cache.
The idea is that the tables used for storing the function descriptions are merged, such that
all 6 values looked up using y;(z) (two in each function p;, where 0 < j < 2) are stored in

consecutive memory locations, and so on for ys(z), ..., yk(x).

3.2.3 Analysis of The Shared Function

By Lemma 2 the probability that we fail to get a family of fully random hash functions
for all buckets is at most Y, |B;| (|B:]/2°)% < n(¢/2°)*. 1f we choose, for example, § =

54 CHAPTER 3. USING SPLIT-AND-SHARE TO SIMULATE UNIFORM HASH FUNCTIONS

[log(/nf)] and k > 4, we have that this probability is o(1/n). Then, it will succeed with
high probability, i.e., 1 — o(1/n).

Finally, we need to show that it is possible to obtain, with high probability, a value
of s; such that the functions h;y, h;1, and h; make the RAM algorithm work for B;.
There are two issues. First, the functions h;y, h;;, and h; do not produce values that
are exactly uniformly distributed in {0,...,|B;| — 1}, because |B;| does not divide p.
However, it is not hard to see that the probability of a particular set of hash function
values (or, in the analysis of RAM, of a particular graph) is close to the probability in the
uniformly distributed case. More specifically, the probability is at most a factor e™:lB:l/p
higher, because the probability of getting a given set of hash values is upper bounded by
[p/m;]1Bil [plBil < (1 + mi/p)|Bi|mi_|B"‘ < emi‘BiV”m;‘B"'. Since p > ¢ > |B;| this means
that the failure probability will be very close to the uniform case.

The second issue is to show that even though any single choice of s; makes RAM fail
with constant probability, €., < 1, then with high probability there are many values of s;
that will make RAM work. We may assume that the choice of y1, ...,y was successful, i.e.,
that all functions in Definition 20 are fully random on all buckets. The expected number X
of choices of s; that makes the hash functions fail is .., p, since there are p possible values
for s;. Lemma 2 tells us that the events that the hash functions fail, for any two different
values of s;, are independent. This means that Var(X) is bounded by the expectation,
and consequently Var(X) < e,,p. Chebyshev’s inequality (see e.g. [58]) then says that
the probability that more than p(1 + e¢,)/2 choices of s; make the hash functions fail is
bounded by (1 — eq)?/p.

3.2.4 Implementation Details

The family of linear hash functions over GF(2) enables us to compute the functions hy,
Y1, Y2, Y3, - - -, Yx in parallel. The idea is to take a linear function »' : {0,1}X — {0,1}" from
the family of linear hash functions analyzed in [2] that produces a «-bit fingerprint for each
key x € S C {0,1}* with sufficiently many bits, and chop the hash function values into
(disjoint) parts. Clearly, these functions will be independent.

The keys in S are mapped to a y-bit fingerprint set F'. The value of v must be encoded
by at least b + kd bits so that a single fingerprint will be able to represent the values of
functions hg, y1,¥2,¥s3,...,Yx. As the keys in S are assumed to be all distinct, then all
fingerprints in F' should be distinct as well. As the function A’ comes from a family of

universal hash functions [2], the probability that there exist two keys that have the same

3.3. CONCLUSIONS 55

values under all functions is at most (3)/2°7*. This probability can be made negligible by
choosing k and o appropriately.

In the implementation we used a function that produces v = 96 bits. The 32 most
significant bits are used to compute hy, i.e., ho(z) = h'(2)[65,96] >> (32 —1b), where x € S
and the symbol >> denotes the right shift of bits. The other 64 bits correspond then to
the values of y1(x), ya(x), ... yp(x), for k = 4, leading to 6 = 16. However, to save space
for storing the tables used for computing h;g, hi1, and h;s, we hard coded the linear hash
function to make the most significant bit of each chunk of 16 bits equal to zero. Therefore,
0 =15.

The last parameter related to the hash functions we need to talk about is the prime
number p. It should be chosen as large as possible, and in all cases p > ¢. In the
implementation we set it to the largest 32-bit integer that is prime, i.e, p = 4294967291.

Although it is always possible to set up a configuration in which the EM algorithm
will work with high probability, the implementation is engineered for ¢ = 256. We have
two reasons for choosing ¢ = 256. The first one is to keep the bucket size small enough to
be represented by 8-bit integers. The second is to allow the memory accesses during the
generation time and the resulting function evaluation to be done in the CPU cache most
of the time.

In experiments we noticed that the constant x presented in Eq. (3.1) and in Eq. (3.2)
is in the range 0 < k < 1. For instance, taking n = 1,024 billion keys we got b = 23 and
therefore k ~ 0.42. This holds for smaller values of n, see Section 4.3.1. Therefore, based
on those experimental results, it is possible to estimate the largest problem we can solve in
32-bit and 64-bit architectures. The largest problem we can solve in a 32-bit architecture
is a key set with 500 billion keys. The problem here is that for larger sets more than 32
bits would be required to address a single bucket, i.e., b > 32. But in 64-bit architecture
we can deal with sets of sizes up to 1,8 x 10! keys with high probability. For larger sets b
would require more than 64 bits. We remark that these estimates are based on the constant

k =~ 0.42 obtained experimentally and this can change for n asymptotically large.

3.3 Conclusions

We have presented a particular engineering of the split-and-share technique [30] to simulate
a uniform hash function on the small buckets generated by the EM algorithm presented in
Chapter 4. The main contribution is that we are able to generate a family of uniform hash

functions for each bucket with only a constant factor of space overhead. This is necessary

56 CHAPTER 3. USING SPLIT-AND-SHARE TO SIMULATE UNIFORM HASH FUNCTIONS

because the RAM algorithm needs to be able to choose new hash functions when it fails

due to the occurrence of cycles in the random graph induced by the current hash functions.

Chapter 4

The External Cache-Aware Perfect
Hashing Algorithm

In this chapter we use a number of techniques from the literature to obtain a novel external
memory perfect hashing algorithm, referred to as EM algorithm, which is cache-aware. The
EM algorithm is for key sets that do not fit in the internal memory. The main novelties
are: (i) it uses external memory to allow the generation of PHFs or MPHFs for sets on
the order of a billion keys; (ii) it generates the resulting functions without assuming that
uniform hash functions are available for free; and (iii) it partitions the input into buckets
small enough to fit in the CPU cache.

The EM algorithm produces MPHF's that requires approximately 3.3 bits per key of
storage space. For PHFs with range {0, ...,1.23n — 1} the space usage drops to approx-
imately 2.7 bits per key. The main insight supporting the EM algorithm is that it splits
the incoming key set .S into small buckets containing at most ¢ = 256 keys. Then, a PHF
or an MPHF is generated for each bucket and using an offset array we obtain a PHF or an
MPHF for the whole set S. Therefore, the EM algorithm works on subsets of size lower
than 256 and this increases the probability of cache hits. That is why the EM algorithm
generates the functions as fast as the algorithms that operate only on data structures stored
in internal memory.

The EM algorithm increases one order of magnitude in the size of the greatest key set
for which an MPHF was obtained in the literature [12]. This improvement comes from a
combination of a novel perfect hashing scheme that greatly simplifies previous methods,
and the fact that the EM algorithm is designed to make good use of memory hierarchy.

Also, the algorithm is theoretically sound because we have completely analyzed its time

o7

58 CHAPTER 4. THE EXTERNAL CACHE-AWARE PERFECT HASHING ALGORITHM

and space usage without unrealistic assumptions. This is a accomplished because the RAM
algorithm used to generate an MPHEF for each bucket uses the hash functions designed in
Chapter 3, which simulate uniform hash functions on small buckets.

We demonstrate the scalability of the EM algorithm by considering a set of 1.024
billion strings (URLs from the world wide web of average length 64), for which we con-
struct a MPHF on a commodity PC in approximately 50 minutes. If we use the range
{0,...,1.23n — 1}, the space for the PHF is less than 324 MB, and we still get hash values
that can be represented in a 32 bit word. Certainly, the EM algorithm will be useful for a
number of current and practical data management problems that were not possible before.
A previous version of the EM algorithm was presented in [15].

This chapter is organized as follows. In Section 4.1 we present the EM algorithm. In
Section 4.2 we analyze the EM algorithm. In Section 4.3 we evaluate the EM algorithm

experimentally. Finally, in Section 4.4 we conclude this chapter.

4.1 Design of the EM Algorithm

The EM algorithm is also a two-step randomized algorithm of Las Vegas type because it
uses the Las Vegas type RAM algorithm in its second step, as illustrated in Figure 1.2.
The first step, referred to as partitioning step, takes a key set S C {0, 1}* and uses a hash
function hy : S — {0,1}° to partition S into N, = 2° buckets for some integer b. The
second step, referred to as searching step, generates a PHF or an MPHF for each bucket
1, 0 <1 < N, and computes the offset array. The PHFs or MPHFs for the buckets are
generated with the version of the RAM algorithm described in Section 2.2.4.
The EM algorithm generates a family J of PHFs or MPHF's, defined as follows:

Definition 21 Let B; = {x € S | ho(x) = i} denote the ith bucket. Let f; €
F(PHF, MPHF) denote a PHF if f; € PHF or an MPHF if f; € MPHF on B,.
Let M; be the maximum value of f; on B; plus one, and offset[i] = Z;;B M;. Note that, if
fi € MPHF, then M; = |B;|. Let H be the family of linear hash functions presented in

Section 3.1. Therefore,
J(F, H) ={f | f(z) = fi(z) + offset[i],i = ho(z), fi € F,ho € H} (4.1)

is a family of PHFs or MPHFs for the whole set S. Thus, the problem is reduced to

computing and storing the function f; for each bucket and the offset array.

4.1. DESIGN OF THE EM ALGORITHM 59

Now we are going to design and analyze the EM algorithm to prove the following

theorem:

Theorem 7 For a given key set S C {0, 1} with n keys, where L = O(1) is the maximum
key length in bits, the family H of all linear transformations over GF(2), a function hq : S —
{0, 1}* taken uniformly at random from H, an induced set of buckets ¢ = {B; | B; = {r €
S | ho(x) = i}}, where |£] = Ny = 2°, max |B;| = ¢, b < log n+log log log n—log ¢+log , £ >
rlognloglogn, for k > 0, it is possible to find in expected linear time all functions f; € F,
0 <i < Ny, and the offset array so that any function f € J can be computed in O(1) time
and described in log(3)cn+o(n)+O(logn) bits if f is a PHF, and in (2+€)en4o(n)+0(log n)
bits if f is an MPHF, where ¢ > 1.23 and € > 0. For that O(N;) computer words are
required, where Ny = Q(n™) and 0 < 7 < 1.

We consider the situation in which the set of all keys may not fit in the internal memory
and so the first step of the algorithm is necessary to deal with the keys stored on disk to
form the buckets. The EM algorithm first scans the list of keys and computes the hash
function values that will be needed afterwards in the algorithm. These values will (with
high probability) distinguish all keys, so we can discard the original keys. It is well known
that hash values of at least 2logn bits are required to make this work. Thus, for sets of a
billion keys or more we cannot expect the list of hash values to fit in the internal memory
of a standard PC.

To form the buckets we sort the hash values of the keys according to the value of hy.
Since we are interested in scalability for large key sets, this is done using an implementation
of an external memory mergesort [53] with some nuances to make it work in linear time.
The total work on disk consists of reading the keys, plus writing and reading the hash
function values once. Since the hg hash values are relatively small (less than 15 decimal
digits) we can use radix sort to do the internal memory sorting.

We have designed two versions of the EM algorithm. The first one uses the hash
functions described in Section 3.2, which guarantee that the EM algorithm can be made to
work for every key set with high probability. The second one uses faster and more compact
pseudo random hash functions proposed in [50], referred to as heuristic EM algorithm
from now on, because it is not guaranteed that it can be made to work for every key set.
However, empirical studies show that limited randomness properties are often as good as
total randomness in practice [2], and the heuristic EM has worked for all key sets we have

applied it to so far.

60 CHAPTER 4. THE EXTERNAL CACHE-AWARE PERFECT HASHING ALGORITHM

Figure 4.1 presents a pseudo code for the EM algorithm. The detailed description of
the partitioning and searching steps are presented in Sections 4.1.1 and 4.1.2, respectively.
The internal algorithm presented in Section 2.2.4 uses three hash functions h;g, h;1, and
hi to compute a function f; € F. These hash functions, as well as the hash function hg

used in the partitioning step of the algorithm, were described in Section 3.2.

function EM (S, H, {fo, f1,... fn,—1}, offset)
Partitioning (S, H, Files)
Searching (Files, {fo, f1,...fn,—1}, offset)

Figure 4.1: The EM algorithm.

4.1.1 Partitioning Step

The partitioning step performs two important tasks. First, the variable-length keys are
mapped to 7-bit fingerprints by using a linear hash function A’ : S — {0,1}” taken
uniformly at random from the family H of linear hash functions presented in Section 3.1.
That is, the variable-length key set S C {0,1}* is mapped to a fixed-length key set F'
of fingerprints. Second, the set S of n keys is partitioned into N, buckets, where b is a
suitable parameter chosen to guarantee that each bucket has at most ¢ = Q(log n loglogn)
keys with high probability (see Eq. (3.2)). It outputs a set of Files containing the buckets,
which are merged in the searching step when the buckets are read from disk. Figure 4.2
presents the partitioning step.

The critical point in Figure 4.2 that allows the partitioning step to work in linear time
is the internal sorting algorithm. We have two reasons to choose radix sort. First, it sorts
each key block B; in linear time, since keys are short integer numbers (less than 15 decimal
digits). Second, it just needs O(|B;|) words of extra memory so that we can control the
memory usage independently of the number of keys in S.

At this point one could ask: why not to use the well known replacement selection
algorithm to build files larger than the internal memory area size? The reason is that
the radix sort algorithm sorts a block B; in time O(|B;|) while the replacement selection
algorithm requires O(|B;|log |B;|). We have tried out both versions and the one using the
radix sort algorithm outperforms the other. A worthwhile optimization we have used is
the last run optimization proposed in [53], where the last block is kept in memory instead

of dumping it to disk to be read again in the second step of the algorithm.

4.1. DESIGN OF THE EM ALGORITHM 61

function Partitioning (S, H, Files)
» Let 8 be the size in bytes of the fixed-length key set F
» Let u be the size in bytes of an a priori reserved internal memory area
» Let Ny = [/p] be the number of key blocks that will be read from disk
into an internal memory area

select b’ uniformly at random from H
for j=1 to Ny do

DiskReader (S;) {read a key block S; from disk}

Hashing (S, B;) {store h/(z), for each = € S;, into B;, where |B;| = p}

BlockSorter (B;) {cluster B; into N; buckets using an indirect radix sort algorithm that
takes ho(z) for x € S; as sorting key (i.e, the b most significant bits
of h/(x)) and if any bucket B; has more than ¢ keys restart in the
partitioning step}

6. BlockDumper (Bj, Files[j]) {dump B; to disk into Files[j]}

T W N~

Figure 4.2: Partitioning step.

Figure 4.3(a) shows a logical view of the NNV, buckets generated in the partitioning step.
In reality, the y-bit fingerprints belonging to each bucket are distributed among many files,
as depicted in Figure 4.3(b). In the example of Figure 4.3(b), the ~-bit fingerprints in
bucket 0 appear in files 1 and Ny, the 7-bit fingerprints in bucket 1 appear in files 1, 2 and

a) :
E E Buckets Logical View

Ny, and so on.

0o 1 2 Ny — 1
b)
|
I - | Buckets Physical View

Files[1] Files[2] Files[N¢]
Figure 4.3: Situation of the buckets at the end of the partitioning step: (a) Logical view
(b) Physical view.

This scattering of the ~-bit fingerprints in the buckets could generate a performance
problem because of the potential number of seeks needed to read the v-bit fingerprints in
each bucket from the Ny files on disk during the second step. But, as we show afterwards

in Section 4.2.1, the number of seeks can be kept small by using buffering techniques.

62 CHAPTER 4. THE EXTERNAL CACHE-AWARE PERFECT HASHING ALGORITHM

4.1.2 Searching Step

Figure 4.4 presents the searching step. The searching step is responsible for generating
a function f; € F for each bucket (using the RAM algorithm presented in Section 2.2.4)

and for computing the offset array. Statement 1 of Figure 4.4 constructs a heap H of

function Searching (Files, {fo, f1,...fn,—1}, offset)
» Let H be a minimum heap of size Ny
» Let the order relation in H be given by
i=zxz[y—b+1l,y]forx e F

for j =1 to Ny do { Heap construction }
Read the first 4-bit fingerprint from Files[j] on disk
Insert (i,j,z) in H
for i =0 to N, —1 do
BucketReader (Files, H, B;) {Read bucket B; from disk driven by heap H}
if MPHFGen (B;, f;) fails then
Restart the partitioning step
offset]i + 1] = offset[i] + | M|
MPHFDumper (f;, offset[i]) {Write the description of f; and offset[i] to the disk}

ST W N~

o

Figure 4.4: Searching step.

size N¢, which is well known to be linear on Ny. The order relation in H is given by the
bucket address i (i.e., the b most significant bits of x € F'). Statement 4 has four steps.
In statement 5, a bucket is read from disk, as described below. In statement 6, a function
fi is generated for each bucket B; using the internal random access memory algorithm
presented in Section 2.2.4. In statement 7, the next entry of the offset array is computed.
Finally, statement 8 writes the description of f; and offset|i] to disk. Note that to compute
offset[i + 1] we just need M; (i.e., the maximum value of f; in bucket B;) and offset[i]. So,
we just need to keep two entries of the offset array in memory all the time.

The algorithm to read bucket B; from disk is presented in Figure 4.5. Bucket B; is
distributed among many files and the heap H is used to drive a multiway merge operation.
Statement 2 extracts and removes triple (i, 7,z) from H, where i is a minimum value in
H. Statement 3 inserts = in bucket B;. Statement 4 performs a seek operation in Files|j]
on disk for the first read operation and reads sequentially all v-bit fingerprints « € F' that
have the same index 7 and inserts them all in bucket B;. Finally, statement 5 inserts in
H the triple (i, j,2'), where ' € F is the first v-bit fingerprint read from Files[j] (in

statement 4) that does not have the same bucket address as the previous keys.

4.2. ANALYTICAL RESULTS 63

function BucketReader (Files, H, B;)

1. while bucket B; is not full do

2. Remove (i,j,2) from H

3. Insert x into bucket B;

4. Read sequentially all y-bit fingerprints from Files[j] that have the same i
and insert them into B;

5. Insert the triple (i, j,2’) in H, where 2’ is the first v-bit fingerprint read
from Files[j] that does not have the same bucket index i

Figure 4.5: Reading a bucket.

4.2 Analytical Results

4.2.1 The Linear Time Complexity

In this section we show that the EM algorithm runs in expected O(n) time. For that end

we need to show that the partitioning and searching steps run in expected O(n) time.

Analysis of the Partitioning Step

The partitioning step presented in Figure 4.2 runs in expected O(n) time. As in statement
1 we need to select a function A’ from the family H of linear hash functions presented
in Section 3.1 and each function A’ is described in O(Llogn) bits, this statement has
cost O(L) in the Word RAM model of computation [41] with a word size equal to logn
bits (recall that L is the maximum key length in bits). Each iteration of the loop for in
statement 2 runs in O(|B;|) time, 1 < j < Ny, where |B;| is the number of v-bit fingerprints
that fit in block B; of size . This is because statement 3 just read |B;| keys from disk,
statement 4 compute the related fingerprints and stores them all into the internal memory
area of size yu, statement 5 runs a radix sort algorithm that is well known to be linear on
the number of keys it sorts (i.e., |B,| 7-bit fingerprints), and statement 6 just dumps |B;]|
v-bit fingerprints to the disk into File[j]. Thus, the loop for runs in Z;V:fl O(|B;]) time.
As Zévzfl |B;| = n, then the partitioning step runs in expected O(n) time. It is expected
because the partitioning step can fail in statement 5 whenever a bucket with more than /¢
keys is generated. However, it will succeed with high probability, as showed in Section 3.2.3

and, in turn, the number of iterations is O(1).

64 CHAPTER 4. THE EXTERNAL CACHE-AWARE PERFECT HASHING ALGORITHM

Analysis of the Searching Step

The searching step presented in Figure 4.4 also runs in expected O(n) time. It is expected
because the RAM algorithm used for the buckets is a randomized algorithm that can
fail with small probability for a given bucket, when we cannot find appropriated hash
functions h,g, h;1 and h;o. When it fails, we restart in the partitioning step. By using the
hash functions designed in Section 3.2, it is possible to make the searching step work with
high probability, then the number of iterations will be bounded by a constant.

Let us, first, analyze the number of heap operations performed in statement 5, which
reads |B;| v-bit fingerprints of bucket B; and is detailed in Figure 4.5. It is well known
that the heap construction of statement 1 runs in O(Ny) time. Each iteration of statement
4 performs two heap operations in statement 5 (see statements 2 and 5 in Figure 4.5) and
each one costs O(log Nf). So, the total cost of statement 4 in terms of heap operations is
2 x Ny x O(log Ny). Considering that: (i) N, <
that the number of heap operations is O(n).

foen and (ii) Ny < n, we can conclude

However, in the worst case the y-bit fingerprints of bucket i are spread in at most ¢ files
on disk (recall that ¢ is the maximum number of keys found in any bucket). Therefore,
we need to take into account that the critical step in reading a bucket is in statement 4 of
Figure 4.5, where a seek operation in Files[j] may be performed by the first read operation.

In order to amortize the number of seeks performed we use a buffering technique [51].
We create a buffer j of size ¢ = pu/N; for each file j, where 1 < j < Ny (recall that
i is the size in bytes of an a priori reserved internal memory area). Every time a read
operation is requested to file j and the data is not found in the jth buffer, g bytes are
read from file j to buffer 7. Hence, the number of seeks performed in the worst case is
given by (3/q (remember that (3 is the size in bytes of the fixed-length key set F'). For
that we have made the pessimistic assumption that one seek happens every time buffer j
is filled in. Thus, the number of seeks performed in the worst case is yn/8¢, since after
the partitioning step we are dealing with ~-bit fingerprints instead of 64-byte URLs, on
average. Therefore, the number of seeks is linear on n and amortized by q.

It is important to emphasize two things. First, the operating system uses techniques
to diminish the number of seeks and the average seek time. This makes the amortization
factor to be greater than ¢ in practice. Second, almost all main memory is available to be
used as file buffers because just the v-bit fingerprints of the bucket being processed and

O(Ny) words for the heap must be kept in main memory during the searching step.

