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Resumo

Mineração Web pode ser vista como o processo de encontrar padrões na Web por meio de
técnicas de mineração de dados. Mineração Web é uma tarefa computacionalmente inten-
siva, e a maioria dos softwares de mineração são desenvolvidos isoladamente, o que torna
escalabilidade e reusabilidade difícil para outras tarefas de mineração. Mineração Web é
um processo iterativo onde prototipagem tem um papel essencial para experimentar com
diferentes alternativas, bem como para incorporar o conhecimento adquirido em iterações
anteriores do processo. O objetivo desta tese é o desenvolvimento de um modelo para
prototipagem rápida em mineração Web, chamado WIM � Web Information Mining. A
principal motivação para desenvolver o WIM é o fato de que seu modelo conceitual provê os
seus usuários com um nível de abstração apropriado para prototipagem e experimentação
durante a tarefa de mineração.

WIM é composto de um modelo de dados e de uma álgebra. O modelo de dados
WIM é uma visão relacional dos dados Web. Os três tipos de dados existentes na Web,
chamados de conteúdo, de estrutura e dados de uso, são representados por relações. Os
principais componentes de entrada do modelo de dados WIM são as páginas Web, a es-
trutura de hiperlinks que interliga as páginas Web, e os históricos (logs) de consultas
obtidos de máquinas de busca da Web. A programação WIM é baseada em �uxos de
dados (data�ows), onde sequências de operações são aplicadas às relações. As operações
são de�nidas pela álgebra WIM, que contém operadores para manipulação de dados e para
mineração de dados. WIM está implementado contendo uma linguagem de programação
declarativa provida por sua álgebra. A arquitetura do software WIM é apresentada, jun-
tamente com suas questões de implementação, e projetos de arquiteturas alternativas são
discutidos, sobre o qual uma versão futura do software WIM para escala industrial poderia
ser implementada.

WIM é aplicado a um conjunto de cinco casos de uso reais em mineração Web, como
uma maneira de demonstrar os recursos do WIM. O principal caso de uso, chamado Árvores
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Genealógicas na Web, é um estudo de como o conteúdo da Web evolui com o tempo. Esse
caso de uso foi escolhido para realização de uma análise completa dos resultados, os quais
apresentam evidências de que parte dos usuários editores de conteúdo na Web realizam
consultas em máquinas de busca para encontrar conteúdo e então republicar o que foi
encontrado como resultado de consulta. A conclusão é que máquinas de busca in�uenciam o
conteúdo da Web. A experimentação do WIM nos cinco casos de uso mostrou que o seu uso
facilita signi�cantemente a prototipagem rápida em mineração Web. O uso experimental
da linguagem de programação WIM mostrou que ela reduz o tamanho do código escrito
para uma aplicação em ordens de magnitude, quando comparada com implementações
isoladas.
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Abstract

Web mining can be seen as the process of discovering patterns from the Web by means
of data mining techniques. Web mining is a computation-intensive task and most mining
software is developed ad-hoc, which makes scalability and reusability di�cult for other
mining tasks. Web mining is an iterative process and prototyping plays an essential role in
experimenting with di�erent alternatives, as well as in incorporating knowledge acquired
in previous iterations of the process. The objective of this thesis is the development of a
model for fast Web mining prototyping, referred to as WIM � Web Information Mining.
The main motivation for developing the WIM model is the fact that its underlying concep-
tual model provides its users with a level of abstraction appropriate for prototyping and
experimentation during the Web mining task.

WIM is composed of a data model and an algebra. The WIM data model is a
relational view of Web data. The three types of existing Web data, namely Web content,
Web structure and Web usage, are represented by relations. The main input components
for the WIM data model are the Web pages, the hyperlink structure linking Web pages and
the query logs obtained from Web search engines. WIM is implemented with a declarative
programming language provided by its algebra. The WIM programming language is based
on data�ows, where sequences of operations are applied to relations. The operations are
de�ned by the WIM algebra, which contains operators for data manipulation and for data
mining. We present the WIM software architecture, its implementation issues, and discuss
alternative architecture designs on which a forthcoming industrial-scale WIM software
version could be implemented.

We have applied WIM to a set of �ve real Web mining use cases, as a means to
demonstrate the WIM features. The main use case, called Genealogical Trees on the
Web, is a study of how Web content evolves in time. We have elected this use case to
perform a complete analysis of its results, which present evidence that some Web publishers
actually performed queries using search engines in order to �nd content and then republish
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what was found as answer to the query. The conclusion is that search engines bias the
content of the Web. The experimentation of WIM in �ve real use cases has been shown
to signi�cantly facilitate fast Web mining prototyping. Experimental use of the WIM
programming language has shown that it reduces the code size written for an application
by orders of magnitude when compared with ad-hoc implementations.
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Resumo Estendido

Um Modelo para Prototipagem Rápida de Aplicações
de Mineração na Web

Introdução

Mineração de dados na Web, ou simplesmente mineração Web, é o processo de desco-
brir informação útil em dados da Web, por meio de técnicas de mineração de dados [Liu,
2007; Chakrabarti, 2002]. O custo de encontrar a informação correta não está associado à
falta de técnicas de mineração de dados, mas à complexidade de gerenciar os dados Web
necessários, e ao uso e�ciente e e�caz de técnicas conhecidas de mineração. Com o objetivo
de reduzir signi�cativamente o custo em minerar dados Web, de forma a fazer o processo de
mineração mais acessível e de fácil uso, a tese aqui resumida representa uma das primeiras
contribuições para a criação de uma máquina de mineração para a Web.

Mineração Web é um processo iterativo, no qual prototipagem tem um papel essen-
cial para experimentar facilmente com diferentes alternativas, bem como para incorporar
o conhecimento adquirido durante iterações anteriores do processo. Para facilitar prototi-
pagem, um nível apropriado de abstração precisa ser provido ao usuário ou programador
responsável pela tarefa de mineração. Motivado pela falta de um arcabouço para tal abs-
tração, a parte central da tese compreende o projeto e desenvolvimento de um modelo para
prototipagem intensiva em mineração Web.

O principal objetivo desta tese é o projeto e desenvolvimento do modelo WIM �
Web Information Mining, um modelo implementado como um protótipo de software para
prototipagem rápida de soluções de mineração Web. WIM inclui um modelo de dados
formal e uma álgebra, que estão especialmente projetados para manipular e minerar os
principais tipos de dados presentes na Web. Como um requisito para que no futuro o atual
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protótipo WIM possa se tornar uma ferramenta de uso extenso, um projeto consistente é
extremamente importante. Para tal, vasto conhecimento do mundo que envolve mineração
Web é fundamental, de forma que outro objetivo da tese é também o estudo de um conjunto
de problemas de mineração Web. WIM foi aplicado a um conjunto de cinco problemas em
mineração Web.

Este artigo é um resumo em português da tese, e busca apresentar de uma forma
geral e em alto nível o trabalho desenvolvido. Estão presentes na tese, mas não fazem
parte do escopo deste resumo, os seguintes pontos: descrição dos estudos realizados para
solução dos problemas em mineração Web apresentados na Seção , apresentação do modelo
de dados formal WIM, apresentação sintática e semântica dos operadores da álgebra WIM,
formalização e avaliação da álgebra, descrição da arquitetura e questões de implementação
do protótipo. De toda forma, este resumo é completo o su�ciente para mostrar os principais
resultados gerados pela tese e sua importância.

A Seção apresenta um conjunto de aplicações em mineração Web nas quais o WIM é
capaz de implementar soluções. Para algumas aplicações, ambas soluções, isolada e usando
WIM, foram desenvolvidas. A Seção 3 apresenta, de uma forma geral, os principais con-
ceitos presentes no modelo WIM, com ilustrações reais de uso. Finalmente, as conclusões,
bem como uma discussão sobre os trabalhos atuais e futuros, gerados como resultados
diretos da tese, são apresentados na Seção .

Aplicações em Mineração Web Desenvolvidas
Para que se entenda os tipos de cenários nos quais o WIM pode ser empregado, esta
seção apresenta uma série de aplicações já estudadas através do WIM. A principal apli-
cação estudada na tese é uma análise da evolução do conteúdo da Web de acordo com o
tempo [Baeza-Yates et al., 2008]. O programa WIM identi�ca documentos pais, que são
fontes de cópias, e documentos �lhos, que são documentos mais recentes contendo parte do
conteúdo de documentos velhos. Problemas como detecção de duplicatas para �ltragem,
comparação de URLs, associação de um único pai a cada �lho, são tratados nesse estudo
e implementados tanto pelo WIM quanto de forma isolada, para comparação das duas
soluções de implementação.

Como resultado do trabalho de mineração de dados realizado neste es-
tudo [Baeza-Yates et al., 2008], foi identi�cado o padrão de cópias parciais de documentos
na Web. Como principais conclusões, estimou-se que quase 25% dos novos documentos na
Web têm trechos de documentos previamente existentes, e que cópias de sites externos (em
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relação ao site do documento �lho) acontecem mais frequentemente que cópias do mesmo
site. Isso demonstra que usuários copiam mais conteúdo de outros do que os seus próprios
conteúdos, que estariam no mesmo site. O estudo também relacionou o papel de máquinas
de busca no comportamento de usuários ao reutilizar conteúdo previamente publicado na
Web. Como forte conclusão, foi veri�cado que documentos que aparecem como resultado
de consultas no topo de máquinas de busca são muito mais usados como fonte de cópia
do que outros documentos, o que indica que máquinas de busca in�uenciam no próprio
conteúdo de novos documentos gerados na Web.

Uma outra aplicação desenvolvida foi um estudo de duplicatas na
Web [Baeza-Yates et al., 2007b]. Apesar de vários autores a�rmarem que o per-
centual de duplicatas (incluindo conteúdo similar � near-duplicates) na Web é em torno
de 20% a 30% [Bharat and Broder, 1999; Fetterly et al., 2003], foi veri�cado que este
percentual é de fato muito maior, entre 35% e 45%. A diferença nos resultados é porque
a avaliação feita por outros autores é baseada em coleções Web geradas a partir de lista
de links encontradas em cada documento. Neste caso, no momento da coleta, cada nova
URL encontrada como link em páginas anteriormente coletadas é inserida em uma �la
para coleta, e logo também coletada e incluída na base de dados Web.

O que foi identi�cado nos experimentos é que documentos duplicados, em geral,
não possuem outros documentos com links para eles (inlinks). Isso signi�ca que muitas
duplicatas não são encontradas pelos métodos tradicionais de coleta. Como foi usada uma
coleção da Web chilena, onde todos os domínios registrados foram usados como semente
para inicializar o coletor, todos os sites sob o domínio .cl tinham representantes na base
de dados, tornando o estudo muito mais abrangente. Dessa forma, identi�cou-se que a
Web possui cerca de 50% mais documentos duplicados do que previamente reportado em
outros experimentos.

Além das aplicações em mineração Web apresentadas acima, foi iniciado o estudo de
quatro outras aplicações, que também são usadas na tese como casos de uso para validar
o modelo WIM, e serão introduzidas a seguir.

Também relacionada ao estudo de duplicatas, foi implementada uma solução WIM
para avaliar como links para novos documentos cresce com o tempo, tanto para novos
documentos que são duplicados de documentos antigos, quanto para novos documentos
com novo conteúdo. Foi identi�cado que o número de links para novos documentos com
conteúdo novo cresce signi�cativamente mais do que o número de links para novos docu-
mentos com conteúdo duplicado. Essa conclusão pode ser mais explorada para classi�car
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documentos a serem coletados, dado que nem todas as URLs descobertas em máquinas de
busca comerciais podem ser coletadas. Considerar como heurística para coleta a evolução
dos links para uma dada URL pode ser importante para economizar recursos e dirigir de
forma e�ciente a lista de URLs a serem coletadas e então indexadas por máquinas de busca.

O WIM também foi aplicado aos outros tipos de dados encontrados na Web. Par-
ticularmente, uma aplicação bastante interessante consiste no cálculo de uma medida de
relevância para documentos Web baseada no grafo de cliques de usuários. A medida se
baseia na intuição de que o �uxo de cliques de um usuário em uma dada sessão de busca,
na maioria das vezes, indica que os documentos clicados mais no �nal da sessão tendem a
ser mais relevantes para aquela consulta do que os documentos clicados no início.

A solução WIM minera os dados de uso de forma a compor um grafo representando
a ordem de cliques dentro de uma sessão. Logo, o Pagerank de cada documento do grafo é
calculado, de forma a associar um Pagerank de uso a cada documento. Como um exemplo
do grafo, considere que um usuário clicou em uma página A, depois em B e em seguida
em C. O grafo é composto de um link de A para B e outro de B para C. Como C foi
o último documento clicado nessa sessão, um auto link em C deve ser incluído, de forma
a forçar um maior valor de relevância para o último documento clicado na sessão. Um
único grafo, possivelmente com vários componentes conectados (�orestas), é gerado para
todos os documentos clicados, como resultado do processamento de todas as sessões de um
histórico de uso.

Para este trabalho foram utilizadas duas bases de dados de uso. A primeira, da
máquina de busca Todocl1, com alguns milhões de cliques; e a segunda, do Yahoo! (do
Reino Unido � .uk), com 22 milhões de cliques. O Pagerank real, utilizado para comparação
com o Pagerank de uso, foi tomado de uma base de dados do Reino Unido contendo 77
milhões de documentos. A solução WIM inclui todas as etapas do processamento: desde
a abertura dos arquivos com os dados de uso, a criação do grafo, até a associação entre
documentos da coleção mencionada e os documentos clicados na base de dados de uso.

Outro problema envolvendo os dados de uso foi o estudo da intenção do usuário ao
realizar uma busca. Basicamente, existem três possíveis intenções gerais: informacional,
quando o usuário busca por informação que pode aparecer em diferentes documentos;
navegacional, quando o usuário já sabe onde clicar mas faz a consulta como um atalho,
resultando em somente um clique; e transacional, quando o usuário busca realizar uma
transação, como realizar uma compra ou fazer um download.

1 www.todocl.cl
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A aplicação WIM desenvolvida para este problema busca classi�car automaticamente,
sem nenhuma intervenção do usuário, consultas como informacional, navegacional, ou com
as duas intenções. O diferencial deste trabalho, além de não demandar dados de humanos
para treino, é a proposta de que para um conjunto representativo de consultas, diferentes
usuários realizando a mesma consulta podem ter diferentes intenções. Por exemplo, ao
buscar pelo nome de uma pessoa, pode-se estar interessado na página pessoal da pessoa,
ou diferentes opiniões sobre a mesma. Com este trabalho, também se busca demonstrar
que consultas transacionais não são importantes de serem identi�cadas por máquinas de
busca, uma vez que o sistema de busca não pode tirar nenhum proveito da característica
transacional de uma consulta. Por outro lado, consultas comerciais têm um impacto im-
portante e devem ser identi�cadas e tratadas com precisão em um sistema de busca, uma
vez que gera receita para o negócio.

Por �m, o WIM foi utilizado efetivamente para selecionar documentos para avaliação
de relevância, em uma iniciativa para gerar uma coleção pública de referência para pesquisa
em aprendizado de ranking de sistemas de busca. Tal avaliação de relevância foi feita
para os dados da máquina de busca Todocl. Essa coleção deve ser importante no meio
acadêmico, uma vez que dados de uso, que são de difícil acesso por estarem em domínio de
organizações privadas, também serão disponibilizados. O WIM foi utilizado para selecionar
os documentos de acordo com métodos de recuperação de informação como TF-IDF e BM-
25, baseados em Pagerank e outras medidas de relevância.

Modelo de Dados e Álgebra

Nessa seção os conceitos mais importantes do modelo WIM serão apresentados, e um
exemplo será apresentado como ilustração. Muitos conceitos são adaptados da literatura
de bancos de dados relacionais [Codd, 1970].

O modelo de dados WIM foi projetado e desenvolvido observando-se as seguintes
propriedades:

• Realidade: o modelo não é somente abstrato, e implementações reais devem ser
possíveis (para esta tese, um protótipo foi implementado).

• Simplicidade: deve ser de fácil entendimento, para facilitar implementações futuras
do modelo.
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• Extensibilidade: para permitir que novas tarefas de mineração de dados não imple-
mentadas até então possam ser incluídas no futuro, e ainda para permitir escalabili-
dade se usado em aplicações industriais.

• Representatividade: o modelo tem de representar e�cientemente e e�cazmente os
dados presentes na Web.

• Composicionalidade: essa é uma propriedade de álgebras que garante que saídas de
operações possam ser usadas em outras operações. Essa propriedade é importante
porque o WIM não é somente uma coleção de algoritmos de mineração de dados, mas
um modelo de dados completo com uma álgebra de grande utilidade.

• Aplicação: Além de poder ser aplicado efetivamente a dados da Web, é interessante
que versões mais avançadas permitam mineração em outras bases de dados que tam-
bém tenham grafos.

O WIM se baseia no conceito de relação, onde dois tipos são de�nidos: relações de
nodos e relações de links. Relações de nodos existem para representar vértices (nodos) de
grafos, como páginas da Web, termos de um documento, ou consultas ou sessões de um
histórico de consultas da Web. Relações de links existem para representar arestas (links)
de grafos, como links entre páginas da Web, distância entre termos de um documento,
similaridade de consultas, ou cliques de um histórico de consultas.

O conceito de relação de nodos é uma generalização do conceito de relação do modelo
relacional. Ao invés de permitir vários atributos em uma relação, somente dois atributos
são aceitos. O primeiro atributo representa a chave primária, e é chamado de K (Key). O
segundo atributo representa um valor associado à chave, e é chamado de V (Value).

Por outro lado, relações de links possuem três atributos. O primeiro atributo repre-
senta nodos de início de um link, e é chamado de S (Start). O segundo atributo representa
nodos de �m de um link, e é chamado de E (End). Individualmente, S e E representam
nodos do grafo. Juntos, eles representam arestas do grafo. O terceiro atributo representa
um valor, ou rótulo, associado à aresta, e é chamado de L (Label).

Apesar da restrição ao número de atributos em relações, WIM possui um mecanismo
para associar atributos de diferentes relações, a partir de seus atributos chaves. Conjuntos
de Relações são usados para este propósito. Em termos gerais, cada conjunto de relações
possui um conjunto cheio de valores chaves, de forma que qualquer relação em uma base
de dados WIM pertence a este conjunto de relações se todos valores de chaves da relação
são encontrados no conjunto cheio de valores chaves do conjunto de relações.
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Um conjunto de relações não pode possuir relações de diferentes tipos. Dessa forma,
pode-se também concluir que conjuntos de relações têm tipos: conjunto de relações de
nodos e conjunto de relações de links. Para o último, o conjunto cheio de valores chaves é
visto como a união dos valores dos atributos de início e de �m.

Dois conjuntos de relações de diferentes tipos (nodo e link) são chamados de com-
patíveis, quando o conjunto cheio de valores chaves do conjunto de relações de links é igual
ou é subconjunto do conjunto cheio de valores chaves do conjunto de relações de nodos. O
conceito de compatibilidade também pode existir entre um conjunto de relações de nodo e
os atributos ou de início ou de �m (independentemente) do conjunto de relações de links.
Este conceito é importante para representar grafos bipartidos.

O modelo WIM também possui uma álgebra, que de�ne operações sobre relações.
A álgebra WIM faz uso de todos os conceitos apresentados até aqui para que as saídas
das operações possam ser reutilizadas como novas relações, fazendo com que o modelo
tenha a propriedade de composicionalidade. Dessa forma, operações WIM retornam novas
relações que vão pertencer ao mesmo conjunto de alguma relação da entrada, ou que sejam
compatíveis com o conjunto da entrada.

Operadores da álgebra do WIM estão divididos em duas classes: operadores de ma-
nipulação de dados e operadores de mineração de dados. Operações típicas de bancos de
dados como seleção, agrupamento, interseção, união, diferença e junção, além de operações
para cálculos matemáticos e estatísticos, são cobertas pelos operadores de manipulação de
dados do WIM. A outra classe consiste de operações de mineração de dados, como agru-
pamento, classi�cação, regras de associação e análises de links [Liu, 2007], além de alguns
métodos de recuperação de informação, como comparação de documentos e busca.

Um programa WIM é um conjunto de operações executadas em sequência. Tipica-
mente, a relação retornada pela última operação em um programa WIM contém os dados
resultantes da mineração requerida pelo usuário.

Operações WIM possuem duas propriedades bem importantes. A primeira é que
qualquer atributo de valor de uma relação em um conjunto pode ser usado como atributo
de outras relações no mesmo conjunto. Isso signi�ca que é possível escolher uma relação
para se tomar as chaves, e outra para se tomar os valores a serem minerados. Logo, é
possível fazer uma operação de seleção, por exemplo, e em seguida aplicar um método de
mineração sobre valores que representam somente o subconjunto de chaves retornadas pela
operação de seleção. Porém, os valores são tomados de uma outra relação.

A segunda propriedade importante é a possibilidade de se usar valores de uma relação
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// Agrupando duplicatas para as coleções velha e nova:
relDupOld = Compare(relOld, sparse, exactmatch, text.V);
relClOld = Disconnect(relOld, connected, relDupOld.V);
relDupNew = Compare(relNew, sparse, exactmatch, text.V);
relClNew = Disconnect(relNew, connected, relDupNew.V);
// Comparando as coleções:
relSearch = Search(relOld, relNew, shingles, 20%, relClOld.V, relClNew.V);
// Eliminando �lhos que têm a mesma URL dos pais:
relSearchUrl = CompGraph(relSearch.relSearch, exactMatch, relUrlOld.V,

relUrlNew.V);
relSeDifUrl = Select(relSearch, value, relSearchUrl.V, ==, 0);
// Transformando documentos em instâncias:
relStart = Set(relOld, relSearch, intersection, relClOld.K, relSeDifUrl.S);
relStartInst = Aggregate(relOld, grouping, count, relStart.V);
relEnd = Set(relNew, relSearch, intersection, relClNew.K, relSeDifUrl.E);
relEndInst = Aggregate(relNew, grouping, count, relEnd.V);
// Juntando nodos instância com o grafo de similaridade:
relGenEnd = Set(relSearch, relNew, intersection, relSeDifUrl.E, relEndInst.K);
relGenSt = Set(relSearch, relOld, intersection, relGenEnd.S, relStartInst.K);
// Selecionando somente um pai por �lho:
relGenFinal = Aggregate(relSearch, grouping, count, relGenSt.E);

Figure 1. Programa WIM para estudar a evolução do conteúdo textual da Web.

de nodos em operações aplicadas a uma relação de links que seja compatível com a relação
de nodos. Dessa forma, atributos de relações de nodos são usados como se fossem atributos
de relações de links, ou seja, rótulos de grafos.

A �gura 1 apresenta um exemplo real de um programa WIM. Esse programa, que
possui apenas algumas linhas de código, implementa todos os algoritmos usados para o
estudo da evolução do conteúdo da Web (conforme já mencionado nesse resumo e apresen-
tado em Baeza-Yates et al. [2008]), cuja implementação independente feita em C possui
certa de 2.500 linhas de código. Quatro outros casos de uso podem ser encontrados na
tese.

Não está no escopo desse artigo apresentar a função de cada operador, ou de�nir a
sintaxe do WIM. Em termos gerais, a �gura 1 mostra uma operação por linha. Em cada
linha, antes do sinal de igualdade aparece o nome da relação de saída. Logo em seguida
aparece o nome do operador da álgebra WIM que está sendo empregado. Entre parênteses
aparecem os parâmetros, que são especí�cos para cada operador. Os parâmetros incluem
o nome dos conjuntos de relações envolvidos, opções especí�cas do operador, e as relações
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e atributos requisitados. Por exemplo, na primeira linha, o operador Compare é aplicado
ao conjunto de relações relOld, com a opção sparse, sub-opção exactmatch. A relação
solicitada chama-se text, e o atributo utilizado é o de valor (V ).

A �gura 2 apresenta uma ilustração das relações e operações existentes no programa
WIM da �gura 1. Os conceitos apresentados nessa seção serão exempli�cados em termos
gerais por meio dessa ilustração na �gura 2, que é guiada pelo programaWIM da �gura 1. A
ilustração consiste de dois conjuntos de relações: relOld e relNew, representados em negrito.
Em geral, as relações de saída não estão organizadas de forma que se possa identi�car os
seus conjuntos, pois o enfoque é na forma como operadores modi�cam relações e geram
novas saídas.

Figure 2. Ilustração de relações e operações de um programa WIM.

Inicialmente, a relação text do conjunto relOld é usada como entrada do operador
Compare, retornando a relação relDupOld. Observe que relOld é uma relação de nodos,
mas relDupOld é uma relação de links, que é compatível com relOld. Em seguida, o
operador Disconnect é aplicado e retorna a relação relClOld. Veja que relClOld possui o
mesmo conjunto de chaves de outras relações no conjunto relOld, o que é automaticamente
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identi�cado pelo WIM, uma vez que a álgebra está previamente de�nida. Logo, relClOld
fará parte do conjunto relOld.

Em seguida o operador Search é aplicado à dois conjuntos: relOld e relNew. Observe
que a saída, relSearch, representa um grafo bipartido, onde o atributo de início (S) é
compatível com o conjunto relOld, e o atributo de �m (E) é compatível com o conjunto
relNew. Em seguida, o operador CompGraph é aplicado, gerando relSearchUrl, que vai
para o mesmo conjunto de relSearch, e tem um novo atributo para representar um rótulo
do grafo. Na sequência, uma operação de seleção elimina arestas cujo rótulo não seja igual
a zero, resultando em RelSeDifUrl.

Uma operação de interseção de conjuntos (Set) é aplicada a duas relações de tipos
diferentes, resultando em relEnd. Logo uma operação de agregação (Aggregate), e outras
duas operações de conjuntos (Set), geram o resultado do programa, relGenSt, representado
gra�camente na �gura. A relação relGenSt leva informação semântica importante como
resultado da mineração. Nesse caso, essa saída representa documentos no atributo de
início que geram conteúdo nos documentos do atributo de saída, ou seja, relações entre
documentos pais (fontes de reuso de conteúdo) e �lhos (gerados a partir de conteúdo
antigo) [Baeza-Yates et al., 2008].

Conclusões
Encontrar informação na Web de forma automática é certamente uma tarefa desa�adora,
que por natureza nunca terá uma solução ótima. A tese resumida nesse artigo representa
um avanço importante para a solução parcial do problema de se encontrar informação na
Web, e de automatizar tal processo. Portanto, a primeira contribuição importante da tese
é teórica, ao mostrar ser possível prover um modelo de dados e uma álgebra que atendem
de forma e�caz e e�ciente as necessidades de mineração na Web.

A segunda contribuição importante tem caráter prático. Inicialmente, porque o WIM
não é somente um modelo abstrato, mas um modelo que pode ser implementado em dife-
rentes escalas. Nessa tese uma arquitetura foi implementada como um protótipo e testada,
onde se demonstrou de forma prática que o modelo abstrato proposto é realmente aplicável
aos problemas do mundo real. A outra contribuição prática da tese foi a experimentação
feita com dados Web reais, e todas as conclusões que resultaram de trabalhos experimen-
tais, sumarizadas nesse artigo na seção .

Finalmente, entende-se que a terceira contribuição importante da tese diz respeito
ao impacto futuro que ela pode gerar. Por um lado, porque alguns dos trabalhos práticos
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propostos e até já implementados pelo WIM mostrados na seção ainda estão em desenvolvi-
mento, e podem emergir como contribuições experimentais importantes nas áreas de busca
na Web e mineração de dados. Por outro lado, porque o projeto WIM continua. Uma im-
plementação industrial está atualmente sendo projetada, podendo gerar novas publicações
ou um produto no futuro.
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Chapter 1

Introduction

1.1 Motivation
The World Wide Web is nowadays consolidated as the most important public source of
information in the world, due to two main reasons. First, because in contrast to other
media like radio and television, the Web is free for everybody to publish. Second, because
of its accessibility, each user is free to choose where to navigate among a huge number of
pages.

Although the Web seems to be properly shaped in order to allow humans to achieve
their information need � for instance �, through search engines, the processing of a sample
of the Web to discover patterns and return valid and useful information is not established
yet. The reason is that corporations' information need, although probably published on
the Web, is expensive to be processed and then discovered, as a consequence of the lack of
special engines for Web data mining.

We de�ne Web data mining, or simply Web mining, as the process of discovering
useful information in Web data, by means of data mining techniques. The cost of �nding
out the right information is not associated to the lack of data mining techniques, but to the
complexity of managing the required Web data, and to e�ciently and e�ectively employing
well known data mining techniques. With the goal of dropping the cost of Web mining,
hence making the mining process more accessible, this thesis represents one of the �rst
contributions towards the creation of a mining engine for the Web.

Web mining can be divided into three di�erent types according to analysis tar-
gets [Liu, 2007; Chakrabarti, 2002], which are Web content mining, Web structure mining

1
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and Web usage mining. Web content mining is the process of discovering useful information
from the content of Web pages. Web structure mining is the process of using graph theory
to analyze the node and the connection structure of a Web site or among Web sites. Web
usage mining is the application that uses data mining to analyze and discover interesting
patterns of user's usage data on the Web. Usage data is obtained when the user browses
or makes transactions on the Web.

Web mining is a computation intensive task even after the mining tool itself has
been developed. However, most mining software is developed in an ad-hoc manner and is
usually not scalable nor reused for other mining tasks. Data mining, and in particular Web
data mining, is an iterative process in which prototyping plays an essential role in order
to easily experiment with di�erent alternatives, as well as incorporating the knowledge
acquired during previous iterations of the process itself. In order to facilitate prototyping,
an appropriate level of abstraction must be provided to the user or programmer carrying
out the Web data mining task.

