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Resumo

Verificação funcional é “o” principal gargalo na produtividade de empresas desenvolve-
doras de chips. Como a verificação funcional é um problema NP-completo, ela depende
de um grande número de heurísticas e seus parâmetros de configuração (“resolvedores").
Normalmente o número de resolvedores disponíveis excede em muito o poder de proces-
samento disponível. Com o advento da programação paralela, a verificação funcional
pode ser otimizada através da seleção dos melhores n resolvedores para rodar em par-
alelo, aumentando assim a chance de se alcançar o término da verificação. Este trabalho
apresenta um modelo estatístico baseado em métricas estruturais para construir esti-
madores de tempo de verificação para os resolvedores, permitindo então a seleção dos
n melhores resolvedores para rodar em paralelo. Esta metodologia considera tanto
o tempo de execução estimado dos resolvedores quanto a correlação entre estes re-
solvedores. Resultados confirmaram que a metodologia pode ser um mecanismo muito
rápido e eficaz para a seleção dos melhores resolvedores, aumentando a chance de se
resolver o problema.
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Abstract

Functional verification is “the” major design-phase bottleneck for silicon productivity.
Since functional verification is an NP-complete problem, it relies on a large number
of heuristics with associated parameters (engines). With the advent of parallel pro-
cessing, formal verification can be optimized by selecting the best n engines to run in
parallel, increasing the chance of reaching verification successful termination. In this
work, we present an statistical model to build engine estimators based on structural
metrics and to select n engines to run in parallel. The methodology considers both
engines’ estimated performance and engines’ correlation. Results confirmed that the
methodology can be a very quick selection mechanism for parallelization of engines in
order to increase the chance of running the best engines to solve the problem.
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Chapter 1

Introduction

1.1 Motivation and Goal

Electronic designs have been growing rapidly in both device count and functionality,
concretizing Moore’s Law, as it can be seen in figure 1.1.

This growth has been enabled by deep sub-micron fabrication technology, and
fueled by expanding consumer electronics, communications and computing markets. A
major impact on the profitability of electronic designs is the increasing productivity
gap. That is, what can be designed is lagging behind what silicon is capable of delivering
[78], as shown in figure 1.2 [11].

Functional verification is already “the” major design-phase bottleneck, and it will
only get worse with the bigger capacities on the horizon [50].

Broadly speaking, the verification crises can be attributed to the following inter-
acting situations [78]:

• Verification complexity grows super-linearly with design size,

• The increased use of software, which has intrinsically higher verification complex-
ity,

• Shortened time-to-market,

• Higher cost of failure (low profit margin).

A consequence of this verification crisis is that re-spins are becoming more fre-
quent, as it can be seen in figure 1.3, and the main causes are logic and functional
errors, as shown by statistics in figure 1.4. These errors could be reduced by a better
functional verification.

1
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Figure 1.1. Transistor counts for integrated circuits plotted against their dates
of introduction.

Automated formal verification arrived to aid. Allowing the exhaustive exploration
of all possible behaviors, automated formal verification is easy to use and increases the
reliability of the design.

Despite all the recent advances in formal verification technology [33], formal veri-
fication is an NP-complete problem in the size of the trace description (Binary Decision
Diagrams state-explosion problem) and in the verification time (SAT solvers). There-
fore, as many other NP-complete problems, practical solutions implement heuristics to
try to solve efficiently such problems.

In this work, each pair “heuristic" × “configuration parameters" will be referred
to as an engine. Since in functional verification, complexity is often measured by the
size of the design, which is exponential in the number of storage elements (flip-flops) in
the design [78], the performance of an engine is completely dependent on the design size
and on the property complexity to be verified. It becomes then necessary to identify
and apply the best engines to each property to be proved. The application of the
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Figure 1.2. The verification gap leaves design potential unrealized.

Figure 1.3. Re-spin frequency in North America, as brought by Fujita Lab.

best engines will speed up the verification process and increase the chance of successful
termination. However, selecting the best heuristics and parameters to prove a property
is a complex problem.

Approaches used today to solve this problem are based mainly on brute force or on
verification engineers’ feelings. By brute force, a user starts one proof process/thread
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Figure 1.4. Re-spin causes in North America, as brought by Fujita Lab.

for each available engine and gets the first result available. However, since engines and
associated parameters may be much more numerous than the processing power avail-
able, this approach can easily be shown not to scale. On the other hand, verification
engineers may have a feeling of the best heuristic to prove a property, but with the
increase in design size, trusting in these feelings becomes a big risk.

With the advent of parallel processing (simultaneous use of more than one CPU or
processor core to execute a program or multiple computational threads), the possibility
of running multiple processes in parallel became more transparent and viable. As a
consequence, relying on the use of multiple processes/threads in order to get the best
results arose as a way to improve formal verification.

In general, there are a large pool of engines, but only a small number of process-
ing cores. The problem then becomes selecting the best subset of engines that will
increase the chance of solving the problem, which in this context means reaching a
proof conclusion.

The goal of this work is to generate a forecasting mechanism to classify and
select the n best engines to run in parallel, in order to maximize the chance of proof
conclusion or successful termination.

The main motivation is the possibility of speeding up verification of digital cir-
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cuits, given the verification crisis and the existence of so many different engines to
implement formal verification.

In a verification tool that implements several formal verification heuristics with
associated parameters, selecting the best heuristics and parameters to prove a property
becomes a complex problem.

We know that designs are getting bigger and bigger and that time to verify
systems is crucial to improve their time-to-market. Therefore, choosing engines with
greater chance of solving the problem turns out to be an important question.

1.2 Problem Definition

A Hardware Description Language (HDL) is a standard text-based expression of the
temporal behavior and/or (spatial) circuit structure of an electronic system. The vast
majority of modern digital circuit-design revolves around an HDL-description of the
desired circuit, device, or subsystem, with VHDL (VHSIC Hardware Description Lan-
guage) and Verilog HDL being the two dominant HDLs. SystemVerilog is a combined
HDL and Hardware Verification Language (HVL) based on extensions to Verilog.

A simple example of two flip-flops swapping values every clock in Verilog is:

module toplevel(clock,reset);

input clock;

input reset;

reg flop1;

reg flop2;

always @ (posedge reset or posedge clock)

if (reset)

begin

flop1 <= 0;

flop2 <= 1;

end

else

begin

flop1 <= flop2;

flop2 <= flop1;

end
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endmodule

Property checking takes a design and a property which is a partial specification
of the design and its surroundings, and proves or disproves that the design satisfies the
property. A property is essentially an abstracted description of the design, and it acts
to confirm the design through redundancy.

Properties may be specified in many ways. A Hardware Verification Language, or
HVL, is a programming language used to verify the designs of electronic circuits written
in a hardware description language. OpenVera [6], Specman(e) [3], and SystemC [5]
are the most commonly used HVLs. SystemVerilog [1] attempts to combine HDL and
HVL constructs into a single standard. Open Verification Library (OVL) [2] is a library
of property checkers for digital circuit descriptions written in popular HDLs. Property
Specification Language (PSL) [4] is a language developed by Accellera for specifying
properties or assertions about hardware designs.

SystemVerilog, for example, supports assertions, assumptions and coverage of
properties. An assertion specifies a property that must be proven true. An assumption
establishes a condition that a formal logic proving tool must assume to be true. In
simulation, both assertions and assumptions are verified against test stimulus. Prop-
erty coverage allows the verification engineer to verify that assertions are accurately
monitoring the design.

A SystemVerilog assertion example is:

property req_gnt;

@(posedge clk)

req |=> gnt;

endproperty

assert_req_gnt: assert property (req_gnt)

else $error("req not followed by gnt.");

This example shows an implication operator |=>. The clause to the left of the
implication is called the antecedent and the clause to the right is called the conse-
quent. Evaluation of an implication starts through repeated attempts to evaluate the
antecedent. When the antecedent succeeds, the consequent is attempted, and the suc-
cess of the assertion depends on the success of the consequent. In this example, the
consequent won’t be attempted until req goes high, after which the property will fail
if gnt is not high on the following clock.
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A program that checks a property is also called a model checker, referring the
design as a computational model of a real circuit.

The idea behind property checking is to search the entire state space for points
that fail the property. If such a point is found, the property fails and the point is a
counterexample. Next, a waveform derived from the counterexample is generated, and
the user debugs the failure. Otherwise, the property is satisfied.

What makes property checking a success in industry are efficient SAT solvers or
symbolic traversal algorithms that enumerate the state space implicitly (see chapter
3).

Each group of heuristics and algorithms (with its set of configuration parameters)
used to accomplish one proof can generate a different engine e (or solver).

Some parameter examples from the SAT-solving world include decision variable
and phase selection, clause deletion and initial variable ordering. The complex ef-
fects and iterations between these parameters render the design and implementation
of a high-performance decision procedure (or, indeed, a high-performance heuristic
algorithm for any NP-hard problem) so challenging that in many ways the process
resembles an art rather than a science [51].

The behavior and performance of each engine is highly dependent on circuit
design, or the property to be proved, whose behavior can be characterized by a set
of independent variables ~x and a set of unknown variables ~U . We consider ~U to be
insignificant in the problem context. However, since the problem is hard, we will always
have a chance that the chosen independent variables won’t be enough to explain the
behavior of a given verification problem instance.

Some independent variables examples are the number of flip-flop bits and the
number of counter bits in the design.

Given

• a design and a property to be proved expressed by vector ~x of selected independent
variables that are supposed to explain the behavior of the verification problem,

• N proof heuristics E1, E2, ...EN , each one configurable by vector ~pi of parameters,
naming engines e1, e2, ...eN ,

the objective of this work is to statistically compute engines estimators

• ẽi(~x) ∝ ei

to select n engines in such a way that
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1. n < N

2. e1, ...,en is the n set of engines with the biggest chance of reaching to a proof
conclusion.

where function ẽi(~x) returns the estimated time of engine i to prove a property
whose design is characterized by independent variables ~x. In fact, the estimated ex-
ecution time of engine i is a function of ~x and ~U , where ~U refers to some unknown
variables. As already stated, we approximate ẽ(~x, ~U) as ẽ(~x). This approximation is
valid if the error introduced by dropping ~U is small.

1.3 Related work

Traditionally, formal verification has employed engines based on SAT and BDD al-
gorithms. Such algorithms have been constructed with several heuristics, captured
by parameters (MiniSAT [28], Cudd [76], GRASP [55], zchaff [81], SATO [79], Berk-
Min [30]). However, these engines are usually executed in a monolithic way, i.e. with
no or with few parameters, with exception of the work [51], which tunes the heuristics
parameters. Besides that, there are many algorithms employed in formal verification
(such as reachability analysis, induction, bounded model checking and proof-based
abstraction), each of them with its limitations and advantages, depending on the ap-
plications.

McMillan et al. works [8; 9; 60; 58] compare many model checking techniques on
a set of benchmark model checking problems derived from microprocessor verification.
As it can be seen, performance of each technique depends greatly on circuit design,
which generates different Conjunctive Normal Form (CNF) representations that may
be best solved by different approaches.

Automatic parameterization of formal verification engines has only attracted at-
tention recently. The closest work is [51], which presents a methodology to tune heuris-
tic parameters, improving a specific heuristic performance. They employed ParamILS,
a parameter optimization tool, to enhance SPEAR, a high-performance modular arith-
metic decision procedure and SAT solver. Results show speedups between 4.5 and
500 in comparison to a manually-tuned version of SPEAR that already reached the
performance of a state-of-the-art SAT solver.

In contrast, this work presents a migration from monolithic code (heuristic with
no parameters) to modular parameterized code, by allowing the selection of optimal
heuristics among many different heuristics and parameters configurations. The big
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enhancement here is that we deal well with situations where a heuristic may perform
well to a design, but very badly to another design (in this case, even with parameter
optimization, speed ups can be difficult to reach). Being able to point to an optimal
heuristic and parameter configuration among all available ones is a great step in the
verification process.

In the area of semiconductor manufacturing, increased yield and improved prod-
uct quality result from reducing the amount of wafers produced under suboptimal
operating conditions. Some works employing multivariate statistical process control
(MSPC) in the semiconductor manufacturing process in order to improve fault de-
tection have been found. As examples, [22] presents a complete MSPC application
method that combines recent contributions to the field, including multiway principal
component analysis (PCA), recursive PCA, fault detection using a combined index,
and fault contributions from Hotelling’s T 2 statistic. [67] presents an enhancement to
previous work that consisted of a fault detection method using the k-nearest-neighbor
rule (FD-kNN). To reduce memory requirements and computation time of the proposed
FD-kNN method while still keeping its advantage of handling nonlinear and multimode
data, an improved FD-kNN algorithm based on principal component analysis, denoted
as PC-kNN has been proposed.

1.4 Summary of the thesis

1.4.1 Chapter 2

Chapter 2 presents a global review on Formal Verification and a detailed review on
Symbolic Model Checking, pointing the most used algorithms and heuristics.

The main goal is to explain some of the main model checking heuristics, em-
phasizing the fact that one heuristic can have many variations, controlled by their
configuration parameters. The parameters direct the heuristics in the decisions to
take.These decisions bring up different behaviors, which can improve performance for
some designs, but not for others. The existence of a large number of engines due to the
large number of heuristics and their variations (parameters) and the fact that heuristics
can be good for one design, but bad for another, is one of the justifications to apply
the proposed methodology: choose the engines with the biggest chance of success to
prove a property.

The engines used in this work to validate the proposed methodology have been
selected from a pool of model checking engines.



10 Chapter 1. Introduction

1.4.2 Chapter 3

Chapter 3 presents a review on Statistical Learning techniques, detailing methods that
can be used to build prediction models in a multivariate scenario.

In order to choose the n engines with the best chance of success, it is mandatory
to have a time prediction model for each engine, since the main aspect of the engine
performance is its execution time. We can consider that the most efficient engines have
smaller execution times (independently of the proof result: proven or falsified), and
good engine execution time estimators will influence in the quality of this work.

A property to be proven will be expressed by a set of independent variables,
that are comprised by metrics gotten from the design. Therefore, a multivariate linear
regression model will be used to generate the engine estimators.

The main goal is to explain the statistical theory upon which the engine estimators
have been generated.

1.4.3 Chapter 4

Chapter 4, Mean Variance Portfolio Theory, presents an interesting finance theory
which will be applied in our solution.

Choosing engines by their performance (execution times) seems to be a good
methodology, but the correlation between engines is also a factor that needs to be
taken into account. Correlated engines tend to have similar behaviors and all selected
correlated engines could lead to the same final result: if they all have longer execution
time, we could arrive to no proof conclusion. In order to maximize the chance of suc-
cess, the proposed solution will try to maximize performance and minimize correlation
between selected engines.

This chapter explains the Mean Variance Portfolio Theory and their formulas
that will be applied in our solution.

1.4.4 Chapter 5

Chapter 5 presents designed solution to solve problem defined.

The main goal is to define the methodology of the solution, applying the presented
theories. The solution comprises the estimators generation, taking into account the
polynomial effect of independent variables, the linearization of exponential equations
and the model to select engines based on estimators’ performance and correlation.
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1.4.5 Chapter 6

Chapter 6 presents experimental results.
Two solutions were tested: (1) maximize performance and (2) maximize perfor-

mance and minimize correlation. Both methodologies proved to be efficient, with speed
ups of more than 3 times compared to a not optimal selection of engines.

1.4.6 Chapter 7

Chapter 7 concludes the work, presenting possible future works.

1.4.7 Appendix 1

Appendix 1 presents some testability measures that can be used as input data to the
predictor.

1.5 Thesis contributions

This work’s contributions are:

• Statistical model to predict faster proof heuristics

A model will be proposed to predict faster proof engines (heuristics with asso-
ciated parameters), given a design and a property to be proved. Multivariate
statistics techniques will be used to generate this prediction model.

• Analysis of variable effect

Although variables seem to have an exponential effect over the prediction model
due to inheritance of NP-completeness of the verification process, heuristics can
be affected in different ways by the metrics collected from the design and the
property to be proven. It is possible, for example, to have a metric that has an
exponential effect on one heuristic, while having a polynomial effect on another
heuristic. This work tries to identify polynomial effects of variables through the
analysis of the prediction model error.

• Analysis of engine correlation

Analysis of engines correlation in order to guide selection of the n engines with
the best chance of solving the problem.





Chapter 2

Formal Verification

Verification importance has emerged as an indispensable phase of digital hardware
design development process. The increasingly competitive market makes cost of chip
failure enormous, forcing traditional “black-box” verification methodology to give place
to a “white-box” methodology.