4.2. ANALYTICAL RESULTS 65

To conclude the searching step analysis we need to show that statements 6 and 8 perform
a number of operations proportional to |B;|. If this is true, then the rest of statement 4
runs in ¢ S | By| time, where ¢ is a machine-dependent constant.

Statement 6 runs the algorithm used to generate the function f; of each bucket. That
algorithm is linear on the number of keys it is applied to, as we have shown in Section 2.2.1.
As it is applied to buckets with | B;| keys, then statement 6 performs a number of operations
proportional to |B;].

Statement 8 has time complexity proportional to |B;| because it writes to disk the
description of each generated function f; and each description is stored in O(|B;]|) bits (see
Section 2.2.2 for details). As S.N"|B;| = n, then statement 4 runs in O(n) time. In
conclusion, the EM algorithm takes expected O(n) time because both the partitioning and

the searching steps run in expected O(n) time.

4.2.2 The Space Requirements to Describe the Functions

The description of the resulting functions is compounded by the function hg, the offset
array, and the functions f; € F(PHF, MPHF), 0 < i < N,. Remember that b is given
by Eq. (3.1) and N, < n/logn. The function hy comes from the family H of linear hash
functions over GF(2) and therefore requires O(L logn) bits to be stored. By assuming that
L = O(1), then hy takes O(logn) bits of space. The offset array has N, entries of logn
bits and, then, requires o(n) bits since N, < n/logn.

To store each function f;, if f; € PHF then it requires |f;| = log(3)c|B;| bits of
space, for ¢ > 1.23. If f; € MPHF then it requires |f;| = (2 + €)c|B;| + o(| B;|) bits of
space, for ¢ > 1.23 and € > 0. Therefore, Zf\;b(;l |fi| = log(3)cn bits if f; is a PHF, and
SV fil = (2 + €)en 4 o(n) bits if f; is an MPHF.

Additionally, we need to store the hash functions hj, h;1, and h;y (see Definition 20).
For this we need to store 6k tables with 2% entries of logp bits, where p is a large prime
number, and the seed numbers s; of log p bits, where 0 <7 < N,. We can assume with no
loss of generality that logp = O(logn). Therefore, as 6 = [log(/nf)] and k = 4 are values
chosen to make the EM algorithm to work with high probability and N, < n/logn, then,
hio, hi1, and h;y are stored in o(n) 4+ o(n) = o(n) bits.

Putting this all together, we have that the number of bits required to store a resulting
function f € J islog(3)en+o(n)+O(logn) bits if f is a PHF and (2+4¢)cn+o0(n)+0O(log n)
bits for € > 0 if f is an MPHF.

66 CHAPTER 4. THE EXTERNAL CACHE-AWARE PERFECT HASHING ALGORITHM

4.2.3 The Space Requirements to Generate the Functions

In this section we show that the EM algorithm presented in Figure 4.1 needs O(Ny) com-
puter words of main memory to generate the functions of 7. We need to maintain the

following data structures in internal memory.

1. The internal memory area of size u bytes to be used in the partitioning step and in
the searching step. The size pu is fixed a priori and depends only on the amount of
internal memory available to run the algorithm (i.e., it does not depend on the size

n of the problem).

2. The main memory required to run the indirect radix sort algorithm. It just needs
O(|B,|) words of extra memory so that we can control the memory usage indepen-

dently of the size of the problem and can be fixed a priori.

3. The additional space required is O(Ny) computer words that corresponds to the size
of the heap H used to drive a Ny-way merge operation in the searching step, which

allows the merge operation to be performed in one pass through each file.

Therefore, as the memory usage in the partitioning step does not depend on the number
of keys in S and, in the searching step, the internal algorithm is applied to problems of size
up to ¢ keys, we can conclude that the EM algorithm requires O(Ny) computer words to
generate a function f € J. As shown in [1, Theorem 3.1}, to get a linear time complexity
we need Ny = Q(n") computer words for 0 < 7 < 1 and to allow the merge operation to

be performed in one pass we need 7 = 0.5. This ends the proof of Theorem 7.

4.3 Experimental Results

The purpose of this section is to evaluate the performance of the EM algorithm and to
compare it with both the RAM algorithm presented in Chapter 2 and the algorithm by
Fox, Chen and Heath [38] (referred to as FCH). We do not consider the other practical
perfect hashing algorithms compared with the RAM algorithm in Section 2.3.2 because the
RAM algorithm outperforms them in the same experimental setup. In Section 4.3.1 we
consider key sets that cannot be handled in internal memory. In this case, the partitioning
in small buckets and the use of external memory are needed by the EM algorithm. The
experimental results for the EM algorithm match the analytical results presented in Section

4.2. In Section 4.3.2 we carry out the comparison.

4.3. EXPERIMENTAL RESULTS 67

The algorithms were implemented in the C language and are available under the GNU
Lesser General Public License (LGPL) at http://cmph.sf.net. The experiments were
carried out on a computer running the Linux operating system, version 2.6, with a 1.86
gigahertz Intel Core 2 processor with a 4 megabyte L2 cache and 1 gigabyte of main
memory. For the experiments we used the same two collections considered in Chapter 2:
(i) a set of 150 million randomly generated 4 byte long IP addresses, and (ii) a set of 1,024
million 64 byte long (on average) URLs collected from the Web.

To compare the algorithms we used the following metrics: (i) The amount of time to
generate PHFs or MPHF's, referred to as Generation Time. (ii) The space requirement
for the description of the resulting PHFs or MPHFs to be used at retrieval time, referred
to as Storage Space. (iii) The amount of time required by a PHF or an MPHF for each

retrieval, referred to as Evaluation Time.

4.3.1 Performance of the EM Algorithm

In this section we evaluate the performance of the EM algorithm considering generation
time and storage space as metrics. First, we are interested in verifying the claim that the
EM algorithm runs in linear time. Therefore, we run both versions of the algorithm for
several numbers n of keys in the two collections. The values chosen for n were 1, 2, 4, 8,
16, 32, 64, 128, 256, 512 and 1,024 million keys. The size u of the a priori reserved internal
memory area was set to 250 megabytes. Subsequently, we show how pu affects the runtime
of the algorithm. The parameter b (see Eq. (3.1)) was set to the minimum value that gives
us a maximum bucket size lower than ¢ = 256. For each value chosen for n, the respective
values for b are 13,14, 15,16, 17, 18,19, 20, 21,22 and 23 bits.

In order to estimate the number of trials for each value of n we used a statistical
method for determining a suitable sample size [47, Chapter 13]. We got that just one
trial for each n would be enough with a confidence level of 95%. However, we conducted
25 trials. This number of trials seems rather small but, as shown below, the behavior of
the EM algorithm is very stable and its runtime is almost deterministic (i.e., the standard
deviation is very small) because it is a random variable that follows a (highly concentrated)
normal distribution.

Figure 4.6 presents the runtime for each trial in the two collections. In addition, the solid
and dashed lines correspond to a linear regression model obtained from the experimental
measurements for both: (i) the EM algorithm and (ii) the heuristic EM algorithm (HEM).
For both versions of the EM algorithm the coefficient of determination R? is 99%. As we

68 CHAPTER 4. THE EXTERNAL CACHE-AWARE PERFECT HASHING ALGORITHM

were expecting, the runtime for a given n has almost no variation and the heuristic EM
algorithm is faster than the EM algorithm because it uses a faster pseudo random hash

function, as explained later in this section.

3000
L
m
<

Linear regression for EM Linear regression for EM
o HEM ————- Linear regression for HEM o HEM ———-- Linear regression for HEM -

2000
|

Time (s)

50 100 150 200
. . | .
Time (s)

1000
|

0

0 50 100 150 0 200 400 600 800 1000
Number of keys (millions) Number of keys (millions)

(a) IPs collection (b) URLs collection
Figure 4.6: Number of keys in S versus generation time for the EM algorithm and the

heuristic EM algorithm. The solid and dashed lines correspond to a linear regression
model for the generation time (R? = 99%).

An intriguing observation is that the runtime of both versions of the EM algorithm
is almost deterministic. A given bucket i, 0 < i < N (recall that N, = 2°), is a small
key set (at most 256 keys) and, the runtime of the building block algorithm is a random
variable X; that follows a geometric distribution with mean 1/Pr, ~ 1, because Pr, — 1
as n — oo for the RAM algorithm where 7 = 3. Let Y = >, X; denote the runtime of
the searching step of the EM algorithm. Under the hypothesis that the X; are independent
and bounded, the law of large numbers (see, e.g., [47]) implies that the random variable
Y/N, converges to a constant as n — oo. This and the fact that the partitioning step
was never restarted because the parameter b is chosen so that the maximum bucket size
¢ is lower than or equal to 256 with high probability explains why the runtime is almost
deterministic.

The next important metric on PHFs and MPHF's is the space required to store the
functions. Table 4.1 shows that the EM algorithm can be used for constructing PHFs and
MPHF's that require on average 2.6 and 3.21 bits per key to be stored, respectively. It also
shows that the heuristic EM algorithm outputs PHFs and MPHF's that require on average
2.51 and 3.1 bits per key to be stored, respectively.

The lookup tables used by the hash functions of the EM algorithm require a fixed
storage cost of 3,345,409 bytes and this cost is not considered in Table 4.1. To avoid the

space needed for lookup tables we have implemented the heuristic EM algorithm. It uses

4.3. EXPERIMENTAL RESULTS 69

n | p | EM (Bits/key) | Heuristic EM (Bits/key)
PHF | MPHF | PHF MPHF

105 | 9 | 241 3.00 2.32 3.04

108 | 13 | 2.67 3.29 2.54 3.12

107 | 16 | 2.53 3.13 2.42 2.97

108 | 20 | 2.74 3.34 2.70 3.21

10° | 23 | 2.67 3.29 2.55 3.12

Table 4.1: Space usage to respectively store the resulting PHFs and MPHFs of the EM
algorithm and the Heuristic EM algorithm.

the pseudo random hash function proposed in [50] to replace the hash functions described
in Chapter 3. The Jenkins function just loops around the key, doing bitwise operations
over chunks of 12 bytes. Then, it returns the last chunk. Thus, in the mapping step, the
key set S is mapped to F, which contains 12-byte long fingerprints (recall that v = 96
bits).

The Jenkins function needs just one random seed of 32 bits to be stored instead of quite
long lookup tables, a major improvement over the 3,345,409 bytes necessary to implement
truly random hash functions on the buckets. Therefore, there is no fixed cost to store the
resulting MPHFSs, but three random seeds of 32 bits are required to describe the functions
hio, hin and h;y of each bucket. As a consequence, the MPHFs generation is faster (see
Figure 4.6). The reason is that there are no large lookup tables to cause cache misses. For
example, the generation time for a set of 1,024 million URLs has dropped from 49.3 down
to 46.2 minutes in the same setup. The disadvantage of using the Jenkins function is that
there is no formal proof that it works for every key set. That is why the hash functions
we have designed in Chapter 3 are required, even being slower. In the implementation

available, the user can choose the hash functions to be used.

Controlling Disk Accesses

In order to lower the number of seek operations on disk we benefit from the fact that both
versions of the EM algorithm leave almost all main memory available to be used as disk
I/O buffer. In this section we evaluate how much the parameter p affects the runtime of
both versions of the EM algorithm. For that we fixed n in 1,024 million URLs and used p
equal to 100, 200, 300, 400, 500, and 600 megabytes.

70 CHAPTER 4. THE EXTERNAL CACHE-AWARE PERFECT HASHING ALGORITHM

Table 4.2 presents the number of files Ny, the buffer size ¢ used for all files, the num-
ber of seeks /¢ in the worst case, considering the pessimistic assumption mentioned in
Section 4.2.1, and the time to generate a PHF or an MPHF for 1,024 million URLs as a
function of the amount of internal memory available. Remember that 3 is the size in bytes
of the fixed-length key set F', and § = 12n for both the EM algorithm and the heuristic EM
algorithm. Observing Table 4.2 we noticed that the time spent in the generation decreases
as the value of p increases. However, for u > 400, the time variation is not as significant
as for g < 400. This can be explained by the fact that the kernel 2.6 1/O scheduler of
Linux has smart policies for avoiding seeks and diminishing the average seek time (see

http://www.linuxjournal.com/article/6931).

4 (MB) EM Heuristic EM
Ny | ¢ (KB) | B/q | time (min) | Ny | g (KB) B/q | time (min)
100 301 340 47,059 59.8 226 453 26,491 56.0
200 119 | 1,721 | 9,297 50.0 89 | 2,301 | 5,216 46.4
300 74 4,151 3,855 48.5 56 5,485 2,188 45.3
400 54 7,585 2,110 47.2 41 9,990 1,202 44.4
500 43 | 11,906 | 1,344 47.0 32 | 16,000 750 44.0
600 35 | 17,554 912 47.0 26 | 23,630 508 44.0

Table 4.2: Influence of the internal memory area size (@) in the runtime of both versions of
the EM algorithm to construct PHFs or MPHF's for 1.024 billion URLSs (time in minutes).

4.3.2 Comparison with RAM and FCH Algorithms

We used the hash function presented in [50] for all the algorithms, except for the EM
algorithm, where we used the one designed in Chapter 3. For all the experiments we used
n = 3,541,615 keys for the two collections. The reason to choose a small value for n is
because the FCH algorithm has exponential time on n for the generation phase, and the
times explode even when a number of keys are a little over.

We first compare the EM algorithm for constructing MPHF's with both the RAM and
FCH algorithms, considering generation time and storage space. Table 4.3 shows that the
RAM algorithm for r = 3, the EM and heuristic EM algorithms are faster than the FCH
algorithm in generating MPHF's. The performance of both versions of the EM algorithm is
quite surprising once they use external memory at generation time and the other algorithms

do not. The reason is twofold. First, both versions of the EM algorithm simply scan the

4.3. EXPERIMENTAL RESULTS 71

whole key set once and maps it to a set of fixed length fingerprints. Second, as the whole
key set is broken into buckets with at most 256 keys, the memory is accessed in a less

random fashion which implies fewer cache misses.

Algorithms Generation Time (sec) Storage Space
IPs URLSs Bits/Key | Size (MB)
RAM r=2 11.39 £ 1.33 16.73 £1.89 3.60 1.52
r=3 5.46 +0.01 6.74 £0.01 2.62 1.11
EM 5.86 £ 0.17 7.68 +0.22 3.31 1.40
Heuristic EM 5.56 £ 0.16 6.27 +£0.11 3.17 1.34
FCH 2,052.7£530.96 | 2,400.1 £ 711.60 4.22 1.78

Table 4.3: Comparison of the algorithms for constructing MPHF's considering generation

time and storage space, and using n = 3,541,615 for the two collections.

It is also important to note that the resulting functions of the RAM and EM algorithms
are the most compact functions. The storage space requirements in bits per key for the
two versions of the RAM algorithm are 3.6 when r = 2, and 2.62 when r = 3. For the
EM and heuristic EM algorithms the storage space requirements are 3.21 and 3.17 bits
per key, respectively. Therefore, the RAM algorithm is the best choice for sets that can
be handled in main memory and the EM algorithm is the first one that can be efficiently
applied to sets that do not fit in main memory. We remark that the EM algorithm can also
be applied to key sets that can be handled in internal memory and the RAM algorithm
fails when applied to them, because the RAM algorithm assumes uniform hashing for free
and the EM algorithm does not.

We now compare the algorithms considering evaluation time. Table 4.4 shows the
evaluation time for a random permutation of the n keys. In this experiment the only
resulting MPHF that does not fit entirely in the machine’s .2 cache is the one generated
by the EM algorithm. This is because the size of the lookup tables used to compute the
functions. That is why they are the slowest functions. The MPHF's generated by the FCH
algorithm are the fastest ones because they are optimal in terms of memory probes, as the
ones by Pagh [61]. That is, just one memory probe is performed in their computation (see
the form of those MPHFs in Section 1.6.3.) Thus, the more compact an MPHF is; the
more efficient it is if its description fits in the cache. However, functions that carry out
less memory probes are preferred. The main problem with the FCH algorithm is the time

to generate a MPHF, which is exponential on n.

72 CHAPTER 4. THE EXTERNAL CACHE-AWARE PERFECT HASHING ALGORITHM

Algorithms RAM EM | Heuristic | poy
r=2|r=3 EM

Evaluation IPs 1.19 1.16 | 2.72 1.75 0.75

Time (sec) | URLs | 2.12 2.11 | 4.36 2.73 1.61

Table 4.4: Comparison of the algorithms considering evaluation time and using the collec-
tions IPs and URLs with n = 3,541, 615.

Finally, we compare the PHFs and MPHFs generated by the different versions of the
RAM and EM algorithms. Table 4.5 shows that the generation times for PHFs and MPHF's
are almost the same, with the algorithms for » = 3 being the fastest because the probability
of obtaining an acyclic 3-graph for ¢ = 1.23 tends to one, whereas the probability for a
2-graph where ¢ = 2.09 tends to 0.29 (see Sections 2.2.1). For PHFs with m = 1.23n,
the storage requirement drops from 2.62 to 1.95 bits per key when » = 3. The PHFs
with m = 2.09n, and m = 1.23n are the fastest at evaluation time because no ranking or
packing information needs to be computed. The slowest MPHF's are generated by the EM
algorithm. Nevertheless, the difference is not so significant (each key can be evaluated in
few microseconds) and the EM algorithm is the first efficient option for sets that do not

fit in main memory.

RAM m Generation Time (sec) Eval. Time (sec) | Sto. Space

r | Packed IPs URLs IPs URLs Bits/Key
9 no 2.09n | 10.50 £1.24 | 14.79 £ 1.58 | 0.68 1.63 2.09
yes no | 11.39+1.33 | 16.73+1.89 | 1.19 | 2.12 3.60
no 1.23n | 5.51 £0.01 6.76 £0.01 | 0.79 1.68 2.46
3 yes 1.23n | 5.54£0.01 6.78 £0.02 | 0.79 1.71 1.95
no n 5.46 £0.01 6.74£0.01 | 1.16 2.11 2.62
EM 1.23n | 5.82+£0.17 7.34+£0.05 | 2.27 3.97 2.76
n 5.86 £0.17 7.68£0.22 | 2.72 4.36 3.31
Heuristic EM 1.23n | 5.47£0.16 5.97+£0.09 | 1.44 2.43 2.62
n 5.56 £ 0.16 6.27+£0.11 | 1.75 2.73 3.17

Table 4.5: Comparison of the PHFs and MPHF's generated by our algorithms, considering
generation time, evaluation time and storage space metrics using n = 3,541,615 for the

two collections. For packed schemes see Sections 2.2.3 and 2.2.4.

It is important to emphasize that the RAM and FCH algorithms, as well as the other

ones considered in Section 2.3.2 were analyzed under uniform hashing assumption. There-

4.4. CONCLUSIONS 73

fore, the EM algorithm is the first one that has experimentally proven practicality for
large key sets and with both space usage for representing the resulting functions and the
generation time having been carefully proven. Additionally, it constructs the functions ef-
ficiently and the resulting functions are much simpler than the ones generated by previous
theoretically well-founded schemes so that they can be used in practice. Furthermore, it
considerably improves the first step taken by Pagh with his hash and displace method [61]

in the way it joins theory and practice for perfect hashing.

4.4 Conclusions

In this chapter we presented a time efficient, highly scalable and near space-optimal perfect
hashing algorithm. The basic idea to obtain scalability is to partition the input key set
into small buckets. It is an external memory algorithm suitable for key sets larger than
the size of the internal memory available. In this case, it partitions the input key set into
small buckets such that each bucket fits in the CPU cache and then was called cache-aware
external memory algorithm (EM).

We perform an external sorting to partition the input key set into small buckets. Then,
we handle each bucket separately. Splitting the problem into small buckets has both
theoretical and practical implications. From the theoretical point of view we show how to
simulate fully random hash functions on the small buckets, being able to prove that the
EM algorithm will work for every key set with high probability. From the practical point of
view we show how to make buckets that are small enough to fit in the CPU cache, resulting
in a significant speedup in processing time per element compared to other methods known
in the literature.

The dominating phase in the construction of the functions consists of external sorting
n fingerprints of O(logn) bits in O(n) time. The construction algorithm is highly scalable
because it uses a little amount of internal memory to work, basically the space necessary
to accommodate a heap that drives a multiway merge operation, which is O(n¢) computer
words to have linear time complexity, where 0 < ¢ < 1. In our case, as we want to perform
the merge operation in one pass, we need € = 0.5 (see, e.g., [1, Theorem 3.1]).

The space necessary to describe the functions takes a constant number of bits per key.
The space usage depends on the relation between the size m of the hash table and the size
n of the input. For m = n, the space usage is in the range 3.1n to 3.3n bits, depending

on which version of the algorithm is used (i.e., EM or Heuristic EM). For m = 1.23n the

74 CHAPTER 4. THE EXTERNAL CACHE-AWARE PERFECT HASHING ALGORITHM

space usage is in the range 2.5n to 2.7n bits. In all cases, this is within a small constant
factor from the information theoretical minimum of approximately 1.44n bits for MPHF's
and 0.89n bits for PHFs, something that has not been achieved by previous algorithms,
except asymptotically for very large n. The resulting functions are evaluated for a given
element of a key set in constant time.

The algorithm is theoretically well understood and is the first one with theoretical
properties that scale for billions of keys and can be used in practice. We have illustrated
the scalability of our algorithm by constructing an MPHF for a set of 1.024 billion URLs
from the World Wide Web of average length 64 characters in approximately 50 minutes,
using a commodity PC.

Finally, the algorithm is suitable for a distributed and parallel implementation. For
instance, in the next chapter we present one implementation that is able to generate an
MPHF for a set of 14.336 billion 16-byte integer keys in 50 minutes using 14 commodity

PCs, achieving an almost linear speedup.

Chapter 5

A Highly Scalable and Parallel
Perfect Hashing Algorithm

In this chapter we present a parallel version of the External Memory (EM) algorithm
presented in Chapter 4. The EM algorithm allows the generation of PHFs or MPHF's for
sets in the order of billions of keys. For instance, if we consider an MPHF that requires 3.3
bits per key to be stored, for 1 billion URLs it would take approximately 400 megabytes.
Considering now the time to generate an MPHF, taking the same set of 1.024 billion URLSs
as input, the algorithm outputs an MPHF in approximately 50 minutes using a commodity
PC. It is well known that big search engines are nowadays indexing more than 20 billion
URLs. Then, we are talking about approximately 8 gigabytes to store a single MPHF and
approximately 1,000 minutes to construct an MPHF. Thus, two problems arise when the
input key set size increases: (i) the amount of time to generate an MPHF becomes large
for a single machine, and (ii) the storage space to describe an MPHF might be unsuitable
for a single machine.