Motivated by the lack of a framework to allow such abstraction, the central part of
this thesis comprises the development of a model for intensive Web mining prototyping,
which is referred to as the WIM � Web Information Mining � model. The WIM model
includes a data model and an algebra. The data model is an abstract model that describes
how data is represented and accessed. The algebra is composed by a set of operators for
consistent data manipulation and mining. The data model and the algebra are specially
designed to manage the three types of Web data in combination: documents, structures
between documents, and usage data.

Considering the main computer science sub�elds, this thesis is located in the database
sub�eld, and arises in a time when new types of data must be managed and new models
need to be provided for new application demands. In May 2008, a representative group
of database researchers met to discuss the state of database research and its impacts on
practice [Agrawal et al., 2008]. It was the seventh meeting of this sort in twenty years. We
present some of their conclusions and position WIM among the research lines they point
out as challenging and needed for today's database applications. Basically they point out
�ve main research topics that deserve special attention in coming years. Reasonably, WIM
is closely related to three of them, as we present below.

The �rst research opportunity topic is referred to as �Revisiting Database Engines�.
They say �there are many popular data-intensive tasks from the last decade for which rela-
tional databases provide poor price/performance and have been rejected: critical scenarios
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include text indexing, serving Web pages, and media delivery. New workloads are emerg-
ing in sciences and Web 2.0-style applications, among other environments, where database
engine technology could prove useful, but not as bundled in current database systems�.

Although WIM inherits the concepts around relational databases, it is not internally
similar. For instance, the WIM storage architecture is column-oriented. On the other
hand, WIM is not a complete database engine. For instance, it does not have a speci�c �le
system. Anyway, WIM is an alternative for a critical scenario to which relational databases
cannot be employed, which is the Web mining world.

The second research opportunity mentioned in Agrawal et al. [2008] is called �Declar-
ative Programming for Emerging Platforms�. They say: �Programmer productivity is a
key challenge in computing. [...] Today, the urgency of the problem is literally increasing
exponentially as programmers target ever more complex environments [...]�.

The WIM programming language, provided by its algebra, is a kind of declarative
language that reduces code size by up to two orders of magnitude, which is one of the
main contributions of our research. They say �There is a need for `synthesis' work here
to harvest useful techniques from the literature [...]�. WIM operators embed a collection
of data mining techniques. They also say �It is a unique opportunity for a fundamental
`reformation' of the notion of data management: not as a storage service, but as a broadly
applicable programming paradigm�. WIM seems to have achieved this goal for the Web
mining �eld.

The third research opportunity pointed out, which is closely related to WIM, is
referred to as �The Interplay of Structured and Unstructured Data�. The title is clear,
though they highlight: �A signi�cant long-term goal for our community is to transition from
managing traditional databases consisting of well-de�ned schemata for structured business
data, to the much more challenging task of managing a rich collection of structured, semi-
structured and unstructured data, spread over many repositories in the enterprise and on
the Web�. WIM also represents a contribution is this research �eld, with a proposal of
integrating structured and unstructured data.

1.2 Context of the Thesis � Web Mining
According to Chakrabarti [Chakrabarti, 2002], Web mining is about �nding signi�cant
statistical patterns relating hypertext documents, topics, hyperlinks, and queries, and using
these patterns to connect users to the information they seek. The Web has become a vast
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storehouse of knowledge, built on a decentralized yet collaborative manner. On the negative
side, the heterogeneity and lack of structure makes it hard to frame queries and satisfy
information needs. For many queries posed with the help of keywords and phrases, there
are thousands of apparently relevant responses, but on closer inspection these turn out to
be disappointing for all but the simplest queries.

The data to be mined is very rich, comprising texts, hypertext markups, hyperlinks,
sites, and topic directories. This distinguishes Web mining as a new and exciting discipline,
although it also borrows concepts from traditional data analysis.

Roughly speaking, Web Mining is the extraction of interesting and potentially useful
patterns and implicit information from artifacts or activities related to the World-Wide
Web. As already mentioned, there are three knowledge discovery domains that pertain to
Web mining: Web content mining, Web structure mining, and Web usage mining.

Web content mining: it is an automatic process that goes beyond keyword extraction.
Since the content of a text document presents no machine-understandable semantics, some
approaches have suggested to restructure the document content in a representation that
could be exploited by machines. There are two groups of Web content mining strategies:
those that directly mine the content of documents and those that improve on the content
search of other tools like search engines.

Web Structure Mining: the World-Wide Web can reveal more than just the infor-
mation contained in documents. For example, links pointing to a document indicate its
popularity, while links coming out of a document indicate its richness or perhaps the va-
riety of topics covered by it. This can be compared to bibliographical citations. When
a paper is cited often, it is probably important. The PageRank [Brin and Page, 1998]
and the Kleinberg's HITS [Kleinberg, 1999] algorithms take advantage of this information
conveyed by the links to �nd pertinent Web pages.

Web Usage Mining: Web servers record and accumulate data about user interactions
whenever requests for resources are received. Analyzing access logs of di�erent Web sites
can help understand the user behavior and the Web structure, thereby improving the
design of this colossal collection of resources. There are two main tendencies in Web Usage
Mining driven by its applications: general access pattern tracking and customized usage
tracking [Wang, 2003].

The general access pattern tracking analyzes the Web logs to understand access pat-
terns and trends. These analyses can shed light on better structure and grouping of resource
providers. Customized usage tracking analyzes individual trends. Its purpose is to cus-
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tomize Web sites to users. The information displayed, the depth of the site structure and
the format of the resources can all be dynamically customized for each user over time based
on their access patterns.

1.3 Objectives of the Thesis
The main objective of this thesis is the development of WIM, a data model and algebra
with an associated software prototype for Web mining. The goal of WIM is to facilitate
the task of the Web miner when prototyping Web mining applications. In order to achieve
this main objective, and in the future to have Web miners using the WIM software, we
highlight three main research challenges, whose solution is a step towards the conception
of WIM. They are: the WIM data model, the WIM algebra, and the WIM architecture
and implementation.

The WIM data model refers to how data is represented and accessed. Notice that
WIM deals with Web data, and we need to provide an abstraction to the user as a view of
the data. Our choice was to create an adaptation from the well-known relational tables,
in order to represent nodes of a graph, such as the documents on the Web, and the edges
of this graph, such as hyperlinks connecting Web documents. The WIM language is based
on data�ow programming, which means that operators are called in sequence and that
parallel processing is allowed whenever independent tasks are requested.

TheWIM algebra refers to the set of operators, including their syntactic and semantic
aspects, which allow to manipulate and mine Web data. The challenge in designing the
WIM algebra is not only concentrated on de�ning the set of operators, but also on how
to guarantee the composition between operator's input and output, which is important
to allow users to request any operator output to be input of any other existing operator,
having as the only constraint the data types of the input and output.

The WIM architecture and implementation is highly important at this conceptual
stage as a proof of concept of the WIM data model and algebra. Although we have
implemented a prototype, it has properly worked for medium-sized datasets and helped
test the WIM model by means of use cases. This practical challenge is related to the other
three challenging aspects presented above, as the design of the WIM model needed to take
into account the fact that the model was not abstract, rather, it had to be implemented
and executed in the real world.

WIM was not conceived to solve all Web data mining problems. On one hand,
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Web mining is an overloaded terminology used to di�erent purposes. As we refer to
Web mining as the application of data mining techniques to Web data, the WIM alge-
bra was designed observing this de�nition. For instance, WIM was not conceived for
intensive data processing only, like Hadoop [Hadoop, 2008] (with its associated language
Pig Latin [Olston et al., 2008]), and MapReduce [Dean and Ghemawat, 2008] (with its
language Sawzall [Pike et al., 2005]), which are frequently classi�ed as data mining frame-
works due to their capability of �nding pieces of data among very large datasets, rather
than using speci�c data mining techniques.

On the other hand, because there is a large number of data mining techniques that
have been applied to Web data [Kosala and Blockeel, 2000; Liu, 2007], we have included
in the �rst version of the WIM prototype some of the most common techniques, which,
according to what we believe, are the most important ones for Web mining applications.
The WIM algebra currently covers the following techniques: association rules and sequen-
tial patterns mining; unsupervised learning tasks such as k-means clustering and clustering
based on graph structure and text; search and text comparison; and link analysis, with
co-citation analysis and document relevance.

Through a complementary set of data manipulation operators, WIM allows di�erent
data mining techniques to be used sequentially for the same application, hence integrating
the data. Furthermore, WIM is designed to easily allow the addition of new operations to
implement new data mining techniques. Thus, as soon as the �rst version of the WIM tool
is made available, we expect users with new needs to collaborate with the implementation
of new techniques, to be integrated into the WIM tool, gradually improving its coverage
of the Web mining world.

Another important objective of this thesis is the analysis of some Web mining ap-
plications. This objective was proposed in order to demonstrate that we retain enough
knowledge regarding Web data mining, which is the application �eld of our research, and
to guarantee that WIM is applicable to a set of real Web mining applications, allowing com-
parison between an ad-hoc and a WIM implementation. Having the analysis of some Web
mining problems as one of the objectives of this thesis increases the chances of proposing
a model that will actually be useful in the future.

The main application described in this thesis concerns a study on the evolution of
Web content. The WIM program is implemented to identify parent documents, which are
sources of copy, and child documents, which are more recent documents containing old
content. Problems like duplication detection, URL comparison, association of a unique
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parent to each child, are all addressed in this application. We have implemented the same
solution both in an ad-hoc manner [Baeza-Yates et al., 2008] and using WIM, and we
present a comparison between these solutions.

The second application concerns the manipulation of search engine usage logs in
order to implement a document usage-based relevance weight, with the general objective
of improving query ranking. For this application we used a Yahoo! search engine log with
22 million clicks and imported the regular pagerank from a Web dataset from the United
Kingdom, containing 77 million entries1.

The other applications are: i) a comparative study of linkage evolution between
new pages with new content and new pages with old content, in which we have found
that the linkage of new pages with new content evolves more rapidly than the linkage of
new duplicated pages; ii) the manipulation of query logs, in order to identify a series of
properties for each distinct query that appears in the log, for studying search engine user
intent; and iii) the composition of a pool of documents for relevance assessment, aiming at
creating a reference dataset for research on learning to rank in Web information retrieval.
WIM was used to select the documents to be included in the pool, which used di�erent
weight functions such as TF-IDF and BM25, with AND �lters (conjunctions) and including
the Pagerank document relevance weight.

1.4 Main Contributions of the Thesis
The main contribution of this thesis is WIM � Web Information Mining, a model ma-
terialized as a software prototype for supporting Web miners when implementing their
applications. We have designed the WIM data model specially for Web data and proposed
an algebra with a set of preliminary operators for data manipulation and data mining. The
set of operators for data mining is expected to be extended in the future, as users start
using WIM and need to employ data mining techniques that are not yet available.

In Baeza-Yates et al. [2005a] and Baeza-Yates et al. [2005b] we presented our �rst
view of WIM, in which its underlying data model was already based on the relational
model. Preliminary applications of WIM were reported in Pereira-Jr and Baeza-Yates
[2005]. Recently, a more general view of WIM was published in Pereira et al. [2009].
Although that work does not present the underlying formal concepts regarding the data

1 This collection was obtained using a large set of .uk pages downloaded in May 2006 [Boldi and Vigna,
2004] by the Laboratory of Web Algorithmics, Università degli Studi di Milano (http://law.dsi.unimi.it/).
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model and the operators' de�nitions, it re�ects the current stage of our research, as detailed
in this thesis.

WIM is not only an abstract model. An important contribution of this thesis is
a prototype, which has demonstrated that WIM is feasible and works properly for our
proposed applications, a strong evidence that WIM will also work well for applications in
other scenarios. Despite the limitations of our prototype, the software developed so far can
be seen as a beta version of a future tool.

An industrial scale version of WIM is already planned to be developed, which does
not mean that WIM will not be provided as an open source tool. The goal is to have both
projects, the public and the private, going on concurrently, since it is fundamental to have
WIM well known among Web mining researchers.

WIM has been applied to a set of Web mining problems. For one of them, a study
about the evolution of the Web content and the relationship of search engines with the con-
tent evolution behavior [Baeza-Yates et al., 2008], we have performed an extensive analysis
on the results, which are presented in Chapter 6. As our main contributions with respect
to this application, we show that: i) a large portion of the new Web documents has old
content; ii) parents are clicked more often than other documents and are more likely to
become parents again than other documents; and iii) search engines are biasing the content
of the Web, because users usually select sources of content from the main results returned
by their queries. In Baeza-Yates et al. [2006] we studied how documents that are used as
sources for a given new document appear together in query results. It was another evidence
that search engines bias the content of the Web.

Another important problem to which WIM was applied is a study on how and
where duplicates and near-duplicates occur on the Web [Baeza-Yates et al., 2007b;
Pereira-Jr et al., 2006]. We found out that the Web seems to have up to 50% more dupli-
cates than previously reported in the literature. This may be explained by the fact that
datasets used in previous works were created by following links. Since duplicates do not
have many inlinks, they are often not crawled. We used, on the other hand, a dataset
from the Chilean Web, in which all the domains provided by the domain name service in
Chile were used to start the crawls, so that a less biased collection was created to better
represent the Web.

We also performed a study on crawling techniques to decide which new URLs to
fetch, based on the assumption that duplicates (which must be avoided) do not have their
indegree (or other page quality measure) evolving with time. Thus, it is probably possible
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to �nd a function based on the linkage structure evolution to decide whether to fetch or
not a new URL. We have applied WIM to study the duplicate and new content evolution,
and present partial results in Section 7.2. Further analyses are proposed as future work in
Chapter 8.

WIM has also been used to compose a pool of documents for relevance assessment,
in order to create a reference dataset for research on learning to rank, to become publicly
available. We already have 100 queries assessed, and will soon put them available together
with the collection of documents, the link structure between documents, and the real
query logs from the TodoCL search engine2. The creation of this reference dataset is also
a contribution of this thesis, given the applicability of WIM and the degree of interest of
this dataset to the community.

This reference dataset will be used to solve another problem to which WIM has been
applied. It is a proposal of evaluating a usage pagerank based on the order of clicks on
search engine results. A similar research was published in Liu et al. [2008], though in
parallel we had independently proposed this research topic, as reported in Pereira et al.
[2008]. Finally, WIM has been applied to mine usage data with the goal of identifying user
intent. The use cases mentioned here are presented in Chapter 7.

Finally, it is worth mentioning that two preliminary applications motivated the de-
velopment of WIM. The �rst application was a study of evidence to �nd communities on
the Web [Pereira Jr et al., 2004]. The second one was a proposal of di�erent solutions to
solve the problem of �nding similar documents on the Web [Pereira-Jr and Ziviani, 2004].
More speci�cally, this problem may be stated as follows: for a given document A, �nd
pieces of A that are published on the Web. From an application point of view, this prob-
lem is important to detect plagiarism, since document A may have been created after a
�copy-and-paste� action, and to detect content overlap among search engines corpora.

1.5 Organization of the Thesis
The remainder of this thesis is organized as follows. Chapter 2 presents related work.
Chapter 3 presents the WIM formal model, including its design goals. Chapter 4 presents
the WIM algebra, including the seven data manipulation operators and the eight data
mining operators, as well as a comparison between the WIM data manipulation operations
and the relational algebra.

2TodoCL: www.todocl.cl
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Towards more practical issues, Chapter 5 presents the WIM prototype architecture
and some important details underlying our prototype implementation. A discussion in-
volving e�ciency and scalability issues, with alternative architectures, is also provided.

Two chapters present the use cases. In Chapter 6, as aforementioned, we present
a complete study on one of the problems to which WIM was applied, which is how the
Web content evolves with time, in terms of content reuse. The other four use cases to
which WIM was applied to solve real Web mining problems are presented and discussed
in Chapter 7. Finally, Chapter 8 presents the conclusions and future research challenges
motivated by WIM and its applications.



Chapter 2

Related Work

There are two research lines that are related to WIM. The �rst research line is about data
mining tools. Although they are not specially designed for Web data, they may be able to
cover some Web mining applications. The second line is about query languages for Web
data, which generally are not designed for mining tasks. Most of them are either based on
SQL or are built on SQL. In this chapter we compare WIM with some of these tools. We
also present the work related to one of the problems to which WIM was applied, which is
a study on how Web content evolves through time, in terms of reuse. Then, we present
some related data mining techniques that are important for this thesis.

2.1 Data Mining Tools
As for data mining frameworks, some commercial SQL-based database manage-
ment systems have add-ons for data mining modules. The data mining extension
of Microsoft SQL Server 2005 [2008] proposes to integrate traditional operations performed
using SQL with the mining need. The data mining techniques that Microsoft SQL Server
2005 supports are: decision trees, association rules, sequence clustering, time series, neural
networks, and text classi�cation and categorization.

Another solution is provided by Oracle Data Mining [2008], a tool for application de-
velopers using SQL and Java APIs that automatically mines Oracle databases and deploys
results in real-time throughout the enterprise. Oracle Data Mining models can be included
in SQL queries and embedded in applications. The data mining techniques supported are
related to classi�cation, regression, anomaly detection, attribute importance assignment,

11
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association rules, clustering, and feature extraction.
Similarly to Microsoft and Oracle, IBM o�ers DB2 Intelligent Miner [2008]. IBM's

database mining capabilities integrate with existing systems to provide predictive analysis
without moving data into proprietary data mining platforms. It is possible to use SQL,
Web Services or Java to access DB2 Intelligent Miner from applications. The system,
which is divided in modules for scoring, modeling and visualization, includes the following
data mining approaches: association rules, classi�cation (neural and tree classi�cation),
clustering, prediction mining, and sequential patterns mining.

There are several business intelligence tools with integrated data mining support.
Examples are Angoss1, Infor CRM Epiphany2, Portrait Software3, and SAS4. One di�erence
of these solutions compared to WIM is that they are commercial tools driven to business
applications. We note that all solutions have similar coverage in terms of mining capability,
which is not focused on Web. Furthermore, WIM has been conceived considering more
research than business applications, although it can easily be extended to business problems
with the addition of new operators to its algebra.

Weka [Witten and Frank, 2005] is a well known data mining framework that imple-
ments a collection of machine learning algorithms for data mining tasks. It was developed
for educational purposes and is an open source software. The algorithms may either be
applied directly to a dataset or called from Java code. With respect to its di�erences to
WIM, Weka is not designed for Web data and does not provide a speci�c language to
perform data manipulation, as it is an isolated academic collection of algorithms.

2.2 Web Query Languages
From 1994 to 1998 several database research groups invested in designing and develop-
ing query languages for Web data, sometimes aiming at integrating semistructured and
structured data. One of the �rst research initiatives was TSIMMIS [Chawathe et al., 1994;
Garcia-Molina et al., 1997; Hammer et al., 1995], a project to develop tools that facilitate
the rapid integration of heterogeneous information sources, including both structured and
semistructured data. TSIMMIS has components to translate queries and data (source
wrappers), to extract data from Web sites, to combine information from several sources

1 www.angoss.com
2 go.infor.com/inforcrm
3 www.portraitsoftware.com
4 www.sas.com
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(mediator), and to allow browsing data sources over the Web. TSIMMIS uses a graph-
based model that encapsulates data and structural information rather than a traditional
one that requires a pre-de�ned schema. The type of the data is interpreted by the user
from labels in the structure.

Another parallel initiative was W3QL [Konopnicki and Shmueli, 1995, 1998]. W3QL
addresses the structure and content of Web nodes and their various types of data. A
system called W3QS was implemented to execute W3QL queries. W3QL includes a crawler,
considering the data dynamically published on the Web, rather than statically and locally
stored. It also supports meta-search, by means of a process to automatically �ll out forms.
Its concept of view allows the system to keep query results up-to-date, by rerunning the
queries with the frequency required by the user. The applications to which W3QL has
been employed are quite basic, like searching for the �gures in a given site or identifying
broken links.

WebLog [Lakshmanan et al., 1996] is a Datalog-like language to query and manipu-
late the internal structure of HTML documents on the Web. WebLog is said to be capable
of exploiting the partial knowledge users might have on the information being queried and
dealing with the dynamic nature of information on the Web. Di�erently of most of the
other languages, WebLog syntax is not based on SQL.

WebSQL [Arocena et al., 1997; Mendelzon et al., 1997] integrates textual retrieval
with structure and topology-based queries. It proposes a theory of query cost based on
the idea of query locality, that is, how much of the network must be visited to answer a
particular query. The query locality proposal is a consequence of the fact that WebSQL
allows queries on hyperlink paths among Web pages. WebSQL divides hyperlinks into
three categories: internal links (within a page), local links (within a site), and global links.
It is also possible to de�ne new link types based on anchor texts, for example, links with
anchor text �next�.

The ARANEUS project [Atzeni et al., 1997b; Mecca et al., 1998] proposes a Web-
base management system, with support to: i) queries, on structured and semi-structured
data; ii) views, to reorganize and integrate data from heterogeneous sources; and iii) up-
dates, to allow the maintenance of Web sites. It proposes a new data model for Web
documents and hypertexts, and proposes languages for wrapping and creating Web sites,
including techniques for publishing data on the Web. ARANEUS includes two di�er-
ent languages: ULIXES [Atzeni et al., 1997a] and PENELOPE. ULIXES is used to build
database views of the Web, which can then be analyzed and integrated using database
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techniques. PENELOPE allows the de�nition of derived Web hypertexts from relational
views, which can be used to generate hypertextual views over the Web.

StruQL [Fernandez et al., 1997b] is the query language of the Strudel Web site man-
agement system [Fernandez et al., 1997a]. Even though StruQL was developed in the
context of a speci�c Web application, it is a general purpose query language for semi-
structured data, based on a data model of labeled directed graphs. In Strudel, StruQL
was used for two tasks: querying heterogeneous sources to integrate them into a site data
graph, and for querying this data graph to produce a site graph.

WebOQL [Arocena and Mendelzon, 1998] is a language that supports a general class
of data restructuring operations in the context of the Web. The main data structure
provided by WebOQL is the hypertree, which are ordered arc-labeled trees with two types
of arcs, internal and external. Internal arcs are used to represent structured objects and
external arcs are used to represent references (typically hyperlinks) among objects. Arcs
are labeled with records. Such a tree could be built, for example, from an HTML �le, using
a generic HTML wrapper. Sets of related hypertrees are collected into Web datasets. Both
hypertrees and Webs can be manipulated using WebOQL and created as the result of a
query.

In comparison to the other query languages mentioned so far, the ARANEUS'
languages ULIXES and PENELOPE [Mecca et al., 1998], and the languages We-
bOQL [Arocena and Mendelzon, 1998] and StruQL [Fernandez et al., 1997b] represent the
second generation of Web query languages, which have the additional ability to manipulate
Web data and create new complex structures as the result of a query.

Lim and Ng [1997] present an integrated SQL query interface for Web search engines,
bibliographic and relational databases. Web search engines are de�ned as virtual Web
tables. They de�ne a schema for each search engine, so that its results can be treated like
relational tables, and then integrated to bibliographic and relational databases.

Acting as a meta-search engine as well, RAW [Fiebig et al., 1997] is a proposal for
extending the relational algebra in order to process queries against the Web. Additionally
to the known data types (int, bool, �oat, string), three new data types to deal with URLs,
HTML-documents or fragments, and path expressions are proposed.

Whoweda [Bhowmick et al., 1998, 2000, 2002; Ng et al., 1998] is a metadata reposi-
tory of useful Web information, available for querying and analysis. As relevant information
becomes available on the Web, it is coupled from various sources, translated into a com-
mon Web data model (Web Information Coupling Model), and integrated with existing
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data in Whoweda. At the warehouse, queries can be answered and Web data analysis can
be performed quickly and e�ciently since the information is directly available. Whoweda
consists of two major components: a data manipulation module called Web Information
Coupling System (WICS) and a data mining module called Web Information Mining Sys-
tem (WIMS). WICS focuses on the manipulation of information in the Whoweda system.
It includes extraction and retrieval of information from the Web, its storage and organiza-
tion, and manipulation via Web operators such as Web select, Web join and Web project.
The information are fed into WIMS for mining by association rules.

The WEBMINER tool [Cooley et al., 1997] provides a query language on top of
external mining software for association rules and for sequential pattern mining. It is
based on the adaptation of an existing miner to a particular problem. More precisely,
a pre-processing algorithm groups consecutive page accesses by the same visitor into a
transaction, according to some criterion. Then, a miner for association rules or sequential
patterns is invoked to discover similar patterns among the transactions. The association
rules' miner has been further customized to guarantee that no patterns are erroneously
skipped.

In the same line as WEBMINER, WUM (Web Utilization
Miner) [Spiliopoulou and Faulstich, 1998] is a system for discovering interesting navigation
patterns. MINT is the WUM mining language, which supports the speci�cation of statis-
tical, structural, and textual criteria. To discover the navigation patterns satisfying the
expert's criteria, WUM exploits an aggregated storage representation for the information
in the Web server log.

We observe that Whoweda [Ng et al., 1998], WEBMINER [Cooley et al., 1997] and
WUM [Spiliopoulou and Faulstich, 1998] are more advanced tools in comparison to the
others, as they not only address the collection, access and simple manipulation of Web
data, but also include features for mining, even though the mining tasks are simple and
restrictive, limited to mining by association rules and sequential patterns.

Squeal [Spertus and Stein, 2000] is a language built on SQL to facilitate structure-
based queries. Examples of the mentioned structure-based queries are: which pages are
pointed to by two given pages, what are the titles of pages that point to my home page,
what are the most linked to pages containing a given phrase, and which pages have the
same text as my home page but appear on a di�erent server. The authors do not present
details of the Squeal data model or implementation issues.

WebBase [Cho et al., 2006; Raghavan and Garcia-Molina, 2003a] is an important
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Web warehouse project that also incorporates a query language, whose main goals are
to manage large collections of Web pages and to enable large-scale Web-related re-
search [Raghavan and Garcia-Molina, 2003b]. They view a Web warehouse simultaneously
as a collection of Web documents, as a navigable directed graph, and as a set of relational
tables storing Web page properties. Thus, the Web warehouse is modeled as a collection
of pages and links, with associated page and link attributes. The model incorporates the
ranking of pages and links.

Wood and Ow [2005] developed an SQL extension that allows corporate databases
to be joined to explicit information contained on corporate or external Web sites. Their
implementation is called WEBVIEW and, as an example, they show how to mimic a search
for a popular book using the Froogle5 price comparison service, using its ISBN number,
from which WEBVIEW covered 88 Web pages and retrieved 871 prices from various book
sellers.

A survey of database techniques for the Web is presented by Florescu et al. [1998],
covering the projects presented so far and a couple of other projects for unstructured data,
rather than Web data only projects.

2.3 Comparison of WIM with Data Mining Tools and
Web Query Languages

WIM does not �t any of the aforementioned classes of tools and languages. WIM is
speci�c to Web mining, not general and not for business-driven data mining like the tools
presented in Section 2.1. On the other hand, WIM is not simply a language for retrieval
and manipulation of Web data. Actually, WIM does not address the problem of data
acquisition. It is applied to static datasets, leaving the tasks of crawling and pre-processing
to existing speci�c tools.

As we shall present in Chapter 3, the WIM data model is not directly derived from any
Web query language data model presented earlier. First, because there is no standard; each
language uses its own data model and there seems to exist no consensus among researchers
with respect to which data model is the best or the most suitable for each scenario. Second,
because our goals are di�erent and, although we also handle Web data, our �nal objective is
mining this kind of data, not simply representing, storing or manipulating it. However, the
WIM data model merges concepts inherited from 90's Web data models and from search

5 http://froogle.google.com or http://www.google.com/products
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technology. The result is a data model able to deal with large scale datasets, for which
more complex queries are allowed than simple search engine keyword queries. Furthermore,
mining operations are available in WIM, by means of a consistent and extensible algebra.

Given the importance of WebSQL as a reference Web data model, we shall present
the key di�erences with respect to WIM. Both WebSQL and WIM inherit concepts from
the relational model. As we shall notice in Chapter 3, designing WIM based on concepts
from the relational model has made it simpler and more easily comprehensible.

As aforementioned, one di�erence is how the two models view the Web. WebSQL
views the Web as a collection of world-wide distributed documents, where querying these
documents means accessing remote systems, even though indexes of the Web are allowed as
source of content. WIM views the Web as datasets. Di�erent Web datasets can represent
documents in di�erent domains, or even documents in di�erent snapshots for a given
domain.

In WebSQL, every element of a relation is identi�ed by its URL. This means that
objects that cannot be represented by a URL cannot be modeled. Some objects in HTML
documents have an associated URL, like images, videos and, of course, hyperlinks, but
others do not. For instance, the terms of a document, which are part of a vocabulary, cannot
be directly represented. WIM supports the existence of objects that cannot be represented
by URLs. As an illustration, the vocabulary of a Web dataset can be represented as a
relation and used in conjunction with the Web relation for a given application. Although
WIM has been applied so far only to Web datasets, other datasets, in which attributes of
edges and nodes of a graph must be represented, may also be modeled using WIM.

An important consequence is that WIM can model other types of Web data that
WebSQL cannot. For instance, in the early 90's Web usage data was not seen as a relevant
Web data. Further, the Web was not interactive as today and user's tags, which are user-
speci�c comments posted after visiting Web pages, did not exist. In Chapter 7 we present
examples of WIM applications that handle usage data. By modeling types of data, WIM
is also suitable to represent tags, although we have not used this kind of data in any WIM
application so far. The ability of WIM in dealing with these new types of Web data is the
most important advantage of WIM in comparison to WebSQL.