In order to accomplish verification of designs that get more and more complex,
traditional simulation faces the drawback that every time more simulation cases are
necessary to arrive to accepted coverage levels. In addition, the increase of simulation
sequences, the test-benches, makes verification process longer and more difficult, con-
sidering the effort to debug the test-benches, what may require the understanding of
design characteristics, the features being tested and the simulation results.

Formal verification comes to solve this gap between design complexity and veri-
fication efforts.

Formal verification ensures that a design is correct with respect to a property that
can be proved. The correctness of a property is based on its specification. Mathematical
methods are used to prove or disprove a property.

Formal verification can be broadly classified as shown in Figure 2.1. This chapter
gives a high level view of formal verification and a detailed view of Symbolic Model
Checking.

2.1 Theorem proving

One of the earliest approaches to formal verification was to describe both the imple-
mentation and the specification in a formal logic. The correctness was then obtained
by, in the logic, proving that the specification and the implementation were suitably
related [17].

13
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Figure 2.1. Formal verification classification overview.

Unfortunately, theorem proving technique requires a large amount of effort by the
user developing specifications of each component and in guiding the theorem proving
user through all the lemmas.

2.2 Formal model checking

Formal model checking [17] consists of a systematic exhaustive exploration of all states
and transitions in a model.

Model checking tools face an exponential blow up of the number of state elements
(e.g. registers, latches), commonly known as the state explosion problem, which must
be addressed to solve most real-world problems.

Model checking is largely automatic, being the most successful approach to formal
verification in use today. Model checking tools are typically classified as equivalence
checking or property checking.

2.2.1 Formal equivalence checking

Formal equivalence checking is a method of proving the equivalence of two different
views of the same logic design. It uses mathematical techniques to verify equivalence
of a reference design and a modified design. It is critical that the reference design is
functionally correct.
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2.2.2 Formal property checking

In formal property checking, properties describing the desirable/undesirable features of
the design are specified using some formal logic (e.g. temporal logic) and verification
is performed by proving or disproving that the property is satisfied by the model.

This work concentrates on efficient property checking techniques that make formal
verification practical and realizable.

Model checking approaches are broadly classified into two types, based on state
enumerations techniques employed: explicit and implicit (or symbolic).

• Explicit

Explicit model checking techniques [49] store the explored states in a large hash
table, where each entry corresponds to a single system state. A system with
as few as hundreds state elements amounts to a state space with 1011 states,
arriving easily to the state explosion problem.

• Implicit (symbolic)

Symbolic model checking techniques [57] stores sets of explored states symboli-
cally by using characteristics functions represented by canonical/semi-canonical
structures, and traverse the state space symbolically by exploring a set of states
in a single operation.

Symbolic model checking will be largely explored in the next section.

2.3 Symbolic Model Checking

Symbolic model checking is a method to prove properties about finite transition sys-
tems, using symbolic state enumeration. The properties are usually in one of the
different flavors of temporal logic formulas such as Linear Time Logic (LTL) [66] or
Computational Tree Logic (CTL) [12; 23].

According to Figure 2.2, this section will cover model checking techniques based
on three main tasks [34]: finding counter-examples or bugs (Falsification layer), proving
the correctness of the specification (Proof Methods layer) and obtaining smaller models
that make verification possible (Abstraction layer). Prior to that, basic infrastructure
required to build scalable verification algorithms are presented (Infrastructure layer).

As it will be seen, infrastructure layer also implements different heuristics and
enhancements that can change general performance of formal verification.
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Figure 2.2. Symbolic model checking techniques overview.

2.3.1 Infrastructure Layer

Canonical structures as Binary Decision Diagrams (BDDs) [7; 19] allow constant time
satisfiability checks of Boolean expressions and are used to perform symbolic Boolean
function manipulations [7; 77]. Although BDD-based methods have greatly improved
scalability in comparison to explicit state enumeration techniques, they are still limited
to designs with a few hundred state holding elements.

Research has been heavily aimed at separating Boolean reasoning and represen-
tation. Boolean Satisfiability (SAT), which has been studied over several decades,
has emerged [82] as a strong potential for Boolean reasoning, primarily due to recent
advances in Davis-Putnam-Longemann-Loveland-style (DPLL-style) [26] SAT-solvers
[56; 62; 41; 38]. Efficient Boolean representations such as semi-canonical representa-
tions, that are simple and reduced, are also emerging as a "de facto" structure due to
their smaller sensitivity to variable ordering and compact representations compared to
BDDs.
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2.3.1.1 Binary Decision Diagrams (BDDs)

A BDD is just a data structure for representing a Boolean function. Bryant [19]
introduced the BDD in its current form, although the general ideas have been around
for quite some time.

A BDD is a directed acyclic graph in which each vertex is labeled by a Boolean
variable and has outgoing arcs labeled as “then” and “else” branches. The value of the
function for a given assignment to the inputs is determined by traversing from the root
down to a terminal label, each time following the then (else) branch corresponding to
the value 1 (0) assigned to the variable specified by the vertex label. The value of the
function then equals the terminal value.

In an ordered BDD, all vertex labels must occur according to a total ordering of
the variables. In a reduced ordered BDD (ROBDD), besides the ordering criteria, two
more conditions are imposed:

1. two nodes with isomorphic BDDs are merged, and

2. any node with identical children is removed.

These conditions make a reduced ordered BDD a canonical representation for
Boolean functions. In the sequel, BDD will refer to ROBDD.

Conceptually, we can construct the BDD for a Boolean function as follows. First
build a decision tree for the desired function, obeying the restrictions that along any
path from root to leaf, no variable appears more than once, and that along every path
from root to leaf, the variables always appear in the same order, as it can be seen in
Figure 2.3.

Figure 2.3. Decision tree diagram.
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Next, apply the following two reduction rules as much as possible: (1) merge any
duplicate (same value and same children) nodes, and (2) if both child pointers of a
node point to the same child, delete the node because it is redundant, as it can be seen
in Figure 2.4.

Figure 2.4. Reductions: merge duplicates and eliminate redundancy.

The resulting directed, acyclic graph, presented in Figure 2.5, is the BDD for the
function.

Figure 2.5. Final BDD.

In practice, BDDs are generated and manipulated in the fully reduced form,
without ever building the decision tree. In a typical implementation, all BDDs in use
by an application are merged as much as possible to maximize node sharing, so a
function is represented by a pointer to its root node.

Once we fix the order in which the variables appear, a BDD is a canonical repre-
sentation for a Boolean function. Thus, comparing Boolean functions becomes just a
pointer comparison.
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Choosing a good variable order is important. In general, the choice of variable
order can make the difference between a linear size BDD and an exponential one.

Researchers have developed several heuristics to obtain a good variable ordering
that produce compact BDD representation [10; 31; 71]. Even though finding a good
BDD variable ordering is not easy [16], for some functions such as integer multiplication,
there does not exist an ordering that gives a sub-exponential size representation [20].

The primary limitation of the BDD-based approaches is the scalability, i.e., BDDs
constructed in the course of verification often grow extremely large, resulting in space-
outs or severe performance degradation due to the paging [68]. Moreover, BDDs are
not very good representations of state sets, especially when the sharing of the nodes
is limited. Choosing a right variable ordering for obtaining compact BDDs is very
important. Finding a good ordering is often time consuming and/or requires good
design insight, which is not always feasible. Several variations of BDDs such as Free
BDDs [48], zBDDs [61], partitioned-BDDs [64] and subset-BDDs [70] have also been
proposed to target domain specific application; however, in practice, they have not
scaled adequately for industry applications. Therefore, BDD-based approaches are
limited to designs of the order of a few hundred state holding elements; this is not even
at the level of an individual designer subsystem.

2.3.1.2 Boolean Satisfiability (SAT)

The Boolean Satisfiability (SAT) problem is a well-known constraint satisfaction prob-
lem, with many applications in the fields of VLSI Computer-Aided Design (CAD)
and Artificial Intelligence. Given a propositional formula, the Boolean Satisfiability
problem is to determine, whether there exists a variable assignment under which the
formula evaluates to true, or to prove that no such assignment exists. The SAT prob-
lem is known to be NP-Complete [40]. In practice, there has been tremendous progress
in SAT solver technology over the years, summarized in a survey [82].

Most SAT solvers use a Conjunctive Normal Form (CNF) representation of the
Boolean formula. In CNF, the formula is represented as a conjunction of clauses, each
clause is a disjunction of literals, and a literal is a variable or its negation. Note that
in order for the CNF formula to be satisfied, each clause must also be satisfied, i.e., at
least one literal in the clause has to be true. Converting a (gate-level) netlist to a CNF
formula is straightforward: each gate translates to a set of at most three clauses. For
example, an AND gate a = b&c defines the relation a => b&c and b&c => a, which
gives the clauses (!a+ b), (!a+ c) and (a+!b+!c).

The earliest SAT algorithm was developed by Davis and Putnam [27]. Their



20 Chapter 2. Formal Verification

algorithm iteratively selects variables to resolve until no more variables are left (the
problem is satisfiable) or a conflict is encountered (the problem is unsatisfiable). This
is equivalent to the existential quantification of variables, and is exponential in memory
usage.

Later, Davis, Longemann and Loveland [26] proposed a Depth-First Search
(DFS)-based algorithm with backtracks. For historical reasons it is also known
as the Davis-Putnam-Longemann-Loveland (DPLL) algorithm. Most modern high-
performance SAT solvers are based on a DPLL-style procedure.

A typical SAT solver relies on a few key procedures:

• Decides: makes a decision by picking an unassigned variable and assigning it a
value (0 or 1). It returns false if there are no more unassigned variables.

• Deduces: propagates the decision assignment and assignments implied by prop-
agation in the clauses. It returns false if these assignments conflict.

• Analyses: determines, when a conflict occurs, which decision to backtrack. Op-
tionally it learns new information from the conflict.

• Backtrack: undoes assignments up to a specified decision level. A new assignment
is made to branch the search.

Algorithm below shows how these procedures work together.

SAT() {

Dlevel = 0;

While (true) {

If (deduce() == false) {

Dlevel = analyse();

If (dlevel == 0) return UNSAT;

Else backtrack(dlevel);

}

Else if (decide() == false) return SAT;

Else dlevel = dlevel + 1;

}

}

As simple as it looks, this algorithm has been the subject of continuing research
for the past forty years. In fact, each of the main procedures offers unique opportunity
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for improvement. The order in which a variable is picked, and the value assigned in
the decision, can affect the actual space. The same is true with conflict analysis and
backtracking. Backtracks can be made non-chronologically (that is, not just backtrack
to the last decision) with an intelligent analysis of the conflict. Also, the efficient im-
plementation of the heavily used deduction/propagation procedure can greatly improve
the overall performance of the algorithm.

Examples of SAT solvers are CHAFF [62], GRASP [74] and SATO [80].
Algorithm advances are the key to the success of SAT-based formal methods.

Some of the most promising results on certain problem instances that involve low
overhead will be now mentioned.

Frequent restarts The state-of-the-art SAT solvers also employ a technique called
random restart [62] for greater robustness. The first few decisions are very im-
portant in the SAT solver. A bad choice could make it very hard for the solver to
exit a local non-useful search space. Since it is very hard to decide a priori what a
good choice might be for decisions, the restart mechanism periodically undoes all
decisions and starts afresh. The learned clauses are preserved between restarts;
therefore, the search conducted in previous rounds is not lost. By utilizing such
randomizations, a SAT solver can minimize local fruitless search.

Non-conflict-driven Back-jumping This refers to a back-jump to an earlier de-
cision level (not necessarily to level 0), without detecting a conflict [65]. It is
a variation of frequent restarts strategy, but guided by the number of conflict-
driven backtracks seen so far. The goal is to quickly get out of a “local conflict
zone” when the number of backtracks occurring between two decision levels ex-
ceeds a certain threshold. For hard problem instances, such strategy has shown
promising results.

Frequent Clause Deletion Conflict-driven learned clauses are redundant, and
therefore, deleting them does not affect satisfiability of the problem. Con-
flict clauses, though useful can become an overhead especially due to increased
Boolean Constraint Propagation (BCP) time and due to large memory usage.
Such clauses can be deleted based on their relevance metric [62] which is com-
puted based on number of unassigned literals. One can also compute relevance
of a clause based on its frequent involvement in conflict [41].

Clause Shrinking Effectiveness of conflict-driven learning scheme is very hard to
determine a priori. In general, a shorter conflict-clause is useful, as it prunes a
larger search space. One scheme is to shrink the conflict clause by identifying
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a sufficient subset of the literals required to generate the conflict [63]. Using
the conflict literals as decision variables, one applies BCP and stops as soon as
a conflict is detected. In many cases, fewer literals in the conflict clause are
involved.

Early Conflict Detection in Implication Queue The implication queue (in lazy
assignment) stores the newly implied variables during BCP. If a newly implied
variable is already in the queue with an opposite implied value, conflict can be
detected early without doing BCP further [14].

Shorter Reasons First Several unit clauses can imply the same value on a variable
at a given decision level. With an intuition that shorter unit clauses decrease the
size of implication graph, and hence, the size of conflict clauses, the implications
due to shorter clauses are given preference [14].

Satisfiability Modulo Theory (SMT) An SMT instance is a generalization of a
Boolean SAT instance in which various sets of variables are replaced by pred-
icates from a variety of underlying theories. Obviously, SMT formulas provide
much richer modeling language than is possible with Boolean SAT formulas. For
example, an SMT formula allow us to model the data path operations of a mi-
croprocessor at the word rather than the bit level.

Formally speaking, an SMT instance is a formula in quantifier-free first-order
logic, and SMT is the problem of determining whether such formula is satisfiable.
In other words, imagine an instance of the Boolean satisfiability problem (SAT)
in which some of the binary variables are replaced by predicates over a suitable
set of non-binary variables. A predicate is basically a binary-valued function
of non-binary variables. Example of predicates include linear inequalities (e.g.,
3x+2y−z > 4) or equalities involving so-called uninterpreted terms and function
symbols (e.g., f(f(u, v), v) = f(u, v) where f is some unspecified function of two
unspecified arguments). These predicates are classified according to the theory
they belong to. For instance, linear inequalities over real variables are evaluated
using rules of the theory of linear real arithmetic, whereas predicates involving
uninterpreted terms and function symbols are evaluated using rules of the theory
of uninterpreted functions with equality (sometimes referred to as the empty
theory).

Early attempts for solving SMT instances involved translating them to Boolean
SAT instances (e.g., a 32-bit integer variable would be encoded by 32 bit vari-
ables with appropriate weights and word-level operations such as plus would be
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replaced by lower-level logic operations on the bits) and passing this formula to
a Boolean SAT solver. This approach has its merits: by pre-processing the SMT
formula into an equivalent Boolean SAT formula we can use existing Boolean
SAT solvers “as-is” and leverage their performance and capacity improvements
over time. On the other hand, the loss of the high-level semantics of the under-
lying theories means that SAT solver has to work a lot harder than necessary to
discover obvious facts (such as x + y = y + x for integer addition). This obser-
vation led to the development of a number of SMT solvers that tightly integrate
the Boolean reasoning of a DPLL-style search with theory-specific solvers that
handle conjunctions (ANDs) of predicates from a given theory.

Dubbed DPLL(T) [39], this architecture gives the responsibility of Boolean rea-
soning to the DPLL-based SAT solver which, in turn, interacts with a solver for
theory T through a well-defined interface. The theory solver needs only to worry
about checking the feasibility of conjunctions of theory predicates passed on to it
from SAT solver, as it explores the Boolean search space of the formula. For this
integration to work well, however, the theory solver must be able to participate
in propagation and conflict analysis.

2.3.2 Falsification and Proof Methods Layer

Falsification and proof methods, as presented in Figure 2.2, are two opposite ap-
proaches, to prove that a property holds or does not hold for a model. Falsification
methods cannot verify properties, just falsify them.

2.3.2.1 Bounded Model Checking (BMC)

BMC has been gaining ground as a falsification engine, mainly due to its improved
scalability compared to other formal techniques.

In BMC, the focus is on finding a counterexample (CEX) - bug, of a bounded
length k. For a given design and correctness property, the problem is translated effec-
tively to a propositional formula such that the formula is true if and only if a coun-
terexample of length k exists [15]. If no such counterexample is found, k is increased.
This process terminates when k exceeds the completeness threshold - CT (i.e., k is
sufficiently large to ensure that no counterexample exists) - or when SAT procedure
exceeds its time or memory bounds.