This motivated us to design parallel implementation of the EM algorithm, referred to
as Parallel External Memory (PEM) algorithm from now on. The algorithm was designed
for the PRAM model [67]. This model consists of a control unit, global memory, and an
unbounded set of processors, each with its own private memory and executing identical
instructions. In our implementation the network was considered the global memory and
the processors share information by exchanging messages.

The PEM algorithm distributes both the construction and the description of the result-
ing functions. For instance, by using a 14-computer cluster the PEM algorithm generates

a PHF or an MPHF for 1.024 billion URLs in approximately 4 minutes, achieving an al-

75

76 CHAPTER 5. A HIGHLY SCALABLE AND PARALLEL PERFECT HASHING ALGORITHM

most linear speedup. Also, for 14.336 billion 16-byte random integers evenly distributed
among the 14 participating machines the PEM algorithm outputs a PHF or an MPHF in
approximately 50 minutes, resulting in a performance degradation of 20%. To the best
of our knowledge there is no previous result in the perfect hashing literature that can be
implemented in a parallel way to obtain better scalability and performance than the results
presented hereinafter. A previous version of the PEM algorithm was presented in [11].

This chapter is organized as follows. In Section 5.1 we present the metrics used for
evaluating the PEM algorithm. In Section 5.2 we describe the PEM algorithm in detail.
In Section 5.3 we evaluate the PEM algorithm experimentally. Finally, we conclude in
Section 5.4.

5.1 Metrics Used to Evaluate The PEM Algorithm

To evaluate the performance of the PEM algorithm we use two metrics: speedup and scale-
up. By fixing the problem size, the speedup refers to how much a parallel algorithm is

faster than a corresponding sequential algorithm, and is defined as:

Definition 22 The speedup S, of a parallel algorithm using p processors is:

T
SPZTT,

p

(5.1)

where 77 is the execution time of the sequential algorithm and 7}, is the execution time of

the parallel algorithm with p processors.

Definition 23 The efficiency &, of a parallel algorithm using p processors is:

& = 5. (5.2)
where
b
B — 5.3
I+ fx(p—1) (5:3)

is the maximum speedup a parallel algorithm can achieve and 0 < f < 1 corresponds to
the sequential portion of the parallel algorithm (i.e., the fraction that cannot be improved

using parallelism). This comes from the Amdahl’s law [67].

By increasing the problem size proportionally to the number of processors p, the scale-

up refers to the ability of solving a problem p times larger in the same amount of time the

5.2. PARALLEL ALGORITHM 7

corresponding sequential algorithm would solve a problem 1/p times lower and is defined

as:

Definition 24 The scale-up U, of a parallel algorithm using p processors is:

Ly (5.4)

Uy =7

where T is the execution time of the sequential algorithm to solve a problem of size X
and T}, is the execution time of the parallel algorithm with p processors to solve a problem

of size pX.

5.2 Parallel Algorithm

In this section we describe the Parallel External Memory (PEM) algorithm. As mentioned
before, the main motivation for implementing a parallel version of the EM algorithm is
scalability in terms of the size of the key set that has to be processed. In this case, we
must assume that the keys to be processed will be distributed among several machines.
Further, both the buckets and the construction of the hash functions for each bucket are
also distributed among the participating machines. In this scenario, the partitioning and
the searching steps present different requirements when compared to the sequential version,
as we discuss next.

In Section 5.2.1 we discuss how to speedup the construction of a PHF or an MPHF
by distributing the buckets (during the partitioning phase) and the construction of the
functions f; (remember that f; is either a PHF or an MPHF) for each bucket (during the
searching phase) among the participating machines. In Section 5.2.2 we present a version
of the PEM algorithm where both the description and the evaluation of the resulting
function is centralized in one machine, from now on referred to as PEM-CE. In Section 5.2.3
we present another version of the PEM algorithm where both the description and the
evaluation of the resulting function are distributed among the participating machines, from
now on referred to as PEM-DE.

5.2.1 Parallel Construction

In this section we present the steps that are common to both PEM-CE and PEM-DE
algorithms. We employed two types of processes: manager and worker. This scheme is

shown in Figure 5.1.

78 CHAPTER 5. A HIGHLY SCALABLE AND PARALLEL PERFECT HASHING ALGORITHM

Figure 5.1: The manager/worker scheme.

The manager acts like the control unit of the PRAM model [67] and is responsible
for assigning tasks to the workers, determining global values during the execution, and
dumping the resulting PHFs or MPHF's received from the workers to disk. This last task
is different for the PEM-CE and PEM-DE algorithms, as we will show later on.

The worker stores a partition of the key set, its buckets and the related PHF or MPHF of
each bucket. Each worker sends and receives data from other workers whenever necessary.
The workers are implemented as thread-based processes, where each thread is responsible
for a task, allowing larger overlap between computation and communication (disk and

network) in both steps of the algorithm.

Our major challenge in producing such a parallel version is that we do not know in
advance which keys will be clustered together in the same bucket. Our strategy in this
case is to migrate data whenever necessary. On the other hand, once we have the buckets,

we are able to generate the functions.

The manager starts the processing by sending the overall assignment of buckets to
workers before each worker starts processing its portion of the keys, so that each worker
becomes aware of the worker to which keys (actually, fingerprints) must be sent. For that
verification, the manager sends the following information: (i) the function A’ € H used to
compute the fingerprints; (ii) the worker identifier i, where 0 < ¢ < p and p is the number
of workers; and (iii) the number of buckets per worker, which is given by B, = [N,/p]
(recall that NV, is the number of buckets). Therefore, each worker i is responsible for the
buckets in the range [i By, (i + 1) By, — 1.

Each worker then starts reading a key k € S, applies the received hash function A’/
and verifies whether it belongs to another worker. For that each worker ¢ computes w =
ho(k)/ By, and checks if w # i (recall that ho(k) corresponds to the b most significant bits
of W'(k).) If it is the case, it sends the corresponding fingerprint to the worker w, otherwise,

it stores the fingerprint locally for further processing.

5.2. PARALLEL ALGORITHM 79

Disk
'

Block
Sorter

D
Q

Disk

53

Queue 5

O
i

Figure 5.2: The partitioning step in the worker.

Figure 5.2 illustrates the partitioning step in each worker. The partitioning step of the
sequential algorithm presented in Figure 4.2 is divided into four major tasks: data reading
(line 3), hashing (line 4), block sorting (line 5), and block dumping (line 6).

As depicted in Figure 5.2, the worker is divided into the following six threads:

1. Disk Reader: it reads the keys from the worker’s portion of the set S and puts them
in Queue 1. When there are no more keys to be read, then an end of file marker is

put in Queue 1.

2. Hashing: it gets the keys from Queue 1 and generates the fingerprints for the keys, as
mentioned in Section 4.1.1. This thread then checks whether the key being currently
analyzed is assigned to another worker. If it is, its fingerprint is passed to the Sender
thread through Queue 5, otherwise its fingerprint is placed in Queue 2. When there
are no more keys to be processed in Queue 1, then an end of file marker is put in
both Queue 2 and 5.

3. Sender: it sends a fingerprint taken from Queue 5 to the worker that is responsible
for it. When there are no more fingerprints in Queue 5, then an end of file marker is

sent to all other workers.

4. Receiver: it receives fingerprints sent from other workers through the net, and puts
them in Queue 3. It finishes its work when an end of file marker is received from all

other workers.

5. Block Sorter: it takes fingerprints from Queues 2 and 3 until a buffer of size /2

bytes is completely full (recall that p is the amount of internal memory available),

80 CHAPTER 5. A HIGHLY SCALABLE AND PARALLEL PERFECT HASHING ALGORITHM

Figure 5.3: The searching step in the worker.

organizes them into buckets, and puts them in Queue 4. The process is repeated
until an end of file marker is obtained from both Queues 2 and 3. In this case, it also

places an end of file marker in Queue 4.

6. Block Dumper: it takes the buckets from Queue 4 and writes them to disk, for further
processing by the searching step. It finishes when an end of file marker is taken from
Queue 4.

After each worker finishes the partitioning step, it sends the size of each bucket to the
manager, which then calculates the offset array. This does not depend on the searching
step, so the manager may compute the offset array whereas the workers are performing the
searching step.

Figure 5.3 illustrates the searching step in each worker. It consists of generating the
functions f; for each bucket i (remember that f; is either a PHF or an MPHF'.) The searching
step of the sequential algorithm of Figure 4.4 is divided into three tasks: bucket reading
(line 5), PHF or MPHF construction (lines 6 and 7), and PHF or MPHF dumping (line
8). Notice that, in this step, there is no need for communication between workers, since
the generation of function f; for each bucket does not depend on keys that are in other
buckets.

Again, the worker is divided into threads of execution, each thread being responsible

for a task. Following Figure 5.3, the worker is divided into the following two threads:

1. Bucket Reader: it reads the buckets from disk, and puts them in Queue 1. When

there are no more buckets to be read, then an end of file marker is put in Queue 1.

5.2. PARALLEL ALGORITHM 81

2. MPHF Gen: it gets buckets from Queue 1 and generates the functions for them until
no more bucket remains. It can be instantiated ¢ times, where ¢t can be thought of

as the number of processors of the machine.

5.2.2 Centralized Evaluation of the Resulting Functions

In this section we present the PEM-CE algorithm, where both the description and the
evaluation of the resulting PHF or MPHF is centralized in a single machine (the one
running the manager process).

After each worker finishes the partitioning step, it sends the size of each bucket to the
manager, which then calculates the offset array. This does not depend on the searching
step, so the manager may compute the offset array whereas the workers are performing the
searching step. After each worker finishes the construction of the PHFs or MPHFs of their
buckets, it sends them to the manager, that will then write sequentially the final PHF or
MPHF to disk, and the algorithm resumes.

The task of writing the final PHF or MPHF to disk corresponds to the sequential part
of the algorithm and represents approximately 0.5% of the execution time. Thus, there is
a fraction of 99.5% of the execution time from which we can exploit parallelism. That is
why the PEM-CE algorithm can be considered an embarrassingly parallel algorithm.

The evaluation of the resulting functions is done in the same way as it is done in the

sequential algorithm presented in Section 4.1 (see Definition 21).

5.2.3 Parallel Evaluation of the Resulting Functions

In this section we present the PEM-DE algorithm, where both the description and the
evaluation of the resulting function are distributed and stored locally in each worker. The
PEM-DE algorithm calculates a localoffset array in each worker, in the same way as it is
done in the searching step of the sequential algorithm shown in Figure 4.4 (see line 7). At
the end of the partitioning step, each worker sends the number of keys assigned to it to the
manager, which calculates a globaloffset, whereas the workers are performing the searching
step.

To evaluate a key k using the resulting PHF or MPHF function f, the manager first
discovers the worker w that generated the PHF or MPHF for the bucket in which k is
(recall that this is done by calculating w = ho(k)/By,). Then, the key k (actually, its

82 CHAPTER 5. A HIGHLY SCALABLE AND PARALLEL PERFECT HASHING ALGORITHM

fingerprint) is sent to the worker w, which calculates locally a partial result

Jpartiar(k) = fi(k) + localoffset]i],

where i = ho(k) mod By, is the local bucket address where k& belongs and localoffset][i]
gives the total number of keys before bucket 7. Once this partial result is calculated, it is

sent back to the manager, which calculates the final result

(k) = frartia(k) + globaloffset]w],

where globaloffset[w] has p entries and gives the total number of keys handled by the
workers before worker w.

The downside of this is that the evaluation of a single key is harmed, due to the
communication overhead between the manager and the workers. However, if the system
is being fed by a key stream, the average performance will improve because p keys can be
evaluated in parallel by p workers. This will indeed happen because the keys are uniformly
placed in the buckets by using a hash function, which will balance the key stream among
the p workers. The experimental results in Section 5.3 confirm this fact.

Other advantage of the PEM-DE algorithm is that the workers do not need to send the
PHF's or MPHFs generated locally for the buckets they are responsible for to the manager.
Instead, they are written in parallel by the workers. Therefore, in this case, the fraction of
parallelism we can potentially exploit corresponds to 100% of the execution time.

Therefore, as shown in Section 5.3, the PEM-DE algorithm provides a slightly better
construction time than the PEM-CE algorithm. But the main advantage of the PEM-
DE algorithm is that it distributes the resulting PHF or MPHF among several machines.
When the number n of keys in the key set S grows, the size of the resulting PHF or
MPHF also grows linearly with n. For very large n, it may not be possible to represent
the resulting function in just one machine, whereas the PEM-DE algorithm addresses this

by distributing uniformly the resulting function.

5.2.4 Implementation Decisions

In this section we present and discuss some implementation decisions that aim to reduce
the overhead of the parallel algorithms we just described.
A very first decision is to exploit multiprogramming in the worker, motivated not only

by the characteristics of the execution platform, but also by the complementary profiles of

5.2. PARALLEL ALGORITHM 83

the steps, which are either CPU or I/O-intensive. As a result, we are able to maximize the
overlap between computation and communication, represented by disk and network traffic.

Further, in order to reduce the overhead due to context changes we grouped steps
(described in Section 5.2.1) into fewer threads, as detailed next. This strategy speeds up

the execution time, even on a single core machine, which is our case.

— '
Disk

Figure 5.4: The actual partitioning step used in the experiments.

In the partitioning step, the Hashing and Block Sorter threads were grouped together
into a single thread, as shown in Figure 5.4. Notice that these two steps are the most CPU-
intensive and the merge would prevent them to contend for the CPU. As a result, one thread
is almost always keeping the CPU busy, while the remaining threads are usually waiting for
system calls to resume (Disk Reader reading data from disk, Net Reader receiving messages
from the net, and Block Dumper writing buckets back to disk whenever necessary).

In the searching step, the structure replicates the step-based division presented, but

instantiating just one MPHF Gen thread (i.e., t = 1), as shown in Figure 5.5.

Figure 5.5: The actual searching step used in the experiments.

We also coalesced messages for both reducing the number of system calls associated
with exchange messages and better exploiting the available bandwidth. That is, we group
the fingerprints that were going to be sent from one to another worker in buffers of a fixed

size.

84 CHAPTER 5. A HIGHLY SCALABLE AND PARALLEL PERFECT HASHING ALGORITHM

5.3 Experimental Results

The purpose of this section is to evaluate the performance of both the PEM-CE and PEM-
DE algorithms in terms of speedup and scale-up (see Definitions 22 and 24), considering
the impact of the key size in both metrics. We also verify whether the load is balanced
among the workers. To compute the metrics we use the time to construct a PHF or an
MPHF in the parallel algorithms. We remark that we simplified a lot our experimental
evaluation. For instance, we did not analyze the influence of some factors (e.g., message
coalescing) in the speedup and scale-up. Our aim in this section is to illustrate that
the two versions of the PEM algorithm are embarrassingly parallel but a more thorough
experimental evaluation is left to be done as a future work.

The experiments were run in a cluster with 14 equal single core machines, each one
with 2.13 gigahertz, 64-bit architecture, running the Linux operating system version 2.6,
and 2 gigabytes of main memory.

For the experiments we used three collections: (i) a set of URLs collected from the web,
(ii) a set of randomly generated 16-byte integers, and (iii) a set of randomly generated 8-
byte integers. The collections are presented in Table 5.1. The main reason to choose these

three different collections is to evaluate the impact of the key size on the results.

Collection | Average key size | n (billions)
URLs 64 1.024
Random 16 1.024
Integers 8 1.024

Table 5.1: Collections used for the experiments.

In Section 5.3.1 we discuss the impact of key size on speedup and scale-up. In Sec-
tion 5.3.2 we study the communication overhead. In Section 5.3.3 we discuss the load
balance among workers. In Section 5.3.4 we discuss the parallel evaluation of an MPHF
when the function is being fed by a key stream. The same results were obtained for a PHF

and therefore were not presented.

5.3.1 Key Size Impact

In this section we evaluate the impact of the key size and how it changes as we increase
the number of processors. We use both speedup and scale-up as metrics for performing

such evaluation.

5.3. EXPERIMENTAL RESULTS 85

In order to compute the speedup we need the execution time of the sequential EM
algorithm. Table 5.2 shows how much time the EM algorithm requires to build an MPHF
for 1.024 billion keys taken from each collection shown in Table 5.1.

n (billion) Collection time (min.)
64-byte URLs 50.02
1.024 16-byte integers 39.35
8-byte integers 34.58

Table 5.2: Time in minutes of the sequential algorithm (EM) to construct an MPHF for
1.024 billion keys.

We start by evaluating the speedup of the parallel algorithm and perform three sets of
experiments, using the three collections presented in Table 5.1 and varying the number of
machines from 1 to 14.

Table 5.3 presents the maximum speedup (Synqz), the speedup S, and the efficiency &,
for both the PEM-CE and PEM-DE algorithms for each collection. In almost all cases, the
speedup was very good, achieving an efficiency of up to 93% using 14 machines, confirming
the expectations of that not only there is a parallelism opportunity to be exploited, but also
it is significative enough that allows good efficiencies even for relatively large configurations.
The comparison between PEM-CE and PEM-DE also shows that the strategy employed
in PEM-DE was effective.

It is remarkable that the key size impacts the observed speedups, since the efficiency
for the 64-byte URLs is greater than 90% for all configurations evaluated, but for 16-byte
and 8-byte random integers it is greater than or equal to 90% only for p > 12 and p > 6,
respectively. This happens because when we decrease the key size, the amount of compu-
tation decreases proportionally in the partitioning step, but the amount of communication
remains constant since the y-bit fingerprints will continue with the same size v = 96 bits
(or 12 bytes.) The size v of a fingerprint depends on the number of keys n, but does not
depend on the key size [15]. Therefore, the smaller is the key size, the smaller is the value of
p to fully exploit the available parallelism, resulting in eventual performance degradation.
A graphical view of the speedups can also be seen in Figure 5.6.

We performed similar sets of experiments for evaluating the scale-up and the results
are presented in Table 5.5 and Figure 5.7, where we may confirm the good scalability
of the algorithm, which allows just 17% of degradation when using 14 machines to solve

a problem 14 times larger. These results show that not only the algorithm proposed is

86 CHAPTER 5. A HIGHLY SCALABLE AND PARALLEL PERFECT HASHING ALGORITHM
Srman 64-byte URLs 16-byte random integers 8-byte random integers
p PEM-CE PEM-DE PEM-CE PEM-DE PEM-CE PEM-DE
PEM-CE | PEM-DE Sp Ep Sp Ep Sp Ep Sp Ep Sp Ep Sp Ep
1 1.00 1.00 1.00 | 1.00 | 1.00 1.00 | 1.00 | 1.00 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
2 1.99 2.00 1.96 | 0.98 | 1.99 1.00 | 1.89 | 0.95 190 | 0.95 | 1.91 | 0.96 | 1.91 | 0.96
4 3.94 4.00 3.85 | 098 | 390 | 098 | 3.76 | 0.95 | 3.81 | 0.95 | 3.54 | 0.90 | 3.63 | 0.91
6 5.85 6.00 562 | 096 | 578 | 0.96 | 568 | 0.97 | 570 | 0.95 | 527 | 0.90 | 5.42 | 0.90
8 7.73 8.00 7.73 1.00 8.00 1.00 7.41 0.96 7.78 0.97 | 6.74 | 0.87 6.98 0.87
10 9.57 10.00 9.21 0.96 9.61 0.96 9.01 0.94 9.57 0.96 | 8.03 | 0.84 8.33 0.83
12 11.37 12.00 10.85 | 0.95 | 11.37 | 0.95 | 10.61 | 0.93 | 11.05 | 0.92 | 9.07 | 0.80 | 9.30 | 0.78
14 13.15 14.00 12.18 | 0.93 | 13.06 | 0.93 | 11.59 | 0.88 | 12.44 | 0.89 | 9.97 | 0.76 | 10.48 | 0.75

Table 5.3: Speedup obtained with a confidence level of 95% for both the PEM-CE and
PEM-DE algorithms considering 1.024 billion keys (73,142,857 keys in each machine).

Speedup
Speedup
Speedup

‘Linear - Linear - ‘Linear -
14| PECA-CE -+ 14| PECA-CE -+ ul PECA-CE -+
PECA-DE - g PECA-DE - PECA-DE -

2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12
Number of machines Number of machines Number of machines

(a) 64-byte URLs (c) 8-byte random integers
Figure 5.6: Speedup obtained with a confidence level of 95% for both the PEM-CE and

PEM-DE algorithms considering 1.024 billion keys (73,142,857 keys in each machine).

(b) 16-byte random integers

efficient, but also is very effective dealing with larger datasets. For instance, in Table 5.4
it is shown that the performance degradation is up to 20% even for 14.336 billion keys
evenly distributed among 14 machines. Again, the key size has a definite impact on the

performance.

5.3.2 Communication Overhead

We now analyze the communication overhead. There is a significant overhead associated
with message traffic among workers in the net. Since the hash function hq is a linear hash
function [15] that behaves closely to a fully random hash function, the chance of a given
key in the key set S belonging to a given bucket is close to N%, Since each worker has %

buckets, the chance that a key it reads belongs to another worker is close to 1%. Since

14

5.3. EXPERIMENTAL RESULTS 87

n Random integer | Construction time (min)
(billions) collections EM | PEM-DE | U,
16-byt 41.17 49.5 1.20

14.336 e
8-byte 34.58 58.00 1.68

Table 5.4: Scale-up obtained with a confidence level of 95% for the PEM-DE algorithm
considering 14.336 billion keys (1.024 billion keys in each machine).