Figure 2.1 presents a comparison among Web query languages, data mining tools, and
WIM, in terms of how structured and how clean (i.e., not raw) is the data that each class
of tools proposes to manage. Web data is usually in its most raw and unstructured sort.
Data mining tools are adequate for structured (corporate) data. Web query languages may
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manipulate data as unstructured and raw as on the Web, providing a view of data that is
more structured and not that raw as on the Web. WIM is developed for data previously
crawled and pre-processed, that is, cleaner than data handled by Web query languages,
but as structured as the data the query languages manipulate.

Figure 2.1. Comparison of Web languages, data mining tools, and WIM, in
terms of how structured and how clean is the data that each class of systems
manages.

2.4 Evolution of Web Content
In this section we present some works related with one of the applications to which WIM
has been employed, which is presented in Chapter 6. We start with a couple of works that
study the evolution of Web pages and �nish with works about Web archiving. Despite the
importance of these papers as related work, they have di�erent approaches and di�erent
objectives, in comparison to our research on studying the evolution of the Web content.

Ntoulas et al. [2004] studied some aspects of the Web's evolution, such as birth,
death, and replacement of documents. They crawled all pages from 154 sites on a weekly
basis, for a period of one year. In a similar work using the same data set, Ntoulas et al.
[2005] found that after a year about 60% of the documents and 80% of the links on the
Web are replaced.

Cho and Roy [2004] studied the impact of search engines on the popularity evolution
of Web documents. Given that search engines currently return popular documents at the
top of search results, they showed that newly created documents are penalized because
these documents are not well known yet. Pandey et al. [2005] proposed a simple solution
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to this problem, based on the introduction of a controlled amount of randomness into
search result. Baeza-Yates et al. [2004] showed that PageRank [Page et al., 1998] is biased
against new documents.

On the other hand, Fortunato et al. [2006] showed that popular sites receive far less
tra�c than predicted, suggesting that the possible bias introduced by search engines does
not lead to monopoly of information.

In a recent work, Toyoda and Kitsuregawa [2006] proposed the �novelty measure� to
estimate if a newly linked URL is really new or if it is old but was not crawled in previous
snapshots. The novelty measure is applied to an archive search engine, where new pages can
be identi�ed. Zhang and Suel [2007] proposed a general framework for indexing and query
processing of archival collections. By storing the documents in parts, and considering that
in archiving a great portion of the data is replicated, their approach results in signi�cant
reductions in the index size and query processing cost.

2.5 Related Data Mining Techniques
In this section we present some data mining techniques that WIM currently covers. Some
of the concepts around these techniques shall be important when we present the WIM
algebra in Chapter 4.

2.5.1 Association Rules
Association rule mining [Agrawal et al., 1993] searches for interesting relationships among
items in a given data set. A typical example of association rule mining is market basket
analysis. This process analyzes customer buying habits by �nding associations between
the di�erent items that customers place in their shopping baskets. The discovery of such
associations can help retailers develop marketing strategies by gaining insight into which
items are frequently purchased together by customers. For instance, if customers are buying
milk, how likely are they to also buy bread (and what kind of bread) in the same trip to
the supermarket?

In the context of the Web, association rule mining is important for discovering pat-
terns in usage data [Cooley et al., 1997; Ng et al., 1998; Spiliopoulou and Faulstich, 1998].
We now consider the de�nition of an association rule from Han and Kamber [2006]: Let
I = {ii, i2, ..., im} be a set of items. Let D, the task-relevant data, be a set of database
transactions where each transaction T is a set of items such data T ⊆ I. Each transaction
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is associated with an identi�er, called TID. Let A be a set of items. A transaction T is
said to contain A if and only if A ⊆ T . An association rule is an implication of the form
A ⇒ B, where A ⊂ I, B ⊂ I, and A ∩ B = ∅. The rule A ⇒ B holds in the transaction
set D with support s, where s is the percentage of transactions in D that contain A ∪ B

(i.e., both A and B). This is taken to be the probability P (A ∪ B). The rule A ⇒ B has
con�dence c in the transaction set D if c is the percentage of transactions in D containing
A that also contain B. This is taken to be the conditional probability, P (B|A). That is:
support(A ⇒ B) = P (A ∪B), and
confidence(A ⇒ B) = P (B|A).

Rules that satisfy both a minimum support threshold (min_sup) and a minimum
con�dence threshold (mim_conf) are called strong. By convention, support and con�-
dence values are written so as to occur between 0% and 100%, rather than 0 to 1.0.

A set of items is referred to as an itemset. An itemset that contains k items is
a k-itemset. The occurrence frequency of an itemset is the number of transactions that
contain the itemset. An itemset satis�es minimum support if the occurrence frequency of
the itemset is greater than or equal to the product of mim_sup and the total number of
transactions in D. If an itemset satis�es minimum support, then it is a frequent itemset.

Association rule mining is a two-step process: �nd all frequent itemsets and generate
strong association rules from the frequent itemsets, in which the rules must satisfy minimum
support and minimum con�dence.

2.5.2 Clustering
The process of grouping a set of physical or abstract objects into classes of similar objects
is called clustering [Han and Kamber, 2006]. A cluster is a collection of data objects that
are similar to one another within the same cluster and are dissimilar to the objects in
other clusters. A cluster of data objects can be treated collectively as one group in many
applications. In the context of the Web, clustering techniques are often used to classify
documents for information discovery.

Suppose that a data set to be clustered contains n objects, which may represent per-
sons, houses, documents, countries, and so on. Main memory-based clustering algorithms
typically operate on either one of the following two data structures:

• Data matrix (or object-by-variable structure) � this represents n objects, such as
persons, with p variables also called measurements or attributes), such as age, height,
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weight, gender, and so on. The structure is in the form of a relational table, or n-by-p
matrix (n objects × p variables).

• Dissimilarity matrix (or object-by-object structure) � this stores a collection of prox-
imities that are available for all pairs of n objects. It is often represented by an
n-by-n table.

WIM implements an important clustering algorithm called k-means [Berkhin, 2002].
The algorithm partitions a set of n objects into k clusters so that the resulting intracluster
similarity is high but the intercluster similarity is low. Cluster similarity is measured in
regard to the mean value of the objects in a cluster, which can be viewed as the cluster's
centroid or center of gravity.

The k-means algorithm proceeds as follows. First, it randomly selects k objects, each
of which initially represents a cluster mean or center. For each of the remaining objects,
an object is assigned to the cluster to which it is the most similar, based on the distance
between the object and the cluster mean. It then computes the new mean for each cluster.
This process iterates until the criterion function converges. Typically, the square-error
criterion is used. In other words, for each object in each cluster, the distance from the
object to its cluster center is squared, and the distances are summed. This criterion tries
to make the resulting k clusters as compact and as separate as possible. The method is
relatively scalable and e�cient in processing large data sets because the computational
complexity of the algorithm is O(nkt), where n is the total number of objects, k is the
number of clusters, and t is the number of iterations.

2.5.3 Search and Text Comparison
Web search deals with the process of comparing a few keywords against a corpus of Web
documents, responding to keyword queries with a ranked list of documents. The simplest
kind of query one may pose involves relationships between terms and documents.

The vector space model [Salton et al., 1975] is a mean to relate terms and documents.
It is based on the implicit assumption that the relevance of a document with respect to
some query is correlated with the distance between the query and document. In the vector
space model each document (and query) is represented in an n-dimensional Euclidean space
with an orthogonal dimension for each term in the corpus. The degree of relevance between
a query and document is measured using a distance function.
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The most basic term vector representation simply �ags term presence using bit vec-
tors. This is known as the binary vector model. The document representation can be
extended by including term and document statistics in the document and query vector
representations. An empirically validated document statistic is the number of term oc-
currences within a document (term frequency or tf ). The intuitive justi�cation for this
statistic is that a document that mentions a term more often is more likely to be relevant
for, or about, that term.

Another important statistic is the potential for a term to discriminate between can-
didate documents. The potential of a term to discriminate between documents has been
observed to be inversely proportional to the frequency of its occurrence in a corpus, with
terms that are common in a corpus less likely to convey useful relevance information. A
frequently used measure of term discrimination based on this observation is inverse docu-
ment frequency (or idf ). Using the tf and idf measures, the weight of a term present in a
document can be de�ned as:

wt,D = tft,D × idft (2.1)

where idf is:

idft = log(N/nt) (2.2)

where nt is the number of documents in the corpus that contains term t, and N is the total
number of documents in the corpus.

A distance function commonly used to score the distance between documents and
query vectors is the cosine measure of similarity [Baeza-Yates and Ribeiro-Neto, 1999]:

S(D, Q) =

∑
t∈Q wt,D × wt,Q√∑

t∈Q w2
t,D ×

∑
t∈Q w2

t,Q

(2.3)

Okapi BM25 [Sparck-Jones et al., 2000] is another important proposal for calculating
the similarity between documents and queries and is also addressed within this thesis. In
Okapi BM25, documents are ordered by decreasing probability of their relevance to the
query, P (R|Q,D). The formulation takes into account the number of times a query term
occurs in a document (tf), the proportion of other documents which contain the query term
(idf), and the relative length of the document. A score for each document is calculated
by summing the match weights for each query term. The document score indicates the
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Bayesian inference weight that the document will be relevant to the user query. We omit
details regarding the Okapi BM25 formula.

A di�erent manner to identify similarity between texts is shingling [Broder et al.,
1997; Pereira-Jr and Ziviani, 2004]. Di�erently of the two methods presented above, which
are typically employed to compare queries and documents in a corpus, shingling has been
proposed as a document representation to identify duplicate and near-duplicate documents
within a given corpus. It is a simple technique that considers text windows of the document
to represent it.

As an example, consider the use of shingles of size 3 and with granularity in the level
of a sentence. Consider document D1 containing seven sentences: D1 = s1. s2. s3. s4.

s5. s6. s7, where si, 1 ≤ i ≤ 7, is a sentence of the text, and i is the order of occurrence of
the sentences in the text. The 3-shingling paragraphs for D1 are: �s1. s2. s3.�, �s2. s3. s4.�,
�s3. s4. s5.�, �s4. s5. s6.�, �s5. s6. s7.�.

2.5.4 Bibliographic Measures
The WIM algebra proposes operators to add links to a graph according to three bibli-
ographic measures: co-citation [Small, 1973], bibliographic coupling [Kessler, 1963], and
transitivity [Gonnet and Baeza-Yates, 1991].

Co-citation is used to measure subject similarity between two documents. If a docu-
ment A cites documents B and C, documents B and C are co-cited by A. If many documents
cite both documents B and C, this indicates that B and C may be related. The more doc-
uments that cite both B and C, the closer their relationship is.

Bibliographic coupling is the inverse of co-citation and considers that if two docu-
ments include the same references then they are likely to be related, i.e., if document A
and B both cite document C this gives some indication that they are related. The more
documents cited by both documents A and B, the stronger their relationship is.

Transitivity is used to walk through links of one document to other documents. If
document A links to document B, and B links to document C, then from A it is possible
to reach C with an operation of transitivity.

2.5.5 Document Ranking
In information retrieval, language models, such as the space vector model presented in this
section, are used to retrieve documents that are similar to a query. With the abundance
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of documents on the Web and the characteristic of Web queries of being very short, a
query independent document ranking (weight) is important for retrieval and mining. We
use two measures, Brin and Page's PageRank [Brin and Page, 1998; Page et al., 1998] and
Kleinberg's HITS [Kleinberg, 1999].

PageRank is a sophisticated query-independent link citation measure which uses
global link information and is stated to be the primary link recommendation scheme em-
ployed in the Google search engine. PageRank is designed to simulate the behavior of a
�random Web surfer� who navigates the Web by randomly following links. If a page with no
outgoing links is reached, the surfer jumps to a randomly chosen bookmark. In addition to
this normal sur�ng behavior, the surfer occasionally jumps spontaneously to a bookmark
instead of following a link. The PageRank of a page is the probability that the Web surfer
will be visiting that page at any given moment.

To calculate the PageRank for a page, all of its inbound links are taken into account.
These are links from within the site and links from outside the site. It is given by:

PR(A) = (1− d) + d(PR(T1)/C(T1) + ... + PR(Tn)/C(Tn)) (2.4)

where PR(A) is the PageRank of page A, PR(Ti) is the PageRank of pages Ti which link
to page A, C(Ti) is the number of outbound links on page Ti, and d is a damping factor
which can be set between 0 and 1.

Hyperlink Induced Topic Search (HITS) is a method used to identify two sets of
pages that may be important: Hub pages and Authority pages [Kleinberg, 1999]. Hub and
Authority pages have a mutually reinforcing relationship � a good Hub page links to many
Authority pages (thereby indicating high Authority co-citation), and a good Authority
page is linked to by many Hubs (thereby indicating high Hub bibliographic coupling).
Each page in the Web graph is assigned two measures of quality: an Authority score Au[u]

and a Hub score H[u].
HITS-based scores may be computed either using local or global link information.

Local HITS has two major steps: collection sampling and weight propagation. Global
HITS is computed for the entire Web graph at once so there is no collection sampling step
(which is the case in this thesis). The Hub and Authority score computation is a recursive
process where Au and H are updated until convergence (initialized with all pages having
the same value).



Chapter 3

A Data Model for Web Mining

Most Web mining algorithms and softwares currently available have been developed in
an ad-hoc manner, with speci�c data structures in mind. The data structures are used
to represent the Web data to be mined. Three types of Web data are usually combined
in di�erent degrees for mining purposes, namely Web content, Web structure, and Web
usage. A large variety of di�erent data structures and formats are used by existing solutions
to store and access all required sources of data, typically graphs, text documents, and
relational tables, together with associated indexing structures.

While this approach has certainly led to very signi�cant advances in Web data mining,
it also poses severe limitations to current research. On one hand, this diversity limits the
ready reuse of existing tools and algorithms by other researchers, unless an open source
approach is taken, not currently a very widespread choice. On the other hand, even more
importantly, it also hampers the direct comparison of existing research contributions. A
more abstract model is required to overcome these limitations.

When we started our research in designing the WIM data model, we did not have
in mind any model, traditional or not, to follow or base on. We started studying the
properties of Web data and Web mining applications, and our design converged to a model
that borrows some concepts from the relational model. Although the WIM data model
has expressive di�erences, it inherits general abstract concepts and terminology, such as
relation and attribute, which make it easier for an external person to abstract based upon
the relational model than from scratch.

In this chapter we present the WIM design goals and the formal WIM data model,
with illustrations of the notation and de�nitions.

25
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3.1 Design Goals
In order to achieve the objectives of the thesis, we established the main WIM design goals,
presented in this section.

Feasibility. The model might be implementable and the resulting tool/prototype should
be useful for di�erent applications. This means that the WIM data model is not just an
abstract model.

Simplicity. Simplicity is important to allow the design and implementation of a prototype
to be applied to a set of use cases as a proof of concept of WIM. Furthermore, simplicity
will help users implement applications based on the WIM data model and algebra, and
extend WIM according to their speci�c demands.

Extensibility. WIM must be extensible. This means not only extension of the software
architecture but also extension of the algebra. The �rst is important to allow scalability
and the implementation of a more sophisticated software in industrial scale, extending the
prototype we have implemented so far. The latter is important for a similar reason: once
the implemented prototype does not cover a large number of data mining techniques, new
operations will be required when extending the prototype to a tool for wide use.

Representativeness. WIM must provide a layer of data independence from the raw data
that is to be mined. It means that we needed to propose a standard to represent the
Web data to be recognized by WIM. Generally, Web data has been widely represented as
a graph, but as WIM is a model for mining, associations between links and nodes must
be provided, so that operations can be applied to di�erent data types. In this sense, an
algebra might also be designed based on most common Web data types, in which operators
need to bene�t from special types of data present on the Web: documents, relationships
between documents, and usage data. The WIM algebra is presented in Chapter 4.

Compositionality. WIM is intended to be more than a simple library. It is rather a
declarative programming language. It is intended to deal with speci�c data types, and
then an algebra to manipulate and mine data is required. Therefore, the compositional-
ity [Abiteboul et al., 1995] property is a requisite, in order to allow sequences of operations
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to manipulate input data. Without such property, the output of a given operation would
be useless for other operations and the algebra would not achieve its goal.

Applicability to other scenarios. Web documents and links are not the only entities to
be represented in WIM. In spite of the focus on Web data, other data to be mined can
be modeled according to the WIM model. This does not mean that we need to propose a
general model, but it will be relevant if in the future the model can be extended to other
scenarios beyond the Web. On the other hand, considering the Web as a scenario, there are
other entities to be represented besides Web documents. The terms of documents, queries
sent to search engines, search engine user sessions, among others, might be represented by
the WIM model. Similarly, relationships between those entities are not limited to physical
HTML hyperlinks. Logical links may exist and must be represented, such as a graph of
users' navigation.

3.2 Formal Data Model
In this section we present the notation and de�nitions for formalizing the WIM data
model. In some cases they are adapted from the standard relational database litera-
ture [Abiteboul et al., 1995; Codd, 1970]. In the WIM data model, two types of relations
are de�ned: node relations, which are de�ned in Section 3.2.2, and link relations, which are
de�ned in Section 3.2.3. Node relations exist to represent nodes of graphs, such as docu-
ments of a Web dataset, terms of a document, or queries or sessions of a query log; and
link relations exist to model edges of graphs, such as links of a Web graph, word distance
among terms of a document, similarity among queries, or clicks of a query log.

3.2.1 Object Set
An Object Set O can be any dataset that users want to model using WIM. In most appli-
cation scenarios, it is a collection of Web documents, in which each object is a di�erent
document in this collection. However, several other datasets may have interesting objects
to be modeled in WIM. For instance, usage data is not a typical collection of documents,
but can still be represented. In this thesis we present some usage data applications to
which WIM has been applied.

Figure 3.1 presents an example of an object set, with six objects, which are Web
documents. Each document has a URL, a textual content (which is just a couple of words
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in this simpli�ed example), and an identi�er, which is de�ned by the user who manages
the collection.

Figure 3.1. Example of an object set.

3.2.2 Node Relation
Given two domains D1 and D2, RN is a node relation on these two domains if it is a set
of 2-tuples, each of which has its �rst element from D1 and its second element from D2.
Exceptionally permitted as output of WIM algebra operators (presented in Section 4), a
node relation can be unary rather than binary. In this case, a node relation on domain D1

is a set of 1-tuple.
The �rst attribute is referred to as the Primary Key Attribute K, and the second

attribute (when it exists), as the Value Attribute V . Then a node relation RN in the WIM
model is de�ned as RN = (K,V ) | (K). The domain (or type1) of K is integer. The
possible types of V are integer, �oating point, or string; i.e., tV ∈ {int, f loat, string}2.

A node relation represents objects from an object set. A single node relation cannot
represent more than one object set, although several node relations can represent the
same object set, and a node relation can represent a subset of an object set. Figure 3.2
presents two examples of node relations, which represent the same object set, illustrated in
Figure 3.1. Relation url represents the URLs of a set of six Web objects, whereas relation
text represents the text content of the Web objects.

Observe that the main di�erence so far between the WIM and relational data models
is the number of attributes in each relation. As we shall further explain below in this
chapter, this is a requirement for WIM, because subsets of tuples in relations might be
represented as new relations which are part of the same dataset.

1 In this text we also use the term type to express the domain of attributes.
2 For the sake of simplicity, boolean and character types are not directly allowed, though they can be

represented by integer and string types, respectively.
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Figure 3.2. Two node relations: url and text.

3.2.3 Link Relation

Given four domains D1, D2, D3 and D4, RL is a link relation on these four domains if it is a
set of 4-tuples with its �rst element from D1, its second element from D2, its third element
from D3, and its fourth element from D4. A link relation can also be ternary rather than
quaternary. In this case, given three domains D1, D2 and D3, RL is a link relation on these
three domains if it is a set of 3-tuples with its �rst element from D1, its second element
from D2, and its third element from D3.

The �rst attribute is referred to as the Primary Key Attribute K of the link relation,
the second as the Start Attribute S, the third as the End Attribute E, and the fourth (when
it exists) as the Value Attribute which represents a label for an edge. Then a link relation
RL in the WIM model is de�ne as RL = (K, S, E, L) | (K,S, E). The latter means that
there is no label value associated with edges of the graph.

Individually, S and E represent the nodes of a graph and, for this reason, elements in
S and in E are typically referred to as nodes in this thesis. S must represent objects from
a single object set, as well as E must represent objects from a single object set. Often, S

and E represent objects from the same object set, although S and E may represent objects
from two di�erent object sets. Together, S and E represent edges of a graph. If S and
E represent objects from di�erent object sets, then the link relation represents a bipartite
graph, which is useful to make associations between di�erent collections. The type of K,
S and E is integer, and the possible types for L are integer, �oating point, or string.

Figure 3.3-(a) presents an example of a link relation called frequency, whereas Fig-
ure 3.3-(b) presents the graph represented by this relation. Observe that, for key value
5 (start node 3), the associated values in attributes E and L are null (represented by a
hyphen), which means there is no link from node 3, though it is a node of the graph, as
represented in Figure 3.3-(b).

A di�erence between node and link relations is that in node relations the attribute
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Figure 3.3. Relational and graphical representation of link relation frequency.

K stores the identi�er of each object represented, whereas in link relations the attribute K

stores the identi�er of each edge between objects, which are typically represented by a node
relation. Observe that the attribute set {S, E} cannot be used as superkey for link relations,
because typically there may exist two edges that point from a node d1 to a node d2, then
the values in attribute set {S, E} may not be unique in a link relation. Furthermore, there
may exist nodes represented without any edge, as illustrated in Figure 3.3.

3.2.4 Relation Set
In spite of the restriction with respect to the number of attributes in the relations, the WIM
data model has a mechanism to associate value attributes in di�erent relations according
to their respective key attributes. The concept of Relation Set allows to associate value
attributes from di�erent relations, according to the attribute key K of node relations, or
attributes S and E of link relations.

A set of relations R1, R2, . . . , Rn belong to the same Relation Set, if and only if:

• Every relation in the relation set belongs to the same type, i.e., either tRi
= node or

tRi
= link, for 1 ≤ i ≤ n. The type of a relation set is represented as tS.

• If tS = node, the key attribute in each relation identi�es objects from the same object
set O.

• If tS = link, the start nodes (i.e., attribute S) of each relation identify objects in
the same object set O1 and the end nodes (i.e., attribute E) of each relation identify
objects from the same object set O2. Typically, object sets O1 and O2 are the same
set, i.e., O1 = O2.
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A relation set representing node relations is referred to as a Node Relation Set and
is represented by symbol SN , whereas a relation set representing link relations is referred
to as a Link Relation Set, and is represented by symbol SL (we remind that a single S is
the representation of attribute start, and not a representation for relation set).

According to the above de�nition, relations url and text in Figure 3.2 can be de�ned
within the same node relation set, because they are both node relations and they represent
the same object set (shown in Figure 3.1). Relation frequency in Figure 3.3 could be part
of a link relation set that represents graphs composed by the documents in Figure 3.1, but
it does not belong to a relation set like the one that includes the node relations url and
text, because frequency is a link relation. Then, by de�nition, frequency cannot belong to
a node relation set.

Observe that the de�nition of relation set does not impose that every relation in a
set must have the same K, for node relation sets, and the same values in attributes S and
E, for link relation sets. This means that relations within the same relation set can have
di�erent number of tuples. Actually, this property is the main reason for de�ning relations
with only one value attribute, and grouping them as a relation set.

Although relations in the same relation set need not represent the same objects in an
object set, the union of nodes of every relation in the set must correspond to objects from
the same object set. This condition is relaxed for link relations, to which start and end
nodes may represent di�erent objects, corresponding to a bipartite graph. For link relation
sets, the union of start nodes of every relation in the set must correspond to objects from
the same object set, and the same condition holds for end nodes.

For a node relation set SN , we refer to key set as the union of all values of each
attribute K of relations in SN . Note that the key set must represent a single object set, as
stated before. For a link relation set SL, we refer to start set as the union of all elements
in each attribute S of relations in SL, and as end set as the union of all elements in each
attribute E of relations in SL.

3.2.5 Compatibility
Relation sets exist to associate relations of the same type that represent the same object
set. The concept of compatibility is important to establish an association between relation
sets of di�erent types, but which represent the same object set. If two relation sets of the
same type represented the same object, they would be de�ned as a unique relation set,
which means that compatibility needs not be de�ned for relation sets of the same type. The
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concept of compatibility is specially important for the WIM algebra, as we shall present in
the next chapter.

There are two situations to de�ne compatibility. The �rst is when both the start and
end sets of a link relation set represent the same object set, and the second is when they
represent di�erent object sets (for which a bipartite graph is represented).

A node relation set SN and a link relation set SL are compatible to each other if they
represent the same object set O. More formally, SN and SL are compatible if both the
start and end sets of SL consists of foreign keys in the key set of SN . We use the symbol
`⇔' to express compatibility between two relation sets (SN ⇔ SL).

If the start and end sets of SL represent di�erent objects, then SL does not have a
single compatible SN for both start and end sets of SL. This means that start and end
sets of a link relation set can have di�erent compatible node relations. In this case, if SN1

represents the object set O1, which is the object set represented by the start set of SL, then
the start set of SL is compatible with SN1 . More formally, the start set of SL is compatible
with SN1 if the start set of SL consists of foreign keys in the key set of SN1 . The same
de�nition is valid for the end set: the end set of SL is compatible with SN2 if it consists of
foreign keys in the key set of SN2 . We use the symbol `⇒' to express compatibility between
a start or end set of link relation sets and node relations (S(SL) ⇒ SN1 and E(SL) ⇒ SN2).

For illustration, observe that the node relation set presented in Figure 3.2 is com-
patible with the set to which the link relation presented in Figure 3.3-(a) belongs. Link
relation frequency represents edges between nodes, which are objects in Figure 3.1. Observe
in Figure 3.3-(b) that this link relation does not represent a bipartite graph.

To illustrate the situation in which a link relation represents a bipartite graph, and
then has di�erent compatible relations for start and end sets, consider the example illus-
trated in Figure 3.4. Suppose query is the only relation in a node relation set querySet,
text is the only relation in a node relation set textSet, and result is the only relation in
a link relation set with the same name3. Relation result represents results of searches for
elements of query in document texts represented by relation text, using a given comparison
technique.

Observe in relation result that elements in attribute E are documents returned by
queries represented in attribute S. For instance, document number 4 (to �y) was returned

3 Two relations within the same relation set cannot have the same name, but a given relation set can
have the same name of its relation. We shall see in the next section that this situation is fairly common
in the WIM data model.
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Figure 3.4. An example of a link relation with di�erent compatible node rela-
tions for the start and end sets.

by query number 11 (to �y), with a similarity measure represented as value 1.0 in attribute
L.

3.3 Concluding Remarks
In this chapter we have presented the WIM data model. The WIM data model has been
designed to deal with Web data, allowing two di�erent types of data: link and node
relations. In addition, it aims to save space when storing attribute values and to take
advantage of the association between node and link relation sets, in cases that the edges
of a link relation set refer to documents of a node relation set, i.e., when the sets are
compatible.

The remaining of this thesis shall demonstrate some important features of the WIM
data model, like: how the WIM algebra is appropriately built upon the WIM data model
presented in this chapter; how the model can be e�ectively and e�ciently implemented;
and how a WIM prototype has been successfully used to manipulate and mine diverse
kinds of Web data.





Chapter 4

An Algebra for Web Mining

In this chapter we present details of the WIM algebra, including the syntax of the WIM
operators and the underlying WIM language. The de�nition of each WIM operator is
presented and didactically illustrated. Before introducing the WIM algebra, Section 4.1
presents the concepts of WIM operation, program and database.

Section 4.2 presents a high level view of the WIM language as well of the patterns
used to describe the operators' syntax. The WIM operators are divided into two categories.
Section 4.3 presents the data manipulation operators, which permit traditional operations
on data, like selection and join. Then, Section 4.4 presents the data mining operators, which
are used to certain mining tasks on the data. Finally, Section 4.5 presents a comparison
between the WIM data manipulation operators and the relational algebra.

4.1 Operations, Programs and Databases
An operation is the application of an operator to relations of one or two relation sets.
An operator is a previously de�ned function included in the WIM algebra, which shall be
presented in this chapter. The output of any operation must be a new relation, which can
be used afterwards in the same program. This means that this output relation will belong
to some relation set. We shall see in Section 4.1.1 that output relations can belong to a
previously existing relation set, or a new relation set might be created. The decision of
to which relation set an output relation belongs is automatically taken by WIM, based on
the algebra.

A WIM Program is a sequence of operations, de�ned according to the WIM language

35
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built upon the WIM algebra. The WIM language is a data�ow programming language,
which is derived from the functional programming paradigm. A program is modeled like
a directed graph, in which nodes represent operations and edges represent the data �ow.
This approach allows parallelism of tasks when the manipulated data is independent in
di�erent parts of the program.

It is intrinsic to any operator de�nition the type of the input relation set(s), and the
type and properties of the output relation. The input of an operator typically includes
other operator-speci�c parameters that are not relation sets or relations. Some parameters
are previously named options, or user-de�ned values.

Figure 4.1 presents an example of a WIM program with just three operations. The
output relation is preceded by the sign �=�, for any operation. The operator comes after the
sign and is followed by a list of parameters surrounded by parentheses. The �rst parameters
are the input relation sets, followed by possible textual options, and then possible values.
Finally, the list of relations and their attributes appear. This list of relations does not
appear in the beginning, just after the associated relation set, because the number of
possible relations vary for each operator. Observe as an example the operator Search in
Figure 4.1. Set querySet is the �rst input relation set, textSet is the second input relation
set, OR is an option for operator Search, and �nally query.V and text.V are input relations
followed by the corresponding attribute to which the operator is applied (V in both cases).
In Section 4.2 we shall present the WIM language syntax, in which the WIM operators are
detailed, including the operators that appear in Figure 4.1. We shall present real examples
of WIM programs when discussing the use cases, in Chapters 6 and 7.

result = Search(querySet, textSet, OR, query.V, text.V);
cluster = Select(result, value, ==, 1.0, result.L);
singleCluster = Set(textSet, result, intersection, text.K, cluster.E);

Figure 4.1. An illustration of a WIM program with three operations.