Such a translation basically involves unrolling the circuit of the transition relation
for the required number of time frames. Essentially, k copies of the circuit are made
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and then clauses are build at each time frame for the unrolled circuit and the property
to be checked, which is then fed to a SAT-solver.

Many enhancements have been proposed in the last few years to make the stan-
dard BMC procedure [15] scale with large industry designs. One key improvement is
dynamic circuit simplification [32], performed on the iterative array model of the un-
rolled transition relation, where an on-the-fly circuit reduction algorithm is applied not
only within a single time frame but also across time frames to reduce the associated
Boolean formula. Another enhancement is SAT-based incremental learning, used to
improve the overall verification time by re-using the SAT results from the previous runs
[32]. Learning can also be accomplished by a lightweight and goal-directed effective
BDD-based scheme, where learned clauses generated by BDD-based analysis are added
to the SAT solver on-the-fly, to supplement its other learning mechanisms [46]. There
are also many heuristics for guiding the SAT search process to improve the performance
of the BMC engine.

Even with the many enhancements just mentioned, sometimes the memory lim-
itation of a single server, rather than time, can become a bottleneck for doing deeper
BMC search on large designs. The main limitation of a standard BMC application is
that it can perform search up to a maximum depth allowed by the physical memory on
a single server. This limitation stems from the fact that as the search bound k becomes
large, the memory requirement due to unrolling of the design also increases. Especially
for memory-bound designs, a single server can quickly become a bottleneck in doing
deeper search for bugs. Distributing the computing requirements of BMC (memory
and time) over a network of workstations can help overcome the memory limitation of
a single server, albeit at an increased communication cost [37].

2.3.2.2 Induction

Although BMC can find bugs in larger designs than BDD-based methods, the cor-
rectness of a property is guaranteed only for the analysis bound. However, one can
augment BMC for performing proofs by induction [73]. A completeness bound has
been proposed [15] to provide an inductive proof of correctness for safety properties
based on the longest loop-free path between states. Induction with increasing depth k,
and restriction to loop-free paths, consists of the following two steps:

• Base: to prove that the property holds on every k-length path starting from the
initial state.
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• k-step Induction: to prove that if the property holds on a k-length path starting
from an arbitrary state, then it also holds on all its extensions to a (k+ 1)-length
path.

Algorithm below and Figure 2.6 illustrate k-induction.

Procedure k-induction(M, p)

1. initialize k = 0

2. while true do

3. if Base(M, p, k) is SAT

4. then return counterexample

5. else

6. if Step(M, p, k) is UNSAT

7. then return verified

8. k = k + 1

9. end while

end

Figure 2.6. Graphical visualization of k-induction algorithm.
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The restriction to loop-free paths imposes the additional constraints that no two
states in the paths are identical. Note that the base case includes use of the initial
state constraint, but the inductive step does not. Therefore, the inductive step may
include unreachable states also. In practice, this may not allow the induction proof to
go through without the use of additional constraints, i.e., stronger induction invariants
than the property itself. To shorten the proof length, one can use any circuit constraints
known by the designers as inductive invariants.

A set of over-approximate reachable states of the designs can be regarded as pro-
viding reachability constraints. These can be used as inductive invariants to strengthen
a proof by induction [45]. In principle, any technique can be used to obtain such over-
approximate reachability constraints, including information known by the designer.

2.3.2.3 Unbounded Model Checking (UMC)

UMC comprises methods that can prove the correctness of a property on a design as
well as find counter-examples for failing properties.

BDD-based model checking tools do not scale well with design complexity and
size. SAT-based BMC tools provide faster counter-example checking, but a proof may
require unrolling of the transition relation up to the longest loop-free path. Previous
approaches to SAT-based unbounded model checking suffer from large time and space
requirements for solution enumeration, and hence are not viable.

New efficient and scalable approaches have been created, like the one based on cir-
cuit co-factoring for SAT-based quantifier elimination [35], that dramatically reduces
the number of required enumeration steps, thereby, significantly improving the per-
formance of pre-image and fixed-point computation in SAT-based UMC. The circuit
cofactoring method uses Reduced AIG (AND/INVERTER Graph) representation for
the state sets as compared to BDDs and CNF representations. The novelty of the
method is in the use of circuit co-factoring to capture a large set of states, i.e., several
state cubes in each SAT enumeration step, and in the use of circuit graph simplification
based on functional hashing to represent the captured states in a compact manner.

SAT-based BMC can be augmented with unbounded SAT-based analysis to ob-
tain the longest shortest diameter as the completeness bounds for these properties,
instead of using loop-free path analysis. Inductive invariants such as reachability con-
straints can be used to shorten completeness bound further.
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2.3.3 Abstraction Layer

Obtaining appropriate abstract models that are small and suitable for applying falsifi-
cation or proof methods have been the subject of research for quite some time [24; 54].

Abstraction means, in effect, removing information about a system which is not
relevant to a property to be verified. In the simplest case, a system can be viewed
as a large collection of constraints, and abstraction as removing constraints that are
irrelevant. The goal in this case is not so much to eliminate constraints per se, as
to eliminate state variables that occur only in irrelevant constraints, and thereby to
reduce the size of the state space. A reduction of the state space in turn increases the
efficiency of model checking, which is based on exhaustive state space exploration.

Figure 2.2 lists some well known abstractions, which are described below.

2.3.3.1 Gate-based abstraction

Gate-based abstraction is a basic approach to reduce the number of gates to consider
during verification. Basically, after a property has been selected to be proved, just the
gates that are important to the proof will be considered.

For a signal s, representing the property to be proved, just the transitive fanin of
signal s should be considered. The transitive fanin of a signal s is the set of gates that
transitively drives the signal s through some other gates (not registers). The transitive
fanin arrives to the primary inputs of the circuit that may influence the value of signal
s. The gates in the path from these primary inputs up to signal s are the gates selected
by gate-based abstraction approach.

2.3.3.2 Latch-based abstraction

Consider a SAT problem is unsatisfiable at a given depth k, i.e., there is no counterex-
ample for the safety property at a given depth k. Latch-based abstraction can be used
to obtain a smaller size abstract model. Rather than optimize at the level of each gate
in the original design, a latch-based abstraction technique is targeted to minimize the
set of latch reasons at depth k, while still retaining the useful property that there is
no counterexample of depth k. An abstract model is then generated for depth k by
converting those latches in the given design that are not in the set of latch reasons
to pseudo-primary inputs, PPI (pseudo-primary inputs refer to output signals of those
latches whose next state logic is removed and the signals behaves as primary inputs).
Depending on the locality of the property, the set of latch reasons can be significantly
smaller than the total latches in the given design.
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2.3.3.3 Lazy constraints

Consider a SAT problem is unsatisfiable at a given depth k, i.e., there is no counterex-
ample for the safety property at a given depth k. The following partition/classification
of the set of latches is valid:

• Propagation latches: for which at least one interface propagation constraint be-
longs to set of latch reasons.

• Initial value latches: for which only an initial state constraint belongs to set of
latch reasons.

• PPI latches: for which neither the initial constraint, nor any of the interface
propagation constraints belongs to set of latch reasons.

Clearly, the set of PPI latches can be abstracted away, since they are not used at
all in the proof of unsatisfiability (this has been done in the latch-based abstraction).
On the other hand, a propagation latch needs to be retained in the abstract model,
since it was used to propagate a latch constraint across time frames for the derived
proof. The more interesting case is presented by an initial value latch. It is quite
possible that an initial value latch is not really needed to derive unsatisfiability - its
initial state constraint may just happen to be used by the SAT solver. It has been
observed empirically [34] that on large designs, a significant fraction (as high as 20% in
some examples) of the marked latches are initial value latches. Rather than add these
latches to an abstract model, the strategy is to guide the SAT solver to find a proof
that would not use their initial state values unless needed. This is done by the use of
lazy constraints.

A naive way of delaying implications due to initial state constraints is to mark
the associated variables, and delay BCP (Boolean Constraint Propagation) on these
marked variables during pre-processing. However, this would involve an overhead of
checking for such variables during BCP. Rather than change standard BCP proce-
dure, the desired effect can be achieved by changing the CNF representation of these
constraints. This allows the exploration of the latest improvements in SAT solver
technology without modifying the SAT solvers.

2.3.3.4 Counterexample-based abstraction

Counterexample-based abstraction-refinement [54] is an iterative technique that starts
with BDD-based UMC on an initial conservative abstraction of the model. If UMC
proves the property on the abstraction then the property is true on the full model.
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However, if a counterexample A is found, it could either be an actual error or it
may be spurious, in which case one needs to refine the abstraction to rule out this
counterexample. The process is then repeated until the property is found to be true,
or until a real counterexample is produced.

Algorithm below and Figure 2.7 illustrate CEX-based abstraction.

Procedure cex-based (M, p)

1. generate initial abstraction M’

2. while true do

3. if UMC(M’, p) holds

4. then return verified

5. let k = length of abstract counterexample A

6. if BMC(M, p, k, A) is SAT

7. then return counterexample

8. else use proof of UNSAT P to refine M’

9. end while

end

Figure 2.7. Graphical visualization of CEX-based abstraction algorithm.
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2.3.3.5 Proof-based abstraction

The proof-based algorithm in [60] iterates through SAT-based BMC and BDD-based
UMC. It starts with a short BMC run, and if the problem is satisfiable, an error has
been found. If the problem is unsatisfiable, the proof of unsatisfiability is used to guide
the formation of a new conservative abstraction on which BDD-based UMC is run.
In case that the BDD-based model checker proves the property then the algorithm
terminates; otherwise the length k’ of the counterexample generated by the model
checker is used as the next BMC length.

Notice that only the length of the counterexample generated by BDD-based UMC
is used. This method creates a new abstraction each iteration, in contrast to the
counterexample abstraction method which refines the existing abstraction.

Since this abstraction includes all variables in the proof of unsatisfiability for a
BMC run up to depth k, it is known that any counterexample obtained from model
checking this abstract model will be of length greater than k. Therefore, unlike the
counterexample method, this algorithm eliminates all counterexamples of length k in
a single unsatisfiable BMC run.

This procedure, shown below, continues until either a failure is found in the
BMC phase or the property is proved in the BDD-based UMC. The termination of the
algorithm hinges in the fact that the value k’ increases in every iteration. Figure 2.8
illustrates proof-based abstraction.

Procedure proof-based (M, p)

1. initialize k

2. while true do

3. if BMC(M, p, k) is SAT

4. then return counterexample

5. else

6. drive new abstraction M’ from proof P

7. if UMC (M’, p) holds

8. then return verified

9. else set k to length of counterexample k’

10. end while

end

Note that the abstract model obtained using proof-based abstraction technique
is property-specific, i.e., each property may lead to a different abstraction.

Proof-based abstraction technique has many other implementations ([44; 36; 21]).
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Figure 2.8. Graphical visualization of Proof-based abstraction algorithm.

2.3.3.6 Reachability constraints

Given a finite state machine (FSM) of a hardware design, a state t is said to be reachable
from s if there is a sequence of transitions that start from s and ends at t.

BDD-based symbolic traversal techniques to perform a reachability analysis on
the abstract model can be used to compute an over-approximate reachable set for the
concrete design. These are used as additional reachability constraints during proofs by
induction or SAT-based Unbounded Model Checking.

2.3.3.7 Interpolation

An interpolant I for an unsatisfiable formula A ∧B is a formula such that:

1. A→ I

2. I ∧B is unsatisfiable and

3. I refers only to the common variables of A and B.
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Intuitively, I is the set of facts that the SAT solver considers relevant in proving
the unsatisfiability of A ∧B.

The interpolation-based algorithm [59] uses interpolants to derive an over-
approximation of the reachable states with respect to the property. The BMC problem
BMC(M, p, k) is solved for an initial depth k. If the problem is satisfiable, a counterex-
ample is returned, and the algorithm terminates. If BMC(M, p, k) is unsatisfiable, the
formula representing the problem is partitioned into Pref(M, p, k) ∧ Suff(M, p, k),
where Pref(M, p, k) is the conjunction of the initial condition and the first transi-
tion, and Suff(M, p, k) is the conjunction of the rest of the transitions and the final
condition. The interpolant I of Pref(M, p, k) and Suff(M, p, k) is computed. Since
Pref(M, p, k) → I, it follows that I is true in all states reachable from I(s0) in one
step. This means that I is an over-approximation of the set of states reachable from
I(s0) in one step. Also, since I ∧ Suff(M, p, k) is unsatisfiable, it also follows that
no state satisfying I can reach an error in k − 1 steps. If I contains no new states,
that is, I → I(s0), then a fixed point of the reachable set of states has been reached,
thus the property holds. I I has new states then R’ represents an over-approximation
of the states reached so far. The algorithm then uses R’ to replace the initial set I,
and iterates the process of solving the BMC problem at depth k and generating the
interpolant as the over-approximation of the set of states reachable in the next step.
The property is determined to be true when the BMC problem with R’ as the initial
condition is unsatisfiable, and its interpolant leads to a fixed point of reachable states.
However, if the BMC problem is satisfiable, the counterexample may be spurious since
R’ is an over-approximation of the reachable set of states. In this case, the value of
k is increased, and the procedure is continued. The algorithm will eventually termi-
nate when k becomes larger than the diameter of the model. Figure 2.9 illustrates
interpolation.

Procedure interpolation (M, p)

1. initialize k

2. while true do

3. if BMC(M, p, k) is SAT

4. then return counterexample

5. R = I

6. while true do

7. M’ = (S,R,T,L); let C = Pref(M’,p,k) and Suff(M’,p,k)

8. if C is SAT

9. then break (go to line 13)
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10. compute interpolant I of C;

R’ = I is an over-approximation of states reachable

from R in one step

11. if R => R’ then return verified

R = R or R’

12. end while

13. increase k

14. end while

end

Figure 2.9. Graphical visualization of interpolation algorithm.

2.3.4 Proof engines

Many heuristics to accomplish formal verification have been presented so far. Each
group of algorithms and configuration parameters generates a different solver or en-
gine. The reason for having a large number of engines relies on the fact that verifica-
tion performance varies from design to design and from property to property. Mixing
heuristics increases engine’s scalability and efficiency.
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Since users have limited resources for the verification of systems, it is important
to know which, of the huge number of available engines, are most effective. Imagine
we take 5 different abstraction algorithms, together with 26 SAT solvers (26 is the
number of SAT solvers competitors registered in the SAT Competition 2011 - http :

//www.cril.univ − artois.fr/SAT11/) and 1 BDD solver. The number of engines we
get is 135 (5 ∗ (26 + 1)). This shows that human intuition of the best engines to run
becomes not so straightforward and selecting the best engines in an intelligent manner
becomes a differential.

But, as we know, the performance of an engine is strongly dependent on circuit
design and property to be proved. So a basic problem arises: how to decide which
engines to use for each specific circuit design and property, in order to maximize the
chance of reaching a proof conclusion?



Chapter 3

Statistical Learning

Statistical learning plays a key role in many areas of science, finance and industry.
Here are some examples of learning problems [47]:

• Predict whether a patient, hospitalized due to a heart attack, will have a second
heart attack. The prediction is to be based on demographic, diet and clinical
measurements for that patient.

• Predict the price of a stock in 6 months from now, on the basis of company
performance measures and economic data.

• Identify the numbers in a handwritten ZIP code, from a digitized image.

• Estimate the amount of glucose in the blood of a diabetic person, from the
infrared absorption spectrum of that person’s blood.

• Identify the risk factors for prostrate cancer, based on clinical and demographic
variables.

The science of learning plays a key role in the fields of statistics, data mining and
artificial intelligence, intersecting with areas of engineering and other disciplines.

In a typical scenario, we have an outcome measurement, usually quantitative (like
a stock price) or categorical (like heart attack/no heart attack), that we wish to predict
based on a set of features (like diet and clinical measurements). We have a training set
of data, in which we observe the outcome and feature measurements for a set of objects
(such as people). Using this data we build a prediction model, or learner, which will
enable us to predict the outcome for new unseen objects. A good learner is one that
accurately predicts such an outcome.

35
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The objective of supervised learning is to use the inputs to predict the values of
the outputs. The inputs, that are measured or preset, constitute the set of variables.
They have some influence on one or more outputs. In the statistical literature the
inputs are often called the predictors, a term that will be used interchangeably with
inputs, and more classically the independent variables. The outputs are called the
responses, or classically the dependent variables.