64-byte URLs 16-byte random integers 8-byte random integers

p PEM-CE PEM-DE PEM-CE PEM-DE PEM-CE PEM-DE

t(min) | Up |t (min) | Up |t (min) | U, |t (min) | U, | t (min) | Uy, | t (min) | U,

1 3.71 1.00 3.68 1.00 2.68 1.00 2.70 1.00 2.00 1.00 2.00 1.00
2 3.76 1.01 3.71 1.01 2.7 1.02 2.69 1.00 2.16 1.08 2.11 1.06
4 3.84 1.03 3.77 1.03 2.77 1.03 2.7 1.00 2.44 1.22 2.35 1.17
6 3.91 1.05 3.81 1.04 2.82 1.05 2.73 1.01 2.68 1.34 2.58 1.29
8 3.96 1.07 3.82 1.04 2.94 1.10 2.76 1.02 3.04 1.52 2.82 1.41
10 4.02 1.08 3.83 1.04 3.10 1.15 2.86 1.06 3.25 1.62 3.10 1.55
12 4.02 1.08 3.84 1.05 3.23 1.20 3.02 1.12 3.48 1.74 3.29 1.64
14 4.11 1.11 3.85 1.05 3.40 1.27 3.16 1.17 3.47 1.73 3.30 1.65

Table 5.5: Scale-up obtained with a confidence level of 95% for both the PEM-CE and
PEM-DE algorithms considering 1.024 billion keys (73,142,857 keys in each machine).

each worker has to read % keys from disk, it will send through the net approximately

n(p—1)
p2

Thus, the total traffic 7 of fingerprints through the net is approximately

T R nlp=1), (5.5)
p
Table 5.6 shows the minimum and maximum amount of keys sent to the net by a
worker. It also shows the expected amount computed by using Eq. (5.5). As it shows, the
empirical measurements are really close to the expected value.
That results in a relevant overhead due to communication among the workers, and as
the number of workers increases, the speedup can be penalized if the network bandwidth

is not enough for the traffic. In our 1 gigabit ethernet network this was not a problem for

at most 14 workers.

88 CHAPTER 5. A HIGHLY SCALABLE AND PARALLEL PERFECT HASHING ALGORITHM
2 T T T 2 T T T 25 T T T
Ideal scale-u Ideal scale-u Ideal scale-up——
PECA-CE -+ PECA-CE -+ CA-CE -
PECA-DE - PECA-DE - 2| PECA-DE
15 e
g e g 15|
e PO SO— :
05 05
05
0l— : : : . : 0l— : : : . : 0oLl— : : : : :
2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14

Number of machines

(a) 64-byte URLs

Number of machines

(b) 16-byte random integers

Number of machines

(c) 8-byte random integers

Figure 5.7: Scale-up obtained with a confidence level of 95% for both the PEM-CE and

PEM-DE algorithms considering 1.024 billion keys (73,142,857 keys in each machine).

P Keys sent by a worker to the net
Max (%) | Min (%) 7 (%)
2 50.005 49.996 50.000
4 75.008 74.994 75.000
6 83.339 83.327 83.333
8 87.506 87.492 87.500
10 | 90.009 89.991 90.000
12 | 91.673 91.657 91.667
14 | 92.864 92.849 92.857

Table 5.6: Worst, best and expected percentage of keys sent by a worker to the net.

5.3.3 Load Balancing

In this section we quantify the load imbalance and correlate it with the results. An im-
portant issue is how much the load is balanced among the workers. The load depends
on the following parameters: (i) the number of keys each worker reads from disk in the
partitioning step; (ii) the number of buckets each worker is responsible for; (iii) the number

of keys in each bucket.

The first two parameters are fixed by construction and are evenly distributed among
the workers. The only parameter that could present some variation in each execution is
the last one. However, as we use the hash function hg to split the key set into buckets, it
was shown in [15] that each key goes to a given bucket with probability close to 1/N, and
therefore the distribution of the bucket sizes follows a binomial distribution with average
ny/Bpw, where n, = S Pt

buckets it is responsible for and B,,, is the number of buckets per worker.

|B;| is the number of keys each worker has stored in the

5.3. EXPERIMENTAL RESULTS 89

It is also shown in [15] that the largest bucket is within a factor O(loglogn,) of the
average bucket size. Therefore, n, has a very small variation from worker to worker, which
makes the load balanced among the p machines. Table 5.7 presents experimental results
confirming this, as the difference between the execution time of the fastest worker (¢y,)

and the slowest worker (ty,) was less than or equal to 0.1 minutes.

PEM-CE PEM-DE

L fw lsw | tsw—tfw | lrw tow | tsw—twb
2 | 25.27 | 25.37 0.10 25.01 | 25.06 0.05
4 11294 | 13.04 0.10 12.78 | 12.86 0.09
6
8

8.58 | 8.69 0.11 8.53 | 8.65 0.11
6.19 | 6.26 0.07 6.18 | 6.25 0.07
10 | 5.14 | 5.22 0.08 5.11 | 5.20 0.09
12 | 431 | 4.39 0.08 4.32 | 4.40 0.07
14 | 3.81 | 3.88 0.07 3.76 | 3.84 0.08

Table 5.7: Fastest worker time (tf,), slowest worker time (¢,,), and difference between
tsw and ty, to show the load balancing among the workers for 1.024 billion 64-byte URLSs

distributed in p machines. The times are in minutes.

5.3.4 Parallel Evaluation

In this section we show that the parallel evaluation of an MPHF is worth when compared to
the ones generated by both the sequential and PEM-CE algorithms. These results assume
that the parallel function is being fed by a key stream, instead of one key at a time.
Table 5.8 shows the times that both the EM algorithm and PEM-DE algorithm needs to
evaluate one billion keys taken at random. As expected, the parallel evaluation was faster
because p keys of the key stream can be evaluated in parallel by p participating machines.
Here we also used the message coalescing technique. We remark that a more thorough
evaluation must be done to identify the impact of the message coalescing technique in the

parallel evaluation time.

90 CHAPTER 5. A HIGHLY SCALABLE AND PARALLEL PERFECT HASHING ALGORITHM

Collection Evaluation time (min)
EM PEM-DE
64-byte URLs 33.11 21.68
16-byte random integers | 24.54 11.47
8-byte random integers 18.2 10.1

Table 5.8: Evaluation time in minutes for both the sequential algorithm EM and the
parallel algorithm PEM-DE algorithm, considering 1 billion keys.

5.4 Conclusions

In this chapter we have presented a parallel implementation of the External Memory (EM)
perfect hashing algorithm presented in Chapter 4. We have designed two versions. The
PEM-CE algorithm distributes the construction of the resulting PHFs or MPHFs among
p machines and centralize the evaluation and description of the resulting functions in a
single machine, as in the sequential case. Then the goal in this version is to speedup the
construction of the PHFs or MPHF's by exploiting the high degree of parallelism of the EM
algorithm. The PEM-DE algorithm distributes both the construction and the evaluation of
the resulting functions. In this version the goal is to allow the descriptions of the resulting
functions be uniformly distributed among the participating machines.

We have evaluated both the PEM-CE and PEM-DE algorithms using speedup and scale-
up as metrics. Both versions presented an almost linear speedup, achieving an efficiency
larger than 90% by using 14-computer cluster and keys of average size larger than or
equal to 16 bytes. For smaller keys, e.g. 8-byte integers, we have shown that the existent
parallelism between computation and communication is captured with 90% of efficiency by
using a smaller number of machines (e.g, p = 6). This was as expected, because the smaller
is the key the smaller is the amount of computation, but the amount of communication
remains constant for a given number n of keys, penalizing the speedup.

We have also shown that both the PEM-CE and PEM-DE algorithms scale really well
for larger keys. Smaller keys also impose restrictions on the scalability due to the smaller
degree of overlap between computation and communication aforementioned. To illustrate
the scalability, the time to generate an MPHF for 14.336 billion 16-byte random integers
using a 14-computer cluster with 1.024 billion 16-byte random integers in each machine is
just a factor of 1.2 more than the time spent by the sequential algorithm when applied to
1.024 billion keys.

Chapter 6

MPHFs and Random Graphs With
Cycles

In this chapter we describe two algorithms for constructing minimal perfect hash functions
based on random graphs with cycles. A previous version of the first algorithm was presented
by Botelho, Kohayakawa and Ziviani in [12]. For this reason it will be referred to as BKZ
algorithm, which is an acronym for its author names. The second algorithm uses the same
techniques used in the BKZ algorithm to speedup the execution time of the RAM algorithm

that works on random acyclic bipartite graphs, which is presented in Chapter 2.

The reason to use random graphs with cycles comes from the fact that the functions are
generated faster and are more compact than the ones generated based on acyclic random
graphs. This is because both the generation time and the space usage of the resulting
functions depend on the number of vertices in the random graphs and the acyclic ones are
more sparse. That is, the ratio between the number of vertices and number of edges must

be larger than two.

This chapter is organized as follows. In Section 6.1 we present the BKZ algorithm and
compare the BKZ algorithm with an algorithm that was used as departure point in its
design. In Section 6.2 we show how to speedup the RAM algorithm with the techniques
used in the design of the BKZ algorithm and compare the optimized version of the RAM
algorithm with the version of the RAM algorithm presented in Chapter 2. Finally, in

Section 6.3 we conclude this chapter.

91

92 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

6.1 The BKZ Algorithm

The BKZ algorithm shares several features with the one due to Czech, Havas and Majew-
ski [25], from now on referred to as CHM algorithm. In particular, the BKZ algorithm is
also based on the generation of random graphs G = (V, E), where E' is in one-to-one cor-
respondence with the key set S for which we want to generate the hash function. The two
main differences between the BKZ algorithm and the CHM algorithm are as follows: (7) the
BKZ algorithm generates random graphs G = (V, E) with |V| = ¢en and |E| = |S| = n,
where ¢ = 1.15 (|[V| = 1.15n), and hence G contains cycles with high probability, whereas
the CHM algorithm generates acyclic random graphs G = (V| E) with |V]| = ¢n and
|E| = |S| = n, with a greater number of vertices: ¢ = 2.09 (|V| = 2.09n); (#7) The CHM
algorithm generates order preserving minimal perfect hash functions whereas the BKZ al-
gorithm does not preserve order. Thus, the BKZ algorithm improves the space requirement
at the expense of generating functions that are not order preserving.

As the CHM algorithm, the BKZ algorithm produces an MPHF in O(n) expected time
for a set of n keys. The MPHF description requires 1.15n computer words, and evaluat-
ing it requires two accesses to an array of 1.15n integers. We further derive a heuristic
that improves the space requirement from 1.15n words down to 0.93n words. The BKZ
algorithm is very practical. To generate a minimal perfect hash function for a collection
of 100 million universe resource locations (URLs), each 63 bytes long on average, the BKZ
algorithm running on a commodity PC takes 811 seconds on average. In Section 6.1.1 we
present the CHM algorithm. In Section 6.1.2 we present the design of the BKZ algorithm.
In Section 6.1.3 we compare the BKZ algorithm with the CHM algorithm experimentally.

6.1.1 The CHM algorithm

In this section we briefly present the CHM algorithm. Consider a problem known as the
perfect assignment problem: For a given undirected graph G = (V, E), where |V| = ¢n and
|E| = n, find a function ¢:V — {0,1,...,|V]| — 1} such that the function mphf : E —
{0,1,...,n — 1}, defined as

mphf (e) = (g(a) + g(b)) mod n (6.1)

is a bijection, where e = {a, b}. This means that we are looking for an assignment of values
to vertices so that for each edge the sum of values associated with endpoints taken modulo

the number of edges is a unique integer in the range [0,n — 1].

6.1. THE BKZ ALGORITHM 93

Many methods for generating MPHFs use a mapping, ordering and searching (MOS)
approach, a description coined by Fox, Chen and Heath [38]. In the MOS approach, the
construction of a minimal perfect hash function is accomplished in three steps. First, the
mapping step transforms the key set from the original universe to a new universe. Second,
the ordering step places the keys in a sequential order that determines the order in which
hash values are assigned to keys. Third, the searching step attempts to assign hash values
to the keys. The CHM algorithm uses the MOS approach as well as our algorithm presented
in Section 6.1.

The ordering and searching steps of the MOS approach are a very simple way of solving
the perfect assignment problem. Czech, Havas and Majewski [25] showed that the perfect
assignment problem can be solved in optimal time if G is acyclic. To generate an acyclic
random graph, the method assumes that two uniform hash functions h; and hy are available
for free. The functions h; and ho are constructed as follows. We impose some upper
bound L on the lengths of the keys in S. To define h; (j = 1,2), we generate an L X ||
table of random integers table;. For a key x € S of length |z| < L and j € {1, 2}, we let

h;(z) = (Zlﬂgl table; [z,x[z]]) mod m. (6.2)

Thus, set S has a corresponding graph G = G(hy, hy), with V = {0,1,...,m — 1}, where
V| =m, and E = {{h1(x), ha(x)} : € S}. In order to guarantee acyclicity the algorithm
repeatedly selects h; and ho until the corresponding graph is acyclic. For the solution to
be useful we must have |S| = n and m = ¢n, for some constant ¢, such that acyclic graphs
dominate the space of all random graphs. Havas et al. [44] proved that if m = ¢n holds

with ¢ > 2 the probability that G is acyclic is

1e c—2.

Pr,=ce (6.3)

c
For ¢ = 2.09 the probability of a random graph being acyclic is Pr, > % Consequently,
for such ¢, the expected number of iterations to obtain an acyclic graph is lower than 3
and the g function needs 2.09n integer numbers to be stored, since its domain is the set V'
of size m = cn.

Given an acyclic graph G, for the ordering step we associate with each edge an unique
number mphf(e) € [0,n — 1] in the order of the keys of S to obtain an order preserving
function. Figure 6.1 illustrates the perfect assignment problem for an acyclic graph with

six vertices and with the five function values assigned to the edges.

94 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

The searching step starts from the weighted graph G obtained in the ordering step. For
each connected component of G choose a vertex v and set g(v) to 0. For example, suppose
that vertex 0 in Figure 6.1 is chosen and the assignment g(0) = 0 is made. Traverse the
graph using a depth-first or a breadth-first search algorithm, beginning with vertex v. If
vertex b is reached from vertex a and the value associated with the edge e = {a,b} is
mphf(e), set g(b) to (mphf(e) — g(a)) mod n. In Figure 6.1, following the adjacent list of
vertex 0, g(2) is set to 3. Next, following the adjacent list of vertex 2, g(1) is set to 2 and

g(3) is set to 1, and so on.

K=

—
<

=

©
&\ @
2 3 0
@\ 3
(3

4

T = W N+ O|c
—_ O = W NN O

Figure 6.1: Perfect assignment problem for a graph with six vertices and five edges.

Now we show why G must be acyclic. If the graph G was not acyclic, the assignment
process might trace around a cycle and insist on reassigning some already-processed vertex
with a different g value than the one that has already been assigned to it. For example,
let us suppose that in Figure 6.1 the edge {3,4} has been replaced by the edge {0,1}. In
this case, two different values are set to ¢g(0). Following the adjacent list of vertex 1, g(0)
is set to 4. But ¢(0) was set to 0 before.

6.1.2 Design of The BKZ Algorithm

We now present how our MPHF, which has the same form of the one generated by the
CHM algorithm, will be constructed. We make use of two uniform hash functions hy
and he : U — V', where V = [0, m — 1] for some suitably chosen integer m = cn, where
n = |S| (see Eq. (6.2)). We build a random graph G = G(hy, he) on S, whose edge set
is {{h1(x), hao(x)} : & € S}. There is an edge in G for each key in the key set S. Note that
in our case the random graph GG may have cycles.

In what follows, we shall be interested in the 2-core of the random graph G, that is,
the maximal subgraph of G’ with minimal degree at least 2 (see, e.g., [8, 49]). Because of

its importance in our context, we call the 2-core the critical subgraph of G and denote it

6.1. THE BKZ ALGORITHM 95

by Geii. The vertices and edges in Gy are said to be critical. We let Ve = V(Gerig)
and Feit = F(Gei). Moreover, we let Vigis = V' — Ve be the set of non-critical vertices
in G. We also let Vit € Vit be the set of all critical vertices that have at least one
non-critical vertex as a neighbor. Let F.i = F(G) — Euiy be the set of non-critical
edges in G. Finally, we let Guait = (Vaerit U Vaerits Enerit) be the non-critical subgraph
of G. The non-critical subgraph G, corresponds to the “acyclic part” of G. We have
G = Geait U Guerit-

We then construct a suitable labelling g : V' — Z of the vertices of G: we choose g(v)
for each v € V(G) in such a way that mphf(x) = g(hy(z)) + g(hs(z)) (x € S) is an MPHF
for S. We will see later on that this labelling g can be found in linear time if the number
of edges in Gy is at most 1| E(G))|.

Figure 6.2 presents a pseudo code for the algorithm. The procedure GenerateMPHF
(S, g) receives as input the key set S and produces the labelling g. The method uses a

mapping, ordering and searching approach. We now describe each step.

procedure GenerateMPHF (S, g)
Mapping (S, G);
Ordering (G, Gerits Ghuerit) ;
Searching (G, Guit, Guait, 9);

Figure 6.2: Main steps of the algorithm for constructing a minimal perfect hash function.

Mapping Step

The procedure Mapping (S, G) receives as input the key set S and generates the random
graph G = G(hq, hy), by generating two auxiliary functions hy, hy : U — [0,m — 1] (see
Eq. (6.2)). This is done by filling each table; for j € {1,2} with random integer numbers.

The random graph G = G(hy, hy) has vertex set V. = [0,m — 1] and edge set
{{hi(z),ha(z)} : = € S}. We need G to be simple, i.e., G should have neither loops
nor multiple edges. A loop occurs when hi(x) = hy(z) for some x € S. We solve this in
an ad hoc manner: we simply let ho(x) = (2h1(x) + 1) mod m in this case. If we still find
a loop after this, we generate another pair (hy, hy). When a multiple edge occurs we abort

and generate a new pair (hy, hs).

96 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

Analysis of the Mapping Step

We start by discussing some facts on random graphs. Let G = (V, E) with |V| = m
and |E| = n be a random graph in the uniform model G(m,n), the model in which all

m

the ((2)) graphs on V with n edges are equiprobable. The study of G(m,n) goes back to
the classical work of Erdds and Rényi [33, 34, 35] (for a modern treatment, see [8, 49]).
Let d = 2n/m be the average degree of G. It is well known that, if d > 1, or, equivalently,
if ¢ < 2 (recall that we have m = cn), then, almost every G contains! a “giant” component
of order (1 + o(1))bm, where b = 1 —T/d, and 0 < T" < 1 is the unique solution to the

T = de~. Moreover, all the other components of G have O(logm) vertices.

equation Te™
Also, the number of vertices in the 2-core of G (the maximal subgraph of G with minimal
degree at least 2) that do not belong to the giant component is o(m) almost surely.
Pittel and Wormald [65] present detailed results for the 2-core of the giant component
of the random graph G. Since table; (j € {1,2}) are random, G = G(hy, hy) is a ran-
dom graph. In what follows, we work under the hypothesis that G = G(hy, hy) is drawn

from G(m,n). Thus, following [65], the number of vertices of G is
V(Geit)| = (1 +0(1)(1 —T)bm (6.4)
almost surely. Moreover, the number of edges in this 2-core is

|E(Gerit)| = (1+ 0(1)) <(1 —T)b+b(d+T - 2)/2>m (6.5)

almost surely. Let duiy = 2|E(Geit)|/|V (Geait)| be the average degree of Gey. We are
interested in the case in which d. is a constant.

As mentioned before, for us to find the labelling g : V' — Z of the vertices of G =
G(hi, hs) in linear time, we require that |E(Geay)| < 3|E(G)| = 5|S| = n/2. The crucial
step now is to determine the value of ¢ (in m = ¢n) to obtain a random graph G =
Gerit U Greriy with | B(Ge)| < 1|E(G)].

Table 6.1 gives some values for |V (Guit)| and |E(Geit)| using Eqs (6.4) and (6.5). The
theoretical value for ¢ is around 1.152, which is remarkably close to the empirical results
presented in Table 6.2. In this table, generated from real data, the probability Pg ...,

that |E(Geit)| < 3|E(G)| tends to 0 when ¢ < 1.15 and it tends to 1 when ¢ > 1.15

and n increases. We found this match between the empirical and the theoretical results

LAs is usual in the theory of random graphs, we use the terms ‘almost every’ and ‘almost surely’ to

mean ‘with probability tending to 1 as m — o0’.

6.1. THE BKZ ALGORITHM 97

most pleasant, and this is why we consider that this a random graph, conditioned on being

simple, strongly resembles the random graph from the uniform model G(m, n).

d | T | b |[VGa)l | IEGa)| | ¢

1.734 | 0.510 | 0.706 0.399n 0.498n 1.153
1.736 | 0.509 | 0.707 0.400n 0.500n 1.152
1.738 | 0.508 | 0.708 0.401n 0.501n 1.151
1.739 | 0.508 | 0.708 0.401n 0.501n 1.150
1.740 | 0.507 | 0.709 0.401n 0.502n 1.149

Table 6.1: Determining the ¢ value theoretically.

We now briefly argue that the expected number of iterations to obtain a simple
graph G = G(hy, hy) is constant for m = ¢n and ¢ = 1.15. Let p be the probability of
generating a random graph G without loops and without multiple edges. If p is bounded
from below by some positive constant, then we are done, because the expected number of

iterations to obtain such a graph is then 1/p = O(1).

Let X be a random variable counting the number of iterations to generate GG. Variable
X follows a geometric distribution with P(X =) = p(1 — p)"~!. So, the expected number
of iterations to generate G is N;(X) = > 2| jP(X = j) = 1/p and its variance is V(X) =
(1—p)/p*.

Let & be the space of edges in G that may be generated by h; and hy. The graphs
generated in this step are undirected and the number of possible edges in £ is given by

€] = (g‘) The number of possible edges that might become a multiple edge when the jth

URLs (n)
103 104 10° 105 | 2x10° | 3 x 10% | 4 x 106
1.13 | 0.22 | 0.02 | 0.00 | 0.00 0.00 0.00 0.00
1.14 | 0.35 | 0.15 | 0.00 | 0.00 0.00 0.00 0.00
1.15 | 0.46 | 0.55 | 0.65 | 0.87 0.95 0.97 1.00
1.16 | 0.67 | 0.90 | 1.00 | 1.00 1.00 1.00 1.00
1.17 | 0.82 | 0.99 | 1.00 | 1.00 1.00 1.00 1.00

Table 6.2: Probability Pg_, that [E(Gei)| < n/2 for different ¢ values and different

number of keys for a collections of URLs.

98 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

edge is added to G is j — 1, and the incremental construction of G implies that p(m) is:

1%

n m

7=1

As m = cn we can rewrite the probability p(n) as:

p(n)Zﬁl— (027;—j—cn)

Using an asymptotic estimate from Palmer [64] that states that the inequality fi(z) < fo(z)
is true Vx € R for two functions f; : ® — R and f5 : R — R defined as fi(z) =1 — z and

fo(z) = e7*, we have

for x = ang—J_m Thus,
lim p(n) ~ e . (6.6)

As N;(X) = 1/p then N;(X) ~ e = 2.13 (recall ¢ = 1.15). Therefore, as the expected
number of iterations is O(1), the mapping step takes O(n) time.

Ordering Step

The procedure Ordering (G, Gert, Guerit) receives as input the graph G and partitions G
into the two subgraphs G and Gpei, S0 that G = G U G- For that, the procedure
iteratively remove all vertices of degree 1 until it is done.