A WIM Database consists of any set of relations, divided accordingly into relation
sets, which are registered to be used in programs. Relations in di�erent databases cannot
be used in the same WIM program. Relations registered in a WIM database are referred
to as Permanent Relations, and relations returned by a WIM program are referred to as
Temporary Relations. Temporary relations can only be used within the program they are
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created1. Observe that a relation set may contain permanent and temporary relations
together, during the execution of programs.

4.1.1 Relation Set of an Output
The WIM data model would be useless if operators' output could not be reused in a
program, because, as operators manipulate and mine data, very often several data mining
and manipulation operations are needed in sequence in a program, in order to return
speci�c pieces of data to users.

Each WIM operation speci�cation must de�ne the operator's output characteristics
(apart from the input characteristics), like the output relation type, the output relation set,
whether the output relation has the value attribute or not and, if true, the type of the value
attribute. Further, the relation set of which the operator's output belongs must be de�ned,
otherwise users do not know what can be done with each operator's output. There are
three possibilities: i) the output can belong to an input relation set; ii) the output relation
can belong to a new relation set, which is created containing just that relation; iii) the
output belongs to an existing relation set which is not an operation's input.

To illustrate the �rst possibility, observe operators Select and Set in Figure 4.1, which
return output relations that belong to the input relation set. Figure 4.2 shows relation
cluster as a new relation in relation set result. Relation cluster only contains edges whose
value is equal to 1.0, which is the condition for the selection (edges 11 → 1 and 11 → 3 are
excluded for relation cluster). Relation singleCluster does not have attribute V . It is the
result of the intersection of attribute K from relation text and attribute E from relation
cluster. Observe that the new relation singleCluster belongs to relation set textSet, which
is the �rst input of the operation.

Notice that, for the sake of simplicity, link relations result and cluster are illustrated
using a list of end nodes (and their respective labels) associated to each single start node,
and that attribute K is omitted in these link relations. This is just a representation we
use to illustrate link relations in this thesis (which does not mean that WIM allows multi-
valued attributes). For example, for start node 12, actually there are two tuples: (12, 2, 1.0)

and (12, 5, 1.0) (omitting attribute K).
The second possibility for an operator's output is to belong to a new relation set.

In this case there are two other cases: either the output relation set is compatible with
1 In spite of the absence of a WIM algebra operation for materialization, any WIM implementation

might provide such feature, so that temporary relations can become permanent.
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Figure 4.2. Two compatible relation sets, with new relations (cluster and sin-
gleCluster) as result of operations.

an input relation set, or it is not compatible with anything. The latter case might be
avoided when designing WIM operations, because the WIM algebra takes advantage of the
concepts of relation set and compatibility.

The Search operator in Figure 4.1 is an example of an operator that returns an output
relation within an new relation set which is compatible with the input one. Relation result
is already represented in Figure 3.4. Observe that relation set result is created because
of the Search operator. The start set of relation set result is the foreign key of (and then
compatible with) the node relation set querySet, and the end set is foreign key of node
relation set textSet.

The third possibility for an operator's output is to belong to an existing relation set
which is not an operation's input. For illustration, suppose that the fourth operation of
the WIM program shown in Figure 4.1 is another operation over relations text and query,
returning other link relation with attributes S and E that represent di�erent foreign keys,
respectively in relation sets textSet and querySet. This output would be a relation in
the existing relation set result. Note that WIM can automatically associate new output
relations to existing or new relation sets.

4.1.2 Properties of the Operations
The most important property of WIM operations is that any value attribute of a relation
in a set can be used as value attributes of other relations in the same set, indistinctively.
This property means that users can choose a relation from which the key attribute is taken,
and other relation in the same set from which the value attribute is taken. This is impor-
tant because the need of accessing value attributes from other relations after performing a
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sequence of operations in a WIM program is quite frequent. This property is called inher-
itance, because it means that relations returned by operations actually inherit attributes
from other relations in the set.

For example, observe relation singleCluster in Figure 4.2, which is the output of
the WIM program shown in Figure 4.1. This relation has no value attribute, but its
key attribute could be used to �lter values from other relations in the same set, such as
relation text. Thus, it is possible to apply an operator only to elements identi�ed by the
list (2, 4, 5, 6), which is the list of elements in the key attribute from relation singleCluster,
but whose values appear in relation text, which are in the list (or not, to �y, or not, to �y).

To understand how to use inherited attributes in WIM, observe again Figure 4.1.
Note that in every case there is no di�erentiation from which relation is the value attribute
and from which relation is the key attribute. This is because both attributes come from
the same relation. For instance, the �rst operation uses the value and key attributes from
relation query (see Figure 3.4) for the �rst input set, and the value and key attributes from
relation text, for the second input set. If a user wants to use only the values in relation
text that exist in relation singleCluster, they might replace the �rst operation to this one:

result = Search(querySet, textSet.singleCluster, OR, query.V, text.V);
Observe that the relation which the key attribute is taken from is speci�ed with a dot and
then its name, just after specifying the relation set (textSet).

The second most important property of the operations in the WIM model is the
inheritance of attributes from a compatible node relation set, by a relation of a link relation
set. Some operators are specially designed taking into consideration this property. For
example, observe relation cluster in Figure 4.2. A given operation could be applied to
node pairs for edges of the graph represented by relation cluster, whose start nodes are
represented in relation set querySet (see Figure 3.4), and whose end nodes are represented
in relation set textSet (see Figure 4.2). For that, values from relation sets querySet and
textSet would be inherited and used. For instance, the �rst edge is 11 → 4, then tuples
identi�ed as 11 and 3, respectively in relations query and text, could have their attribute
values compared.

4.2 The WIM Language
As already mentioned, the WIM language is a data�ow language and so a WIM program
consists of a sequence of operations. The high level syntax of a WIM program is de�ned
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in Figure 4.3. We use a BNF-like2 notation to specify the WIM syntax. The actual syntax
speci�cation of each operator is independently presented in the respective section in this
chapter. Appendix 1 presents the complete speci�cation of the WIM language syntax.

WIMProgram := Operator `;' { Operator `;' }
Operator := Select | Calculate | CalcGraph | Aggregate | Set | Join |

Convert | Search | Compare | CompGraph | Cluster |
Disconnect | Associate | Analyze | Relink

Figure 4.3. High level syntax of a WIM program.

Our speci�cation language is a set of derivation rules, written as:

Symbol := Expression

where Symbol is a nonterminal and Expression consists of one or more sequences of symbols.
Alternative sequences are separated by the vertical bar `|', indicating a choice, the whole
being a possible substitution for the symbol on the left. Symbols that never appear on a
left-hand side are terminals and are indicated between single quotes. On the other hand,
symbols that appear on a left-hand side are non-terminals. Note that every non-terminal
must appear once and only once on the left-hand side. Optional items are enclosed in
square brackets (for example, [ item ] ), and items that can repeat zero or more times are
enclosed in curly brackets (for example, { item } ). Some additional symbols used in the
speci�cation of the operators are presented in Figure 4.4.

We are not strict with the BNF-like notation we have used. For instance, we use
abbreviations, such as to represent the alphabet in Figure 4.4 (�a, b, ..., z�, rather than
listing every letter), and we do not explicitly di�erentiate where blank spaces are needed
to separate terms and where they are used only for improving presentation. For example,
the symbol �NumValue� in Figure 4.4 is de�ned with blank spaces before and after the
terminal `.' just for presentation purpose.

4.3 Data Manipulation Operators
Data manipulation operators are those operators required to retrieve and prepare data to
be used by another operator or transformed to an adequate format. These operators are

2BNF (Backus-Naur Form) is a standard for formal language syntax speci�cation.
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Digit := `0' | `1' | `2' | `3' | `4' | `5' | `6' | `7' | `8' | `9'
IntValue := Digit { Digit }
NumValue := IntValue [ `.' IntValue ]
Letter := `A' | `B' | ... | `Z' | `a' | `b' | ... | `z'
Name := Letter | Digit { Letter | Digit }
OutputRel := Name [ `.' Name ]
OutputLinkRel := Name [ `.' Name ]
OutputNodeRel := Name [ `.' Name ]
InputSet := Name
InputNodeSet := Name
InputLinkSet := Name
NumRel := Name `.' Attr
IntRel := Name `.' Attr
TxtRel := Name `.' Attr
AnyRel := Name `.' Attr
Attr := `K' | `V' | `S' | `E' | `L'| `SE'

Figure 4.4. General rules with symbols used in the speci�cation of operators.

used for selecting tuples, merging relations, and executing calculation.
When de�ning operators, we consider that the output relation is referred by an

apostrophe (for example, R′). Then, if the output is a node relation, it is referred to
as R′

N , whereas if the output is a link relation, it is referred to as R′
L. Attributes in

{K ′, V ′, S ′, E ′, L′} are attributes of the output relation. Input node relations are referred
to as RNi

, 0 ≤ i ≤ 3, whereas input link relations are referred to as RLi
, 1 ≤ i ≤ 3. When

the input is just one relation, then its index is not represented (for example, RN is used
rather than RN1). Attributes in {Ki, Vi} are attributes of node relations in the input, whose
index i represents the ith input node relation. Similarly, attributes in {Ki, Si, Ei, Li} are
attributes of link relations in the input, whose index i represents the ith input link relation.
Input relations surrounded by square brackets ([]) are optional.

The de�nition of each operator always inform: i) if the input and output relations
are node (RN) or link relations (RL), or if it does not matter (simply R is used); ii) if the
output relation goes to the same relation set as the input (for example, {RN , R′

N} ∈ SN),
or if the output relation set is compatible to the input relation set (for example, consider
R′

N ∈ SN and RL ∈ SL, then SN ⇔ SL); iii) if the output represents a subset of tuples
from the input (K ′ ⊆ K) or if the output represents the same set of tuples from the input
(K ′ = K); iv) if the output value attribute (V ′ for node relations and L′ for link relations)
exists in the output (for instance, for node relations, the output R′

N(K ′, V ′) means that V ′
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exists, whereas R′
N(K ′) means that V ′ does not exist); v) other constraints, like if S from

an input link relation must have a compatible node relation set, i.e., S ⇒ SN .

4.3.1 Select
This operator selects tuples from the input relation (which can be a node or a link relation),
according to a condition, such as equal, di�erent, greater than, etc., which is applied to a
numeric attribute. The Select operator is de�ned as:

R′
N(K ′) ← Select(RN), where {RN , R′

N} ∈ SN ∧K ′ ⊆ K or

R′
L(K ′, S ′, E ′) ← Select(RL), where {RL, R′

L} ∈ SL ∧K ′ ⊆ K

Observing the de�nition of the Select operator, we note that it accepts both node and
link relations as the input relation. The �rst part de�nes how it works for node relations
and the second one for link relations. Observe that the resulting output relation has the
same type of the input relation set.

According to the de�nition of the Select operator, its output may be a subset from
the input (K ′ ⊆ K), and the value attribute does not exist in the output relation (output
de�ned as R′

N(K ′) for node relations and R′
L(K ′, S ′, E ′) for link relations). Further, the

output relation belongs to the same set of the input relation set ({RN , R′
N} ∈ SN and

{RL, R′
L} ∈ SL).

Figure 4.5 presents the syntax of the Select operator in the WIM language. It has
tree possible options: Value, Attribute, and Top. For the Value option, the values of V in
the input relation are compared against a given value passed by the user. For the option
Attribute, the comparison is performed between two value attributes of di�erent relations
in the same relation set. For the option Top, only a given number of elements with the
highest or lowest values are returned. In this case, the conditions for comparison presented
above are not used.

Select := OutputRel `=' `Select' `(' InputSet `,' BodySelect `)'
BodySelect := `value' `,' NumRel `,' SelOperation `,' NumValue |

`attribute' `,' NumRel `,' NumRel `,' SelOperation |
`top' [ `,' Order ] `,' NumRel `,' IntValue

SelOperation := `==' | `! =' | `<' | `<=' | `>' | `>='
Order := `increasing' | `decreasing'

Figure 4.5. Syntax of the Select operator.
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Figure 4.6 presents an example of the Select operator, with the Value option. Only
tuples whose value of attribute V in the relation countC from the relation set usageLog is
equal to 1 are returned in relation one. We notice that most of the examples in this section
are taken from the WIM use case programs which shall be presented in Chapters 6 and 7.
In order to let the reader associate parts of the use cases discussed in those chapters and
the examples in this chapter, we preserve the original name of the relations and relation
sets (like usageLog and one).

one = Select(usageLog, value, countC.V, ==, 1);

Figure 4.6. Example of the Select operator with the Value option.

As de�ned above, Select can also be applied to link relations. In Figure 4.7 it is
applied to the relation set t�df with the option Top, to return the two highest values of
the attribute L in relation t�dfPR2, which represents the labels of links from start to end
nodes. As we can see, for the start node 11, the link to end node 8 is not included in
the output relation t�dfPRFinal, because it has the lowest value in relation t�dfPR2. For
start node 12, the link to end node 2 is also not included. Observe that the end nodes
in t�dfPRFinal are sorted according to the L values in relation t�dfPR2, as a result of
applying the Select operator with the option Top.

4.3.2 Calculate

The Calculate operator is used for mathematical and statistical calculations using numeric
attributes. Examples of possible calculations are sum, multiplication, and average. The
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tfidfPRFinal = Select(tfidf, top, decreasing, tfidfPR2.L, 2);

Figure 4.7. Example of the Select operator with the option Top, applied to a
link relation.

Calculate operator is de�ned as:

R′
N(K ′, V ′) ← Calculate(RN1 , [RN2 ]), where {RN1 , RN2 , R

′
N} ∈ SN ∧K ′ = K1 or

R′
L(K ′, S ′, E ′, L′) ← Calculate(RL1 , [RL2 ]), where {RL1 , RL2 , R

′
L} ∈ SL ∧K ′ = K1

Both node and link relations are accepted. Its output relation belongs to the same set
of the input relation and the value attribute receives the result of the calculation performed.
Since K ′ = K1, the output relation does not represent a subset of the input relation.

Figure 4.8 presents the syntax of the Calculate operator. Two options are possible:
Constant and Pair. For the option Constant, the calculation is performed between a
constant value passed as a parameter and each value of an attribute. For the option Pair,
the calculation is performed between the corresponding values of two attributes of the two
relations.

Calculate := OutputRel `=' `Calculate' `(' InputSet `,' BodyCalc `)'
BodyCalc := `constant' `,' ConstOper `,' NumRel `,' NumValue |

`pair' `,' PairOper `,' NumRel `,' NumRel
ConstOper := `sum' | `di�erence' | `multiplication' | `division' | `average' |

`deviation' | `mod' | `normalize' | `absolute' | `max' | `min'
PairOper := `sum' | `di�erence' | `multiplication' | `division' | `average' |

`mod' | `percentage' | `max' | `min'

Figure 4.8. Syntax of the Calculate operator.

Figure 4.9 presents an example of the Calculate operator with the option Constant.
It is applied to relation t�df1 to normalize values between 0 and 1, returning relation t�df2
which belongs to the same relation set t�df.



4.3. Data Manipulation Operators 45

tfidf2 = Calculate(tfidf, constant, normalize, tfidf1, 1);

Figure 4.9. Example of the Calculate operator with the option Constant, for
normalization of values between 0 and 1.

4.3.3 CalcGraph
The CalcGraph operator applies a calculation operation for each link of a graph, so that
the calculation is applied to pairs of start and end nodes. The CalcGraph operator is
de�ned as:

R′
L(K ′, S ′, E ′, L′) ← CalcGraph(RL), where {RL, R′

L} ∈ SL ∧K ′ = K ∧
S ⇒ SN1 ∧ E ⇒ SN2

According to the de�nition, the input and the output are link relations that belong
to the same relation set. The value attribute in the output is used to store the result of
the calculation.

Clauses S ⇒ SN1 and E ⇒ SN2 mean that there must exist a compatible node
relation associated to the start set of the input relation (as discussed in Section 3.2) and
a compatible node relation for the end set, respectively. Compatible node relations must
exist because the given numerical attributes from the node relations SN1 and SN2 are used
to perform the calculation involving each start-end pair of a given relation of the input
link relation set SL. As there is no restriction with respect to sets SN1 and SN2 , then it is
possible that they represent the same set, i.e., SN1 = SN2 .

The syntax of the CalcGraph operator is presented in Figure 4.10. Observe that
the two numerical input relations are taken from the compatible node relation sets for
attributes start and end of SL. Since the relation from which the start and end attributes
are taken is di�erent from the relation whose value attributes are taken, the former needs
to be explicitly indicated (in passage �InputLinkSet `.' AnyRel�).

As an example of this operator, consider the relation relGenSt (from the relation set
relGen) represented in Figure 4.11, whose compatible node relation set for the start set is
relOld and for the end set is relNew. Applying the sum operation to the value attributes
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CalcGraph := OutputLinkRel `=' `CalcGraph' `(' InputLinkSet `.' AnyRel `,'
CalcGraOperator `,' NumRel `,' NumRel `)'

CalcGraOperator := `sum' | `di�erence' | `multiplication' | `division' |
`average' | `mod' | `percentage' | `max' | `min'

Figure 4.10. Syntax of the CalcGraph operator.

of both compatible relations results in 42 (11+31) and 46 (13+33), which are values that
compose the value attribute L of the output relation relGenCalc.

relGenCalc = CalcGraph(relGen.relGenSt, sum, relClOld.V, relClNew.V);

Figure 4.11. Example of the CalcGraph operator for the sum of values in
compatible relations.

4.3.4 Aggregate
The Aggregate operator is used to combine and group values of one or more relations of a
node or link relation set. The Aggregate operator is de�ned as:

R′
N(K ′, V ′) ← Aggregate(RN1 , [RN2 ], [RN3 ]), where {RN1 , RN2 , RN3 , R

′
N} ∈ SN ∧

K ′ ⊆ K or

R′
L(K ′, S ′, E ′, L′) ← Aggregate(RL1 , [RL2 ], [RL3 ]), where {RL1 , RL2 , RL3 , R

′
L} ∈ SL ∧

K ′ ⊆ K

Figure 4.12 presents the syntax of the Aggregate operator. It accepts two options:
Single and Grouping. In both options an aggregation operation (like sum, average, maxi-
mum, counting, etc.) is applied to value attributes from relations in a relation set, which
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means that V ′ (and L′, for link relations) is required to store the result of the aggregation
operation.

Aggregate := OutputRel `=' `Aggregate' `(' InputSet `,' BodyAgg `)'
BodyAgg := `single' `,' AggOperator `,' NumRel |

`grouping' `,' AggOperator `,' NumRel [ `,' NumRel ]
[ `,' NumRel ]

AggOperator := `sum' | `average' | `count' | `max' | `min' | `deviation' |
`geometric' | `mode' | `median'

Figure 4.12. Syntax of the Aggregate operator.

The option Single means that an operation is applied to all values of a single attribute.
In this case the result is a relation with a single tuple. In Figure 4.13, the Aggregate
operator with the option Single is applied to relation sn2Dup from relation set sn2. The
output relation avg2Dup belongs to set sn2 and stores the average of the values in the
input relation.

avg2Dup = Aggregate(sn2, single, average, sn2Dup.V);

Figure 4.13. Example of the Aggregate operator with the option Single, for
calculating the average.

For the option Grouping, sets of tuples are removed, if their values in one or two
chosen relations are equal, i.e., replicated. Then, only tuples with di�erent values in the
chosen relation(s) are kept in the output. A third attribute may be used to have one of the
possible operations applied to its values. Also for the option Grouping, the output value
attribute stores the result of the requested operation.

In Figure 4.14, the Aggregate operator with the option Grouping is applied to relation
relEnd from relation set relNew. The operation results in relation relEndInst, where only
one of the two tuples with value 31 in relation relEnd is kept and the new value attribute
in the output relation relEndInst counts the number of tuples with each value in the input.
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relEndInst = Aggregate(relNew, grouping, count, relEnd.V);

Figure 4.14. Example of the Aggregate operator with the option Grouping, for
counting the number of tuples with the same value.

Aggregate can also be applied to link relations. Observe the graphs in Figure 4.15,
where the Aggregate operator is applied to relation relCocit. The number of links for each
start-end pair is counted and returned as the value of the attribute L in the output link
relation relAgg.

relAgg = Aggregate(relUsGraph, grouping, count, relCocit.SE);

Figure 4.15. Example of the Aggregate operator with the option Grouping,
applied to a link relation.

The last example, more complex, is shown in Figure 4.16, where Aggregate is applied
to the relation set usageLog, with the option for counting the number of elements. The
keys are taken from Relation one and the other two relations in the set are used for
aggregation, rather than only one relation. They are relations queryId and urlId. In this
case, any di�erent pair of values for these relations must appear in the output relation,
which is relation most, where the attribute V stores the number of tuples with the same
pair of values.

As the keys are taken from relation one, tuples in relations queryId and urlId that
are not in one are not considered, which are tuples 2 and 6. It works like if these tuples did
not exist in relations queryId and urlId. Note that this is not a feature of the Aggregate
operator. Rather, it is the WIM ability that key and value attributes of di�erent relations
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in the same set can be used together, as if they were part of the same relation, or even as
if relations allowed multiple value attributes.

most = Aggregate(usageLog.one, grouping, count, queryId.V, urlId.V);

Figure 4.16. Example of the Aggregate operator with the option Grouping,
applied to two attributes of a relation.

4.3.5 Set
This operator is used for Union, Intersection or Di�erence of tuples from two di�erent
relations, which need not be of the same type. The user must choose the attribute to be
compared for each input relation, which is not necessarily the identi�er attribute K (or S

and E for link relations). The Set operator can be de�ned as:

R′
1(K

′) ← Set(R1, R2), where {R1, R
′
1} ∈ S1 ∧R2 ∈ S2 ∧K ′ ⊆ K1 or

R′
2(K

′) ← Set(R1, R2), where {R1, R2, R
′
2} ∈ S ∧K ′ = {K1 ∪K2} or

R′
3(K

′) ← Set(R1, R2), where R1 ∈ S1 ∧R2 ∈ S2 ∧R′
3 6∈ {S1, S2} ∧

K ′ = {K1 ∪K2}

The Set operator accepts inputs of di�erent types. This means that, for instance,
the �rst input can be a node relation and the second input can be a link relation. In
any case the output has the same type as the �rst input set. As there are four di�erent
combinations of input types for each of the options, the Set operator is not de�ned above
with di�erentiation of node and link inputs. Consequently, when link relations are used as
input, either attribute S or E might replace attribute K in the de�nition above. Further,
the output is not represented with all the attributes it should have. Just K ′ is showed, to
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generally inform that the value attribute V ′ (or L′ for link relations) does not exist in the
node relation output.

The �rst de�nition, R′
1, is for the options Intersection and Di�erence. In these cases,

the output relation belongs to the same relation set as the �rst input, and K ′ ∈ R′
1 may

be a subset of K1 ∈ R1.
For the option Union there are two possibilities. If the two inputs are relations of the

same relation set, i.e., {R1, R2} ∈ S, then the output, represented by R′
2, belongs to the

set of the inputs ({R1, R2, R
′
2} ∈ S). But if the input sets are di�erent, i.e., R1 ∈ S1 and

R2 ∈ S2, then the output relation, represented by R′
3, belongs to a new relation set that is

not an input set. Figure 4.17 presents the syntax of the Set operator.

Set := OutputRel `=' `Set' `(' FirstInputSet `,' SecInputSet `,'
SetOperation `,' AnyRel `,' AnyRel `)'

FirstInputSet := Name
SecInputSet := Name
SetOperation := `union' | `intersection' | `di�erence'

Figure 4.17. Syntax of the Set operator.

As aforementioned, the Set operator allows inputs of di�erent types, i.e., a node
relation and a link relation. For example, observe the Set operator applied to relations
relClNew and relSeDifUrl in Figure 4.18, which belong to di�erent sets. Consider that
the �rst input passed is relClNew, and the operation is intersection. The key attribute
is used from relClNew (the value attribute is not required) and the end attribute is used
from relSeDifUrl. The result is relation relEnd, which represents a subset of tuples from
relClNew, identi�ed by 21, 23 and 25. Note that relEnd belongs to the same set as relClNew,
which is the �rst input.

4.3.6 Join
The Join operator is used to add an external attribute to a given relation, so that it works
like a left outer join [Garcia-Molina et al., 2001]. It is de�ned as:

R′
N(K ′, V ′) ← Join(RN1 , RN2 , RN3), where {RN1 , R

′
N} ∈ SN1 ∧

{RN2 , RN3} ∈ SN2 ∧K ′ = K1 or

R′
L(K ′, S ′, E ′, L′) ← Join(RL1 , RL2 , RL3), where {RL1 , R

′
L} ∈ SL1 ∧

{RL2 , RL3} ∈ SL2 ∧K ′ = K1
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relEnd = Set(relNew, relSearch, intersection, relClNew.K, relSeDifUrl.E);

Figure 4.18. Example of the Set operator with the option Intersection, applied
to two relations of di�erent types.

The operator is used to join values of relation RN3 (or RL3) from SN2 (or SL2) into
relation set SN1 (or SL1). Three relations are input. The �rst relation comes from SN1 and
the second relation comes from SN2 . they are then used for comparison before associating
the value attribute of relation RN3 in SN2 to set SN1 , as part of the output relation.
Figure 4.19 presents the syntax of the Join operator.

A default value must be passed to be used when a value in the �rst relation is not
found in the second relation. When a value in the �rst relation is found more than once
in the second relation, only one value from the second relation is joined, which is the �rst
value found. This decision is because the design of operators might avoid operations that
add new tuples, so that the output would not belong to any input's set (as discussed in
Section 4.1.1).

Join := OutputRel `=' `Join' `(' FirstInputSet `,' SecInputSet `,' AnyRel `,'
AnyRel `,' AnyRel `,' DefaultValue `)'

FirstInputSet := Name
SecInputSet := Name
DefaultValue : StringValue | NumValue
StringValue := � `' Name `� '

Figure 4.19. Syntax of the Join operator.

Figure 4.20 presents an example of the Join operator. Relation mostOne from rela-
tion set usageLog has its value used to generate the output mostOneJo, which belongs to
relation set queryData. The two attributes used for comparison are referred to as queryId,
but belong to di�erent relation sets (otherwise the Join operator would not be required).
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Observe that tuple 2 in relation queryId of set queryData does not have its associated value
(12) found in mostOne, so that a default value 0 passed by the user is included for relation
mostOneJo.

mostOneJo = Join(queryData, usageLog.mostOne, queryId.V, queryId.V, mostOne.V,
0);

Figure 4.20. Example of the Join operator.

4.3.7 Convert
The Convert operator is used to convert relations of a type into relations of an other type,
so that users can dynamically create relations based on other relations. The operator is
de�ned as:

R′
N(K ′, V ′) ← Convert(RL), where K ′ = {S|E|L} ∧ V ′ = {S|E|L} if V ′ exists or

R′
L(K ′, S ′, E ′, L′) ← Convert(RN1 , RN2 , [RN3 ]), where S ′ = {K1|V1} ∧ E ′ = {K2|V2} ∧

L′ = {K3|V3} if L′ exists

The �rst possibility is the conversion of a link relation into a node relation. Either
the start, the end, or the value attribute of the link relation can be chosen to be the key
and the value attributes of the returned node relation. The value attribute in the output
relation may exist or not.

The second possibility is the conversion of relations of a node relation set into a
link relation. In this case up to three node relations with associated attributes may be
chosen: to represent the start, the end, and the value attributes of the output link relation,
respectively. Figure 4.21 presents the syntax of the Convert operator.

Figure 4.22 presents an example of the Convert operator. The value attribute from
relation sessionId and the value attribute from relation clickedDoc are converted into the
start and end attributes of the output relation relUsGraph, respectively. Note that the
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Convert := OutputNodeRel = `Convert' `(' InputLinkSet `,' IntRel
[ `,' AnyRel ] [ `,' AnyRel ] `)' |

OutputLinkRel = `Convert' `(' InputNodeSet `,' IntRel `,'
IntRel [ `,' AnyRel ] `)'

Figure 4.21. Syntax of the Convert operator.

output belongs to a new relation set, whose default name is the same as the output relation,
relUsGraph.

relUsGraph = Convert(clickSet, sessionId.V, clickedDoc.V);

Figure 4.22. Example of the Convert operator.

4.4 Data Mining Operators
The data mining operators are used to process complete typical Web mining tasks, such
as clustering, searching, textual comparison, link analysis, and co-citation analysis.

4.4.1 Search
This operator allows a textual attribute of a node relation to be searched in a textual
attribute of another node relation. The typical application for this operator is query-
ing, although it is also important for comparison of texts in general. Several comparison
methods are included, like conjunctive and disjunctive comparisons, TF-IDF [Salton et al.,
1975], Okapi BM25 [Sparck-Jones et al., 2000], exact match, and shingles (text win-
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dows) [Broder et al., 1997]. The Search operator is de�ned as:

R′
L(K ′, S ′, E ′, L′) ← Search(RN1 , RN2), where RN1 ∈ SN1 ∧RN2 ∈ SN2 ∧ S ′ ⇒ SN1 ∧

E ′ ⇒ SN2

The output is a new link relation R′
L, whose start attribute is compatible with input

set SN1 , and end attribute is compatible with input set SN2 . Then, start nodes represent
tuples in the �rst input relation set, where queries are typically represented, whereas end
nodes represent tuples in the second input relation set, where the texts for searching are
typically represented. Thus, the output is a bipartite graph, and users may take advantage
of this property by using other operators in the sequence of their programs, for example
to manipulate only the list of documents returned, discarding the queries.