The outputs vary in nature. They may be quantitative measurements or qualita-
tive values from a finite set. For both types of outputs it makes sense to think of using
the inputs to predict the output. This distinction in output type has led to a naming
convention for the prediction tasks: regression, when we predict quantitative outputs,
and classification, when we predict qualitative outputs. These two tasks have a lot in
common, and in particular both can be viewed as a task in function approximation.

3.1 Multivariate regression

When fitting function for experimental data modeling have more then one independent
argument we can talk about multivariate regression.

Despite the recent progress in statistical learning, nonlinear function approxima-
tion with high-dimensional input data remains a nontrivial problem.

An ideal algorithm for such tasks needs to:

• avoid potential numerical problems from redundancy in the input data,

• eliminate irrelevant input dimensions,

• keep the computational complexity of learning updates low while remaining data
efficient,

• allow for on-line incremental learning, and

• achieve accurate function approximation and adequate generalization.

Linear models were largely developed in the pre-computer age of statistics, but
even in today’s computer era there are still good reasons to study and use them.
They are simple and often provide an adequate and interpretable description of how
the inputs affect the output. For prediction purposes they can sometimes outperform
fancier nonlinear models, especially in situations with small numbers of training cases,
low signal-to-noise ratio or sparse data. Finally, linear methods can be applied to
transformations of the inputs and this considerably expands their scope.
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Principal component analysis (PCA) is an important methodology that should
be used when multivariate regression is in use. Its main objective is to find patterns
in the input data, allowing the reduction of the number of dimensions without much
information loss [75].

More recently k-nearest neighbors method has also been applied in conjunction
with linear regression in different fields like semiconductor manufacturing.

3.2 Linear regression

The linear model has been a mainstay of statistics for the past 30 years and remains
one of our most important tools.

There are many different methods to fit the linear model to a set of training data,
but by far the most popular is the method of linear least squares. Used directly, with
an appropriate data set, linear least squares regression can be used to fit the data with
any function of the form

f(~x;~b) = b0 + b1x1 + b2x2 + ... (3.1)

in which

1. each explanatory (independent) variable xi in the function is multiplied by an
unknown parameter,

2. there is at most one unknown parameter with no corresponding explanatory
variable, and

3. all of the individual terms are summed to produce the final function value.

In statistical terms, any function that meets these criteria would be called a
“linear function”. The term “linear” is used, even though the function may not be a
straight line, because if the unknown parameters are considered to be variables and the
explanatory variables are considered to be known coefficients corresponding to those
“variables”, then the problem becomes a system (usually overdetermined) of linear
equations that can be solved for the values of the unknown parameters. To differentiate
the various meanings of the word “linear”, the linear models being discussed here are
often said to be “linear in the parameters” or “statistically linear”.

For example, linear models are not limited to being straight lines or planes, but
include a fairly wide range of shapes. A simple quadratic curve
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f(x;~b) = b0 + b1x+ b11x
2 (3.2)

is linear in the statistical sense. A straight-line model in log(x)

f(x;~b) = b0 + b1 ln(x) (3.3)

or a polynomial in sin(x)

f(x;~b) = b0 + b1 sin(x) + b2 sin(2x) + b3 sin(3x) (3.4)

are also linear in the statistical sense because they are linear in the parameters,
though not with respect to the observed explanatory variable.

Just as models that are linear in the statistical sense do not have to be linear
with respect to the explanatory variables, nonlinear models can be linear with respect
to the explanatory variables, but not with respect to the parameters. For example,

f(x; ~β) = β0 + β0β1x (3.5)

is linear in x, but it cannot be written in the general form of a linear model
presented above. This is because the slope of this line is expressed as the product of
two parameters.

Linear least squares regression also gets its name from the way the estimates of
the unknown parameters are computed. In the least squares method the unknown
parameters are estimated by minimizing the sum of the squared deviations between
the data and the model. The minimization process reduces the overdetermined system
of equations formed by the data to a sensible system of P equations in P unknowns
(where P is the number of parameters in the functional part of the model). This new
system of equations is then solved to obtain the parameter estimates.

Nonlinear least squares regression could be used to fit this model, but linear least
squares cannot be used.

In our work, we have:
f(x;~b) =

∏
i

xbii (3.6)

Then, it can be linearized via:

log f(x;~b) =
∑
i

bi log(xi) (3.7)
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Or, if we have:
f(x;~b) =

∏
i

bxii (3.8)

It is linearized as:
log f(x;~b) =

∑
i

xi log(bi) (3.9)

Equations 3.6 and 3.8 are both instances of linear regression, as shown in Equa-
tions 3.7 and 3.9 respectively.

Linear least squares regression has earned its place as the primary tool for process
modeling because of its effectiveness and completeness.

Though there are types of data that are better described by functions that
are nonlinear in the parameters, many processes in science and engineering are well-
described by linear models. This is because either the processes are inherently linear
or because, over short ranges, any process can be well-approximated by a linear model.

The estimates of the unknown parameters obtained from linear least squares
regression are the optimal estimates from a broad class of possible parameter estimates
under the usual assumptions used for process modeling. Practically speaking, linear
least squares regression makes very efficient use of the data. Good results can be
obtained with relatively small data sets.

The theory associated with linear regression is well-understood and allows for
construction of different types of easily-interpretable statistical intervals for predictions,
calibrations, and optimizations. These statistical intervals can then be used to give
clear answers to scientific and engineering questions.

The main disadvantages of linear least squares are limitations in the shapes that
linear models can assume over long ranges, possibly poor extrapolation properties, and
sensitivity to outliers.

Linear models with nonlinear terms in the predictor variables curve relatively
slowly, so for inherently nonlinear processes it becomes increasingly difficult to find
a linear model that fits the data well as the range of the data increases. As the
explanatory variables become extreme, output of the linear model will also always
more extreme. This means that linear models may not be effective for extrapolating
the results of a process for which data cannot be collected in the region of interest. Of
course extrapolation is potentially dangerous regardless of the model type.

Finally, while the method of least squares often gives optimal estimates of the
unknown parameters, it is very sensitive to the presence of unusual data points in the
data used to fit a model. One or two outliers can sometimes seriously skew the results
of a least squares analysis. This makes model validation, especially with respect to out-
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liers, critical to obtaining sound answers to the questions motivating the construction
of the model.

Figure 3.1 shows the globally (all training set is used to build the prediction
model) linear nature of linear regression in a two dimensional input data scenario.

Figure 3.1. Globally linear nature of linear regression.

3.3 Nearest neighbor method

The method for data-driven modeling considered up to now was first building a model of
the available (training) data (process of learning), and then was put to operation, when
classification or numerical prediction was taking place. These methods are sometimes
referred to as eager learning (since they are eager to build a model first). However,
there is a group of learning methods in which a model is not actually constructed -
such learning is called instance-based learning, or lazy learning.

Instance-based (IB) learning methods simply store training examples and post-
pone the generalization (building a model) until a new instance must be classified or
prediction made. The model that is built by IB methods is not a global model that uses
all training data, but rather a local model involving only some of the instances. The IB
methods are used both for classification and for regression. Most important methods
are: nearest neighbor method, locally weighted regression, and case-based reasoning.

Nearest neighbors methods use observations in the training set closest to the new
instance to be classified to predict F . Specially, the k-nearest neighbors (kNN) fit for
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F is defined as follows:

F (xq) =

∑k
i=1 f(xi)

k
(3.10)

where xi is in the kNN neighborhood of xq (defined by the k points closest to xq
in the training set). Closeness implies a metric which can be, for example, Euclidean
distance. So, in words, we find the k observations closest to xq in input space, and
average their responses.

In order to identify neighbors in a multivariate scenario, the objects are repre-
sented by position vectors in a multidimensional feature space. It is usual to use the
Euclidean distance, though other distance measures, such as the Manhattan distance
could in principle be used instead. The k-nearest neighbors algorithm is sensitive to
the local structure of the data.

The k-nearest neighbors algorithm is amongst the simplest of all machine learning
algorithms. An object is classified by a majority vote of its neighbors, with the object
being assigned the class most common amongst its k nearest neighbors. k is a positive
integer, typically small. If k = 1, then the object is simply assigned the class of its
nearest neighbor. In binary (two class) classification problems, it is helpful to choose
k to be an odd number as this avoids difficulties with tied votes.

Figure 3.2 shows an example for points in 2-dimensional space. The number of
classes is s = 2, so the output is boolean (denoted as “+” or “-”). New instance xq
(called also a query point) is classified with respect to proximity of nearest training
instances. If we apply 1-NN method, we will consider only 1 such training instance,
and xq will be classified to “+” (since the nearest training instance belongs to class
“+”). If, however, 5-NN method is used, we consider 5 training instances, and xq will
be classified to “-” (since among 5 instances there are 2 “+” and 3 “-”). This example
explains the essence of the k-NN algorithm “-” to classify a new xq it finds the most
common value of the nearest training instances.

A refinement of the k-NN classification algorithm is to weigh the contribution of
each of the k neighbors according to their distance to the query point xq, giving greater
weight w to closer neighbors (Weighted k-NN).

The same method can be used for regression, by simply assigning the property
value for the object to be the average of the values of its k nearest neighbors.

Local weighted regression (numerical prediction) is a generalization of the nearest-
neighbor approaches. It constructs an explicit approximation F (x) of the target func-
tion f(x) over a local region surrounding the new query point xq. The type of this ap-
proximation can be any function: linear, quadratic, . . . This method is called weighted
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Figure 3.2. 1-NN and 5-NN neighborhood.

because the contribution of each training example is weighted by its distance to the
query point xq.

If F (x) is linear then this is called locally weighted linear regression:

F (x) = w0 + w1α1(x) + ...+ wnαn(x) (3.11)

If we construct a global model, we have to minimize the error for all training
examples D:

E =
1

2

∑
x⊂D

(f(x)− F (x))2 (3.12)

However, for local models it is necessary to look only at the proximity of xq. In
this case there are the following possibilities:

1. Minimize the squared error over just k nearest neighbors:

E1(xq) =
1

2

∑
x⊂ k nearest neighbors of xq

(f(x)− F (x))2 (3.13)

2. Minimize the squared error over entire setD of training examples, while weighting
the error of each training example by some decreasing function K of its distance
from xq:

E2(xq) =
1

2

∑
x⊂D

(f(x)− F (x))2K(d(xq, x)) (3.14)

3. Combine E1 and E2 (to reduce computational costs):
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E3(xq) =
1

2

∑
x⊂ k nearest neighbors of xq

(f(x)− F (x))2K(d(xq, x)) (3.15)

The problem of minimization of E can be solved by various iterative gradient-
based methods developed in non-linear optimization. In case of linear F (x) this can
be done analytically.

In some ways, nearest neighbor is at the opposite end of the spectrum from linear
regression. It has little bias (assumptions about what the true function is), which
allows it to fit non-linear functions without difficulty. Unfortunately, it suffers from
high variance, which means noisy data causes it to make erratic predictions.

The distance weighted k-NN algorithm appears to be robust to noisy training
data and effective when provided with sufficiently large set of training data. This is
a local method, approximating the underlying target function locally, and this can
help in smoothing out the impact of isolated noisy training examples. There is one
problem, however, which is linked to the way the distance is calculated. In contrast to
the decision tree method, for example, where instances are split on the basis of the most
relevant attributes, the Euclidean distance involves all the attributes, independent of
their relevancy to a particular classification problem. The distance between neighbors
may be dominated by the large number of irrelevant attributes.

There are some possibilities to overcome this problem:

• to exclude the non-relevant attributes from consideration at the data preparation
stage by using a methodology such as principal component analysis;

• to weight each attribute differently when calculating the distance between two
instances.

It is interesting to note that when the number of training examples is very large,
k-nearest neighbor method approaches the Bayesian optimal classification.

Figure 3.3 shows the local nature of k-NN in a 2-dimensional scenario. Each
cylinder contains the k nearest points to be used to predict a new instance.

Table 3.1 summarizes main differences between linear and k-nearest neighbors
methods.

3.4 Principal component analysis

Principal component analysis (PCA) is a methodology to identify patterns in data,
and express it in such a way that their similarities and differences are highlighted.
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Figure 3.3. Locally constant nature of kNN regression.

Table 3.1. Main differences between linear and k-nearest neighbors methods.

Linear k-Nearest neighbors
Builds a model first Postpones building a model
Puts model in operation Builds a model when
when prediction is new instance
taking place must be predicted
Uses all training data to Uses just closest training set to
build a model: build a model:
globally linear locally constant or linear
Impact of noisy data is Noisy data can cause erratic
smoothed with predictions but
the increase it smooths impact of
of training data isolated noisy training data

(local method)

Since patterns in data can be hard to find when talking about high dimensions, where
graphical representation is not available, PCA is a powerful tool for analyzing data [75].

The other main advantage of PCA is that once one has found these patterns in the
data, one can compress it, for example, by reducing the number of dimensions, without
much loss of information. This technique is used, for example, in image compression.

Since PCA is a linear transformation with orthonormal basis vectors it can be
expressed as a translation and rotation. Denoting the input data x and the transformed
data y, the transformation can be expressed as

y = A(x− µx) (3.16)
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Figure 3.4. Basic principle of PCA in two dimensional case.

where A contains the new basis vectors, ei as row vectors, hence A = [e1e2...en]T ,
and µx is the mean of the data set, hence µx = 1/n

∑n
i=1 xi.

In Figure 3.4 [75], the basic principles of PCA is illustrated for the two dimensional
case.

The first figure in Figure 3.4 illustrates the input where the i’th sample is denoted
xi = [x1ix2i]

T . The second illustrates the transformed data where the i’th sample is
denoted yi = [y1iy2i]

T and is calculated using the equation above.
The first figure in Figure 3.4 illustrates how the data are transformed into another

representation where the main part of variance of the data is represented in the first
variable, y1. That is, if the second variable is ignored, as illustrated by second figure
in Figure 3.4, the main variance of the data is kept. In many cases variance equals
information, hence a more compact representation of the data/information is obtained.

The theories presented will be used in the generation of the statistics model to
predict faster heuristics. First of all principal component analysis will be applied to
eliminate correlated variables. Then multivariate regression will be applied to generate
the engine estimators. At last, k-NN will be applied to decide upon which set of
estimators to use for each validation data.
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Mean Variance Portfolio Theory

Almost everyone own a portfolio (group) of assets. This portfolio is likely to contain
real assets such as a car, a house or a refrigerator, as well as financial assets such as
stocks and bonds. The composition of the portfolio may be the result of a series of
haphazard and unrelated decisions or it may be the result of deliberate planning.

An investor is faced with a choice from among an enormous number of assets.
When one considers the number of possible assets and the various possible proportions
in which each can be held, the decision process seems overwhelming.

All decision problems have certain elements in common. Any problem involves
the delineation of alternatives, the selection of criteria for choosing among those alter-
natives, and, finally, the solution of the problem.

This chapter presents Mean Variance Portfolio theory [29] to help delineating a
solution to the portfolio selection problem which can be applied to the formal verifica-
tion context.

4.1 The Opportunity Set

Consider an investor who will receive with certainty an income of $10,000 in each of
two years. Assume that the only investment available is a savings account yielding 5%
per year. In addition, the investor can borrow money at a 5% rate. How much should
the investor save and how much should he or she consume each year? The economic
theory of choice proposes to solve this problem by splitting the analysis into two parts.
First, specify those options that are available to the investor. Second, specify how to
choose among these options.

The first part of the analysis is to determine the options open to the investor.
One option available is to save nothing and consume $10,000 in each period. This

47
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option is indicated by the point B in Figure 4.1. Another option would be to save all
income in the first period and consume everything in the second. In the second period
his savings account would be worth the $10,000 he saves in period 1 plus interest of 5%
on the $10,000 or $10,500. Adding this to the second period income of $10,000 gives
him a consumption in period 2 of $10,500 + $10,000 = $20,500. This is indicated by
point A in Figure 4.1.

Figure 4.1. The investor‘s opportunity set.

Another possibility is to consume everything now and not worry about tomor-
row. This would result in consumption of $10,000 from this period’s income plus the
maximum the investor could borrow against next period’s income. If X is the amount
borrowed, then X plus the interest paid for borrowing X equals the amount paid back.
Since the investor’s income the next period is $10,000, the maximum amount is bor-
rowed if X plus the interest on X at 5% equals $10,000. Thus the maximum the
investor can consume in the first period if $19,524. This is indicated by point C in
Figure 4.1.

Note that points A, B and C lie along a straight line. In fact, all of the enormous
possible patterns of consumption in periods 1 and 2 will lie along this straight line:
C2 = $20, 500− (1.05)C1. This is, of course, the equation for a straight line and is the
line shown in Figure 4.1.