Figure 6.3(a) presents a sample graph with 9 vertices and 8 edges, where the degree
of a vertex is shown besides each vertex. Applying the ordering step in this graph, the
5-vertex graph showed in Figure 6.3(b) is obtained. All vertices with degree 0 are non-
critical vertices and the others are critical vertices. In order to determine the vertices in
Viarit We collect all vertices v € V(G) with at least one vertex u that is in Adj(v) and in
V (Gherit), as the vertex 8 in Figure 6.3(b).

Analysis of the Ordering Step

The time complexity of the ordering step is O(|V(G)]|) (see [26]). As |V(G)| = m = cn,
the ordering step takes O(n) time.

6.1. THE BKZ ALGORITHM 99

Figure 6.3: Ordering step for a graph with 9 vertices and 8 edges.

Searching Step

In the searching step, the key part is the perfect assignment problem: find g : V(G) — Z
such that the function mphf : E(G) — Z defined by

mphf(e) = g(a) +g(b) (e ={a,b}) (6.7)

is a bijection from E(G) to [0,n — 1] (recall n = |S| = |E(G)|). We are interested in a
labelling g : V' — Z of the vertices of the graph G = G(hq, hy) with the property that
if x and y are keys in S, then g(hi(x)) + g(ha(z)) # g(h1(y)) + g(ha(y)); that is, if we
associate to each edge the sum of the labels on its endpoints, then these values should
be all distinct. Moreover, we require that all the sums g(hi(x)) + g(ha(x)) (x € S) fall
between 0 and |E(G)| — 1 = n — 1, so that we have a bijection between S and [0,n — 1].
The procedure Searching (G, Geit, Guais, g) receives as input G, Gty Gueris and finds a
suitable |log |V (G)|| 41 bit value for each vertex v € V(G), stored in the array g. This step
is first performed for the vertices in the critical subgraph G of G (the 2-core of GG) and
then it is performed for the vertices in Gy (the non-critical subgraph of G that contains
the “acyclic part” of G). The reason the assignment of the g values is first performed on
the vertices in G is to resolve reassignments as early as possible (such reassignments are

consequences of the cycles in G, and are depicted hereinafter).

Assignment of Values to Critical Vertices

The labels g(v) (v € V(Gait)) are assigned in increasing order following a greedy strategy
where the critical vertices v are considered one at a time, according to a breadth-first
search on Gy If a candidate value z for g(v) is forbidden because setting g(v) = = would
create two edges with the same sum, we try « + 1 for g(v). This fact is referred to as a
reassignment.

Let Ag be the set of addresses assigned to edges in E(Gy). Initially Ap = (). Let « be a
candidate value for g(v). Initially x = 0. Considering the subgraph G in Figure 6.3(b),

100 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

a step by step example of the assignment of values to vertices in G is presented in
Figure 6.4. Initially, a vertex v is chosen, the assignment g(v) = z is made and z is set
to x + 1. For example, suppose that vertex 8 in Figure 6.4(a) is chosen, the assignment

g(8) =0 is made and x is set to 1.

Figure 6.4: Example of the assignment of values to critical vertices.

In Figure 6.4(b), following the adjacency list of vertex 8, the unassigned vertex 0 is
reached. At this point, we collect in the temporary variable Y all adjacencies of vertex
0 that have been assigned an x value, and Y = {8}. Next, for all u € Y, we check if
gu) +x & Ag. Since g(8) +1 = 1 &€ Ag, then ¢(0) is set to 1, = is incremented by
1 (now z = 2) and Ag = Ag U {1} = {1}. Next, vertex 3 is reached, g(3) is set to 2,
x is set to 3 and Ap = Ag U {2} = {1,2}. Next, vertex 4 is reached and Y = {3,8}.
Since ¢g(3) +3 =5 ¢ Ag and ¢(8) +3 = 3 € Ap, then g(4) is set to 3, = is set to 4
and Ap = Ap U {3,5} = {1,2,3,5}. Finally, vertex 7 is reached and Y = {0,8}. Since
9(0) +4 =5 € Ag, x is incremented by 1 and set to 5, as depicted in Figure 6.4(c). Since
g(8)+5=>5 € Ag, z is again incremented by 1 and set to 6, as depicted in Figure 6.4(d).
These two reassignments are indicated by the arrows in Figure 6.4. Since g(0)+6 =7 € Ag
and ¢(8)+6 =6 ¢ Ag, then ¢(7) is set to 6 and Agp = Ag U{6,7} ={1,2,3,5,6,7}. This
finishes the algorithm.

Assignment of Values to Non-Critical Vertices

As Gpai is acyclic, we can impose the order in which addresses are associated with edges
in G, making this step simple to solve by a standard depth first search algorithm.
Therefore, in the assignment of values to vertices in Gy we benefit from the unused
addresses in the gaps left by the assignment of values to vertices in G.;. For that, we
start the depth-first search from the vertices in V. because the g values for these critical

vertices have already been assigned and cannot be changed.

6.1. THE BKZ ALGORITHM 101

Considering the subgraph G in Figure 6.3(b), a step by step example of the assign-
ment of values to vertices in Gyt is presented in Figure 6.5. Figure 6.5(a) presents the
initial state of the algorithm. The critical vertex 8 is the only one that has non-critical
neighbors. In the example presented in Figure 6.4, the addresses {0,4} were not used. So,
taking the first unused address 0 and the vertex 1, which is reached from the vertex 8, g(1)
is set to 0 — ¢(8) = 0, as shown in Figure 6.5(b). The only vertex that is reached from
vertex 1 is vertex 2, so taking the unused address 4 we set ¢(2) to 4 —g(1) = 4, as shown in

Figure 6.5(c). This process is repeated until the UnAssigned Addresses list becomes empty.

a) b) g:0 C) g:0 g:0
® € ® 0 ® o D
g:O g:O g:0 e 4
® ® ® @ ® ©)
g:0 g4
o)
UnAssignedAddresses UnAssignedAddresses UnAssignedAddresses

Figure 6.5: Example of the assignment of values to non-critical vertices.

Analysis of the Searching Step

We shall demonstrate that (i) the maximum value assigned to an edge is at most n — 1
(that is, we generate a minimal perfect hash function), and (ii) the perfect assignment
problem (determination of g) can be solved in expected time O(n) if the number of edges
in Gy is at most 3|E(G)|.

We focus on the analysis of the assignment of values to critical vertices because the
assignment of values to non-critical vertices can be solved in linear time by a depth first
search algorithm.

We now define certain complexity measures. Let I(v) be the number of times a can-
didate value = for g(v) is incremented. Let N; be the total number of times that can-
didate values x are incremented. Thus, we have N, =) I(v), where the sum is over
all v € V(Gerit)-

For simplicity, we shall suppose that G, the 2-core of G, is connected.? The fact that
every edge is either a tree edge or a back edge (see, e.g., [24]) then implies the following.

2The number of vertices in Gy outside the giant component is provably very small for ¢ = 1.15;
see [8, 49, 65].

102 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

Theorem 8 The number of back edges Npeqges 0f G = Gt U Grerit 18 given by Nypedges =
’E(Gcrit)‘ - |V<Gcrit)| + 1.

Our next result concerns the maximal value A,,,, assigned to an edge e € F(Gey) after

the assignment of ¢ values to critical vertices.

Theorem 9 We have Aoy < 2|V(Geit)| — 3 + 2N,

Proof: The assignment of g values to critical vertices starts from 0, and each edge e
receives the label mphf(e) as given by Eq. (6.7). The g value for each vertex v in V(Geit)
is assigned only once. Consider now two possibilities: (i) If N; = 0, (that is, no increment
for a candidate value was necessary) then the g values will be assigned to the vertices
sequentially. Therefore, the greatest and the second greatest values assigned to two vertices
v and u are g(v) = |V(Gai)| — 1 and g(u) = |V(Geit)| — 2, respectively. Thus, A <
(IV(Gait)| = 1) + ([V(Gait)| — 2) in the worst case. (ii) If N, > 0 then a candidate
value z is incremented by one each time the value is forbidden. Thus, in the worst case,
Amaz < |V (Gerit)| = 14+ N+ [V (Garit)] — 2+ Ny < 2|V (Gerit)| — 3+ 2N, O

Maximal Value Assigned to an Edge

In this section we present the following conjecture.

Conjecture 1 For a random graph G with |E(Geui)| < n/2 and |V(G)| = 1.15n, it is
always possible to generate a minimal perfect hash function because the maximal value

Amax assigned to an edge e € F(Gejt) is at most n — 1.

Let us assume for the moment that N; < Npegges: Then, from Theorems 8 and 9,
we have Apax < 2|V (Gait)| — 3 + 2N: < 2|V (Gait)| — 3 + 2Nbedges < 2|V (Gerit)| — 3 +
2(|E(Gerit)| = [V(Gait)| + 1) < 2|E(Guit)| — 1. As by hypothesis |E(Geit)| < n/2, we have
Anax < n — 1, as required.

In the mathematical analysis of our algorithm, what s left open is a single problem:
prove that Ny < Npedges-®

We now show experimental evidence that N; < Npeqges. Considering Eqgs (6.4) and (6.5),
the expected values for |V(Geit)| and |E(Get)| for ¢ = 1.15 are 0.401n and 0.501n, re-
spectively. From Theorem 8, Nyeqges = 0.501n — 0.401n + 1 = 0.1n + 1. Table 6.3 presents

3Bollobas and Pikhurko [9] have investigated a very close vertex labelling problem for random graphs.
However, their interest was on denser random graphs, and it seems that different methods will have to be

used to attack the sparser case that we are interested in here.

6.1. THE BKZ ALGORITHM 103

the maximal value of N; obtained during 10,000 executions of the algorithm for different
sizes of S. The maximal value of IV, was always smaller than Npeqges = 0.1n + 1 and tends
to 0.059n for n > 1,000,000.

n Maximal value of IVy
10,000 0.067n
100,000 0.061n

1,000,000 0.059n
2,000,000 0.059n

Table 6.3: The maximal value of N; for different number of URLs.

Time Complexity

We now show that the time complexity of determining g(v) for all critical vertices z €
V(Gait) 18 O(|V(Gait)|) = O(n). For each unassigned vertex v, the adjacency list of v,
which we call Adj(v), must be traversed to collect the set Y of adjacent vertices that have
already been assigned a value. Then, for each vertex in Y, we check if the current candidate
value z is forbidden because setting g(v) = z would create two edges with the same
endpoint sum. Finally, the edge linking v and u, for all u € Y, is associated with the address
that corresponds to the sum of its endpoints. Let deit = 2|E(Geit)|/|V (Geaie)| be the
average degree of G, note that |Y'| < |Adj(v)|, and suppose for simplicity that |[Adj(v)| =
O(derit)- Then, putting all these together, we see that the time complexity of this procedure
is
CV(Gert)) = Luev(@an [AG @)+ I0) x [Y]) + Y]]
< vt 2+ TONA()] = 41 E(Cas)| + O(Nides).

As deiy = 2 X 0.501n,/0.401n ~ 2.499 (a constant) we have O(|F(Guit)|) = O(|V(Gait)])-
Supposing that N; < Npedges, we have, from Theorem 8, that N, < |E(Geit)| — |V (Gerit)| +
1 = O(|E(Gait)|). We conclude that C(|V (Geait)]) = O(|E(Gai)]) = O([V(Geit)]). As
|V (Gait)] < |V(G)| and |V(G)| = ¢n, the time required to determine g on the critical

vertices is O(n).

6.1.3 Comparing the BKZ and CHM Algorithms

In this section we compare the BKZ algorithm with the CHM algorithm experimentally.

For this reason the two algorithms were implemented in the C language and are avail-

104 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

able as part of the C Minimal Perfect Hashing Library, which can be downloaded at
http://cmph.sf.net. Our data consists of a collection of 100 million universe resource
locations (URLs) collected from the Web. The average length of a URL in the collection
is 63 bytes. All experiments were carried out on a computer running the Linux operating
system, version 2.6.7, with a 2.4 gigahertz processor and 4 gigabytes of main memory.
Table 6.4 presents the main characteristics of the two algorithms. The number of edges
in the graph G = (V, E) is |S| = n, i.e., the number of keys in the input set S. The
number of vertices of G is equal to 1.15n and 2.09n for the BKZ algorithm and the CHM
algorithm, respectively. This measure is related to the amount of space to store the array
g. This improves the space required to store a function in the BKZ algorithm to 55% of the
space required by the CHM algorithm. The number of critical edges is 3| E(G)| and 0 for
the BKZ algorithm and the CHM algorithm, respectively. The BKZ algorithm generates
random graphs that contain cycles with high probability and the CHM algorithm generates
acyclic random graphs. Finally, the CHM algorithm generates order preserving functions

whereas the BKZ algorithm does not preserve order.

c IE(G)| | V(@) =|g| | |E(Gerit)] G Order preserving
BKZ algorithm | 1.15 n cn 0.5|E(G)| | cyclic no
CHM algorithm | 2.09 n cn 0 acyclic yes

Table 6.4: Main characteristics of the algorithms.

Table 6.5 presents time measurements to generate the MPHFs. All times are in seconds.
The table entries are averages over 50 trials. The column labelled N; gives the number of
iterations to generate the random graph G in the mapping step of the algorithms. The
next columns give the running times for the mapping plus ordering steps together and the
searching step for each algorithm. The last column gives the percentage gain of the BKZ
algorithm over the CHM algorithm.

The mapping step of the BKZ algorithm is faster because the expected number of
iterations in the mapping step to generate GG are 2.13 and 2.92 for the BKZ algorithm and
the CHM algorithm, respectively. The graph G generated by the BKZ algorithm has 1.15n
vertices, against 2.09n for the CHM algorithm. These two facts make the BKZ algorithm
faster in the mapping step. The ordering step of the BKZ algorithm is approximately equal
to the time to check if G is acyclic for the CHM algorithm. The searching step of the CHM
algorithm is faster, but the total time of the BKZ algorithm is, on average, approximately
59% faster than the CHM algorithm.

6.1. THE BKZ ALGORITHM 105

n BKZ algorithm CHM algorithm Gain

N; Map+Ord Search Total | N; Map+Ord Search Total (%)
1,562,500 | 2.28 8.54 2.37 10.91 | 2.70 14.56 1.57 16.13 48
3,125,000 | 2.16 15.92 4.88 20.80 | 2.85 30.36 3.20 33.56 61
6,250,000 | 2.20 33.09 10.48 43.57 | 2.90 62.26 6.76 69.02 58

12,500,000 | 2.00 63.26 23.04 86.30 | 2.60 117.99 14.94 132.92 54
25,000,000 | 2.00 130.79 51.55 182.34 | 2.80 262.05 33.68 295.73 62
50,000,000 | 2.07 273.75 114.12 387.87 | 2.90 577.59 73.97 651.56 68
100,000,000 | 2.07 567.47 243.13 810.60 | 2.80 1,131.06 157.23 1,288.29 59

Table 6.5: Time measurements for the BKZ algorithm and the CHM algorithm to generate
MPHFs.

BKZ algorithm ¢ = 1.00 BKZ algorithm ¢ = 0.93

N; Map+Ord Search Total | N; Map+Ord Search Total
12,500,000 | 2.78 76.68 25.06 101.74 | 3.04 76.39 25.80 102.19

Table 6.6: Time measurements for the BKZ algorithm to generate MPHF's, tuned with
¢ =1.00 and ¢ = 0.93.

The experimental results fully backs the theoretical results. It is important to notice
the times for the searching step: for both algorithms they are not the dominant times, and
the experimental results clearly show a linear behavior for the searching step.

We now present a heuristic that reduces the space requirement to any given value
between 1.15n words and 0.93n words. The heuristic reuses, when possible, the set of x
values that caused reassignments, just before trying x 4+ 1 (see Section 6.1.2). The lower
limit ¢ = 0.93 was obtained experimentally. We generate 10,000 random graphs for each
size n (n = 10°, 5 x 105, 10%, 2 x 10°). With ¢ = 0.93 we were always able to generate
an MPHF, but with ¢ = 0.92 we never succeeded. Decreasing the value of c leads to an
increase in the number of iterations to generate G. For example, for ¢ = 1 and ¢ = 0.93, the
analytical expected number of iterations are 2.72 and 3.17, respectively (for n = 12,500,000,
the number of iterations are 2.78 for ¢ = 1 and 3.04 for ¢ = 0.93). Table 6.6 presents the
total times to construct a function for n = 12,500,000, with an increase from 86.31 seconds
for ¢ = 1.15 (see Table 6.5) to 101.74 seconds for ¢ = 1 and to 102.19 seconds for ¢ = 0.93.

We compared the BKZ algorithm with the ones proposed by Pagh [61] and Dietzfel-
binger and Hagerup [29], respectively. The authors sent to us their source code. In their

implementation the key set is a set of random integers. We modified our implementation to

106 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

generate an MPHF from a set of random integers in order to make a fair comparison. For a
set of 10° random integers, the times to generate a minimal perfect hash function were 2.7s,
4s and 4.5s for the BKZ algorithm, Pagh’s algorithm and Dietzfelbinger and Hagerup’s
algorithm, respectively. Thus, the BKZ algorithm was 48% faster than Pagh’s algorithm
and 67% faster than Dietzfelbinger and Hagerup’s algorithm, on average. This gain was
maintained for sets with different sizes. The BKZ algorithm needs kn (k € [0.93,1.15])
words to store the resulting function, while Pagh’s algorithm needs kn (k > 2) words and
Dietzfelbinger and Hagerup’s algorithm needs kn (k € [1.13,1.15]) words. The time to

generate the functions is inversely proportional to the value of k.

6.2 The RAM Algorithm: Dealing with Connected
Components with a Single Cycle for r =2

Although the BKZ algorithm still generates MPHFs that require O(nlogn) bits to be
stored, the techniques used in its design can also be used to speedup the execution time of
the RAM algorithm, which generates MPHFs that require (3 4 €)n bits of storage space,
where ¢ > 0. Remember that the RAM algorithm originally works on random bipartite
graphs with no cycles. But, if each connected component of the random graph has just
one cycle with the same number of edges and vertices, then it is possible to build MPHF's
40% faster on average. In Section 6.2.1 we present the design of the optimized version of
the RAM algorithm. In Section 6.2.2 we experimentally compare the optimized version of
the RAM algorithm with the version of the RAM algorithm presented in Chapter 2.

6.2.1 Design of the Optimized Version of The RAM Algorithm

The first two steps of the RAM algorithm builds an one-to-one mapping between a key set
S (or, equivalently, the edge set E) and the vertex set V' of an acyclic bipartite random
graph G = (V. E), |E| = n, |V| = m = cn and ¢ > 2. But if each connected component
of GG has just one cycle with the same number of edges and vertices, then it is possible to
create an one-to-one mapping between edges and vertices in this case. This is interesting
because the RAM algorithm will run much faster for values of ¢ close to 2. We now show
how to adapt the first two steps of the RAM algorithm to deal with connected components

of G containing a single cycle.

Definition 25 Let C = {G' = (V/,E') | V! C V,E" C E} be the set of connected

components of G.

6.2. THE RAM ALGORITHM: DEALING WITH CONNECTED COMPONENTS WITH A SINGLE
CYCLE FOR R =2 107

We now use the same idea presented in Section 6.1. For each connected component

G' € C, we split G’ into two subgraphs G' = G.,, U G, where GL.. = (Veit, Ferit)
is the subcomponent of G’ that contains cycles and G} i = (Vacrit U Vierit, Fnerit) 18 the

subcomponent with no cycles. The algorithm presented in Section 2.1.1 to test whether a

/
ncrit*

graph contains cycles can be easily adapted to obtain G7;, and G The resulting graph

of the test corresponds to G.;; and G .., = G' — GL... Now we do not restart the mapping

cri ncrit crit*

1
cri

step because G, is not empty. Instead, we first use a depth-first search algorithm to

build an one-to-one mapping for F.; and V. and, then, use the assigning step of the

/
cri

RAM algorithm for Fy.it and Vigi. We just restart from the mapping step if G, is not
assignable (i.e., G%,;, contains more than one cycle).

Figure 6.6 illustrates the assignment of G.;;. Figure 6.6(b) shows the order in which a
depth-first search algorithm will visit each vertex. The algorithm starts from a given vertex
v € Viit, lets say v = 0, and set g[v] to 0. Then, the depth-first search goes on one of the
vertices adjacent to vertex v = 0. Let u = 2 be that vertex. Then, g[u] = (z — g[v]) mod 2,

where:

0, if uw<|V]/2

xr =

1, otherwise.
This will associate vertex u = 2 with the current edge {0,2}. Note that when we are
visiting edge e = {0,3}, which closes the cycle, its two vertices were already assigned.
Therefore, we cannot change the value assigned to vertex 0 and vertex 0 is supposed to be
associated with e. In this case, there is no problem because g[0] received the same value

previously assigned and the algorithm ends because all edges were visited.

@) (b)

Figure 6.6: (a) Assignment for a connected component with a single cycle with 4 vertices
and 4 edges. (b) Order in which a depth-first search algorithm will visit each vertex starting

from vertex 0.

The assignment of G-, is not possible when the length of the cycle is not a multiple

of four. Figure 6.7 illustrates a case where it is not possible to finish the assignment

108 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

successfully. In Figure 6.7(b), if we traverse the cycle in the opposite way the depth-
first search algorithm did, the values of g for the current visited vertex are: 0,1,0,0,1, 1.
Note that vertex 5 was associated with two edges: {0,5} and {2,5}. It happens because
(9[0] +¢[5]) mod 2 = 1 and (g[2] + ¢[5]) mod 2 = 1. To avoid this we must have a sequence
of g values alternating double zeros and double ones with the same number of zeros and
ones, i.e., 0,0,1,1,...,0,0,1,1. In Figure 6.6(b), if we traverse the cycle in the opposite
way the depth-first search algorithm did, the values of g are: 0,0,1,1. Therefore, the

length of the cycles must be a multiple of four.

G1crit
2 Q ‘a e 0 1 1 0 0 1
HLUNOENGENG

@) (b)

Figure 6.7: (a) A non-assignable cycle with 6 vertices and 6 edges. (b) Order in which a

depth-first search algorithm will visit each vertex starting from vertex 0.

Definition 26 A connected component G’ € C is assignable if and only if it contains a
single cycle with the same number of vertices and edges, and its length is a multiple of

four.