The order or ranking of the results of a query are implicitly represented by the order
in which the end nodes appear. The end node at position one for a given start node
represents the top ranking document for that query. The value attribute in the output
link relation stores the similarity between the query and the text. Figure 4.23 presents the
syntax of the Search operator.

Search := OutputLinkRel `=' `Search' `(' FirstInputNodeSet `,'
SecInputNodeSet `,' TxtRel `,' TxtRel `,' CompMethod `)'

FirstInputNodeSet := Name
SecInputNodeSet := Name
CompMethod := SimpleMatch | Shingles | T�df | Bm25
SimpleMatch := `ExactMatch' | `AND' | `OR'
Shingles := `Shingles' `,' NumRes [ `,' MinSim `,' Overlap `,' ShinSize ]
NumRes := IntValue
MinSim := NumValue
Overlap := `yes' | `no'
ShinSize := IntValue
T�df := `TFIDF' `,' NumRes
Bm25 := `BM25' `,' NumRes [ `,' k1 `,' k3 `,' b ]
k1 := NumValue
k3 := NumValue
b := NumValue

Figure 4.23. Syntax of the Search operator.

Figure 4.24 presents an example of the Search operator. The value attribute from
relation relClOld is searched in the value attribute from relation relClNew. The output is
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relation relSearch. For instance, the text to, existent in tuples 1 and 5 in relClOld, is found
in tuples 21 and 25 in relClNew.

relSearch = Search(relOld, relNew, shingles, 100%, relClOld.V, relClNew.V);

Figure 4.24. Example of the Search operator used for text comparison.

Figure 4.25 presents another illustration, which contains the same relations presented
in Figure 3.4. Relation query has two queries that are searched in relation text. The result
is relation result.

result = Search(querySet, textSet, OR, query.V, text.V);

Figure 4.25. Example of the Search operator, as typically used for querying.

4.4.2 Compare
The Compare operator permits the comparison among all elements of a textual attribute
of a single input node relation. The comparison methods are the same as for the Search
operator, presented in Section 4.4.1. Compare is de�ned as:

R′
L(K ′, S ′, E ′, L′) ← Compare(RN), where RN ∈ SN ∧R′

L ∈ SL ∧ SL ⇔ SN
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The output is a new link relation R′
L compatible with input set SN . Thus, each link

represents a pair of tuples in SN , for associating nodes that share a minimal similarity
percentage informed by the user. The comparison is based on a textual attribute of some
relation in SN (typically the text of documents).

Figure 4.26 presents the syntax of the Compare operator, which has two options:
Sparse and Dense. For the option Sparse, the output does not have a new attribute, apart
from the start and end nodes to represent the graph. A link is created between a pair
of similar documents, in only one direction. For example, if documents A, B and C are
similar, links are created, for example, from A to B and from A to C, not between every
pair of similar documents. Note that the similarity value cannot be represented, because
not all the links are represented (the representation resembles a cluster of documents). For
the option Dense, every direction is represented in the output, to which the presence of
the value attribute in the output makes sense, to store the similarity between each pair of
nodes with similar content.

Compare := OutputLinkRel `=' `Compare' `(' InputNodeSet `,' BodyComp `)'
BodyComp := `Sparse' `,' TxtRel `,' CompMethod |

`Dense' `,' TxtRel `,' CompMethod
CompMethod := SimpleMatch | Shingles | T�df | Bm25
SimpleMatch := `ExactMatch' | `AND' | `OR'
Shingles := `Shingles' `,' NumRes [ `,' MinSim `,' Overlap `,' ShinSize ]
NumRes := IntValue
MinSim := NumValue
Overlap := `yes' | `no'
ShinSize := IntValue
T�df := `TFIDF' `,' NumRes
Bm25 := `BM25' `,' NumRes [ `,' k1 `,' k3 `,' b ]
k1 := NumValue
k3 := NumValue
b := NumValue

Figure 4.26. Syntax of the Compare operator.

Figure 4.27 presents an example of the Compare operator, which is applied to relation
text from relation set relOld, with the option Sparse and using the comparison method
Exact Match. Relation relDupOld shows that the text of tuples 1 and 5 (to) and tuples 2
and 6 (be) are the same.
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relDupOld = Compare(relOld, sparse, exactmatch, text.V);

Figure 4.27. Example of the Compare operator with the option Sparse.

4.4.3 CompGraph

Allowing the same operations as operators Search and Compare, the CompGraph operator
receives a link relation and compares pairs of textual attributes of the start and end nodes.
The CompGraph operator is de�ned as:

R′
L(K ′, S ′, E ′, L′) ← CompGraph(RL, RN1 , RN2), where {RL, R′

L} ∈ SL ∧RN1 ∈ SN1 ∧
RN2 ∈ SN2 ∧K ′ = K1 ∧ {S1, S

′} ⇒ SN1 ∧ {E1, E
′} ⇒ SN2

The output is a link relation that belongs to the same set of the input. The value
attribute in the output is used to store the similarity of the compared documents. Similarly
to the CalcGraph operator presented in Section 4.3.3, clauses S ⇒ SN1 and E ⇒ SN2 mean
that there must exist a compatible node relation associated to the start set of the input
relation, and a compatible node relation for the end set. Compatible node relations must
exist because textual values attributes of them are used for the comparison operation,
which involves each start-end pair of the input link relation set SL.

Figure 4.28 presents the syntax of the CompGraph operator. We notice that the two
input relations are taken from the compatible node relation sets.

For illustration, the CompGraph operator is applied to relation relSearch in Fig-
ure 4.29, for the comparison of URLs of the associated node relation sets relOld and
relNew, also presented in the �gure. The output is relation relSearchUrl. The link from 4
to 24 has similarity 1 because the URLs of tuple 4 in relUrlOld and tuple 24 in relUrlNew
are the same.
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CompGraph := OutputLinkRel `=' `CompGraph' `(' InputLinkSet `.'
AnyRel `,' TxtRel `,' TxtRel `,' CompMethod `)'

CompMethod := SimpleMatch | Shingles | T�df | Bm25
SimpleMatch := `ExactMatch' | `AND' | `OR'
Shingles := `Shingles' `,' NumRes [ `,' MinSim `,' Overlap `,' ShinSize ]
NumRes := IntValue
MinSim := NumValue
Overlap := `yes' | `no'
ShinSize := IntValue
T�df := `TFIDF' `,' NumRes
Bm25 := `BM25' `,' NumRes [ `,' k1 `,' k3 `,' b ]
k1 := NumValue
k3 := NumValue
b := NumValue

Figure 4.28. Syntax of the CompGraph operator.

relSearchUrl = CompGraph(relSearch.relSearch, exactmatch, relUrlOld.V,
relUrlNew.V);

Figure 4.29. Example of the CompGraph operator.
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4.4.4 Cluster
The Cluster operator is used to create clusters of tuples in node relations. It is de�ned by:

R′
N(K ′, V ′) ← Cluster(RN1 , [RN2 ], [RN3 ]), where {RN1 , RN2 , RN3 , R

′
N} ∈ SN ∧

K ′ = {K1 ∪K2 ∪K3}

According to the de�nition, the output belongs to the same set of the input, and
every element of the input relation is represented in the output, as K ′ = {K1 ∪K2 ∪K3}.
The output value attribute stores the cluster number associated to each input element.

Figure 4.30 presents the syntax of the Cluster operator. The operator receives a node
relation set and a few relations. The value attributes are used to produce clusters by using
the k-means algorithm [MacQueen, 1967]. The number of clusters is also a parameter
passed by the user. Both Euclidean and Manhattan distances are available.

Cluster := OutputNodeRel `=' `Cluster' `(' InputNodeSet `,' ClusMethod `,'
NumRel [ `,' NumRel ] [ `,' NumRel ] `,' NumValue `)'

ClusMethod := `Euclidean' | `Manhattan'

Figure 4.30. Syntax of the Cluster operator.

4.4.5 Disconnect
The Disconnect operator allows the identi�cation of clusters in link relations, rather than
in node relations like the Cluster operator. It is de�ned as:

R′
N(K ′, V ′) ← Disconnect(RL), where K ′ = {S ∪ E} ∧RL ∈ SL ∧

if SL ⇔ SN , R′
N ∈ SN

The input is a link relation RL, in which each node of the graph is classi�ed into
a cluster, according to its connectivity in the graph. Thus, the output is a node relation
that contains all the nodes of the input graph, and a value attribute to associate a cluster
number to each node. Observe that if both start and end attributes in RL are compatible
with the same node relation set, then the output of the Disconnect operator belongs to this
node set. Other subsequent operators in a program may take advantage of this property.

Figure 4.31 presents the syntax of the Disconnect operator. There are two possibilities
for this operator: to create clusters of connected components, in which the direction is not



60 Chapter 4. An Algebra for Web Mining

important, and to create clusters of strongly connected components [Cormen et al., 1990],
which takes into account the direction of links.

Disconnect := OutputNodeRel `=' `Disconnect' `(' InputLinkSet `,'
DistMethod `)'

DistMethod := `Connected' | `Strongly'

Figure 4.31. Syntax of the Disconnect operator.

For illustration, Disconnect is applied to link relation relDupOld in Figure 4.32, to
identify clusters of connected components. As nodes 1 and 5, and nodes 2 and 6, are con-
nected in relation relDupOld, the same cluster numbers are associated to these connected
nodes in relation relClOld, which are respectively numbers 11 and 12. Nodes without links
in relDupOld have a unique cluster number in relClOld (nodes 3 and 4).

relClOld = Disconnect(relOld, connected, relDupOld.V);

Figure 4.32. Example of the Disconnect operator with the option Connected.

4.4.6 Associate
The Associate operator is used for mining by association rules. It can be applied to data in
both textual and numeric formats. For any data format, the user can choose to return either
frequent itemsets, association rules, or sequential rules [Liu, 2007]. Although sequential
rules is not the most common technique in association rules mining, it is quite useful for
usage log mining, in which the action of the user can be observed in an evolutionary way.
The Associate operator is de�ned as:

R′
L(K ′, S ′, E ′, L′) ← Associate(RN1 , RN2), where {RN1 , RN2} ∈ SN ∧R′

L is a new

relation which S ′ and E ′ have no relationship with K1 or K2
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Output R′
L must represent rule implications. As WIM is not specially designed to

deal with implications, we use link relations to represent them, in which a start node
represents an item in the left-hand side of the rule implication, and an end node represents
an item in the right side, whereas the label is an identi�er for the rule. Then, nodes of the
graph represent items (whose possible representations are presented below) rather than
tuples from input or other compatible relation.

Figure 4.33 presents the syntax of the Associate operator.

Associate := OutputLinkRel `=' `Associate' `(' InputNodeSet `,'
BodyAssoc `,' Support `,' Con�dence `)'

BodyAssoc := `Value' `,' RuleMethod `,' IntRel `,' IntRel |
`Term' `,' RuleMethod `,' IntRel `,' TxtRel

RuleMethod := `Itemset' | `Association' | `Sequencial'
Support := NumValue
Con�dence := NumValue

Figure 4.33. Syntax of the Associate operator.

As an example of the graphical representation of rule implications, observe again
Figure 4.15. If relation relAgg was the result of the Associate operator, this graph would
mean that, for instance, for rule number 1 (label 1), items 1 and 2 would imply in item 4;
and for rule 2, item 3 would imply in item 4. Other two rules would exist for labels 3 and
4 respectively.

From this representation, users can observe the output graph in their analysis or
use other WIM operators to manage data before analyzing. For example, by using the
Aggregate operator, users can recover rules with several items involved, or �nd out the
number of occurrences of each item in the left-hand or right-hand side of an implication.

Apart from the rule method (one of the three referred above) and the values of sup-
port and con�dence (necessary for association rules [Agrawal et al., 1993]), the Associate
operator has two options regarding the representation of items and transactions: Value
and Term. Users must choose one of these options according to the attributes they want
to use in order to represent transactions and items.

The Value option is used when the input relation set has two relations having integer
values attributes, one to represent transactions and other to represent items. For exam-
ple, consider Figure 4.22. Relations sessionId and clickedDoc could be used to represent,
respectively, transactions and items, in order to associate clicked documents according to
sessions in which they are clicked.
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For the Value option, observe that nodes of the output graph are represented by
integers of the attribute that represent the items in the input relation. Then, the output
does not go to the same set as the input. However, users can apply other operations
to associate results of the Associate operator to other available relations. Following the
example above, as there might be a relation to represent documents, results of the Associate
operator could be merged with that relation, by applying the Set operator or the Join
operator.

The second option is Term, which is used when the input relation has an integer to
represent transactions and terms of a textual attribute are used as items. Consider, for
example, a relation set with a relation for identifying user sessions, which is an integer,
and a relation for the query text. It is possible to associate terms of the query according
to sessions in which queries are requested.

For the option Term, the nodes of the output graph are represented by identi�ers of
the terms existent in the chosen input textual attribute. As part of WIM pre-processing
tasks, the vocabulary of each textual attribute must be processed, as a requirement for the
proper indexing of texts. This vocabulary is represented as another relation, for which an
identi�er is associated to each di�erent term. We do not intend to present further details,
but WIM is able to recover the same identi�ers of the textual attribute vocabulary, and
make the output of the Associate operator with the option Term automatically compatible
with the vocabulary relation. Then, the output is not compatible with the input, though,
for the option Term, it is compatible with another relation.

For both options, relations that do not represent usage data can be employed as well.
For instance, with the option Term, the text of documents can be used to associate terms
in documents.

4.4.7 Analyze
Analyze is an operator for link analysis. It is used for estimating the relevance of a node
in a graph, according to its connectivity. The following methods are available: Pager-
ank [Brin and Page, 1998], in-degree, authority, and hub [Kleinberg, 1999]. Analyze is
de�ned as:

R′
N(K ′, V ′) ← Analyze(RL), where K ′ = {S ∪ E} ∧RL ∈ SL ∧

if SL ⇔ SN , R′
N ∈ SN

The input is a link relation RL, in which each node of the graph is associated to a
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relevance weight, according to the method informed by the user. Thus, the output is a
node relation that contains all the nodes of the input graph, whose value attribute stores
the relevance weight for each entry. Similarly to the Disconnect operator, if both start and
end attributes in RL are compatible with the same node relation set, then the output of
the Analyze operator belongs to this node set.

Figure 4.34 presents the syntax of the Analyze operator, and Figure 4.35 presents
an example of this operator. It is applied to relation relPruned to calculate Pagerank,
returning relation relUsPR (whose values are estimated just for illustration).

Analyze := OutputNodeRel `=' `Analyze' `(' InputLinkSet `,' Algorithm `)'
Algorithm := `Pagerank' | `Hub' | `Authority' | `Indegree'

Figure 4.34. Syntax of the Analyze operator.

relUsPR = Analyze(relUsGraph, pagerank, relPruned.SE);

Figure 4.35. Example of the Analyze operator.

4.4.8 Relink
The Relink operator adds new links to a link relation, according to one of the following
methods: co-citation (bibliographic co-citation [Small, 1973]), coupling (bibliographic cou-
pling [Kessler, 1963]) or transitivity [Gonnet and Baeza-Yates, 1991]. Relink is de�ned
by:

R′
L(K ′, S ′, E ′, L′) ← Relink(RL), where K ⊆ K ′ ∧ {S ′ ∪ E ′} = {S ∪ E} ∧RL ∈ SL ∧

if SL ⇔ SN , R′
L ∈ SL

The output value attribute stores the distance between node pairs of the relation.
Existing links have label 0, and new links have label 1. Thus, R′

L contains the edges of
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the input graph plus new edges added according to the chosen method. If both attributes
start and end are compatible with the same given node relation set, then the output R′

L

belongs to the input set. Figure 4.36 presents the syntax of the Relink operator.

Relink := OutputLinkRel `=' `Relink' `(' InputLinkSet `,' BodyRelink `)'
BodyRelink := CitMethod `,' Direction `,' Density `,' |

`Transitivity'
CitMethod := `CoCitation' | `Coupling'
Direction := `Both' | `Single'
Density := `All' | `Adjacent'

Figure 4.36. Syntax of the Relink operator.

For the options Co-citation and Coupling, it is not obvious in which direction to
include a link and between which pair of nodes sharing a co-citation or coupling unit a link
may be inserted. Regarding the direction, the user can choose both directions or a single
direction. Regarding the number of links, the user can choose to add a link between all
the pairs which share a co-citation or coupling unit, or to add links only between adjacent
nodes.

For example, consider the link relation relUsGraph in Figure 4.37, where start and
end nodes are represented in two columns (unlike the other examples in this chapter). For
instance, start node 1 links to end nodes 1, 2, and 4. The application of the Relink operator
with the option Co-citation, single direction, and adding links only between adjacent nodes,
results in the same links existent in the input graph with label 0, plus the links represented
in graph relCocit, with label 1. For instance, for start node 1, links are inserted from end
node 1 to 2 and from end node 2 to 4, which are the adjacent co-cited nodes. The example
of Figure 4.37 includes only the selection of nodes with label 1, represented in relation
relCocit with the label omitted.

4.5 Comparison with the Relational Algebra
The WIM algebra was not designed after the relational algebra, but after analyzing the
most important Web mining tasks, and observing the kind of data manipulation needed
to deal with Web mining applications. In this section we discuss the latter in order to
compare the WIM data manipulation operators with the relational algebra, despite their
di�erent goals.
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relFull = Relink(relUsGraph, cocitation, single, adjacent, relUsGraph.SE);
relCocit = Select(relFull, value, ! =, 0, relFull.L);

Figure 4.37. Example of the Relink operator. The Select operator is applied
afterwards, for eliminating the links existent in relUsGraph, facilitating visualiza-
tion.

A fundamental operation in the relational algebra is projection. WIM does not
require an operator for projection, as WIM relations have limited number of attributes,
and relations are organized in sets. Another fundamental operation in the relational algebra
is selection, which is used to select tuples according to user-speci�ed criteria on any type
of attribute. WIM operator Select is applied only to numerical attributes, though the
selection of textual attributes can be done with the data mining operator Search. Selection
of multiple documents with overlapped content within a relation set, which is not covered
by the relational algebra, can be done with the Compare operator.

The selection of speci�c values in Web mining applications is not as common as in
relational databases. For example, searching for the name �Catherine Smith� does not
mean anything in most Web mining applications, but is important in relational databases,
because the tuple for this and other related entries might eventually need to be modi�ed.
The implication is that the Search operator allows a textual attribute of a relation set to
be searched in a textual attribute of another relation set. If the name �Catherine Smith�
is the query, then the user will need to create a relation with only that entry to be used as
the input of the Search operator, which is not as simple as in the relational algebra select.
For the same reason, WIM does not allow search using regular expressions (for example,
character `%' substitutes any character).

In order to keep the WIM language and implementation simple, the WIM algebra
does not provide several conjunctive or disjunctive clauses in a single query. However, users



66 Chapter 4. An Algebra for Web Mining

can have the same result by applying a few selection or querying operations in sequence,
and using the option Union of the Set operator for disjunctive selection.

Regarding set operations, the relational algebra allows the union, intersection and
di�erence of query results. A requirement is that the two input relations must have a similar
set of attributes. WIM operator Set does not have this requirement, as a consequence of
the WIM data model design. The output relation is compatible with the �rst input (with
exception of the option Union), then the other attributes that the input relation sets have
do not matter. This �exibility is very important to the power of the WIM algebra. Further,
WIM Set allows the merging of relations of di�erent types, i.e., link and node relations.

Relational algebra joining operations allow multiple attributes of two relations to be
joined. As so far WIM allows only one attribute to be joined, multiple calls to the Join
operator are required to join multiple attributes. The relational algebra has di�erent types
of join. The main semantic di�erence among the implementations is how to represent
tuples that are not found in both relations. Options in the relational algebra include:
not representing tuples for missing values, using the value of one of the relations when
the value exists, and using a null value. Since for the WIM model it is important to
keep compatibility of output relations with respect to input relations, rather than merging
all the attributes of two relations, WIM's Join operator allows only the inclusion of one
attribute of the second input relation into the �rst input relation (left outer join), so that
the output is compatible with the �rst input.

A limitation of the WIM join is that only one attribute of each input relation set
can be used for comparison when joining. Although it is a limitation, it allows simple and
e�cient implementation of the operator, and does not seem to expressively limit the set of
problems to which the operator can be applied, as shown in the use cases presented in this
thesis. Relational databases tend to have much more sparse data, requiring to join multiple
attributes, than Web databases, as intrinsic property of Web objects like documents, link
structure and usage data. Web data attributes, when available to one entry, are often
available to all other entries. Note that WIM can be extended in the future to implement
other types of joins.

Aggregation operations are important in the relational model and even more impor-
tant in WIM. For this purpose the Aggregate operator is implemented in WIM.

Regarding database modi�cations, the WIM data model does not allow the modi-
�cation of existing attributes of relations. Instead, new attributes can be added or new
relations and relation set created. The relational model allows the update of both numerical
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and textual attributes, whereas WIM allows operations on numerical attributes, by using
operators Calculate and CalcGraph, returning a new attribute as result of a mathematical
or statistical operation, but only for numerical attributes. We do not see any advantage in
allowing operations on strings, such as adding a pre�x, for Web data.

WIM does not allow the insertion of tuples to existing relations without the use of an
operator. This action is not required for the designed WIM data model, in which insertion
of new Web data is modeled as a new relation or relation set in the database.

4.6 Concluding Remarks
In this chapter we have presented the WIM algebra, divided into data manipulation op-
erators and data mining operators. The operators obey the compositionality property,
which means that the output of any operator can be used as input of any other opera-
tor. Constraints are limited to the type of the input relation and attributes, which are
characteristics intrinsic to each operator de�ned in this chapter.

We have included in this chapter a comparison of the WIM algebra data manipulation
operators and the relational algebra. We have shown the similarities between the two
algebras, and the di�erences that are important taking into consideration our application
scenario, mining Web data. Although WIM was not designed after the relational algebra,
WIM performs the most important and general relational tasks.





Chapter 5

Prototype Architecture and
Implementation

The WIM model presented in Chapter 3 and its algebra presented in Chapter 4 were
materialized as a software prototype, which allowed to run a set of use case applications
over the prototype as a proof of concept. In this chapter we present the architecture of
the WIM prototype, including the main issues involved in its implementation, and discuss
e�ciency and scalability issues, along with proposals of alternative architectures.

5.1 Software Prototype Architecture
In this section we present the software architecture of the WIM software prototype. Fig-
ure 5.1 presents the general architecture of the WIM prototype, with the data organization,
the processing modules, and how they interact. The WIM architecture is composed of six
main modules: Compiler, Executor, Indexer, Visualizer, Preprocessor and Web crawler.

The data �ow is initiated at the Web crawler and at the Preprocessor. The Web
crawler is responsible for collecting Web data, whereas the Preprocessor translates the
raw Web data into a format that WIM can recognize. Users can upload datasets by means
other than using the crawler module, a feature needed for the manipulation of private
datasets. After processing a WIM program, module Visualizer presents the output to the
user by means of a friendly interface.

The Web crawler and the Visualizer modules are not native of WIM. There are several
open source crawlers, and speci�c tools for visualization of graphs and analysis of statistical
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Figure 5.1. WIM general software prototype architecture.

results, which may be added to WIM.
The Indexer is a module that checks for the need of indexing attributes of relations,

receiving an attribute as input and returning the index for that attribute, which is repre-
sented in Figure 5.1 as a single database (named `index'). The Indexer is very important
to ensure e�ciency and scalability up to some extent.

The WIM storage architecture is column-oriented [Baeza-Yates et al., 2000;
Stonebraker et al., 2005], which means that each attribute in a relation set is stored in-
dependently of each other, following the data model presented in Chapter 3. We shall
discuss the underlying implementation design decision in Section 5.2. The WIM prototype
di�erentiates between stored relations and temporary relations. A temporary relation is
created during a program execution, and is used only within that program. Attributes
of temporary relations are volatile to the program and most are not stored on disk (an
exception is made for large textual attributes). Regular attributes of relations are stored
on disk and associated to registered relation sets, and can be opened by di�erent WIM
programs.

All metadata are stored in a database. The administrator needs to set up this
database, declaring the relation sets that will compose the WIM database, and provid-
ing further information about each relation relation, such as the path of the real data �le
and the format in which it is stored. The meta database also stores the grammar and the
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semantic rules of the WIM language, which is required in case the user needs to modify
the language, in order to include a new operator or a new option for an existing operator.

The main modules of WIM are the Compiler and the Executor. The Compiler has
two important tasks. First, it has to parse the WIM program code, according to the WIM
operators that drive the WIM language, verifying whether it is free of syntax errors. Then,
the compiler recognizes the tokens, such as operators, input and output relations, attribute
names, and speci�c options for each operator, so that the semantic analyzer can run. An
example of semantic test to be performed is whether a given requested relation actually
exists for the requested relation set, and whether the type of the relation's attribute is the
same as required by the operator.

The second important task of the compiler is to generate a main function in C source
code. For that, the compiler uses the tokens from the input WIM program to select a
previously de�ned C function that must be called for each existing operator. The selection
is mainly based on the type of the input relation, on the type of the attribute involved, and
on the options requested. Furthermore, in order to generate the main function, variables
must be created and memory must be correctly allocated. Control functions, for instance
to translate data types, are often needed. Finally, the compiler has the task of compiling
the C code, using an external C compiler.

Module Executor receives the executable program from the WIM compiler, after
compiling the C code. While the program is running, attributes are loaded on demand, and
temporary attributes may be created to store attributes of temporary relations. At the end,
the output is presented to the user by means of �les, or delivered to the Visualizer module.
If required by the user, temporary relations can become part of the WIM database, i.e.,
stored on disk for future use, either as part of an existing relation set or as a new relation
set. This action required module Executor to update the metadata.

5.2 Implementation Issues
This section presents the most relevant issues addressed when materializing the WIMmodel
into the WIM tool.

Web mining applications have two important di�erences in comparison with regular
database applications:

1. Web content is highly dynamic, but Web data sets are static, as a result of crawling
a Web snapshot. Therefore, deletion and insertion of tuples need not be considered,
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since it is more e�cient to create a new database for new crawls than to insert tuples
with di�erent properties into an existing relations1.

2. Most Web mining applications do not deal with several attributes simultaneously:
only the text or the graph structure is used in many cases.

These di�erences justify the storage of each attribute of a relation independently of
each other, hence the decision was to make the WIM storage architecture column-oriented.

WIM uses only two data types to represent elements: �oating point and string. An
exception is for attributes that represent identi�ers, which are integers. Characters are
treated as strings, and integers as �oating points. This solution is an alternative to sub-
stantially simplify the implementation of the WIM software prototype, without signi�cant
loss of time and space performance and without any loss of e�ectiveness. We refer to the
WIM software data types as numeric and textual, rather than �oating point and string,
respectively.

The values of an attribute are sorted according to the order in which the identi�er
(attribute K) of the relation are represented. Link relations are identi�ed by the start
node S, which means that a reference to a given start node of the graph appears only once
in any physical representation of a link relation. In fact, links are physically represented
as a list of end nodes for each distinct start node of the graph (adjacency lists).

In Section 5.2.1 we present our decisions regarding the design of the �rst level func-
tions, which are C functions declared to make the interface between modules Compiler
and Executor. In Section 5.2.2 we present and justify the choice of the data structures to
represent attributes, used in the �rst level functions.

5.2.1 First Level Functions
As introduced in the previous section, the WIM compiler maps each line of a WIM program
into C function calls, as part of module Executor, generating a C �le with the main function
for that WIM program. It means that there is a set of functions for each operator, referred
to as �rst level functions, that are implemented as part of module Executor, but must be

1An information retrieval problem is the design of incremental textual databases, avoiding the creation
of a new database when a new crawl takes place. Our WIM design does not provide such functionality,
because WIM is not designed towards very speci�c applications, such as crawling several snapshots of the
Web under a given domain. However, WIM can deal with such applications by storing each crawl as an
independent relation set.
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known by module Compiler, as part of the interface between these modules. The �rst level
functions are called from the main C function of each WIM program.

Roughly, the strategy for designing the �rst level functions depends on if the operator
accepts link and/or node relations, accepts the manipulation of numerical and/or textual
attributes, and sometimes it depends also on the options, when di�erent options imply
using a di�erent number of attributes. This organization aims to pass to each �rst level
function only the attributes and parameters that it needs, saving time and space.

Thus, if an operator accepts only one type of relation and one type of attribute, and
its options do not imply in using di�erent sets of attributes, only one �rst level function
will be available. This is the case for operators Analyze, CalcGraph, CompGraph, Cluster,
Disconnect, Relink, and Search.

Operators Aggregate, Associate and Calculate require more than one function, due to
the need for di�erent sets of attributes according to the di�erent options used. For instance,
option Single of the Aggregate operator requires only one extra attribute to be informed,
whereas option Grouping requires two or three attributes, depending on sub-options.

Some operators accept both node and link relations as input: Aggregate, Calculate,
Join, Set, and Select. In this case a di�erent function is called for each option. Operators
Join and Set also accept the manipulation of di�erent types of attributes: integers (for
manipulation of identi�ers), numerical and textual attributes. Then, di�erent functions
are also required to treat each case separately.

Speci�c options are managed beyond the interface between the compiler and the ex-
ecutor. Therefore, the implementation of each operator can have as many functions as
wanted, because inner functions are not important for the interface between the compiler
and the executor. This means that each operator may have its own independent inter-
nal implementation, which facilitates the creation of new operations to be aggregated to
WIM by independent collaborators in the future, and also allows scalability of the mining
operation.