It has an intercept of $20,500, which results from zero consumption in period 1
(C1 = 0) and is the point A determined earlier. It has a slope equal to -1.05 or minus
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the quantity one plus the interest rate. The value of the slope reflects the fact that each
dollar the investor consumes in period 1 is a dollar he cannot invest and, hence, reduces
period 2’s consumption by one dollar plus the interest he could earn on the dollar or a
total of $1.05. Thus an increase in period 1’s consumption of a dollar reduces period
2’s consumption by $1.05.

The investor is left with a large number of choices. The set of choices facing the
investor is usually referred to as the opportunity set.

4.2 The Indifference Curves

The economic theory of choice states that an investor chooses among the opportunities
set shown in Figure 4.1 by specifying a series of curves called utility functions or
indifference curves. A representative set is shown in Figure 4.2.

Figure 4.2. Indifference curves.

These curves represent the investor’s preference for income in the two periods.
The name “indifference curves” is used because the curves are constructed so that
everyone along the same curve is assumed to be equally happy. In other words, the
investor does not care whether he obtains point A, B or C along curve I1.
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Choices along I1 will be preferred to choices along I2, and choices on I2 will be
preferred to choices on I3, and so on. This ordering results from an assumption that
the investor prefers more than less. Consider the line OM. Along this line the amount
of consumption in period 1 is held constant. As can be seen from Figure 4.2, along the
line representing equal consumption in period 1, I1 represents the most consumption
in period 2, I2 the next most, and so on. Thus, if the investors prefer more to less, I1
dominates I2, which dominates I3.

The curved shape results from an assumption that each additional dollar of con-
sumption forgone in period 1 requires greater consumption in 2. For example, if con-
sumption in period 1 is large relative to consumption in period 2, the investor should
be willing to give up a dollar of consumption in period 1 in return for a small increase
in consumption in period 2. In Figure 4.2, this is illustrated by ∆1 for the amount the
investor gives up in period 1 and ∆2 for the amount the investor gains in period 2.
However, if the investor has very few dollars of consumption in period 1, then a large
increase in 2 is required in order to be indifferent about giving up extra consumption
in period 1. This is represented by ∆1’ in period 1 (which is the same size as ∆1) and
the ∆2’ in period 2, which is much larger than ∆2.

The indifference curves and the opportunity set represent the tools necessary for
the investor to reach a solution. The optimum consumption pattern for the investor is
determined by the point at which a number of the set of indifference curves is tangent
to the opportunity set (point D in Figure 4.3).

The investor can select either of the two consumption patterns indicated by the
points where I3 intersects the line ABC in Figure 4.3. But as the investor is better off
selecting a consumption pattern lying on an indifference curve located above and to
the right of I3 if possible, he will move to higher indifference curves until the highest
one that contains feasible consumption pattern is reached. That is the one tangent to
the opportunity set. This is I2 in Figure 4.3, and the consumption pattern the investor
will choose is given by the point of tangency D.

If everyone knew with certainty the returns on all assets, then the framework just
presented could easily be extended to multiple assets. If a second asset existed that
yielded 10%, then opportunity set involving investment in this asset would be the line
A’BC’ shown in Figure 4.4.

Its intercept on the vertical axis would be $10,000 + (1.10)($10,000) = $21,000
and the slope would be -(1.10). If such an asset existed, the investor would surely
prefer it if lending and prefer the 5% asset if borrowing. The preferred opportunity set
would be A’, B, C. Additional assets could be added in a straightforward manner.

But this situation is inherently unstable. Two assets yielding different certain re-
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Figure 4.3. Investor equilibrium.

turns cannot both be available since everyone will want to invest in the higher yielding
one and no one will purchase the lower yielding one. We are left with two possibilities:
either there is only one interest rate available in the marketplace or returns are not
certain (transaction costs or alternative tax treatment of income from different secu-
rities can explain the existence of some differential rates, but nothing like the variety
and magnitude of differential found in the marketplace). Since we observe many dif-
ferent interest rates, uncertainty must play an important role in the determination of
market rates of return. To deal with uncertainty, we need to develop a more complex
opportunity set.

4.3 Opportunity Set Under Risk

Investors like high return, but don’t like high risk.
We use return to indicate the return in an investment over a particular span of

time called holding period return. Return will be measured by the sum of the change in
the market price of a security plus any income received over a holding period divided
by the price of a security at the beginning of the holding period. Thus, if a stock
started the year at $100, paid $5 in dividends at the end of the year, and had a price
of $105 at the end of the year, the return would be 10%.

Factors that affect securities risk include:



52 Chapter 4. Mean Variance Portfolio Theory

Figure 4.4. Investor’s opportunity set with several alternatives.

• The maturity of an instrument (in general the longer the maturity the more risky
it is).

• The risk characteristic and creditworthiness of the issuer or guarantor of the
investment.

• The nature and priority of the claims the investment has on income and assets.

• The liquidity of the instrument and the type of market in which it is traded.

If risk is related to these elements, then measures of risk such as the variability
of returns should be related to these same factors. A widely accepted measure of risk
is the standard deviation of the returns along the time.

4.3.1 Return Distribution

The existence of risk means that the investor can no longer associate a single number or
payoff with investment in any asset. The payoff must be described by a set of outcomes
and each of their associated probability of occurrence, called a frequency function or
return distribution.

A frequency function is a listing of all possible outcomes along with the probability
of the occurrence of each. Table 4.1 shows such a function. This investment has three
possible returns. If event 1 occurs, the investor receives a return of 12%; if event 2
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Table 4.1. Frequency function.

Return Probability Event
12 1/3 1
9 1/3 2
6 1/3 3

occurs, 9% is received; and if event 3 occurs, 6% is received. In this example each of
these events assumes to be equally likely.

Usually we do not delineate all of the possibilities as we have in Table 4.1. The
possibilities for real assets are sufficiently numerous that developing a table like this
for each asset is too complex a task. Furthermore, even if the investor decided to
develop such tables, the inaccuracies introduced would be so large that he or she would
probably be better off just trying to represent the possible outcomes in terms of some
summary measures. In general, it takes at least two measures to capture the relevant
information about frequency function:

1. a measure of central tendency or average value, called the expected return and

2. a measure of risk or dispersion around the mean, called the standard deviation
or variance.

If Rij denote the jth possible outcome for the return on security i and Pij is the
probability of the jth return on ith asset, then the average or expected return is:

Ri =
M∑
j=1

(PijRij) (4.1)

4.3.2 Variance

As we mentioned, it is also useful to have some measure of how much the outcomes
differ from the average. The variance, or the average squared deviation, has some
convenient properties and are usually used.

The formula for the variance of the return on the ith asset, α2
i , when each return

is equally likely is:

α2
i =

M∑
j=1

(Rij −Ri)
2

M
(4.2)

If the observations are not equally likely, then, as before, we multiply the proba-
bility with which they occur:
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α2
i =

M∑
j=1

Pij(Rij −Ri)
2 (4.3)

4.4 Combination of Assets

The simple analysis of asset’s mean and variance has taken us partway toward an
understanding of the choice between risky assets. However, the options open to an
investor are not to simply pick between assets, but also to consider combinations of
these assets. For example, an investor could invest part of his money in each asset.

While this opportunity vastly increases the number of options open to the investor
and hence the complexity of the problem, it also provides the "raison d’être" of portfolio
theory.

The risk of a combination of assets is very different from a simple average of the
risk of individual assets. Characteristics of the return on portfolios of assets can differ
from the characteristics of the return on individual assets:

• When assets have their good and bad outcomes at different times, then investment
in these assets can radically reduce the dispersion obtained by investing in one
of the assets by itself. It the good outcomes of an asset are not always associated
with the bad outcomes of a second asset, but the general tendency is in this
direction, then the reduction in dispersion still occurs. However, it is still often
true that appropriately selected combinations of the two assets will have less risk
than the least risky of the two assets.

• When the conditions leading to various returns are different for the two assets
(returns are independent), dispersion may be reduced, but not as drastic as be-
fore. With independent returns, extreme observations can still occur. They just
occur less frequently. Just as the extreme values occur less frequently, outcomes
closer to the mean become more likely so that the frequency function has less
dispersion.

• When assets being combined have their outcomes affected in the same way by the
same events, characteristics of the portfolio may be identical to the characteristic
of individual assets. In less extreme cases, this is no longer true. Insofar as the
good and bad returns on assets tend to occur at the same time, but not always
exactly at the same time, the dispersion on the portfolio of assets is somewhat
reduced relative to the dispersion on the individual assets.
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Therefore, the first summary characteristic is the return on a portfolio of assets,
which is simply a weighted average of the return on the individual assets. The weight
applied to each return is the fraction of the portfolio invested in that asset. If Rpj is
the jth return on the portfolio and Xi is the fraction of the investor’s funds invested
in the ith asset, then:

RPj
=

N∑
i=1

XiRij (4.4)

The expected return is also a weighted average of the expected returns on the
individual assets. Taking the expected value of the expression just given for the return
on a portfolio yields:

RPj
= E(RPj

) = E(
N∑
i=1

XiRij) (4.5)

But, using one property of expected value that says that the expected value
of the sum of two returns is equal to the sum of the expected value of each return
(E(R1j +R2j) = R1 +R2):

RP =
N∑
i=1

E(XiRij) (4.6)

Finally, the expected value of a constant times a return is a constant times the
expected return:

RP =
N∑
i=1

XiRi (4.7)

The second summary characteristic was the variance. The variance on a portfolio
is a little more difficult to determine than the expected return. For a two asset example,
the variance of a portfolio P, designated by

σ2
P (4.8)

is simply the expected value of the squared deviations of the return on the port-
folio from the mean return on the portfolio, or

σ2
P = E(Rp −Rp)

2 (4.9)

Substituting in this expression the formulas for return on the portfolio and mean
return yields in the two-security case:
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σ2
P = E(Rp −Rp)

2 = E[X1R1j +X2R2j − (X1R1 +X2R2)]
2 (4.10)

σ2
P = E[X1(R1j −R1) +X2(R2j −R2)]

2 (4.11)

where Ri stands for the expected value of security i with respect to all possible
outcomes. Recall that

(X + Y )2 = X2 +XY +XY + Y 2 = X2 + 2XY + Y 2 (4.12)

Applying this to the previous expression we have:

σ2
P = E[X2

1 (R1j −R1)
2 + 2X1X2(R1j −R1)(R2j −R2) +X2

2 (R2j −R2)
2] (4.13)

Applying the two rules that the expected value of the sum of a series of return is
equal to the sum of the expected value of each return, and that the expected value of
a constant times a return is equal to the constant times the expected return, we have:

σ2
P = X2

1E[(R1j −R1)
2] + 2X1X2E[(R1j −R1)(R2j −R2)] +X2

2E[(R2j −R2)
2] (4.14)

σ2
P = X2

1σ
2
1 + 2X1X2E[(R1j −R1)(R2j −R2)] +X2

2σ
2
2 (4.15)

E[(R1j − R1)(R2j − R2)] has a special name. It is called the covariance and will
be designated as σ12. Substituting the symbol σ12 for E[(R1j −R1)(R2j −R2)] yields:

σ2
P = X2

1σ
2
1 +X2

2σ
2
2 + 2X1X2σ12 (4.16)

Notice what the covariance does. It is the expected value of the product of two
deviations: the deviations of the returns on security 1 from its mean (R1j − R1) and
the deviations of security 2 from its mean (R2j − R2). In this sense it is very much
like the variance. However, it is the product of two different deviations. As such it
can be positive or negative. It will be large when the good outcomes for each stock
occur together and when the bad outcomes for each stock occur together. In this case,
for good outcomes the covariance will be the product of two large positive numbers,
which is positive. When bad outcomes occur, the covariance will be the product of
two large negative numbers, which is positive. This will result in a large value for the
covariance and a large variance for the portfolio. In contrast, if good outcomes for one
asset are associated with bad outcomes of the other, the covariance is negative. It is
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negative because a plus deviation for one asset is associated with a minus deviation for
the second and the product of a plus and a minus is negative.

The covariance is a measure of how returns on assets move together. For many
purposes, it is useful to standardize the covariance. Dividing the covariance between
two assets by the product of the standard deviation of each asset produces a variable
with the same properties as the covariance but with a range of -1 to +1. The measure is
called the correlation coefficient. Letting ρik stand for the correlation between securities
i and k the correlation coefficient is defined as

ρik =
σik
σiσk

(4.17)

The formula for variance of a portfolio, 4.16, can be generalized to more than two
assets. Consider first a three-asset case. Substituting the expression for return on a
portfolio and expected return of a portfolio in the general formula for variance yields

σ2
P = E(RP −RP )2 = E[X1R1j +X2R2j +X3R3j − (X1R1 +X2R2 +X3R3)]

2

Rearranging,

σ2
P = E[X1(R1j −R1) +X2(R2j −R2) +X3(R3j −R3)]

2

Squaring the right-hand side yields

σ2
P = X2

1 (R1j−R1)
2+X2

2 (R2j−R2)
2+X2

3 (R3j−R3)
2+2X1X2E[(R1j−R1)(R2j−

R2)] + 2X1X3E[(R1j −R1)(R3j −R3)] + 2X2X3E[(R2j −R2)(R3j −R3)]

Utilizing σ2
i for variance of asset i and σij for the covariance between assets i and

j, we have

σ2
P = X2

1σ
2
1 +X2

2σ
2
2 +X2

3σ
2
3 + 2X1X2σ12 + 2X1X3σ13 + 2X2X3σ23

This formula can be extended to any number of assets. Examining the expression
for the variance of a portfolio of three assets should indicate how. First note that the
variance of each asset is multiplied by the square of the proportion invested in it. Thus,
the first part of the expression for the variance of a portfolio is the sum of the variances
on individual assets times the square of the proportion invested in each, or

N∑
i=1

X2
i σ

2
i (4.18)

The second set of terms in the expression for the variance of a portfolio is covari-
ance terms. Note that the covariance between each pair of assets in the portfolio enters
the expression for the variance of a portfolio. With three assets the covariance between
1 and 2, 1 and 3, and 2 and 3 entered. With four assets, covariance terms 1 and 2, 1
and 3, 1 and 4, 2 and 3, 2 and 4, and 3 and 4 would enter. Further note that each
covariance term is multiplied by two times the product of the proportions invested in
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each asset. The following double summation captures the covariance terms:

N∑
j=1

N∑
[k=1,k!=j]

XjXkσjk (4.19)

Putting together the variance and the covariance parts of the general expression
for the variance of a portfolio yields:

σ2
P =

N∑
j=1

X2
j σ

2
j +

N∑
j=1

N∑
[k=1,k!=j]

XjXkσjk (4.20)

4.5 Efficient Frontier

In theory we could plot all conceivable risky assets and combinations of risky assets
in a diagram in return standard deviation space. We used the words “in theory”, not
because there is a problem in calculating the risk and return on a stock or portfolio,
but because there are an infinite number of possibilities that must be considered. Not
only must all possible groupings of risky assets be considered, but all groupings must
be considered in all possible percentage compositions.

If we were to plot all possibilities in risk-return space, we would get a diagram like
Figure 4.5. We have taken the liberty of representing combinations as a finite number
of points in constructing the diagram. Let us examine the diagram and see if we can
eliminate any part of it from consideration by the investor. As already reasoned, an
investor would prefer more return to less and would prefer less risk to more. Thus, if
we could find a set of portfolios that

1. offered a bigger return for the same risk, or

2. offered a lower risk for the same return,

we would have identified all portfolios an investor could consider holding. All
other portfolios could be ignored.

Take a look at Figure 4.5. Examine portfolios A and B. Note that portfolio B
would be preferred by all investors to portfolio A because it offers a higher return with
the same level of risk. We can also see that portfolio C would be preferable to portfolio
A because it offers less risk at the same level of return. Notice that at this point
in our analysis we can find no portfolio that dominates portfolio C or portfolio B. It
should be obvious at this point that an efficient set of portfolios cannot include interior
portfolios. We can reduce the possibility set even further. For any point in risk-return
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Figure 4.5. Risk and return possibilities for various assets and portfolios.

space we want to move as far as possible in the direction of increasing return and as
far as possible in the direction of decreasing risk. Examine the point D, which is an
exterior point. We can eliminate D from further consideration since portfolio E exists,
which has more return for the same risk. This is true for for every other portfolio as we
move up the outer shell from D to point C. Point C cannot be eliminated since there is
no portfolio that has less risk for the same return or more return for the same risk. But
what is point C? It is the global minimum variance portfolio. Now examine point F.
Point F is on the outer shell, but point E has less risk for the same return. As we move
up the outer shell curve from point F, all portfolios are dominated until we come to
portfolio B. Portfolio B cannot be eliminated for there is no portfolio that has the same
return and less risk or the same risk and more return than point B. Point B represents
that portfolio (usually a single security) that offers the highest expected return of all
portfolios. Thus the efficient set consists of the envelope curve of all portfolios that
lie between the global minimum variance portfolio and the maximum return portfolio.
This set of portfolios is called the “efficient frontier”.