The ranking step of the RAM algorithm does not need to be changed. To finish we
just need to show that it is possible to obtain a bipartite random graph G with no non-
assignable connected component with high probability. This is equivalent to show that,
with high probability, G has no cycle of length 2(20 — 1) for [= 1,2,3, ..., and each vertex
v € V will be present in just one cycle. In [27] it is shown that, for ¢ > 2 and with
probability tending to one, a vertex v € V' cannot participate in two different cycles of size

two or higher. Then, it remains to prove the following theorem.

Theorem 10 Let G = (V, E) be a bipartite random graph with n edges and m vertices.
Then, if m = ¢n holds for ¢ > 2, the probability that G has no cycle of length 2(2] — 1) for

1=1,2,3,..., for n — oo, is:

Pry = (6.8)

6.2. THE RAM ALGORITHM: DEALING WITH CONNECTED COMPONENTS WITH A SINGLE
CYCLE FOR R =2 109

PROOF. As shown in Theorem 4, the random variable C.(G) that measures the number

of cycles of any even length in G converges to a Poisson distribution with parameter:

A = i% (%)m —lm (1 - <2>2) . (69)

Corresponding results hold for cycles with lengths in a given subset of {2,4,6,...}, as
can be derived from the results of [48]. Let Cy(G) be a random variable that measures
the number of bad cycles in G (cycles with lengths that are not multiple of four), which

converges to a Poisson distribution with parameter:

=Yy %(é)m (6.10)

1 /2\?% 1 /2\% 1 2\ 2
A = — (= —(Z2) =—Zm|1-(=%
2. 3 (c> * 2l (c) T (c)
1=1,3,5,7,... 1=2,4,6,8,...

1 2\ 2 1 /2\?%
A= gyl 1‘(2) B ﬂ(‘)
1=2,4,6,8,...
21
1 2\ 2 11 2\ 2
= ——In|1-(2 S —((z
P (c) 2;21<(c)>
1 2\ 2 1 2*
— —ZIn[1-(2 +Zlnl1-(2
c 4 c

Therefore, the probability that G has no bad cycle is given by:

2
e

—_

Pry(Cy(G) = 0) =

O

For ¢ = 2.09 we have Pr, = 0.458, whereas the probability to obtain an acyclic bipartite
random graph Pr, = 0.29. This implies that 1/Pr, = 2.18 iterations are required on
average to succeed in the version that deals with one single cycle of length multiple of
four per connected component, whereas 1/Pr, = 3.45 iterations are required on average in
the version that requires an acyclic bipartite random graph. Experimentally, we obtained
Pry = 0.463 by generating 1,000 random bipartite 2-graphs with n = 107 keys (edges),

which is very close to the theoretical value.

110 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

6.2.2 Comparing the two Versions of the RAM Algorithm

In this section we evaluate the performance of the RAM algorithm when used to generate
MPHFs *. We will consider two versions of the RAM algorithm: (i) the version that that
works on random bipartite graphs with a single cycle per connected component; and (ii)
the version that works on random bipartite graphs with no cycles, which is presented in
Chapter 2.

For this reason the two versions of the RAM algorithm were implemented in the C lan-
guage and are available under the GNU Lesser General Public License (LGPL) at http://-
cmph.sf.net. The experiments were carried out on a computer running the Linux oper-
ating system, version 2.6, with a 1.86 gigahertz Intel Core 2 processor with a 4 megabyte
L2 cache and 1 gigabyte of main memory. For the experiments we used two collections: (i)
a set of 150 million randomly generated 4 byte long IP addresses, and (ii) a set of 1,024
million 64 byte long (on average) URLs collected from the Web.

The runtime of the version of the RAM algorithm that deals with a single cycle per
connected component has the same form of the one presented in Chapter 2, which is anZ
for an input of n keys, where « is some machine dependent constant that further depends
on the length of the keys and Z is a random variable with geometric distribution. But now
the mean of the geometric distribution is 1/Pry, instead of 1/Pr,, where Pry, and Pr, are
given in Eq. (6.8) and Eq. (2.7), respectively. All results in the experiments to compare the
two versions of the RAM algorithm were obtained taking ¢ = 2.09; the larger is ¢ the faster
are both versions of the RAM algorithm because both Pr, and Pr, increase continuously
with c.

The values chosen for n were 1,2,4,8,12,16,20 and 24 millions. Although we have
150 millions of random IPs and 1,024 millions of URLs, on a PC with 1 gigabyte of main
memory, both versions of the RAM algorithm are able to handle an input with at most 24
millions of keys. This is mainly because the sparse random hypergraph required to generate
the functions is memory demanding. By using the same technique used in Chapter 2 to
estimate the number of trials for each value of n we also obtained 300 trials in order to
have a confidence level of 95%.

Figure 6.8 presents the runtime for each trial. In addition, the solid line corresponds to
a linear regression model obtained from the experimental measurements. As we can see,
the runtime for a given n has a considerable fluctuation, which gives a coefficient of deter-

mination R? = 71%. However, the fluctuation also grows linearly with n. The observed

4The same conclusions are achieved when PHF's are generated.

6.2. THE RAM ALGORITHM: DEALING WITH CONNECTED COMPONENTS WITH A SINGLE
CYCLE FOR R =2 111

fluctuation in the runtimes is as expected; recall that this runtime has the form anZ with Z
a geometric random variable with mean 1/Pr, = 1/0.458 for ¢ = 2.09. Thus, the runtime
has mean an/Pr, = 2.18an and standard deviation any/(1 — Pry)/(Pr)? = 1.61an.

Therefore, the standard deviation also grows linearly with n, as experimentally verified in

Figure 6.8. It is important to remark that this version of the RAM algorithm has a smaller

fluctuation than the version presented in Chapter 2 because Pr, > Pr,.

400

|e 1Ps (=2, cycle)

Linear regression @ URLs (r=2, cycle)

Linear regression ‘

300

Time (s)
200 300
.

Time (s)

100
L
100
L

T T T T T T T T
0 5 20 25 0 5 20 25

10 15 10 15
Number of keys (millions) Number of keys (millions)

(a) IPs collection (b) URLs collection
Figure 6.8: Number of keys in S versus generation time for the RAM algorithm that works
on random hypergraphs with a single cycle per connected component for » = 2. The solid

line corresponds to a linear regression model for the generation time (R? = 71%).

The version of the RAM algorithm that works on random bipartite graphs with a single
cycle per connected component has the same behavior of the version that works on random
acyclic bipartite graphs (see Figures 2.13 and 6.8), but runs considerably faster. This is
because the geometric distribution now has mean 1/Pr,, where Pr, = 0.458, whereas for
the version of the RAM algorithm presented in Chapter 2 the geometric distribution has
mean 1/Pr,, where Pr, = 0.29.

To end this section we now compare the two versions of the RAM algorithm by taking
n = 1,12 and 24 millions of keys in the two collections and by considering generation
time and storage space as metrics. Table 6.7 presents the respective confidence intervals
for the generation time, which is given by the average time + the distance from average
time considering a confidence level of 95%, and the respective values for the storage space.
It is possible to see that when cycles are allowed the RAM algorithm is approximately
40% faster to generate the functions. Also, the generation time, as expected, is influenced
by the key length (IPs are 4 bytes long and URL are 64 bytes long on average), and the
storage space is not. Finally, the most compact functions are generated when r = 2 and

cycles are allowed.

112 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

n RAM algorithm Generation Time (sec) Storage Space
IPs URLs Bits/Key | Size (MB)
1108 | r=9 cycle 3.26 £ 0.16 3.69 £0.18 3.35 0.40
no cycle | 4.45+0.42 4.75£0.41 3.60 0.43
12 %108 | =2 cycle 41.33 £ 2.02 47.96 + 2.45 3.35 4.79
no cycle | 58.70 £ 5.20 64.22 £ 6.37 3.60 5.15
24 % 106 | p—2o | cvcle 91.32+5.2 104.77 £ 5.58 3.35 9.58
no cycle | 135.92 +£13.2 | 146.93 £+ 14.09 3.60 10.30

Table 6.7: Comparison of the two versions of the RAM algorithm considering generation

time and storage space, and using n = 1,12, and 24 millions of keys for the two collections.

6.3 Conclusions

In this chapter we presented techniques that allow the generation of MPHF's based on
random graphs with cycles. This implies that the functions are generated faster and are
more compact than the ones generated based on acyclic random graphs. The techniques
were applied to the design of two algorithms: the BKZ algorithm and the RAM algorithm.

First we showed how the BKZ algorithm improves the space requirement of the MPHF's
generated by the algorithm proposed by Czech, Havas and Majewski [25] from ¢n logn bits,
for ¢ > 2 to dnlogn, where ¢ € [0.93,1.15]. That is, our resulting functions are stored in
approximately 55% of the space required to store the ones generated by the CHM algorithm.
However, the resulting MPHF's still requires O(nlogn) bits to be stored, that is a factor
logn from the optimal. We also showed that the BKZ algorithm runs approximately 59%
faster than the CHM algorithm on average.

Second, we used techniques similar to the ones used in the design of the BKZ algorithm
to speedup the execution time of the RAM algorithm presented in Chapter 2, which gen-
erates MPHF's that require (3 + ¢)n bits of storage space, where € > 0. We showed that if
each connected component of the random graph has just one cycle with the same number
of edges and vertices, then it is possible to tune the RAM algorithm to build MPHF's 40%

faster on average.

Chapter 7

Indexing Internal Memory With
MPHF's

The objective of this chapter is to show that MPHFs provide the best tradeoff between
space usage and lookup time when compared to other hashing schemes. It was not the
case in the past because the space overhead to store MPHFs was O(logn) bits per key for
practical algorithms [25, 55]. Therefore, a better performace in terms of time and space was
obtained by using a single hash function and resolving collisions with linear probing [45, 51].
However, the new results on MPHFs presented in Chapter 2 have motivated this work, since
the resulting MPHFs require approximately 2.6 bits per key of space overhead and can be
evaluated in O(1) time.

We obtained interesting results in two scenarios: (i) when the MPHF description fits
in the CPU cache and (ii) when it cannot be entirely placed in the CPU cache. In the
first scenario we show that the other hashing schemes cannot outperform minimal perfect
hashing when the hash table occupancy is greater than 55%. An MPHF requiring just
2.6 bits per key of storage space permits to store sets on the order of 10 million keys in a
4 megabyte CPU cache, which is enough for a large range of applications. In the second
scenario, other hashing schemes require a hash table occupancy lower than 75% to obtain
the same performance attained by minimal perfect hashing. For both scenarios, the space
overhead of minimal perfect hashing is within a factor of O(logn) bits lower than other
hashing schemes. A preliminary version of these results was presented in [13].

This chapter is organized as follows. In Section 7.1 we describe the hashing schemes
used in the study. In Section 7.2 we present the experimental results to compare the

considered hashing schemes. Finally, in Section 7.3 we conclude this chapter.

113

114 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

7.1 The Algorithms

In this section we describe the hashing methods we used to compare minimal perfect
hashing with, namely, linear hashing, quadratic hashing, double hashing, dense hashing,
cuckoo hashing and sparse hashing. The hash table entries store items, and each item is
composed by a key and possibly some data, i.e., a pair < k,d >. All the methods analyzed
use collision resolution by open addressing, that is, they look at various positions of the
hash table one by one until it either finds the key k being searched for or it finds an empty
position [51]. In contrast, collision resolution could also be made by chaining, in which a
linked list is used to store items that collided in the same table position. Open addressing
is preferred over chaining if we are interested in lookup time, since it has a better locality
of reference and reduces the number of cache misses.

The hash table structure used by linear hashing, quadratic hashing, double hashing,
dense hashing and cuckoo hashing is shown in Figure 7.1. Every table position has a
pointer, initially pointing to an empty value. When an item is inserted in the table, the
pointer of the corresponding position starts to refer to it. The hash table structures for

sparse hashing and minimal perfect hashing are presented in Sections 7.1.5 and 7.1.6,

respectively.
ltem Set
[Ky 1D, [K, D, [K,yiDg K, D,
A
Hash Table

0
1
10

11 —— NULL
m-1]

Figure 7.1: Hash table used for linear hashing, quadratic hashing, double hashing, dense
hashing and cuckoo hashing.

Note that we should not insert the item itself in the table, since the allocated empty
positions would cause an expressive waste of memory space, especially if the item occupies
several bytes. Hence, the wasted space is reduced by using only one pointer per empty
position. If we define p as the pointer size in bits, the space overhead for methods that
use the structure in Figure 7.1 is p x m bits for a hash table of size m. For a 64 bits

architecture, p = 64 bits.

7.1. THE ALGORITHMS 115

Throughout this section we shall use @,, as a notation for an addition modulus m. For

instance, we may describe the operation (a + b) mod m as a @, b.

7.1.1 Linear Hashing

Linear hashing is considered one of the simplest open addressing schemes available [51, 76].
It uses a hash function i : S — [0,m — 1] and tests positions h(k), h(k) & 1, (k) Em 2, ...
sequentially until it finds the term k being searched. Otherwise, if it finds an empty
position, or if the sequential search reaches position h(k) after running over all other
positions, the item being searched does not exist in the hash table.

The pseudocode shown below represents how this method works:
1. Calculate i = h(k).

2. If the i-th position is empty or h(k) is reached again after running over all table
positions, then the search is concluded and the item relative to k is not in the hash
table.

3. If the i-th position contains the item with key k, then the search is concluded and

the item relative to k is in position .
4. Else, i =i, 1. Go to step 2.

The efficiency of a search for a given key k € S in the linear hashing method depends
on the number of probes performed during the search. This is highly sensitive to the hash
table load factor « = n/m (i.e., the ratio between the number of items and the number of
entries in the hash table.) The higher is «, the larger is the number of probes. According
to Knuth [51], the expected number of probes performed for successful and unsuccessful
searches are % (1 + ﬁ) and % <1 + (ﬁf), respectively. The main problem with this
method is that it degenerates in a sequential search when the number of terms n gets
closer to the table size m, which causes a waste of time. Another issue is the waste of

space caused by empty positions in the hash table.

7.1.2 Quadratic Hashing

Quadratic hashing is very similar to linear hashing, however, it uses two additional pa-

rameters, r and ¢, besides the hash function A(k) : S — [0,m — 1]. Parameter r indicates

116 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

how many positions ahead the current position the next search for the term £ will be per-
formed, and parameter ¢ indicates the value which parameter r will be added to after each
iteration. Quadratic hashing is expected to have a better performance when compared to
linear hashing for higher load factors, since it prevents the production of clusters which
delay the search for items. However, this method shares some problems found in linear
hashing, e.g., the waste of space due to empty positions and the waste of time due to
successive collisions when n gets closer to m [46, 51]. The quadratic hashing method may
also have a smaller locality of reference when compared to linear hashing, as the pace r
may become much larger than one.

The period of search is defined as the number of entries that appear in a sequence from a
particular initial position before an entry is encountered twice. The period of search should
preferably be the same as the table size m or, at least, as large as possible. Otherwise,
the table may appear to be full when there is still space available. If m is a prime number
then the period of search for the quadratic hash method is m/2.

The pseudocode shown below represents how this method works:
1. Calculate i = h(k).

2. If the i-th position is empty or h(k) is reached again after running over all reachable
positions, then the search is concluded and the item relative to k is not in the hash
table.

3. If the i-th position contains the item with key k, then the search is concluded and

the item relative to k is in position .
4. Else, 1 =i &, v, r =1 &,, ¢. Go to step 2.

Given a hash table load factor « = n/m, the expected number of probes in quadratic
hashing is 1 —In(1 — a) — & for successful searches and 1= — In(1 — &) — a for unsuccessful
searches, according to [51]. Furthermore, in [51] it was proposed a variation of quadratic
hashing, which was also compared with perfect hashing in our experiments. We used an

implementation available in [72], which is called dense hashing.

7.1.3 Double Hashing

Double hashing also works in a way very similar to linear hashing, but with the difference

that, instead of one function, it uses two: hy(k) and ho(k). The first one produces values

7.1. THE ALGORITHMS 117

in the range [0, m — 1], mapping the term into its position in the hash table, the same way
as the hash function in linear hashing does. The additional function hy(k) produces values
in the range [1,m — 1], which are used as steps in the process of finding empty positions.
Values produced by hy(k) are relatively primes to the table size m. This is necessary to
ensure that the period of search will be of the same as m, which guarantees that any given
item can be inserted in any table position (see, e.g., [51]). Furthermore, we can check if
the table is full by counting the number of collisions, since m successive collisions indicates
a full structure.

This method tests positions using a distance ho(k), i.e., it tests positions hy(k), by (k) D,
ho(k), hy(k) @y 2ha(k), ..., until it finds an empty position or until it finds the term k being
searched for.

The method is described bellow:

1. Calculate i = hy(k), d = ha(k).

2. If the i-th position is empty or hi(k) is reached again after running over all table

positions, then the search is concluded and the item relative to k is not in the table.

3. If the i-th position contains the item with key k, then the search is concluded and

the item relative to k is in position 1.
4. Else, 1 = 1 ®,, d. Go to step 2.

Double hashing reduces the problem of clustering in a better way than quadratic hashing
does. This is because function hy(k) provides a different step d for each key k, and the
multiple step sizes produce a more uniform distribution of used positions. This method
still shares some problems with previously cited methods, such as the waste of space due
to unused positions and the possibility of successive collisions when the structure is almost
full. Knuth [51] estimated the expected number of successful probes in searches for double

hashing as — (é In(1 — a)), and the number of unsuccessful probes in searches as ﬁ

7.1.4 Cuckoo Hashing

Cuckoo hashing uses two hash functions, h; (k) and hs(k), to get two possible table positions
for a given term. When a term x has to be inserted in the structure, one of the two possible
positions (hi(x) or he(z)) is chosen. If the chosen position is already occupied, the term y

contained there will be removed from the structure, yielding an empty position to the term

118 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

x being inserted. Term y, in turn, has two possible positions, given by hi(y) and hs(y).
Consequently, y can be inserted in a position different from its former one. However, that
position can be occupied too. Thus, this process must continue until all terms are inserted
in one of their possible positions, or until some item can not be inserted [77, 63].

In case we need to search for a term k, the two possible positions for k& (namely hq(k)
and hy(k)) are checked. If neither one contains the term, then it is not in the structure.

Insertion in cuckoo hashing is better described bellow:
1. Calculate i = hy(k)
2. If the i-th position is empty, insert the term k& in that position

3. Else,
Swap the term k with the term z contained in the i-th position
If hi(x) == 1, then i = hy(z)
Else, i = hy(x)

Go to step 2

A problem with this method is that it is possible that it gets into an infinite loop during
the insertion of a term, since it can cause a sequence of items to be expelled indefinitely in
a cyclical manner. It was shown that in practical situations with a load factor lower than
or equal to 50% this is highly unlikely [63]. However, we may prevent this by allowing only
a maximum amount of iterations during term insertion. Notwithstanding, cuckoo hashing
still will not be able to insert the term with the same hash function values, and the table

needs to be rebuilt with different functions if the term is to be inserted.

7.1.5 Sparse Hashing

Sparse hashing is based on a sparse array structure which uses little memory space. It is
implemented as an array of groups A, where the number of groups in a sparse array of m
entries is calculated as G = [m/M]. Each group stored in Alg], 0 < g < G, is responsible
for M indexes of the hash table, i.e., A[0] is responsible for the items in the range [0, M —1],
A[1] for the items in the range [M,2M — 1], and so on. Each group ¢ contains an array
I, that stores the actual items and a bitmap B, of size M. The bitmap B, indicates the
assigned indexes in the range [0, M — 1]. If By[f] =1, 0 < f < M, then index f has a

corresponding value stored in I,. Note that an item in group g with an offset f is not

7.1. THE ALGORITHMS 119

necessarily placed in position f of I, but in the position I,[j], where j is the number of
bits set from By[0] to By[f — 1]. Therefore, the array I, is dynamically reallocated when
new items are inserted in it. Thus, the size of I, can differ among groups. Figure 7.2

illustrates these data structures.

Bitmaps
o, 1, 2, 3) Hash Table Iltems
ﬂ 0 4’{ Koo : D o0 ‘ Ko : Do» Kos : Dos
ofo[1[o] 1t
ﬂ 10 4’{K10,o :Dw,o ‘Klo,l :Dlo,l K 10,2 :Dlo,z
[o]ofo]o] 11 L —NULL
ﬂm G-1 4’{K G-1,1 D G-1,1 ‘K G-1,2 D G-1,2 ‘

Figure 7.2: Hash table used in the sparse hashing method.

A lookup for an item with key k is performed by first calculating its position ¢ = h(k),
in which h(k) : S — [0,m — 1]. The group g to which the item belongs is defined as
g = |i/M|, and its offset inside g is f = ¢ mod M. In this way, we need to check the value
of By[f]. If it is set to 0, then the item is not present in the hash table. Otherwise, it is
possibly present in group g and we need to check if there is a collision. This can be done
by checking if the item with key & is present in ;. The position j of the item in this array
is calculated by counting the number of bits set between B,[0] and B,[f — 1]. If the item
in position j is not the one with key k, then there is a collision, which will be resolved by
quadratic probing on i (see Section 7.1.2).

Insertion is performed in a similar fashion. First, we must check if the item is present
with a lookup. If not, we shall insert the item in I, in the position calculated by counting
the number of bits set between By[0] and By[f — 1], in the same way it is done in the
lookup. An insertion may require the displacement of all items with internal offset j such
that j > f. Let us take Figure 7.2 as an example. Suppose we want to insert a certain
item with key k for which ¢ = 0 and f = 1. Then the item must be inserted in position 1
of group 0, but that position is already occupied. To solve this, we need to move the items
with key Ky2 and Ky 3 one position ahead of their current position. The item with K3
will be moved to the position allocated for the new term, i.e., the forth position. The item

with key Ko will be moved to the position just left of the item with key Ky3, i.e., the

120 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

third position. Finally, the position calculated for the item with key k will be free and we
can place the new item there. Figure 7.3 shows the situation of group 0 after the insertion
of the item with key Ko ;.

Bitmaps
0, 1, 2, 3) Hash Table Items

0|:|—’{K o.o:Do.o‘K 0,1: D O.]lK o,z:Do,z‘K o‘alDo‘s

Figure 7.3: Group 0 after an insertion.

This method differs from the others in the sense that it prioritizes efficient memory
usage. It allocates as little space as possible to represent unassigned positions, and the
arrays containing the actual items grow only when it is needed. If each pointer has a size
of p bits, the space overhead of sparse hashing for a hash table of size m and G groups is
m + G x p. That is, m bits to represent the bitmaps, and GG pointers, one for each group.

Although being very efficient in memory usage, sparse hashing is not designed to be
efficient in time: each lookup needs to perform a sequential search through B, to find the

position of an item I,,.