We notice that �rst level functions include functions not only to implement the oper-
ators of the WIM algebra, but also to convert data in di�erent types available in WIM, to
open attributes, to manage metadata, and to output data in order to be properly shown
to the user.

Regarding the manipulation of attributes, numerical attributes of relations are en-
tirely loaded in the main function and passed to other functions as parameters. Memory
is released as soon as the attribute is no longer needed. This pre-loading does not happen
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with textual attributes, due to memory requirements, hence textual attributes are loaded
on demand.

5.2.2 Data Structures
In order to ensure uniformity among operators, WIM is designed with only a few di�erent
data structures, to be used by main functions automatically generated by the compiler.
There are three data structures to represent node attributes (i.e., attributes of node rela-
tions) and two data structures to represent link attributes (i.e., attributes of link relations).

For node attributes, the �rst data structure is an array of integers. Some operators
like Select return a subset of tuples from the input, without any new attribute, thus a
simple array of integers represents the output relation. There is no representation for
textual attributes, because texts are not opened and loaded in the main function and
passed to �rst level functions.

The second data structure for node relations is an array of �oating points. For the
cases in which all the tuples of a relation are represented, the representation is implicit,
and a �oating point array is enough, since the order of tuples is preserved. This distinc-
tion between explicit and implicit identi�ers is important to save space when representing
attributes.

The third data structure for node relations is an array of pairs of an integer and a
�oating point. It is required whenever the identi�ers must be explicit, i.e., whenever the
output relation is a subset from the input, and the output includes a new attribute.

Link relations do not di�erentiate between implicit and explicit identi�ers, as most of
the times explicit representations would be required. The �rst data structure is an array in
which each element has an integer to store the start node, an integer to store the number
of end nodes for the corresponding start node, and an array of integers to store the end
nodes. This representation is used whenever no other attribute of the relation must be
represented, apart from the start and end nodes.

The second data structure is used whenever additional attributes are needed. Instead
of having a list of integers to represent the end nodes, a list of integer��oating point pairs
is used, so that the �oating point value represents the label of the graph for numerical
labels.

Having just a few data structures that can be recognized by the Compiler and Ex-
ecutor modules simpli�es the interaction between these modules. For instance, in order to
ensure compositionality, WIM must convert data structures, which would be much more
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di�cult if there were several possible data types to convert. For instance, a given operator
may return a labeled graph, but the function that implements the next operator may de-
mand an unlabeled graph as input. Then the conversion must be done before calling that
function.

5.3 E�ciency and Scalability
The WIM data model allows e�ciency and scalability that depend only on the software
architecture and implementation. The design of the WIM as a data�ow modeling language
is a great advantage regarding e�ciency. First, data�ow languages allow non-dependent
parts of a program to run in parallel. For example, consider the following program con-
taining three operations:
outputRelation1 = operator1(inputRelation1, {options});
outputRelation2 = operator2(inputRelation2, {options});
outputRelation3 = operator3(outputRelation1, outputRelation2, {options});
Notice that the �rst and second operations are independent, as they are applied to dif-
ferent input relations, and the second operation does not use the output relation of the
�rst operation. Then, they can run in parallel, whereas the third operation waits for both
processes to �nish, once it needs the output relations of the �rst and second operations.

The other important advantage of the WIM design as a data�ow modeling language
is that the computational complexity of a WIM program is always equals to the computa-
tional complexity of the operation with highest complexity. Considering again the example
program above, suppose operations 1, 2 and 3 have computational time complexity O(n),
O(n2) and O(nlogn), respectively. As operations 1 and 2 run in parallel, the time com-
plexity of the whole program is given by:
T = Max(O(n), O(n2)) + O(nlogn) = O(n2) + O(nlogn) = O(n2).

The conclusion is that the complexity of a WIM program depends on the complexity
of the algorithms that implement the operators. In general, the operations with highest
complexity are the mining operations. Taking into account that an ad-hoc implementation
of the mining algorithm has the same complexity as the WIM mining operation, for a
given Web mining problem, then a WIM program has the same complexity as the ad-hoc
implementation. This ensures that the WIM model is designed to be e�cient, and state-of-
the-art implementations of the WIM operations ensure that a WIM program is as e�cient
as an ad-hoc implementation of the same task.
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WIM does not include the development of a speci�c �le system. The �rst reason
for not extending is simplicity, aiming the fast implementation of an initial version of the
tool prototype. The second reason is to allow scalability, since a prototype can use the
operating �le system, and an industrial-scaled implementation can use a distributed �le
system like HDFS (Hadoop Distributed File System) [Borthakur, 2007].

Regarding scalability, we suggest three main levels of scales for both data storage
and processing architectures, as shown in Figure 5.2. The �rst level consists of data and
processing in one single server. The second level consists of distributed processing, with
data replicated in di�erent servers, and each server running parallel tasks when possible.
The third and most scalable architecture is distributed for each operation, rather than for
the WIM program, and also supposes data storage replication and partitioning. In this
case, each mining task is implemented to be processed distributively.

Figure 5.2. Three architecture levels to support di�erent scales of data storage
and processing.

Figure 5.2(a) refers to the current implementation of our prototype. It is not dis-
tributed, and data is stored locally. This architecture is adequate for small (around 3
million Web pages) to medium (around 100 million Web pages) datasets, depending on the
operation to be processed. For instance, the comparison of a full collection using shingle
paragraphs would not work properly for medium size datasets. On the other hand, op-
erations like link analysis are suitable. Apart from its simplicity, another positive aspect
of this architecture is that some operations (e.g., operations 1 and 2) can run in parallel,
simultaneously making use of di�erent processors in a multi-processing server.



5.4. Concluding Remarks 77

Figure 5.2(b) refers to a parallel implementation. It has the advantage of parallel
processing, though no gain in storage capacity. It is interesting in case of small- to medium-
sized datasets with high processing. In the �gure, dashed boxes mean servers. Observe
that one machine is the broker, which has the task of managing metadata, distributing the
data, and associating the execution of di�erent operations in di�erent machines.

Figure 5.2(c) refers to distributed processing of each operation. This architecture is
the most e�cient for large datasets and massive processing, as intensive processing mining
tasks can be distributed into as many servers as available or needed. In the �gure, the
broker is not represented explicitly, but it is the server in which the operations are managed
and sent to other servers (processors p1 to p5). This is our alternative for a forthcoming
industrial scale implementation of WIM, which can run on Hadoop [Hadoop, 2008].

Observe that the parallelization of operations does not imply changing the design of
the WIM data model depending only on the implementation, which shows that the WIM
model is scalable.

5.4 Concluding Remarks
The WIM model presented in Chapters 3 and 4 is not only an abstract model. Rather,
it has been implemented and actually can support Web miners. In this chapter we have
presented some issues underlying our �rst implementation of a WIM software prototype,
including its architecture.

As our current implementation is still a prototype, future modi�cations will be re-
quired to support industrial scale applications. For instance, the architecture of the Ex-
ecutor module will need to follow a distributed architecture, as suggested in Section 5.3,
which does not imply changing the WIM data model. We are also planning to integrate
modules Compiler and Executor, resulting in a simpler implementation using only one pro-
gramming language. Notice that the advantage of having two separate modules is to allow
the implementation of the parts in di�erent languages, as we currently have the compiler
in Java and the Executor in C, since the latter demands e�ciency.





Chapter 6

Use Case: Genealogical Trees on the
Web

The Web allows everybody the opportunity to become a publisher. Entities like compa-
nies, products, services, and people can be represented on the Web. One supposes that
many of these potential publishers either have insu�cient content or do not know how to
represent their interests. Hence, some of the publishers refer to the Web itself to �nd good
representations for their entities.

Little is known about the evolution of the textual content on the Web. We know
how Web components (such as URLs and �gures) evolve [Ntoulas et al., 2005] and how the
structure evolves [Baeza-Yates and Poblete, 2006], but not how the content evolves. Our
work provides the �rst step towards understanding how old content is used to create new
content. That is, we want to �nd the original sources, if any, of the content or part of the
content of a new page. We regard each source as a parent of a new page, in order to de�ne
a genealogical tree for the Web. The study of the genealogical tree allows us to understand
what portion of the pages are either totally new parents or parents that are children of
other parents.

Our experiments consider several representative snapshots of the Chilean Web and
one snapshot of the Spanish Web. We estimate that 23.7% of new Web documents that
appeared within a span of a year have content from previously published documents (see
Section 6.5.5 for estimations). Most of them represent inter-site copies (approximately
75%), in which the publishers use content from a parent document from another site, and
they need to �nd this document.
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Web search engines are widely used to provide users with content that approximates
what they are looking for. Web publishers are also Web users, and frequently are advanced
search engine users. It is natural that if they need to �nd content on the Web, they will
perform a query on a search engine.

In this direction, in addition to the genealogical tree study, we analyze whether there
is any association between the sources of reused content (the parents) and the results of
real queries from a search engine log. We see that parents are more connected to the Web
graph and have a much higher Pagerank than other pages. Probably as a consequence,
parents appear more often as results of queries and are much more clicked, which is shown
in our analysis.

Our results are evidence that someWeb publishers actually performed queries in order
to �nd some content and republish. Thus, the conclusion is that part of the Web content
is biased by the ranking function of search engines. Exploring our results beyond the scope
of our research would explain the impact of the user's copy behavior on the quality of the
search engine results, and how search engine designers can pro�t from that behavior, for
example by associating a better page quality value for a previously low-quality page that
is used as source of copy. In this case a child page would inherit properties of its parent (in
case they are not duplicates or near-duplicates, that is, only part of the content is copied).

The main contributions of this chapter are: (i) to demonstrate how WIM can be
applied to a real Web mining problem; (ii) to propose a methodology to study the genealogy
of the Web content; (iii) to study the evolution of textual content on the Web, i.e., how
pieces of documents are reused; (iv) to generalize the content reuse results to the whole Web
(or other subsets of the Web), providing an estimation of how much content is reused on the
Web; and (v) to study how search engine ranking algorithms may in�uence the evolution of
Web content. To the best of our knowledge, these contributions are not covered in previous
work.

6.1 Conceptual Framework

6.1.1 Document Representation
We use the concept of shingles [Broder, 1998] to represent a document (the document
�ngerprint). A shingle paragraph (also referred here as just �shingle� or �paragraph�) is
a sequence of three sentences of the document. A sentence is a sequence of words ended
by a period. If a period is not found until the 150th character, then the sentence is �nished
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at that point and a new sentence begins at the 151th character. This limitation is due to
the fact that some documents have no period (for example, some program codes).

Each document is represented by the list of its shingles paragraphs, with overlap
of sentences. As an example (also presented in Section 2.5 in this thesis), suppose we
have a document D1 containing seven sentences: D1 = s1. s2. s3. s4. s5. s6. s7, where si,
1 ≤ i ≤ 7, is a sentence of the text, and i is the order of occurrence of the sentences in the
text. The shingle paragraphs for D1 are: �s1. s2. s3.�, �s2. s3. s4.�, �s3. s4. s5.�, �s4. s5. s6.�,
�s5. s6. s7.�.

With the exception of the �rst two and last two sentences, every other sentence of
the text is used three times in the document representation, in order to give a high degree
in the comparison step of our method. The number of shingle paragraphs for a document
is |S| − 2, where S is the set of sentences.

In our experiments we considered only documents with more than 450 characters and
at least three shingle paragraphs, or equivalently �ve sentences. Preliminary experiments
demonstrated that for considering similar two documents, it is necessary to have a minimal
similarity between them, trying to avoid false matches (occurring in cases that only one
or two popular shingle paragraphs are identical). We did not consider short documents
because they cannot be represented by a minimal number of shingle paragraphs, and thus
cannot reliably be compared with others. Around 25% of the documents in each collection
were removed for these reasons.

6.1.2 Document Instance
We de�ne a cluster as a set of documents with exactly the same textual content for a
given collection. Each document in a collection is either (i) duplicate, if it belongs to a
cluster, or (ii) unique, otherwise.

Each di�erent content in a given collection is represented as a di�erent instance. If
a set of documents are duplicates among them, their contents are the same and they are
represented by a unique instance. If a document is unique, its content is represented by an
instance. The number of instances in a collection is the number of unique documents plus
the number of clusters. By de�nition, an instance has no duplicate, although it represents
either multiple documents or a unique document.

Most of the studies and conclusions presented in this chapter are concerned with the
instance rather than with the document. The collections have a large number of duplicates,
and thus it is incorrect to say that every duplicate in the same cluster is a parent when
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part of the duplicate's content is found in a more recent collection. The concept of instance
represents an important solution for the duplication problem in this work, since it compares
content over di�erent data sets.

6.1.3 Inter-Collection Relations

Consider a collection as being a snapshot of a given Web subset. Two documents, in two
distinct collections, are coexistent (or they coexist), if their URLs are exactly the same. In
this case, the same document URL exists in both collections (the content may di�er). Two
instances I1 and I2 in two distinct Web collections coexist, if at least one of the documents
that I1 represents has the same URL as one of the documents that I2 represents.

An instance in a more recent collection has a parent instance in an older collection
if it shares a minimal percentage of shingle paragraphs with the parent and the instance
in the new collection is not represented in the old collection (it does not have a coexistent
instance). The instance in the new collection is referred to as a child. The minimal
percentage of shingle paragraphs used in this work is 20% (parent and child instances must
share at least 20% of their content). After a manual analysis in a sample, we did not �nd
false matches for this minimal similarity percentage.

A new instance is orphan if it does not have a coexistent instance or a parent in the
old collection. An old instance is sterile if it does not have a coexistent instance or a child
in the new collection.

In this research we study two kinds of relations: inter-site and intra-site. Excluding
the http:// pre�x from the URL, the remaining of the string before �nding a slash gives
the site to which the document belongs. Inter-site relations require that the parent and
the child belong to di�erent sites, whereas for intra-site relations the parent and the child
belong to the same site. Our study treats these relations separately because intra-site
relations tend to occur when publishers reuse the content of their own site. For inter-site
relations the way in which the publishers �nd the parent is much more di�cult to guess.

The site to which a document belongs to is taken from its URL. Excluding the
http:// pre�x, the remaining of the URL string before �nding a slash gives the site which
the document belongs to.

Mirrors were detected for inter-site relations (detection is not needed for intra-site
relations). Two sites are considered mirrors of one another if at least 75% of their documents
are clustered together (are duplicates in the same cluster) [Bharat and Broder, 1999], and
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each site has at least 10 documents. This threshold guarantees that a minimal number of
documents are clustered together.

6.1.4 Genealogical Trees on the Web

A genealogical tree on the Web is a representation for parents and children in di�erent
snapshots of a given Web subset. Each instance is classi�ed into a di�erent genealogical
tree component. For the description of the components, let Pt be the set of parents in a
snapshot t whose children belong to a snapshot t + 1. Let Ct be the set of children in a
snapshot t whose parents belong to a snapshot t− 1. Each document of each collection is
labeled as one of the following components:

1. Without Relation: represents instances that are not parent or child instances in a
collection. They are sterile and/or orphan instances.

2. Original Parents (OrP): represents parents that are not children neither were parents
in the previous collection (generating some child in the current collection). This component
represents parents that have no relation with the older collection. The original parents set
in a collection is the di�erence between the parents set and the union of the children set
and the parents set in the previous snapshot, as shown in Equation 6.1.

OrPt = Pt \ (Ct ∪ Pt−1) (6.1)

For example, the original parents set of collection t = 2004 is the di�erence between
the parents set of collection pair 2004-2005 (where t = 2004) and the union of the children
set and the parents set in the previous snapshot (for collection pair 2003-2004, where
t− 1 = 2003).

Notice that as we are looking for the original parent instances in snapshot t, Pt−1

represents the parents in snapshot t − 1 that still exist in snapshot t. We do not include
coexistent instances in Equation 6.1 because it is obvious that for a parent in snapshot
t− 1 being a parent again in snapshot t, it has to exist.

3. Old Parents (OlP): represents instances that were parents in the previous collection,
and are parents again in this collection. It means that they have some child in the current
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collection. The set operation shown in Equation 6.2 indicates how old parents are found.

OlPt = Pt ∩ Pt−1 (6.2)

As an example, the old parents for collection t = 2004 is the intersection between the
parents set of collection pair 2004-2005 and the parents set for collection pair 2003-2004
(where t− 1 = 2003).

4. Children and Parents (CnP): represents instances that are children (with respect
to the older collection) and parents (with respect to the more recent collection), as shown
in Equation 6.3.

CnPt = Pt ∩ Ct (6.3)

As an example, the children and parents set of collection t = 2004 is the intersection
between the parents set of collection pair 2004-2005 (where t = 2004) and the children set
of collection pair 2003-2004 (where t = 2004).

5. Sterile Children (StC): represents children that are not parents, as shown in Equa-
tion 6.4. This component represents children that have no descendants in the more recent
collection.

StCt = Ct \ Pt (6.4)

For a given collection, each parent is classi�ed as either original parent, old parent,
or child and parent. It is easy to verify that Pt = OrPt ∪ OlPt ∪ CnPt. Equivalently, each
children is classi�ed as either child and parent or sterile child (Ct = CnPt ∪ StCt). By
de�nition, children and parents instances belong to both, the parents set and the children
set.

Figure 6.1 illustrates a genealogical tree and its components. Every collection repre-
sented in this example has 10 instances. Continuous arrows represent parent/child relations
and dashed arrows represent coexistent instances.

Notice that for the oldest collection of the data set, represented as col.t1, it is not
possible to classify a parent because there is no data about parents of instances in this
collection. In this case we represent all the parents as original parents, but we know that a
portion of them must be in a di�erent class. Equivalently, for collection t5, it is not possible
to know which instances are children and parents or which ones are sterile children. These
documents are represented in the �gure with a question mark.
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Figure 6.1. Example of the genealogical tree and its components.

6.2 Summary of the Algorithms

In this section we summarize the main algorithms designed and implemented for this
work. Basically we present the algorithm to detect duplicates, the algorithm to �nd parent
and child document candidates, the algorithms to �lter the candidates in order to return
parent and child instances, and the algorithm to select the parents, in order to associate
only one parent for each child. Although separately the algorithms are not new and have
no innovative aspects, their combination for the purpose of analyzing the Web content
evolution is new and has successfully been employed.

6.2.1 Duplicate Detection

The algorithm to �nd duplicates works by clustering documents with the same con-
tent [Cho et al., 2000]. Initially, collection C (with n documents) is divided into m sub-
collections Si, 0 ≤ i < m. The algorithm runs in m steps. For each sub-collection Si,
0 ≤ i < m, the text of the documents in Si is �rst inserted into a hash table.

Next, the documents of C are searched in the hash table. For each new duplicate
pair found, a new cluster is created and the duplicate pair is inserted into the new cluster.
If one of the documents of the pair was previously inserted into a given cluster, then the
other document of the pair is inserted into this cluster. At the end of each iteration i, the
sub-collection Si is excluded from C (C = C − Si). At the end, the algorithm returns a
set of clusters, with each cluster containing a list of duplicate documents.
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6.2.2 Detecting Candidates

The algorithm to detect candidate parents and children is similar to the algorithm to detect
duplicates, summarized in the previous section. The main di�erences are the number of
collections involved and the representation of the document (now the shingles are used to
represent the document, as described in Section 6.1.1). Instead of searching for documents
of the same collection, the algorithm to �nd parents and children is applied to a pair of
old�new Web collections.

The shingle paragraphs of the old collection are inserted into the hash table (in parts)
and the shingle paragraphs of the new collection are searched. If a new document shares
three or more shingle paragraphs with some document of the old collection, the old-new
document pair is stored as candidate. At the end, for each old document, a list of child
candidates is stored.

6.2.3 Finding Parent and Child Instances

After �nding parent and child document candidates, two steps are now required: obtaining
the list of parent and child instance candidates, and �ltering the parent and child instances
from the candidates.

Figure 6.2 summarizes the algorithm to obtain parent and child instance candidates.
Along the �rst loop the old documents are instantiated, and along the second loop new
documents found as child instance candidates, are instantiated. With this second loop, the
list of child candidate documents for each old instance is used to generate the list of child
instance candidates for each old instance.

Figure 6.3 summarizes the algorithm to �lter candidate instances and �nd parents and
children for a collection pair. The algorithm works by labeling old and new found instances
as parent-child instances or as coexistent instances. If both documents of a parent-child
candidate pair are labeled as coexistent, this pair cannot be a parent-child, although other
child candidate in the list of the parent candidate can become a real child. In this case,
the old instance is labeled as parent and coexistent, meaning that the parent exists in the
new collection but a new document was generated with its content in the mean time.

The algorithm presented in Figure 6.3 works for unrestricted relations. For inter-site
relations, preliminary algorithms are executed to identify the site to which a document
belongs and mirrors of each site (see Section 6.1.3 for further details).
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For each old document ODi

If ODi is unique
Create an old instance OIk;
Keep the list of child candidates Cj of ODi to OIk;

Else
If it is the �rst occurrence of the ODi cluster

Create an old instance OIk associated to the ODi cluster;
Keep the list of child candidates Cj of ODi to OIk;

For each old instance OIk

For each child candidate Cj in the list of OIk

If Cj is unique
Make Cj be a child candidate instance CIn;
Include CIn in the list of child instance candidates for OIk;

Else
If it is the �rst occurrence of Cj cluster as candidate for OIk

Make the Cj cluster be a child candidate instance CIn;
Include CIn in the list of child instance candidate for OIk;

Figure 6.2. Algorithm to obtain parent and child instance candidates in a
collection pair.

For each old instance OIk

For each child candidate instance CIn

For each ODi ∈ OIk

For each Cj ∈ CIn

If URL(ODi) = URL(Cj)
Label OIk and CIn as coexistent;

If CIn is not a coexistent
If OIk and CIn share at least 20% (threshold) paragraph

Label OIk as parent and CIn as child, associating them;
For each old instance OIk

Classify it as either coexistent, parent, parent and coexistent, or sterile;
For each new instance

Classify it as either coexistent, child or orphan;

Figure 6.3. Algorithm to �lter candidates to �nd instances of parents and
children.

6.2.4 Selecting Parents
The output of the algorithm presented in Figure 6.3 can be used to classify each document
into a di�erent component of the Web genealogical tree. For our speci�c study, we follow
processing the data in order to associate only one parent for each child. This association is
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required because every near-duplicate instance in the old collection is considered a parent
when one of the near-duplicates has a child. We ran preliminary experiments and detected
a high number of parents. They expressively introduced noise to the results, impeding the
correct classi�cation of parents.

If we detected near-duplicates instead of duplicates (see Section 6.2.1), we could have
inaccurate results. First, because, clusters of near-duplicates are intrinsically not accurate.
Suppose page A shares 70% of its content with page B, which in turn shares 70% with
C. It is possible that A and C share only 40% of their content, making the decision of
which documents to cluster together a hard task. Second, because we study the evolution
of content reuse in small parts of documents. The minimal similarity allowed is 20%, which
is too low to perform clustering of near-duplicates.

For each child instance, we select a parent instance from its list of parents. The
parent that shares the highest number of paragraphs with the child is selected. When the
number of paragraphs is the same for more than one parent (this situation is not frequent),
it does not matter which parent is chosen. In this case we select the parent with the lowest
identi�er. This heuristic is used in order to select the same document in case this situation
occurs again for another child.

After associating a parent for each child, we separate intra-site and inter-site relations,
and apply the mirror �lter for inter-site relations.

6.3 Implementation Using WIM
We have also implemented a WIM program in parallel to the ad-hoc programs that im-
plement the algorithms previously presented in this section. The WIM implementation
is slightly di�erent from the ad-hoc implementation. Nevertheless, the WIM solution ad-
dresses the same sub-tasks the ad-hoc solution presented in Section 6.2 does, which are: to
identify duplicates within a snapshot (Section 6.2.1), in order to avoid the association of
multiple parents to a child; to compare parts of every document of the old snapshot against
every document of the new snapshot (Section 6.2.2); to �lter old-new pairs with the same
URL (Section 6.2.3), which means that the documents are the same in both snapshots;
and to select one parent when a child has various parents (Section 6.2.4), which may occur
for near-duplicate parents.

Figure 6.4 presents the WIM program for the Web evolution study application, which
is explained below. An illustration of relations and operations used in this program is
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// Clustering duplicates for both old and new collections:
relDupOld = Compare(relOld, sparse, exactmatch, text.V);
relClOld = Disconnect(relOld, connected, relDupOld.V);
relDupNew = Compare(relNew, sparse, exactmatch, text.V);
relClNew = Disconnect(relNew, connected, relDupNew.V);
// Comparing the collections:
relSearch = Search(relOld, relNew, shingles, 20%, relClOld.V, relClNew.V);
// Eliminating children with the same URL of parents:
relSearchUrl = CompGraph(relSearch.relSearch, exactMatch,

relUrlOld.V, relUrlNew.V);
relSeDifUrl = Select(relSearch, value, relSearchUrl.V, ==, 0);
// Translating start and end nodes into instance nodes:
relStart = Set(relOld, relSearch, intersection, relClOld.K, relSeDifUrl.S);
relStartInst = Aggregate(relOld, grouping, count, relStart.V);
relEnd = Set(relNew, relSearch, intersection, relClNew.K, relSeDifUrl.E);
relEndInst = Aggregate(relNew, grouping, count, relEnd.V);
// Merging instance nodes with the similarity graph:
relGenEnd = Set(relSearch, relNew, intersection, relSeDifUrl.E,

relEndInst.K);
relGenSt = Set(relSearch, relOld, intersection, relGenEnd.S, relStartInst.K);
// Selecting only one parent per child:
relGenFinal = Aggregate(relSearch, grouping, count, relGenSt.E);

Figure 6.4. WIM program to study the textual evolution of the Web.

presented in Figure 6.5. Observe that most of the operations and relations used in this and
next WIM program illustrations were explained in Chapter 4 when exemplifying the use
of the operators of the WIM algebra. For this reason we explain below the WIM program
with focus on semantic aspects.

The program considers two relation sets as input: an older Web collection, relOld, and
a more recent collection, relNew. Relation sets have their names in bold in the �gure. The
illustrations do not show the relation sets to which the output relations belong. Initially
the Compare operator is used to identify duplicates in documents within each collection.
As a graph is returned, the Disconnect operator is used to associate a cluster identi�er
to each node of the graph. The output, relClOld, goes to relation set relOld for the older
dataset. Note that the illustration projects relations text and url besides relation relClOld,
just because in underlying operations, these relations from relOld will be required, but only
for the keys present in relClOld. Figure 6.5 does not show the steps to generate relation
relClNew, because they are the same as to generate relClOld.
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Figure 6.5. Illustration of relations and operations for the WIM program to
study the Web content reuse and evolution.

Next, the Search operator is used to compare documents between collections relClOld
and relClNew. The result is relSearch, a link relation whose start nodes are compatible
to relation relClOld and end nodes are compatible to relation relClNew. The next step is
to �lter out pairs with the same URL, which are not parent-child pairs. The CompGraph
operator is used to compare the URL of each linked pair. For the example in Figure 6.5,
only pair 4�24 has the same URL. Links whose nodes have di�erent URLs are then selected.

At the right side of Figure 6.5, the Set operator is used to return the intersection of
elements in relClNew and end nodes in relSeDifUrl. Together with the Aggregate operator,
which is applied to relation relClNew of relation set relEnd, the two operations are used
to identify instances of documents, i.e., to identify duplicates within a dataset. The same
steps exist to identify duplicates in the start node of relation relSeDifUrl, returning relation
relStartInst, which is omitted in Figure 6.5.

Then the �ltered nodes that remained in relation relEndInst are used to e�ectively
�lter the graph relSeDifUrl, �rst for the end nodes and later for the start nodes, which are
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represented in Figure 6.5 with an asterisk (*) for the set operation, because the other input
relation of the Set operator is relStartInst, not represented in the �gure. The last operation,
which is also not represented, is the aggregation of end nodes, in order to associate only
one parent to each child, eliminating near-duplicates in the parents set.

6.3.1 Comparison with an Ad-hoc Solution

Before implementing a solution using WIM for this problem, we had implemented an
ad-hoc solution in C, which was the natural way since WIM did not exist. The ad-hoc
algorithms are presented earlier in this chapter. For our implementation, all the programs
have together approximately 2,500 lines of code, for the same functionality, and took 1.5
month to be implemented by an advanced programmer.

In contrast, the WIM program presented in Figure 6.4, which took one day to be
written, is shorter than the pseudo-code of the ad-hoc solution presented in this section.
The program ran for the same datasets that the ad-hoc solution had run, and very similar
results were found (the slight di�erence is due to minor di�erences in internal functions of
the two solutions).

Regarding e�ciency, we cannot compare the WIM program with the ad-hoc program
because the code of the ad-hoc program is not optimized, and in fact takes much longer
than the WIM program. Our comparison supposes that the ad-hoc program must have
at least all the comparison steps of the WIM program in Figure 6.4, which are operators
Compare (applied to both old and new datasets) and Search.

Note that WIM programs are multi-threaded, as the operators follow a data�ow
approach. Hence we can readily process the output as it is generated, which exploits
the parallelism of multi-core processors. This functionality allowed the three comparison
operators to run in parallel. Then we also supposed that the ad-hoc implementation would
run the comparison steps in parallel. The result was that the whole WIM program took
9.02 hours to run1, from which only 6.7 minutes were spent with the other operators that
are not comparison operations.

1 The datasets used in the experiments are presented in the next section. The values are the average
of runs for di�erent datasets.
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6.4 Data Set
For the experiments we have used �ve collections of pages of the Chilean Web, crawled in
�ve distinct periods of time, from July 2002 to February 2006. Table 6.1 presents the main
characteristics of the collections. The HTML tags were excluded from the documents, thus
the metadata in the table represents data on the text found in the documents in each
collection.