Figure 4.6 represents a graph of the efficient frontier. Notice that we have drawn
the efficient frontier as a concave function. The proof that it must be concave follows
logically from the earlier analysis of the combination of two securities or portfolios.

The portfolio problem, then, is to find all portfolios along this frontier.
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Figure 4.6. The efficient frontier.

In the scenario where there is a riskless lending and borrowing rate, there is a
single portfolio of risky assets that is preferred to all other portfolios. Furthermore, in
return standard deviation space, this portfolio plots on the ray connecting the riskless
asset and a risk portfolio that lies furthest in the counterclockwise direction. For
example, in Figure 4.7, the portfolio on the ray RF − B is preferred to all other
portfolios of risky assets. The efficient frontier is the entire length of the ray extending
through RF and B. Different points along the ray RF −B represent different amounts
of borrowing and/or lending in combination with the optimum portfolio of risky assets
portfolio B.

Figure 4.7. Combinations of the riskless asset in a risky portfolio.

An equivalent way of identifying the ray RF −B is to recognize that it is the ray
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with the greatest slope. The efficient set is determined by finding that portfolio with
the greatest ratio of excess return (expected return minus risk-free rate) to standard
deviation that satisfies the constraint that the sum of the proportions invested in the
assets equals 1. In equation form we have: maximize the objective function

θ =
RP −RF

σP
(4.21)

subject to the constraint

N∑
i=1

Xi = 1 (4.22)

This is a constrained maximization problem. There are standard solution tech-
niques available for solving it. For example, it can be solved by the method of La-
grangian multipliers. There is an alternative. The constraint could be substituted
into the objective function maximized as in an unconstrained problem. This latter
procedure will be followed below. We can write RF as RF times 1. Thus we have

RF = 1RF = (
N∑
i=1

Xi)RF =
N∑
i=1

XiRF (4.23)

Making this substitution in the objective function and stating the expected return
(4.19) and standard deviation of return (4.20) in general form, yields

θ =

∑N
i=1Xi(Ri −RF )

[
∑N
i=1X

2
i σ

2
i +

∑N
i=1

∑N
[j=1,j!=i]XiXjσij]1/2

(4.24)

This maximization problem is a very simple maximization problem and as such
can be solved using the standard methods of basic calculus. In calculus it is shown that
to find the maximum of a function you take the derivative with respect to each variable
and set it equal to zero1. Thus the solution to the maximization problem just presented
involves finding the solution to the following system of simultaneous equations:

1. dθ
dX1

= 0

1Solving the problem without constraining the solution by

N∑
i=1

Xi = 1 (4.25)

does not work in every maximization problem. It works here because the equations are homogeneous
of degree zero.
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2. dθ
dX2

= 0

3. dθ
dX3

= 0

...

N. dθ
dXN

= 0

Two rules from the calculus are needed:

1. The product rule: θ is the product of two functions. The product rule states
that the derivative of the product of two functions is the first function times the
derivative of the second function plus the second times the derivative of the first.
In symbols,

d

dx
[[F1(x)][F2(x)]] = [F1(x)]

dF2(x)

dx
+ [F2(X)]

dF1(x)

dx
(4.26)

Let

F1(X) =
N∑
i=1

Xi(Ri −RF ) (4.27)

F2(X) = (
N∑
i=1

X2
i σ

2
i +

N∑
i=1

N∑
j=1,j!=i

XiXjσij) (4.28)

Consider the derivative of F1(X). The derivative of the terms not involving Xk

are zero (they are constants as far as Xk is concerned). The derivative of the
term involving Xk is Rk −RF . Thus

dF1(X)

dXk

= Rk −RF (4.29)

Now consider the derivative of F2(X). To determine, the second rule from calculus
is needed.

2. The chain rule: F2(X) involves a term in brackets to a power (the power −1
2
).

The chain rule states that its derivative is the power, times the expression in
parentheses to the power minus one, times the derivative of what is inside the
brackets. Thus,
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dF2(X)

dXk

= (−1

2
)(

N∑
i=1

X2
i σ

2
i +

N∑
i=1

N∑
j=1,j!=i

XiXjσij)
− 1

2 × (2Xkσ
2
k + 2

N∑
j=1,j!=k

Xjσjk)

(4.30)

The only term that requires comment is the last one. The derivative of

N∑
i=1

X2
i σ

2
i (4.31)

follows the same principle discussed earlier. All terms not involving k are constant
as far as k is concerned and thus their derivative is zero. The term involving k is
X2
kσ

2
k and has a derivative of 2Xkσ

2
k. The derivative of the double summation is

more complex. Consider the double summation term

(
N∑
i=1

N∑
j=1,j!=i

XiXjσij) (4.32)

We get Xk twice, once when i = k and once when j = k. When i = k, we have

N∑
j=1,j!=ki

XkXjσkj = Xk[
N∑

j=1,j!=k

Xjσkj] (4.33)

The derivative of this is, of course

N∑
j=1,j!=k

Xjσkj (4.34)

Similarly, when j = k, we have

N∑
i=1,i!=ki

XiXkσik = Xk[
N∑

i=1,i!=k

Xiσik] (4.35)

The derivative of this is also

N∑
i=1,i!=k

Xiσik (4.36)

i and j are simply summonds. It does not matter which we use. Further, σik =

σki. Thus
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N∑
j=1,j!=k

Xjσkj =
N∑

i=1,i!=k

Xiσik (4.37)

and we have the expression shown in the derivative, namely,

2
N∑

j=1,j!=k

Xjσkj (4.38)

Substituting (4.27), (4.28), (4.29) and (4.30) into the product rule, expression
(4.26) yields

dθ

dXk

= [
N∑
i=1

Xi(Ri −RF )][(−1

2
)(

N∑
i=1

X2
i σ

2
i +

N∑
i=1

N∑
j=1,j!=i

XiXjσij)]
− 3

2

× [(2Xkσ
2
k + 2

N∑
j=1,j!=k

Xjσkj)] + (
N∑
i=1

X2
i σ

2
i +

N∑
i=1

N∑
j=1,j!=i

XiXjσij]
− 1

2

× [(Rk −RF )] = 0

Multiplying the derivative by

(
∑N
i=1X

2
i σ

2
i +

∑N
i=1

∑N
j=1,j!=iXiXjσij)

1
2

and rearranging yields

−[

∑N
i=1Xi(Ri −RF )∑N

i=1X
2
i σ

2
i +

∑N
i=1

∑N
j=1,j!=iXiXjσij

][Xkσ
2
k +

N∑
j=1,j!=k

Xjσkj] + (Rk −RF ) = 0

Defining λ as

∑N
i=1Xi(Ri −RF )∑N

i=1X
2
i σ

2
i +

∑N
i=1

∑N
j=1,j!=iXiXjσij

yields
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−λ[Xkσ
2
k +

N∑
j=1,j!=k

Xjσkj] + (Rk −RF ) = 0

Multiplying the terms in the brackets by λ yields

−[λXkσ
2
k +

N∑
j=1,j!=k

λXjσkj] + (Rk −RF ) = 0

A mathematical trick allows a useful modification of the derivative. Note that
each Xk is multiplied by a constant λ. Define a new variable Zk = λXk. The
Xk are the fraction to invest in each security, an the Zk are proportional to this
fraction. Substituting Zk for the λXk simplifies the formulation. To solve for the
Xk after obtaining the Zk, one divides each Zk by the sum of the Zk. Substituting
Zk for λXk and moving the variance covariance terms to the right-hand side of
the equality yields

Ri −RF = Z1σ1i + Z2σ2i + ...+ Ziσ
2
i + ...+ ZN−1σN−1i + ZNσNi

We have one equation like this for each value of i. Thus the solution involves
solving a system of simultaneous equations for the Z‘s.

The Z‘s are proportional to the optimum amount to invest in each security.
There are N equations (one for each security) and N unknowns (the Zk for each
security). Then the optimum proportions to invest in stock K is Xk, where

Xk =
Zk∑N
i=1 Zi

(4.39)

The Mean Variance Portfolio Theory will be applied in the proposed solution.
Selecting the best n engines will base not just in performance maximization, taking the
engines with smaller engine estimated times (maximum asset return), but it will also



66 Chapter 4. Mean Variance Portfolio Theory

base in the correlation among engines, taking engines with small correlation (minimum
risk).



Chapter 5

A Multivariate Calibration Model to
Predict Faster Verification
Heuristics

As already mentioned, formal verification is an NP-complete problem in the size of
the trace description (Binary Decision Diagrams state-explosion problem) and in the
verification time (SAT solvers). Therefore, as many other NP-complete problems,
practical solutions implement heuristics to try to solve efficiently such problems.

Each practical solution is known as engine (or solver). The engines usually are
made up of different heuristics and algorithms, each of it having a set of configuration
parameters. Since in functional verification, complexity is often measured by the size of
the design space, which is exponential in the number of storage elements (flip-flops) in
the design [78], engines performance is completely dependent on IC design and property
to be verified, as this defines the number of storage elements in it. It becomes then
necessary to identify and apply the best heuristics and algorithms to each IC property
to be proved, what will allow speeding up of verification process and increasing the
chance of reaching proof conclusion.

The performance of different heuristics rely on some design characteristics as
well as on the property to be proved. Defining variables that express design/property
behavior is part of this work.

The proposed methodology is comprised of the following steps:

1. Define independent variables (~x) that express design/property behavior;

2. Build a data set with independent variables metrics and engines execution times
for each engine to be analyzed;

67
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Table 5.1. Symbols convention.

Symbol Meaning
~x independent parameters
~p dependent parameter
b parameter coefficient
ei execution time of engine i
wi decision variable that selects engine i
˜ estimator
ẽi estimated execution time for engine i
σ variance of sampled execution time
V covariance matrix whose elements are σij
θ auxiliary function using variance σ

3. Data set partition into proof result groups: proven, falsified, inconclusive (time-
out);

4. Apply principal component analysis and multivariate regression to each group’s
data set in order to generate engines’ estimators;

5. Select best engines based on selection mechanisms:

• Maximize performance (smaller execution times) and

• Maximize performance and minimize correlation (greater chance of arriving
to a proof conclusion, which is considered success).

5.1 Independent Variables (~x)

Choosing the set of independent variables ~x affects directly the quality of the estimators
ẽ, since they are supposed to explain the behavior of a given verification problem.
However, since the problem is hard, we will always have a chance that the chosen
variables won’t be enough.

Independent variables have been chosen based on the literature, including struc-
tural and testability metrics.

1. Property circuit level

Property circuit is the circuit in the cone of influence (COI) of a property. The
COI is the set of system variables resulted from an abstraction technique that
removes all variables from the system model that do not have any effect on the
system properties.
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The property circuit level (PCL) can be computed by

LG = 1 + maxLGi (5.1)

where LGi is the level of each gate connected to the input ports of the gate
being computed. Note that property circuit level computation needs to start
from circuit inputs up to circuit outputs.

2. SCOAP Cycles

Number of cycles to converge SCOAP [42] calculation. SCOAP is a testabil-
ity measure that gives integral numerical estimates of the controllability and
observability of signal lines in a given circuit. Appendix A.1 presents detailed
information.

3. Reset state UNDEF

Number of flops initialized with undefined state (x, z).

4. Reset state DEF

Number of flops initialized with any defined state (0, 1).

5. Circuit TI (SCOAP testability index)

TI =
n∑
i=0

(CC0i+ CC1i) (5.2)

where CC0 is combinational 0-controllability and CC1 is combinational 1-
controllability. It guesses the capability of controlling each design flop.

6. Property TI

TIProp = log(CC0p + CC1p) (5.3)

where p stands for property flop. It guesses the capability of controlling the
property flop.

7. SCOAP Adjusted Flops

AdjF lops =
n∑
i=0

log(CC0i + CC1i)

max(CC0i + CC11)
(5.4)
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This metric gives the ability to control each design flop, related to the most
difficult flop to control.

8. SCMax

Greatest SCOAP [42] sequential controllability (SC) among all flops.

9. Flops

Number of flops in cone of influence of the property.

10. Gate Bits

Number of gate bits in the COI of the property.

11. Free Variables

Sum of primary input and stopat bits in the COI of the property.

12. Constrained Bits

Sum of flop bits of all connected assumes.

13. Counter Bits

For each counter i in the design:

CounterBits =
ln

∑n
i=0 2numBitsi

ln2
(5.5)

where n is the number of counters in the design. This measure is an heuris-
tic gives an intermediary metric number, between a pessimistic metric analysis
(2

∑n

i=0
numBitsi) and an optimistic analysis (2max(numBitsi)), given that all counters

may not be exercised at the same time.

14. Finite State Machine (FSM) Bits

For each FSM i in the design:

FSMBits =
ln

∑n
i=0 2numBitsi

ln2
(5.6)

where n is the number of FSMs in the design. This measure is an heuristic
that gives an intermediary metric number, between a pessimistic metric analysis
(2

∑n

i=0
numBitsi) and an optimistic analysis (2max(numBitsi)), given that all FSMs

may not be exercised at the same time.
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15. Array Bits

For each array i in the design:

ArrayBits =
ln

∑n
i=0 2numBitsi

ln2
(5.7)

where n is the number of arrays in the design. This measure is an heuristic
that gives an intermediary metric number, between a pessimistic metric analysis
(2

∑n

i=0
numBitsi) and an optimistic analysis (2max(numBitsi)), given that all arrays

may not be exercised at the same time.

5.2 Data set

Two thousand five hundred and thirty-three proof targets have been collected on differ-
ent designs: not one design for all targets, neither one design for each target. Designs
and properties were described in Verilog, VHDL, SystemVerilog and PSL. Proof times
for 4 different engines have been collected: e1, e2, e3 and e4.

Besides collecting proof times and final results (proven true, counterexample
found or proof timeout), for each proof target the, 15 structural and testability vari-
ables mentioned in section 5.1 were measured. It is important to note that we could
not use normal formal verification benchmarks here as we required full access to the
RTL designs and properties in order to compute the 15 independent variables metrics.

5.2.1 Data set partition

In order to get better results, the data set was classified in three main clusters, according
to proof results:

• True

Group that arrived to a valid proof result.

• CEX

Group that found a counterexample as proof result.

• Timeout

Group that arrived to an inconclusive proof result.
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Estimators will be generated just for “True" and “CEX" groups, as “Timeout”
represents incomplete proofs and a bounded proof methodology needs to be applied in
such case (proposed as future work).

From the 2533 proof targets, 1024 were rejected due to small proof times: proof
times smaller than 0.5 seconds for all engines were rejected since the objective of this
work is to estimate engines for time consuming proofs.

From the 1509 remaining proof targets, 179 represent “CEX" group and 1330
represent “True" group.

5.3 Engine Estimators

The engines’ selection methodologies (5.4.1 and 5.4.3) depend heavily on how well we
can estimate the execution time, or how well we can estimate the relative performance
of the engines, which is given by the estimated time ẽ of engines:

ẽi(~x) (5.8)

which returns the estimated time of engine ei to prove a property whose design
is characterized by ~x, a vector of design metrics (the independent variables).

5.3.1 Linearization of Exponential Equations

As a consequence of the NP-completeness of the verification process, we consider ẽi to
have some exponential nature on the size of the circuit, for some parameter j:

ẽi α bj
xj (5.9)

where ~x is a set of variables, composed by metrics that characterizes the design
and property to be proved.

Estimation time function ẽ of verification process can be described as following
exponential function:

ẽ(~x) = b0

|X|∏
i

bxii (5.10)

where ~x contains the metrics that characterizes the design and property to be
proved.

Linearization of ẽi is done directly by getting the logarithm of both sides of the
formula:
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log ẽ(~x) = log b0 +
|X|∑
i

xi log bi (5.11)

Such linearization allows the application of linear regression methods to get pre-
diction models.