7.1.6 Minimal Perfect Hashing

The hash table structure used by minimal perfect hashing is shown in Figure 7.4. In
this structure there is no need for pointers, i.e., all the items are inserted directly in the
table. This is only possible because there are no empty entries in the hash table, and
therefore we will not lose any space if we increase the capacity of the table entries to fit
the items themselves. This is not the case for the other methods, in which any increase in
the capacity of the table entries would cause even more space to be wasted. Moreover, the
minimal perfect hashing avoids the use of memory space to keep the pointers, which is an
additional advantage. However, there is still the need to store the MPHF representation
in main memory, and the space overhead for this method is approximately 2.62n bits for
a set of n keys, as can be seen in Chapter 2.

The minimal perfect hash function h : S — [0,n — 1] used to index the hash table
presented in Figure 7.4 is taken from the family of MPHFs proposed in Chapter 2. The
MPHFs are generated based on random r-partite hypergraphs where each edge connects
r > 2 vertices (see Definition 13). In our experiments we used a version that employs
hypergraphs with r = 3, since it generates the fastest and most compact MPHFs. However,

for simplicity of exposition, we will now illustrate the MPHF construction when r = 2.

7.1. THE ALGORITHMS 121

Hash Table
o[k, 1D,
1|k, 1D,

T
10| Ky 1Dy
T
m-1| K, 1 D,

Figure 7.4: Hash table used in the perfect hashing method.

Figure 7.5 gives an overview of the MPHF construction for r = 2, taking as input a
key set S C U containing the first four month names abbreviated to the first three letters,
i.e., S = {jan,feb, mar, apr}. The mapping step in Figure 7.5(a) assumes that it is possible
to find r = 2 hash functions, hg and h;, with independent values uniformly distributed in
the intervals [0,3] and [4,7], respectively. These functions are used to assign each key in
S to an edge of an acyclic random bipartite graph G = (V, E)!, such that |[V| =m = 8
and |E| = n = 4. In our example, January is mapped to edge {ho(jan), hi(jan)} = {2, 5},
February is mapped to {ho(jan), hi(jan)} = {2,6}, and so on.

The assigning step in Figure 7.5(b) builds an array g representing a function g : [0, m —
1] — {0, 1,2}, which is used to uniquely assign an edge with key k to one of its r = 2
incident vertices. The value r is used to represent unassigned vertices. Note that a vertex
for a key k is either given by hg(k) or hy(k). The decision of which function h;(k) to be
used for k is made by calculating i = (g[ho(k)] + g[h1(k)]) mod 2. In our example, January
is mapped to 2 because (g[2] + g[5]) mod 2 = 0 and hg(jan) = 2. Similarly, February is
mapped to 6 because (¢g[2] + ¢[6]) mod 2 = 1 and h;(feb) = 6, and so on.

The ranking step builds a data structure used to compute a function rank(v), which
counts in O(1) time the number of assigned positions in g before a given position v €
[0,m — 1]. To illustrate, rank(7) = 3 means that there are three positions assigned before
position 7 in g, namely 0,2 and 6.

In our experiments, the MPHF is constructed based on hypergraphs with » = 3, and
we use three hash functions h; : S — [i%, (¢ +1)% — 1], in which 0 <7 < 3 and m =
1.23n. The value 1.23n is required to generate an acyclic random 3-partite hypergraph
with high probability, as shown in Chapter 2. Here again, the functions are assumed
to have independent values uniformly distributed. The MPHF has the following form:
h(k) = rank(phf(k)), where phf : S — [0,1.23n — 1] is a perfect hash function defined

1See Chapter 2 for details on how to obtain such a graph with high probability.

122 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

Assigning

~No ok wWwNRE O

@) (b)

Figure 7.5: (a) The mapping step generates an acyclic bipartite random 2-graph. (b) The
assigning step builds an array g so that each edge is uniquely assigned to a vertex. (c) The
ranking step builds the data structure used to compute function rank : V- — [0,n — 1] in
O(1) time.

as phf(k) = hi(k) and i = (g[ho(k)] + g[h1(k)] + g[h2(k)]) mod 3. The array ¢ is now
representing a function g : V' — {0, 1,2, 3}, and rank : V' — [0, n— 1] is now the cardinality
of {fu e V | u<vAglu] # 3}. Notice that a vertex u is assigned if g[u] # 3.

7.2 Experimental Results

In this section we present the key sets used in the experiments and the results of the
comparative study. All experiments were carried out on a computer running Linux version
2.6, with a 1.86 gigahertz Intel Core 2 64 bits processor, 4 gigabytes of main memory and 4
megabytes of L2 cache. All results presented are averages on 50 trials and were statistically
validated with a confidence level of 95%. Table 7.1 summarizes the symbols and acronyms
used throughout this section.

The linear hashing, quadratic hashing, double hashing, cuckoo hashing and minimal
perfect hashing structures were all implemented using the C language. We used the CMPH
library available at http://cmph.sf.net to generate the MPHFs used in the minimal
perfect hashing structure. For sparse hashing and dense hashing we used the original
implementation available in [72].

It is important to notice that we are interested in the performance of lookups and
therefore we do not present results concerning the time to build the data structures. Nev-
ertheless, it is important to stress that the MPHF construction is very fast, as can be seen
in Chapter 2. We consider two situations: (i) when only successful lookups are performed
(i.e., the key is always found in the hash table) and (ii) when only unsuccessful lookups

are involved (i.e., a key is never found in the hash table). The results are evaluated for

7.2. EXPERIMENTAL RESULTS 123

Symbol Meaning

o Load factor

n Number of keys in a key set

N Number of keys used in the lookup step

Probes/N Average number of probes per key during the lookup
T(s) Average time (in seconds) spent during the lookup of N keys
S, (bits/key) | Space Overhead in bits per key

LH Linear Hashing

QH Quadratic Hashing

DH Double Hashing

CH Cuckoo Hashing

SH Sparse Hashing

DeH Dense Hashing

MPH Minimal Perfect Hashing

Table 7.1: Symbols and acronyms used throughout this section.

each data structure in terms of the average number of lookups, the average lookup time
and the space overhead.

The experimental results are presented in three distinct subsections. First, in Sec-
tion 7.2.2, we compare the minimal perfect hashing structure with linear hashing, quadratic
hashing and double hashing structures. Second, in Section 7.2.3, we compare it with sparse
hashing and dense hashing structures. Finally, in Section 7.2.4, we compare it with cuckoo

hashing structure. The three sets of experiments use the key sets described in Section
7.2.1.

7.2.1 Key Sets

In our experiments we used three key sets: (i) a key set of 5,424,923 unique query terms
extracted from the AllTheWeb? query log, referred to as AllTheWeb key set; (ii) a key
set of 37,294,116 unique URLs collected from the Brazilian Web by the TodoBr? search
engine, referred to as URLs-37 key set; and (iii) a smaller key set of 10 million URLs
randomly selected from the URLs-37 key set, which is referred to as URLs-10 key set.
Table 7.2 shows the main characteristics of each key set, namely the smallest key size, the

largest key size and the average key size in bytes.

2AllTheWeb (www.alltheweb.com) is a trademark of Fast Search & Transfer company, which was

acquired by Overture Inc. in February 2003. In March 2004 Overture itself was taken over by Yahoo!.
3TodoBr (www.todobr.com.br) is a trademark of Akwan Information Technologies, which was acquired

by Google Inc. in July 2005.

124

CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

Key Set n Shortest Key | Largest Key | Average Size of the Keys
AllTheWeb | 5,424,923 2 31 17.46

URLs-10 10,000,000 8 494 58.36

URLs-37 | 37,294,116 8 496 58.77

Table 7.2: Characteristics of the key sets used for the experiments.

In order to test the lookup performance of the considered hash structures in a real world
environment, we need to look up keys in a way similar to the real access patterns of actual
applications. In the case of the AllTheWeb key set, the probability distribution of query
term lookups was extracted from the AllTheWeb query log. Similarly, the distribution of
URL lookups must be equivalent to the access pattern performed by a web crawler that
needs to check whether a URL extracted from a web page is new, i.e., whether it has not
been collected before. Therefore, we decided to use an automatic generator to simulate
these lookup patterns found in search engines.

The probability distribution of query term lookups for the AllTheWeb key set is shown
in Figure 7.6 (a).

with inclination —0.91. This same distribution was used to simulate the lookup stream

It is plotted in a log-log scale, constituting a power law distribution

submitted to the hashing data structures in order to evaluate their performance, as can
be seen in Figure 7.6 (b). We generated 10 million keys to be looked up in a hashing data
structure storing the AllTheWeb key set.

Natural Logarithm of the Probability
e
o

Natural Logarithn of the Probability

12

-14

8 2 4 3 8 18 12 14 16

Matural Legarithm of the Ranking of Terns 8 2 4 6 18 12 14 16

8
Matural Logarithn of the Ranking of Terns

distribution +

(a) Extracted from AllTheWeb query log.

(b) Generated automatically.

Figure 7.6: Probability distribution of query term lookups.

Pages arriving in a crawling system are known to have a few very popular URLs and
many not so popular URLSs, which also constitutes a power law behavior [17]. Consequently,

we employed the same distribution found for query terms to describe the probability of

7.2. EXPERIMENTAL RESULTS 125

arrival of a URL in a crawler. We generated 250 million and 20 million URLs to be looked
up in the hashing data structures that store the URLs-37 key set and the URLs-10 key set,
respectively.

So far we have described how to generate key sets to perform successful searches in
hashing data structures. In order to test the performance of the data structures when
unsuccessful searches are involved, we have randomly generated three additional key sets:
(i) 10 million keys of average size equal to 17.46 bytes to be looked up when the structures
are storing the AlltheWeb key set, (ii) 20 million keys of average size equal to 58.36 bytes
to be looked up when the structures are storing the URLs-10 key set, and (iii) 250 million
keys of average size equal to 58.77 bytes to be looked up when the structures are storing the
URLs-37 key set. They were created based on the average key sizes presented in Table 7.2.

In our experiments we used an 8-byte fingerprint of the key instead of the key itself.
The use of fingerprints was motivated by two reasons: (i) to guarantee that all keys have
the same size, since in this way we can allocate a fixed size for each key without waste of
space; and (ii) to reduce the amount of memory used to store each key, as the average key
size in all key sets used is greater than 8 bytes. A point worth noting is that each key set
was stored entirely in main memory, but the set of automatically generated keys is too big

to be stored in the same way, and had to be kept in disk.

7.2.2 Minimal Perfect Hashing Versus Linear Hashing, Quadrat-
ic Hashing and Double Hashing

In this section we compare the minimal perfect hashing structure with linear hashing,
quadratic hashing and double hashing. Linear hashing, quadratic hashing and double
hashing methods were tested with different load factors, ranging from 50 to 90%. We
considered both successful and unsuccessful searches to measure the average number of
probes and the amount of time spent (on average) to look up 10, 20 and 250 million keys
in the AllTheWeb, URLs-10 and URLs-37 key sets, respectively.

The results for successful and unsuccessful searches are presented in Tables 7.3 and
7.4, respectively. As expected, quadratic hashing and double hashing perform better than
linear hashing for high load factors, since they avoid the creation of clusters in this case.
Nevertheless, linear hashing is a better option when we use lower load factors. Further-
more, we can see that double hashing always has a smaller number of collisions per key
when compared to quadratic hashing and linear hashing, but it is slower since it needs to

compute two hash functions instead of one. The average number of probes measured for

126 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

both successful and unsuccessful searches are very close to the expected according to the

equations presented in Sections 7.1.1, 7.1.2 and 7.1.3 (this is not shown in the tables).

LH QH DH
Key Set a Probes/N T(s) Probes/N T(s) Probes/N T(s)
85% 3.78 5.67 2.40 5.27 2.17 5.42
80% 2.91 5.26 2.09 5.09 2.02 5.28
75% 247 5.04 1.93 4.97 1.90 5.11
AllTheWeb 70% 2.13 4.84 1.78 4.81 1.71 4.98
65% 1.89 4.70 1.69 4.69 1.61 4.83
60% 1.73 4.58 1.58 4.60 1.52 4.72
55% 1.62 4.46 1.51 4.52 1.45 4.64
50% 1.48 4.34 1.42 4.40 1.40 4.56
85% 3.63 18.98 2.27 17.87 2.16 18.36
80% 2.83 18.32 2.09 17.67 1.96 18.02
75% 2.37 17.69 1.87 17.29 1.83 17.69
URLs-10 70% 2.05 17.31 1.76 17.01 1.69 17.34
65% 1.80 17.00 1.61 16.81 1.62 17.14
60% 1.70 16.84 1.53 16.61 1.50 16.92
55% 1.57 16.34 1.47 16.33 1.42 16.58
50% 1.51 16.33 1.39 16.19 1.35 16.39
85% 3.94 269.19 2.37 253.18 2.29 263.80
80% 3.00 255.53 2.12 247.48 2.01 257.31
75% 2.46 247.95 1.89 242.51 1.83 250.60
URLs-37 70% 2.11 243.02 1.82 240.55 1.71 246.58
65% 1.94 238.15 1.65 235.54 1.66 244.10
60% 1.74 235.21 1.57 234.20 1.50 239.84
55% 1.62 232.83 1.50 231.63 1.45 236.31
50% 1.55 229.62 1.43 228.92 1.37 233.79

Table 7.3: Load factor influence on the time to successfully look up 10, 20 and 250 million
keys in the AllTheWeb, URLs-10 and URLs-37 key sets, respectively.

We now compare the minimal perfect hashing structure with linear hashing, quadratic
hashing and double hashing. Tables 7.5 and 7.6 show the results for successful and un-
successful searches, respectively. Two interesting results are remarkable. First, when the
MPHF description fits in the L2 cache, which is the case for the AllTheWeb key set and
URLs-10 key set, the minimal perfect hashing structure outperforms the others in terms of
lookup time for load factors greater than 55% for both successful and unsuccessful searches.

Second, in the converse situation in which the MPHF description does not fit in the L2

7.2. EXPERIMENTAL RESULTS

127

LH QH DH
Key Set o Probes/N T(s) Probes/N T(s) Probes/N T(s)
85% 22.80 14.82 7.54 8.60 6.67 8.89
80% 13.02 10.43 5.59 7.36 5.00 7.65
75% 8.44 8.17 4.43 6.67 4.00 6.95
AllTheWeb 70% 6.05 7.03 3.66 6.20 3.33 6.42
65% 4.59 6.32 3.11 5.87 2.86 6.06
60% 3.63 5.84 2.711 5.60 2.50 5.74
55% 297 5.48 2.39 5.36 2.22 5.48
50% 2.50 5.19 2.13 5.14 2.00 5.25
85% 22.61 34.81 7.54 22.68 7.25 23.71
80% 12.93 25.78 5.59 20.16 5.00 20.87
75% 8.49 21.93 4.43 18.77 4.00 19.27
URLs-10 70% 6.05 19.42 3.66 17.77 3.33 18.18
65% 4.58 17.94 3.11 17.07 2.86 17.40
60% 3.62 16.91 2.70 16.57 2.50 16.70
55% 2.97 16.14 2.39 15.98 2.22 16.14
50% 2.50 15.59 2.13 15.57 2.00 15.63
85% 22.53 526.05 7.55 333.49 6.67 379.17
80% 13.01 387.93 5.59 294.89 5.19 330.74
75% 8.51 318.94 4.43 270.53 4.00 296.62
URLs-37 70% 6.06 281.93 3.66 253.64 3.33 274.55
65% 4.58 258.15 3.12 242.66 2.86 257.75
60% 3.62 242.04 2.71 232.46 2.50 245.06
55% 297 230.90 2.39 225.05 2.22 233.96
50% 2.50 220.64 2.13 217.66 2.00 222.92

Table 7.4: Load factor influence on the time to unsuccessfully look up 10, 20 and 250

million keys in the AllTheWeb, URLs-10 and URLs-37 key sets, respectively.

cache, which is the case for the URLs-37 key set, the same thing happens for load factors

greater than 75% and 65% for successful searches and unsuccessful searches, respectively.

Therefore, as can be seen, the use of MPHF's saves a significant amount of space with

almost no loss in the lookup time.

128 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

Data AllTheWeb URLs-10 URLs-37
Structure | a(%) T(s) So(bits/key) | a(%) T(s) So(bits/key) | a(%) T(s) So(bits/key)
MPH 100 4.48 2.62 100 16.34 2.62 100 250.36 2.62
LH 55 4.46 116.36 55 16.34 116.36 75 247.95 85.33
QH 95 4.52 116.36 55 16.33 116.36 80 247.48 80
DH 50 4.56 128 50 16.39 128 75 250.60 85.33

Table 7.5: Comparison of MPH with LH, QH and DH, considering the space overhead and
the time to successfully look up 10, 20 and 250 million keys in the AllTheWeb, URLs-10
and URLs-37 key sets, respectively.

Data AllTheWeb URLs-10 URLs-37
Structure | a(%) T(s) So(bits/key) | a(%) T(s) So(bits/key) | a(%) T(s) So(bits/key)
MPH 100 5.33 2.62 100 16.38 2.62 100 252.65 2.62
LH 95 5.48 116.36 60 16.91 106.67 65 258.15 98.46
QH 95 5.36 116.36 60 16.57 106.67 70 253.64 91.43
DH 55 5.48 116.36 60 16.70 106.67 65 257.75 98.46

Table 7.6: Comparison of MPH with LH, QH and DH, considering the space overhead and
the time to unsuccessfully look up 10, 20 and 250 million keys in the AllTheWeb, URLs-10
and URLs-37 key sets, respectively.

7.2.3 Minimal Perfect Hashing Versus Dense and Sparse Hash-

ing

Sparse hashing and dense hashing were tested with their default load factor only, which
is 80%. Table 7.7 shows the time spent to execute the lookup step for each method for
successful searches only. As expected, sparse hashing had the worst performance in lookup
time when compared to the other methods, as it is designed to be efficient in space but not
in execution time. The same is true for unsuccessful searches, as displayed in Table 7.8. It
is important to note that perfect hashing has clearly outperformed the other methods in
all aspects. Experiments were performed using only the AllTheWeb and URLs-10 key sets.
We decided not to use the URLs-37 key set since we did not expect any improvements on

the results.

7.2. EXPERIMENTAL RESULTS 129

Data AllTheWeb URLs-10
Structure | a(%) T(s) So(bits/key) | a(%) T(s) So(bits/key)
MPH 100 4.48 2.62 100 16.34 2.62
SH 80 11.47 2,92 80 35.76 2,92
DeH 80 6.51 80 80 27.48 80

Table 7.7: Comparison of MPH with DeH and SH, considering the space overhead and the
time to successfully look up 10 and 20 million keys in the AllTheWeb and URLs-10 key

sets, respectively.

Data AllTheWeb URLs-10
Structure | «(%) T(s) S,(bits/key) | a(%) T(s) S,(bits/key)
MPH 100 5.33 2.62 100 16.38 2.62
SH 80 15.48 2,92 80 48.27 2,92
DeH 80 7.59 80 80 30.26 80

Table 7.8: Comparison of MPH with DeH and SH, considering the space overhead and the
time to unsuccessfully look up 10 and 20 million keys in the AllTheWeb and URLs-10 key

sets, respectively.

7.2.4 Minimal Perfect Hashing Versus Cuckoo Hashing

Cuckoo hashing has a different behavior when compared to any of the methods analyzed,
as it cannot work if the load factor is high, i.e., at most 50% [63]. Therefore, we decided to
show the comparison between this method and perfect hashing in this separated subsection.
Cuckoo hashing was tested with load factors ranging from 20% to the maximum load factor

with which it works.

Table 7.9 shows the average number of probes and the average lookup time to success-
fully search for 10, 20 and 250 million keys in the AllTheWeb, URLs-10 and URLs-37 key
sets, respectively. We can see that cuckoo hashing performs slightly faster for all key sets
used, but the space overhead for the MPH structure is much lower than for cuckoo hashing

in all experiments. The same happens for unsuccessful searches, as we can see in Table

7.10.

130 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

Data AllTheWeb URLs-10 URLs-37
Structure | a(%) T(s) So(bits/key) | a(%) T(s) So(bits/key) | a(%) T(s) So(bits/key)
MPH 100 4.48 2.62 100 16.34 2.62 100 250.36 2.62
CH 20 4.08 320 20 15.99 320 20 222.40 320
CH 30 4.13 213 30 16.05 213 30 224.98 213
CH 40 4.28 160 40 16.22 160 40 228.76 160
CH 50 4.38 128 50 16.34 128 50 233.89 128

Table 7.9: Comparison of MPH with CH, considering the space overhead and the time to
successfully look up 10, 20 and 250 million keys in the AllTheWeb, URLs-10 and URLs-37

key sets, respectively.

Data AllTheWeb URLs-10 URLs-37
Structure | a(%) T(s) So(bits/key) | a(%) T(s) So(bits/key) | a(%) T(s) So(bits/key)
MPH 100 5.33 2.62 100 16.38 2.62 100 252.65 2.62
CH 20 5.06 320 20 15.79 320 20 222.46 320
CH 30 5.10 213 30 15.92 213 30 227.21 213
CH 40 5.30 160 40 16.07 160 40 229.58 160
CH 50 5.34 128 50 16.17 128 50 231.26 128

Table 7.10: Comparison of MPH with CH, considering the space overhead and the time
to unsuccessfully look up 10, 20 and 250 million keys in the AllTheWeb, URLs-10 and
URLs-37 key sets, respectively.

7.3 Conclusions

In this chapter we have presented a thorough study of data structures that are suitable for
indexing internal memory in an efficient way in terms of both space and lookup time when
we have a key set that is fixed for a long period of time (i.e., a static key set) and each
key is associated with satellite data. This is widely used in data warehousing and search
engine applications (see [71] for other examples).

It is well known that an efficient way to represent a key set in terms of lookup time
is by using a table indexed by a hash function. For static key sets it is possible to pay
the price of pre-computing an MPHF to find any key in a table in one single probe. We
have shown that minimal perfect hashing has a clear advantage in memory usage when
compared to other hashing methods, since there are no empty entries in its hash table and
thus space overhead is greatly reduced by avoiding the use of pointers. This implies in a

gain of O(logn) bits.