Table 6.1. Characteristic of the collections.

Col. Crawling total number Size
name date of docs. (mi) (Gbytes)
2002 Jul 2002 1.04 2.3
2003 Aug 2003 3.11 9.4
2004 Jan 2004 3.13 11.2
2005 Feb 2005 3.14 11.3
2006 Feb 2006 3.72 14.5

Each collection was crawled by the Chilean search engine TodoCL2. In order to
compose the collections, the complete list of the Chilean Web primary domains were
used to start the crawling, guaranteeing that a set of pages under every Chilean do-
main (.cl) was crawled, once the crawls were pruned by depth. Domains outside the
Chilean primary domain were only crawled if their IP address was from a Chilean IP
provider. The collections have successfully been used for other researches in characterizing
the Web [Baeza-Yates and Poblete, 2006].

Any Web collection is a biased and partial image of the
Web [Bennouas and Montgol�er, 2007]. We decided to use the Chilean collections
because the way in which they were crawled indicates that they are the least biased data
set for the kind of study we have done. As far as we know, Chile is the only country
where a series of annual snapshots have been collected, using as seed the complete list of
Chilean domains.

6.5 Genealogical Tree for the Chilean Web
In this section we present our study of the Chilean Web genealogical tree. Most of the
results are presented as percentages in relation to the number of instances. The number of

2TodoCL: www.todocl.cl
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instances for collections 2002, 2003, 2004, 2005 and 2006 is 416,300, 1,262,900, 1,157,100,
1,396,200, and 1,808,500, respectively.

6.5.1 Coexistent Instances
Figure 6.6 presents the percentage of coexistent instances among each collection pair, in
relation to the old collection (�rst bar of each pair) and in relation to the new collection
(second bar of each pair).
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Figure 6.6. Percentage of coexistent instances among collection pairs.

For instance, around 41% of the instances in the old collection 2002 continue to
exist in collection 2003. These instances represent around 14% of the new collection,
2003. The percentage changes due to the di�erence of the number of instances in each
collection. Notice that the percentage of coexistent instances among the years (�xing the
old collection) decreases linearly according to the time. The exception is collection pair
2003-2004, in which the di�erence of time from collection 2003 to 2004 is short, resulting
in a large number of coexistent instances.

6.5.2 Parents and Children
In this section we study the number of parents and the number of children for collection
pairs. Table 6.2 presents the number of parent instances, child instances and child doc-
uments, for both intra-site and inter-site relations. The number of child documents is
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calculated by counting the number of documents represented by a child instance, that is,
the number of documents in a cluster of an instance.

Table 6.2. Number of parent instances, child instances, and child documents,
for intra-site and inter-site relations, for each collection pair (in thousands).

Intra-site Inter-site
col. par. child ch. doc. par. child ch. doc.
02-03 13.7 23.7 41.5 12.7 27.0 63.8
02-04 10.1 12.1 18.6 11.4 39.2 67.8
02-05 10.3 12.4 21.3 10.1 32.1 44.5
02-06 8.6 10.5 14.2 9.5 20.0 38.6
03-04 21.3 41.3 69.5 19.0 70.9 115.1
03-05 29.9 39.9 54.8 21.7 65.1 99.5
03-06 26.5 31.7 40.8 22.8 60.8 126.8
04-05 34.6 43.6 62.4 20.1 51.9 83.5
04-06 29.8 34.0 46.5 28.2 64.5 132.6
05-06 27.7 40.3 58.2 23.7 64.0 144.2

For instance, 12,700 inter-site parent instances in collection 2002 generated 27,000
instances is collection 2003. These 27,000 instances represent a total of 63,800 documents
in collection 2003. Data show that, on average, the number of intra-site parents is higher
than the number of inter-site parents. On the other hand, the number of intra-site children
is much lower than the number of inter-site children. On average, an intra-site parent gen-
erates 1.37 child instances and 2.07 child documents, whereas an inter-site parent generates
2.78 child instances and 5.05 child documents.

Comparing the coexistent data presented in Section 6.5.1 and relation data presented
in this section, we see that the percentage of coexistent instances decreases according to the
time more than the number of parents and children decreases. For example, from collection
pair 2002-2003 to collection pair 2002-2006, the number of coexistent instances in relation
to the old collection decreases 70%, whereas the number of parents decreases 25% and
the number of children decreases 26%, for inter-site relations. Furthermore, the number
of inter-site children increases in some cases. For instance, collection pair 2002-2003 has
27,000 children, whereas collection pair 2002-2004 has 39,200 children.

The values presented above indicates that from 2002 to 2006 (and also from 2003 to
2005), many pages died and could not generate a child, but the children of part of those
dead pages became parents, generating new children and propagating the content. In this
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case, for example in collection 2002, part of the parents of documents in collection 2004 or
2005 are in fact grandparents. In next sections we present further discussions about this
behavior.

Figure 6.7 plots the percentage of parent instances, relative to the number of instances
of the old collection; the percentage of child instances, relative to the number of new
instances for the new collection; and the percentage of child documents, relative to the
number of new documents for the new collection. Both intra-site and inter-site relations
are presented. We focus our study on the adjacent collection pairs, that is, 2002-2003, 2003-
2004, 2004-2005 and 2005-2006. The percentage of children is lower than the percentage of
parents only for collection pair 2002-2003, because collection 2002 is considerably smaller
than collection 2003.
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Figure 6.7. Percentage of parent instances, child instances, and child documents,
for intra-site and inter-site relations.

Collection pair 2003-2004 presents the highest number of children for both intra-site
and inter-site relations. This collection pair represents the shortest elapsed time between
the crawling periods, as shown in Table 6.1, suggesting that relations are easier to be
identi�ed in shorter intervals (the di�erence of one year among the collections crawls may
be enough for part of the children to die).

It is important to notice that the percentage of inter-site children is considerably
higher than the percentage of intra-site children, and that the sum of both percentages
represent the total percentage of children. On average, 4.5% of old instances are parents,
10.4% of new instances are children, and 9.9% of new documents are children.
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6.5.3 Linkage Among Relatives
In this section we study how children acknowledge their parents with links to them. The
collections have no external links, so that we are not able to study links to parents that no
longer exist in a collection.

Table 6.3 presents the number of parents divided by the number of parents acknowl-
edged by a child, for both intra-site and inter-site parents. For instance, one in each 8.4
intra-site parents in collection pair 2002-2003 are acknowledged by a child. The lower the
value, the higher the total number of links from children to parents for a collection pair.

Table 6.3. Number of parents divided by the number of parents acknowledged
by a child.

Col. pair intra-site inter-site
02-03 8.4 35.3
02-04 8.8 39.8
02-05 7.1 66.6
02-06 14.1 257.3
03-04 9.5 147.8
03-05 8.0 142.4
03-06 27.8 366.2
04-05 17.0 119.2
04-06 50.5 479.7
05-06 15.1 209.3
average 16.6 186.4

Intra-site parents are much more acknowledged than inter-site parents. This is simple
to understand, as internal links in a site are usually common. Furthermore, the number
of acknowledged inter-site parents is also relatively high: one link for every 35.3 inter-site
parents, as observed for collection pair 2002-2003, is a signi�cant value, given that the
probability of a parent being acknowledged by a random document is extremely low.

6.5.4 Chilean Web Genealogical Tree
In this section we present the components of the Web genealogical tree as de�ned in
Section 6.1.4, for the Chilean Web data. Table 6.4 presents the percentage of parents
for both intra-site and inter-site relations, considering only the intermediate collections,
in which the genealogical tree components can be studied. The second column presents
again, for comparison purposes, the number of parents. The following columns present,
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respectively, the percentage of original parents, old parents, and children and parents (see
the de�nitions in Section 6.1.4).

Table 6.4. Percentage of parents for each component.

Collection # parents original old child.
(thousands) parents parents & par.

intra 2003 21.3 96.5% 0.7% 2.8%
intra 2004 34.6 87.1% 2.1% 10.8%
intra 2005 27.7 87.5% 2.3% 10.3%
inter 2003 19.0 90.0% 2.1% 7.9%
inter 2004 20.1 81.1% 7.9% 11.0%
inter 2005 23.7 88.1% 3.6% 8.3%

According to the genealogical tree de�nition, if a given document exists in a time t0

and generates a child in a time t1, if the document is not crawled in t1 but is crawled in
a time t2 (snapshot t1 is skipped), it would wrongly be associated as a child of its own
child (which would be considered a child and parent). For our data set, only 1.5% of the
documents are skipped in a crawling, on average. In any case, we veri�ed that they had
negligible in�uence in our results, less than 5 documents wrongly appeared as children and
parents.

Observing the 2003 collection in Table 6.4, we see that the percentage of original
parents for this collection is the highest one among the three collections. This scenario
is probably due to the small size of collection 2002. In this case many documents in
collection 2003 should probably be children of documents in 2002, but their parents are
not represented in collection 2002.

Data presented in the table demonstrate mainly two important issues. First, the
percentage of children and parents and the percentage of old parents are higher for inter-
site relations. Second, the percentage of children and parents is higher than the percentage
of old parents. In order to understand these issues, Table 6.5 presents the probability
of an instance becoming a parent in each component. The second column of the table
presents the number of coexistent previous parents (referred as EPP), i.e., the intersection
between the parents set in snapshot t − 1 and the coexistent instances set in snapshot t

(EPPt = Pt−1 ∩ Et, where Et represents the coexistent instances between snapshots t− 1

and t)
The number of coexistent previous parents, which is presented in thousands, is used

to calculate the probability of a coexistent previous parent becoming a parent, presented in
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Table 6.5. Probability of an instance becoming a parent, for each parent com-
ponent.

Collection EPP (k) P (OlP) P (CnP) P (OrP)
intra 2003 5.4 0.027 0.024 0.016
intra 2004 15.4 0.046 0.088 0.027
intra 2005 28.3 0.022 0.064 0.018
inter 2003 5.2 0.078 0.056 0.014
inter 2004 16.4 0.097 0.031 0.015
inter 2005 23.2 0.036 0.037 0.016

the third column of Table 6.5, where P (OlPt) = |OlPt|/|EPPt| (see Section 6.1.4 for details
about the variables). Given that an instance is coexistent and was a parent in the previous
collection, the values in this column represent the probability of this instance becoming a
parent.

The fourth column presents the probability of a child becoming a parent, given by
P (CnPt) = |CnPt|/|Ct|. Note that data in this column represents the percentage of parent
and child instances in relation to the number of sterile children. For instance, for inter-site
relations in collection 2003, 5.6% of the children are classi�ed as children and parents,
whereas 94.4% are sterile children.

The �fth column presents the probability of an orphan instance becoming a parent
(see Section 6.1.3 for the de�nitions), given by P (OrPt) = |OrPt|/(|INSt|−(|EPPt|+ |Ct|)),
where INSt is the set of instances for snapshot t.

Table 6.5 shows that the probability of a child or a coexistent previous parent be-
coming a parent is higher than the probability of an orphan instance becoming a parent.
This conclusion is true for both intra-site and inter-site parents, although for inter-site
parents this probability is, on average, more than twice higher than for intra-site parents.
In summary, an important conclusion is that instances with a previous relation (as either
parent or child) are more likely to be parents than documents without relations. Thus,
instances inside the genealogical tree are more fertile than other instances.

6.5.5 Beyond the Chilean Web
In this section we discuss how part of the results found for the Chilean Web can be gen-
eralized to the whole Web (or to other Web data sets). We are interested in estimating
the number of children in a Chilean Web snapshot generated from parents outside Chile.
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We have used a Web collection from Spain with 16.2 million pages, crawled in Septem-
ber 2004 [Baeza-Yates et al., 2007a]. We used the Spanish collection as the old collection
and the Chilean 2005 collection as the new collection, and the same algorithms used for
studying the Chilean Web.

We have found 11,800 new instances that are children from Spanish pages and from
pages in the Chilean 2004 collection. These pages in the Spanish collection are either
parents or children from the Chilean collection 2004. We have found 25,300 new instances
in collection 2005 that are children only from Spanish pages. Thus, the total number of
relations from Spanish pages is 37,100 instances. Collection 2005 has a total of 95,400
children from the Chilean collection 2004, considering intra-site plus inter-site relations.
Comparing to the number of children from Spain, there are around two or three times more
children from Chile than from Spain, in the Chilean 2005 collection.

In order to estimate the total number of children that may exist in the 2005 Chilean
collection, we �rst estimate how big the Spanish and Chilean Webs are, in comparison
to all the Webs in Spanish speaking countries. We use the number of unique host names,
which is measured by the Internet Systems Consortium3. We see that the Spanish speaking
countries have a total 15.6 million host names, whereas Spain and Chile have 3.0 million
and 745,000, respectively, representing 19.6% and 4.6% of host names in Spanish speaking
countries.

A simple estimation is to consider that the other Webs from Spanish speaking coun-
tries (the other 75.6%, according to the number of host names) tend to generate the same
number of children as the Chilean Web. In this case, there would exist 143,000 more
children in the 2005 Chilean collection, considering the overlap with the 2004 Chilean
collection, or 97,200 more children, excluding children from the 2004 Chilean collection.

This simple estimation does not take into account that there are other sites in Spanish
language outside Spanish speaking countries, and that the Chilean Web also has pages in
other languages. For these reasons we guess our estimation is a lower bound. Thus, the 2005
collection would have at least 217,900 children (95,400 from the 2004 Chilean collection,
25,300 from the Spanish collection, and 97,200 estimated for other Webs), which represent
23.7% of new instances in the 2005 collection. This percentage may also be valid for
other Web data sets, as the Chilean Web has similar characteristics in comparison to other
Webs [Baeza-Yates and Poblete, 2006].

3Internet systems consortium's domain survey, October 2007, http://www.isc.org/ds/
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6.6 Genealogy and Search Engines
In this section we start associating relations, specially parents, with metrics used by search
engines to rank the results, and with the search engine results and click-through data.
Our objective is to characterize the parents, which re�ects the characterization of the user
behavior when reusing content.

We carried out a series of experiments, presented in the following sections. In every
case we compare data considering all the instances of a collection, considering only the intra-
site parent instances, and considering only the inter-site parent instances (and sometimes
the child instances too). Taking into account that intra-site relations are characterized by
local reuse of the user's own Web site content, the metrics might present di�erent results
for intra-site and inter-site parents.

6.6.1 Genealogy and Pagerank
In this section we study the Pagerank [Page et al., 1998] relevance measure for parents,
children and instances in general. For clustered instances we chose the document of that
cluster with the highest Pagerank, due to the fact that this document is probably the parent
of the other duplicates in its cluster and it would be chosen by the search engine to be
returned if its content matches a query, eliminating duplicates in the answers. This heuristic
for choosing the document to represent the cluster is also used for other experiments in
the following sections.

Table 6.6 presents the average Pagerank for all the instances of the old collection, for
parent and child intra-site and inter-site instances, for the adjacent collection pairs. The
average for the collection pairs is also presented.

Table 6.6. Average Pagerank for old instances, parent instances and child in-
stances. Values are multiplied by 105 for better visualization.

Collection all parents children
pair intra inter intra inter
02-03 0.082 0.070 0.080 0.022 0.034
03-04 0.029 0.027 0.052 0.022 0.048
04-05 0.032 0.027 0.081 0.021 0.020
05-06 0.033 0.038 0.042 0.021 0.019
average 0.044 0.040 0.064 0.021 0.030
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The average Pagerank for child instances is very low, probably a consequence of the
recent creation of the new instance. The average Pagerank for intra-site parents is very
close to the average Pagerank for old instances (all instances). The average Pagerank for
inter-site parents is quite high, on average 60% higher than for intra-site parents. This
high di�erence indicates that parents are better connected on the Web graph than other
documents, thus they are easier to be found than many other documents. In Section 6.6.3
we directly study the relationship between the search engine results and the parents.

Figure 6.8 presents the average Pagerank for the di�erent components of the Web
genealogical tree, that is, for original parents, old parents, children and parents, and sterile
children. The �rst set of bars represents intra-site relations and the second set represents
inter-site relations.
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Figure 6.8. Average Pagerank for components of the Web genealogical tree.
Values are also multiplied by 105.

The �gure shows evidence that old parents have a higher Pagerank. On the other
hand, sterile children have low Pagerank.

6.6.2 Genealogy and the Web Macro Structure
In this section we study how parents and children are connected in the Web graph macro
structure [Broder et al., 2000]. We previously identi�ed the Web macro structure compo-
nent to which each document of a collection belongs, according to the Web macro structure
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component to which its site belongs. This heuristic is reasonable, given that by reaching a
site, the user can also reach every document in that site.

Considering the average for all �ve Chilean collections, tunnels, islands, the in, the
out and the main macro structure components [Broder et al., 2000] have 3.3%, 8.8%, 9.8%,
18.8% and 59.4% of the documents, respectively. Due to the large volume of data to be
presented, we present together the out and main components, which are characterized by
their connectivity, given that they are reachable from more pages.

Table 6.7 presents the percentage of connected components (main and out) for the
whole old collection, and for intra-site and inter-site parents and children. Intra-site chil-
dren have high connectivity because the child belongs to the same site of the parent, so
that if the parent has high connectivity the child will have too. Intra-site parents have
also high connectivity. This behavior may be due to the high volume of modi�cations
in sites with more resources and more pages. As expected, the percentage of connected
components for inter-site parents is higher than for inter-site children.

Table 6.7. Percentage of the Web macro structure connected components (main
and out) for relations.

Collection all parents children
pair intra inter intra inter
02-03 74.9 90.3 85.2 89.8 83.3
03-04 72.9 88.2 90.5 95.3 93.3
04-05 82.6 93.5 87.1 91.1 73.3
05-06 81.9 89.0 91.3 87.4 67.1
average 78.1 90.3 88.5 90.9 79.2

Figure 6.9 presents the percentage of the Web macro structure connected components
for elements of the Web genealogical tree. We see that inter-site child and parent instances
are as weakly connected as sterile child instances (with an outlier for the 2004 children and
parents).

6.6.3 Genealogy and Query Results
In this part of the experiments we simulate a user performing queries in the past, and
analyze click-through data. Initially, we observe whether the queries return the parents
and how they are returned. The simulation is real because we used query logs and the
same Web collection and query processor (we had access to the query processor as a black
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Figure 6.9. Percentage of the Web macro structure connected components (main
and out) elements of the Web genealogical tree.

box) used by the search engine TodoCL. Given that this search engine was popular in Chile
at that period, we try to associate queries (and clicks) to the parents, given that possibly
part of the publishers of children used the TodoCL search engine (or other search engine
whose ranking may not di�er that much) in order to �nd content.

The query log we have available contains queries over a period of 10 months, from
February to November 2004, and was applied to the collection 2004. The period of the logs
starts one month after the collection 2004 was crawled and �nishes two months before the
collection 2005 was crawled (see Table 6.1). The one million most frequent queries were
used and the top 5 results were considered. In this set, the most frequent of queries has
750,200 requests, whereas the least frequent query has 33 requests.

With the queries processed we used their results to compare how documents in general
are returned, how intra-site parents and children are returned and how inter-site parents
and children are returned. The children considered are for collection pair 2003-2004, that
is, children in collection 2004. We perform the same study considering all the click-through
data of the query log.

Figure 6.10 presents the average number of top documents returned per occurrence
of queries (frequency of query is not considered), for documents in general (the �rst bar)
and for components of the genealogical tree. On average a document is returned in 0.38
di�erent queries. If the document is an inter-site original parent, on average the parent
is returned in 0.87 di�erent queries, which represents an increase of more than 120% in
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relation to the average number of documents.
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Figure 6.10. Average number of documents returned per occurrence of queries.

Figure 6.11 presents the average number of top documents returned for all queries
(frequency is now considered), for documents in general and for components of the ge-
nealogical tree. For example, if a document d occurred in two queries A and B, submitted
respectively 6 and 4 times, document d occurred for 10 requests in total. The intuition is
that documents that appear more in results of queries are more likely to be copied.
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Figure 6.11. Average number of documents returned for all queries.
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We see that intra-site sterile documents are returned in a high number of requests,
which means that new documents with some old content from the same site may be relevant
for a large set of requests. Comparing Figures 6.10 and 6.11, we see a similar behavior for
each component. For instance, inter-site original parents and children and parents appear
more frequently than old parents and sterile children.

Figure 6.12 presents the average number of clicks per document, for documents
and for components of the genealogical tree. We see that intra-site original parents are
frequently clicked, and that inter-site original and old parents are much more clicked than
documents in general. Inter-site sterile documents have very low number of clicks.
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Figure 6.12. Average number of clicks per document.

For the three measures, in general we see that the values for inter-site parents are
considerably higher than for documents in general, and also higher than for intra-site
parents. These results represent evidence that part of the parents are associated to queries.

Characterizing the parents Considering this relation between inter-site parents and
queries, we study the distribution of the frequency of parents in query results, with the goal
of understanding whether the parents are the most often returned set of documents or not.
Our intuition is that the most returned documents are not the most copied documents.
The most returned documents have normally a high Pagerank and not too much text.
Maybe they are a good source of links for copied documents, and we guess that documents
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returned by queries and copied are returned by more speci�c queries rather than generic
queries.

Figure 6.13 presents the distribution of documents according to the frequency with
which they are requested in queries (the same measure used in Table 6.11), in a logarithmic
scale. Figure 6.14 present an equivalent distribution, but only for inter-site parents.

Note that the axis range di�ers between Figure 6.13 and Figure 6.14. The frequency
can be modeled as a power law. Note that every point plotted for parents is also represented
as a point in the plot for parents, given that a parent is a subset of the document set, and
the frequency of that document is obviously the same.

For instance, the last point at the bottom of Figure 6.13 means that one document
was returned around 7 million times. The �rst point at the top means that a large number
of documents were returned in only one query, which has the minimal frequency found in
the log (33 requests).
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Figure 6.13. Distribution of documents in general returned by queries, according
to their frequencies.

Comparing the general plot with the parents plot, we see that most of the parents in
Figure 6.14 are represented with a low frequency in Figure 6.13. For example, the points
in Figure 6.13 are concentrated between frequencies 1,000 and 10,000, while the points
in Figure 6.14 are more concentrated between frequencies 100 and 1,000. Figure 6.13 has
many points after frequency 100,000. This is not the case in the distribution in Figure 6.14.
Not only the range is smaller for parents, but also the power law has absolute exponent
smaller than in the general case, showing that they are less spread.
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Figure 6.14. Distribution of inter-site parents returned by queries, according to
their frequencies.

Figure 6.15 presents together, the distribution of clicks on documents in general, and
the distribution of clicks on inter-site parents. The same conclusions stated for the distri-
bution of documents returned by queries are valid for the distribution of clicks. Observe
that parents are not the most clicked documents.
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Figure 6.15. Distribution of clicks on documents in general and on inter-site
parents.

The values presented in Figures 6.11 and 6.12 show that parents are returned in
queries and they are clicked much more frequently than documents in general. At the
same time, the plots show that the parents are not the most frequent documents returned
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by queries or the most clicked documents. These facts reinforce our intuition that part of
the queries are used with the intention to copy a content, and in these cases the documents
are not so frequent, probably because the query is more speci�c.

6.7 Concluding Remarks
We have investigated the evolution of textual content on the Web. We have shown that
a signi�cant portion of the Web content has been evolving from old content. We have
presented estimations to generalize our �nds to other Web data sets. We estimated that
23.7% of the new Web documents that appear within the span of a year have content
from previously published documents, which is a high percentage. We also veri�ed that
previously copied pages are more likely to become parents again.

We have introduced the concept of genealogical tree on the Web, and studied its
components. Basically, we have observed that inter-site parents have high pagerank relative
to other documents, are well connected to the Web graph, appear frequently as result of
real queries and are clicked frequently after a search. These results indicate that search
engine ranking algorithms bias part of the Web content.

This use case is a successful application of WIM to a real Web mining problem. We
have compared the WIM solution with a possible ad-hoc solution which has only the mining
tasks of the WIM solution, and demonstrated that the running time overhead introduced
by WIM is insigni�cant, whereas the number of lines of code using WIM can be reduced
by orders of magnitude.



Chapter 7

Other Use Cases

In this chapter we present four other use cases to which WIM has been applied. The �rst
use case is the implementation of a �user browsing� pagerank, based on usage data. The
second use case is a comparison of the Web linkage evolution, in terms of duplicated and
new content pages. For this use case we present preliminary results, which indicate that
duplicated-content pages pagerank evolves less than new-content pages pagerank. The
third use case is an implementation for manipulating usage data, aiming user querying
intent prediction. The fourth use case is an implementation to select documents from a
Web dataset for composing a pool of documents for relevance assessment.

7.1 Studying a Usage Pagerank for Ranking
Improvement

The second use case is a proposal of usage pagerank, i.e., a document relevance weight
based on a click graph. According to the assumption that the clicks �ow within a user
session most of the time indicates that the recently clicked documents are more relevant
for that query, we propose to compose a graph with the order of clicks within a section and
study the pagerank for this usage graph. As an example of such graph, suppose that for a
session the user clicked in page A, then in B and then in C. The graph is composed by a
link from A to B and another link from B to C. A single graph is produced as a result of
processing all sessions in this way.

Figure 7.1 presents the WIM program for the usage pagerank application. The ob-
jective of this program is to return new relations to represent properties of documents from
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// Converting a node relation with session and click data into a link relation:
relUsGraph = Convert(clickSet, sessionId.V, clickedDoc.V);
// Associating urls of the usage log:
relUsDocs = Aggregate(clickSet, grouping, count, url.V);
// Associating the pagerank to clicked documents:
relDocsPr = Join(clickSet.relUsDocs, relLargeCol, url.V, url.V, pr.V, 0.0);
// Manipulating the usage graph to calculate the usage pagerank:
relFull = Relink(relUsGraph, cocitation, single, adjacent, relUsGraph.SE);
relCocit = Select(relFull, value, relFull.L, ! =, 0);
relAgg = Aggregate(relUsGraph, grouping, count, relCocit.SE);
relPruned = Select(relUsGraph, value, relAgg.V, >, 20);
relUsPR = Analyze(relUsGraph.relPruned, pagerank);

Figure 7.1. WIM program to study a usage Pagerank.

the query log. The new relation set must have the following value attributes: the URL
of the document, the real pagerank (which is not calculated but joined in from another
dataset), and the new usage pagerank. With this output dataset we can propose a re-
ranking function to move documents in results of queries, based on the comparison of the
real and the usage pagerank.

Figure 7.2 illustrates the relations and their attributes, and the operations used in
the WIM program of Figure 7.1. Relation sets have their names in bold in the �gure and
in other illustration �gures in this chapter. The illustrations do not show the relation sets
to which the output relations belong. Next we explain the WIM program for the use case
to study a usage Pagerank.

The program uses two datasets as input: a Yahoo! query log containing 22 million
clicks, represented by relation set clickSet in Figures 7.1 and 7.2, and a Web dataset from
United Kingdom, with 77 million entries [Boldi and Vigna, 2004], from where the pagerank
data is taken, represented by relation set relLargeCol.

The program starts by converting click data to a graph, so that each session identi�er
in relation set clickSet becomes a start node in relation relUsGraph, and every clicked
document identi�er becomes an end node. The Aggregate operator is applied to relation
url in clickSet, so that relation relUsDocs (`Us' stands for `Usage') contains only distinct
URLs, without replication. Note that the illustration projects relations clickedDoc and
url besides relation relUsDocs, just because in underlying operations, these relations from
clickSet will be required, but only for the keys present in relUsDocs. Other �gures in this
chapter also make use of this mechanism for enriching the illustration. In the next steps the
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Figure 7.2. Illustration of relations and operations for the WIM program to
study a usage pagerank.

pagerank and the usage pagerank will be associated with elements in relation relUsDocs.
The pagerank values for a subset of documents in relUsDocs are taken from rel-

LargeCol. The Join operator is used to compare attributes representing URLs of both
relation sets and associate a pagerank for the found URLs. In the example of Figure 7.2,
URL `w.c' is not found in relLargeCol, then a default value is associated to the correspond-
ing entry in relDocsPr.

The graph relUsGraph, converted from relations sessionId and clickedDoc in set click-
Set, is �nally used to calculate the usage pagerank. The Relink operator is used to insert
new links to relUsGraph, which is returned in relation relFull. Observe that the Relink
options used allow the introduction of new links only between adjacent end nodes for each
start node. By selecting only links with label 1, relation relCocit, which contains only
the new links introduced by the Relink operator, is the usage graph to which we want to
calculate the new usage pagerank.

Then the links are aggregated, so that links in relation relAgg are labeled with the
number of clicks performed by every user from a given document to other. In this example
we select links according to a given threshold, and the returned graph is used to calculate
the pagerank for its nodes, returning relUsPr.
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7.2 Comparing the Web Linkage Evolution of
Duplicated and New-content Pages

The third use case is a comparative study of linkage evolution between new pages with
new content and new pages with old content (duplicated content). The hypothesis is that
the pagerank, or other link analysis measure, of duplicate or near-duplicate Web pages
evolves less than the in-degree of Web pages with new content. The intuition behind this
hypothesis is that duplicated pages are, most of the times, not returned by search engines,
and consequently they are not found and not linked.