5.3.2 Polynomial Effect of Variables

In addition, we consider that engines are affected in different ways by ~x and some of
the parameters may influence the estimated execution time ẽi in a polynomial manner,
rather than exponential. As a result, for some of the parameters, we have for parameter
k:

ẽi α xk
bk (5.12)

It is possible, for example, to have a variable xi that has an exponential effect on
one engine, while having a polynomial effect on another engine. It is important to note
here that, although one or more metrics may have a polynomial effect over verification
estimation time, the global effect is still exponential due to the exponential nature of
the problem.

Polynomial effect of variables may be detected by analyzing the prediction model
error. If the prediction error decreases when fixing a variable effect as polynomial, then
this variable has probably a polynomial effect over the engine.

The algorithm below describes the methodology to identify variables with poly-
nomial effect. Figure 5.1 illustrates such algorithm.

flag_continue = true;

error = error with linear regression;

while (flag_continue == true) {

best_i = -1;

foreach i from 0 to N {

make xli = log(xi)

make regression with xli in place of xi, keeping all

other variables the same

if (error(xli) < error)

then {

best_i = i;

error = error(xli);
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}

}

if (best_i != -1)

then keep xi as xli

else flag_continue = false;

}

Figure 5.1. Methodology to identify variables with polynomial effect over an
engine.
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5.3.3 Multivariate regression

For the implementation of the proposed methodology, R tool was used. R is a language
and environment for statistical computing and graphics. It is a GNU project which was
developed at Bell Laboratories (formerly ATT, now Lucent Technologies). It includes:

• an effective data handling and storage facility,

• a suite of operators for calculations on arrays, in particular matrices,

• a large, coherent, integrated collection of intermediate tools for data analysis,

• graphical facilities for data analysis and display either on-screen or on hard copy,
and

• a well-developed, simple and effective programming language which includes con-
ditionals, loops, user-defined recursive functions and input and output facilities.

For analysis of the proposed methodology, an script was implemented in R with
three phases: initialization, cross-validation and summarization. These three phases
are presented in the following sections.

5.3.3.1 Initialization

In the initialization phase, data set was read into R, PCA was computed and an initial
linear regression with all data has been done, as it can be seen in algorithm below.

Begin: initialization

Read data: Cex (179 measures)

Proven (1330 measures)

Compute PCA: Cex group

Proven group

Compute linear regression for engines e1, e2, e3 and e4:

Cex group

Proven group

Get r squared for regression for each engine and each group

End: Initialization

In order to evaluate the quality of the estimators, Table 5.2 presents r-squared
coefficient (squared Pearson’s correlation coefficient [25]) for all estimators. This co-
efficient ranges from 0 to 1 and it indicates the correlation between the observed and
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Table 5.2. r-squared for engine estimators with all data.

Engine CEX Group Proven Group
e1 0.584 0.516
e2 0.573 0.298
e3 0.526 0.704
e4 0.576 0.366

predicted execution times (0 indicates no relationship and 1 indicates a perfect linear
relationship, with a value above 0.7 indicating a strong correlation).

It is important to recall that our main interest is to estimate the relative perfor-
mance of the engines so that we can predict the best set of engines to run in parallel.
In this sense, the estimators obtained were satisfactory, as they obtained reasonable
relative performance with respect to the actual execution times.

5.3.3.2 Cross-validation

Cross-validation [53], sometimes called rotation estimation, is a technique for assessing
how the results of an statistical analysis will generalize to an independent data set. It
is mainly used in settings where the goal is prediction, and one wants to estimate how
accurately a predictive model will perform in practice. One round of cross-validation
involves partitioning a sample of data into complementary subsets, performing the
analysis on one subset (called the training set), and validating the analysis on the
other subset (called the validation set or testing set). To reduce variability, multiple
rounds of cross-validation are performed using different partitions, and the validation
results are averaged over the rounds.

Cross-validation has been applied to validate not just multivariate regression,
but the whole methodology proposed. Training set counted for 67% of the data while
validation set comprised the remaining 33%.

The partition and computation loop was executed one third of the size of the
sample data (it means then 60 times for CEX group and 444 times for Proven group).
It is important to remind that data set partition was done randomly.

Algorithm below presents the cross-validation loop for one group (it must be
executed again for the other group). For each execution, all data computed was counted
and summarized, in order to get, at the end, the average values and the percentages of
each type of match.

Begin: Cross Validation

Random sample data partition: training and validation sets.



5.4. Engines’ selection mechanisms 77

For each engine begin:

Compute PCA for training set.

Compute predict times for validation set,

using training set PCA.

Compute r-squared

Compute covariance matrix for training set

For each validation set entry:

1. Compute smallest distance to entries

in training group

2. Compute smallest distance to all entries

in other group

3. Compute best engines based just in

execution time

4. Compute best engines based in execution time

and correlation

End: Cross Validation

5.3.3.3 Summarization

In the summarization phase all computed data is prepared and final results are pre-
sented, as displayed in next section.

5.4 Engines’ selection mechanisms

We mathematically formulated three forms of selection: “Maximize Performance” (se-
lect engines with smallest execution times) , “Minimize Correlation” (select engines
with smallest correlation) and “Maximize Performance and Chance of Success” (select
engines with smallest execution time and correlation).

In addition to selecting heuristics, the model can also be used to estimate and
select the heuristics’ parameters. Once we the best select engines, parameter values
that define the selected engines are a good hint of possible good parameters.
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5.4.1 Maximizing Performance

The first question a reader may ask is a very simple one - tell him/her which engine is
the best engine to prove or to find a counterexample for a given property by maximizing
the performance of the job (i.e. minimizing the execution time, ẽ). Having ẽi as the
estimated execution time for engine i, solution would consist in taking the smallest
estimated execution time.

min
∑
i

wiẽi (5.13)

subject to

∑
i

wi = 1

wiε {0, 1}

Although we casted this problem as an optimization problem as it will help us
understand our final solution, the solution to this problem can be easily obtained by
just selecting the minimum estimate ẽi.

5.4.2 Minimizing Correlation

It is interesting to to take into account during engines’ selection the minimization of
engines’ correlation, as correlation is intimately related to our chance of success: by
selecting engines that do not have similar behaviors we increase the chance of reaching
a proof conclusion.

min
∑
i

wiσi (5.14)

subject to

∑
i

wi = 1

wiε {0, 1}

In this case, there is also a simple solution which is obtained by just selecting the
engine i with minimum σi. We also casted this problem as an optimization problem to
facilitate the understanding of the parallel selection problem.
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5.4.3 Maximizing Performance and Chance of Success

Just like the Mean Portfolio Variance Theory (see Chapter 4), we could easily extend
the Maximize Performance problem. In the Maximize Performance selection problem,
the group of engines is selected even if their correlation is high. The selection of highly
correlated heuristics could lead to similar behaviors and all selected engines could take,
for example, a longer execution time than expected, arriving to no proof conclusion.

We can further improve this model and increase the chance of success by mini-
mizing the selected engine’s correlation to avoid similar behaviors.

min
∑
i

wiσij (5.15)

subject to ∑
i

wi = N (5.16)

This can be rewritten as:

min
∑
i

∑
j

wiwjσij (5.17)

subject to

∑
i

wi = N

wiε {0, 1}

This last problem formulation is able to choose the engines that will lead to
minimum correlation, even considering the dependency among them, but it does not
consider performance (estimated time).

In order to address the problem of selecting multiple engines to increase the
chance of success, we will consider the auxiliary function θ, adapted from the auxiliary
function defined in Chapter 4, equation 5.18.

In the adaptation of the problem, the stock assets will be mapped to engine assets.
So the portfolio will contain a set of engines to be chosen.

The auxiliary function θ proposed in 5.18 will be adapted to this environment:

θ =

∑N
i=1Xi(Ri −RF )

[
∑N
i=1X

2
i σ

2
i +

∑N
i=1

∑N
[j=1,j!=i]XiXjσij]1/2

(5.18)

the numerator will be the performance estimate of the engine mix, and the de-
nominator will be the correlation between the engines.
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If we want to maximize performance, and performance is proportional to the
inverse of ẽ, we will use 1

ẽ
as the function to be maximized. So, substituting (Ri−RF )

by 1
ẽi
, yields

θ =

∑
iwi(

1
ẽi

)

[
∑
iwi2σi2 +

∑
i

∑
j wiwjσij]

1
2

(5.19)

Like stated in Chapter 4, a good solution, thus, is obtained by maximizing the
performance, and at the same time minimizing the correlation of the engines, thus
yielding a maximization problem.

max θ (5.20)

This problem can be solved by computing θ partial derivatives with respect to wi
and making them equal zero (see Section 4.5).

∂θ

∂wi
= 0, (5.21)

From 4.39 in Chapter 4:

∂θ

∂wi
= −λ[wiσi

2 +
∑
j,j!=i

wjσij] +
1

ẽi
= 0 (5.22)

where

λ =

∑
iwi(

1
ẽi

)

[
∑
iw

2
i σi

2 +
∑
i

∑
j,j!=iwiwjσij]

(5.23)

As detailed in 4.5, the solution ~w is given by

λ× V × ~w = (
1

ẽ
) (5.24)

The vector ~w specifies the weight we should give to each engine. As an approx-
imation, for a n core machine, for example, we will take the n engines with highest
weight in ~w, maximizing the chance of return given by performance ẽ, yet observing
the minimum variance.

If you solve for all wi, then λ is a constant. We are interested in ordering w, not
on w absolute value itself. As we want to sort the w values to get the best engines,
we can absorb their constant by w, as we are interested in the normalized w. By
disregarding λ, we have:
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V × ~w = (
1

ẽ
) (5.25)

Solving for ~w results in:

~w = V −1(
1

ẽ
) (5.26)

Normalizing ~w as stated in 4.39 in Chapter 4::

‖ w̃ ‖= ~w∑
iwi

(5.27)

Based on ‖ w̃ ‖, we can select the n highest elements of wi to be the engines to
execute in parallel.

Note that, although we showed how to obtain the best n engines, we did not
consider the engine‘s parameters ~p. This approach works by first estimating the values
of ~p, and then using the estimators ẽ based on the values obtained for ~p. So the
parameters are already defined for each engine.

It is important to observe that sometimes we can consider enumerating some
of the dependent parameters pj by considering an engine a solver with pre-defined
parameters, and use all possible solver-parameter pairs as engines ei when we find the
maximum for θ like before.

For example, suppose we are selecting an heuristic for the SAT solver and that
there are three options for some pj.

Dom(pj) = 0, 1, 2 (5.28)

We would define the engines as e1(x, p = 1), e2(x, p = 2), e3(x, p = 3).
If we have many different parameters, finding engines with good performance

may be a hint of good parameters selection. User can then explore these parameters
configuration with small changes to even enhance performance.
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Results

In a scenario where we have two cores to prove a given target, this analysis consists in
suggesting the two engines with the greater chance to solve the problem.

The data set is made up of collected proof times for 4 different engines: e1, e2, e3,
e4. Data was then clustered into the following groups: “True" and “CEX". Estimators
were generated for each cluster: e1True, e1CEX , e2True, e2CEX , e3True, e3CEX , e4True,
e4CEX .

6.1 Multivariate regression

Linear regression was applied to data, according to Sections 5.3.2 (Polynomial Effect of
Variables) and 5.3.1 (Linearization of Exponential Equations). Further analysis of the
estimators enabled us to understand that the polynomial coefficients were providing
good coverage for small values of the parameters, while the exponential coefficients in
the estimators were providing good coverage when parameters values increased (larger
values), as it can be seen in figure 6.1.

As a result, we ended up using the following model:

ẽ(~x) = b0(
|X|∏
i

bxii )(
|X|∏
j

x
bj
j ) (6.1)

Linearization of equation above by getting the logarithm of both sides of the
formula reaches:

log ẽ(~x) = log b0 +
|X|∑
i

xi log bi +
|X|∑
j

bj log xj (6.2)

PCA, as discussed in Section 3.4, was applied before regression.

83
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Figure 6.1. Polinomial effect for smaller values versus exponential effect for
larger values.

Example of final estimator for e1CEX is:

e1CEX = b0 + b1x1 + ...+ b15x15 + b16 log x1 + ...+ b30 log x15 (6.3)

6.2 Smallest distances

Users can employ the distance table to gain a feeling of which is the expected proof
result in order to choose the specific estimators group (“True" or “CEX").

We computed the distance of the validation set to all entries in the the training
set and also to all data in the other group. The formula used to compute such distance
took into account xk and lnxk since best estimators were obtained when linear and
logarithmic effects were considered.

di = mink[
∑

(xi − xk)2 +
∑

(lnxi − lnxk)2]
1
2 (6.4)

Distance to each group’s center of mass could not be used due to the big variability
of the training set.

Table 6.1 presents the percentage of times an entry from the CEX validation set
had smaller distance to an entry of CEX training set, and percentage of times and
entry from CEX validation set had smaller distance to an entry of Proven group data.
The same is presented for Proven group.

Since a user should start considering the use of “True" or “CEX" estimators to
guide selection of the n engines, Table 6.1 brought great help. As it can be seen, for
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Table 6.1. Percentage of times smaller distance matched correctly for each group
at the end of validation process.

Group Smallest distance Smallest distance
found in CEX found in Proven

CEX 60.75% 39.25%
Proven 6.02% 93.98%

CEX group, validation set entries were closer to an entry in CEX training set 60.75%

of the times while for Proven group, validation set entries were closer to an entry in
Proven training set 93.98% of the times. The size difference between CEX data set
and Proven data set may be the reason for the worse result of CEX group compared
to Proven group result.

6.3 Selection based on engine’s time

During cross-validation, the following kinds of matches have been computed (suppose
best engine is A and second best engine is B):

• Exact Match: number of times two best engines have been predicted correctly
(A and B)

• 2 matches: number of times best engine was predicted as second best and second
best was predicted as the best (B and A)

• 1 match Best: number of times best engine was predicted as best or second best,
but second best engine was not predicted at all (A and X or X and A)

• 1 match: number of times second best engine was predicted as best or second
best, but best engine was not predicted at all (B and X or X and B)

• No match: number of times neither the best nor the second best engines were
predicted at all (X and Y)

Table 6.2 presents the results after cross-validation. As it can be seen, the best
engine were selected as the first or second better 82.25% for CEX group and 90.91%
for Proven group. In yellow we present the unsatisfactory results, which comprises the
selections that do not include the best engine.
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Table 6.2. Percentage of time of each kind of match for selection based in
execution time.

Kind of match CEX Proven
Exact match 49.44% 45.49%
2 matches 19.00% 35.43%

1 match best 13.81% 9.99%
1 match 17.75% 9.09%
No match 0% 0%

6.4 Selection based on engine’s time and

correlation

In order to reduce risks of choosing the wrong engines to prove the property, the
best solution was chosen by analyzing also the engine’s correlation. A smaller engine
correlation corresponds to better quality of solution (different behaviors) which, in
turn, corresponds to the biggest chance of solving the problem.

The cluster’s data set (“True" and “CEX") were analyzed separately, since we
need to compute the covariance matrix of each group.

As stated in Section 5.4.3, the goal is to generate normalized vector ‖ w̃ ‖ as
stated by Equation 5.27:

‖ w̃ ‖= ~w∑
iwi

(6.5)

‖ w̃ ‖ comes from Equation 5.26:

~w = V −1(
1

ẽ
) (6.6)

So, given estimation times and engine’s covariance matrix (which was pre-
computed for each training set during cross-validation), ‖ w̃ ‖ was quickly computed
and validation set was checked.

Table 6.3 presents the results after cross-validation, following the same match
type definitions from last section. As it can be seen, the best engine was selected as
the first or second better 72.34% for CEX group and 64.79% for Proven group. In
yellow we present the unsatisfactory results, which comprises the selections that do
not include the best engine.

This methodology takes also into account the engine’s correlation. Therefore, if
the two best engines have high correlation, one of them will not be selected. However,
if the two best engines are highly correlated, selecting the second best instead of the
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Table 6.3. Percentage of time of each kind of match for selection based in
execution time and variance.

Kind of match CEX Proven
Exact match 18.81% 11.29%
2 matches 12.53% 9.63%

1 match best 41% 43.87%
1 match 24.97% 32.11%
No match 2.69% 3.11%

best should not bring big effect to final result that is to increase the chance to arrive to
a proof result. A good hint that this happens is the mean distance between the known
best match and the chosen best match for all "1 match" and "No match" matches,
for all runs. For "Selection based on engine’s time" methodology, this mean distance
was 0.73 while for "Selection based on engine’s time and correlation", this mean was
0.13, showing a bigger proximity of known best match and chosen best match when
correlation is taken into account. If, then, we include the "1 match" values (green line
in Table 6.3) to the final percentages, the final results change to 97.31% for CEX group
and 96.90% for Proven group.