7.3. CONCLUSIONS 131

In our study, we compared MPHF's with linear hashing, quadratic hashing, double hash-
ing, dense hashing, cuckoo hashing and sparse hashing. We have shown that MPHFs pro-
vide the best tradeoff between space usage and lookup time among these hashing schemes.
As an example, minimal perfect hashing have a better performance in all measured as-
pects when compared to sparse hashing, which has been designed specifically for efficient
memory usage. Furthermore, if the MPHF can be stored in cache, minimal perfect hash-
ing outperforms linear hashing, quadratic hashing and double hashing in all aspects when
these methods have a hash table occupancy of 55% or higher. The same happens for hash
table occupancies greater than or equal to 75% if the MPHF does not fit in cache. This
implies in a significant memory overhead due to a great number of unused positions in the
hash table.

132 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this work we have presented two classes of algorithms for constructing PHFs and MPHFs.
The first class contains internal memory based algorithms that assume uniform hashing
to construct the functions. The algorithms read a key set stored in external memory and
maps it to data structures that are handled in the internal memory. Then, the generation
of the functions are done based on these internal data structures. The second class contains
a cache-aware external memory algorithm that generates the functions without assuming
uniform hashing. The algorithm uses data structures stored in both internal and external
memory, but the key set is still kept in the external memory.

In Chapter 2 we presented an internal random access memory algorithm (RAM al-
gorithm) that generates a family F of near space-optimal PHFs or MPHFs. The RAM
algorithm uses acyclic random hypergraphs given by function values of r uniform random
hash functions on S for generating PHFs and MPHF's that require O(n) bits to be stored.
We have improved in a factor of O(logn) the well known result by Majewski et al [55].
They generate MPHFs based on acyclic hypergraphs that are stored in O(nlogn) bits
whereas the ones generated by the RAM algorithm requires O(n) bits. All the resulting
functions are evaluated in constant time. For r = 2 the resulting MPHFs are stored in ap-
proximately 3.6n bits. For » = 3 we have got still more compact MPHF's, which are stored
in approximately 2.6n bits. This is within a factor of 2 from the information theoretical
lower bound of approximately 1.44n bits for MPHF's.

For applications where a PHF of range [0, m — 1], where m = 1.23n, is sufficient,

more compact and even simpler representations can be achieved. For example, for m =

133

134 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

1.23n we can get a space usage of 1.95n bits. This is also within a small constant factor
from the information theoretical lower bound of approximately 0.89n bits. The bounds
for r = 3 assume a conjecture about the emergence of a 2-core in a random 3-partite
hypergraph, whereas the bounds for » = 2 are fully proved. Choosing r > 3 does not give

any improvement of these results.

There is a gap between theory and practice among all previous methods on perfect
hashing. On one hand, there are good theoretical results without experimentally proven
practicality for large key sets. On the other hand, there are the algorithms that assume
unrealistic assumptions, as the assumption that uniform hash functions are available to be
used with no extra cost of storage space (see Section 1.4), to theoretically analyze their run
time and space usage. The methods also require O(n) computer words for the construction

process.

To design a cache-aware external memory algorithm (EM algorithm) that gives an
important step on the way of bridging the gap between theory and practice on perfect
hashing, works with high probability for every key set and scales for key sets on the order
of billions of keys we used a two-step approach: the partitioning step and the searching
step. In the partitioning step, we use a universal hash function to split the incoming key
set S into small buckets with a bounded maximum bucket size that fits in the CPU cache.
Then, we use the techniques presented in Chapter 3 to simulate uniform hash functions
on the small buckets. Therefore, as we are able to use uniform hash functions on the
small buckets, in the searching step we use the RAM algorithm to build an MPHF for
each bucket with high probability, and using an offset array we obtain an MPHF for the
whole key set S. In order to scale for sets on the order of billions of keys we generate runs
of an external multi-way merge sort during the partitioning step and merge them in the

searching step when the buckets are read from disk.

The EM algorithm requires O(n¢) computer words, where 0 < € < 1, for constructing
the functions in linear time. Typically € = 0.5 and that is the main reason that makes the
EM algorithm to scale. The resulting PHFs and MPHF's require approximately 2.7 and 3.3
bits per key to be stored and are evaluated in constant time. All together makes the EM
algorithm the first one that demonstrates the capability of generating MPHFs for sets on
the order of billions of keys on a commodity PC. For instance, considering a set of 1.024
billion URLs the EM algorithm constructs an MPHF on a commodity PC in approximately
50 minutes. The complete description of the EM algorithm is presented in Chapter 4.

The EM algorithm presents a high degree of parallelism to be exploited. Then, in

8.2. FUTURE WORK 135

Chapter 5, we presented a parallel implementation of the EM algorithm (PEM algorithm).
The PEM algorithm distributes both the construction and the description of the resulting
functions. For instance, by using a 14-computer cluster the PEM algorithm generates
a PHF or an MPHF for 1.024 billion URLs in approximately 4 minutes, achieving an
almost linear speedup. Also, for 14.336 billion 16-byte random integers evenly distributed
among the 14 participating machines the PEM algorithm outputs a PHF or an MPHF in
approximately 50 minutes, resulting in a performance degradation of 20%.

In Chapter 6, we designed techniques to generate MPHF's based on random graphs with
cycles. The BKZ algorithm was the first algorithm we came up with to generate MPHF's
based on random graphs with cycles. It improves the space requirement of the algorithm
by Czech, Havas and Majewski [25], referred to as CHM, at the expense of generating
functions in the same form that are not order preserving, but are computed in O(1) time.
We have improved the space required to store a function in the BKZ algorithm to 55% of
the space required by the CHM algorithm. The BKZ algorithm is also linear on n and runs
59% faster than the CHM algorithm. However, the resulting MPHF's still need O(nlogn)
bits to be stored and the algorithm needs O(n) computer words to construct the functions.

In the same trend, also in Chapter 6, we used techniques similar to the ones used in the
design of the BKZ algorithm to speedup the execution time of RAM algorithm that works
on random acyclic bipartite graphs. In this case, by allowing a single cycle with the same
number of vertices and edges per connected component in the random bipartite graph we
were able to generate PHFs and MPHFs 40% faster than when cycles are not allowed.

Minimal perfect hash functions were not considered a good option to index internal
memory in the past [45]. However, in Chapter 7, we showed that the new MPHFs proposed
in this work, specially the ones generated by the RAM algorithm, have a clear advantage
in memory usage when compared to other hashing methods with almost no loss in terms
of lookup time, since there are no empty entries in its hash table and thus space overhead

is greatly reduced by avoiding the use of pointers. This implies in a gain of O(logn) bits.

8.2 Future Work

In this work we designed, analyzed and implemented algorithms to build compact and
practical PHFs and MPHFs. On the way we left some points open to be exploited as

future work. In the following we present the future steps to be taken:

1. In Chapter 2 the threshold for the moment that the random acyclic r-partite hyper-

136

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

graphs dominate the space of random r-partite hypergraphs have not been completely
proved for r > 3. The problems for r < 3 and for r > 3 have different natures and
involve a phase transition, as reported to us by Kohayakawa [52]. We are on the way
of obtaining a fully proof of the threshold for » > 3. This is being done in a joint
work with Professor Nicholas C. Wormald from the Department of Combinatorics

and Optimization at University of Waterloo.

. The main technical ingredient of the family of algorithms presented in Chapter 2 is

the use of acyclic r-partite random hypergraphs. We have shown how to deal with
cycles when r = 2. However, we aim to extend the techniques presented in Chapter 6
to deal with cycles when r» = 3. We believe that we can get still more compact

functions in this case.

In Chapter 6 we were not able to prove the Conjecture 1 and Professor Jayme Szwar-
cfiter pointed out in the thesis presentation that the literature related to graceful
labeling can be a good source to find insights on the way of the proof. Therefore, we

want to study this literature and try to find a proof for the the Conjecture 1.

. A problem with all algorithms we have designed is that we need to know the key set a

priori. That is, they are designed to work with static sets. Then, we aim to study how
to extend the algorithms to work with dynamic key sets to build compact dynamic
minimal perfect hash functions. In this case, keys can be inserted or removed from
the key set and this operations would be carried out in our methods with a linear cost.
Then, our objective is to look for algorithms that generate functions as compact as
possible, which should allow lookups, insertions and deletions in amortized constant

time.

. We believe that MPHFs can potentially be applied to applications where we need

to index similar objects previously clustered with respect to some similarity metric
(e.g., Euclidean distance). In these cases, we can compute a key for each cluster
based on the similarity metric and, then, to compute an MPHF for the resulting key
set. We aim to exploit this problem because we believe that the resulting key sets
can be built in such way that put them in between static and dynamic key sets. For
example, this situation would occur if we were able to build the key set so that a
key is added to it whenever a new cluster is created and deleted only when a cluster
disappear, but no change is made in the key of a given cluster when objects are added

to or removed from the cluster.

8.2. FUTURE WORK 137

6. An MPHF can be used to implement a data structure with the same functionality as
a Bloom filter! [60, 37]. In many applications where a set S of elements is to be stored,
it is acceptable to include in the set some false positives with a small probability by
storing a signature for each perfect hash value. Theoretically speaking, as shown
in [60], this data structure requires around 30% less space usage when compared
to Bloom filters, plus the space for the MPHF. Then we aim to study if this data
structure outperforms the Bloom filters in practice when lookup time and space usage
are considered as metrics. Preliminary results indicates that the data structure that
uses MPHF's just outperforms the Bloom filters for false positive rates smaller than
2% in terms of space usage. We still do not have conclusive preliminary results for

lookup time.

!The Bloom filter, conceived by Burton H. Bloom in 1970 [6], is a space-efficient probabilistic data
structure that is used to test whether an element is a member of a set. False positives are possible, but
false negatives are not. False positives are elements that appear to be in S but are not and false negatives
are elements that are not in S but a data structure storing S says that they are. Elements can be added
to the set, but not removed (though this can be addressed with a counting filter [10]). The more elements
that are added to the set, the larger the probability of false positives. Bloom filters have applications in

distributed databases and data mining (association rule mining [21, 22]).

138 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Bibliography

1]

[10]

A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116-1127, 1988.

N. Alon, M. Dietzfelbinger, P. B. Miltersen, E. Petrank, and G. Tardos. Linear hash
functions. Journal of the ACM, 46(5):667-683, 1999.

N. Alon and M. Naor. Derandomization, witnesses for Boolean matrix multiplication
and construction of perfect hash functions. Algorithmica, 16(4-5):434-449, 1996.

M. Atici, D. R. Stinson, and R. Wei. A new practical algorithm for the construction of
a perfect hash function. Journal Combin. Math. Combin. Comput., 35:127-145, 2000.

Djamal Belazzougui. Private communication, September 30, 2006.

B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communi-
cations of the ACM, 13(7):422-426, 1970.

P. Boldi and S. Vigna. The webgraph framework i: Compression techniques. In
Proceedings of the 13th International World Wide Web Conference (WWW’04), pages
595-602, 2004.

B. Bollobas. Random graphs, volume 73 of Cambridge Studies in Advanced Mathe-

matics. Cambridge University Press, Cambridge, second edition, 2001.

B. Bollobas and O. Pikhurko. Integer sets with prescribed pairwise differences being

distinct. Furopean Journal of Combinatorics. To Appear.

F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese. An improved
construction for counting bloom filters. In Proceedings of the 14th conference on
Annual European Symposium (ESA’06), pages 684-695, London, UK, 2006. Springer-
Verlag.

139

140

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[18]

F. C. Botelho, D. Galinkin, W. Meira Jr., and N. Ziviani. Distributed perfect hashing
for very large key sets. In Proceedings of the 3rd International ICST Conference on
Scalable Information Systems (InfoScale’08). ACM Press, 2008.

F. C. Botelho, Y. Kohayakawa, and N. Ziviani. A practical minimal perfect hashing
method. In Proceedings of the 4th International Workshop on Efficient and Experi-
mental Algorithms (WEA’05), pages 488-500. Springer LNCS vol. 3503, 2005.

F. C. Botelho, H. R. Langbehn, G. V. Menezes, and N. Ziviani. Indexing internal
memory with minimal perfect hash functions. In Proceedings of the 23rd Brazilian
Symposium on Database (SBBD’08), October 2008.

F. C. Botelho, R. Pagh, and N. Ziviani. Simple and space-efficient minimal perfect hash
functions. In Proceedings of the 10th Workshop on Algorithms and Data Structures
(WADS’07), pages 139-150. Springer LNCS vol. 4619, 2007.

F. C. Botelho and N. Ziviani. External perfect hashing for very large key sets. In
Proceedings of the 16th ACM Conference on Information and Knowledge Management
(CIKM’07), pages 653-662. ACM Press, 2007.

S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In
Proceedings of the 7th International World Wide Web Conference (WWW’98), pages
107-117, April 1998.

A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the web. In Proceedings of the 9th
international World Wide Web conference on Computer networks : the international
journal of computer and telecommunications netowrking (WWW’00), pages 309-320,
Amsterdam, The Netherlands, The Netherlands, 2000. North-Holland Publishing Co.

A. 7. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher. Min-wise independent
permutations. In Proceedings of the Thirtieth Annual ACM Symposium on the Theory
of Computing (STOC’98), pages 327-336, 1998.

J. Cain and N. C. Wormald. Encores on cores. Electronic Journal of Combinatorics,
13(1), 2006.

J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143-154, 1979.

BIBLIOGRAPHY 141

[21]

[22]

23]

[20]

[27]

[28]

[29]

[30]

[31]

C. C. Chang and C. Y. Lin. A perfect hashing schemes for mining association rules.

The Computer Journal, 48(2):168-179, 2005.

C. C. Chang, C. Y. Lin, and H. Chou. Perfect hashing schemes for mining traversal
patterns. Journal of Fundamenta Informaticae, 70(3):185-202, 2006.

B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The bloomier filter: An efficient data
structure for static support lookup tables. In Proceedings of the 15th annual ACM-
SIAM symposium on Discrete algorithms (SODA’04), pages 30-39, Philadelphia, PA,
USA, 2004. Society for Industrial and Applied Mathematics.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, second edition, 2001.

Z. J. Czech, G. Havas, and B. S. Majewski. An optimal algorithm for generating
minimal perfect hash functions. Information Processing Letters, 43(5):257-264, 1992.

Z. J. Czech, G. Havas, and B. S. Majewski. Fundamental study perfect hashing.
Theoretical Computer Science, 182:1-143, 1997.

A. M. Daoud. Perfect hash functions for large web repositories. In G. Kotsis, D. Taniar,
S. Bressan, I. K. Ibrahim, and S. Mokhtar, editors, Proceedings of the 7th Interna-
tional Conference on Information Integration and Web Based Applications Services
(11WAS’05), volume 196, pages 1053-1063. Austrian Computer Society, 2005.

E. Demaine, F. Meyer auf der Heide, R. Pagh, and M. Patrascu. De dictionariis
dynamicis pauco spatio utentibus. In Proceedings of the Latin American Symposium
on Theoretical Informatics (LATIN’06), pages 349-361, 2006.

M. Dietzfelbinger and T. Hagerup. Simple minimal perfect hashing in less space. In
Proceedings of the 9th European Symposium on Algorithms (ESA’01), pages 109-120.
Springer LNCS vol. 2161, 2001.

M. Dietzfelbinger and C. Weidling. Balanced allocation and dictionaries with tightly
packed constant size bins. In Proceedings of 32nd International Colloquium on Au-
tomata, Languages and Programming (ICALP’05), pages 166-178, 2005.

M. Dietzfelbinger and P. Woelfel. Almost random graphs with simple hash functions.
In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing
(STOC’03), pages 629-638, New York, NY, USA, 2003. ACM.

142

BIBLIOGRAPHY

[32]

[38]

[39]

[40]

J. Ebert. A versatile data structure for edges oriented graph algorithms. Communi-

cation of The ACM, (30):513-519, 1987.
P. Erdés and A. Rényi. On random graphs I. Pub. Math. Debrecen, 6:290-297, 1959.

P. Erd6s and A. Rényi. On the evolution of random graphs. Magyar Tud. Akad. Mat.
Kutato Int. Kozl., 5:17-61, 1960.

P. Erd6s and A. Rényi. On the strength of connectedness of a random graph. Acta
Mathematica Scientia Hungary, 12:261-267, 1961.

W. Feller. An Introduction to Probability Theory and Its Applications, volume 1.
Wiley, January 1968.

D. Ficara, S. Giordano, G. Procissi, and F. Vitucci. Multilayer compressed counting
bloom filters. In Proceedings of the 27th IEEE Conference on Computer Communica-
tions (INFOCOM’08), pages 311-315. IEEE Press, 2008.

E. A. Fox, Q. F. Chen, and L. S. Heath. A faster algorithm for constructing minimal
perfect hash functions. In Proceedings of the 15th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR’92), pages
266-273, 1992.

E. A. Fox, L. S. Heath, Q. Chen, and A. M. Daoud. Practical minimal perfect hash
functions for large databases. Communications of the ACM, 35(1):105-121, 1992.

M. L. Fredman and J. Komldés. On the size of separating systems and families of
perfect hashing functions. SIAM Journal on Algebraic and Discrete Methods, 5:61-68,
1984.

M. L. Fredman, J. Komlés, and E. Szemerédi. Storing a sparse table with O(1) worst
case access time. Journal of the ACM, 31(3):538-544, July 1984.

N. Galli, B. Seybold, and K. Simon. Tetris-hashing or optimal table compression.
Discrete Applied Mathematics, 110(1):41-58, june 2001.

T. Hagerup and T. Tholey. Efficient minimal perfect hashing in nearly minimal space.
In Proceedings of the 18th Symposium on Theoretical Aspects of Computer Science
(STACS’01), pages 317-326. Springer LNCS vol. 2010, 2001.

BIBLIOGRAPHY 143

[44]

[45]

[46]

[47]

[51]

[52]

[53]

[55]

[56]

G. Havas, B. S. Majewski, N. C. Wormald, and Z. J. Czech. Graphs, hypergraphs
and hashing. In Proceedings of the 19th International Workshop on Graph-Theoretic
Concepts in Computer Science, pages 153-165. Springer LNCS vol. 790, 1993.

Y. Ho. Application of minimal perfect hashing in main memory indexing. Technical
report, Cambridge, MA, USA, 1994.

F. R. A. Hopgood and J. Davenport. The quadratic hash method when the table size
is a power of 2. The Computer Journal, 15(4):314-315, November 1972.

R. Jain. The art of computer systems performance analysis: techniques for exper-
imental design, measurement, simulation, and modeling. John Wiley, first edition,

1991.

S. Janson. Poisson convergence and poisson processes with applications to random

graphs. Stochastic Processes and their Applications, 26:1-30, 1987.
S. Janson, T. Luczak, and A. Rucinski. Random graphs. Wiley-Inter., 2000.

B. Jenkins. Algorithm alley: Hash functions. Dr. Dobb’s Journal of Software Tools,
22(9), september 1997.

D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.
Addison-Wesley, second edition, 1973.

Yoshiharu Kohayakawa. Private communication, 2007.

P. Larson and G. Graefe. Memory management during run generation in external
sorting. In Proceedings of the 1998 ACM SIGMOD international conference on Man-
agement of data, pages 472-483. ACM Press, 1998.

S. Lefebvre and H. Hoppe. Perfect spatial hashing. ACM Transactions on Graphics,
25(3):579-588, 2006.

B. S. Majewski, N. C. Wormald, G. Havas, and Z. J. Czech. A family of perfect
hashing methods. The Computer Journal, 39(6):547-554, 1996.

S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing database architecture for
the new bottleneck: Memory access. The VLDB journal, 9:231-246, 2000.

144

BIBLIOGRAPHY

[57]

[58]

[59]

[60]

[67]

[68]

[69]

K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. Springer-
Verlag, 1984.

R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University Press,
New York, NY, USA, 1995.

D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dictio-
nary. In Proceedings of the Workshop on Algorithm Engineering and Fxperiments
(ALENEX’07), 2007.

A. Pagh, R. Pagh, and S. S. Rao. An optimal bloom filter replacement. In Proceedings
of the 16th annual ACM-SIAM symposium on Discrete algorithms (SODA’05), pages
823-829, Philadelphia, PA, USA, 2005.

R. Pagh. Hash and displace: Efficient evaluation of minimal perfect hash functions.
In Workshop on Algorithms and Data Structures (WADS’99), pages 49-54, 1999.

R. Pagh. Low redundancy in static dictionaries with constant query time. SIAM
Journal on Computing, 31(2):353-363, 2001.

R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122-144, 2004.

E. M. Palmer. Graphical Evolution: An Introduction to the Theory of Random Graphs.
John Wiley & Sons, New York, 1985.

B. Pittel and N. C. Wormald. Counting connected graphs inside-out. Journal of
Combinatorial Theory Series B, 93(2):127-172, 2005.

B. Prabhakar and F. Bonomi. Perfect hashing for network applications. In Proceedings
of the IEEE International Symposium on Information Theory. IEEE Press, 2006.

Michael J. Quinn. Parallel computing: theory and practice. McGraw-Hill, Inc., New
York, NY, USA, second edition, 1994.

J. Radhakrishnan. Improved bounds for covering complete uniform hypergraphs. In-
formation Processing Letters, 41:203-207, 1992.

R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In Proceedings of the thirteenth annual ACM-
SIAM symposium on Discrete algorithms (SODA’02), pages 233-242, Philadelphia,
PA, USA, 2002. Society for Industrial and Applied Mathematics.

BIBLIOGRAPHY 145

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

J. P. Schmidt and A. Siegel. The spatial complexity of oblivious k-probe hash func-
tions. SIAM Journal on Computing, 19(5):775-786, October 1990.

M. Seltzer. Beyond relational databases. ACM Queue, 3(3), April 2005.

C. Silverstein. An extremely memory-efficient hash_map implementation (google-

sparsehash). http://code.google.com/p/google-sparsehash, November 2007.

D. R. Stinson, R. Wei, and L. Zhu. New constructions for perfect hash families and
related structures using combinatorial designs and codes. Journal Combin. Designs.,
8:189-200, 2000.

J. S. Vitter. External memory algorithms and data structures. In J. Abello and J. S.
Vitter, editors, External Memory Algorithms and Visualization, pages 1-38. American
Mathematical Society Press, Providence, RI, 1999.

P. Woelfel. Maintaining external memory efficient hash tables. In Proceedings of the
10th International Workshop on Randomization and Computation (RANDOM’06),
pages 508-519. Springer LNCS vol. 4110, 2006.

N. Ziviani. Projeto de Algoritmos com implementacoes em Java e C++. Thompson
Learning, Sao Paulo, first edition, 2006. Consultoria em Java e C++ de F. C. Botelho.

M. Zukowski, S. Héman, and P. Boncz. Architecture-conscious hashing. In Second
DAMON workshop (SIGMOD 2006), Chicago, USA, june 2006.