The result of this research may be important for Web crawler designers. The dupli-
cation problem is solved in order to avoid indexing duplicate content [Manku et al., 2007],
but not to avoid fetching a page and discovering that it is a duplicate. These tasks consume
time and space of search engines. On the other hand, the Web is very dynamic, and a large
number of new pages are published every day. Due to resource limitations, search engines
are not able to index all the new pages found every day, and many URLs are placed in the
frontier, where the URL is known but the content has not been fetched yet [Eiron et al.,
2004]. The frontier problem is to select the frontier pages which should be crawled and
indexed. What search engines do in order to deal with this problem is choosing the frontier
pages with a good connectivity, which can be represented by their pagerank or other page
importance measure [Dasgupta et al., 2007; Bennouas and Montgol�er, 2007].

If the hypothesis above is proved, then the page importance is a good heuristic not
only for the frontier problem, but also for avoiding crawling duplicates. Furthermore, it will
be possible to study di�erent page importance measures, in order to decrease the number
of crawled duplicates and improve the availability of resources.

Figure 7.3 presents an algorithm to start studying the problem presented above. The
algorithm has two stages: �rst the pagerank is calculated for time t1, and second it is
calculated for time t2, comparing both duplicated and new-content pages.

Figure 7.4 presents the WIM program that implements the algorithm presented in
Figure 7.3. Figure 7.5 presents an illustration of the relations and operations, and is used
as an example during the explanation of the program below.

Initially the pagerank of pages in sn1 is calculated, using the link relation set sn1Link,
which is the compatible link relation set with respect to sn1. This operation is not illus-
trated in Figure 7.5. The Search operator is used to identify pages in sn1PR that previously
existed in sn0. These pages are represented as end nodes of the sn1URL output link re-
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Consider three datasets sn0, sn1 and sn2, which represent snapshots
of a domain of the Web at three di�erent times, t0, t1 and t2;

First study the pagerank at a time t1:
1 Recover the new pages sn1N from sn1, which are the pages whose

URL did not exist in t0 for sn0
2 Compare page content of sn1N against sn0, so as to obtain

sn1NDup, that is the list of near-duplicates in sn1N regarding sn0;
3 Recover the list of documents in sn1N with new content, that is

sn1NUni = sn1N − sn1NDup;
4 Calculate the pagerank (or other page connectivity measure)

for pages in sn1NDup and pages in sn1NUni;
Now study the pagerank at a time t2:
5 Recover sn2Dup, which are pages in sn2 whose URL was

represented in sn1NDup;
6 Recover sn2Uni, which are pages in sn2 whose URL was

represented in sn1NUni;
7 Calculate the pagerank of pages in sn2Dup and pages in sn2Uni;
8 Compare the pagerank for the di�erent sets.

Figure 7.3. Algorithm to study the linkage evolution for duplicated and new-
content pages.

lation. The Set operator returns the di�erence between the snapshot at time t1 (sn1PR,
containing Pagerank), and sn1URL. Relation sn1New represents the new documents, with
new URLs, in collection sn1.

The next step is to identify pages in sn1New that are duplicates from some page in
sn0, using shingles [Broder et al., 1997] as comparison method. The result is sn1New2, a
link relation whose end node represents pages in sn1New that are duplicates of pages from
sn0. The Aggregate operator is used to return sn1New3, from which duplicate entries at the
end attribute are excluded. The intersection between sn1New and the end node of sn1New3
is avg1NDup, a relation in set sn1New which represents only duplicated documents. The
di�erence between these relations is avg1NUni, which represents new-content documents in
sn1. The Aggregate operator is used to return a relation containing the average pagerank
for both sets of pages, for time t1.

Notice that in Figure 7.5 some operations are pre�xed by a character `*', which means
that another attribute is input but could not be shown in the �gure, but are explicit in
the WIM program in Figure 7.4. Actually some operators could not be represented in the
�gure (For instance the operator that generates relation avg1NUni is not represented).
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// First study the pagerank at a time t1:
sn1PR = Analyze(sn1Link, pagerank);
sn1URL = Search(sn0, sn1, total, sn0.url, sn1PR.url);
sn1New = Set(sn1, sn1, di�erence, sn1PR.K, sn1URL.E);
sn1New2 = Search(sn0, sn1.sn1New, shingle, 100, text.V, text.V);
sn1New3 = Aggregate(sn1New2, grouping, count, sn1New2.E);
sn1NDup = Set(sn1, sn1New3, intersection, sn1New.K, sn1New3.E);
sn1NUni = Set(sn1, sn1New3, di�erence, sn1New.K, sn1New3.E);
avg1NDup = Aggregate(sn1, single, average, sn1NDup.V);
avg1NUni = Aggregate(sn1, single, average, sn1NUni.V);
// Now study the pagerank at a time t2:
sn2PR = Analyze(sn2Link, pagerank);
sn2DupURL = Search(sn1.sn1NDup, sn2.sn2PR, total, url.V, url.V);
sn2UniURL = Search(sn1.sn1NUni, sn2.sn2PR, total, url.V, url.V);
sn2Dup = Set(sn2, sn2DupURL, intersection, sn2PR.K, sn2DupURL.E);
sn2Uni = Set(sn2, sn2UniURL, intersection, sn2PR.K, sn2UniURL.E);
avg2Dup = Aggregate(sn2, single, average, sn2Dup.V);
avg2Uni = Aggregate(sn2, single, average, sn2Uni.V);

Figure 7.4. WIM Program to study the average pagerank evolution for dupli-
cated and new-content pages.

At the second part, the pagerank of pages in collection sn2 is calculated, generating
sn2PR. This operation is not shown in Figure 7.5. Pages in avg1NDup and avg1NUni,
from collection sn1, whose URLs remain existing in collection sn2, are returned, respec-
tively in relations sn2DupURL and sn2UniURL. They are link relations whose end nodes
represent pages in sn2. The Set operator is used to return documents from sn2PR that
are, respectively, duplicated and new-content pages in collection sn1, that remain existing
in sn2. Finally the average pagerank is calculated for duplicated and new-content pages,
for time t2.

We ran the WIM program presented in Figure 7.4 for a Chilean Web collection set,
which is the same dataset used for the genealogical tree study presented in Chapter 6.
The collections are very representative, given that the complete list of the Chilean Web
primary domains were made available and used to start the crawling. Collection sn0 was
crawled in August 2003, collection sn1 was crawled in January 2004, and collection sn2
was crawled in February 2005.

Table 7.1 presents the average pagerank for duplicated and new-content pages, for the
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Figure 7.5. Illustration of relations and operations for the WIM program to
study the average pagerank evolution of duplicated and new-content pages.

Chilean collections presented above. Note that the average pagerank for duplicated pages
decreases as time goes on, whereas the average pagerank for new-content pages evolves
positively. The results are evidence that the hypothesis presented at the beginning of this
section is relevant.

7.3 Manipulating Search Engine Usage Data for
Mining User Intent

Queries submitted to search engines de�ne three main user intent categories, according
to the taxonomy of Web search proposed by Broder in [Broder, 2002]. They are: i)
navigational, in which users search for a speci�c reference, possibly already known to
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Table 7.1. Average pagerank for duplicated and new-content pages, for the
Chilean collections 2004 and 2005.

75% similarity 100% similarity
collections dup. new-cont. dup. new-cont.
sn1 (2004) 0.697 0.580 0.714 0.579
sn2 (2005) 0.641 0.740 0.646 0.733

di�erence (%) -8.0 27.6 -9.5 26.6

him, and once he �nds it, he goes to that place and abandons the query session; ii)
informational, which users are looking for information about a certain topic and before
�nding a satisfactory result, they often visit a number of Web pages; and iii) transactional,
which users want to do some interaction, such as downloading, purchasing, or making a
bank transfer.

In general, research on user query pro�ling try to use statistics extracted from
query logs to classify queries in one of the categories presented above [Lee et al., 2005;
Rose and Levinson, 2004]. However, if we look carefully to some queries we note that it is
not possible to put those queries into only one class. For example, if two di�erent users
search for �Michael Jackson�, it is possible that one person looks for the Michael Jackson
o�cial home page, and the other person looks for information related to Michael Jackson,
like news, blogs, images or fan club.

By classifying a query into only one category, the search engines are modeling the
need of the majority of the users and those ones with intent deviating from the majority,
likely, may not be satis�ed. So, the point is that di�erent users have di�erent intents,
even for the same query, and the existing models of query intent classi�cation are not
considering that.

We have implemented a WIM program to manipulate data from query logs, in order
to identify a series of properties for each distinct query that occurs in the log. Taking into
account these properties, we have de�ned functions to identify a large number of queries
with both navigational and informational characteristics. Furthermore, we also propose to
study queries with commercial intent, rather than queries with transactional intent, given
that search systems cannot take advantage of identifying a transactional query in order to
improve the ranking. On the other hand, studying commercial queries can lead to increase
the pro�t of commercial search engines.

Figure 7.6 presents the WIM program to manipulate the query log, in order to return
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// Materialize new relation with distinct queries and number of clicks:
queries = Aggregate(usageLog, grouping, count, query.V);
// Count the number of clicks on sponsored links:
spon = Select(usageLog, value, sponsor.V, ==, 1);
countSpon = Aggregate(usageLog.spon, grouping, count, sessionId.V);
numSpons = Aggregate(usageLog.countSpon, grouping, sum, queryId.V,

countSpon.V);
numSponsJo = Join(queryData, usageLog.numSpons, queryId.V,

queryId.V, numSpons.V, 0);
// Count the number of sessions:
click = Select(usageLog, value, sponsor.V, ==, 0);
ses = Aggregate(usageLog.click, grouping, count, queryId.V, sessionId.V);
numSes = Aggregate(usageLog.ses, grouping, count, queryId.V);
numSesJo = Join(queryData, usageLog.numSes, queryId.V, queryId.V,

numSes.V, 0);
// Count the number of sessions with only one click:
countClick = Aggregate(usageLog.click, grouping, count, click.V);
one = Select(usageLog, value, countClick.V, ==, 1);
oneClick = Aggregate(usageLog.one, grouping, count, queryId.V);
oneClickJo = Join(queryData, usageLog.oneClick, queryId.V, queryId.V,

oneClick.V, 0);
// Count the number of sessions with only one click on the most clicked:
most = Aggregate(usageLog.one, grouping, count, queryId.V, urlId.V);
mostOne = Aggregate(usageLog.most, grouping, max, queryId.V,

most.V);
mostOneJo = Join(queryData, usageLog.mostOne, queryId.V,

queryId.V, mostOne.V, 0);

Figure 7.6. WIM Program to manipulate usage data.

the properties to study the search engine user intent. For each distinct query, we need
to calculate properties like: the number of sessions in which the query appears, the total
number of clicks, the number of clicks on sponsored links, the number of sessions with only
one click, the number of sessions with only one click on the most clicked document, the
number of sessions with more than one click, and the standard deviation of the number
of clicks on documents. We ran the WIM program of Figure 7.6 for a Yahoo! query log
containing 22 million queries. Further evaluation of the results were not performed for this
application.

We omitted the passage of the program that manipulates queries with sessions with
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multiple clicks, just to avoid repetition of similar operations. Examples of relations and
operations for this application are shown in Figure 7.7. Unlike the other illustrations
presented in this chapter, Figure 7.7 shows relation sets like single relations with multiple
attributes. Actually, the shown attributes are value attributes of relations in a relation set.
This representation is used here to make the illustration compact, hence in a proper shape
to be semantically explained.

Figure 7.7. Illustration of relations and operations for the WIM program to
manipulate usage data.

The program starts with the Aggregate operator, used to return the list of queries
(relation queries) and the total number of clicks on each query. The next part is the
sponsorship data, that is not represented in Figure 7.7. Relation spon contains only clicks
on sponsored links. The Aggregate operator is �rst used to count the number of clicks on
sponsors in each session, and later to sum the number of clicks in each session, for each
query. The Join operator is required to associate each entry in relation numSpons to the
correct entry in the new relation queries.

The next part counts the number of sessions for each query. In the beginning, only
clicks on non-sponsored links are selected, returning relation click, which is used in other
parts of this program. The Aggregate operator is used to count the number of clicks within
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the same value in sessionId (`ses.Id ' in Figure 7.7), for each query that occurs within a
session. Observing relation click in Figure 7.7, we see that only for session id 6 the query
is the same within the session. Then, in relation ses, only one entry is kept for session
id 6. The Aggregate operator is used again to group the queries, and attribute numSes
(`n.ses ' in Figure 7.7), which contains the number of sessions in which each query appears,
is joined to relation queries (relation set usageLog).

In the next part, the Aggregate operator is used to count the number of clicks for
each session. Relation countClick would be used to process data for multiple clicks, in
order to obtain data for calculating the informational characteristic of a query. In this
example, countClick is used to count the number of clicks on sessions with only one click.
Tuples representing sessions with only one click are selected and returned in relation one,
and relation oneClick is returned with the number of sessions with only one click, for each
query, which is later joined to relation queryData (relation set usageLog).

Relations with the same query id and URL id are grouped in relation most, which
contains the number of clicks for each di�erent pair of query id and URL id. Only the
highest values for each query id are returned in relation mostOne, and are later joined into
relation queryData.

7.4 Composing a Pool of Documents for Relevance
Assessment

Our �fth WIM use case consists of simply composing a pool of documents returned by
di�erent retrieval methods, for a set of queries. As we intend to put our Chilean collections
presented in Section 6.4 and usage log available for research, we also want to provide a
relevance assessment, so that this data set may be useful in researches on learning to rank.
The �rst part is to select the documents to be considered relevant, for each selected query,
and this task can be done using WIM.

Figure 7.8 presents the WIM program for the task of selecting the documents. For
illustration, in this example we present the TF-IDF method combined with pagerank and
with �lter �AND� in the terms of the queries, although the real program includes other
combinations and also method BM-25. An illustration of the relations and operations is
found in Figure 7.9 and is used in the explanation of the program below.

Initially the Search operator is used to retrieve documents for each query, according
to the TF-IDF similarity measure, comparing the text of the query and the text of the
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// Search using TFIDF, include a �lter AND, and make the intersection:
t�df = Search(queryList, dataSet, t�df, 10,000, text.V, text.V);
relAnd = Search(queryList, dataSet, and, 10,000, text.V, text.V);
t�df2 = Set(t�df, t�df, intersection, t�df.SE, relAnd.SE);
// Now include pagerank as feature:
t�dfPR = Calculate(t�df.t�df2, multiplication, t�df.L, relAnd.L);
// Eliminate duplicates in the results and select the top results
t�dfPR2 = Aggregate(t�df.t�dfPR, grouping, max, clusId.V, t�dfPR.L);
t�dfPRFinal = Select(t�df, top, decreasing, t�dfPR2.L, 2);

Figure 7.8. WIM Program to compose a pool of documents for relevance assess-
ment.

Figure 7.9. Partial illustration of relations and operations for the WIM program
to compose a pool of documents returned by di�erent search methods.

document. To be compact, Figure 7.9 does not present the relation text for relation set
dataSet, and only �ve documents are returned for each query. Value 10,000 is the maximum
number of documents to be returned per query. Relation t�df is a link relation, where its
label attribute stores the similarity between the query and the returned documents.

In parallel with the search using method TF-IDF, the search using method AND
is returned as relation relAnd, which is then merged with relation t�df through the Set
operator and option Intersection, returning relation t�df2. The intersection is important
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to ensure that all the terms of the query appear in the result of the query using TF-IDF.
The Calculate operator is used to multiply the TF-IDF similarity in relation t�df and

the pagerank value in relation relAnd, for each document returned per query. The result is
relation t�dfPR, to which the Aggregate operator is used to eliminate duplicates, based on
the duplicate cluster number represented by relation ClusId in relation set dataSet. Note
that end nodes 7 and 1 belong to the same cluster number 1. The one with lowest value is
eliminated from the output relation t�dfPR2. Finally, the Select operator is used to return
only the 30 (or the 2 in the illustration of Figure 7.9) top ranked documents.

7.5 Concluding Remarks
In this chapter we have presented other four use cases to which WIM has been applied.
With the exception of the application for generating a pool for relevance assessment, which
is applied to Web data but is not a mining task, the use cases are real examples of Web
mining research problems solved using WIM.

WIM has demonstrated to be e�ective for our use cases, since just a few lines of
code are needed to implement the solutions through WIM. We observe that the data
manipulation operators are well designed to Web data, once they are able to shape the
data according to the required task employed in each use case. The data mining operators
designed so far have demonstrated to be useful for our Web mining prototyping examples,
and to properly interoperate with the data manipulation operators.





Chapter 8

Conclusions and Future Work

8.1 Conclusions
The central topic of this thesis is WIM, a model and tool for fast Web mining prototyping.
We have presented the WIM formal data model, the WIM algebra with its preliminary set
of operators, and �ve use cases (for one of them we have performed an extensive analysis
of the problem) as a proof of concept to WIM.

WIM has demonstrated to have some important properties. The current implemen-
tation of the WIM tool is e�cient to manage several tens of million of tuples in relations,
which is the case of the shingles-based comparison used for the Web evolution study, and
the datasets used for the usage pagerank study.

Still regarding e�ciency, as WIM is based on data�ow programming, the computa-
tional complexity of a WIM program is given by the sum of the computational complexity
to run each operator independently, which, according to the computational complexity
theory, is given by the computational complexity of the operator with highest complexity.
Clearly, the mining operators have higher complexity than the manipulation operators,
and any ad-hoc implementation of a given solution previously implemented through WIM
would need to have an implementation of the mining task, making the computational
complexity of the two solutions equivalent.

The WIM model is designed to be scalable. Industrial scale implementations of the
tool will be able to run distributively, as we indicated in Section 5.3. The current version
of the WIM tool, which is not parallel, is scalable under the limits of using one WIM
server (optimized when the server is multi-processed), as di�erent levels of indexes may be
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provided for di�erent amounts of data to be processed.
The operators are designed obeying the compositionality property, which means that

any output relation of a given type can be input of any operator that is de�ned to input a
relation of that type. Thanks to this property and to a consistent conceptual model, WIM is
easily extensible. For instance, for the usage pagerank application presented in Section 7.1,
we have e�ectively implemented an extension for the Analyze operator. Instead of selecting
links that represent just a few clicks, before the call to the Analyze operator, we created
a pagerank-like function that is able to include the number of clicks, which is the label of
the graph, as a variable of the pagerank calculation function. Thus, we have simulated an
external Web miner contributing to the extension of the WIM model. If respecting some
implementation rules, changes of one user can be made available for every WIM user.

WIM has shown to be e�ective for a set of real Web mining problems. The operators
are specially designed to take advantage of the association between link and node relations,
and also to take advantage of the concepts of view and compatibility, allowing inheritance
of attributes and properties after an operation. We have compared the WIM data ma-
nipulation operators with the relational algebra in Chapter 4, showing the similarities and
explaining the situations in which they are not similar, as they have di�erent purposes.

With respect to the Web content evolution study, we have introduced the concept of
genealogical tree on the Web, and studied its components. We have estimated that almost
one fourth of the new Web documents that appear within the span of a year have content
from previously published documents. Further, we have studied the relationship between
search engines and the copy behavior, and demonstrated that parents are more clicked and
appear more frequently in the results of queries. This conclusion is an important evidence
that search engines bias the content of the Web, as people often click on the top results
for choosing the documents as source of content to reuse.

WIM was applied not only to a Web evolution study, but also to four other Web
mining problems. This thesis does not extend to the analysis of all the problems, though
some of them seem to be relevant research topics that will be further analyzed, given that
the solution prototyping is already done using WIM.

8.2 Future Work
We have invested most of our time in delivering a version of the WIM prototype for public
use. Our intention is to set up a site for the WIM project, containing a description of the
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tool, examples of use, and a Web interface for programming in WIM, so that users can log
on and submit their query programs.

The other future steps are planned in this order: to implement the WIM operations
that have not been implemented so far, and incorporate an existent Web crawler, so that
users will be able to create their own Web datasets, ready to be exported and used as WIM
relation sets.

We think that the WIM textual programming language syntax is not so intuitive,
though it has been important as a proof of concept before implementing a graphical inter-
face, with which the user will be able to graphically choose operators, input sets, relations,
and options, according to what is previously recorded in the meta database. This interface
upgrade is important not only to the input, but also to visualize output results. The ten-
dency is to integrate WIM with a work�ow management system for data exploration and
visualization, like VisTrails [Bavoil et al., 2005].

Regarding extensibility, we propose as future work the creation of a set of operators to
deal with machine learning approaches, so that supervised learning tasks can be performed
through WIM. With the WIM kernel developed, the task of including a new operator is
concentrated in the implementation, as WIM is already designed to allow the creation of
new operators.

Aiming to exploit parallel computer architectures, we intend to design and develop a
map-reduce [Dean and Ghemawat, 2008] version of WIM based in Hadoop [Hadoop, 2008].
This task includes the implementation of a more scalable version of the WIM tool, as we
propose in Section 5.3, and a modi�ed software architecture to include the map-reduce
paradigm.

Probably the most challenging goal of this thesis is to provide a framework for Web
miners, which will be actually useful and will drop the time spent when prototyping Web
mining applications. After making the prototype available for Web miners, we expect to
watch their interactions and create a collection of many use cases supported by WIM. With
an extended list of use cases we will be able to analyze WIM with higher precision, which
will be important as a future expected result of this thesis.

So far we have motivated some research topics on Web mining, by proposing applica-
tions to WIM. We discuss the future directions of the main research lines we have initiated.
With respect to the Web evolution study, we have several proposes for future research. We
will soon be given a new dataset with recent snapshots of the Chilean Web. The new
dataset was also seeded with the set of all .cl domains, but this time exhaustive crawls
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were done, ensuring a large coverage of the Chilean Web. They represent a more accurate
dataset for researches dealing with changes from one snapshot to another.

Thus, the �rst task will be to perform the same study for the new dataset. Then we
will change the method for comparison. The idea is to extend a method of near-duplicates
detection, so that the method can also detect copies of short passages of the Web document.
We will study an evolution model for the Web content. Still depending on external data,
we want to use Yahoo! usage log to observe how new parents are returned to users and
how they are clicked, in order to demonstrate that parents are really more clicked than
other documents. More importantly, we want to propose a new ranking method, based
on the assumption that most parents are documents chosen by expert users, then parents
tend to be more important than other documents. We intend to proceed with a relevance
evaluation experiment to demonstrate this hypothesis.

WIM has been used to compose a pool of documents for relevance assessment, aiming
the creation of a reference dataset for learning to rank using click-through data. We have
already assessed 100 queries, and the next step before publishing the data is to write a
report with a description of the dataset, presenting some statistics. We will use this dataset
to experiment on our proposal of usage pagerank presented in Chapter 7, which has been
another application to WIM. Depending on the relevance of our results, we will experiment
with other datasets from Yahoo!.

Although we believe the research directions presented so far are the most promising,
we also want to continue developing the other use cases presented in this thesis. Preliminary
results presented in Section 7.2 demonstrated that the pagerank of documents duplicated
from other existent documents does not evolve well with time, and this can be exploited to
avoid fetching URLs with a high probability of being duplicates. We also want to analyze
the results of the WIM program to manipulate Web data presented in Section 7.3, according
to our proposal of automatically classifying queries regarding user intent according to
usage data (as presented in Chapter 7), rather than based on manual classi�cation. Then,
we will hypothesize that transactional queries [Broder, 2002] are not important from the
perspective of search engines, whereas queries with commercial intention play an important
role in the era of sponsored links in query results.
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Appendix 1: WIM Language Syntax

Below we present the syntax of the WIM language, according to the BNF-like language
speci�cation described in Chapter 4, in which the operators are speci�ed separately. Note
that comment lines start with character `#', and that each symbol is de�ned only once.

# Speci�cation of a WIM program:
WIMProgram := Operator `;' { Operator `;' }
Operator := Select | Calculate | CalcGraph | Aggregate | Set | Join |

Convert | Search | Compare | CompGraph | Cluster |
Disconnect | Associate | Analyze | Relink

# Frequently used symbols:
Digit := `0' | `1' | `2' | `3' | `4' | `5' | `6' | `7' | `8' | `9'
IntValue := Digit { Digit }
NumValue := IntValue [ `.' IntValue ]
Letter := `A' | `B' | ... | `Z' | `a' | `b' | ... | `z'
Name := Letter | Digit { Letter | Digit }
OutputRel := Name [ `.' Name ]
OutputLinkRel := Name [ `.' Name ]
OutputNodeRel := Name [ `.' Name ]
InputSet := Name
InputNodeSet := Name
InputLinkSet := Name
NumRel := Name `.' Attr
IntRel := Name `.' Attr
TxtRel := Name `.' Attr
AnyRel := Name `.' Attr
Attr := `K' | `V' | `S' | `E' | `L' | `SE'
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# Operator Select:
Select := OutputRel `=' `Select' `(' InputSet `,' BodySelect `)'
BodySelect := `value' `,' NumRel `,' SelOperation `,' NumValue |

`attribute' `,' NumRel `,' NumRel `,' SelOperation |
`top' [ `,' Order ] `,' NumRel `,' IntValue

SelOperation := `==' | `! =' | `<' | `<=' | `>' | `>='
Order := `increasing' | `decreasing'

# Operator Calculate:
Calculate := OutputRel `=' `Calculate' `(' InputSet `,' BodyCalc `)'
BodyCalc := `constant' `,' ConstOper `,' NumRel `,' NumValue |

`pair' `,' PairOper `,' NumRel `,' NumRel
ConstOper := `sum' | `di�erence' | `multiplication' | `division' | `average' |

`deviation' | `mod' | `normalize' | `absolute' | `max' | `min'
PairOper := `sum' | `di�erence' | `multiplication' | `division' | `average' |

`mod' | `percentage' | `max' | `min'

# Operator CalcGraph:
CalcGraph := OutputLinkRel `=' `CalcGraph' `(' InputLinkSet `,'

CalcGraOperator `,' NumRel `,' NumRel `)'
CalcGraOperator := `sum' | `di�erence' | `multiplication' | `division' |

`average' | `mod' | `percentage' | `max' | `min'

# Operator Aggregate:
Aggregate := OutputRel `=' `Aggregate' `(' InputSet `,' BodyAgg `)'
BodyAgg := `single' `,' AggOperator `,' NumRel |

`grouping' `,' AggOperator `,' NumRel [ `,' NumRel ] [ `,' NumRel ]
AggOperator := `sum' | `average' | `count' | `max' | `min' | `deviation' |

`geometric' | `mode' | `median'

# Operator Set:
Set := OutputRel `=' `Set' `(' FirstInputSet `,' SecInputSet `,'

SetOperation `,' AnyRel `,' AnyRel `)'
FirstInputSet := Name
SecInputSet := Name
SetOperation := `union' | `intersection' | `di�erence'
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# Operator Join:
Join := OutputRel `=' `Join' `(' FirstInputSet `,' SecInputSet `,' AnyRel `,'

AnyRel `,' AnyRel `,' DefaultValue `)'
DefaultValue : StringValue | NumValue
StringValue := � `' Name `� '

# Operator Convert:
Convert := OutputNodeRel = `Convert' `(' InputLinkSet `,' IntRel

[ `,' AnyRel ] [ `,' AnyRel ] `)' |
OutputLinkRel = `Convert' `(' InputNodeSet `,' IntRel `,'

IntRel [ `,' AnyRel ] `)'
# Operator Search:
Search := OutputLinkRel `=' `Search' `(' FirstInputNodeSet `,' SecInputNodeSet `,'

TxtRel `,' TxtRel `,' CompMethod `)'
FirstInputNodeSet := Name
SecInputNodeSet := Name
CompMethod := SimpleMatch | Shingles | T�df | Bm25
SimpleMatch := `ExactMatch' | `AND' | `OR'
Shingles := `Shingles' `,' NumRes [ `,' MinSim `,' Overlap `,' ShinSize ]
NumRes := IntValue
MinSim := NumValue
Overlap := `yes' | `no'
ShinSize := IntValue
T�df := `TFIDF' `,' NumRes
Bm25 := `BM25' `,' NumRes [ `,' k1 `,' k3 `,' b ]
k1 := NumValue
k3 := NumValue
b := NumValue

# Operator Compare:
Compare := OutputLinkRel `=' `Compare' `(' InputNodeSet `,' BodyComp `)'
BodyComp := `Sparse' `,' TxtRel `,' CompMethod |

`Dense' `,' TxtRel `,' CompMethod

# Operator CompGraph:
CompGraph := OutputLinkRel `=' `CompGraph' `(' InputLinkSet `,'

TxtRel `,' TxtRel `,' CompMethod `)'
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# Operator Cluster:
Cluster := OutputNodeRel `=' `Cluster' `(' InputNodeSet `,' ClusMethod `,'

NumRel [ `,' NumRel ] [ `,' NumRel ] `,' NumValue `)'
ClusMethod := `Euclidean' | `Manhattan'

# Operator Disconnect:
Disconnect := OutputNodeRel `=' `Disconnect' `(' InputLinkSet `,'

DistMethod `)'
DistMethod := `Connected' | `Strongly'

# Operator Associate:
Associate := OutputLinkRel `=' `Associate' `(' InputNodeSet `,'

BodyAssoc `,' Support `,' Con�dence `)'
BodyAssoc := `Value' `,' RuleMethod `,' IntRel `,' IntRel |

`Term' `,' RuleMethod `,' IntRel `,' TxtRel
RuleMethod := `Itemset' | `Association' | `Sequencial'
Support := NumValue
Con�dence := NumValue

# Operator Analyze:
Analyze := OutputNodeRel `=' `Analyze' `(' InputLinkSet `,' Algorithm `)'
Algorithm := `Pagerank' | `Hub' | `Authority' | `Indegree'

# Operator Relink:
Relink := OutputLinkRel `=' `Relink' `(' InputLinkSet `,' BodyRelink `)'
BodyRelink := CitMethod `,' Direction `,' Density `,' | `Transitivity'
CitMethod := `CoCitation' | `Coupling'
Direction := `Both' | `Single'
Density := `All' | `Adjacent'