It is worth noting that since V −1 can be precomputed when the training set is
built, the whole heuristic performance is very good, taking a very small fraction of the
proof setup time, being negligible for practical purposes.

6.5 Summarization

During cross-validation process, linear regression has been computed many times to
validate data set. For each time computed, r-squared was summed up and, at the end,
the mean was computed. Table 6.4 presents "All data set" r-squared values (already
displayed in Table 5.2) and "Mean training set" presents r-squared values obtained
after cross-validation.

As it can be seen, even with data partitioning into training set (2
3
) and validation

set (1
3
), r-squared kept much the same, proving the independence of the data set.

During cross-validation the number of matches for both heuristics ("Selection
based in engine’s time" and "Selection based in engine’s time and correlation") was
computed and summarized. Figure 6.2 summarizes results already displayed in Tables
6.2 and 6.3.

It can be seen that the heuristic based just in execution time has the best results
for "Exact match" and "2 matches", since this was its objective: order engines by
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Table 6.4. Mean r-squared for engine estimators after cross-validation.

CEX Group Proven Group
Engine All data set Mean training set All data set Mean training set
e1 0.584 0.655 0.516 0.530
e2 0.573 0.636 0.298 0.310
e3 0.526 0.594 0.704 0.713
e4 0.576 0.643 0.366 0.378

Figure 6.2. Results comparison for selection heuristics.

predicted execution time. In the other hand, maximize chance of success heuristic has
the best results for "1 match best" and "1 match", since its objective was to select at
least one of the best engines, since if the best two were correlated, they would never be
both selected. The significance of the second heuristic would probably be better seen
when we have a bigger number of engines.



Chapter 7

Conclusions

Despite all the recent advances in formal verification technology [33], formal verifica-
tion is an NP-complete problem in the size of the trace description (Binary Decision
Diagrams state-explosion problem) and in the verification time (SAT solvers). There-
fore, as many other NP-complete problems, practical solutions implement heuristics to
try to solve efficiently such problems.

Approaches used today to solve this problem are based mainly on brute force or on
verification engineers’ feelings. By brute force, a user starts one proof process/thread
for each available engine and gets the first result available. However, since engines and
associated parameters may be much more numerous than the processing power avail-
able, this approach can easily be shown not to scale. On the other hand, verification
engineers may have a feeling of the best heuristic to prove a property, but with the
increase in design size, trusting in these feelings becomes a big risk.

With the advent of parallel processing (simultaneous use of more than one CPU or
processor core to execute a program or multiple computational threads), the possibility
of running multiple processes in parallel became more transparent and viable. As a
consequence, relying on the use of multiple processes/threads in order to get the best
results arose as a way to improve formal verification.

In general, there are a large pool of engines, but only a small number of process-
ing cores. The problem then becomes selecting the best subset of engines that will
increase the chance of solving the problem, which in this context means reaching a
proof conclusion.

This problem becomes important as there is a large number of heuristics and
parameter configurations published over the years to improve the performance of formal
verification techniques.

This work presented a methodology to select n engines (heuristics with associated
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parameters) out of N (N >> n) to run in parallel environments, in order to maximize
the chance of reaching a proof conclusion. The methodology consisted of generating
performance estimators for engines based in a multivariate statistical model and select
the best engines, considering not only the estimated performance of the engines, but
also the possibility that some of the engines in a formal verification environment were
correlated.

The methodology was based on the computation of good engine’s performance es-
timators. In our case, a significant training set was built, and we collected 15 structural
and testability metrics from RTL designs. These metrics ranged from number of flops
and gates for structural parameters to SCOAP indexes for the testability parameters.

We initially clustered the training set using k-nearest neighbors in three groups
of data (proven valid or True, counterexample, proof timeout). Proof timeout group
was ignored since it reflects inconclusive proof. A multivariate linear regression was
applied to the other two groups, generating 8 proof time estimators. The estimators
relied on polynomial and exponential terms, yielding a good prediction model, based
on the Pearson correlation coefficient.

Cross validation is an important mechanism used to validate a prediction model,
giving its accuracy. This work repeatedly (1) divided the data set randomly into
training data set (66%) and validation data set (33%), (2) generated engine estimators,
(3) applied results to validation set and (4) summarized results.

We showed that engine selection could be determined based just on smallest esti-
mation times, but it could also take into account the engine’s covariance (by minimizing
the engine’s correlation), thus maximizing chance of success in selection.

Results confirmed that our methodology was able to provide a very quick selection
mechanism for parallelization of engines as, since the inverse of the covariance matrix
can be pre-computed when we build the training set, the majority of the time to
consider is the metrics data collection for the target to prove, which showed up to be
a negligible time when compared to the proof setup time.

Both selection mechanisms showed up as a good heuristic. Selection based on
engine’s performance showed up very good matching results while "Maximization of
the chance of success" selection mechanism showed how significant it can be for en-
vironments with a big number of engines, where correlation will help improving the
selected group of engines in order to have a diversified group that can range many
uncorrelated heuristics and improve the chance of reaching proof conclusion.

Selection based on engine’s performance allowed speedups greater than 2 times
while "Maximization of the chance of success" selection mechanism allowed speedups
greater than 3 times when compared to a not optimal selection.
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This work brings a new concept for engine’s selection, based on structural and
testability metrics, which can be done on-the-fly during proof. Prior works had tried to
maximize specific heuristics, for specific designs with specif characteristics. This work
can be applied to any design, giving good estimators have been generated.

As future works, we would like to further categorize the proof times based on the
number of cycles of the proofs, both for bounded proofs (or timeout) and for proofs
where we have a counter-example. In such a scenario, we could create a cluster for
bounded / counterexample proofs shorter than 10 cycles, within 10 and 30 cycles, and
above 30 cycles, for example. We could also use Bayesian (Conditional Probability)
theory, in which, given the user has already spent some effort in trying their proof,
whether he/she had better change his/her heuristics or not.

In addition, it is worth investigating new parameters/metrics to generate better
engine’s time estimators. Increasing training set size is also a way of increasing the
quality of estimators.
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A

Testability measures

The continuing development of the manufacturing technology has lead to an increase
in the density of gates possible on integrated circuits, with the result that access to
their internal nodes is mode difficult. Therefore, there is a growing concern about the
ease of testability of these integrated circuits.

Testability analysis evaluates the relative degree of difficulty of testing circuit
nodes for line stuck-at faults. Testability analysis depends on two properties: control-
lability and observability.

Controllability is a measure of the ease or difficulty of setting a node to a desired
logic value, while observability is a measure of the ease or difficulty of propagating a
node‘s value to a primary output. A node is said to be easily testable if it is highly
controllable and observable.

A fault is testable if there exists a well-specified procedure to expose it, which is
implementable with a reasonable cost using current technologies. A circuit is testable
with respect to a fault set when each and every fault in this set is testable.

The main goals of testability are:

• Maximize fault coverage: [(no. of faults detected)/(no. of possible faults)] x 100

• Minimize test application time

• Minimize test data volume

• Minimize test generation (ATPG) effort

• Maximize fault resolution (isolating fault to smallest replaceable component)

• Minimize hardware/software overhead for testing
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Several testability measures have been suggested in the literature to assist in
the process of testing circuits (SCOAP [42], COP [18], PREDICT [72], VICTOR [69],
STAFAN [52], TMEAS [43], CAMELOT [13]).

In the scope of this work, testability measures can give information about a design
or property that may be useful to decide upon an engine.

A.1 SCOAP (Sandia Controllability Observability

Analysis) [42]

A testability measure such as SCOAP gives integral numerical estimates of the con-
trollability and observability of signal lines in a given circuit.

SCOAP characterizes circuit nodes as sequential or combinational. A combina-
tion node is defined to be a primary input or a combinational standard cell output,
while a sequential node is an output node of a sequential standard cell. SCOAP rep-
resents the testability of each node N by a vector having six elements:

1. CC0(N) combinational 0-controllability,

2. CC1(N) combinational 1-controllability,

3. SC0(N) sequential 0-controllability,

4. SC1(N) sequential 1-controllability,

5. CO(N) combinational observability,

6. SO(N) sequential observability.

CC0(N) and CC1(N) are the minimum number of combinational node assign-
ments required to set node N to “0” or “1”, respectively. Analogously, SC0(N) and
SC1(N) are the minimum number of sequential node assignment required to set node
N to “0” or “1”, respectively. CO(N) is the number of combinational standard cells
between node N and primary output plus the minimum number of combinational node
assignments required to propagate the logical value on node N to a primary output of
the circuit. Similarly, SO(N) is the number of sequential standard cells that must be
controlled to propagate the logical value on node N to a primary circuit output. Note
that these measures are exact integers that depend on circuit topology.

Some examples of controllability equations are presented in Figure A.1.
Some examples of observability equations are presented in Figure A.2.
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Figure A.1. SCOAP controllability equations.

The main weakness of SCOAP is the assumption that controlling/observing a line
is independent event, what is not true in reconvergent paths like below. This limits
the accuracy of SCOAP.

Flip-Flop equations based in Figure A.4 are presented below:

CC1(Q) = CC1(D) + CC1(C) + CC0(C) + CC0(RESET ) (A.1)

SC1(Q) = SC1(D) + SC1(C) + SC0(C) + SC0(RESET ) + 1 (A.2)

CC0(Q) = minCC1(RESET ) + CC1(C) + CC0(C), CC0(D) + CC1(C) + CC0(C)

(A.3)

CO(D) = CO(Q) + CC1(C) + CC0(C) + CC0(RESET ) (A.4)

SC0(Q) is analogous to SC1 and SO(D) is analogous to CO(D).

The sequential controllability gives a rough measure of the number of times var-
ious flip-flops must be clocked to control a signal and the sequential observability
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Figure A.2. SCOAP observability equations.

Figure A.3. Flip-flop.

measures the number of times various flip-flops must be clocked to observe a signal.
Generally, these sequential measures characterize the test length.

SCOAP may also be used to predict the length of the test vector set for a circuit.
The testability of the stuck-at faults at node x are defined as:

T (x, stuck − at− 0) = CC1(x) + CO(x) (A.5)

T (x, stuck − at− 1) = CC0(x) + CO(x) (A.6)

TestabilityIndex = log
∑
allfj

T (fj) (A.7)

In order to detect a fault at x, one must set x to the opposite value from the fault
and observe x at a PO. Figure A.4 shows a linear relationship between the number
of vectors needed for 90% fault coverage and the Testability index for a number of
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circuits.

Figure A.4. SCOAP observability equations.

The computation of SCOAP testability measures is improved by a new testability
analysis tool named “HISCOAP”. It is a hierarchical testability analysis tool which
makes use of the hierarchy of the circuit. The tool significantly reduces the memory
and computational resources while computing testability measures.

A.2 COP (Controllability/Observability Program)

[18]

COP uses probability theory to calculate testability measures. It assigns three proba-
bility values to each line:

1. C1(l): the 1-controllability of a line l is defined as the probability that line l takes
value “1”.

2. C0(l): the 0-controllability of a line l is defined as the probability that line l takes
value “0”.

3. O(l): the observability of line l is the probability of observing the value of line l
at a primary output.

COP is a simple direct application of probability theory for the calculation of
testability.

A.3 PREDICT [72]

PREDICT breaks the circuit into sub-circuits called supergates. The supergates com-
pletely include reconvergent fanouts, what enhances measure quality. The worst case
would be the entire circuit as a supergate.

PREDICT computes exact probabilities. Computational complexity is exponen-
tial with the circuit size. Several heuristics were developed to reduce calculations time.
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A.4 VICTOR [69]

VICTOR is different from the other testability programs in its emphasis on detecting
redundant stuck-at faults. VICTOR is restricted to combinational circuits.

It defines three controllability and three observability parameters for every node
in the circuit: label, weight and size. A label is a sufficient test for controlling or
observing a node. The weight is the weighted sum of the constrained primary inputs
and fan-out branches associated with a certain label.

In addition to calculating testability measures for every node and identifying
redundant faults, VICTOR generates test vectors for some of the faults in the circuit.
Unfortunately, it is typical in VICTOR to identify many nodes as being potentially
redundant even if no redundant faults are present.

A.5 STAFAN (Statistical Fault Analysis) [52]

STAFAN also makes use of concepts of controllability and observability. These quanti-
ties are redefined as probabilities of controlling and observing the lines. Controllability
of a line is estimated by collecting the statistics of activity on that line. Observability
is then computed from the estimated controllability. The product of the appropriate
controllability and observability gives the detection probability of a fault.

STAFAN uses probability theory in a way similar to COP. STAFAN, however, as-
signs two observability values to each node: 1-observability and 0-observability. These
observability values are defined similarly to COP’s observability, with the added initial
condition that line l is set to “1” or “0”, respectively. STAFAN calculates the controlla-
bility values based on an experiment that uses random vectors, while COP calculates
them based on the Boolean equations of each node. This makes the testability measures
calculated by COP dependent only on the circuit, while STAFAN produces testability
measures that depend on both the circuit and the test vectors used in the experiment.
Hence, STAFAN produces different values for testability measures based on the test
vectors used in the experiment, while COP values are always consistent.

A.6 TMEAS (Testability Measure Program) [43]

This approach was developed for register-transfer-level (RTL) circuits, but can also be
applied at the gate level. The measures are normalized between “0” and “1” to reflect
the ease of controlling and observing the internal nodes. The approach is summarized
as follows:
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1. For each signal line s, we denote the controllability of s as CY(s) and the observ-
ability of s as OY(s).

2. The values for the CYs and the OYs of all the signal lines are derived by solving
a system of simultaneous equations with the CYs and the OYs as unknowns.

a) Let the input variables of a component be x1, x2, . . . , xn, and the output
variables be z1, z2, . . . , zm. The expression used to calculate CY for each
output zj is:

CY (zj) = CTF × 1

n

n∑
i=1

CY (xi) (A.8)

where CTF is the controllability transfer factor of the component.

b) Let Nj(0) and Nj(1) be the numbers of input combinations for which zj has
value 0 and 1, respectively. Then

CTF =
1

m

m∑
i=1

(1− |Ni(0)−Ni(1)|
2n

), 0 ≤ CTF ≤ 1 (A.9)

Note that Nj(0) + Nj(1) = 2n and, for a given primitive, each output
controllability is assigned the same value.

c) The expression used to calculate OY for each input xi is

OY (xi) = OTF x
1

m

m∑
j=1

OY (Zj) (A.10)

Where OTF is the observability transfer factor of the component.

d) Let NSi be the numbers of input combinations for which the change of xi
results in a change of output. Then

OTF ≡ 1

n

n∑
i=1

NSi
2n

(A.11)

NSi also means the number of input combinations that can sensitize a path
from xi to the output. OTF measures the probability that a faulty value at
any input will propagate to the outputs. Note that 0 ≤ OTF ≤ 1. For a
given primitive, each input observability is assigned the same value.

3. Fanouts: Let s be a fanout stem and k be the number of its branches. Then the
CY s of each fanout branch is
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CY =
CY (s)

(1 + logk)
(A.12)

The observability of the fanout stem s is

OY (s) = 1−
k∏
i=1

[1−OY (bi)] (A.13)

Where bi are fanout branches of s.

4. Sequential components: Sequential components are modeled by adding back links
around the components that represent internal states.

A.7 CAMELOT (Computer-Aided Measure for

Logic Testability) [13]

The Computer-Aided MEasure for LOgic Testability (CAMELOT) was intended to be
an improvement on TMEAS discussed above.

CAMELOT assigns a single controllability value, CY ∈ [0, 1], to every gate-level
line in the circuit. The maximum value 1 indicates a node, such as a primary input,
where forcing a “1” is as easy as forcing a “0”. At the other extreme, a CY of 0 indicates
a node that cannot be set to “1” or “0”. In practice, the majority of the nodes in a
circuit have CY node values between these two limits.

Similarly, CAMELOT assigns a value OY to each node indicating the observabil-
ity of that node. OY is defined to be a measure of the ease of observing a state of a
node at the circuit‘s primary outputs.

The controllability and observability values calculated by CAMELOT are heuris-
tic figures of merit having no mathematical foundation. Clearly, with just one con-
trollability value and one observability value for each node, CAMELOT requires less
computation than SCOAP. CAMELOT provides a testability measure for each node:

TYnode = CYnode ∗OYnode (A.14)

And a testability measure for the whole circuit:

TYcircuit =

∑
TYnodes

Numberofnodes
(A.15)
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